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Reducing the Computational Effort Associated with Evolutionary
Optimisation in Single Component Design

by

Harish Dhanji Vekeria

ABSTRACT

The dissertation presents innovative Evolutionary Search (ES) methods for the reduction in
computational expense associated with the optimisation of highly dimensional design
spaces. The objective is to develop a semi-automated system which successfully negotiates
complex search spaces. Such a system would be highly desirable to a human designer by
providing optimised design solutions in realistic time.

The design domain represents a real-world industrial problem conceming the optimal
material distribution on the underside of a flat roof tile with varying load and support
conditions. The designs utilise a large number of design variables (circa 400). Due to the
high computational expense associated with analysis such as finitc element for detailed
evaluation, in order to produce “good” design solutions within an acceptable period of
time, the number of calls to the evaluation model must be kept to a minimum. The
objective therefore is to minimise the number of calls required to the analysis tool whilst
also achicving an optimal design solution.

To minimise the number of model evaluations for detailed shape optimisation several
evolutionary algorithms are investigated. The better performing algorithms are combined
with multi-level search techniques which have been developed to further reduce the
number of evaluations and improve quality of design solutions. Multi-level techniques
utilise a number of levels of design representation. The solutions of the coarse
representations are injected into the more detailed designs for fine grained refinement. The
techniques developed include Dynamic Shape Refinement (DSR), Modified Injection
Island Genetic Algorithm (MiiGA) and Dynamic Injection Island Genetic Algorithm
(DiiGA). The multi-level techniques are able to handle large numbers of design variables
(i.e. >100). Based on the performance characteristics of the individual algorithms and
multi-level search techniques, distributed search techniques are proposed. These techniques
utilise different evolutionary strategies in a multi-level environment and were developed as
a way of further reducing computational expensc and improve design solutions.

The results indicate a considcrable potential for a significant reduction in the number of
evaluation calls during evolutionary search. In general this allows a more efficient
integration with computationally intensive analytical techniques during detailed design and
contribute significantly to those preliminary stages of the design process where a greater
degree of analysis is required to validate results from more simplistic preliminary design
models.
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1. INTRODUCTION

1.1 Design

Pressure for more economic designs in industry has increased due to growing competition
in the market place and advances in technology. Designers are constantly challenged to
produce designs that meet ali the performance specifications and yet can be produced at

low cost. French [1994] describes design as a:

“... purposeful activity directed towards the goal of fulfilling human
needs. It is also a typical intellectual task that human beings
perform. Although things are built by many creatures, the nest of a
bird, the dam of a beaver, the web of a spider are some examples,
these creations are however instinctively produced. It is not the
spider that decides the fundamental structure of it's web, but the
programmed instinctive‘instructions that evolution has provided for
the spider. Only humans have the ability to go beyond instinct and

consciously create designs .

Figure 1-1 illustrates three major stages of the design process : analysis, synthesis and
evaluation [Balachandran 1993]. At the analysis stage the designer participates in the
collection and classification of all relevant information to the problem and defines the
objectives. In the synthesis phase the designer then secks to formulate a potential solution.
The potential solution is then considered at the evaluation phase, where it is judged against

some criteria in order to select the most suitable solution. Failure to meet the required




criteria at the evaluation stage may necessitate a return to the analysis stage where the
decisions must be appropriately corrected and then the whole process repeated.

Analysis

Define problem
constraints and
objectives

Synthesis |

Formulate potential
solutions

Evaluation

Evaluatc against
criteria

v

A

Solution

Figure 1-1 Asimow’s three-phase design model [Balachandran 1993].

1.1.1 Importance of Engineering Design

There is no universally accepted definition of Engincering Design. Dym and Levitt, [1991]

summarises the process of engineering design as follows

“ Engineering design is the systematic, intelligent generation and
evaluation of specifications for artefacts whose form and function

achieve stated objectives and satisfy specified constraints ”.




The design process has several distinct stages [Pahl and Beitz, 1984, Dym and Levitt,

1991] :

1. Conceptual or Preliminary Design takes the statement of the problem and generates

broad solutions to it in the form’ of schemes. For example French [1985] describes it as :

“.. the phase that makes the greatest demands on the designer, and where
there is considerable scope for improvements. Engineering science,
practical knowledge, production methods and commercial aspects are all

combined to make the most important decisions

Maher highlights the explorative aspect of design, especially during conceptual design.
Mabher states that designers do not always have a complete problem description before
commencing a design synthesis. During conceptual design, designers play around with
ideas to get more understanding about the problem rather than focus on finding a design
solution. Design therefore is an iterative process of searching the design problem space
as well as the solution space. This phenomenon is referred to as exploration in design.

Gero [1993] defines exploration as follows :

* Exploration in design can be characterised as a process which creates

[

new design spaces or modifies existing design state spaces.
Gero [1993] continues to suggest that exploration and search are related and that

exploration precedes search. Maher and Poon [1995] also relates search as a part of

exploration but highlights that search and exploration are not the same:



“ .. search becomes exploration where the focus of the search changes as

(11

the process continues ..

2. Detailed design concerns the refinement of choices made in preliminary design. As we
arc further down in the design search tree, the decompositions and their interactions are

better understood and therefore more easily manageable.

3. Analysis concerns performing calculations or deductions needed to assess whether the
design satisfies other, less obvious specifications and constraints, This phase of the
design process may be computationally expensive, especially if large complex programs

such as finite element analysis are used.

4. Evaluation consists of predicting the behaviour of the current design by deriving the
values of all relevant performance measures in order to determine whether the stated

specifications and objectives of the current design are acceptable.

5. lerative redesign concemns the redesign of products if the results are deemed

unsatisfactory.

Many engineering design problems involve the quick development of the “best” or “near
best” design in a complex engineering domain with the given material, technological and
economical constraints. Here “best” can, for example refer to low cost or high quality.
More often or not there is a trade-off. Solving this problem has tremendous commercial

benefits.



Automated or semi-automated engineering design is likely to be extremely beneficial to
commercial enterprises as it would allow them to reduce the cost of producing new
designs, to produce better designs than their competitors, and to bring new concepts to the
production line faster. All of these improvements would allow the companies that take

advantage of them to increase market share and profitability.

1.1.2 Current Design Methods

The human design process is traditionally a prolonged, iterative one. Most complex
enginecring design is performed manually. Engineers often usc computer aided design
(CAD) software to create and edit their designs, and software such as finite element (FEA})
to analyse their designs. The process often works as follows: the engineer initially creates a
conceptual or preliminary dqsign, which is then analysed, using appropriate software to
determine which parts must be further redesigned or optimised. Further changes are then
made using the CAD software. Iteration will continue until a design is developed that
meets the original specification or is deemed acceptable. In some cases the design process
may be aborted altogether due to time constraints, consequently resulting in a considerable
waste of time and money. This design-evaluale-redesign process is extremely slow. It
requires large amounts of calendar time, moreover it sometimes fails to produce an oplimal
or ncar oplimal design solution. The longer the design process the more costly it becomes.
Often, the intuitive redesign methods fail since the available design options arc few and
difficult to determine. Thus, computer software which helps to automate and speed up this
process is highly beneficial.” Moreover, with the cost of computers decreasing and the
available computation power increasing, the computer is becoming an essential tool for the

designer.



Whilst there is an abundance of computer aided design software and numerous analytical
lools, software which automates the design process (e.g., identifying new designs or
improving existing designs) is currently less common. Commercial optimisation software
is ofien only capable of handling a rclatively small number of design variables, which
limits their use in industry to small problems. For example the ANSYS (release 5.3) finite

element oplimisation software is only capable of handling a maximum of 10 variables.

1.1.3 Optimum design
The purpose of design optimisation is to algorithmically search for the “best” or “near best”
design solution relative to an overall criterion. Beightter [1979] et al describes what we are

trying o accomplish when we optimise :

“ Man’s longing for perfection finds expression in the theory of
optimisation. It studies how to describe and artain what is Best, once
one knows how to measure and alter what is good or bad...
Optimisation theory encompasses the quantitative study of optima

and methods for finding them *.

“Optimum design” is defined as the design that is feasible and also superior to a number of
other feasible altermatives [Balachandran 1993]. Papalambros and Wilde [1988] identify

four steps in the design optimisation approach:

1. The selection of a set of variables to describe the design alternatives.
2. The sclection of an objective (criterion), expressed in terms of the design

variables, which we seek to minimise or maximise.



3. The determination of a set of constraints, expressed in terms of design variables,
which must be satisfied by any acceptable design.
4. The delermination of a set of values for the design variables, which minimise (or

maximise) the objective, while satisfying all constraints.
An optimum design can be obtained in two ways [Balachandran 1993]:

1. By an iterative process, or

2. By solving an optimisation problem

In the first approach, the design is.improved through repeated modification and the values
of the design variables are changed or fixed sequentially. In the latter approach, all the
design variables are determined simultaneously so as to satisfy a set of constraints and

optimise a set of objectives. These objectives may coexist, conflict or be independent.

1.2 Evolutionary Optimisation

Evolution is a process of change over time. The driving force behind this change, as
described by Darwin [Darwin, 1859], is natural selection. Evolutionary algorithms are
inspired by and based upon evolution in nature. These algorithms typically use an analogy
with natural evolution to ﬁefform search by evolving solutions to problems. Instead of
working with one solulion at a time in the search space, these algorithms consider a large
collection or population of solutions at once. By maintaining a populaiion of well adaptcd
sample points, the probability of arriving at a sub-optimal solution is reduced. In any
population, there arc always individuals who are fitter than others. Such individuals live

longer and thus get the chance to produce more offspring than individuals of average



fitness. Conversely, unfit individuals, or individuals poorly adapted to their environment,
tend to produce less offspring than individuals of average fitness. In this way, the genes,
and hence the characteristics, of fitter individuals propagate through a population, until,
assuming those characteristics are better than others currently in the population, all of the

population contains those characteristics.

The Genetic Algorithm (GA) is probably the best known and the most widely used of all
evolutionary based algorithms. GA’s were developed by Holland over twenty five years
ago in an attempt to explain the adaptive processes of natural systems and to design

artificial systems based upon these natural systems [Holland 1975].

Evolutionary algorithms are well suited to tackling highly complex optimisation problems

[Goldberg 1989, Davis 1991]. Baeck et al [1997] argues that

“ The most significant advantage of using evolutionary search lies in
the gain of flexibility and adaptability to the rask at hand, in
combination with robust performance and global search
characteristics. They should be understood as a general adaptable
concept for problem solving, especially well suited for solving
difficult optimisation problems, rather than a collection of relaied

and ready-to-use algorithms .

Miles and Moore [1997] comment that the GA due to it’s greater power and flexibility is
better suited to design tasks than other adaptive learning techniques such as Neural
Networks. Evolutionary design techniques have been around since the 1950’s [Box, 1957],

however, the potential of these technologies within the engineering design domain is only



now being realised. This is largely due to the computational expense associated with such
population-based search strategies. Spurred by the recent advances in powerful desktop
computing, there is growing interest in their realistic application to real-world problems,
although computational requirement still represents a significant problem in some
application areas [Parmee 1994] [Parmee, Vekeria & Bilchev 1997]. The Plymouth
Engincering Design Centre is very active in the application of evolutionary search
techniques to complex design problems and their integration with current design practice

[Parmee 1994, Parmee 1996b].

1.3 Objectives of the Work

The aim of this work is to develop a system which is capable of creating design solutions
automatically. By combining the automatic oplimisation of a design alongside evaluation
software which would automatically analyse the quality of the designs, there would be little
or no need for human intervention in the design process. Such an automated system would
be highly desirable to a human designer. It would speed up the whole design process by
providing optimised design solutions 1o a problem. As the system is not restricted to pre-
conceived ideas on certain ways of doing things, like that of a human designer, it would

also be capable of delivering radically different design solutions.

The work will focus on the shape optimisation of flat plates. As mentioned earlier,
computational expense is one of the major drawbacks of population based optimisation
methods, however the advent of parallel processing and more efficient computing
capability has helped to speed up this process. Finite element or other complex analysis

techniques are commonly used to determine if a design will perform as expected. But, these




analyses are computationally very expensive to carry out and their use in an iterative

manner for determining the optimal design is prohibitively expensive.

The rapid increase in computer power has also brought about an increase in the complexity
of problems being tackled in the field of engineering design. There is a desire by
companies 10 deal with increasingly more complicated problems. Unfortunately by
increasing the accuracy in models employed, along with the use of appropriate algorithms,
the resultant computations can often be of very high dimension, leading to practical
difficulties in solving (“the curse of dimensionality”). A combination of computational
expense (calls to analysis model), high-dimensionality and multi-modality presents a
considerable challenge for any optimisation algorithm. This research therefore proposes
methods by which these problems may be overcome.The main objectives of the research

are therefore:

¢ Integration of evolulionary methods with a structural analysis model.

* Development of a system which is capable of structural optimisation

* Analysis of the performance of different evolutionary algorithms for shape optimisation
of the flat plate

* Development of techniques for reducing the overall computational expense during
population based search.

® Development of a technique for handling high dimensionality.

10




1.4 Overview of Thesis

The thesis examines the application of evolutionary techniques for the optimisation of roof
liles (rceferred to as the plate optimisation problem throughout the thesis). Several
techniques are examined (CHC, PBIL, BGA and SGA) in order to determine their relative

performance in minimising calls ta the model and the overall quality of design solutions.

Due 1o limitations of the individual algorithms in handling high dimensionality (large
numbers of design variables), several multi-level techniques were developed which
included Dynamic Shape Refinement (DSR), Modified Injection Island Genetic Algorithm
(MiiGA), Dynamic Injection Island Genetic Algorithm (DiiGA). The techniques exploit the
differing levels of a problem representation. Problem dimensionality is increased as search
progresses. These techniques were developed at the Plymouth Engineering Design Centre
by Vekeria and Parmee [1997]. The MiiGA and DiiGA are extensions of the Injection

Island GA (iiGA) developed at Michigan State University [Goodman et. al., 1997].

Based on the performance characteristics of the individual CHC and PBIL algorithms and
the ability of the DiiGA technique in providing the capability of handling higher numbers
of variables. Multi level co-cvolution of the CHC and PBIL techniques is proposed to take

advantage and further improve performance characteristics.
Chapter 1 has highlighted the design process and draws attention to some of the problems

encountered in the design process and the benefits of automating parts of the design

process.

11



Chapter 2 provides an introduction to the area of evolutionary computation. The chapter
highlights common attributes of the various evolutionary techniques of particular relevance
1o engineering design processes. The chapter also provides a detailed discussion of some
high performance evolutionary algorithms. Some of the algorithms detailed in this chapter

are used in successive chapters on a structural optimisation problem.

Chapter 3 provides a literature review concerning the application of GA’s 10 structural
optimisation and shows that the area is receiving considerable interest. The chapter also
discusses the development of software utilising a CHC genetic algorithm for the
optimisation of a real world sl_ructural plate optimisation problem. The work was
undertaken during a two year Teaching Company Programme. Two types of model are
discussed, the first is based on bending moment and complex stress theory and the second

on finite element analysis.

Chapter 4 provides a comparison in performance of different evolutionary algorithms on
the plate optimisation problem. Results for the different types of evolutionary algorithms
discussed in chapter 2 in relation to the plate problem are presented. Some of these
techniques play a significant role in the thesis by guiding the research down certain avenues

and laying the foundations for the development of various techniques.

Chapter 5 details some techniques for tackling some of the problems highlighted in chapter
4, concerning computational expense and problems with dimensionality. Methods that
make use of different levels of representation for a problem are discussed. A comparison of

the different methods that were developed which utilise multi-level representation is

provided.




Chapter 6 discusses how hybrid approaches may provide further improvements in design
performance. Distributed search techniques are proposed which take advantage of both

different search techniques and multi-level representation.

Chapter 7 provides conclusions of the approaches that have been taken by drawing together

the previous chapters, areas of further research are also discussed.




2. EVOLUTIONARY ALGORITHMS

2.1 Introduction

This chapter provides an introduction to the area of evolutionary optimisation. There are
many GA variants which have been developed to improve the efficiency of evolutionary
search for different problem classes. Several methods are discussed in detail. These

techniques are used in successive chapters for the shape optimisation of roof tiles.

Optimisation has been studied for many years. Many mecthods have evolved and are
detailed in a sizeable literature, with each method having advantages and disadvantages.
Consider the 3 dimensional landscape of figure 2.1. Assuming we are maximising the
solution, a traditional optimisation method such as a hill climber would climb the nearest
hill from it’s initial starting point. However, if the evaluation function defines a multi-
modal landscape over the search space, then, depending upon the initial position in space
the method may halt on some local optima of the space. Methods such as a random or an

exhaustive search may overcome these problems. These methods are however

compulationally expensive and therefore better suited to small problems.







2.2 Evolutionary Algorithms

Evolutionary algorithms (EA’'s) (Figurc 2-2) are techniques for search and optimisation.
They arc based on the philosophy of natural selection, the driving process for the
emergence of complex and well adapted organic structures. Like natural selection, EA's
maintain a population of individuals. The population of structures evolve according to
rules of selection and acliolns of "scarch operators”, (or genetic operators), such as
recombination and mutation. By manipulation of the genetic structure of these individuals
(genotypes), EA’s evolve progressively better phenotypes, the physical expression of a
genotype i.e. the system. EA’s treat their populations as though they were made up of
living creatures. A single individual of a population is affected by other individuals of the
population (c.g., by food competition, and mating). Each individual in the population
receives a measure of it's Fitness in the environment. Reproduction focuses attention on
high fitness individuals, thus exploiting the available fitness information. Recombination
and mutation perturb those individuals, providing general heuristics for exploration. The
better the individual performs under these conditions (exploration versus exploitation) the
greater is the chance for the individual to live longer and generate more offspring who
inherit the parental genctic information. Over Lhe course of the evolution, this leads to a
penetration of the population with the genctic information of individuals of above average
fitness. The stochastic nature of reproduction leads to a permanent production of novel

genetic information and therefore, to the creation of differing offspring.
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Common attributes of the various evolutionary techniques of particular relevance to

engineering design processes include (Parmee, Vekeria & Bilchev 1997]:

Requirement for little, if any, apriori knowledge relating to the search environment.
Excellent exploratory capabilities especially where population-based search is
considered.

Ability to avoid local optima. The stochastic nature of the various algorithms combined
with continuing random s_ampling of the search space can prevent convergence upon a
local sub-optima.

Ability to handle high dimensionality.

Robustness across a wide range of problem class.

The provision of multiple good solutions.

Ability to locate the region of the global optimum solution

There are many evolutionary based algorithms (Figure 2-3). The variations have differing

philosophies on how to algorithmically model evolution. Evolutionary strategies (ES) and

Evolutionary programming (EP) refer to two computational paradigms that utilise a

population based search. There are many variants of evolutionary algorithms, their main

differences lie in the [Baeck et. al. 1997] :

e Representation of individuals;

® Design of the variation operators (mutation and/or recombination);

Selection/reproduction mechanism,
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2.2.1 The Simple Genetic Algorithm (SGA)

The SGA [Goldberg, 1989] (Figure 2-5) is the canonical genetic algorithm, it is composed

of three operators:

1. Reproduction
2. Crossover

3. Mutation

Generally the SGA comprises of a population of initially randomly generated variable
parameter sets (chromosomes). Variable values are generally represented in binary form

although real-number representation.can also be maintained.

The performance of each chromosome is determined by a mathematical model (fitness

function) of the system under design.

2.2.1.1 Crossover

Crossover is applied to the reproduced chromosomes in order to imitate sexual
reproduction. Crossover is usually applied with a high probability, with information being
exchanged randomly between selected parent chromosomes. Simple crossover is
implemented by choosing a random point in the selected pair of strings and exchanging the
sub-strings defined by that point (Figure 2-4). The crossover operator thus mixes
information from twe parent strings producing offspring made up of parts from both
parents. Crossover provides an exploratory capability. The canonical GA operates on a

fixed-length binary string.
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(fitness-proportionate selection). However it is still possible that the worst performing

member could still be selected.

Another commonly used selection method is tournament selection. A basic form of
tournament selection randomly selects two strings from the current population and their
fitness values are compared. The string with the best fitness is placed in the intermediate

population. This process is then repeaied N times, where N is the population size.

2.2.1.3 Mutation

Like crossover the mutation operator is applied to the reproduced chromosomes in order to
imitate biological evolution. Mutation in contrast is applied at a very low probability, it
injects information into the genetic pool by muiating randomly selected bits, Mutation
provides a small amount of random search, and helps to ensure that no point in the search
space has a zero probability of being examined. It prevents premature convergence by

ensuring that the genetic pool does not stagnate.

In "An Analysis of the behaviour of a class of genetic adaptive system" [De Jong, 1975] a
study was performed of gencfic algorithms in function optimisation. A series of parametric
studies across a five-function suité of problems suggested that good GA performance
requires the choice of a high crossover probability, a low mutation probability (inversely

proportional to the population size), and a moderale population size.

Evolutionary algorithms are directed search techniques, but are inherently random, For this
reason not every run is guaranteed Lo produce a satisfactory individual. The GA may need

to be run several times (10 or more) utilising differing initial populations. It is therefore
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important that robust GA's are developed cspecially for problems which are

computationally expensive in order to keep run times to a minimum,

// start with an nitial time
t:=0;

// initialize a usually random population of individuals
initpopulation P (t);

/f evaluate fitness of all initial individuals of population
cvaluate P (1);

{/ test for lermination criterion (time, [itness, elc.)
while not done do

// increase the time counter
ti=t+1;

! select a sub-population for offspring production
P' ;= selectparents P (1);

/f recombine the "genes” of selected parents
recombine P' (1);

#/ perturb the mated population stochastically
mutate P’ (1);

{// evaluarte it's new fitness
evaluate P' (1);

// select the survivors from actual litness
P := survive P,P' (1);
od
end GA.

Figure 2-5: Pscudo code for the canonical GA

22



2.2.2 Evolutionary Programming

Evolutionary programming (EP) (Figure 2-6) is described in an early book by Fogel,
Owens and Walsh [Fogel et al 1966]. It is one of the earliest EAs. The basic EP method
involves 3 steps which are repeated until a threshold for iteration is exceeded or an

adequate solution is obtained.

1. Choose an initial POPULATION of trial sclutions at random. The number of solutions

in a population is highly relevant to the speed of optimisation.

2. It is in the creation of the new generations that EP differs from most other EA’s, for it
does not employ any crossover. Each solution is replicaled into a new population.
Each of these offspring solutions are mutated according to a distribution of
MUTATION types, ranging from minor to extreme with a continuum of mutation types
between. The severity of MUTATION is judged on the basis of the functional change

imposed on the parents.

3. Each offspring solution is assessed by computing it's fitness. Typically, a stochaslic
tournament is held to determine N solutions to be retained for the population of
solutions, although this is occasionally performed deterministically. There i1s no
requirement that the population size be held constant, however, nor that only a single

offspring be generated from each parent.

Unlike GA’s, EP does not rely on fixed length structures, but permits individuals in the
initial population to be of different lengths. These individuals are then tested, and parents

for the subsequent generation are selected in a non-dclcrministic manner.
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/{ start with an initial time
t:=0

// initialise a usually random population of individuals
init. population P (t);

/ evaluate fitness of all initial individuals of population
evaluate P (1);

// test for termination criterion (time, fitness, etc.)
while not done do

/f perturb the whole population stochastically
P'(t) := mutate P (t),

I/ evaluate it's new fitness
cvaluate P’ (t);

/1 stochastically select the survivors from actual fitness
P(t+1) := survive P(t),P'(1);

// increase the time counter
ti=t+1;

od
end EP.

Figure 2-6: Pseudo code for EP

2.2.3 Evolution Strategies

Evolution Strategies are based on the work of Rachenberg [1973] and Schwefel [1975].
Like GA’s, ES use fixed length structures, but instead of the binary representation used in

GAs, ES have real valued genes.

The emphasis in ES is more on the acquisition of behaviour rather than structure
[Angeline, 1993]. Each position in an ES (i.e. a real number) marks a behavioural trait, and

an individual’s behaviour is the composition of these traits.
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Crossover in ES is intended to produce children that are behaviourally similar to their

parents, and there are different approaches [Baeck, 1992].

The first, discrete recombination; is similar to a method often used in GA’s, uniform
crossover [Syswerda, 1989]. Discrete recombination consists of selecting the paramcter
value from either of the two parents. In other words, the parameter value in the child equals
the value of one of the parents. Uniform crossover involves creating a crossover mask, a
binary string the same length as the parents. A O in the mask results in the relevant gene
being sclected from the first parent, while a 1 results in the second parent donating the
gene. The crossover mask is a random string, and generally ensures that each parent

contributes equally to the child. An example is shown in Figure 2-7.

The other two methods exploit the fact that the genes are real valued. The first of these, the
intermediate recombination operator, determines the value of the child’s genes by
averaging the two values in the parents genes. The second method, the random
intermediate recombination, probabilistically determines the eveness of the contribution of

each parent for each parameter.

Parent 1 : Q.
Parent 2 : 0.
Mask : 1
Child 1 : O
Child 2 : 0
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Figure 2-7: Uniform Crossover applied to a real coded string
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exploration in order to maintain population diversity so that important information is not

lost. Whitley [1989] notes:

“ Many of the various parameters that are used to ‘tune’ genetic search
are really indirect means of allocating selective pressure and
population diversity. As.selective pressure is increased, the search
focuses on top individuals in the population, but because of this
‘exploitation’ genetic diversity is lost. Reducing the selective pressure
(or using a larger population) increases ‘exploration’ because more

genotypes and thus more schemata are involved in the search”

2.4 Variations of the Evolutionary Algorithms

There are a number of types of advanced EA’s, all developed to improve the abilities of
evolutionary scarch for different types of problems. This section describes three
evolutionary algorithms that were initially selecled because they were found (in the
literature) [Eshelman, 1991, Baluja, 1994, Muhlenbein & Schlierkamp-Voosen 1993] to

provide good results on various problems in comparison to those produced by other EA’s.

When applying GA’s to complex real world problems, a designer may face a number of

difficulties. These problems include :

¢ Multimodality - the search space is characterised by a number of peaks and troughs
[Goldberg, 1989].
¢ Constrained Space - Difficult to access and remain in a feasible region [Bilchev &

Parmee, 1996].
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* Premature convergence - population converges quickly onto non-optimal local minima
[Davis, 1991].

¢ Deceptive - Contain isolated optima : the best points tend to be surrounded by the worst
[Whitley, 1991].

¢ Highly sensitive - slight perturbation of the design variables causes large changes in
relation Lo fitness [Parmee & Vekeria 1997].

* Multiple objectives - several objeclives are present simultaneously [Fonseca & Fleming
1993, Coello Coello 1998].

e Uncertainty - vagueness or impreciseness due to poorly defined data, unsatisfactory
formulation of design objeclivds or inability to evaluate the relative importance between
objectives [Rao, 1984].

¢ Highly dimensional - large number of variables are present [Parmee and Vekeria 1997].

* Noisc - noisy environment [Goldberg, 1989].

In an attempt to overcome these and other problems, new, and more advanced types of GAs
have been developed. Much of the available GA literature concemns the development of

new and more advanced GA’s for tackling many of these problems, e.g. :

¢ Parallel and Distributed GAs help with exploration of search space and to reduce
computational expense [Tenese, 1989] [Goodman et al, 1996].

¢ Structured GAs (sGAs) allow parts of chromosomes to be switched on or off using
evolveable ‘control genes’ [Dasgupta & McGregor, 1992] [Parmee & Denham, 1994])

®* Messy GA’s use variable-length strings that may be over or under specified with respect
to the problem being solved. [Goldberg et. al. 1991]

* CHC GA utilise population-elilist selection, a highly disruptive crossover operator, an

“incest” prevention mechanism and a divergence process. [Eshelman, 1991].
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e PBIL is combination of evolutionary optimisation and hill climbing. [Baluja, 1994].

¢ Breeder GA is a combination of evolution strategies (ES) and genetic algorithms (GA).
[Muhlenbein & Schlierkamp-Voosen 1993].

® GAs with niching and spec'iatio'n where the population within the GA is segregated into
separate species [Deb & Goldberg, 1989].

e Hybrid GAs (hGA’s) combine evolutionary search heuristics with traditional local
search algorithms [Davis, 1991].

* GAANT involves a combination of a GA and ant colony based scarch [Parmee, 1996a]

¢ Multiobjective GAs (MOGAs) which allow multiple objectives to optimised [Fonseca
and Fleming 1993].

¢ Combination of Fuzzy Logic with EA’s [Zhao et. al. 1996].

A number of these variant techniques play a significant role in the thesis and these are now

described in some detail.

2.4.1 The CHC Adaptive Search Algorithm
The CHC Adaptive Search Algorithm was developed by Larry Eshelman [Eshelman,
1991]. CHC stands for Cross generational elitist selection, Helerogeneous recombination
(by incest prevention) and Cataclysmic mutation, which is used to restart the search when
the population stagnates. The main differences between the CHC GA and the simple,
canonical GA are:

* Population-elitist selection

® Highly disruptive crossover operator

* An “incest” prevention mechanism

® Divergence process
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individuals towards the better performing members of the population, the CHC pairs each
member randomly with another, regardless of the fitness. During the survival-selection
process, instead of replacing the old parent population with the new child population,
competition for survival is cross generational i.e. the child population must compete with

the parent population for survival.

Several other GA’s use fitness-biased survival selection -- Whitley’s GENITOR [Whitley
1989], Syswerda’s Steady State GA (SSSGA) [Syswerda 1989]. The SSSGA inversely
ranks the parent population and. replaces a certain number of the worst performing
members of the parent population with children. The GENITOR algorithm is specifically
designed to allocate reproductive Lrials according to rank. GENITOR only produces one
genotype at a time, which is inserted in the population automatically ranking the individual
relative to the existing pool, The CHC however differs from both of these algorithms in
that the competition for survival is cross-generational - a child only replaces a member of

the parent population if it is better.

2.4.1.2 Highly Disruptive Crossover (Uniform Crossover)

Eshelman [1991] argues the usc of uniform crossover over the use of standard one point
and two point crossovers, in order to combat parasitic bits (bits that tag along good
performing schemata). The intuitive idea behind recombination is that the combination of
features from two good parents may yield even better children. However the more bits
copied from one parent into a child the more schemata of that parent are preserved at the

expense of the other parent, and vice versa.
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2.4.1.3 Divergence of Population

The CHC does not use mutation in the reproduction-recombination cycle. The use of HUX
and incest prevention in conjunction with a population size large enough to preserve a
number of diverse structures (e.g., 50) enables CHC to delay premature convergence. All
these mechanisms cannot guarantee that no allele will prematurely converge. Some sort of

mutation is required.

Since the CHC is extremely good at maintaining diversity, mutation is however less
effective in the CHC than in the traditional GA. Mutation in the CHC is only introduced
when the population has stagnated. Stagnation is said to have occurred once the difference
threshold (this is set as length of string/4 at the beginning of the run) has dropped to zero
and there have been several gencrations without any new offspring accepted into the parent
population. The reinialisation is only partial however as the best individual found so far is
used as a template for creating a new population. Each new individual is created by
{lipping a fixed proportion (e.g., 35%) of the template’s bits chosen at random. One
instance of the best is added unchanged to the new population. This creates a population
that preserves the progress made so far and is biased toward a good solution but with new
diversity to continue the scarch. Moreover the search cannot converge to a worse solution

than the previous search.

Eshelman [1991] argucs that partial reinitialisations over chronic mutation are much more
cffective, performing considerably betier on a large range of problems utilising the same
parameter sets. Restarts provide many of the benefits of a large population without the cost
of a slower search. Optimal solutions can be identified on casy problems in the first
initialisation cycle whereas with more complex problems optimal solutions are identified

only after repeated restarts.
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2.4.1.4 Incest Prevention

Strategies for maintaining population diversity can naturally be grouped according to where
they occur in the GA's reproduction-recombination-replacement cycle i.e. (1) how mates
are selected, (2) how children are created by recombination, (3) how parents arc replaced
[Eshelman & Shaffer 1991]. The points concerning population selection and the creation of
new individuals have already been addressed. The remaining point of the maling strategy
has yet to be discussed. Mating strategies ar¢ usually considered in terms of speciation,
where the goal is to prevent radically dissimilar individuals from mating. Goldberg &
Richardson [1987] introduced penalties which reduce the fitness of individuals as a
function of how similar they are to other individuals in the population. The effect of this is
to reduce “incestuous” mating by increasing the likelihood of reproduction between diverse
individuals. Eshelman’s incest prevention mechanism is a more direct approach for
preventing similar individuals from mating [Eshelman & Shaffer, 1991]. Individuals are
randomly paired for mating and bias is introduced against mating individuals who are
similar. Individuals are only crossed if their hamming distance , i.e. the number of differing
bits between the two individuals, exceeds the difference threshold. The threshold is initially
set 10 the expecled average Hamming distance of the initial population (string length / 4),
and then is allowed to drop as the population converges. The number of children produced
each generation can vary from zc;ro up to the population size. The disadvantage of this
mating strategy is that more schemata are disrupied by crossover, since fewer schemata are

shared.
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2.4.1.5 No Duplicates

The CHC algorithm also utilises a no duplicates policy (Figure 2-10). This is to ensure that
the number of evaluations are kept to a minimum. Once a child is produced by crossover, it
is matched against all the members of the parent population. If a duplicate is found, the
child is discarded, otherwise the Cilild is evaluated and included in the child population of
potential candidates for replacing members of the parent population. Another reason for
implementing this strategy is to ensure that super chromosomes do not dominate the
population, which would reduce the diversity within the parent population and ultimately
cause premature convergence. The CHC GA always preserves the best individuals so far

whilst maintaining a highly explorative search through disruptive crossover.

Several researchers have investigated the idea that diversity of a population may be
maintained by restricting children from entering the parent population if they are similar to
the parent members. De Jong [1975) suggested the crowding scheme in which an offspring
replaces an existing individual according to it’s similarity in bit terms (hamming distance)
with other individuals in a randomly drawn sub-population of size CF (crowding factor).
Mauldin [1984] used a uniqueness operator 1o maintain divcréity. An offspring would only
be inserted into the population if it is genotypically different from all individuals in the

population (specified by a given hamming distance).

2.4.1.6 CHC Performance

Eshelman [1991] compared the performance of the CHC with the canonical GA for a
number of functions. For five of, the six functions in which both algorithms found the
optimum in all 50 searches, CHC, on average found the optimum in fewer evaluations, and

on four of the functions, the CHC found the optimum more often than the GA. The only
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function on which the canonical GA does significantly better than the CHC is a smooth,
unimodal function. The CHC performed significantly better on all the multi-modal
functions. Eshelman found that the CHC algorithm was relatively insensitive to parameter
settings. Eshelman also reported the CHC to be a worthy competitor for Goldberg’s messy

GA [1991].

2.4.2 Population-Based Incremental Learning (PBIL)

Population-based incremental lear.ning (PBIL) was introduced by Baluja in 1994. PBIL is
an abstraction of a canonical GA without recombination. The statistics normally implicit in
the population are explicitly maintained in a ‘probability vector’ which determines the
frequency with which 0’s and 1's are generated in each bit of the trial solutions. It is
claimed that a standard form of PBIL performed as well as, or better than the canonical GA
on a range of standard optimisation tasks. PBIL is a combination of evolutionary
optimisation and hill climbing. The algorithm initially creates a real valued probability
vector with values set to 0.5 which is utilised to create a trial set of binary encoded solution
vectors where the probability of generating a 1 or 0 is equal. The performance of the real-
numbered variable sets represented by these binary solution vector’s are assessed via the
fitness function. As search péogre'sses, the values in the probability vector gradually shift
relative to the fitness of the ‘best’ trial solution vectors. The distance the probability is
pushed (towards either 0.0 or 0.1) depends upon a learning rate parameter. After the
probability vector is updated, a new set of trial solution vectors is produced from the
updated probability vector and the cycle is continued. As the search progresses, entries in
the probability vector move away from their initial settings of 0.5 towards either 0.0 or 1.0
i.e. the binary representation of the trial solutions are pushed towards that of the current
best solutions. Thus, PBIL does not store domain knowledge in a population but in a

probability distribution.
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PBIL is characterised by 3 parameters (Figure 2-12). The first is the number of samples to
generate based upon each probability vector before an update (analogous to the population
size of GA’s). The second is the learning rate, which specifies the dimension of the steps

towards a good solution, The third is the number of best solutions to update from.

Baluja [1994] suggests variants of the basic PBIL, such as updating the probability vector
not only [rom the best trial but from several of the better performers. Although this method

proved to be too problem dependent, some significant results were produced.

Greene [1996] suggests another variant on the basic PBIL. At each step of the search a
record of the “best” and “worst” trial solutions are maintained. The probability vector is
then maintained by moving it towards the “best” trial vector and moving it away from the
“worst” trial solution [Greene 1996]. Greene concluded that this change worked well
during the early stages of the search process, but began to fail as search progresses. In order
to overcome this an element of the probability is moved away from that of the “worst” trial
solution only in those bit positions where the “worst * and “best” probability vector differ.
Greene also keeps a track of the highest value of the objective function attained and aborts

the current step (and update’s the probability vector) whenever this is exceeded. This

results in an automatic adaptation in the number of trials per step. Greene argues that this
allows a large number of trials per step to be used without spending time performing what

amounts to an essentially random search in the early stages.

PBIL is susceptible to premature convergence. To overcome this, Baluja proposes an
occasional random mutation of probability vector. In the canonical GA, mutation performs
a clear role in maintaining diversity of the ‘gene pool’ by making it possible to regenerate a

missing O or 1 at a particular bit position. This however is not possible with PBIL. Greene
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suggests replacing mutation with a deterministic ‘forgetting’ operator. After each update of

the probability vector, each element of the probability vector is pushed towards 0.5.

*hkkkx Inilialize Probability Vector #*%***
fori:=110 LENGTH do P[i} =0.5;

while (NOT termination condition)
*k¥+% Generate Samples ¥*#**
fori :=1 to SAMPLES do
sample_vectors(i] := generale_sample_vector_according__lo_probabilities (P);
cvaluations[i] :=Evaluate_solution (sample{i]);

best_vector ;=find_vector_with_best_evaluation (sample_veclors, evaluations);
worsi_veclor := find_vector_with_worst_evaluation (sample_veclors, evaluations);

*#sx* Update Probability towards best solution *¥¥%*
fori:=1 1o LENGTH do
P[i] :=P[i] * (1.0 - LR) + best_vector[i] * (LR);

**++x* Update Probability Away [rom Worst solution ***#¥*
fori:=1 10 LENGTH do
if (best_vector[i] # worsl_vector{i] then
P[i] :=P[i] *(1.0 - NEGATIVE_LR) + best_vector[i] *(NEGATIVE_LR);

*¥¥+% Mulale Probability Veclor ##%**
fori:= 110 LENGTH do
il (random (0,1)< MUT_PROBABILITY) then
if (random (0,1) > 0.5) then mutate_direction :=1
¢lse mutate_direction :=0;
P[i] :=P[i] * (1.0 - MUT_SHIFT) + mutate_direction * MUT_SHIFT);

USER DEFINED CONSTANTS :

SAMPLES: the number of vectors generated before update of the probability vector.
LR: the learning rate, how fast to exploil the search performed.

NEGATIVE_LR: the negative learning rale, how much to learn from negative examples.
LENGTH: the number of bits in a generated vector.

MUT_PROBABILITY: the probability for a mutation occurring in each position.
MUT_SHIFT; the amount a mutation alters the value in the bit position.

Figure 2-12: the PBIL algonithm for a binary alphabet.

PBIL was shown to outperform GA’s on several problems [Baluja, 1996]. One reason for
PBIL’s success may be atiributed to it’s capability of capturing first order dependencies
between individual solution parameters and solution quality in a probability distribution

[Baluja & Davies, 1997]. GA’s on the other hand, maintain a population and rely on
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crossover to sensibly combine parameters that are collectively responsible for favourable
evaluations. Since the choice of crossover points is random, it may not be favourable [De
Bonet et al, 1997]. Due to its disruptiveness it may tear apart previously discovered useful

parameter groups.

2.4.3 The Breeder Genetic Algorithm (BGA)

The Breeder Genetic Algorithm (BGA) [Muhlenbein & Schlierkamp-Voosen 1993] is
based on artificial selection similar to that used by human breeders. The BGA is a
combination of evolution strategies (ES) and genetic algorithms (GA). The BGA (Figure
2-13) uses a selection scheme called truncation selection. The T% of the best individuals
are selected and mated randomly until the number of offspring is equal to the size of the
population. The search process of the BGA is mainly driven by recombination. The BGA
depending upon the type of p}oblcm, may use one of a number of different recombination
operators (discrete recombination, extended intermediate recombination, extended line
recombination). The operator used in this work is a discrete crossover similar to the
uniform crossover. It operates on the alleles of the selected parents chromosomes. Two
parents, (uy, ..., u,) and (vy,...,vy), produce an offspring (w,...,wy) so that w; is either u; or v;

with equal probability.

Mutation is an important background operator for the BGA. The BGA’s objective is to give
a small perturbation Ax; x & on a variable x;. Where A x; is a mutation range for the
variable x; and & is the mutation probability. An allele x; is chosen with probability pm to
be mutated (Muhlenbein et al rccc;mmcnd it be set to 0.1). The mutation rate is inversely

proportional to the number of parameters to be optimised and the mutation range is fixed.
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as for mutation probability pm Muhlenbein suggests 1/n, where n is the number of alleles

in a chromosome.

Muhlenbein has applied the BGA using real coded chromosomes. The BGA has been used
in this work utilising binary chromosomes. Similar principles are applied. In the case of
recombination, uniform crossover is utilised as it is very similar in manner to the discrete
crossover. The mutation operator is the same as that used in a traditional GA, however the

rate is kept low, so as not to cause a large disruption.

STEPO: Define a genetic representation of the problem

STEP1: Creale an initial population P(0)

STEP2: Each individual may perform local hill-climbing

STEP3: The breeder selects T% of the population for mating. This gives set S(r)

STEP4: Pair all the vectors in S(f) at random forming N pairs. Apply the genetic
operators crossover and mutation, forming a new population P(t+1).

STEPS: Set ¢ = ¢ + 1, return to STEP2 if it is better than some criterion (acceptance)

STEPG: If not finished, return to STEP3.

Figure 2-13: Breeder Genetic Algorithm

2.5 Summary

This chapter has provided an introduction to the area of evolutionary computation. The
chapter has discussed different types of evolutionary algorithms in existence and

highlighted common attributes of the various evolutionary techniques of particular

relevance to the engineering design processes of the following chapters.




3. INTEGRATION OF EVOLUTIONARY ALGORITHMS WITH
MATHEMATICAL MODELS

This chapter firstly provides a literature review concerning the application of evolutionary
algorithms to structural optimisation problems. The second half of the chapter then
discusses the development of software utilising a CHC genetic algorithm for the
optimisation of a real world structural plate optimisation problem concerning the shape
optimisation of roof tiles. The problem concerns the optimal material distribution on the
underside of this flat concrete plate, with varying load conditions. . The aim here is to
enable the company to meet specifications of international markets, reduce lead times and
costs through improved efficiency and a reduction in materials usage. The work was
undertaken during a two year Teaching Company Programme. Two types of models are
discussed, the first is based on bending moment and complex siress theory and the second

on finite element analysis

3.1 Structural Optimisation

There is considerable literature on structural optimisation and structural shape optimisation
[Leite, 1996]. This interest in shape design reflects the effectiveness of shape changes for
improving structural performance '[Haftka, 1986]. It also reflects a growing sophistication
in structural analysis and optimisation tools, which allow more complex shape optimisation
problems to be addressed. Shape optimisation is an integral part of the structural design
process and tools available to assist the designer significantly affect the type of problems

that can be attempted and to what extent optimisation can be performed.
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There are three distinct classes of shape optimisation problems. In order of computational

complexity these are : size, shape, and topological optimisation [Jensen, 1992]

® Size optimisation (also called cross-sectional optimisation) refers to the determination
of specific geometric dimensions for a pre-selected design class, such as the thickness
of a shell, the size of a truss member or the radius of a circular stress element.

* Shape optimisation (also called geomelric optimisation) introduces additional design
variables which allow for boundary movement. This process is more complex than size
optimisation and geometrical changes have historically been limited. However, it is of
significant importance for instance, in the aircraft and automotive industries, as well as
others, providing improvements to turbine design and airfoil shapes. Size optimisation
is a subset of shape optimisation.

¢ Topological optimisation involves topological as well as shape and size modifications.
Topological modifications deal with assemblies of components. The components in the
assembly may be modified and components may be added, deleted or moved in the

assembly in an attempt to generate improved designs.

Literature concerning the application of evolutionary optimisation techniques to structural
optimisation is becoming more prolific. There is a growing interest in the application of
such techniques due to significanl increases in computing and especially parallel
processing capabilities. Engineering designers are now recognising the increasing potential

of evolutionary search for real-world optimisation problems.

Many researchers have used the canonical genetic algorithm for the optimisation of trusses.
Goldberg and Samtani [1986] used the GA to optimise a 10 bar truss. Jenkins [1991] used

the GA for the minimum weight design of a trussed rafter roof structure. In order to avoid
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stagnation and improve the progress of the GA during the latter stages of the search, a
space condensation heuristic has been introduced. The method reduces the combinatorial
space during the latter stages of search by removing discrete values of variables shown to
be associated with low fitness individuals. The method also provides the additional
advantage of reducing the overall processing time required [Jenkins 1994]. A study of a
cable stayed bridge using the GA [Jenkins 1992] requires 500,000 evaluattions of the
structure thereby highlighting the problem related to a requirement for considerable

processing time due to the large number of calls to the evaluation function.

Rajeev and Krishnamoorthy [1992] applied the GA to slightly more complex problems,
concerning the minimisation of weight and satisfaction of stress and displacement
constraints for a 25 bar truss and a 160-bar transmission tower. The 160-bar transmission
tower utilises 22 variables. They conclude that the GA is a highly efficient technique for
structural optimisation due to the ability to manipulate a large number of discrete variables.
However compulational expense proves to be a major drawback again due to the number of

necessary function evalualions.

Hajela et al [1992] presenled a two stage optimisation method for the sizing of skeletal
structures. The first stage uses a GA to search for number of suitable low weight topologies
whilst disregarding the stress and displacements, The second stage then uses these truss
topologies as initial designs, for which the cross-sectional areas are then optimally sized

using a GA for minimum weight and the satisfaction of stress and displacement criteria.

Jensen [1992] developed a GA based approach for topology optimisation. The design
domain is discretised into small elements, where each element either contains matenal or 1s

a void. No intermediate densities are allowed. The GA is used to determine the optimal
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configuration of material and void within the domain such that the structure’s weight is

minimised subject to displacement and stress constraints.

Chapman et. al. [1993] extended the research of Jensen in the use of the GA for structural
topology optimisation. Lighter designs were generated in comparison to homogenisation
based solutions, The homogenisation method was developed by Bendsoe and Kikuchi
[1988]. A design domain is discretised into small recltanguiar elements where each element
contains composite material of continuously variable density and orientation. An optimality
criteria method is used to determine how the material density and orientation in each
element should change so that the compliance of the structure is minimised subject to a
maximum volume constraint. The deterministic homogenisation based techniques require
considerably fewer structural evaluations. However the GA is also able to offer a family of
topologies (each unique in topology, weight and stiffness) which a designer can evaluate

using a secondary criteria such as manufacturability.

Dhingra and Lee [1994] used the GA to oplimise a 25 bar truss and found the GA to
compare favourably to optimum solutions using gradient-based scarch techniques. They
propose a co-operative game, theoretic approach for addressing multiple objeclive
functions. In a non-co-operative game approach, each player is looking out for his own
interests and is unconcerned about how his choice will affect payoffs of other players. The
co-operative approach on the other hand assumes that cach player is part of a team and is

willing to compromise his own payoff in order to improve the situation as a whole,

Keane and Brown [1996] successfully applied the GA to the design of a satellite boom with
regard to the efficient control of structural vibrations. The GA changes the geometry of the

design by altering the three dimensional co-ordinates of its joints. The aim is to minimise
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the band avcraged noise along the boom. Keane found that in order to accurately assess the
designs considered by the GA very significant computations were required, even when
using a highly tuned and customised code io carry out the calculations. Furthermore he
states that where global optima cannot be found utilising current levels of computing
capability, rapid convergence to improved designs must be the alternative goal of the

designer.

Kanc and Schoenauer [1996] apply the GA to structural topology optimisation of cantilever
plates. They suggest using specific genetic operators which are tailored for topology
optimisation, The GA produced good results in comparison to the homogenisation based
method. Computational expense was highlighted as major drawback of ulilising a GA.
Using coarse mesh representations of the plate, a single run may require up to 150,000 calls

of an FEA fitness function, taking approximalely 24 hours on a powerful HP workstation.

Cai and Thierauf [1996] have developed a two level parallel evolution strategy for the
optimisation of a steel transmission tower. The objective is to minimise the weight of the
structure under given stress, displacement and stability constraints. The discrete and
continuous design variables are treated in parallel using two sub-populations. Periodically,

the design variables in the two sub-problems are exchanged.

Genetic Algorithms have proved effective in the design of composite laminale structures.
They are used to optimise ply thickness and orientation, and many studies concering the
improvement of the GA’s reliability and efficiency are evident in this area. Mingra [1986]
performed some of the earlier studies conceming optimisation of laminations on
honeycomb structures. Le Riche and Haftka [1994] studied the problem of composite panel

weight minimisation subject to buckling and strength constraints. Feasible designs were
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generated by ulilising a combination of penalty parameters and the tuning of various
genetic operators. This method also increased the overall efficiency of the genetic search
and provided a 56% reduction in the computational cost of search. Haftka et. al. [1996]
also explored the possibility of specially tuning the GA in order to take advantage of
repeated runs. The concept was to maximise the efficiency of the GA during the early
stages of search by increasing selection pressure. This however may result in premature
convergence to a solution which is significantly inferior to one which may be found by

using a combination of explorative and exploitive search strategies.

Kogiso et al [1994] uses a bi'nary tree to store appropriate information regarding laminate
designs that had already been analysed. After the generation of a new population of
designs, the tree is searched for laminate designs with either an identical stacking sequence
or similar performance (e.g. laminates with identical in-plane strains). Depending on the
retrieved information a given laminate may not be required. This process does however
require a large amount of computer memory and the search through the tree also has a
computational cost. Kogiso also proposed a local improvement approach to reduce the

number of analyses required by a GA.

Yamazaki [1996] reduces computational expense by using a two-level optimisation
technique in maximising the critic.al buckling load of composite plates. The first level of
oplimisation involves the computationally expensive structural and sensitivity analysis.
Once the optimum lamination parameters have been determined, the second level of
optimisation implements the GA to find the stacking sequence that best matches the
optimal lamination parameters. The second level does not require expensive structural
analysis. This combination of optimisation methods allows Yamazaki to reduce the

complexity of the analysis required during the GA run.
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Goodman et. al. [1996] uses injection island genetic algorithms (iiGA) for the design of
composite cantilever plates for the weight minimisation and selection of appropriate
structural responses for giveri loading conditions. Goodman et. al. [1997] also applies the
iiGA to optimise the Specific Energy Density (SED) of elastic flywheels. Injection island
GA’s search at various levels of resolution in parallel within a given space. Islands (sub-
populations) which have a low level of resolution inject high performance individuals into
an island of higher resolution to “fine-tune” the designs. Convergence of the low resolution
processes occurs quickly and is then discontinued, saving valuable CPU time. The
technique provides a reduction in the computational time plus an increase in the robusiness

of a typical GA.

Soremekun et al [1996] utilises the GA for the minimum weight design of a cantilever
laminated composite plate. Some}nckun outlines three multiple elitist and one variable
elitist selection strategies. The strategies involve passing a prescribed number of the best
individuals from the parent population to the new parent population. Depending upon the
strategy employed the rest of the individuals for the parent population are either selected
from the top performing members of the child population or a combination of the top
performing and randomly selected individuals of the child population. The number of top
performers passed to each successive generation remains constant throughout the genetic
scarch in multiple elitist scheme and is varied in variable elitist seleciion. Small reductions

in computational cost have been realised using these strategies.

Mill et. al. [1996] have utilised different types of shape representations these include
methods based on parametrics, lines, primitives, spline curves etc. They found approximate

splines for curves and surfaces to be powerful methods of describing shapes and also
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amenable to GA manipulation. Splines consist of curves whose basic shapes are influenced
by the positioning of a set of control points. The final shape will be influenced by the type
of spline used and the position of the control points. The curve does not necessarily have to

pass through all the control points.

3.2 Development of Evolutionary Software for Single Component Design

The initial two years of the research described within the thesis was carried out as part of a
Teaching Company Scheme between the University of Plymouth and Redland
Technologies Lid (now Lafarge Brass). During this period research was performed in a real
world problem domain concerning the shape oplimisation of roof tiles. As the work can be
used to optimise any flat single component plate the roof tile is referred to as the flat plate
problem throughout out the thesis. The problem concerns the optimal malerial disinbution

on the underside of this flat concrete plate, with varying load conditions.

The Teaching Company Scheme is a partnership between industry and academia. The role
of a Teaching Company Associate is to provide a link between the University and the
company in the transfer of new knbwlcdgc. The overall aim of the scheme was o improve

the competitive position of the company through the implementation of new technology.

The main aim of the programme was therefore the development of software utilising
evolutionary algorithms for the optimisation of concrete flat plates, thus enabling the
company to meet specifications of international markets, reduce lead times and costs

through improved efficiency and a reduction in materials usage.
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There are six major modules in the developed software :

User Interface -  Allows the user to modify the operator settings for the GA

Representation - The optimal shape will depend on the plate representation and the
selected variables to represent the modifiable elements.

Analysis - Analyses the design using FEA or complex stress theory

Optimisation - Modifies the values of the design variables.

Evaluation - Determines the fitness of the design

Termination -  Checks 1o see if any of the lermination criteria are met. Stops at the
maximum number of cvaluations or restarls depending upon the

requirement of the engineer.

Two forms of structural analysis have been utilised to evaluate the phenotypes. The first is
based on complex stress and bending moment theory, and is computationally inexpensive.
The designs produced by this method must be considered high risk due to the simplicity of
the anatysis. The second is the finite element method which is computationally expensive,
but produces significantly lower risk design solutions due to the in-depth analysis

performed upon the phenotype.

Most real-world optimisalior; problems, particularly those related to design, require the

simultancous optimisation of more than one objective function. Some examples include:

* In bridge construction, a good design is characterised by low total mass and high
stiftness.

¢ Aircraft design requires simultaneous optimisation of fuel efficiency, payload, and

weight.
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s Inchemical plant design the objectives to be considered include total investment and net
operating costs.
Some method relating to trade-off between the criteria is nceded to ensure a satisfactory

design.

The fitness of the design in relation to the plate problem takes into account the degree of
maximum allowable stress violation on the plate and the plate’s overall weight. There are
two main objeclives to the research. The first relates to the achievement of high-
performance designs, i.e. to minimise the weight of the plate whilst satisfying maximum
stress requirements. This conflict of criteria plus the high dimensicnality results in a highly
sensitive oplimisation problem with many local optima. The dimensionality in this case
refers to the number of variables on the plate. The second concerns the minimisation of
required function evaluations. It is essential that the second objective is achieved in order
that computationally cxpcnsjve analysis techniques such as FEA can be realistically

utilised.

3.2.1 Genetic Representation of the Plate

Figure 3-1 shows an example of how the genetic representation of the plate is decoded. The
figure shows how a chromosomal representation (12 bits long) is used to represent a plate
consisting of four clements. The chromosome is converted into four real numbers to
represent the depths of the elements on the plate. Further information on problem
representation may be found in Davis [1991]. The programs for the various algorithms and

the mathematical model were written in Fortran 77.
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3.2.2 Current Design Practice at the Company

Engincers at the company use a very similar design practice to the one outlired in chapter
1. Computer aided design (CAD) software is used to create and edit designs, whilst finite
clement analysis (FEA) is used to analyse the designs. A conceptual design is initially
developed (based on previous desi.gns and engineer’s insight and knowledge related to the
problem) which is then analysed using FEA software to determine which areas require
redesign. Further changes are then made using the CAD software. This loop continues until

a design is developed that meets the original specifications or is decmed acceptable.

In order to save money and become market leaders in plate design, the company must
design lightweight components which meet predefined stress criteria. This design-evaluate-
redesign process as stated in chapter 1 is exiremely slow and often requires large amounts
of human and calendar time, furthermore it sometimes fails to produce an optimal or near
optimal design solution. The longer the design process the more costly it becomes.
Automating the whole or e;/en part of the design process would therefore be highly

desirable.

The plate problem poscs a considerable challenge in comparison to standard test functions
such as De Jongs test suite [Goldberg 1989]. These test functions were developed in order
to visualise and measure the relative performance of various algorithms. The flat plate
problem is a real world problem where there is no apriori knowledge relating to the nature
of the search space, due to the high dimensionality. The lack of prior knowledge makes it
extremely difficult 10 determine whether the algorithm has converged to an optimum or
near optimum solution unless an exhaustive search is executed. The goal therefore is Lo

arrive at a “good” design solution, with minimum computational expense.
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stress violations and degree of stress violations are then summated to form the overall
stress violation (SV). This stress violation is divided by 100 then inversed in order to
convert to a maximisation problem. The +1 in the formula is to prevent run time errors

when the program is executed. The weighting for the stress criteria (Ws) is 1000.

The criteria weighting relating to the weight (Ww) of the plate increases as the degree of
stress violation decreases. Designs which have high stress violations are therefore
penalised to a greater extent as plate weight is reduced. The weight of the plate is also
inversed to convert the problem 1o one of maximisation. The weighting (Ww) therefore
depends upon the extent the stress criteria has been satisfied. In order to arrive at an

overall fitness rating (F) for the plate the fitness values Fs and Fw are summaled.

Fs = (1/((SV /100)+1))* Ws (Equation 3-7)

Fw=(1/Wt) * Ww (Equation 3-8)

if Fs 21000 then Ww = 500
if Fs > 700 then Ww =400
if Fs > 500 then Ww =300
if Fs > 300 then Ww = 150
if Fs>200 then Ww = 100 |

if Fs €200 then Ww = 50

F'=Fs+ Fw (Equation 3-9)




The above approach was taken in order to avoid equal emphasis on both objectives. II
equal emphasis is placed on both objectives and there are large stress violations on the
plate, the GA rapidly reduces the weight of the plate at the expense of meeting the stress
requirements, This is due to the weight of the plate being an attractor. Placing a higher
weighting on the stress moves the search towards the region of the design space containing
solutions with low stress violations. As the degree of stress violalion decreases the
weighting for the weight increases, therefore once the stress criteria is satisfied the problem

becomes a single objective relating to the minimisation of plate weight.

3.2.5 Two Dimensional Crossover

The use of a two dimensional string representation was considered, to provide a more
realistic picture of the plate [Cartwright and Harris, 1993]. However due 1o the disruptive
uniform crossover in the CHC algorithm, it is not possible to crossover individuals in the
manner shown in Figure 3-4. The figure shows how the method would be applied to the
platc problem if disruptive crossover was not ulilised. Depending upon the operator
settings one or more genes would be crossed. An individual would be defined as an # x n
grid. Individual genes would be held on the 2-D grid. The grid is connected together to
form the surface of a torus. It is therefore possible lo combine promising section(s) of

different plates through the action of 2-D crossover.
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The initial implementation divided the plate into horizontal and vertical strips. The GA
alters the periphery of the plate. An iterative optimisation loop is used to determine the
depth of individual strips for the main body of the plate so as to satisfy the stress criteria.
The highest depth of individual strips defined the resultant shape.. This method proved to
be an extremely fast (due to the small number of variables) way of generating feasible
preliminary design solutions. The design was then further refined utilising FEA. The main
drawback with the technique is that it is not very flexible and excludes a large number of

possible design solutions due 1o iterative loop and strip representation.

3.2.7 Selection of Design Variables

The advent of the finite element analysis (FEA) and the development of increasingly
powerful computational procéssing capability has allowed the complex analysis of large
problems and the identification of low-risk design solutions i.e. solutions with a low
probability ol error. However, every type of analysis requires input which is determined
from a set of design variables. The time required to initially develop this input and perform
the evaluation can be extensive, and there is no guarantee that the resulting design will be
feasible. If it is not, new values for the design variables must be delermined. The
determination of an optimal set of design variables and their upper and lower bounds is not

always directly intuitive, and consequently, is often found through trial and error.

Using evolutionary search lo tackle design problems imposes certain restrictions and
requirements on phenotypic repres.entation. A popular choice of representation that would
describe the plate relates to nodal co-ordinates. However a major problem with this choice
is the resulting large number of design variables to define even the simplest of shapes. The

advantage is the ability to obtain a general curved boundary, consistent with the finite
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element model in which the structure is allowed to assume whatever shape is necessary to
obtain the minimum weight. The problem with this generality is that an undesirable or

impractical shape may be produced.

The appropriate selection of the shape representation techniques for a particular problem is
necessary for effective optimjsation. There are two main considerations in the selection of
design variables. First, the numbe‘r of design variables must be kept to a minimum since
each design variable adds the burden of a number of analyses to the total computational
effort required in the optimisation process. In terms of evolutionary optimisation, a large
number of variable parameters are required to produce even the simplest of shapes. The
more variables in the phenotype, the more genes there are in the genotype, making the
search problem larger and thus more complex. Secondly a limit on the number of design
variables restricts the changes in shape during optimisation and may exclude a good
practical shape which might lead to a better design. There are no general sets of rules
governing the task of optimum selection of a shape representation technique. Engineering
insight and a compromise for the particular problem is therefore required to make this

choice.

Taking the above issues into consideration the plate is split into individual elements
(similar 1o brick elements when using FEA) in order to provide a higher degree of
resolution. The plate is represented by regions which are described by a set of key nodes
that control the geometry. The nodes are allowed to move in one dimension (i.e. depth)
during the evolutionary design process. This method was developed in order to allow the
designer flexibility whilst keeping the number of variables to a minimum. A major problem
with this choice is the resu?ting large number of design variables which increase the

computational expense. To produce even a simple shape requires large numbers of
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elements. However the advantage is the ability for the plate to assume a large varicty of

shapes.

3.2.8 NISA FEA Software

During the course of teaching company programme a software package was developed for
optimising flat plates. The package consisted of the CHC algorithm integrated with FEA
software. Before deciding to integrate the CHC with FEA, various algorithms were
investigated and experiments performed using the computationally inexpensive complex
stress model. The results are discussed in chapter 4. Before performing the optimisation the
designer must firstly define a Finite Element model and identify the variables. The plate is
initially designed with minimurr; thickness throughout the body. Eight noded brick
elements are used for modelling the plate. The files describing the model are used as a
template which are amended automatically by the CHC software 1o include the new values
for the variables for cach evaluation during the optimisation process. The nodes may be
linked in several ways to allow flexibility to the designer. This also helps to reduce the

overall number of variables.

There are generally two types of relationships between the variables and nodes. The first is
a one to many relationship, where one variable may have several nodes or elements
attached to it. This is referred' to as a varniable area. The second is a one to one relationship
where one node is equivalent to one variable (Figure 3-6 and Figure 3-7). The models may
be created with small tapers to aid blending between the elements (Figure 3-5). It was
found that if all nodes were allowed to vary the resultant shape was usually impractical,

moreover there is also a large increase in the number of variables.
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A variable may have any number of nodes attached to it, e.g :

1* variable (4 nodes) starling id 50001 ( last node number = 50004)
2" variable (6 nodes) starting id 50005 ( last node number = 50010)

3™ variable (100 nodes) starting id 50011 ( last node number = 50110)

Once the designer has developed the model and created the appropriate files which allow
communication between the FE software and the CHC GA, the evolutionary design
software may be run. The software runs until such a time the user feels that the design is
acceptable, or unlil the search process has stagnated. The designer may view a graphical
represenlation of the best design solution at any stage of the optimisation process. Due 1o
the considerably long run time information is recorded regarding the run which is
automatically saved every n number of evaluations, in case of a system failure. This allows
the user to recommence the program close to the point it was stopped. The design software

does not permit human intervention during evolution.

3.3 Summary

This chapter has discussed the application of evolutionary algorithms to structural
optimisation problems and shows that this area is receiving considerable interest. This
chapter has also discussed the development of the CHC genetic algorithm for the
optimisation of a real world structural plaie problem, during a two year Teaching Company
Programme. By combining the automatic optimisation of a design alongside evaluation
software which automatically analyses the quality of the designs, considerable time on the
part of the designer may be saved. The developed software is currently being utilised in
industry for the optimisation ol“.ﬂal plates. The software not only provides practical

solutions but, as it docs not commence from a feasible point (a common practice in shape
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optimisation) ‘it can also provide novel design solutions. Plates designed using the
developed software have now been mass manufactured. They have provided -design
solutions superior to those in existence and therefore have made significant savings for the

industrial partner.

'The next chapter provides a comparison in performance of different existing evolutionary
algorithms 'in order to determine which is the most effective on the plate optimisation

problem.



4. APPLICATION OF EVOLUTIONARY /ADAPTIVE
ALGORITHMS

4.1 Application of Evolutionary Algorithms to the Plate Problem

As described in chapter 2, there are a number of advanced GA variants, all developed (o
improve the efficiency of evolutionary search for problem classes. The plate problem has
several levels of complexity relating to multi-objectives, high dimension and high
sensilivity to slight perturbation of design variables. It is therefore necessary to introduce

high performance evolutionary algorithms that can best handle such characteristics.

The genetic algorithm is onlyrone of many non-linear adaptive scarch algorithms known in
computer science. It is currently not possible to define exactly which of these search
algorithms is best for which problem or even class of problem [Fogel 1995]. However, it is
possible to identify algorithms that continuously produce “good” results (in comparison to
those produced by other techniques) for a wide range of different problems. The GA

exhibits robust behaviour having been successfully applied to many problem classes.

The objective of the following sections is to provide a comparison in performance of
different evolutionary algorithms on the plate optimisation problem. The algorithms have
been selected on the basis of their performance on various problems in comparison to other
search techniques. The objective 'herc is not to optimise all possible operator parameter
setlings for any particular problem. The process of the selection of optimal settings is
complex and has been investigated many times beforc on different classes of problems

[Grefensletle 1986, Schaffer & Morishima 1987, Fogerty 1989, Davis 1989, Goldberg
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1989]. In fact the “no free lunch” theorem for search states that no such optimal settings

exist for all possible problem classes [Wolpert and Macready 1995].

There are three main measures of performance :

1. As the analysis module dominates the expenditure of resources on the
plate optimisation problcr_ns it is therefore considered the base cost and
is used as a measure of efficiency in this thesis. The criteria utilised
relates to total number of calls required to arrive at good feasible
design solutions and the CPU cost of the analysis.

2. The effectiveness of the algorithm at locatling a good design solution,
i.c. to minimise cost and degree of stress violation

3. The robustness of the method, i.e. standard deviation of the results.

This chapter presents the results for the different types of evolutionary algorithms
discussed in Chapter 2 in relation to the plate problem. Some of these techniques play a
stgnificant role in the thesis b.y guiding the research towards certain avenues and laying the
foundations for the development of various techniques. The chapler [irstly looks at the
application of the various evolutionary algorithms utilising the complex stress model. This
model was developed in order to produce design solutions quickly by keeping
computational expense to a minimum during experimentation. The simplified model does
nol perform an in-depth structural analysis as a result the designs produced by this method
must be considered high risk. The simplified model helps to determine the best performing
evolutionary algorithms which are then integrated with the more computationally
expensive FEA model. The second half of the chapter discusses the results of this

integration.
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rapid improvement in the early stages of the scarch process. In order to maintain diversity
and prevent the elements of the probability vector drifting rapidly towards O or 1, a
“forgetting factor” (Equation 4-10) is utilised. This has the effect of moving each element
of the probability vector a small amount towards 0.5. In addition the mutation operator is

also utilised to maintain diversity.

P(1) =P@)- ¥ (P(1)-0.5) (Equation 4-10)

Y =forgetting factor

4.2.1 Results for the Flat Plate Problems Utilising the Complex Stress Model

During the plate optimisation a simplified model has been utilised as described in chapter 3
to keep computational expense t'o a minimum during experimentation. The simplified
model does not carry out an in-depth structural analysis and therefore generated results are
not as reliable as those produced by the finite element method. As a result the designs
produced by the simplified method must be considered high risk. Using such a simplified
model which is still characterised by dimensionality, multi-modality and sensitivity, a
technique may be developed to cope with such conditions during comparative
experimentaiion without the burden of running large computationally expensive analysis

software.

4.2.1.1 Single Load Case Problems

Figure 4-1 displays a plate simply supported on four cormers with a central load of 1500
Newtons. An initial study has been performed on plates of varying resolution with a single

load case. This type of problem should not posc a particular challenge to the algorithms. As
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Figure 4-7 shows the comparison in performance for PBIL with different learning rates for
a single load case. This illustrates the utility of lower learning rates for lower dimensional
cases whilst high leamning rates are better suited to higher dimensions. Reducing the
learning rale has a direct impﬁct on the trade-off between exploration and exploitation of
the search space. For example if the learning rate is 0.1, there is littie exploitation of
solutions. As the learning rate is increased, the amount of exploitation increases, and the
ability to sample large portions of the space diminishes. The learning rale provides the
sclection pressure for PBIL. In lower dimensions there are fewer design solutions which
meet the design criteria therefore a high learning rate results in a poor solution due to the
search algorithm focusing on the top individuals in the space, i.e. the overall diversily in
the gene pool reduces resulting in premature convergence. In this case it is suggested that
lower learning rates are utilised to promole better sampling of the search space. In the
higher dimensions (>200) with a single load case there are many feasible solutions which
meet design objectives. This results in many possible design directions for the algorithm. A
high learning rate exploits good solutions and rapidly negotiates this very large search

space to identify a high performance locally optimal solution.

When using the simple GA, a degree of operator tuning must be performed. This is also the
case with PBIL, as the problem is scaled up i.e. utilises more variables. Further
experiments utilising higher dimensions are only performed on the best performing of the
four algorithms, i.e. the CHC and PBIL. Constraining the designs by reducing the upper
limit of variable depth does not pose a problem for the CHC or the PBIL algorithm. As
mentioned earlier in the chapicr, the reduction in the upper limit has the effect of reducing
the number of fcasible design solutions in the search space, whilst still keeping the search
space the same size. Less material is available during optimisation resulting in a reduced

number of design solutions with lower stress violations.
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PBIL and the CHC GA perform significantly better than the BGA or the canonical GA
although performance degradation is still evident with increasing dimensionality (Figure
4-9, Table 4-4 and Table 4-5). The results show that the CHC and PBIL are still extremely

effective when compared to the other methods.

Figure 4-9 once again shows PBIL's performance significantly improving with increasing
grid resolution, furthermore PBIL, as with the single load case still has a high rate of

evolution during early stages of the search (Figure 4-10 to Figure 4-13).

Table 4-5 shows the performance of PBIL on a three load case 20x20 and 24x24
representations utilising different learning rates. This illustrates that lower learning rates
which should help counteract premature convergence by promoting better exploration of

the search space do not in this case provide any improvement in design performance.

Further experiments utilisin.g higher dimensions are only executed using the best
performing algorithms namely the CHC GA and PBIL. The problem is made more
complex by increasing the number of load cases to 3 and reducing the maximum depth of
the plate to 18mm. More malerial is now distributed across the plale and due to reduction
in plate depth more stress violations occur across the plate resulting in [ewer [easible
design solutions. This poses a problem for the PBIL algorithm, it is rendered ineffective at
negotiating the highly complex search space. The highly exploitive naturc of PBIL is
unable to locate the reduced number of feasible design solutions now present in the search
space, resulting in premature convergence. CHC in comparison due to it’s more explorative
nature performs far better, but in some cases still fails to produce a feasible design solution.
Reducing the learning rate in order to promote exploration in many of the cases does not

provide better performance solutions .
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4.2,1.4 Drawbacks of Using the same GA for Various Levels of Problem Complexity

It is widely accepted that the major drawback of genetic algorithms to complex engineering
design problems is the large number of analyses [Haftka et al 1996, Goodman et al 1996].
The number of analyses for the plate problem depends upon factors such as the level of
representation, and the loading conditions. The designer would therefore need Lo tune the
operator settings of a GA in order to suil the problem. If the problem is computationally
expensive the tuning may take a considerable time, and would therefore have to take place
with a simpler version of the actual problem of interest. The designer is assuming that the
same algorithm with it's operators and settings will do just as well when more complex
problems are introduced. It has been shown that most of the algorithms utilised with the
plate problem generally perform well on coarse representations when utilising a single load
case and a small number of design variables. However when they are applied to more
complex higher dimensional problems, some of the algorithms notably the canonical GA
and BGA deteriorate considerably in performance. Therefore the use of algorithms and
operator settings based on a simple version may not be sufficient to solve more complex

problems.

4.2.2 Results for the Flat Plate Problems Utilising FEA

As discussed earlier in the chapter the simplified model does not carry cut an in-depth
structural analysis and is therefore not as rcliable as the finite element method. As a result
the designs produced by the simplified method must be considered high risk. If confidence
in design performance is required then FEA should be utilised to provide a low risk
detailed design solution. This confidence can only be achieved if there is also sufficient
numbers of eclements in order to allow accuracy of plate representation. Whilst providing

increased confidence in the design solution it does so at the cost of greatly increased
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The learning raie is increased to 1.0 for the 200 variable, Single load case problem (Tablc
4-8). Figure 4-18 shows the 'averaige best solution of the 4 runs. It is interesting to note
PBIL’s superior performance in comparison to the CHC. A rapid evolution of fitness by
PBIL is again apparcnt. Figure 4-19 shows that once a feasible region is located, the PBIL
algorithm performs better than the CHC at identifying lower weight. PBIL requires
approximately 1300 cvaluations on average to arrive at comparable design solution to the
one generated by the CHC at 3000 evaluations. In a typical run to arrive at comparable

design solutions CHC requires approximately 55% greater CPU time than PBIL.

Test Number | Best Fitness | Best Weight Average Filness Average Fitness (SD)
Weight

FEA CHC3 1434.72 0.150 1434 .49 0.151 0.2043

FEA_PBILA 1436.35 0.146 1436.04 0.147 1.8006

Table 4-8 : Results for 200 variables 1 load case problem

Research uuilising the simpler model also showed the PBIL method to provide reduced
performance on a single load case, low dimensional problems and increased performance
on single load case, high dimensional problems in comparison to the CHC algorithm.
These experiments therefore show to some extent that employing simpler analysis software
can aid in the selection and optimisation of evolutionary and adaptive algorithms, before

moving to more computationally expensive analysis tools.
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The algorithm proposed in this section utilises a population of individuals (Figure 4-23).
The assumption is that by maintaining a population of individuals, the probability of
premature convergence may be reduced, whilst still utilising PBIL’s highly exploitive
nature. Baluja and Caruana [1995] state that the number of samples to generate based upon
each probability vector before an update is analogous to the population size of GA's. As
with the traditional PBIL a real valued probability vector with values set to 0.5 is
generated. The probabilily vector is utilised to create a population of binary encoded
individuals where the probability of generating a 1 or 0 is equal. The population is then

assessed via the fitness function.

The values in the probability vector gradually shift relative to the fitness of individuals in
the population. The degree of variation of the probability (between 0.0 or 0.1) as in the
original PBIL algorithm depends upon the learning rate parameter. Updating the probability
vector results in the generation of a new population and the cycle is continued. As the
search progresses, entries in the probability vector move away from their initial settings of
0.5 towards either 0.0 or 1.0 i.e. the binary representation of the individuals in the
population are pushed toward's that of the current best solutions. As with the original PBIL
algorithm domain knowledge is. not stored in the population but in the probability

distribution,
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**kk4* Initialize Probability Vector *****+*
fori:=1 to LENGTH do P[i} = 0.5;

Frrx* Generale Samples ¥ dd*

fori :=1 10 POPSIZE do
sample_vectors{i] := generate_sample_vector_according__to_probabilities (P);
evaluations[i] :=Evaluate_solution (sample[il);

besi_vector :=find_vector_wilh_besi_cvaluation (sample_veciors, evalvations),
worst_vector ;= find_vector_with_worst_evaluation (sample_vectors, ¢valuations);

*****+ Update Probability towards best solution *****
for i :=1 to LENGTH do
P[i] :=P[i] * (1.0 - LR) + best_vector[i] * (LR);

*#44% Lpdate Probability Away from Worst solution *****
fori:=1 to LENGTH do
if (besl_vector[i] # worst_vector[i] then
P[] :=P[i] *(1.0 - NEGATIVE_LR) + best_veclor[i] ¥(NEGATIVE_LR);

*¥¥4% Push each element in the Probability Vector towards 0.5 by a small amount ###+*
e e sbe e o ofe s o sbe e sheoke e e ook oo s e ke skokoR K ( Forgetling Fﬂctof) e o ofe o e o ko ke ok ok eokok skokokole s ok ok Kk ok
fori:=1 1o LENGTH do .

P[i] :=P[i] - FF * (P[i]-0.5);

*¥*xxx Mulale Probabilily Vector *#*¥*
fori:= 110 LENGTH do
if (random (0,1)< MUT_PROBABILITY) then
if (random (0,1) > 0.5) then mulate_direction :=1
else mutate_direction =0
P[i] :=P[i] * (1.0 - MUT_SHIFT) + mutate_direction * (MUT_SHIFT);

USER DEFINED CONSTANTS :

POPSIZE: the number of individuals in the population.

LR: the learning rate, how fast to exploit the search performed.

NEGATIVE_LR: the negative leaming rate, how much Io learn from negative examples,
LENGTH: the number of bits in a generated vector.

FF: the [orgelting factor.

MUT_PROBABILITY: the probability for a mulation occurring in each position.
MUT_SHIFT: the amount a mutation alters the value in Lhe bil position.

Figure 4-23: The amended PBIL al'gorithm (PBIL_POP)













building blocks arc enriched through a number of generations of self reproduction without
genetic action. Selection alone is run to enrich population with high proportion of the best
building blocks. The second Juxtapositional Phase is closer to the canonical GA process in
that genetic operators such as mutation arc used. However the mGA uses cut and splice

operators as opposed to the classical crossover.

A preliminary study in the application of GP to the generation of optimal plate surfaces has
been undertaken by Birkenhead [1997]. The mcthod was found to be computationally
expensive, requiring in some cases 17 times more evaluations than the CHC algorithm to
produce a design comparable in performance. However, this was a short-term preliminary

study and further research is required Lo better assess the GP approach.

4.5 Summary

Many researchers have focused on the comparison of an evolutionary algorithm in relation
1o a canonical GA (Baluja 1994, Eshelman 1991). This chapter realising the limitations of
the canonical GA has compared the performance of different high performance

cvolutionary algorithms.

It has been shown that EA’s are extremely effective at solving the flat plate problem. The
use of GA’s for solving the plate problem does however involve a large number of calls to
the analysis model. This chapter has highlighted that the use of more advanced GA's may
help reduce the overall number of calls, and thus make it feasible 1o integrate complex

models such as FEA with an EA.
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The single load case promolés the.generation of material concenlrations in one area of the
plate and it is suggested that the highly exploitive characteristics of PBIL is better suited to
a less complex distribution of material upon the plate than that required by the three load
case problem. With three load cases the material is disiributed across a wider area of the
plate to best satisfy stress characteristics. Moreover a reduction in plate depth results in
more stress violations across the plate resulting in fewer feasible design solutions. It is
therefore assumed that the greater diversity of the CHC algorithm results in the betler
identification of this more complex material distribution. The rapid convergence
characteristics of PBIL prevent it from fully exploring the search space, which eventually
results in the algorithm premature converging. The performance of the CHC GA is
extremely competitive in comparis.,on to the other algorithms. It is extremely robust in the

sense that little, if any parameter tuning is required to achieve good results.

The computational demand increases with structural complexity i.c. number of elements,
number of load cases. The computational expense to arrive at a feasible solution depends
upon a number of factors such as the level of representation of the plate, loading
conditions, constraints and the type of optimisation algorithm utilised. Depending on the
factors, the search techniques perform in different ways. We need to select a method that
yiclds relatively good results across a broad, spectrum of problem configuration and not
limited to one that only provides good results on a particular aspect of the problem through
extensive operator tuning. To keep computational expense to a minimum during
optimisation (when utilising computationally expensive models) designers often restrict
themselves to ecither optimising coarse representations of the design or sections of a
detailed design by focusing on the problem areas so as to reduce the overall number of

variables.

102



The algorithms discussed in this chapter show a degradation in performance with increased
numbers of elements on the plate (>100) and multiple load cases. The following chapter

discusses ways in which these problems may be overcome.
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5. MULTI - LEVEL SEARCH STRATEGIES

Chapter 4 has illustrated a degradation in performance as plate resolution (i.e. number of
elements) is increased. In order Lo solve realistic problems a strategy is required which can
handle large numbers of design variables (i.e. >100). This chapter proposes methods which

can tackle such problems by utilisihg co-evolution of multi-representations.

In many optimisation problems there may exist a number of ways in which the problem can
be represented. An optimisation algorithm can utilise coarse or fine representations to
produce design solutions. A typical example may be a coarse FEA mesh as compared to a
refined one for stress analysis. In relation to the plate problem, the coarse representation
would provide a preliminary design solution which must be considered high risk due to the
low level of accuracy. However such a represeniation will be relatively inexpensive in
computational terms. Conversely a fine representation provides a low risk detailed design
solution due to a higher accuracy of plate representation, but also incurs greater
computational expense. However a combination of simple (coarse) and complex (fine)
representations may lead to a design which is as good as those resulting from a single fine

representation, but at a lower computational cost.

Evolutionary design optimisation may involve search utilising different numbers of
variables. This presents an opportunity for the development of a strategy that would exploit
the differing levels of a problem representation. A strategy that gradually increases in
problem dimensionalily as the search process progresses would take advantage of this

concept. As the plate is a single component it is not reliant on the design of any other
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associated assemblies of components, it may therefore be possible to design from
preliminary through to detailed design using evolutionary techniques. As coarse
representalions are computationally less expensive savings can be made in terms of
reduced evaluation time. As the solutions for coarse representations evolve more rapidly,
these may be used to assist the more refined representations in order to reduce the number
of calls to the evaluation function involving the computationally expensive fine
representation analysis. To accomplish this the developed technique must successfully
progress from a coarse representation to a fine one. The following sections describe three
different processes which utilise such multi-level representations for the plate problem. The
first termed Dynamic Shape Refinement (DSR) is a sequential technique developed by
Vekeria and Parmee [1997].' The other two techniques namely the Modified Injection
Island Genetic Algorithm (MiiGA) and the Dynamic Injection Island Genctic Algorithm
(DiiGA) also developed by Vekeria and Parmee [1997] involve concurrent processing of
models of different resolutions. All three techniques use the CHC GA for the optimisation

phase.

5.1 Dynamic Shape Refinement (DSR)

The Dynamic Shape Refinement was developed at the Plymouth Engineering Design
Centre by Vekeria and Parmee [Vekeria & Parmee, 1996] and is loosely based on finite
clement adaptive shape reﬁn;emerlt [Kohli & Carey, 1993]. The DSR technique mimics
natural evolution in that simple life forms are initially evolved which become increasingty
more complex through several generations, the higher life forms displacing the lower. The
DSR technique utilises problem representation of varying resolution, starting with a coarse
representation  which gradually increases in resolution until the desired level of

representation is obtained (Figure 5-1). The technique also imitates the process by which a
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representative of that normally required for that level of representation. There are three

options as progression is made from the coarse to more fine level representations:

1. Reduce the number of function evaluations as finer resolution levels are computationally

more expensive.

2. Increase the number of function evaluations and expend a larger amount of computation

of resource in fine tuning the high resolution designs as coarse levels are less accurate.

3. Keep the number of evaluations constant on all levels of representations.

Once search at the coarse level ceases the population is mapped onto a finer more accurale
representation and the evolutionary process allowed to continue until the next level of
representation is introduced. The mapping of encoding attempts to focus search around
“good” solutions that have already becn discovered utilising the coarse representation. The
final population of the coarse representation becomes the initial population of the next
level, which is re-evaluated once it has been mapped into a fincr representation. There are
however other options other then mapping the whole of the coarse population on to a finer
population. The method used is based on the re-initialisation phase of the CHC algorithm.
Here the best or a randomly selected individual from the coarse representation is mapped to
the next level. The individual is then copied M times (M = population size). Each new
individual is created by ﬂippihg a fixed proportion (e.g., 35%) of the template’s bits chosen
at random. One instance of the best is added unchanged to the new population. Evolution

takes place in only one direction from coarse 10 fine representations.
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A simple 3 level representation is presented below:

Representations:
a) 5x5=25 clements
b) 10x10=100 elements

¢) 20x20=400 elements

Process:

e Commence evolution of representation a).

¢ Stop evolution of a) if it has converged or reached maximum permissible number of
evaluations.

¢ Map population a) to produce population b), and continue evolution.

e Stop evolution of b) if it has converged or reached maximum permissible number of
evaluations.

* Map population b) to produce population ¢), and continue evolution,

« Stop evolution if ¢) converges or reaches maximum permissible number of evaluations.

5.1.1 Mapping of Encoding

When using the DSR technique the issue of mapping a low resolution encoding to a higher
resolution must be addressed as there is an increase in the size of the chromosomal
representation. The high resolution model must be as close as possible in terms of
representation to its more coarse counterpart. This may be achicved relatively casily in the
case of the plate problem, so long as there is one to one mapping in one direction (i.e. from
coarse to fine representation) the number of elements may be multiplied by two or four.

Figure 5-2 shows 2 grid representations (2 x 2 and 4 x 4) which illustrate how the mapping
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shows the evolution curve for the CHC, PBIL and DSR CHC processes. Details of the

algorithm and plate representation follow:

Stand Alone CHC and DSR CHC:
Population size =40; (DSR population kept constant on all levels of
representations)
Divergence rate = 30%;
Maximum number of restarts = 3
Stand alone CHC plate resolution = 20x20 elements,
DSR CHC plate resolutions = 5x5, 10x10 and 20x20 elements (whole population is

mapped during transition from one representation to another)

Stand Alone PBIL
Positive Learning Rate = 1.0
Negative Learning Rate = 1.0
Forgetting Factor = 0.005
Mutation Shift = 0.05
Mutation Probability = 0.02
Trials per Iteration = 40
Number of chtors to Update from =1

Stand alone PBIL plate resolution = 20x20 elements

Total Number of Calls to the Model = 10000 (unless otherwise stated)
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In summarising the results it can be said that the DSR technique presents a novel way of
dealing with a large numbers of variables and reducing the number of calls to the model
during a GA run. By utilising a combination of simple and complex representations the
DSR technique on most of the problems described leads to a design which is as good as
those resulting from those of.a single fine representation, but at lower computational cost

through the utilisation of coarse representations.

5.2 Parallel Genetic Algorithms

The task of finding an optimal solution for a complex structural analysis problem poses a
considerable challenge to the engineer, not only because of high dimensionality but also
because of the high computational expensive. There are two ways in which to lessen the
computational expense. Firstly 10 accelerate convergence of individual algorithms whilst
minimising the overall number of evaluation calls and thus CPU time; secondly the
distribution of the problem through the utilisation of parallel architectures. The research

described here represents a combination of these two approaches.

This section presents a method by which multi-level representations are used in a parallel
manner in an aitempt to make further improvements in performance. The Injection Island
GA (iiGA) [Goodman et. al,, 1997] is a technique that maintains multiple interacting sub-
populations of different resolution. However, unlike the DSR technique which is sequential
in nature, several levels of representations evolve at the same time, with occasional
migration from one sub-population to another. The technique presented not only reduces

the calls to a model but is also very accessible to the parallel method.
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Parallel Genetic Algorithms (PGA) address the convergence problem of single population
GA'’s by subdividing the populations and evolving the sub-populations independently so
they are more likely to explore different portions of the search space. The main motivations

1o use PGA’s are :

- to increase speed and efficiency
- to allow the application of the GA to a larger problem

- 1o try to follow biological metaphor more closely

Various researchers have utilised PGAs for complex structural design problems. For
instance Leite (1996) applied many parallel models and environments to the design of a
cable-stayed bridge. The studies show that, especially for large engineering problems, the
parallel GA performs better than serial algorithms both in execution speed and quality of
solution. Doorly et al [1996] utilised parallel genetic algorithms to reduce computational
expense for optimisation in computational fluid dynamics (CFD) for the design of optimal
airfoils. Poloni et al [1996] utilise parallel GA’s for aerodynamic design optimisation
problems. A massively parallel Cray computer is utilised to reduce the computational effort
required for the accurate evaluation of a design configuration. Goodman et. al. uses
injection island genetic algorithms (iiGA) for the design of composite cantilever plates
[1996] and to optimise the Specific Energy Density (SED) of elastic flywheels [1997]. The
11GA searches at various levels of resolution in parallel within a given space. Adeli and
Cheng [1995] use the parallel GA for the optimisation of high rise building structures and

space stations with several hundred members.

There are several types of Parallel GA’s which differ in the nature of the population

structure and / or the method of selection.




5.2.1 Micro-grain GA (mgGA)

Micro-grained GA’s [Punch et. al. 1993] maintain a single population with multiple
processors being used to run the evaluation function. No migration is employed. Every
processor that is used (up to the number of members in the population), results in an
increase in performance. If fewer processors than the number of members of the population
are available, then each processor is responsible for processing a subset of the population,
making the populations evaluation time equivalent to the evaluation time of the most costly
subset. Genetic operations such as crossover and mutation are typically conducted
sequentially by a single “master” node which controls the system. The Micro-grained GA is
especially useful when the evaluation function is computationally expensive as in the case
of FEA and CFD packages which may take in the order of several minutes for a single
cvaluation. The mgGA’s do not address the problem of premature convergence, their

primary goal is speed in comparison to sequential GA’s.

5.2.2 Fine-Grain GA’s (fgGA’s)

Fine Grained GA’s (fgGA’s) [Manderick and Spiessens, 1989] are sometimes also termed
massively parallel GA's. A large population is divided into a series of smaller sub
populations by placing one individual at each location on a toroidal 2-dimensional grid.
With each individual assigned this way, the grid locations are not necessarily related to the

individual’s solutions, rather they are arbitrary designations used to perform selection.

Sub populations are defined in terms of neighbourhood on the grid. One method is to
utilise a fixed size neighbourhood where for any given location (individual) a sub

population would be that location plus its eight immediate neighbours. With this method
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there is a natural local mating scheme within each sub population. The entire population
may be viewed as numerous small sub-populations which overlap. This results in a mixing
of individuals between the sub-populations. Sub populations that are within a close locality
(relative to grid size) will exert more of an influence on each other than those a greater
distance apart, whilst the more distant sub populations should evolve comparatively unique
chromosomes. High connectivity between neighbours increases the spread of high fitness
individuals, making sub-populations susceptible to domination and perhaps premature

convergence.

5.2.3 The Distributed Genetic Algorithm (DGA)

Tengse [1989] proposed the distributed genetic algorithm (DGA) also termed coarse
grained GA as a way of efficiently parallelising the canonical genetic algorithm (CGA). In
the DGA, the global population is divided into several sub-populations, one per processor
(Figure 5-8). Inter-processor communication occurs during the migration phase at regular
intervals (i.e. migration interval). During migration, a fixed proportion of each sub-
population is selected and sent to another sub-population. In return, the same number of
migrants are received from some other sub-population and replace individuals according to
some criteria. This migration can occur either asynchronously or synchronously. Because
the time-consuming measurement of fitness is performed independently at each separate
processing node, this approach (o parallelisation delivers an overall increase in

performance that is nearly linear with the number of independent processing nodes.
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population. Such a procedure works well on problems whose variables are reasonably
independent, but difficulties arise with problems such as that of the plate which has high
interacting variables i.e. slight perturbation of a single variable may have an effect on the

overall fitness of the design.

Barbosa [1997] proposes a co-evolutionary GA for solving structural optimisation
problems. Two GA’s are run independently. A GA evolves for a certain number of
generations on population A while population B is kept frozen. The GA is then allowed to
operate on population B while population A is kept frozen. The cycle is repeated » number
of times. The fitness is based on function f{x,y) where x is taken from population A and y
from population B. As a result the fitness of each individual in one population depends on

all individuals of the other population.

5.3 The Injection Island GA (iiGA)

As highlighted in section 5.2 parallel processing is often used to increase the speed of
convergence. However, before introducing parallel architectures it is extremely important
to develop and optimise the underl'ying adaptive algorithms with respect to their efficiency,

effectiveness and overall robustness.

The injection island architecture (iiGA) [Goodman et. al., 1996] offers a concurrent rather
than a sequential shape refinement process. The iiGA is an extension of the coarse grained
PGA, whereby lower resolution representations are explored on some islands, which inject
approximate solutions into higher resolution populations for further refinement. The 1iiGA
is therefore characterised by: (1) sub-populations using different data representations and

(2) exchange of genetic material one way. To illustrate the technique, an example of an
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The 1iGA as with the DSR technique offers a method of reducing calls to the model by
utilising various levels of representations. However iiGA’s concurrent evolution of the
different levels of representations, ensurcs that feasible design solutions are available

relatively early in the search process thereby aiding a further reduction in run times.

The architectures described differ to those used by Goodman et. al., [1997]. Firstly the sub-
populations are not distributed, they are contained as subsets of each population. The flat
plate is represented by a number of different resolution grids each resolution being
allocated 1o a population subset. Members of each sub-population are evaluated one at a
time. Secondly relatively few sub-populations are utilised in comparison to typical
implementations of Michigan’s 1iGA. The overall number of sub-populations have been
reduced in order to decrease the number of calls to the model. Each level of plate
representation is usually represented by one sub-population at the start unlike Michigan’s

11GA, which may have several sub-populations for a given level.

Due to these differences and to avoid confusicn the technique will be referred to as the
Modified Injection Island GA (MiiGA). The objective is to establish co-evolutionary,
multi-level representation processes with appropriate migration regimes that support the

design of single components from preliminary through to detailed design.

5.3.1 Application of MiiGA’s on the Plate Problem

This and following sections focus on the use of multiple representations as a method for
maintaining genetic diversily and reducing the number of calls made to an evaluation

function.
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When implementing an MiiGA the designer must address certain issues such as :

¢ The number of individuals to migrate

Which individuals to migrate (the best or arbitrary ones)

Which individuals to replace (the worst or arbitrary ones)

Synchronous or Asynchronous migration of individuals

Exchange belween neighbours or between arbitrary subpopulations.
A 3 level MiiGA representation is presented below:

Representations: a) 5x5=25 elements  b)10x10=100 elements  ¢)20x20=400 elements

Process:

e Commence co-evolution of representations a) and b) and c).

» Migrate fit individuals from a) to b), a) to ¢) and b) to c) every n evaluations

¢ Continue the process until maximum number of restarts or maximum number of
evaluations has been reached

The solutions of the coarse design representations are injected into the more detailed

designs for fine grained refinement. The coarse migrated individual must therefore be

converted to the required level of representation before migration. This is accomplished in

the same manner as outlined i-n section 5.1.1. Migration of information is from low to high

resolution at a set number of evaluations. Figure 5-10 shows the co-evolution of 3

representations 3x3, 6x6 and a 12x12. Individuals are migrated from 3x3 to 6x6, 3x3 to

12x12 and 6x6 10 12x12 at a pre-set number of evaluations (this is normally 100 on most

problems unless stated otherwise). Migration allows the passing of highly fit schemata by

injecting the best individuals that have evolved from a proportionally smaller search space

into higher resolution representations replacing the worst individuals present at that time.

There are a large number of possibililies when deciding the migration method to utilise.

The research does not discuss the best migration methods to use.
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therefore available earlier in the design process, thus saving computational effort and

calendar lime.

5.4 Dynamic Injection Island GA (DiiGA)

In order to address the stagnation problem a dynamic aspect has been introduced 1o the
MiiGA paradigm by Vekeria and Parmee. The Dynamic Injection Island Genetic Algorithm
(DiiGA) method of represenlation'addrcsses the problem of stagnation as discussed in the
previous section. The technique is a combination of the DSR and iiGA techniques. Two or
more levels of representations evolve. Previous results have shown that the DSR technique
is highly effective at reducing the overall computational effort through the utilisation of
several levels of representations and by the phasing out of lower representations. The
MiiGA due to its concurrent evolution of the different levels of representalions ensures
that, unlike the DSR technique, a feasible design solution can be generated relatively early
in the search process, The DiiGA is a strategy which takes advantage of the better
mechanisms of the two approaches (Figure 5-16). As a lower resolution process ceases (0
inject useful information into the higher resolution processes so it is removed and replaced
by a resolution that is higher than any currently in existence. The new higher representation
1s seeded from the new lower sub-population. This is accomplished by mapping the fittest
individual from the lower sub-population to the higher sub-population. The remainder of
individuals in the new higher sub-population are formed by copying the mapped individual
and mutating a fixed percentage (30%) of it’s bits at random. This creates a sub-population
which is biased towards a good solution from the lower level but with new diversity. The
desired behaviour is one of constant improvement in fitness, avoiding the levelling of the
MiiGA curve as displayed in Figure 5-15. A simple 3 level representation involving 4

processes is presented:
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Representations:

a) 5x5=25 elements

b) 10x10=100 eiements
c1) 20x20=400 elements

c2) 20x20=400 elements

Process:

e Commence co-evolution of representations a) and b).

* Migrate from a) to b) every n evaluations until a) converges and ceases to pass useful
information to b) or until maxi;num permissible evaluations

* Remove a) and introduce ¢;) using the best individual from b) to seed new population

¢ Migrate individuals from b) to ¢;) every n evaluations until b) converges and ceases to
pass useful information to ¢;) or until maximum permissible evaluations

* Remove b) continue to evolve ¢;). Introduce another co-evolving subpopulation (c,),

seeded from (c,).

Individuals are prevented from migrating if a duplicate exists in the host subpopulation in
order to maintain search diversily. Further migration only takes place if the individual is
fitter than the least fitlest ind{vidual in the host sub-population. The run continues until its
termination condition is met (when the sub-populations have converged, the maximum
number of evaluations have been reached or the maximum number of re-initialisations has
been achieved). It should be noted that there is no danger that the best individual will
rapidly take over the new sub-population. The CHC GA'’s incest preventing mechanism
(the dropping difference threshold), in combination with elitist selection and disruptive

recombination will prevent this. Eshelman [1991] found that partial re-initialisations
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5.4.2 Application of Dynamic In'jection Island GA on the Plate Problem utilising

FEA

The previous section has shown the DiiGA to perform well in comparison to the other
evolutionary techniques when utilising a complex stress analysis model. This section
therefore investigates the performance improvement of the DiiGA in comparison Lo single
representation techniques when utilising an FE analysis model. As with the previous

chapter the FE problems were provided by industry.

Table 5-4 shows the computational expense for individual FE evaluations, it shows that the
CPU time increases considérably with structural complexity i.e. number of elements,

number of load cases. Table 5-5 shows the results for 48 and 200 variable problems.

Figure 5-22 shows the best average fitness of the 4 runs for the 48 variable single load case
problem, whilst Figure 5-23 shows the average best weight of the 4 runs for the same
problem. Two levels of representations are used. Results from the 12 variable sub-
population are injected into the 48 variable sub-population. The initial fitness of the 12
variable sub-population is relatively high due Lo a low number of stress violations on the
plate. Once the 12 variable sub-population ceases to inject useful material into the 48
variable sub-population it is discarded and replaced by another 48 variable representation,
seeded from the old 48 variable suia-population. The DiiGA manages to reach lower weight
design solutions earlier in comparison to the CHC and PBIL saving calls to the analysis
model. As the lower 12 variable sub-population is cheaper to analyse it further saves
computational expense. Approximately 350 evalualions in every run are performed on the

12 variable sub-population.
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The DiiGA has helped to con’sider'ab]y cut overall computational expense. By reducing the
number of calls required and CPU time (through the use of coarser problem
representations), complex models such as FEA may realistically be used. In the problem
cases outlined only two levels of representations have been utilised. More levels may

further reduce computational expense.

5.5 Summary

Practical computability of structural problems are often limited by high dimensionality.
This chapter has outlined methods which aid tackling such problems in order to reduce
computational expense. The‘DSR, MiiGA and DiiGA are all effective at reducing the
overall number of evaluations 1o arrive at feasible design solutions. The advantage the
MiiGA and DiiGA methods have over the DSR technique is that feasible design solutions
evolve faster and are therefore available earlier in the design process, unlike the DSR
technique where low risk design solutions are available during the latter stages of the
search when the finest level of representation has been introduced. The designer may then
stop the evolutionary process if a particular design is deemed acceptable thereby saving

computational effort and calendar time.

The DiiGA is better suited to the task of exploration of the search space on problems
utilising muiti load cases and low llimits on material. The experiments utilising FEA show
that the computational savings appear to become more pronounced as the number of
variables and load cases are increased. The results show that the DiiGA method can reduce
computational expense by up to 55% in comparison to single population techniques. The

operator settings for the DiiGA have not been optimised, so further savings may still be
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possible. The introduction of higher levels of plate resolution would also further reduce the

overall computational expense.

In order to expand the limits of practical computability, researchers have used parallel
processing. However, before inlrogiucing parallel architectures it is extremely important to
select, develop and optimise the underlying algorithms with respect to their cost and
accuracy. The multi-level algorithms highlighted in this chapter behave differently on the
problems presented. This however is not very surprising, based on the performance of the
different search techniques and their dependency upon problem specifics outlined in
chapter 4. There are many possible variations of the techniques and their relative operator
setting. Amending these strategies may yield greater savings in calls to the model. However
what this chapter has shown is that multi-level techniques are highly effective at reducing
the overall computational effort in comparison to single level representation algorithms

presented in chapter 4.

The single population algorithms discussed in chapter 4 display interesting performance
characteristics and provide a betlter way of searching the design space based on problem
specifics (exploration versus exploitation). The DiiGA has been shown to be very effective
at reducing computational expense through the use of multi-level representations. The next
chapter discusses how the propertics of these various techniques may be combined to

further improve design performance.

146



6. MULTI AGENT SEARCH TECHNIQUES

As highlighted in Chapter 4, different techniques may be better suited to varying stages of
the evolutionary process. The CHC is capable of performing good exploration of the search
space. PBIL, whilst capable of maintaining a reasonable level of exploration, is more
efficient at exploiting the search space. Based upon the performance of these search
techniques as outlined in cha];;ler 4, and the ability of the DSR technique at handling higher
numbers of variables two multi-agent scarch techniques are proposed by Vekeria and
Parmee [1997] as a way of further reducing computational expense. (where agents refer to

the individual algorithms).

The second half of this chapter discusses distributed techniques, the process resembles that
of the DiiGA except the subpopulations manipulating the grid representations utilise
different evolutionary strategies. This again is intuitively based upon the performance of
the various adaptive search techniques detailed in chapter 4, the benefit of multi-level
representations detailed in chapter 5 and improved performance of multi-agent sirategics

outlined in section 6.2 of this chapter.

6.1 Hybrid Search Techniques

Evolutionary algorithms can be very effective al solving certain classes of optimisation
problem. There are, however, many problem arcas wherc EA does not perform particularly
well. As a result several hybrid EA’s have been proposed [Seront and Bersini 1996]. The

most common being local optimisation techniques incorporated within the GA. The GA is
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a good global optimiser and explores the search space very efficiently. Conversely local

search techniques are good local optimisers and perform good exploitation of solutions.

Hybrid approaches have been found to work well on some problems as a result of these
complementary properties of the search algorithms.

For instance;:

¢ Koumousis and Georgiou [1994] introduced a mixed strategy that utilises GA’s o
search for optimal geometrics of steel truss roofs, and a logic program, developed by the

authors, Lo solve the sizing problem.

* Parmee [1996a] utilises a GAANT algorithm which involves aspects of an ant colony
model in combination with a GA. This results in a dual-agent approach to achieve a
multi-level search across a design hierarchy described by mixed discrete/continuous

variable parameters.

Most evolutionary algorithms depend on a set of control parameters. Often the optimal
setting of these parameters is dependent on the particular problem. Furthermore the optimal
parameter settings may vary for different stages of the search. Similarly a search technique
may work well for different types of problems or be better suited to different stages of the

search process, as in chapter 4.

Adamidis and Petridis [1996] propose a method called Co-operating Populations with
Different Evolution Behaviours (CoPDEB) where subpopulations are allowed to exhibit
different evolution behaviours to overcome the problem of operator parameter setling. A

coarse-grained parallel GA where a number of sub-populations co-evolve is utilised. Each
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sub-population runs a GA with a different evolutionary behaviour by amending rules

regarding selection, recombination and mutation.

6.2 Multi-Search Techniques

The first approach utilises the CHC and then the PBIL algorithm (CHC_PBIL). The
reasoning being that the more div'crse search of the CHC will provide an optimal starting
individual for the PBIL-based search. The CHC will perform an initial explorative search,
the PBIL method will then quickly exploit the surrounding local search space. The
establishment of a multi-agent co-operative strategy may therefore provide a partial
solution to the problem of balancing the two competing themes of exploration and
exploitation. The proposed structure initially runs the CHC for 3000 [unction evaluations
followed by PBIL for a further 7000 function evaluations. The fittest design solution from
the CHC GA is used as the sample solution from which the initial probability vector is
updated once PBIL is introduced. The probability vector is only updated when a better

individual is located.

The second approach, initially utilises the PBIL algorithm which then switches to the CHC
algorithm (PBIL_CHC). The reasoning here is that the PBIL method will quickly exploit
solutions and identify promising regions which can then be explored by the CHC method.
This presents an alternative strategy to the CHC_PBIL method. Similar settings are used to
those of the CHC_PBIL method. PBIL initially runs for 3000 function evaluations followed
by the CHC for a further 7000 function evaluations. The fittest design solution from PBIL
is used as a template for creating the new CHC population, whereby each new individual is

created by flipping a fixed proportion (e.g., 30%) of the template’s bits chosen at random.
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Table 6-6 and Table 6-7 show that in all the test cases utilising 3 load cases the CHC_PBIL
method produced the best final fitness. Due to its initial exploration and then the rapid
exploitation, this technique is well suited especially to problems of high dimensionality
utilising single load cases. However on the more complex problem of the 24x24 3 load
case plale with a minimum 18mm maximum variable thickness the PBIL_CHC algorithm
seems better suited (Table 6-7 and fig 6.3). This problem has a more complex distribution
of material on the plate. Also as we have reduced the upper limit on material the number of
possible design directions is reduced thus requiring more exploration of the search space.
This is illustrated in Figure 6-3 which shows rapid evolution by the PBIL and PBIL_CHC
methods. Due to the initial PBIL phase, rapid exploitation of solutions takes place which
are then explored by the CHC. Although in this case the CHC_PBIL method shows a high
performance solution with rapid evolution, the method is not robust and on average
produces much lower performance design solutions in comparison to the PBIL_CHC
method (refer to standard deviation and average fitness values [or test cases 6 and 7 in
Table 6-6 and Table 6-7). The PBIL_CHC combinalion seems o provide better
complementary properties which result in fitter and more robust design solutions than those

produced by CHC, PBIL and the hybrid CHC_PBIL algorithms for this class of problem.

Other techniques may also be incorporated in order to take advantage of multi-level
representations and multi-agent scarch strategies. Two methods are proposed where the
Dynamic Secarch Refinement (DSR) technique may be used in conjunction with a mult-
agent search strategy. The first approach may utilise a coarse representation manipulated by
PBIL which then switches to finer representation manipulated by the CHC algorithm, after
convergence or a certain number- of evaluations. The reasoning here is that the PBIL
process may rapidly converge lo a high-performance region utilising a coarse

representation, which is then explored by the CHC technique utilising a finer
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representation, The second approach may utilise a coarse representation manipulated by
CHC, which then switches to finer representation manipulated by the PBIL algorithm. The
reasoning here is that the CHC process ulilising a coarse representation may initially better
explore the search space and identify a number of diverse high-performance solutions, then
a finer PBIL representation rapidly converge to a local, optimum solution. The process
would be performed in a sequential manner, gradually increasing the complexity of the
representation whilst taking advantage of the differing characteristics of the search

algorithms.

6.3 Distributed Search Techniques

The distributed search technique utilises different resolution grids, each evolving upon a
separale island. The process is similar to the DiiGA except the subpopulations
manipulating the grid representations utilise different evolutionary strategies. This is
intuitively based upon the performance of the various adaptive search techniques detailed
in chapter 4, the benefit of multi-level representations detailed in chapter 5 and improved

performance of muiti-agent strategies outlined in section 6.2 of this chapter.

The establishment of a distributed architecture supporting several search algerithms and
their subsequent removal / re-introduction depending upon relative performance during the
evolution process may provide a partial solution to the problem of selecting the most

appropriate search technique for a particular problem.

6.3.1 Application of Distributed Search Techniques to the Plate Problem

Two simple configurations are assessed. The first method is termed chc-pbil-pbil (c-p-p)

(Figure 6-4).
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The c-p-p co-evolution results in increased performance both in terms of reduced calls to
the evaluation function and improved overall fitness in the single load case situation.
However, as a more realistic three load case problem is introduced the c-p-p is very
significantly out performed in robustness by the p-c-c co-evolution (Table 6-8 and Table 6-
9). Although further experimentation is required to better determine the dynamics for these
comparative performances upon differing problem representations, the following reasoning
appears sound. The single load case promotes the generation of material concentrations in
one area of the plate and it is suggested that the convergence characteristics of the ¢-p-p are
better suited to a less complex distribution of material upon the plate than that required by
the three load case problem. With three load cases material is distributed across a wider
area of the plate o best satisfy stress characleristics. It is assumed that the greater diversity
of the later stages of p-c-¢ scarch results in the better identification of this more complex
material distribution. The rapid convergence characteristics of PBIL however, greatly
accelerates this identification resulting in far less cvaluation calls than is required by a
DiiGA process utilising CHC alone. It is interesting lo note, however, that performance of
the CHC alone finally equals that of the p-c-c co-evolution, whereas the characteristics of

the ¢-p-p process results in rapid convergence upon a significantly lower robust solution.

6.4 Variable Complexity Modelling

The integration of FEA representation and concurrent processing of simple evaluation
models alongside complex analyses may also yield greater savings in computational
expense. Giunta ¢t al [1995] have developed an interesting technique termed “variable-
complexity modelling”, it is a process by which simple, computationally inexpensive
analysis techniques are used together with more detailed, expensive techniques in the

design optimisation proccss.
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This technique is applied in the area of multidisciplinary optimisation (MDO) in the
aerodynamic-structural optimisation of the High Speed Civil Transport (HSCT), which is
computationally expensive due to the analysis of the vehicle and it’s many systems. A
typical optimisation problem is to minimise the takeoff gross weight of an HSCT
configuration. Starting with a large number of candidate HSCT configurations, the designs
are screened using algebraic weight equations (which is relatively inexpensive in
comparison to detailed analysis methods) to eliminate impossible design points. Detailed
finite element analysis is then apl;lied to selected configurations in the remaining design

space to provide more accurate results.

Ellman et al [1996] use several strategies for the design optimisation of a sailing yacht.
One of the strategies uses a simple model to get near an optimum, before relying upon a
complex model during the last stage of the design similar io Giunta et al. [1995]. Ellman

writes:

“ An optimisation algorithm can often utilise relatively simple
models t0 make search control decisions, and rely on complex
models only when needed to verify optimality of a solution and
satisfaction of constraints. For this reason, a combination of
simple and complex models can lead to designs as good as those
resulting from a single complex model, but at far lower

”

computational expense.
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6.5 Summary

The experiments performed on Lh;-: multi-load cases shows that the manner in which the
algorithms are used is extremely importlant. The sequence of the algorithms seems highly
dependent upon problem specifics. The CHC_PBIL approach is especially well suited to
tackling problems of high dimensionality utilising single load cases. This method initially
explores bul spends majority of it’s time exploiting information regarding the search space
and as a result is better suited to this class of problem. The PBIL_CHC performs rapid
exploitation and then expends the majority of it’s time exploring. As a resull, it is better
suited to problems which are more complicated, where fewer high performance solutions
exist in the search space and a higher degree of exploration is required in order to identify

them.

The results from the distributed search strategies indicate a potential for a further reduction
in calls to the evaluation model. The p-¢c-c method manages to achieve better results than
the DiiGA technique and is also more robust. The selected search configurations are
however very sensitive to problem specifics e.g. the performance differences between the
one and three load case scenarios. This second point may be addressed by improving the

dynamics of the introduction / removal of individual search algorithms.
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7. CONCLUSIONS

7.1 Conclusions

The aim of this work has been to develop a semi automated system which is capable of
providing high performance design solutions. By combining evolutionary optimisation of
the design utilising evaluation software to provide a measure of the quality of the designs,
there is little need for human intervention in the design process. Such a system would be

highly destrable in terms of cost as design lead time and associated man-hours is reduced.

The research has focused on evolutionary / adaptive strategies that allow the machine based
design of a single enginecn'ng component from preliminary problem definition through to
detailed definition. In order to achicve this it was necessary 1o overcome two main problem
areas i.e. the successful optimisation of large numbers of interaclive design variables and
the minimisation of calls to the fitness evaluation model. These objectives have been
achieved to a significant extent by the introduction of high performance advanced

compultational strategies.

Many researchers have focused on the use of a canonical GA for design optimisation tasks.
This work, realising the limitations of the canonical GA in terms of calls to the model and
design performance has compared the performance of different high performance
evolutionary algorithms. It has been demonstrated that the use of high performance

evolutionary search algorithms such as CHC and PBIL help to reduce the overall number
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of calls to the evaluation function, and thus make it feasible to integrate computationally

intensive models such as FEA with an evolutionary design process.

The performance of the CHC and PBIL algorithms on the plate problem shows them to be
extremely competitive in comparison to the Breeder GA and the canonical GA. The overall
results have shown firstly that the CHC is an extremely robust and highly explorative
algorithm and secondly that the rapid convergence characteristics of PBIL help it to rapidly

exploit solutions in large search spaces.

Many factors effect the total number of analyses that need to be performed. In the case of
the plate problem factors such as the level of representation, and the loading conditions
have a bearing on this figure. It has been shown that most of the algorithms utilised with
the plate problem generally perform well on coarse representations when utilising a single
load case and a small number of design variables. However when they are applied to more
complex higher dimensional problems, some of the algorithms notably the canonical GA
and BGA deteriorate considerably in performance. Therefore the use of algorithms and
operator settings based on a sim;;ler representation may not be sufficient to solve more
complex problems. All of the algorithms displayed a marked degradation in performance

as the complexity of the problem increases with the introduction of more variables (>80).

The need to handle higher numbers of variables to allow lower risk design solutions has led
to the development of techniques which exploit differing levels of a problem
representation. These strategies involve a gradual increase in dimensionality as the search

process advances. The advantage in using this approach is that coarse representations
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provide a good starting point for the finer representations in addition to being less

computationally expensive.

Three multi-level techniques were developed by Vekeria and Parmee namely the DSR,
MiiGA and DiiGA. The DSR technique presents a novel way of dealing with a large
numbers of variables and reducing the number of calls to the model during a GA run. By
utilising a combination of simple and complex representations the DSR technique on most
of the problems outlined leads to a design which is as good as those resulting from those of
a single fine representation but at lower computational cost through the utilisation of coarse
representations. This reduction is however during the latter more detailed stages of the

design process.

The Modified injection island architecture (MiiGA) was introduced to allow [easible
design solutions 10 evolve faster and be made available earlier in the design process. This
allows significant savings in computational effort and calendar time, The MiiGA offers a
concurrent rather than a sequential shape refinement process. Alternative architeclures are
suggested as a way of minimising the number of calls to the model and CPU cost through
the use of different representations. The MiiGA manages to locate feasible designs earlier
than those utilising the CHC and PBIL methods. Although this approach provides rapid
evolution of design solutions it also has the draw back of premature convergence resulting
in stagnation of the oplimisat'ion process and final designs which are worse than the DSR

technique.

The Dynamic Injection Island Genetic Algorithm (DiiGA) addresses the problem of
stagnation by phasing out lower representations as their performance declines. This method

combines the better mechanisms of both thc DSR and MiiGA approaches. The DiiGA
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achieves a significantly higher fitness overall whilst still maintaining the initial rapid
improvements exhibited by the MiiGA. The DiiGA is well suited to the task of exploration
of the search space especially on problems utilising multi load cases and low limits on
material. The experiments utilising FEA show that the computational savings appear to
become more pronounced as the number of variables and load cases are increased. Results
in chapter 5 show the potential of the DiiGA technique on a 200 variable one load casc
problem. Typically, the CHC requires approximately 55% (on average) greater CPU time
than the DiiGA to identify a comparable design solution. While these results are very
encouraging, it is expected that further computational savings could be achieved by firstly

optimising the operator setlings and secondly using more levels of representations.

The main advantages therefore in using multi-level techniques such as the DSR, MiiGA
and DiiGA lies in the reduction of computational expense, handling high dimensionality
and the ability to identify higher fitness design solutions in comparison to single
representation GA’s. There are many possible variations of the techniques examples
include number of islands, number of levels of representations, migration strategies etc.

Amending these strategies should yield further savings in calls to the model.

Based on the performance characteristics of the individual CHC and PBIL algorithms and
the ability of the DiiGA technique in providing the capability of handling higher numbers
of variables and solutions earlier in the scarch process a multi agent approach has been
proposed. The reason for this is to take advantage and further improve performance
characteristics. However more extensive experimentation is required to properly assess the
utility of co-evolving processes in\./olving several differing search algorithms. However the

preliminary findings of chapter 6 indicate that:
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e It is possible to improve performance both in terms of overall fitness and reduced
evaluation calls.
¢ The sclected search configurations are very sensitive to problem specifics e.g. the

performance variation between one and three load case scenarios.

This second point can be addressed by improving the dynamics of the introduction /
removal of individual search algorithms. A performance based scenario is envisaged
whereby algorithms are removed / re-introduced dependent upon on-line measurement of
their relative performance. ’ﬁﬂs could result in the automatic selection of appropriate

search conligurations.

The initial results have indicated a considerable potential for a significant reduction in the
number of evaluation calls during evolutionary search. Refinement of the basic stratcgies
introduced here are likely to further reduce computational expense related to evaluation
calls. In generic terms this will allow a more efficient intcgration with complex analysis
techniques during detailed design and contribute significantly to those preliminary stages of
the design process where a degree of complex analysis is required to validate results from

more simplistic preliminary design models.

Initial introduction of the stand-alone CHC GA incorporating FEA analysis with the design
process within an industrial environment has shown that it is possible to achieve improved
solutions whilst significantly reducing design lead time. This involves a more machine-
based process where designer interaction is required to fine-tune GA-generated designs.
This interaction is largely required due to the high-risk aspects related to insufficient
resolution of the grid representation. The use of multi-level representations has increased

the number of clements that can be successfully manipulated from eighty to four hundred.
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This higher resolution plus the achieved reductions in computational expense indicate that
a lotal machinc-based approach is possible. This can only result in further reductions in
lead time and related cost reduction. It is expected that these new techniques will be

integrated with the industrial design process as a prototype system in the near [uture.

Further work can look at incorporating an interesting technique developed by Giunta et al
[1995] termed “variable-complexity modelling”, where simple computationally
inexpensive analysis techniques are used together with more detailed, expensive techniques
in the design optimisation process. The integration of FEA representation and concurrent
processing of simple evaluation models alongside complex analyses would also yield
greater savings in computational expense if applied to the plate optimisation problem.

Parallelisation of the problem would further reduce the computational expense.

When dealing with low dimensional problems a number of adaptive scarch algorithms
which can perform the task of optimisation may perform relatively well. However if the
problem is complex (i.e. high dimensional, multi-modal, constrained and multi-objective)
and computationally expensive analysis is required, the more sophisticated evolutionary
adaptive strategics such as those outlined in this thesis will likely be required. Although
parallel processing as outlined in chapter 5 initially appears to be a good solution to the
problem of computational expense it is extremely important to develop and optimise the

underlying algorithms with respect to their efficiency and accuracy as shown in this thesis.

The strategies outlined in this thesis have not only proved to be efficient and robust when
tackling high dimensionalily, multi-modality and sensitivity, but have also reduced overall
computational expense. The results show the strategies and techniques to be highly capable

of locating high performance solutions. The incorporation of these strategies into industrial
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design practice and the resulting mass production of the designs being produced by the
collaborating company shows the potential of the algorithmic structures presented here in a

rcal world design and manufacture environment.
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1 Introduction

Stochastic search and optimisation methods which model natural evolutionary processes
are receiving considerable interest in Engineering Design due to their wide range of
applications to problems [Parmee, Denham and Roberts 1993] This paper presents a
comparison of Evolutionary / Adaptive Search methods for the reduction in computational
expense associated with the optimisation of highly dimensional structural design problems.
Complex analysis packages such as.Finite Element Analysis (FEA) can lead to excessive
computational expense when utilised as an evaluation function. There is a need therefore to
minimise the number of calls to the fitness function. Distributed, co-operative injection
island strategies are presented which allow dynamic refinement of component
representation. This paper shows that by utilising multi-level Genetic Algorithm (GA)
architectures, dramatic improvements in design performance may be gained whilst
significantly reducing the overall number of evaluations in comparison with single level
representations.

2 The Evaluation Model

The design domain involves a real-world problem concerning the optimal matenal
distribution on the underside of a flat concrete plate with varying load and support
conditions. The plate is represented in a grid type manner being divided into rectangular or
square elements each with variable depth. However, if required, a set number of elements
may be considered as one variable to promote uniformity in depth. The overall plate
dimensions are 200mm x 200mm. In order to achieve a certain degree of symmetry for
ease of manufacture, neighbouring elements whose angles exceed a preset aspect ratio (the
ratio describing relative depth ‘at the element interfaces) are penalised. In order to allow
extensive experimental work, the GA has been integrated with a simple mathematical
model utilising bending moment and complex stress analysis to ensure computational cost
is kept to a minimum. Principal stress ( or ) is calculated using the following formula:

o, t+a, c,-0, ? R )
T = 5 + +7 O . or, = Direct Stress 7 = Shear Stress
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o It utilises a highly disruptive crossover. Half of the differing bits are swapped at
random. This promotes diversity by producing children that are different from both
parents.

e Mutation is only introduced when the population has converged or the search has
stagnated.

3.2 Population-Based Incremental Learning (PBIL)

Population-Based Incremental Learning (PBIL) is a combination of evolutionary
optimisation and hill climbing. The object of the algorithm is to create a real valued
probability vector which, when sampled, reveals high quality solution vectors with high
probability. Initially the values of the probability vector are set to 0.5. Sampling from this
vector yields random solution vectors as the probability of generating a 1 or 0 is equal. As
search progresses, the values in the probability vector gradually shift to represent highly fit
solution vectors. The distance the probability is pushed (towards either 0.0 or 0.1) depends
upon the learning rate parameter. After the probability vector is updated, a new set of
solution vectors is produced by sampling from the updated probability vector and the cycle
is continued. .

3.3 The Breeder Genetic Algorithm (BGA)

The Breeder Genetic Algorithm (BGA) is based on artificial selection similar to that used
by human breeders. The BGA is a combination of evolution strategies (ES) and genetic
algorithms (GA). The BGA uses a selection scheme called truncation selection. The T% of
the best individuals are selected and mated randomly until the number of offspring is equal
to the size of the population. The BGA use’s one of a number of recombination and
mutation operators.

4 Dynamic Shape Refinement (DSR)

The DSR technique based on Adaptive Shape Refinement (ASR) [Kohli and Carey 1993]
utilises problem representations of varying resolution. A sequential evolutionary process
utilising the CHC algorithm (with a population size of 40, a divergence rate of 30% and a
maximum number of restarts of 3) commences upon a relatively coarse (in terms of
number of elements) plate representation. As convergence is achieved so the best solution
from this process is mapped onto a finer resolution elemental grid and a population based
upon mild perturbation of this solutron is established. The CHC then manipulates the finer
representation until convergence is again achieved and the mapping procedure is repeated.
This sequential evolution process continues, utilising finer representations until a
satisfactory solution is identified. Such a satisfactory solution should not only be of
minimum weight within relevant stress criteria but also be considered low-risk in terms of
the final resolution of plate representation i.e. there is a sufficiently high number of
elements to provide confidence in the stress evaluation. Figure 2 compares a DSR approach
utilising the CHC manipulation of 5x5, 10x10 and 20x20 element representations to a CHC
manipulation of a single 20x20 representation. The results have been averaged over twenty
runs of the algorithms.

The high fitness achieved during the early stages of the DSR approach must be treated with
caution. Fitness is measured in terms of weight versus stress violation and the coarser
representations although seemingly of high fitness are also high-risk due to the lack of
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introduced here are likely to further reduce computational expense related to evaluation
calls. In generic terms this will allow a more efficient integration with complex analysis
techniques during detailed design and contribute significantly to those preliminary stages
of the design process where a degree of complex analysis is required to validate results
from more simplistic preliminary design models.
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Abstract

The paper introduces the preliminary
development of co-operative strategies that will
enable the machine-based design of a single
engineering component from initial
configuration definition through (o product
realisation. The initial utilisation and comparison
of basic evolutionary approaches leads to the
introduction of high-performance evolutionary
and adaptive search algorithms in order to
improve  performance  within  the  high
dimensional space that describes the component
topology. A requirement for computationally
expensive finite element analysis provokes the
development of a sequential method for
Dynamic Shape Refinement (DSR)[1] in an
attempt to minimise calls to the fitness function
and further improve solution performance. This
leads to the utilisation of distributed, co-
operative injection island strategies [2,3] and the
development of strategies both for the dynamic
refinement of component representation and the
introduction / removal of differing search
algorithms  within  the injection island
architecture.

1 Introduction

The evolutionary design of a building component
primarily consisting of a concrete flat plate is
introduced. It is necessary for the plate to be
represented by circa 400 elements of variable depth
in order to provide accurate stress evaluation. The
objective is to minimise the weight of the plate
whilst satisfying maximum stress requirements. This
conflict of objectives plus the high dimensionality
results in a highly sensitive optimisation problem
with many local optima.

The utilisation of a number of evolutionary and
adaptive algorithms manipulating simple models of
the plate illustrates a degradation in performance as
plate resolution (i.e. number of elements) is
increased. Finite element analysis is required to
achieve accurate stress analysis but this leads to
excessive computational expense. There is a need

Harish D. Vekeria
Plymouth Engineering Design Centre University
of Plymouth, Drake Circus Plymouth, Devon
PL4 8AA, UK
hvekeria@plymouth.ac.uk

therefore te minimise the number of calls to the
fitness function. This initially led to the development
of a sequential method of shape refinement (DSR)
where improvement is achieved sequentially by
utilising increasingly refined representations of the
plate and ‘injecting' results from lower order
representations to higher order.

Improvements gained in this manner have led on to
the introduction of Michigan State University's
Injection Island  Architecture [2] and the
achievement of significanily better designs with
reduced calls to the models. Further improvement is
achieved by introducing a dynamic refinement to the
injection architecture where lower order plate
representations are removed as they cease (0
contribute and are replaced by representations of a
higher resolution than currently exists within the co-
evolving processes [3]. Finally, initial investigation
involving the utilisation of differing adaptive search
algorithms integrated with the dynamic shape
refinement is described and preliminary results are
presented. This approach involves the use of two
co-evolving adaptive search algorithms within an
injection island architecture and their subsequent
introduction / removal depending upon their relative
performance

In all cases simple analysis techniques are utilised in
the evaluation function to allow extensive
experimentation at low computational expense.
Finite element analysis is now being introduced into
the co-evolutionary processes to allow concurrent
evolution with appropriale conumunication between
both simple and complex models of differing
resolution. The overall objective of the research is to
establish co-evolutionary processes with appropriate
migration regimes that support the design of single
components from preliminary through to detailed
design and product realisation. There are two main
objectives to the research: the first relates to the
achievement of high-performance designs whereas
the second concerns the minimisation of required
function evaluations. It is essential that the second
objective is achieved in order that computationally
expensive analysis techniques can be realistically
utilised.
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phase. The objective here is to achieve a continuous
process from preliminary design of the plate through
to final product realisation.

These initial results indicate a considerable potential
for a significant reduction in the number of
evaluation calls during evolutionary search,
Refinement of the basic strategies introduced here
are likely to further reduce compultational expense
related to evaluation calls. In generic terms this will
allow a more efficient integration with complex
analysis techniques during detailed design and
contribute significantly to those preliminary stages
of the design process where a degree of complex
analysis is required to validate results from more
simplistic preliminary design models.
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