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Reducing the Computational Effort Associated with Evolutionary 
Optimisation in Single Component Design 

by 

Harish Dhanji Vekeria 

ABSTRACT 

The dissertation presents innovative Evolutionary Search (ES) methods for the reduction in 

computational expense associated with the optimisation of rughly dimensional design 

spaces. The objective is to develop a semi-automated system which successfully negotiates 

complex search spaces. Such a system would be highly desirable to a human designer by 

providing optimised design solutions in realistic time. 

The design domain represents a real-world industrial problem concerning the optimal 

material distribution on the underside of a flat roof tile with varying load and support 

conditions. The designs utilise a large number of design variables (circa 400). Due to the 

high computational expense associated with analysis such as finite element for detailed 

evaluation, in order to produce "good" design solutions within an acceptable period of 

time, the number of calls to the evaluation model must be kept to a minimum. The 

objective therefore is to minimise the number of calls required to the analysis tool whilst 

also achieving an optimal design solution. 

To minimise the number of model evaluations for detailed shape optimisation several 

evolutionary algorithms are investigated. The better performing algorithms are combined 

with multi-level search techniques which have been developed to further reduce the 

number of evaluations and improve quality of design solutions. Multi-level techniques 

utilise a number of levels of design representation. The solutions of the coarse 

representations are injected into the more detailed designs for fine grained refinement. The 

techniques developed include Dynamic Shape Refinement (DSR), Modified Injection 

Island Genetic Algmithm (MiiGA) and Dynamic Injection Island Genetic Algorithm 

(DiiGA). The multi-level techniques are able to handle large numbers of design variables 

(i.e. > 100). Based on the performance characteristics of the individual algorithms and 

multi-level search techniques, distributed search techniques are proposed. These techniques 

utilise different evolutionary strategies in a multi-level environment and were developed as 

a way of further reducing computational expense and improve design solutions. 

The results indicate a considerable potential for a significant reduction in the number of 

evaluation calls during evolutionary search. In general this allows a more efficient 

integration with computationally intensive analytical techniques during detailed design and 

contribute significantly to those preliminary stages of the design process where a greater 

degree of analysis is required to validate results from more simplistic preliminary design 

models. 
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1. INTRODUCTION 

1.1 Design 

Pressure for more economic designs in industry has increased due to growing competition 

in the market place and advances in technology. Designers are constantly challenged to 

produce designs that meet all the 'performance specifications and yet can be produced at 

low cost. French [ 1994] describes design as a : 

" ... purposeful activity directed towards the goal of fulfilling human 

need~. lt is also a typical intellectual task that human beings 

peiform. Although things are built by many creatures, the nest of a 

bird, the dam of a beaver, the web of a spider are some examples, 

these creatiom- are however instinctively produced. It is not the 

spider that decides the fundamental structure of it's web, but the 

programmed instinctive instructions that evolution has provided for 

the ~pider. Only humans have the ability to go beyond instinct and 

consciously create designs ". 

Figure 1-1 illustrates three major stages of the design process : analysis, synthesis and 

evaluation [Balachandran 1993]. At the analysis stage the designer participates in the 

collection and classification of all relevant information to the problem and defines the 

objectives. In the synthesis phase the designer then seeks to formulate a potential solution. 

The potential solution is then considered at the evaluation phase, where it is judged against 

some criteria in order to select the most suitable solution. Failure to meet the required 

1 



criteria at the evaluation stage may necessitate a return to the analysis stage where the 

decisions must be appropriately CO!fected and then the whole process repeated. 

Analysis 

Deftne problem 
constraints and 

objectives 

Synthesis 

Formulate potential 
solutions 

Evaluatio n 

Evaluate against 
criteria 

Solution 

Figure 1-1 Asimow's three-phase design model [Balachandran 1993]. 

1.1.1 Importance of Engineering Design 

There is no universally accepted dcftnition of Engineering Design. Dym and Levitt, [ 1991] 

summarises the process of engineering design as follows 

" Engineering design is the systematic, intelligent generation and 

evaluation of specifications for artefacts wlw~·e form and function 

achieve stated objectives and satisfy specified constraints ". 
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The design process has several distinct stages [Pahl and Beitz, 1984, Dym and Levitt, 

1991] : 

1. Conceptual or Preliminary Design takes the statement of the problem and generates 

broad solutions to it in the form' of schemes. For example French [1985] describes it as : 

" .. the phase that makes the greatest demands on the designer, and where 

there is con.\·iderable scope for improvements. Engineering science, 

practical knowledge, production methods and commercial a~pects are all 

combined to make the most important decisions " 

Maher highlights the explorative aspect of design, especially duting conceptual design. 

Mahcr states that designers do not always have a complete problem description before 

commencing a design synthesis. During conceptual design, designers play around with 

ideas to get more understanding about the problem rather than focus on finding a design 

solution. Design therefore is an iterative process of searching the design problem space 

as well as the solution space. This phenomenon is referred to as exploration in design. 

Gero [1993] defines exploration as follows : 

" E>.ploration in design can be characterised as a process which creates 

new design .\paces or modifies existing design state ~paces. " 

Gero [1993] continues to suggest that exploration and search are related and that 

exploration precedes search. Maher and Poon [ 1995] also relates search as a part of 

exploration but highlights that search and exploration are not the same: 

3 



" .. search becomes exploration where the focus of the search changes as 

the process continues .. " 

2. Detailed design concerns the refinement of choices made in preliminary design. As we 

are further down in the design search tree, the decompositions and their interactions are 

better understood and therefore more easily manageable. 

3. Analysis concerns performing calculations or deductions needed to assess whether the 

design satisfies other, less obvious specifications and constraints. This phase of the 

design process may be computationally expensive, especially if large complex programs 

such as finite element analysis are used. 

4. Evaluation consists of predicting the behaviour of the current design by deriving the 

values of all relevant performance measures in order to determine whether the stated 

specifications and objectives of the current design are acceptable. 

5. Iterative redesign concerns the redesign of products if the results are deemed 

unsatisfactory. 

Many engineering design problems involve the quick development of the "best" or "near 

best" design in a complex engineering domain with the given material, technological and 

economical constraints. Here "best" can, for example refer to low cost or high quality. 

More often or not there is a trade-off. Solving this problem has tremendous commercial 

benefits. 

4 



Automated or semi-automated engineering design is likely to be extremely beneficial to 

commercial enterprises as it would allow them to reduce the cost of producing new 

designs, to produce better designs than their competitors, and to bring new concepts to the 

production line faster. All of these improvements would allow the companies that take 

advantage of them to increase market share and profitability. 

1.1.2 Current Design Methods 

The human design process is traditionally a prolonged, iterative one. Most complex 

engineering design is performed manually. Engineers often use computer aided design 

(CAD) software to create and edit their designs, and software such as finite element (FEA) 

to analyse their designs. The process often works as follows: the engineer initially creates a 

conceptual or prelintinary design, which is then analysed, using appropriate software to 

determine which parts must be further redesigned or optimiscd. Further changes arc then 

made using the CAD software. Iteration will continue until a design is developed that 

meets the original specification or is deemed acceptable. In some cases the design process 

may be aborted altogether due to time constraints, consequently resulting in a considerable 

waste of time and money. This design-evaluate-redesign process is extremely slow. It 

requires large amounts of calendar time, moreover it sometimes fails to produce an optimal 

or near optimal design solution. The longer the design process the more costly it becomes. 

Often, the intuitive redesign methods fail since the available design options arc few and 

difficult to determine. Thus, computer software which helps to automate and speed up this 

process is highly beneficial.· Mm:eover, with the cost of computers decreasing and the 

available computation power increasing, the computer is beconting an essential tool for the 

designer. 
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Whilst there is an abundance of computer aided design software and numerous analytical 

tools, software which automates the design process (e.g., identifying new designs or 

improving existing designs) is currently less common. Commercial optimisation software 

is often only capable of handling a relatively small number of design variables, which 

limits their use in industry to small problems. For example the ANSYS (release 5.3) finite 

element optirnisation software is only capable of handling a maximum of 10 variables. 

1.1.3 Optimum design 

The purpose of design optimisation is to algorithmically search for the "best" or "near best" 

desi!,rn solution relative to an overall criterion. Beightler [1979] et al describes what we are 

trying to accomplish when we optimise : 

" Man's longing for perfection finds expression in the theory of 

optimisation. It studies how to describe and attain what is Best, once 

one knows how to measure and alter what is good or bad ... 

Optimisation theory encompasses the quantitative study of optima 

and methods for finding them ". 

"Optimum desi!,rn" is defined as the design that is feasible and also superior to a number of 

other feasible alternatives [Balachandran 1993]. Papalarnbros and Wilde [1988] identify 

four steps in the design optimisation approach: 

I. The selection of a set of variables to desc1ibe the design alternatives. 

2. The selection of an objective (criterion), expressed in terms of the design 

variables, which we seck to minimise or maximise. 
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3. The determination of a set of constraints, expressed in terms of design variables, 

which must be satisfied by any acceptable design. 

4. The determination of a set of values for the design variables, which minimise (or 

maximise) the objective, while satisfying all constraints. 

An optimum design can be obtained in two ways [Balachandran 1993]: 

1. By an iterative process, or 

2. By solving an optimisation problem 

In the first approach, the desigo is. improved through repeated modification and the values 

of the design variables are changed or fixed sequentially. In the latter approach, all the 

design variables are determined simultaneously so as to satisfy a set of constraints and 

optimise a set of objectives. These objectives may coexist, conflict or be independent. 

1.2 Evolutionary Optimisation 

Evolution is a process of change over time. The driving force behind this change, as 

described by Darwin [Darwin, 1859], is natural selection. Evolutionary algorithms are 

inspired by and based upon evolution in nature. These algorithms typically use an analogy 

with natural evolution to perform search by evolving solutions to problems. Instead of 

working with one solution at a time in the search space, these algmithms consider a large 

collection or population of solutions at once. By maintaining a population of well adapted 

sample points, the probability of arriving at a sub-optimal solution is reduced. In any 

population, there arc always individuals who are fitter than others. Such individuals live 

longer and thus get the chance to produce more offspring than individuals of average 
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fitness. Conversely, unfit individuals, or individuals poorly adapted to their environment, 

tend to produce less offspring than individuals of average fitness. In this way, the genes, 

and hence the characteristics, of fitter individuals propagate through a population, until, 

assuming those characteristics are better than others currently in the population, all of the 

population contains those characteristics. 

The Genetic Algorithm (GA) is probably the best known and the most widely used of all 

evolutionary based algorithms. GA's were developed by Holland over twenty five years 

ago in an attempt to explain the adaptive processes of natural systems and to design 

artificial systems based upon these natural systems [Holland 1975]. 

Evolutionary algorithms are well suited to tackling highly complex optimisation problems 

[Goldberg 1989, Davis 1991]. Baeck et a! [1997] argues that 

" The most significant advantage of using evolutionary search lies in 

the gain of flexibility and adaptability to the task at hand, in 

combination with robust performance and global search 

characteristics. They should be understood as a general adaptable 

concept for problem solving, e~pecially well suited for solving 

difficult optimisation problems, rather than a collection of related 

and ready-to-use algorithms ". 

Miles and Moore [1997] comment that the GA due to it's greater power and flexibility is 

better suited to design tasks than other adaptive learning techniques such as Neural 

Networks. Evolutionary design techniques have been around since the 1950's [Box, 1957], 

however, the potential of these technologies within the engineering design domain is only 
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now being realised. This is largely due to the computational expense associated with such 

population-based search strategies. Spurred by the recent advances in powerful desktop 

computing, there is growing interest in their realistic application to real-world problems, 

although computational requirement still represents a significant problem in some 

application areas [Parmee 1994] [Parmee, Vekeria & Bilchev 1997]. The Plymouth 

Engineering Design Centre is very active in the application of evolutionary search 

techniques to complex design problems and their integration with current design practice 

[Parmee 1994, Parmee 1996b]. 

1.3 Objectives of the Work 

The aim of this work is to develop a system which is capable of creating design solutions 

automatically. By combining the automatic optimisation of a design alongside evaluation 

software which would automatically analyse the quality of the designs, there would be little 

or no need for human intervention in the design process. Such an automated system would 

be highly desirable to a human designer. It would speed up the whole design process by 

providing optimised design solutions to a problem. As the system is not restricted to pre

conceived ideas on certain ways of doing things, like that of a human designer, it would 

also be capable of delivering radically different design solutions. 

The work will focus on the shape optimisation of flat plates. As mentioned earlier, 

computational expense is one of the major drawbacks of population based optimisation 

methods, however the advent of parallel processing and more efficient computing 

capability has helped to speed up this process. Finite element or other complex analysis 

techniques are commonly used to determine if a design will perform as expected. But, these 
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analyses are computationally very expensive to carry out and their use in an iterative 

manner for determining the optimal design is prohibitively expensive. 

The rapid increase in computer power has also brought about an increase in the complexity 

of problems being tackled in the field of engineering design. There is a desire by 

companies to deal with increasingly more complicated problems. Unfortunately by 

increasing the accuracy in models employed, along with the use of appropriate algorithms, 

the resultant computations can often be of very high dimension, leading to practical 

difficulties in solving ("the curse of dimensionality"). A combination of computational 

expense (calls to analysis model), high-dimensionality and multi-modality presents a 

considerable challenge for any optimisation algorithm. This research therefore proposes 

methods by which these problems may be overcome.The main objectives of the research 

are therefore: 

• Integration of evolutionary methods with a structural analysis model. 

• Development of a system which is capable of structural optimisation 

• Analysis of the performance of different evolutionary algorithms for shape optimisation 

of the flat plate 

• Development of techniques for reducing the overall computational expense during 

population based search. 

• Development of a technique for handling high dimensionality. 
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1.4 Overview of Thesis 

The thesis examines the application of evolutionary techniques for the optimisation of roof 

tiles (referred to as the plate optimisation problem throughout the thesis). Several 

techniques are examined (CHC, PBll.., BGA and SGA) in order to determine their relative 

performance in minimising calls to the model and the overall quality of design solutions. 

Due to limitations of the individual algorithms in handling high dimensionality (large 

numbers of design variables), several multi-level techniques were developed which 

included Dynamic Shape Refinement (DSR), Modified Injection Island Genetic Algorithm 

(MiiGA), Dynamic Injection Island Genetic Algorithm (DiiGA). The techniques exploit the 

differing levels of a problem representation. Problem dimensionality is increased as search 

progresses. These techniques were developed at the Plymouth Engineering Design Centre 

by Vekeria and Parmce [1997]. The MiiGA and DiiGA arc extensions of the Injection 

Island GA (iiGA) developed at Michigan State University [Goodman et. al., 1997]. 

Based on the performance characteristics of the individual CHC and PBll.. algorithms and 

the ability of the DiiGA technique in providing the capability of handling higher numbers 

of variables. Multi level eo-evolution of the CHC and PBll.. techniques is proposed to take 

advantage and further improve performance characteristics. 

Chapter 1 has highlighted the design process and draws attention to some of the problems 

encountered in the design process and the benefits of automating parts of the design 

process. 
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Chapter 2 provides an introductio"n to the area of evolutionary computation. The chapter 

highlights common attributes of the various evolutionary techniques of particular relevance 

to engineering design processes. The chapter also provides a detailed discussion of some 

high performance evolutionary algorithms. Some of the algorithms detailed in this chapter 

are used in successive chapters on a structural optimisation problem. 

Chapter 3 provides a literature review concerning the application of GA's to structural 

optimisation and shows that the area is receiving considerable interest. The chapter also 

discusses the development of software utilising a CHC genetic algmithm for the 

optimisation of a real world structural plate optimisation problem. The work was 

undertaken during a two year Teaching Company Programme. Two types of model are 

discussed, the first is based on bending moment and complex stress theory and the second 

on finite element analysis. 

Chapter 4 provides a comparison in performance of different evolutionary algorithms on 

the plate optimisation problem. Results for the different types of evolutionary algorithms 

discussed in chapter 2 in relation to the plate problem are presented. Some of these 

techniques play a significant role in the thesis by guiding the research down certain avenues 

and laying the foundations for the development of various techniques. 

Chapter 5 details some techniques for tackling some of the problems highlighted in chapter 

4, conceming computational expense and problems with dimensionality. Methods that 

make use of different levels of representation for a problem are discussed. A comparison of 

the different methods that were developed which utilise multi-level representation is 

provided. 
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Chapter 6 discusses how hybrid approaches may provide further improvements in design 

performance. Distributed search techniques are proposed which take advantage of both 

different search techniques and multi-level representation. 

Chapter 7 provides conclusions of the approaches that have been taken by drawing together 

the previous chapters, areas of further research are also discussed. 
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2. EVOLUTIONARY ALGORITHMS 

2.1 Introduction 

This chapter provides an introduction to the area of evolutionary optimisation. There are 

many GA variants which have been developed to improve the efficiency of evolutionary 

search for different problem classes. Several methods arc discussed in detail. These 

techniques are used in successive chapters for the shape optimisation of roof tiles. 

Optimisation has been studied for many years. Many methods have evolved and are 

detailed in a sizeable literature, with each method having advantages and disadvantages. 

Consider the 3 dimensional landscape of figure 2.1. Assuming we are maximising the 

solution, a traditional optimisation method such as a hill climber would climb the nearest 

hill from it's initial starting point. However, if the evaluation function defines a multi

modal landscape over the search space, then, depending upon the initial position in space 

the method may halt on some local optima of the space. Methods such as a random or an 

exhaustive search may overcome these problems. These methods are however 

computationally expensive and therefore better suited to small problems. 
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Figure 2-1: An example of a 3 dimensional landscape 

Many engineering design problems cannot be tackled with classical optimisation methods. 

As such methods are severely restricted in their application due to the possibility of 

premature convergence on a local extrema, they are also limited to problems that have 

small search spaces if practical search times are required. Where classical techniques fail 

GA' s may prove to be more successful especially when negotiating complex engineering 

design domains [Patmee 1994, Patmee 1996b]. Genetic Algotithms differ from traditional 

optirnisation and seru·ch procedw-es in fow- ways [Goldberg 1989] : 

1. GA' s operate upon a coding of the pru·ameter set, not the pru·ameters themselves. 

2. GA' s search from a population of points, not a single point. 

3. GA's use payoff (objective function) information, not derivatives or other auxiliary 

knowledge. 

4. GA' s use probabilistic transition rules as opposed to using deterministic rules. 
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2.2 Evolutionary Algorithms 

Evolutionary algorithms (EA's) (Figure 2-2) arc techniques for search and optimisation. 

They arc based on the philosophy of natural selection, the driving process for the 

emergence of complex and well adapted organic stmctures. Like natural selection, EA's 

maintain a population of individuals. The population of stJUcturcs evolve according to 

rules of selection and actions o'f "search operators", (or genetic operators), such as 

recombination and mutation. By manipulation of the genetic structure of these individuals 

(genotypes), EA's evolve progressively better phenotypes, the physical expression of a 

genotype i.e. the system. EA's treat their populations as though they were made up of 

living creatures. A single individual of a population is affected by other individuals of the 

population (e.g., by food competition, and mating). Each individual in the population 

receives a measure of it's Fitness in the environment. Reproduction focuses attention on 

high fitness individuals, thus exploiting the available fitness information. Recombination 

and mutation perturb those individuals, providing general heuristics for exploration. The 

better the individual performs under these conditions (exploration versus exploitation) the 

greater is the chance for the individual to live longer and generate more offspring who 

inherit the parental genetic information. Over the course of the evolution, this leads to a 

penetration of the population with the genetic information of individuals of above average 

fitness. The stochastic nature of reproduction leads to a pennancnt production of novel 

genetic information and therefore, to the creation of differing offspring. 
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Common attributes of the various evolutionary techniques of particular relevance to 

engineering design processes include [Parmee, Vekeria & Bilchev 1997]: 

• Requirement for little, if any, apriori knowledge relating to the search environment. 

• Excellent exploratory capabilities especially where population-based search is 

considered. 

• Ability to avoid local optima. The stochastic nature of the various algorithms combined 

with continuing random sampling of the search space can prevent convergence upon a 

local sub-optima. 

• Ability to handle high dimensionality. 

• Robustness across a wide range of problem class. 

• The provision of multiple good solutions. 

• Ability to locate the region of the global optimum solution 

There are many evolutionary based algorithms (Figure 2-3). The variations have diffe1ing 

philosophies on how to algorithmically model evolution. Evolutionary strategies (ES) and 

Evolutionary programming (EP) refer to two computational paradigms that utilise a 

population based search. There are many variants of evolutionary algorithms, their main 

differences lie in the [Baeck et. al. 1997] : 

• Representation of individuals; 

• Design of the variation operators (mutation and/or recombination); 

Selection/reproduction mechanism. 
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11 strut with an initial time 
t := 0; 

11 initialize a usually random population of individuals 
initpopulation P (t);' 

11 evaluate fitness of all initial individuals in population 
evaluate P (t); 

11 test for termination criterion (time, fitness, etc.) 
while not done do 

od 

11 increase the time counter 
t := t + ] ; 

11 select sub-population for offspring production 
P' := selectparents P (t); 

11 recombine the "genes" of selected pru·ents 
recombine P' (t); 

11 pe1turb the mated population stochastically 
mutate P' (t); 

11 evaluate it's new fitness 
evaluate P' (t) ; 

11 select U1e survivors from actual fi tness 
P :=survive P,P' (l); 

end EA. 

Figure 2-2: Pseudo code for an EA 

Evolutionary Algorithms 

Genetic Algorithms Evolution StraLegies Evolutionary Programming Genetic Prograrruning 

Figure 2-3: Types of evolutionary algorithms 
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2.2.1 The Simple Genetic Algorithm (SGA) 

The SGA [Goldberg, 1989] (Figure 2-5) is the canonical genetic algorithm, it is composed 

of three operators: 

1. Reproduction 

2. Crossover 

3. Mutation 

Generally the SGA comprises of a population of initially randomly generated variable 

parameter sets (chromosomes). Variable values are generally represented in binary form 

although real-number representation.can also be maintained. 

The performance of each chromosome is determined by a mathematical model (fitness 

function) of the system under design. 

2.2.1.1 Crossover 

Crossover is applied to the reproduced chromosomes in order to imitate sexual 

reproduction. Crossover is usually applied with a high probability, with information being 

exchanged randomly between selected parent chromosomes. Simple crossover is 

implemented by choosing a random point in the selected pair of strings and exchanging the 

sub-strings defined by that point (Figure 2-4). The crossover operator thus mixes 

information from two parent strings producing offspring made up of parts from both 

parents. Crossover provides an exploratory capability. The canonical GA operates on a 

fixed-length binary string. 
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Crossover is an extremely important component of the genetic algorithm. Many genetic 

algorithm practitioners believe that if the crossover operator is not used, the result is no 

longer a true genetic algorithm. The same claim has not been made for mutation [Davis 

1991]. 

Parent 1 
Parent 2 

child 1 
child 2 

1 o:o 1 1 1 
01:10 0 0 

..--_----cross over Point 
1 0 1 0 0 0 
0 1 0 1 1 1 

Figme 2-4: One point crossover 

2.2.1.2 Reproduction 

Reproduction in which individual strings are copied into the next generation is dependant 

upon the relative fitness of each chromosome Those of high fitness have a greater 

probability of multiple reproduction whilst those of low fitness have a greater probability 

of rejection. The roulette wheel is a widely used method of selection. Roulette wheel 

selection may be viewed as allocating pie-shaped slices on a roulette wheel to population 

members, with each slice proportional to the member's fitness. The effect of the roulette 

wheel is to return a randomly selected parent. Although the selection procedure is random, 

the probability of each parent being selected is directly proportional to its fitnes s. On 

balance, over a number of generations the algOiithm will diive out the least fi t members 

and conllibute to the spread of the genetic mate1i al of the fittest population members 
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(fitness-proportionate selection). However it is still possible that the worst performing 

member could still be selected. 

Another commonly used selection method is tournament selection. A basic form of 

tournament selection randomly selects two strings from the current population and their 

fitness values are compared. The string with the best fitness is placed in the intermediate 

population. This process is then repeated N times, where N is the population size. 

2.2.1.3 Mutation 

Like crossover the mutation operator is applied to the reproduced chromosomes in order to 

imitate biological evolution. Mutation in contrast is applied at a very low probability, it 

injects information into the genetic pool by mutating randomly selected bits. Mutation 

provides a small amount of random search, and helps to ensure that no point in the search 

space has a zero probability of being examined. It prevents premature convergence by 

ensUiing that the genetic pool does not stagnate. 

In "An Analysis of the behaviour of a class of genetic adaptive system" [De Jong, 1975] a 

study was performed of genetic algorithms in function optimisation. A series of parametric 

studies across a five-function suite of problems suggested that good GA performance 

requires the choice of a high crossover probability, a low mutation probability (inversely 

proportional to the population size), and a moderate population size. 

Evolutionary algorithms are directed search techniques, but are inherently random. For this 

reason not every run is guaranteed to produce a satisfactory individual. The GA may need 

to be mn several times (10 or more) utilising differing initial populations. It is therefore 
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important that robust GA' s are developed especially for problems which arc 

computationally expensive in order to keep run times to a minimum. 

11 start with an initial time 
t := 0; 

11 initialize a usually random population of individuals 
initpopulation P (t); 

11 evaluate fitness of all initial individuals of population 
evaluate P (t); 
11 test for tem1ination criterion (time, fitness, etc.) 
while not done do 

od 

11 increase the time counter 
t := t + 1; 

11 select a suti-pop1,1lation for offspring production 
P' := selectparents P (t); 

11 recombine the "genes" of selected parents 
recombine P' (t); 

11 perturb the mated population stochastically 
mutate P' (t); 

11 evaluate it's new fitness 
evaluate P' (t); 

11 select the survivors from actual fitness 
P :=survive P,P' (t); 

end GA. 

Figure 2-5: Pseudo code for the canonical GA 

22 



2.2.2 Evolutionary Programming 

Evolutionary programming (EP) (Figure 2-6) is described in an early book by Fogel, 

Owens and Walsh [Fogel et a! 1966]. It is one of the earliest EAs. The basic EP method 

involves 3 steps which are repeated until a threshold for iteration is exceeded or an 

adequate solution is obtained. 

1. Choose an initial POPULATION of trial solutions at random. The number of solutions 

in a population is highly relevant to the speed of optimisation. 

2. It is in the creation of the new generations that EP differs from most other EA's, for it 

does not employ any crossover. Each solution is replicated into a new population. 

Each of these offspring solutions are mutated according to a distribution of 

MUTATION types, ranging from minor to extreme with a continuum of mutation types 

between. The severity of MUTATION is judged on the basis of the functional change 

imposed on the parents. 

3. Each offspring solution is assessed by computing it's fitness. Typically, a stochastic 

tournament is held to determine N solutions to be retained for the population of 

solutions, although this is occasionally performed dcterministically. There is no 

requirement that the population size be held constant, however, nor that only a single 

offspring be generated from each parent. 

Unlike GA 's, EP does not rely on fixed length structures, but permits individuals in the 

initial population to be of different lengths. These individuals are then tested, and parents 

for the subsequent generation arc selected in a non-dete1ministic manner. 
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11 start with an initial time 
t :=0; 

11 initialise a usually random population of individuals 
init. population P (t); 

11 evaluate fitness of all initial individuals of population 
evaluate P (t); 

//test for termination criterion (time, fitness, etc.) 
while not done do 

11 perturb the whole population stochastically 
P'(t) := mutate P (t); 

11 evaluate it's new fitness 
evaluate P' (t); 

11 stochastically select the survivors from actual fitness 
P(t+ 1) :=survive P(t),P'(t); 

11 increase the time counter 
t := t + 1; 

od 
end EP. 

Figure 2-6: Pseudo code for EP 

2.2.3 Evolution Strategies 

Evolution Strategies are based on· the work of Rachenberg [1973] and Schwefel [1975]. 

Like GA's, ES use fixed length structures, but instead of the binary representation used in 

GAs, ES have real valued genes. 

The emphasis in ES is more on the acquisition of behaviour rather than structure 

[Angeline, 1993]. Each position in an ES (i.e. a real number) marks a behavioural trait, and 

an individual's behaviour is the composition of these traits. 
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Crossover in ES is intended to produce children that are behaviourally similar to their 

parents, and there are different approaches [Baeck, 1 992]. 

The first, discrete recombination, is similar to a method often used in GA's, uniform 

crossover [Syswerda, 1989]. Discrete recombination consists of selecting the parameter 

value from either of the two parents. In other words, the parameter value in the child equals 

the value of one of the parents. Uniform crossover involves creating a crossover mask, a 

binary string the same length as the parents. A 0 in the mask results in the relevant gene 

being selected from the first parent, while a 1 results in the second parent donating the 

gene. The crossover mask is a random string, and generally ensures that each parent 

contributes equally to the child. An example is shown in Figure 2-7. 

The other two methods exploit the.fact that the genes are real valued. The first of these, the 

intermediate recombination operator, determines the value of the child's genes by 

averaging the two values in the parents genes. The second method, the random 

intermediate recombination, probabilistically determines the eveness of the contribution of 

each parent for each parameter. 

Parent 1 . 0.8 0.3 0.2 0.5 0.6 
Parent 2 · 0.3 0.1 0.8 0.4 0.1 
Mask 1 0 1 0 1 
Child 1 . 0.3 0.3 0.8 0.5 0.1 
Child 2 . 0.8 0.1 0.2 0.4 0.6 

Figure 2-7: Uniform Crossover applied to a real coded string 
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2.2.4 Genetic Programming 

Genetic Programming (GP) was developed by Koza, [1992]. It is a relatively new 

technique for the evolution of computer programs. GP differs from the GA in the 

representation of individuals, using trees instead of fixed length strings. Thus, for example, 

the simple program "a+ b * c" would be represented as: 

Figure 2-8: Example of a tree structure 

The program trees are made up of two fundamental building blocks: nodes and leaves 

(Figure 2-8). Nodes can be simple functions such as + * which take one or more 

arguments, while the leaves are terminals, i.e. numbers or zero-argument function . The first 

major step in any implementation of GP is to select the necessary functions and terminals, 

and to ensure that any combination of them will result in a syntactically conect program. 

GP uses a similar generational approach as the simple genetic algmithm, but, because of its 

tree structures uses a different crossover scheme. In GP the crossover operation is 

implemented by taking randomly selected sub-trees in the individuals (selected according 

to fitness) and exchanging them (Figure 2-9). Like the simple genetic algorithm this results 

in the creation of two new individuals. Like GA's, the GP reproduction operator simply 
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copies an individual unchanged into the next generation, however GP does not usually 

employ mutation as a genetic .operator. 

Subtrees selected for 

Figure 2-9: Crossing over two parent trees by swapping sub-trees. 

2.3 Exploration and Exploitation 

Two important but competing themes exist in an evolutionary search. Exploiting the best 

solution versus exploring the search space. Michalewicz [1994] provides a compatison 

between a number of search strategies, namely hill-climbing and random and genetic 

search . Hill-climbing is an example of a strategy which supports the exploitation of the 

search space whilst disregarding exploration. Random search is an example of a strategy 

which supports exploration of the· search space, whilst ignoring exploitation of the search 

space. Genetic algolithms combine elements of both stochastic and directed seat·ch and 

hence provide a balance between exploration and exploitation. Selection according to 

fitness is the source for exploitation, so that the GA is able to focus the seat·ch on 

promising at·eas of the search space. The mutation and crossover operators are sources for 
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exploration in order to maintain population diversity so that important information is not 

lost. Whitley [1989] notes: 

" Many of the various parameters that are used to 'tune' genetic search 

are really indirect means of allocating selective pressure and 

population diversity: As. selective pressure is increased, the search 

focuses on top individuals in the population, but because of this 

'exploitation' genetic diversity is lost. Reducing the selective pressure 

(or using a larger population) increases 'exploration' because more 

genotypes and thus more schemata are involved in the search" 

2.4 Variations of the Evolutionary Algorithms 

There are a number of types of advanced EA's, all developed to improve the abilities of 

evolutionary search for different types of problems. This section describes three 

evolutionary algorithms that were initially selected because they were found (in the 

literature) [Eshelman, 1991, Baluja, 1994, Muhlenbein & Schlierkamp-Voosen 1993] to 

provide good results on various problems in comparison to those produced by other EA's. 

When applying GA's to complex real world problems, a designer may face a number of 

difficulties. These problems include : 

• Multimodality - the search space is characterised by a number of peaks and troughs 

[Goldberg, 1989]. 

• Constrained Space - Difficult to access and remain in a feasible region [Bilchev & 

Parmee, 1996]. 
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• Premature convergence - population converges quickly onto non-optimal local minima 

[Davis, 1991]. 

• Deceptive - Contain isolated optima : the best points tend to be surrounded by the worst 

[Whitley, 1991]. 

• Highly sensitive - slight petturbation of the design variables causes large changes in 

relation to fitness [Parmee & Vekeria 1997]. 

• Multiple objectives - several objectives are present simultaneously [Fonseca & Flerning 

1993, Coello Coello 1998]. 

• Unce1tainty - vagueness or impreciseness due to poorly defined data, unsatisfactory 

formulation of design objectives or inability to evaluate the relative importance between 

objectives [Rao, 1984]. 

• Highly dimensional -large number of variables are present [Parmee and Vekeria 1997]. 

• Noise- noisy environment [Goldberg, 1989]. 

In an attempt to overcome these and other problems, new, and more advanced types of GAs 

have been developed. Much of the available GA literatme concerns the development of 

new and more advanced GA's for tackling many of these problems, e.g. : 

• Parallel and Distributed GAs .help with exploration of search space and to reduce 

computational expense [Tenese, 1989] [Goodman et al, 1996]. 

• Structured GAs (sGAs) allow parts of chromosomes to be switched on or off using 

evolveable 'control genes' [Dasgupta & McGregor, 1992] [Parmee & Denham, 1994] 

• Messy GA's use variable-length strings that may be over or under specified with respect 

to the problem being solved. [Goldberg et. al. 1991] 

• CHC GA utilise population-elitist selection, a highly disruptive crossover operator, an 

"incest" prevention mechanism and a divergence process. [Eshclman, 1991]. 
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• PBIL is combination of evolutionary optimisation and hill climbing. [Baluja, 1994]. 

• Breeder GA is a combination of evolution strategies (ES) and genetic algorithms (GA). 

[Muhlenbein & Schlierkamp-Voosen 1993]. 

• GAs with niching and speciatioh where the population within the GA is segregated into 

separate species [Deb & Goldberg, 1989]. 

• Hybrid GAs (hGA's) combine evolutionary search heuristics with traditional local 

search algorithms [Davis, 1991]. 

• GAANT involves a combination of a GA and ant colony based search [Parmee, 1996a] 

• Multiobjective GAs (MOGAs) which allow multiple objectives to optimised [Fonseca 

and Fleming 1993]. 

• Combination of Fuzzy Logic with EA's [Zhao et. al. 1996]. 

A number of these variant techniques play a significant role in the thesis and these are now 

described in some detail. 

2.4.1 The CHC Adaptive Search Algorithm 

The CHC Adaptive Search Algorithm was developed by Larry Eshelman [Eshelman, 

1991]. CHC stands for Cross generational elitist selection, Heterogeneous recombination 

(by incest prevention) and ~ataclysmic mutation, which is used to restart the search when 

the population stagnates. The main differences between the CHC GA and the simple, 

canonical GA are: 

• Population-elitist selectio~ 

• Highly disruptive crossover operator 

• An "incest" prevention mechanism 

• Divergence process 
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The rationale behind the CHC is to have a very aggressive search (by using monotonic 

selection Lhrough survival of the best st.Iings) and to offset Lhe aggressiveness of the search 

by using highly disruptive operators such as uniform crossover. With such small population 

sizes, however, the population converges to the point that it begins more or less to 

reproduce many of the same st.Iings. At this point the CHC algorithm uses cataclysmic 

mutation. All st.Iings undergo heavy mutation, except the best st.Iing which remains intact. 

After mutation, genetic search is restarted using only crossover. 

procedure CHC 
begin 

end. 

t = 0; 
d = L/4; 
initialize P(t); 
evaluate structures in P(t); 
while termination condition not satisfied do 
begin 

end 

t =t+ l ; 
selectr C(t) from P(t-1); 
recombine st.Iuctures in C(t) forming C' (t); 
evaluate structures in C' (t); 
selects P(t) fTom C'(t) and P(t-1); 
ifP(t) equals P(t-1) 
d--; 
ifd <0 
begin 

end 

diverge P(t); 
d = r * (l.O - r) * L; 

Procedure select,. 
begin 

copy all members of P(t-1) to C(t) in random order; 
end. 

Procedure selects 
begin 

end. 

form P(t) fTom P(t-1) 
by replacing !he worst members of P(t- 1) 
with the best members of C'(t) 
until no remaining member of C'(t) 
is any better than any remaining member of P(t-1); 
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Procedure recombine 
begin 

for each of the m/2 pairs of structures in C(t) 
begin 

end 
end. 

determine the Hamming_distance 
if (Hamming_distance/2) > d 

swap half the differing bits at random; 
else 

delete the pair of s"tructw-es [TOm C(t); 

Procedure diverge 
begin 

replace P(t) with M copies of the best member of P(t-1); 
for all but one member of P(t) 
begin 

end 
end. 

Variables 
M 
L 
t 
d 
r 

flip r * L bits at random; 
evaluate structure; 

population size 
string length 
generation 
difference threshold 
divergence rate 

Figure 2-10: Pseudocode for CHC 

2.4.1.1 Elitist Selection 

The CHC employs a more direct emulation of Darwin's 'survival of the fittest' . In nature 

there are limited resources in the environment. As competition of these resources increases, 

the weakest individuals die. The fitter individuals survive longer and thus the greater their 

chance of having more offspring. The CHC replaces the traditional GA's "reproduction 

selection" with bias in favour of the "survival of the fittest". In traditional GA's the 

selection is petformed according to a fitness criteria. Instead of biasing selection of 
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individuals towards the better performing members of the population, the CHC pairs each 

member randomly with another, regardless of the fitness. During the survival-selection 

process, instead of replacing the old parent population with the new child population, 

competition for survival is cross generational i.e. the child population must compete with 

the parent population for survival. 

Several other GA's use fitness-biased survival selection -- Whitley's GENITOR [Whitley 

1989], Syswerda's Steady State GA (SSSGA) [Syswerda 1989]. The SSSGA inversely 

ranks the parent population· and replaces a certain number of the worst performing 

members of the parent population with children. The GENITOR algorithm is specifically 

designed to allocate reproductive trials according to rank. GENITOR only produces one 

genotype at a time, which is inserted in the population automatically ranking the individual 

relative to the existing pool. The CHC however differs from both of these algorithms in 

that the competition for survival is cross-generational - a child only replaces a member of 

the parent population if it is better. 

2.4.1.2 Highly Disruptive Crossover (Unifonn Crossover) 

Eshelman [1991] argues the use of uniform crossover over the use of standard one point 

and two point crossovers, in order to combat parasitic bits (bits that tag along good 

performing schemata). The intuitive idea behind recombination is that the combination of 

features from two good parents may yield even better children. However the more bits 

copied from one parent into a child the more schemata of that parent are preserved at the 

expense of the other parent, and vice versa. 
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One general area of concern using EAs is premature convergence of solutions. Premature 

convergence refers to a situation where most of the population members have similar bit 

sttings without reaching the optin1;al point in the space. One way of preventing the loss of 

diversity is not to allow new strings which have a hamming distance (number of differing 

bits in a string) below a specified threshold into the parent population, however, this limits 

the searching of the EA. A common strategy called incest prevention involves a random 

mating of parents but only if hamming distance is above a certain threshold. The CHC 

crosses exactly half the differing bits of the parents and these are exchanged randomly 

without replacement. This guarantees that the children are always at the maximum 

hamming distance from both parents therefore promoting diversity within the population 

(Figure 2-11 ). This is similar to uniform crossover [Syswerda, 1989], which recombines at 

bit level. 

Parent 1 · 1 0 0 1 1 1 
Parent 2 · 0 1 0 0 1 0 

Child 1 
Child 2 

·000011 - -
·110110 

Figure 2-11: Disruptive Crossover 

Eshelman [1991] argues that uniform crossover is much less likely than traditional one or 

two point crossover to produce the same offspring twice from the same parents. The reason 

for this is that the CHC preserves fewer schemata than one or two point crossover. 
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2.4.1.3 Divergence of Population 

The CHC does not use mutation in the reproduction-recombination cycle. The use of HUX 

and incest prevention in conjunction with a population size large enough to preserve a 

number of diverse structures (e.g., 50) enables CHC to delay premature convergence. All 

these mechanisms cannot guarantee that no allele will prematurely converge. Some sort of 

mutation is required. 

Since the CHC is extremely good at maintaining diversity, mutation is however less 

effective in the CHC than in the traditional GA. Mutation in the CHC is only introduced 

when the population has stagnated. Stagnation is said to have occurred once the difference 

threshold (this is set as length of string/4 at the beginning of the run) has dropped to zero 

and there have been several generations without any new offspring accepted into the parent 

population. The reinialisation is only partial however as the best individual found so far is 

used as a template for creating a new population. Each new individual is created by 

flipping a fixed proportion (e.g., 35%) of the template's bits chosen at random. One 

instance of the best is added ·unc~angcd to the new population. This creates a population 

that preserves the progress made so far and is biased toward a good solution but with new 

diversity to continue the search. Moreover the search cannot converge to a worse solution 

than the previous search. 

Eshelman [1991] argues that partial reinitialisations over chronic mutation arc much more 

effective, performing considerably better on a large range of problems utilising the same 

parameter sets. Restarts provide many of the benefits of a large population without the cost 

of a slower search. Optimal solutions can be identified on easy problems in the first 

initialisation cycle whereas with more complex problems optimal solutions are identified 

only after repeated restarts. 
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2.4.1.4 Incest Prevention 

Strategies for maintaining population diversity can naturally be grouped according to where 

they occur in the GA's reproduction-recombination-replacement cycle i.e. (1) how mates 

are selected, (2) how children are created by recombination, (3) how parents are replaced 

[Eshelman & Shaffer 1991]. The points concerning population selection and the creation of 

new individuals have already been addressed. The remaining point of the mating strategy 

has yet to be discussed. Mating strategies are usually considered in te1ms of speciation, 

where the goal is to prevent radically dissimilar individuals from mating. Goldberg & 

Richardson [1987] introduced penalties which reduce the fitness of individuals as a 

function of how similar they are to other individuals in the population. The effect of this is 

to reduce "incestuous" mating by increasing the likelihood of reproduction between diverse 

individuals. Eshelman's incest prevention mechanism is a more direct approach for 

preventing similar individuals from mating [Eshelman & Shaffer, 1991]. Individuals are 

randomly paired for mating and bias is introduced against mating individuals who are 

similar. Individuals are only crossed if their hamming distance , i.e. the number of differing 

bits between the two individuals, exceeds the difference threshold. The threshold is initially 

set to the expected average Hamming distance of the initial population (string length I 4), 

and then is allowed to drop a~ the population converges. The number of children produced 

each generation can vary from zero up to the population size. The disadvantage of this 

mating strategy is that more schemata are disrupted by crossover, since fewer schemata are 

shared. 
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2.4.1.5 No Duplicates 

The CHC algorithm also utilises a no duplicates policy (Figure 2-10). This is to ensure that 

the number of evaluations are kept to a minimum. Once a child is produced by crossover, it 

is matched against all the members of the parent population. If a duplicate is found, the 

child is discarded, otherwise the child is evaluated and included in the child population of 

potential candidates for replacing members of the parent population. Another reason for 

implementing this strategy is to ensure that super chromosomes do not dominate the 

population, which would reduce the diversity within the parent population and ultimately 

cause premature convergence. The CHC GA always preserves the best individuals so far 

whilst maintaining a highly explorative search through disruptive crossover. 

Several researchers have investigated the idea that diversity of a population may be 

maintained by restricting children from entering the parent population if they are similar to 

the parent members. De Jong "[I 97.5] suggested the crowding scheme in which an offspring 

replaces an existing individual according to it's similarity in bit terms (hamming distance) 

with other individuals in a randomly drawn sub-population of size CF (crowding factor). 

Mauldin [1984] used a uniqueness operator to maintain diversity. An offspring would only 

be inserted into the population if it is genotypically different from all individuals in the 

population (specified by a given hamming distance). 

2.4.1.6 CHC Performance 

Eshelman [1991] compared the performance of the CHC with the canonical GA for a 

number of functions. For five of. the six functions in which both algorithms found the 

optimum in all 50 searches, CHC, on average found the optimum in fewer evaluations, and 

on four of the functions, the CHC found the optimum more often than the GA. The only 
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function on which the canonical GA does significantly better than the CHC is a smooth, 

unimodal function. The CHC performed significantly better on all the multi-modal 

functions. Eshelman found that the CHC algorithm was relatively insensitive to parameter 

settings. Eshelman also reported the CHC to be a worthy competitor for Goldberg's messy 

GA [1991]. 

2.4.2 Population-Based Incremental Learning (PBIL) 

Population-based incremental learning (PBIL) was introduced by Baluja in 1994. PBIL is 

an abstraction of a canonical GA without recombination. The statistics normally implicit in 

the population are explicitly maintained in a 'probability vector' which determines the 

frequency with which O's and 1 's are generated in each bit of the trial solutions. It is 

claimed that a standard form of PBIL performed as well as, or better than the canonical GA 

on a range of standard optimisation tasks. PBIL is a combination of evolutionary 

optirnisation and hill climbing. The algorithm initially creates a real valued probability 

vector with values set to 0.5 which is utilised to create a trial set of binary encoded solution 

vectors where the probability of generating a 1 or 0 is equal. The performance of the real

numbered variable sets represented by these binary solution vector's are assessed via the 

fitness function. As search progresses, the values in the probability vector gradually shift 

relative to the fitness of the 'best' trial solution vectors. The distance the probability is 

pushed (towards either 0.0 or 0.1) depends upon a learning rate parameter. After the 

probability vector is updated, a new set of trial solution vectors is produced from the 

updated probability vector and the cycle is continued. As the search progresses, entries in 

the probability vector move away from their initial settings of 0.5 towards either 0.0 or 1.0 

i.e. the binary representation of the trial solutions are pushed towards that of the current 

best solutions. Thus, PBIL does not store domain knowledge in a population but in a 

probability disllibution. 
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PBIL is characterised by 3 parameters (Figure 2-12). The first is the number of samples to 

generate based upon each probability vector before an update (analogous to the population 

size of GA's). The second is the learning rate, which specifies the dimension of the steps 

towards a good solution. The third is the number of best solutions to update from. 

Baluja [1994] suggests variants of the basic PBIL, such as updating the probability vector 

not only from the best trial but from several of the better performers. Although this method 

proved to be too problem dependent, some significant results were produced. 

Greene [1996] suggests another vmiant on the basic PBIL. At each step of the search a 

record of the "best" and "worst" trial solutions are maintained. The probability vector is 

then maintained by moving it towards the "best" trial vector and moving it away from the 

"worst" trial solution [Greene 1996]. Greene concluded that this change worked well 

during the early stages of the search process, but began to fail as search progresses. In order 

to overcome this an element of the probability is moved away from that of the "worst" trial 

solution only in those bit positions where the "worst " and "best" probability vector differ. 

Greene also keeps a track of the highest value of the objective function attained and aborts 

the current step (and update's the probability vector) whenever this is exceeded. This 

results in an automatic adaptation in the number of trials per step. Greene argues that this 

allows a large number of trials per step to be used without spending time performing what 

amounts to an essentially random search in the early stages. 

PBIL is susceptible to premature convergence. To overcome this, Baluja proposes an 

occasional random mutation of probability vector. In the canonical GA, mutation performs 

a clear role in maintaining diversity of the 'gene pool' by making it possible to regenerate a 

missing 0 or 1 at a particular bit position. This however is not possible with PBIL. Greene 
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suggests replacing mutation with a deterministic 'forgetting' operator. After each update of 

the probability vector, each element of the probability vector is pushed towards 0.5. 

******Initialize Probability Vector****** 
Fori :=I to LENGTH do P[i) = 0.5; 

while (NOT tennination condition) 
***** Generate Samples ***** . 
fori :=I to SAMPLES do 

sample_ vectors[i] := generate_samplc_ vector_according_to_probabilities (P); 
evaluations[i] :=Evaluate_solution (sample[i]); 

best_ vector :=find_ vector_with_best_evaluation (sample_ vectors, evaluations); 
worst_ vector := find_ vector_ with_ worst_evaluation (sample_ vectors, evaluations); 

***** Update Probability towards best solution ***** 
fori :=1 to LENGTH do 

P[i] :=P[i] * (1.0- LR) + best_vector[i] * (LR); 

***** Update Probability Away from Worst solution ***** 
fori :=I to LENGTH do 

if (best_ vector[i] * worst_ vector[i] then 
P[i] :=P[i] *(1.0- NEGATIVE_LR) + best_vector[i] *(NEGATIVE_LR); 

*****Mutate Probability Vector***** 
for i := I to LENGTH do 

if (random (0,1)< MUT _PROBABILITY) then 
if (rando,n (0,1) > 0.5) then mutate_direction :=I 
else mutate_direction :=0; 
P[i] :=P[i] * (1.0- MUT_SHIFT) + mutate_direction * (MUT_SHIFT); 

USER DEFINED CONSTANTS: 
SAMPLES: the number of vectors generated before update of the probability vector. 
LR: the leaming rate, how fa~tto exploit the search perfonned. 
NEGATIVE_LR: the negative leaming rate, how much to leam from negative examples. 
LENGTH: the number of bit~ in a generated vector. 
MUT _PROBABILITY: the probability for a mutation occurring in each position. 
MUT _SHIFT: the amount a mutation alters the value in the bit position. 

Figure 2-12: the PBIL algorithm for a binary alphabet. 

PBIL was shown to outperform GA's on several problems [Baluja, 1996]. One reason for 

PBIL's success may be attributed to it's capability of capturing first order dependencies 

between individual solution paraf!!eters and solution quality in a probability distribution 

[Baluja & Davies, 1997]. GA's on the other hand, maintain a population and rely on 
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crossover to sensibly combine parameters that are collectively responsible for favourable 

evaluations. Since the choice of crossover points is random, it may not be favourable [De 

Bonet et a!, 1997]. Due to its disruptiveness it may tear apart previously discovered useful 

parameter groups. 

2.4.3 The Breeder Genetic Algorithm (BGA) 

The Breeder Genetic Algorithm (BGA) [Muhlenbein & Schlierkamp-Voosen 1993] is 

based on artificial selection similar to that used by human breeders. The BGA is a 

combination of evolution strategies (ES) and genetic algorithms (GA). The BGA (Figure 

2-13) uses a selection scheme called truncation selection. The T% of the best individuals 

are selected and mated randomly until the number of offspring is equal to the size of the 

population. The search process of the BGA is mainly driven by recombination. The BGA 

depending upon the type of problem, may use one of a number of different recombination 

operators (discrete recombination, extended intermediate recombination, extended line 

recombination). The operator used in this work is a discrete crossover similar to the 

uniform crossover. It operates on the alleles of the selected parents chromosomes. Two 

parents, (u~, ... , u0 ) and (vJ, ... ,v0), produce an offspring (w 1, ... ,w0 ) so that Wi is either Ui or Vi 

with equal probability. 

Mutation is an important background operator for the BGA. The BGA's objective is to give 

a small perturbation Ll Xi x 8 on a variable Xi. Where Ll Xi is a mutation range for the 

variable xi and 8 is the mutation probability. An allele xi is chosen with probability pm to 

be mutated (Muhlenbein et al recommend it be set to 0.1). The mutation rate is inversely 

proportional to the number of parameters to be optimised and the mutation range is fixed. 
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as for mutation probability pm Muhlenbein suggests 1/n, where n is the number of alleles 

in a chromosome. 

Muhlenbein has applied the BGA using real coded chromosomes. The BGA has been used 

in this work utilising binary chromosomes. Similar principles are applied. In the case of 

recombination, uniform crossover is utilised as it is very similar in manner to the discrete 

crossover. The mutation operator is the same as that used in a traditional GA, however the 

rate is kept low, so as not to cause a large disruption. 

STEPO: Define a genetic representation of the problem 
STEPl: Create an initial population P(O) 
STEP2: Each individual may perform local hill-climbing 
STEP3: The breeder selects T% of the population for mating. This gives set S(t) 
STEP4: Pair all the vectors in S(t) at random forming N pairs. Apply the genetic 

operators crossover and mutation, forming a new population P( t+ 1 ). 
STEPS: Sett= t + 1, return to STEP2 if it is better than some criterion (acceptance) 
STEP6: If not finished, return to STEP3. 

Figure 2-13: Breeder Genetic Algorithm 

2.5 Summary 

This chapter has provided an introduction to the area of evolutionary computation. The 

chapter has discussed different types of evolutionary algorithms in existence and 

highlighted common attributes of the various evolutionary techniques of particular 

relevance to the engineering design processes of the following chapters. 

42 



3. INTEGRATION OF EVOLUTIONARY ALGORITHMS WITH 
MATHEMATICAL MODELS 

This chapter firstly provides a literature review concerning the application of evolutionary 

algorithms to structural optimisation problems. The second half of the chapter then 

discusses the development of software utilising a CHC genetic algorithm for the 

optimisation of a real world structural plate optimisation problem concerning the shape 

optimisation of roof tiles. The problem concerns the optimal material distribution on the 

underside of this flat concrete plate, with varying load conditions. . The aim here is to 

enable the company to meet specifications of international markets, reduce lead times and 

costs through improved efficiency and a reduction in materials usage. The work was 

undertaken during a two year Teaching Company Programme. Two types of models are 

discussed, the first is based on bending moment and complex stress theory and the second 

on finite element analysis 

3.1 Structural Optimisation 

There is considerable literature on structural optimisation and structural shape optimisation 

[Leite, 1996]. This interest in shape design reflects the effectiveness of shape changes for 

improving structural performance [Haftka, 1986]. It also reflects a growing sophistication 

in structural analysis and optimisation tools, which allow more complex shape optimisation 

problems to be addressed. Shape optimisation is an integral part of the structural design 

process and tools available to assist the designer significantly affect the type of problems 

that can be attempted and to what extent optimisation can be performed. 
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There are three distinct classes of shape optimisation problems. In order of computational 

complexity these are: size, shape, and topological optimisation [Jensen, 1992] 

• Size optimisation (also called cross-sectional optimisation) refers to the determination 

of specific geometric dimensions for a pre-selected design class, such as the thickness 

of a shell, the size of a truss member or the radius of a circular stress element. 

• Shape optimisation (also called geometric optimisation) introduces additional design 

variables which allow for boundary movement. This process is more complex than size 

optimisation and geometrical changes have historically been limited. However, it is of 

significant importance for instance, in the aircraft and automotive industries, as well as 

others, providing improvements to turbine design and airfoil shapes. Size optimisation 

is a subset of shape optimisation. 

• Topological optimisation involves topological as well as shape and size modifications. 

Topological modifications dea! with assemblies of components. The components in the 

assembly may be modified and components may be added, deleted or moved in the 

assembly in an attempt to generate improved designs. 

Literature concerning the application of evolutionary optimisation techniques to structural 

optimisation is becoming more prolific. There is a growing interest in the application of 

such techniques due to significant increases in computing and especially parallel 

processing capabilities. Engineering designers are now recognising the increasing potential 

of evolutionary search for real-world optimisation problems. 

Many researchers have used the canonical genetic algorithm for the optimisation of trusses. 

Goldberg and Samtani [1986] used the GA to optimise a 10 bar truss. J enkins [ 1991] used 

the GA for the minimum weight design of a trussed rafter roof structure. In order to avoid 
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stagnation and improve the progress of the GA during the latter stages of the search, a 

space condensation heuristic has been introduced. The method reduces the combinatorial 

space during the latter stages of search by removing discrete values of variables shown to 

be associated with low fitness individuals. The method also provides the additional 

advantage of reducing the overall processing time required [Jenkins 1994]. A study of a 

cable stayed bridge using the GA [Jenkins 1992] requires 500,000 evaluattions of the 

structure thereby highlighting the problem related to a requirement for considerable 

processing time due to the large number of calls to the evaluation function. 

Rajecv and Krishnamoorthy [ 1992] applied the GA to slightly more complex problems, 

concerning the minimisation of weight and satisfaction of stress and displacement 

constraints for a 25 bar truss and a 160-bar transmission tower. The 160-bar transmission 

tower utilises 22 variables. They conclude that the GA is a highly efficient technique for 

structural optimisation due to the ability to manipulate a large number of discrete vmiablcs. 

However computational expense proves to be a major drawback again due to the number of 

necessary function evaluations. 

Hajela et a! [1992] presented a two stage optimisation method for the sizing of skeletal 

structures. The first stage uses a GA to search for number of suitable low weight topologies 

whilst disregarding the stress and displaccments. The second stage then uses these truss 

topologies as initial designs, for which the cross-sectional areas are then optimally sized 

using a GA for minimum weight and the satisfaction of stress and displacement criteria. 

Jcnsen [1992] developed a GA based approach for topology optimisation. The design 

domain is discretised into small elements, where each clement either contains material or is 

a void. No intermediate densities arc allowed. The GA is used to determine the optimal 
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configuration of material and void within the domain such that the structure's weight is 

minimised subject to displaceJTient and stress constraints. 

Chapman et. al. [ 1993] extended the research of Jensen in the use of the GA for structural 

topology optimisation. Lighter designs were generated in comparison to homogenisation 

based solutions. The homogenisation method was developed by Bendsoe and Kikuchi 

[ 1988]. A design domain is discretised into small rectangular elements where each element 

contains composite material of continuously variable density and orientation. An optimality 

criteria method is used to determine how the material density and orientation in each 

element should change so that the compliance of the structure is minimised subject to a 

maximum volume constraint. The deterministic homogenisation based techniques require 

considerably fewer structural evaluations. However the GA is also able to offer a family of 

topologies (each unique in topology, weight and stiffness) which a designer can evaluate 

using a secondary criteria such as manufacturability. 

Dhingra and Lee [1994] used the GA to optimise a 25 bar truss and found the GA to 

compare favourably to optimum solutions using gradient-based search techniques. They 

propose a co-operative game, theoretic approach for addressing multiple objective 

functions. In a non-co-operative game approach, each player is looking out for his own 

interests and is unconcerned about how his choice will affect payoffs of other players. The 

co-operative approach on the other hand assumes that each player is part of a team and is 

willing to compromise his own payoff in order to improve the situation as a whole. 

Keane and Brown [1996] successfully applied the GA to the design of a satellite boom with 

regard to the efficient control of structural vibrations. The GA changes the geometry of the 

design by altering the three dimensional co-ordinates of its joints. The aim is to minimise 
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the band averaged noise along the boom. Keane found that in order to accurately assess the 

designs considered by the GA very significant computations were required, even when 

using a highly tuned and customised code to carry out the calculations. Furthermore he 

states that where global optima cannot be found utilising current levels of computing 

capability, rapid convergence to improved designs must be the alternative goal of the 

designer. 

Kanc and Schoenauer [1996] apply the GA to structural topology optimisation of cantilever 

plates. They suggest using specific genetic operators which are tailored for topology 

optimisation. The GA produced good results in comparison to the homogenisation based 

method. Computational expense was highlighted as major drawback of utilising a GA. 

Using coarse mesh representations of the plate, a single run may require up to 150,000 calls 

of an FEA fitness function, taking approximately 24 hours on a powctful HP workstation. 

Cai and Thierauf [1996] have developed a two level parallel evolution strategy for the 

optimisation of a steel u·ansmissio'n tower. The objective is to minimise the weight of the 

structure under given stress, displacement and stability constraints. The discrete and 

continuous design variables are treated in parallel using two sub-populations. Periodically, 

the design variables in the two sub-problems are exchanged. 

Genetic Algorithms have proved effective in the design of composite laminate structures. 

They arc used to optimise ply thickness and orientation, and many studies concerning the 

improvement of the GA's reliability and efficiency are evident in this area. Mingra [1986] 

performed some of the earlier studies concerning optimisation of laminations on 

honeycomb structures. Le Riche and Haftka [1994] studied the problem of composite panel 

weight minimisation subject to buckling and strength constraints. Feasible designs were 
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generated by utilising a combination of penalty parameters and the tuning of various 

genetic operators. This method also increased the overall efficiency of the genetic search 

and provided a 56% reduction in the computational cost of search. Haftka et. al. [1996] 

also explored the possibility of specially tuning the GA in order to take advantage of 

repeated runs. The concept was to maximise the efficiency of the GA during the early 

stages of search by increasing selection pressure. This however may result in premature 

convergence to a solution which is significantly inferior to one which may be found by 

using a combination of explorative and exploitive search strategies. 

Kogiso et a! [1994] uses a binary ·tree to store appropriate information regarding laminate 

designs that had already been analysed. After the generation of a new population of 

designs, the tree is searched for laminate designs with either an identical stacking sequence 

or similar performance (e.g. laminates with identical in-plane strains). Depending on the 

retrieved information a given laminate may not be required. This process does however 

require a large amount of computer memory and the search through the tree also has a 

computational cost. Kogiso also proposed a local improvement approach to reduce the 

number of analyses required by a GA. 

Y amazaki [ 1996] reduces c;omputational expense by usmg a two-level optimisation 

technique in maximising the critical buckling load of composite plates. The first level of 

optimisation involves the computationally expensive structural and sensitivity analysis. 

Once the optimum lamination parameters have been determined, the second level of 

optimisation implements the GA to find the stacking sequence that best matches the 

optimal lamination parameters. The second level does not require expensive structural 

analysis. This combination of optimisation methods allows Yamazaki to reduce the 

complexity of the analysis required during the GA run. 
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Goodman et. al. [1996] uses injection island genetic algorithms (iiGA) for the design of 

composite cantilever plates for the weight minimisation and selection of appropriate 

structural responses for given loading conditions. Goodman et. al. [1997] also applies the 

iiGA to optimise the Specific Energy Density (SED) of elastic flywheels. Injection island 

GA's search at various levels of resolution in parallel within a given space. Islands (sub

populations) which have a low level of resolution inject high performance individuals into 

an island of higher resolution to "fine-tune" the designs. Convergence of the low resolution 

processes occurs quickly and is then discontinued, saving valuable CPU time. The 

technique provides a reduction in the computational time plus an increase in the robustness 

of a typical GA. 

Soremekun et al [ 1996] utilises the GA for the minimum weight design of a cantilever 

laminated composite plate. Somemekun outlines three multiple elitist and one variable 

elitist selection strategies. The strategies involve passing a prescribed number of the best 

individuals from the parent population to the new parent population. Depending upon the 

strategy employed the rest of the individuals for the parent population are either selected 

from the top performing members of the child population or a combination of the top 

performing and randomly selected individuals of the child population. The number of top 

performers passed to each successive generation remains constant throughout the genetic 

search in multiple elitist scheme and is varied in variable elitist selection. Small reductions 

in computational cost have been realised using these strategies. 

Mill et. al. [1996] have utilised different types of shape representations these include 

methods based on parametrics, lines, primitives, spline curves etc. They found approximate 

splines for curves and surfaces to be powerful methods of describing shapes and also 
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amenable to GA manipulation. Splines consist of curves whose basic shapes are in!luenced 

by the positioning of a set of control points. The final shape will be influenced by the type 

of spline used and the position of the control points. The curve does not necessarily have to 

pass through all the control points. 

3.2 Development of Evolutionary Software for Single Component Design 

The initial two years of the re·sear~h described within the thesis was carried out as part of a 

Teaching Company Scheme between the University of Plymouth and Redland 

Technologies Ltd (now Lafarge Brass). During this period research was performed in a real 

world problem domain concerning the shape optimisation of roof tiles. As the work can be 

used to optimise any flat single component plate the roof tile is referred to as the flat plate 

problem throughout out the thesis. The problem concerns the optimal material distribution 

on the underside of this flat concrete plate, with varying load conditions. 

The Teaching Company Scheme is a partnership between industry and academia. The role 

of a Teaching Company Associate is to provide a link between the University and the 

company in the transfer of new knowledge. The overall aim of the scheme was to improve 

the competitive position of the company through the implementation of new technology. 

The mam aim of the programme was therefore the development of software utilising 

evolutionary algorithms for the optimisation of concrete flat plates, thus enabling the 

company to meet specifications of international markets, reduce lead times and costs 

through improved efficiency and a reduction in materials usage. 
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There are six major modules in the developed software : 

User Interface- Allows the user to modify the operator settings for the GA 

Representation - The optimal shape will depend on the plate representation and the 

selected variables to represent the modifiable elements. 

Analysis - Analyses the design using FEA or complex stress theory 

Optimisation - Modifies the values of the design variables. 

Evaluation - Determines the fitness of the design 

Termination - Checks to see if any of the termination criteria are met. Stops at the 

maximum number of evaluations or restarts depending upon the 

requirement of the engineer. 

Two forms of structural analysis have been utilised to evaluate the phenotypes. The first is 

based on complex stress and bending moment theory, and is computationally inexpensive. 

The designs produced by this method must be considered high risk due to the simplicity of 

the analysis. The second is the finite element method which is computationally expensive, 

but produces significantly lower risk design solutions due to the in-depth analysis 

performed upon the phenotype. 

Most real-world optimisation problems, particularly those related to design, require the 

simultaneous optimisation of more than one objective function. Some examples include: 

• In bridge construction, a good design is characterised by low total mass and high 

stiffness. 

• Aircraft design requires simultaneous optirnisation of fuel efficiency, payload, and 

weight. 
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• In chemical plant design the objectives to be considered include total investment and net 

operating costs. 

Some method relating to trade-off between the criteria is needed to ensure a satisfactory 

design. 

The fitness of the design in relation to the plate problem takes into account the degree of 

maximum allowable stress violation on the plate and the plate's overall weight. There are 

two main objectives to the research. The first relates to the achievement of high

performance designs, i.e. to minimise the weight of the plate whilst satisfying maximum 

stress requirements. This conflict of criteria plus the high dimensionality results in a highly 

sensitive optimisation problem with many local optima. The dimensionality in this case 

refers to the number of variables on the plate. The second concerns the minimisation of 

required function evaluations. It is essential that the second objective is achieved in order 

that computationally expensive analysis techniques such as FEA can be realistically 

utilised. 

3.2.1 Genetic Representation of the Plate 

Fi!,'llre 3-l shows an example of how the genetic representation of the plate is decoded. The 

figure shows how a chromosomal representation (12 bits long) is used to represent a plate 

consisting of four elements. The chromosome is converted into four real numbers to 

represent the depths of the elements on the plate. Further information on problem 

representation may be found in· Davis [1991]. The programs for the various algorithms and 

the mathematical model were'writlen in Fortran 77. 
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The following plate utilise~ 4 elements. 

The plate is encoded using a chromosome : 

100111101110 

The chromosome is partitioned in order to represent the four elements on the 
plate: 

100 Ill 101 110 

These bit sllings are converted from base 2 to ba e 10 to yield : 

4 7 5 and 6 

If we assume the fo llowing : 
Maximum plate depth of 20mm 
Minimum plate depth of 9mm 
Step size of 7mm 

Therefore : 
The vruiable depth on the plate is 20-9 = 11 mm 
The variation step size is 1117 = 1.57mrn 
This gives 8 possible depths (i.e. 9, 10.57, 12.1, 13.7, 15.29, 16.86, 18.43 and 20.0) 

The base 10 values ru·e multiplied by 1.57 and then added to the minimum plate 
depth to provide the overall depth of the elements : 

Element 1 ( 4 * 1.57 ) + 9 = 6.29mm 
Element 2 ( 7 * 1.57) + 9. = ll .Omm 
Element 3 ( 5 * 1.57) + 9 = 7 . .86mm 
Element 4 ( 6 * 1.57) + 9 = 9.43mm 

Figure 3- 1: Decoding process used by the plate problem 
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3.2.2 Current Design Practice at the Company 

Engineers at the company use a very similar design practice to the one outlined in chapter 

1. Computer aided design (CAD) software is used to create and edit designs, whilst finite 

element analysis (FEA) is used to analyse the designs. A conceptual design is initially 

developed (based on previous designs and engineer's insight and knowledge related to the 

problem) which is then analysed using FEA software to determine which areas require 

redesign. Further changes are then made using the CAD software. 1l1is loop continues until 

a design is developed that meets the original specifications or is deemed acceptable. 

In order to save money and become market leaders in plate design, the company must 

design lightweight components which meet predefined stress criteria. This design-evaluate

redesign process as stated in chapter 1 is extremely slow and often requires large amounts 

of human and calendar time, furthermore it sometimes fails to produce an optimal or near 

optimal design solution. The longer the design process the more costly it becomes. 

Automating the whole or even part of the design process would therefore be highly 

desirable. 

The plate problem poses a considerable challenge in comparison to standard test functions 

such as De Jongs test suite [Goldberg 1989]. These test functions were developed in order 

to visualise and measure the relative performance of various algorithms. The flat plate 

problem is a real world problem where there is no apriori knowledge relating to the nature 

of the search space, due to the high dimensionality. The lack of prior knowledge makes it 

extremely difficult to determine whether the algorithm has converged to an optimum or 

near optimum solution unless an exhaustive search is executed. The goal therefore is to 

arrive at a "good" design solution, with minimum computational expense. 
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3.2.3 The Evaluation Model (Complex Stress) 

In order to allow extensive experimental work, a simple mathematical model utili sing 

bending moment and complex stress analysis has been utilised to ensure computational 

cost is kept to a minimum. 

The plate is represented in a grid type manner being divided into rectangular or square 

elements each with vruiable depth (Figure 3-2). However, if required, a set number of 

elements may be considered as one vruiable to promote uniformity in depth. The plate may 

be subjected to one or more load conditions. The plate is supported on each of the four 

corners. For most problems · (unl~ss otherwise stated) the overall plate dimensions ru·e 

200mm x 200mm. The vruiables are relatively continuous in nature. The depth of each 

element is a.llowed to vary between the lower and upper bounds. The minimum plate depth 

is fixed at 8mm for most problems. However the upper limit on the plate depth is either 

18mm or 24mm and the variation in depth between upper and lower bounds is discretised 

by inu·oducing nine intermediate element depths (Figure 3-3). In order to achieve a certain 

degree of symmetry for ease of manufacture, an option is also available whereby 

neighbouring elements whose angles exceed a preset aspect ratio (the ratio desc1ibing 

relative depth at the element interfaces) may be penalised. 

Figure 3-2: Representation of plate elements 
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l6mm (upper variable depth) 
( 9 steps) 

24rnm 

16 I 9 = 1.78mm varia tions (therefore 10 possible depths) 
( 8.0, 9.7, 11.6, 13.3 , 15.1 , 16.9, 18.7, 20.5, 22.3, 24.0) 

Figure 3-3: Discretisation of element depth variation 

The shear and normal stresses are calculated for all transverse (X) and longitudinal (Y) 

sections using the following formulas: 

Bending Moments (M= W.x) (Equation 3-1) 

Second Moment of Area ( I = bd3 I 12 ) (Equation 3-2) 

Section Modulus ( Z = I I y) (Equation 3-3) 

Normal Bending Stress ( a= M I Z) (Equation 3-4) 

Shear Stress ( "r = F I A ) (Equation 3-5) 

Where: 

W =Force 

x = Distance from support 

b = Breadth 

d =Depth 

y = Distance from Neutral Axis 

F = Force 

A= Cross Sectional Area 
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Principal stress ( O"P) is as the stress criterion and is calculated for individual elements using 

the following f01mula: 

2 
(J l or2 

(J x+ (J y 
----'-± 

O"t & 0"2 =Principal Stresses 

0")( & O"Y = Nmmal Stresses 

r xy =Shear Stress 

2 
+ 'r x y (Equation 3-6) 

The fixed parameters of the materi al are: flexural stress limit= 10N/mm2
, density = 2.2 x 

10-7 Kg/n11113
. Designs exhibiting a high degree of stress violation are penalised to ensure 

that the generated designs satisfy relevant ctitetia. Although preliminary design solutions 

for the flat plate problem c~ be achieved with a relatively small number of variable 

elements (15 to 50) in excess of 300 elements are required during detailed design to ensw·e 

accurate stress evaluation. 

3.2.4 Multi-Criteria Optimisation 

The objective with the plate problem ts the minimisation of weight whilst satisfying 

maximum stress rcquiJemctlts. The fitness of the stress criteria (Fs) is calculated by 

summating the number of elements that have stresses greater than the flexw-al limit which 

is then multiplied by a factor. The degree of violation is then taken into account by 

summating the difference for. all elements which exceed the flexural limit. The number of 
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stress violations and degree of stress violations are then summated to form the overall 

stress violation (SV). This stress violation is divided by 100 then inversed in order to 

convert to a maximisation problem. The + 1 in the formula is to prevent run time errors 

when the program is executed. The weighting for the stress criteria (Ws) is 1000. 

The criteria weighting relating to the weight (Ww) of the plate increases as the degree of 

stress violation decreases. Designs which have high stress violations are therefore 

penalised to a greater extent as plate weight is reduced. The weight of the plate is also 

inversed to convert the problem to one of maximisation. The weighting (Ww) therefore 

depends upon the extent the stress criteria has been satisfied. In order to arrive at an 

overall fitness rating (F') for the plate the fitness values Fs and Fw are summated. 

Fs = (1/((SV /100)+1))* Ws 

Fw = (1/Wt) * Ww 

if Fs ;:=: 1000 then Ww = 500 

if Fs > 700 then Ww = 400 

if Fs > 500 then Ww = 300 

if Fs > 300 then Ww = 150 

if Fs > 200 then Ww = 100 

if Fs ~200 then Ww =50 

F'=Fs+Fw 

(Equation 3-7) 

(Equation 3-8) 

(Equation 3-9) 
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The above approach was taken in order to avoid equal emphasis on both objectives. If 

equal emphasis is placed on both objectives and there are large stress violations on the 

plate, the GA rapidly reduces the weight of the plate at the expense of meeting the stress 

requirements. This is due to the weight of the plate being an attractor. Placing a higher 

weighting on the stress moves the search towards the region of the design space containing 

solutions with low stress violations. As the degree of stress violation decreases the 

weighting for the weight increases, therefore once the stress criteria is satisfied the problem 

becomes a single objecti vc relating to the minimisation of plate weight. 

3.2.5 Two Dimensional Crossover 

The use of a two dimensional string representation was considered, to provide a more 

realistic picture of the plate [Cartwright and Harris, 1993]. However due to the disruptive 

uniform crossover in the CHC algorithm, it is not possible to crossover individuals in the 

manner shown in Figure 3-4: The. figure shows how the method would be applied to the 

plate problem if disruptive crossover was not utilised. Depending upon the operator 

settings one or more genes would be crossed. An individual would be defined as an n x n 

grid. Individual genes would be held on the 2-D grid. The grid is connected together to 

form the surface of a torus. It is therefore possible to combine promising section(s) of 

different plates through the action of 2-D crossover. 
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Before crossover 

Individual 1 

After crossover 

ChHd 1 

Individual 2 

Crossover Point 

Chi ld 2 

Figme 3-4 : 2 dimensional crossover representation 

3.2.6 Development of Automated Design Tool 

In order to develop a GA which pr.ovides good robust solutions the simplified model based 

on complex stress and bending moment theory was used to ensme extensive 

experimentation could take place. While this method provides stress results in the centre of 

the plate which are reflective of those obtained by FEA, the results on the pe1iphery of the 

plate are not comparable. However the method provides a way of rapidly addressing issues 

such as multi-modality, multi-criteria, sensitivity and high dimensionality. 
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The initial implementation divided the plate into horizontal and vertical strips. The GA 

alters the periphery of the plate. An iterative optimisation loop is used to determine the 

depth of individual strips for the main body of the plate so as to satisfy the stress criteria. 

The highest depth of individual strips defined the resultant shape .. This method proved to 

be an extremely fast (due to the small number of variables) way of generating feasible 

preliminary design solutions. The design was then further refined utilising FEA. The main 

drawback with the technique is that it is not very flexible and excludes a large number of 

possible design solutions due to iterative loop and strip representation. 

3.2.7 Selection of Design Variables 

The advent of the finite element analysis (FEA) and the development of increasingly 

powerful computational processing capability has allowed the complex analysis of large 

problems and the identification of low-risk design solutions i.e. solutions with a low 

probability of error. However, every type of analysis requires input which is determined 

from a set of design variables. The time required to initially develop this input and perform 

the evaluation can be extensive, and there is no guarantee that the resulting design will be 

feasible. If it is not, new values for the design variables must be determined. The 

determination of an optimal set of design variables and their upper and lower bounds is not 

always directly intuitive, and consequently, is often found through trial and error. 

Using evolutionary search to tackle design problems imposes certain restrictions and 

requirements on phenotypic representation. A popular choice of representation that would 

describe the plate relates to nodal co-ordinates. However a major problem with this choice 

is the resulting large number of design variables to define even the simplest of shapes. The 

advantage is the ability to obtain a general curved boundary, consistent with the finite 
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element model in which the structure is allowed to assume whatever shape is necessary to 

obtain the minimum weight. The problem with this generality is that an undesirable or 

impractical shape may be produced. 

The appropriate selection of the shape representation techniques for a particular problem is 

necessary for effective optimisation. There are two main considerations in the selection of 

design variables. First, the number of design variables must be kept to a minimum since 

each design variable adds the burden of a number of analyses to the total computational 

effort required in the optimisation process. In terms of evolutionary optimisation, a large 

number of variable parameters are required to produce even the simplest of shapes. The 

more variables in the phenotype, the more genes there are in the genotype, making the 

search problem larger and thus more complex. Secondly a limit on the number of design 

variables restricts the changes in shape during optimisation and may exclude a good 

practical shape which might lead to a better design. There are no general sets of rules 

governing the task of optimum selection of a shape representation technique. Engineering 

insight and a compromise for tht< particular problem is therefore required to make this 

choice. 

Taking the above issues into consideration the plate is split into individual elements 

(similar to brick elements when using FEA) in order to provide a higher degree of 

resolution. The plate is represented by regions which are described by a set of key nodes 

that control the geometry. The nodes are allowed to move in one dimension (i.e. depth) 

during the evolutionary design process. This method was developed in order to allow the 

designer flexibility whilst keeping the number of variables to a minimum. A major problem 

with this choice is the resulting large number of design variables which increase the 

computational expense. To produce even a simple shape requires large numbers of 
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elements. However the advantage is the ability for the plate to assume a large variety of 

shapes. 

3.2.8 NISA FEA Software 

During the course of teaching company programme a software package was developed for 

optimising flat plates. The package consisted of the CHC algorithm integrated with FEA 

software. Before deciding to integrate the CHC with FEA, various algorithms were 

investigated and experiments performed using the computationally inexpensive complex 

stress model. The results are discussed in chapter 4. Before performing the optimisation the 

designer must firstly define a.Finite Element model and identify the variables. The plate is 

initially designed with minimum thickness throughout the body. Eight noded brick 

elements are used for modelling the plate. The files describing the model are used as a 

template which are amended automatically by the CHC software to include the new values 

for the variables for each evaluation during the optimisation process. The nodes may be 

linked in several ways to allow flexibility to the designer. This also helps to reduce the 

overall number of variables. 

There are generally two types of relationships between the variables and nodes. The frrst is 

a one to many relationship, where one variable may have several nodes or elements 

attached to it. This is referred to as a variable area. The second is a one to one relationship 

where one node is equivalent to one variable (Figure 3-6 and Figure 3-7). The models may 

be created with small tapers to aid blending between the elements (Figure 3-5). It was 

found that if all nodes were allowed to vary the resultant shape was usually impractical, 

moreover there is also a large increase in the number of variables. 
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Figure 3-5: A diagram to show clement tapers 
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Figw-e 3-6: A diagram to show noqe id's 
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9 

9 4 (each node is a 
variable) 
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Figure 3-7: Explanation of the different types of variables 
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A variable may have any number of nodes attached to it, e.g : 

1'1 variable (4 nodes) starting id 50001 (last node number= 50004) 

2"d variable (6 nodes) starting id 50005 ( last node number= 50010) 

3rd vruiable (lOO nodes) starting id 50011 (last node number= 50110) 

Once the designer has developed the model and created the appropriate files which allow 

communication between the FE software and the CHC GA, the evolutionary design 

software may be run. The software runs until such a time the user feels that the design is 

acceptable, or until the search process has stagnated. The designer may view a graphical 

representation of the best design solution at any stage of the optimisation process. Due to 

the considerably long mn time information is recorded regarding the run which is 

automatically saved every n number of evaluations, in case of a system failure. This allows 

the user to recommence the program close to the point it was stopped. The design software 

does not permit human intervention during evolution. 

3.3 Summary 

This chapter has discussed the application of evolutionary algorithms to structural 

optimisation problems and shows that this area is receiving considerable interest. This 

chapter has also discussed the development of the CHC genetic algorithm for the 

optimisation of a real world structural plate problem, duting a two year Teaching Company 

Programme. By combining the automatic optimisation of a design alongside evaluation 

software which automatically analyses the quality of the designs, considerable time on the 

part of the designer may be ~aved. The developed software is currently being utilised in 

industry for the optimisation of flat plates. The software not only provides practical 

solutions but, as it does not commence from a feasible point (a common practice in shape 
' 
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optimisation) it can also provide novel design solutions. Plates designed using the 

developed software have now been mass manufactured. They have provided design 

solutions superior to those in existence and therefore have made significant savings for the 

Industrial partner. 

The neX.t chapter provides a comparison in· performance of different existing evolutionary 

algorithms in order to determine which is the most effective on the plate optimisation 

problem. 
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4. APPLICATION OF EVOLUTIONARY I ADAPTIVE 
ALGORITHMS 

4.1 Application of Evolutionary Algorithms to the Plate Problem 

As described in chapter 2, there are a number of advanced GA variants, all developed to 

improve the efficiency of evolutionary search for problem classes. The plate problem has 

several levels of complexity relating to multi-objectives, high dimension and high 

sensitivity to slight perturbation of design variables. It is therefore necessary to introduce 

high performance evolutionary algorithms that can best handle such characteristics. 

The genetic algorithm is only one of many non-linear adaptive search algorithms known in 

computer science. It is currently not possible to define exactly which of these search 

algorithms is best for which problem or even class of problem [Fogel 1995]. However, it is 

possible to identify algorithms that continuously produce "good" results (in compatison to 

those produced by other techniques) for a wide range of different problems. The GA 

exhibits robust behaviour having been successfully applied to many problem classes. 

The objective of the following sections is to provide a comparison in performance of 

different evolutionary algorithms on the plate optimisation problem. The alg01ithms have 

been selected on the basis of their performance on various problems in comparison to other 

search techniques. The objective here is not to optimise all possible operator parameter 

settings for any patticular problem. The process of the selection of optimal settings is 

complex and has been investigated many times before on different classes of problems 

[Grefenstette 1986, Schaffer & Morishima 1987, Fogerty 1989, Davis 1989, Goldberg 
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1989]. In fact the "no free lunch" theorem for search states that no such optimal settings 

exist for all possible problem classes [Wolpert and Macready 1995]. 

There are three main measures of performance : 

1. As the analysis module dominates the expenditure of resources on the 

plate optimisation problems it is therefore considered the base cost and 

is used as a measure of efficiency in this thesis. The criteria utilised 

relates to total number of calls required to arrive at good feasible 

design solutions and the CPU cost of the analysis. 

2. The effectiveness of the algorithm at locating a good design solution, 

i.e. to minimise cost and degree of stress violation 

3. The robustness of the method, i.e. standard deviation of the results. 

This chapter presents the results for the different types of evolutionary algmithms 

discussed in Chapter 2 in relation to the plate problem. Some of these techniques play a 

significant role in the thesis by gui'ding the research towards certain avenues and laying the 

foundations for the development of various techniques. The chapter firstly looks at the 

application of the various evolutionary algorithms utilising the complex stress model. This 

model was developed in order to produce design solutions quickly by keeping 

computational expense to a minimum during experimentation. The simplified model does 

not perform an in-depth structural analysis as a result the designs produced by this method 

must be considered high risk. The simplified model helps to determine the best performing 

evolutionary algorithms which are then integrated with the more computationally 

expensive FEA model. The second half of the chapter discusses the results of this 

integration. 
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4.2 Operator Settings for the Evolutionary Algorithms 

The operator settings for the different evolutionary alg01i lhms are shown in Table 4-1. In 

ome problem cases, an attempt was made to improve the performance of the algorithm 

further through the identification of better operator settings. 

Algorithm Operator Setting 
Positive Learning_ Rate 1.0 
Negative Learning Rate 1.0 
Forgetting Factor 0.005 

PBfL Mutation Shift 0.05 
Mutation Probability 0.02 
Ttials pe1' Iteration 40 
Number of Vectors to Update 1 
from 
Max. No. of Evaluations 10000 
Population Size 40 

CHC Divergence Rate 30% 
Maximum Number of Restarts 3 
Population Size 50 
Mutation Rate 0.001 

Canonical GA Crossover Rate 0.7 
Selection Method Roulette 

Wheel 
Population Size 50 

BGA Mutation Rate 0.001 
Crossover Rate 0.7 
Top T% of Individuals Selected 20% 
for Mating 

Table 4-1 : Operator Settings for the Various Alg01ithms 

The PBfL algorithm used throughout this thesis di ffers slightly from the one outlined in 

chapter 3. The probability vector P(i) is moved away from that of the "worst" trial solution 

only in those bit positions where the "worst " and "best" probability vector differ [Greene 

1996]. The best solutions are tracked during the search and the evaluation of individuals is 

aborted as soon as one is found which is better than the previous best. This individual is 

then used to update the probability vector. Greene [ 1996) found that this process provides a 
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rapid improvement in the early stages of the search process. In order to maintain diversity 

and prevent the elements of the probability vector drifting rapidly towards 0 or 1, a 

"forgetting factor" (Equation 4-10) is utilised. This has the effect of moving each element 

of the probability vector a small ainount towards 0.5. In addition the mutation operator is 

also utilised to maintain diversity. 

P(i) = P(i)- Y (P(i)-0.5) (Equation 4-10) 

r =forgetting factor 

4.2.1 Results for the Flat Plate Problems Utilising the Complex Stress Model 

During the plate optimisation a simplified model has been utilised as described in chapter 3 

to keep computational expense to a minimum during experimentation. The simplified 

model does not carry out an in-depth structural analysis and therefore generated results are 

not as reliable as those produced by the finite element method. As a result the designs 

produced by the simplified method must be considered high risk. Using such a simplified 

model which is still characterised by dimensionality, multi-modality and sensitivity, a 

technique may be developed to cope with such conditions during comparative 

experimentation without the burden of running large computationally expensive analysis 

software. 

4.2.1.1 Single Load Case Problems 

Figure 4-1 displays a plate simply supported on four corners with a central load of 1500 

Newtons. An initial study has been performed on plates of varying resolution with a single 

load case. This type of problem should not pose a particular challenge to the algorithms. As 
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it is a one load case problem, material must be concentrated around the area of the load to 

minimise stress violation. However as the problem is further complicated by increasing the 

dimensionality or constraining the design by reducing the upper limit on matetial it 

becomes more challenging for the vadous adaptive search algodthms. The reduction in the 

upper limit has the effect of reducing the number of feasible design solutions in the search 

space, whilst the search space remains the same size. Reducing the upper limit on variable 

depth means there is less mat~dal available and finding a solution with low stress violation 

therefore becomes difficult. 

Figure 4-1 : Simply supported plate with a central load 

4.2.1.1.1 Comparison of Results for single Load Cases 

Initial results using a simple, canonical GA with optimised parameter settings were 

disappointing [Vekeria and Parmee 1996]. Due to the perceived sensitivity of the problem 

the processing capabilities of the canonical GA does not seem appropriate. Severe 
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degradation of the converg~nce charactetistics is evident as the number of variable 

elements increases (Figure 4-2). Ten runs have been executed for each test case. 

Figure 4-2 shows that for relatively small numbers of vruiables (i.e. 15), the canonical GA 

is able to converge on high fitness design solutions. As the number of variables increases, 

the canonical GA becomes increasingly less efficient and is unable to converge on "good" 

design solutions. The figure also shows that the subsequent integration of a breeder GA, 

PBIL and the CHC GA results in significant improvements in fitness of solution, although 

performance degradation is still evident with increasing dimensionality. The CHC 

algorithm performs well on all plate representations however on the higher dimensional 

representations (400 +) the CHC is slightly exceeded in perf01mance by PBIL, utilising a 

high leru·ning rate of 1.0 (Table 4-2 and Table 4-3). The results however show the CHC to 

be an extremely effective form of search alg01itbrn when utilising vru-ying numbers of 

elements compru·ed to the other methods when integrated with a single load case problem. 

1600 ~------------------------------------------------------~ 

-o-SGA 
-x-BGA 

1550 - -<>-CHC 
-o-PBIL 

i! 1500 
c: -u:: 
u; 
~ 1450 

1400 -

1350+-------+-------r-------r-------r-------r-------r-----~ 

9 25 49 100 144 196 289 400 
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Figure 4-2: Performance compruison of the vruious search techniques (lload case) 

Max=24mm. 
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CHC (11oad case) 

Test Plate size Max upper Best Fitness Best Average Average Fitness 

Number limit Weight Fitness Weight (SO) 

CHC_1 20x20 24 1482.236 1.04 1471.522 1.06 5.748839 

CHC_2 20x20 18 1474.914 1.05 1468.695 1.07 2.929435 

CHC_3 24x24 24 1455.896 1.10 1450.828 1.11 3.390425 

CHC_4 24x24 18 1464.129 1.08 1457.714 1.09 3.032191 

Table 4-2 : Results for CHC for various problem cases utilising a single load case (no. of 

runs= 10) 

PBIL (I load ca~e) 

Test Plate size Max upper Best Fitness Best Average Average Fitness 

Number limit Weight Fitness Weight (SD) 

PBIL_1 20x20 24 1487.756 1.03 1480.513 1.04 4.322704 

PBIL_2 20x20 18 1480.944 1.04 1472.525 1.06 5.484269 

PBIL_3 24x24 24 1455.107 l.LO 1452.505 1.11 2.784014 

PBIL_4 24x24 18 1462.017 1.08 1458.732 1.09 2.249974 

Table 4-3 : Results for PBIL for various problem cases utilising a single load case (no. of 
runs= 10) 

The evolution curves are shown for the fittest individual of the 10 runs in Figure 4-3 to 

Figure 4-6 which show a rapid increase in fitness for both CHC and PBIL due to the initial 

satisfaction of the stress criteria. Once stress satisfaction is minimised the fitness increases 

gradually in terms of weight reduction of the plate. Figure 4-2 shows that PBIL's 

performance improves with increasing grid resolution when dealing with a single load case, 

suggesting that a tendency for premature convergence is offset by the sheer number of 

possible design directions available at higher dimensions. Whereas the more diverse search 

of the CHC begins to lose its way, PBIL manages to sustain a better compromise between 

exploration and exploitation and final ly outperforms the CHC as the 400 element 

representation is approached. Another feature of PBIL is its rate of convergence dwing 
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early generations with medium to high gtid resolutions as shown in Figure 4-3 to Figure 

4-6. This suggests that different techniques may be better suited to varying stages of the 

evolutionary process. However, rapid convergence during the early stages may not prove 

beneficial in the longer term as this may lead to convergence upon a local optima later in 

the search. A major advantage in using the CHC algorithm is that it requires little or no 

operator tuning. Although progression for the CHC is slower than PBIL due to it's 

explorative natme, it manages to converge on good design solution during the latter stages 

of the search. The CHC also proves to better handle exploration of the search space across 

a number of different resolution plates (see Figure 4-2). The Nisa FEA software discussed 

in following sections was therefore initially integrated with the CHC GA. 
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Figure 4-7 shows the comparison in performance for PBIL with different learning rates for 

a single load case. This illustrates the utility of lower learning rates for lower dimensional 

cases whilst high learning rates are better suited to higher dimensions. Reducing the 

learning rate has a direct impact dn the trade-off between exploration and exploitation of 

the search space. For example if the learning rate is 0.1, there is little exploitation of 

solutions. As the learning rate is increased, the amount of exploitation increases, and the 

ability to sample large portions of the space diminishes. The learning rate provides the 

selection pressure for PBIL. In lower dimensions there are fewer design solutions which 

meet the design criteria therefore a high learning rate results in a poor solution due to the 

search algorithm focusing on the top individuals in the space, i.e. the overall diversity in 

the gene pool reduces resulting in premature convergence. In this case it is suggested that 

lower learning rates are utilised to promote better sampling of the search space. In the 

higher dimensions (>200) with a single load case there are many feasible solutions which 

meet design objectives. This results in many possible design directions for the algorithm. A 

high learning rate exploits good solutions and rapidly negotiates this very large search 

space to identify a high performance locally optimal solution. 

When using the simple GA, a degree of operator tuning must be performed. This is also the 

case with PBIL, as the problem is scaled up i.e. utilises more variables. Further 

experiments utilising higher dimensions are only performed on the best performing of the 

four algorithms, i.e. the CHC and PBIL. Constraining the designs by reducing the upper 

limit of variable depth does not pose a problem for the CHC or the PBIL algorithm. As 

mentioned earlier in the chapter, the reduction in the upper limit has the effect of reducing 

the number of feasible design solutions in the search space, whilst still keeping the search 

space the same size. Less material is available during optirnisation resulting in a reduced 

number of design solutions with lower stress violations. 
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4.2.1.2 Multiple Load Case Problems 

Unlike the previous one load case problem where the material is more localised, this 

section examines multi-load cases. With such a problem material is spread across the plate 

resulting in significant increases in stress violations. The problem is further complicated by 

increasing the dimcnsionali ty or constraining the design by reducing the upper limit on 

material. Multiple load cases are common in structural design, a component may be 

subjected to various load co.nditions during it's lifetime. Optimising several load cases 

poses a considerable challenge to the algorithms. Figure 4-8 displays a plate simply 

supported on four corners with a central load of 1500 Newtons and two further loads of 

800N each. 

Figure 4-8: Simply supported plate with three load cases 

4.2.1.3 Comparison of Results for Multi Load Cases 

Results for the BGA and the canonical GA are disappointing (Figure 4-9). As the number 

of vruiables are increased, they become increasingly less efficient and are unable to 

converge on high fitness solutions. Ten runs ru·e performed for each test case. 
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CHC (3 Load ca~es) 
Test Number Plate size Max Best Best Average F Average Fitness 

upper Fitness Weight Wt (SD) 
limit 

CHC 5 20x20 24 1422.33 1.18 1419.221 1.19 2.71 

CHC 6 20x20 18 1427.38 1.17 1403.781 0.12 52.92 
CHC 8 24x24 24 14L0.92 1.22 1405.492 1.23 4.33 
CHC 9 24x24 18 1419.57 1.19 1307.997 1.22 178.22 
CHC_7 20x20 24 1486.46 1.03 1481.210 1.04 4.26 

Evaluations = 50000 

Table 4-4 : Results for CHC for various problem cases utilising three load cases (no. of 

runs= 10) 

PBIL (3 Load cases) 
Test Number Plate size Max Best Best Average F Average Fitness 

(table No.) upper Fitness Weight Wt (SD) 
limit 

PBIL_5 20x20 24 1446.37 1.12 1437.81 1.14 4.59 
L.R = 1.0 
PBIL_6 20x20 18 1441.2 1 l.l2 1293. 16 1. 14 97.22 

L.R = 1.0 
PBIL_7 20x20 24 1367.14 1.36 1363.54 1.38 1.96 

L.R = 0.1 
PBIL_8 20x20 18 12 15.41 1.26 1137 .90 1.27 36.73 

L.R = 0. 1 
PBlL_9 20x20 24 1470.52 1.06 1462.08 1.08 5.02 

L.R = 1.0 
Evaluations = 50000 

PBIL_ 11 24x24 24 1360.04 1.39 1355.42 1.41 2.80 
L.R = 0.1 
PBIL_ 16 24x24 18 774.46 1.24 703.09 1.26 80.49 
L.R = 0.1 
PBIL_ l 2 24x24 24 1394.03 1.27 1388.25 1.29 3.07 
L.R = 0.4 
PBIL_ 17 24x24 18 1399.59 1.25 127 1.78 1.26 111.11 
L.R = 0.4 
PBIL_ 13 24x24 24 1399.50 1.25 1395.60 1.27 3.55 
L.R = 0.6 
PBIL_ l8 24x24 18 12 18.30 1.24 1041.01 1.25 88.45 
L.R = 0.6 
PBIL_ 14 24x24 24 1411.28 1.22 1405.15 1.23 3.58 
L.R = 0.8 
PBIL_ 19 24x24 18 1287.78 1.22 11 38.97 1.23 144.73 
L.R = 0.8 
PBIL_ lO 24x24 24 14 17.9 1 1.20 1413.54 1.2 1 3.27 
L.R = 1.0 
PBIL_ l 5 24x24 18 13 16.44 1.19 1136.69 1.21 118.34 
L.R = 1.0 

Table 4-5 : Results for PBIL for various problem cases utilising three load cases (no. of 

runs = 10) 
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PBIL and the CHC GA perform significantly better than the BGA or the canonical GA 

although performance degradation is still evident with increasing dimensionality (Figure 

4-9, Table 4-4 and Table 4-5). The results show that the CHC and PBIL are still extremely 

effective when compared to the other methods. 

Figure 4-9 once again shows PBIL's performance significantly improving with increasing 

grid resolution, furthermore PBIL, as with the single load case still has a high rate of 

evolution during early stages of the search (Figure 4-10 to Figure 4-13). 

Table 4-5 shows the performance of PBIL on a three load case 20x20 and 24x24 

representations utilising different learning rates. This illustrates that lower learning rates 

which should help counteract premature convergence by promoting better exploration of 

the search space do not in this case provide any improvement in design performance. 

Further experiments utilising higher dimensions are only executed usmg the best 

performing algorithms namely the CHC GA and PBIL. The problem is made more 

complex by increasing the number of load cases to 3 and reducing the maximum depth of 

the plate to 18mm. More material is now distributed across the plate and due to reduction 

in plate depth more stress violations occur across the plate resulting in fewer feasible 

design solutions. This poses a problem for the PBIL algorithm, it is rendered ineffective at 

negotiating the highly complex search space. The highly exploitive nature of PBIL is 

unable to locate the reduced number of feasible design solutions now present in the search 

space, resulting in premature convergence. CHC in comparison due to it's more explorative 

nature performs far better, but in some cases still fails to produce a feasible desi~:,rn solution. 

Reducing the learning rate in order to promote exploration in many of the cases does not 

provide better performance solutions . 
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Experiments relating to the CHC and PBll.. algorithms utilising higher numbers of 

evaluations provides small improvements in overall design performance, but at a high cost 

in overall computational expense (Table 4-4 test CHC_7 and Table 4-5 test PBll.._9). 
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An advantage of the CHC algorithm is that relatively small populations may be utilised ( 

Figure 4-14). The CHC' s many inten·elated mechanisms supp01t better exploration of the 

search space. These different mechanisms ensure that the CHC can explore without the 

disadvantage of u ing large population sizes and slower convergence. Increasing the 

population size however, tends to result in poorer performance. 

Figure 4-14 shows the results for a 3 load case problem utilising different population sizes. 

It can be seen that the lower population sizes ( < 1 00) provide solutions of better 

performance than those utilising larger population sizes (> 100). The use of disrupti ve 

crossover and incest prevention enables the CHC to delay prematUTe convergence and 

anive at good design solutions without the need for large population sizes. 
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4.2.1.4 Drawbacks of Using the same GA for Various Levels of Problem Complexity 

It is widely accepted that the major drawback of genetic algorithms to complex engineering 

design problems is the large number of analyses [Haftka et al 1996, Goodman et al 1996]. 

The number of analyses for the plate problem depends upon factors such as the level of 

representation, and the loading conditions. The designer would therefore need to tune the 

operator settings of a GA in order to suit the problem. If the problem is computationally 

expensive the tuning may take a considerable time, and would therefore have to take place 

with a simpler version of the actual problem of interest. The designer is assuming that the 

same algorithm with it's operators and settings will do just as well when more complex 

problems are introduced. It has been shown that most of the algorithms utilised with the 

plate problem generally perform well on coarse representations when utilising a single load 

case and a small number of design variables. However when they are applied to more 

complex higher dimensional problems, some of the algorithms notably the canonical GA 

and BGA deteriorate considerably in performance. Therefore the use of algorithms and 

operator settings based on a simple version may not be sufficient to solve more complex 

problems. 

4.2.2 Results for the Flat Plate Problems Utilising FEA 

As discussed earlier in the chapter the simplified model does not carry out an in-depth 

structural analysis and is therefore not as reliable as the finite clement method. As a result 

the designs produced by the simplified method must be considered high risk. If confidence 

in design performance is required then FEA should be utilised to provide a low risk 

detailed design solution. This confidence can only be achieved if there is also sufficient 

numbers of elements in order to allow accuracy of plate representation. Whilst providing 

increased confidence in the design solution it does so at the cost of greatly increased 
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computational expense. This next section of the chapter presents results on the utilisation 

of FE analysis model during evolutionary optirnisation. 

4.2.2.1 Single Load Case Problem 

Figure 4-15 shows the FEA plate simply supported continuously along edges on the y 

plane. A total central line load of 396N is equally distributed as forces on the nodes. Nodes 

on the outer edges are half the force of the inner nodes. The plate has a minimum thickness 

of lOmm and a maximum thickness of 13mm. There are three possible incremental steps of 

lmm each. The fixed parameters of the material are: flexural limit = 10N/rnm2
, density= 

2.2 X w·? Kg/mm3
, Poisson's Ratio = 0.2, Modulus of Elasticity = 14000. 111iS is a real 

world problem provided by the industrial partner. 

Figure 4-15 : Simply supported plate with a central load (utilising FEA) 
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Table 4-6 shows the information relating to two types of single load case test problems. 

The table highlights the considerable computational expense when performing a single 

evaluation even when utilising high performance workstations to perform the analysis 

(SUN Ultra Enterprise 4000). Due to the high computation of individual evaluations, the 

number of runs perfmmed and the.overall number of evaluations within each run had to be 

kept to a minimum in order to generate results in an acceptable period of time. As a result 

four runs and 3000 evaluations were performed on each problem case. The large CPU time 

expended on each evaluation demonstrates the need for keeping the total number of 

evaluations to a minimum. 

Number of Variables Number of Number Number of CPU time 

(grid size(x,y)) Load Cases of Nodes Elements (seconds I evaluation) 

48 ( 8x6) I 864 506 8.5 

200 ( 10x20) 1 2880 1786 43.3 

Table 4-6 : Computational expense for individual FE evaluations utilising a single load 
case 

When utilising PBIL higher learning rates for problems employing less than 50 variables 

results in premature convergence (Table 4-7). Based on results fTom expetiments with the 

complex stress model, in order to maintain diversity a learning rate of 0.1 is utilised. Figure 

4-16 shows the average best fitness of the 4 runs for the 48 variable problem. Rapid 

evolution by the PBIL algorithm is apparent, however due to its highly exploitive nature it 

converges prematmely, resulting in the CHC algorithm eventually exceeding it in 

performance. A feasible solution is found relatively early, however further weight 

minimisation seems to pose a problem for the PBIL algorithm (Figure 4-17). 

Test Number Best Fitness Best Weight Average Fitness Average Fitness (SD) 

Weight 

FEA_CHCl 1437.07 0 .143 1436.96 0.144 0.0880 

FEA_PBIL2 1436.65 0.145 1436.58 0.145 0.0645 

Table 4-7 : Results for 48 variables lload case problem 
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The learning rate is increased to 1.0 for the 200 variable, single load case problem (Table 

4-8). Figure 4-18 shows the average best solution of the 4 runs. It is interesting to note 

PBIL's superior performance in comparison to the CHC. A rapid evolution of fitness by 

PBIL is again apparent. Figure 4-19 shows that once a feasible region is located, the PBIL 

algorithm performs better than the CHC at identifying lower weight. PBIL requires 

approximately 1300 evaluations on average to arrive at comparable design solution to the 

one generated by the CHC at 3000 evaluations. In a typical run to arrive at comparable 

design solutions CHC requires approximately 55% greater CPU time than PBIL. 

Test Number Best Fitness Best Weight Average Fitness Average Fitness (SO) 

Weight 

FEA_CHC3 1434.72 0.150 1434.49 0.151 0.2043 

FEA_PBilA 1436.35 0.146 1436.04 0.147 1.8006 

Table 4-8 : Results for 200 variables 1 load case problem 

Research utilising the simpler model also showed the PBIL method to provide reduced 

performance on a single load case, low dimensional problems and increased performance 

on single load case, high di'men~ional problems in comparison to the CHC algmithm. 

These experiments therefore show to some extent that employing simpler analysis software 

can aid in the selection and optirnisation of evolutionary and adaptive algorithms, before 

moving to more computationally expensive analysis tools. 
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4.2.3 Multiple Load Case Problem 

Fi&rure 4-20 shows the FEA plate simply suppmted continuously along edges on the y 

plane. Load case 1 has a load of 396N equally distributed as forces on nodes except outer 

nodes which are half of those of the inner nodes. Load cases 2 and 3, each have a pressure 

load of 396N. As with the single load case the plate has a minimum thickness of lOmm and 

a maximum variable thickness of 13mm. There are three increment steps of lmm each. The 

fixed parameters of the mat~rial are: flexural limit = 10N/mm2
, density = 2.2 X 10-7 

Kg/mm3
, Poisson' s Ratio = 0.2, Modulus of Elasticity = 14000. This again represents a real 

world stmctural design problem supplied by the industrial collaborator. 

Figure 4-20: Simply suppmted plate with three load cases (utilising FEA) 
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Table 4-9 shows the information relating to the test problem. As with the single load case 

FEA problems, all runs are performed on a SUN Ultra Enterprise 4000 server with 6, 

167Mhz processors. Due to the high computational cost of individual evaluations, a 

maximum of 4 runs and 3000 evaluations were performed on each problem case. 

Number of Number of Number of Variables Number of CPU time 

Load Cases Nodes (&1fid size(x,y)) Elements (seconds I evaluation) 

3 864 48 ( 8x6) 506 14.5 

Table 4-9 : Computational expense for individual FE evaluations utilising three load cases 

Test Number Best Fitness Best Weight Average F Average Fitness (SO) 

Wt 

FEA_CHC5 1434.72 0.1.5017 1434.46 0.150858 0.360372 

FEA_PBIL6 1434.237 0.151445 1434.088 0.151841 0.13757 

Table 4-10 : Results for 48 variables 3 load case problem 

Table 4-10 shows the results of using the CHC and the PBIL algorithms for the test 

problem. A learning rate of 0.1 is utilised with the PBIL algorithm to maintain diversity. 

Figure 4-21 shows the average best fitness of the 4 runs for the 48 variable problem. The 

best average fitness refers to the fitness of the best individual in each of the runs being 

summated this figure is then divid.ed by the number of runs (i.e.4). Rapid evolution of the 

PBIL algorithm is again apparent, however in this case due to its highly exploitive nature it 

converges prematurely, resulting in eventual out performance by the CHC algorithm. A 

feasible solution is found relatively early, however the fmther minimisation of the weight 
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again poses a problem for the PBIL algorithm (Figure 4-22). CHC requires approximately 

2000 evaluations on average to arrive at comparable design solution to the one generated 

by the PBIL at 3000 evaluations. Therefore in a typicalmn to anive at comparable design 

solutions PBIL requires approximately 33% greater CPU Lime than the CHC. The 

behaviour of the algorithms on the 3 load case problem utilising the FEA and the simple 

complex stress mathematical models are again comparable. 
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4.3 Amended PB~ with a given population size (PB~_POP) 

One of the main problems with PBIL is premature convergence. A source of diversity in 

the traditional GA is the number of individuals in the population. As the population size is 

increased more information is available in the gene pool resulting in greater diversity. 

A new modified PBIL algorithm is presented in Figure 4-23 whlch introduces a population. 

The algorithm is similar to the compact GA [Harik et. al. 1997]. The compact GA proposes 

the generation of two individuals from the probabili ty vector, which are then put into 

tournament. The better performing. individual then updates the probability vector. 
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The algorithm proposed in this section utilises a population of individuals (Figure 4-23). 

The assumption is that by maintaining a population of individuals, the probability of 

premature convergence may be reduced, whilst still utilising PBIL's highly exploitive 

nature. Baluja and Caruana [ 1995] state that the number of samples to generate based upon 

each probability vector before an update is analogous to the population size of GA's. As 

with the traditional PBIL a real valued probability vector with values set to 0.5 is 

generated. The probability vector is utilised to create a population of binary encoded 

individuals where the probability .of generating a I or 0 is equal. The population is then 

assessed via the fitness function. 

The values in the probability vector gradually shift relative to the fitness of individuals in 

the population. The degree of variation of the probability (between 0.0 or 0.1) as in the 

• original PBIL algorithm depends upon the learning rate parameter. Updating the probability 

vector results in the generation of a new population and the cycle is continued. As the 

search progresses, entries in the probability vector move away from their initial settings of 

0.5 towards either 0.0 or 1.0 i.e. the binary representation of the individuals in the 

population are pushed towards that of the current best solutions. As with the original PBIL 

algorithm domain knowledge is not stored in the population but in the probability 

distribution. 
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******Initialize Probability Vector****** 
for i := l to LENGTH do P[i) = 0.5; 

***** Generate Samples ***** 
for i :=I to POPSlZE do 

sample_ vectors[i] := generate_sample_ vector_according_to_probabilities (P); 
evaluations[i] :=Evaluate_solution (sample[i]); 

best_ vector :=find_ vector_ with_best_evaluation (sample_ vectors, evaluations); 
worst_ vector := find_ vector_ with_ worst_evaluation (sample_ vectors, evaluations); 

***** Update Probability towards best solution***** 
fori :=I to LENGTH do 

P[i] :=P[i] * (1.0- LR) + best_vector[i] * (LR); 

*****Update Probability Away from Worst solution***** 
for i :=I to LENGTH do 

if (best_ vector[i] * worst_ vector[i] then 
P[i] :=P[i] *(1.0- NEGATIVE_LR) + best_vector[i] *(NEGATIVE_LR); 

***** Push each element in the Probability Vector towards 0.5 by a small amount***** 
************************** (Forgetting Factor) *************************** 
fori :=I to LENGTH do . 

P[i] :=P[il - FF * (P[i]-0.5); 

*****Mutate Probability Vector***** 
fori := I to LENGTH do 

if (random (0,1)< MUT _PROBABlUTY) then 
if (random (0, I) > 0.5) then mutate_direction :=I 
else mutate_direction :=0; 
P[i] :=P[i] * ( 1.0- MUT _SHIFT)+ mutate_direction * (MUT _SHIFT); 

USER DEFINED CONSTANTS: 
POPSIZE: the number of individuals in the population. 
LR: the learning rate, how fa~t to exploit the search performed. 
NEGATIVE_LR: the negative learning rate, how much to learn from negative examples. 
LENGTH: the number of biL~ in a generated vector. 
FF: the forgetting factor. 
MUT_PROBABILITY: the probability for a mutation occurring in each position. 
MUT _SHIFT: the amount a mutation alters the value in the bit position. 

Figure 4-23: The amended PBlL algorithm (PBlL_POP) 
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4.3.1 Comparison of Results for PBIL_POP Utilising the Complex Stress Model 

PBIL with a population performs better than the original PBIL algorithm on lower 

dimensions utilising a leaming rate of 1.0 on a single load case (Figure 4-25). Intermediate 

populations i.e 20 40 and 60 seem to work best (Figure 4-24). As explained earlier in tltis 

chapter, fewer feasible design solutions exist due to lower dimensions and as a result the 

PBIL with a population is more effective. On the higher dimensions and still utilising a 

single load case it's pe1f01mance is exceeded by that of the original PBIL algorithm, 

because there are more feasible designs the more highly exploitive nature of the original 

PBIL algmithm outperforms the modified PBIL with a population . 
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Figure 4-24: Effect of different population sizes on amended PBIL algorithm for a single 

load case. 
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Figure 4-25 : Effect of different population sizes on amended PBIL algorithm for single 

load case (learning rate =1.0) 

On the more complex 3 load case problems where exploration of the search space is of 

great importance, the modified PBIL fails to provide better solutions when compared to the 

miginal PBIL algorithm. In Table 4-11 five learning rates are explored. The more complex 

of the problems such as the 20x20 and 24x24 3load case plates, with an upper limit of 18 

mm show improved results when utilising lower learning. This is due to better exploration 

of the search space. However altering the learning rates (Table 4-11) or the population 

sizes (Table 4-12) does not seem to have a major impact upon the algorithm's relati ve 

performance. 
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( 1 load case) (3 load cases) (3 load cases 

Learning 20x20 20x20 20x20 20x20 24x24 24x24 

Rate (24mm) (l8mm) (24mm) (l8mm) (24mrn) (18mm) 

1.0 fitness 1454.046 1462.435 1415.509 1062.597 1393.53 1 978.8119 

weight 1.099 1.082 1.203 1.086 1.271 1.247 

0.8 fitness 1446.96 1456.797 1407.447 12 15.169 1388.842 1064.932 

weight 1.119 1.096 1.228 1.23 1.286 1.26 

0.6 litness 1438.05 1450.825 1402.382 1238.287 1384.261 1068.923 

weight 1.14 1 1.108 1.243 1.244 1.302 1.261 

0.4 fitness 1429.837 1444.043 1392.482 1354.494 1377.309 1115.695 

weight L.164 1.127 1.273 1.249 1.327 1.265 

0.1 fitness 1389.8 11 1420.203 1358.223 905.2703 135 1.105 536.3241 

weight 1.284 1.19 1.397 1.263 1.424 1.245 

Table 4-11: Amended PB[L (with population) (PBrL1) Population Size= 20 

Population Size 20x20 (24mm) 20x20 24x24 (24mm) 24x24 (l8rnm) 
(l8mm) 

20 fitness 1415.509 1062.597 1393.53 1 978.8 119 
weight 1.203 1.086 1.27 1 1.247 

40 fitness 1420.533 1243.3 12 1401.1 1005.725 
weight 1.189 1.207 1.246 1.246 

60 fitness 1412. 136 1132.855 1398.176 857.7043 
weight 1.213 1.223 1.256 1.243 

lOO fitness 1400.057 98 1.5387 1383.774 711.7879 
weight 1.249 1.247 1.303 1.241 

Table 4-12: Amended PBrL (with population) (PBrL1) (3 load cases) learning rate= 1.0 

4.4 Other Techniques 

The messy genetic algotithm [Goldberg et. al. 1991] was considered but was not included 

in the test suite because of the co~putational expense associated with its two evolutionary 

phases. Messy Genetic Algorithms (mGA's) use variable-length strings that may be over or 

under specified with respect to the problem being solved, (this is why they are called 

messy), and also have two distinct phases. The first Primordial Phase ensures that good 
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building blocks are enriched through a number of generations of self reproduction without 

genetic action. Selection alone is run to enrich population with high proportion of the best 

building blocks. The second Juxtapositional Phase is closer to the canonical GA process in 

that genetic operators such as mutation are used. However the mGA uses cut and splice 

operators as opposed to the classical crossover. 

A preliminary study in the applica~on of GP to the generation of optimal plate surfaces has 

been undertaken by Birkenhead [1997]. The method was found to be computationally 

expensive, requiring in some cases 17 times more evaluations than the CHC algorithm to 

produce a design comparable in performance. However, this was a short-term preliminary 

study and further research is required to better assess the GP approach. 

4.5 Summary 

Many researchers have focused on the comparison of an evolutionary algorithm in relation 

to a canonical GA (Baluja 1994, Eshelman 1991). This chapter realising the limitations of 

the canonical GA has compar~d the performance of different high performance 

evolutionary algorithms. 

It has been shown that EA's are extremely effective at solving the flat plate problem. The 

use of GA's for solving the plate problem does however involve a large number of calls to 

the analysis model. This chapter has highlighted that the use of more advanced GA's may 

help reduce the overall number of calls, and thus make it feasible to integrate complex 

models such as FEA with an EA. 

101 



The single load case promotes the· generation of material concentrations in one area of the 

plate and it is suggested that the highly exploitive characteristics of PBIL is better suited to 

a less complex distribution of material upon the plate than that required by the three load 

case problem. With three load cases the material is distributed across a wider area of the 

plate to best satisfy stress characteristics. Moreover a reduction in plate depth results in 

more stress violations across the plate resulting in fewer feasible design solutions. It is 

therefore assumed that the greater diversity of the CHC algorithm results in the better 

identification of this more complex material distribution. The rapid convergence 

characteristics of PBIL prevent it from fully exploring the search space, which eventually 

results in the algorithm premature converging. The performance of the CHC GA is 

extremely competitive in comparison to the other algorithms. It is extremely robust in the 

sense that little, if any parameter tuning is required to achieve good results. 

The computational demand increases with suuctural complexity i.e. number of elements, 

number of load cases. The computational expense to arrive at a feasible solution depends 

upon a number of factors such as the level of representation of the plate, loading 

conditions, constraints and the type of optimisation algorithm utilised. Depending on the 

factors, the search techniques perform in different ways. We need to select a method that 

yields relatively good results across a broad, spectrum of problem configuration and not 

limited to one that only provides good results on a particular aspect of the problem through 

extensive operator tuning. To keep computational expense to a minimum during 

optimisation (when utilising computationally expensive models) designers often restrict 

themselves to either optimising coarse representations of the design or sections of a 

detailed design by focusing on the problem areas so as to reduce the overall number of 

variables. 
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The alg01ilhms discussed in this chapter show a degradation in performance with increased 

numbers of elements on the plate (>I 00) and multiple load cases. The following chapter 

discusses ways in which these problems may be overcome. 
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5. MULTI -LEVEL SEARCH STRATEGIES 

Chapter 4 has illustrated a degradation in perfonnance as plate resolution (i.e. number of 

elements) is increased. In order to solve realistic problems a strategy is required which can 

handle large numbers of design variables (i.e. > 100). This chapter proposes methods which 

can tackle such problems by utilising eo-evolution of multi-representations. 

In many optimisation problems there may exist a number of ways in which the problem can 

be represented. An optimisation algorithm can utilise coarse or fine representations to 

produce design solutions. A typical example may be a coarse FEA mesh as compared to a 

refined one for stress analysis. In relation to the plate problem, the coarse representation 

would provide a preliminary design solution which must be considered high risk due to the 

low level of accuracy. However such a representation will be relatively inexpensive in 

computational tenns. Conversely a fine representation provides a low risk detailed design 

solution due to a higher accur~cy of plate representation, but also incurs greater 

computational expense. However a combination of simple (coarse) and complex (fine) 

representations may lead to a design which is as good as those resulting from a single fine 

representation, but at a lower computational cost. 

Evolutionary design optimisation may involve search utilising different numbers of 

variables. This presents an oppmtunity for the development of a strategy that would exploit 

the differing levels of a problem representation. A strategy that gradually increases in 

problem dimensionality as the search process progresses would take advantage of this 

concept. As the plate is a single component it is not reliant on the design of any other 
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associated assemblies of components, it may therefore be possible to design from 

preliminary through to detailed design using evolutionary techniques. As coarse 

representations are computationally less expensive savings can be made in terms of 

reduced evaluation time. As the solutions for coarse representations evolve more rapidly, 

these may be used to assist the more refined representations in order to reduce the number 

of calls to the evaluation function involving the computationally expensive fine 

representation analysis. To accomplish this the developed technique must successfully 

progress from a coarse representation to a fine one. The following sections describe three 

different processes which utilise such multi-level representations for the plate problem. The 

first termed Dynamic Shape Refinement (DSR) is a sequential technique developed by 

Veketia and Parmec [ 1997]. The other two techniques namely the Modified Injection 

Island Genetic Algorithm (MiiGA) and the Dynamic Injection Island Genetic Algmithm 

(DiiGA) also developed by Vekeria and Parmee [1997] involve concurrent processing of 

models of different resolutions. All three techniques use the CHC GA for the optirnisation 

phase. 

5.1 Dynamic Shape Refinement (DSR) 

The Dynamic Shape Refinement was developed at the Plymouth Engineering Design 

Centre by Veketia and Parmce [Vckeria & Parmee, 1996] and is loosely based on finite 

element adaptive shape rcfinemertt [Kohli & Carey, 1993]. The DSR technique mimics 

natural evolution in that simple life forms arc initially evolved which become increasingly 

more complex through several generations, the higher life forms displacing the lower. The 

DSR technique utilises problem representation of varying resolution, starting with a coarse 

representation which gradually increases in resolution until the desired level of 

representation is obtained (Figure 5-1). The technique also imitates the process by which a 
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de igner may tackle a design problem. The designer would initia lly develop a simple 

(coarse) design, which he or she would gradually refine by adding more details (fine). 

Low Computational Expense . 
"High Risk" 

High Computational Expense 
"Low Risk" 

1 

1 

Coarse 
Representation 

Medium 
Representation 

Fine 
Representation 

Figure 5-1: An Example of the Dynamic Shape Refinement Technique utilising Three 

Levels of Representation 

The size of the optimisation problem can be varied by increasing (or decreasing) the 

number of variables as the shape evolves. Generally the initial hape is relatively coarse 

and high litness solutions may be obtained within a relatively small number of evaluations. 

The coarse representation also results in less costly analytic computation. These solutions 

are however high risk due to lack of resolution associated with the small number of 

elements. The de igner must decide on the level of accuracy required in order to determine 

the total number of representation levels to utilise. The evolution of a representation ceases 

once convergence or the maximum permissible number of function evaluations for a 

particular level is reached. The maximum number of function evaluations may be 
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representative of that normally required for that level of representation. There are three 

options as progression is made from the coarse to more fine level representations: 

1. Reduce the number of function evaluations as finer resolution levels are computationally 

more expensive. 

2. Increase the number of function evaluations and expend a larger amount of computation 

of resource in fine tuning the high resolution designs as coarse levels are less accurate. 

3. Keep the number of evaluations constant on all levels of representations. 

Once search at the coarse level ceases the population is mapped onto a finer more accurate 

representation and the evolutionary process allowed to continue until the next level of 

representation is introduced. The mapping of encoding attempts to focus search around 

"good" solutions that have already been discovered utilising the coarse representation. The 

final population of the coarse representation becomes the initial population of the next 

level, which is re-evaluated once it has been mapped into a finer representation. There arc 

however other options other then mapping the whole of the coarse population on to a finer 

population. The method used is based on the re-initialisation phase of the CHC algorithm. 

Here the best or a randomly selected individual from the coarse representation is mapped to 

the next level. The individual is then copied M times (M = population size). Each new 

individual is created by flipping a fixed proportion (e.g., 35%) of the template's bits chosen 

at random. One instance of the best is added unchanged to the new population. Evolution 

takes place in only one direction from coarse to fine representations. 
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A simple 3 level representation is presented below: 

Representations: 

a) 5x5=25 elements 

b) lOx 10= 100 elements 

c) 20x20=400 elements 

Process: 

• Commence evolution of representation a). 

• Stop evolution of a) if it has converged or reached maximum permissible number of 

evaluations. 

• Map population a) to produce population b), and continue evolution. 

• Stop evolution of b) if it has converged or reached maximum permissible number of 

evaluations. 

• Map population b) to produce population c), and continue evolution. 

• Stop evolution if c) converges or reaches maximum permissible number of evaluations. 

5.1.1 Mapping of Encoding 

When using the DSR technique the issue of mapping a low resolution encoding to a higher 

resolution must be addressed as there is an increase in the size of the chromosomal 

representation. The high resolution model must be as close as possible in terms of 

representation to its more coarse counterpart. This may be achieved relatively easily in the 

case of the plate problem, so long as there is one to one mapping in one direction (i.e. from 

coarse to fine representation) the number of elements may be multiplied by two or four. 

Figure 5-2 shows 2 grid representations (2 x 2 and 4 x 4) which illustrate how the mapping 
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of an individual is accomplished from a 4 to a 16 element representation. In this case the 

number of elements are multiplied by 4 every time a new representation is introduced. The 

coiTesponding depth of a in the 4 element representation is mapped onto a1, a2, a3 and a4 

in the 16 element representation. These then form the new valiables, as the next level of 

representation is optimised. The other components b, c and d are migrated in the same 

manner in order to form a complete individual. 

c3 c4 d3 d4 
c d 

c1 c2 d1 d2 

a3 a4 b3 b4 
a b 

a1 a2 b1 b2 

Figure 5-2: The migration of encoding 

5.1.2 Discussion and Results for the DSR Technique 

The DSR technique allows a major part of the optimisation to be perfoiTned during the 

early coarse levels, with " fine-tuning" being canied out at the finer levels. The solution 

should not only be of minimum weight within relevant stress criteria but also be considered 

low-risk in terms of the final resolution of plate representation i.e. there is a sufficiently 

high number of elements to provide confidence in the stress evaluation. 
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shows the evolution curve for the CHC, PBIL and DSR CHC processes. Details of the 

algorithm and plate representation follow: 

Stand Alone CHC and DSR CHC: 

Population size = 40; (DSR population kept constant on all levels of 

representations) 

Divergence rate= 30%; 

Maximum number of restarts= 3 

Stand alone CHC plate resolution = 20x20 elements. 

DSR CHC plate resolutions = 5x5, lOxlO and 20x20 elements (whole population is 

mapped during transition from one representation to another) 

Stand Alone PBIL 

Positive Learning Rate= 1.0 

Negative Learning Rate= 1.0 

Forgetting Factor= 0.005 

Mutation Shift = 0.05 

Mutation Probability = 0.02 

Trials per Iteration = 40 

Number of Vectors to Update from= 1 

Stand alone PBIL plate resolution= 20x20 elements 

Total Number of Calls to the Model= 10000 (unless otherwise stated) 
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Figure 5-3: Performance of stand-alone CHC, CHC DSR and PBIL for 20x20 plate (lload 

cases). Max = 24rnm. 

The evolution curves are shown for the fittest individual found from the 10 runs. The high 

fitness achieved dwing the early stages of the DSR CHC approach must be treated with 

caution because fitness is measured in terms of weight versus stress violation and the 

coarser representations although seemingly of high fitness are also high-risk due to the lack 

of resolution during stress evaluation. A higher resolution stress evaluation returns a 

greater degree of violation and a related degradation of fitness as shown by the dips in the 

DSR curve as finer resolutions are introduced. The first dip in the graph represents the 

transition from a 5x5 representation to a lOx 10 one. The second represents the transition 

from 1 Ox 10 to a 20x20 representation. It can be seen that as a result of the highly fit genetic 

material from the 10x 10 representation seeding the 20x20 representation fitness achieved 

fTOm the DSR technique quiclqy exceeds that of the single population GA. 
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In comparison the CHC and PBIL single population representations (20x20 plate) show a 

constantly improving fitness throughout the evolutionary process. Comparison of the 

20x20 representations of the DSR (Table 5-l) approach with those of PBIL and CHC 

(Chapter 4) show the DSR acltieving a ltigher fitness than the single representation 

approach with far fewer calls to the analysis routine. Therefore to some extent the DSR 

satisfies the primary objectives of the research i.e. feasible design solution with minimum 

weight and number of calls to the fitness function. 

DSR 

Test Number Plate size Max upper Load Best Best Fitness Average Average 

limit ca~es Fitness Weight (SD) Fitness Weight 

DSR_ 1 20X20 24 1 1524.37 0.95 14.11 1496.92 1.01 

DSR_2 20X20 18 I 1477.41 1.05 6.70 1466.10 1.07 

DSR_3 24X24 24 I 1506.58 0.99 12.22 1479.45 1.04 

DSR_4 24X24 18 I 1497.95 1.00 6.49 1487.37 1.03 

DSR_5 20X20 24 3 1452.05 1.1 1 7.60 1444.03 l.l3 

DSR_6 20X20 18 3 1446.51 1.12 74.82 1416.48 l.l4 

DSR_7 24X24 24 3 1449.99 1.11 8.60 1439.10 1.14 

DSR_8 24X24 18 3 1453.41 1.10 5.02 1446.47 1.1 2 

Table 5-1: Results for the DSR technique utilising various problem cases (no. of runs= 10) 

Figure 5-4 shows the evolution c.urve of the DSR process utilising the CHC algmithm. 

Details of the algorithm and plate representation follow: 

Stand Alone CHC and DSR CHC: 

Population size = 40; (DSR population kept constant on all levels of representations) 

Divergence rate= 30%; Maximum number of restarts = 3 

DSR plate resolutions= 6x6, 12x12 and 24x24 elements 
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Stand alone CHC plate resolution = 24x24 elements. 

A high fitness is once again achieved dUling the early stages of the DSR approach. The first 

dip in the graph represents the transition from a 6x6 representation to a 12x12 one. The 

second represents the transition from 12x12 to a 24x24 representation. It can be seen that 

as a result of the highly fit individuals from the 12x12 representation the fitness of the DSR 

technique quickly exceeds that of the single population evolutionary methods. 
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Figure 5-4: Petformance of stand-alone CHC, DSR and PBIL for 24x24 plate (1 load case). 

max 24mm 

Table 5-1 shows the results for the DSR technique. It shows the final best fitnesses utilising 

400 elements and a single load ·case problem. These results are comparable to those 

achieved with the single population CHC and PBIL methods shown in chapter 4, but they 

are however achieved with less computation due to the use of coarser representations 

113 



(Figure 5-13 and Figure 5-7). On the finer 576 element representation (24x24 plate) the 

final best fitnesses are far superior to those acrueved using the CHC and PBIL methods. 

This indicates that the DSR technique achieves a better compromise between exploration 

and exploitation of the search space on single load case problems of high dimension. 

On the three load case problems the results again show comparable final best fitnesses to 

those achieved by CHC and PBIL. As in the single load case problems they are achieved at 

less computational cost through the use of less costly coarse representations. Unlike the 

CHC and PBIL methods, the standard deviations shown in Table 5-l indicates that the 

DSR technique also provides more robust solutions to the problem involving three load 

cases, 24x24 plate and upper material limit of 18mm. 
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Figure 5-5: Performance of stand-alone CHC, DSR and PBIL for 20x20 plate (3 load 

cases) max 24rnm 
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In summarising the results it can be said that the DSR technique presents a novel way of 

dealing with a large numbers of variables and reducing the number of calls to the model 

during a GA run. By utilising a combination of simple and complex representations the 

DSR technique on most of the problems described leads to a design which is as good as 

those resulting from those of.a single fine representation, but at lower computational cost 

through the utilisation of coarse representations. 

5.2 Parallel Genetic Algorithms 

The task of finding an optimal solution for a complex structural analysis problem poses a 

considerable challenge to the engineer, not only because of high dimensionality but also 

because of the high computational expensive. There are two ways in which to lessen the 

computational expense. Firstly to accelerate convergence of individual algorithms whilst 

minimising the overall number of evaluation calls and thus CPU time; secondly the 

distribution of the problem through the utilisation of parallel architectures. The research 

described here represents a combination of these two approaches. 

This section presents a method by which multi-level representations are used in a parallel 

manner in an attempt to make further improvements in performance. The Injection Island 

GA (iiGA) [Goodman et. al., 1997] is a technique that maintains multiple interacting sub

populations of different resolution. However, unlike the DSR technique which is sequential 

in nature, seveml levels of representations evolve at the same time, with occasional 

migration from one sub-population to another. The technique presented not only reduces 

the calls to a model but is also very accessible to the parallel method. 
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Parallel Genetic Algorithms (PGA) address the convergence problem of single population 

GA's by subdividing the populations and evolving the sub-populations independently so 

they are more likely to explore different portions of the search space. The main motivations 

to use PGA' s are : 

- to increase speed and efficiency 

- to allow the application of the GA to a larger problem 

- to try to follow biological metaphor more closely 

Various researchers have utilised PGAs for complex structural design problems. For 

instance Leite (1996) applied many parallel models and environments to the design of a 

cable-stayed bridge. The studies show that, especially for large engineering problems, the 

parallel GA performs better than serial algorithms both in execution speed and quality of 

solution. Doorly et a! [1996] utilised parallel genetic algorithms to reduce computational 

expense for optirnisation in computational fluid dynamics (CFD) for the design of optimal 

airfoils. Poloni et al [1996] utilise parallel GA' s for aerodynamic design optimisation 

problems. A massively parallel Cray computer is utilised to reduce the computational effort 

required for the accurate evalua~ion of a design configuration. Goodman et. al. uses 

injection island genetic algorithms (iiGA) for the design of composite cantilever plates 

[1996] and to optimise the Specific Energy Density (SED) of elastic flywheels [1997]. The 

iiGA searches at various levels of resolution in parallel within a given space. Adeli and 

Cheng [ 1995] use the parallel GA for the optirnisation of high rise building structures and 

space stations with several hundred members. 

There are several types of Parallel GA's which differ in the nature of the population 

structure and I or the method of selection. 
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5.2.1 Micro-grain GA (mgGA) 

Micro-grained GA's [Punch et. al. 1993] maintain a single population with multiple 

processors being used to run the evaluation function. No migration is employed. Every 

processor that is used (up to the number of members in the population), results in an 

increase in performance. If fewer processors than the number of members of the population 

are available, then each processor is responsible for processing a subset of the population, 

making the populations evaluation time equivalent to the evaluation time of the most costly 

subset. Genetic operations such as crossover and mutation are typically conducted 

sequentially by a single "master" node which controls the system. The Micro-grained GA is 

especially useful when the evaluation function is computationally expensive as in the case 

of FEA and CFD packages which may take in the order of several minutes for a single 

evaluation. The mgGA's do not address the problem of premature convergence, their 

primary goal is speed in comparison to sequential GA's. 

5.2.2 Fine-Grain GA's (fgGA 's) 

Fine Grained GA's (fgGA's) [Manderick and Spiessens, 1989] are sometimes also termed 

massively parallel GA's. A large population is divided into a series of smaller sub 

populations by placing one individual at each location on a toroidal 2-dimensional grid. 

With each individual assigned this way, the grid locations are not necessarily related to the 

individual's solutions, rather they are arbitrary designations used to perform selection. 

Sub populations arc defined in terms of neighbourhood on the grid. One method is to 

utilise a fixed size neighbourhood where for any given location (individual) a sub 

population would be that location plus its eight immediate neighbours. With this method 
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there is a natural local mating scheme within each sub population. The entire population 

may be viewed as numerous small sub-populations which overlap. This results in a mixing 

of individuals between the sub-populations. Sub populations that are within a close locality 

(relative to grid size) will exert more of an influence on each other than those a greater 

distance apart, whilst the more distant sub populations should evolve comparatively unique 

chromosomes. High connectivity between neighbours increases the spread of high fitness 

individuals, making sub-populations susceptible to domination and perhaps premature 

convergence. 

5.2.3 The Distributed Genetic Aigorithm (DGA) 

Tenese [1989] proposed the distributed genetic algorithm (DGA) also termed coarse 

grained GA as a way of efficiently parallelising the canonical genetic algorithm (CGA). 1n 

the DGA, the global population is divided into several sub-populations, one per processor 

(Figure 5-8). Inter-processor communication occurs during the migration phase at regular 

intervals (i.e. migration interval). During migration, a fixed proportion of each sub

population is selected and sent to another sub-population. In return, the same number of 

migrants are received from some other sub-population and replace individuals according to 

some criteria. This migration can occur either asynchronously or synchronously. Because 

the time-consuming measurement. of fitness is performed independently at each separate 

processing node, this approach to parallelisation delivers an overall increase in 

performance that is nearly linear with the number of independent processing nodes. 
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Ring Migration Topology Neighbourhood Migration Topology 

Figure 5-8 : Two examples of PGA topologies 

5.2.4 Cooperative eo-evolutionary Optimisation 

The use of multiple interacting sub-populations has been widely explored as an alternate 

mechanism for eo-evolving niches using the distributed GA. Co-operative eo-evolutionary 

algmithms (CCA) [Potter and De Jong, 1994] combine and extend these ideas in several 

ways. A CCA consists of a collection of independent sub-populations, each attempting to 

evolve sub-components (species) which are useful as modules for achieving more complex 

structures. The CCA evolves each species (function variable) in a round robin fashion 

using the cunent best values from the other species. This is quite similar in style to 

numerical optimisation techniques which proceed by optimising one function vruiable at a 

time while holding the other variables constant. Unlike the island model, the individuals 

from the separate sub-populations do not interbreed. Complete solutions are obtained by 

assembling representatives qom each of the species present. Credit assignment at the 

species level is defined in terms of the fitness of the complete solution in which the 

members participate. This provides evolutionru-y pressure for species to co-operate rather 

than compete. However competition still exists among individuals within the same sub-
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population. Such a procedure works well on problems whose variables are reasonably 

independent, but difficulties arise with problems such as that of the plate which has high 

interacting variables i.e. slight perturbation of a single variable may have an effect on the 

overall fitness of the design. 

Barbosa [1997] proposes a eo-evolutionary GA for solving structural optimisation 

problems. Two GA's are run independently. A GA evolves for a certain number of 

generations on population A while population B is kept frozen. The GA is then allowed to 

operate on population B while population A is kept frozen. The cycle is repeated n number 

of times. The fitness is based on function f(x,y) where x is taken from population A and y 

from population B. As a result the fitness of each individual in one population depends on 

all individuals of the other population. 

5.3 The Injection Island GA (iiGA) 

As highlighted in section 5.2 parallel processing is often used to increase the speed of 

convergence. However, before introducing parallel architectures it is extremely important 

to develop and optimise the underlying adaptive algorithms with respect to their efficiency, 

effectiveness and overall robustness. 

The injection island architecture (iiGA) [Goodman et. al., 1996] offers a concurrent rather 

than a sequential shape refinement process. The iiGA is an extension of the coarse grained 

PGA, whereby lower resolution representations are explored on some islands, which inject 

approximate solutions into higher resolution populations for further refinement. The iiGA 

is therefore characterised by: (1) sub-populations using different data representations and 

(2) exchange of genetic material one way. To illustrate the technique, an example of an 
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iiGA topology is shown in Figure 5-9. In this figure each circle represents a separate sub

population or "island". Sub-population at islands 1 and 2 use a low resolution 

representation for problem solutions. Best results from islands 1 and 2 are migrated to 

islands 3 and 4 respectively at a set number of evaluations. Sub-populations at islands 3 

and 4 employ a medium resolution representation, and individuals injected into these sub

populations from islands 1 and 2 are expanded as appropriate to the new higher resolution 

representation. Similarly, individuals evolved on islands 3 and 4 are injected into the sub

populations at islands 5 and 6 respectively, and expanded into this higher resolution 

representation. Island 5,6,7,8,9,10 form the basis of the more traditional island GA, 

exchanging individuals at the same, highest resolution at a set number of evaluations. 

Resolution 
Low Resolution 

Medium Resolution 

High Resolution 

Figure 5-9 : Michigan Injection Island Topology 

Goodman et. al., [ 1997] utilised the iiGA in a distributed environment where numerous 

sub-populations of different representations exist each on individual processors. The 

objective is a reduction in overall run time whilst maintaining diversity. However, instead 

of reducing overall time of the tun through the use of multi-processors an alternative 

architecture is introduced here that borrows from both DSR and Michigan's iiGA. 
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The iiGA as with the DSR technique offers a method of reducing calls to the model by 

utilising various levels of representations. However iiGA's concurrent evolution of the 

different levels of representations, ensures that feasible design solutions are available 

relatively early in the search process thereby aiding a further reduction in run times. 

The architectures described differ to those used by Goodman et. al., [1997]. Firstly the sub

populations are not distributed, they are contained as subsets of each population. The flat 

plate is represented by a number of different resolution grids each resolution being 

allocated to a population subset. Members of each sub-population are evaluated one at a 

time. Secondly relatively few sub-populations are utilised in comparison to typical 

implementations of Michigan's iiGA. The overall number of sub-populations have been 

reduced in order to decrease the number of calls to the model. Each level of plate 

representation is usually represented by one sub-population at the start unlike Michigan's 

iiGA, which may have several sub:populations for a given level. 

Due to these differences and to avoid confusion the technique will be referred to as the 

Modified Injection Island GA (MiiGA). The objective is to establish eo-evolutionary, 

multi-level representation processes with appropriate migration regimes that support the 

design of single components from preliminary through to detailed design. 

5.3.1 Application of MiiGA's on the Plate Problem 

This and following sections focus on the use of multiple representations as a method for 

maintaining genetic diversity and_ reducing the number of calls made to an evaluation 

function. 
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When implementing an MiiGA the designer must address certain issues such as: 

• The number of individuals to migrate 

• Which individuals to migrate (the best or arbitrary ones) 

• Which individuals to replace (the worst or arbitrary ones) 

• Synchronous or Asynchronous migration of individuals 

• Exchange between neighbours or between arbitrary subpopulations. 

A 3 level MiiGA representation is presented below: 

Representations: a) 5x5=25 elements b)IOxlO=IOO elements c)20x20=400 elements 

Process: 

• Commence eo-evolution of representations a) and b) and c). 

• Migrate fit individuals from a) to b), a) to c) and b) to c) every n evaluations 

• Continue the process until maximum number of restarts or maximum number of 

evaluations has been reached 

The solutions of the coarse design representations arc injected into the more detailed 

designs for fine grained refinement. The coarse migrated individual must therefore be 

converted to the required level of representation before migration. this is accomplished in 

the same manner as outlined in section 5.1.1. Migration of information is from low to high 

resolution at a set number of evaluations. Figure 5-10 shows the eo-evolution of 3 

representations 3x3, 6x6 and a 12x 12. Individuals are migrated from 3x3 to 6x6, 3x3 to 

12xl2 and 6x6 to 12x12 at a pre-set number of evaluations (this is normally 100 on most 

problems unless stated otherwise). Migration allows the passing of highly fit schemata by 

injecting the best individuals that have evolved from a proportionally smaller search space 

into higher resolution representations replacing the worst individuals present at that time. 

There are a large number of possibilities when deciding the migration method to utilise. 

The research does not discuss the best migration methods to use. 
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Subpopula~on 1 Subpopulation 2 Subpopulation 3 

Figme 5-10: Migration between subpopulations 

The fittest individual from the coarse representation is selected for migration into the finer 

representations, replacing the least fit in those subpopulations. Each subpopulation passes 

the fittest individual to all higher resolution subpopulations. However other strategies may 

be used such as : 

• Every subpopulation passing individuals to only the finest subpopulation 

• Every subpopulation passing indi victuals only to its neighbour 

• Every subpopulation passing individuals to both its neighbom and the subpopulation 

containing the highest resolution. 
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MiiGA 

Test Number Plate size Max upper Load Best Best Fitness Average Average 

limit cases Fitness Weight (SO) Fitness Weight 

MiiGA_I 20X20 24 I 1454.30 1.1 11.02 I438.36 1.14 

MiiGA_2 20X20 18 ·1 1471.09 1.06 8.06 1459.78 1.09 

MiiGA_3 24X24 24 I 1451.3 1 1.1 1 11.43 1421 .04 1.19 

MiiGA_4 24X24 18 I 1459.28 1.09 9.87 1448.44 1.12 

MiiGA_5 20X20 24 3 1443.89 1.13 18.01 1417.03 1.20 

MiiGA_6 20X20 I8 3 1451.24 l.l i 190.11 1374.58 1.16 

MiiGA_7 24X24 24 3 1387.80 1.29 4.92 1380.08 1.32 

MiiGA_8 24X24 18 3 1295.28 1.15 265.37 848.35 1.2 1 

Table 5-2 : Results for MiiGA utilising various problem cases (no. of runs= 10) 

Figure 5-11 and Figure 5-12 illustrates the effect of CHC integration with the MiiGA 

architecture in tetms of the best fitness of a stand-alone CHC GA of 40 chromosomes (400 

elements) and an MiiGA using 3 sub-population islands (consisting of 25, 100 and 400 

elements) of 20 chromosomes each. The curve displayed for the MiiGA represents the 

fittest individual found from the 10 runs in the fi nest sub-population (400 elements) 

utilising a single load case. The number of evaluations is the summation of all evaluations 

of the sub-populations. Rapid progress is apparent when compared with the s ingle 

population CHC GA. This is due to the injection of high performance individuals fTom the 

coarse representations. Rapid progress is also apparent in comparison to the single 

population CHC GA when using 3 sub-population islands on a single load case 24x24 

variable plate problem ( FigUI:e 4-13 ). 
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Figure 5-11: Performance of stand-alone CHC GA and MiiGA CHC (20 x20 1 load case) 
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Figure 5- 12: Perf01mance of stand-alone CHC GA and MiiGA CHC (20 x20 1 load case) 
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Figure 5-13: Performance of stana-alone CHC GA and MiiGA CHC (24 x24 1 load case) 

max 18mm 

On the more complex problem utilising three load cases (20x20 plate with an upper limit of 

24mm on material), the MiiGA fails to produce final design solutions as good as those 

resulting from the single population methods or the DSR technique (Figure 5-14). However 

a more rapid progress is apparent in comparison to the single load case problem. The curve 

displayed for the MiiGA represents the fittest individual found from the 10 runs in the 

finest sub-population (400 ele.ments). 
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Figure 5-14: Performance of stand-alone CHC GA and MiiGA CHC (20 x20 3 load cases, 

max. upper limit = 24mm) 

On the most complex problem utilising three load cases with an upper limit of 18mm on 

material , the MiiGA fails to produce feasible design solutions. Figure 5-15 illustrates the 

MiiGA consisting of 6x6, 12xl2 and 24x24 grids of 20 chromosomes each. The curve 

displayed for the MiiGA represents the finest sub-population (576 elements). Rapid 

progress is again apparent when compared with the single population CHC GA. The single 

representation CHC approach does however eventually outperform the MiiGA in tetms of 

maximum fitness. This is due to the fast convergence of the lower resolution MiiGA 

representations limiting the injection of useful material into the higher resolution 

populations which eventually results in a stagnation of the eo-evolutionary process. Due to 

this reason the average best solution after 10,000 evaluations is not as good as those from 

the single population CHC, PBIL or DSR techniques. The initial motivation for 

129 



implementing the desctibed arcllitecture was that coarse representation may still have 

sometlling to contribute during tl1e latter stages of search process. 
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Figure 5-15: Performance of stand-alone CHC GA and MiiGA CHC (24 x24 3 load cases, 

max upper limit =18 mm) 

In summary tile MiiGA manages to locate feasible design solutions for a single load case 

problem, producing a final fitness which is not as good as those produced by tile CHC, 

PBIL or DSR metl10ds. On tile more complex problems utilising multi-load cases the final 

design solutions are again not as good as tile CHC, PBll.- or DSR techniques due to 

stagnation of fue eo-evolutionary process. This is due to fue coarse representations 

continued evolution, even tllough they have tittle to cont1ibute during tile latter stages of 

tile design process. The advantage however in using tile MiiGA is fuat feasible design 

solutions especially on simpler problems evolve faster due to concwTent evolution and are 
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therefore available earlier in the design process, thus saving computational effort and 

calendar time. 

5.4 Dynamic Injection Island GA (DiiGA) 

In order to address the stagnation problem a dynamic aspect has been introduced to the 

MiiGA paradigm by Vekeria and Parmee. The Dynamic Injection Island Genetic Algorithm 

(DiiGA) method of representation addresses the problem of stagnation as discussed in the 

previous section. The technique is a combination of the DSR and iiGA techniques. Two or 

more levels of representations evolve. Previous results have shown that the DSR technique 

is highly effective at reducing the overall computational effort through the utilisation of 

several levels of representations and by the phasing out of lower representations. The 

MiiGA due to its concurrent evolution of the different levels of representations ensures 

that, unlike the DSR technique, a feasible design solution can be generated relatively early 

in the search process. The DiiGA is a strategy which takes advantage of the better 

mechanisms of the two approaches (Figure 5-16). As a lower resolution process ceases to 

inject useful infotmation into·the ~igher resolution processes so it is removed and replaced 

by a resolution that is higher than any currently in existence. The new higher representation 

is seeded from the new lower sub-population. This is accomplished by mapping the fittest 

individual from the lower sub-population to the higher sub-population. The remainder of 

individuals in the new higher sub-population are formed by copying the mapped individual 

and mutating a fixed percentage (30%) of it's bits at random. This creates a sub-population 

which is biased towards a good solution from the lower level but with new diversity. The 

desired behaviour is one of constant improvement in fitness, avoiding the levelling of the 

MiiGA curve as displayed in Figure 5-15. A simple 3 level representation involving 4 

processes is presented: 
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Representations: 

a) 5x5=25 elements 

b) IOxlO=IOOelements 

cl) 20x20=400 elements 

c2) 20x20=400 elements 

Process: 

• Commence eo-evolution of representations a) and b). 

• Migrate from a) to b) every n evaluations until a) converges and ceases to pass useful 

information to b) or until maximum permissible evaluations 

• Remove a) and introduce c1) using the best individual from b) to seed new population 

• Migrate individuals from b) to c1) every n evaluations until b) converges and ceases to 

pass useful information to et) or until maximum pe1missible evaluations 

• Remove b) continue to evolve c1). Introduce another eo-evolving subpopulation (c2), 

seeded from (c1). 

Individuals are prevented from migrating if a duplicate exists in the host subpopulation in 

order to maintain search diversity. Further migration only takes place if the individual is 

fitter than the least fittest individual in the host sub-population. The run continues until its 

termination condition is met (when the sub-populations have converged, the maximum 

number of evaluations have been reached or the maximum number of re-initialisations has 

been achieved). It should be noted that there is no danger that the best individual will 

rapidly take over the new sub-population. The CHC GA's incest preventing mechanism 

(the dropping difference threshold), in combination with elitist selection and disruptive 

recombination will prevent this. Eshelman [1991] found that partial re-initialisations 
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perform better using smaller population sizes when compared with chronic mutation and 

provide many of the benefits of a large population without the cost of a slower search. The 

number of evaluations is the summation of all evaluations of the sub-population 1 and sub-

population 2. Migration takes. place every 100 evaluations. 

The following sections show the performance of the DiiGA, firstly using the complex 

stress model ( section 5.4.1) and then the finite element model (section 5.4.2). 

Subpopulation 1 Subpopulation 2 

Coarse Representations 

Medium Representations 

Fine Representations 

Figure 5-16 : Grid Representation for U1e DiiGA 
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5.4.1 Application of Dynamic Injection Island GA to the Plate Problem utilising the 

Complex Stress Model 

On the single load case problem with a maximum limit of 24mm on the plate, there are 

relatively small differences in the performance of the CHC and PBIL presented in chapter 4 

in compruison to the DiiGA (Table 5-3). However on the more difficult single load case 

problems where the upper limit on material is 18mm, the DiiGA performs better, through 

the maintenance of better diversity: 

DiiGA 

Test Number Plate size Max upper Load Best Best Fitness Average Average 

limit ca~es Fitness Weight (SO) Fitness Weight 

DiiGA_ J 20X20 24 1 1468.80 1.07 11 .95 1450.97 1.11 

DiiGA_2 20X20 18 1 1480.49 1.04 8.59 1468.73 1.07 

DiiGA_3 24X24 24 1 1461.84 1.08 9.03 1448.99 1.11 

DiiGA_4 24X24 18 1 1474.68 1.05 5.50 1467.94 1.07 

DiiGA_5 20X20 24 3 1430.88 1.16 12.14 1410.50 1.22 

DiiGA_6 20X20 18 3 1428.64 1.17 67.08 1396.80 1.20 

DiiGA_7 24X24 24 3 1409.82 1.22 14.33 1388.94 1.29 

DiiGA_8 24X24 18 3 1424.22 1.18 5.37 14 16.71 1.20 

Table 5-3: Results for DiiGA utilising various problem cases (no. of runs= 10) 

Figure 5-17 and Figure 5-18 represents the fitness of sub-population 1 of the 10 runs for 

the fmest resolution giid (400 elements). Three load cases are utilised. The first dip shows 

the transition from a 5x5 to a 10x10 representation. The second dip shows the transition 

from a 10x 10 to a 20x20 representation. Rapid evolution is apparent in the g1·aphs resulting 

from highly fit genetic material from the more coarse representations boot strapping the 

overall fitness. Continuous improvement is maintained, resulting in superior perfmmance 

in terms of deg1·ee of stress violation and weight in comparison with the 3 sub-population 

MiiGA. 
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Figure 5-17: Performance of DiiGA against other techniques for 20x20 plate (3 load cases) 
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Figure 5-19 and Figure 5-20 represents the fitness of sub-population 1 for a 24x24 plate. 

Rapid evolution is again apparent. The first dip shows the transition from a 6x6 to a 12x12 

representation. The second . dip shows the transition from a 12x12 to a 24x24 

representation. The DSR technique does manage to produce fitter design solutions than the 

DiiGA on most problems, however these solutions are at the latter stages of the search and 

therefore requires the GA to run for a certain number of evaluations. In the case of DiiGA 

feasible design solutions are available relatively early in the design stage. A designer may 

look at these results and halt the evolutionary process if the design is deemed acceptable, 

thus saving computational effort and calendar time. The DiiGA is also considerably more 

robust (refer to standard deviation in Table 5-3) than the other techniques on the most 

complex of the problems which is a 24x24 plate utilising an upper limit on material of 

18mm, highlighting it's explorative capabilities. 
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Figure 5-19: Performance of DiiGi\ against PBIL and CHC for 24x24 plate (3 load cases) 
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Figure 5-20: Performance of DiiGA against PBIL and CHC for 24x24 plate (3 load cases) 

max 18mm min 8mm. 

The convergence of coarse representations in the MiiGA prevents the migration of further 

useful genetic material into the more detailed representations, thus promoting premature 

convergence. The DiiGA removes·sub-populations as they cease to migrate fit individuals, 

these are replaced by new sub-populations which introduce new genetic mateiial and thus 

more diversity. Because useful genetic information is gained during the coarse levels of the 

search, the information is passed to the finer representations resulting in a rapid increase in 

fitness as finer representations are introduced. 
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5.4.2 Application of Dynamic Injection Island GA on the Plate Problem utilising 

FEA 

The previous section has shown the DiiGA to perform well in comparison to the other 

evolutionary techniques when utilising a complex stress analysis model. This section 

therefore investigates the performance improvement of the DiiGA in comparison to single 

representation techniques when utilising an FE analysis model. As with the previous 

chapter the FE problems were provided by industry. 

Table 5-4 shows the computational expense for individual FE evaluations, it shows that the 

CPU time increases considerably with structural complexity i.e. number of elements, 

number of load cases. Table 5-5 shows the resulls for 48 and 200 variable problems. 

Figure 5-22 shows the best average fitness of the 4 runs for the 48 variable single load case 

problem, whilst Figure 5-23 shows the average best weight of the 4 runs for the same 

problem. Two levels of representations are used. Results from the 12 variable sub

population are injected into the 48 variable sub-population. The initial fitness of the 12 

variable sub-population is relatively high due to a low number of stress violations on the 

plate. Once the 12 variable sub-population ceases to inject useful material into the 48 

variable sub-population it is discarded and replaced by another 48 variable representation, 

seeded from the old 48 variable sub-population. The DiiGA manages to reach lower weight 

design solutions earlier in comparison to the CHC and PBIL saving calls to the analysis 

model. As the lower 12 variable sub-population is cheaper to analyse it further saves 

computational expense. Approximately 350 evaluations in every run are performed on the 

12 variable sub-population. 
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Number of Variables Number of Number Number of CPU time 

Number of Variables Load Cases of Nodes Elements (seconds I 

(grid size(x,y)) evaluation) 

12(4x3) 1 216 83 l.7 

12(4x3) 3 216 83 2.9 

48 ( 8x6) I 864 506 8.5 

48 ( 8x6) 3 864 506 14.5 

50 ( 5x 10) I 720 4 14 6.57 

200 ( 10x20) 1 2880 1786 43.3 

Table 5-4: Computational expense for individual FE evaluations 

Tes t Number Plate Size Load Best Best Average Average Fitness 

Ca~es Fitness Weight Fitness Weight (SD) 

DiiGA_FEA1 48 ( 8x6) 1 1437.03 0. 1440 1436.98 0.1442 0.020 

DijGA_FEA2 200 ( 10x20) 1 1435.59 0. 1479 1435.19 0. 1489 0.337 

DiiGA_FEA3 48 ( 8x6) 3 1434.64 0.1504 1434.50 0. 151 0. 125 

Table 5-5 : Results for 48 and 200 variable problems 
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Figure 5-21 :Best Average Fitness utilising FEA (lload cases, 48 variables) 
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Figure 5-22 : Best Average Fitness utilising FEA (lload cases, 48 variables) 
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Figure 5-23 : Best Average Weight utilising FEA (lload cases, 48 variables) 

Figure 5-24 and Figure 5-25 shpws the average best fitness of the 4 runs for the 48 

variable three load case problem. 12 and 48 vmiable sub-populations are again used. 

Results from 12 variable sub-population are injected into the 48 variable sub-population. 

The initial fitness of the 12 variable sub-population is relatively high due to a low number 

of stress violations on the plate. However once the 48 vmiable sub-population is introduced 

it drops shm-ply due to lm·ger su·ess violations resulting from the three load cases. Due to 

the new sub-population being seeded from a high fitness representation, and the injection 

of high fitness solutions from the other 48 variable sub- population the fitness rapidly picks 

up. This eventually leads to lower weight solutions being available to the designer earlier 

than the other two techniques, thus saving calls to the analysis model. The DiiGA on 

average requires 700 fewer evaluations to arrive at design solutions which are comparable 
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to those generated by the CHC at ·3000 evaluations. Moreover approximately 350 of these 

evaluations are performed on the 12 variable sub-population. Therefore in a typical run the 

DiiGA requires approximately 30% less CPU time in comparison to the single population 

CHC GA. Also as with the 1 load case problem due to approximately 350 evaluations in 

every run being performed on the 12 variable sub-population further computational 

expense is saved. 

1500 --.--------------

1400 

1300 

1200 
Ill 

XI f 1100 
Q) 

~ 1000 ... 
~ ... 900 
Ill 

~ 800 

700 -o-PBIL 

-o-CHC 
600 -0-DiiGA 

500 +-------~--------~------~--------~--------~------4 

0 500 1000 1500 2000 2500 3000 

Number of Evaluations 

Figure 5-24: Best Average Fitness utilising FEA (3 load cases, 48 variables) 
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3000 

Figure 5-26 and Figure 5-27 show the average best fitness of the 4 runs for the 200 variable 

one load case problem. 50 and 200 variable sub-populations are used. Results from 50 

variable sub-population are injected into the 200 variable sub-population. The initial fitness 

of the 50 variable sub-population is relatively high due to a low number of stress violations 

on the plate. Due to the new sub-population being seeded from a high fitness 

representation, and the injection of high fitness solutions from the other 50 high 

performance solutions evolve rapidly. The DiiGA on average reqmres 1000 fewer 

evaluations to atTive at a comparable design solution to the one generated by the CHC at 

3000 evaluations. More over approximately 400 of these evaluations are performed on the 

50 variable sub-population. So in. a typical run to anive at comparable design solutions 

CHC requires approximately 55% greater CPU time than the DiiGA. It is interesting to 

note PBIL's superior performance in comparison to the CHC and the DiiGA. 
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The DiiGA has helped to considembly cut overall computational expense. By reducing the 

number of calls required and CPU time (through the use of coarser problem 

representations), complex models such as FEA may realistically be used. In the problem 

cases outlined only two levels of representations have been utilised. More levels may 

further reduce computational expense. 

5.5 Summary 

Practical computability of structural problems are often limited by high dimensionality. 

This chapter has outlined methods which aid tackling such problems in order to reduce 

computational expense. The DSR, MiiGA and DiiGA are all effective at reducing the 

overall number of evaluations to anive at feasible design solutions. The advantage the 

MiiGA and DiiGA methods have over the DSR technique is that feasible design solutions 

evolve faster and are therefore available earlier in the design process, unlike the DSR 

technique where low risk design solutions are available during the latter stages of the 

search when the finest level of representation has been introduced. The designer may then 

stop the evolutionary process if a particular design is deemed acceptable thereby saving 

computational effort and calendar time. 

The DiiGA is better suited to the task of exploration of the search space on problems 

utilising multi load cases and low limits on material. The experiments utilising FEA show 

that the computational savings appear to become more pronounced as the number of 

variables and load cases are increased. The results show that the DiiGA method can reduce 

computational expense by up to 55% in comparison to single population techniques. The 

operator settings for the DiiGA have not been optimised, so further savings may still be 
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possible. The introduction of higher levels of plate resolution would also further reduce the 

overall computational expense. 

In order to expand the limits of practical computability, researchers have used parallel 

processing. However, before introducing parallel architectures it is extremely important to 

select, develop and optimise the underlying algorithms with respect to their cost and 

accuracy. The multi-level algorithms highlighted in this chapter behave differently on the 

problems presented. This however is not very surprising, based on the performance of the 

different search techniques and their dependency upon problem specifics outlined in 

chapter 4. There arc many possible variations of the techniques and their relative operator 

setting. Amending these strategies may yield greater savings in calls to the model. However 

what this chapter has shown is that multi-level techniques are highly effective at reducing 

the overall computational effort in comparison to single level representation algorithms 

presented in chapter 4. 

The single population algorithms discussed in chapter 4 display interesting performance 

characteristics and provide a better way of searching the design space based on problem 

specifics (exploration versus exploitation). The DiiGA has been shown to be very effective 

at reducing computational expense through the use of multi-level representations. The next 

chapter discusses how the properties of these various techniques may be combined to 

further improve design performance. 

146 



6. MULTI AGENT SEARCH TECHNIQUES 

As highlighted in Chapter 4, different techniques may be better suited to varying stages of 

the evolutionary process. The CHC is capable of performing good exploration of the search 

space. PBll.., whilst capable of maintaining a reasonable level of exploration, is more 

efficient at exploiting the search space. Based upon the performance of these search 

techniques as outlined in chapter 4', and the ability of the DSR technique at handling higher 

numbers of variables two multi-agent search techniques are proposed by Vekeria and 

Parmee [1997] as a way of further reducing computational expense. (where agents refer to 

the individual algorithms). 

The second half of this chapter discusses dist1ibutcd techniques, the process resembles that 

of the DiiGA except the subpopulations manipulating the grid representations utilise 

different evolutionary strategies. This again is intuitively based upon the performance of 

the various adaptive search techniques detailed in chapter 4, the benefit of multi-level 

representations detailed in chapter 5 and improved performance of multi-agent strategies 

outlined in section 6.2 of this chapter. 

6.1 Hybrid Search Techniques 

Evolutionary algorithms can be very effective at solving certain classes of optimisation 

problem. There are, however, many problem areas where EA does not perform particularly 

well. As a result several hybrid EA's have been proposed [Seront and Bersini 1996]. The 

most common being local optimisation techniques incorporated within the GA. The GA is 
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a good global optimiscr and explores the search space very efficiently. Conversely local 

search techniques are good local optimisers and perform good exploitation of solutions. 

Hybrid approaches have been found to work well on some problems as a result of these 

complementary properties of the search algorithms. 

For instance: 

• Koumousis and Georgiou [1994] introduced a mixed strategy that utilises GA's to 

search for optimal geometries of steel truss roofs, and a logic program, developed by the 

authors, to solve the sizing problem. 

• Parmee [1996a] utilises a G~T algotithm which involves aspects of an ant colony 

model in combination with a GA. This results in a dual-agent approach to achieve a 

multi-level search across a design hierarchy described by mixed discrete/continuous 

variable parameters. 

Most evolutionary algorithms depend on a set of control parameters. Often the optimal 

setting of these parameters is dependent on the particular problem. Furthermore the optimal 

parameter settings may vary for different stages of the search. Similarly a search technique 

may work well for different types of problems or be better suited to different stages of the 

search process, as in chapter 4. 

Adamidis and Petridis [ 1996] propose a method called Co-operating Populations with 

Different Evolution Behaviours (CoPDEB) where subpopulations are allowed to exhibit 

different evolution behaviours to overcome the problem of operator parameter setting. A 

coarse-grained parallel GA where a number of sub-populations eo-evolve is utilised. Each 
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sub-population runs a GA with a different evolutionary behaviour by amending rules 

regarding selection, recombination and mutation. 

6.2 Multi-Search Techniques 

The first approach utilises ~he CHC and then the PBIL algorithm (CHC_PBIL). The 

reasoning being that the more diverse search of the CHC will provide an optimal starting 

individual for the PBIL-based search. The CHC will perform an initial explorative search, 

the PBIL method will then quickly exploit the surrounding local search space. The 

establishment of a multi-agent co-operative strategy may therefore provide a partial 

solution to the problem of balancing the two competing themes of exploration and 

exploitation. The proposed structure initially runs the CHC for 3000 function evaluations 

followed by PBIL for a further 7000 function evaluations. The fittest design solution from 

the CHC GA is used as the sample solution from which the initial probability vector is 

updated once PBIL is introduced. The probability vector is only updated when a better 

individual is located. 

The second approach, initially utilises the PBIL algorithm which then switches to the CHC 

algorithm (PBIL_CHC). The reasoning here is that the PBIL method will quickly exploit 

solutions and identify promising regions which can then be explored by the CHC method. 

This presents an alternative strategy to the CHC_PBIL method. Similar settings are used to 

those of the CHC_PBIL method. PBIL initially runs for 3000 function evaluations followed 

by the CHC for a further 7000 function evaluations. The fittest design solution from PBIL 

is used as a template for creating the new CHC population, whereby each new individual is 

created by flipping a fixed pr~portion (e.g., 30%) of the template's bits chosen at random. 
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One instance of the best is added unchanged to the new population. This ensures that the 

CHC search cannot converge to a worse solution than the previous PBIL search. 

6.2.1 Application of Multi-Search Techniques to the Plate Problem 

CHC_PBIL 

Test Number Plate Max upper Load Best Best Fitness Average Average 

size limit cases Fitness Weight (SD) Fitness Weight 

CHC_PBIL_1 20X20 24 1 1483.33 1.03 4.93 1477.37 1.05 

CHC_PBIL _2 20X20 18 I 1484.93 1.03 2.46 1481.33 1.04 

CHC_PBIL_3 24X24 24 I 1461.50 1.08 4 .21 1455.57 1.10 

CHC_PBIL_4 24X24 18 I 1473.69 1.06 4.16 1466.99 1.07 

CHC_PBIL _5 20X20 24 3 1447.3 1 1.12 4 .56 1438.65 1.14 

CHC_PBIL _6 20X20 18 3 1448.96 1.11 33.75 1433.44 1.13 

CHC_PBIL_7 24X24 24 3 1421.94 1.19 4 .38 1417.47 1.20 

CHC_PBIL _8 24X24 18 3 1427.61 1.17 8 1.42 1362.52 1.1 8 

Table 6-6: Results for CHC_PBIL utilising various problem cases (no. of runs = 10) 

PBIL_CHC 

Test Number Plate Max upper Load Best Best Fitness Average Average 

size limit cases Fitness Weight (SO) Fitness Weight 

PBIL_CHC - 1 20X20 24 I 1486.09 1.03 5.69 1474.67 1.05 

PBIL_CHC _2 20X20 18 1 1489.70 1.02 6.39 1479.39 1.04 

PBIL_CHC _3 24X24 24 1 1460.69 1.09 7. 15 1452. 18 1.11 

PBIL_CHC_4 24X24 18 1 1475.75 1.05 4.19 1468.04 1.07 

PBIL_CHC _5 20X20 24 3 1437.5 1 1.14 4.47 1430.29 1.16 

PBIL_CHC_6 20X20 18 3 1445.44 1.12 3.95 1437.85 1.14 

PBJL_CHC _7 24X24 24 3 141 8.87 1.19 3.9 1 1413.75 1.21 

PBIL_CHC _8 24X24 18 3 1426.49 1.17 4 .99 1421.53 1.19 

Table 6-7: Results for PBIL_CHC utilising various problem cases (no. of runs = 10) 
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Figure 6-1 : Graph to show a comparison of the early stages of the search process for 

different search methods -(lload case 24x24 plate max. 18mm, min. 8rnm) 
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Figure 6-2: Graph to show a comparison of latter stages of the search process for different 

search methods -(l load case 24x24 plate max. 18rnrn, min. 8mm) 
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Figure 6-1 and Figure 6-2 shows the evolution curve for the PBIL, CHC sub-populations 

running independently against the proposed hyblid technique utilising both algorithms. The 

graphs show the fittest individual from 10 runs for each algmi.thm. The CHC_PBIL method 

shows an initial slow increase in the performance as a result of its explorative behaviour. 

The PBIL method then rapidly negotiates the surrounding search space and converges to a 

desi!,rn solution. The CHC method ·on its own takes a fmther 6000 evaluations to ani ve at a 

comparable solution. In comparison the PBIL-CHC curve shows a rapid increase in fitness 

during the early stages of search but then levels of dwing the introduction of the CHC 

method after 3000 evaluations. The PBIL-CHC method does eventually find a solution 

fitter than the CHC_PBIL combination due to the CHC's explorative behaviour. 
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Table 6-6 and Table 6-7 show that in all the test cases utilising 3 load cases the CHC_PBIL 

method produced the best final fitness. Due to its initial exploration and then the rapid 

exploitation, this technique is well suited especially to problems of high dimensionality 

utilising single load cases. H.owever on the more complex problem of the 24x24 3 load 

case plate with a minimum 18mm maximum variable thickness the PBIL_CHC algorithm 

seems better suited (Table 6-7 and fig 6.3). This problem has a more complex distribution 

of material on the plate. Also as we have reduced the upper limit on material the number of 

possible design directions is reduced thus requiring more exploration of the search space. 

This is illustrated in Figure 6-3 which shows rapid evolution by the PBIL and PBIL_CHC 

methods. Due to the initial PBIL phase, rapid exploitation of solutions takes place which 

are then explored by the CHC. Although in this case the CHC_PBIL method shows a high 

performance solution with rapid evolution, the method is not robust and on average 

produces much lower performance design solutions in comparison to the PBIL_CHC 

method (refer to standard deviati0n and average fitness values for test cases 6 and 7 in 

Table 6-6 and Table 6-7). The PBIL_CHC combination seems to provide better 

complementary properties which result in fitter and more robust design solutions than those 

produced by CHC, PBIL and the hybrid CHC_PBIL algmithms for this class of problem. 

Other techniques may also be incorporated in order to take advantage of multi-level 

representations and multi-agent search strategies. Two methods are proposed where the 

Dynamic Search Refinement (DSR) technique may be used in conjunction with a multi

agent search strategy. The first approach may utilise a coarse representation manipulated by 

PBIL which then switches to finer representation manipulated by the CHC algorithm, after 

convergence or a certain number of evaluations. The reasoning here is that the PBIL 

process may rapidly converge to a high-performance region utilising a coarse 

representation, which is then explored by the CHC technique utilising a finer 
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representation. The second approach may utilise a coarse representation manipulated by 

CHC, which then switches to finer representation manipulated by the PBIL algorithm. The 

reasoning here is that the CHC process utilising a coarse representation may initially better 

explore the search space and identify a number of diverse high-performance solutions, then 

a finer PBIL representation rapidly converge to a local, optimum solution. The process 

would be performed in a sequential manner, gradually increasing the complexity of the 

representation whilst taking advantage of the differing characteristics of the search 

algorithms. 

6.3 Distributed Search Techniques 

The distributed search technique utilises different resolution grids, each evolving upon a 

separate island. The process is similar to the DiiGA except the subpopulations 

manipulating the grid representations utilise different evolutionary strategies. This is 

intuitively based upon the performance of the various adaptive search techniques detailed 

in chapter 4, the benefit of multi-level representations detailed in chapter 5 and improved 

performance of multi-agent strategies outlined in section 6.2 of this chapter. 

The establishment of a distributed architecture supporting several search algorithms and 

their subsequent removal/ re-introduction depending upon relative performance during the 

evolution process may provide a partial solution to the problem of selecting the most 

appropriate search technique for a particular problem. 

6.3.1 Application of Distributed Search Techniques to the Plate Problem 

Two simple configurations are assessed. The first method is termed chc-pbil-pbil (c-p-p) 

(Figure 6-4). 
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Figure 6-4 : Grid Representation for the chc-pbil-pbil (c-p-p) configuration 

The CHC algorithm manipulates a 5x5 grid representation which eo-evolves with a PBIL 

manipulation of a lOx 10 representation. Migration is allowed every 200 evaluations. The 

5x5 CHC process is killed as it ceases to provide sufficiently high-performance solutions 

for injection to the 10x10 PBIL process. The CHC now manipulates the 10x10 

representation. The fittest individual is used as a template to create the new sub-population. 

Each new individual is created by flipping a fixed proportion (30%) of the template bits 

chosen at random. One instance of the best is left unchanged. A further 20x20 PBIL 

representation is introduced and eo-evolves with the lower 10x 10 CHC representation. The 

PBIL process receives injected solutions every 200 generations. Once the lOxlO CHC 

representation ceases to pass useful inf01mation to the 20x20 PBIL process it is killed. The 

20x20 PBIL process continues to evolve until it has converged. The reasoning here is that 
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the more diverse search of the CHC which leads to higher performance on the coarser 

resolutions interacts with the more rapid convergence characteristics of PBIL to provide an 

optimal starting population for the final PBTI...,-based search. 

The objective is a higher-perfo~mance solution within a lesser number of function 

evaluations than would be attainable using the CHC alone within a DiiGA architecture. 

Results from a single load-case representation are shown in Figme 6-5 and Figme 6-6 and 

compared to the results from a three load-case representation. 
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Figure 6-5 : Graph to show a compatison of the early stages of the seat·ch process for 

different seat·ch methods -(lload cases 24x24 plate max. 18mm, min. 8mm) 
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Figure 6-6 : Graph to show a comparison of latter stages of the search process for different 

search methods -(l load cases 24x24 plate max. 18mm, min. 8mm) 

CHC_PBIL_PBlL 

Test Number Plate Max upper Load Best Best Fitness Average Average 

size limit cases Fitness Weight (SD) Fitness Weight 

C-P-P - 1 20X20 24 1 1482.78 1.04 4 .87 1474.90 1.05 

C-P-P - 2 20X20 18 1 1486.90 1.03 4.35 1481.44 1.04 

C-P-P - 3 24X24 24 1 1454.32 l.l O 2.11 145 1.5 1 1.1 1 

C-P-P _4 24X24 18 1 1472.70 1.06 3.6 1 1466.18 1.07 

C-P-P 5 - 20X20 24 3 1449.04 1. 11 7.5 1 1437.58 1.14 

C-P-P _6 20X20 18 3 1450.05 l.l1 90.00 1330.29 1.13 

C-P-P 7 24X24 24 3 - 1423.78 l.l 8 5.01 14 15.48 1.20 

C-P-P _8 24X24 18 3 1427.24 1.17 76.56 1365.16 1.19 

Table 6-8: Results for CHC-PBIL-PBIL uti lising vruious problem cases (no. of runs= 10) 
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Figure 6-7 : Graph to show a compruison of different seru·ch methods -(3 load cases 24x24 

plate max. 18rnm, min. 8rnm) 

The second method is termed pbil-chc-chc (p-c-c) (Figure 6-8). This configuration involves 

a PBIL manipulation of the 5x5 grid eo-evolving with a CHC manipulation of the lOxlO 

grid. The 5x5 PBIL process is killed as it ceases to pass useful information to the CHC 

process. PBIL now manipulates the lOxlO resolution. A further 20x20 CHC process is 

introduced and eo-evolves with the lOxlO PBIL representation. Once the lOxlO PBIL 

representation ceases to pass useful information to the 20x20 CHC process it is killed. The 

20x20 CHC representation continues to evolve until it has converged. This strategy 

therefore investigates an altemative dynamic where PBIL injects locally high-performing 

solutions into the more diverse search processes of CHC. Results from a single load case 

problem are shown in Figme 6-5 and Figure 6-6 and compmed to the results from a three 

load-case representation 
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Figure 6-8: Grid Representation for the pbil-chc-chc (p-c-c) configuration 

PBIL_CHC_CHC 

Test Number Pia Le Max. upper Load Best Best Fitness Average Average 

size limit cases Fitness Weight (SD) Fitness Weight 

P-C-C 1 20X20 24 1 1460.69 1.09 5.10 1455.54 1.10 -

P-C-C _2 20X20 18 1 1468.28 1.07 6.60 1459.56 1.09 

P-C-C - 3 24X24 24 1 1444.45 1.12 4 .88 1437.66 1.14 

P-C-C _4 24X24 18 1 1457.92 1.09 9.95 1450.33 1.11 

P-C-C - 5 20X20 24 3 1422.75 1.18 6.28 1416.32 1.20 

P-C-C - 6 20X20 18 3 1431.90 1.16 6.19 1423.34 1.18 

P-C-C 7 - 24X24 24 3 1412.39 1.21 7.29 1404.56 1.24 

P-C-C 8 - 24X24 18 3 1431.81 1.16 4.54 1424.58 1. 18 

Table 6-9: Results for PBIL-CHC-CHC utilising various problem cases (no. of runs = 10) 
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The c-p-p eo-evolution results in increased performance both in terms of reduced calls to 

the evaluation function and improved overall fitness in the single load case situation. 

However, as a more realistic three load case problem is introduced the c-p-p is very 

significantly out performed in· rob~stness by the p-c-c eo-evolution (Table 6-8 and Table 6-

9). Although further experimentation is required to better detennine the dynamics for these 

comparative performances upon differing problem representations, the following reasoning 

appears sound. The single load case promotes the generation of material concentrations in 

one area of the plate and it is suggested that the convergence characteristics of the c-p-p are 

better suited to a less complex distribution of material upon the plate than that required by 

the three load case problem. With three load cases material is distributed across a wider 

area of the plate to best satisfy stress characteristics. It is assumed that the greater diversity 

of the later stages of p-c-c search results in the better identification of this more complex 

material distribution. The rapid convergence characteristics of PBIL however, greatly 

accelerates this identification resulting in far less evaluation calls than is required by a 

DiiGA process utilising CHC alone. It is interesting to note, however, that performance of 

the CHC alone finally equals that of the p-c-c eo-evolution, whereas the characteristics of 

the c-p-p process results in rapid convergence upon a significantly lower robust solution. 

6.4 Variable Complexity Modelling 

The integration of FEA representation and concurrent processing of simple evaluation 

models alongside complex analyses may also yield greater savings in computational 

expense. Giunta et al [1995] have developed an interesting technique termed "variable

complexity modelling", it is a process by which simple, computationally inexpensive 

analysis techniques are used together with more detailed, expensive techniques in the 

design optimisation process. 
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This technique is applied in the area of multidisciplinary optimisation (MDO) in the 

aerodynamic-structural optimisation of the High Speed Civil Transport (HSCT), which is 

computationally expensive due to the analysis of the vehicle and it's many systems. A 

typical optimisation problem is to minimise the takeoff gross weight of an HSCT 

configuration. Starting with a large number of candidate HSCT configurations, the designs 

are screened using algebraic weight equations (which is relatively inexpensive in 

comparison to detailed analysis methods) to eliminate impossible design points. Detailed 

finite element analysis is then applied to selected configurations in the remaining design 

space to provide more accurate results. 

Ellman et al [1996] use several strategies for the design optimisation of a sailing yacht. 

One of the strategies uses a simple model to get near an optimum, before relying upon a 

complex model during the last stage of the design similar to Giunta et al. [1995]. Ellman 

writes: 

" An optimisation algorithm can often utilise relatively simple 

models to make search control decisions, and rely on complex 

models only when needed to verify optimality of a ~·olution and 

sati~faction of constraints. For this reason, a combination of 

simple and complex nwdels can lead to designs as good as those 

resulting from a single complex model, but at far lower 

computational expense. " 
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6.5 Summary 

The experiments performed on the multi-load cases shows that the manner in which the 

algorithms are used is extremely important. The sequence of the algorithms seems highly 

dependent upon problem specifics. The CHC_PBIL approach is especially well suited to 

tackling problems of high dimensionality utilising single load cases. This method initially 

explores but spends majority of it's time exploiting information regarding the search space 

and as a result is better suited to this class of problem. The PBIL_CHC performs rapid 

exploitation and then expends the majority of it's time exploring. As a result, it is better 

suited to problems which are more complicated, where fewer high performance solutions 

exist in the search space and a higher degree of exploration is required in order to identify 

them. 

The results from the distributed search strategies indicate a potential for a further reduction 

in calls to the evaluation model. The p-c-c method manages to achieve better results than 

the DiiGA technique and is also more robust. The selected search configurations are 

however very sensitive to problem specifics e.g. the performance differences between the 

one and three load case scenarios. This second point may be addressed by improving the 

dynamics of the introduction I removal of individual search algorithms. 
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7. CONCLUSIONS 

7.1 Conclusions 

The aim of this work has been to develop a semi automated system which is capable of 

providing high performance design solutions. By combining evolutionary optimisation of 

the design utilising evaluation software to provide a measure of the quality of the designs, 

there is little need for human intervention in the design process. Such a system would be 

highly desirable in terms of cost as design lead time and associated man-hours is reduced. 

The research has focused on evolutionary I adaptive strategies that allow the machine based 

design of a single engineering component from preliminary problem definition through to 

detailed definition. In order to achieve this it was necessary to overcome two main problem 

areas i.e. the successful optimisation of large numbers of interactive design variables and 

the minimisation of calls to the fitness evaluation model. These objectives have been 

achieved to a significant extent by the introduction of high performance advanced 

computational strate~:,ries. 

Many researchers have focused on the use of a canonical GA for design optimisation tasks. 

This work, realising the limitations of the canonical GA in terms of calls to the model and 

design performance has compared the performance of different high performance 

evolutionary algorithms. It has geen demonstrated that the use of high performance 

evolutionary search algorithms such as CHC and PBIL help to reduce the overall number 
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of calls to the evaluation function, and thus make it feasible to integrate computationally 

intensive models such as FEA with an evolutionary design process. 

The performance of the CHC and PBIL algorithms on the plate problem shows them to be 

extremely competitive in comparison to the Breeder GA and the canonical GA. The overall 

results have shown firstly that the CHC is an extremely robust and highly explorative 

algorithm and secondly that the rapid convergence characteristics of PBIL help it to rapidly 

exploit solutions in large search spaces. 

Many factors effect the total number of analyses that need to be performed. In the case of 

the plate problem factors such as the level of representation, and the loading conditions 

have a bearing on this figure. It has been shown that most of the algorithms utilised with 

the plate problem generally perfmm well on coarse representations when utilising a single 

load case and a small number of design variables. However when they are applied to more 

complex higher dimensional problems, some of the algorithms notably the canonical GA 

and BGA deteriorate considerably in performance. Therefore the use of algmithms and 

operator settings based on a simpler representation may not be sufficient to solve more 

complex problems. All of the algorithms displayed a marked degradation in performance 

as the complexity of the problem increases with the introduction of more variables (>80). 

The need to handle higher numbers of variables to allow lower risk design solutions has led 

to the development of techniques which exploit differing levels of a problem 

representation. These strategies involve a gradual increase in dimensionality as the search 

process advances. The advantage in using this approach is that coarse representations 
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provide a good starting point for the finer representations in addition to being less 

computationally expensive. 

Three multi-level techniques were developed by Vekeria and Parrnee namely the DSR, 

MiiGA and DiiGA. The DSR technique presents a novel way of dealing with a large 

numbers of vmiables and reducing the number of calls to the model during a GA run. By 

utilising a combination of simple and complex representations the DSR technique on most 

of the problems outlined leads to a design which is as good as those resulting from those of 

a single fine representation but at lower computational cost through the utilisation of coarse 

representations. This reduction is however during the latter more detailed stages of the 

design process. 

The Modified injection island architecture (MiiGA) was introduced to allow feasible 

design solutions to evolve faster and be made available earlier in the design process. This 

allows significant savings in computational effort and calendar time. The MiiGA offers a 

concurrent rather than a sequential shape refinement process. Alternative architectures are 

suggested as a way of minimising the number of calls to the model and CPU cost through 

the use of different representations. The MiiGA manages to locate feasible designs earlier 

than those utilising the CHC and PBll.. methods. Although this approach provides rapid 

evolution of design solutions it also has the draw back of premature convergence resulting 

in stagnation of the optimisation process and final designs which are worse than the DSR 

technique. 

The Dynamic Injection Island Genetic Algorithm (DiiGA) addresses the problem of 

stagnation by phasing out lower representations as their performance declines. This method 

combines the better mechanisms of both the DSR and MiiGA approaches. The DiiGA 
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achieves a significantly higher fitness overall whilst still maintaining the initial rapid 

improvements exhibited by the MiiGA. The DiiGA is well suited to the task of exploration 

of the search space especially on problems utilising multi load cases and low limits on 

material. The expe1iments utilising FEA show that the computational savings appear to 

become more pronounced as the n_umber of variables and load cases are increased. Results 

in chapter 5 show the potential of the DiiGA technique on a 200 variable one load case 

problem. Typically, the CHC requires approximately 55% (on average) greater CPU time 

than the DiiGA to identify a comparable design solution. While these results are very 

encouraging, it is expected that further computational savings could be achieved by firstly 

optimising the operator settings and secondly using more levels of representations. 

TI1e main advantages therefore in using multi-level techniques such as the DSR, MiiGA 

and DiiGA lies in the reduction of computational expense, handling high dimensionality 

and the ability to identify higher fitness design solutions in comparison to single 

representation GA's. There are inany possible variations of the techniques examples 

include number of islands, number of levels of representations, migration strategies etc. 

Amending these strategies should yield further savings in calls to the model. 

Based on the performance characteristics of the individual CHC and PBll... algorithms and 

the ability of the DiiGA technique in providing the capability of handling higher numbers 

of variables and solutions earlier in the search process a multi agent approach has been 

proposed. The reason for this is to take advantage and further improve performance 

characteristics. However more extensive experimentation is required to properly assess the 

utility of eo-evolving processes involving several differing search algorithms. However the 

preliminary findings of chapter 6 indicate that: 
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• It is possible to improve performance both in terms of overall fitness and reduced 

evaluation calls. 

• The selected search configurations are very sensitive to problem specifics e.g. the 

performance variation between one and three load case scenarios. 

This second point can be addressed by improving the dynamics of the introduction I 

removal of individual search algorithms. A performance based scenario is envisaged 

whereby algorithms are removed I re-introduced dependent upon on-line measurement of 

their relative performance. This could result in the automatic selection of appropriate 

search configurations. 

The initial results have indicated a considerable potential for a significant reduction in the 

number of evaluation calls during evolutionary search. Refinement of the basic strategies 

introduced here are likely to further reduce computational expense related to evaluation 

calls. In generic terms this will allow a more efficient integration with complex analysis 

techniques during detailed design and contribute significantly to those preliminary stages of 

the design process where a degree of complex analysis is required to validate results from 

more simplistic preliminary design models. 

Initial introduction of the stand-alone CHC GA incorporating FEA analysis with the design 

process within an industrial environment has shown that it is possible to achieve improved 

solutions whilst significantly reducing design lead Lime. This involves a more machine

based process where designer interaction is required to fine-tunc GA-gencrated designs. 

This interaction is largely required due to the high-risk aspects related to insufficient 

resolution of the grid representation. The use of multi-level representations has increased 

the number of elements that can be successfully manipulated from eighty to four hundred. 
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This higher resolution plus the achieved reductions in computational expense indicate that 

a total machine-based approach is possible. This can only result in further reductions in 

lead time and related cost reduction. It is expected that these new techniques will be 

integrated with the industrial design process as a prototype system in the near future. 

Further work can look at incorporating an interesting technique developed by Giunta et al 

[1995] termed "variable-complexity modelling", where simple computationally 

inexpensive analysis techniques are used together with more detailed, expensive techniques 

in the design optimisation process. The integration of FEA representation and concurrent 

processing of simple evaluation models alongside complex analyses would also yield 

greater savings in computational expense if applied to the plate optimisation problem. 

Parallelisation of the problem·wou!d further reduce the computational expense. 

When dealing with low dimensional problems a number of adaptive search algorithms 

which can perform the task of optimisation may perform relatively well. However if the 

problem is complex (i.e. high dimensional, multi-modal, constrained and multi-objective) 

and computationally expensive analysis is required, the more sophisticated evolutionary 

adaptive strategies such as those outlined in this thesis will likely be required. Although 

parallel processing as outlined in chapter 5 initially appears to be a good solution to the 

problem of computational expense it is extremely important to develop and optirnise the 

underlying algorithms with respect to their efficiency and accuracy as shown in this thesis. 

The strategies outlined in this thesis have not only proved to be efficient and robust when 

tackling high dimensionality, multi-modality and sensitivity, but have also reduced overall 

computational expense. The results show the strategies and techniques to be highly capable 

of locating high performance solutions. The incorporation of these strategies into industrial 
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design practice and the resulting mass production of the designs being produced by the 

collaborating company shows the potential of the algorithmic structures presented here in a 

real world design and manufacture environment. 
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1 Introduction 

Stochastic search and optimisation methods which model natural evolutionary processes 
are receiving considerable interest in Engineering Design due to their wide range of 
applications to problems [Parmee, Denham and Roberts 1993] This paper presents a 
comparison of Evolutionary I Adaptive Search methods for the reduction in computational 
expense associated with the optimisation of highly dimensional structural design problems. 
Complex analysis packages such as· Finite Element Analysis (FEA) can lead to excessive 
computational expense when utilised as an evaluation function. There is a need therefore to 
minimise the number of calls to the fitness function. Distributed, co-operative injection 
island strategies are presented which allow dynamic refinement of component 
representation. This paper shows that by utilising multi-level Genetic Algorithm (GA) 
architectures, dramatic improvements in design performance may be gained whilst 
significantly reducing the overall number of evaluations in comparison with single level 
representations. 

2 The Evaluation Model 

The design domain involves a real-world problem concerning the optimal material 
distribution on the underside of a flat concrete plate with varying load and support 
conditions. The plate is represented in a grid type manner being divided into rectangular or 
square elements each with variable depth. However, if required, a set number of elements 
may be considered as one variable to promote uniformity in depth. The overall plate 
dimensions are 200mm x 200mm. In order to achieve a certain degree of symmetry for 
ease of manufacture, neighbouring elements whose angles exceed a preset aspect ratio (the 
ratio describing relative depth ·at th7 element interfaces) are penalised. In order to allow 
extensive experimental work, the GA has been integrated with a simple mathematical 
model utilising bending moment and complex stress analysis to ensure computational cost 
is kept to a minimum. Principal stress ( u.) is calculated using the following formula: 

ax.or.y =Direct Stress T =Shear Stress 
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The fitness of the design relates to the level of stress violation and the overall weight of the 
plate i.e. weight must be minimised within given stress criteria. The fixed parameters of 
concrete are: flexural limit = 9MPa, Density = 2.2 glee. Theoretical direct stresses in both 
the X and Y planes are increased by a factor of 1.1 8 to account for errors incurred in 
applying simple beam theory. Designs exhibiting a high degree of stress violation are 
penalised to ensure that the generated designs satisfy relevant criteria. Although 
preliminary design solutions for the fl at plate problem can be achieved with a relatively 
small number of variable elements (15 to 50) in excess of 300 elements are required during 
detailed design to ensure accurate stress evaluation for a number of suppot1 and load 
conditions. 

3 Initial Results 

Initial results using a simple, canonical GA [Goldberg 1989] with various parameter 
settings were disappointing with severe degradation of the convergence characteristics with 
an increase in dimensionality i.e. variable element number. Due to the perceived sensitivity 
and the very high number of local optima, the processing capabilities of the simple, 
canonical GA are not appropriate for this class of problem. Subsequent integration of a 
breeder GA (BGA) [Muhlenbein, Schlierkamp-Voosen 1993], Population-based 
Incremental Learning (PBIL) [Baluja 1994] and the CHC GA [Eshelman 1991] resulted in 
significant improvements as shown in fi gure 1 although performance degradation is still 
evident with increasing dimensionality. A brief overview of the different forms of 
evolutionary algoritluns is given below. 
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Figure I . Graph to show a comparison in performance between different GA 's (single load case) 

3.1 The CHC Genetic Algorithm 

The CHC GA differs from the simple, canonical GA in a number of respects: 
• It is highly elitist biased. Instead of replacing the old parent population with the child 

population, competition for survival is cross generational, the chi ld population must 
compete with the parent population for survival. 

• It maintains diversity through incest prevention. Individuals are randomly paired for 
mating, bias is introduced against mating individuals who are similar. Individuals are 
only crossed if their Hammil)g distance exceeds the difference threshold. 
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• It utilises a highly disruptive crossover. Half of the differing bits are swapped at 
random. This promotes diversity by producing children that are different from both 
parents. 

• Mutation is only introduced when the population has converged or the search has 
stagnated. 

3.2 Population-Based Incremental Learning (PBIL) 

Population-Based Incremental Learning (PBIL) is a combination of evolutionary 
optimisation and hill climbing. The object of the algorithm is to create a real valued 
probability vector which, when sampled, reveals high quality solution vectors with high 
probability. Initially the values of the probability vector are set to 0.5. Sampling from this 
vector yields random solution vectors as the probability of generating a 1 or 0 is equal. As 
search progresses, the values in the probability vector gradually shift to represent highly fit 
solution vectors. The distance the probability is pushed (towards either 0.0 or 0.1) depends 
upon the learning rate parameter. After the probability vector is updated, a new set of 
solution vectors is produced by sampling from the updated probability vector and the cycle 
is continued. 

3.3 The Breeder Genetic Algorithm (BGA) 

The Breeder Genetic Algorithm (BGA) is based on artificial selection similar to that used 
by human breeders. The BGA is a combination of evolution strategies (ES) and genetic 
algorithms (GA). The BGA uses a selection scheme called truncation selection. The T% of 
the best individuals are selected and mated randomly until the number of offspring is equal 
to the size of the population. The BGA use's one of a number of recombination and 
mutation operators. 

4 Dynamic Shape Refinement (DSR) 

The DSR technique based on Adaptive Shape Refinement (ASR) [Kohli and Carey 1993] 
utilises problem representations of varying resolution. A sequential evolutionary process 
utilising the CHC algorithm (with a population size of 40, a divergence rate of 30% and a 
maximum number of restarts of 3) commences upon a relatively coarse (in terms of 
number of elements) plate representation. As convergence is achieved so the best solution 
from this process is mapped onto a finer resolution elemental grid and a population based 
upon mild perturbation of this soluti'on is established. The CHC then manipulates the finer 
representation until convergence is again achieved and the mapping procedure is repeated. 
This sequential evolution process continues, utilising finer representations until a 
satisfactory solution is identified. Such a satisfactory solution should not only be of 
minimum weight within relevant stress criteria but also be considered low-risk in terms of 
the final resolution of plate representation i.e. there is a sufficiently high number of 
elements to provide confidence in the stress evaluation. Figure 2 compares a DSR approach 
utilising the CHC manipulation of 5x5, lOxlO and 20x20 element representations to a CHC 
manipulation of a single 20x20 representation. The results have been averaged over twenty 
runs of the algorithms. 

The high fitness achieved during the early stages of the DSR approach must be treated with 
caution. Fitness is measured in terms of weight versus stress violation and the coarser 
representations although seemingly of high fitness are also high-risk due to the lack of 
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resolution during stress evaluation. A higher resolution stress evaluation returns a greater 
degree of violation and a related degradation of fitness as shown by the dips in the DSR 
curve as finer resolutions are introduced. The DSR achieves a significantly higher fitness 
than the single representation approach with far fewer calls to the analysis routine. 
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Figure 2 - Graph to show the performance of the single population GA against a GA utilising DSR (2 load 
cases). 

5 The Dynamic Injection Island GA (DiiGA) 

The Dynamic Injection Island -GA (DiiGA) [Vekeria and Parmee 1997] is based on the 
injection island architecture (iiGA) '[Punch, Averill, Goodman, Lin and Ding 1995]. The 
DiiGA utilises a concurrent shape refinement process. The flat plate is represented by a 
number of different resolution grids, each evolving upon a separate island. The solutions of 
the coarse design representations are injected into the more detailed designs for fme 
grained refinement As a lower resolution process ceases to inject useful information into 
the higher resolution processes so it is removed and replaced by a resolution that is higher 
than any currently in existence. Migration of information is from low to high resolution at 
a set number of evaluations which requires translation of the differing grid size to maintain 
true representations. Migration allows the passing of highly fit schemata by injecting the 
best individuals that have evolved from a proportionally smaller search space into higher 
resolution representations replacing the worst individuals present at that time. A more 
detailed discussion of this technique may be found in [Vekeria and Parmee 1997]. 

A simple 3 level representation is presented below: 

Representations: 
a) 5x5=25 elements 
b) 1 Ox 1 0= 1 00 elements 

Process: 

c 1) 20x20=400 element 
c2) 20x20=400 elements 

• Commence eo-evolution of representations a) and b). 
• Migrate from a) to b) every n generations until a) converges and ceases to pass useful 

information to b) 
• Remove a) and introduce c1) using the best individual from b) to seed new population 
• Migrate individuals from b) to c1) every n generations tmtil b) converges and ceases to 

pass useful information to c1) 
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• Remove b) continue to evolve c1). Introduce another eo-evolving subpopulation (c2), 

seeded from ( c1). 

Individuals are prevented from migrating if a duplicate exists in the host subpopulation in 
order to maintain search diversity. Further migration only takes place if the individual is 
fitter than the least fittest individual in the host subpopulation. The nm continues until its 
termination condition is met (when the subpopulations have converged, the maximum 
number of evaluations have been reached or the maximum number of reinitialisations has 
been achieved). 

Figure 3 shows the performance of the DiiGA. The graph represents the fitness of the fmest 
resolution grid (400 elements). There is a rapid increase in fitness due to the migration of 
highly fit individuals from the coarse representation and constant improvement is 
maintained, resulting in superior performance in terms of degree of stress violation, weight 
and material distribution in comparison with the single population CHC GA. After the 
rapid increase in fitness due to meeting the stress criteria the fitness increases gradually by 
reducing the overall weight of the plate. The plateau after 6000 evaluations shows that the 
subpopulation has reinitialised, in order to introduce more diversity. The final designs 
produced using the DiiGA technique were also on average 3 percent lighter than those 
produced using the iiGA [Vekeria and Pannee 1996]. 
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Figure 3 - Graph to show a comparison in performance between a CHC GA and a DiiGA (latter stages of 
search) 

6 Conclusions 

The DSR technique has shown that that a significant reduction in the nun1ber of calls to the 
model may be made during the latter more detailed stages of the design process, producing 
light weight, low risk design solutions. The DiiGA satisfies the in itial objective of the 
research i.e. to converge upon a high perfonnance design solution with a minimum number 
of function evaluations. The main advantage therefore in using injection island techniques 
is the reduction in computational expense and the ability to identi fy better design solutions 
when compared to single population GA's. 

These initi al results indicate a considerable potential for a significant reduction in the 
number of evaluation calls during evolutionary search. Refinement of the basic strategies 
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introduced here are likely to further reduce computational expense related to evaluation 
calls. In generic terms this will allow a more efficient integration with complex analysis 
techniques during detailed design and contribute significantly to those preliminary stages 
of the design process where a degree of complex analysis is required to validate results 
from more simplistic preliminary design models. 
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Abstract 

The paper introduces the preliminary 
development of co-operative strategies that will 
enable the machine-based design of a single 
engineering component from initial 
configuration definition through to product 
realisation. The initial utilisation and comparison 
of basic evolutionary approaches leads to the 
introduction of high-performance evolutionary 
and adaptive search algorithms in order to 
improve performance within the high 
dimensional space that describes the component 
topology. A requirement for computationally 
expensive fmite element analysis provokes the 
development of a sequential method for 
Dynamic Shape Refinement (DSR)[l] in an 
attempt to minimise calls to the fitness function 
and further improve solution performance. This 
leads to the utilisation of distributed, co
operative injection island strategies [2,3] and the 
development of strategies both for'the dynamic 
refinement of component representation imd the 
introduction I removal of differing search 
algorithms within the injection island 
architecture. 

1 Introduction 

The evolutionary design of a building component 
primarily consisting of a concrete flat plate is 
introduced. It is necessary for the plate to be 
represented by circa 400 elements of variable depth 
in order to provide accurate stress evaluation. The 
objective is to minimise the weight of the plate 
whilst satisfying maximum stress requirements. This 
conflict of objectives plus the high dimensionality 
results in a highly sensitive optimisation problem 
with many local optima. 
The utilisation of a number of evolutionary and 
adaptive algorithms manipulating simple models of 
the plate illustrates a degradation in performance as 
plate resolution (i.e. number of· elements) is 
increased. Finite element analysis is required to 
achieve accurate stress analysis but this leads to 
excessive computational expense. There is a need 
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therefore to minimise the number of calls to the 
fitness function. This initially led to the development 
of a sequential method of shape refinement (DSR) 
where improvement is achieved sequentially by 
utilising increasingly refined representations of the 
plate and 'injecting' results from lower order 
representations to higher order. 

Improvements gained in this manner have led on to 
the introduction of Michigan State University's 
Injection Island Architecture [2] and the 
achievement of significantly better designs with 
reduced calls to the models. Further improvement is 
achieved by introducing a dynamic refinement to the 
injection architecture where lower order plate 
representations are removed as they cease to 
contribute and are replaced by representations of a 
higher resolution than currently exists within the eo
evolving processes [3]. Finally, initial investigation 
involving the utilisation of differing adaptive search 
algorithms integrated with the dynamic shape 
refinement is described and preliminary results are 
presented. This approach involves the use of two 
eo-evolving adaptive search algorithms within an 
injection island architecture and their subsequent 
introduction I removal depending upon their relative 
performance 

In all cases simple analysis techniques are utilised in 
the evaluation function to allow extensive 
experimentation at low computational expense. 
Finite element analysis is now being introduced into 
the eo-evolutionary processes to allow concurrent 
evolution with appropriate communication between 
both simple and complex models of differing 
resolution. The overall objective of the research is to 
establish eo-evolutionary processes with appropriate 
migration regimes that support the design of single 
components from preliminary through to detailed 
design and product realisation. There are two main 
objectives to the research: the first relates to the 
achievement of high-performance designs whereas 
the second concerns the minimisation of required 
function evaluations. It is essential that the second 
objective is achieved in order that computationally 
expensive analysis teclmiques can be realistically 
utilised. 
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improvements as shown in figure 1 although 

2 The Evaluation Model performance degradation is still evident with 
increasing dimensionality. 

The design domain involves a real-world problem 
concerning the optimal material distribution on the 
underside of a fl at concrete plate with varying load 
and support conditions. The plate is represented in a 
grid type manner being divided into rectangular or 
square elements each with variable depth. However, 
if required, a set number of elements may be 
considered as one variable to promote uniformity in 
depth . The overall plate dimensions are 200mm x 
200mm. ln order to achieve a certain degree of 
symmetry for ease of manufacture, neighboring 
elements whose angles exceed a preset aspect ratio 
(the ratio describing relative depth at the element 
interfaces) are penalised. ln order to allow extens ive 
experimental work, the GA has been integrated with 
a simple mathematical model utilising bending 
moment and complex stress analysis to ensure 
computational cost is kept to a minimum. Principal 
stress ( Q"p ) is calculated using ·the following 
formula: 

er l or2 
erx +er y + 

2 - ( er·' ; er Y ) 

2 

+ r .• / 

CY x .or .y =Direct Stress T = Shear Stress 

The fitness of the design relates to the level of stress 
violation and the overall weight of the plate i.e. 
weight must be minimised within g iven stress 
criteria. The fixed parameters of concrete are: 
flexural limit = 9MPa, Density = 2.2 glee. 
Theoretical direct stresses in both the X and Y 
planes are increased by a factor of 1.18 to account 
for errors incurred in applying simple beam theory. 
Designs exhibiting a high degree of stress violation 
are penalised to ensure that the generated designs 
satisfy relevant criteria. Although preliminary design 
solutions for the flat plate problem can be achieved 
with a relatively small number of variable elements 
( 15 to 50) in excess of 300 elements are required 
during detailed design to ensure accurate stress 
evaluation for a number of support and load 
conditions. 

3 Initial Results 

The messy genetic algorithm [7] was also 
considered and would seem best suited to this class 
of problem due to its ability to maintain good 
linkage between individual genes. However it was 
not included in the test suite because of the 
computational expense associated with its two 
evolutionary phases and dual loop structure. 1l1e 
computational expense of finite element evaluation 
currently necessitates an alternative approach. 
Although the CHC algorithm does not necessarily 
support the genetic correlation provided by the 
messy GA it offers the best performance of those 
algorithms tested in addition to its proved robustness 
across a wide range of standard test functions [6,8]. 
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4 Dynamic Shape Refinement (DSR) 

An initial alternative approach utilises problem 
representations of varying resolution. A sequential 
evolutionary process utilising the CHC algorithm 
(with a population size of 40, a divergence rate of 
30% and a maximum number of restarts of 3) 
commences upon a relatively coarse (in terms of 
number of elements) plate representation. As 
convergence is achieved so the best solution from 

Initial results using a simple, canonical GA with this process is mapped onto a finer resolution 
various parameter settings were disappointing with elemental grid and a population based upon mild 
severe degradation of the convergence perturbation of this solution is established. The CHC 
characteristics with an increase in dimensionality i.e. then manipulates the finer representation until 
variable element number. Due to the perceived convergence is again achieved and the mapping 
sensitivity and the very high number of local optima, procedure is repeated [3) . This sequential evolution 
the processing capabilities of the simple, canonical process continues, utilising fmer representations 
GA [9] are not appropriate for this class of problem. until a satisfactory so lution is identified. Such a 
Subsequent integration of a breeder GA (BGA) [ 4 ], satisfactory solution should not only be of minimum 
Population-based Incremental Learning (PBIL) [5] weight within relevant stress criteria but also be 
and the CHC GA [6) resulted in significant considered low-risk in terms of the fmal resolution 
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of plate representation i.e. there is a sufficiently sub-populations are initiated at the same time. The 
high number of elements to provide confidence in solutions of the coarse design representations are 
the stress evaluation. Figure 2 compares a DSR injected into the more detailed designs for fine 
approach utilising the CHC manipulation of 5x5, grained refmement. Migration of information is 
1 Ox I 0 and 20x20 e lement representations to a CHC from low to high resolution at a set number of 
manipulation of a single 20x20 representation. The evaluations which requires translation of the 
results have been averaged over twenty runs of the differing grids to maintain true representations 
algoritluns . (figure 3). 
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Figure 2 - Graph to show the performance of the 
single population GA against a GA utilis ing DSR (2 
load cases). 

The high fitness achieved during the early stages of 
the DSR approach must be treated with caution. 
Fitness is measured in terms of weight versus stress 
violation and the coarser representations although 
seemingly of high fi h1ess are also high-risk due to 
the lack of resolution during stress evaluation. A 
higher resolution stress evaluation returns a greater 
degree of violation and a related degradation of 
fi tness as shown by the dips in the DSR curve as 
fmer resolutions are introduced. The CHC 
representation, being of a fine (20x20) resolution 
throughout the evolutionary process shows 
constantly improving fitness. 

Comparison of the 20x20 representations of the two 
approaches reveals that DSR achieves a significant ly 
higher fitness than the single representation 
approach with far fewer calls to the analysis routine. 
Therefore to some extent the DSR satisfies the 
primary objectives of the research . i.e. minimum 
weight with minimum calls to the fitness function. 

Subpopulation I Subpopulation 2 Subpopulation 3 

Figure 3 - Migration between Subpopulations 

Migration allows the passing of highly fit schemata 
by injecting the bes t individuals that have evolved 
from a proportionally smaller search space into 
higher resolution representations replacing the worst 
individuals present at that time. 

Figure 4 illustrates the effect of CHC integration 
with the iiGA architecture in tenns of the average 
population fitness o f a single population CHC GA of 
60 chromosomes (400 elements) and an iiGA using 
3 subpopulat ion islands (consisting of 25, lOO and 
400 elements) of 20 chromosomes each. The curve 
displayed for the iiGA represents the fmest 
subpopulation ( 400 elements). The number of 
evaluations is the summation of all evaluations of 
the subpopulations. Migration takes place every 100 
evaluations. Rapid progress is apparent when 
compared with the single population CHC GA. A 
significant reduction in the number of evaluations to 
achieve s imilar fitness is apparent from the iiGA 
throughout the eo-evolutionary process. 

5 The Injection Island GA (iiGA} The single representation CHC approach will 
however eventua lly outperform the iiGA in terms of 

Can we in1prove upon DSR by introducing a maximum fitness (figure 5). This is due to 
concurrent rather than sequential shape refinement convergence of the lower resolution iiGA 
process?. The injection island architecture ( iiGA) [2] representations limiting the injection of useful 
offers this faci li ty. The flat plate is represented by a material into the higher resolution populations 
number of different resolution grids, each evolv ing which eventually results in a stagnation of the co-
upon a separate island. Unlike the DSR method all evolutionary process. 
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Figure 4 - Graph to show a comparison in 
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and an iiGA (early stages of the search for 2 load 
cases) 
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performance between a CHC GA and a iiGA (latter 
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6 Dynamic Injection 

The problem of process stagnation is addressed by 
introducing a dynamic injection (DiiGA) method of 
element representation. As a lower resolution 
process ceases to inject useful information into the 
higher resolution processes so it is removed and 
replaced by a resolution that is higher than any 
currently in existence. A simple 3 leve l 
representation involving 4 processes is presented 
below: 

Representations: 
a) 5x5=25 elements 
b) !Ox!O= IOO elements 
c I) 20x20=400 elements 
c2) 20x20=400 elements 

Process: 

• 

• 

• 

• 

• 

Commence eo-evolution of representations a) 
and b). 
Migrate from a) to b) every n generations until 
a) converges and ceases to pass useful 
information to b) 
Remove a) and introduce c1) using the best 
individual from b) to seed new population 
Migrate individuals fTom b) to c1) every n 
generations until b) converges and ceases to 
pass useful information to c1) 

Remove b) continue to evolve c1) . IntToduce 
another eo-evolving subpopulation (c2) , seeded 
from (c1). 

Individuals are prevented from migrating if a 
duplicate exists in the host subpopulation in order to 
maintain search diversity. Further migration only 
takes place if the individual is fitter than the least 
fittest individual in the host subpopulation. The nm 
continues until its termination condition is met 
(when the subpopulations have converged, the 
maximum number of evaluations have been reached 
or the maximum number of reinitialisations has been 
achieved). It should be noted that there is no danger 
that the best individual will rapidly take over the 
new subpopulation. The CHC GA's incest 
preventing mechanism (the dropping difference 
threshold), in combination with elitist selection and 
disruptive recombination will prevent this. Eshelman 
found that partial reinitialisations perfom1 better 
using smaller population s izes when compared with 
chronic mutation and provide many of the benefits 
of a large population without the cost of a slower 
search [ 1 ,2]. Initial results are shown in figure 6. 
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7 Dastnbuted Search Technigues Trials per Iteration 40 
Max. No. of Evaluations 

A final hypothesis is that further improvement in 
overalJ fitness and in the number of function 
evaluations may be possible by introducing different 
search techniques to the individual eo-evolving 
processes. This is intuitively based upon the 
performance of the various adaptive search 
techniques of figure 1 and the behaviour of PBIL in 
particular. It is assumed that the initial poor relative 
performance of PBfL on the coarser resolution grids 
is due to premature convergence upon some local 
optima resulting from the implementation of a high 
learning rate. 

lt is interesting to note however that PBIL's 
performance significantly improves with increasing 
grid resolution suggesting that this tendency for 
premature convergence is offset by the sheer number 
of possible design directions available at higher 
dimensions. Whereas the more diverse search of the 
CHC begins to lose its way, PBIL manages to 
sustain a better compromise betwe~n exploration 
and exploitation and fmalJy outperforms the CHC as 
the 400 element representation is approached. 
Another fea ture of PBIL is its rate of convergence 
during early generations with medium to high grid 
resolutions as shown in figure 7. This suggests that 
different techniques may be better suited to varying 
stages of the evolutionary process (although rapid 
convergence during the early stages may not prove 
beneficial in the longer term). 
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The establishment of a distributed architecture 
supporting several search algorithms and their 
subsequent removal I re-introduction depending 
upon relative performance during the evolution 
process may provide a partial solution to the 
problem of selecting the most appropriate search 
technique for a particular problem. Preliminary 
experimentation here, however, concentrates upon 
the utility of this approach for the achievement of 
the two primary objectives of the flat plate problem 
i.e. minimal weight with minimum function 
evaluations. Two simple configurations are assessed. 
In the first the CHC algorithm manipulating a 5x5 
grid representation eo-evolves with a PBIL 
manipulation of a !Ox I 0 representation. Migration is 
alJowed every 200 evaluations with the better 
solutions from the CHC process updating the 
probability vector of the PBIL process. When the 
CHC ceases to provide sufficiently high
perfonnance solutions for injection the process is 
killed and replaced by a second PBIL process 
manipulating a 20x20 grid representation. This 
continues to eo-evolve with the lower resolution 
PBIL process receiving injected solutions every n 
generations. The reasoning here is that the more 
diverse search of the CHC which leads to higher 
perfonnance on the coarser resolutions interacts with 
the more rapid convergence characteristics of PBlL 
to provide an optimal starting population for the 
frnal PBIL-based search. The objective is a higher
perfom1ance solution within a lesser number of 
function evaluations than would be attainable using 
the CHC alone within a DiiGA architecture. Results 
from a single load-case representation are shown in 
figure 8 and compared to the results from a three 
load-case representation (figure 9). 
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Figure 7 -Graph to show the initial rapid progress of 
PBIL in comparison to the CHC (3 load cases are 
utilised) 

The folJowing settings are used in relation to alJ 
PBIL runs. 
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Negative Learning Rate 0.1 
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1400 however, that performance of the CHC alone finally 
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equals that of the p-c-c eo-evolution, whereas the 
characteristics of the c-p-p process results in rapid 
convergence upon a significantly lower performance 
solution. 

8 Conclusions 

The DSR technique has shown that that a significant 
reduction in the number of ca lls to the model may be 
made during the latter more detailed stages of the 
design process, producing light weight, low risk 
design solutions. 
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Results from the CHC GA utilising the iiGA 
8000 10000 architecture show dramatic improvements in the 

Nu m be r of Eva lu atio n s strength to weight ratio characteristics exhibited by 
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the plate at significantly less computational cost than 
PB tC - _ _ _ CHC - that required by a single population CHC GA. The 
-- -- -- -- --- CHC DiiGA achieves a significantly higher fitness 

Figure 9 - Graph to show the performance of the overall whilst still maintaining the initial rapid 
different configurations for a 3 load case improvements exhibited by the CHC iiGA. The 
representation. DiiGA satisfies the two objectives of the research 

The second configuration involves a PBI.L 
manipulation of the 5x5 grid eo-evolving with a 
CHC manipulation of the I Ox I 0 grid. The 5x5 
PBIL process is killed as it ceases to pass useful 
information to the CHC process and at this point the 
CHC algorithm is replaced by PBIL which now 
manipulates the I Ox I 0 resolution. A further 20x20 
CHC process is introduced and eo-evolves with the 
I Ox I 0 PBIL representation. This strategy 'therefore 
investigates an alternative dynamic where PBIL 
injects locally high-performing solutions into the 
more diverse search processes of CHC. 

The chc-pbil-pbil ( c-p-p) eo-evolution results in 
increased perfom1ance both in terms of reduced calls 
to the evaluation function and improved overall 
fit11ess in the single load case situation. However, as 
a more realistic tlu·ee load case problem is 
introduced the cpp is very significantly out 
performed by the pbi l-pbil-cbc (p-p-c) eo-evolution. 
Further experimentation is required to determine the 
reasons for these comparative perfom1ances upon 
differing problem representations. The single load 
case promotes the generation of material 
concentrations in one area of the plate and it is 
suggested tl1at the convergence characteristics of the 
c-p-p are better suited to a less complex distribution 
of material upon the plate than that required by the 
three load case problem. With three load cases 
material is distributed across a wider area of the 
plate to best satisfy stress characteristics. It is 
assumed that the greater diversity of tl1e later stages 
of p-c-c search results in the better identification of 
this more complex material distribution. TI1e rapid 
convergence characteristics of pbil however, greatly 
acce lerates this identification resulting in far less 
evaluation calls than is required by a DiiGA process 
utilising CHC alone. It is interesting to note, 

i.e. to converge upon a high performance design 
solution with a minimum number of function 
evaluations. The main advantage therefore in using 
injection island techniques is the reduction in 
computational expense in addition to the ability to 
identify better design solutions when compared to 
single population GA 's. 

More extensive experin1entation is required to 
properly assess the utility of eo-evolving processes 
involving several differing search algoritlmlS. 
However the preliminary findings of section 7 
indicate that : 

• it is possible to improve perfom1ance both in 
tem1s of overall fitness and reduced evaluation 
calls. 

• the selected search configurations are very 
senslltve to problem specifics e.g. the 
performance differences between one and three 
load case scenarios. 

This second point may be addressed by improving 
the dynamics of the introduction I removal of 
individual search algorithms. A perfonnance based 
scenario is envisaged whereby algorithms are 
removed I re-introduced dependent upon on-line 
measurement of their relative performance. This 
could result in the automatic selection of appropriate 
search configurations. 
The integration of FEA representation and 
concurrent processing of simple evaluation models 
alongside complex analyses is now under 
investigation. Tltis will allow the introduction of 
more high resolution levels to the DiiGA 
architecture. High resolution simple stress analyses 
will initially inject information into coarse resolution 
FEA representations before dying off and allow the 
process to move into a secondary detailed design 
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phase. The objective here is to achieve a continuous 
process from preliminary design of the plate through 
to final product realisation. 

These initial results indicate a considerable potential 
for a significant reduction in the number of 
evaluation calls during evolutionary search. 
Refinement of the basic strategies introduced here 
are likely to further reduce computational expense 
related to evaluation calls. In generic terms this will 
allow a more efficient integration with complex 
analysis techniques during detailed design and 
contribute significantly to those preliminary stages 
of the design process where a degree of complex 
analysis is required to validate results from more 
simplistic preliminary design models. 
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