
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

04 University of Plymouth Research Theses 01 Research Theses Main Collection

1999

Reducing the Computational Effort

Associated with Evolutionary

Optimisation in Single Component

Design

VEKERIA, HARISH DHANJI

http://hdl.handle.net/10026.1/2390

http://dx.doi.org/10.24382/3811

University of Plymouth

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.

Reducing the Computational Effort Associated
with Evolutionary Optimisation in Single

Component Design

by

HARISH DHANJI VEKERIA

A thesis submitted to the University of Plymouth
in partial fulfilment for the degree of

DOCTOR OF PHILOSOPHY

Plymouth Engineering Design Centre
School of Civil and Structural Engineering

Faculty of Technology

December 1999

Date 1 8 MAV 2UUU T
CfassNo. V c k
Conti.No. !.....4;..~~~-.
_____ LIBR~!j~FI~Y!~~S-

REFERENCE Of'Jl, Y
...... 4 ·--· =·-· .. -.• ,

Reducing the Computational Effort Associated with Evolutionary
Optimisation in Single Component Design

by

Harish Dhanji Vekeria

ABSTRACT

The dissertation presents innovative Evolutionary Search (ES) methods for the reduction in

computational expense associated with the optimisation of rughly dimensional design

spaces. The objective is to develop a semi-automated system which successfully negotiates

complex search spaces. Such a system would be highly desirable to a human designer by

providing optimised design solutions in realistic time.

The design domain represents a real-world industrial problem concerning the optimal

material distribution on the underside of a flat roof tile with varying load and support

conditions. The designs utilise a large number of design variables (circa 400). Due to the

high computational expense associated with analysis such as finite element for detailed

evaluation, in order to produce "good" design solutions within an acceptable period of

time, the number of calls to the evaluation model must be kept to a minimum. The

objective therefore is to minimise the number of calls required to the analysis tool whilst

also achieving an optimal design solution.

To minimise the number of model evaluations for detailed shape optimisation several

evolutionary algorithms are investigated. The better performing algorithms are combined

with multi-level search techniques which have been developed to further reduce the

number of evaluations and improve quality of design solutions. Multi-level techniques

utilise a number of levels of design representation. The solutions of the coarse

representations are injected into the more detailed designs for fine grained refinement. The

techniques developed include Dynamic Shape Refinement (DSR), Modified Injection

Island Genetic Algmithm (MiiGA) and Dynamic Injection Island Genetic Algorithm

(DiiGA). The multi-level techniques are able to handle large numbers of design variables

(i.e. > 100). Based on the performance characteristics of the individual algorithms and

multi-level search techniques, distributed search techniques are proposed. These techniques

utilise different evolutionary strategies in a multi-level environment and were developed as

a way of further reducing computational expense and improve design solutions.

The results indicate a considerable potential for a significant reduction in the number of

evaluation calls during evolutionary search. In general this allows a more efficient

integration with computationally intensive analytical techniques during detailed design and

contribute significantly to those preliminary stages of the design process where a greater

degree of analysis is required to validate results from more simplistic preliminary design

models.

iii

List of Contents

1. INTRODUCTION ... I

I.I Design : .. I

I. I. I Importance of Engineering Design .. 2

I.I.2 Current Design Methods .. 5

I.I.3 Optimum design ... 6

I.2 Evolutionary Optimisation ... 7

I.3 Objectives of the Work .. 9

I.4 Overview of Thesis .. II

2. EVOLUTIONARY ALGORITHMS ... I4

2.I Introduction .. I4

2.2 Evolutionary Algorithms ... I6

2.2.1 The Simple Genetic Algorithm (SGA) .. I9

2.2.2 Evolutionary Programming .. 23

2.2.3 Evolution Strategies ... 24

2.2.4 Genetic Programming .. 26

2.3 Exploration and Exploitation ... 27

2.4 Variations of the Evolutionary Algorithms .. 28

2.4.1 The CHC Adaptive Search Algorithm ... 30

2.4.2 Population-Based Incremental Learning (PBIL) .. 38

2.4.3 The Breeder Genetic Algorithm (BGA) ... 41

2.5 Summary' .. 42

3. INTEGRATION OF EVOLUTIONARY ALGORITHMS WITH

MATHEMATICAL MODELS ... 43

3.1 Structural Optimisation .. 43

IV

3.2 Development of Evolutionary Software for Single Component Design 50

3.2.1 Genetic Representation of the Plate ... 52

3.2.2 Current Design Practice at the Company ... 54

3.2.3 The Evaluation Model (Complex Stress) .. 55

3.2.4 Multi-Criteria Optirnisation ... 57

3.2.5 Two Dimensional Crossover ... 59

3.2.6 Development of Automated Design Tool .. 60

3.2.7 Selection of Design Variables .. 61

3.2.8 NISA PEA Software .. 63

3.3 Summary .. 66

4. APPLICATION OF EVOLUTIONARY I ADAPTIVE ALGORITHMS 68

4.1 Application of Evolutionary Algorithms to the Plate Problem 68

4.2 Operator Settings for the Evolutionary Alg01ithms ... 70

4.2.1 Results for the Flat Plate Problems Utilising the Complex Stress Model 71

4.2.2 Results for the Flat Plate Problems Utilising PEA .. 86

4.2.3 Multiple Load Case Problem ... 92

4.3 Amended PBlL with a given population size (PBIL_POP) 95

4.3.1 Comparison of Results for PBIL_POP Utilising the Complex Stress Model.. 98

4.4 Other Techniques ... 100

4.5 Summary .. 101

5. MULTI- LEVEL SEARCH STRATEGIES ... 104

5.1 Dynamic Shape Refinement (DSR) ... 1 OS

5.1.1 Mapping of Encoding .. 108

5.1.2 Discussion and Results for the DSR Technique .. 109

5.2 Parallel Genetic Algorithms ... 116

5.2.1 Micro-grain GA (mgGA) ... 118

V

5.2.2 Fine-Grain GA's (fgGA's) ... 118

5.2.3 The Distributed Genetic Algorithm (DGA) ... 119

5.2.4 Cooperative eo-evolutionary Optimisation ... 120

5.3 The Injection Island GA (iiGA) ... 121

5.3.1 Application ofMiiGA's on the Plate Problem .. 123

5.4 Dynamic Injection Island GA (DiiGA) .. 131

5.4.1 Application of Dynamic Injection Island GA to the Plate Problem utilising the

Complex Stress Model ... 134

5.4.2 Application of Dynamic Injection Island GA on the Plate Problem utilising

FEA : .. 138

5.5 Summary .. 145

6. MULTI AGENT SEARCH TECHNIQUES ... 147

6.1 Hybrid Search Techniques ... 147

6.2 Multi-Search Techniques ... 149

6.2.1 Application of Multi-Search Techniques to the Plate Problem 150

6.3 Distributed Search Techniques .. 154

6.3.1 Application of Distributed Search Techniques to the Plate Problem 154

6.4 Variable Complexity Modelling .. 160

6.5 Summary .. 162

7. CONCLUSIONS .. 163

7.1 Conclusions .. 163

References ... 170

Publications .. 178

VI

List of Figures

Figure 1-1 A si mow's three-phase design model [Balachandran 1993] 2

Figure 1-1: An example of a 3 dimensional landscape .. 15

Figure 2-2: Pseudo code for an EA .. 18

Figure 2-3: Types of evolutionary algorithms ... 18

Figure 2-4: One point crossover .. 20

Figure 2-5: Pseudo code for ~e canonical GA .. 22

Figure 2-6: Pseudo code for EP 00 00 0000 ... 24

Figure 2-7: Unifmm Crossover applied to a real coded string .. 25

Figure 2-8: Example of a tree structure .. 00 26 .
Figure 2-9: Crossing over two parent trees by swapping sub-trees 27

Figure 2-10: Pseudocode for CHC 00 oo 00 00 .. 0000 oo 32

Figure 2-11: Disruptive Crossover ... oo oo oo 34

Figure 2-12: the PBIL algmithm for a binary alphabet.. .. 40

Figure 2-13: Breeder Genetic Algorithm .. 00 42

Figure 3-1: Decoding process used by the plate problem .. 53

Figure 3-2: Representation of plate elements 00 00 55

Figure 3-3: Discretisation of element depth variation oo oo 56

Figure 3-4 : 2 dimensional crossover representation 0000 00 00 00 0000 60

Figure 3-5: A diagram to show element tapers .. 64

Figure 3-6: A diagram to show node id's .. 64

Figure 3-7: Explanation of the different types of variables oooooo oo oo oooo• 65

Figure 4-1: Simply supported plate with a central load oooooo oooooooooooo oo oo 72

Figure 4-2: Performance comparison of the various search techniques (lload case) 73

Figure 4-3: Comparison of PBIL and CHC GA (1 load case) (20 x 20 plate)

max =24mrn 00 .. 00. 75

vu

Figure 4-4: Comparison of PBIL and CHC GA (1 load case) (20 x 20 plate)

max =18mm ... 76

Figure 4-5: Comparison of PBIL and CHC GA (1 load cases) (24 x 24 plate)

max =24mrn ... 76

Figure 4-6: Comparison of PBIL and CHC GA (I load case) (24 x 24 plate)

max =18mm ... 77

Figure 4-7: Comparison in performance of different learning rates (1 load case) 77

Figure 4-8: Simply supported plate with three load cases ... 79

Figure 4-9: Performance comparison of the various search techniques (three load cases)

(20x20), dmax = 24mm, drnin = 8mm ... 82

Figure 4-10: Evolution of PBIL and CHC (20x20), dmax = 24, dmin = 8,

load cases = 3 ... 83

Figure 4-11: Evolution of PBIL and CHC (20x20), dmax = 18, dmin = 8,

load cases = 3 ... 83

Figure 4-12: Evolution of PBIL and CHC (24x24), dmax = 24, drnin = 8,

load cases = 3 ... 84

Figure 4-13: Evolution of PBIL and CHC (24x24), dmax = 18, dmin = 8,

load cases = 3 ... 84

Figure 4-14: 3 load case problem utilising different population sizes for the CHC algorithm

(20000 evaluations) max. 24, min 8 ... 85

Figure 4-15 : Simply supported plate with a central load (utilising FEA) 87

Figure 4-16 : Best Average Fitness utilising FEA (lload case, 48 variables) 89

Figure 4-17 : Best Average Weight utilising FEA (1 load cases, 48 variables) 89

Figure 4-18 : Best Average Fitness utilising FEA (lload case, 200 variables) 91

Figure 4-19 : Best Average Weight utilising FEA (I load case, 200 variables) 91

Figure 4-20: Simply supported plate with three load cases (utilising FEA) 92

Vlll

Figure 4-21 : Best Average Fitness utilising FEA (3load cases, 48 variables) 94

Figure 4-22: Best Average Weight utilising FEA (3 load cases, 48 variables) 95

Figure 4-23: The amended PBIL algorithm (PBIL_POP) ... 97

Figure 4-24: Effect of different population sizes on amended PBIL algorithm for a single

load case" .. 98

Figure 4-25 : Effect of different population sizes on amended PBIL algorithm for single

load case (learning rate = 1.0) ... 99

Figure 5-l: An Example of the Dynamic Shape Refinement Technique utilising Three

Levels of Representation .. 106

Figure 5-2: The migration of encoding .. 109

Figure 5-3: Performance of stand-alone CHC, CHC DSR and PBIL for 20x20 plate (1 load

cases). Max = 24mm .. 111

Figure 5-4: Performance of stand-alone CHC, DSR and PBIL for 24x24 plate (1load case).

max 24mm : .. 113

Figure 5-5: Performance of stand-alone CHC, DSR and PBIL for 20x20 plate (3 load

cases) max 24mm .. 114

Figure 5-6: Performance of stand-alone CHC and DSR for 20x20 plate (3 load cases) max

18mm ... 115

Figure 5-7: Performance of stand-alone CHC and DSR for 20x20 plate (3 load cases) max

18mm during Latter stages of search ... 115

Figure 5-8 : Two examples of PGA topologies ... 120

Figure 5-9 : Michigan Injection Island Topology .. 122

Figure 5-10: Migration between subpopulations .. 125

Figure 5-11: Performance of stand-alone CHC GA and MiiGA CHC (20 x20 1 load case)

max 24mm ... 127

ix

Figure 5-12: Performance of stand-alone CHC GA and MiiGA CHC (20 x20 1 load case)

max 24mm ... 127

Figure 5-13: Performance of stand-alone CHC GA and MiiGA CHC (24 x24 1 load case)

max 18mm ... 128

Figure 5-14: Performance of stand-alone CHC GA and MiiGA CHC (20 x20 3 load cases,

max. upper limit = 24mm) ... 129

Figure 5-15: Performance of stand-alone CHC GA and MiiGA CHC (24 x24 3 load cases,

max upper limit = 18 mm) .. 130

Figure 5-16 : Grid Representation for the DiiGA .. 133

Figure 5-17: Performance of DiiGA against other techniques for 20x20 plate (3 load cases)

max 24mm min 8mm ... 135

Figure 5-18: Performance of DiiGA against other techniques for 20x20 plate (3 load cases)

max 18mm min 8mm ... 135

Figure 5-19: Performance of DiiGA against PBIL and CHC for 24x24 plate (3 load cases)

max 24mm m in 8mm ... 136

Figure 5-20: Performance of DiiGA against PBIL and CHC for 24x24 plate (3 load cases)

max 18mm m in 8mm ... : ... 137

Figure 5-21 :Best Average FitnesS' utilising FEA (lload cases, 48 variables) 140

Figure 5-22: Best Average Fitness utilising FEA (lload cases, 48 variables) 140

Figure 5-23: Best Average Weight utilising FEA (lload cases, 48 variables) 141

Figure 5-24: Best Average Fitness utilising FEA (31oad cases, 48 variables) 142

Figure 5-25: Best Average Weight utilising FEA (3 load cases, 48 variables) 143

Figure 5-26: Best Average Fitness utilising FEA (lload case, 200 vaJiables) 144

Figure 5-27 : Best Average Weight utilising FEA (lload case, 200 variables) 144

Figure 6-1 : Graph to show a compaJison of the early stages of the search process for

different search methods -(I load case 24x24 plate max. 18mm, min. 8mm) 151

X

Figure 6-2 : Graph to show a comparison of latter stages of the search process for different

search methods -(lload case 74x24 plate max. 18mm, min. 8mm) l51

Figure 6-3 : Graph to show a comparison of different search methods -(3 load cases 24x24

plate max. 18mm, min. 8mm) .. 152

Figure 6-4 : Grid Representation for the chc-pbil-pbil (c-p-p) configuration 155

Figure 6-5 : Graph to show a comparison of the early stages of the search process for

different search methods -(lload cases 24x24 plate max. 18mm, min. 8mm) 156

Figure 6-6 : Graph to show a comparison of latter stages of the search process for different

search methods -(lload cases 24x24 plate max. 18mm, min. 8mm) 157

Figure 6-7 : Graph to show a comparison of different search methods -(3 load cases 24x24

plate max. 18mm, min. 8mm) .. 158

Figure 6-8: Grid Representation for the pbil-chc-chc (p-c-c) configuration 159

xi

List of Tables

Table 4-1 : Operator Settings for the Various Algorithms .. 70

Table 4-2 : Results for CHC for various problem cases utilising a single load case (no. of

runs= 10) : .. 74

Table 4-3 : Results for PBIL for various problem cases utilising a single load case (no. of

runs= 10) ... 74

Table 4-4 : Results for CHC for various problem cases utilising three load cases (no. of

runs= 10) ... 80

Table 4-5 : Results for PBIL for various problem cases utilising three load cases (no. of

lUllS= 10) ... 80

Table 4-6 : Computational expense for individual FE evaluations utilising a single load

case ... 88

Table 4-7 : Results for 48 variables I load case problem .. 88

Table 4-8 : Results for 200 variables 1 load case problem .. 90

Table 4-9 : Computational expense for individual FE evaluations utilising three load cases93

Table 4- 10 : Results for 48 variables 3 load case problem .. 93

Table 4-11: Amended PBIL (with population) (PBILl) Population Size= 20 lOO

Table 4-12: Amended PBIL (with population) (PBILI) (3 load cases)

learning rate= 1.0 .. 100

Tab la 5-l: Results for the DSR technique utilising various problem cases

(no. of runs= 10) ... 112

Table 5-2 : Results for MiiGA utilising various problem cases (no. of runs= 1 0) 126

Table 5-3: Results for DiiGA ·utili~ing various problem cases (no. of runs= tO) 134

Table 5-4 : Computational expense for individual FE evaluations 139

Table 5-5 : Results for 48 and 200 variable problems ... 139

Xll

Table 6-6: Results for CHC_PBIL utilising various problem cases (no. of runs = 10) 150

Table 6-7: Results for PBIL_CHC utilising various problem cases (no. of runs= 10) 150

Table 6-8: Results for CHC-PBIL-PBIL utilising various problem cases

(no. of runs= 10) ... 157

Table 6-9: Results for PBIL-CHC-CHC utilising various problem cases

(no. of runs= 10) ... 159

X111

ACKNOWLEDGEMENTS'

I would like to thank the following people:

My director of studies Dr Ian Parmee whose help, encouragement and influence has made

this thesis possible. I am deeply indebted to him for his guidance, insight and enthusiasm,

which have provided the fmmework for the development of new ideas and approaches.

My supervisors Professor Geoff Bullock, Dr Yacob Rafik and Mr David Easterbrook for

their constmctive help and advise.

Mr Jim Pearce and numerous members of the Teaching Company Centre for their help and

guidance.

Martin Beck, Chris Bonham, Dragan Cvetkovic, Carlos Coello Coello, George Bilchev,

Andy Watson and Joanne Levers, all of whom have helped me in various ways during my

life as a research assistant.

My family and friends for their encouragement and unwavering support.

My wife Amrat, for her moral support, love and motivation and my daughter Kavina who

has been a welcome distraction during the writing up of this thesis.

XIV

AUTHOR'S DECLARATION

At no time during the registration for the degree of Doctor of Philosophy has the author been
registered for any other University award.

The first two years of the study was financed jointly by the EPSRC and DTI as part of a Teaching
Company Programme. The remainder of the study was financed with the aid of a research
assistantship from the EPSRC and carried out at Plymouth Engineering Design Centre.

Relevant scientific seminars and conferences were regularly attended, and a number of papers
prepared for publication. In addition \;YOrk was also presented at workshops at Rutherford Appleton
Laboratories and British Telecommunications Laboratories. Close links were maintained with
Industry and the Genetic Algorithms Research and Applications Group (GARAGe) at Michigan
State University.

Publications :

1. Vckcria H.D, Parmee I.C. "Structural Shape Optimisation for Highly Dimensional Problems".
In M. Polkinghornc (editor), Applications of Artificial Intelligence for Technological and
Business Processes. Technology Transfer Series. Volume 2, University of Plymouth, 1996.
ISBN 0 905227 57 3.

2. Vekeria H.D, Pannee I.C. "The Use of a Co-operative Multi-Level CHC GA for Structural
Shape Optimisation", Proceedings of the European Congress on Intelligent Techniques and
Soft Computing, Aachcn, Gcnnany, September 1996.

3. Vekcria H.D, Parolee I.C. "Reducing Computational Expense Associated With Evolutionary
Detailed Design" Proceedings of the IEEE International Conference on Evolutionary
Computation. Indianapolis, USA, Aprill997.

4. Vekeria H.D, Parmee I.C. "Structural Design Using Multi-Level Evolutionary Strategies"
Proceedings of The Mouchcl Centenary Conference on Innovation in Civil & Structural
Engineering" Cambridge, England, August 1997.

5. Pam1ee I.C, Vekeria H.D. "Co-operative Evolutionary Strategies for Single Component
Design". Proceedings of .the Seventh International Conference on Genetic Algorithms,
Michigan State University, Michigan, July 1997

6. Vckcria H.D, Parmee I.C. "Evolutionary Search for Highly Dimensional Engineering Design
Problems" Proceedings of the International Conference on Engineering Design. Tampere,
Finland, August 1997.

7. Parolee I.C, Vekeria H.D. "Evolutionary I Adaptive Search Strategies and Model
Representation in Engineering Design". Proceedings of the 15th IMACS World Congress on
Scientific Computation, Modelling and Applied Mathematics, Berlin, August 1997

8. Parmee I.C, Vekeria H.D. "Evolutionary I Adaptive Search Strategies for the Differing
Requirements of Preliminary and Detailed Engineering Design". World Congress on
Structural Engineering, San Francisco, July 1998.

9. Parmcc I.C, Vekeria H.D, Bilchev G. "The Role of Evolutionary and Adaptive Search During
Whole System, Constrained and Detailed Design". Journal of Engineering Optimisation, Vol.
29, Gordon & Breach Science Publishers, 1997, pp. 151-176.

10. Parolee l.C, Vekeria H.D. "Reducing Lead Time for Single Component Design via
Appropriate Adaptive Search Strategies". Journal of Engineering Valuation and Cost
Analysis. Sept. 1997., Vol. 2, Num. 3. (Special issue on Engineering Valuation and
Computational Intelligence)

11. Vekeria H.D, Parmee l.C. "In1proving the Perforn1ance of Evolutionary Algorithms Using
Injection Island Strategies". Poster Proceedings of the International Conference on Adaptive
Computing in Design and.Manufacture", PEDC, University of Plymouth, Plymouth, April
1998.

XV

Signed .H.,~~.

Date .. JQ~~.t\F.ft!J.. .. ~O.QQ

1. INTRODUCTION

1.1 Design

Pressure for more economic designs in industry has increased due to growing competition

in the market place and advances in technology. Designers are constantly challenged to

produce designs that meet all the 'performance specifications and yet can be produced at

low cost. French [1994] describes design as a :

" ... purposeful activity directed towards the goal of fulfilling human

need~. lt is also a typical intellectual task that human beings

peiform. Although things are built by many creatures, the nest of a

bird, the dam of a beaver, the web of a spider are some examples,

these creatiom- are however instinctively produced. It is not the

spider that decides the fundamental structure of it's web, but the

programmed instinctive instructions that evolution has provided for

the ~pider. Only humans have the ability to go beyond instinct and

consciously create designs ".

Figure 1-1 illustrates three major stages of the design process : analysis, synthesis and

evaluation [Balachandran 1993]. At the analysis stage the designer participates in the

collection and classification of all relevant information to the problem and defines the

objectives. In the synthesis phase the designer then seeks to formulate a potential solution.

The potential solution is then considered at the evaluation phase, where it is judged against

some criteria in order to select the most suitable solution. Failure to meet the required

1

criteria at the evaluation stage may necessitate a return to the analysis stage where the

decisions must be appropriately CO!fected and then the whole process repeated.

Analysis

Deftne problem
constraints and

objectives

Synthesis

Formulate potential
solutions

Evaluatio n

Evaluate against
criteria

Solution

Figure 1-1 Asimow's three-phase design model [Balachandran 1993].

1.1.1 Importance of Engineering Design

There is no universally accepted dcftnition of Engineering Design. Dym and Levitt, [1991]

summarises the process of engineering design as follows

" Engineering design is the systematic, intelligent generation and

evaluation of specifications for artefacts wlw~·e form and function

achieve stated objectives and satisfy specified constraints ".

2

The design process has several distinct stages [Pahl and Beitz, 1984, Dym and Levitt,

1991] :

1. Conceptual or Preliminary Design takes the statement of the problem and generates

broad solutions to it in the form' of schemes. For example French [1985] describes it as :

" .. the phase that makes the greatest demands on the designer, and where

there is con.\·iderable scope for improvements. Engineering science,

practical knowledge, production methods and commercial a~pects are all

combined to make the most important decisions "

Maher highlights the explorative aspect of design, especially duting conceptual design.

Mahcr states that designers do not always have a complete problem description before

commencing a design synthesis. During conceptual design, designers play around with

ideas to get more understanding about the problem rather than focus on finding a design

solution. Design therefore is an iterative process of searching the design problem space

as well as the solution space. This phenomenon is referred to as exploration in design.

Gero [1993] defines exploration as follows :

" E>.ploration in design can be characterised as a process which creates

new design .\paces or modifies existing design state ~paces. "

Gero [1993] continues to suggest that exploration and search are related and that

exploration precedes search. Maher and Poon [1995] also relates search as a part of

exploration but highlights that search and exploration are not the same:

3

" .. search becomes exploration where the focus of the search changes as

the process continues .. "

2. Detailed design concerns the refinement of choices made in preliminary design. As we

are further down in the design search tree, the decompositions and their interactions are

better understood and therefore more easily manageable.

3. Analysis concerns performing calculations or deductions needed to assess whether the

design satisfies other, less obvious specifications and constraints. This phase of the

design process may be computationally expensive, especially if large complex programs

such as finite element analysis are used.

4. Evaluation consists of predicting the behaviour of the current design by deriving the

values of all relevant performance measures in order to determine whether the stated

specifications and objectives of the current design are acceptable.

5. Iterative redesign concerns the redesign of products if the results are deemed

unsatisfactory.

Many engineering design problems involve the quick development of the "best" or "near

best" design in a complex engineering domain with the given material, technological and

economical constraints. Here "best" can, for example refer to low cost or high quality.

More often or not there is a trade-off. Solving this problem has tremendous commercial

benefits.

4

Automated or semi-automated engineering design is likely to be extremely beneficial to

commercial enterprises as it would allow them to reduce the cost of producing new

designs, to produce better designs than their competitors, and to bring new concepts to the

production line faster. All of these improvements would allow the companies that take

advantage of them to increase market share and profitability.

1.1.2 Current Design Methods

The human design process is traditionally a prolonged, iterative one. Most complex

engineering design is performed manually. Engineers often use computer aided design

(CAD) software to create and edit their designs, and software such as finite element (FEA)

to analyse their designs. The process often works as follows: the engineer initially creates a

conceptual or prelintinary design, which is then analysed, using appropriate software to

determine which parts must be further redesigned or optimiscd. Further changes arc then

made using the CAD software. Iteration will continue until a design is developed that

meets the original specification or is deemed acceptable. In some cases the design process

may be aborted altogether due to time constraints, consequently resulting in a considerable

waste of time and money. This design-evaluate-redesign process is extremely slow. It

requires large amounts of calendar time, moreover it sometimes fails to produce an optimal

or near optimal design solution. The longer the design process the more costly it becomes.

Often, the intuitive redesign methods fail since the available design options arc few and

difficult to determine. Thus, computer software which helps to automate and speed up this

process is highly beneficial.· Mm:eover, with the cost of computers decreasing and the

available computation power increasing, the computer is beconting an essential tool for the

designer.

5

Whilst there is an abundance of computer aided design software and numerous analytical

tools, software which automates the design process (e.g., identifying new designs or

improving existing designs) is currently less common. Commercial optimisation software

is often only capable of handling a relatively small number of design variables, which

limits their use in industry to small problems. For example the ANSYS (release 5.3) finite

element optirnisation software is only capable of handling a maximum of 10 variables.

1.1.3 Optimum design

The purpose of design optimisation is to algorithmically search for the "best" or "near best"

desi!,rn solution relative to an overall criterion. Beightler [1979] et al describes what we are

trying to accomplish when we optimise :

" Man's longing for perfection finds expression in the theory of

optimisation. It studies how to describe and attain what is Best, once

one knows how to measure and alter what is good or bad ...

Optimisation theory encompasses the quantitative study of optima

and methods for finding them ".

"Optimum desi!,rn" is defined as the design that is feasible and also superior to a number of

other feasible alternatives [Balachandran 1993]. Papalarnbros and Wilde [1988] identify

four steps in the design optimisation approach:

I. The selection of a set of variables to desc1ibe the design alternatives.

2. The selection of an objective (criterion), expressed in terms of the design

variables, which we seck to minimise or maximise.

6

3. The determination of a set of constraints, expressed in terms of design variables,

which must be satisfied by any acceptable design.

4. The determination of a set of values for the design variables, which minimise (or

maximise) the objective, while satisfying all constraints.

An optimum design can be obtained in two ways [Balachandran 1993]:

1. By an iterative process, or

2. By solving an optimisation problem

In the first approach, the desigo is. improved through repeated modification and the values

of the design variables are changed or fixed sequentially. In the latter approach, all the

design variables are determined simultaneously so as to satisfy a set of constraints and

optimise a set of objectives. These objectives may coexist, conflict or be independent.

1.2 Evolutionary Optimisation

Evolution is a process of change over time. The driving force behind this change, as

described by Darwin [Darwin, 1859], is natural selection. Evolutionary algorithms are

inspired by and based upon evolution in nature. These algorithms typically use an analogy

with natural evolution to perform search by evolving solutions to problems. Instead of

working with one solution at a time in the search space, these algmithms consider a large

collection or population of solutions at once. By maintaining a population of well adapted

sample points, the probability of arriving at a sub-optimal solution is reduced. In any

population, there arc always individuals who are fitter than others. Such individuals live

longer and thus get the chance to produce more offspring than individuals of average

7

---- ----------

fitness. Conversely, unfit individuals, or individuals poorly adapted to their environment,

tend to produce less offspring than individuals of average fitness. In this way, the genes,

and hence the characteristics, of fitter individuals propagate through a population, until,

assuming those characteristics are better than others currently in the population, all of the

population contains those characteristics.

The Genetic Algorithm (GA) is probably the best known and the most widely used of all

evolutionary based algorithms. GA's were developed by Holland over twenty five years

ago in an attempt to explain the adaptive processes of natural systems and to design

artificial systems based upon these natural systems [Holland 1975].

Evolutionary algorithms are well suited to tackling highly complex optimisation problems

[Goldberg 1989, Davis 1991]. Baeck et a! [1997] argues that

" The most significant advantage of using evolutionary search lies in

the gain of flexibility and adaptability to the task at hand, in

combination with robust performance and global search

characteristics. They should be understood as a general adaptable

concept for problem solving, e~pecially well suited for solving

difficult optimisation problems, rather than a collection of related

and ready-to-use algorithms ".

Miles and Moore [1997] comment that the GA due to it's greater power and flexibility is

better suited to design tasks than other adaptive learning techniques such as Neural

Networks. Evolutionary design techniques have been around since the 1950's [Box, 1957],

however, the potential of these technologies within the engineering design domain is only

8

now being realised. This is largely due to the computational expense associated with such

population-based search strategies. Spurred by the recent advances in powerful desktop

computing, there is growing interest in their realistic application to real-world problems,

although computational requirement still represents a significant problem in some

application areas [Parmee 1994] [Parmee, Vekeria & Bilchev 1997]. The Plymouth

Engineering Design Centre is very active in the application of evolutionary search

techniques to complex design problems and their integration with current design practice

[Parmee 1994, Parmee 1996b].

1.3 Objectives of the Work

The aim of this work is to develop a system which is capable of creating design solutions

automatically. By combining the automatic optimisation of a design alongside evaluation

software which would automatically analyse the quality of the designs, there would be little

or no need for human intervention in the design process. Such an automated system would

be highly desirable to a human designer. It would speed up the whole design process by

providing optimised design solutions to a problem. As the system is not restricted to pre

conceived ideas on certain ways of doing things, like that of a human designer, it would

also be capable of delivering radically different design solutions.

The work will focus on the shape optimisation of flat plates. As mentioned earlier,

computational expense is one of the major drawbacks of population based optimisation

methods, however the advent of parallel processing and more efficient computing

capability has helped to speed up this process. Finite element or other complex analysis

techniques are commonly used to determine if a design will perform as expected. But, these

9

analyses are computationally very expensive to carry out and their use in an iterative

manner for determining the optimal design is prohibitively expensive.

The rapid increase in computer power has also brought about an increase in the complexity

of problems being tackled in the field of engineering design. There is a desire by

companies to deal with increasingly more complicated problems. Unfortunately by

increasing the accuracy in models employed, along with the use of appropriate algorithms,

the resultant computations can often be of very high dimension, leading to practical

difficulties in solving ("the curse of dimensionality"). A combination of computational

expense (calls to analysis model), high-dimensionality and multi-modality presents a

considerable challenge for any optimisation algorithm. This research therefore proposes

methods by which these problems may be overcome.The main objectives of the research

are therefore:

• Integration of evolutionary methods with a structural analysis model.

• Development of a system which is capable of structural optimisation

• Analysis of the performance of different evolutionary algorithms for shape optimisation

of the flat plate

• Development of techniques for reducing the overall computational expense during

population based search.

• Development of a technique for handling high dimensionality.

10

1.4 Overview of Thesis

The thesis examines the application of evolutionary techniques for the optimisation of roof

tiles (referred to as the plate optimisation problem throughout the thesis). Several

techniques are examined (CHC, PBll.., BGA and SGA) in order to determine their relative

performance in minimising calls to the model and the overall quality of design solutions.

Due to limitations of the individual algorithms in handling high dimensionality (large

numbers of design variables), several multi-level techniques were developed which

included Dynamic Shape Refinement (DSR), Modified Injection Island Genetic Algorithm

(MiiGA), Dynamic Injection Island Genetic Algorithm (DiiGA). The techniques exploit the

differing levels of a problem representation. Problem dimensionality is increased as search

progresses. These techniques were developed at the Plymouth Engineering Design Centre

by Vekeria and Parmce [1997]. The MiiGA and DiiGA arc extensions of the Injection

Island GA (iiGA) developed at Michigan State University [Goodman et. al., 1997].

Based on the performance characteristics of the individual CHC and PBll.. algorithms and

the ability of the DiiGA technique in providing the capability of handling higher numbers

of variables. Multi level eo-evolution of the CHC and PBll.. techniques is proposed to take

advantage and further improve performance characteristics.

Chapter 1 has highlighted the design process and draws attention to some of the problems

encountered in the design process and the benefits of automating parts of the design

process.

11

Chapter 2 provides an introductio"n to the area of evolutionary computation. The chapter

highlights common attributes of the various evolutionary techniques of particular relevance

to engineering design processes. The chapter also provides a detailed discussion of some

high performance evolutionary algorithms. Some of the algorithms detailed in this chapter

are used in successive chapters on a structural optimisation problem.

Chapter 3 provides a literature review concerning the application of GA's to structural

optimisation and shows that the area is receiving considerable interest. The chapter also

discusses the development of software utilising a CHC genetic algmithm for the

optimisation of a real world structural plate optimisation problem. The work was

undertaken during a two year Teaching Company Programme. Two types of model are

discussed, the first is based on bending moment and complex stress theory and the second

on finite element analysis.

Chapter 4 provides a comparison in performance of different evolutionary algorithms on

the plate optimisation problem. Results for the different types of evolutionary algorithms

discussed in chapter 2 in relation to the plate problem are presented. Some of these

techniques play a significant role in the thesis by guiding the research down certain avenues

and laying the foundations for the development of various techniques.

Chapter 5 details some techniques for tackling some of the problems highlighted in chapter

4, conceming computational expense and problems with dimensionality. Methods that

make use of different levels of representation for a problem are discussed. A comparison of

the different methods that were developed which utilise multi-level representation is

provided.

12

Chapter 6 discusses how hybrid approaches may provide further improvements in design

performance. Distributed search techniques are proposed which take advantage of both

different search techniques and multi-level representation.

Chapter 7 provides conclusions of the approaches that have been taken by drawing together

the previous chapters, areas of further research are also discussed.

13

2. EVOLUTIONARY ALGORITHMS

2.1 Introduction

This chapter provides an introduction to the area of evolutionary optimisation. There are

many GA variants which have been developed to improve the efficiency of evolutionary

search for different problem classes. Several methods arc discussed in detail. These

techniques are used in successive chapters for the shape optimisation of roof tiles.

Optimisation has been studied for many years. Many methods have evolved and are

detailed in a sizeable literature, with each method having advantages and disadvantages.

Consider the 3 dimensional landscape of figure 2.1. Assuming we are maximising the

solution, a traditional optimisation method such as a hill climber would climb the nearest

hill from it's initial starting point. However, if the evaluation function defines a multi

modal landscape over the search space, then, depending upon the initial position in space

the method may halt on some local optima of the space. Methods such as a random or an

exhaustive search may overcome these problems. These methods are however

computationally expensive and therefore better suited to small problems.

14

1)8

0.6 ·'

04

0.2

0
10

-- -

-, ----

_ ,,

Figure 2-1: An example of a 3 dimensional landscape

Many engineering design problems cannot be tackled with classical optimisation methods.

As such methods are severely restricted in their application due to the possibility of

premature convergence on a local extrema, they are also limited to problems that have

small search spaces if practical search times are required. Where classical techniques fail

GA' s may prove to be more successful especially when negotiating complex engineering

design domains [Patmee 1994, Patmee 1996b]. Genetic Algotithms differ from traditional

optirnisation and seru·ch procedw-es in fow- ways [Goldberg 1989] :

1. GA' s operate upon a coding of the pru·ameter set, not the pru·ameters themselves.

2. GA' s search from a population of points, not a single point.

3. GA's use payoff (objective function) information, not derivatives or other auxiliary

knowledge.

4. GA' s use probabilistic transition rules as opposed to using deterministic rules.

15

2.2 Evolutionary Algorithms

Evolutionary algorithms (EA's) (Figure 2-2) arc techniques for search and optimisation.

They arc based on the philosophy of natural selection, the driving process for the

emergence of complex and well adapted organic stmctures. Like natural selection, EA's

maintain a population of individuals. The population of stJUcturcs evolve according to

rules of selection and actions o'f "search operators", (or genetic operators), such as

recombination and mutation. By manipulation of the genetic structure of these individuals

(genotypes), EA's evolve progressively better phenotypes, the physical expression of a

genotype i.e. the system. EA's treat their populations as though they were made up of

living creatures. A single individual of a population is affected by other individuals of the

population (e.g., by food competition, and mating). Each individual in the population

receives a measure of it's Fitness in the environment. Reproduction focuses attention on

high fitness individuals, thus exploiting the available fitness information. Recombination

and mutation perturb those individuals, providing general heuristics for exploration. The

better the individual performs under these conditions (exploration versus exploitation) the

greater is the chance for the individual to live longer and generate more offspring who

inherit the parental genetic information. Over the course of the evolution, this leads to a

penetration of the population with the genetic information of individuals of above average

fitness. The stochastic nature of reproduction leads to a pennancnt production of novel

genetic information and therefore, to the creation of differing offspring.

16

Common attributes of the various evolutionary techniques of particular relevance to

engineering design processes include [Parmee, Vekeria & Bilchev 1997]:

• Requirement for little, if any, apriori knowledge relating to the search environment.

• Excellent exploratory capabilities especially where population-based search is

considered.

• Ability to avoid local optima. The stochastic nature of the various algorithms combined

with continuing random sampling of the search space can prevent convergence upon a

local sub-optima.

• Ability to handle high dimensionality.

• Robustness across a wide range of problem class.

• The provision of multiple good solutions.

• Ability to locate the region of the global optimum solution

There are many evolutionary based algorithms (Figure 2-3). The variations have diffe1ing

philosophies on how to algorithmically model evolution. Evolutionary strategies (ES) and

Evolutionary programming (EP) refer to two computational paradigms that utilise a

population based search. There are many variants of evolutionary algorithms, their main

differences lie in the [Baeck et. al. 1997] :

• Representation of individuals;

• Design of the variation operators (mutation and/or recombination);

Selection/reproduction mechanism.

17

11 strut with an initial time
t := 0;

11 initialize a usually random population of individuals
initpopulation P (t);'

11 evaluate fitness of all initial individuals in population
evaluate P (t);

11 test for termination criterion (time, fitness, etc.)
while not done do

od

11 increase the time counter
t := t +] ;

11 select sub-population for offspring production
P' := selectparents P (t);

11 recombine the "genes" of selected pru·ents
recombine P' (t);

11 pe1turb the mated population stochastically
mutate P' (t);

11 evaluate it's new fitness
evaluate P' (t) ;

11 select U1e survivors from actual fi tness
P :=survive P,P' (l);

end EA.

Figure 2-2: Pseudo code for an EA

Evolutionary Algorithms

Genetic Algorithms Evolution StraLegies Evolutionary Programming Genetic Prograrruning

Figure 2-3: Types of evolutionary algorithms

18

2.2.1 The Simple Genetic Algorithm (SGA)

The SGA [Goldberg, 1989] (Figure 2-5) is the canonical genetic algorithm, it is composed

of three operators:

1. Reproduction

2. Crossover

3. Mutation

Generally the SGA comprises of a population of initially randomly generated variable

parameter sets (chromosomes). Variable values are generally represented in binary form

although real-number representation.can also be maintained.

The performance of each chromosome is determined by a mathematical model (fitness

function) of the system under design.

2.2.1.1 Crossover

Crossover is applied to the reproduced chromosomes in order to imitate sexual

reproduction. Crossover is usually applied with a high probability, with information being

exchanged randomly between selected parent chromosomes. Simple crossover is

implemented by choosing a random point in the selected pair of strings and exchanging the

sub-strings defined by that point (Figure 2-4). The crossover operator thus mixes

information from two parent strings producing offspring made up of parts from both

parents. Crossover provides an exploratory capability. The canonical GA operates on a

fixed-length binary string.

19

Crossover is an extremely important component of the genetic algorithm. Many genetic

algorithm practitioners believe that if the crossover operator is not used, the result is no

longer a true genetic algorithm. The same claim has not been made for mutation [Davis

1991].

Parent 1
Parent 2

child 1
child 2

1 o:o 1 1 1
01:10 0 0

..--_----cross over Point
1 0 1 0 0 0
0 1 0 1 1 1

Figme 2-4: One point crossover

2.2.1.2 Reproduction

Reproduction in which individual strings are copied into the next generation is dependant

upon the relative fitness of each chromosome Those of high fitness have a greater

probability of multiple reproduction whilst those of low fitness have a greater probability

of rejection. The roulette wheel is a widely used method of selection. Roulette wheel

selection may be viewed as allocating pie-shaped slices on a roulette wheel to population

members, with each slice proportional to the member's fitness. The effect of the roulette

wheel is to return a randomly selected parent. Although the selection procedure is random,

the probability of each parent being selected is directly proportional to its fitnes s. On

balance, over a number of generations the algOiithm will diive out the least fi t members

and conllibute to the spread of the genetic mate1i al of the fittest population members

20

(fitness-proportionate selection). However it is still possible that the worst performing

member could still be selected.

Another commonly used selection method is tournament selection. A basic form of

tournament selection randomly selects two strings from the current population and their

fitness values are compared. The string with the best fitness is placed in the intermediate

population. This process is then repeated N times, where N is the population size.

2.2.1.3 Mutation

Like crossover the mutation operator is applied to the reproduced chromosomes in order to

imitate biological evolution. Mutation in contrast is applied at a very low probability, it

injects information into the genetic pool by mutating randomly selected bits. Mutation

provides a small amount of random search, and helps to ensure that no point in the search

space has a zero probability of being examined. It prevents premature convergence by

ensUiing that the genetic pool does not stagnate.

In "An Analysis of the behaviour of a class of genetic adaptive system" [De Jong, 1975] a

study was performed of genetic algorithms in function optimisation. A series of parametric

studies across a five-function suite of problems suggested that good GA performance

requires the choice of a high crossover probability, a low mutation probability (inversely

proportional to the population size), and a moderate population size.

Evolutionary algorithms are directed search techniques, but are inherently random. For this

reason not every run is guaranteed to produce a satisfactory individual. The GA may need

to be mn several times (10 or more) utilising differing initial populations. It is therefore

21

important that robust GA' s are developed especially for problems which arc

computationally expensive in order to keep run times to a minimum.

11 start with an initial time
t := 0;

11 initialize a usually random population of individuals
initpopulation P (t);

11 evaluate fitness of all initial individuals of population
evaluate P (t);
11 test for tem1ination criterion (time, fitness, etc.)
while not done do

od

11 increase the time counter
t := t + 1;

11 select a suti-pop1,1lation for offspring production
P' := selectparents P (t);

11 recombine the "genes" of selected parents
recombine P' (t);

11 perturb the mated population stochastically
mutate P' (t);

11 evaluate it's new fitness
evaluate P' (t);

11 select the survivors from actual fitness
P :=survive P,P' (t);

end GA.

Figure 2-5: Pseudo code for the canonical GA

22

2.2.2 Evolutionary Programming

Evolutionary programming (EP) (Figure 2-6) is described in an early book by Fogel,

Owens and Walsh [Fogel et a! 1966]. It is one of the earliest EAs. The basic EP method

involves 3 steps which are repeated until a threshold for iteration is exceeded or an

adequate solution is obtained.

1. Choose an initial POPULATION of trial solutions at random. The number of solutions

in a population is highly relevant to the speed of optimisation.

2. It is in the creation of the new generations that EP differs from most other EA's, for it

does not employ any crossover. Each solution is replicated into a new population.

Each of these offspring solutions are mutated according to a distribution of

MUTATION types, ranging from minor to extreme with a continuum of mutation types

between. The severity of MUTATION is judged on the basis of the functional change

imposed on the parents.

3. Each offspring solution is assessed by computing it's fitness. Typically, a stochastic

tournament is held to determine N solutions to be retained for the population of

solutions, although this is occasionally performed dcterministically. There is no

requirement that the population size be held constant, however, nor that only a single

offspring be generated from each parent.

Unlike GA 's, EP does not rely on fixed length structures, but permits individuals in the

initial population to be of different lengths. These individuals are then tested, and parents

for the subsequent generation arc selected in a non-dete1ministic manner.

23

11 start with an initial time
t :=0;

11 initialise a usually random population of individuals
init. population P (t);

11 evaluate fitness of all initial individuals of population
evaluate P (t);

//test for termination criterion (time, fitness, etc.)
while not done do

11 perturb the whole population stochastically
P'(t) := mutate P (t);

11 evaluate it's new fitness
evaluate P' (t);

11 stochastically select the survivors from actual fitness
P(t+ 1) :=survive P(t),P'(t);

11 increase the time counter
t := t + 1;

od
end EP.

Figure 2-6: Pseudo code for EP

2.2.3 Evolution Strategies

Evolution Strategies are based on· the work of Rachenberg [1973] and Schwefel [1975].

Like GA's, ES use fixed length structures, but instead of the binary representation used in

GAs, ES have real valued genes.

The emphasis in ES is more on the acquisition of behaviour rather than structure

[Angeline, 1993]. Each position in an ES (i.e. a real number) marks a behavioural trait, and

an individual's behaviour is the composition of these traits.

24

-- - ---------

Crossover in ES is intended to produce children that are behaviourally similar to their

parents, and there are different approaches [Baeck, 1 992].

The first, discrete recombination, is similar to a method often used in GA's, uniform

crossover [Syswerda, 1989]. Discrete recombination consists of selecting the parameter

value from either of the two parents. In other words, the parameter value in the child equals

the value of one of the parents. Uniform crossover involves creating a crossover mask, a

binary string the same length as the parents. A 0 in the mask results in the relevant gene

being selected from the first parent, while a 1 results in the second parent donating the

gene. The crossover mask is a random string, and generally ensures that each parent

contributes equally to the child. An example is shown in Figure 2-7.

The other two methods exploit the.fact that the genes are real valued. The first of these, the

intermediate recombination operator, determines the value of the child's genes by

averaging the two values in the parents genes. The second method, the random

intermediate recombination, probabilistically determines the eveness of the contribution of

each parent for each parameter.

Parent 1 . 0.8 0.3 0.2 0.5 0.6
Parent 2 · 0.3 0.1 0.8 0.4 0.1
Mask 1 0 1 0 1
Child 1 . 0.3 0.3 0.8 0.5 0.1
Child 2 . 0.8 0.1 0.2 0.4 0.6

Figure 2-7: Uniform Crossover applied to a real coded string

25

2.2.4 Genetic Programming

Genetic Programming (GP) was developed by Koza, [1992]. It is a relatively new

technique for the evolution of computer programs. GP differs from the GA in the

representation of individuals, using trees instead of fixed length strings. Thus, for example,

the simple program "a+ b * c" would be represented as:

Figure 2-8: Example of a tree structure

The program trees are made up of two fundamental building blocks: nodes and leaves

(Figure 2-8). Nodes can be simple functions such as + * which take one or more

arguments, while the leaves are terminals, i.e. numbers or zero-argument function . The first

major step in any implementation of GP is to select the necessary functions and terminals,

and to ensure that any combination of them will result in a syntactically conect program.

GP uses a similar generational approach as the simple genetic algmithm, but, because of its

tree structures uses a different crossover scheme. In GP the crossover operation is

implemented by taking randomly selected sub-trees in the individuals (selected according

to fitness) and exchanging them (Figure 2-9). Like the simple genetic algorithm this results

in the creation of two new individuals. Like GA's, the GP reproduction operator simply

26

copies an individual unchanged into the next generation, however GP does not usually

employ mutation as a genetic .operator.

Subtrees selected for

Figure 2-9: Crossing over two parent trees by swapping sub-trees.

2.3 Exploration and Exploitation

Two important but competing themes exist in an evolutionary search. Exploiting the best

solution versus exploring the search space. Michalewicz [1994] provides a compatison

between a number of search strategies, namely hill-climbing and random and genetic

search . Hill-climbing is an example of a strategy which supports the exploitation of the

search space whilst disregarding exploration. Random search is an example of a strategy

which supports exploration of the· search space, whilst ignoring exploitation of the search

space. Genetic algolithms combine elements of both stochastic and directed seat·ch and

hence provide a balance between exploration and exploitation. Selection according to

fitness is the source for exploitation, so that the GA is able to focus the seat·ch on

promising at·eas of the search space. The mutation and crossover operators are sources for

27

exploration in order to maintain population diversity so that important information is not

lost. Whitley [1989] notes:

" Many of the various parameters that are used to 'tune' genetic search

are really indirect means of allocating selective pressure and

population diversity: As. selective pressure is increased, the search

focuses on top individuals in the population, but because of this

'exploitation' genetic diversity is lost. Reducing the selective pressure

(or using a larger population) increases 'exploration' because more

genotypes and thus more schemata are involved in the search"

2.4 Variations of the Evolutionary Algorithms

There are a number of types of advanced EA's, all developed to improve the abilities of

evolutionary search for different types of problems. This section describes three

evolutionary algorithms that were initially selected because they were found (in the

literature) [Eshelman, 1991, Baluja, 1994, Muhlenbein & Schlierkamp-Voosen 1993] to

provide good results on various problems in comparison to those produced by other EA's.

When applying GA's to complex real world problems, a designer may face a number of

difficulties. These problems include :

• Multimodality - the search space is characterised by a number of peaks and troughs

[Goldberg, 1989].

• Constrained Space - Difficult to access and remain in a feasible region [Bilchev &

Parmee, 1996].

28

• Premature convergence - population converges quickly onto non-optimal local minima

[Davis, 1991].

• Deceptive - Contain isolated optima : the best points tend to be surrounded by the worst

[Whitley, 1991].

• Highly sensitive - slight petturbation of the design variables causes large changes in

relation to fitness [Parmee & Vekeria 1997].

• Multiple objectives - several objectives are present simultaneously [Fonseca & Flerning

1993, Coello Coello 1998].

• Unce1tainty - vagueness or impreciseness due to poorly defined data, unsatisfactory

formulation of design objectives or inability to evaluate the relative importance between

objectives [Rao, 1984].

• Highly dimensional -large number of variables are present [Parmee and Vekeria 1997].

• Noise- noisy environment [Goldberg, 1989].

In an attempt to overcome these and other problems, new, and more advanced types of GAs

have been developed. Much of the available GA literatme concerns the development of

new and more advanced GA's for tackling many of these problems, e.g. :

• Parallel and Distributed GAs .help with exploration of search space and to reduce

computational expense [Tenese, 1989] [Goodman et al, 1996].

• Structured GAs (sGAs) allow parts of chromosomes to be switched on or off using

evolveable 'control genes' [Dasgupta & McGregor, 1992] [Parmee & Denham, 1994]

• Messy GA's use variable-length strings that may be over or under specified with respect

to the problem being solved. [Goldberg et. al. 1991]

• CHC GA utilise population-elitist selection, a highly disruptive crossover operator, an

"incest" prevention mechanism and a divergence process. [Eshclman, 1991].

29

• PBIL is combination of evolutionary optimisation and hill climbing. [Baluja, 1994].

• Breeder GA is a combination of evolution strategies (ES) and genetic algorithms (GA).

[Muhlenbein & Schlierkamp-Voosen 1993].

• GAs with niching and speciatioh where the population within the GA is segregated into

separate species [Deb & Goldberg, 1989].

• Hybrid GAs (hGA's) combine evolutionary search heuristics with traditional local

search algorithms [Davis, 1991].

• GAANT involves a combination of a GA and ant colony based search [Parmee, 1996a]

• Multiobjective GAs (MOGAs) which allow multiple objectives to optimised [Fonseca

and Fleming 1993].

• Combination of Fuzzy Logic with EA's [Zhao et. al. 1996].

A number of these variant techniques play a significant role in the thesis and these are now

described in some detail.

2.4.1 The CHC Adaptive Search Algorithm

The CHC Adaptive Search Algorithm was developed by Larry Eshelman [Eshelman,

1991]. CHC stands for Cross generational elitist selection, Heterogeneous recombination

(by incest prevention) and ~ataclysmic mutation, which is used to restart the search when

the population stagnates. The main differences between the CHC GA and the simple,

canonical GA are:

• Population-elitist selectio~

• Highly disruptive crossover operator

• An "incest" prevention mechanism

• Divergence process

30

The rationale behind the CHC is to have a very aggressive search (by using monotonic

selection Lhrough survival of the best st.Iings) and to offset Lhe aggressiveness of the search

by using highly disruptive operators such as uniform crossover. With such small population

sizes, however, the population converges to the point that it begins more or less to

reproduce many of the same st.Iings. At this point the CHC algorithm uses cataclysmic

mutation. All st.Iings undergo heavy mutation, except the best st.Iing which remains intact.

After mutation, genetic search is restarted using only crossover.

procedure CHC
begin

end.

t = 0;
d = L/4;
initialize P(t);
evaluate structures in P(t);
while termination condition not satisfied do
begin

end

t =t+ l ;
selectr C(t) from P(t-1);
recombine st.Iuctures in C(t) forming C' (t);
evaluate structures in C' (t);
selects P(t) fTom C'(t) and P(t-1);
ifP(t) equals P(t-1)
d--;
ifd <0
begin

end

diverge P(t);
d = r * (l.O - r) * L;

Procedure select,.
begin

copy all members of P(t-1) to C(t) in random order;
end.

Procedure selects
begin

end.

form P(t) fTom P(t-1)
by replacing !he worst members of P(t- 1)
with the best members of C'(t)
until no remaining member of C'(t)
is any better than any remaining member of P(t-1);

31

Procedure recombine
begin

for each of the m/2 pairs of structures in C(t)
begin

end
end.

determine the Hamming_distance
if (Hamming_distance/2) > d

swap half the differing bits at random;
else

delete the pair of s"tructw-es [TOm C(t);

Procedure diverge
begin

replace P(t) with M copies of the best member of P(t-1);
for all but one member of P(t)
begin

end
end.

Variables
M
L
t
d
r

flip r * L bits at random;
evaluate structure;

population size
string length
generation
difference threshold
divergence rate

Figure 2-10: Pseudocode for CHC

2.4.1.1 Elitist Selection

The CHC employs a more direct emulation of Darwin's 'survival of the fittest' . In nature

there are limited resources in the environment. As competition of these resources increases,

the weakest individuals die. The fitter individuals survive longer and thus the greater their

chance of having more offspring. The CHC replaces the traditional GA's "reproduction

selection" with bias in favour of the "survival of the fittest". In traditional GA's the

selection is petformed according to a fitness criteria. Instead of biasing selection of

32

individuals towards the better performing members of the population, the CHC pairs each

member randomly with another, regardless of the fitness. During the survival-selection

process, instead of replacing the old parent population with the new child population,

competition for survival is cross generational i.e. the child population must compete with

the parent population for survival.

Several other GA's use fitness-biased survival selection -- Whitley's GENITOR [Whitley

1989], Syswerda's Steady State GA (SSSGA) [Syswerda 1989]. The SSSGA inversely

ranks the parent population· and replaces a certain number of the worst performing

members of the parent population with children. The GENITOR algorithm is specifically

designed to allocate reproductive trials according to rank. GENITOR only produces one

genotype at a time, which is inserted in the population automatically ranking the individual

relative to the existing pool. The CHC however differs from both of these algorithms in

that the competition for survival is cross-generational - a child only replaces a member of

the parent population if it is better.

2.4.1.2 Highly Disruptive Crossover (Unifonn Crossover)

Eshelman [1991] argues the use of uniform crossover over the use of standard one point

and two point crossovers, in order to combat parasitic bits (bits that tag along good

performing schemata). The intuitive idea behind recombination is that the combination of

features from two good parents may yield even better children. However the more bits

copied from one parent into a child the more schemata of that parent are preserved at the

expense of the other parent, and vice versa.

33

One general area of concern using EAs is premature convergence of solutions. Premature

convergence refers to a situation where most of the population members have similar bit

sttings without reaching the optin1;al point in the space. One way of preventing the loss of

diversity is not to allow new strings which have a hamming distance (number of differing

bits in a string) below a specified threshold into the parent population, however, this limits

the searching of the EA. A common strategy called incest prevention involves a random

mating of parents but only if hamming distance is above a certain threshold. The CHC

crosses exactly half the differing bits of the parents and these are exchanged randomly

without replacement. This guarantees that the children are always at the maximum

hamming distance from both parents therefore promoting diversity within the population

(Figure 2-11). This is similar to uniform crossover [Syswerda, 1989], which recombines at

bit level.

Parent 1 · 1 0 0 1 1 1
Parent 2 · 0 1 0 0 1 0

Child 1
Child 2

·000011 - -
·110110

Figure 2-11: Disruptive Crossover

Eshelman [1991] argues that uniform crossover is much less likely than traditional one or

two point crossover to produce the same offspring twice from the same parents. The reason

for this is that the CHC preserves fewer schemata than one or two point crossover.

34

2.4.1.3 Divergence of Population

The CHC does not use mutation in the reproduction-recombination cycle. The use of HUX

and incest prevention in conjunction with a population size large enough to preserve a

number of diverse structures (e.g., 50) enables CHC to delay premature convergence. All

these mechanisms cannot guarantee that no allele will prematurely converge. Some sort of

mutation is required.

Since the CHC is extremely good at maintaining diversity, mutation is however less

effective in the CHC than in the traditional GA. Mutation in the CHC is only introduced

when the population has stagnated. Stagnation is said to have occurred once the difference

threshold (this is set as length of string/4 at the beginning of the run) has dropped to zero

and there have been several generations without any new offspring accepted into the parent

population. The reinialisation is only partial however as the best individual found so far is

used as a template for creating a new population. Each new individual is created by

flipping a fixed proportion (e.g., 35%) of the template's bits chosen at random. One

instance of the best is added ·unc~angcd to the new population. This creates a population

that preserves the progress made so far and is biased toward a good solution but with new

diversity to continue the search. Moreover the search cannot converge to a worse solution

than the previous search.

Eshelman [1991] argues that partial reinitialisations over chronic mutation arc much more

effective, performing considerably better on a large range of problems utilising the same

parameter sets. Restarts provide many of the benefits of a large population without the cost

of a slower search. Optimal solutions can be identified on easy problems in the first

initialisation cycle whereas with more complex problems optimal solutions are identified

only after repeated restarts.

35

2.4.1.4 Incest Prevention

Strategies for maintaining population diversity can naturally be grouped according to where

they occur in the GA's reproduction-recombination-replacement cycle i.e. (1) how mates

are selected, (2) how children are created by recombination, (3) how parents are replaced

[Eshelman & Shaffer 1991]. The points concerning population selection and the creation of

new individuals have already been addressed. The remaining point of the mating strategy

has yet to be discussed. Mating strategies are usually considered in te1ms of speciation,

where the goal is to prevent radically dissimilar individuals from mating. Goldberg &

Richardson [1987] introduced penalties which reduce the fitness of individuals as a

function of how similar they are to other individuals in the population. The effect of this is

to reduce "incestuous" mating by increasing the likelihood of reproduction between diverse

individuals. Eshelman's incest prevention mechanism is a more direct approach for

preventing similar individuals from mating [Eshelman & Shaffer, 1991]. Individuals are

randomly paired for mating and bias is introduced against mating individuals who are

similar. Individuals are only crossed if their hamming distance , i.e. the number of differing

bits between the two individuals, exceeds the difference threshold. The threshold is initially

set to the expected average Hamming distance of the initial population (string length I 4),

and then is allowed to drop a~ the population converges. The number of children produced

each generation can vary from zero up to the population size. The disadvantage of this

mating strategy is that more schemata are disrupted by crossover, since fewer schemata are

shared.

36

2.4.1.5 No Duplicates

The CHC algorithm also utilises a no duplicates policy (Figure 2-10). This is to ensure that

the number of evaluations are kept to a minimum. Once a child is produced by crossover, it

is matched against all the members of the parent population. If a duplicate is found, the

child is discarded, otherwise the child is evaluated and included in the child population of

potential candidates for replacing members of the parent population. Another reason for

implementing this strategy is to ensure that super chromosomes do not dominate the

population, which would reduce the diversity within the parent population and ultimately

cause premature convergence. The CHC GA always preserves the best individuals so far

whilst maintaining a highly explorative search through disruptive crossover.

Several researchers have investigated the idea that diversity of a population may be

maintained by restricting children from entering the parent population if they are similar to

the parent members. De Jong "[I 97.5] suggested the crowding scheme in which an offspring

replaces an existing individual according to it's similarity in bit terms (hamming distance)

with other individuals in a randomly drawn sub-population of size CF (crowding factor).

Mauldin [1984] used a uniqueness operator to maintain diversity. An offspring would only

be inserted into the population if it is genotypically different from all individuals in the

population (specified by a given hamming distance).

2.4.1.6 CHC Performance

Eshelman [1991] compared the performance of the CHC with the canonical GA for a

number of functions. For five of. the six functions in which both algorithms found the

optimum in all 50 searches, CHC, on average found the optimum in fewer evaluations, and

on four of the functions, the CHC found the optimum more often than the GA. The only

37

function on which the canonical GA does significantly better than the CHC is a smooth,

unimodal function. The CHC performed significantly better on all the multi-modal

functions. Eshelman found that the CHC algorithm was relatively insensitive to parameter

settings. Eshelman also reported the CHC to be a worthy competitor for Goldberg's messy

GA [1991].

2.4.2 Population-Based Incremental Learning (PBIL)

Population-based incremental learning (PBIL) was introduced by Baluja in 1994. PBIL is

an abstraction of a canonical GA without recombination. The statistics normally implicit in

the population are explicitly maintained in a 'probability vector' which determines the

frequency with which O's and 1 's are generated in each bit of the trial solutions. It is

claimed that a standard form of PBIL performed as well as, or better than the canonical GA

on a range of standard optimisation tasks. PBIL is a combination of evolutionary

optirnisation and hill climbing. The algorithm initially creates a real valued probability

vector with values set to 0.5 which is utilised to create a trial set of binary encoded solution

vectors where the probability of generating a 1 or 0 is equal. The performance of the real

numbered variable sets represented by these binary solution vector's are assessed via the

fitness function. As search progresses, the values in the probability vector gradually shift

relative to the fitness of the 'best' trial solution vectors. The distance the probability is

pushed (towards either 0.0 or 0.1) depends upon a learning rate parameter. After the

probability vector is updated, a new set of trial solution vectors is produced from the

updated probability vector and the cycle is continued. As the search progresses, entries in

the probability vector move away from their initial settings of 0.5 towards either 0.0 or 1.0

i.e. the binary representation of the trial solutions are pushed towards that of the current

best solutions. Thus, PBIL does not store domain knowledge in a population but in a

probability disllibution.

38

PBIL is characterised by 3 parameters (Figure 2-12). The first is the number of samples to

generate based upon each probability vector before an update (analogous to the population

size of GA's). The second is the learning rate, which specifies the dimension of the steps

towards a good solution. The third is the number of best solutions to update from.

Baluja [1994] suggests variants of the basic PBIL, such as updating the probability vector

not only from the best trial but from several of the better performers. Although this method

proved to be too problem dependent, some significant results were produced.

Greene [1996] suggests another vmiant on the basic PBIL. At each step of the search a

record of the "best" and "worst" trial solutions are maintained. The probability vector is

then maintained by moving it towards the "best" trial vector and moving it away from the

"worst" trial solution [Greene 1996]. Greene concluded that this change worked well

during the early stages of the search process, but began to fail as search progresses. In order

to overcome this an element of the probability is moved away from that of the "worst" trial

solution only in those bit positions where the "worst " and "best" probability vector differ.

Greene also keeps a track of the highest value of the objective function attained and aborts

the current step (and update's the probability vector) whenever this is exceeded. This

results in an automatic adaptation in the number of trials per step. Greene argues that this

allows a large number of trials per step to be used without spending time performing what

amounts to an essentially random search in the early stages.

PBIL is susceptible to premature convergence. To overcome this, Baluja proposes an

occasional random mutation of probability vector. In the canonical GA, mutation performs

a clear role in maintaining diversity of the 'gene pool' by making it possible to regenerate a

missing 0 or 1 at a particular bit position. This however is not possible with PBIL. Greene

39

suggests replacing mutation with a deterministic 'forgetting' operator. After each update of

the probability vector, each element of the probability vector is pushed towards 0.5.

******Initialize Probability Vector******
Fori :=I to LENGTH do P[i) = 0.5;

while (NOT tennination condition)
***** Generate Samples ***** .
fori :=I to SAMPLES do

sample_ vectors[i] := generate_samplc_ vector_according_to_probabilities (P);
evaluations[i] :=Evaluate_solution (sample[i]);

best_ vector :=find_ vector_with_best_evaluation (sample_ vectors, evaluations);
worst_ vector := find_ vector_ with_ worst_evaluation (sample_ vectors, evaluations);

***** Update Probability towards best solution *****
fori :=1 to LENGTH do

P[i] :=P[i] * (1.0- LR) + best_vector[i] * (LR);

***** Update Probability Away from Worst solution *****
fori :=I to LENGTH do

if (best_ vector[i] * worst_ vector[i] then
P[i] :=P[i] *(1.0- NEGATIVE_LR) + best_vector[i] *(NEGATIVE_LR);

*****Mutate Probability Vector*****
for i := I to LENGTH do

if (random (0,1)< MUT _PROBABILITY) then
if (rando,n (0,1) > 0.5) then mutate_direction :=I
else mutate_direction :=0;
P[i] :=P[i] * (1.0- MUT_SHIFT) + mutate_direction * (MUT_SHIFT);

USER DEFINED CONSTANTS:
SAMPLES: the number of vectors generated before update of the probability vector.
LR: the leaming rate, how fa~tto exploit the search perfonned.
NEGATIVE_LR: the negative leaming rate, how much to leam from negative examples.
LENGTH: the number of bit~ in a generated vector.
MUT _PROBABILITY: the probability for a mutation occurring in each position.
MUT _SHIFT: the amount a mutation alters the value in the bit position.

Figure 2-12: the PBIL algorithm for a binary alphabet.

PBIL was shown to outperform GA's on several problems [Baluja, 1996]. One reason for

PBIL's success may be attributed to it's capability of capturing first order dependencies

between individual solution paraf!!eters and solution quality in a probability distribution

[Baluja & Davies, 1997]. GA's on the other hand, maintain a population and rely on

40

crossover to sensibly combine parameters that are collectively responsible for favourable

evaluations. Since the choice of crossover points is random, it may not be favourable [De

Bonet et a!, 1997]. Due to its disruptiveness it may tear apart previously discovered useful

parameter groups.

2.4.3 The Breeder Genetic Algorithm (BGA)

The Breeder Genetic Algorithm (BGA) [Muhlenbein & Schlierkamp-Voosen 1993] is

based on artificial selection similar to that used by human breeders. The BGA is a

combination of evolution strategies (ES) and genetic algorithms (GA). The BGA (Figure

2-13) uses a selection scheme called truncation selection. The T% of the best individuals

are selected and mated randomly until the number of offspring is equal to the size of the

population. The search process of the BGA is mainly driven by recombination. The BGA

depending upon the type of problem, may use one of a number of different recombination

operators (discrete recombination, extended intermediate recombination, extended line

recombination). The operator used in this work is a discrete crossover similar to the

uniform crossover. It operates on the alleles of the selected parents chromosomes. Two

parents, (u~, ... , u0) and (vJ, ... ,v0), produce an offspring (w 1, ... ,w0) so that Wi is either Ui or Vi

with equal probability.

Mutation is an important background operator for the BGA. The BGA's objective is to give

a small perturbation Ll Xi x 8 on a variable Xi. Where Ll Xi is a mutation range for the

variable xi and 8 is the mutation probability. An allele xi is chosen with probability pm to

be mutated (Muhlenbein et al recommend it be set to 0.1). The mutation rate is inversely

proportional to the number of parameters to be optimised and the mutation range is fixed.

41

as for mutation probability pm Muhlenbein suggests 1/n, where n is the number of alleles

in a chromosome.

Muhlenbein has applied the BGA using real coded chromosomes. The BGA has been used

in this work utilising binary chromosomes. Similar principles are applied. In the case of

recombination, uniform crossover is utilised as it is very similar in manner to the discrete

crossover. The mutation operator is the same as that used in a traditional GA, however the

rate is kept low, so as not to cause a large disruption.

STEPO: Define a genetic representation of the problem
STEPl: Create an initial population P(O)
STEP2: Each individual may perform local hill-climbing
STEP3: The breeder selects T% of the population for mating. This gives set S(t)
STEP4: Pair all the vectors in S(t) at random forming N pairs. Apply the genetic

operators crossover and mutation, forming a new population P(t+ 1).
STEPS: Sett= t + 1, return to STEP2 if it is better than some criterion (acceptance)
STEP6: If not finished, return to STEP3.

Figure 2-13: Breeder Genetic Algorithm

2.5 Summary

This chapter has provided an introduction to the area of evolutionary computation. The

chapter has discussed different types of evolutionary algorithms in existence and

highlighted common attributes of the various evolutionary techniques of particular

relevance to the engineering design processes of the following chapters.

42

3. INTEGRATION OF EVOLUTIONARY ALGORITHMS WITH
MATHEMATICAL MODELS

This chapter firstly provides a literature review concerning the application of evolutionary

algorithms to structural optimisation problems. The second half of the chapter then

discusses the development of software utilising a CHC genetic algorithm for the

optimisation of a real world structural plate optimisation problem concerning the shape

optimisation of roof tiles. The problem concerns the optimal material distribution on the

underside of this flat concrete plate, with varying load conditions. . The aim here is to

enable the company to meet specifications of international markets, reduce lead times and

costs through improved efficiency and a reduction in materials usage. The work was

undertaken during a two year Teaching Company Programme. Two types of models are

discussed, the first is based on bending moment and complex stress theory and the second

on finite element analysis

3.1 Structural Optimisation

There is considerable literature on structural optimisation and structural shape optimisation

[Leite, 1996]. This interest in shape design reflects the effectiveness of shape changes for

improving structural performance [Haftka, 1986]. It also reflects a growing sophistication

in structural analysis and optimisation tools, which allow more complex shape optimisation

problems to be addressed. Shape optimisation is an integral part of the structural design

process and tools available to assist the designer significantly affect the type of problems

that can be attempted and to what extent optimisation can be performed.

43

There are three distinct classes of shape optimisation problems. In order of computational

complexity these are: size, shape, and topological optimisation [Jensen, 1992]

• Size optimisation (also called cross-sectional optimisation) refers to the determination

of specific geometric dimensions for a pre-selected design class, such as the thickness

of a shell, the size of a truss member or the radius of a circular stress element.

• Shape optimisation (also called geometric optimisation) introduces additional design

variables which allow for boundary movement. This process is more complex than size

optimisation and geometrical changes have historically been limited. However, it is of

significant importance for instance, in the aircraft and automotive industries, as well as

others, providing improvements to turbine design and airfoil shapes. Size optimisation

is a subset of shape optimisation.

• Topological optimisation involves topological as well as shape and size modifications.

Topological modifications dea! with assemblies of components. The components in the

assembly may be modified and components may be added, deleted or moved in the

assembly in an attempt to generate improved designs.

Literature concerning the application of evolutionary optimisation techniques to structural

optimisation is becoming more prolific. There is a growing interest in the application of

such techniques due to significant increases in computing and especially parallel

processing capabilities. Engineering designers are now recognising the increasing potential

of evolutionary search for real-world optimisation problems.

Many researchers have used the canonical genetic algorithm for the optimisation of trusses.

Goldberg and Samtani [1986] used the GA to optimise a 10 bar truss. J enkins [1991] used

the GA for the minimum weight design of a trussed rafter roof structure. In order to avoid

44

stagnation and improve the progress of the GA during the latter stages of the search, a

space condensation heuristic has been introduced. The method reduces the combinatorial

space during the latter stages of search by removing discrete values of variables shown to

be associated with low fitness individuals. The method also provides the additional

advantage of reducing the overall processing time required [Jenkins 1994]. A study of a

cable stayed bridge using the GA [Jenkins 1992] requires 500,000 evaluattions of the

structure thereby highlighting the problem related to a requirement for considerable

processing time due to the large number of calls to the evaluation function.

Rajecv and Krishnamoorthy [1992] applied the GA to slightly more complex problems,

concerning the minimisation of weight and satisfaction of stress and displacement

constraints for a 25 bar truss and a 160-bar transmission tower. The 160-bar transmission

tower utilises 22 variables. They conclude that the GA is a highly efficient technique for

structural optimisation due to the ability to manipulate a large number of discrete vmiablcs.

However computational expense proves to be a major drawback again due to the number of

necessary function evaluations.

Hajela et a! [1992] presented a two stage optimisation method for the sizing of skeletal

structures. The first stage uses a GA to search for number of suitable low weight topologies

whilst disregarding the stress and displaccments. The second stage then uses these truss

topologies as initial designs, for which the cross-sectional areas are then optimally sized

using a GA for minimum weight and the satisfaction of stress and displacement criteria.

Jcnsen [1992] developed a GA based approach for topology optimisation. The design

domain is discretised into small elements, where each clement either contains material or is

a void. No intermediate densities arc allowed. The GA is used to determine the optimal

45

configuration of material and void within the domain such that the structure's weight is

minimised subject to displaceJTient and stress constraints.

Chapman et. al. [1993] extended the research of Jensen in the use of the GA for structural

topology optimisation. Lighter designs were generated in comparison to homogenisation

based solutions. The homogenisation method was developed by Bendsoe and Kikuchi

[1988]. A design domain is discretised into small rectangular elements where each element

contains composite material of continuously variable density and orientation. An optimality

criteria method is used to determine how the material density and orientation in each

element should change so that the compliance of the structure is minimised subject to a

maximum volume constraint. The deterministic homogenisation based techniques require

considerably fewer structural evaluations. However the GA is also able to offer a family of

topologies (each unique in topology, weight and stiffness) which a designer can evaluate

using a secondary criteria such as manufacturability.

Dhingra and Lee [1994] used the GA to optimise a 25 bar truss and found the GA to

compare favourably to optimum solutions using gradient-based search techniques. They

propose a co-operative game, theoretic approach for addressing multiple objective

functions. In a non-co-operative game approach, each player is looking out for his own

interests and is unconcerned about how his choice will affect payoffs of other players. The

co-operative approach on the other hand assumes that each player is part of a team and is

willing to compromise his own payoff in order to improve the situation as a whole.

Keane and Brown [1996] successfully applied the GA to the design of a satellite boom with

regard to the efficient control of structural vibrations. The GA changes the geometry of the

design by altering the three dimensional co-ordinates of its joints. The aim is to minimise

46

the band averaged noise along the boom. Keane found that in order to accurately assess the

designs considered by the GA very significant computations were required, even when

using a highly tuned and customised code to carry out the calculations. Furthermore he

states that where global optima cannot be found utilising current levels of computing

capability, rapid convergence to improved designs must be the alternative goal of the

designer.

Kanc and Schoenauer [1996] apply the GA to structural topology optimisation of cantilever

plates. They suggest using specific genetic operators which are tailored for topology

optimisation. The GA produced good results in comparison to the homogenisation based

method. Computational expense was highlighted as major drawback of utilising a GA.

Using coarse mesh representations of the plate, a single run may require up to 150,000 calls

of an FEA fitness function, taking approximately 24 hours on a powctful HP workstation.

Cai and Thierauf [1996] have developed a two level parallel evolution strategy for the

optimisation of a steel u·ansmissio'n tower. The objective is to minimise the weight of the

structure under given stress, displacement and stability constraints. The discrete and

continuous design variables are treated in parallel using two sub-populations. Periodically,

the design variables in the two sub-problems are exchanged.

Genetic Algorithms have proved effective in the design of composite laminate structures.

They arc used to optimise ply thickness and orientation, and many studies concerning the

improvement of the GA's reliability and efficiency are evident in this area. Mingra [1986]

performed some of the earlier studies concerning optimisation of laminations on

honeycomb structures. Le Riche and Haftka [1994] studied the problem of composite panel

weight minimisation subject to buckling and strength constraints. Feasible designs were

47

generated by utilising a combination of penalty parameters and the tuning of various

genetic operators. This method also increased the overall efficiency of the genetic search

and provided a 56% reduction in the computational cost of search. Haftka et. al. [1996]

also explored the possibility of specially tuning the GA in order to take advantage of

repeated runs. The concept was to maximise the efficiency of the GA during the early

stages of search by increasing selection pressure. This however may result in premature

convergence to a solution which is significantly inferior to one which may be found by

using a combination of explorative and exploitive search strategies.

Kogiso et a! [1994] uses a binary ·tree to store appropriate information regarding laminate

designs that had already been analysed. After the generation of a new population of

designs, the tree is searched for laminate designs with either an identical stacking sequence

or similar performance (e.g. laminates with identical in-plane strains). Depending on the

retrieved information a given laminate may not be required. This process does however

require a large amount of computer memory and the search through the tree also has a

computational cost. Kogiso also proposed a local improvement approach to reduce the

number of analyses required by a GA.

Y amazaki [1996] reduces c;omputational expense by usmg a two-level optimisation

technique in maximising the critical buckling load of composite plates. The first level of

optimisation involves the computationally expensive structural and sensitivity analysis.

Once the optimum lamination parameters have been determined, the second level of

optimisation implements the GA to find the stacking sequence that best matches the

optimal lamination parameters. The second level does not require expensive structural

analysis. This combination of optimisation methods allows Yamazaki to reduce the

complexity of the analysis required during the GA run.

48

Goodman et. al. [1996] uses injection island genetic algorithms (iiGA) for the design of

composite cantilever plates for the weight minimisation and selection of appropriate

structural responses for given loading conditions. Goodman et. al. [1997] also applies the

iiGA to optimise the Specific Energy Density (SED) of elastic flywheels. Injection island

GA's search at various levels of resolution in parallel within a given space. Islands (sub

populations) which have a low level of resolution inject high performance individuals into

an island of higher resolution to "fine-tune" the designs. Convergence of the low resolution

processes occurs quickly and is then discontinued, saving valuable CPU time. The

technique provides a reduction in the computational time plus an increase in the robustness

of a typical GA.

Soremekun et al [1996] utilises the GA for the minimum weight design of a cantilever

laminated composite plate. Somemekun outlines three multiple elitist and one variable

elitist selection strategies. The strategies involve passing a prescribed number of the best

individuals from the parent population to the new parent population. Depending upon the

strategy employed the rest of the individuals for the parent population are either selected

from the top performing members of the child population or a combination of the top

performing and randomly selected individuals of the child population. The number of top

performers passed to each successive generation remains constant throughout the genetic

search in multiple elitist scheme and is varied in variable elitist selection. Small reductions

in computational cost have been realised using these strategies.

Mill et. al. [1996] have utilised different types of shape representations these include

methods based on parametrics, lines, primitives, spline curves etc. They found approximate

splines for curves and surfaces to be powerful methods of describing shapes and also

49

amenable to GA manipulation. Splines consist of curves whose basic shapes are in!luenced

by the positioning of a set of control points. The final shape will be influenced by the type

of spline used and the position of the control points. The curve does not necessarily have to

pass through all the control points.

3.2 Development of Evolutionary Software for Single Component Design

The initial two years of the re·sear~h described within the thesis was carried out as part of a

Teaching Company Scheme between the University of Plymouth and Redland

Technologies Ltd (now Lafarge Brass). During this period research was performed in a real

world problem domain concerning the shape optimisation of roof tiles. As the work can be

used to optimise any flat single component plate the roof tile is referred to as the flat plate

problem throughout out the thesis. The problem concerns the optimal material distribution

on the underside of this flat concrete plate, with varying load conditions.

The Teaching Company Scheme is a partnership between industry and academia. The role

of a Teaching Company Associate is to provide a link between the University and the

company in the transfer of new knowledge. The overall aim of the scheme was to improve

the competitive position of the company through the implementation of new technology.

The mam aim of the programme was therefore the development of software utilising

evolutionary algorithms for the optimisation of concrete flat plates, thus enabling the

company to meet specifications of international markets, reduce lead times and costs

through improved efficiency and a reduction in materials usage.

50

There are six major modules in the developed software :

User Interface- Allows the user to modify the operator settings for the GA

Representation - The optimal shape will depend on the plate representation and the

selected variables to represent the modifiable elements.

Analysis - Analyses the design using FEA or complex stress theory

Optimisation - Modifies the values of the design variables.

Evaluation - Determines the fitness of the design

Termination - Checks to see if any of the termination criteria are met. Stops at the

maximum number of evaluations or restarts depending upon the

requirement of the engineer.

Two forms of structural analysis have been utilised to evaluate the phenotypes. The first is

based on complex stress and bending moment theory, and is computationally inexpensive.

The designs produced by this method must be considered high risk due to the simplicity of

the analysis. The second is the finite element method which is computationally expensive,

but produces significantly lower risk design solutions due to the in-depth analysis

performed upon the phenotype.

Most real-world optimisation problems, particularly those related to design, require the

simultaneous optimisation of more than one objective function. Some examples include:

• In bridge construction, a good design is characterised by low total mass and high

stiffness.

• Aircraft design requires simultaneous optirnisation of fuel efficiency, payload, and

weight.

51

• In chemical plant design the objectives to be considered include total investment and net

operating costs.

Some method relating to trade-off between the criteria is needed to ensure a satisfactory

design.

The fitness of the design in relation to the plate problem takes into account the degree of

maximum allowable stress violation on the plate and the plate's overall weight. There are

two main objectives to the research. The first relates to the achievement of high

performance designs, i.e. to minimise the weight of the plate whilst satisfying maximum

stress requirements. This conflict of criteria plus the high dimensionality results in a highly

sensitive optimisation problem with many local optima. The dimensionality in this case

refers to the number of variables on the plate. The second concerns the minimisation of

required function evaluations. It is essential that the second objective is achieved in order

that computationally expensive analysis techniques such as FEA can be realistically

utilised.

3.2.1 Genetic Representation of the Plate

Fi!,'llre 3-l shows an example of how the genetic representation of the plate is decoded. The

figure shows how a chromosomal representation (12 bits long) is used to represent a plate

consisting of four elements. The chromosome is converted into four real numbers to

represent the depths of the elements on the plate. Further information on problem

representation may be found in· Davis [1991]. The programs for the various algorithms and

the mathematical model were'writlen in Fortran 77.

52

The following plate utilise~ 4 elements.

The plate is encoded using a chromosome :

100111101110

The chromosome is partitioned in order to represent the four elements on the
plate:

100 Ill 101 110

These bit sllings are converted from base 2 to ba e 10 to yield :

4 7 5 and 6

If we assume the fo llowing :
Maximum plate depth of 20mm
Minimum plate depth of 9mm
Step size of 7mm

Therefore :
The vruiable depth on the plate is 20-9 = 11 mm
The variation step size is 1117 = 1.57mrn
This gives 8 possible depths (i.e. 9, 10.57, 12.1, 13.7, 15.29, 16.86, 18.43 and 20.0)

The base 10 values ru·e multiplied by 1.57 and then added to the minimum plate
depth to provide the overall depth of the elements :

Element 1 (4 * 1.57) + 9 = 6.29mm
Element 2 (7 * 1.57) + 9. = ll .Omm
Element 3 (5 * 1.57) + 9 = 7 . .86mm
Element 4 (6 * 1.57) + 9 = 9.43mm

Figure 3- 1: Decoding process used by the plate problem

53

3.2.2 Current Design Practice at the Company

Engineers at the company use a very similar design practice to the one outlined in chapter

1. Computer aided design (CAD) software is used to create and edit designs, whilst finite

element analysis (FEA) is used to analyse the designs. A conceptual design is initially

developed (based on previous designs and engineer's insight and knowledge related to the

problem) which is then analysed using FEA software to determine which areas require

redesign. Further changes are then made using the CAD software. 1l1is loop continues until

a design is developed that meets the original specifications or is deemed acceptable.

In order to save money and become market leaders in plate design, the company must

design lightweight components which meet predefined stress criteria. This design-evaluate

redesign process as stated in chapter 1 is extremely slow and often requires large amounts

of human and calendar time, furthermore it sometimes fails to produce an optimal or near

optimal design solution. The longer the design process the more costly it becomes.

Automating the whole or even part of the design process would therefore be highly

desirable.

The plate problem poses a considerable challenge in comparison to standard test functions

such as De Jongs test suite [Goldberg 1989]. These test functions were developed in order

to visualise and measure the relative performance of various algorithms. The flat plate

problem is a real world problem where there is no apriori knowledge relating to the nature

of the search space, due to the high dimensionality. The lack of prior knowledge makes it

extremely difficult to determine whether the algorithm has converged to an optimum or

near optimum solution unless an exhaustive search is executed. The goal therefore is to

arrive at a "good" design solution, with minimum computational expense.

54

3.2.3 The Evaluation Model (Complex Stress)

In order to allow extensive experimental work, a simple mathematical model utili sing

bending moment and complex stress analysis has been utilised to ensure computational

cost is kept to a minimum.

The plate is represented in a grid type manner being divided into rectangular or square

elements each with vruiable depth (Figure 3-2). However, if required, a set number of

elements may be considered as one vruiable to promote uniformity in depth. The plate may

be subjected to one or more load conditions. The plate is supported on each of the four

corners. For most problems · (unl~ss otherwise stated) the overall plate dimensions ru·e

200mm x 200mm. The vruiables are relatively continuous in nature. The depth of each

element is a.llowed to vary between the lower and upper bounds. The minimum plate depth

is fixed at 8mm for most problems. However the upper limit on the plate depth is either

18mm or 24mm and the variation in depth between upper and lower bounds is discretised

by inu·oducing nine intermediate element depths (Figure 3-3). In order to achieve a certain

degree of symmetry for ease of manufacture, an option is also available whereby

neighbouring elements whose angles exceed a preset aspect ratio (the ratio desc1ibing

relative depth at the element interfaces) may be penalised.

Figure 3-2: Representation of plate elements

55

l6mm (upper variable depth)
(9 steps)

24rnm

16 I 9 = 1.78mm varia tions (therefore 10 possible depths)
(8.0, 9.7, 11.6, 13.3 , 15.1 , 16.9, 18.7, 20.5, 22.3, 24.0)

Figure 3-3: Discretisation of element depth variation

The shear and normal stresses are calculated for all transverse (X) and longitudinal (Y)

sections using the following formulas:

Bending Moments (M= W.x) (Equation 3-1)

Second Moment of Area (I = bd3 I 12) (Equation 3-2)

Section Modulus (Z = I I y) (Equation 3-3)

Normal Bending Stress (a= M I Z) (Equation 3-4)

Shear Stress ("r = F I A) (Equation 3-5)

Where:

W =Force

x = Distance from support

b = Breadth

d =Depth

y = Distance from Neutral Axis

F = Force

A= Cross Sectional Area

56

Principal stress (O"P) is as the stress criterion and is calculated for individual elements using

the following f01mula:

2
(J l or2

(J x+ (J y
----'-±

O"t & 0"2 =Principal Stresses

0")(& O"Y = Nmmal Stresses

r xy =Shear Stress

2
+ 'r x y (Equation 3-6)

The fixed parameters of the materi al are: flexural stress limit= 10N/mm2
, density = 2.2 x

10-7 Kg/n11113
. Designs exhibiting a high degree of stress violation are penalised to ensure

that the generated designs satisfy relevant ctitetia. Although preliminary design solutions

for the flat plate problem c~ be achieved with a relatively small number of variable

elements (15 to 50) in excess of 300 elements are required during detailed design to ensw·e

accurate stress evaluation.

3.2.4 Multi-Criteria Optimisation

The objective with the plate problem ts the minimisation of weight whilst satisfying

maximum stress rcquiJemctlts. The fitness of the stress criteria (Fs) is calculated by

summating the number of elements that have stresses greater than the flexw-al limit which

is then multiplied by a factor. The degree of violation is then taken into account by

summating the difference for. all elements which exceed the flexural limit. The number of

57

stress violations and degree of stress violations are then summated to form the overall

stress violation (SV). This stress violation is divided by 100 then inversed in order to

convert to a maximisation problem. The + 1 in the formula is to prevent run time errors

when the program is executed. The weighting for the stress criteria (Ws) is 1000.

The criteria weighting relating to the weight (Ww) of the plate increases as the degree of

stress violation decreases. Designs which have high stress violations are therefore

penalised to a greater extent as plate weight is reduced. The weight of the plate is also

inversed to convert the problem to one of maximisation. The weighting (Ww) therefore

depends upon the extent the stress criteria has been satisfied. In order to arrive at an

overall fitness rating (F') for the plate the fitness values Fs and Fw are summated.

Fs = (1/((SV /100)+1))* Ws

Fw = (1/Wt) * Ww

if Fs ;:=: 1000 then Ww = 500

if Fs > 700 then Ww = 400

if Fs > 500 then Ww = 300

if Fs > 300 then Ww = 150

if Fs > 200 then Ww = 100

if Fs ~200 then Ww =50

F'=Fs+Fw

(Equation 3-7)

(Equation 3-8)

(Equation 3-9)

58

The above approach was taken in order to avoid equal emphasis on both objectives. If

equal emphasis is placed on both objectives and there are large stress violations on the

plate, the GA rapidly reduces the weight of the plate at the expense of meeting the stress

requirements. This is due to the weight of the plate being an attractor. Placing a higher

weighting on the stress moves the search towards the region of the design space containing

solutions with low stress violations. As the degree of stress violation decreases the

weighting for the weight increases, therefore once the stress criteria is satisfied the problem

becomes a single objecti vc relating to the minimisation of plate weight.

3.2.5 Two Dimensional Crossover

The use of a two dimensional string representation was considered, to provide a more

realistic picture of the plate [Cartwright and Harris, 1993]. However due to the disruptive

uniform crossover in the CHC algorithm, it is not possible to crossover individuals in the

manner shown in Figure 3-4: The. figure shows how the method would be applied to the

plate problem if disruptive crossover was not utilised. Depending upon the operator

settings one or more genes would be crossed. An individual would be defined as an n x n

grid. Individual genes would be held on the 2-D grid. The grid is connected together to

form the surface of a torus. It is therefore possible to combine promising section(s) of

different plates through the action of 2-D crossover.

59

Before crossover

Individual 1

After crossover

ChHd 1

Individual 2

Crossover Point

Chi ld 2

Figme 3-4 : 2 dimensional crossover representation

3.2.6 Development of Automated Design Tool

In order to develop a GA which pr.ovides good robust solutions the simplified model based

on complex stress and bending moment theory was used to ensme extensive

experimentation could take place. While this method provides stress results in the centre of

the plate which are reflective of those obtained by FEA, the results on the pe1iphery of the

plate are not comparable. However the method provides a way of rapidly addressing issues

such as multi-modality, multi-criteria, sensitivity and high dimensionality.

60

The initial implementation divided the plate into horizontal and vertical strips. The GA

alters the periphery of the plate. An iterative optimisation loop is used to determine the

depth of individual strips for the main body of the plate so as to satisfy the stress criteria.

The highest depth of individual strips defined the resultant shape .. This method proved to

be an extremely fast (due to the small number of variables) way of generating feasible

preliminary design solutions. The design was then further refined utilising FEA. The main

drawback with the technique is that it is not very flexible and excludes a large number of

possible design solutions due to iterative loop and strip representation.

3.2.7 Selection of Design Variables

The advent of the finite element analysis (FEA) and the development of increasingly

powerful computational processing capability has allowed the complex analysis of large

problems and the identification of low-risk design solutions i.e. solutions with a low

probability of error. However, every type of analysis requires input which is determined

from a set of design variables. The time required to initially develop this input and perform

the evaluation can be extensive, and there is no guarantee that the resulting design will be

feasible. If it is not, new values for the design variables must be determined. The

determination of an optimal set of design variables and their upper and lower bounds is not

always directly intuitive, and consequently, is often found through trial and error.

Using evolutionary search to tackle design problems imposes certain restrictions and

requirements on phenotypic representation. A popular choice of representation that would

describe the plate relates to nodal co-ordinates. However a major problem with this choice

is the resulting large number of design variables to define even the simplest of shapes. The

advantage is the ability to obtain a general curved boundary, consistent with the finite

61

element model in which the structure is allowed to assume whatever shape is necessary to

obtain the minimum weight. The problem with this generality is that an undesirable or

impractical shape may be produced.

The appropriate selection of the shape representation techniques for a particular problem is

necessary for effective optimisation. There are two main considerations in the selection of

design variables. First, the number of design variables must be kept to a minimum since

each design variable adds the burden of a number of analyses to the total computational

effort required in the optimisation process. In terms of evolutionary optimisation, a large

number of variable parameters are required to produce even the simplest of shapes. The

more variables in the phenotype, the more genes there are in the genotype, making the

search problem larger and thus more complex. Secondly a limit on the number of design

variables restricts the changes in shape during optimisation and may exclude a good

practical shape which might lead to a better design. There are no general sets of rules

governing the task of optimum selection of a shape representation technique. Engineering

insight and a compromise for tht< particular problem is therefore required to make this

choice.

Taking the above issues into consideration the plate is split into individual elements

(similar to brick elements when using FEA) in order to provide a higher degree of

resolution. The plate is represented by regions which are described by a set of key nodes

that control the geometry. The nodes are allowed to move in one dimension (i.e. depth)

during the evolutionary design process. This method was developed in order to allow the

designer flexibility whilst keeping the number of variables to a minimum. A major problem

with this choice is the resulting large number of design variables which increase the

computational expense. To produce even a simple shape requires large numbers of

62

elements. However the advantage is the ability for the plate to assume a large variety of

shapes.

3.2.8 NISA FEA Software

During the course of teaching company programme a software package was developed for

optimising flat plates. The package consisted of the CHC algorithm integrated with FEA

software. Before deciding to integrate the CHC with FEA, various algorithms were

investigated and experiments performed using the computationally inexpensive complex

stress model. The results are discussed in chapter 4. Before performing the optimisation the

designer must firstly define a.Finite Element model and identify the variables. The plate is

initially designed with minimum thickness throughout the body. Eight noded brick

elements are used for modelling the plate. The files describing the model are used as a

template which are amended automatically by the CHC software to include the new values

for the variables for each evaluation during the optimisation process. The nodes may be

linked in several ways to allow flexibility to the designer. This also helps to reduce the

overall number of variables.

There are generally two types of relationships between the variables and nodes. The frrst is

a one to many relationship, where one variable may have several nodes or elements

attached to it. This is referred to as a variable area. The second is a one to one relationship

where one node is equivalent to one variable (Figure 3-6 and Figure 3-7). The models may

be created with small tapers to aid blending between the elements (Figure 3-5). It was

found that if all nodes were allowed to vary the resultant shape was usually impractical,

moreover there is also a large increase in the number of variables.

63

'---- I Variable area

~--~t~~--~r~~----rc:==;

Figure 3-5: A diagram to show clement tapers

Small tapers
1 1
- or -
3 4

of element size

~~s;;::::=o-=:fJ..c:::::::::_ __ Node Number
,.._,____ 50001

Figw-e 3-6: A diagram to show noqe id's

64

50002
50004
50003

Variable Number of Number of Number of
Variables Elements Nodes attached

0 I 1 4

~
1 2 6

~
I 3 8

~
I 5 12

~
I 9 16

~
I 4 9

0 4
4 I (each node is a

variable)

~
6

6 2 (each node is a
variable)

~
8

8 3 (each node is a
variable)

~
9

9 4 (each node is a
variable)

00
1 2 8

Figure 3-7: Explanation of the different types of variables

65

A variable may have any number of nodes attached to it, e.g :

1'1 variable (4 nodes) starting id 50001 (last node number= 50004)

2"d variable (6 nodes) starting id 50005 (last node number= 50010)

3rd vruiable (lOO nodes) starting id 50011 (last node number= 50110)

Once the designer has developed the model and created the appropriate files which allow

communication between the FE software and the CHC GA, the evolutionary design

software may be run. The software runs until such a time the user feels that the design is

acceptable, or until the search process has stagnated. The designer may view a graphical

representation of the best design solution at any stage of the optimisation process. Due to

the considerably long mn time information is recorded regarding the run which is

automatically saved every n number of evaluations, in case of a system failure. This allows

the user to recommence the program close to the point it was stopped. The design software

does not permit human intervention during evolution.

3.3 Summary

This chapter has discussed the application of evolutionary algorithms to structural

optimisation problems and shows that this area is receiving considerable interest. This

chapter has also discussed the development of the CHC genetic algorithm for the

optimisation of a real world structural plate problem, duting a two year Teaching Company

Programme. By combining the automatic optimisation of a design alongside evaluation

software which automatically analyses the quality of the designs, considerable time on the

part of the designer may be ~aved. The developed software is currently being utilised in

industry for the optimisation of flat plates. The software not only provides practical

solutions but, as it does not commence from a feasible point (a common practice in shape
'

66

optimisation) it can also provide novel design solutions. Plates designed using the

developed software have now been mass manufactured. They have provided design

solutions superior to those in existence and therefore have made significant savings for the

Industrial partner.

The neX.t chapter provides a comparison in· performance of different existing evolutionary

algorithms in order to determine which is the most effective on the plate optimisation

problem.

67

4. APPLICATION OF EVOLUTIONARY I ADAPTIVE
ALGORITHMS

4.1 Application of Evolutionary Algorithms to the Plate Problem

As described in chapter 2, there are a number of advanced GA variants, all developed to

improve the efficiency of evolutionary search for problem classes. The plate problem has

several levels of complexity relating to multi-objectives, high dimension and high

sensitivity to slight perturbation of design variables. It is therefore necessary to introduce

high performance evolutionary algorithms that can best handle such characteristics.

The genetic algorithm is only one of many non-linear adaptive search algorithms known in

computer science. It is currently not possible to define exactly which of these search

algorithms is best for which problem or even class of problem [Fogel 1995]. However, it is

possible to identify algorithms that continuously produce "good" results (in compatison to

those produced by other techniques) for a wide range of different problems. The GA

exhibits robust behaviour having been successfully applied to many problem classes.

The objective of the following sections is to provide a comparison in performance of

different evolutionary algorithms on the plate optimisation problem. The alg01ithms have

been selected on the basis of their performance on various problems in comparison to other

search techniques. The objective here is not to optimise all possible operator parameter

settings for any patticular problem. The process of the selection of optimal settings is

complex and has been investigated many times before on different classes of problems

[Grefenstette 1986, Schaffer & Morishima 1987, Fogerty 1989, Davis 1989, Goldberg

68

1989]. In fact the "no free lunch" theorem for search states that no such optimal settings

exist for all possible problem classes [Wolpert and Macready 1995].

There are three main measures of performance :

1. As the analysis module dominates the expenditure of resources on the

plate optimisation problems it is therefore considered the base cost and

is used as a measure of efficiency in this thesis. The criteria utilised

relates to total number of calls required to arrive at good feasible

design solutions and the CPU cost of the analysis.

2. The effectiveness of the algorithm at locating a good design solution,

i.e. to minimise cost and degree of stress violation

3. The robustness of the method, i.e. standard deviation of the results.

This chapter presents the results for the different types of evolutionary algmithms

discussed in Chapter 2 in relation to the plate problem. Some of these techniques play a

significant role in the thesis by gui'ding the research towards certain avenues and laying the

foundations for the development of various techniques. The chapter firstly looks at the

application of the various evolutionary algorithms utilising the complex stress model. This

model was developed in order to produce design solutions quickly by keeping

computational expense to a minimum during experimentation. The simplified model does

not perform an in-depth structural analysis as a result the designs produced by this method

must be considered high risk. The simplified model helps to determine the best performing

evolutionary algorithms which are then integrated with the more computationally

expensive FEA model. The second half of the chapter discusses the results of this

integration.

69

4.2 Operator Settings for the Evolutionary Algorithms

The operator settings for the different evolutionary alg01i lhms are shown in Table 4-1. In

ome problem cases, an attempt was made to improve the performance of the algorithm

further through the identification of better operator settings.

Algorithm Operator Setting
Positive Learning_ Rate 1.0
Negative Learning Rate 1.0
Forgetting Factor 0.005

PBfL Mutation Shift 0.05
Mutation Probability 0.02
Ttials pe1' Iteration 40
Number of Vectors to Update 1
from
Max. No. of Evaluations 10000
Population Size 40

CHC Divergence Rate 30%
Maximum Number of Restarts 3
Population Size 50
Mutation Rate 0.001

Canonical GA Crossover Rate 0.7
Selection Method Roulette

Wheel
Population Size 50

BGA Mutation Rate 0.001
Crossover Rate 0.7
Top T% of Individuals Selected 20%
for Mating

Table 4-1 : Operator Settings for the Various Alg01ithms

The PBfL algorithm used throughout this thesis di ffers slightly from the one outlined in

chapter 3. The probability vector P(i) is moved away from that of the "worst" trial solution

only in those bit positions where the "worst " and "best" probability vector differ [Greene

1996]. The best solutions are tracked during the search and the evaluation of individuals is

aborted as soon as one is found which is better than the previous best. This individual is

then used to update the probability vector. Greene [1996) found that this process provides a

70

rapid improvement in the early stages of the search process. In order to maintain diversity

and prevent the elements of the probability vector drifting rapidly towards 0 or 1, a

"forgetting factor" (Equation 4-10) is utilised. This has the effect of moving each element

of the probability vector a small ainount towards 0.5. In addition the mutation operator is

also utilised to maintain diversity.

P(i) = P(i)- Y (P(i)-0.5) (Equation 4-10)

r =forgetting factor

4.2.1 Results for the Flat Plate Problems Utilising the Complex Stress Model

During the plate optimisation a simplified model has been utilised as described in chapter 3

to keep computational expense to a minimum during experimentation. The simplified

model does not carry out an in-depth structural analysis and therefore generated results are

not as reliable as those produced by the finite element method. As a result the designs

produced by the simplified method must be considered high risk. Using such a simplified

model which is still characterised by dimensionality, multi-modality and sensitivity, a

technique may be developed to cope with such conditions during comparative

experimentation without the burden of running large computationally expensive analysis

software.

4.2.1.1 Single Load Case Problems

Figure 4-1 displays a plate simply supported on four corners with a central load of 1500

Newtons. An initial study has been performed on plates of varying resolution with a single

load case. This type of problem should not pose a particular challenge to the algorithms. As

71

it is a one load case problem, material must be concentrated around the area of the load to

minimise stress violation. However as the problem is further complicated by increasing the

dimensionality or constraining the design by reducing the upper limit on matetial it

becomes more challenging for the vadous adaptive search algodthms. The reduction in the

upper limit has the effect of reducing the number of feasible design solutions in the search

space, whilst the search space remains the same size. Reducing the upper limit on variable

depth means there is less mat~dal available and finding a solution with low stress violation

therefore becomes difficult.

Figure 4-1 : Simply supported plate with a central load

4.2.1.1.1 Comparison of Results for single Load Cases

Initial results using a simple, canonical GA with optimised parameter settings were

disappointing [Vekeria and Parmee 1996]. Due to the perceived sensitivity of the problem

the processing capabilities of the canonical GA does not seem appropriate. Severe

72

degradation of the converg~nce charactetistics is evident as the number of variable

elements increases (Figure 4-2). Ten runs have been executed for each test case.

Figure 4-2 shows that for relatively small numbers of vruiables (i.e. 15), the canonical GA

is able to converge on high fitness design solutions. As the number of variables increases,

the canonical GA becomes increasingly less efficient and is unable to converge on "good"

design solutions. The figure also shows that the subsequent integration of a breeder GA,

PBIL and the CHC GA results in significant improvements in fitness of solution, although

performance degradation is still evident with increasing dimensionality. The CHC

algorithm performs well on all plate representations however on the higher dimensional

representations (400 +) the CHC is slightly exceeded in perf01mance by PBIL, utilising a

high leru·ning rate of 1.0 (Table 4-2 and Table 4-3). The results however show the CHC to

be an extremely effective form of search alg01itbrn when utilising vru-ying numbers of

elements compru·ed to the other methods when integrated with a single load case problem.

1600 ~--~

-o-SGA
-x-BGA

1550 - -<>-CHC
-o-PBIL

i! 1500
c: -u::
u;
~ 1450

1400 -

1350+-------+-------r-------r-------r-------r-------r-----~

9 25 49 100 144 196 289 400

Number of Elements

Figure 4-2: Performance compruison of the vruious search techniques (lload case)

Max=24mm.

73

CHC (11oad case)

Test Plate size Max upper Best Fitness Best Average Average Fitness

Number limit Weight Fitness Weight (SO)

CHC_1 20x20 24 1482.236 1.04 1471.522 1.06 5.748839

CHC_2 20x20 18 1474.914 1.05 1468.695 1.07 2.929435

CHC_3 24x24 24 1455.896 1.10 1450.828 1.11 3.390425

CHC_4 24x24 18 1464.129 1.08 1457.714 1.09 3.032191

Table 4-2 : Results for CHC for various problem cases utilising a single load case (no. of

runs= 10)

PBIL (I load ca~e)

Test Plate size Max upper Best Fitness Best Average Average Fitness

Number limit Weight Fitness Weight (SD)

PBIL_1 20x20 24 1487.756 1.03 1480.513 1.04 4.322704

PBIL_2 20x20 18 1480.944 1.04 1472.525 1.06 5.484269

PBIL_3 24x24 24 1455.107 l.LO 1452.505 1.11 2.784014

PBIL_4 24x24 18 1462.017 1.08 1458.732 1.09 2.249974

Table 4-3 : Results for PBIL for various problem cases utilising a single load case (no. of
runs= 10)

The evolution curves are shown for the fittest individual of the 10 runs in Figure 4-3 to

Figure 4-6 which show a rapid increase in fitness for both CHC and PBIL due to the initial

satisfaction of the stress criteria. Once stress satisfaction is minimised the fitness increases

gradually in terms of weight reduction of the plate. Figure 4-2 shows that PBIL's

performance improves with increasing grid resolution when dealing with a single load case,

suggesting that a tendency for premature convergence is offset by the sheer number of

possible design directions available at higher dimensions. Whereas the more diverse search

of the CHC begins to lose its way, PBIL manages to sustain a better compromise between

exploration and exploitation and final ly outperforms the CHC as the 400 element

representation is approached. Another feature of PBIL is its rate of convergence dwing

74

early generations with medium to high gtid resolutions as shown in Figure 4-3 to Figure

4-6. This suggests that different techniques may be better suited to varying stages of the

evolutionary process. However, rapid convergence during the early stages may not prove

beneficial in the longer term as this may lead to convergence upon a local optima later in

the search. A major advantage in using the CHC algorithm is that it requires little or no

operator tuning. Although progression for the CHC is slower than PBIL due to it's

explorative natme, it manages to converge on good design solution during the latter stages

of the search. The CHC also proves to better handle exploration of the search space across

a number of different resolution plates (see Figure 4-2). The Nisa FEA software discussed

in following sections was therefore initially integrated with the CHC GA.

1490

1470

1450

Ill
Ill 1430 Cll
c:

:t:: u. -Ill 1410 Cll en

1390

1370

1350 -

0

-o-PBIL

-o--CHC

1 000 2000 3000 4000 5000 6000 7000 8000 9000 1 0000

Number of Evaluations

Figure 4-3: Compatison of PBIL and CHC GA (I load case) (20 x 20 plate) max =24mm

75

(/J
(/J

1600 .--------

1400

1200

~ 1000 -u::

800

600
-D-PBIL

--<>---- CHC

400 +--~~--+--4---+---~--+--~--~----~-~

0 1 000 2000 3000 4000 5000 6000 7000 8000 9000 1 0000

Nurrber of Evaluations

Figure 4-4: Compa1ison of PBIL and CHC GA (lload case) (20 x 20 plate) max =18mrn

1500

1450

1400

1350

(/J
(/J
Qj

1300 1: -u::
1250

1200

--<>---- CHC
1150 -D- PBIL

1100

0 1 000 2000 3000 4000 5000 6000 7000 8000 9000 1 0000

Nurrber of Evaluations

Figure 4-5: Comparison of PBIL and CHC GA (l load cases) (24 x 24 plate) max =24mm

76

1600 ... ~ - - --
1400

1200

1000
Ul
Ul
Gl BOO c: ...

u::
600

200
-<>-CHC

-o-PBIL

0 +-----------~----------~--------~~--------~~--------~
0 2000 . 4000 6000 8000 10000

Number of Evaluations

Figure 4-6: Compari son of PBIL and CHC GA (I load case) (24 x 24 plate) max =18mrn

1600 .---~

-o-PBIL (learning rate 1.0)

-o-PBIL (learning rate 0 .05)
1550 -fr- PB IL (learning rate 0 .1)

j
1500

u.

! 1450

1400

1350 +-------~-------+--------~------+-------~-------4------~
9 25 49 100 144 196 289 400

Number of Elements

Figure 4-7: Comparison in performance of different learning rates (1 load case)

77

Figure 4-7 shows the comparison in performance for PBIL with different learning rates for

a single load case. This illustrates the utility of lower learning rates for lower dimensional

cases whilst high learning rates are better suited to higher dimensions. Reducing the

learning rate has a direct impact dn the trade-off between exploration and exploitation of

the search space. For example if the learning rate is 0.1, there is little exploitation of

solutions. As the learning rate is increased, the amount of exploitation increases, and the

ability to sample large portions of the space diminishes. The learning rate provides the

selection pressure for PBIL. In lower dimensions there are fewer design solutions which

meet the design criteria therefore a high learning rate results in a poor solution due to the

search algorithm focusing on the top individuals in the space, i.e. the overall diversity in

the gene pool reduces resulting in premature convergence. In this case it is suggested that

lower learning rates are utilised to promote better sampling of the search space. In the

higher dimensions (>200) with a single load case there are many feasible solutions which

meet design objectives. This results in many possible design directions for the algorithm. A

high learning rate exploits good solutions and rapidly negotiates this very large search

space to identify a high performance locally optimal solution.

When using the simple GA, a degree of operator tuning must be performed. This is also the

case with PBIL, as the problem is scaled up i.e. utilises more variables. Further

experiments utilising higher dimensions are only performed on the best performing of the

four algorithms, i.e. the CHC and PBIL. Constraining the designs by reducing the upper

limit of variable depth does not pose a problem for the CHC or the PBIL algorithm. As

mentioned earlier in the chapter, the reduction in the upper limit has the effect of reducing

the number of feasible design solutions in the search space, whilst still keeping the search

space the same size. Less material is available during optirnisation resulting in a reduced

number of design solutions with lower stress violations.

78

4.2.1.2 Multiple Load Case Problems

Unlike the previous one load case problem where the material is more localised, this

section examines multi-load cases. With such a problem material is spread across the plate

resulting in significant increases in stress violations. The problem is further complicated by

increasing the dimcnsionali ty or constraining the design by reducing the upper limit on

material. Multiple load cases are common in structural design, a component may be

subjected to various load co.nditions during it's lifetime. Optimising several load cases

poses a considerable challenge to the algorithms. Figure 4-8 displays a plate simply

supported on four corners with a central load of 1500 Newtons and two further loads of

800N each.

Figure 4-8: Simply supported plate with three load cases

4.2.1.3 Comparison of Results for Multi Load Cases

Results for the BGA and the canonical GA are disappointing (Figure 4-9). As the number

of vruiables are increased, they become increasingly less efficient and are unable to

converge on high fitness solutions. Ten runs ru·e performed for each test case.

79

CHC (3 Load ca~es)
Test Number Plate size Max Best Best Average F Average Fitness

upper Fitness Weight Wt (SD)
limit

CHC 5 20x20 24 1422.33 1.18 1419.221 1.19 2.71

CHC 6 20x20 18 1427.38 1.17 1403.781 0.12 52.92
CHC 8 24x24 24 14L0.92 1.22 1405.492 1.23 4.33
CHC 9 24x24 18 1419.57 1.19 1307.997 1.22 178.22
CHC_7 20x20 24 1486.46 1.03 1481.210 1.04 4.26

Evaluations = 50000

Table 4-4 : Results for CHC for various problem cases utilising three load cases (no. of

runs= 10)

PBIL (3 Load cases)
Test Number Plate size Max Best Best Average F Average Fitness

(table No.) upper Fitness Weight Wt (SD)
limit

PBIL_5 20x20 24 1446.37 1.12 1437.81 1.14 4.59
L.R = 1.0
PBIL_6 20x20 18 1441.2 1 l.l2 1293. 16 1. 14 97.22

L.R = 1.0
PBIL_7 20x20 24 1367.14 1.36 1363.54 1.38 1.96

L.R = 0.1
PBIL_8 20x20 18 12 15.41 1.26 1137 .90 1.27 36.73

L.R = 0. 1
PBlL_9 20x20 24 1470.52 1.06 1462.08 1.08 5.02

L.R = 1.0
Evaluations = 50000

PBIL_ 11 24x24 24 1360.04 1.39 1355.42 1.41 2.80
L.R = 0.1
PBIL_ 16 24x24 18 774.46 1.24 703.09 1.26 80.49
L.R = 0.1
PBIL_ l 2 24x24 24 1394.03 1.27 1388.25 1.29 3.07
L.R = 0.4
PBIL_ 17 24x24 18 1399.59 1.25 127 1.78 1.26 111.11
L.R = 0.4
PBIL_ 13 24x24 24 1399.50 1.25 1395.60 1.27 3.55
L.R = 0.6
PBIL_ l8 24x24 18 12 18.30 1.24 1041.01 1.25 88.45
L.R = 0.6
PBIL_ 14 24x24 24 1411.28 1.22 1405.15 1.23 3.58
L.R = 0.8
PBIL_ 19 24x24 18 1287.78 1.22 11 38.97 1.23 144.73
L.R = 0.8
PBIL_ lO 24x24 24 14 17.9 1 1.20 1413.54 1.2 1 3.27
L.R = 1.0
PBIL_ l 5 24x24 18 13 16.44 1.19 1136.69 1.21 118.34
L.R = 1.0

Table 4-5 : Results for PBIL for various problem cases utilising three load cases (no. of

runs = 10)

80

PBIL and the CHC GA perform significantly better than the BGA or the canonical GA

although performance degradation is still evident with increasing dimensionality (Figure

4-9, Table 4-4 and Table 4-5). The results show that the CHC and PBIL are still extremely

effective when compared to the other methods.

Figure 4-9 once again shows PBIL's performance significantly improving with increasing

grid resolution, furthermore PBIL, as with the single load case still has a high rate of

evolution during early stages of the search (Figure 4-10 to Figure 4-13).

Table 4-5 shows the performance of PBIL on a three load case 20x20 and 24x24

representations utilising different learning rates. This illustrates that lower learning rates

which should help counteract premature convergence by promoting better exploration of

the search space do not in this case provide any improvement in design performance.

Further experiments utilising higher dimensions are only executed usmg the best

performing algorithms namely the CHC GA and PBIL. The problem is made more

complex by increasing the number of load cases to 3 and reducing the maximum depth of

the plate to 18mm. More material is now distributed across the plate and due to reduction

in plate depth more stress violations occur across the plate resulting in fewer feasible

design solutions. This poses a problem for the PBIL algorithm, it is rendered ineffective at

negotiating the highly complex search space. The highly exploitive nature of PBIL is

unable to locate the reduced number of feasible design solutions now present in the search

space, resulting in premature convergence. CHC in comparison due to it's more explorative

nature performs far better, but in some cases still fails to produce a feasible desi~:,rn solution.

Reducing the learning rate in order to promote exploration in many of the cases does not

provide better performance solutions .

81

Experiments relating to the CHC and PBll.. algorithms utilising higher numbers of

evaluations provides small improvements in overall design performance, but at a high cost

in overall computational expense (Table 4-4 test CHC_7 and Table 4-5 test PBll.._9).

1460

1440x~

en 1420 X--------

~ 1400 X--------
~ X
ti 1380
Cll

lXI

1360

1340
-o-PBIL -<>-CHC

1320 -X-BGA --o-SGA

1300 +--------------r-------------+------------~r-----------~

100 144 196 289 400

Number of Elements

Figure 4-9: Performance comparison of the various search techniques (three load cases)

(20x20), dmax = 24mm, dmin = 8mm.

82

1500 .. .

1400

1300

1200

C/1
C/1
~ 1100 c

11:

1000

900

BOO · -Q-PBIL

-<>-CHC

700
0 2000 4000 6000 8000 10000

Number of Evaluations

Figure 4-10: Evolution of PBIL anti CHC (20x20), dmax = 24, dmin = 8, load cases= 3

1600

1400

1200

1000

C/1

~ c BOO
11:

600

400

-<>-CHC

200
-o-PBIL

0
0 2000 4000 6000 8000 10000

Number of Evaluations

Figure 4-11: Evolution of PBIL and CHC (20x20), drna:x = 18, drnin = 8, load cases = 3

83

1500

1400

1300

1200

Ill
Ill cu 1100 s
u:

1000

900

-o-PBIL
800

-o-CHC

700

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of Evaluations

Figure 4-12: Evolution of PBTI.., and CHC (24x24), dmax = 24, drnin = 8, load cases= 3

1600

1400

1200

1000

Ill
Ill
cu 800 5
i!

600

400

200

0

0 2000 4000 6000 8000 10000

Number of Evaluations

Figure 4-13 : Evolution of PBIT.., and CHC (24x24), dmax = 18, dmin = 8, load cases = 3

84

An advantage of the CHC algorithm is that relatively small populations may be utilised (

Figure 4-14). The CHC' s many inten·elated mechanisms supp01t better exploration of the

search space. These different mechanisms ensure that the CHC can explore without the

disadvantage of u ing large population sizes and slower convergence. Increasing the

population size however, tends to result in poorer performance.

Figure 4-14 shows the results for a 3 load case problem utilising different population sizes.

It can be seen that the lower population sizes (< 1 00) provide solutions of better

performance than those utilising larger population sizes (> 100). The use of disrupti ve

crossover and incest prevention enables the CHC to delay prematUTe convergence and

anive at good design solutions without the need for large population sizes.

1460 1.4

1440 1.2

Ill 1420 Ill
....
~

Ill
E
iL 1400
Ill
Ill
Ill

Cl
Gi

0.8 ;:
Ill
Ill
Ill

Ill 1380
Cl
E
Ill
> 1360 <

0.6 Ill
Cl
E
Ill

0.4 >
<

1340 0.2

1320 0

20 40 100 200 400

Populalon Size

J c:::JAverage Fitness ---o-Average Weight J

Figure 4-14: 3 load case problem utilising different population sizes for the CHC algorithm

(20000 evaluations) max 24, min 8.

85

4.2.1.4 Drawbacks of Using the same GA for Various Levels of Problem Complexity

It is widely accepted that the major drawback of genetic algorithms to complex engineering

design problems is the large number of analyses [Haftka et al 1996, Goodman et al 1996].

The number of analyses for the plate problem depends upon factors such as the level of

representation, and the loading conditions. The designer would therefore need to tune the

operator settings of a GA in order to suit the problem. If the problem is computationally

expensive the tuning may take a considerable time, and would therefore have to take place

with a simpler version of the actual problem of interest. The designer is assuming that the

same algorithm with it's operators and settings will do just as well when more complex

problems are introduced. It has been shown that most of the algorithms utilised with the

plate problem generally perform well on coarse representations when utilising a single load

case and a small number of design variables. However when they are applied to more

complex higher dimensional problems, some of the algorithms notably the canonical GA

and BGA deteriorate considerably in performance. Therefore the use of algorithms and

operator settings based on a simple version may not be sufficient to solve more complex

problems.

4.2.2 Results for the Flat Plate Problems Utilising FEA

As discussed earlier in the chapter the simplified model does not carry out an in-depth

structural analysis and is therefore not as reliable as the finite clement method. As a result

the designs produced by the simplified method must be considered high risk. If confidence

in design performance is required then FEA should be utilised to provide a low risk

detailed design solution. This confidence can only be achieved if there is also sufficient

numbers of elements in order to allow accuracy of plate representation. Whilst providing

increased confidence in the design solution it does so at the cost of greatly increased

86

computational expense. This next section of the chapter presents results on the utilisation

of FE analysis model during evolutionary optirnisation.

4.2.2.1 Single Load Case Problem

Figure 4-15 shows the FEA plate simply supported continuously along edges on the y

plane. A total central line load of 396N is equally distributed as forces on the nodes. Nodes

on the outer edges are half the force of the inner nodes. The plate has a minimum thickness

of lOmm and a maximum thickness of 13mm. There are three possible incremental steps of

lmm each. The fixed parameters of the material are: flexural limit = 10N/rnm2
, density=

2.2 X w·? Kg/mm3
, Poisson's Ratio = 0.2, Modulus of Elasticity = 14000. 111iS is a real

world problem provided by the industrial partner.

Figure 4-15 : Simply supported plate with a central load (utilising FEA)

87

Table 4-6 shows the information relating to two types of single load case test problems.

The table highlights the considerable computational expense when performing a single

evaluation even when utilising high performance workstations to perform the analysis

(SUN Ultra Enterprise 4000). Due to the high computation of individual evaluations, the

number of runs perfmmed and the.overall number of evaluations within each run had to be

kept to a minimum in order to generate results in an acceptable period of time. As a result

four runs and 3000 evaluations were performed on each problem case. The large CPU time

expended on each evaluation demonstrates the need for keeping the total number of

evaluations to a minimum.

Number of Variables Number of Number Number of CPU time

(grid size(x,y)) Load Cases of Nodes Elements (seconds I evaluation)

48 (8x6) I 864 506 8.5

200 (10x20) 1 2880 1786 43.3

Table 4-6 : Computational expense for individual FE evaluations utilising a single load
case

When utilising PBIL higher learning rates for problems employing less than 50 variables

results in premature convergence (Table 4-7). Based on results fTom expetiments with the

complex stress model, in order to maintain diversity a learning rate of 0.1 is utilised. Figure

4-16 shows the average best fitness of the 4 runs for the 48 variable problem. Rapid

evolution by the PBIL algorithm is apparent, however due to its highly exploitive nature it

converges prematmely, resulting in the CHC algorithm eventually exceeding it in

performance. A feasible solution is found relatively early, however further weight

minimisation seems to pose a problem for the PBIL algorithm (Figure 4-17).

Test Number Best Fitness Best Weight Average Fitness Average Fitness (SD)

Weight

FEA_CHCl 1437.07 0 .143 1436.96 0.144 0.0880

FEA_PBIL2 1436.65 0.145 1436.58 0.145 0.0645

Table 4-7 : Results for 48 variables lload case problem

88

1500

1400

13 00

"' "' Ill
r:::

.'!:::
LL 1200
Ill
Cl
«< ...
Ill
> < 1100

u;
Ill
CD

1000

900
--<>-CHC

800

0 200 400 600 800 1000

Number of Evaluations

Figure 4-16 : Best Average Fitness utilising FEA (lload case, 48 variables)

0.153

0.152

0.151

... -----------.. ·--·-.... ·-.. -·-·-- .. - ---·--·---------........... --.. -·--·-.... - ·----·- ·- ·--·-----------.. -·- ·-1

=~:~~ I

- 0 .15 ..r:::
Cl
'Qj
3: 0.149 GJ
Cl
!!!
GJ
>
~

0.148

ti
GJ
Cll 0.147 -

0.146

0.145

0.144

0 500 1000 1500 2000 2500 3000

Number of Evaluations

Figw-e 4-17 : Best Average Weight utilising FEA (lload cases, 48 variables)

89

The learning rate is increased to 1.0 for the 200 variable, single load case problem (Table

4-8). Figure 4-18 shows the average best solution of the 4 runs. It is interesting to note

PBIL's superior performance in comparison to the CHC. A rapid evolution of fitness by

PBIL is again apparent. Figure 4-19 shows that once a feasible region is located, the PBIL

algorithm performs better than the CHC at identifying lower weight. PBIL requires

approximately 1300 evaluations on average to arrive at comparable design solution to the

one generated by the CHC at 3000 evaluations. In a typical run to arrive at comparable

design solutions CHC requires approximately 55% greater CPU time than PBIL.

Test Number Best Fitness Best Weight Average Fitness Average Fitness (SO)

Weight

FEA_CHC3 1434.72 0.150 1434.49 0.151 0.2043

FEA_PBilA 1436.35 0.146 1436.04 0.147 1.8006

Table 4-8 : Results for 200 variables 1 load case problem

Research utilising the simpler model also showed the PBIL method to provide reduced

performance on a single load case, low dimensional problems and increased performance

on single load case, high di'men~ional problems in comparison to the CHC algmithm.

These experiments therefore show to some extent that employing simpler analysis software

can aid in the selection and optirnisation of evolutionary and adaptive algorithms, before

moving to more computationally expensive analysis tools.

90

1MO ~--~

1400

(/) 1200 (/)
Q)

.E
u:::
Q)
Cl 1000 IQ ...
Q)

>
<t
(/)
Q)

800 m

MO --<>---- CHC

-o-PBIL

40Qn---------r---------r-------~r--------;--------~--------~

0 500 1000 1500 2000 2500 3000

Number of Evaluations

Figure 4-18 : Best Average Fitness utilising FEA (1 load case, 200 variables)

....

.c
Cl

0.156

0.154

0.153

~ 0.152
Q)
Cl
~ 0.1 51
~
~ 0.15 -
(/)
Q)

m
0.149

0.148

0.147

----·--·-··--·---·----·--------

-o-PBIL

--<>---- CHC

0.1~ +-------~r--------+--------4---------~-------+--------~

0 500 1000 1500 2000 2500 3000

Number of Evaluations

Figure 4-19 Best Average Weight utilising FEA (1 load case, 200 variables)

91

4.2.3 Multiple Load Case Problem

Fi&rure 4-20 shows the FEA plate simply suppmted continuously along edges on the y

plane. Load case 1 has a load of 396N equally distributed as forces on nodes except outer

nodes which are half of those of the inner nodes. Load cases 2 and 3, each have a pressure

load of 396N. As with the single load case the plate has a minimum thickness of lOmm and

a maximum variable thickness of 13mm. There are three increment steps of lmm each. The

fixed parameters of the mat~rial are: flexural limit = 10N/mm2
, density = 2.2 X 10-7

Kg/mm3
, Poisson' s Ratio = 0.2, Modulus of Elasticity = 14000. This again represents a real

world stmctural design problem supplied by the industrial collaborator.

Figure 4-20: Simply suppmted plate with three load cases (utilising FEA)

92

Table 4-9 shows the information relating to the test problem. As with the single load case

FEA problems, all runs are performed on a SUN Ultra Enterprise 4000 server with 6,

167Mhz processors. Due to the high computational cost of individual evaluations, a

maximum of 4 runs and 3000 evaluations were performed on each problem case.

Number of Number of Number of Variables Number of CPU time

Load Cases Nodes (&1fid size(x,y)) Elements (seconds I evaluation)

3 864 48 (8x6) 506 14.5

Table 4-9 : Computational expense for individual FE evaluations utilising three load cases

Test Number Best Fitness Best Weight Average F Average Fitness (SO)

Wt

FEA_CHC5 1434.72 0.1.5017 1434.46 0.150858 0.360372

FEA_PBIL6 1434.237 0.151445 1434.088 0.151841 0.13757

Table 4-10 : Results for 48 variables 3 load case problem

Table 4-10 shows the results of using the CHC and the PBIL algorithms for the test

problem. A learning rate of 0.1 is utilised with the PBIL algorithm to maintain diversity.

Figure 4-21 shows the average best fitness of the 4 runs for the 48 variable problem. The

best average fitness refers to the fitness of the best individual in each of the runs being

summated this figure is then divid.ed by the number of runs (i.e.4). Rapid evolution of the

PBIL algorithm is again apparent, however in this case due to its highly exploitive nature it

converges prematurely, resulting in eventual out performance by the CHC algorithm. A

feasible solution is found relatively early, however the fmther minimisation of the weight

93

again poses a problem for the PBIL algorithm (Figure 4-22). CHC requires approximately

2000 evaluations on average to arrive at comparable design solution to the one generated

by the PBIL at 3000 evaluations. Therefore in a typicalmn to anive at comparable design

solutions PBIL requires approximately 33% greater CPU Lime than the CHC. The

behaviour of the algorithms on the 3 load case problem utilising the FEA and the simple

complex stress mathematical models are again comparable.

1500

VI
VI
Q)

1400

1300

1200

.~ 1100
u.
Q)

g 1000 ...
Q)
>
< 900
~
Q)
IX)

FPBILl
~

500 +--------+--------r-------~------~--------1-------~

0 500 1000 1500 2000 2500 3000

Nurmer of Evaluations

Figure 4-21 :Best Average Fitness utilising FEA (3 load cases, 48 variables)

94

0.157

-o-PBIL
0.156

-<>-CHC

0.155

-~
-~ 0.154
G)

3:
G)
m
l! 0.153
G)
>
c(-0.152 en
G)

al

0.151

0.149 +-----+-------t--- -+-----+-------t-----1

0 500 1000 1500 2000 2500 3000

Number of Evaluations

Figme 4-22: Best Average Weight utilising FEA (3 load cases, 48 vruiables)

4.3 Amended PB~ with a given population size (PB~_POP)

One of the main problems with PBIL is premature convergence. A source of diversity in

the traditional GA is the number of individuals in the population. As the population size is

increased more information is available in the gene pool resulting in greater diversity.

A new modified PBIL algorithm is presented in Figure 4-23 whlch introduces a population.

The algorithm is similar to the compact GA [Harik et. al. 1997]. The compact GA proposes

the generation of two individuals from the probabili ty vector, which are then put into

tournament. The better performing. individual then updates the probability vector.

95

The algorithm proposed in this section utilises a population of individuals (Figure 4-23).

The assumption is that by maintaining a population of individuals, the probability of

premature convergence may be reduced, whilst still utilising PBIL's highly exploitive

nature. Baluja and Caruana [1995] state that the number of samples to generate based upon

each probability vector before an update is analogous to the population size of GA's. As

with the traditional PBIL a real valued probability vector with values set to 0.5 is

generated. The probability vector is utilised to create a population of binary encoded

individuals where the probability .of generating a I or 0 is equal. The population is then

assessed via the fitness function.

The values in the probability vector gradually shift relative to the fitness of individuals in

the population. The degree of variation of the probability (between 0.0 or 0.1) as in the

• original PBIL algorithm depends upon the learning rate parameter. Updating the probability

vector results in the generation of a new population and the cycle is continued. As the

search progresses, entries in the probability vector move away from their initial settings of

0.5 towards either 0.0 or 1.0 i.e. the binary representation of the individuals in the

population are pushed towards that of the current best solutions. As with the original PBIL

algorithm domain knowledge is not stored in the population but in the probability

distribution.

96

******Initialize Probability Vector******
for i := l to LENGTH do P[i) = 0.5;

***** Generate Samples *****
for i :=I to POPSlZE do

sample_ vectors[i] := generate_sample_ vector_according_to_probabilities (P);
evaluations[i] :=Evaluate_solution (sample[i]);

best_ vector :=find_ vector_ with_best_evaluation (sample_ vectors, evaluations);
worst_ vector := find_ vector_ with_ worst_evaluation (sample_ vectors, evaluations);

***** Update Probability towards best solution*****
fori :=I to LENGTH do

P[i] :=P[i] * (1.0- LR) + best_vector[i] * (LR);

*****Update Probability Away from Worst solution*****
for i :=I to LENGTH do

if (best_ vector[i] * worst_ vector[i] then
P[i] :=P[i] *(1.0- NEGATIVE_LR) + best_vector[i] *(NEGATIVE_LR);

***** Push each element in the Probability Vector towards 0.5 by a small amount*****
************************** (Forgetting Factor) ***************************
fori :=I to LENGTH do .

P[i] :=P[il - FF * (P[i]-0.5);

*****Mutate Probability Vector*****
fori := I to LENGTH do

if (random (0,1)< MUT _PROBABlUTY) then
if (random (0, I) > 0.5) then mutate_direction :=I
else mutate_direction :=0;
P[i] :=P[i] * (1.0- MUT _SHIFT)+ mutate_direction * (MUT _SHIFT);

USER DEFINED CONSTANTS:
POPSIZE: the number of individuals in the population.
LR: the learning rate, how fa~t to exploit the search performed.
NEGATIVE_LR: the negative learning rate, how much to learn from negative examples.
LENGTH: the number of biL~ in a generated vector.
FF: the forgetting factor.
MUT_PROBABILITY: the probability for a mutation occurring in each position.
MUT _SHIFT: the amount a mutation alters the value in the bit position.

Figure 4-23: The amended PBlL algorithm (PBlL_POP)

97

4.3.1 Comparison of Results for PBIL_POP Utilising the Complex Stress Model

PBIL with a population performs better than the original PBIL algorithm on lower

dimensions utilising a leaming rate of 1.0 on a single load case (Figure 4-25). Intermediate

populations i.e 20 40 and 60 seem to work best (Figure 4-24). As explained earlier in tltis

chapter, fewer feasible design solutions exist due to lower dimensions and as a result the

PBIL with a population is more effective. On the higher dimensions and still utilising a

single load case it's pe1f01mance is exceeded by that of the original PBIL algorithm,

because there are more feasible designs the more highly exploitive nature of the original

PBIL algmithm outperforms the modified PBIL with a population .

1600

+

1550,\\x -<>--4
~ -o-10 Q) + c - 1500 - -tr-20 u: -Ill Q) -X-40

IJ)

Q) 1450 - -X-60
Cl
111 -o-100 ...
~
<(-+-200

1400 -

1350 -

~
I{) c.D 0 (\j v " 0 v
X)(~ ~ ~ x (\j C\J

(") I{) c.D)()()()()(
0 C\J V " 0 v
~ ~ ~ ~ (\j C\J

Grid Size

Figure 4-24: Effect of different population sizes on amended PBIL algorithm for a single

load case.

98

1580

--9--- FBIL (original FBIL)

1560 -X- FBIL With Fbpulation pop size= 20

-:.:- FBIL With Fbpulation pop size =40

1540 -
-o- FBIL With Fbpulation pop size =60

Ill
Ill
G)

.5 1520 --u::
G)
Ol
~
G)

> < 1500 -

1ii
G)

CO

1480 --

1460 -

1440 -

3x3 5x5 6x6 10x1 0 12x12 14x14 17x17 20x20

Grid Size

Figure 4-25 : Effect of different population sizes on amended PBIL algorithm for single

load case (learning rate =1.0)

On the more complex 3 load case problems where exploration of the search space is of

great importance, the modified PBIL fails to provide better solutions when compared to the

miginal PBIL algorithm. In Table 4-11 five learning rates are explored. The more complex

of the problems such as the 20x20 and 24x24 3load case plates, with an upper limit of 18

mm show improved results when utilising lower learning. This is due to better exploration

of the search space. However altering the learning rates (Table 4-11) or the population

sizes (Table 4-12) does not seem to have a major impact upon the algorithm's relati ve

performance.

99

(1 load case) (3 load cases) (3 load cases

Learning 20x20 20x20 20x20 20x20 24x24 24x24

Rate (24mm) (l8mm) (24mm) (l8mm) (24mrn) (18mm)

1.0 fitness 1454.046 1462.435 1415.509 1062.597 1393.53 1 978.8119

weight 1.099 1.082 1.203 1.086 1.271 1.247

0.8 fitness 1446.96 1456.797 1407.447 12 15.169 1388.842 1064.932

weight 1.119 1.096 1.228 1.23 1.286 1.26

0.6 litness 1438.05 1450.825 1402.382 1238.287 1384.261 1068.923

weight 1.14 1 1.108 1.243 1.244 1.302 1.261

0.4 fitness 1429.837 1444.043 1392.482 1354.494 1377.309 1115.695

weight L.164 1.127 1.273 1.249 1.327 1.265

0.1 fitness 1389.8 11 1420.203 1358.223 905.2703 135 1.105 536.3241

weight 1.284 1.19 1.397 1.263 1.424 1.245

Table 4-11: Amended PB[L (with population) (PBrL1) Population Size= 20

Population Size 20x20 (24mm) 20x20 24x24 (24mm) 24x24 (l8rnm)
(l8mm)

20 fitness 1415.509 1062.597 1393.53 1 978.8 119
weight 1.203 1.086 1.27 1 1.247

40 fitness 1420.533 1243.3 12 1401.1 1005.725
weight 1.189 1.207 1.246 1.246

60 fitness 1412. 136 1132.855 1398.176 857.7043
weight 1.213 1.223 1.256 1.243

lOO fitness 1400.057 98 1.5387 1383.774 711.7879
weight 1.249 1.247 1.303 1.241

Table 4-12: Amended PBrL (with population) (PBrL1) (3 load cases) learning rate= 1.0

4.4 Other Techniques

The messy genetic algotithm [Goldberg et. al. 1991] was considered but was not included

in the test suite because of the co~putational expense associated with its two evolutionary

phases. Messy Genetic Algorithms (mGA's) use variable-length strings that may be over or

under specified with respect to the problem being solved, (this is why they are called

messy), and also have two distinct phases. The first Primordial Phase ensures that good

100

building blocks are enriched through a number of generations of self reproduction without

genetic action. Selection alone is run to enrich population with high proportion of the best

building blocks. The second Juxtapositional Phase is closer to the canonical GA process in

that genetic operators such as mutation are used. However the mGA uses cut and splice

operators as opposed to the classical crossover.

A preliminary study in the applica~on of GP to the generation of optimal plate surfaces has

been undertaken by Birkenhead [1997]. The method was found to be computationally

expensive, requiring in some cases 17 times more evaluations than the CHC algorithm to

produce a design comparable in performance. However, this was a short-term preliminary

study and further research is required to better assess the GP approach.

4.5 Summary

Many researchers have focused on the comparison of an evolutionary algorithm in relation

to a canonical GA (Baluja 1994, Eshelman 1991). This chapter realising the limitations of

the canonical GA has compar~d the performance of different high performance

evolutionary algorithms.

It has been shown that EA's are extremely effective at solving the flat plate problem. The

use of GA's for solving the plate problem does however involve a large number of calls to

the analysis model. This chapter has highlighted that the use of more advanced GA's may

help reduce the overall number of calls, and thus make it feasible to integrate complex

models such as FEA with an EA.

101

The single load case promotes the· generation of material concentrations in one area of the

plate and it is suggested that the highly exploitive characteristics of PBIL is better suited to

a less complex distribution of material upon the plate than that required by the three load

case problem. With three load cases the material is distributed across a wider area of the

plate to best satisfy stress characteristics. Moreover a reduction in plate depth results in

more stress violations across the plate resulting in fewer feasible design solutions. It is

therefore assumed that the greater diversity of the CHC algorithm results in the better

identification of this more complex material distribution. The rapid convergence

characteristics of PBIL prevent it from fully exploring the search space, which eventually

results in the algorithm premature converging. The performance of the CHC GA is

extremely competitive in comparison to the other algorithms. It is extremely robust in the

sense that little, if any parameter tuning is required to achieve good results.

The computational demand increases with suuctural complexity i.e. number of elements,

number of load cases. The computational expense to arrive at a feasible solution depends

upon a number of factors such as the level of representation of the plate, loading

conditions, constraints and the type of optimisation algorithm utilised. Depending on the

factors, the search techniques perform in different ways. We need to select a method that

yields relatively good results across a broad, spectrum of problem configuration and not

limited to one that only provides good results on a particular aspect of the problem through

extensive operator tuning. To keep computational expense to a minimum during

optimisation (when utilising computationally expensive models) designers often restrict

themselves to either optimising coarse representations of the design or sections of a

detailed design by focusing on the problem areas so as to reduce the overall number of

variables.

102

The alg01ilhms discussed in this chapter show a degradation in performance with increased

numbers of elements on the plate (>I 00) and multiple load cases. The following chapter

discusses ways in which these problems may be overcome.

103

5. MULTI -LEVEL SEARCH STRATEGIES

Chapter 4 has illustrated a degradation in perfonnance as plate resolution (i.e. number of

elements) is increased. In order to solve realistic problems a strategy is required which can

handle large numbers of design variables (i.e. > 100). This chapter proposes methods which

can tackle such problems by utilising eo-evolution of multi-representations.

In many optimisation problems there may exist a number of ways in which the problem can

be represented. An optimisation algorithm can utilise coarse or fine representations to

produce design solutions. A typical example may be a coarse FEA mesh as compared to a

refined one for stress analysis. In relation to the plate problem, the coarse representation

would provide a preliminary design solution which must be considered high risk due to the

low level of accuracy. However such a representation will be relatively inexpensive in

computational tenns. Conversely a fine representation provides a low risk detailed design

solution due to a higher accur~cy of plate representation, but also incurs greater

computational expense. However a combination of simple (coarse) and complex (fine)

representations may lead to a design which is as good as those resulting from a single fine

representation, but at a lower computational cost.

Evolutionary design optimisation may involve search utilising different numbers of

variables. This presents an oppmtunity for the development of a strategy that would exploit

the differing levels of a problem representation. A strategy that gradually increases in

problem dimensionality as the search process progresses would take advantage of this

concept. As the plate is a single component it is not reliant on the design of any other

104

associated assemblies of components, it may therefore be possible to design from

preliminary through to detailed design using evolutionary techniques. As coarse

representations are computationally less expensive savings can be made in terms of

reduced evaluation time. As the solutions for coarse representations evolve more rapidly,

these may be used to assist the more refined representations in order to reduce the number

of calls to the evaluation function involving the computationally expensive fine

representation analysis. To accomplish this the developed technique must successfully

progress from a coarse representation to a fine one. The following sections describe three

different processes which utilise such multi-level representations for the plate problem. The

first termed Dynamic Shape Refinement (DSR) is a sequential technique developed by

Veketia and Parmec [1997]. The other two techniques namely the Modified Injection

Island Genetic Algorithm (MiiGA) and the Dynamic Injection Island Genetic Algmithm

(DiiGA) also developed by Vekeria and Parmee [1997] involve concurrent processing of

models of different resolutions. All three techniques use the CHC GA for the optirnisation

phase.

5.1 Dynamic Shape Refinement (DSR)

The Dynamic Shape Refinement was developed at the Plymouth Engineering Design

Centre by Veketia and Parmce [Vckeria & Parmee, 1996] and is loosely based on finite

element adaptive shape rcfinemertt [Kohli & Carey, 1993]. The DSR technique mimics

natural evolution in that simple life forms arc initially evolved which become increasingly

more complex through several generations, the higher life forms displacing the lower. The

DSR technique utilises problem representation of varying resolution, starting with a coarse

representation which gradually increases in resolution until the desired level of

representation is obtained (Figure 5-1). The technique also imitates the process by which a

105

de igner may tackle a design problem. The designer would initia lly develop a simple

(coarse) design, which he or she would gradually refine by adding more details (fine).

Low Computational Expense .
"High Risk"

High Computational Expense
"Low Risk"

1

1

Coarse
Representation

Medium
Representation

Fine
Representation

Figure 5-1: An Example of the Dynamic Shape Refinement Technique utilising Three

Levels of Representation

The size of the optimisation problem can be varied by increasing (or decreasing) the

number of variables as the shape evolves. Generally the initial hape is relatively coarse

and high litness solutions may be obtained within a relatively small number of evaluations.

The coarse representation also results in less costly analytic computation. These solutions

are however high risk due to lack of resolution associated with the small number of

elements. The de igner must decide on the level of accuracy required in order to determine

the total number of representation levels to utilise. The evolution of a representation ceases

once convergence or the maximum permissible number of function evaluations for a

particular level is reached. The maximum number of function evaluations may be

106

representative of that normally required for that level of representation. There are three

options as progression is made from the coarse to more fine level representations:

1. Reduce the number of function evaluations as finer resolution levels are computationally

more expensive.

2. Increase the number of function evaluations and expend a larger amount of computation

of resource in fine tuning the high resolution designs as coarse levels are less accurate.

3. Keep the number of evaluations constant on all levels of representations.

Once search at the coarse level ceases the population is mapped onto a finer more accurate

representation and the evolutionary process allowed to continue until the next level of

representation is introduced. The mapping of encoding attempts to focus search around

"good" solutions that have already been discovered utilising the coarse representation. The

final population of the coarse representation becomes the initial population of the next

level, which is re-evaluated once it has been mapped into a finer representation. There arc

however other options other then mapping the whole of the coarse population on to a finer

population. The method used is based on the re-initialisation phase of the CHC algorithm.

Here the best or a randomly selected individual from the coarse representation is mapped to

the next level. The individual is then copied M times (M = population size). Each new

individual is created by flipping a fixed proportion (e.g., 35%) of the template's bits chosen

at random. One instance of the best is added unchanged to the new population. Evolution

takes place in only one direction from coarse to fine representations.

107

A simple 3 level representation is presented below:

Representations:

a) 5x5=25 elements

b) lOx 10= 100 elements

c) 20x20=400 elements

Process:

• Commence evolution of representation a).

• Stop evolution of a) if it has converged or reached maximum permissible number of

evaluations.

• Map population a) to produce population b), and continue evolution.

• Stop evolution of b) if it has converged or reached maximum permissible number of

evaluations.

• Map population b) to produce population c), and continue evolution.

• Stop evolution if c) converges or reaches maximum permissible number of evaluations.

5.1.1 Mapping of Encoding

When using the DSR technique the issue of mapping a low resolution encoding to a higher

resolution must be addressed as there is an increase in the size of the chromosomal

representation. The high resolution model must be as close as possible in terms of

representation to its more coarse counterpart. This may be achieved relatively easily in the

case of the plate problem, so long as there is one to one mapping in one direction (i.e. from

coarse to fine representation) the number of elements may be multiplied by two or four.

Figure 5-2 shows 2 grid representations (2 x 2 and 4 x 4) which illustrate how the mapping

108

of an individual is accomplished from a 4 to a 16 element representation. In this case the

number of elements are multiplied by 4 every time a new representation is introduced. The

coiTesponding depth of a in the 4 element representation is mapped onto a1, a2, a3 and a4

in the 16 element representation. These then form the new valiables, as the next level of

representation is optimised. The other components b, c and d are migrated in the same

manner in order to form a complete individual.

c3 c4 d3 d4
c d

c1 c2 d1 d2

a3 a4 b3 b4
a b

a1 a2 b1 b2

Figure 5-2: The migration of encoding

5.1.2 Discussion and Results for the DSR Technique

The DSR technique allows a major part of the optimisation to be perfoiTned during the

early coarse levels, with " fine-tuning" being canied out at the finer levels. The solution

should not only be of minimum weight within relevant stress criteria but also be considered

low-risk in terms of the final resolution of plate representation i.e. there is a sufficiently

high number of elements to provide confidence in the stress evaluation.

109

shows the evolution curve for the CHC, PBIL and DSR CHC processes. Details of the

algorithm and plate representation follow:

Stand Alone CHC and DSR CHC:

Population size = 40; (DSR population kept constant on all levels of

representations)

Divergence rate= 30%;

Maximum number of restarts= 3

Stand alone CHC plate resolution = 20x20 elements.

DSR CHC plate resolutions = 5x5, lOxlO and 20x20 elements (whole population is

mapped during transition from one representation to another)

Stand Alone PBIL

Positive Learning Rate= 1.0

Negative Learning Rate= 1.0

Forgetting Factor= 0.005

Mutation Shift = 0.05

Mutation Probability = 0.02

Trials per Iteration = 40

Number of Vectors to Update from= 1

Stand alone PBIL plate resolution= 20x20 elements

Total Number of Calls to the Model= 10000 (unless otherwise stated)

110

1550 T---~

1530

1510

Ill
Ill
Q)
c:
f 1450 -Ill
~ 1430

1410

1390 -o--PBIL

-<>-CHC
1370 -- ---Q-OSR

1350

0 2000 4000 6000 8000 10000

Number of Evaluations

Figure 5-3: Performance of stand-alone CHC, CHC DSR and PBIL for 20x20 plate (lload

cases). Max = 24rnm.

The evolution curves are shown for the fittest individual found from the 10 runs. The high

fitness achieved dwing the early stages of the DSR CHC approach must be treated with

caution because fitness is measured in terms of weight versus stress violation and the

coarser representations although seemingly of high fitness are also high-risk due to the lack

of resolution during stress evaluation. A higher resolution stress evaluation returns a

greater degree of violation and a related degradation of fitness as shown by the dips in the

DSR curve as finer resolutions are introduced. The first dip in the graph represents the

transition from a 5x5 representation to a lOx 10 one. The second represents the transition

from 1 Ox 10 to a 20x20 representation. It can be seen that as a result of the highly fit genetic

material from the 10x 10 representation seeding the 20x20 representation fitness achieved

fTOm the DSR technique quiclqy exceeds that of the single population GA.

111

In comparison the CHC and PBIL single population representations (20x20 plate) show a

constantly improving fitness throughout the evolutionary process. Comparison of the

20x20 representations of the DSR (Table 5-l) approach with those of PBIL and CHC

(Chapter 4) show the DSR acltieving a ltigher fitness than the single representation

approach with far fewer calls to the analysis routine. Therefore to some extent the DSR

satisfies the primary objectives of the research i.e. feasible design solution with minimum

weight and number of calls to the fitness function.

DSR

Test Number Plate size Max upper Load Best Best Fitness Average Average

limit ca~es Fitness Weight (SD) Fitness Weight

DSR_ 1 20X20 24 1 1524.37 0.95 14.11 1496.92 1.01

DSR_2 20X20 18 I 1477.41 1.05 6.70 1466.10 1.07

DSR_3 24X24 24 I 1506.58 0.99 12.22 1479.45 1.04

DSR_4 24X24 18 I 1497.95 1.00 6.49 1487.37 1.03

DSR_5 20X20 24 3 1452.05 1.1 1 7.60 1444.03 l.l3

DSR_6 20X20 18 3 1446.51 1.12 74.82 1416.48 l.l4

DSR_7 24X24 24 3 1449.99 1.11 8.60 1439.10 1.14

DSR_8 24X24 18 3 1453.41 1.10 5.02 1446.47 1.1 2

Table 5-1: Results for the DSR technique utilising various problem cases (no. of runs= 10)

Figure 5-4 shows the evolution c.urve of the DSR process utilising the CHC algmithm.

Details of the algorithm and plate representation follow:

Stand Alone CHC and DSR CHC:

Population size = 40; (DSR population kept constant on all levels of representations)

Divergence rate= 30%; Maximum number of restarts = 3

DSR plate resolutions= 6x6, 12x12 and 24x24 elements

112

Stand alone CHC plate resolution = 24x24 elements.

A high fitness is once again achieved dUling the early stages of the DSR approach. The first

dip in the graph represents the transition from a 6x6 representation to a 12x12 one. The

second represents the transition from 12x12 to a 24x24 representation. It can be seen that

as a result of the highly fit individuals from the 12x12 representation the fitness of the DSR

technique quickly exceeds that of the single population evolutionary methods.

1500 -

1450

1400

Ill 1350
Ill
Cll c: -u: 1300

1250

1200

1150

1100

0 2000 4000 6000

Number of Evaluations

~CHC

-o-PBIL

---t.-DSR

8000 10000

Figure 5-4: Petformance of stand-alone CHC, DSR and PBIL for 24x24 plate (1 load case).

max 24mm

Table 5-1 shows the results for the DSR technique. It shows the final best fitnesses utilising

400 elements and a single load ·case problem. These results are comparable to those

achieved with the single population CHC and PBIL methods shown in chapter 4, but they

are however achieved with less computation due to the use of coarser representations

113

(Figure 5-13 and Figure 5-7). On the finer 576 element representation (24x24 plate) the

final best fitnesses are far superior to those acrueved using the CHC and PBIL methods.

This indicates that the DSR technique achieves a better compromise between exploration

and exploitation of the search space on single load case problems of high dimension.

On the three load case problems the results again show comparable final best fitnesses to

those achieved by CHC and PBIL. As in the single load case problems they are achieved at

less computational cost through the use of less costly coarse representations. Unlike the

CHC and PBIL methods, the standard deviations shown in Table 5-l indicates that the

DSR technique also provides more robust solutions to the problem involving three load

cases, 24x24 plate and upper material limit of 18mm.

Cll
Cll

1500 -,-----

1300

:g 1200
;t::
u..

1100

1000 -o-PBIL

-o---CHC

-tr-DSR

900+r----r---~-----+----~-----r----,_----+-----r-----r---~

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of Evaluations

Figure 5-5: Performance of stand-alone CHC, DSR and PBIL for 20x20 plate (3 load

cases) max 24rnm

114

1600 ,-------------------··---·--··----·---·------.._..,

1400

1200

1000

Ul
Ul .. 800 s
ir:

600

400

-<>-CHC

200 --o---DSR

-Q--P BIL

0

0 1000 2000 3000 4000 5000 6000 700 0 8000 9000 10000

Nu mber of Evaluatio ns

Figure 5-6: Performance of st~nd-alone CHC and DSR for 20x20 plate (3 load cases) max

18mm.

1450

1430

1410

1390

1370

Ill
Ill
Cll 1350 c: -LI:

1330

1310

1290

1270

-tr- DSR

~PBIL

-<>-CHC

1250 -·~---~---~----~-----~------r------+-------4

3000 4000 5000 6000 7000 8000 9000 10000

l't.lm be r of Evaluations

Figure 5-7: Performance of stand-alone CHC and DSR for 20x20 plate (3 load cases) max

18mm during Latter stages of search

115

In summarising the results it can be said that the DSR technique presents a novel way of

dealing with a large numbers of variables and reducing the number of calls to the model

during a GA run. By utilising a combination of simple and complex representations the

DSR technique on most of the problems described leads to a design which is as good as

those resulting from those of.a single fine representation, but at lower computational cost

through the utilisation of coarse representations.

5.2 Parallel Genetic Algorithms

The task of finding an optimal solution for a complex structural analysis problem poses a

considerable challenge to the engineer, not only because of high dimensionality but also

because of the high computational expensive. There are two ways in which to lessen the

computational expense. Firstly to accelerate convergence of individual algorithms whilst

minimising the overall number of evaluation calls and thus CPU time; secondly the

distribution of the problem through the utilisation of parallel architectures. The research

described here represents a combination of these two approaches.

This section presents a method by which multi-level representations are used in a parallel

manner in an attempt to make further improvements in performance. The Injection Island

GA (iiGA) [Goodman et. al., 1997] is a technique that maintains multiple interacting sub

populations of different resolution. However, unlike the DSR technique which is sequential

in nature, seveml levels of representations evolve at the same time, with occasional

migration from one sub-population to another. The technique presented not only reduces

the calls to a model but is also very accessible to the parallel method.

116

Parallel Genetic Algorithms (PGA) address the convergence problem of single population

GA's by subdividing the populations and evolving the sub-populations independently so

they are more likely to explore different portions of the search space. The main motivations

to use PGA' s are :

- to increase speed and efficiency

- to allow the application of the GA to a larger problem

- to try to follow biological metaphor more closely

Various researchers have utilised PGAs for complex structural design problems. For

instance Leite (1996) applied many parallel models and environments to the design of a

cable-stayed bridge. The studies show that, especially for large engineering problems, the

parallel GA performs better than serial algorithms both in execution speed and quality of

solution. Doorly et a! [1996] utilised parallel genetic algorithms to reduce computational

expense for optirnisation in computational fluid dynamics (CFD) for the design of optimal

airfoils. Poloni et al [1996] utilise parallel GA' s for aerodynamic design optimisation

problems. A massively parallel Cray computer is utilised to reduce the computational effort

required for the accurate evalua~ion of a design configuration. Goodman et. al. uses

injection island genetic algorithms (iiGA) for the design of composite cantilever plates

[1996] and to optimise the Specific Energy Density (SED) of elastic flywheels [1997]. The

iiGA searches at various levels of resolution in parallel within a given space. Adeli and

Cheng [1995] use the parallel GA for the optirnisation of high rise building structures and

space stations with several hundred members.

There are several types of Parallel GA's which differ in the nature of the population

structure and I or the method of selection.

117

5.2.1 Micro-grain GA (mgGA)

Micro-grained GA's [Punch et. al. 1993] maintain a single population with multiple

processors being used to run the evaluation function. No migration is employed. Every

processor that is used (up to the number of members in the population), results in an

increase in performance. If fewer processors than the number of members of the population

are available, then each processor is responsible for processing a subset of the population,

making the populations evaluation time equivalent to the evaluation time of the most costly

subset. Genetic operations such as crossover and mutation are typically conducted

sequentially by a single "master" node which controls the system. The Micro-grained GA is

especially useful when the evaluation function is computationally expensive as in the case

of FEA and CFD packages which may take in the order of several minutes for a single

evaluation. The mgGA's do not address the problem of premature convergence, their

primary goal is speed in comparison to sequential GA's.

5.2.2 Fine-Grain GA's (fgGA 's)

Fine Grained GA's (fgGA's) [Manderick and Spiessens, 1989] are sometimes also termed

massively parallel GA's. A large population is divided into a series of smaller sub

populations by placing one individual at each location on a toroidal 2-dimensional grid.

With each individual assigned this way, the grid locations are not necessarily related to the

individual's solutions, rather they are arbitrary designations used to perform selection.

Sub populations arc defined in terms of neighbourhood on the grid. One method is to

utilise a fixed size neighbourhood where for any given location (individual) a sub

population would be that location plus its eight immediate neighbours. With this method

118

there is a natural local mating scheme within each sub population. The entire population

may be viewed as numerous small sub-populations which overlap. This results in a mixing

of individuals between the sub-populations. Sub populations that are within a close locality

(relative to grid size) will exert more of an influence on each other than those a greater

distance apart, whilst the more distant sub populations should evolve comparatively unique

chromosomes. High connectivity between neighbours increases the spread of high fitness

individuals, making sub-populations susceptible to domination and perhaps premature

convergence.

5.2.3 The Distributed Genetic Aigorithm (DGA)

Tenese [1989] proposed the distributed genetic algorithm (DGA) also termed coarse

grained GA as a way of efficiently parallelising the canonical genetic algorithm (CGA). 1n

the DGA, the global population is divided into several sub-populations, one per processor

(Figure 5-8). Inter-processor communication occurs during the migration phase at regular

intervals (i.e. migration interval). During migration, a fixed proportion of each sub

population is selected and sent to another sub-population. In return, the same number of

migrants are received from some other sub-population and replace individuals according to

some criteria. This migration can occur either asynchronously or synchronously. Because

the time-consuming measurement. of fitness is performed independently at each separate

processing node, this approach to parallelisation delivers an overall increase in

performance that is nearly linear with the number of independent processing nodes.

119

Ring Migration Topology Neighbourhood Migration Topology

Figure 5-8 : Two examples of PGA topologies

5.2.4 Cooperative eo-evolutionary Optimisation

The use of multiple interacting sub-populations has been widely explored as an alternate

mechanism for eo-evolving niches using the distributed GA. Co-operative eo-evolutionary

algmithms (CCA) [Potter and De Jong, 1994] combine and extend these ideas in several

ways. A CCA consists of a collection of independent sub-populations, each attempting to

evolve sub-components (species) which are useful as modules for achieving more complex

structures. The CCA evolves each species (function variable) in a round robin fashion

using the cunent best values from the other species. This is quite similar in style to

numerical optimisation techniques which proceed by optimising one function vruiable at a

time while holding the other variables constant. Unlike the island model, the individuals

from the separate sub-populations do not interbreed. Complete solutions are obtained by

assembling representatives qom each of the species present. Credit assignment at the

species level is defined in terms of the fitness of the complete solution in which the

members participate. This provides evolutionru-y pressure for species to co-operate rather

than compete. However competition still exists among individuals within the same sub-

120

population. Such a procedure works well on problems whose variables are reasonably

independent, but difficulties arise with problems such as that of the plate which has high

interacting variables i.e. slight perturbation of a single variable may have an effect on the

overall fitness of the design.

Barbosa [1997] proposes a eo-evolutionary GA for solving structural optimisation

problems. Two GA's are run independently. A GA evolves for a certain number of

generations on population A while population B is kept frozen. The GA is then allowed to

operate on population B while population A is kept frozen. The cycle is repeated n number

of times. The fitness is based on function f(x,y) where x is taken from population A and y

from population B. As a result the fitness of each individual in one population depends on

all individuals of the other population.

5.3 The Injection Island GA (iiGA)

As highlighted in section 5.2 parallel processing is often used to increase the speed of

convergence. However, before introducing parallel architectures it is extremely important

to develop and optimise the underlying adaptive algorithms with respect to their efficiency,

effectiveness and overall robustness.

The injection island architecture (iiGA) [Goodman et. al., 1996] offers a concurrent rather

than a sequential shape refinement process. The iiGA is an extension of the coarse grained

PGA, whereby lower resolution representations are explored on some islands, which inject

approximate solutions into higher resolution populations for further refinement. The iiGA

is therefore characterised by: (1) sub-populations using different data representations and

(2) exchange of genetic material one way. To illustrate the technique, an example of an

121

iiGA topology is shown in Figure 5-9. In this figure each circle represents a separate sub

population or "island". Sub-population at islands 1 and 2 use a low resolution

representation for problem solutions. Best results from islands 1 and 2 are migrated to

islands 3 and 4 respectively at a set number of evaluations. Sub-populations at islands 3

and 4 employ a medium resolution representation, and individuals injected into these sub

populations from islands 1 and 2 are expanded as appropriate to the new higher resolution

representation. Similarly, individuals evolved on islands 3 and 4 are injected into the sub

populations at islands 5 and 6 respectively, and expanded into this higher resolution

representation. Island 5,6,7,8,9,10 form the basis of the more traditional island GA,

exchanging individuals at the same, highest resolution at a set number of evaluations.

Resolution
Low Resolution

Medium Resolution

High Resolution

Figure 5-9 : Michigan Injection Island Topology

Goodman et. al., [1997] utilised the iiGA in a distributed environment where numerous

sub-populations of different representations exist each on individual processors. The

objective is a reduction in overall run time whilst maintaining diversity. However, instead

of reducing overall time of the tun through the use of multi-processors an alternative

architecture is introduced here that borrows from both DSR and Michigan's iiGA.

122

The iiGA as with the DSR technique offers a method of reducing calls to the model by

utilising various levels of representations. However iiGA's concurrent evolution of the

different levels of representations, ensures that feasible design solutions are available

relatively early in the search process thereby aiding a further reduction in run times.

The architectures described differ to those used by Goodman et. al., [1997]. Firstly the sub

populations are not distributed, they are contained as subsets of each population. The flat

plate is represented by a number of different resolution grids each resolution being

allocated to a population subset. Members of each sub-population are evaluated one at a

time. Secondly relatively few sub-populations are utilised in comparison to typical

implementations of Michigan's iiGA. The overall number of sub-populations have been

reduced in order to decrease the number of calls to the model. Each level of plate

representation is usually represented by one sub-population at the start unlike Michigan's

iiGA, which may have several sub:populations for a given level.

Due to these differences and to avoid confusion the technique will be referred to as the

Modified Injection Island GA (MiiGA). The objective is to establish eo-evolutionary,

multi-level representation processes with appropriate migration regimes that support the

design of single components from preliminary through to detailed design.

5.3.1 Application of MiiGA's on the Plate Problem

This and following sections focus on the use of multiple representations as a method for

maintaining genetic diversity and_ reducing the number of calls made to an evaluation

function.

123

When implementing an MiiGA the designer must address certain issues such as:

• The number of individuals to migrate

• Which individuals to migrate (the best or arbitrary ones)

• Which individuals to replace (the worst or arbitrary ones)

• Synchronous or Asynchronous migration of individuals

• Exchange between neighbours or between arbitrary subpopulations.

A 3 level MiiGA representation is presented below:

Representations: a) 5x5=25 elements b)IOxlO=IOO elements c)20x20=400 elements

Process:

• Commence eo-evolution of representations a) and b) and c).

• Migrate fit individuals from a) to b), a) to c) and b) to c) every n evaluations

• Continue the process until maximum number of restarts or maximum number of

evaluations has been reached

The solutions of the coarse design representations arc injected into the more detailed

designs for fine grained refinement. The coarse migrated individual must therefore be

converted to the required level of representation before migration. this is accomplished in

the same manner as outlined in section 5.1.1. Migration of information is from low to high

resolution at a set number of evaluations. Figure 5-10 shows the eo-evolution of 3

representations 3x3, 6x6 and a 12x 12. Individuals are migrated from 3x3 to 6x6, 3x3 to

12xl2 and 6x6 to 12x12 at a pre-set number of evaluations (this is normally 100 on most

problems unless stated otherwise). Migration allows the passing of highly fit schemata by

injecting the best individuals that have evolved from a proportionally smaller search space

into higher resolution representations replacing the worst individuals present at that time.

There are a large number of possibilities when deciding the migration method to utilise.

The research does not discuss the best migration methods to use.

124

Subpopula~on 1 Subpopulation 2 Subpopulation 3

Figme 5-10: Migration between subpopulations

The fittest individual from the coarse representation is selected for migration into the finer

representations, replacing the least fit in those subpopulations. Each subpopulation passes

the fittest individual to all higher resolution subpopulations. However other strategies may

be used such as :

• Every subpopulation passing individuals to only the finest subpopulation

• Every subpopulation passing indi victuals only to its neighbour

• Every subpopulation passing individuals to both its neighbom and the subpopulation

containing the highest resolution.

125

MiiGA

Test Number Plate size Max upper Load Best Best Fitness Average Average

limit cases Fitness Weight (SO) Fitness Weight

MiiGA_I 20X20 24 I 1454.30 1.1 11.02 I438.36 1.14

MiiGA_2 20X20 18 ·1 1471.09 1.06 8.06 1459.78 1.09

MiiGA_3 24X24 24 I 1451.3 1 1.1 1 11.43 1421 .04 1.19

MiiGA_4 24X24 18 I 1459.28 1.09 9.87 1448.44 1.12

MiiGA_5 20X20 24 3 1443.89 1.13 18.01 1417.03 1.20

MiiGA_6 20X20 I8 3 1451.24 l.l i 190.11 1374.58 1.16

MiiGA_7 24X24 24 3 1387.80 1.29 4.92 1380.08 1.32

MiiGA_8 24X24 18 3 1295.28 1.15 265.37 848.35 1.2 1

Table 5-2 : Results for MiiGA utilising various problem cases (no. of runs= 10)

Figure 5-11 and Figure 5-12 illustrates the effect of CHC integration with the MiiGA

architecture in tetms of the best fitness of a stand-alone CHC GA of 40 chromosomes (400

elements) and an MiiGA using 3 sub-population islands (consisting of 25, 100 and 400

elements) of 20 chromosomes each. The curve displayed for the MiiGA represents the

fittest individual found from the 10 runs in the fi nest sub-population (400 elements)

utilising a single load case. The number of evaluations is the summation of all evaluations

of the sub-populations. Rapid progress is apparent when compared with the s ingle

population CHC GA. This is due to the injection of high performance individuals fTom the

coarse representations. Rapid progress is also apparent in comparison to the single

population CHC GA when using 3 sub-population islands on a single load case 24x24

variable plate problem (FigUI:e 4-13).

126

1500

1400 --

1300

1200
Ill

ID 1100 c -u:::
1000

900

800

700 -

0 2000 4000 6000

Number of Evaluations

I
i
!
l
i

~

I
i
i

i
i

,----------,1
-~r-CHC I
~MiiGA i

i

8000 10000

Figure 5-11: Performance of stand-alone CHC GA and MiiGA CHC (20 x20 1 load case)

max 24mm

1550

1530

1510

1490

UJ 1470
UJ
Cll c:
a: 1450 -UJ

~ 1430

1410
-<>-- PBIL

-o-CHC
1390

-~r-DSR

1370 - +-MiiGA

1350

0 2000 4000 6000 8000 10000

Number of Eva luations

Figure 5- 12: Perf01mance of stand-alone CHC GA and MiiGA CHC (20 x20 1 load case)

max 24mm

127

(/J

81
c:

u:::

1600

1400

1200

1000

600

200

~CHC

-o-PBIL

--t:s- DSR

-t-MiiGA

0 +----4----~----+---~----~----+---~----~----+---~

0 1 000 2000 3000 4000 5000 6000 7000 8000 9000 1 0000

Number of Evaluations

Figure 5-13: Performance of stana-alone CHC GA and MiiGA CHC (24 x24 1 load case)

max 18mm

On the more complex problem utilising three load cases (20x20 plate with an upper limit of

24mm on material), the MiiGA fails to produce final design solutions as good as those

resulting from the single population methods or the DSR technique (Figure 5-14). However

a more rapid progress is apparent in comparison to the single load case problem. The curve

displayed for the MiiGA represents the fittest individual found from the 10 runs in the

finest sub-population (400 ele.ments).

128

Cll

~
c:
:t:
u..

1500

1400

1300

1200

1100

1000

+ 900

-o-PBIL
-o--CHC

---~:r--DSR

-+-MiiGA

800 +-----r-----4--~-+----~----4-----~-----~----·~----~~----~

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of Evaluations

Figure 5-14: Performance of stand-alone CHC GA and MiiGA CHC (20 x20 3 load cases,

max. upper limit = 24mm)

On the most complex problem utilising three load cases with an upper limit of 18mm on

material , the MiiGA fails to produce feasible design solutions. Figure 5-15 illustrates the

MiiGA consisting of 6x6, 12xl2 and 24x24 grids of 20 chromosomes each. The curve

displayed for the MiiGA represents the finest sub-population (576 elements). Rapid

progress is again apparent when compared with the single population CHC GA. The single

representation CHC approach does however eventually outperform the MiiGA in tetms of

maximum fitness. This is due to the fast convergence of the lower resolution MiiGA

representations limiting the injection of useful material into the higher resolution

populations which eventually results in a stagnation of the eo-evolutionary process. Due to

this reason the average best solution after 10,000 evaluations is not as good as those from

the single population CHC, PBIL or DSR techniques. The initial motivation for

129

implementing the desctibed arcllitecture was that coarse representation may still have

sometlling to contribute during tl1e latter stages of search process.

1600

1400

--+
1200

1000

Ul g:
800 c a:
600

400
-a-PBIL

~CHC

----tr-- DS R

-+-MiiGA

0 +-----~---+----~----4-----+---~~---+----~----+---~

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of Evaluations

Figure 5-15: Performance of stand-alone CHC GA and MiiGA CHC (24 x24 3 load cases,

max upper limit =18 mm)

In summary tile MiiGA manages to locate feasible design solutions for a single load case

problem, producing a final fitness which is not as good as those produced by tile CHC,

PBIL or DSR metl10ds. On tile more complex problems utilising multi-load cases the final

design solutions are again not as good as tile CHC, PBll.- or DSR techniques due to

stagnation of fue eo-evolutionary process. This is due to fue coarse representations

continued evolution, even tllough they have tittle to cont1ibute during tile latter stages of

tile design process. The advantage however in using tile MiiGA is fuat feasible design

solutions especially on simpler problems evolve faster due to concwTent evolution and are

130

therefore available earlier in the design process, thus saving computational effort and

calendar time.

5.4 Dynamic Injection Island GA (DiiGA)

In order to address the stagnation problem a dynamic aspect has been introduced to the

MiiGA paradigm by Vekeria and Parmee. The Dynamic Injection Island Genetic Algorithm

(DiiGA) method of representation addresses the problem of stagnation as discussed in the

previous section. The technique is a combination of the DSR and iiGA techniques. Two or

more levels of representations evolve. Previous results have shown that the DSR technique

is highly effective at reducing the overall computational effort through the utilisation of

several levels of representations and by the phasing out of lower representations. The

MiiGA due to its concurrent evolution of the different levels of representations ensures

that, unlike the DSR technique, a feasible design solution can be generated relatively early

in the search process. The DiiGA is a strategy which takes advantage of the better

mechanisms of the two approaches (Figure 5-16). As a lower resolution process ceases to

inject useful infotmation into·the ~igher resolution processes so it is removed and replaced

by a resolution that is higher than any currently in existence. The new higher representation

is seeded from the new lower sub-population. This is accomplished by mapping the fittest

individual from the lower sub-population to the higher sub-population. The remainder of

individuals in the new higher sub-population are formed by copying the mapped individual

and mutating a fixed percentage (30%) of it's bits at random. This creates a sub-population

which is biased towards a good solution from the lower level but with new diversity. The

desired behaviour is one of constant improvement in fitness, avoiding the levelling of the

MiiGA curve as displayed in Figure 5-15. A simple 3 level representation involving 4

processes is presented:

131

Representations:

a) 5x5=25 elements

b) IOxlO=IOOelements

cl) 20x20=400 elements

c2) 20x20=400 elements

Process:

• Commence eo-evolution of representations a) and b).

• Migrate from a) to b) every n evaluations until a) converges and ceases to pass useful

information to b) or until maximum permissible evaluations

• Remove a) and introduce c1) using the best individual from b) to seed new population

• Migrate individuals from b) to c1) every n evaluations until b) converges and ceases to

pass useful information to et) or until maximum pe1missible evaluations

• Remove b) continue to evolve c1). Introduce another eo-evolving subpopulation (c2),

seeded from (c1).

Individuals are prevented from migrating if a duplicate exists in the host subpopulation in

order to maintain search diversity. Further migration only takes place if the individual is

fitter than the least fittest individual in the host sub-population. The run continues until its

termination condition is met (when the sub-populations have converged, the maximum

number of evaluations have been reached or the maximum number of re-initialisations has

been achieved). It should be noted that there is no danger that the best individual will

rapidly take over the new sub-population. The CHC GA's incest preventing mechanism

(the dropping difference threshold), in combination with elitist selection and disruptive

recombination will prevent this. Eshelman [1991] found that partial re-initialisations

132

perform better using smaller population sizes when compared with chronic mutation and

provide many of the benefits of a large population without the cost of a slower search. The

number of evaluations is the summation of all evaluations of the sub-population 1 and sub-

population 2. Migration takes. place every 100 evaluations.

The following sections show the performance of the DiiGA, firstly using the complex

stress model (section 5.4.1) and then the finite element model (section 5.4.2).

Subpopulation 1 Subpopulation 2

Coarse Representations

Medium Representations

Fine Representations

Figure 5-16 : Grid Representation for U1e DiiGA

133

5.4.1 Application of Dynamic Injection Island GA to the Plate Problem utilising the

Complex Stress Model

On the single load case problem with a maximum limit of 24mm on the plate, there are

relatively small differences in the performance of the CHC and PBIL presented in chapter 4

in compruison to the DiiGA (Table 5-3). However on the more difficult single load case

problems where the upper limit on material is 18mm, the DiiGA performs better, through

the maintenance of better diversity:

DiiGA

Test Number Plate size Max upper Load Best Best Fitness Average Average

limit ca~es Fitness Weight (SO) Fitness Weight

DiiGA_ J 20X20 24 1 1468.80 1.07 11 .95 1450.97 1.11

DiiGA_2 20X20 18 1 1480.49 1.04 8.59 1468.73 1.07

DiiGA_3 24X24 24 1 1461.84 1.08 9.03 1448.99 1.11

DiiGA_4 24X24 18 1 1474.68 1.05 5.50 1467.94 1.07

DiiGA_5 20X20 24 3 1430.88 1.16 12.14 1410.50 1.22

DiiGA_6 20X20 18 3 1428.64 1.17 67.08 1396.80 1.20

DiiGA_7 24X24 24 3 1409.82 1.22 14.33 1388.94 1.29

DiiGA_8 24X24 18 3 1424.22 1.18 5.37 14 16.71 1.20

Table 5-3: Results for DiiGA utilising various problem cases (no. of runs= 10)

Figure 5-17 and Figure 5-18 represents the fitness of sub-population 1 of the 10 runs for

the fmest resolution giid (400 elements). Three load cases are utilised. The first dip shows

the transition from a 5x5 to a 10x10 representation. The second dip shows the transition

from a 10x 10 to a 20x20 representation. Rapid evolution is apparent in the g1·aphs resulting

from highly fit genetic material from the more coarse representations boot strapping the

overall fitness. Continuous improvement is maintained, resulting in superior perfmmance

in terms of deg1·ee of stress violation and weight in comparison with the 3 sub-population

MiiGA.

134

1500

1400

1300

1200
Q)

.5
iL

1100

1000 --cr-PBIL
--<>-CHC
~DSR

900
--t--MiiGA
-o-DiiGA

800 +-----+-----+-----+-----~----~----~----~----~----~-----4
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of Evaluations

Figure 5-17: Performance of DiiGA against other techniques for 20x20 plate (3 load cases)

max 24mm min 8mm.

1400

1200

1000

Ill
Ill
Cll 800
r:: a:

600

-+-MiGA
-o--DiiGA
--o-PBL
-o--CHC

0 +-----+-----+-----+-----+-----r-----r-----r-----+-----r---~

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

lll.lmber of Evaluations

Figure 5-18: Performance of DiiGA against other techniques for 20x20 plate (3 load cases)

max 18mm min 8mm.

135

Figure 5-19 and Figure 5-20 represents the fitness of sub-population 1 for a 24x24 plate.

Rapid evolution is again apparent. The first dip shows the transition from a 6x6 to a 12x12

representation. The second . dip shows the transition from a 12x12 to a 24x24

representation. The DSR technique does manage to produce fitter design solutions than the

DiiGA on most problems, however these solutions are at the latter stages of the search and

therefore requires the GA to run for a certain number of evaluations. In the case of DiiGA

feasible design solutions are available relatively early in the design stage. A designer may

look at these results and halt the evolutionary process if the design is deemed acceptable,

thus saving computational effort and calendar time. The DiiGA is also considerably more

robust (refer to standard deviation in Table 5-3) than the other techniques on the most

complex of the problems which is a 24x24 plate utilising an upper limit on material of

18mm, highlighting it's explorative capabilities.

1600

1400

1200

Ill 1000
Ill
Qj

1: -u::: 800

600

400

200

-o-PBL

~CHC

-o-IJiGA

0 1 000 2000 3000 4000 5000 6000 7000 8000 9000 1 0000

1\llmber of Evaluations

Figure 5-19: Performance of DiiGi\ against PBIL and CHC for 24x24 plate (3 load cases)

max 24mm min Smm.

136

1600

1400

1200

1000

Cl)
Cl)
Cl) 800 c u::

600

400
-o-PBIL

200 -<>- CHC

-o-OiGA

0
0 2000 4000 6000 8000 10000

!Wmber of Evaluations

Figure 5-20: Performance of DiiGA against PBIL and CHC for 24x24 plate (3 load cases)

max 18mm min 8mm.

The convergence of coarse representations in the MiiGA prevents the migration of further

useful genetic material into the more detailed representations, thus promoting premature

convergence. The DiiGA removes·sub-populations as they cease to migrate fit individuals,

these are replaced by new sub-populations which introduce new genetic mateiial and thus

more diversity. Because useful genetic information is gained during the coarse levels of the

search, the information is passed to the finer representations resulting in a rapid increase in

fitness as finer representations are introduced.

137

5.4.2 Application of Dynamic Injection Island GA on the Plate Problem utilising

FEA

The previous section has shown the DiiGA to perform well in comparison to the other

evolutionary techniques when utilising a complex stress analysis model. This section

therefore investigates the performance improvement of the DiiGA in comparison to single

representation techniques when utilising an FE analysis model. As with the previous

chapter the FE problems were provided by industry.

Table 5-4 shows the computational expense for individual FE evaluations, it shows that the

CPU time increases considerably with structural complexity i.e. number of elements,

number of load cases. Table 5-5 shows the resulls for 48 and 200 variable problems.

Figure 5-22 shows the best average fitness of the 4 runs for the 48 variable single load case

problem, whilst Figure 5-23 shows the average best weight of the 4 runs for the same

problem. Two levels of representations are used. Results from the 12 variable sub

population are injected into the 48 variable sub-population. The initial fitness of the 12

variable sub-population is relatively high due to a low number of stress violations on the

plate. Once the 12 variable sub-population ceases to inject useful material into the 48

variable sub-population it is discarded and replaced by another 48 variable representation,

seeded from the old 48 variable sub-population. The DiiGA manages to reach lower weight

design solutions earlier in comparison to the CHC and PBIL saving calls to the analysis

model. As the lower 12 variable sub-population is cheaper to analyse it further saves

computational expense. Approximately 350 evaluations in every run are performed on the

12 variable sub-population.

138

Number of Variables Number of Number Number of CPU time

Number of Variables Load Cases of Nodes Elements (seconds I

(grid size(x,y)) evaluation)

12(4x3) 1 216 83 l.7

12(4x3) 3 216 83 2.9

48 (8x6) I 864 506 8.5

48 (8x6) 3 864 506 14.5

50 (5x 10) I 720 4 14 6.57

200 (10x20) 1 2880 1786 43.3

Table 5-4: Computational expense for individual FE evaluations

Tes t Number Plate Size Load Best Best Average Average Fitness

Ca~es Fitness Weight Fitness Weight (SD)

DiiGA_FEA1 48 (8x6) 1 1437.03 0. 1440 1436.98 0.1442 0.020

DijGA_FEA2 200 (10x20) 1 1435.59 0. 1479 1435.19 0. 1489 0.337

DiiGA_FEA3 48 (8x6) 3 1434.64 0.1504 1434.50 0. 151 0. 125

Table 5-5 : Results for 48 and 200 variable problems

139

UJ 1300 UJ
41
r::: -u::
41
Cl 1200 IQ ...
41
>
<(

Ui
41 1100 IXl

~CHC

1000 -o- PBIL

900 +---------~-------+--------~--------+---------~-------4
0 500 1000 1500 2000 2500 3000

Number of Evaluations

Figure 5-21 :Best Average Fitness utilising FEA (lload cases, 48 variables)

1437

1436.5

1436
UJ
UJ
41 1435.5 r:::
f
Cll
Cl 1435 IQ ...
Cll

~ -1434.5
UJ

.!
1434

1433.5

1433
0 500 . 1000 1500 2000 2500 3000

Number of Evaluations

Figure 5-22 : Best Average Fitness utilising FEA (lload cases, 48 variables)

140

0 .154

0.153

0.152

0.15i
..... ..c
J2l O.i5
41
::
~ 0 .149
111 ...

O.i48 ~
<(
.....

0 .147 Ul

dl
0 .146

0 .145

0 .144

0 .143

0 500 iOOO i500 2000 2500 3000

Number of Evaluations

Figure 5-23 : Best Average Weight utilising FEA (lload cases, 48 variables)

Figure 5-24 and Figure 5-25 shpws the average best fitness of the 4 runs for the 48

variable three load case problem. 12 and 48 vmiable sub-populations are again used.

Results from 12 variable sub-population are injected into the 48 variable sub-population.

The initial fitness of the 12 variable sub-population is relatively high due to a low number

of stress violations on the plate. However once the 48 vmiable sub-population is introduced

it drops shm-ply due to lm·ger su·ess violations resulting from the three load cases. Due to

the new sub-population being seeded from a high fitness representation, and the injection

of high fitness solutions from the other 48 variable sub- population the fitness rapidly picks

up. This eventually leads to lower weight solutions being available to the designer earlier

than the other two techniques, thus saving calls to the analysis model. The DiiGA on

average requires 700 fewer evaluations to arrive at design solutions which are comparable

141

to those generated by the CHC at ·3000 evaluations. Moreover approximately 350 of these

evaluations are performed on the 12 variable sub-population. Therefore in a typical run the

DiiGA requires approximately 30% less CPU time in comparison to the single population

CHC GA. Also as with the 1 load case problem due to approximately 350 evaluations in

every run being performed on the 12 variable sub-population further computational

expense is saved.

1500 --.--------------

1400

1300

1200
Ill

XI f 1100
Q)

~ 1000 ...
~ ... 900
Ill

~ 800

700 -o-PBIL

-o-CHC
600 -0-DiiGA

500 +-------~--------~------~--------~--------~------4

0 500 1000 1500 2000 2500 3000

Number of Evaluations

Figure 5-24: Best Average Fitness utilising FEA (3 load cases, 48 variables)

142

0.157

0.156

0.155

:c 0.154
.21
Cl)

3: & 0.153

IQ ..
~ 0.152 -Ill
d! 0.151

0.15

0.149

0.148

0 500 1000 1500

Number of Evaluations

2000

-o-PBIL

~CHC

~DiiGA

2500

Figure 5-25: Best Average Weight utilising FEA (3 load cases, 48 variables)

3000

Figure 5-26 and Figure 5-27 show the average best fitness of the 4 runs for the 200 variable

one load case problem. 50 and 200 variable sub-populations are used. Results from 50

variable sub-population are injected into the 200 variable sub-population. The initial fitness

of the 50 variable sub-population is relatively high due to a low number of stress violations

on the plate. Due to the new sub-population being seeded from a high fitness

representation, and the injection of high fitness solutions from the other 50 high

performance solutions evolve rapidly. The DiiGA on average reqmres 1000 fewer

evaluations to atTive at a comparable design solution to the one generated by the CHC at

3000 evaluations. More over approximately 400 of these evaluations are performed on the

50 variable sub-population. So in. a typical run to anive at comparable design solutions

CHC requires approximately 55% greater CPU time than the DiiGA. It is interesting to

note PBIL's superior performance in comparison to the CHC and the DiiGA.

143

1600

1400

1200

Ill
Ill
Gl 1000 c:
f
Gl en 800 Ill ...
l 600 Ill

~

--<>-- DiiGI

200 -o-CHC
~PBIL

0 +-------+-------~------r-----~------_,------~-------+--~
0 200 400 600 800 1000 1200 1400

Number of Eva luations

Figure 5-26 : Best Average Fitness utilising FEA (lload case, 200 variables)

0.157

0.156

0.155 -

0 .154

-~ El 0.153
Gl
3:

0 .152 Qj
Cl
Ill ...
Qj 0 .151 >
<(- 0.15 Cl)

~
0.149

0.148

0.147

0.146

0 500 1000 1500

~mber of Evaluations

2000

--<>- DiiGA

~CHC

-o-PBIL

2500

Figw-e 5-27: Best Average Weight utilising FEA (lload case, 200 variables)

144

3000

The DiiGA has helped to considembly cut overall computational expense. By reducing the

number of calls required and CPU time (through the use of coarser problem

representations), complex models such as FEA may realistically be used. In the problem

cases outlined only two levels of representations have been utilised. More levels may

further reduce computational expense.

5.5 Summary

Practical computability of structural problems are often limited by high dimensionality.

This chapter has outlined methods which aid tackling such problems in order to reduce

computational expense. The DSR, MiiGA and DiiGA are all effective at reducing the

overall number of evaluations to anive at feasible design solutions. The advantage the

MiiGA and DiiGA methods have over the DSR technique is that feasible design solutions

evolve faster and are therefore available earlier in the design process, unlike the DSR

technique where low risk design solutions are available during the latter stages of the

search when the finest level of representation has been introduced. The designer may then

stop the evolutionary process if a particular design is deemed acceptable thereby saving

computational effort and calendar time.

The DiiGA is better suited to the task of exploration of the search space on problems

utilising multi load cases and low limits on material. The experiments utilising FEA show

that the computational savings appear to become more pronounced as the number of

variables and load cases are increased. The results show that the DiiGA method can reduce

computational expense by up to 55% in comparison to single population techniques. The

operator settings for the DiiGA have not been optimised, so further savings may still be

145

possible. The introduction of higher levels of plate resolution would also further reduce the

overall computational expense.

In order to expand the limits of practical computability, researchers have used parallel

processing. However, before introducing parallel architectures it is extremely important to

select, develop and optimise the underlying algorithms with respect to their cost and

accuracy. The multi-level algorithms highlighted in this chapter behave differently on the

problems presented. This however is not very surprising, based on the performance of the

different search techniques and their dependency upon problem specifics outlined in

chapter 4. There arc many possible variations of the techniques and their relative operator

setting. Amending these strategies may yield greater savings in calls to the model. However

what this chapter has shown is that multi-level techniques are highly effective at reducing

the overall computational effort in comparison to single level representation algorithms

presented in chapter 4.

The single population algorithms discussed in chapter 4 display interesting performance

characteristics and provide a better way of searching the design space based on problem

specifics (exploration versus exploitation). The DiiGA has been shown to be very effective

at reducing computational expense through the use of multi-level representations. The next

chapter discusses how the properties of these various techniques may be combined to

further improve design performance.

146

6. MULTI AGENT SEARCH TECHNIQUES

As highlighted in Chapter 4, different techniques may be better suited to varying stages of

the evolutionary process. The CHC is capable of performing good exploration of the search

space. PBll.., whilst capable of maintaining a reasonable level of exploration, is more

efficient at exploiting the search space. Based upon the performance of these search

techniques as outlined in chapter 4', and the ability of the DSR technique at handling higher

numbers of variables two multi-agent search techniques are proposed by Vekeria and

Parmee [1997] as a way of further reducing computational expense. (where agents refer to

the individual algorithms).

The second half of this chapter discusses dist1ibutcd techniques, the process resembles that

of the DiiGA except the subpopulations manipulating the grid representations utilise

different evolutionary strategies. This again is intuitively based upon the performance of

the various adaptive search techniques detailed in chapter 4, the benefit of multi-level

representations detailed in chapter 5 and improved performance of multi-agent strategies

outlined in section 6.2 of this chapter.

6.1 Hybrid Search Techniques

Evolutionary algorithms can be very effective at solving certain classes of optimisation

problem. There are, however, many problem areas where EA does not perform particularly

well. As a result several hybrid EA's have been proposed [Seront and Bersini 1996]. The

most common being local optimisation techniques incorporated within the GA. The GA is

147

a good global optimiscr and explores the search space very efficiently. Conversely local

search techniques are good local optimisers and perform good exploitation of solutions.

Hybrid approaches have been found to work well on some problems as a result of these

complementary properties of the search algorithms.

For instance:

• Koumousis and Georgiou [1994] introduced a mixed strategy that utilises GA's to

search for optimal geometries of steel truss roofs, and a logic program, developed by the

authors, to solve the sizing problem.

• Parmee [1996a] utilises a G~T algotithm which involves aspects of an ant colony

model in combination with a GA. This results in a dual-agent approach to achieve a

multi-level search across a design hierarchy described by mixed discrete/continuous

variable parameters.

Most evolutionary algorithms depend on a set of control parameters. Often the optimal

setting of these parameters is dependent on the particular problem. Furthermore the optimal

parameter settings may vary for different stages of the search. Similarly a search technique

may work well for different types of problems or be better suited to different stages of the

search process, as in chapter 4.

Adamidis and Petridis [1996] propose a method called Co-operating Populations with

Different Evolution Behaviours (CoPDEB) where subpopulations are allowed to exhibit

different evolution behaviours to overcome the problem of operator parameter setting. A

coarse-grained parallel GA where a number of sub-populations eo-evolve is utilised. Each

148

sub-population runs a GA with a different evolutionary behaviour by amending rules

regarding selection, recombination and mutation.

6.2 Multi-Search Techniques

The first approach utilises ~he CHC and then the PBIL algorithm (CHC_PBIL). The

reasoning being that the more diverse search of the CHC will provide an optimal starting

individual for the PBIL-based search. The CHC will perform an initial explorative search,

the PBIL method will then quickly exploit the surrounding local search space. The

establishment of a multi-agent co-operative strategy may therefore provide a partial

solution to the problem of balancing the two competing themes of exploration and

exploitation. The proposed structure initially runs the CHC for 3000 function evaluations

followed by PBIL for a further 7000 function evaluations. The fittest design solution from

the CHC GA is used as the sample solution from which the initial probability vector is

updated once PBIL is introduced. The probability vector is only updated when a better

individual is located.

The second approach, initially utilises the PBIL algorithm which then switches to the CHC

algorithm (PBIL_CHC). The reasoning here is that the PBIL method will quickly exploit

solutions and identify promising regions which can then be explored by the CHC method.

This presents an alternative strategy to the CHC_PBIL method. Similar settings are used to

those of the CHC_PBIL method. PBIL initially runs for 3000 function evaluations followed

by the CHC for a further 7000 function evaluations. The fittest design solution from PBIL

is used as a template for creating the new CHC population, whereby each new individual is

created by flipping a fixed pr~portion (e.g., 30%) of the template's bits chosen at random.

149

One instance of the best is added unchanged to the new population. This ensures that the

CHC search cannot converge to a worse solution than the previous PBIL search.

6.2.1 Application of Multi-Search Techniques to the Plate Problem

CHC_PBIL

Test Number Plate Max upper Load Best Best Fitness Average Average

size limit cases Fitness Weight (SD) Fitness Weight

CHC_PBIL_1 20X20 24 1 1483.33 1.03 4.93 1477.37 1.05

CHC_PBIL _2 20X20 18 I 1484.93 1.03 2.46 1481.33 1.04

CHC_PBIL_3 24X24 24 I 1461.50 1.08 4 .21 1455.57 1.10

CHC_PBIL_4 24X24 18 I 1473.69 1.06 4.16 1466.99 1.07

CHC_PBIL _5 20X20 24 3 1447.3 1 1.12 4 .56 1438.65 1.14

CHC_PBIL _6 20X20 18 3 1448.96 1.11 33.75 1433.44 1.13

CHC_PBIL_7 24X24 24 3 1421.94 1.19 4 .38 1417.47 1.20

CHC_PBIL _8 24X24 18 3 1427.61 1.17 8 1.42 1362.52 1.1 8

Table 6-6: Results for CHC_PBIL utilising various problem cases (no. of runs = 10)

PBIL_CHC

Test Number Plate Max upper Load Best Best Fitness Average Average

size limit cases Fitness Weight (SO) Fitness Weight

PBIL_CHC - 1 20X20 24 I 1486.09 1.03 5.69 1474.67 1.05

PBIL_CHC _2 20X20 18 1 1489.70 1.02 6.39 1479.39 1.04

PBIL_CHC _3 24X24 24 1 1460.69 1.09 7. 15 1452. 18 1.11

PBIL_CHC_4 24X24 18 1 1475.75 1.05 4.19 1468.04 1.07

PBIL_CHC _5 20X20 24 3 1437.5 1 1.14 4.47 1430.29 1.16

PBIL_CHC_6 20X20 18 3 1445.44 1.12 3.95 1437.85 1.14

PBJL_CHC _7 24X24 24 3 141 8.87 1.19 3.9 1 1413.75 1.21

PBIL_CHC _8 24X24 18 3 1426.49 1.17 4 .99 1421.53 1.19

Table 6-7: Results for PBIL_CHC utilising various problem cases (no. of runs = 10)

150

1600

1400

1200

1000
Ill
Ill
411 800 c:

u::
600

-<>-CHC
400 -o-PBIL

200
--*- CHC_PBIL

_...__ PBIL_CHC

0

0 500 1000 1500 2000 2500 3000

Number of Evaluations

Figure 6-1 : Graph to show a comparison of the early stages of the search process for

different search methods -(lload case 24x24 plate max. 18mm, min. 8rnm)

1480

1475

1470

1465

Ill 1460 Ill
411
c:

1455 u::
Ill
411 m 1450 -

1445 -<>-CHC

1440
-o-PBIL

--*-CHC_PBIL
1435 _...__ PBIL_CHC

1430 +-------+-------r-----~-------1------~-------+------~
3000 4000 5000 6000 7000 8000 9000 10000

Number of Evaluations

Figure 6-2: Graph to show a comparison of latter stages of the search process for different

search methods -(l load case 24x24 plate max. 18rnrn, min. 8mm)

151

1600 ,--.

1400

1200

= 1000 1
~ 800
a:

600

--0-PBL

~CHC

-X- CHC_PBIL

-X- PBL_CI-C

0 +---~r----+-----r----+-----~--~-----+----~----+---~

0 1000 2000 . 3000 4000 5000 6000 7000 8000 9000 1 0000

r-l.lmber of Evaluations

Figure 6-3 : Graph to show a comparison of different search methods -(3 load cases 24x24

plate max. 18mm, min . 8mm)

Figure 6-1 and Figure 6-2 shows the evolution curve for the PBIL, CHC sub-populations

running independently against the proposed hyblid technique utilising both algorithms. The

graphs show the fittest individual from 10 runs for each algmi.thm. The CHC_PBIL method

shows an initial slow increase in the performance as a result of its explorative behaviour.

The PBIL method then rapidly negotiates the surrounding search space and converges to a

desi!,rn solution. The CHC method ·on its own takes a fmther 6000 evaluations to ani ve at a

comparable solution. In comparison the PBIL-CHC curve shows a rapid increase in fitness

during the early stages of search but then levels of dwing the introduction of the CHC

method after 3000 evaluations. The PBIL-CHC method does eventually find a solution

fitter than the CHC_PBIL combination due to the CHC's explorative behaviour.

152

Table 6-6 and Table 6-7 show that in all the test cases utilising 3 load cases the CHC_PBIL

method produced the best final fitness. Due to its initial exploration and then the rapid

exploitation, this technique is well suited especially to problems of high dimensionality

utilising single load cases. H.owever on the more complex problem of the 24x24 3 load

case plate with a minimum 18mm maximum variable thickness the PBIL_CHC algorithm

seems better suited (Table 6-7 and fig 6.3). This problem has a more complex distribution

of material on the plate. Also as we have reduced the upper limit on material the number of

possible design directions is reduced thus requiring more exploration of the search space.

This is illustrated in Figure 6-3 which shows rapid evolution by the PBIL and PBIL_CHC

methods. Due to the initial PBIL phase, rapid exploitation of solutions takes place which

are then explored by the CHC. Although in this case the CHC_PBIL method shows a high

performance solution with rapid evolution, the method is not robust and on average

produces much lower performance design solutions in comparison to the PBIL_CHC

method (refer to standard deviati0n and average fitness values for test cases 6 and 7 in

Table 6-6 and Table 6-7). The PBIL_CHC combination seems to provide better

complementary properties which result in fitter and more robust design solutions than those

produced by CHC, PBIL and the hybrid CHC_PBIL algmithms for this class of problem.

Other techniques may also be incorporated in order to take advantage of multi-level

representations and multi-agent search strategies. Two methods are proposed where the

Dynamic Search Refinement (DSR) technique may be used in conjunction with a multi

agent search strategy. The first approach may utilise a coarse representation manipulated by

PBIL which then switches to finer representation manipulated by the CHC algorithm, after

convergence or a certain number of evaluations. The reasoning here is that the PBIL

process may rapidly converge to a high-performance region utilising a coarse

representation, which is then explored by the CHC technique utilising a finer

153

representation. The second approach may utilise a coarse representation manipulated by

CHC, which then switches to finer representation manipulated by the PBIL algorithm. The

reasoning here is that the CHC process utilising a coarse representation may initially better

explore the search space and identify a number of diverse high-performance solutions, then

a finer PBIL representation rapidly converge to a local, optimum solution. The process

would be performed in a sequential manner, gradually increasing the complexity of the

representation whilst taking advantage of the differing characteristics of the search

algorithms.

6.3 Distributed Search Techniques

The distributed search technique utilises different resolution grids, each evolving upon a

separate island. The process is similar to the DiiGA except the subpopulations

manipulating the grid representations utilise different evolutionary strategies. This is

intuitively based upon the performance of the various adaptive search techniques detailed

in chapter 4, the benefit of multi-level representations detailed in chapter 5 and improved

performance of multi-agent strategies outlined in section 6.2 of this chapter.

The establishment of a distributed architecture supporting several search algorithms and

their subsequent removal/ re-introduction depending upon relative performance during the

evolution process may provide a partial solution to the problem of selecting the most

appropriate search technique for a particular problem.

6.3.1 Application of Distributed Search Techniques to the Plate Problem

Two simple configurations are assessed. The first method is termed chc-pbil-pbil (c-p-p)

(Figure 6-4).

154

Subpopulation 1 Subpopulation 2

Coarse Representations CHC PBTL

Medium Representations

CHC PBlL

Fine Representations

Figure 6-4 : Grid Representation for the chc-pbil-pbil (c-p-p) configuration

The CHC algorithm manipulates a 5x5 grid representation which eo-evolves with a PBIL

manipulation of a lOx 10 representation. Migration is allowed every 200 evaluations. The

5x5 CHC process is killed as it ceases to provide sufficiently high-performance solutions

for injection to the 10x10 PBIL process. The CHC now manipulates the 10x10

representation. The fittest individual is used as a template to create the new sub-population.

Each new individual is created by flipping a fixed proportion (30%) of the template bits

chosen at random. One instance of the best is left unchanged. A further 20x20 PBIL

representation is introduced and eo-evolves with the lower 10x 10 CHC representation. The

PBIL process receives injected solutions every 200 generations. Once the lOxlO CHC

representation ceases to pass useful inf01mation to the 20x20 PBIL process it is killed. The

20x20 PBIL process continues to evolve until it has converged. The reasoning here is that

155

the more diverse search of the CHC which leads to higher performance on the coarser

resolutions interacts with the more rapid convergence characteristics of PBIL to provide an

optimal starting population for the final PBTI...,-based search.

The objective is a higher-perfo~mance solution within a lesser number of function

evaluations than would be attainable using the CHC alone within a DiiGA architecture.

Results from a single load-case representation are shown in Figme 6-5 and Figme 6-6 and

compared to the results from a three load-case representation.

1400

1200

1000

m
m
Q) 800 c: a:
m 600 ~

-n-PBIL
400 -

--tr- CHC _PBIL_PBIL

200 --+- PBIL_CHC_CHC

-<>-CHC

0

0 1000 2000 3000

Number of Evaluations

Figure 6-5 : Graph to show a compatison of the early stages of the seat·ch process for

different seat·ch methods -(lload cases 24x24 plate max. 18mm, min. 8mm)

156

1480

1475

1470

1465

Ill 1460 Ill
Q)
c
a: 1455 -Ill
~ 1450

1445 --o-PBIL

1440
--tr- CHC _PBIL_PBIL

-+-PBIL_CHC_CHC

--<>-CHC

1430 +-------+-------r------1-------4-------+-------+------~
3000 4000 5000 6000 7000 8000 9000 10000

Number of Evaluations

Figure 6-6 : Graph to show a comparison of latter stages of the search process for different

search methods -(l load cases 24x24 plate max. 18mm, min. 8mm)

CHC_PBIL_PBlL

Test Number Plate Max upper Load Best Best Fitness Average Average

size limit cases Fitness Weight (SD) Fitness Weight

C-P-P - 1 20X20 24 1 1482.78 1.04 4 .87 1474.90 1.05

C-P-P - 2 20X20 18 1 1486.90 1.03 4.35 1481.44 1.04

C-P-P - 3 24X24 24 1 1454.32 l.l O 2.11 145 1.5 1 1.1 1

C-P-P _4 24X24 18 1 1472.70 1.06 3.6 1 1466.18 1.07

C-P-P 5 - 20X20 24 3 1449.04 1. 11 7.5 1 1437.58 1.14

C-P-P _6 20X20 18 3 1450.05 l.l1 90.00 1330.29 1.13

C-P-P 7 24X24 24 3 - 1423.78 l.l 8 5.01 14 15.48 1.20

C-P-P _8 24X24 18 3 1427.24 1.17 76.56 1365.16 1.19

Table 6-8: Results for CHC-PBIL-PBIL uti lising vruious problem cases (no. of runs= 10)

157

1600

1400

1200

1000

Ul
Ul
Q) 800 c: a:

600

400 --<>-CHC

-1z- CHC_PBIL_PBIL

200 -+- PBIL_CHC_CHC
--o-PBIL

0

0 2000 4000 6000 8000 10000

Number of Evaluations

Figure 6-7 : Graph to show a compruison of different seru·ch methods -(3 load cases 24x24

plate max. 18rnm, min. 8rnm)

The second method is termed pbil-chc-chc (p-c-c) (Figure 6-8). This configuration involves

a PBIL manipulation of the 5x5 grid eo-evolving with a CHC manipulation of the lOxlO

grid. The 5x5 PBIL process is killed as it ceases to pass useful information to the CHC

process. PBIL now manipulates the lOxlO resolution. A further 20x20 CHC process is

introduced and eo-evolves with the lOxlO PBIL representation. Once the lOxlO PBIL

representation ceases to pass useful information to the 20x20 CHC process it is killed. The

20x20 CHC representation continues to evolve until it has converged. This strategy

therefore investigates an altemative dynamic where PBIL injects locally high-performing

solutions into the more diverse search processes of CHC. Results from a single load case

problem are shown in Figme 6-5 and Figure 6-6 and compmed to the results from a three

load-case representation

158

S ubpopulation 1 Subpopulation 2

Coarse Representations PBIL CHC

Medium Representat ions ~

PBIL CHC

Fine Representations

Figure 6-8: Grid Representation for the pbil-chc-chc (p-c-c) configuration

PBIL_CHC_CHC

Test Number Pia Le Max. upper Load Best Best Fitness Average Average

size limit cases Fitness Weight (SD) Fitness Weight

P-C-C 1 20X20 24 1 1460.69 1.09 5.10 1455.54 1.10 -

P-C-C _2 20X20 18 1 1468.28 1.07 6.60 1459.56 1.09

P-C-C - 3 24X24 24 1 1444.45 1.12 4 .88 1437.66 1.14

P-C-C _4 24X24 18 1 1457.92 1.09 9.95 1450.33 1.11

P-C-C - 5 20X20 24 3 1422.75 1.18 6.28 1416.32 1.20

P-C-C - 6 20X20 18 3 1431.90 1.16 6.19 1423.34 1.18

P-C-C 7 - 24X24 24 3 1412.39 1.21 7.29 1404.56 1.24

P-C-C 8 - 24X24 18 3 1431.81 1.16 4.54 1424.58 1. 18

Table 6-9: Results for PBIL-CHC-CHC utilising various problem cases (no. of runs = 10)

159

The c-p-p eo-evolution results in increased performance both in terms of reduced calls to

the evaluation function and improved overall fitness in the single load case situation.

However, as a more realistic three load case problem is introduced the c-p-p is very

significantly out performed in· rob~stness by the p-c-c eo-evolution (Table 6-8 and Table 6-

9). Although further experimentation is required to better detennine the dynamics for these

comparative performances upon differing problem representations, the following reasoning

appears sound. The single load case promotes the generation of material concentrations in

one area of the plate and it is suggested that the convergence characteristics of the c-p-p are

better suited to a less complex distribution of material upon the plate than that required by

the three load case problem. With three load cases material is distributed across a wider

area of the plate to best satisfy stress characteristics. It is assumed that the greater diversity

of the later stages of p-c-c search results in the better identification of this more complex

material distribution. The rapid convergence characteristics of PBIL however, greatly

accelerates this identification resulting in far less evaluation calls than is required by a

DiiGA process utilising CHC alone. It is interesting to note, however, that performance of

the CHC alone finally equals that of the p-c-c eo-evolution, whereas the characteristics of

the c-p-p process results in rapid convergence upon a significantly lower robust solution.

6.4 Variable Complexity Modelling

The integration of FEA representation and concurrent processing of simple evaluation

models alongside complex analyses may also yield greater savings in computational

expense. Giunta et al [1995] have developed an interesting technique termed "variable

complexity modelling", it is a process by which simple, computationally inexpensive

analysis techniques are used together with more detailed, expensive techniques in the

design optimisation process.

160

This technique is applied in the area of multidisciplinary optimisation (MDO) in the

aerodynamic-structural optimisation of the High Speed Civil Transport (HSCT), which is

computationally expensive due to the analysis of the vehicle and it's many systems. A

typical optimisation problem is to minimise the takeoff gross weight of an HSCT

configuration. Starting with a large number of candidate HSCT configurations, the designs

are screened using algebraic weight equations (which is relatively inexpensive in

comparison to detailed analysis methods) to eliminate impossible design points. Detailed

finite element analysis is then applied to selected configurations in the remaining design

space to provide more accurate results.

Ellman et al [1996] use several strategies for the design optimisation of a sailing yacht.

One of the strategies uses a simple model to get near an optimum, before relying upon a

complex model during the last stage of the design similar to Giunta et al. [1995]. Ellman

writes:

" An optimisation algorithm can often utilise relatively simple

models to make search control decisions, and rely on complex

models only when needed to verify optimality of a ~·olution and

sati~faction of constraints. For this reason, a combination of

simple and complex nwdels can lead to designs as good as those

resulting from a single complex model, but at far lower

computational expense. "

161

6.5 Summary

The experiments performed on the multi-load cases shows that the manner in which the

algorithms are used is extremely important. The sequence of the algorithms seems highly

dependent upon problem specifics. The CHC_PBIL approach is especially well suited to

tackling problems of high dimensionality utilising single load cases. This method initially

explores but spends majority of it's time exploiting information regarding the search space

and as a result is better suited to this class of problem. The PBIL_CHC performs rapid

exploitation and then expends the majority of it's time exploring. As a result, it is better

suited to problems which are more complicated, where fewer high performance solutions

exist in the search space and a higher degree of exploration is required in order to identify

them.

The results from the distributed search strategies indicate a potential for a further reduction

in calls to the evaluation model. The p-c-c method manages to achieve better results than

the DiiGA technique and is also more robust. The selected search configurations are

however very sensitive to problem specifics e.g. the performance differences between the

one and three load case scenarios. This second point may be addressed by improving the

dynamics of the introduction I removal of individual search algorithms.

162

7. CONCLUSIONS

7.1 Conclusions

The aim of this work has been to develop a semi automated system which is capable of

providing high performance design solutions. By combining evolutionary optimisation of

the design utilising evaluation software to provide a measure of the quality of the designs,

there is little need for human intervention in the design process. Such a system would be

highly desirable in terms of cost as design lead time and associated man-hours is reduced.

The research has focused on evolutionary I adaptive strategies that allow the machine based

design of a single engineering component from preliminary problem definition through to

detailed definition. In order to achieve this it was necessary to overcome two main problem

areas i.e. the successful optimisation of large numbers of interactive design variables and

the minimisation of calls to the fitness evaluation model. These objectives have been

achieved to a significant extent by the introduction of high performance advanced

computational strate~:,ries.

Many researchers have focused on the use of a canonical GA for design optimisation tasks.

This work, realising the limitations of the canonical GA in terms of calls to the model and

design performance has compared the performance of different high performance

evolutionary algorithms. It has geen demonstrated that the use of high performance

evolutionary search algorithms such as CHC and PBIL help to reduce the overall number

163

of calls to the evaluation function, and thus make it feasible to integrate computationally

intensive models such as FEA with an evolutionary design process.

The performance of the CHC and PBIL algorithms on the plate problem shows them to be

extremely competitive in comparison to the Breeder GA and the canonical GA. The overall

results have shown firstly that the CHC is an extremely robust and highly explorative

algorithm and secondly that the rapid convergence characteristics of PBIL help it to rapidly

exploit solutions in large search spaces.

Many factors effect the total number of analyses that need to be performed. In the case of

the plate problem factors such as the level of representation, and the loading conditions

have a bearing on this figure. It has been shown that most of the algorithms utilised with

the plate problem generally perfmm well on coarse representations when utilising a single

load case and a small number of design variables. However when they are applied to more

complex higher dimensional problems, some of the algorithms notably the canonical GA

and BGA deteriorate considerably in performance. Therefore the use of algmithms and

operator settings based on a simpler representation may not be sufficient to solve more

complex problems. All of the algorithms displayed a marked degradation in performance

as the complexity of the problem increases with the introduction of more variables (>80).

The need to handle higher numbers of variables to allow lower risk design solutions has led

to the development of techniques which exploit differing levels of a problem

representation. These strategies involve a gradual increase in dimensionality as the search

process advances. The advantage in using this approach is that coarse representations

164

provide a good starting point for the finer representations in addition to being less

computationally expensive.

Three multi-level techniques were developed by Vekeria and Parrnee namely the DSR,

MiiGA and DiiGA. The DSR technique presents a novel way of dealing with a large

numbers of vmiables and reducing the number of calls to the model during a GA run. By

utilising a combination of simple and complex representations the DSR technique on most

of the problems outlined leads to a design which is as good as those resulting from those of

a single fine representation but at lower computational cost through the utilisation of coarse

representations. This reduction is however during the latter more detailed stages of the

design process.

The Modified injection island architecture (MiiGA) was introduced to allow feasible

design solutions to evolve faster and be made available earlier in the design process. This

allows significant savings in computational effort and calendar time. The MiiGA offers a

concurrent rather than a sequential shape refinement process. Alternative architectures are

suggested as a way of minimising the number of calls to the model and CPU cost through

the use of different representations. The MiiGA manages to locate feasible designs earlier

than those utilising the CHC and PBll.. methods. Although this approach provides rapid

evolution of design solutions it also has the draw back of premature convergence resulting

in stagnation of the optimisation process and final designs which are worse than the DSR

technique.

The Dynamic Injection Island Genetic Algorithm (DiiGA) addresses the problem of

stagnation by phasing out lower representations as their performance declines. This method

combines the better mechanisms of both the DSR and MiiGA approaches. The DiiGA

165

achieves a significantly higher fitness overall whilst still maintaining the initial rapid

improvements exhibited by the MiiGA. The DiiGA is well suited to the task of exploration

of the search space especially on problems utilising multi load cases and low limits on

material. The expe1iments utilising FEA show that the computational savings appear to

become more pronounced as the n_umber of variables and load cases are increased. Results

in chapter 5 show the potential of the DiiGA technique on a 200 variable one load case

problem. Typically, the CHC requires approximately 55% (on average) greater CPU time

than the DiiGA to identify a comparable design solution. While these results are very

encouraging, it is expected that further computational savings could be achieved by firstly

optimising the operator settings and secondly using more levels of representations.

TI1e main advantages therefore in using multi-level techniques such as the DSR, MiiGA

and DiiGA lies in the reduction of computational expense, handling high dimensionality

and the ability to identify higher fitness design solutions in comparison to single

representation GA's. There are inany possible variations of the techniques examples

include number of islands, number of levels of representations, migration strategies etc.

Amending these strategies should yield further savings in calls to the model.

Based on the performance characteristics of the individual CHC and PBll... algorithms and

the ability of the DiiGA technique in providing the capability of handling higher numbers

of variables and solutions earlier in the search process a multi agent approach has been

proposed. The reason for this is to take advantage and further improve performance

characteristics. However more extensive experimentation is required to properly assess the

utility of eo-evolving processes involving several differing search algorithms. However the

preliminary findings of chapter 6 indicate that:

166

• It is possible to improve performance both in terms of overall fitness and reduced

evaluation calls.

• The selected search configurations are very sensitive to problem specifics e.g. the

performance variation between one and three load case scenarios.

This second point can be addressed by improving the dynamics of the introduction I

removal of individual search algorithms. A performance based scenario is envisaged

whereby algorithms are removed I re-introduced dependent upon on-line measurement of

their relative performance. This could result in the automatic selection of appropriate

search configurations.

The initial results have indicated a considerable potential for a significant reduction in the

number of evaluation calls during evolutionary search. Refinement of the basic strategies

introduced here are likely to further reduce computational expense related to evaluation

calls. In generic terms this will allow a more efficient integration with complex analysis

techniques during detailed design and contribute significantly to those preliminary stages of

the design process where a degree of complex analysis is required to validate results from

more simplistic preliminary design models.

Initial introduction of the stand-alone CHC GA incorporating FEA analysis with the design

process within an industrial environment has shown that it is possible to achieve improved

solutions whilst significantly reducing design lead Lime. This involves a more machine

based process where designer interaction is required to fine-tunc GA-gencrated designs.

This interaction is largely required due to the high-risk aspects related to insufficient

resolution of the grid representation. The use of multi-level representations has increased

the number of elements that can be successfully manipulated from eighty to four hundred.

167

This higher resolution plus the achieved reductions in computational expense indicate that

a total machine-based approach is possible. This can only result in further reductions in

lead time and related cost reduction. It is expected that these new techniques will be

integrated with the industrial design process as a prototype system in the near future.

Further work can look at incorporating an interesting technique developed by Giunta et al

[1995] termed "variable-complexity modelling", where simple computationally

inexpensive analysis techniques are used together with more detailed, expensive techniques

in the design optimisation process. The integration of FEA representation and concurrent

processing of simple evaluation models alongside complex analyses would also yield

greater savings in computational expense if applied to the plate optimisation problem.

Parallelisation of the problem·wou!d further reduce the computational expense.

When dealing with low dimensional problems a number of adaptive search algorithms

which can perform the task of optimisation may perform relatively well. However if the

problem is complex (i.e. high dimensional, multi-modal, constrained and multi-objective)

and computationally expensive analysis is required, the more sophisticated evolutionary

adaptive strategies such as those outlined in this thesis will likely be required. Although

parallel processing as outlined in chapter 5 initially appears to be a good solution to the

problem of computational expense it is extremely important to develop and optirnise the

underlying algorithms with respect to their efficiency and accuracy as shown in this thesis.

The strategies outlined in this thesis have not only proved to be efficient and robust when

tackling high dimensionality, multi-modality and sensitivity, but have also reduced overall

computational expense. The results show the strategies and techniques to be highly capable

of locating high performance solutions. The incorporation of these strategies into industrial

168

design practice and the resulting mass production of the designs being produced by the

collaborating company shows the potential of the algorithmic structures presented here in a

real world design and manufacture environment.

169

References

Adamidis and Petridis (1996). "Co-operating populations with different evolution
behaviours", Proceedins of the IEEE International Conference on Evolutionary
Computation", Nagoya, Japan, pp. 188-191.

Adeli H., and Cheng N.T. (1995). "Augmented Lagrangian Genetic Algorithm for
Structural Optimisation", ASCE Joumal of Aerospace Engineering, Vol. 8, No. 3, pp 156-
163.

Angeline P. J. (1993). "Evolutionary Algorithms and Emergent Intelligence" PhD Thesis,
Ohio State University, Columbus.

Baeck T. (1992). "Self-adaptation in genetic algorithms". In First European Conference on
Attificial Life.

Baeck T., Harnmel U. and Schwefel H. (I997). Evolutionary Computation: Comments on
the History and Cun·ent State, IEEE Transactions on Evolutionary Computation, Vol I, No.
I, pp 3-I7.

Balachandran M. (1993). "Knowledge-Based Optimum Design" Topics in Engineering,
Vol. 10, Hobbs the Printers Ltd.

Baluja S. (1994). Population Based Incremental Learning: A Method for Integrating
Genetic Search Based Function Optimisation and Competitive Learning. Tech. Rep, School
of Computer Science, Carnegie Mellon University, Pittsburgh, CMU-CS-94-194.

Baluja. S. (1996). "An empirical Comparison of Seven Iterative and Evolutionary Function
Optimisation Heuristics", Technical Report. CMU-CS-95-I93. Pittsburgh, PA, Carnegie
Mellon University.

Baluja S. And Caruana R. (1995). "Removing the Genetics from the Standard Genetic
Algorithm" Technical Report No. CMU_CS_95_I4I, Pittsburgh, Pennsylvania: Carnegie
Mellon University.

Baluja S. and Davies S. (1997) .. "Using Optimal Dependency-trees for Combinatorial
Optimisation : Learning the Structure of the Search Space", Technical Report: CMU- CS-
97-107, Pittsburgh, PA, Carnegie Mellon University.

Barbosa H.J.C. (1997). "A Coevolutionary genetic algorithm for a game approach to
structural optimisation", Proceedings of the Seventh International Conference on Genetic
Algorithms. Michigan State University, East Lansing, Thomas Back (Ed), pp 545- 552.

Beightler C. S., Phillips D.T. and Wilde D.J. (1979), Foundations of Optimisation (2"d
edition), Englewood Cliffs, NJ, Prentice-Hall.

Bendsoe M.and Kikuchi (1988). "Generating Optimal Topologies in Structural Design
Using a Homogenization Method", Journal of Computer Methods in Applied Mechanics
and Engineering, 7l,pp I97-224.

I70

Bilchev G. and Pannce I.C. (1996) "Constraint Handling for the Fault Coverage Code
Generation Problem: An Inductive Evolutionary Approach", Lecture Notes in Computer
Science, The 4th International Conference on Parallel Problem Solving from Nature,
Berlin, Springer, pp 880-889.

Birkenhead D. (1997). "Genetic Programming for Shape Definition and Optimisation",
MSc Dissertation, University of Plymouth, Plymouth.

Box G. E. P. (1957). Evolutionary Operation: A Method for Increasing Productivity.
Journal of the Royal Statistical Society, vol. 6 No. 2 pp 81-101

Cartwright. H. M. and Harris S. P. (1993). "Analysis of the Distribution of Airborne
Pollution using Genetic Algorithms", Journal of Atmospheric Environment, Vol. 27 A, No.
12, pp. 1783-1791, Pergamon Press Ltd.

Cai J. and Thierauf G. (1996). "Structural Optimisation of a Steel Transmission Tower by
using Parallel Evolutionary Strategy", Proceedings of the second International Conference
on Adaptive Computing in Engineering Design and Control - '96', PEDC, Plymouth, pp
18-25.

Chapman C.D., Saitou K., Jakiela M.J.(l993). "Genetic Algorithms as an approach to
Configuration and Topology Design", Proceedings of the 1993 Design Automation
Conference, DE-Vol. 65-1, Published by the American Society of Mechanical Engineers,
Albuquerque, New Mexico, pps. 485-498.

Coello Coello C. (1998). "Two new approaches to Multiobjective Optimisation using
Genetic Algorithms", Proceedings of the Adaptive Computing in Design and Manufacture,
Ed. Pannee I. C., Springer, pp. 151-160

Darwin C. (1859). on the Origin of Species by Means of Natural Selection. John Murray.

Dasgupta D. and MacGrcgor (1991). "A Structured Genetic Algorithm" Research Report
IKBS- 2-91, University of Strathclyde, UK.

Davis L. (1989). "Adapting Operator Probabilities in Genetic Algorithms", Proceedings of
the Third International Conference on Genetic Algorithms, Morgan Kaufman, New York.

Davis L. (1991). (Ed), Handbook of Genetic Algorithms, New York, Van Nostrand
Rcinhold.

De Bone!. J.S., Isbell C. L., & Viola P. (1997). " Mimic: Finding Optima by Estimating
Probability Densities", In M. Jordan, M. Mozer & M. Perrone (Eds.) Advances in Neural
Information Processing Systems, Vol. 9, Cambridge, MA, MIT Press, pp. 424-430.

De Jong K. (1975). An analysis of the behaviour of a class of Genetic Adaptive Systems,
University of Michigan.

Deb K. and Goldberg D. E. (1989). "An Investigation of Niche and Species Formation in
Genetic Function Optimisation" Proceedings of Fifth JCGA and their Applications,
Morgan Kaufmann, pp 42-50

171

Deb K. and Goyal M. (1997). "Optimizing Engineering Designs Using a combined Genetic
Search", Proceedings of the Seventh International Conference on Genetic Algorithms,
Michigan State University, East Lansing, MI, pp. 521-528.

Dhtinga A. And Lee B.H. (1994). A Genetic Algorithm Approach to Single and
Multiobjective Structural Optimisation with Discrete-Continuous Variables, International
Journal for Numerical Methods in Engineering, Vol. 37, 1994, pp 4059-4080.

Doorly D. J., Peiro J., Kuan T. and Oesterle J. P. (1996). Optimisation of Airfoils using
Parallel Genetic Algorithms, Proceedings of the 15th AIAA International Conference on
Numetical Methods in Fluid Mechanics, June 96, Monterey, CA, USA.

Dym C. L. and Lcwitt R. E.(1991). Knowledge Based Systems in Engineering.
McGrawHilllnc. (Civil Engineering Series)

Ellman T., Keane J., Schwabacher M. and Ke-Thia Y.(1996). "Multi-Level Modelling for
Engineering Design Optimisation", Department of Computer Science, Hill Centre for
Mathematical Sciences, Rutgers University, Internal Report Number HPCD-TR-44.

Eshelman L. J. (1991). "The CHC Adaptive Search Algorithm: How to Have Safe Search
When Engaging in Non-traditional Genetic Recombination". In G.J.E Rawlins (editor),
Foundations of Genetic Algorithms and Classifier Systems. Morgan Kaufmann, San
Mateo, CA.

Eshelman L. J. and Shaffer J. D. (1991). "Preventing Premature Convergence in Genetic
Algorithms by Preventing Incest". Proc. of the Fourth International Conference on Genetic
Algorithms. Morgan Kaufmann, San Mateo, CA.

Fogel L. J., Owens A. J., and Walsh M.J. (1966). Artificial Intelligence Through Simulated
Evolution. John Wiley.

Fogel D.B. (1995). Evolutionary Computation : Towards a New Philosophy of Machine
Intelligence. IEEE Press.

Fogerty T.C. (1989). "Varying the Probability of Mutation in the Genetic Algorithm",
Proceedings of the Third International Conference on Genetic Algorithms", San Mateo,
CA, Morgan Kaufmann, pp. 104-109.

Fonseca C.M. and Fleming P.J. (1993). An overview of Evolutionary Algorithms m
Multiobjective Optimisation, Evolutionary Computation 3, 1-16.

French M. J. (1985). Conceptual Design for Engineers, 2"d edition, The Design Council
Books -Iondon Springer Verlag.

French M.J. (1994). Invention and Evolution: Design in Nature and Engineering, 2"d
Edition, Cambridge University Press.

Gero J.S. (1993). Towards a Model of Exploration in Computer-Aided Design,
Proceedings of the workshop on Fonnal Design Methods for Computer-Aided Design,
Tallinn, Estonia, eds John S. Gero and Fay Sudweeks, pp. 271-291.

172

Giunta A.A., Balabanov V., Bm·gee S., Grossman B., Hafka R.T., Mason W.H. and Watson
L.T. (1995). "Variable- Complexity Multidisciplinary Design Optimisation Using Parallel
Computers". International Conference on Computational Engineering Science, Hawaii,
USA.

Goldberg D. (1989). "Genetic Algorithms in Search, Optimisation and Machine Learning",
Addison- Wesley Publishing.Company, Inc.

Goldberg D. E. and Samtani M. P. (1986). Engineering Optimisation via Genetic
Algorithms, Proceedings of the 9th Conference on Electronic Computation, ASCE, New
York, pp471-482.

Goldberg D. E. and Richardson J. (1987). "Genetic Algorithms with Sharing for
Multimodal Function Optimisation". Genetic Algorithms and their Applications :
Proceedings of the Second International Conference on Genetic Algorithms, Lawrence
Erlbaum Associates, Hillsdale, NJ, pp 41-49.

Goldberg D. E, Deb K.and Korb B. (1991). "Don't Worry;Be Messy" Proceedings of the
Fourth International Conference on genetic Algorithms, Ed's, Belew R & Booker I. B,
Morgan Kaufmann Publishers, pp 24-30.

Goodman E.D. Averill R. C., Punch W.F., DingY., Mallot B. (1996). "Design of Special
Purpose Composite Material Plates Via Genetic Algorithms". Proc. of the Second
International Conference on Adaptive Computing in Engineering Design and Control, ed.
I.C Parrnee, University of Plymouth.

Goodman E., Eby D., Averill R.C., Gelfand F., Punch W.F., Mathews 0. (1997). "An
Injection Island GA for Flywheel Optimisation", Proceedings of the European Congress on
Intelligent Techniques and Soft Computing, Aachen, Germany, Sept '97, pp. 687-691.

Greene J.R. (1996). Population-Based Incremental Learning as a Simple Versatile Tool for
Engineering Optimisation, First International Conference on Evolutionary Computation
and its Applications, Moscow, Russia, pp. 258-269.

Grefenstette J. (1986). "Optimisation of Control Parameters for Genetic Algorithms", IEEE
Transactions on System, Man, and Cybernetics, SMC-16(1).

Haftka R.T.(1986). Structural Shape Otimization - A Survey. Computer Methods in
Applied Mechanics and Engineering 57, Elsevier Science Publishers B. V.

Haftka R.and Kamat M.(1985). Elements of Structural Optimisation. Eds. Haftka, R. and
Kamat, M. Martin us Nijhoff Publishers, Dordrecht.

Haftka R., Le Riche R. and Harrison P. (1996). "Genetic Algorithms for the Design of
Composite Panels", Emergent Computing Methods in Engineering Design - Applications
of Genetic Algorithms and NeuraJ Networks, Eds. D. Grierson and P. Hajela. Nato ASI
Series Springer, pp 10-29.

Hajela P., Lee E., Lin C-Y.(1992). "Genetic Algorithms in Structural Topology Design",
Proceedings of the NATO Advanced Research Workshop on Topology Design of
Structures, eds., MP. Bendsoe and C.A. Mora Soares, Kluwer Academic.

173

Harik G.R., Lobo G.F., Goldberg D.E.(1997). "The Compact Genetic Algorithm", IlliGAL
Report No. 97006, Dept. of General Eng. University of lllinois at Urbana - Charnpaign,
Urbana, Aug '97.

Holland J.H. (1975). Adaptation in Natural and Artificial Systems, The University of
Michigan Press, Ann Arbour.

Jcnkins W.M.(l991). Structural Optimisation with the Genetic Algorithm, The Structural
Engineer, Vol. 69, No. 24, Dec '91, pp 418-422.

Jenkins W.M. (1992). A Plane Frame Optimum Design Environment based on the Genetic
Algorithm, Journal of Structural Engineering, Proceedings of the American Society of
CivilEngineers, Vol.118,No.ll,pp.3103-3112.

Jenkins W.M.(l994). A Space Condensation Heuristic for Combinatorial Optimisation.
Advances in Structural Optimisation, Civil Comp Press Ltd, Edinburgh.

Jensen E. (1992). Topological Structural Design Using Genetic Algorithms. PhD Thesis,
Perdue University, November '92.

Kane C., Schoenaucr M. (1996) "Topological Optimum Design using Genetic
Algorithms", Journal of Control and Cybernetics, Vol. 25, No. 5.

Kcane A.and Brown (1996). 'The design of a Satellite Boom with Enhanced Vibration
Performance using Genetic Algorithm Techniques", Proceedings of the second
International Conference on Adaptive Computing in Engineering Design and Control ,
PEDC, Plymouth, March '96, pp. 107-113.

Kogiso N., Watson L.T., Gurdal Z. and Haftka R.T. (1994). Genetic Algorithms with Local
Improvement for Composite Laminate Design, Structural Optimisation, Vol. 7, No. 4, pp.
207-218.

Kohli H. S.and Carey G.F. (1993). "Shape Optimisation Using Adaptive Shape
Refinement". Int. Journal for Numerical Methods in Engineering, Vol. 36 pp- 2435-2451.

Koumousis V.K. and Georgiou, P.G. (1994). "Genetic Algorithms in Discrete Optimisation
of Steel Truss Roofs", ASCE- Journal of Computing in Civil Engineering, Vol. 8, No. 3,
July'94.

Koza J. R. (1992). "Genetic Programming- on the Programming of Computers by Means
of Natural Selection". The MIT Press.

Le RicheR. and Haftka R.T. (1994). Improved Genetic Algorithm for Minimum Thickness
Composite Laminate Design. Proceedings of International Conference on Composite
Engineeting, New Orleans, LA

Leite J. P. (1996). PhD thesis in Parallel Adaptive Search Techniques for Structural
Optimisation" Heriot-Watt University, Edinburgh.

Maher M. L. and Poon J. (1995). Modelling design exploration as eo-evolution,
Microcomputers in Civil Engineering, Volumell, Part3, pp. 195-209.

174

Manderick B. and Spiessens P. (1989). "Fine-Grained Parallel Genetic Algorithms", Proc.
Third ICGA, Jun '89, pp. 428:433.

Mauldin M. (1984). "Maintaining Diversity in Genetic Search" International Conference
on Artificial Intelligence, pp 247-520.

Michalewicz Z. (1994). Genetic Algorithms+ Data Structure= Evolution Programs, 2nd
ed., Springer Verlag, New York.

Miles J .. and Moore C. J.(l997). "Innovative Computer Systems For Designers",
Innovation in Civil and Construction Engineering, Ed. M. B. Leeming and B.H.V Topping,
Civil-Comp Press, pp. 271-279.

Mill F., Warrington S.W., Smith R., Sherlock A. (1996) "Shape and Topology
Optimisation in Engineering Design with Genetic Algorithms", Proc. of the Second
International Conference on Adaptive Computing in Engineering Design and Control, ed.
I.C Parmee, University of Plymouth, pp. 270-276.

Mingra A.K (1986). "Genetic Algorithms in Aerospace Design", AIAA Southeastern
Regional Student Conference, Huntsville, AL,USA.

Muhlenbein H. and Schlierkamp--Yoosen. D. (1993). Predictive Models for the Breeder
Genetic Algorithms. Journal of Evolutionary Computation. Vol. 1, Part 1. pp. 25-49.

Nagendra S., Jestin D., Gurdal Z., Haftka R.T., and Watson L.T. (1994). Improved Genetic
Algorithm for the Design of Stiffened Composite Panels, 15th International Symposium on
Mathematical Programming, Ann Arbor.

Pahl G. and Beitz W. (1984). Engineering Design, 1984, Design Council Books, London,
Springer Verlag.

Papalambros P. & Wilde D. (1988). Principles of Optimal Design, Cambridge University
Press, New York.

Parmee I.C. (1993). The Concrete Arch Dam - An Evolutionary Model of the Design
Process, Proceedings of the International Conference on Neural Nets and Genetic
Algorithms, Innsbruck, Austria, Springer-Verlag Wein.

Parmee, I.C. (Ed.) (1994). Proceedings of the First International Conference on Adaptive
Computing in Engineering Dt;sign and Control, PEDC, Plymouth, Sept. '94.

Parmee I. C. and Denham M. J. (1994) "The Integration of Adaptive Search Techniques
with Current Engineering Design Practice", Proceedings of Adaptive Computing in
Engineering Design and Control, Ed. I.C Parmee, Sept '94, pp. 1-13

Parmee, I. C. (1996a). 'The Maintenance of Search Diversity for Effective Design Space
Decomposition using Cluster-Oriented Genetic Algorithms (COGA's) and Multi-Agent
Strategies (GAANT), Proceedings of the International Conference on Adaptive Computing
in Engineering Design and Control", University of Plymouth, Plymouth, ed. Parmee I. C.,
pp. 128-138.

175

Parrnee I. C. (Ed.) (1996b). Proceedings of the second International Conference on
Adaptive Computing in Engineering Design and Control, PEDC, Plymouth, March '96.

Parmee I. C. and Vekeria. H. D. (1997). "Co-operative Evolutionary Strategies for Single
Component Design". Proc. of the Seventh International Conference on Genetic Algorithms,
Michigan State University, Michigan.

Parmee I.C., Vekeria H. D., Bilchev G. (1997). "The Role of Evolutionary and Adaptive
Search During Whole System, Constrained and Detailed Design". Journal of Engineering
Optimisation, Vol. 29, Gordon & Breach Science Publishers, pp. 151-176.

Poloni C., Fearon M., Ng D. (1996). Parallelisation of Genetic Algorithm for Aerodynamic
Design Optimisalion, Proceedings of ACEDC 96, University of Plymouth, pp 59-64.

Potter M. A. and De Jong K.A. (1994). A cooperative coevolutionary approach to function
optimisation. Proceedings of the Third Parallel Problem Solving From Nature, Jerusalem,
Israel, pp-249-2257, Springer-Verlag, pp 249-257.

Punch W., Goodman E. Pei M., Chai-Shun L., Hovland P., Enbody R. (1993). "Further
Research on Feature Selection and Classification Using Genetic Algorithms", Proceedings
of the Fifth ICGA, June '93, pp. 557-564.

Rachenberg I. (1973) Evolutionsstrategie: Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Frommann-Holzboog Verland, Stuttgart.

Rajeev S. and Ktishnamoorthy (1992). Discrete Optimisation of Structures Using Genetic
Algorithms, Journal of Structural En!,rineering, Vol. 118, No. 5, pp 1233-1250.

Rao S. (1984). "Multiobjective. Optimisation in Structural Design with Uncertain
Parameters and Stochastic Processes", American Institute of Aeronautics and Astronautics
Journal, Vol. 22, No. 11, Nov '84, PP. 1670-1678.

Rao S., Sundararaju K., Prakash B.G., and Balakrishna C. (1992). "Multiobjective Fuzzy
Optimisation Techniques for Engineering Design", Computers and Structures, Vol. 42, No.
1, Pergamon Press plc, pp. 37-44.

Schwefel, H.P. (1975). Evolutionstrategie and numerische Optimierung. Dissertation,
Technische Universitst, Berlin.

Seront G., and Bersini H. (1996). "Simplex GA and Hybrid Methods", Proceedings of the
IEEE International Conference on Evolutionary Computation", May '96, Nagoya, pp. 845-
848.

Shaffer D. and Morishima A. (1987). An Adaptive Crossover Distribution Mechanism for
Genetic Algorithms", Proceedings of the Second International Conference on Genetic
Alg01ithms, Lawrence Erlbaum Assoc. New York.

Soremekun G., Gurdal Z., Haftka. T., Watson L.T. (1996). Improving Genetic Algorithm
Efficiency and Reliability in the Design and Optimisation of Composite
Structures.Proceedings of the Sixth AIAAIUSAF/NASNISSMO Symposium on
Multidisciplinary Analysis and Optirnisation, Bellevue, W.A. Sept. 4-6, 1996, pp. 372-383.

176

Syswerda G. (1989). Uniform crossover in genetic algorithms. In ICGA3.

Tenese R. (1989). "Distributed Genetic Algorithms" Proceedings of the Third International
Conference on Genetic Algorithms. Morgan Kaufmann Publishers, San Mateo, California,
June '89 pp 434-439.

Vekeria H. D and Parmee I. C. (1996). 'The Use of a Co-operative Multi-Level CHC GA
for Structural Shape Optimisation", Proceedings of the European Congress on Intelligent
Techniques and Soft Computing, Aachen, Germany, Sept'96.

Vekeria H. D., Parmee I. C. (1997). "Reducing Computational Expense Associated With
Evolutionary Detailed Design". Proc. of International Conference on Evolutionary
Computation, University of Purdue, lndianapolis, 1997.

Whitley D. L. (1989). The GENITOR algorithm and selective pressure: Why rank-based
allocation of reproductive trials is best. In Schaffer.J, editor, Proceeding of the third
International Conference on Genetic Algorithms, Pages 116-121, San Mateo, Morgan
Kaufmann.

Whitley D. L. (1991). "Fundamental Principles of Deception in Genetic Search"
Foundations of Genetic Algorithms, Morgan Kaufmann Publishers Inc., pp 221-241

Wolpert D.H. and Macready W.G. (1995). "No Free Lunch Theorems For Search",
Technical Report, Santa Fe Institute, Santa Fe, New Mexico.

Yamazaki K. (1996). Two Level Optimisation Technique of Composite Laminate Panels
by Genetic Algmithrns. AIAA Paper 96-1539-CP.

Zhao L., Tsujimura Y., Gen M. (1996). "Genetic Algorithm for Fuzzy Clustering".
Proceedings of the IEEE International Conference on Evolutionary Computation, Nagoya,
Japan, May '96, pp. 716-719.

177

PUBLICATIONS

178

---------- --·-------------

Proceedings of the Tntemational Conference on Engineering Design, 97, Tampere, August 19-21, /997

INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN
ICED 97 TAMPERE, AUGUST 19-21,1997

EVOLUTIONARY SEARCH FOR HIGHLY DIMENSIONAL
ENGINEERING DESIGN PROBLEMS

H.D Vekeria and I.C Parmee

Keywords : Evolutionary Search, Injection Island GA, Detailed Design

1 Introduction

Stochastic search and optimisation methods which model natural evolutionary processes
are receiving considerable interest in Engineering Design due to their wide range of
applications to problems [Parmee, Denham and Roberts 1993] This paper presents a
comparison of Evolutionary I Adaptive Search methods for the reduction in computational
expense associated with the optimisation of highly dimensional structural design problems.
Complex analysis packages such as· Finite Element Analysis (FEA) can lead to excessive
computational expense when utilised as an evaluation function. There is a need therefore to
minimise the number of calls to the fitness function. Distributed, co-operative injection
island strategies are presented which allow dynamic refinement of component
representation. This paper shows that by utilising multi-level Genetic Algorithm (GA)
architectures, dramatic improvements in design performance may be gained whilst
significantly reducing the overall number of evaluations in comparison with single level
representations.

2 The Evaluation Model

The design domain involves a real-world problem concerning the optimal material
distribution on the underside of a flat concrete plate with varying load and support
conditions. The plate is represented in a grid type manner being divided into rectangular or
square elements each with variable depth. However, if required, a set number of elements
may be considered as one variable to promote uniformity in depth. The overall plate
dimensions are 200mm x 200mm. In order to achieve a certain degree of symmetry for
ease of manufacture, neighbouring elements whose angles exceed a preset aspect ratio (the
ratio describing relative depth ·at th7 element interfaces) are penalised. In order to allow
extensive experimental work, the GA has been integrated with a simple mathematical
model utilising bending moment and complex stress analysis to ensure computational cost
is kept to a minimum. Principal stress (u.) is calculated using the following formula:

ax.or.y =Direct Stress T =Shear Stress

179

Proceedings oftlze International Conference on Engineering Design, 97, Tampere, August 19-21, / 997

The fitness of the design relates to the level of stress violation and the overall weight of the
plate i.e. weight must be minimised within given stress criteria. The fixed parameters of
concrete are: flexural limit = 9MPa, Density = 2.2 glee. Theoretical direct stresses in both
the X and Y planes are increased by a factor of 1.1 8 to account for errors incurred in
applying simple beam theory. Designs exhibiting a high degree of stress violation are
penalised to ensure that the generated designs satisfy relevant criteria. Although
preliminary design solutions for the fl at plate problem can be achieved with a relatively
small number of variable elements (15 to 50) in excess of 300 elements are required during
detailed design to ensure accurate stress evaluation for a number of suppot1 and load
conditions.

3 Initial Results

Initial results using a simple, canonical GA [Goldberg 1989] with various parameter
settings were disappointing with severe degradation of the convergence characteristics with
an increase in dimensionality i.e. variable element number. Due to the perceived sensitivity
and the very high number of local optima, the processing capabilities of the simple,
canonical GA are not appropriate for this class of problem. Subsequent integration of a
breeder GA (BGA) [Muhlenbein, Schlierkamp-Voosen 1993], Population-based
Incremental Learning (PBIL) [Baluja 1994] and the CHC GA [Eshelman 1991] resulted in
significant improvements as shown in fi gure 1 although performance degradation is still
evident with increasing dimensionality. A brief overview of the different forms of
evolutionary algoritluns is given below.

1/)
1/)
4>
c::
~
u.
1/)
4>
al

1600

1550

1500 --

1450 --

1400 -

1350
LO
N

. ..

0
0

c.o
Ol ..-

Number of Elements

Ol
<0
N

. '
--

0
0
'<t

_ ___ SGJ\l

- ••• ••• BGA I
---CHC
_____ PBIL

Figure I . Graph to show a comparison in performance between different GA 's (single load case)

3.1 The CHC Genetic Algorithm

The CHC GA differs from the simple, canonical GA in a number of respects:
• It is highly elitist biased. Instead of replacing the old parent population with the child

population, competition for survival is cross generational, the chi ld population must
compete with the parent population for survival.

• It maintains diversity through incest prevention. Individuals are randomly paired for
mating, bias is introduced against mating individuals who are similar. Individuals are
only crossed if their Hammil)g distance exceeds the difference threshold.

180

Proceedi11gs of the International Conjere11ce 011 £11gi11eeri11g Desig11, 97, Tampere, August/9-21, 1997

• It utilises a highly disruptive crossover. Half of the differing bits are swapped at
random. This promotes diversity by producing children that are different from both
parents.

• Mutation is only introduced when the population has converged or the search has
stagnated.

3.2 Population-Based Incremental Learning (PBIL)

Population-Based Incremental Learning (PBIL) is a combination of evolutionary
optimisation and hill climbing. The object of the algorithm is to create a real valued
probability vector which, when sampled, reveals high quality solution vectors with high
probability. Initially the values of the probability vector are set to 0.5. Sampling from this
vector yields random solution vectors as the probability of generating a 1 or 0 is equal. As
search progresses, the values in the probability vector gradually shift to represent highly fit
solution vectors. The distance the probability is pushed (towards either 0.0 or 0.1) depends
upon the learning rate parameter. After the probability vector is updated, a new set of
solution vectors is produced by sampling from the updated probability vector and the cycle
is continued.

3.3 The Breeder Genetic Algorithm (BGA)

The Breeder Genetic Algorithm (BGA) is based on artificial selection similar to that used
by human breeders. The BGA is a combination of evolution strategies (ES) and genetic
algorithms (GA). The BGA uses a selection scheme called truncation selection. The T% of
the best individuals are selected and mated randomly until the number of offspring is equal
to the size of the population. The BGA use's one of a number of recombination and
mutation operators.

4 Dynamic Shape Refinement (DSR)

The DSR technique based on Adaptive Shape Refinement (ASR) [Kohli and Carey 1993]
utilises problem representations of varying resolution. A sequential evolutionary process
utilising the CHC algorithm (with a population size of 40, a divergence rate of 30% and a
maximum number of restarts of 3) commences upon a relatively coarse (in terms of
number of elements) plate representation. As convergence is achieved so the best solution
from this process is mapped onto a finer resolution elemental grid and a population based
upon mild perturbation of this soluti'on is established. The CHC then manipulates the finer
representation until convergence is again achieved and the mapping procedure is repeated.
This sequential evolution process continues, utilising finer representations until a
satisfactory solution is identified. Such a satisfactory solution should not only be of
minimum weight within relevant stress criteria but also be considered low-risk in terms of
the final resolution of plate representation i.e. there is a sufficiently high number of
elements to provide confidence in the stress evaluation. Figure 2 compares a DSR approach
utilising the CHC manipulation of 5x5, lOxlO and 20x20 element representations to a CHC
manipulation of a single 20x20 representation. The results have been averaged over twenty
runs of the algorithms.

The high fitness achieved during the early stages of the DSR approach must be treated with
caution. Fitness is measured in terms of weight versus stress violation and the coarser
representations although seemingly of high fitness are also high-risk due to the lack of

181

Proceedings of the International Conference on Engineering Design, 97, Tampere, August 19-21, 1997

resolution during stress evaluation. A higher resolution stress evaluation returns a greater
degree of violation and a related degradation of fitness as shown by the dips in the DSR
curve as finer resolutions are introduced. The DSR achieves a significantly higher fitness
than the single representation approach with far fewer calls to the analysis routine.

1600

1400

1200
Cll 1000 Cll
Ql
c: ... 800 u: ...
Cll 600 Ql
Ill

400 . . ,
200

0
0

,.

1000 2000 3000 4000

Number of Evaluations

5000

•••••• CHC (Single Pop.)

---DSR

Figure 2 - Graph to show the performance of the single population GA against a GA utilising DSR (2 load
cases).

5 The Dynamic Injection Island GA (DiiGA)

The Dynamic Injection Island -GA (DiiGA) [Vekeria and Parmee 1997] is based on the
injection island architecture (iiGA) '[Punch, Averill, Goodman, Lin and Ding 1995]. The
DiiGA utilises a concurrent shape refinement process. The flat plate is represented by a
number of different resolution grids, each evolving upon a separate island. The solutions of
the coarse design representations are injected into the more detailed designs for fme
grained refinement As a lower resolution process ceases to inject useful information into
the higher resolution processes so it is removed and replaced by a resolution that is higher
than any currently in existence. Migration of information is from low to high resolution at
a set number of evaluations which requires translation of the differing grid size to maintain
true representations. Migration allows the passing of highly fit schemata by injecting the
best individuals that have evolved from a proportionally smaller search space into higher
resolution representations replacing the worst individuals present at that time. A more
detailed discussion of this technique may be found in [Vekeria and Parmee 1997].

A simple 3 level representation is presented below:

Representations:
a) 5x5=25 elements
b) 1 Ox 1 0= 1 00 elements

Process:

c 1) 20x20=400 element
c2) 20x20=400 elements

• Commence eo-evolution of representations a) and b).
• Migrate from a) to b) every n generations until a) converges and ceases to pass useful

information to b)
• Remove a) and introduce c1) using the best individual from b) to seed new population
• Migrate individuals from b) to c1) every n generations tmtil b) converges and ceases to

pass useful information to c1)

182

Proceedings oft he International Conference on Engineering Design, 97, Tampere, August /9-21, 1997

• Remove b) continue to evolve c1). Introduce another eo-evolving subpopulation (c2),

seeded from (c1).

Individuals are prevented from migrating if a duplicate exists in the host subpopulation in
order to maintain search diversity. Further migration only takes place if the individual is
fitter than the least fittest individual in the host subpopulation. The nm continues until its
termination condition is met (when the subpopulations have converged, the maximum
number of evaluations have been reached or the maximum number of reinitialisations has
been achieved).

Figure 3 shows the performance of the DiiGA. The graph represents the fitness of the fmest
resolution grid (400 elements). There is a rapid increase in fitness due to the migration of
highly fit individuals from the coarse representation and constant improvement is
maintained, resulting in superior performance in terms of degree of stress violation, weight
and material distribution in comparison with the single population CHC GA. After the
rapid increase in fitness due to meeting the stress criteria the fitness increases gradually by
reducing the overall weight of the plate. The plateau after 6000 evaluations shows that the
subpopulation has reinitialised, in order to introduce more diversity. The final designs
produced using the DiiGA technique were also on average 3 percent lighter than those
produced using the iiGA [Vekeria and Pannee 1996].

1395
1390
1385
1380

11) 1375
11)
Q) 1370 c: -u:: 1365 -11) 1360 Q)

al 1355
1350
1345
1340

3000

.
•• ~ ·J· ·- - - ----- - ..1

...
..... -

5000 7000
~mber of 8/aluations

9000

Figure 3 - Graph to show a comparison in performance between a CHC GA and a DiiGA (latter stages of
search)

6 Conclusions

The DSR technique has shown that that a significant reduction in the nun1ber of calls to the
model may be made during the latter more detailed stages of the design process, producing
light weight, low risk design solutions. The DiiGA satisfies the in itial objective of the
research i.e. to converge upon a high perfonnance design solution with a minimum number
of function evaluations. The main advantage therefore in using injection island techniques
is the reduction in computational expense and the ability to identi fy better design solutions
when compared to single population GA's.

These initi al results indicate a considerable potential for a significant reduction in the
number of evaluation calls during evolutionary search. Refinement of the basic strategies

183

Proceedings oftlze ftltematiollal Co11fere11Ce 011 E11gi11eeri11g Desig11, 97, Tampere, August /9-21, 1997

introduced here are likely to further reduce computational expense related to evaluation
calls. In generic terms this will allow a more efficient integration with complex analysis
techniques during detailed design and contribute significantly to those preliminary stages
of the design process where a degree of complex analysis is required to validate results
from more simplistic preliminary design models.

Acknowledgements

The research has been carried out at the Plymouth Engineering Design Centre, funded in
the main by the UK Engineering and Physical Science Research Council (EPSRC). We
wish to thank them for their continuing commitment to this research.

References:

Baluja, S., "Population Based Incremental Learning: A Method for Integrating Genetic
Search Based Function Optimization and Competitive Learning", CMU-CS-94-194,
Tech. Rep, School of Computer Science, Camegie Mellon University, Pittsburgh, 1994.

Eshelman., L.J., "The CHC Adaptive Search Algorithm: How to Have Safe Search When
Engaging in Nontraditional Genetic Recombination", In G.J.E Rawlins (editor),
Foundations of Genetic Algorithms and Classifier Systems. Morgan Kaufinann, San
Mateo, CA, 1991, pp. 265-283.

Goldberg, D., "Genetic Algorithms in Search, Optimisation and Machine Learning",
Addison- Wesley Publishing Company, Inc., Reading, MA., 1989.

Goldberg, D., Deb, K., Korb, B., "Don't Worry, Be Messy", Proc. of the Forth
International Conference on Genetic Algorithms. Ed. R.K Belew and L.B Booker,
University of California, San Diaego, July 1991, pp. 24-30.

Kohli, H.S., Carey, K.S., "Shape Optimisation Using Adaptive Shape Refinement", Int.
Journal for Numerical Methods in Engineering, Vol. 36, 1993, pp. 2435-2451.

Muhlenbein H, Schlierkamp-Voosen D., "Predictive Models for the Breeder Genetic
Algorithms", Journal of Evolutionary Computation. Vol. 1, Part I, 1993, pp. 25-49.

Parmee l.C, Denham M.J, Roberts A., "Evolutionary Engineering Design Using the
Genetic Algorithm", Procs. International Conference on Engineering Design, The
Hague, August 1993, pp. 1295-1302.

Punch, W.F., Averill, R.C., Goodman., E.D, Lin, S., Ding, Y., "Using Genetic Algorithms
to Design Laminated Composite Structures", Journal of IEEE Expert. Intelligent
Systems and Their Applications, Feb 1995.

Vekeria, H.D., Parmee, l.C., Vekeria H. D., Parmee I. C. "Reducing Computational
Expense Associated With Evblutionary Detailed Design", Procs. International
Conference on Evolutionary Computation, University of Purdue, Indiannapolis, 1997,
pp. 391-396.

Harish Vekeria
Plymouth Engineering Design Centre,
University of Plymouth,Drake Circus,
Plymouth, Devon, PL4 8AA, UK.
Phone: +44(0) 1752 233508
Fax: +44(0) 1752 233529
Email: hvekeria@plymouth.ac.uk

184

lan Parmee
Plymouth Engineering Design Centre,
University ofPlymouth,Drake Circus,
Plymouth, Devon, PL4 8AA, UK.
Phone: +44(0)1752 233509
Fax: +44(0)1752 233529
Email: iparmee@plymouth.ac.uk

Proceedings of the Sevemh International Co•rference 011 Genetic Algorithms. Michigan State University. East Lansing, Mt. 1997.

Co-operative Evolutionary Strategies for Single Component
Design

Ian C. Parmee
Plymouth Engineering Design Centre University

of Plymouth, Drake Circus Plymouth, Devon
PL4 8AA, UK

iparmee@plymouth.ac.uk

Abstract

The paper introduces the preliminary
development of co-operative strategies that will
enable the machine-based design of a single
engineering component from initial
configuration definition through to product
realisation. The initial utilisation and comparison
of basic evolutionary approaches leads to the
introduction of high-performance evolutionary
and adaptive search algorithms in order to
improve performance within the high
dimensional space that describes the component
topology. A requirement for computationally
expensive fmite element analysis provokes the
development of a sequential method for
Dynamic Shape Refinement (DSR)[l] in an
attempt to minimise calls to the fitness function
and further improve solution performance. This
leads to the utilisation of distributed, co
operative injection island strategies [2,3] and the
development of strategies both for'the dynamic
refinement of component representation imd the
introduction I removal of differing search
algorithms within the injection island
architecture.

1 Introduction

The evolutionary design of a building component
primarily consisting of a concrete flat plate is
introduced. It is necessary for the plate to be
represented by circa 400 elements of variable depth
in order to provide accurate stress evaluation. The
objective is to minimise the weight of the plate
whilst satisfying maximum stress requirements. This
conflict of objectives plus the high dimensionality
results in a highly sensitive optimisation problem
with many local optima.
The utilisation of a number of evolutionary and
adaptive algorithms manipulating simple models of
the plate illustrates a degradation in performance as
plate resolution (i.e. number of· elements) is
increased. Finite element analysis is required to
achieve accurate stress analysis but this leads to
excessive computational expense. There is a need

185

Harish D. Vekeria
Plymouth Engineering Design Centre University

of Plymouth, Drake Circus Plymouth, Devon
PL4 8AA, UK

hvekeria@plymouth.ac.uk

therefore to minimise the number of calls to the
fitness function. This initially led to the development
of a sequential method of shape refinement (DSR)
where improvement is achieved sequentially by
utilising increasingly refined representations of the
plate and 'injecting' results from lower order
representations to higher order.

Improvements gained in this manner have led on to
the introduction of Michigan State University's
Injection Island Architecture [2] and the
achievement of significantly better designs with
reduced calls to the models. Further improvement is
achieved by introducing a dynamic refinement to the
injection architecture where lower order plate
representations are removed as they cease to
contribute and are replaced by representations of a
higher resolution than currently exists within the eo
evolving processes [3]. Finally, initial investigation
involving the utilisation of differing adaptive search
algorithms integrated with the dynamic shape
refinement is described and preliminary results are
presented. This approach involves the use of two
eo-evolving adaptive search algorithms within an
injection island architecture and their subsequent
introduction I removal depending upon their relative
performance

In all cases simple analysis techniques are utilised in
the evaluation function to allow extensive
experimentation at low computational expense.
Finite element analysis is now being introduced into
the eo-evolutionary processes to allow concurrent
evolution with appropriate communication between
both simple and complex models of differing
resolution. The overall objective of the research is to
establish eo-evolutionary processes with appropriate
migration regimes that support the design of single
components from preliminary through to detailed
design and product realisation. There are two main
objectives to the research: the first relates to the
achievement of high-performance designs whereas
the second concerns the minimisation of required
function evaluations. It is essential that the second
objective is achieved in order that computationally
expensive analysis teclmiques can be realistically
utilised.

Proceedings of the Seventh Jntemational Conference on Genetic Algorithms, Michigan State University, East Lansing. Mt. 1997.

improvements as shown in figure 1 although

2 The Evaluation Model performance degradation is still evident with
increasing dimensionality.

The design domain involves a real-world problem
concerning the optimal material distribution on the
underside of a fl at concrete plate with varying load
and support conditions. The plate is represented in a
grid type manner being divided into rectangular or
square elements each with variable depth. However,
if required, a set number of elements may be
considered as one variable to promote uniformity in
depth . The overall plate dimensions are 200mm x
200mm. ln order to achieve a certain degree of
symmetry for ease of manufacture, neighboring
elements whose angles exceed a preset aspect ratio
(the ratio describing relative depth at the element
interfaces) are penalised. ln order to allow extens ive
experimental work, the GA has been integrated with
a simple mathematical model utilising bending
moment and complex stress analysis to ensure
computational cost is kept to a minimum. Principal
stress (Q"p) is calculated using ·the following
formula:

er l or2
erx +er y +

2 - (er·' ; er Y)

2

+ r .• /

CY x .or .y =Direct Stress T = Shear Stress

The fitness of the design relates to the level of stress
violation and the overall weight of the plate i.e.
weight must be minimised within g iven stress
criteria. The fixed parameters of concrete are:
flexural limit = 9MPa, Density = 2.2 glee.
Theoretical direct stresses in both the X and Y
planes are increased by a factor of 1.18 to account
for errors incurred in applying simple beam theory.
Designs exhibiting a high degree of stress violation
are penalised to ensure that the generated designs
satisfy relevant criteria. Although preliminary design
solutions for the flat plate problem can be achieved
with a relatively small number of variable elements
(15 to 50) in excess of 300 elements are required
during detailed design to ensure accurate stress
evaluation for a number of support and load
conditions.

3 Initial Results

The messy genetic algorithm [7] was also
considered and would seem best suited to this class
of problem due to its ability to maintain good
linkage between individual genes. However it was
not included in the test suite because of the
computational expense associated with its two
evolutionary phases and dual loop structure. 1l1e
computational expense of finite element evaluation
currently necessitates an alternative approach.
Although the CHC algorithm does not necessarily
support the genetic correlation provided by the
messy GA it offers the best performance of those
algorithms tested in addition to its proved robustness
across a wide range of standard test functions [6,8].

1600

1550

11)
11)
Q)

E
u::
v; 1450
Q)

al

1400

1350
en

Figure I -
performance
case)

I[)
N

en
-.:t

0
0

<D en ~
N

Number of Bements (Grid Size)
____ SGA

---CHC
••••.•• BGA I
_ _ ___ PBIL

0
0
-.:t

Graph to show a comparison in
betw·een different GA's (single load

4 Dynamic Shape Refinement (DSR)

An initial alternative approach utilises problem
representations of varying resolution. A sequential
evolutionary process utilising the CHC algorithm
(with a population size of 40, a divergence rate of
30% and a maximum number of restarts of 3)
commences upon a relatively coarse (in terms of
number of elements) plate representation. As
convergence is achieved so the best solution from

Initial results using a simple, canonical GA with this process is mapped onto a finer resolution
various parameter settings were disappointing with elemental grid and a population based upon mild
severe degradation of the convergence perturbation of this solution is established. The CHC
characteristics with an increase in dimensionality i.e. then manipulates the finer representation until
variable element number. Due to the perceived convergence is again achieved and the mapping
sensitivity and the very high number of local optima, procedure is repeated [3) . This sequential evolution
the processing capabilities of the simple, canonical process continues, utilising fmer representations
GA [9] are not appropriate for this class of problem. until a satisfactory so lution is identified. Such a
Subsequent integration of a breeder GA (BGA) [4], satisfactory solution should not only be of minimum
Population-based Incremental Learning (PBIL) [5] weight within relevant stress criteria but also be
and the CHC GA [6) resulted in significant considered low-risk in terms of the fmal resolution

186

Proceedings oft/re Seventh lnternationnl Conference on Genetic Algorithms. Michigan State Universiry. East Lansing, M/, 1997.

of plate representation i.e. there is a sufficiently sub-populations are initiated at the same time. The
high number of elements to provide confidence in solutions of the coarse design representations are
the stress evaluation. Figure 2 compares a DSR injected into the more detailed designs for fine
approach utilising the CHC manipulation of 5x5, grained refmement. Migration of information is
1 Ox I 0 and 20x20 e lement representations to a CHC from low to high resolution at a set number of
manipulation of a single 20x20 representation. The evaluations which requires translation of the
results have been averaged over twenty runs of the differing grids to maintain true representations
algoritluns . (figure 3).

Ill
Ill
Cll
r::: .. u:
Cll
Cl
~
Cll
>
et

1600 --~--------------------~

1000 .-. . .
800

.
-· . . ~

600 .. .-
400 -- ,.' ' .-
200

0

0 1000 2000 3000 4000 5000

Nu m ber of Evalu ations

.. _ .. . _ CHC (Single Pop.) ----- DSR

Figure 2 - Graph to show the performance of the
single population GA against a GA utilis ing DSR (2
load cases).

The high fitness achieved during the early stages of
the DSR approach must be treated with caution.
Fitness is measured in terms of weight versus stress
violation and the coarser representations although
seemingly of high fi h1ess are also high-risk due to
the lack of resolution during stress evaluation. A
higher resolution stress evaluation returns a greater
degree of violation and a related degradation of
fi tness as shown by the dips in the DSR curve as
fmer resolutions are introduced. The CHC
representation, being of a fine (20x20) resolution
throughout the evolutionary process shows
constantly improving fitness.

Comparison of the 20x20 representations of the two
approaches reveals that DSR achieves a significant ly
higher fitness than the single representation
approach with far fewer calls to the analysis routine.
Therefore to some extent the DSR satisfies the
primary objectives of the research . i.e. minimum
weight with minimum calls to the fitness function.

Subpopulation I Subpopulation 2 Subpopulation 3

Figure 3 - Migration between Subpopulations

Migration allows the passing of highly fit schemata
by injecting the bes t individuals that have evolved
from a proportionally smaller search space into
higher resolution representations replacing the worst
individuals present at that time.

Figure 4 illustrates the effect of CHC integration
with the iiGA architecture in tenns of the average
population fitness o f a single population CHC GA of
60 chromosomes (400 elements) and an iiGA using
3 subpopulat ion islands (consisting of 25, lOO and
400 elements) of 20 chromosomes each. The curve
displayed for the iiGA represents the fmest
subpopulation (400 elements). The number of
evaluations is the summation of all evaluations of
the subpopulations. Migration takes place every 100
evaluations. Rapid progress is apparent when
compared with the single population CHC GA. A
significant reduction in the number of evaluations to
achieve s imilar fitness is apparent from the iiGA
throughout the eo-evolutionary process.

5 The Injection Island GA (iiGA} The single representation CHC approach will
however eventua lly outperform the iiGA in terms of

Can we in1prove upon DSR by introducing a maximum fitness (figure 5). This is due to
concurrent rather than sequential shape refinement convergence of the lower resolution iiGA
process?. The injection island architecture (iiGA) [2] representations limiting the injection of useful
offers this faci li ty. The flat plate is represented by a material into the higher resolution populations
number of different resolution grids, each evolv ing which eventually results in a stagnation of the co-
upon a separate island. Unlike the DSR method all evolutionary process.

187

Proceedings of the Seventh Imemntionnl Conference on Genetic Algorithms, Michigan State University, Ens/ Lnnsing. M/, 1997.

1400

1200

VI 1000
VI
Ql
c 800 ;t::

LL.
Ql

600 Cl
E
Ql
>
<(400

200

0
0 0
l[) 0>

l[)

l[)
0

t- CO M c.o (") 0>
l[) 0 "<t

N N M (")

Number of Evaluations

1------ - iiGA ---CHC (Single" Pop.)

Figure 4 - Graph to show a comparison in
performance between a single population CHC GA
and an iiGA (early stages of the search for 2 load
cases)

1382

1380

1378

VI 1376 VI
Ql
c

1374 u:
VI
Ql

Ill
1372

1370

1368

1366
6000 7000 8000 9000 10000

Number of Evaluations

---CHC (Single Pop .) _______ iiGA

Figure 5 - Graph to show a comparison in
performance between a CHC GA and a iiGA (latter
stages of search for 2 load cases)

6 Dynamic Injection

The problem of process stagnation is addressed by
introducing a dynamic injection (DiiGA) method of
element representation. As a lower resolution
process ceases to inject useful information into the
higher resolution processes so it is removed and
replaced by a resolution that is higher than any
currently in existence. A simple 3 leve l
representation involving 4 processes is presented
below:

Representations:
a) 5x5=25 elements
b) !Ox!O= IOO elements
c I) 20x20=400 elements
c2) 20x20=400 elements

Process:

•

•

•

•

•

Commence eo-evolution of representations a)
and b).
Migrate from a) to b) every n generations until
a) converges and ceases to pass useful
information to b)
Remove a) and introduce c1) using the best
individual from b) to seed new population
Migrate individuals fTom b) to c1) every n
generations until b) converges and ceases to
pass useful information to c1)

Remove b) continue to evolve c1) . IntToduce
another eo-evolving subpopulation (c2) , seeded
from (c1).

Individuals are prevented from migrating if a
duplicate exists in the host subpopulation in order to
maintain search diversity. Further migration only
takes place if the individual is fitter than the least
fittest individual in the host subpopulation. The nm
continues until its termination condition is met
(when the subpopulations have converged, the
maximum number of evaluations have been reached
or the maximum number of reinitialisations has been
achieved). It should be noted that there is no danger
that the best individual will rapidly take over the
new subpopulation. The CHC GA's incest
preventing mechanism (the dropping difference
threshold), in combination with elitist selection and
disruptive recombination will prevent this. Eshelman
found that partial reinitialisations perfom1 better
using smaller population s izes when compared with
chronic mutation and provide many of the benefits
of a large population without the cost of a slower
search [1 ,2]. Initial results are shown in figure 6.

Cl)
Cl)
Ql
c
u:
Cl)
Ql
m

1395

1390

1385

1380 .

1375

1370

1365 -·

1360

1355

1350

1345

1340

3000

,..J"'"'
......:

..J .
..J

' -'

/

5000 7000 9000
Number of Evaluations

1------- DiiGA --- CHC (Single Pop.)

Figure 6 - Graph to show a comparison in
performance between a CHC GA and a DiiGA
(latter stages of search for 2 load cases)

188

Procee~ings .ofthe Seventh lntemational Conference on Genetic Algorithms, Michigan State University, East Lansing, M/, /997.

7 Dastnbuted Search Technigues Trials per Iteration 40
Max. No. of Evaluations

A final hypothesis is that further improvement in
overalJ fitness and in the number of function
evaluations may be possible by introducing different
search techniques to the individual eo-evolving
processes. This is intuitively based upon the
performance of the various adaptive search
techniques of figure 1 and the behaviour of PBIL in
particular. It is assumed that the initial poor relative
performance of PBfL on the coarser resolution grids
is due to premature convergence upon some local
optima resulting from the implementation of a high
learning rate.

lt is interesting to note however that PBIL's
performance significantly improves with increasing
grid resolution suggesting that this tendency for
premature convergence is offset by the sheer number
of possible design directions available at higher
dimensions. Whereas the more diverse search of the
CHC begins to lose its way, PBIL manages to
sustain a better compromise betwe~n exploration
and exploitation and fmalJy outperforms the CHC as
the 400 element representation is approached.
Another fea ture of PBIL is its rate of convergence
during early generations with medium to high grid
resolutions as shown in figure 7. This suggests that
different techniques may be better suited to varying
stages of the evolutionary process (although rapid
convergence during the early stages may not prove
beneficial in the longer term).

1200

1000

BOO
Ill
Ill ..
c

600 ~
u.
Ill ..
ID 4 0 0

20 0

0

r , .. _,_ ...

, t , .
~·-· .··

.~·

The establishment of a distributed architecture
supporting several search algorithms and their
subsequent removal I re-introduction depending
upon relative performance during the evolution
process may provide a partial solution to the
problem of selecting the most appropriate search
technique for a particular problem. Preliminary
experimentation here, however, concentrates upon
the utility of this approach for the achievement of
the two primary objectives of the flat plate problem
i.e. minimal weight with minimum function
evaluations. Two simple configurations are assessed.
In the first the CHC algorithm manipulating a 5x5
grid representation eo-evolves with a PBIL
manipulation of a !Ox I 0 representation. Migration is
alJowed every 200 evaluations with the better
solutions from the CHC process updating the
probability vector of the PBIL process. When the
CHC ceases to provide sufficiently high
perfonnance solutions for injection the process is
killed and replaced by a second PBIL process
manipulating a 20x20 grid representation. This
continues to eo-evolve with the lower resolution
PBIL process receiving injected solutions every n
generations. The reasoning here is that the more
diverse search of the CHC which leads to higher
perfonnance on the coarser resolutions interacts with
the more rapid convergence characteristics of PBlL
to provide an optimal starting population for the
frnal PBIL-based search. The objective is a higher
perfom1ance solution within a lesser number of
function evaluations than would be attainable using
the CHC alone within a DiiGA architecture. Results
from a single load-case representation are shown in
figure 8 and compared to the results from a three
load-case representation (figure 9).

1500

1480

"'
1460

"' 0 2000 3000 1000 4000 Cl>
c:

Number of Eva lu a tio ns

•••• • •• CHC ----PBIL

Figure 7 -Graph to show the initial rapid progress of
PBIL in comparison to the CHC (3 load cases are
utilised)

The folJowing settings are used in relation to alJ
PBIL runs.

Positive Learning Rate 0. 1
Negative Learning Rate 0.1
Mutation Probability 0.02
Mutation Shift 0.05

:t:
u.
"' Cl>
CO

1440

1420

1400

1380
2000 4000 6000 8000 10000

Number of Evaluations

- •• -. R 1 c c chc j
- - - CHC -

Figure 8 - Graph to show the performance of the
different configurations for a I load case
representation.

189

Proceedings of the Seventh fnternotional Conference on Genetic Algorithms, Michigan Stole University, East Lonsing. Mf. 1997.

1400 however, that performance of the CHC alone finally

1300

1200

1100

::l 1000
Ql
c: ir 900

ti 800
Ql
aJ

700

600

500

: ---- --- - - - --- -- - -,
J

equals that of the p-c-c eo-evolution, whereas the
characteristics of the c-p-p process results in rapid
convergence upon a significantly lower performance
solution.

8 Conclusions

The DSR technique has shown that that a significant
reduction in the number of ca lls to the model may be
made during the latter more detailed stages of the
design process, producing light weight, low risk
design solutions.

400
2000 4000 6000

Results from the CHC GA utilising the iiGA
8000 10000 architecture show dramatic improvements in the

Nu m be r of Eva lu atio n s strength to weight ratio characteristics exhibited by

c h c p b il p bil _ _ _ _ _ P b il c he c h c

1

the plate at significantly less computational cost than
PB tC - _ _ _ CHC - that required by a single population CHC GA. The
-- -- -- -- --- CHC DiiGA achieves a significantly higher fitness

Figure 9 - Graph to show the performance of the overall whilst still maintaining the initial rapid
different configurations for a 3 load case improvements exhibited by the CHC iiGA. The
representation. DiiGA satisfies the two objectives of the research

The second configuration involves a PBI.L
manipulation of the 5x5 grid eo-evolving with a
CHC manipulation of the I Ox I 0 grid. The 5x5
PBIL process is killed as it ceases to pass useful
information to the CHC process and at this point the
CHC algorithm is replaced by PBIL which now
manipulates the I Ox I 0 resolution. A further 20x20
CHC process is introduced and eo-evolves with the
I Ox I 0 PBIL representation. This strategy 'therefore
investigates an alternative dynamic where PBIL
injects locally high-performing solutions into the
more diverse search processes of CHC.

The chc-pbil-pbil (c-p-p) eo-evolution results in
increased perfom1ance both in terms of reduced calls
to the evaluation function and improved overall
fit11ess in the single load case situation. However, as
a more realistic tlu·ee load case problem is
introduced the cpp is very significantly out
performed by the pbi l-pbil-cbc (p-p-c) eo-evolution.
Further experimentation is required to determine the
reasons for these comparative perfom1ances upon
differing problem representations. The single load
case promotes the generation of material
concentrations in one area of the plate and it is
suggested tl1at the convergence characteristics of the
c-p-p are better suited to a less complex distribution
of material upon the plate than that required by the
three load case problem. With three load cases
material is distributed across a wider area of the
plate to best satisfy stress characteristics. It is
assumed that the greater diversity of tl1e later stages
of p-c-c search results in the better identification of
this more complex material distribution. TI1e rapid
convergence characteristics of pbil however, greatly
acce lerates this identification resulting in far less
evaluation calls than is required by a DiiGA process
utilising CHC alone. It is interesting to note,

i.e. to converge upon a high performance design
solution with a minimum number of function
evaluations. The main advantage therefore in using
injection island techniques is the reduction in
computational expense in addition to the ability to
identify better design solutions when compared to
single population GA 's.

More extensive experin1entation is required to
properly assess the utility of eo-evolving processes
involving several differing search algoritlmlS.
However the preliminary findings of section 7
indicate that :

• it is possible to improve perfom1ance both in
tem1s of overall fitness and reduced evaluation
calls.

• the selected search configurations are very
senslltve to problem specifics e.g. the
performance differences between one and three
load case scenarios.

This second point may be addressed by improving
the dynamics of the introduction I removal of
individual search algorithms. A perfonnance based
scenario is envisaged whereby algorithms are
removed I re-introduced dependent upon on-line
measurement of their relative performance. This
could result in the automatic selection of appropriate
search configurations.
The integration of FEA representation and
concurrent processing of simple evaluation models
alongside complex analyses is now under
investigation. Tltis will allow the introduction of
more high resolution levels to the DiiGA
architecture. High resolution simple stress analyses
will initially inject information into coarse resolution
FEA representations before dying off and allow the
process to move into a secondary detailed design

190

Proceedings of the Seventh International Conference on Genetic Algorithms, Michigan State University, East Lnnsing, M/, 1997.

phase. The objective here is to achieve a continuous
process from preliminary design of the plate through
to final product realisation.

These initial results indicate a considerable potential
for a significant reduction in the number of
evaluation calls during evolutionary search.
Refinement of the basic strategies introduced here
are likely to further reduce computational expense
related to evaluation calls. In generic terms this will
allow a more efficient integration with complex
analysis techniques during detailed design and
contribute significantly to those preliminary stages
of the design process where a degree of complex
analysis is required to validate results from more
simplistic preliminary design models.

Acknowledgments

The research has been carried out at the Plymouth
Engineering Design Centre (PEDC), funded in the
main by the UK Engineering and Physical Science
Research Council (EPSRC). We wish to thank them
for their continuing commitment to this research.

PEDC publications are available at :
http://www.tech.plym.ac.uk/soc/research/edc/

References

[I] H.S Kohli, G.F Carey. "Shape Optirnisation
Using Adaptive Shape Refinement". lnt.
Journal for Numerical Methods in Engineering,
Vol. 36pp- 2435-2451, 1993.

[2] E.D Goodman, R.C Averill, W.F Punch, Y.
Ding, B Mallot. "Design of Special-Purpose
Composite Material Plates . Via Genetic
Algorithms". Proc. of the Second lot. ·Con f. on
Adaptive Computing in Engineering Design
and Control, ed. LC Parmee, University of
Plymouth, 1996

[3] H.D Vekeria, LC Parmee. "The Use of a Co
operative Multi-Level CHC GA for Structural
Shape Optimisation", Procs. Forth European
Congress on Intelligent Techniques and Soft
Computing, Aachen, 1996.

[4] H. Muhlenbein, D. Schlierkamp-Voosen.
Predictive Models for the Breeder Genetic
Algorithms. Journal of Evolutionary
Computation. Vol. I, Part I. pp. 25-49, 1993.

[5] S. Baluja. Population Based Incremental
Learning: A Method for Integrating Genetic
Search Based Function Optimization and
Competitive Learning. Tech. Rep, School of
Computer Science, Camegie Mellon
University, Pittsburgh, CMU-CS-94-194.

191

[6] L.J Eshelman. "The CHC Adaptive Search
Algorithm: How to Have Safe Search When
Engaging in Nontraditional Genetic
Recombination". In G.J.E Rawlins (editor),
Foundations of Genetic Algorithms and
Classifier Systems. Morgan Kaufmann, San
Mateo, CA, 1991.

[7] D.E Goldberg, K. Deb, B. Korb. "Don't
Worry, Be Messy". Proc. of the Forth
International Conference on Genetic
Algorithms. Ed. R.K Belew and L.B Booker,
University of California, San Diaego, July
1991.

[8] L.J Eshelman, J.D Shaffer. "Preventing
Premature Convergence in Genetic Algorithms
by Preventing Incest". Proceedings of the
Fourth International Conference on Genetic
Algorithms. Morgan Kaufmann, San Mateo,
CA, 1991.

[9] D. Goldberg. "Genetic Algorithms in Search,
Optimisation and Machine Learning", Addison
- Wesley Publishing Company, Inc., 1989.

