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WAVE OVERTOPPING: 
A COMPARISON OF PHYSICAL_AND NUMERICAL 

METHODS 

by 

GARY JOHN MURTON 

The overtopping of low-cr·ested breakwater is investigated by means of 
hydt-aulic and mathematical models. 

A conventional laboratory wavemaker with a wedge-type paddle· is converted 
into an absorbing wave1naher so that it can be used to investigate 
accurately wave overtoppir1g of reflective ~oastal structures. The 
absorption system is achieved by use of a feedback' loop added to the 
control circuit. The design criteria and implementation of the circuit are 
presented in detail. Enhanced control ' software is used to generate 
different 'random' sea states with the same statistical properties. 

The absorption system is validated by ail extensive series of tests made 
possible by the development of automated data acquisition and analysis 
software. Particular attention is given to the derivation of incident and 
reflected wave spectra. The results show over 90% success in reducing 
reflected 1vaves. It is also possible to establish stable standing wave 
patterns over a wide frequency range. The results show significant 
improvement over similar existing wavemakers and in effect create an 
open-ended channel in the sense that the test structure hardly influences 
incident wave conditions. 

A closely controlled series of overtopping tests was carried out using the 
absorption system to prevent any re-reflections. Equipment and software 
were designed to quantify the overtopping rates for the structures used. 
The design and implementation of all aspe-cts of the tests is fully 
described. 

Overlapping tests were carried out on breakwaters with smooth l:l and 1:2 
seaward slopes. The r·esults are tabulated and plotted in a dimension less 
form which permits comparison with . earlier work carried out at Hydraulics 
Research Ltd. The range of available data is extended and the new data for 
fully-developed sea states shown to be compatible with a linear 
extrapolation of the earlier· results. It is believed that the earlier 
results were obtained using fully developed sea states but this is not 
known for certain. The importance of rigorously defining and publishing 
both test conditions and analysis techniques is highlighted. 

In the numerical study the 1--D mass and continuity equations were solved by 
a hybrid finite element/finite differ·ence scheme. Whilst a good compa!'ison 
is achieved between the physical and numerical tests for bn~akwater slopes 
of 1:2 and less, realistic results are not achieved for steeper slopes. 
The reasons for this are discussed and the results presented. 

Both sets of model tests add valuable data to an area presently lacking 
detailed information. 
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CHAPTER 1 

1.1 Introduction 

Waves incident on a structure such as a breakwater or sea wall are 

usually subject to a significant amount of reflection. In the field 

the reflected waves generally propagate back out to sea and are 

eventually lost to the coastal system. The system in effect has an 

open or absorbent seaward boundary. 

In a conventional laboratory wave channel the situation is quite 

different due to the 'seaward' boundary being closed by some type of 

wave paddle. The typical paddle is highly reflective so that, in 

this closed system, waves reflected by a · model structure are 

re-reflected back towards i.t. This establishes. an unnatural system 

of positive feedback in which the waves incident on the model are the 

sum of the new input from the paddle and the re-reflected waves. The 

characteristics of the incident waves are changed in an uncontrolled 

way with the wave height increasing until losses in the system 

dissipate energy·, possibly through an increase of wave breaking, at a 

rate equal to the primary input from the ·paddle. The resonance 

resulting from the combination of high reflection and low losses can 

lead to water being thro~ from the channel. 

Recently, due to advances in electronics, it has become possible to 

detect this positive feedback and by means of a suitable filter 

system to modify the primary control signal in order to remove or 

'absorb' the re-reflected part of the wave train. 

An 'absorbing' paddle of this type will allow more controlled or 

accurate laboratory model tests than the conventional paddle. 

Few breakwater overtopping model studies have been carried out and 

of these fewer sti 11 used a randomly generated sea to conduct the 

tests. 

An accurate assessment of the likely wave overtopping of a particular 

breSkwater is of prime importance to the coastal engineer at the 

design stage. The degree of overtopping permitted will depend upon 

the use for which the breakwater is to be designed. 

1 



Practical full-scale measurement has so far proved to be a very 

difficult proposition and the engineer is thus very dependent upon 

results obtained from laboratory model studies. Use of an absorption 

system as outlined above will allow a more controlled approach to the 

measurement problem and as a result much-better data should result. 

The other pr·oblem which confronts the design engineer is, unlike in 

many other branches of engjneet-ing, the lack of good, well verified 

nwnerical solutions to the problem of wave overtopping. 

Mathematical solutions have been derived for the closely related 

run-up pr·ob lem, although these are generally for . the more mild 

'beach'· type slope, rat het- than the steeper breakwater slope. The 

development of a reliable suite of computer programs would reduce the 

need fOJ- costly model studies as well as increase the knowledge basf' 

of what is still a largely unknown area. 

1.2 Scope of Work 

The work described 1n this thesis deals with some of the problems 

outlined above. 

A 2-D laboratol.-y wave channel wi lh a wedge type paddle, with random 

wave generator capabilities at one end, was installed and cali.br·ated. 

The calibration was performed with regular waves in order to obtain a 

paddle transfer function of wave amplitude to control signal voltage. 

Once the dynamic characteristics of the paddle were known it was 

possible to design an appropriate filter circuit to incorporate into 

an absorption system as mentioned above. Concurrent with the 

development of the absorption system a micro-computer based data 

acquisition and analysis system was developed. 

A fully compatible suite of programs was written to collect wave data 

from up to 6 gauges simultaneously; cal i.brate the data collected; 

store the data and perform a variety of analysis options on the data. 

The de~ta was collected from resistance wire wave gauges and passed 

through a 12 bit A-D converter for calibr·ation anci storage by the 

computer. 

2 



The analysis package included all the conventional wave data 

processing functions such as spectral analyses from fourier 

transforms and general statistical analyses for mean, standard 

deviation etc. In addition to the analyses mentioned above, a 

program was developed to determine the incident and reflected spectra 

from a composite wave train. For this process it was necessary to 

simultaneously measure the wave train in at least two different 

locations in the channel. 

A program of this type was essential to evaluate the performance of 

the wave absorption system in a random wave environment. 

Once the wave absorption system 'had been optimised and fully tested 

the facility was used to measure irregular wave overtopping rates 

over 'low-crested' breakwaters. In this case 'low-crested' refers to 

breakwaters with crests at or just above still water level. The 

breakwaters tested had seaward slopes of 1:1 and 1:2. 

A system was designed and built to accurately measure the quantity of 

wave which 'overtopped' . 

combinations of wave 

The tests were all repeated for various 

trains which had the same statistical 

properties. The random-wave generation software was modified as part 

of the project to allow this to be carried out. 

The results obtained were compared in a dimensionless form to results 

from earlier studies on similar, although not identical, geometric 

arrangements. The wave absorption system in use allowed much more 

operational control over the tests and the incident and reflected 

spectra software provided a much more realistic assessment of the 

wave conditions present during each test. 

A 1-D (in space) numerical model of the overtopping process was 

developed to provide a comparison with the physical data. The model 

was a space-time discretisation of the problem with finite elements 

used to solve the space dimension and a finite difference scheme to 

provide the time step iterations. 

3 



The model was developed on the same micro-computer as was used for 

the model tests data acquisition and analysis. This multiple use of 

a single computer emphasises the flexibility of such a machine and 

thus its suitability in a small design office or research 

establishment. 

1.3 Review of Previous Related Work 

1.3.1 Random Wave Generation 

The techniques of laboratory wave generation have been widely 

documented elsewhere (Salter 1984, Buhr Hansen 1975 and others) and 

the intention here is not to dwell upon the physical designs of 

laboratory wavemakers but to concentrate on the random wave signal 

generation techniques. 

Until fairly recently the 'normal' practice in hydraulic model! ing 

was to use regular waves - usually sinewaves - to investigate coastal 

phenomena. For example, a number ·of investigations into run-up and 

overtopping have been carried out with regular waves (Allsop and Ojo 

1982, Seelig 1979, Sollit and Debok 1976). but very limited work has 

applied random waves to the problem. It is generally considered that 

a regular wave study, whilst useful, cannot hope to provide accurate 

data for a comprehensive understanding of coastal phenomena. (Kimura 

and Iwagaki 1976). In 1980 Ploeg and Funke carried out a survey of 

wave generation techniques in hydraulics laboratories and found that 

more than twice as· many were using regular wave generators rather 

than random. A main factor for this was the lack of suitable, 

economic computers to produce an appropriate paddle control signal. 

An early random wave synthesiser was developed at the Hydraulics 

Research Station (Thompson and Shuttler 1972) based upon the addition 

of sixteen sinusoids at discrete frequencies and preset phase 

relationships. The system was satisfactory although limited in 

application and it failed to reproduce accurately extreme maxima 

since the maximum wave height was limited to that given by the 

sinusoids in phase. Goda (1970) demonstrated that for accurate 

simulation up to 50 components sinewaves were required. 

4 



The present Hydraulics Research Station (now Hydraulics Research 

Limited) me.thod of random wave generation has evolved from an 

electro-mechanical system to an analogue signal generator and then to 

a hybrid analogue/digital system to the technique now used of a 

digital synthesiser based around a BBC.· microcomputer. It is an 

advanced. form of the digital synthesizer which is used in the work 

presented here and its configuration and implementab on are desct·ibed 

fully in Chapter 2. 

F"unke ( 1974) describes a similar system used to producP. a JONS\I'AP 

spectrum. Other· systems developed for· 'random' or pseudo·· random' 

wave generation include the prepat·at:ion of a command signal on 

digital tape fr·om an analogue signal geuerator (1'/ebbec and Christian 

1974). Whilst this system worked sa ti sfactor:i ly it l acl\s the 

versatility of the on-line computer methods uow employed. Gravesen 

et a) ( .1974) l'CCor·ded a lvC!Vf.~ record from the ocean and .rep} ayed j I. in 

their hydraulic model tests but found that whilst long period waves 

were correctly reproduced short period waves were probably not. 

Salter (1984) used superposition of sinewaves claiming tl1at it allows 

the user more creativity in the choice of spectrum. The comb 

spectr·um method allows the generation of bizarre spectra not possible 

with the shift-register synthesiser although of how much practical 

use i.n hydt·aulic modelling these are must be in serious doubt. 

K:imura and h'agakai (]976) used the Goda method of superpos:i tion of 

50 composite sinewaves with analogue band-pass filters with the gain 

to equal the powet· of the output s:ignal. A later development of this 

was to use a numerical filter and fourier transforms using the 

monte·-ccn·lo technique for random number g<~neration. 

Recently (Tucker 1982) has demonstt·ated that the composite sinewave 

method is '.i nhe1·ently :incorrect' si nee the spectrum produced does not 

model a random Gaussian surface and the variance of the signal may he 

less than the theory suggests. It is possible to generate the 

Gaussian probability field with ran<iom nwnbers and pass them tlu·ough 

l :in ear fi 1 ters ~~here frequency response is calculated to give the 

con·ect spectrum (similar to the Kimura and Iwagakai methods). This 

proves ve1·y expensive in computer time. For a ~olution to the 

pnJblem it .is suggested that it. is advisable to 1-1ork in the lime and 

not. the frequency domain. 



1.3.2 Random Wave Analysis 

The spectral analysis of a random sea has proceeded in two stages. 

Initially a generalised spectral analysis procedure for the spectrum 

at a single measurement point was developed. More recently the 

emphasis has shifted to the determination of directional spectra. In 

a channel facility it is possible to resolve the wave record into 

incident and reflected spectra from a composite wave train, with 

measurement at two or more locations. The spectral analysis of a 

wave record at a point has been comprehensively dealt with in the 

past and is itself the subject of papers, reports and theses (Tucker 

1979, Chae 1976, Wilson et al 1974) and others. The intention here 

is to concentrate more on the estimation of directional spectra as 

related to the present project. 

The analysis of wave records based on a spectral approach originated 

in the late 1940's and 1950's (Tucker 1957, Deacon 1955) and others. 

However, the extreme jaggedness of the resultant spectra led to many 

uncertainties of interpretation and difficulties remained until Tukey 

(1949) developed methods used in communications for use with ocean 

wave data. 

It has always been apparent that interpretation of results will be 

open to confusion since all the methods are based on statistical 

processes and approximations. The rediscovery cif the Fast Fourier 

Transform (FFT) was introduced by Cooley and Tukey (1965). The FFT 

is computationally much faster than the conventional covariance 

method but has more leakage (Wilson et al 1974) . The covariance 

function may be obtained from the FFT procedure (Bingham et al 1967). 

However, no matter what methods are employed, they are all influenced 

by a degree of subjectivity that enters the analysis from a conflict 

between-degrees of confidence and resolution. It is possible for two 

analysts to report different results from identical data sets simply 

based upon a choice of certain parameters. 
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The above subjective interpretation is a large factor in the 

availability today of a number of different analysis procedures all 

pertaining to produce an energy spectrum which is supposedly 

'correct'. As a result of this no standard notation, nomenclature or 

'standard' procedure has developed and the choice of analysis seeJJls 

largely dependent upon what the user requires as results• 

All the analysis procedures are b~sed on rietermin~lion of the mean 

energy: 

E = (pg) J: [A(f)2/2) elf 

The spectr·al energy density is then: 

S(f) = A(f) 2 /Tr where Tr = NL'>t 

The most common analysis procedm-e is by use of the FFT algOt-i t.hm. 

See Chapter 3 for the analysis pr·ocedure used in this project. 

Other methods have been primad ly developed for directional spectra 

applications and include such data adaptive methods as the Maximum 

I.ikeb hood Method (MLM) and Maximum Entropy Method (MEM). It is also 

possible to determine low frequency components with a 201 point 

kaiser filter operating on the data in the time domain (Mansard and 

Funl<e 1986) . 

The analysis of direct ion a] spectl-a has devel opecl due to the pr-oblems 

of reflections and the need to determine incident wave conditions 

mOJ-e rigorously (S~nd 1982). 

1. 3. 3 Reflections in Random Waves 

The pr-oblem of reflections :in Iaboratur·y overtopping work has caused 

numenJus problems in the accurate estimation of the overtopping 

discharge f01- tests using both monochromatic and random waves. 

Rayner- (1983) found that the overtopping rate was a 'function largely 

dependent upon the degree of r·ef.leclion allowed. The par-tial 

solution in the above case and others (Owen l980)(Allsop 1983) was to 

.-
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use side splitters in the channel and to only utilise part of the 

width of channel for the model tests. Whether this method works and 

how efficiently is a research area on its own. 

DIRECTION 

OF WAVE 

PROPAGATION 

( ) 

( ) 

BREAKWATER 

Fig.l.l 'Side splitters' to reduce reflections. 

SPENDING 

BEACH 

In order to prevent re-reflection from the wave maker Raichen and 

Hammack (1974) investigated wave run-up with test lengths of only 5 

waves to avoid the problem and in a different solution based on the 

same principles, Hamer and Hamer (1982) used a test length of 30 

seconds which was short enough to prevent any re-reflection reaching 

the test structure. Not only is the procedure laborious, but also 

the test waves are deficient in the spectral component of high 

frequency band due to the wave dispersion, unless a special wave 

generation technique is employed. 
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In other work (Seelig 1983, Ouellett 1982) an attempt has been made 

to quantify the reflection coefficient of a test .structure arid so 

make allowances in the generated sea. The reflection coefficient 

method is more suitable for wave run-up problems · and breakwater 

stability tests rather than the measurement of overtopping 

quantities. 

Other workers have concentrated on the determination of incident and 

reflected spectra from wave measurement arrays all measuring 

composite wave trains. The analysis procedures used can discriminate 

between incident and reflected wave energy but no account is made for 

re-reflected waves. 

Various analysis techniques have been proposed. The Maximum 

Likelihood Method (MLM) has been widely used (Jefferys et al 1981, 

Clarke and Gelding 1981) for directional wave properties and 

determination of incident and reflected spectra. The MLM supposes 

that the wave amplitude is small and that the water surface elevation 

can be expressed as the superposition of component waves with wave 

number, k, and angular frequency, w. The water surface elevation, n, 
at the point x and at the time ·t is expressed as: 

n(x,t) 1 
f i(kx-wt) 

= ( . z(dk,dw) 

The wave number - frequency spectrum s(k,w) is defined as 

S(k,w)dk dw = Z(Dk,dw)Z*(Dk,dw) 

where * denotes complex conjugate. 

The estimation of direction is made from records at two points as 

described by Panicker and Borgman (1974) who also used the Maximum 

Entropy Method (MEM). The MLM has the highest resolution power for 

the estimation of directional spectrum but was applicable to wave 

gauge arrays only. Isobe et al (1984) presented an extension of the 

method(EMLM) which could be used with mixed instrument arrays. The 

MLM is simple to implement and economic with respect to time but it 

is better suited to 3-D directional applications rather than the 
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determination of incident and reflected spectra. The MEM (Briggs 

1984) is a non-linear data adaptive method of spectral analysis which 

is capable of generating higher resolution spectral estimates from 

shorter data records than conventional FFT methods. Entropy is a 

measure of the information content contained in a signal. Maximising 

entropy, therefore, maximises the information transmitted in a 

signal. The concept involves finding a spectral estimate which 

corresponds to the most random or wtpredictable time series whose 

extended correlation fwtction satisfies the constraint that it agrees 

with known values. 

Since the MEM is data adaptive like the MIM, there is no 'bias vs 

variance' trade off due to finite record l!;mgth requirements as in 

FFT procedures. 

The MEM spectral estimate is given by: 

S(f) = IA(f)I2Sw(f) 

where w2(L) or Sw(f)/2A is the white noise variance where A is the 

time increment. 

The MEM spectrum is much less peaked than the FFT spectrum with a 

slightly shifted peak. frequency. 

The other main analaysis technique is based upon the Fourier 

transform method. Kajima (1969) first proposed the method, however, 

it has been adapted and improved since. Goda and Suzuki (1976) 

employed FFT's to determine incident and reflected. spectra from two 

wave gauges separated by a length AL. The incident and reflected 

wave heights are then estimated from the composite wave heights by 

energy considerations. Goda and Suzuki showed that the method was 

effective in the range outside the condition of the gauge spacing 

being even half integers of wavelengths at the peak frequency. They 

proposed that for maximum resolution the spacing was chosen using the 

guidelines shown overleaf: 
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fmin: AL/Lmax = 0.05 

fmax: AL/Lmin = 0.45 

where Lmax and Lmin are the wavelengths corresponding to f min and 

fmax respectively. 

Gaillard et al (1980) derive the same relationships for the spacing 

to give maximum resolution. 

The overall coefficient of reflection is given by: 

where Er and ER are the energies of the resolved incident and 

reflected waves. 

The wave heights can then be evaluated by: (Goda and Suzuki 1980) 

Where Hs is the mean of the significant wave height taken from the 

composite waves at the two gauge locations. For a good estimation of 

incident and reflected wave heights the wave gauges are required to 

be away from both the test structure and the wave paddle. (This is 

because the composite wave height,. Hs, used .in the above equations 

fluctuates in the neighbourhood of a reflective boundary. 

Mansard and Funke (1980) extended this method to use more than 2 wave 

gauges for more accurate estimates by use of a least squares method. 

-The least squares method supposes superposition of components of 

phase and amplitude. 

Gilbert and Thompson ( 1978) proposed a Frequency Response Function 

type approach to Kajima's theory. It is this method which has been 

adopted here since it lends itself to compatibility with the other 

analysis procedures which were used. The method is described fully 

in Chapter 3. 
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1.3.4 Wave Absorption 

There are several flap-type paddles with a wave absorption system 

fitted. These include a system at Edinburgh University (Salter 1981 

and 1984) and the 3-D wave b<1sin at the· Danish Hydraulic Institute 

(Aage and Sand 1984). 

a wedge-type paddle. 

Less common is an absorption system fi~ted to 

A wave absorption system was 

system used a wave gauge to 

paddle lvhich then moved to 

developed 

sense the 

absorb the 

in 1970 by ~1ilgram. The 

wave as 

wave. 

it 

The 

approached the 

only crucial 

difference between this system and the one used in the preserlt work 

is that the waves foi" Milgram's system 1vere genentled at. the opposite 

end of his flume fr·om his· absorber. 

for breakwater tests. 

A system like this is of no use 

The Edinburgh wave absorber uses force sensing for the feedback. The 

force sensor will be free from the contaminations in the water that 

affects resistance type wave gauges. Force transducers will also 

average across the width of the channel. The water surface elevation 

technique used in Plymouth has overcome the problem of averaged 

readings by use of two long probes across the paddle fr·ont. The 

water surface elevation measurement requires no transfer of pressut"e 

record to wave heights, it is simpler to calibrate and has a much 

faster frequency response to reflections. 

1.3.5 Hydraulic Overtopping 

AccUt"ately estimating the amount of water which will wash over a 

coastal structure can be vital to design engineers. Building 

seawalls high enough to completely prevent overtopping is often 

unacceptable because of aesthetics and costs. Situations also arise 

where water on the lee side of a breakwater is pet"fectly acceptable, 

such as outfall protection breakwaters for power· stations. 
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Overtopping is an extremely complex. coastal phenomenon. Variables 

include structure characteristics (shape, weight, slope, roughness, 

porosity, berm width, offshore slopes etc.) wave characterics 

(height, period etc.) water depth, wind speed etc. Most overtopping 

investigations have ignored winds and wave direction in order to 

concentrate on the more significant variables. 

Related to the investigation of wave overtopping is the phenomenon of 

wave run-up. Nagaki and Takoda ( 1982) investigated the correlation 

between run-up and overtopping and found that the correlation was 

good. Recent work has concentrated on random wave environments but 

earlier tests used monochromatic waves which can only provide an 

approximation to the random wave situation. Roos and Battjes (1976) 

conducted an experimental study of periodic wave run-up compared with 

Hunts formula for run-up height defined as: 

R = IHL0 Tancx 

where R = run-up height 

ex = slope 

H = Wave height 

from Lo = gT2/2fr 

R = 4T/gH Tancx 

This predicts run-up depends only upon wave height and wave period. 

Ouellett (1982) proposed that other factors important in run-up are 

the storm duration and the structural shape of the breakwater. He 

predicted that significant overtopping will occur when SWL ~ 60% of 

breakwater height. Hamer and Hamer ( 1982) also concluded that the 

freeboard height was the most significant factor to differentiate 

run-up from overtopping. They tested the hypothesis that the amount 

of wave transmission due to overtopping is determined by the ratio: 

(Actual run-up, Rc)/(Theoretical run-up,R) 
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The calculation of theoretical run-up was based on Hunts formula. 

The structures tested had a smooth slope of 1:4. Other 

run-up/overtopping related work includes Sutherland et al (1976) who 

found that an offshore bar would reduce run-up height. Raichlen and 

Hammack (1974), Carlsen (1984) and Mase and Iwagaki· (1984) who were 

primarily concerned with gentle slopes up to 1:5 which is beyond the 

scope of this _work. Ahrens (1983) measured run-up on an idealised 

structure up to 1: l in both regular and random waves and made an 

estimate of the incident spectrum from Goda's method (1976). 

Many studies of run-up and overtopping have been conducted as part of 

tests on checks on stability of breakwater armour units designed in 

accordance with Hudson's formula as given in the Shore Protection 

Manual. 

Kimura and Seyama (1984) investigated the statistical properties of 

short-term overtopping and made the following assumptions to simplify 

the investigation: 

l) "Characteristics of an overtopping of zero up-crossing wave from 

a sea wall can be approximated _by an existing theory for periodic 

waves". 

2) "The characteristic of an overtopping is not affected by 

neighbouring waves but can be evaluated only by properties of an 

individual wave". 

3) "The statistical distribution of wave height can be approximated 

as the Rayleigh distribution". 

This model was over simplified as Shi Igai et al (1977) had 

previously shown that overtopping is a highly non-linear and 

discontinuous phenomenon regarding wave height. This is because the 

reflected wave energy decreases after a large amount of overtopping 

thus the wave height near the sea wall also decreases, hence a larger 

subsequent wave is needed for more overtopping and vice versa. Thus 

the effects of wave group action should be considered in the 

measurement of overtopping discharge. 
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Douglass (1984) has produced a paper in which he compares the most 

significant recent random wave overtopping experiments of Owen 

(1980), Goda (1971) and Battjes (1974) with the design criterion 

recommended in the Shore Protection Manual. 

The Owen method is based upon the experimental derivation of 

dimensionless coefficients to quantify the overtopping discharge 

depending on a number of variables discussed in Chapter 7. An 

example of the design procedure from Owens work will also be found in 

Chapter 7. 

The one thing that is clear from all the overtopping work so far 

carried out is that much more data is required to produce accurate 

design charts. 

1.3.6 Numerical Modelling 

To numerically model the effects ·of wave overtopping in random seas 

accurately, a good model of the sea is first required. This is used 

as the generating function for the overtopping processes to follow. 

A regular sea is simply defined with a sinewave generating function 

but a random sea is harder to define. 

Larsen et al ( 1984) describe the use of boundary integral equation 

and 'sponge-layer' techniques to generate a directional sea in deep 

water. The 'sponge-layer' is to absorb reflections along the model 

boundaries. The technique uses a finite difference scheme to solve 

the deep water equations in vertical and horizontal cartesian 

co-~rdinates. Pinkster (1984) reviews this and other similar 

techniques with a directional application. 

All the techniques are based on the assumption that the real sea 

surface elevation is a zero mean, stationary, ergodic, random 

Gaussian process. The statisitcal properties are independent of 

time. On all the models the assumption is made of non-breaking waves 

since breaking is known to be·a non-conservative process and breaking 

point is a mathematical singularity (Wang and Purpura 1974). 
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Any mnnerical model of overtopping is likely to be an extension of 

the closely related run-up problem. Jennings ( 1978) modelled the 

run-up of constant form sinewaves with the method of characteristics. 

The method of characteristics is based on a simplified solution to 

the Shallow Water Equations given by: 

au + uau = -g an Momentum 
at ax ax 

Continuity a[u(n + n) J = -an 

ax at 

The simplifying assumptions for the method of characteristics are: 

1. that the vertical acceleleration of the fluid particles is 

negligible; 

2. that the velocity distribution of the horizontal water particle 

velocity is uniform; 

3. that the bed friction forces are negligible. 

The above equations readily lend themselves to adoption for a 

finite-difference analysis. 

A solution of the equations leads to the formation of +ve, C+, and 

-ve, C-, characteristic lines of constant depth. 

The disadvantages of the method are:-

l. It is based on an irregular grid therefore there is a need for 

interpolation; 

2. The need to determine node positions; 

3. A slope approximation is made. 

The theory of characteristics does, however, give information on grid 

spacing for a finite difference method. Alternative finite 

difference methods allow for the inclusion. of slope, inflow and 

cot·iolis tenns. (Katapodes 1979). 
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Three different mesh techniques are available: 

1. A regular mesh which uses characteristic equations; 

2. A staggered mesh which uses shallow water equations ; 

3. A two- step regular mesh known as the Lax-Wendroff method. 

The Lax-Wendroff method uses the shallow water equations in the 

following form:(Lax-Wendroff 1960) 

t 
p 

L M R 

X 

Figure 1.2 Lax-Wendroff Mesh 

ay + dQ 
= 0 

at ax 

av + aE V = 
at ax 

where Q = Vy 

E = V2 / 2 + gy 

V : g(So - Sf) where Sf is the bed slope. 
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The solution of the equations is as follows: 

The calculation is performed for Y 1 , as all the other variables are 

known. 

Similarly for Y 2 

:: 

and·for V2 

:: 

Thus V 1 and Y 1 are used to calculate Q 1 , E1 , V 1 and V 2 and Y 2 are 

used to calculate Q2, E, V2 then: 

+ :: 0 l 

2 
t.t t.x 

Yp and VP are the two unknowns anq can.be calculated from land 2. 

The method is easily adapted for irregular profiles as: 

dA + 
d 

(AV) = 0 
dt dx 

dv 
+ d (YV2 + g2) -g2f1 :: 

dt dx 

dn :: dy - So 
dx dx 

The above shallow water techniques have been used in a number of 

run-up studies including Haugel et al ( 1984) who used a finite 

element solution and Zielke (1984) who modelled short wayes with 

Boussinesq equations. 
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The other main analysis technique used to date is to model the 

Navier-Stokes equations. The Navier-Stokes equations govern the flow 

of incompressible fluids with reasonably constant viscosity. In the 

cartesian co-ordinate system Newton's 2nd Law of Motion applied to a 

unit mass of fluid element gives 3 equations in x,y and z directions. 

Navier-Stokes models have been developed by Daubert et al (1984) who 

used a finite different scheme for 2-D flow with non-breaking waves. 

Austin and Schleuler (1982) also used the Navier-Stokes equations 

with a hydrodynamic code for impacts on coastal structures. 

All the previously mentioned methods and others such as Finite 

Amplitude Waves (Packwood 1982) (Yamaguchi and Tsuchuya 1976) show 

very good results on mild or shallow slopes. The situation of 

breakwater overtopping differs in one important respect. 

of the breakwaters to be considered are not shallow, 

The slopes 

and the 

traditionally used shallow water equations cannot be applied to 

regions where vertical accelerations become significant. Such 

accelerations are significant when water moves over fairly steep 

slopes- above 1:10. 

In 1980 Gopalakrishnan and Tung presented a finite element model for 

use on steep slopes by making an allowance for the vertical 

accelerations whilst a 1-D problem was retained. It is an extension 

of·this· method which will be presented later. 
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CHAPTER 2 

LABORATORY WAVE GENERATION SYSTEM 

2 . 1 Introduction 

A] l the laboratory work described here has been carried out in the 

wave channel in the Department of Civil Engineering at Polytechnic 

South West. The facili1y consists of twin channels 20.72m Jong, 0.90m 

\vide and l. 22m deep. Both c hannels are equipped with a we dge type 

wave paddJ e conlro] led with an e ] ectro-hydrauli <: system supplied Ly 

Keelavite Ltd. At the oppos i. te e nd of t he channel there is a 

spending beach which consists of a 2 inch layer of hair- lock ma1erial 

fixed onto a plywood slope of 1: 4~. Mounted on rai] s which run the 

l e ngth of the c hannel is a motorised trolley upon which wave gauges 

can b e fixed for traverses e t c . 

WAVESCREEN 

ELEVATION 

CONTROL ROOM 

-

E SPENOING BEACH 

-
WAVESCREEN 

TOWING TROlL£( 

PLAN 

Figure 2 . 1 Plru1 and Elevation of Laboratory 
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The paddle control signal is produced by a BBC model B microcomputer 

running wave generation programs written at Hydraulics Research Ltd. 

The programs can produce either a regular or 'random' wave signal as 

required. 

On line wave· data analysis is available via a Hewlett-Packard 98165 

microcomputer connected to a Biodata Mic~olink pigh speed data 

logger. The data logger accepts an analogue voltage signal from a 

Churchill Controls Wave Monitor. The analogue signal is converted to 

a digital record for analysis. 

Other equipment used includes a high speed chart recorder to record 

wav:e records, a digital storage oscilloscope and a Hewlett-Packard 

Spectrum Analyser. The general arrangement is shown in Figure 2.2. 

The transfer function for the chart recorder was measured at the 

start. of the project and used in the calculation of incident wave 

heights from wave envelopes (Chapter 3). The transfer function was 

determined by measuring the recorder's response to sinusoidal signals 

of known amplitude at each frequency used in the regular wave tests. 

The transfer function re~ates measured voltage to actual voltage at 

each frequency. 

u 
WAVE 

GAUGE 

WAVE 

MONITOR 

RESULTS 

PRINTOUT 

GRAPHICS 

OUTPUT 

HSC A/0 ANALOGUE INPUT 

DATA ACQUISITION 

1 
EJ 

STORAGE 

HP 9816 

Figure 2.2 Laboratory Equipment Arrangement 
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2.2 Wave Paddle (Plate 2.1) 

The wedge shaped wave paddle is constructed from aluminium channel 

sections with a marine plywood shell. The paddle runs on a single 

chrome plated bar l50mm in diameter. A guide rail beneath the paddle 

prevents any lateral displacement. The paddle is driven by a double 

ended hydraulic actuator with a maximum stroke of 500mm. The 

movement of the actuator is controlled by a Moog Servovalve and the 

position of the actuator is monitored by a LVDT (Linear Voltage 

Displacement Transducer). 

The actuator is supplied with hydraulic oil at a pressure of 1800 psi 

via an accumulator charged to 90 psi. The accumulator acts as a 

reserve when a sudden large demand is required. 

The advantage of a wedge type paddle is that no waves are generated 

in the region behind the paddle, thus avoiding the need for a rear 

spending beach. A hydraulic system has certain advantages over an 

electrical system, for example, interference is less, an important 

consideration especially when the absorption circuit came to be 

tested. The response to high power requirements is also better 

supplied by hydraulics. 

The high noise levels normally associated with a hydraulic system 

have been eliminated by locating the pump and hydraulic oil reservoir 

in a·separate room adjacent to the laboratory. 

2.3 Spending Beach (Plate 2.2) 

The Spending_ Beach is a low cost solution to the need to absorb as 

much wave enel·gy as possible. The slope of 1:~ was chosen as a 
compromise between the degree of reflection permissible and the need 

to make full use of the channel space available. Waves with 

frequencies between 0.5- 0.7 Hz produce 5-B% reflection. 
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2.4 Wave Gauges 

The wave gauge system used in the project is based around a Churchill 

Controls Wave Monitor. The Wave Monitor is used to drive wave gauges 

positioned in the channel. The gauges work by measuring the current 

flowing in a probe which consists of a pair of parallel wires. The 

probes used in the channel consists of a pair of stainless steel 

wires l. 5mm in diameter, 300mm long and separated by a 12. 5mm gap. 

The probe is energised with a high frequency square wave voltage to 

avoid polarisation effects at the water surface. Each probe can be 

energised with a different frequency signal so that the gauges may be 

used close together with no risk of interference between gauges. The 

wires dip into the water and. the_ current that flows between them is 

proportional to the depth of immersion. The current is sensed by an 

electronic circuit which provides an output voltage proportional to 

the instantaneous depth of immersion. The voltage is used to drive a 

chart recorder and/or data logger. 

The output voltage can be calibrated in terms of wave height by 

varying the depth of immersion of the probe in still watet·. The 

calibration was done in measured increments (lOmm) with a record made 

of the variation in output signal. When the data logger was used the 

probe -was calibrated over an BOmm --range with a least squares 

regression analysis. This enabled the 12 bit output from the A/D 

converter to be scaled to mm of wave height. 

The gauges were calibrated fot• each series of tests and remained 

linear over the whole length of probe provided they were kept clean. 

An example of a record taken with a gauge when oil was present in the 

channel is given in Figure 2.3. This variation can be attributed to 

changes 1n the electrical conductivity of the water due to 

temperature changes and/or water contamination. The vat· iat ion of 

calibrations over a single days testing was negligible. 
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2.5 Paddle Control Signal 

The paddle control signal is generated by programs installed in the 

BBC computer in the form of &PROMS (see Glossary). Regular wave 

generation is a relatively straightforward procedure. For a sinewave 

the required frequency is entered and the program uses a 'look up' 

table to determine the correct output signal. A user-defined regular 

wave requires the user to input specified ordinates which correctly 

define the shape of the required wave. 

2.5.1 Pseudo-Random Wave Generation 

2.5.2 Introduction 

'Random' wave generation takes the form of a computer controlled 

synthesiser (Thompson and Shuttler 1972). 

The synthesiser consists essentially of a digital white noise 

generator with a variable digital filter which creates pseudo-random 

output with an energy spectrum that is pr~set by the user. There is 

a program to Fourier transform the required spectrum and derive the 

coefficients for the filter and other information needed to set up 

the synthesiser. All the calculated information to set up the 

synthesiser is saved in a file by the Fourier- transform program, for 

later retrieval by the wave generation program. 

The signal is pseudo-random in that it eventually repeats itself. 

However, it can be regarded as truly random when the repetition 

period is made long compared with the duration of any test. 

Alternatively it may be experimentally convenient to use and record 

data over a short repetition period so that the spectrum can_ be 

calculated without statistical uncertainty. 

The repeatability of the signal has the advantage of giving the user 

close operational control over the test programme, in that individual 

tests can be carried out at different times or on different 

experimental arrangements with exactly the same input signals. 

Direct comparison between test results is then possible. 
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The spectrum synthesiser can be considered to consist of two separate 

·blocks: 

a. The noise source 

b. A variable filter which controls the shape of the noise spectrum 

The noise is generated by using a pseudo-random binary sequence 

(PRBS) generator based on a shift register with logical feedback of 

bits (Binary Digits). The signal is completely deterministic and 

will be identical every time ·the noise source is started with the 

same bit pattern in the shift register, and is cyclic with a 

repetition period which can be determined at will by changing the 

logical feedback. During the repetition period it generates a binary 

sequence which sweeps out a completely representative sample of the 

probability space appropriate to that sequence length and has 

sufficient of the properties. of random noise to be treated as such 

for most purposes. A spect1-um in which the repetition period is equal 

to the test length will be defined as a 'full length' spectrum. 

The variable filter acts on the PRBS to produce a digital output 

signal with the required spectrum, which is passed to a digital to 

analogue_ (D/A) converter to produce an analogue output. The filter 

is of finite impulse response (F. I.R.) non-recursive design .which 

interfaces to the PRBS generator with great ease, since the 65 stage 

shift register which forms the basis of the PRBS generator inherently 

retains the required delayed signals. The weightings are thus 

applied· to the outputs of each shift register stage and the results 

summed to produce the filtered signal. 

The impulse response defined by the weightings is anti-symmetric; 

the weight ings on stages l, 33 and 65 are zero and the others are 

taken in symmetrical pairs of opposite sign (the weighting of Stage 2 

is equal and opposite to that of Stage 64, 3 with 63 etc). Thus 31 

weight values are required to define the filter's response. 

The final stage of the synthesiser is a three-pole low pass 

'reconstruction' filter to remove high frequency components resulting 

from the sampling process; the cut-off frequency is switchable to 

suit the spectrum being generated. 
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2.5.3 The PRBS Generator 

A software implemented 65 stage shift register is used to generate 

the 65 delayed versions of the PRBS; it also forms part of the PRBS 

generator. 

There are certain preferred combinations of feedback stages which 

produce PRB sequences with statistical properties which most nearly 

approximate those of a true random signal; these are known as 

m-sequences. For a truly RBS the auto-correlation function is zero 

except for zero delay, when it is unity. An m-sequence has unit 

auto-correlation function for delays of zn - i clock pulses, where n 

is the number of active shift register stages used in the production 

of the sequence. The auto-correlation function reduces linear"ly to 

zero within one clock period on either side of these points and 

r·emains at zero for all other delays. The sequence r·epeats itself 

after 2n - l clock pulses and this figure is called the sequence 

length (in bits). The sequence duration is T=2n- 1 t seconds where 

t is the clock period. Every possible state but one of the active 

length of the shift register occurs exactly once in each m-sequence. 

The one forbidden state depends on the feedback logic used; in the 

spectrum synthesiser used here it is all zer·os, which is a self 

sustaining state. For this reason at least one 'l' must be preset to 

the active length (first n stages) of the shift register before the 

sequence is started. 

2.5.4 Program Configuration 

The pseudo-random wave generation is achieved by means of two BASIC 

programs; NEWSYN and US ERN. Program USE RN is used to produce the 

paddle control signals but before it can be successfully run a file 

of spectral parameters must have been created by NEWSYN. To pr·oduce 

paeameters, NEWSYN must know the paddle transfee function (Wave 

Amplitude/Input Voltage). The transfer function was determined 

during the initial calibration and setting up the system (see Chapter 

5). Once the tr·ansfer function has been entered it may be saved in a 

file so that it may be automatically retrieved for subsequent runs of 

the program. 
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2.5.5 Defining a spectrum 

The first step in creating.a file of spectral parameters is to enter 

all relevant parameters such as water depth and model scale a choice 

of spectra is then presented: 

Moskowitz 

Jonswap 

Darbyshire 

Newman 

ISSC 

User-defined 

The defining equations for the above spectra can be found in Appendix 

D. 

NEWSYN calculates the peak frequency, fm, of the chosen spectrum and 

then uses a frequency interval of fm/8. 16 ordinates are calculated 

with the maximum frequency at 2fm. The first 3 ordinates are set to 

zero. 

After selection of a spectrum the transfer function is entered 

manually or from disc and the prograoi calculates the parameters 

required by USERN (filter weightings etc). The calculated 

parameters are stored to disc and the model and prototype parameters 

can.be displayed on the screen. NEWSYN was modified to NEWSYNP to 

suit the needs of this project, so that the model and prototype 

parameters could be output. to a line printer (see Appendix A) to 

produce hard copy output. 

2.5.6 Spectrum Generation 

USERN is "Loaded" and "Run" to generate the spectrum. It will ask 

for a filename created by NEWSYN and display the parameters. 

The shift register must now be initialised. A choice of shift 

register length and initial state is offered. The default state is 

all zeros except the first stage. Any state is available and hence 

it is possible to start and restart a sequence from any position. 
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The signal can now be started with the Gain control and filter set at 

the positions indicated on the display. 

2.5.7 Software Modifications 

In the course of the absorption and overtopping tests various 

modifications and improvements were made to the wave generation 

programs. In the spectrum.general program NEWSYN a routine was added 

to calculate the optimum probe spacings for the frequency response 

analysis used. The spacings were calculated based on the theoretical 

peak frequency from the spectral definition and by means of a 

'look-up' table for wavelengths. 

The other major alteration 1~as to develop a routine in USE RN to allow 

any possible feedback connection sequence to be chosen for the given 

sequence length. The choice of feedback connection allows different 

full length sequences to be used for comparison· in the over topping 

tests (see Chapter 7). Each 'full length' sequence of the same 

length will have the same statistical and spectral properties but 

will produce a different time series record. 

2.6 Data Acquisition 

The data collection is achieved with a Biodata Mi crol.ink. The 

analogue output voltage from the Wave Monitor is sent to the 

Mi.crolink where it is converted to a digital record and passed to the 

Hewlett-Packard for storage ru1d analysis. Various routines and 

programs were developed for data acquisi ti.on. The software 

development is described in Chapter 4. 

The Microl ink is a modular system with a main frame containing the 

circuitry necessary for complete IEEE-488 bus operation and a number 

of modules which transfer data between the bus and the input devices. 



The analogue voltage signal from each channel of the Wave Monitor is 

sent to a single en~ed input module known as an AN-1 module. The 

modules have continuously variable Gain and Offset controls allowing 

accurate calibration to the signal source. The AN-1 has a full scale 

of 10.0 volts (i.e. 0-lOV, :5v etc). 

Each AN-1 module has a different SECONDARY ADDRESS (see Glossary) 

associated with it which is set with switches on the AN-l's circuit 

board. The SECONDARY ADDRESS allows each module to be uniquely 

defined. Hence individual modules can be addressed from the computer 

within the data collection program. Each module must be sent a SKIP 

or RETURN flag bit from the computer to determine whether or not it 

is included in the data collection routine. 

A SKIP flag implies that the module is to be excluded from data 

collection. A RETURN flag indicates that this module is the final 

module in the scan. (Means that SKIP flags need not be sent to 

modules to the right of a RETURN module). If no SKIP or RETURN flag 

is sent the system default is to include the module in any scan_. 

The analogue signal is converted to a 12 bit digital record by an A/D 

converter module. The digital signal is passed to the computer via 

the IEEE interface bus. 

The rate of data acquisition is software controlled. the user can 

choose any logging rate from 32us to 255s. The data is sent to a 

software buffer prior to storage on disc. The acquisition rate is 

controlled by a High Speed Clock (HSC) module. The HSC module has a 

Trigger Facility which enables data acquisition to commence by 

activating a 

Micro link. 

switch which can be remote from the computer and 

The trigger facility is especially useful during 

calibration of the wave gauges. It also allows the user to observe 

the whole length of. the channel and commence data aGquisition 

simultaneously. 
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CHAPTER 3 

ANALYSIS THEORY 

3.1 Introduction 

In this chapter the theory is presented and developed for the 

analysis of regular and random waves. Regular as well as random 

waves were used in the optimisation and calibration of the paddle and 

the absorption circuit. Random waves were also used in the trials of 

the absorption circuit. The majority of the overtopping tests were 

carried out with random waves. 

3.2 Linear Wave Theory 

To predict and interpret the behaviour of the paddle with and without 

wave absorption when a highly reflective barrier (wavescreen ) was 

present in the channel, linear wave theory was used. 

The variation in water surface elevation n (x, t ) i s assumed to be 

sinusoidal in both space and time. 

as: 

n(x,t) = 

where h = Wave height (Peak to trough) 

L = 2rr/ k wave length 

T = 2rr/w wave period 

The elevation may be expressed 

By assuming that H<<L and H<<d where d is the depth of water, i t may 

be shown that the wave celerity, C, i s given by: 

c = L/ T = w/ k 

= g1 Tanh 2rrd 
2rr L 

L = gT2 Tanh 
[ 

2rrd 

1 -
2rr L ... . ... . ... . ..... . ... (3 .1 ) 
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Equation 3.1 was used to calculate the wave lengths of the sinewaves 

used in the regular wave tests. The calculation was performed by a 

program "WAVELEN", written to calculate wave lengths and wave numbers 

by an iterative technique to determine the wavelengths. which caused 

nodes or antinodes to be formed at the paddle front. 

Approximations for Deep Water: 

Equation 3.1 shows the influence the relative depth d/L has on the 

propagation of waves. · The application of the adjective "deep" or 

"shallow" to gravity waves depends upon the length of the wave being 

transmitted. 

The approximation "deep" is governed by the following test: 

If d/L ~ 0.5 then Tanh f 2:d J = 1 

L = ~ ..•.••..•... deep water approximation 
2TT 

3.2.1 Fluid Particle Motion 

(3.2) 

These are two methods of following the motion of fluid particles. 

The Eulerian approach is to concentrate on a fixed point in space and 

note the changes in time. The Lagrangian approach is to travel with 

the fluid particles and record their spatial variations. The 

lagrangian equations will be used here. 

The horizontal, x', and vertical, y', displacements of a particle 

about its mean position (x• y ) are given by: 

x' = -h Cosh [Zrr (y+d)/L] 

2 S inh ( Zrrd/L) 

y' = -h Sinh [Zrr (y+d)/L] 

2 Sinh (Zrrd/L) 
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Thus in deep water the water particles move in closed circular 

orbits. This is only a first order approximation and higher order 

theories predict open orbits in which the particles slowly progress 

in the direction of wave propagation. This is known as Mass 

Transport. 

3.2.2 Effects of Wavescreen 

When regular waves travel towards a vertical impermeable barrier an 

anti-node must be formed at the barrier. The wavescreen (see Chapter 

6) forms a vertical barrier in the wave channel at the opposite end 

to the wave paddle. 

The effect of the wavescreens used to test the wave absorption system 

board (Chapter 6) was to increase reflection. When the full 

wavescreen (No 1) was used standing wave patterns were produced. 

WAVESCREEN 

Figure 3.1 Anti-node at Vertical Barrier 

At an anti-node there is maximum vertical water displacement with 

zero horizontal displacement. At a node there is maximum horizontal 

water displacement and zero vertical displacement. 
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Given that there will always be an antinode (full or partial) at the 

wavescreen, there will also be an antinode at the paddle if: 

La = ILn (3.5) 

where I= 1,2,3, ...•••• N 
Ln = half the the distance from the mid-stroke of 

the paddle to the wavescreen 

and LJl =·wavelength of generated wave. 

A node will be formed at the paddle if 

La= IL0 - Ln (3.6) 
2 

Lr 

ln 

Figure 3.2 Antinode at Paddle Front 
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Lr 

Ln 

Figure 3.3 Node at Paddle Front 

The test frequencies for the regular wave tests were chosen to 

introduce the two above effects. For the purposes of analysis the 

paddle to wavescreen distance was calculated with the paddle at its 

mid-stroke position. 

When no attempt is made to prevent the re-reflections from the paddle 

(as in a conventional system) the wave action between two antinodes 

will cause resonance. The waves increase in size until no 

measurement is possible. In the present investigation the wavescreen 

used was not 100% reflective, due to small gaps between some of the 

slats. In this case the increase of wave height caused by the 

resonance was partially offset by the wave transmission through these 

gaps. As will be seen later, the wave absorption system completely 

changed the situation. 

3.3 Regular Waves - A Wave Envelope Analysis 

The incident and reflected wave heights in the . regular wave tests 

were evaluated by examination of wave envelopes. The results were 

used to determine the dynamic characteristics of the paddle and to 

help assess the potential of the absorption circuit. 
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trace recorded with the high speed chart recorder. Later a computer 

program was developed to analyse the record digitally. Both the 

manual analysis and the computer program use the same logic to 

evaluate an incident wave height, a reflected wave height and the 

reflection coefficient. 

3.3.1 Reflections of Regular Waves 

The spending beach installed in the channel absorbs most of the wave 

energy. 

paddle. 

However, a significant portion is reflected back towards the 

The degree of reflection is frequency dependent. The 

reflected wave train is superimposed on the incident wave train. 

If a wave gauge mounted on a slow moving trolley traverses over a 

length of the channel then a wave envelope is produced. The wave 

envelope (Fig.3.4) is a result of positive and negative interference 

from the incident and reflected waves. The analysis of the wave 

envelope is based upon the following interpretation. The theory was 

discussed by Sandstrom (1974). 

Figure 3.4 Section of Wave Envelope 

35 



A = (A 1 + A2 + 

B = (B 1 + B 2 + 

Am)/m over the whole record. 

Bn)/n over the whole record 

where Ai are the maxima taken from the wave envelope and Bi are the 

minima taken from the wave envelope then: 

Incident wave height 

Reflected wave height 

Hr = (A + B)/2 

Hfl - (A. - B)/2 

Reflection Coefficient I? = (HR/Hr) x 100 

(3.7) 

(3. B) 

(3.9) 

When the chart recorder was used the results were scaled by the chart 

recorder transfer function as described in Chapter 2. 

3~3.2 Free Second Harmonic Wave 

The procedure described above is a simplification of the real 

situation. The waves produced by a sinusoidal paddle motion do not 

have the ideal constant form which would be expected. As the waves 

propagate they slowly change form in a periodic way, which depends on 

both the wave steepness H/L, the relative water depth d/L, and the 

undisturbed water depth. There is then a temporal variation of the 

·surface elevation at different points along the channel. One reason 

for the irregularities is that a paddle cannot exactly produce the 

variation of the particle motion which corresponds to a progressive 

wave of constant form. 

This phenomenon has been investigated by a number of people including 

Goda (1967), Le Mehaute et al (1968) and Iwagaki and Sakai (1970). 

An analysis of the changing wave pr·ofile suggests as a crude 

explanation that a smaller wave is travelling down the channel 

super imposed on the main wave, but with a somewhat smaller speed. 

Theoretical considerations show (Fontanet 1961) that to the lowest 

approximation the period of this wave is T/2 (where T is the period 

of the main wave). This wave is called the 'free second. harmonic 

wave'. 

Including all terms to second order the surface elevation n can be 

written as the superposition of a second order Stokes wave and a free 

second harmonic wave. 
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n = a 1 cos (wt-kx) + a 2 cos 2(wt-kx) + a 22 cos (2wt-k22 

X+ ~2) (3.10) 

Analysis of the above equation shows that the water surface elevation 

varies with distance but not time. 

The existence of the free second harmonic waves requires that care 

must be exhibited when measuring the maxima and minima in the wave 

envelope. It is important to measure between adjacent waves rather 

than absolute maxima and minima. The computer program is designed to 

calculate successive wave heights rather than absolute maxima and 

minima. 

Figure 3. 6 i s an example of the data sheet used for a regular wave 

test. 

An example of a wave envelope is shown below. 

-v-·. 
-------~~--~------~~~--~------~------------

Figure 3.5 Example of a Wave Envelope for 0.5Hz waves. 
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REGULAR WAVE TEST 
DATE= 4-12-84 

WATER DEPTH = 1.00 m 

WAVE GAUGE-SET OUTPUT = 5.00 

PEN RECORDER RANGE = 50 mV 

GENERATOR SETTINGS 
FREQUENCY= 0.7 Hz 

FILTER=6 

GAIN = 0.80 

WAVE ABSORPTION IN OUT 

ENVELOPE MAX (Hmax ") 

4.0,4.o,3.9,4.o,4.1 1 4.o,4.0,4.o,3.9,4.o 

Hmax= 3.99 Smax= 0.05 

ENVELOPE MIN (Hmin ") 
3.5,3. 5 ,3.5,3.5,3.4 1 3.5,3.5. 3.5 .3.5,3. 5 

Hmin= 3.49 Smin= 0.03 

PEN TRANSFER SCALE 

Hl=(3.99 + 3.49)12* 0.961 * 15.58 = 56.00 mm 

HR=(3.99- 3.49)12* 0.961 * 15.58 = 3.74 mm 

REFLECTION COEFFCIENT=HR/HI*1 00 = 6.7 % 

WAVE HEIGHT(HI)/INPUT VOLTAGE= 0.07 m/Volt 

FIG 3.6 REGULAR WAVE TEST DATA SHEET 
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3.4 Random Waves The Energy Spectrum 

3.4.1 Introduction 

The analysis of a random wave record is a more complicated procedure 

than the regular wave analysis. Over the yeat·s no definitive 

approach to nomenclature and procedure has been developed. The 

intention here is to adopt the convention used at the Institute of 

Oceanographic Sciences (!OS) and by Bendat and Piersol (1971). 

There are two basic types of analysis for random wave records. The 

wave by wave approach or analysis by energy spectrum. The former is 

the more straightforward but limited in applications. Since the 

advent of 'cheap' computing the energy spectrum approach has gained 

almost universal use and all the information available from a wave by 

wave analysis is available via the energy spectrUm. The wave by wave 

record is a good check on the coding for the energy spectrum approach 

and can provide a quick 'first impression' before a more detailed 

analysis is undertaken. 

3.4.2 Wave Record- Time-Domain 

A wave by wave analysis of the record only yields limited data but is 

very quick. 

below: 

The available information and definitions are given 

Mean zero up-crossing period Tz 

The time between successive up-crossings of mean water level (MWL). 
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T i+ 1 

wave 

height 

T i 

Figure 3.7 Mean zero up-crossing period 

n 
Tz = I: Ti/n-1 

i=l 

The computer program calculates this by searching for each successive 

up-crossing in the digital wave record and calculating the mean. 

Significant Wave Height HS 

The mean of the highest l/3 of all the waves in the record. Hs 
approximates to the visual estimate of wave height that would be 

obtained by an experienced observer. The program finds Hg by 

calculating all the wave heights in the record and sorting them to 

ascending order. The highest l/3 of the values can then be averaged. 

The sort for significant wave height makes it straightforward to 

calculate other percentiles. The values calculated by the program at 

present are the mean highest 10~ and 1~. In addition the maximum and 

minimum wave heights are output . 
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Wave Steepness 

The parameters calculated can also be used to calculate a value for 

wave steepness defined as: 

Wave Steepness = Wave height/wave length 

3.4.3 Energy Spectrum 

The study of wave statistics connected with the energy spectrum of 

surface elevation is made on the assumption that sea waves are a 

random Gaussian process. The many approaches to· producing an energy 

spectrum were discussed in Chapter 1. The technique used here was to 

produce a variance density spectrum via a Fast Fourier Transform 

(FFT). The FFT algorithm was taken from the HP Numerical Analysis 

programs and adapted to accept up to 4k (4096) of data instead of the 

lk (1024) for which it was written. A full description of the FFT 

process and the energy spectrum has been produced by Tucker (1979). 

The variance density spectrum, calculated from data recorded at one 

location within the channel, will be referred to as a 'point' 

spectrum. 

3.4.3.1 Fast Fourier Transform 

The FFT algorithm used is a Radix-2 FFT. In this the sequence length 

is given by: 

N = zt 

where N is the number of data points and t is an integer. For a 4k 

data set t = 12. 

The data set is split into two complimentary arrays. The even points 

(i.e. the 2nd data point, 4th .... ) are put into the real array and 

the odd points into the imaginary array. 

n/2-1 
The FFT is defined as X(Fk,T) = Xk = r Xzm 

m=o 
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n/2-1 
wznk - wk r Xzm+1 

m=o (3.11) 



For k = 0 to N/2-1 
and W=e-i2JT/n i = ,/-1 

The values are returned as a real and imaginary pair with a frequency 

interval of 

~f = 1/(NxDt) where Dt is the sampling interval. 

It is coJDIIIon to apply some kind of window function to the data to 

produce a smooth estimate. The window function used here is the 

Cosine Taper Window. 

found in Appendix D. 

The equations for this window and others can be 

The effect of the window is to reduce the 

variance of the tapered data relative to the original data. The 

smooth estimates should be multiplied by l/0. 085 to retain the 

correct .variance. Examples of spectra from the same data set with 

and without windowing can be seen in Figs 3.8 and 3.9. 

In order to remove the energy at 0 Hz it is usual to transform the 

data to have a mean value of zero. 

The cut-off frequency· is defined as 

Fcut = (~ x N)/2 

3.4·.3.2 Variance Density Spectrum 

The variance density Gk is defined as 

= 2Dt 
N-

where k --~f and Xk* is the complex conjugate of Xk· 

(3.12) 

The raw estimates of variance density need to be smoothed in some 

manner since successive values are essentially uncorrelated .. 
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3.4.4 Smoothing 

There are two types of smoothing available. Frequency smoothing or 

segment averaging'. The method used here is segment averaging. In 

this case q slices of a time slice of length, Tr'·, are averaged 

together such that Tr =n qTr' where Tr is the original record length. 

The final smooth estimate is then given by: 

....... akq J (3.13) 

where Gk, q is the raw estimate at frequency fk of the qth time 

slice. 

The bandwidth will be approximately l/Tr'· 

The normalised standard error in calculating the spectrum, e:r, is 

given by: 

(3.14) 

3.4.5 Variance Density Algorithm 

The main steps in the algod thm used· for calculating a variance 

density spectrum are listed below: 

1. Transform data to have mean value zero. 

2. Taper the data using the cosine taper data window. 

3. Compute Xk using the FFT routine 

4. Compute Gk. 

5. Adjust estimates by l/0.875 to correct for tapering. 

6. Smooth estimates by segment averaging. 

Examples of Variance Density Spectrum at·e given in Figures 3. 8 and 

3.9. 
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3.5 Statistics from Spectrum 

It is possible to estimate various wave statistics from the spectrum. 

The significant wave height Hs is the most statistically stable of 

these and is given by: 

Hs = 4a = 4 -IMo (3.15) 

where q is the variance of the spectral estimates. 

If higher order statistics are calculated then an estimate of the 

zero-crossing period can be obtained, although it has been found 

(Goda 1974) that this can be up to 20% too low compared to the 

physical situation. 

Other statistics calculated include: 

where MO,M2 and M4 are Spectral Moments defined by: 

where Mn denotes the nth moment and n is an integer 

Spectral peakedness parameter 2 = ffio2 J:f(G(t)]2 df 

Spectral mean frequency = centroid of spectrum 
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The following list is a list of typical input parameters and 

parameters calculated for a variance density spectrum: 

3.6 

Record Size 

Sampling Interval 

Record Length 

Cut off Frequency 

Discrete frequency interval 

Normalised Standard Error 

Bandwidth 

No. of raw estimates in smooth estimate 

Frequency Resolution 

4096 

0.1 s 
409.6 s 
5 Hz 

0.00244 Hz 

15.6% 

0.1001 Hz 

41 

0.049 Hz 

Table 3.1 Energy Spectrum Parameters 

Random Waves Frequency Response Function Method (FRFM) 

3.6.1 Introduction 

As previously mentioned, in a laboratory wave channel a proportion of 

the energy of the waves is reflected back along the channel towards 

the wave generator. Hence, in random waves, it is necessary to have 

a means of measuring the incident wave spectrum and the reflection 

coefficient. This can be done by simultaneously recording the water 

surface elevations at two points x and y separated by a distance, s, 

in the direction of wave propagation and calculating the 

cross-spectrum. A number of techniques were reviewed in Chapter 1. 

The incident spectrum and reflection coefficient can be calculated 

from the cross-spectrum. This approach was used by Kaj ima. The 

calculations are achieved with a FFT in preference to the correlation 

functions originally used. 

3.6.2 Cross-spectrum 

The cross-spectrum is given by: 

(3.15) 

where Xk* is the complex conjugate of Xk· 
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i( t) 

Thus it is possible to obtain the cross-spectrum from FFT's of the 

two data sets at x and y. 

The cross spectrum will be a complex pair 'often written as 

Sxy = c + iq (3.16) 

For the subsequent analysis the spectra at x and y, Sxx and Syy are 

calculated in the same way as described in the previous section and 

Sxy js calculated as above. 

3.6.3 Frequency Response Function 

For waves in a channel the frequency response function, H, is given 

by: 

H=e-ks = cos(ks)-isin(ks) (3.17) 

where k is the wave number: k = 2TT/L 

since a particular wave component only undergoes a phase change of ks 

radians between x and y. 

3.6.4 Incident and Reflected Spectra 

The situation 1s represented schema:tically below: 

H(f) 

r(t) 

H(f) 

Fig.3.]0 Schematisation of Laboratory Reflections 
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No assumption has been made about any correlation between the waves 

in the two directions. If I, R, X and Y are the fourier transforms 

of the waves in the two directions and of the waves recorded at x and 

y then: 

X = I + HR 

Y = HI + R 

(3.18) 

( 3. 19) 

That is the transform at x is equal to the transform of the incident 

spectrum at x added to the frequency response of the transform of the 

reflected spectrum at Y. 

A full expansion of all the following complex algebra can be found in 

Appendix B. 

From (3.17), (3.18) and (3.19) 

I*I =·(X-HY)*(X-HY)/(l-H2)(1-H2) 

R*R = (Y-HX)*(Y-HX)/(l-H2)(1-H2) 

Hence 

2c Cos(ks) 2q Sin (ks)/4 Sin2(ks) Sii " (8,cx + Syy 

Srr = <Sxx + Syy 2c Cos(ks) + 2q Sin (ks)/4 Sin2(ks) 

The reflection coefficient p(t) is given by 

The functions Sii and Srr are singular at 

k = nn, n = 0,1.2 ..... . 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

Equations (3.22) and (3.23) are those used in the computer program to 

derive incident and reflected spectra. 
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3.6.5.Measurement 

The physical measurement of incident and reflected spectra is made by 

three wave gauges located in the channel. The three gauges measure 

water surface elevation simultaneously. The spacing of the gauges 

must be known and an optimum spacing strategy can be used to obtain 

maximum resolution around the point of most interest (modal 

frequency). The strategy used is outlined below. 

3.6.6 Wave Gauge Separation 

The gauges must be separated· so that the peak frequency does not 

occur when ks = nrr, n=O,l,2 

to infinity. 

since at these values sin2(ks) tends 

For maximum resolution around the peak frequency the spacing of two 

of the gauges (gauges 1 and 2 were used) was chosen as ks = nrr 

Hence s = !!!! 
2k 

2 

The spacing of gauges 2 and 3 was chosen so that sin [~~ ) ~ in all 

cases. 

The third spacing (gauges 1-3) is the sum of the other two spacings 

and hence a check on the data and the assumptions made about the 

separations could be kept. 

An example calculation for the wave gauge separations for the random 

seas produced can be found in Appendix C. 

The theory and subsequent computer program have been thoroughly 

tested with the random wave tests on the absor·ption circuit board. 

The effects of different spacings and the resolution of the technique 

is fully described in Chapter 6 where results from the absorption 

tests are presented. 
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3.7 Program Configuration 

The program, in addition to calculating variance density spectra at x 

and y, incident and reflected spectra and a reflection coefficient, 

also offers substantial graphical output. 

All four spectra can be plotted singly or in any desired combination 

and a reflection coefficient graph may be plotted if required. 

A brief description of the program cw1 be found in the next chapter. 

Program output can be found in Appendix A. 
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CHAPTER 4 

SOFTWARE DEVELOPMENT 

4.1 Introduction 

In order to analyse and interpret the results from the physical 

overtopping studies and to aid the development of the absorption 

system a comprehensive set of wave data collection and analysis 

routines was written. The programs were written to be flexible 

enough to cope with a variety of different test configurations and to 

be sufficiently 'user-friendly' to allow any number of users rapid 

access to the interpretations. For this purpose, a comprehensive 

documentation of all programs, together with sets of instructions, 

has been compiled. 

The programs have been . written for the Hewlett-Packard 9816S in HP 

BASIC 2.0 with extensions AP2.l. The advantage of a microcomputer 

based system over a mainframe lies in the mobility of the equipment 

and the ease to which data acquisition and analysis can be 

implemented. 

Wherever possible use was made of the screen defined softkeys. Up to 

10 possible answers may be displayed and labelled on the screen and a 

single key press is all that is required to select an option. Fat· 

example two keys could be labelled 'Yes' and 'No' and when the 

questions is displayed a positive answer is given by a single press 

of the 'Yes' key rather than typing YES 'ENTER'. Use of the softkey 

facility greatly increases efficiency and reduces the possibility of 

typing errors. 

4.2 Data Acquisition 

The data acquisition program was written in a very general form which 

will allow it compatibility with a wide range of possible data types, 

provided that the data is logged by a MICROLINK data logger. The 

program has software control over both the sampling interval and the 

size of sample required. In addition, it can select any number of 

· modules from the MICROLINK as required and control the multiplexing 

(simultaneous scanning of all active modules) facility. 
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Throughout the development of the ·software the aim has been to 

eliminate the possibility of any ambiguity in the interpretation of 

results. From each test, a Masterfile is created by the program. 

All useful data acquisition parameters such as the date, logging 

rates, etc, are stored in this file on disc. When the analysis is 

performed, the analysis program input is only the Masterfile. In 

this way data entry errors can be eliminated, and analysis proceeds 

much quicker. 

The digital data is collected sequentially in either 8 or 12 bit form 

(i.e. 0-255 or 0-4095 respectively). The collection starts ft·om the 

left side of the Microlink and scans all the active modules (see 

Chapter 2) from left to right up to the last active module. The data 

is collected by the computer in a sequential buffer file. Thus, if 

five gauges are being used to each collect 2048 data points the 

buffer will hold 2048 x 5 = 10240 data points of which the points 

from module one, for example, will be every fifth starting at one, 

i.e. 1, 6, ll etc. and so on for each module. 

Once data collection has finished the data is calibrated and stored 

onto disc in separate data files for the data from each wavegauge. 

The calibration relates the digital record to the analogue input by 

an appropriate scale factor (see below). 

With this system once all parameters (logging rate, data file names, 

etc) have been entered and the data acquisition started with the 

trigger switch (see Chapter 2) no user interaction is requit·ed until 

a data analysis is required. 

It is possible that the analogue input signal may have gone beyond 

the range of the analogue input module (The AN-1, see Chapter 2) and 

hence the A/D converter. The AN-l modules have a 10 volt full scale 

range, adjustable as required, i.e. 0-l0V,±5V etc. 
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An error trap routine has been incorporated within the acquisition 

program which will note all occurrences where the data may have been 

clipped at either end of the scale. Thus, with 12 bit conversion if 

a 0 or 4095 is recorded a message will appear on the printed output 

to indicate the extent of any truncation. It is then up to the user 

to decide whether this truncation is acceptable or not with regards 

to the analysis to be performed on the data. 

To help users not familiar with either the Hewlett-Packard or the 

Microlink, a 'Help' routine has be~n included in the program which 

provides 4 pages of instructions and hints for the data acquisition. 

Any part of 'Help' routine may be printed out on request. A copy of 

'Help' is included in Appendix A. 

4.2.1 Wave Data Acquisition 

When the data acquisition program is used to collect wave data the 

analogue input modules are connected to the Churchill Controls Wave 

Monitor (see Chapter 2). Each wave gauge needs to be calibrated 

separately - as described earlier - to establish a relationship 

between mm wave height and the digital signal. The calibration of 

the digital record to mm wave height is in the form of a least 

squares regression analysis. For each gauge, 8 readings are taken, 

in lOmm increments from -30mm to + 40mm with Omm at still water 

level. The least squares regression analysis of the digital output 

compared to the theoretical values of mm of surface elevation 

provides the calibration to mm wave height as well as checking the 

linearity of the probe. 

4.3 Wave Data Processing 

Since all the data acquisition and analysis is performed on the same 

machine very little data processing is required. The data 

acquisition program stores the data as a digital record of the 

surface displacement in mm from the still water level. The wave data 

analysis routines can use the data in this form. However, a library 

of data processing routines have been written to allow the user some 

flexibility in data types and rapid access to certain pieces of 

information. 
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The programs in the library include programs to; perform spectral 

analysis on voltage rather than wave height records, read and/or 

print data files, edit the contents of masterfiles and calibration 

routines for the wave gauges. Appendix A details a more 

comprehensive list of data processing programs. 

4.4 Wave Data Analysis 

All the routines written for the menu-driven wave data analysis 

software package can process up to a 4k (i.e. 4096) data set. A 4k 

data is seen as a· sufficiently long record for accurate analysis. 

(Bendat and Piersol 1971). 

As a pre-requisite to all the more advanced statistics offered, a 

general statistical analysis is carried out. The· statistics 

calculated are: mean, variance, standard deviation, root mean square, 

skewness and kurtosis. A brief glance at such values <IS the mean can 

highlight any possible errors in the data and avoid wasting time with 

a detailed analysis. 

Other more advanced statistical routines are then·made available (see 

Appendix A for details of statistics available). 

A 'point' spectral analysis routine as described in Chapter 3 is also 

available in the package although its function is duplicated as part 

of the main Frequency Response Function analysis. 

The Fr·equency Response Function method was also fully described in 

Chapter 3. The program written, in addition to computing the 

incident and reflected spectra also produces the 'point' spectra for 

both gauge locations. Use of the program provides nearly all the 

required information for detailed interpretation. 

Other programs which are on the same menu are the program to 

calculate the overtopping discharge fr·om the breakwater tests (see 

Chapter 7) and a program· to calculate the times and numbet" of 

overtopping waves in a test. 
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4.5 Graphics 

Whenever possible, use has been made of the . excellent graphics 

capabilities of the HP system and a number of graphics routines have 

been written to aid the interpretation of results. A further menu is 

used to determine the location of the output; scr·een, plotter, etc. 

Presentation quality is available. 

4.6 Regular Wave Reflection Program 

A program, the logic for which was describ_ed in Chapter 3, was 

written to help analyse the results of the regular wave tests. The 

regular wave tests were used both to calibrate the paddle and then to 

test the absorption system. The program calculated a wave envelope 

from the digital record. To try and eliminate any unwanted values 

which may be in the data, such as from mains spikes, values outside 

30% of the mean of maxima and minima were discarded. The 30% value 

was chosen after careful scrutiny of chart records. 

The results from the program were compared to a manual analysis of a 

chart record and found to be within ± lmm. 

4.7 Programming Considerations 

In order to keep the dynamic memory (i.e. array memory) as large as 

possible, all the analysis programs are written as subroutines which 

are loaded into memory from disc if required, and removed once they 

have been used. Careful allocation of array space was also 

maintained. 

The graphics programs a1·e written is a combination of HP BASIC and 

HPGL (Hewlett Packard Graphics Language). 

For the more complex programs 'HELP' routines have been built in, the 

routines can be called if a user is uncertain as to the program's 

operation or function. Pages from the 'HELP' 1·outines can be output 

on the printer if required. 
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Although BASIC is a non-compiled language the analysis is fairly 

quick. The results are all presented in ·a non-ambiguous form on the 

printer with clear labels and all the input information such as date, 

test number etc. clearly shown. Large quantities of data can thus be 

processed with no problem of confusion of data. 

The 'HELP' routines are given in Appendix A, together with the 

statistics offered and the execution times of the main programs. 

4.8 Program Flowcharts 

Simplified flow diagrams are given in Figures 4.1 - 4.3 for the main 

data acquisition and analrsis programs. Where necessary a brief 

description of subroutine function is also given. 

4.9 Quality Assurance 

All the programs have· been extensively tested and wherever possible 

the results compared to a manual analysis. Checks were made at all 

stages of the development with diagnostic information printed out if 

necessary. All the program output contains details of the input 

parameters to provide a check on the results. 

Cross-checking of results wherever possible also helps verify the 

computer analysis. The extensive graphical output also helped to 

validate the results of some of the more complex programs such as the 

Frequency Response analysis. 

A comprehensive wave data acquisition and analysis suite has now been 

·compiled with a high degree of confidence in the software. The 

system is also very user-friendly. 
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Program MICROLINK3 
_J 

MAIN 

HELP? 
YES 

HELP 

NO J 

SET UP 
J DIG SELECT 

CALIBRATE J 
I 

ANALOGUE INPUT REGRESSION 

J 

FILENAMES FILE SIZE 

DATA COLLECTIOt'-

DATA SORT 

PRINT OUT 

YES 
ANOTHER RUN ? 

'--

I NO 

/ 

END 

FIC 4.1 FLOW CHART FOR DATA ACQUISITION PROGRAM 
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STATISTICS 

A 

DATA IN MEMORY ? 

YES 

GENERAL 

SIAJISTICS 

STATS 

MENU 

I 
END 

NO 

Statistics Routines 

I 
CHOICE OF ANALYSIS 

OVER TOP REGRESSION FREQRES 

8 c D 
I 

READ DATA 

J 

TRANSFORMATION 

NORMALISATION 

STANDARDISATION 

PROBABILITY DENSITY 

GAUSSIAN DISTRIBUTION 

RAYLEIGH DISTRIBUTION 

SPECTRAL WIDTH 

WAVE STATISTICS 

VARIANCE DENSITY SPECTRUM 

TIME DOMAIN PLOT 

FIG 4.2 FLOW CHART FOR ANALYSIS ROUTINES 

58 



Frequency Response Function Program 

STATISTICS 

A 

J 
CHOICE OF ANALYSIS 

OVER TOP 

8 

GRAPHICS 

REGRESSION 

c 

m 

SEGMENT 

AVERAGING 

FIG 4.3 FLOW CHART FOR FREQUENCY RESPONSE ANALYSIS 
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CHAPTER 5 

CALIBRATION AND OPTIMISATION OF THE PADDLE 

5.1 Introduction 

Only basic construction of the wedge wave paddle and channel facility 

had been completed at the onset of the project. Initially, a 

calibration and optimisation of the paddle was undertaken and over 

the first 8 months or so a number of operating problems were 

encountered and snags in the system ironed out. 

5.2 Paddle Dynamic Characteristics 

The dynamic characteristics of the paddle need to be known for the 

generation of random waves as mentioned earlier. The procedure is to 

determine a Transfer Function of wave amplitude to input voltage. 

(Equations (5.1 to 5.3) ]. The_ simplest procedure is to produce a 

whole series of monochromatic waves with different· input voltages for 

- various depths of water in the channel. The results from each test 

series can be then used to produce the Transfer Functions needed for 

random wave generation (see Chapter 2). For the purpose of this 

investigation the following conventions were used. This convention 

avoids the ambiguities in changing from amplitude to height present 

in the regular and random Hydraulics Research software. 

5.3 Conventions 

The amplitude in volts ·of the sinusoidal paddle control signal is 

known as an input voltage, defined as the voltage amplitude i.e. 

Input voltage = 2 means a ±2V signal. 

The input voltage is related to Wave Amplitude where the wave 

amplitude is half the total peak-trough height. 

The Stroke Length used to calculate the theoretical transfer function 

and used in the absorption circuit board tests is half stroke or 

stroke amplitude (see also Chapter 7). 

60 



5.4 Test Procedure 

The method of analysis to determine incident and reflected wave 

heights from a wave envelope has already been discussed (Chapter 3). 

The practical test procedure was to mount a wave gauge onto the 

trolley above the channel. The envelope of the wave ·motion was 

produced by a slow moving traverse forward i.e. in the direction of 

wave propagation, and back over a llm section of channel. The 

results were recorded to a chart recorder for subsequent aria lysis. 

Later a computer program was written to analyse the wave record. 

Sinewaves with frequencies from 0.1 Hz up to that frequency which 

caused the waves to break were generated, incremented in steps of 

0.1 Hz. For each test series the wave gauge was calibrated to 

provide a relationship between m wave height in the channel and 

inches on the chart recorder (inches were used simply because the 

chart paper was scaled in inches). A typical test series would 

require lH hours of laboratory ·work and a further lH hours manual 

analysis time. The computer analysis reduced the analysis time to a 

couple of minutes. 

To determine the dynamic characteristics of the paddle the tests were 

repeated with 5 different input voltages (gain) and 3 different water 

depths .. The gains used (see Glossary and Chapter 2) were 0.40, 0.80, 

1. 00, 2. 00 and 3. 00 which cover the expected range of random wave 

heights up to 220mm. 

The test were all carried out with the spending beach at the opposite 

end of the channel to the wave paddle. The spending beach was 

described in chapter 2. 

5.5 Results 

A complete set of results from all the tests can be found in a 

separate report. 
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A comparison of the Frequency vs. Reflection Coefficient graphs 

(Figures 5.1, 5.2, 5.3), where the Reflection Coefficient is given as 

a percentage and measured with the wave envelope theory described .in 

Chapter 3, shows that the overall characteristics of the channel are 

very similar at all depths of water. 

The transfer function graphs of Frequency vs Wave Amplitude (Figures 

5.4, 5.5, 5.6) suggest that within the range of general scatter of 

the results the paddle characteristics for a given depth of water are 

linear. The transfer function curves all reach a peak at around 1.0 

Hz and then a higher frequency wave appears to produce no increase of 

wave height. The upper limit of any particular test series was 

determined by wave breaking. 

The transfer function curves at l.OOm and 0.80m water depth give very 

similar results, but the 0.60m depth curve, although the same· shape 

shows waves of much smaller amplitude. This is attributable to the 

smaller area of paddle ft•ont immersed in the water at a lower depth, 

since all tests were conducted with· the paddle moving about its 

mid-stroke position. 

The results were used.to produce the following Transfer Function for 

the generation of random waves in l.Om and 0.8m of water. 

Frequency Hz Transfer Function m/v 

0.1 .003 

0.2 .0055 

0.3 .010 

0.4 ~013 

0.5 .016 

0.6 .023 

0.7 .031 

0.8 .036 

0.9 .038 

1.0 .040 

2:0 .040 

Table 5.1 Measured Paddle Transfer Function 
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FIG 5 .1 CHANNEL REFLECTION CHARACTERISTICS 1 .00 m 



FREQUENCY vs REFLECTION COEFFICIENT 
0.80 m 

GAIN 0.40 GAIN 0.80 GAIN 1.00 GAIN 2 .00 GAIN 3.00 

REFLECTION COEFFCIENT % 
100 

90 

80 

70 

60 

50 

40 

30 

20 

10 

0 
0 .2 .4 .6 .8 1 1.2 1.4 1.6 1.8 2 

FREQUENCY Hz 
FIG 5.2 CHANNEL REFLECTION CHARACTERISTICS 0.60 m 



0'1 
Ul 

FREQUENCY vs REFLECTION COEFFICIENT 
0.60 m 

GAIN 0.40 GAIN 0.80 GAIN 1.00 GAIN 2.00 GAIN 3 .00 

REFLECTION COEFFCIENT % 
100 

90 

80 

70 

60 

50 

40 

30 

20 

10 ---
0 

0 .2 .4 .6 .8 1 1.2 1.4 1 .6 1.8 2 
FREQUENCY Hz 

FIG 5.3 CHANNEL REFLECTION CHARACTERISTICS 0.60 m 



0\ 
0\ 
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FIG 5.4 PADDLE TRANSFER CHARACTERISTICS AT 1.00 m WATER DEPTH 
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The transfer function values, once entered into the wave generation 

program NRWSYN, (see Chapter 2) are stored on disc. The O.Bm depth 

of water Transfer Function is stored with a filename of •TRANsa•. 
For subsequent spectrum generation only the filename needs to be 

entered and the program will calculate the spectral parameters. Wave 

generation was more fully described in Chapter 2. 

The results of the monochromatic wave tests were presented to 

Hydraulics Research Limited for a determination of the 

characteristics necessary to design an effective wave absorption 

filter as described in the next chapter. 

5.6 Theoretical Transfer Function 

In addition to the measurement of the Transfer Function with 

monochromatic waves it is possible to determine the Transfer Function 

analytically (Thompson et al 1970). 

The Transfer Function for the wedge-type paddle in use here has been 

derived and a comparison shown below and.on Figure 5.9. 

s 

b•0.88 m 

Figure 5.7 Theoretical Transfer Function- Definitions 
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W = d/b where b - submergence of paddle at mid-stroke 

d - water depth 

G2 = H/s where H - wave height 

(5.1) 

s - paddle stroke (5.2) 

n = H/gT2 where g - acceleration due to gravity = 9.81 m/s 2 

T- wave period (5.3) 

For a ±lv signal s = 0.02 m 

so here W = 0.88/1 = 0.88 

The values of G2 are found from Figure 5.8. 

This leads to the following results: 

Frequency % G2 Theoretical 

n h/m 

.l .001 .18 .0036 

.2 .004 .37 .0074 

.3 .009 .60 .012 

.4 .016 .80 .016 

.5 .025 1.10 .022 

.6 .037 1.50 .030 

.7 .050 l. 70 .034 

.a .065 1.90 .038 

.9 .083 1.95 .039 

1.0 .102 2.00 .040 

2.0 .102 2.00 .040 

Measured 

him 

.003 

.0055 

.010 

.013 

.016 

.023 

.031 

.036 

.078 

.040 

.046 

Table 5.2 Comparison of Measured and Theoretical Transfer Function 

The measured transfer function is lower than the theoretical for all 

frequencies below L 0 Hz. At l. 0 Hz and above the two are identical. 

The lower measured transfer function can be in part attributed to the 

non-perfect frequency response of the paddle to the demand signal. 

The theory also does not account for losses due to leakage around the 

paddle. The di ffference is 1 ·however 1 small and not unexpected for 

the reasons mentioned above. 
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5.7 Hydraulic System Problems 

Whilst the determination of the dynamic characteristics of the paddle 

were under way a number of technical problems arose with both the 

hydraulics and the wave paddle. The main problem was the tendency at 

the paddle to not run smoothly on its bearings at low amplitudes and 

frequencies. The effect of this was to cause ripples . in the tank 

which in some cases were larger than the waves the paddle motion 

produced. 

At ·first it was thought that the problem was one of insufficient 

lubrication, but, whilst increased lubrication eased the problem it 

did not solve it. The final solution was to substantially increase 

the stiffness of the paddle by the addition of extra bracing. The 

structural mounts for the bearing shaft were also increased in size 

and the support frame for the whole system stiffened. 

The increased stiffness of the system almost completely solved the 

problem and now it is possible to run the paddle smoothly for all but 

the smallest wave amplitudes ( <lOmm). A solution to the problem 

whilst time consuming, was important for an efficient system, 

especially when the absorption circuit board came to be installed and 

tested, as small movements were typical of adjustments to account for 

wave reflections. 

Additional problems with faulty valves and a broken pump also 

occurred. The replacement or repair of a valve, although simple, was 

time consuming. All the problems togethet· interrupted the smooth 

flow of wot·k and introduced a slight mistrust of the equipment which 

took a while to dispel. The system has since given many months 

trouble-free operation and hopefully all the initial problems have 

been ironed out. 
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CHAPTER 6 

A WAVE ABSORPTION' SYSTEM 

6.1 Introduction 

The problems associated with the hydraulic modelling of waterwaves in 

a laboratory channel have been discussed in some detail by Svendsen 

(1985), so difficult is it to reproduce accurately a particular set 

of conditions that experimental data must be interpreted with great 

care. ·Phenomena which give rise to experimental errors include: 

transients, mass-transport, free second harmonics, instabilities and 

reflections. Another cause of errors in hydraulic models is that 

re-reflection can make it impossible to test a highly reflective 

structure in a conventional wave channel. Where tests are possible 

the results may be highly misleading. Traditional methods of dealing 

with re-reflections were reviewed in Chapter l. 

Recently, as a result of advances in electronic ·measurement and 

control, it has become possible to equip a laboratory wave channel 

with an absorption system. In addition to generating the required. 

incident waves, the paddle has an additional feedback loop to cause 

it to move in such a way to cancel out or absorb any reflected waves 

which reach it. The paddle is then, in effect, making waves equal 

and opposite to the reflected waves. Two such systems were reviewed 

in Chapter 1. 

A different system, based on water level detection at the paddle 

front has· been designed and used in this project. This system is 

ideal for conversion of an existing, conventional wave generation 

system. 

6.2 Design Criteria for a Wave Absorption System 

The theoretical basis for the absorption 

Gilbert (1978) and summarised below. 

requirements are:-
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i. A means of detecting the reflected waves as they approach the 

paddle. 

ii. A means of making the paddle generate waves ·that are, in 

effect, equal and opposite to the reflected waves to cancel out 

the reflected waves at the paddle front. The paddle must also 

maintain the capability to generate the incident waves. 

The first requirement is met by mounting a wave gauge on the paddle 

front. The design·of the paddle wave gauge is discussed later. The 

-second requirement is met by incorporating a second feedback loop in 

the control system, as represented schematically in Figure 6.1. 

The physical characteristics of the paddle measured as part of the 

initial calibration of the wavemaker system were used to design the 

filter characteristics of the absorption system. 

·Signal 
Generator 

Additional feedback loop 

vc(t)'' vf(t) l 
-.1- ·- .L - - I - - L.. 

' Filter - - - - - - - 1 L __ ..J . 

~ (t)'' I 
c I 

V p (t) 
/ (- X p (t) I Waves 

~ 
I Reflected 

I a r (x,t) 

I I / 

==:l LVOT V (t) 
, 

Error 
signal 

I I 
I I 
I I 
IL 

X m 
-J 

Wave .,. 
,I gauge 

Drive 
L 

I 

Paddle 

Incident 
a i (x,t) 

Figure 6.1 Schematic Representation of Absorbing Wavemaker 
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6.3 Wave Absorption Theory 

In a conventional wavemaker the primary control signal. vc(t) is 

supplied directly to the servo system (i.e. vc(t) = v~(t)) so that 

the paddle displacement Xp(t) is effectively proportional to vc(t) 

over the frequency range of interest (0-1 Hz). To incorporate 

absorption v cC t) is compared with the filtered output from a wave 

gauge Vf(t) and the difference signal v~(t) supplied to the servo 

system. Figure 6. 2 SUIIIIIlarises wavemaker systems • . ,, __ ...,....,_ 
ean-..,... Af 

~-.. ----~~~---------r~-.-+)-­
TGauqa ..... 

b) C.. ;d'""" - I'IIII..Uan 

Af 

•• ---Y-..f+Ar 

•)--'"'! 

AI 

•• 
'y 

1--1'---+---e --""""" 

Ar. 

Figure 6.2 Block Diagrams of Wavemaker Systems 

6.3.1 Design of the Filter 

The dynamic characteristics of a constant parameter linear system can 

be described by a weighting function. If f(y) represents the 

weighting function of the filter and y(t) is the input variation in 

water surface elevation, as measured by a gauge located at K="m• the 

output from the filter is defined by the convolution integral: 

Vf(t) = J: f(T) y(t-T) dr (6.1) 

For present purposes it is more conventional to describe the filter 

in terms of its transfer function F(s) where F(s) is the Laplace 

transform of f(T) (Lynn 1982). 
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That is: 

F(p) = J: f(T)e-sT dT (6.2) 

where s is the 'complex frequency'. The filter will be stable only 

when F(s) has no poles in the right· hand half of the complex s plane. 

Transfer functions provide a conventional link between the j nput and 

output of any linear· system. Thus ·for the fi 1 ter·: 

Vr(s) = F(s) Y(s) (6.3) 

where Vf(s) and Y(s) are the Laplace transforms of vf(t) and y(t) 

respectively. With more complex expressions, greater clarity can be 

achieved if dependance on the paran1eter s is assumed. Following the 

convention. that capitals denote functions of the complex varl.able s 

rather than of time, equation (6. 3)" reduces to:-

Vf = FY (6.4) 

Similar relationships Clill be used to describe the overall performance 

of the wavemaker. If ai(xm,t) represents the temporal variation in 

water surface elevation at Xm due t·o incident waves as they propagate 

away ft-om the paddle, with an ideal conventional wavemaker and no 

wave reflection or re-reflection: 

(6.5) 

whet-e W :is the tt-ansfer function of the serve-controlled paddle 

system relative to the point x10 • In these circumstances a wave gauge 

at xm would simply record:-· 

y(t) = ai. Cxnp t) (6.6) 

See Figure 6.2a. 



In practice the paddle motion is unlikely to match the precise water 

particle motion beneath the required waves and this will lead to the 

generation of a complex mixture of-unwanted wave components. These 

include the free second-harmonics previously mentioned (Chapter 3) 

and a disturbance in the immediate vicinity of the paddle which 

increases in magnitude in proportion to the degree of mismatch 

between the actual and ideal paddle motions. Typically, the 

situation is further complicated by the presence of l'eflected waves 

ar(x,t) so that a gauge at Xm records: 

y(t) = ai<xm,t) + arCxm,t) 

or Y = Ai + Ar 

(6.7) 

(6.8) 

where ai and Ai incorporate both the unwanted components and the 

re-reflections of reflected waves from the paddle. Thus, to give a 

more realistic description of a conventional wavemaker, equation 

(6.5) should be extended to: 

(6.9) 

where U represents that part of the conventional wavemaker's transfer 

function that produces the unwanted waves and displacements, and<:> is 

a transfer function which takes account of the phase delay between a 

reflected wave at Xm and its re-reflection getting back to that 

point. 

In an absorbing wavemaker linked to a wavegauge, the input to the 

filter is defined by equations (6. 7) and (6. 8). The output from the 

filter is used to modify the input to the conventional paddle control' 

system (Figures 6.1 and 6. 2). Thus Vc is equation (6. 9) changes to 
I 

Vc, where: 

Vc = Vc - Vf 

= V c -- FY 

= Vc- F(Ai + Ar) (6.10) 

To achieve the desired absorption characteristics, the value of F in 

equation (6.10) must make Ai independent of Ar when the resulting 
I 

value of Vc is substituted in equation (6.9). By carrying out the 

substitution it may be shown that: 
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Ai = (W + U)Vc + [~- F(W + U)] Ar 

l + F(W + U) 

(6.11) 

Thus, the incident waves will be independent of the reflected waves 

if: 

~ - F(W + U) = 0 

i.e. if: 

F = 
~ 

w + u 

Substituting this value ofF in equation (6.11) gives: 

A. _ (W + U) Vc 
1 -

l + ~ 

(6.12) 

(6.13) 

(6.14) 

To avoid zeros in the denominator of equation (6.14) the distance Xm 

to the wave gauge should be less than a quarter wave-length of the 

highest frequency wave. The ideal solution is to make Xm zero which, 

in practical terms, means mounting the wave gauge on the _face of the 

paddle. When Xm = 0, ~ = l so that:-

(6.15) 

By comparison to equation ( 6. 9), which is the cot·responding 

expr·ession for a conventional wavemaker, it can be seen that not only 

has Ar been eliminated as required, but the output, Ai, fot· a given 

input, Vc, has been halved. The absorption system used here was 

modified at the output stage to double Ai to correspond to the 

conventional system. In this way it was possible to switch 

absorption 'in' or 'out' without a change in the paddle's 

performance. The effect of wave absorption on paddle characteristics 

can be seen in the next chapter. 
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6.4 Practical 

The dynamic characteristics of the paddle at 3 depths (l.Om, 0.8m, 

0. 6m) were determined in the previous chapter. The design of the 

filter for the absorption feedback loop was based on those results. 

The values obtained were for I W( f) I at the three depths at 0. 1 Hz 

frequency intervals from 0.1 Hz to the limit imposed by wave 

breaking. It is clear from the scatter of the results that the 

design of the filter must of necessity be something of a compromise. 

The strategy adopted in the investigation was to neglect any 

influence of U not embraced by the empirically determined W(f), which 

included an assessment of phase lags, and to design the filter on the 

basis that: 

FW = 1 (6.16) 

Equation (6.16) was obtained by substitution of~= 1 and U = 0 into 

equation (6.13). 

The output level of the filter could be adjusted by means of a gain 

control on the circuit board. This enables the characteristics to be 

matched empirically. 

The estimated loop gain IF(f) W(t)l of the absorption _circuit with 

the filter adjusted to give optimum performance at 0.6 Hz is shown in 

Figure 6.3, where each curve is based on the measured IF(t)l of the 

filter and the average IW(t)lfor- a particular combination of f and d. 

Given that the objective was to achieve a loop gain of unity at all 

frequencies, Figure 6.3 clearly indicates that the filter 

characteristic was far from ideal. Some of the likely effects of 

this lack of perfection can be predicted by substitution of ~ = 1 and 

U = 0 in equation (6.11) and rearranging to give: 

[ 
1 - FW] Ar 
1 + FW 

(6.17) 

With perfect absorption FW=l and equation (6.17) effectively reduces 

to equation (6.15). If, as in the present investigation, the circuit 

is modified to avoid the 'halving' introduced by per·fect absorption, 

equation (6.17) can be changed to: 
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Ai = ( 2W' ] V c + 
l + FW [ 

l - FW ] Ar 
l + FW 

(6.18) 

In either case, the first term on the right hand side of equations 

(6.17) or (6.18) defines the primary input from the wavemaker. If 

FW > l the contribution will be smaller than with perfect absorption. 

The second term on the right hand side of equations (6.17) or (6.18) 

defines the proportion of Ar that is re-reflected by the paddle. If 

FW < l the paddle will not fully absorb the reflected waves. 

Conversely, if FW > l the paddle will over compensate for the 

reflected waves so that Ai effectively. contains · a negative 

re-reflection of Ar· Estimates of I (1-FW)/(l+FW) I based on the data· 

given in Figure (6.3) and neglecting small phase errors are shown in 

Figure (6.4). These indicate that in the present case, for 

frequencies from 0. 5 Hz to l. 3- Hz and the three depths of water 

considered, the height of a re-reflected wave component might be 

expected to be less than 10%. of the corresponding reflected wave 

height. Thus, even with the less than ideal loop gain defined by 

equation (6.5), the absorption system can be more than 90% effective 

in-amplitude terms and more than 99% effective in energy terms over a 

significant frequency range. To retain the full benefit of this 

performance, the primary input from the wavemaker must be defined by 

equation (6.18).rather than (6.19). 

The above analysis is incomplete due to the neglect of U, non-linear 

effects and various small phase errors. All the tests using the 

wavemaker fall into the 0.5 Hz to 1.3 Hz range and the performance of 

this 'first trial' absorption filter can be seen in the next chapter. 

No insuperable problems are foreseeen in the· event of a need to 

improve the filter characteristics. To prevent HF stability problems 

a lowpass filter was incorporated in the circuit. The filter is 

shown in Figure 6.5. The relatively flat top indicates that this 

filter is unlikely to alter the system's performance. 

6.5 Physical Implementation 

Implementation of the absorption system involved mounting a wave 

gauge on the face of the paddle. Twin wire resistance gauges linked 

to the wave monitor were used (Chapter 2). So that the gauge would 

average out at least some of the variation in water surface elevation 
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which might occur across the width of the channel, two probes 

connected in series were used. (Plate 6.1). The probes were mounted 

one third the way across the channel from both walls. Each probe was 

constructed from two 500mm lengths of l.Smm diameter stainless steel 

wire separated by a l5mm gap. 

All the wires were supported by a common frame which caused them to 

project vertically down through the water surface in a plane from the 

face of the paddle. The combined signal from the two probes was fed 

to the standard wave monitoring equipment. 

A slight complication arises from the use of a wedge-type paddle in 

that the motion of the paddle face has both horizontal and vertical 

components. Thus, if a wave gauge is rigidly attached to the paddle, 

steps must be taken to ensure that the vertical movement of the gauge 

is not interpreted as a reflected wave· component. This problem was 

overcome by mounting the gauge support frame on wheels which ran 

along the top of the channel sides. The frame was attached to a pair 

of vertical rails fixed to the paddle face which allowed the gauge 

to move horizontally with the paddle without change of eleva~ion. 

6.6 Operation of Absorption System 

The filter and 'mixer' circuits needed for the wave absorption system 

are contained on a printed circuit board. Modifications were made to 

the original design to adjust the performance of the filter to match 

equation (6.18) rather than equation (6.17). 

The absorption circuit board is located in the Keelavite Hydraulics 

control box. It is switched 'in' and 'out' via a contact switch on 

the front control panel. When it is switched 'out' the circuit is 

completely bypassed and the absorption circuitry has no effect on the 

control system. When absorption is switched 'in' the demand voltage 

is 'mixed' with the feedback voltage from the wave gauge and the 

'corrected,- voltage used to drive the paddle. 
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It is not advisable to switch the wave absorption 'in' when an 

external control signal is present. The inclusion of a feedback 

signal at this time may wel-l require the paddle position to be 

radically different from the existing position. This would cause the 

paddle to jump to its new position in the shortest possible time. 

The sudden, violent movement could cause serious damage to the 

system. 

To use the wave absorption facility the paddle must be stopped at the 

mid-stroke position. With the wave monitor output set to the correct 

level (see next section) the absorption can now be switched 'in'. 

The paddle can now be used in the conventional manner. To switch 

'out' the wave absorption the opposite procedure must be adopted. 

Turn the external signal to zero, wait for the paddle to stop moving 

(this will occur when the water calms) and switch absorption 'out'. 

6.7 Calibration and Optimisation 

The present wave absorption system is not provided with any means of 

direct, analytical calibration. Although whilst w1der test this is 

perhaps not critical, for general purpose use this does impose 

certain limitations on the system. 

At present, to set up the system for optimum performance, the output 

level of the filter gain is increased until the paddle becomes 

unstable. The instability is caused by too great a feedback signal 

(see above). A level just less than instability is used as the 

optimum setting. Although this direct procedure produces the correct 

calibration it is unrealistic to expect to have to carry out this 

procedure every time the absorption system is used. 

Once the system has been set up, the need for further adjustment is 

only likely to arise due to a change in the voltage output from the 

paddle wave gauge. Any change in voltage signal will affect the 

absorption systems efficiency in one of the two ways described above. 
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6.7.1 Calibration 

Since any variation in calibration is likely to be related to changes 

in the wave gauge output this is · the best area to obtain a 

calibration. A logical way to calibrate the absorption system is to 

rw1 the system as described above, but with the output level of the 

Wave Monitor below its maximum. From a still watet' calibration of 

the paddle wave gauge a datum point can be obtained. For subsequent 

use a repeat calibration can be performed and any necessary 

adjustment to the· Wave Monitor output level made. The cot·rect 

adjustment will return the level of the wave gauge output signal to 

that me~sured for the original calibration. This level is relatively 

easy to obtain, and with a little experience can be achieved quite 

quickly. 

During the optimisation of the absorption system a gauge calibration 

was carried out which established the following relationship: 

Wave Monitor Output level 8.00 (Range 0-10.00) 

l.Omm water level change= 0.300 v Wave Monitor output. 

6.8 Sensitivity 

A check on the sensitivity of the wave absorption system to changes 

in wave gauge voltage was made. An assessment of how critical the 

calibration of the system is could then be made. 

For a regular wave of constant voltage gain, the 'set-output' control 

on the Wave Monitor was decreased in steps. The effect on wave 

height in the channel was then noted. As would be expected a 

decrease of, for example, 20% of the Wave Moni tm· voltage output 

corresponded to a 20% increase in wave height. This is consistent 

with the theory outlined above. 

6.9 Appraisal of Wave Absorption System 

To test the effectiveness or otherwise of the system a comprehensive 

test program was conducted. Regular and r~1dom.waves were used. The 

results of these tests are presented in the next chapter. 
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CHAPTER 7 

TESTS ON WAVE ABSORPTION SYSTEM 

7.1 Introduction 

To fully appraise the performance of the wave absorption system a 

comprehensive test program was conducted. Both regular and random 

waves were used. The methods of analysis for the various wave trains 

have already been _discussed. (Chapter 3). Wherever possible the 

tests were all repeated for· both absorption 'out' and 'in' . In some 

cases it was not possible to repeat a particular test with wave 

absorption 'out' due to the wave instability under resonant 

conditions. The causes of this were discussed in chapter 3 and will 

be dealt with later. High and low degrees of reflection from the 

spending beach end of the channel were used with wavescreens 

constructed for this purpose (see below). Graphical output similar 

to that presented in chapter 5 for regular waves was used. for· 

interpretation. The random wave analysis used the Frequency Response 

Function analysis for determining incident and reflected wave spectra 

from a composite wave train recorded at two or more locations in the 

charinel, as described in chapter 3. 

7.2 Wavescreens 

To enable the tests to be performed with different amounts of wave 

·reflection, provision was made for mounting a screen of vertical 

timber slats across the channel near the toe of the spending beach 

l3.94m away from the paddle mean position. The base of the slats 

located into an aluminium channel section and the tops were bolted to 

a frame running horizontally above the channel (Plates 7. l and 7. 2). 

This arrangement allows for convenient changes of wavescreen slat 

combination with no need to drain the channel. More importantly, the 

vertical slat arrangement is independent of water · depth or wave 

height as an influence over the reflection coefficient. 

Various slat combinations wer·e tested, and at the outset of testing 

the various combinations were arbitrar·ily given the numbers listed in 

Table 7.1 to distinguish them from each other. 
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Wavescreen Number Slat Arrangement 

0 No screen 

l Full screen l50mm slats 

2 l50mm slats, 2 and 5 missing 

3 150mm slats, 3, 4 and 6 missing 

4 l50mm slats 2 and 5 only in-place 

5 75mm slats, alternate with gaps, 
l .in place. 

Table 7.1 Wavescreen Combinations 

The 150mm slats were numbered l to 6 across the channel with l on the 

left hand side of the channel facing in the direction of wave 

propagation. 

With a full (i.e. No. l) wavescreen there was still wave transmission 

through the gaps between the slats and the reflection coefficient of 

this 'full' wavescreen was typically in the region 60-70%. If the 

maximum level of reflection had been increased to 100%. many more of 

the regular wave tests would have had to be abandoned when wave 

absorption was 'out'. 

Only the results obtained with the tests with either none or a 'full' 

wavescreen are presented here since all the other wavescreen 

combinations led to results in between these two 'extremes'. 

The formation of nodes and antinodes in .a closed channel was 

discussed in Chapter 3. An antinode must always be formed at the 

'full' wavescreeen. In both sets of tests (regular and random), 

ft·equencies were chosen to introduce the effect of both nodes and 

antinodes at the paddle front. (In the random tests the frequency 

was chosen to be the peak spectt·al frequency). 
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7.3 Regular Wave Tests 

7.3.1 Introduction 

The regular wave tests were conducted in the same fashion as 

described in Chapter 5 for the optimisation and calibration of the 

paddle. In this case the tests were repeated for both wave 

absorption 'in' and 'out' ~ld with high and low degrees of 

reflection. The wave envelope program (Chapter 4) was used for 

analysis. 

In addition to the basic series of tests additional frequencies other 

than 0.1 Hz increments from O.l Hz, were calculated to introduce the 

effect of nodes or antinodes at the paddle front. A third wave 

gauge, in a fixed location 2.3m from the paddle mid-stroke position, 

was also used. The gauge was connected to the. HP spectt·um analyser . 
to provide information about the 'cleanness' of the waves produced. 

The regular wave spectra obtained from the wave gauge connected to 

the spectrum analyser have been plotted in two ways. The first plot. 

shows the spectrum at a suitable scale to include the variance 

density associated with spectral peaks without truncation, the second 

is the spectrum plotted at the largest scale available on the 

spectrum analyser (40mV full scale voltage). The second type of 

graph, whilst not showing the peaks clearly, give a much· better 

impression of any high frequency noise in the signal. 

In addition to the wave gauge measurements the paddle actuator stroke 

length was measured for each test. This allowed the relationships 

between paddle movement and wave amplitide to be determined. 

As in the previous· tests (Chapter 5) all quantities are, where 

applicable, amplitudes rather than crest~trough heights. 

7. 3. 2 Results 

Figure 7.1 illustrates the effect of wave absorption on the transfer 

function of the ratio of Wave Amplitude/Input Voltage against 

Frequency described' in Chapter 5. It can be seen that with the small 

levels of reflections from the spending beach the absorption circuit 

has little effect on the waves generated. 
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The difference in the two curves can be explained by reference to 

Figure 6.3. Here it is seen that at· 0.6 Hz the loop gain is unity 

and in Figure 7.1 the 'in' and 'out' curves are coincident, below 0.6 

Hz the loop gain is less than unity and the waves with absorption 

'in' are greater than with absorption 'out' . 

above the loop gain is greater than unity. 

The opposite is true 

Figure 7. 2 illustrates 

that the reflection characteristics are very similar whether wave 

absorption is active or not. 

The problem of resonance is highlighted in Figure 7. 3 in which the 

parameters are the same as those in Figure 7.1 but with the incident 

waves largely reflected by the full screen rather than absorbed by 

the spending beach. The high peaks in the absorption 'out' curve 

occur where the distance between the screen and paddle was an integer 

multiple of half wave lengths for the given frequency. In these 

circumstances the partial standing wave has anti-nodes at both the 

wavescreen and the paddle. The low points in the absorption 'out' 

curves correspond to situations where there was an anti-node. at the 

wavescreen (as must always be the case) but a node at the paddle. 

The differences are highlighted in Figure 7. 4 which shows all the 

various node/anti-node combinations plotted separately. 

can be better understood with reference to Table 7.2. 

Figure 7.4 

N 

A 

N/I -

Node, node formed at paddle 

Anti-node, anti-node formed at paddle 

Non-Integer, Intermediate position between node or 

antinode at paddle. 

Table 7.2 Notation used on Figure 7.4 

The reflection characteristics for absorption 'in' or 'out' 

illustrated in Figure 7. 5 remain broadly similar with reflection 

coefficients beween 50% and 70%. 
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The general fonn of Figure 7. 3 can be explained with recourse to 

linear wave theory, water particle motion and the actuator stroke 

length measurements. At a node, where to a first approximation, the 

water· surface has no vertical motion, the particle motion is 

primarily horizontal, whereas at an anti-node the particle motion is 

primarily vertical. Thus, in circumstances where an anti-node should 

fonn at the paddle, the paddle should have little or no horizontal 

motion once the required waves have been established. If the paddle 

continues to have a significant horizontal motion, an additional 

unwanted motion will be imposed on the water and the incident waves 

will continue to grow. until sufficient energy is dissipated ·either by 

breaking or by some other means. In the present tests energy was 

dissipated both by leakage through the screen and on the spending 

beach. This enabled the resonance peaks of the absorption 'out' 

curve to be defined for low-amplitude control signals. 

In circumstances where a node should form at the paddle, the 

horizontal motion of the paddle should increase to match the 

increased excursion of the water particles once the standing wave has 

formed. If the paddl~s motion does not increase, the reflection (or 

more precisely the re-reflection) will effectively reduce the height 

of the incident waves. Hence the low points in the absorption 'out' 

curve. With the absorption system 'in' the paddle was able to make 

automatic adjustments of the type described above. Figure 7.6 gives 

an indication of how much the motion of the paddle had been altered 

once steady-state conditions were reached in the tests with a full 

wavescreen. Thus, by comparison with its motion without absorption, 

the stroke of the paddle was changed by around 70% at those 

frequencies which caused nodes or anti -nodes to form at the paddle. 

Figure 7.7 shows the three cases of nodes, anti-nodes or intermediate 

points at the paddle separately to illustr·ate the different paddle 

motions. This is as would be expected with an approximately linear 

system given the level of reflection from the wavescreen. 
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A plot of Wave Amplitude/Paddle Stroke Amplitude vs frequency, Figure 

7.8 further illustrates the point made above. It is also interesting 

to compare the two curves for wave. absorption 'in' and 'out' . When 

wave absorption is 'out' the paddle stroke is a constant determined 

by the amplitude of the control signal. The high and low points in 

the curve are due to the effects of resonance and the formation of 

anti-nodes or nodes at the paddle as discussed above. When 

absorption is 'in' both the wave amplitude and paddle stroke can vary 

depending on the water particle motion· discussed above. The two 

curves are very similar which suggests the system is essentially 

linear. 

Example.s of regular wave spectra for each of the three conditions of 

node, anti-node, or intermediate point at the paddle ar·e given in 

Figures 7. 9 - 7. 20 fot· · the full wave-screen. In each set it can be 

clearly seen how the wave ·absorption system, whilst retaining the 

same spectral peak amplitude, greatly reduces the level of high 

frequency noise in the signal. This reduction could be readily 

detected by visual obset~ations of the tests. 

The limitations of the present system are highlighted in Figure 7. 3 

where the absorption 'in' curve can be seen to exhibit a systematic 

oscillation that is generally out of phase with the absorption 'out' 

curve. A good smoothed fi-t to the absorption 'in' curve is provided 

by the corresponding curve in Figure 7.2. 

7.4 Random Wave Tests 

7.4.1 Introduction 

The random wave test results were analysed by means of the Ft·equency 

Response Function method of· analysis which was described in Chapter 

3. In a similar fashion to the regular waves the effect of 

half-integer wavelengths in the channel was investigated The 

wavelength was based on the spectral peak frequency. All tests were 

carried out using full length sequences (see chapter 2) for a range 

of wave spectra with different significant wave heights and peak 

frequencies (see above). Wavescreens were used as before to provide 

various degrees of reflection and all tests were repeated with the 

absorption system both 'in' and 'out'. Table 7.3 lists some of the 
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parameters used. On all examples of incident spectra the 

'the~retical spectrum' has been plotted. The 'theoretical.spectrum' 

is calculated ·by the Hydraulics Research wave generation program 

NEWSYN (see chapter 2). 

The nomenclature in use for wave spectra at present is very confusing 

with spectra derived from single or multiple wave gauge meausrements. 

In the subsequent discussion the following nomenclature is used to 

try and keep super and subscripts to an acceptable level. 

Sii Incident Spectrum calculated from estimates made by the 
three pairs of gauges 1-2, 2-3, 1-3. 

Srr Reflected Spectrum calculated from estimates made by 
the three pairs of gauges 1-2, 2-3, 1-3. 

'Point' Spectrum measured at gauge 1. 

'Point' Spectrum measured at gauge 2. 

'Point' Spectrum measured at gauge 3. 

Incident Spectrum estimated from measurements from 

gatiges l and 2. 

Incident Spectrum estimated from measurements from 

gauges 2 and 3. 

Incident Spectrum estimated from measurements from 

gauges l and 3. 

Random Wave Hsm Tz2S HRL Separation of Gauges 

File name Gain setting l-2 m 2-3 m l-3m 
volts 

RAN.97 .970 1.71 5.27 1.729 5.580 7.309 

RAN.l85 .185 l. 79 5.99 2.032 5.277 7.309 

RAN.1 .100 1.86 6.75 2.024 5.285 7.309' 

RAN.25 .250 2.08 9.42 2.539 4.770 7.309 

Table 7.3 Random Wave Parameters 
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7.4.2 Analysis Procedure 

Three wave gauges, spaced as shown above, were included in the data 

acquisition scheme outlined in Chapter 2. The test length was 

determined to include a full length sequence (Chapter 2). The 

results of the tests were first analysed with the conventional 

software for single gauges. The results from the single gauge 

analyses were used in verifying the new Frequency Response Function 

software as well as highlighting the problems which arise from just 

using single gauge analysis. A twenty second segment of the time 

history was also plotted as a check on the correct operation of the 

·wave gauges. (Any attenuation due to water contamination 'would be 

apparent in the time history). 

The results from each pair of gauges (i.e. l-2, 2-3, 1-3) were then 

used in conjunction with the Frequency Response Function analysis 

program to obtain estimates of incident and reflected spectra. Each 

complete analysis took approximately 25 minutes. 

The tests were repeated for each of the four cases (i.e. no 

wavescreen/full wavescreen for wave absorption 'in' and 'out'). 

7.4.3 Random Wave Results 

Table 7. 4 swmnarises the results from the single gauge analysis. 

Figures 7. 21-7. 22 are examples of the spectra produced · from a 

composite wave train for each of the four situations mentioned above. 

Figure 7.23 is a 20 second example of the wave time history. From all 

the single gauge analysis it is clear how impossible the task of 

appraising the wave absorption system would be. No real information 

can be gained from the various spectra except that the wave 

absorption facility changes the situation! 

The Frequency Response Function analysis is all the more powerful and 

beneficial in quantifying what is actually happening in the channel. 

A typical set of results from the tests are presented in Figures 7.24 

7.30. The four permutations of test are each shown in Figures 7.24 

- 7.27 with the incident spectra, Sii from the Frequency Response 

Function analysis compared to a single point spectrum - S 11 • With no 

wavescreen the two spectra (Sii and S11 ) compare well, as would be 
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expected with such small degrees of reflection. When the full 

wavescreen is present however, the effect of the formation of partial 

nodes and anti -nodes is cearly visible as peaks and troughs in the 

graphs .. 

The most revealing of the graphs however, are the incident and 

reflected spectra shown in Figures 7.28- 7.30. The effectiveness of 

the absor·ption system is clearly illustrated by the similarity of the 

two absorption 'in' incident wave spectra (the two lowest curves in 

Figure 7. 28 and shown at a greater scale in Fi gUI·e 7. 29). This 

despite the fact that the corresponding reflected wave spectra are 

quite di ffe1·ent. Indeed, the absm·pt.ion 'in', \vi th no wavescreen 

cur·ve can hardly be distinguished from the frequency axis of Figure 

7. 30, whereas the absorption 'in' and full wavescreen curve is the 

second highest. 

The advantages.of an absorption system are highlighted by the lack of 

similarity in both magnitude and shape of the two absorption 'out' 

curves compared to the similarity of the two absorption 'in' curves 

(Figure 7.28). Due to the presence of str·ong multiple reflections 

and re-Teflections, the highest level of variance density for both 

incident and reflected waves were achieved when the 'full' wavesc1·een 

was in use. This is as would be expected and it might be thought 

possible to counteract this effect by simply reducing the primary 

input from a non-abso~bing \vavemaker. Howevel·, in practice the 

required con·ection would be far from simple due to the changes in 

spectral shape. 
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Test No. Gauge No. Hsmm 'Tzs fp Hz Absn? WAVESCREEN Sea 

1 1 95.02 1.832 .439 OUT 0 RAN.09 

2 100.56 1.811 .439 

3 101.82 1.886 .439 

2 1 78.64 1.897 .439 IN 0 RAN.09 

2 79.08 1.898 .439 

3 80.65 1.899 .439 

3 1 115. 18 1.918 .391 OUT 0 RAN.1 

2 112.01 1.918 .391 

3 114.23 1.959 .391 

4 1 90.97 2.041 .391 IN 0 RAN.1 

2 90.02 2.038 .391 

3 93.64 2.052 .391 

5 1 95.54 1.807 .439 OUT 5 RAN.09 

2 95.11 1.834 .439 

3 104.55 1.888 .439 

6 1 75.43 1.773 .439 IN 5 RAN.09 

2 77.89 1.844 .439 

3 78.05 1.814 .439 

7 1 115.08 1.899 .391 OUT 5 RAN.1 

2 116.75 1.945 .391 

3 116.82 1.915 .391 

8 1 90.26 2.016 .391 · IN 5 RAN.1 

2 90.61 2.073 .391 

3 83.10 2.013 .391 

9 1 159.84 1.654 .537 OUT 1 RAN.09 

2 161.61 l. 716 .391 

3 151.87 1.685 .537 

10 1 98.90 1.869 .439 IN 1 RAN.09 

2 103.11 1.872 .488 

3 94.05 1.770 .537 

11 1 183.11 1.738 .439 OUT l RAN.l 

2 169.00 l. 891 .391 

3 165.04 1.869 .537 

12 1 113.85 2.022 .391 IN 1 RAN.l 

2 102.57 1.933 .439 

3 108.00 2.094 .391 

Table 7.4 Results from Single Gauge Analysis 
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Test Incid~nt 
Number fp/Hz H8 i/m 

1 .439 .100 

2 .439 .081 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

.391 

.391 

.439 

.488 

.391 

.391 

.439 

.439 

A39 

.391 

.115 

.093 

.098 

.084 

.117 

.097 

.131 

.089 

.139 

.093 

Refle£.ted 
fp/Hz Hsr/m 

.. 391 .025 

.439 .021 

.3~H 

.391 

.439 

.488 

.391 

.391 

.439 

.439 

.439 

.391 

.038 

.031 

.025 

.054 

.036 

.041 

.096 

.063 

.101 

.066 

Composite 
fp/Hz Hs/m 

.439 .098 

.439 .079 

.391 

.391 

.439 

.439 

.391 

.391 

.537 

.488 

.391 

.391 

.114 

.091 

.095 

.077 

.116 

.090 

.161 

.101 

.176 

.108 

Theoretical 
fp/Hz Hsi/m 

Wave 
Absn? 

.475 .097 

.475 .097 

OUT 

IN 

.439 

.439 

.475 

.475 

.439 

.439 

.475 

.475 

.439 

.439 

.100 OUT 

.100 IN 

.097 OUT 

.097 IN 

.100 OUT 

.100 IN 

.097 OUT 

.097 IN 

.100 OUT 

.100 IN 

Table 7.5 Random Wave Test Results 

7 .4.4 Effect.s of the Gauge Spacing 

As discussed earlier the Frequency Response Function method of 

analysis is not valid if sin(ks)=O. (Chapter 3 and Appendix C). The 

method of obtaining maximum resolution with 3 gauges was also 

discussed. Figures 7.31 - 7.34 show the three estimates of incident 

spectrum, S12, S23 and S13 for a particular test. The graphs cover 

the permutation of test configuraiton as mentioned earlier. A 

theoretical spectrum is overlain in each case. 

It can be readily seen that in the areas where each pair of gauges 

provides a valid analysis the 3 curves are ver·y similar. Thus an 

estimate of variance density from any pair of gauges at a particular 

frequency is 'correct' By use of all 3 curves it is possible to 

obtain variance density estimates at all frequencies in the range of 

interest (0-l Hz) which enables estimates of spectral moments to be 

made and hence a value for the significant incident wave height Hsi 

can be obtained from Hsi = 4 /m0 (Chapter 3). 

The estimations of variance density also compares well to the 

theor·etical when little reflection is present or wave absorption is 

'in'. 
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7.5 Conclusions 

The test results show that the wave absorption system installed in 

the control loop of the paddle is very successful in eliminating the 

presence of re-reflections in the channel. Also it has been shown 

that good absorption characteristics can be achieved with a less than 

perfect filter design. If required, even better results could be 

obtained by use of a more complex filter. 

The wave channel facility with wave absorption 'in' is in effect 

'semi-infinite' in length i.e. the location of the paddle (or channel 

length) is not a factor in the test results obtained from a 

reflective structure. This fact will be exploited to investigate 

overtopping with a higher degree of operational control and accuracy 

than has been previously possible. 

7.6 Recommendations to Improve Wave Absorption System. 

Apart from the less than perfect filter design discussed in Chapter 6 

the other main area for potential improvement lies in the calibration 

of the system. 

A recommendation for a future absorption system would be to 

incorporate the tuning potentiometer (INVERT/NORMAL) on the front 

panel of the hydraulic system controls and show the output level of 

the potentiometer with a meter similar to the Error/Position meter 

used for hydraulic control After an initial calibration, the meter 

could be scaled in terms of absorption efficiency. At the start of a 

test the potentiometer could be adjusted as necessary. A calibration 

by meter would be much more convenient as the paddle wave gauge is 

relatively inaccessible, and adjustments made from the wave gauge 

calibration require a degree of subjectivity which a meter could 

eliminate quickly and effectively. 

The design of the paddle wave gauge could also be improved with a 

more solid chassis which would eliminate some of the vibration 

problems which occur with small paddle movements at low frequencies. 

It would also be possible to allow for the vertical paddle movements 

in the design of the filter and thus, the wave gauge could be rigidly 

fixed to the paddle front. 
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CHAPTER 8 

WAVE OVERTOPPING 

8.1 Introduction 

Accurately estimating the amount of water which will wash over a 

coastal structure can be vital to design engineers. Building 

seawalls or breakwaters high enough to completely prevent overtopping 

is often unacceptable because of aesthetics and costs. 

In practice it is very difficult to prevent perfectly wave 

overtopping. Therefor·e, a breakwater must be designed based on the 

concept of allowable wave overtopping, on the premise of a 

cost/aesthetic trade-off with 'unacceptable' conditions to the lee of 

a breakwater. 

What is 'unacceptable' 

structure is intended. 

wi 11 depend upon the · use for which the 

Clearly more overtopping will be acceptable 

for a breakwater, such as the one in Plymouth Sound, the function of 

which is to pr·otect large vessels at anchor than for a br·eakwater to 

protect small crafts in a marina. Anothet· important consideration is 

the provision of calm water for the berthing of ships. 

A number of previous studies of wave overtopping were reviewed in 

Chapter 1. As recently as 1984 Douglass concluded that "Better data 

is sorely needed" in his review of irregular wave overtopping rates. 

The tests performed here are intended to compliment the existing data 

and in pat·ticular a comparison to Owen (1980) is presented. The test 

parameters (see Section 8. 2) were chosen to provide data on 'low' 

structm·es beyond the regions previously examined ('low' t·efers to 

the cr·est elevation above still water level s.w.l.). 
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The data collected would also provide an appraisal of the wave 

absorption system installed in the wave maker equipment and described 

earlier. By use of the wave absorption system a much better control 

of the sea state was possible than it had been previously. Thus, it 

was much easier to 'target' the tests to areas of interest rather 

than run a series of tests and investigate what physical situations 

arose due to the re-reflections from a conventional paddle. 

8.2 Factors influencing the Overtopping Discharge 

Wave overtopping is an extremely complex coastal phenomenon. 

(Douglass 1984). Variables include structure characteristics (shape, 

height, slope, roughness, porosity, berm width, offshore slope etc); 

wave characteristics (height, period, direction, statistical 

description); water depth; wind speed and direction; air and water 

densities and viscosities etc. 

A number of the above parameters cannot be easily varied in a 

laboratory channel (densities, wind effects etc) and for the purpose 

of this investigation they are regarded as constant. 

Time has also prevented an investigation into some of the other 

parameters (such as the effect of a berm on the seaward slope of a 

breakwater, which is known to decrease the overtopping (Owen 1980) if 

all the ·other parameters remain constant). 

A typical breakwater may have the shape shown below: 

Figure 8.1 A Typical Breakwater Profile 
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where Re = Crest elevation above s.w.l. 

dB = Berm Elevation 

ds = Water depth 

M = Breakwater slope 

l'ib = Berm wj_dth 

Due to limitations of time or space (or both) various physical and 

structural parameters have not been investigated. Some of the 

parameters are listed below with a brief description of their 

influence on overtopping discharge. 

i. Seaward slope off. the toe of the breakwater. A steeper slope 

will increase the overtopping discharge. 

ii. Berm breakwaters. A submerged berm will decrease the 

overtopping discharge. 

iii. Angle of· wave attack. Owen (1980) found· that maximum 

overtopping discharge occurred with waves at 15° to the normal. 

iv. The roughness of breakwater slopes. The Shore Protection 

Manual (1984) states that a rip-rap slope will only have 40% of 

the run-up for a given wave compared to a smooth slope. Hence 

the overtopping discharge would be decreased. 

v. Slope pet·meability, A porous slope will give lower overtopping 

rates (Weggel 1978). 

The simplified breakwater profiles used in the overtopping tests had 

seaward slopes of 1:1 and 1:2, a smooth slope and horizontal crest 

(Figure 8. 2). 

chapter. 

A range of test parameters is given in the next 
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Figure 8.2 Test Breakwater Profile 

The construction of the breakwater is discussed in Section 8.4. 

The wave characteristics which influence the overtopping discharge 

have been defined in earlier chapters. For the sake of convenience 

the relevant parameters are listed below: 

i) Significant Wave Height (Hg). 

ii) Mean zero-crossing period (Tz) 

iii) Shape of an Incident Spectrum. 

Also needed for comparison (Section 8.5) will be. a count of the total 

number of waves in a record. The significant wave height used for 

analysis and interpretation was where appropriate the incident 

significant wave height given by Rsi = 4 /mo where m0 is calculated 

from the estimate of incident spectrum using the 3 gauge array. 

(Chapter 3). 
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8.3 Maximum Overtopping Discharge 

In order to be able to design equipment to measure the wave 

.overtopping discharge an estimate of the maximum discharge expected 

was needed. The equipment could then -.be designed to cope with 

discharges up to the expected maximum. 

Some of the more recent work ( Owen ] 980) has suggested that the 

ovet·topping discharge over· a break1~ater can be cal·~ul.ated from 

dimension] ess coeffi cie11ts dron-i woeo fnJm the n~su] ts of hyorauLi c 

1110del tests. The published coefficients were used to calculate the 

maximum overt.opp:ing discharge expect eo. 

br~lovl. 

The calcu] ati on is show-n 

Test P<Jrameters 

Slope 1:1 

Crest Elevation 0.05m 

Significant Wave Height 0.20m 

Mean zero-crossing period 2.0s 

The dimension less freeboar·d R* is defined as: 

* Re R - ----
Tz I gHs 

The dimensionless dischar-ge G* is defined <Js: 

G* = Q 

( 8. l) 

(8.2) 

Coefficients A and Rare found f1·orn Figures 8.3 and B.l! respectively 

(Owen 1980) such that: 

A= 0.0076 

and 

R - 20.1 

120 



OVERTOPPING COEFFICIENT A 
NORMAL WAVE ATTACK - NO BERM 

SEAWALL COEFFICIENT A (10"-2) 
2.5 

2 

1.5 

.5 

0 

80 

70 

60 

so 

40 

30 

20 

10 

0 

0 .5 . 1.5 2 . 2.5 3 3.5 4 4.5 
SEAWALL SLOPE 

FlG I! .J COEfflCIENT 'A' FOR SlloiPLE SEA WAI.LS 

OVERTOPPING COEFFICIENT B 
NORMAL WAVE ATTACK - NO BERM 

SEAWALL COEFFICIENT 8 (1 0"-2) 

0 .5 1.5 2 2.5 3 3.5 4 4.5 
SEAWALL SLOPE 

FlG 1! .~ COEfflCIENT '8' FOR S11APLE SEAWALlS 

5 5 .5 

5 5 .5 



I 

I 
I 

I 

The dimensionless discharge, Q*, is thus defined as: 

(8.3) 

From (8.3) we obtain: 

o* = 5. 309 x to-3 

rewriting equation (8.2) we obtain; 

(8.4) 

From equation (8.4) 

Q = 0.02lm3/s/m run 

= 21 litres/second/m of breakwater crest. 

The design of the overtopping equipment outlined below was based on a 

maximum expected overtopping discharge of 21 litres/second. 

8.4 Design of Breakwater and Overtopping Measurement Equipment 

8.4.1 Breakwater 

As mentioned above, a simplified breakwater was used in the tests. 

The seaward slope was smooth and two slopes of 1:1 and 1:2 were used. 

The breakwater was constructed from J4'' marine ply. In order to 

locate the breakwater securely within the channel it was constructed 

to lie between two side panels (Plate 8.1). The side panels wer·e 

then clamped to· the channel sides. The above teclrnique avoided the 

pr·oblem of having to drill holes into the channel sides. Throughout 

the overtopping tests no tnovement of the breakwater was detected. 

The basic shape shown in Plate 8.1 has a seaward slope of 1:1. The 

1:2 slope fitted onto the existing structure. (Plate 8.2). 

In order to try and prevent the side panels having an effect on the 

wave climate they were taper·ed facing the direction of wave 

propagation (Figure 8.5). The two side panels occupied less than 

l. 5% of the channe 1· width. During the over topping ·tests no effects 

due to the side panels could be detected visually. 
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BREAKWATER 

WAVE PROPAGATION 

1 

BREAKWATER 

SIDE 

PANELS 

Figure 8.5 Side Panels 

MOUNTS 

BEACH 

Figure 8.6 Breakwater Construction Details (Not to Scale ) 

The breakwater was located at the foot of the 'spending' beach. 
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8.4.2 Measurement of the Overtopping Discharge 

In the area directly behind the breakwater a pond was formed bounded 

by the breakwater, the 'spending' beach and the end of the channel. 

Any waves which 'over topped' flowed into this area. 

measure the overtopping discharge the pond had to be 

To ensure this the pond was lined. with plastic sheet 

borders of the channel. 

To accurately 

100% watertight. 

fixed around the 

To measure the overtopping discharge an overflow weir system designed 

to cope with a maximum discharge (as calculated in 8. 3) was 

constructed. 

Within the watertight pond behind the breakwater a weir with two, 

parallel, one metre crests was located (Plate 8.3). The two crests 

were perpendicular to the breakwater crest. The flow over the weir 

went down a 4" pipe which ran through a hole in the waterproof liner 

and the 'spending' beach and out of the channel area to a collection 

sump (see below). 

To try and prevent reflections within the stilling area behind the 

breakwater which would possibly prevent accurate measurements of the 

overtopping discharge, the weir was profiled. Two tapered ends, 

(Figure 8.7, Plate 8.3) helped the flow of water around the ends of 

the weir. The calmer the water the less the risk of water returning 

over the breakwater. Observations of the tests showed that the 

profiled weir was successful in preventing any water being returned 

to the main area of the channel. 
BREAKWATER WEIR 

I I 
WAY[ I I ~ 

PROPAGAnoN ---7 I I ... 

WEIR J - i 
re~ ...... 

SUt.4P 

Figure 8.7 Profiled Discharge Weir 
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As mentioned above, the water flows over the weir and into a pipe 

system. The pipe system exits from the channel and discharges the 

water into a rectangular channel set into the floor of the hydeaulics 

laboratory. At the end of the channel was a sharp-crested 

t·ectangular weir (Plate 8.4). On the downstt·eam side of the weir was 

a sump, lm deep, 2m long, 0.75m wide. 

The water flowed over the weir and into the sump. A submersible pump 

in the sump returned the water to the wave channel to try and keep 

the water level in the channel constant. 

A wave gauge monitored the flow over the weir (Plate 8.4). The wave 

gauge was included in the data acquisition system of Wave 

Monitor-Miceolink-HP computer. 

The computee program DISCHARGE was written to analyse the data 

collected from the wave gauge associated with the weir. The progeam 

used the standard weir equation (Hel:'schy 1985) to calculate a mean 

ovel:'topping discharge as well as the total test discharge. The 

instantaneous discharge at each sampling interval was calculated and 

the mean discharge found from all the instantaneous values. 

8.5 A Count of the Ovet·topping Waves 

Allsop (1978) and Owen (1980) published graphs of the percentage of 

waves overtopping (% of total waves in record) against the 

dimension less freeboard (see 8. 3). In- order to make the· same 

comparison here a compute!:' pt·ogeam, OVERTOP, was written to calculate 

the number of waves which overtop during a test. A wave gauge 

mounted on the breakwater cl:'est was included in the data acquisition 

system to facilitate this. 

The over topping waves wel:'e detected in the digital l:'ecord in the 

following manner. The program counted a separate wave as a block of 

numbers starting and finishing with zet·os. For example a pal:'t of the 

digital record may look something like that shown below: 

0 0 721 890 650 . 221 15 0 0 0 lOO 90 17 0 0 
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The program OVERTOP interprets the above. piece of digital record as 

containing two waves. One wave begins at 721 and ends at 15, the 

second wave starts at 100 and ends at 17. 

The program was checked against visual observations and found to be 

accurate. 

8 .. 6 Incident and Reflected Spectra 

By making use of the. Frequency Response Function analysis described 

in Chapter 3, the incident wave conditions were calculated for each 

test and hence the sea state defined more rigorously than was 

previously possible. 

An array of three gauges spaced according to the criteria set out in 

Chapter 3 was used to obtain information over the whole frequency 

range of interest (0-lHz). One of the three gauges was positioned 

directly over the toe of the breakwater. A check on mean water level 

could then be made. 

The three gauges were located and spaced as shown below: 

GAUGE 1 GAUGE 2 GAUGE 3 GAUGE 4 

1.18 m 

Figure 8.6 Wave Gauge Locations 

where S1 is chosen to have maximum resolution at the spectral peak 

frequency and s2 is ·chosen to have maximum resolution at the 

frequency at which the analysis with S]. is not valid. (See Chapter 3 

and Appendix C) • 

126 



The determination of incident and reflected spectra allowed a 

comparison of the measured reflection coefficient with the reflection 

coefficient calculated from the surf simi lad ty parametet· (Shore 

Protection Manual 1984). The method of determining reflection 

coefficient values from a surf similarity parameter is explained in 

the next chapter. 

8. 7 Wave Spectrum Gen·eration 

The Hydraulics Research Ltd software for random wave gene rat ion was 

used to produce the random wave spectra for the overtopping tests. 

Spectra were chosen to test the absorption system when nodes, 

antinodes or partial nodes were formed at the paddle front (see 

Chapters 3 and 7) and the effect these situations had on wave 

overtopping. 

The wave spectrum generation program USERN was modified to provide 

the user with a choice of possible feedback connections for a given 

sequence length. (Sequence lengths and feedback connections wet·e 

described in Chapter 2). Table 8.1 details some of the possible 

feedback connections available for various sequence lengths. 

By a change in feedback connections, different complete or 'full' 

(i.e. all possible shift register positions) spectra can be generated 

with the same statistical properties, up to 4 for· each sequence 

length was possible. The overtopping tests were carried out with 

different 'full' length spectra to investigate whether wave 

overtopping was influenced by the precise wave train, or 

statistically stable for a 't·andom' sea. The results of this are 

discussed in the next chapter. 
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Sequence length 
set one 

Feedback from stages 
set two set three set four 

2 ONLY ONE CONNECTION PATTERN POSSIBLE (1,2) 

3 (1,3) (2,3). (1,3) (2,3) 

4 (1,4) (3,4) ( l. 4) (3,4) 

5 (2,5) (3,5) (1,2,3,5) (2,3,4,5) 

6 (1,6) (5,6) (1,2,5,6) (1,4,5,6) 

7 (3,7) (1,7) (6,7) (4,7) 

8 (2,3,4,8) (1,2,7,8) (1,6,7,8) (1,3,5;8) 

9 (3,4,6,9) (4,9) (5,9) (3,5,6,9) 

10 (3,10) (7,10) (2,3,8,10) (2,8,9,10) 

11 (2,11) (2,5,8,11) (1,3,7,11) (2,3,5,11) 

Table 8.1 Feedback Connections for 'Full~Length' Spectra 

8.8 Tests on Wave Absorption System 

Throughout the wave overtopping tests a continual monitol'ing and 

appraisal of the wave absorption facilty was undertaken. It was 

hoped that any, as yet undiscovered, anomalies in the system would be 

highlighted during the coUrse of a comprehensive series of tests. In 

the event, no problems were encountered, other than the need to 

maintain a close scrutiny over the calibration of the paddle wave 

gauge (see Chapter 5). 

As mentioned in 8.7, spectra were chosen to produce nodes, antinodes 

or partial nodes at the paddle front to test fully the system. 

The majority of the overtopping tests were conducted with wave 

absorption 'in', however, a small number of tests were pet·formed with 

absor.ption 'out' for a comparison. The effect of no wave absorption 

is discussed in the next chapter. 
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8.9 Test Procedure 

For each single overtopping test a random sea was generated in the 

channel. A 2k (i.e. 2048) data sample was collected for storage and 

analysis from the following five wave gauges:-

3 in the channel for. Frequency Response Function Analysis and the 

calculation of wave statistics. 

1 on the breakwater crest to count the number of waves 

overtopping. 

1 at the sharp-crested weir to measure head to calculate the 

overtopping discharge. 

The sampling interval for each test was chosen in order to create a 

test length equal to the repeat length of a given spectrum. This 

ensures statistical stability in the analysis. 

For example: 

If the repeat time for a given spectrum was 4 mins 57 secs, = 297 

secs, the sampling period, At, was 

297 At = 2048 = 0.145 secs 

The results from the overtopping tests are tabulated and illustrated 

graphically in the next chapter. 
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CHAPTER 9 

WAVE OVERTOPPING TEST RESULTS 

9.1 Introduction 

Presented here are the results of over lOO wave overtopping tests 

carried out on two breakwater profiles with various crest elevations· 

above still water level. The crest elevations used were all 'low'. 

('Low' in this instance is used to signify close to or at mean water 

level). Previous model tests on such structures have_not considered 

the combination of parameters used here. 

Space precludes the full presentation of more than a few tests. The 

results are, however, fully tabulated. Unless otherwise stated, all 

the results shown are for a Pierson-Moskowitz spectrum with the wave 

absm·ption system 'in', Figure 9.1. A number of tests with the wave 

absorption 'out' and a different spectrum were performed for 

comparison and they will be discussed where appropriate. 

9.2 Breakwaters 

The two breakwater profiles used in the overtopping tests had a 1:1 

seaward slope and a 1:2 seaward slope. Both breakwaters had a crest 

0. 90m above the channel bed, which was horizontal. No berms were 

considered. Crest elevations above still water level varied from 

O.lOm to 0.04m. The lower limit on crest elevation was the lowest 

possible crest elevation for which the weir and pump arrangement 

could cope with the overtopping discharge which resulted under the 

test conditions. 

No attempt was made to test with a breakwater at anything but 

perpendicular wave attack. Owen ( 1982) suggested that the maximum 

overtopping discharge occurred with a wave attack of 150 to the 

perpendicular. 
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9. 3 Results 

9.3.1 Wave Spectra 

Shown here are examples of the incident and reflected spectra 

calculated for each test (with the three gauge array) derived using 

the Frequency Response Function method described in Chapter 3. 

(Figures 9.2- 9.5). Figures 9.2 and 9.3 are with the 1:1 slope and 

Figures 9.4 and 9.5 are the 1:2 slope. 

A comparison of all the spectra calculated in a single test overlain 

is given in Figure 9.6. The X-Spectrum and Y-Spectrum on Figure 9.6 

are the so called 'point' spectra measured at the two discrete 

locations in the channel. Figure 9.6 indicates that the peak 

frequency of the incident spectrum is higher than that of any of the 

'point' spectra. This may be due to the effects of the t·eflected 

waves on the 'point' spectra and the possibility that the gauges may 

be located at nodes or antinodes from the reflection patterns. 

Figure 9.7 is a plot of the Incident Spectra from both the 1:1 and 

1: 2 slopes together with the theoretical spectnun. It can be seen 

that the 1:2 slope result especially gives an incident spectrum very 

similar to the theoretical. The result from the 1:1 slope is not as 

good but ·the similarity is clear. The difference in peak energy is 

of the order of 10% for the 1:1 slope and 5% for the 1:2 slope. The 

peak frequency shift noted above is also evident here. A slight loss 

of high frequency components is also noticeable. The loss may be due 

to either the resolution of the Frequency Response Method, or the 

inability of the wave paddle and/or absorption system to react as 

accurately in the higher frequency range. A decrease in the 

performance of the wave gauges is another source of potential 

variation. 

Figure 9.8 shows the increase in reflected energy with the 1:1 slope 

breakwater (see next section). The implication of similar incident 

spectra with different degrees of reflection will be discussed in 

Section 9.4. 
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To investigate the influence of the spectral shape on the overtopping 

discharge . a small number of tests were performed with a Newman 

spectrum with the same signifiant wave height as the 

Pierson-Moskowitz spectrum shown in FigUre 9.1. The peak energy 

level of the Newman spectrum was 30% greater than the 

Pierson-Moskowitz spectrtim. The incident and. reflected spectra from 

such a test are illustrated in Figure 9.9 and 9.10 respectively. 

The Newman spectrum compared to the theoretical NP.wman is given in 

Figure 9.11. . Again the shape and scale are very similar, with again 

a similar loss of the higher · frequency energy to the 

Pierson-Moskowitz spectra. 

The effect of the different spectral shape on the overtopping 

discharge is discussed in Section 9.3.4. 

9.3.2 Wave Reflections 

From the data obtained on the .incident and reflected spectra 

calculated above, it is possible to determine the reflection 

coefficient, p, defined as: 

( 9. 1) 

where Sii and Srr are the incident and reflected spectral estimates 

at frequency f respectively. 

The Shore Protection Manual gives estimates of wave reflections from 

breakwatet·s defined in terms of a surf similarity parameter, r:, given 

as: 

r: = --~1===-­
Cot 6 / Hsi/10 

(9.2) 

where 6 is the slope of the breakwater structure under consideration, 

Hs i is the incident s igni fir.ant wave height and Lo the deep water 

wavelength defined as: 

(9.3) 
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For each test the t·eflection coefficient has been calculated with the 

two methods described above (i.e. surf s imi lar·ity and 

Incident/Reflected) at the peak frequency and a comparison shown in 

Tables 9.1 and 9.2. 

The results agree very well in all cases, with approximately 85% 

reflection from the 1:1 slope and 60% from the 1:2 slope. 

The results from the Frequency Response analysis wet·e also used to 

plot Frequency vs Reflection Coefficient graphs over the whole 

frequency range of interest. 

Examples of these graphs are shown in Figures 9.12 and 9.13. It can 

be seen that in both cases ( 1: 1 and l: 2 slope) the reflect ion 

coefficient varies over the frequency range of interest (0-lHz). The 

minimum reflBction being at arow1d 0. 6Hz. ·Towards either end of the 

scale the reflection inct·eases. At the low frequency shown thet·e is 

very little difference in the degrees of reflection from either 

breakwater slope (approx 90%). 

The shape of the reflection coefficient graphs.obtained compared well 

with the results obtained earlier during the optimisation of the wave 

absorption system (Chapter 7). 

When wave absorption is 'out' the degree of reflection and the 

calculation of reflection coefficient is complicated by the pr·esence 

of re-reflected (and highet· order) waves. In most of these cases the 

values of reflection coefficient calculated from the Frequency 

Response Method do not correspond wel.l to the values predicted by the 

Shore Protection Manual. (The tests with wave absot·ption 'out' are 

mar.ked * in tables 9.1 and 9.2). 

This inaccuracy is probably due to the Hsi not being a correct 

incident significant wave height with wave absorption 'out' due to 

the presence of re-reflections in the direction of wave pt·opagation. 

Hsi in each case is calculated ft·om Equation 3. 15. 
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In every case of wave absorption 'out' the Shore Protection Manual 

method with the surf Similarity parameter under-estimates the degree 

of reflection compared to the values calculated from the Frequency 

Response Analysis. 

The values of the reflection coefficients from the surf similarity 

parameter in the tables below are calculated from the graph published 

in the Shore Protection Manual 

Test No. 

l 
2 
3 
4 
5 
6 
7 
B 
9 

10 
ll 
12 
13 
14 
15 
16 
17 
1B 
19 
20 
21 
22 
23 
24 
25 
26. 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 

.184 
.150 
.150 
.170 
.160 
.090 
.090 
.090 
.lOO 
.100 
.100 
.100 
.090 
.100 
.090 
.090 
.100 
.100 
.099 
.096 
.098 
.099 
.09B. 
.098 
.099 
.104 
.099 
.103 
.099 
.099 
.099 
.097 
.096 
.061 
.099 
.123 
.120 
.OBB 
.142 
.104 
.070 

1.34 2.80 
1. 37 2. 90 
1.47 3. 37 
1.36 2.B9 
1. 30 2.64 
1.38 2.97 
1. 36 2.89 
1.50 3.51 
l. 32 2 . .72 
I. 44 3.24 
1.33 2. 76 
1.41 3.10 
1.34 2.BO 
I. 37 2. 93 
1.39 3.02 
1.36 2.89 
1.35 2.85 
1.41 3.10 
1. 34 2.BO 
l. 38 2. 97 
1. 33 2. 76 
1.38 2. 97 
1.38 2.97 
l. 38 2. 97 
1. 33 2. 76 
1.44 3. 24 
1.31 2.68 
1.43 3.19 
1.34 2.BO 
l. 34 2.80 
1.37 2.93 
1.36 2.B9 
1.34 2.BO 
1.40 3.06 
1.46 3.33 
1.16 2.10 
I. 22 2.32 
1.12 1.96 
1.23 2.36 
1.99 6.1B 
l. 99 6.1B 

4.64 
4.42 
4.74 
4.12 
4.B6 
5.74 
5.67 
6.24 
5.22 
5.69 
5.25 
5.5.7 
5.5B 
5.41 
5.79 
5.67 
5.34 
5.57 
5.32 
5.56 
5.47 
5.4B· 
5.51 
5.51 
5.28 
5.5B 
5.20 
5.57 
5.32 
5.32 
5.44 
5.46 
5.40 
2.25 
l.B3 
4.13 
4.40 
4.72 
4.0B 
7.71 
9.34 

p 
(graph) % 

BO 
79 
B1 
76 
75 
BB 
B6 
B9 
B5 
B6 
B5 
B6 
B6 
85 
B7 
B6 
B5 
83 
B2 
B1 
B1 
B2 
B3 
B3 
BO 
B6 
85 
B6 
B5 
85 
B5 
85 
B5 
47 
35 
75 
7B 
BO 
75 
90 
95 

p 
(Frequency 
Response) % 

81 
Bl 
BO 
92 
85 
85 
B2 
91 
B7 
BB 
BB 
B7 
87 
B8 
90 
93 
BB 
85 
84 
B5 
B5 
85 
B5 
85 
84 
B1 
80 
81 
84 
84 
83 
83 
81 
65 
70 
44 
56 
46 
43 
BO 
74 

Table 9.1 Reflection Coefficient values for l:l Slope 
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Test No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
]5 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25* 
26* 
27* 
28* 
29 
30 
31* 
32 

.140 

.130 

.128 

.128 

. ]20 

.123 

. 073 

.049 

.138 

.140 

.136 

.134 

.138 

.136 

.070 

.055 

.137 

.135 

. ] 34 

. ] 34 
.. 133 
.141 
.086 
.055 
.123 
.123 
.073 
.066 
.105 
.014 
.124 
.130 

1.72 
1.64 
1. 75 
1.67 
1.56 
1.62 
l. 53 
1.34 
l. 65 
l. 67 
1.60 
l. 65 
]. 70 
1.64 
1.50 
1.39 
j_ 72 
l. 66 
1.56 
l. 64 
2.73 
1.60 
1.59 
1.40 
1.30 
1.35 
1.22 
l. 30 
1.99 
1.99 
2.08 
2.11 

4.62 
4.20 
4.78 
4.35 
3.80 
4.10 
3.65 
2.80 
4.27 
4.36 
4. f)] 
4.27 
4.51 
4.20 
3.5] 
3.02 
4.62 
4.:30 
3.80 
4.20 
4.67 
4.00 
3.95 
3.06 
2.64 
2.85 
2.32 
2.64 
6.18 
6.18 
6.75 
6.95 

r 

2.80 
2.77 

.2. 98 
2.84 
2.74 
2.82 
3.45 
3.69 
2.71 
2. 72 
2.65 
2.75 
2.79 
2.71 
3.45 
3.61 
2.83 
2.75 
2.60 
2.73 
2.89 
2.60 
3.31 
3.64 
2.26 
2.35 
2.75 
3.08 
3.74 
3.74 
3.60 
3.57 

p 
(graph) ~~ 

60 
58 
65 
59 
57 
GJ 
70 
72 
58 
58 
57 
59 
60 
58 
71 
72 
59 
59 
55 
58 
62 
55 
68 
70 
45 
48 
58 
64 
74 
74 
71 
71 

p 
(Frequency 
Response) % 

69 
68 
66 
58 
64 
67 
63 
75 
62 
66 
63 
65 
62 
65 
70 
73 
68 
66 
58 
59 
58 
60 
69 
72 
53 
61 
69 
72 
71 
72 
64 
75 

Table 9. 2 Reflection Coefficient Values for l: 2 Slope 

9.3.3 Wave Records 

Included here are some examples of the way.e records measured during 

the overtopping tests (Figures 9.15 to 9.18). A compar·ison of the 

trace collected from the gauge placed over the toe of the breakwater 

(gauge 3) with the traces from the two gauges placed offshore shows 

how localised the effects of overtopping and reflections are, on the 

composite wave train. 

Tables 9.3 and 9.4 detail a comparison of some of the relevant 

parameters c3lculated at each gauge location. Figure· 9.14: shmo~s the 

loca I: ion of the wave gauges in the charme] for the P--~1 spectnun and 

the l: 2 bt·ealiwater· slope. 
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GAUGE 1 . GAUGE 2 GAUGE 3 GAUGE 4 

1.18 m 

Figure 9.14 Location of Wave Gauges 

On the 1:1 slope breakwater, table 9.3 shows that the significant 

wave height, H8 , measured in the time domain, over the toe of the 

breakwater is considerably less than the significan~ wave height 

offshore. The zero-crossing period decreases as the waves approach 

the breakwater. It is likely that this phenomenon is due to the 

pattern of nodes and anti-nodes formed by reflection from the 

breakwater. The same large decrease is not apparent in the tabulated 

results from the 1:2 slope probably due to the decrease in reflection 

from this shallower slope. 

The calculation of Hs from spectral moments (Chapter 3} also 

exhibited this phenomenon. 

The results from table 9.3 (1:1 slope) illustrate the problems 

involved in· evaluating all the relevant parameters with confidence 

and consistency between workers. Owen (1980), for example, makes no 

mention of where the wave statistics were measured (or how). Thus a 

plot of the percentage of waves in a test overtopping could vary by 

as much as 20% depending upon whether the total number of waves in 

the test was measured offshore or at the breakwater toe. The 

dimensionless parameters, R* and Q* can be up to 25% different when 

using the results from either gauge 1 or gauge 3 (see table 9.5) 

(section 9.3.4). 

All the calculations performed for the tests presented herein used 

the zero-crossing period measured over the breakwater toe. The other 

statistics such as significant wave height were derived from the 

estimates of incident arid reflected spectra from the 3 gauge array. 
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In all the tests a time domain 'wave by wave' analysis of the wave 

records agrees within ± 2mm to the spectral estimate of significant 

wave height via a FFT and the use of spectral moments (see Chapter 

3) . 

Gauge 1 Gauge 2 Gauge 3 

-Test Hsm Tzs N Hsm Tzs N Hsm Tzs N 
No 

l .129 1.605 155 .133 1.520 164 .093 1.376 181 
2 .121 1.502. 165 .136 1.669 149 .089 1.335 184 
3 .116 1.664 149 .116 1.517 164 .089 1.502 166 
4 .133 1.510 164 .132 1.590 155 .098 1.503 188 
5 .132 1.562 159 .129 1.565 159 .098 1.443 173 
6 .119 l. 717 144 .131 1.462 169 .097 1.328 188 
7 .136 1.668 149 .130 1.465 170 .098 1.411 176 
8 .132 1.619 154 .125 1.500 166 .094 1.336 187 
9 .132 1.634 152 .126 1.475 169 .096 1.365 182 

10 .128 l. 617 153 .126 1.486 168 .093 1.348 180 
11 .134 1.672 148 .129 1.516 164 .093 1.361 183 
12 .128 1.590 156 .124 1.499 166 .097 1.348 185 
13* .193 1.601 154 .201 1.559 160 .133 1.338 186 
14* .194 l. 713 145 .203 1.531 162 .149 1.465 181 
15* .195 1.677 148 .202 1.488 167 .149 1.465 170 
16* .192 1.543 162 .200 1.411 177 .166 1.363 182 
17* .210 1. 709 145 . 219 l. 661 . 150 .158 1.298 192 

Table 9.3 Wave Statistics from 3 Wave Gauges, 1:1 Slope. 

Gauge 1 Gauge 2 Gauge 3 

Test Hgm Tzs N Hgm Tzs N Hgm Tzs N 
No 

1 .146 l. 717 144 .099 1.392 178 .140 l. 717 145 
2 .116 1.555 160 .122 1.696 146 . 130 1.642 152 
3 .115 1.583 157 .109 1.650 151 .128 1.753 142 
4 .113 1.599 . 156 .126 1.800 138 . 128 1.669 149 
5 .112 1.517 162 .124 1.628 151 .120 1.557 159 
6 . 118 1.478 167 .122 1.665 148 .122 1.615 154 
7 .074 1.477 168 .075 1.598 155 .073 1.527 163 
8 .048 1.350 184 .051 1.480 168 .049 1.340 184 
9 .133 1.570 159 .138 1. 758 141 .138 1.654 151 

10 .134 1.565 159 .130 1. 722 . 144 . 141 l. 671 148 
11 .140 1.488 167 .132 1.684 147 .136 1.602 154 
12 .134 1. 601 155 .132 1.695 147 .134 l. 651 151 
13 .131 1.502 165 .135 1.660 150 . 138 1.704 146 
14 . 130 1:546 160 .133 l. 615 154 .136 1. 6·t4 151 
15 ,081 l. 417 170 .074 1.534 162 .070 1.499 166 
16 .056 1.358 184 .056 1.445 1"'" ''" .055 1.387 178 

Table 9.4 Wave Statistics from 3 Wave Gauges, 1:2 slope 
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Gauge 1 Gauge 3 
Test No R* o* x 10-4 N% R* o* x 10-4 N% 

1 .01720 3.861 71.5 .02423 5.932 59.1 
2 .01657 3.245 49.7 .02285 5.220 39.6 
3 .01732 3.161 3].8 .02535 5.598 26.9 
4 .01716 3.425 43.5 .02352 5. 343 37.2 
5 .01716 3.205 40.1 .02333 5.526 33.9 
6 .07134 :3.068 45.1 .02497 5.349 37.7 
7 .01665 2.795 35.1 .02387 4.639 28.1 

Table 9.5 A Comparison of the Dimenslonless Parameter·s 
Calculated al the Brealnvater Toe and ] . 98rn Offshore 

In the tables above (9.:3-9.5) the following notation was used: 

Hs - significant wave he:ight 

T2 - zero up-crossing period 

N - number of waves in record 

N% - percentage of waves in r·ecord overtopping breakwater 

* - test with wave absorption 'out' 

p - ref] ection coefficient 

9.3.4 Overtopping Discharge 

For each test the overlapping cl:i scharge was measured with the 

sharp-cr·es ted weir as described in the pr·evious chapter·. The r·esu l ts 

from the tests are shown in Tables 9.6 and 9.7. 

The relationship between overlapping discharge and breakwater crest 

elevation above still water has been plotted on Figures 9.21 - 9.22. 

The plots are of dimensionless discharge, o*, VS dimensionless 

freeboard, R*, as defined in Chapter 7 and given again below for t.he 

sake of convenience: 

R* 
Re 

~~rr ·-

Hs 
(9.4) 

0* 
Q 

~~rr 
= 

/gij~ 
(9.5) 

1.4 8 
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whet·e Re is the crest elevation above still water level 

Hs is the significant wave height 

s is the wave steepness given_by: 

s = Hs/Lo (9.6) 

for (9.7) 

The results show that provided the wave record is a 'full' spectrum 

rather than a part of a long sequence ('full' spectra and sequence 

lengths were fully described in ·an earlier chapter) the overtopping 

discharge measur·ed, is the same, no matter what the l¥ave pattern· is. 

The above t·esul t holds true for both the 1: 1 and 1:2 slope 

breakwaters, at all the crest elevations above stili water level 

tested. 

Examination of the results from a test where the sequence tength was 

'long' compared to the test length highlights the problem of defining 

accurately the test pat·ameters. The calculated overtopping 

discharges from many tests with different portions of the same long 

sequence (also statistically the same spectra as when a full sequence 

was used) are quite variable. Thus, as would be expected, different 

parts of ·the sequenc~ give different discharges. The results do·, 

however, lie on the same, albeit in different parts, line. 

This emphasises the importance of accurately defining the test 

parameters. To obtain 'statistically correct' results you should use 

full length sequences from the chosen spectrum. 

Figures 9. 19 and 9. 20 are plots of the wave record measur·ed with 

gauge 4, placed on the br·eakwater ct·est. 

and magnitude of the overtopping waves. 

The t·ecord shows the time 

An estimation of the overtopping discharge, Q, was also made by 

calculating the flow over the crest volumetrically. Figur·e 9. 20 

shows a part of the wave overtopping record and a computet· pt·ogt·am 

was written to calculate the area of water contained within the 

record. 
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This was converted to a volume by assuming the wave crest was 

perpendicular to the breakwater over the whole width of breakwatet·. 

A comparision of the two methods of calculating the overtopping 

discharge for some of the tests is given in Table 9.8. The r·esults 

agree favourably. 

The volumetric method may be a possible technique for the measurement 

of full-scale over topping dischar·ges. The main assumption to be made 

is that the waves are strictly one-dimensional, thus_the profile must 

be assUmed to extend uniformly over the whole width of the 

bt·eakwater. In a full-scale environment an at-ray of wave gauges 

would be needed to moee accurately measure the wave profile over the 

breakwatee crest. 

Test No. 

l 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 . 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

Full or· Partial 
Sequence (F/P) 

F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
p 
p 
F 
F 
p 
p 

-
Hg 
m 

.130 

.150 

.150 
.170 
.160 
.090 
.090 
.090 
.lOO 
.lOO 
.lOO 
.099 
.096 
.098 
.099 
.098 
.098 
.099 
.104 
.099 
.013 
.099 
.099 
.099 
.097 
.096 
.061 
.099 
.123 
.120 
.088 
.142 

.00401 

.00456 

.00431 

.00471 

.00556 

.00109 

.00964 

.0004 

.00015 

.00049 

.00148 

.00257 

.00289 

.00262 

.00287 

.00287 

.00293 

.00306 

.01550 

.02160 

.02460 

.02440 

.02610 

.02570 
. 02560 
.02430 
.00249 
.00326 
.00651 
.00439 
.00597 
.00795 

9.166 
9.105 
8.029 
8.495 

11.003 
3.428 
3.240 
1.521 
2.566 
1.408 
4.286 
7.925 
8.875 
8.171 
8.550 
8.624 
8.830 
8.452 

42.031 
67.939 
68. 159 
74.742 
79.890 
76.890 
79.033 
76.762 
11.857 

9.081 
18.558 
12. 162 
24.818 
18.558 

.01958 
.01809 
.01689 
.01723 
.01350 
.02266 
.02359 
.02157 
.02312 
.02114 
.01431 
.01517 . 
.01491 
.01526 
.01467 
.01475 
.01478 
.01523 
.01096 
.01240 
.01114 
.01208 
.01207 
.01179 
.01205 
.01226 
.01842 
.01379 
.01565 
.01503 
.01924 
.01377 

Table 9.6 Overlapping Discharge from 1:1 Slope Breakwatet· 
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Test 

l 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

No. Full or Partial Hg Q Q* X 1()4 

Sequence (F/P) m m3/s/m 

F .140 .00190 0.323 .01586 
F .130 .00092 1.156 . 01721 
F .128 .00157 2.848 .01625 
F .128 .00120 2.290 .01706 
F .120 .00142 3.099 .01889 
F .123 .00143 2.921 .01799 
p .073 .00037 1.335 .02470 
p .049 .00002 .142 .03435 
F .138 .00158 2.822 .01037 
F .141 .00321 5.546 .01015 
F .136 .00334 6.240 .01078 
F .134 .00343 6.301 .01054 
F .138 .00342 5.908 .01006 
F .136 .00329 5.982 . 01050 
p .070 .00078 3.027 .01606 
p .055 .00017 .879 .01958 
F .137 .00601 10.036 .00799 
F .135 .0520 9.418 .00834 
F .134 .00477 9.258 .00890 
F .134 .00481 8.901 .00849 
F .133 .00477 8.432 .00808 
F .141 .00472 8.491 .00846 
p .086 .00163 4.845 .01093 
p .055 .00042 2.271 .01551 
F .123 .00190 4.829 .01396 
F .123 .00177 4.324 .01344 
p .073 .00012 .5156 .01929 
p .066 .00002 .1044 .01908 

Table 9.7 Overtopping Discharge from 1:2 Slope Breakwater 

Q (weir) 
m3/s/m 

.006010 
.005196 
.004771 
.004810 
.004765 
.004722 
.00163 
.000420 
.00190 
.001767 
.000121 
.000200 
.005966 
.004365 

Q (volumetric) 
m3/s/m 

.006439 
.007077 
.005566 
.004907 
.004574 
.004242 
.001270 
.000358 
.00180 
.002775 
.000361 
.000369 
.005966 
.004643 

Table 9.8 A Comparison of Overtopping Discharge Measured over 
a Sharp-crested Weir and Vo1umetdcally over the Breakwater. 
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Figure 9. 21 shows how the results compare with previous test data 

(Owen 1980). The inset box contains the results of the present 

study. The tests results inside the box are shown in full on Figure 

9.22. 

The results presented here compare well with 'Owen' s test t·esults and 

extend the validity of his discharge curves much closer to a crest 

elevation approaching still water level. The scatter of results from 

the present study is shown on Figure 9.22. 

The results from the 1:2 slope bt·eakwater are less scattered, perhaps 

due to the lower levels of reflections present. 

As mentioned earlier, a number of tests were performed with a Newman 

spectrum with the same significant wave height as the 

Pierson-Moskowitz spectrum used for the majority of the tests. 

Table 9. 9 compares the ovet·topping discharge measured. from the two 

different spectra at the same crest elevation. 

Q ·(P-M)m3 /s/m 

0.00334 
0.00343 

Q (Newman) m3(s/m 

0.00436 
0.00597 

Table 9.9 A Comparison of Overtopping Discharge from 

two different spectra 

The Newman Spectrum produced approximately 30% greater overtopping 

discharge than the P-M spectrum. If the two spectra are compared 

(Figure 9. 23) it is seen that the peak energy level of the Newman 

Spectrum is approximately 30% higher than the peak enet~gy level of 

the P-M Spectrum, even though the significant wave heights are very 

similar. 

From the limited tests performed with different spectra it could, 

perhaps, be suggested that the overtopping discharge 1s more 

accurately related to peak wave energy, rather than significant wave 

height. ~1ore tests would have to be conducted to verify this theory. 
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The percentage of waves overtopping has also been plotted. Figure 

9.24 compares the results from the present study with OWen (1980). 

Figure 9.25 is an expanded view of the results presented here. Again 

the agreement with previous tests is good. 

The Newman spectrum results are not included on Figures 9.24 and 9.25 

since the calculations for discharge do not agree. 

9.3.5 Regular Wave Tests 

Included in the test program was a small number of regular wave 

tests. A 0. 5Hz sinewave was used. The overtopping discharge from 

the regular wave tests are shown on Figure 9. 22 as + and + for the 

l: 1 and 1: 2 slopes respectively. The regular wave results do not 

seem to fit well with the irregular wave test results at all. 

Insufficient regular wave tests have been carried out to thoroughly 

investigate this phenomena, it does not, however, seem unreasonable 

when the choice of parameters is considered. 

The wave height used in equations (9.4) and (9.5) to calculate the 

dismensionless parameters R* and o* for the regular wave tests is the 

total peak-trough wave height. It is not correct to assume that this 

is equivalent to the significant wave height for irregular waves. 

The r·esul ts of the regular wave tests are summarised in Tab le 9. 10. 

A comparison to discharge values for regular wave tests given in the 

Shore Protection Manual is given in Table 9.10. 

Slope Hiim T~s R* Q m3 /s/m o* X 10 3 Wave Absn Q(SPM) 
1:1 .104 1.99 .00995 .01316 2.59 IN . 0220 
1:1 .070 1. 99 .01212 .00473 1. 38 OUT .0041 
1:2 .105 1.99 .00990 .00083 16.108 IN .0012 
1:2 .104 1.99 .00995 .00121 23.934 OUT . 0010 

Table 9.10 Summary of Regular Wave Test Results 

In the table above it is interesting to note that the two results of 

overtopping discharge which most closely agree with the overtopping 

discharges calculated by the method described in the Shore Protection 

Manual are those for which wave absorption was not used. Since the 

Shore Protection Method is based on a very limited number of model 

tests which need interpolation to match the test conditions, no great 

significance should be attached to the result. 

158 



The percentage number of waves overtopping in the regular wave tests 

is naturally 100% and thus the results, of r·egular wave tests cannot 

be related to any results on Figure 9.25. 

9.4 Wave Absorption 

The beneficial effects of the wave absorption system have already 

been seen in Figures 9.7 and 9.11 where it was seen that the Incident 

Wave Spectrum remains close to the theoretical spectrum for different 

degrees of reflection. The closer correlation to the Shore 

Pt·otection Manual estimates of reflection coefficient with. wave 

absorption 'in' was also discussed in Section 9.3.2. Thus the wave 

absorption system enables a more accurate model of the full-scale 

situation to be created. 

Figures 9.26 and 9.27 illustrate the .difference made to the incident 

spectra with wave absorption 'in'. The incident spectrum with wave 

absorption 'in' is smaller than for absorption 'out' due to the 

elimination of re-reflections (and higher orders). The loss of high 

ft·equency components with wave absorption 'in', as noted earlier is 

also seen again. The high frequency loss suggests that the wave 

absorption system may not be as responsive or accurate at the higher 

frequencies - this may be a mechanical problem with the wave paddle 

or a software problem in the wave absorption circuit board. This 

agrees with the regular wave tests on the absorption sys tern in 

Chapter 7 where a loss is noticed in the higher frequencies (Figure 

7.1). This is also consistent with the loop gain of the system 

discussed in Chapter 6. An alteration of the filter on the circuit 

board may help to solve the problem (see Chapter 6). 

A comparison of Figures 9. 28 and 9. 29 shows the effect the wave 

absorption system ·has on the wave spectra measured at di.sct·ete 

locations within the channel. 
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Tables 9.11 and 9.12 compares results for discharge with and without 

the wave absorption system. 

Wave Absn? !\; m Q m3 /s/m 6* X 1()4 R* 

IN .lOO .00289 8.8747 .01491 
IN . 099 .00257 7.9250 .01517 

OUT .123 .00651 18.558 .01365 
OUT .120 .00439 12.162 .01503 

Table 9.11 The Effect of Wave Absorption on 
Overtopping Discharge 1:1 Slope. 

Wave Absn? !\; m Q m3 / s/m Q* X 1(]4 R* 

IN .141 .00321 5.546 .01015 
IN .136 .00334 6.239 .01078 

OUT .123 .00177 4.324 .01344 
OUT .123 .00190 4.829 .01396 

Table 9.12 The Effect of Wave Absorption on 
Overtopping Discharge 1:2 Slope. 

The effect of wave absorption on overtopping discharge does, in 

reality, come down to the fact that with no wave absorption the 

incident spectrum is ill-defined and very spiked. Thus any direct 

comparison of discharges is not .appropriate due to the large 

differences in incident sea states. 

The one point that is clear from a comparison is the importance of 

physical measurements in all tests. If the generated spectrum was 

assumed 'correct' then the results would be highly misleading. 

9 . 5 Summary and Conclusions 

A large number of overtopping tests have been carried out on two 

breakwater profiles 1: 1 and 1: 2 seaward slopes for crest elevations 

c lose to still water level. 
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The results from the overtopping tests with a P.M. spectrum, agree 

well with previous test results (Owen 1980) although the test range 

has been extended to include crest elevations not previously 

considered . The results are plotted in dimensionless form . Thus the 

validity of Owens method of estimating the overtopping discharge over 

the breakwaters considered in the present study has been shown to 

extend into a ·new area not previously considered. 

Different 'full length' spectra with the same spectral properties 

were used in the test and no discernable difference in overtopping 

discharge was found, provided the spectral properties were the same . 

Tests with parts of a very long sequence were found to give varying 

results. The results from part sequences agree with the full sequence 

results when plotted, the required spectrum, however, is not created 

in the channel. Thus the test is a different test to that defined by 

the input parameters. 

The analysis software and in particular the Frequency Response 

analysis all works effectively. From the three wave gauge array it 

is possible to determine fully the Incident and Reflected wave 

characteristics produced in the channel. An analysis of this form 

enables the relevant parameters to be calculated with more 

confidence, since three separate estimates of the incident and 

reflected spectra are obtained (Gauges l-2, 2-3, l-3 ) . 

The wave absorption system is effective in removing the presence of 

re-reflected waves from the channel . An incident spectrum much 

closer in form to the theoretical spectn.un, as output from the BBC, 

microcomputer is produced. The inci~ent spectrum is repeatable and 

good stability of the waves (i.e. no resonance) is achieved. The 

results of tests with wave absorption 'in' also agree much better 

with empirical reflect ion data published in the Shor·e Protection 

Manual. 
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The main advantage found with the wave absorption system was the 

confidence with which tests could be carried out. There was no need 

to worry about resonance or standing wave patterns being formed. The 

tests were also much mot"e accurately target ted beforehand i.e. when a 

choice of tests parameters were chosen you could be confident the 

conditions generated in the channel would be close to those requirea. 
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CHAPTER 10 

NUMERICAL OVERTOPPING MODEL 

10.1 Introduction 

In order to evaluate overtopping discharges mathematically a 

numerical model of the overtopping process was deve loped . The mode l 

is written in IEM FORTRAN 77 on the HP 9816S computer which was used 

for t he laboratory 1-1ork. 

The purpose of the model was to predict the water surface elevation 

and horizontal water particle velocities on a breakwater slope and 

over a horizontal crest to obtain t·esul ts fot· comparison with the 

laboratory work. No previous examples of overtopping models could be 

found, although the c losely related run-up problem has been modelled 

on a number of occasions. A review of numerical models of run-up is 

included in Chapter 1. 

Since the type of breakwater structure used in the physical studies 

had a fairly steep slope, up to 1:1, the commonly used ( f or run-up ) 

characteristic equations cannot be applied here since the vertical 

accelerations are significant. The approach adopted was to allow for 

the vertical accelerations without including them in the integration 

The effectiveness of the method will be discussed in the next 

chapter . 

The solution of the modified momentum equation and the 1-D continui ty 

equation formed the basis of the solution to the overtopping pr·oblem. 

Although the equations at·e one dimensional in respect to all 

variables, t he second, vertical, dimension has been taken i nto 

account and the equations can be regarded as quasi 2-D. 

The method of sol ut ion of the 2 equations is with a finite e l ement 

mesh i n the space domain and a finite-difference time step. 

In all the following algebraic development t he x , y and z directions 

are t aken to follow standard cartesian conventions with z in the 

vertical plane . 
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10.2 Governing Equations 

The run-up and over-Lopping process is governed by a coupled set of 

equations. The continuity and momentum equations 

Continuity an a 
[ U(h+n) J 0 + = 

at ax 
(10 . 1 ) 

Momentum au u au gan 
+ Fx + = (10.2) 

at ax ax 

where Fx is the term introduced to account fOJ~ vertical 

ac.:ce l e raU ons. F x is ded ved j n fu lJ in Appench x E. 

The applicat:ion of the above two equations is made wi.th the following 

assumptions. 

The flow in the region under consideration is assumed to be inviscid 

and incompressible. The density of the water and the atmospheric 

pressure remains constant. The effect of wind, percolation, coriolis 

and tide generating forces are neglected. Currents are not present 

and the incoming wnve is assumed to enter still water. 

For a 1- D (in space) model there is no change in any quantity in the 

y-direction i . e. the direction perpendicular to the x-axis in the 

horizontal plane. This means refraction and diffraction are not 

involved. 

The bottom is smooth and frictional forces are ignored. 

10 . 3 The Finite Element Method 

10.3.1 Introduction 

The finite e ) ement. method of solub on is now a widely used and 

accepted method of analysis. The technique is we ll documented and 

the intention here is only to deal with the salient points pertinent 

to the solution of the above equations. 
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There are many advantages to a finite element solution some of which 

include: 

i. Complex geometry is simply included 

ii. A moving botmdary is easily coped with 

iii. With non linear shape functions high accuracy can be 

achieved with few nodes w1d elements 

iv. Changes of the forcing function wave are easily dealt with. 

10.3.2 Galerkin Finite Element Method 

Briefly the Galerkin method is a method of weighted residuals 

(Zienkiewicz 1977) . The method includes taking a weighted error or 

residual, integrating the residual over the domain of interest and 

setting the t'esult equal to zero. Thus, with the continui ty and 

momentum equations approximated by a finit e sum, the velocity, U, and 

water surface devation, n, at·e expressed as follows:-

p 
u (x ,t ) = I: Ni (x) u i ( t) (10. 3) 

i=l 

p 

n (x ,t) = I: Ni (x) ni (t) (10.4 ) 
i =l 

where the bar (U , n ) signifies an approximation, P is the number of 

degrees of freedom, Ni are the Galerkin trial functions and Ui and ni 

are discrete values of the var iables at points. 

Let the governing differential equation be of the form: 

1~ - f = O (10. 5) 

where 1 is a differential operator, ~ a variable and f a known 

function 

Let ~ be an approximation to ~ s uch that: 

p 

i = I: Ni ~i 
i =l 

Equation (10.5) can then be written as: 

1~ - f=H 
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where R is the weighted residual due to the approximation. Hence 

from the principal of orthogonal i ty. (If~ 

orthogonal to Ni). 

i = 1' .... .. p 

or 

R = 0 i = 1' .. .... p 

is the domain of interest. 

= ~ then L~ - f must be 

(10.8) 

(10 . 9 ) 

Briefly it is seen that the teclmique reduces to a set of algebraic 

equations . An example is given below: 

au 
Let = ax x1 ~ x ~ x 2 

ax 

where U is a variable and a a constant . 

The approximation is: 

2 

u = I: Ni ui 
i =l 

where N1 and N2 are functions of x. 

(10. 10 ) 

(10 . 11) 

( 10.12) 

Since U1 and U2 are discrete values of x they do not depend on x, 

thus : 

au aN1 ul 
aN2 Uz (10 . 13) = + 

ax ax ax 

If we write aNi as N~ 1 
ax 

(Nf u l + Nl Uz) - ax = 0 (10.14) 2 

from the principal of ot· thogonali ty 

( lO. l 5) 
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(10.16) 

equations (10.15) and (10.16) can be written in matrix form as: 

Xz 
JN1 N}, dx 
"1 

Xz 
JN1 N2 dx 
"1 

Xz I (N1ax) dx 
x1 

"1 
JN2 Ni, dx 
x1 

Xz 
JN2 N! dx 
x1 

= (10.17) Xz I (Nzax) dx 
x1 

As N1 and N2 are known the integrations can be carried out quite 

easily. 

(10.12). 

Solution of (10.17) yields U1 and U2 and hence U from 

Application of the finite element method to the above solution 

involves splitting 

(discretisation). 

or error will be. 

the problem domain into small portions or elements 

The smaller the elements the smaller the residual 

The values at distinct points (nodes) are 

calculated for the whole problem domain. The approximation is 

introduced through the shape (trial) functions. 

A simple example with linear shape functions is given below. 

2 3 

Nz 

I I 

2 
3 

2 3 

Figure 10.1 Linear Shape Functions 
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l-2 represents a one-dimensional element of length 1, and U1 and U2 

are the values of U at the nodes. If we assume U varies linearly 

within the element 

u = [1 x/1 J u l + [ ?! ) Uz (10.18) 
L 

u = Nl ul + Nz Uz (10.19) 

where N1 1 - X and = 

Nz 
X = 
l 

It is seen that these a l-e linear shape functions and there are two 

degrees of freedom per element. (Owen and Hinton 1980). 

In LhP- case of ~vater surface elevation we do not have linear 

variation between nodes. There are two possible solutions. One is 

to make the elements small so that the variation becomes 

approximately linear. A large number of elements would then be 

needed, increasing the computational time. The second solution is to 

use non-Jinear shape functions since we require that the gradient of 

the shape functions are continuous over the nodes (i . e . C1 

continuity) . Non-linear shape functions are used in the solution to 

this problem. Continuity of gradient means the solution is l ess 

dependent upon element size. (Hinlon 1980). 

The shape functions used in the model are limbs of a Hermitian cubic 

interpo] ati on function. We also need to use the gradient of the 

variable at the nodes in addi lion to the variable itself. i.e . four 

degrees of freedom per e l ement. (Wang et a] 1972) (Strang and Fix 

1973). 

The variable is given by: 

(10.20) 

170 



N1 to N4 are as follows:-

N1 = 1-3 ( ~ ]2 + 2 [ ~ ]3 

N2 = x+l [ ( ~ r- 2 
( ~ rJ 

(~r-2 [:J 
(10. 21) 

N3 = 3 

N4 = l [ ( ~ r- ( i 12 J 

It can be seen that for non- linear shape functions there will be four 

integral relationships per element. 

10.3.3 Element Assembly 

In order to arrive at a solution for the whole problem, the element 

matrices must be assembed correctly. The assembled matrix is called 

the global matrix and it is the solution of the global matri x which 

yields the solution. 

In the problems under consideration here we are only working in one 

space dimension ( the time dimension will be dealt with later) and 

thus we can use line elements. 

3 4 

HO----+o~--~o---+o~--o 

1 2 ELEMENTS 

1 2 3 4 5 NODES 

Figure 10.2 Assembly of line elements 
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From Figure 10.2 it can be seen that the value at a node is shared by 

two elements. 

As stated above each element matrix will be 4x4 and the value and its 

derivative will be continuous over the node i.e. 

u~ = uf where (10. 22) 

Uf is the value of U at node 2 in e lement l and Uf is the value of U 

a t node 1 in e lement 2. 

Us ing t he above f act the two e l ements are assembl ed as f oll ows : 

Cu c12 C13 c14 0 0 
. 
ul 

C21 C22 C23 Cz4 0 0 i)l 
1 

c31 C32 C33+R11 C34+R12 R13 R14 Uz 

c 41 C42 C43+Rz1 C44+R22 R23 Rz4 iJl 
2 

0 0 R31 R32 
. 

R33 R34 u3 

0 0 R41 R42 R43 R44 iJl 3 

\vhere Cij are the values from e lement matrix 1 

Rij are the values from e l ement matr1x 2 

Bl 

Bz 

= B3+Fl 

B4+ Fz 

F3 

F4 

the values of Bi and Fi came from the RHS of equation (10.17) . 

(10.23) 

In gPne r a l i f we havP N e l ~tuen ts the g l obal ma lr· i_ x w\11 b ., .. ,r siz,_. 

LU x 111 \vh e r·e m -= 2( N) + 2 . 

Assemb l y f o r· a ll lh..=: c·l ·=- mo:.- nt s a nd so l vi ng by 3 m~ thod s uc h as dt n"c t 

Gauss i a n e limi na t ion y i ~ lds a ll t h•: va l ues ,-,f L! a nd L! l . 
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10.4 Problem Domain 

The run-up/overtopping problem investigated here is concerned with 

flow up to and over a breakwater crest. 

x=O 
( ) 

h(x) 

Problem Domain 

Figure 10.3 Spatial Discretisation 

The model has two limits. X=O is the upstream boundary, it is at 

this point that the incoming wave is introduced. The upstream 

boundary remains fixed. At the downstream end the situation is more 

complicated. Initially the downstream boundary is at the point where 

the free surface makes contact with the breakwater. As the wave runs 

up the breakwater the point of contact will move up and over the 

breakwater. Additional elements will have to be introduced to permit 

this (see Section 10.9). A node will always be at the tip of the 

moving water surface At an arbitrary point x=X the water is assumed 

to have 'overtopped' as an additional approximation is needed to 

calculate the overtopping discharge at this point. This is discussed 

in Section 10.10. 
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The discretisation as shown in Figure 10. 3 requires that there be a 

node at x=O. The value of n at this node can be calculated as the 

wave is introduced here. The choice of forcing function i.e. a 

regular Ot' random wave will be discussed i n Sect ion 10. 7. The 

problem is started with still water conditions i.e. n =O at all nodes. 

10.5 Solution System-Space Domain 

The t'un-up/overtopping problem is defined by the coupled continuity 

and momentwn equations (10.1), (10 . 2 ) . The Galerkin technique is 

applied to both equations in each e lement and the resultant eleme nt 

matr ices at·e assembled to give global continuity and global momentum 

matrices. The solution of the two mat rices yie lds the time 

derivatives of n and U. The time de rivatives are then steppe d up in 

time to give the values of n and U. 

The solution may be represented as: 

u = N 1 u1 + N2 u 1 + N 3 u2 + N4 U' 2 (10 . 24 ) 

n = N1 n1 + N2 n, 1 + N3 n2 .+ N 4 n} ( 10.25 ) 

10. 5.1 Element Matrix-Continuity Equation 

On application of the Ga lerkin technique to equation ( 10.1 ) over a 

single e lement thE~ following integral relationship r esults : 

rewriting the equation with the time dependent terms on t he LHS 

= 

= 

a 
a x 

[ u 

[ U( h+n) ] 

a 
( h+n ) + ( h+n ) au 

a x a x 

Taking N1 as the we ighting function 

j\, [ an l dx rN 1 [ U a 
= -

at a x 
0 0 
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Substituting for the values of U and n from equations (10.24) and 

(lO. 25) 

+ 

f ~' c N, n, + N, n, + N3 n, + N4 n~ J dx ~ 
0 

fN1[CN1U1 + N2Ut + N3U2 + N 2U~ ) (~~ + N\n1 + 

( h + N1n 1 + Nznl + N3n2 + N4n~ ) (N1u 1 1 + N~ Ut 

N~nl + N~n2 ~ N 4n~ ) 

+ NW2 + N~U~)] dx 

(10.28) 
Similar t"elationships are obtained i..f N2 , N3 and N4 at"e used as the 

weighting functions. Where the dot no tat ion implies a time 

derivative 

The LHS of equation (10 . 28) is written i.n matrix f orm as 

j = 1 4 

Using B1 to denote the RHS of equati on ( 10.28) 

From the 3 other relationships obtained us i.ng N2 , N3 and N 4 as 

\'leighting functions the element matrix becomes 

(1 0. 30 ) 
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The continuity e l ement matl'ix will be synunet ri c si nce 

L 

C·. 
lj = r N · N · l J dx no . :n' 

0 

The othe t· e l eme n t. matri ces a r e ca l c ulated in the same way a nJ t ht' 

g l oba l cont inuit y ma tcix assembled as s hown in ~q~<dti<"• ro ( 10.23) 

r e membe t·ing thal at each node the val ue nnd its gn~oien t at·· ~ Ln~1l' 

va lued , i.e. r\~ = r\f 

10.5.2 F.lement Matl"i x - ~1omentwn Equation 

The momentum equation (10.2) is opet·ated upon in e:.;Jt't ly lhe Sd.ntt: 

way.In this case there are a numbet· of tet·ms f\)t ' tlw p, ,,ol ue 

included lo account for ve t·tical acce l e cal ions . 

the vertical acce l e rat ion te rm is given in Appendix E. 

Ign o t· ing teems smaller t han 3rd o cder the mome ntwn equal: ion (lO . 2 ) 

can be r e-writte n as : 

au au 
+ u = at ax 

a 
) +­ax [u a , 

ax \ L' ah. ~]l 
ax ' J 

( 10.32 ) 

In t he same way as for· lloe conli.nuity equation'"~ ...!['ply lhe Gall' t"kin 

technique ov~c a single e l ~menl t o equat ion ( 10.32; 

J 

1 

au 
N 1 (at 

0 

• u ;~ ) a, " _ j ~ , [ h ; o 

0 

~~ [a: ( - u;~ ) • u~, ( - u~~ l • g) 1 d ' 

w,·. obU1 i.n 

a r t~ a, · a-.. 

' 10.'13 ~ 

Similar n~ l ationships are obtai ned with N~, N3 , dlid N4 ;Js the 

1o1e i g-hting functions. Collecting the lime dependen t t eno;:; of t: un rh~ 

LHS a nd the space dependent terms un the RHS we have 

J~. [U + 
0 

h + n. 
- 2-
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l 

J N [ u au _ h + n [ ~ [ ~ [ -u a h ] ] ] _ an [u ~ [ _ ~] + g ] ] dx 
l ax 2 ax ax ax ax ax c3 x 

0 

On substitution of U and n from equations (10.24) and (l0.2~}0w~4ftave 
on the LHS 

f~ 1 ((N 1iJ 1 + N2iJj + N3U2 + N4U.~ ) - [~ + (N1n1 + N2n! + N3n2 + N 1n~l12] 
0 

- [ <Njn1 + N~nj + N~n2 + N ln~ ) (N 1U1 + N2Uj + N3U2 + N 4iJ~ ) !~]] dx 

(1 0 . 35 ) 

In matrix form ( 10 . 35) becomes 

L 

where Cij = J Ni [Nj 
0 

( N c3h a 2 h 
( Ntni + N·- ) -

J c3x Jax2 

In a similar fashion 

+ Nlnl 2 l 

to the 

and N4 as weighting functions 

Cu C12 ct3 C14 ut 

Czt Czz Cz3 Cz4 Ut 

+ Nlnlz) N j] dx 

continuity element 

we have an element 

Bl 

Bz 

( 10.36) 

(10.37 ) 

matrix , with Nz , 

matrix as 

N3 

c 3l Cn C33 C34 
= (lO. 38) 

Uz B3 
C41 C4z C43 CH u ~ B4 

It is clear from equation (10. 37 ) that the element momentlmJ matrix 

will not be symmetric. 
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10.5.3 Continuity RHS Vecto~ 

From the RHS of equation (10. 28) we can obtain a result for the 

values of Bi in equation (10 . 30). 

f
1 

[ ah Bi = ~i (N1U1 + N2 Ut + N3 U2 + N4U~)(ax + Nfn1 + N~nt + N~ n2 + N4n~ ) 

+ (h + N1n 1 + N2nt + N3n 2 + N4n~)(NfU 1 + N~Ui+ N~U2 + N~U~) ] dx 

i = l .... 4 
10 . 5.4 Momentum RHS Vector 

(10. 39) 

On substitution of U and n into the RHS of equation (10.34 ) we have 

Bi = f~i[(N1U1 + N2U{ + N3 U2 + N4U~)(N1 1 U1 + N~U{ + N3 U2 + N2U 1 2 ) 2~~ 

+ (~ + (N1R1 + N2Nt + N3n2 + N 4n~)/2) [ <N 1U1 + N2Uf + N3U2 + N 2U~ ) 2~~ 

i - l ....... 4 ( 10.40 ) 
10.5.5 Assembly 

The element matrices and vector·s are assembled for 8ll the elements 

and djrect Gaussian elimi.nation used to solve the resultant sets of 

simultaneous equations. The solution of the two matrices yields th~ 

time derivatives U and n. The problem can be solved subject to the 

imposition of lhe boundary conditions on U and n which are discusse d 

later. 
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10.6 Time Integration 

In order to avoid any error due to the use of constant rates of 

change of U and n within the time step, an iterative procedure is 

necessary. The ite<ation is introduced in the steps of time 

integration via the predictor-corrector techn i que (McCalla, 1967) . A 

predictor-correc tor method moves back and forth between time steps to 

ensure that the error i ntroduced by a pure ly forward marching scheme 

i s r educed by successive iterations to less t han a specified 

tolerance. This ensures that due cons ideration is given to the 

simultaneous and non- linear change in U and 1\ . A higher order method 

was nol conside r ed since the increase in computational time was not 

cons idered to merit the possible increase in accurary . 

10.6.1 Euler Predictor-corrector Me thod 

Let the velocity at a given node be U(t ) at time t. From the above 

Finite Element step we obtain the time rate of change of U at time t 

i e U(t). 

With the value of U(t) the value of U at (t+6t ) is predicted as 

UP ( t+6t) = U(t ) + U( t ) .6t (10. 41) 

also 

nP ( t+6t) = n (t) + n (t) .6t (10. 42 ) 

Using these values of U and n for the instant (t+6t ) the time rates 

of change of u and n, U(t-+ 6 t) and n (t+M ) can be calcula ted within 

the Finite Element step. Corrected values of U and n at ( t+6t ) are 

now arrived at using the mean of t he time r ates of change at t and 

(t+6 t) . 

uc (t+6t) = U(t ) + [(U(t) + U( t+6t ))/2] 6t ( 10.43 ) 

ne ( ( t +6t ) = n ( t ) + [(n (t) + n ( t+6t))/2] 6t (10.44) 

The process is repeated unti l two successive cor rected values differ 

1 Fl·gure 10. 4 shows the l ogic for by J ess t han a pre-set to erance . 

success ive iterations . 
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Predictor-Corrector Time Step 
I 

. 
Calculate U and 'l 

at time (t) 

Predict U and 1.. 
for t ime (t+ t) 

Calculate U and 'l 
based on predicted U and 't 
for time (t+ t) 

Calculate 'corrected' . . 
values of U and 1 
for time (t+ t) 

le difference between 

'predicted' and 

'corrected' leas ~0 Repeat 'corrector' 
t--- ~ 

than tolerance ? step 

Yes 

Next time step 

FIG 10.4 PREDICTOR-CORRECTOR SCHEME 
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10.7 The Forcing Function 

The effect of an incoming wave to the breakwater is introduced 

through the upstream boundary condition at x=O. 

Initially in the development of the model a sinewave forcing function 

was used as this was simple to implement and code. 

H 1 

Figure 10.5 Sinusoidal Wave 

Wave heights h, wave length L and wave period, T are specified. The 

water level profile at x=O and the constant is given by 

n(o,t ) =~sin f~t) (10.45 ) 

It would be a simple coding exercise to allow the model to run random 

waves. A real digital data set could be read at the correct time 

intervals. In this manner the model could run random waves. 
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10.8 Boundary Conditions 

The solution requires the determination of two unknowns, namely U and 

n and hence we need two boundary conditions. One on U and one on n. 
The boundary conditon on n is supplied from a value of n calculated 

at x=O from the forcing .function value as given above. The boundary 

condition on U is given by a value of U at the downstream end i.e. 

the tip of the water body. Once the water body has reached the point 

at which overtopping is assumed to occur a different calculation of U 
is performed. The two different boundary calculations are described 

in the appropriate sections on element splitting and the weir 

function. 

10.9 Element Splitting 

In a run-up/overtopping problem the downstream boundary will change 

with time as the wave propagates up the breakwater slope. As the 

wave moves along the crest a new problem arises. At an arbitrary 

point we must decide that the wave has 'overtopped'. The technique 

for dealing with this will be explained in the next section. 

x=O 

t 

I 

t t+d 

Figure 10.6 Moving Downstream Boundary 

The upstream section will remain unchanged in time at x=O. Moving 

boundary problems such as this are classified as Stefan problems. 

(Varogli and Liam Finn 1977). The common characteristic of Stefan 

problems is that the posit i on of the movi ng boundary at the next time 

step is to be obtained by solving the governing equations, but the 

equations cannot be applied until the position of the boundary is 

known. This 'vicious' circle is usually overcome by adopting an 

iterative technique. 
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The error normally associated with fixed grid schemes can be 

eliminated by use of a mobile node at the water tip and letting -this 

node move with the water during run-up . Figures 10.7 and 10.8 

demonstrate. 

s.w.l. 

A 

Figure 10.7 Water Profile and End-Element at Time t 

s.w.l. 

A 

Figure 10.8 Water Profile and End-Element at time t+~t 

If at time t the wave has reached the shoreline and i s about to climb 

up the breah~ater slope as in Figure 10.7. The last element 

(end-element)(AB) has a length 1 which will be the same as the length 

of all the other elements. At time ( t+~t ) the tip of water has moved 

up (Figure 10.8). We let the last node move with the tip and take up 

the position 8 1 at ( t+~t ). The end element now has a length of 11 . 
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If the above process was allowed to repeat the end-element would 

become considerably longer than the other non-moving elements and the 

solution would become unstable. In order to ·prevent this we split 

the end element into two new elements when 11 exceeds a 

pre-determined length such as 25% greater than 1. 

A new node is thus introduced between the existing two nodes. The 

values at the new node are easily calculated as the following. 

A 8 
__ swl 

ABJRegular Elements 
BC . 

CD End-element 

Figure 10.9 Position at time t 

A 8 
swl 

length of AB = length of BC=l 

length of CD=l 

Is 11>1.251? No ~ continue 

Yes - split as shown below 

Figure 10.10 Position at time (t+6t) 
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swl 

Figure 10.11 Element splitting at time (t+~t ) 

The new values at D are given by 

where the value of x in the expressions N1 - N4 and Nl- Nl is equal to 

l, the nodal values at E are, however, the values calculated for the 

node Din Figure 10.10. 

After the split, the element CD remains constant and DE become the 

end- element as the program continues. 

As mentioned earlier an iterative technique is needed to detennine 

the values at the downstream · tip . The procedure for this is. 

described below. Let the velocity at the tip be given by Ue and the 

water level be ne. 
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Figure 10.12 Downstream Conditions at time t and ( t+~t ) 

The horizontal distance travelled by the tip in the interval ~t is S. 

The mean velocity in ~t is 

Um = [Ue (t) + Ue (t+~t)]/2 

where Ue is the velocity at the end node. 

Hence 

It follows that 

ne ( t+~t ) = n( t ) + s tan ~ 

(10 . 47 ) 

(10. 48) 

(10. 49 ) 

However, to calculate neC t+~t ) we need to ~now Ue(t+~t ) and Ue( t+~t ) 

is unknown until all the quantities at ( t+~t ) have been computed. 

This difficulty is overcome within the application of the time step 

as described in section 10.6. 

The value of the velocity Ue (t+~t ) can be predicted by consider~ng 

the Lagrangian acceleration of the tip (aT). 
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Then 

Ue ( t+t:.t) = Ue( t) + aT ( t) .t:.t (10.50) 

aT is also a function of time and within the time-step the mean of 

the total accelet·ations aT(t), and aT(t+t:.t) are taken . 

The following steps are made within the predictor-corrector steps. 

Iteration No l 

( 10.51 ) 

at 

(10.52 ) 

(10.53 ) 

(10 . 54) 

( 10.55) 

With the value of Ue( t+t:.t ) in (10 .52) used as the downstt·eam boundary 

condition all the values at ( t+t:.t ) are computed. 

Iteration No. 2 

. ( t+t:.t ' = aue (t+t. t ) + u rt+ t:.t' aue ( t+t:.t ) 
aT 1 at e ' 1 dx (10.56) 

Mean acceleration at the tip is, therefore, 

(lO. 57) 

Hence, the c orrected velocity of the tip at ( t +t:.t ) is 

(10. 58) 

(10.59) 

(lO. 60 ) 
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Therefore the corrected level of the tip at ( t+~t ) is 

ne( t+~t) = ne(t ) + S tan a (10.61) 

The iterations are continued until two successive values of Ue(t+~t ) 

differ by less than a pre-set tolerru1ce. 

10.10 Weir Function 

The elements are allowed to split and the downstream tip move until a 

specified number of elements has been reached. The actual number 

depends upon the breakwater geometry chosen (see next chapter). Once 

the pre-set number of elements is reached the wave is considered to 

have 'overtopped' and an approximation must be made to evaluate the 

quantity of water which has overtopped. The approximat ion must also 

supply the downstream boundary condition in a simila r fashion to th~ 

technique outlined above. 

To calculate the overtopping discharge the crest of the breakwater at 

an arbitrary point is considered to be a broad-crested weir. By use 

of the broad-crested weir equation at each time-step a series of 

instantaneous discharges can be calculated . Fr·om instantaneous 

values a mean overtopping discharge can be cal culated. 

10. 11 Programming Cons ider·at ions 

The numeri cal ovet·topping program, OVERTOP, is wd L ten as a series of 

complimentar·y subroutines called as required from a main contt·ol 

segment. As mentioned ear·lier the model is written in Fot·tran 77 and 

runs on the HP9816S. The use of a microcomput e r for a complt:x 

program did not present any noticeable proble ms and qui l e 

satisfactot~y run- times were achieved (see later ) . Each subroutine 

performed a seperate opet·ation in the process and some subt·out i nes 

~vere used more than once in a single iterative step . A flow diagt·am 

for the pt·ogram is given in Figure 10. 13 and a list, togethe r with a 

brief desc ription of each s ubroutine is given below (Table 10.1) . 
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To help speed execution time, user input is kept to a minimum, with 

only the date, test numb-er and number of time steps input each time , 

to distinguish test results. Other paramete rs which may wish to be 

varied, such as water depth, crest elevation etc. are at present 

altet·ed by 'editing' the program. It would be a relatively 

straightforward operation to add an 'edit' subroutine to vary the 

various modelling parameters if requit·ed. For development this was 

not considered due to the speed at which it was possible to 'edit' 

and t'ecompile the program. One advantage of a microcomputer. 

During the debugging and opt imisation of the program it was found 

that the most useful parame ter to be able to vary was the number of 

time-steps since on occasions the program would 'crash' before any 

data was obtained. All input/output data being printed aftet· all 

the computations were complete and the r·esults written to disc . This 

was to maximise the computational capability of the computer. By 

suitable choice of the number of time-steps, calculations could be 

stopped just before a 'crash' and the t·esults examined to . tt·y and 

ascertain why the program fail ed at a particular stage. ~1ost 

pt·oblems with the program were caused by ill-conditioned matrices. 

The effect and causes of this will be discussed i .n the next chapter. 

One disadvantage of using a microcomputer is that disc access time is 

t·elatively slow. Originally the pr·ogram was written in the 

conventional manner fot' Finite Element programs with the element 

matrices and vectors calculated and written t o disc sequentially then 

read bacl< during the global assembly process . Since the disc access 

time was slow the program was changed so that each e l~men t matr·ix and 

vector was written to an internal file within the computet·'s memot"Y 

for subsequent assembly. The use of internal files sped up execution 

time by a factor of four. A typical t'un of 20 time-steps would take 

approximately ~ minutes. 
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Subroutine 

MAIN 

INIT 

DATA 

SHAPES 

SORTER 

CONTIN 

MOMENT 

CONVEC 

r.10MVEC 

GEOMET 

ASSEMB 

VECASS 

SOLUTION 

BOUNDY 

SINE 

GAUSS 

TIMEST 

SPLITER 

WEIRF 

STEPUP 

RESULTS 

Function 

Controls calling order of subeoutines 

Initialises all variables and arrays 

Contains all relevent input data such as 
element lengths, wate r depths etc . 

Calculates shape functions and their first 
two derivatives for use in element 
calcuations, (equations 10.21 ) 

Decides which value to use depending on 
iteration number i.e. 'old' or 'peedicted'. 

Calculates continuity element matr ix ( 10.28) . 

Calculates momentum e lement matrix (10. 35). 

Calculates continuity e lement RHS vector 
(10. 39) 

Calculates momentum element RHS vector 
(10. 40 ) . 

Calculates slope and gradients fo r defined 
breakwater geometry. 

Assembles global matrices. 

Assembles global vectors. 

Controls the solving of the global equations 

Applies boundary conditions. 

Forcing function input ( oe RANDOM fot· random 
waves ) . 

Gauss elimination to solve global equations. 

Euler predictor-corrector time s t ep 
( l 0 .41- 1 0 . 44 ) 

Dec ides if another element is needed at 
downstream boundary . 

Calculates discharge (10 .10 ) 

Steps model up in t i me. 

Prints all input/output and tnble of n and U 
values in addition to the overtopping 
d ischat·ge. 

Tab le 10. l Numerical Model Subt·outines. 
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OVERTOPPING MODEL 
Input data 

I 
PROGRAM 
r.nNTR()I 

INITIALISE 
VARIABLES 

SHAPE FUNCTIONS 

I 
I I 

CONTINUITY MOMENTUM 
MATRIX MATRIX 

I I 
CONTINUITY MOMENTUM 
VECTOR VECTOR 

I I 

ASSEMBLE 
MATRICES 

ASSEMBLE 
VECTORS 

SOLVE 
EQUATIONS 

DETERMINE 
TIME STEP 

END ELEMENT f-- SPLIT? 
CONT~~OI 

MORE I 
STEPS 

WEIR? 

END 
FIG 1 0.13 NUMERICAL MODEL FLOWCHART 
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CHAPTER 11 

NUMERICAL OVERTOPPING RESULTS 

11.1 Introduction 

Presented here are the results from the numerical model the theory 

for which was described in the previous chapter. The majority of the 

tests were. for simplicity. conducted with the monochromatic sine 

wave as a forcing function. The results of overtopping discharge for 

the monochromatic waves were compared to the laboratory wave tests 

and the overtopping data published in the Shore Protection Manual 

(1978). 

Many of the numerical model tests were conducted with identical 

physical parameters (i .e. Hs, Tz) but with different numeric 

parameters, such as element length or time step . Comparisons of 

similar physical • but different numeric test parameters are given 

below. The comparison of numerical parameters allows an analysis of 

the stabiltiy of the model to be undertaken. 

Unfortunately. it was not possible to obtain any meaningful results 

from a breakwater with a 1: l seaward slope. The most likely reason 

for this is that as a breakwater slope steepens. the vertical 

accelerations become more significant. To obtain reliable results 

from a 1:1 slope it is suggested that a 2-D model would be needed to 

take vertical accelerations fully into account. The results 

presented here are for "simple" breakwater slopes of l: 2 and l: 10. 

The full range of test parameters is given in Table ( 11.1). 
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Slope Hg Tz Re M.W.L. 
l: m s m m 

2 2.0 12.0 1.0 4.0 
2 0.4 1.0 0.5 4.0 
2 0.4 2.0 0.5 4.0 
2 0.4 2.0 0.5 5.0 
2 0.25 2.5 0.5 5.0 
2 2.0 2.0 1.0 4.0 
2 0.4 2.0 0.4 4.0 
2 1.0 2.0 1.0 8.0 

10 2.0 12.0 1.0 4.0 
10 0.4 1.0 0.5 4.0 
10 0.2 12.0 0.5 4.0 
10 0.5 12.0 1.0 4.0 
10 0.4 10.0 0.5 4.0 

Table 11.1 Range of Regular Wave Tests for Numerical Model 

11.2 Regular Wave Tests 

11.2.1 Introduction 

The forcing.function of the regular wave tests was a sine wave (see 

section 10. 7). The incident wave height at each time step was 

calculated and used as the upstream boundary condition (section 

10.8). Results are presented for the overtopping discharges 

calculated over a cycle of full wave lengths. The mean discharge Q 

is given. Also presented are illustrations of the run-up and 

overtopping of a breakwater shown as time-step increments from a 

typical computer analysis. The effect of introducing extra elements 

as the run- up progresses can also be seen (section 10.9) . 

11.2.2 Overtopping Discharge 

Table (ll. 2) compares the values of overtopping discharge obtained 

numerically to the physical tests and data in the Shore Protection 

Manual. 
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Hs QPHYS QMATH QSPM 

m nr3 /s nr3 /s m3/s 

0.25 0.022 0.011 0.029 

0.40 0.0012 0.035 0.0188 

0.50 0.009 0.023 0.013 

1.0 0.041 0.005 0.048 

2.0 0.500 0.120 0.419 

Table 11.2 Comparison of Discharge for a 1: 2 Slope 

From the above table and Figures 11.1 and 11.2 it can be readily seen 

that agreement between physical tests and the Shore Protection Manual 

is good whilst the numerical model results compare less well. 

Various reasons for this will be discussed later. Figures 11.1 and 

11.2 are plots of dimensionless freeboard vs dimensionless discharge, 

the definitions for which were given in Chapter 9. 

As will be discussed later a variation of the numeric parameters 

(i.e. element length) as opposed to the physical parameters (i.e. 

wave length etc) also had an effect on the result of the overtopping 

discharge. The numerical results above are a selection of test 

results where the combination of numerical parameters appeared to 

give good stability (see later). 

11.2.3 Run-up Profiles 

Figures 11. 3-ll. 6 are examples of the run- up on the breakwater pdor 

to wave ovet·topping. The stage up to the commencement of overtopping 

is shown. The profiles emphasise the importance of introducing 

elements at the downstream or landward boundary as run-up progresses. 

The difference in the size of the problem domain is clearly seen. 

Also illustrated is the point at which the wave is considered to have 

'over topped' . It is at this location that an estimate of the 

over topping discharge is made by use of the weir approximation set 

out in the previous chapter. Wave overtopping was approximated as 

flow over. a weir by Takada (1974). 

The run-up profiles show that whilst the estimate of overtopping may 

not be accut·ate the model is at least progressing with time in the 

expected fashion. This is perhaps best illustrated in Figure 11.7 

which is a superimposition of successive time steps. 
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NUMERICAL OVERTOPPING MODEL 
Slope 1: A. · 
Water depth Lt .o m 
Crest elevation : \ ·Om 

Wave height : D ·~OlTI 

Zero - crossing period l os 
Time step : C>.\ l 

Sine wave 
Element length : \·l.rt"} 

FIG 11 .3 OVERTOPPING PROFILE 

Date : )o. os- ~"t 

Test No.Jr 
Time step(s) shown 
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Horizontal scale : 1 0 mm = 0 ·6 m 
Vertical scale : 1 0 mm = 0 ·4-~ 



NUMERICAL OVERTOPPING MODEL 
Slope 1 :A. 
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Crest elevation : \ ·Om 
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The profiles also illustrate how the model deals with the wave once 

it has 'overtopped'. It would be quite a complex problem to 

numerically estimate the quantity of water which returns down the 

seaward slope of the breakwater. This downrush is known to effect 

the uprush of the next wave and here is one of the inherent 

inaccuracies in a model of this type. The problem of reflection will 

be dealt with later in the chapter. 

The 'overtopped' wave is used to provide the downstream boundary 

condition for the next time step interation as discussed in the 

previous chapter. 

The run-up profiles agree reasonably with physical run-up results 

(Jensen and Sorensen 1982) as well as other numerical t·un-up 

investigations (Stephens et al 1988). 

11.2.4 Velocity Results 

Since the model was a coupled solution of the momentum and continuity 

equations, in addition to a solution for water surface elevation, 

which is more readily interpreted, an estimate of velocity at each 

time step was obtained. Table 11.3 is an example of the velocities 

calculated at each 'node during part of an analysis. 

Time Node 
secs 1 2 3 4 5 6 7 8 9 

.2 .0760 .0027 .0004 .0001 

.4 .1715 .0020 .003 .0009 .0004 .0002 .0001 

.6 .0201 .0308 .01 15 .0043 .0019 .0008 .0003 .0001 

.8 . 1563 .1732 .0132 .0036 .0018 .0009 . 0005 .0002 . 0001 
1.0 .1275 .1541 .1423 .0433 .0202 .0084 .0037 .0011 .0005 
1.2 . 1147 .1321 .1500 .1300 .0601 .0231 .0091 .0025 .0021 
1.4 .0923 .1212 .1323 .1500 .1365 .0462 .016 .0051 .0072 
1.6 .0751 .1001 .1751 .1921 .2100 .2083 .0392 . 0661 . 0469 

Table 11.3 Example Velocity Results 

Table 11.3 gives velocities for a 1Hz sinewave with an element length 

of 2m and stillwater level of 4.00m. 

11.3 Reflections 

Techniques for dealing with reflections within numerical models wet·e 

described in Chapter 1. All the various methods are fairly 

sophisticated and their possible inclusion in the 1- D model was not 
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justified given the approximate nature of the model (with regard to 

vertical accelerations). The simplest way to cope with reflection is 

the same as a possible solution used in physical modelling. That is 

to make the upstream boundary distant from the structure under test. 

In a numerical model of the type used here that would involve the 

addition of many more nodes and element and hence a decrease in the 

speed of calculation. 

With the regular waves used in the numerical tests the overtopping 

will also be regular and repeatable for each cycle. Thus the model 

need not be too large to obtain an estimate of the mean wave 

overtopping discharge. 

The presence of reflections may help to explain some of the 

irregularities which developed after a number of iterations, other 

possible causes will be discussed later. 

11.4 The effect of choice of numerical parameters on the overtopping 

results 

11.4.1 Introduction 

In a 'perfect' numerical model of a physical process a change of the 

numerical parameters used in that model would not affect the physical 

results. In practice a 'perfect' numerical model is invariably 

impossible to achieve. By definition a numerical model is always an 

'approximation' to the physical system it is intended to simulate. 

During the development of the overtopping model various different 

combinations of time-step, element length etc were explored to try 

and achieve as good an appr·oximat ion as possible. The following 

section deals with the numerical optimisation. 

11.4.2 Time-step 

The need for a small time-step increment must be balanced with the 

need for efficient computation. Time-steps from 0. 0 l - 2 seconds 

were used, with varying degrees of success. If the change was too 

small (as i n the O.Ols case) the residual error in the calculations 

as a percentage of the change in elevation and velocity became too 

lar·ge. The results from this small time- step were thus extremely 

unreliable. 
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In the region 0.05- 0.1 seconds very little difference in results was 

found. Above about 0.5 seconds the time- step increment appeared to 

become too large for reliable computation from the previous 

time-step . 

The results from various time-steps in the range described above are 

given in Table 11.4. 

Surface e]evalion at node 4 (metres) 

Time 
Seconds .01 

.01 0 
1 0 
2 .0003 
3 .0012 
4 - .0014 
5 - .0085 

1.0 - .0261 

.06 

.OR85 
·- . 4434 
- .8946 

.0090 

. 3328 

.5187 

ti.me- step 
.10 

.0924 
--.4076 
- .8076 

. 0076 

.3924 

.6924 

.50 

- . 0014 
.0127 

Table 11.4 Comparison of Surface Elevations for Various Time-steps 

In the above table, values between exact time-steps were computed by 

linear interpolation . 

lJ .4. 3 Number of Elements and Element Length 

Jl.1ore elements in the same proble1n domain should lead to a more 

accurate representation. There is also the trade-off of the need for 

increaseu rnt>..mory requirements and a subsequent increase j n execut j on 

time. Naturally an increase in the number of elements leads to a 

decrease in the e) ement length . Since the Finite Element method 

calculates values at each node (at both ends of each e lement ) the 

smaller the el~nent length the more accurate the solution should be. 

Tests with a discretisation of five and six elements showed no 

discernable difference i n the result for the overtopping discharge Q. 

Fig. 11.7 shows the run-up of a sinewave computed with five and six 

elements in the same problem domain discretisation. 

11. 5 Ill- Conditioning 

The effect of ill -conditioning has been mPntioncd a t va r i ous ~ar) irr 

stages as a cause of computational problems. The presence of large 

and smaJ1 e l em(:'nl s in a matr:ix re~:ml1 s i.n very large nnrl vc'ry s maJJ 
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eigen values for the global matrix. Due to finite machine precision, 

the resulting accumulation of round-off errors causes loss of 

significant figures. The most frequent result is a divide by zero 

error with the Gaussian elimination stage of the solution of the 

global matrices (Burnett 1987). 

One solution to the ill-conditioning problem is to solve the various 

pads of the global problem in s ma ller refin d mesh es. The stahiJity 

of the model can be improved by the use of more sophisticated 

}Ji voL:i ng to sol vc t.he si mul i aneous equab ons (Johnson and Rei. ss 

1982) . 

Ill--conditioning ~-ras a major source of problems with the development 

of the nUJnerical mode l s and it was only by careful selection of 

numedcal and physical parameters that the results were obt a ined . 

Even in some of the more successful runs of the model the total 

desired number of t.ime-steps was not achieved due to a 'divide by 

zero' error . In general in these cases the results appeared to be 

valid up to two time- steps before the error occurred. Tabl e ll. 5 

shows the results of water surface elevation just prior to a progrrun 

failure . 

time-step Node 
1 2 3 4 5 

23 .094) .2817 . 8195 .891l6 . 0603 
24 .0901 - .3391 l . G761 -4 .9290 7.7948 
25 .0851 -3.683 ] 6 .1533 -5.3328 23.1568 

Table 11.5 Results up to Run-time error 'divide by zero' . 
11.6 Validation, Calibration and Accuracy of the Nwnerical Mode l 

The numerical mode l ~vas as muc h as possible calibrated against the 

results from the physical overtopping tests. During the ini t ·i al 

trials of the mode l certain diagnostic output was written Lo the line 

printer (such as values of boundary conditions, e rrors in iterative 

steps etc) . and these values 1vere , where possible, checked against 

hand ca l culations . 

The results of run- up profiles shown of the previous pages indicate 

that the solution of the 1- D mome ntum and continuity equations was 

tr-iv·ing a ree~listic approximnUon 1o l-r<lvr run- up and overtopping. The 

numerical r esults as tabu l ated arc less no-liable and the model js not 

partj cularly accurale. Possib J f' reo~.onr-: for the i noccunH:y i.nc l ud(' 
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the effects of the vertical accelerations on the fairly steep sloped 

breakwater (i.e. the 1-D approximation of the model) and the neglect 

of any allowance for frictional effects. Possible improvements are 

discussed in section 11.7. 

11.7 Possible Improvements to Model 

11.7.1 Numerical Improvements 

An improvement which could be made to the existing model in order to 

solve the instability problem would be a more complex routine for the 

solution of the global matrices. At present standard gaussian 

elimination is used to solve these equations. More sophisticated 

options include full or partial pivoting in the gaussian elimination 

pr·ocess or a relaxation technique (Johnson and Reiss 1982). 

Another area in which it may be possible to obtain a more accurate 

solution include the weir approximation to calculate the overtopping 

discharge. 

Whilst the improvements mentioned above would improve the accuracy 

and applicability of the present l-D model the results for the 1:1 

slope model suggest that an altogether more complex model is required 

to solve this problem (see below). 

ll. 7. 2 Physical Improvements 

As discussed above the developed model 

interpretation of an extremely complex 3-D 

possible refinements could be added if required. 

was a simple 

phenomena and 

l-0 

many 

The Shore Protection Manual ( 1984) suggests that a wind correction 

factor of 1.4 is applied to all overtopping calculations. The wind 

correct i on factor is empirically derived and would equally need to be 

applied to the physical test results. As mentioned above frictional 

losses were also not considered. 

The limitation of a l-0 model became apparent during the development 

of the model and thus is reflected in the often poor results 

obtained. 
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It is suggested that to obtain a significant improvement in accuracy 

a 2-D model is developed. The 2-D model would have the major 

advantage of including the vertical accelerations within the solution 

system instead of making an allowance for them in the momentum 

equation as is done here. 

The 2-D model would have the great advantage that complex geometries 

(e.g. bermed breakwaters, sloping beds) could be easily included in 

the solution. 

A 1 or 2-D model could also have the roughness of armour units 

included. 

A major feature which may be of interest would be to superimpose a 

tidal cycle into the pr·ogram. The variation of mean water level 

would then become an additional variable in the problem. This may be 

of use to the design engineer who wishes to obtain estimates of 

overtopping discharge over a tide cycle. If he is only interested in 

the maximum overtopping discharge then a tide cycle would be of no 

significant interest. 

11.8 Conclusions 

A 1-D finite element model developed and implemented on a 

microcomputer has been designed to approximate wave overtopping. 

The 1- D model as developed gives a reasonable representation of 

run-up on the 1:2 breakwater slope, but it was not possible to obtain 

results for a l: l slope breakwater. The estimates of ovet·topping of 

discharge does not compare favourably with the results of the 

physical model tests and results published in the Shore Protection 

Manual. The results do, however, show that a finite element solution 

to the 1-D momentum and continuity equations is a satisfactory 

approximation to the complex and varied problem of wave run--up and 

overtopping. 

Results from various combinations of physical and numeri cal 

parameters have shown the dependance, or otherwise, of the solution 

on these parameters. 
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CHAPTER 12 

SUMMARY AND CONCLUSIONS 

12.1 Conclusions 

A wavemaker facility which consists of twin wedge paddles has been 

developed. The paddles operate under an electro-hydraulic system. 

The motion of the paddle is controlled by a BBC microcomputer. The 

computer runs digital software to generate a regular or pseudo-rw1dom 

wave as required. The use of a microcomputer and digital to analogue 

converter proved highly effective in operating a paddle of this type. 

The random wave generation is achieved with a software implementation 

of a binary feedback register. The software implementation proves a 

simple and effective way of producing a pseudo-random signal . The 

output is also easily tailored to .the users specific requirements. 

A comprehensive data acquisition system has been created. Based upon 

twin wire resistance wave gauges the analogue voltage is converted to 

a twelve bit digital signal for collection, storage and analysis. 

The data acquisition system can simultaneously collect up to 4k of 

data from up to eight wave gauges. The data is calibrated to wave 

height by a least squares regression -analysis which also provides a 

check on the linearity of the wave gauges. Provided the gauges are 

kept clean, good linearity is achieved. 

gauges are given in the text. 

Examples of contaminated 

The software to control data acquisition has been written to be 

sufficiently flexible in its uses as well as being easy to use. To 

compliment the data acquisition programs a menu-driven analysis suite 

has been wt• it ten . 

The analysis programs all use the digital wave records in the same 

form as they are stored by the acquisition softwar·e, thus data 

processing is kept to a minimum. Various statistical and graphical 

routines are available, all of which have been thoroughly verified, 

to produce results suitable for interpretation of wave data. 
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The most important analysis procedure is the Frequency Response 

Function method of analysis. This procedure is a method to determine 

incident and reflected spectra from a composite wave train. 

Simultaneous measurements of the composite wave train at two or more 

known points in the channel are needed for the analysis. 

The Frequency Reponse Function method has been shown to allow a more 

accurate representation of the wave climate present in the channel. 

The incident spectrum is a much more representative standard to adopt 

for comparision and interpretation. Reflection data is also 

obtained. Use of the Frequency Response Function software was 

particularly applicable to the testing, and appraisal of the 

absorption system designed for the wave maker. 

It is also shown that an accurate representation of the incident 

spectrum over a wide frequency range can be derived with the use of 

only three wave gauges provided the spacing of the gauges is 

calculated correctly. 

The ease of use of the data acquisition and analysis software suite 

together with its speed and portability has demonstrated the 

particular advantages of a system based around a powerful 

microcomputer. The eKcellent graphical output was made use of to aid 

interpretation and presentation of test results. The laboratory wave 

generation facility is now supported by a wide ranging, 

user-friendly, menu-driven software suite able to cope with most of 

the anticipated situations for which the wave facility was designed. 

Manuals describing the software have been written to help the 

ineKperienced user. 

The paddles were commissioned at the start of the project and the 

dynamic response of the paddles over a wide range of sinewaves, from 

O.lHz up to the limit imposed by wave breaki ng, determined. 

A transfer function of i nput signal voltage to resultant i nc ident 

wave height was found. 
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The incident wave height was determined with an analysis procedure 

based on a wave record from a traverse of a !'ength of the channel 

under steady-state conditions. The spending beach at the opposite 

end of the channel to the paddle was found to produce approximately 

5-10% reflection in the frequency range tested. 

A paddle transfer function was determined for three water depth, 

0.6m, 0.8m and l.Om. The transfer functions at l.Om and 0.8m were 

almost identical, the 0.6m transfer function was, however, much 

lower. This difference is most probably due to the front face of the 

paddle being less immersed in water with a depth of 0.6m. Although 

the 0.8m water depth also results in less paddle face immersion the 

depth may be sufficient for a further increase to have no effect. If 

the depth of immersion is greater than half a wavelength then the 

particle orbital motion will have reduced to zero. 

The transfer functions were compared to a theoretical transfer 

function for a wedge paddle. The comparison is shown graphically in 

chapter 5. The theoretical transfer function shows a slightly higher 

incident wave height for a given signal voltage up to 1Hz where the 

two lines coincide. This is much as would be expected since the 

theoretical transfer function makes no allowances for losses in the 

system due to friction or water moving between the sides of the 

paddle and the channel walls. 

The results of the optimisation of the paddle and the transfer 

functions were pt·esented to Hydraulics Research Ltd. to be 

incorporated in the design of a wave absorption circuit board for the 

paddles. 

The absorption circuit was designed on feedback principles and 

essentially involves incorporating an extra loop in the paddle 

control signal. Reflections from a structure at the opposite end of 

the channel to the paddle are detected at the paddle front by means 

of a paddle mounted wave gauge. The paddle wave gauge consists of 

two twin wire resistance gauges wired in series to average any 

variation in water surface elevation across the width of the channel. 
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The voltage signal from the paddle mounted wave gauge is fed back 

into the paddle control loop and compared to the original input 

signal. The difference in the desired and the actual signals is used 

to drive the paddle. Thus any re-reflections are prevented from 

being generated at the paddle. Essentially the paddle makes waves 

equal and opposite to any reflected waves as well as still generating 

the desired input signal . 

The advantages of an absorption system based around a paddle mounted 

wave gauge working under feedback principles is the ease with which 

it can be incorporated into an existing facility. With relatively 

inexpensive modifications any traditional wave facility can benefit 

from the techniques described. 

The absorption system has been comprehensively tested under a variety 

of regular and random wave conditions. The initial regular wave 

tests with the spending beach in place demonstrated that the addition 

of an absorption feedback loop made no significant difference to the 

dynamic characteristics of the paddle. 

To test wave absorption under a more demanding environment a system 

of wavescreens was built. Varying degrees of reflection could be 

chosen up 

reflection. 

to a 'full' screen which gave approximately 80% wave 

Higher degrees of reflection could have been used but it 

would have become impossible to obtain any results with absorption 

'out' for comparison purposes. 

The results from the regular wave tests were obtained with the wave 

envelope procedure mentioned above in the original calibration of the 

paddle. The data acquisition software written, together with a 

specially written program to perform the envelope analysis, made the 

processing of results a much less laborious task. The testing 

program was thus much speeded up . 

By suitable choice of frequency for the input signal it was possible 

to reproduce the condition of forming a node or antinode at the 

paddle front (an antinode must always be formed at a vertical 

impermeable barrier such as the 'full' wavescreen). With no 

absorption system the conditions mentioned above lead to resonance 

and eventually the water will wash over the sides of the channel. 
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With the wave absorption system active the resonant condition does 

not occur. After a suitable period (the time for waves to propagate 

to the wavescreen and return to the paddle), a steady state is 

achieved. 

When the frequency is chosen to reproduce an antinode at the paddle 

front the paddle motion reduces to negligible levels. That is there 

is maximum vertical water excursion and minimum paddle horizontal 

movement. The opposite is true when a node is formed at the paddle. 

The transfer function for a 'full' wavescreen of input control 

voltage to wave height is smoothed out by the absorption system and 

the conditions of resonance are prevented . 

Use of a Spectrum Analyser also showed how much 'cleaner' with wave 

absorption the signal was. Nearly all the high frequency noise on 

the signal was removed by the wave absorption system. The effect was 

visually noticeable in the laboratory and the Spectrum Analyser 

confirmed the result. 

Subsequent to the regular wave tests on the absorption system a 

series of tests with random waves was conducted. Here the data 

acquisition and analysis system was invaluable. The Frequency 

Response Function method of analysis was used to determine incident 

and reflected spectra from the composite wave train. 

All the r·esults showed that when the absor·ption system was switched 

'in• the incident spectra (from the same spectrum input signal ) were 

very similar or the same, no matter what the degree of reflection 

was. Thus a test with a 'full' wavescreen had the same incident 

spectrum as a test with up to 80% less l'eflection. 

The varying degres of reflection was demonstrated by the difference 

in the estimates of reflected spectrum. Spectra were chosen with peak 

frequencies to cause the resonant conditions mentioned above and no 

deterioration in performance was detected. 
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When the incident spectra were compared to the theoretical .spectra 

used as an input signal the correlation was very good. There was a 

slight loss of the higher frequency components of the spectrum. This 

may be due to the inability of the paddle to l'espond quite as 

efficiently at the higher fl'equencies or due to the not ideal filter 

design described in Chapter 6. 

With the wave absorption system operative re-reflections are removed 

from the channel and a highly stable incident wave train produced. 

It is thus possible to generate the same incident wave conditions 

inespective of the degree of l'eflection within the channel. The 

channel is then, in effect, 'semi-infinite' in that the length of the 

channel is not a variable to be considered in the test. 

Wave absorption allows much closer operational control on tests and 

test conditions. The repeatability of tests and tests upon diffel'ent 

structures with the same incident wave conditions is both easier to 

arrange but is also more accurate. 

A wave absorption system based on feedback principles has been 

derived and implemented, the results obtained being very encouraging . 

Laboratory equipment has been designed to measut·e wave overtoppi.ng 

over simplified breakwaters. The equipment was designed to be able 

to cope with the maximum amount of wave overtopping expected based on 

previous, similar, model tests. A system of an interconnecting 

overflow weir and a calibrated sharp-crested weir was used to measure 

the overtopping quantities. Once the water had been measured it was 

returned to the channel to try and ke.ep the mean water level as 

constant as possible during a test. 

The breakwaters constructed were of a simplified type, in that no 

attempt was made to model slope roughness or pot·osity. 

slopes of 1: 1 and 1: 2 were used. 

Seaward 

The results of the tests were analysed with the data acquisition and 

analysis system set up earlier. Wave absorption was used in the 

majority of the tests so that the tests could be more c losely 

controlled. The use of wave absorption would provide a fut-ther 

appraisal of that system and would also highlight any deficiencies in 
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the system not already observed. After more than lOO wave 

overtopping tests no shortcomings or faults (other than those · 

previously mentioned) were found. The absorption system allowed the 

tests to be much more accurately 'targetted' and controlled. The 

benefit of a wave absorption system was apparent throughout the test 

programme and use of a similar system in all future breakwater tests 

is highly recommended. 

The wave overtopping tests were intended to compliment, rather than 

duplicate, tests which had already been undertaken. With this in 

mind, all the tests were performed on low-crest breakwaters, that is 

breakwaters with their crests at or just above mean water level. 

Most tests were undertaken using random waves. The results of the 

tests were compared to existing results, in particular those of Owen 

(1980) and the Shore Protection Manual (1984). 

The comparison of results was made with the results of tests 

conducted with a test length equal to the repeat length of the random 

sea spectrum used and tests where the spectral repeat length was much 

greater than the test time. 

The software used to generate the random spectra was modified to 

allow alternative selections of feedback connections to produce 

different random wave trains with identical statistical properties. 

A quantati ve compal'ison of the results from various 'full-length' 

spectra with identical physical conditions indicated that, within the 

general scatter of results expected from laboratory experiments, 

there was no difference in the total overtopping discharge measured. 

This result implies that wave groups do not have a significant effect 

on the total discharge for the given sea conditions, although it is 

known that the overtopping 'potential' of a single wave is affected 

by the preceding wave. The results suggest that wave overtopping 

should be quantified against wave spectra, rather than wave height 

although for individual waves this is, of course, not practical. 

The tests conducted with segments of 

unsurprisingly gave unpredictable results 

'long' spectra not 

although they were 

consistent with the presentation of the results · in a dimension less 

form (see below). 
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Owen (1980) presented his wave overtopping results in terms of two 

dimensionless parameters; the dimensionless freeboard 

R* 

and the dimensionless discharge Q* = Q/ (TzgHg) 

where S is wave steepness = HalLo 
RC is crest elevation above mean ·water level 

Q is measured overtopping discharge. 

The results obtained here were presented in the same way to allow 

comparison to Owen•s work, although there is very little overlap in 

areas tested the results of the 'low' breakwater tests do correlate 

very well with an extrapolation of Owens work. The 

freeboard/discharge curves for both the 1:1 and 1:2 seaward 

breakwater slope give good agreement. 

Wave reflection measurements made from the estimates of incident and 

reflected spectra compare very well with estimates of reflection 

published in the Shore Protection Manual (1984) . The comparison is 

not as good for tests conducted with wave absorption •out•. 

Two measurements of the overtopping discharge were made, the main 

measurement was made from a wave gauge measuring the flow over the 

calibrated sharp- crested weir. The gauge was included in the data 

collection system and a programme was written to calculate the total 

discharge during a test. A further wave gauge was mow1ted on the 

crest of the breakwater to note and count, the occurrences of 

overtopping waves. 

It was found that if this gauge was calibrated then a good esti mate 

of the di scharge could be obtained by calculat i ng the volume of the 

wave as it passed the gauge. It i s suggested that thi s may be a way 

of making full- scale wave overtopping measurements. In all but the 

simplest 1- D situations an array of gauges would be needed but even 

with a limited number of gauges (or pressure transducers ) a 

r easonable esti mate of wave overtopping could be made. 
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The number of waves overtopping (as a % of total of waves in the 

record) was also plotted and compared to existing results. The 

results compared favourably, but did highlight a recurrent problem 

with coastal wave tests and analysis, that of accurately defini.ng the 

measurements and test conditions. 

In many previous reports on wave run-up and overtopping various 

parameters such as: number of waves in a record, or locations 

(inshore or offshore) where measurements were taken are not given. 

This makes comparison of results extremely difficult. 

Accurate wave overtopping measurements have been made within a 

laboratory environment regarded conventionally as unsuitable for such 

measurements. The inclusion of a wave absorption system into the 

paddle control loop has created a facility eminantly suitable for 

such a purpose. The on-line micro-computer based data acquisition 

and analysis system also proved to be an ideal tool within the 

laboratory environment. 

A numerical model of the wave overtopping process has been developed. 

The model is a 1-D space/time solution of the momentum and continuity 

equations. The space domain is handled with non-linear 1-D Finite 

Elemen.ts whilst the time incrementation is achieved with a 

predictor-corrector Finite Difference iteration. The Finite Element 

solution of the continuity and momentum equations yields the time 

derivatives of water surface elevation and water particle velocities. 

The predictor-corrector step gives the values of water surface 

elevation and water particle velocity. 

To prevent the model becoming too complicated, assumptions were made 

concerning the flow, such as the assumption of an inviscid and 

incompressible fluid. Bed friction was also neglected. 

The fairly steep breakwater slopes under consideration meant that the 

vertical water particle accelerations would be significant. In order 

to compensate for this, whilst still retaining a 1-D model the 1- D 

momentum equation was modified to include a term for the vertical 

accelerations whilst not including them in the integration . The 

success of this assumption was dependent upon the slope (see later) . 
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The model was i mplemented on the micro-comupter used in t he 

labora tory work and this highlights the ve r s itility of such a mach i ne 

i n the c omplete cycl e of e vents from data collection t hrough t o 

numer i cal simulat i on . 

The model wa s set-up t o int roduce a sine wa ve at t he upstream limit 

of t he model , i n to s lill wa t e r. Add i tional e l eme nts were i n troduced 

at t he downstre am boundar y as the water moved up t he seaward s lope of 

the bt·eakwater. At a predetermi ne d l ocation on the breakwate r c rest 

t he wave wa s assume d to ha ve ' ove rtopped' and no additional e l emcnls 

introduced. A r outine to calc ulate the disc harge at thj s location, 

b ased un an ove rflow we ir approx j maljon, a l s o handle d the c omput a tion 

of the dmvns t r e am boundary c ondition. 

Certa.in c ombinaU ons of t he nume rica l paramete rs, s uch as e ] ement 

l ength , time step etc ., caus e d i nstabi l ity withi n the mode l ar1d time 

had to be spent on obtain ing a 'ba lanced' s e t of nume r ica l parame ters 

to obtain resul ts . In the e ven t i t d id not p rove pos sible to obtain 

any meaningful results f r om the nun1e r i cal model with t he ) :] s J ope . 

It is be lie ve d tha t a s lope of that gr eat a steepness ne e ds a 

two- dimensional model r epre s entation since the vertical wate r 

partic l e ve locities will have a l at-ge significa nce on t he 

c omp utations . A stable soluU on to the problem of run- up and 

ove rtopping on the 1:2 s l ope was ob taine d . 

Various c omparisons of t he r esults of the 1:2 breakwate r slope 

prob l em were pe rformed . Resul ts have been pre s e nt e d for c omparison 

both with t he physical laboratory t ests, previous work and t he data 

presented in the Shore Protect i on Manual . 

The run- up up the bre akwate r s ) ope was pred icted satisfac torily by 

lhe mode l , thus proving that t he t heoretical basis for the mode ] was 

we ll f ounde d, a t l east when the s e award breakwater slope was not t oo 

s t eep. The limit Lo whi ch the mode l is va lid was i n the r egion of 

1 : 1~ . It appear e d that wi th a s lope great e r t ha n 1 : 1~ it ~vas not 

poss ible to ob t a in any r esul t s due to nume rical i nstability . 
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Whilst the run-up profiles modelled the physical situation 

reasonably, the estimates of overtopping discharge were not as 

accurate. Reliable results were obtained with a comparison between 

the various model runs. The good comparison between model runs 

illustrates that the ultimate choice of numerical parameters is not 

critical provided that a stable combination of parameters can be 

found. 

If the time step in the model was reduced too much then machine 

round-off errors became larger than the incremental changes in the 

main variables and no solution was possible. 

In ot·der to obtain a better estimation of overtopping discharge a 

more accurate method than the broad-crested weir approximation needs 

to be found. Any improvement is likely to be a much more complex 

solution than the simple approximation used. 

The model gives a good representation of run-up and whilst wave 

overtopping has been modelled a better solution for the dischat'ge 

calculation is needed. 

12.2 Recomendations for Future Work 

12.2.1 Laboratory system 

Wave absorption could be improved and made far more 'user-friendly' 

than the present prototype system by including some means of direct 

calibration with a sensitivity meter incorporated in the hydraulic 

sys tern control. 

A redesigned paddle wave gauge wouid also eliminate some of the 

vibration problems at low frequencies and small movements. (The 

vertical excursion of the paddle has now been included in the wave 

absorption filter circuit in a subsequent absorption system). 

The graph of loop gain (Chapter 6 ) illustrates the ability of wave 

absorption to be highly effective with a less-than-perfect fi 1 ter 

design. With a little more analysis is would be possible to design a 

filter which matches the paddle charactel'istics much more accurately. 
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Until a reliable, comprehensive computer model of overtopping becomes 

available there will always be a need for more physical breakwater 

studies. Some form of full-scale measurement is also desirable from 

a calibration point of view. 

12.2.2 Numerical Model 

It appears that the 1-D solution of the momentum and continuity . 

equations have been taken to their limit of applicability in this 

study. A 2 or even 3-D model of wave overtoppiqg would be a valuable 

engineering tool in breakwater and seawall design. 

The overtopping process is highly complex and a major effort would be 

required to produce the 'all-embracing' model required. 
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APPENDIX A 

COMPUTER OUTPUT 

Al Introduction 

Appendix A contains examples of computer analysis output for the main 

data acquisition and analysis programs as well as the Numerical 

Overtopping program. In addition a list of the statistical routines 

and data file handling routines is given. An idea of the typical 

execution times of the more frequently used complex analysis programs 

will be found at the end of Appenidx A. 

A2 Statistical Analysis Routines Available 

After a basic statistical analysis of mean, standard deviat ion, 

skewness, kurtosis, maxima and minima has been carried out prior to 

any spectral analysis from the program suite driven by MASTERl the 

following routines can be accessed. 

Menu Name Subroutine Action 
Name 

TRANSFORM STAT02 Transform data to zero mean value 

NORMALISE STAT03 Normalises data 

STANDARDISE STAT04 Standardises data 

WAVE STATS WAVESTAT Calculates Hg, Tz and higher 
percentiles 

WAVE PLOT PLOT Plots any part of t i me history 

DISTRIBUTION STAT08 Calculates distribution of max ima 
or minima 

PROBABILITY STAT05 Calculates probability density 
functions 

SPECTRUM STAT21 Calculates Variance Density 
Spectrum. 

Table A.l Statistics Menu 

A3 Data File Handling Programs 

The following program~ are used as 'stand-alone' programs as they can 

be used to supplement the main analysis programs as well as prepare 

data for this analysis. 
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Pr·ogram Act ion 

READER Prints all or part of data file on the computer screen 

PRINTER Prints all or part of data file on line printer 

VOLTAGE Converts a digital record to a ~ volts record 

FILECONV - Calibrates digital record to mm wave height with M & C 
values 

FILEUNCONV - Converts calibrated record back to digital record 

FILESORT - Copies data files between discs 

MRBAD Prints the copies of a Masterfile 

RANGE Provides constant output from Microlink to check 
operation of data acquisition system 

MASTER Creates a Masterifle for use in analysis programs 

Table A.2 Data File Handling Programs 

A3 Output Listings 

The following are all examples of run-time output from the main data 

acquisition and analysis. The program from which the output 

originates is found at the beginning of each listing. 

A4 Execution Times 

The following list details the approximate times to run the main 

analysis program. The times are given for a typical analysis of a 4k 

data set. 

Program Execution Time 

Basic Statistics 

Variance Density Spectrum 

Wave Plot 

Frequency Response Function 

Wave Envelope Analysis 

Numerical Model (20 time steps) 

2 mins 

5 mins 

4 mins 

25 mins* 

3U mins 

* The time for the 3 pairs of wave gauges l-2, 2-3, 1-3. 
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'ECTRUM : RAN . 15 

)SKOWITZ SPECTRUM 

)DEL PARAMETERS 

FREQUENCY ENERGY PADDLE T/ F 
6 . 331246E-2 O. OOOOOOEO 3.600000E-3 
1 . 266249E-1 O.OOOOOOEO 4.611747E-3 
1.899374E-1 O. OOOOOOEO 7 . 017621E-3 
2 . 532499E-1 9.889429E-109 . 849494E-3 
3.165623E-1 4.352817E-5 1 . 266249E-2 
3.798748E-1 1.215831E-3 1.519499E-2 
4 . 431873E-l 3.465465E-3 1 . 859124E-2 
5.064997E-1 4 . 295787E-3 2.251998E-2 
5 . 698122E-1 3 . 812750E-3 2.758497E-2 
6 . 331246E-1 2.944435E-3 3.132499E-2 
6 . 964371E-1 2.150420E-3 3 . 385748E-2 
7 . 597496E-1 1.542486E-3 3 . 638998E-2 
8 . 230620E-1 1.106089E-3 3.823062E-2 
8 . 863745E- 1 7 . 995374E-4 3.886375E-2 
9 . 496870E-1 5 . 847655E-4 3 . 949687E-2 
1 . 012999EO 4.333428E-4 4 . 000000E-2 

Lg . wave height =150 . 6172 mm 
~ro crossing period=l.6078 secs 
'del Water Depth =0 . 8000 m 

PROTOTYPE PARAMETERS 
Frequency 

HZ 
6.331246E-2 
1 . 266249E-1 
1 . 899374E- 1 
2 . 532499E-1 
3 . 165623E-1 
3 .79874BE-1 
4 . 431873E-1 
5 .064997E-1 
5 . 698122E-1 
6 . 331246E-1 
6 . 964371E-1 
7. 597496E-1 
8 .230620E-1 
8 . 863745E-1 
9 . 496870E- 1 
1. 012999EO 

Energy 
M*M*S 

O. OOOOOOEO 
O. OOOOOOEO 
O. OOOOOOEO 
9 . 889429E-10 
4.3152817E - 5 
1. 21 31E- 3 
3 . 465 65E-3 
4 .295 87E-3 
3 . 81 750E- 3 
2 . 94 435E - 3 
2 . 150 20E-3 
1 . 54 86E-3 
1 . 106, 89E-3 
7 . 9~374E- 4 
5 . 8 655E- 4 
4 . 3 3428E-4 

Lg. wave height =0. 1506 m 
~ro crossing period=1 . 6078 secs 
?ectral width parame ter=0 . 4638 
lock frequency =4.0520 Hz 
iximum volts =6 . 8474 v 
~est factor =4 . 3407 
!ter Depth =0 . 8000m 
~OBE SPACINGS 
L =1.1970m 
~ =0.5982m 
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WAVE MONITOR CALIBRATION 

DATE 15-4-87 TEST NUMBER 1 

SET OUTPUT = 5.0 

MODULE NUMBER 1 

REGRESSION ANALYSIS <LEAST SQUARES > 

GRADIENT= .0701 INTERCEPT=-139 . 6438 

CORRELATION COEFFCIENT=1.0000 

MEAN=2064.750 

POINT CORRECTED VALUE THEORETICAL 
FOR S.W.L VALUES 

1 -30.0094 -30 
2 -.20.2019 -.20 
3 " -9.6938 -10 
4 .0437 0 
5 9 .7612 10 
6 :20.2192 20 
7 ~9.8165 30 
8 40.0445 40 

WAVE MONITOR CALIBRATION 

DATE 15-4-87 TEST NUMBER 1 

SET OUTPUT = 5.0 

MODULE NUMBER 2 

REGRESSION ANALYSIS <LEAST SQUARES> 

GRADIENT = .0868 INTERCEPT=-173.9247 

CORRELATION COEFFCIENT= .9999 

MEAN=2060.625 

POINT CORRECTED VALUE THEORETICAL 
FOR S.W.L VALUES 

1 -30. 2205 -30 
2 -19.8877 - 20 
3 -9.7286 -10 
4 . ~56 9 0 
5 9. 7214 10 
6 19.7937 20 
7 29.7792 30 
8 40.2857 40 
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DriTE 15-J-57 TE5T NUME::;:; 1 

SET OUTPUT = 5.0 

MODULE NUMBER 3 

REGRESSION ANALYSIS !LEAST SQUAR~5 ) 

GRADIENT= .0831 INTERCEPT=-163.3356 

CORRELATION COEFFCIENT=1.0000 

MEAN=2024.500 

POINT CORRECTED VALUE THEORETICAL 
FOR S.W . L VALUES 

-29 . 9643 -30 
2 -19.9863 -20 
3 -9.9253 -10 
4 - .0305 0 
5 9.6979 10 
6 20.0916 20 
7 30. 1526 30 
8 39.9643 40 

CliLl BRA TI ON FINISHED 
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WAVE DATA ANALYSIS : DEPT. OF CIVIL ENGINE~RING 

PLYMOUTH POLYTECHNIC 

MICROLIN~ DATA LOGGING PROGRAM 
•••••••••RESULTS AND PARAMETERS•••••••••• 

•••••••••••••••••WARNING••••••••••••••••• 
THE DATA COLLECTED CONTAINS THE FOLLOWING 

DATA HAS 940 ZERGES IN IT 
DATA HAS 0 4095'S IN IT 

PARAMETERS USED IN DATA LOGGING 

) A-0 CONVER3ION MODULE USEO =A-120 

WAVE ABSORPTION : IN 
No.OF MODULES= 5 
LOGGING RATE= . 123 SECS 
SEC AODR 1= 1 
SEC FlOOR 2= 2 
SEC ADDR 3= 3 
SEC ADDR 4= 4 
SEC ADDR 5= 5 
CLOC~ UNITS= 3 
No. OF CLOCK UNITS= 123 
POINTS COLLECTED FROM EA CH MODULE= 2048 

FILE NAME 1= G187041501 

FI LE NAME 2= G287041501 

j 
FILE NAME 3= 6387041501 

FILE NAME 4= G487041501 

FILE NAME 5= 6587041501 

MASTERFILE= M187041501 

DATA LOGGING PROGRAM COMPLETE 
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WAVE DATA ANALYSIS : DEPT. Or CI VIL ENGINEERING 
PLYMOUTH POL YTECHNIC 

•••••••••STATISTICAL ANALYSIS RESULTS+++++++++ 

DATE OF TEST 15-4-87 

TEST NUMBER 1 

DATA FROM DATA FILE Gl870~1501 

WATER DEPTH .95 METRES 

RANDOM SEA GENERATED BY FILE =RAN.15 

WAVE ABSORPTION: IN 

MASTER FILE M187041501 

12 BIT CONVERSION FOR DATA 

DURATION OF TEST= 4.20 MINS 

•••••••••• STAT01 - RESULTS ••••••••••••• 

GAUGE NUMBER 1 

NUMBER OF DATA VALUES 2048 

MEAN= -5 .346 RMS= 36.664 

VAR= 1316.309 STANDARD DEVIATION= 36.291 

SKEWNESS= .21921 KURTOSIS .. 

MAXIMUM= 110.82 MINIMUM=-100.04 

-----STAT01 ENDED-----

•••••• STAT10 - WAVE STATISTICS ••••••••• 

NUMBER OF ZERO CROSSINGS 154 

RECORD LENGTH 248.5 s 

MEAN ZERO UP-CROSSING PERIOD• 1.613 S 

NUMBER OF WAVES= 153 

MEAN WAVE HEIGHT= 88.306 MM 

MEDIAN WAVE HEIGHT= 85.943 MM 

SIGNIFICANT WAVE HEIGHT <Hl /3)= 135.760 MM 

MAXIMUM WAVE HEIGHT= 193.686 MM 
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MA~lMUM WAVE HEIGHT = 193.686 MM 

MINIMUM WAVE HEIGHT= 10 . 940 MM 

AVERAGE HIGHEST 10%~ 167.100 MM 

INSUFFCIENT WAVES FOR HIGHEST 17. 

-------STAT10 ENDED-------
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.572 644989.43 
.,AC:C:A'7") C1 

1. 239 
1 ?QC 

30515.74 
~QC::QQ 1Q 

WAVE DATA ANALYSIS =DEPT. OF CIVIL ENGINEERING 
PLYMOUTH POL YTECHNIC 

••••••OVERTOPPING PROGRAM•••••• 
RESULTS 

DATE OF TEST 15-4-87 

T=:ST NUMBER 1 

MASTERFILE NAME M187041501 

DATA FILE NAME 6487041501 

BREAKWATER NUMBER 1 

NUMB ER OF WAVES 153 

NUMBER OF WAVES OVERTOPPING 106 

% WAVES OVERTOPPING 69.28 

1.905 
1 qr:;;: 

•••••••••••••••••••••••••••••••••••••••••••••••••••• 

WAVE DATA ANALYSIS =DEPT. OF CIVIL ENGINEERNG 
PLYMOUTH POLYTECHNIC 

OVERTOPPING DISCHARGE CALCULATION 

DATE OF TEST : 15-4-87 

TEST NUMBER 

WATER DEPTH .95 "' 

RANDOM SEA FROM FILE RAN .15 

WAVE ABSORPTION : IN 

MASTERFILE : M187041501 

DATA FILE : G587041501 

SAMPLING RATE . 123 secs 

TEST LENGTH 4 . 20 Mins 

****************•OVERTOPPING DISCHARGES************* 

MEAN TEST DISCHARGE .001480 "'A3 / s 

TOTAL DISCHARGE : .372861 MA3 

*********************ANALYSIS FINISHED•******************** 
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··~·•••••STATISTICS FINISHED••••••••• 

WAVE DATA ANALYSIS : DEPT. OF CIVIL ENGINEERING 
PLYMOUTH POLYTECHNIC 

••••••••••••FREQUENCY RESPONSE FUNCTION••••••••••••• 
••••••••••••REFLECTIONS IN RANDOM WAVES••••••••••••• 

RESULTS 

DATA HAS A COSINE TAPER APPLIED TO IT 

DATE OF TEST 15-4-87 

TEST NUMBER 1 

WATER DEPTH .95 METRES 

NUMBER OF DATA POINTS IN FILE 6187041501 : 2048 

NUMBER OF DATA POINTS IN FILE 6287041501 : 2048 

RANDOM SEA FRO~ FILE : RAN.15 

WAVE ABSORPTION : IN 

SEPARATION OF PROBES . 150 METRES 

SAMPLING RATE .123 SECS 

•••••*••RESULTS OF ANALYSIS••••••••••••••••• 

••••••• SPECTRUM AT X ••••••• 

EFFECTIVE RESOLUTION BANDWIDTH= .0516 Hz 

ALL S2 <F > ARE THE AVERAGE OF 13 RAW ESTIMATES 

NORMALISED STANDARD ERRORz 27.7% 

CUT-OFF FREQUENCY= 2.5 Hz 

DIVIDE ALL S2<F> BY 10A 3 

F Hz 52< F > F Hz 52< F > F Hz 

0.000 33293.02 .667 2697904 .98 1.334 
.048 18998.56 .715 813850.35 1. 381 
.095 108982.30 .762 172850. 13 1. 429 
.143 15744.46 .810 760629.39 1.477 
. 191 9516.07 .857 1077455.82 1 . 524 
.238 11568.47 .905 342079.34 1. 572 
.286 35612.08 .953 409886.23 1.620 
.333 286151 .44 1.000 863877.91 1.667 
.381 3245297 . 12 1. 048 113948.96 1.715 
.429 4925056.02 1. 096 26160.95 1. 763 
.476 4396107.00 1.143 38558 . 73 1. 810 
.524 706313.88 1.191 38274.44 1.858 
.572 644989.43 1.239 30515.74 1.905 

52< F > F Hz 52< F) 

52934.31 2.001 
29584.66 2 . 048 
31755.10 2 .096 
11588.26 2 . 144 
16518.73 2 . 191 
11379.90 2.239 
5987.20 2 . 287 

15167.45 2.334 
18160.91 2.382 

9105 .01 2.429 
5270.83 2.477 

15895 . 70 2.525 
9271 .95 2 .572 
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.476 4396107.00 1. 143 38558.73 1.810 :, .u~a . t$.) .:. • 4 (( 

.524 706313.88 1. 191 38274.44 1 .858 15895. 70 2.525 

.572 644989.43 l. 239 30515.74 . 1.905 9271.95 2.572 

.619 2455432.61 1.286 39589.18 1.953 4146.19 ~.620 

MOMENTS > M0 .. 1171.62 M1c 677.43 M2= 448 
M3= 350.99 M4'"' 336.40 

SIGNIFICANT WAVE HEIGHT = 136.92 MM 

SPECTRAL WIDTH PARAMETER = .699282919239 

SPECTRAL PEAKEDNESS PARAMETER Q = 2.48049083313 

• •••••• SPECTRUM AT Y ••••••• 

EFFECTIVE RESOLUTION BANDWIDTH= .0516 Hz 

ALL S2<Fl ARE THE AVERAGE OF 13 RAW ESTIMATES 

NORMALISED STANDARD ERROR• 27.7 ~ 

CUT-OFF FREQUENCY= 2.5 Hz 

DIVIDE ALL S2<F l BY 10~ 3 

F Hz 52< F l F Hz S2<Fl F H:: 52 < F l F Hz 52< F l 

0.000 18266 .66 .667 956981.91 1. 334 61147.41 2 . 001 
.048 16377.44 .715 122103.24 1. 381 . 13505 . 17 2 ·. 048 
.095 124350.49 .762 457197 .53 1 . 4 ~9 22536.86 2.096 
.143 17609. 52 .810 884138 .97 1.477 48~45.03 2 . 144 
. 191 44910.75 .857 1209200.13 1. 524 59621.50 2. 191 
. 238 11550.48 .905 804346.78 1.572 33771.91 2.239 
.286 17313.91 .953 235365 .11 1.620 33941.61 2 . 287 
.333 23868.54 1.000 199718.64 1. 667 33072.62 2.334 
.381 363804.35 1. 048 295039.29 1. 715 20954.30 2 . 382 
.429 1841681.11 1. 096 103070.13 1. 763 792B .52 2.429 
.476 4444608.80 1 . 143 85607.40 1.810 6815 . 72 2.477 
.524 5668381.05 1. 191 31503.27 1.858 12338.77 2 .525 
.572 3720971.29 1. 239 57087 .35 1.905 4735.71 2 . 572 
. 619 2830205 . 31 1.286 59630.77 1.953 3519.78 2 . 620 

MOMENTS: M0 .. 1193.04 M1= 727 . 01 M2= 496 
M3= 394.85 M4= 384.38 

SIGNIFICANT WAVE HEIGHT • 138 . 16 MM 

SPECTRAL WIDTH PARAMETER= . . 680823038275 

SPECTRAL PEAKEONESS PARAMETER Q = 2.95314162525 



~.000 73688.95 .667 73688.95 1.334 196.70 2 . 001 
.048 73688.95 .715 73688.95 1. 381 77.93 ~.048 

.095 73688.95 .762 73688 .95 . 1. 429 79.91 2.C96 

.143 4770.59 .810 73688.95 1. 477 91.92 ~. 144 

. 191 5575.85 .857 73688.95 1.524 54.74 2. 191 

.238 2891.02 .905 73688.95 1. 572 48.01 2.239 

. 286 4187.49 .953 2376.78 1.620 28.37 2.287 

.333 73688.95 1.000 73688.95 1.667 21.52 2.334 

.381 73688.95 1.048 2290.00 1.715 7.92 ~.382 

.429 73688 .95 1. 096 179.65 1. 763 4.41 2.429 

.476 73688.95 1. 143 61.39 1.810 7.95 2.477 

.524 73688 .95 1 . 191 24.06 1. 858 20.00 2.525 

.!:?72 73688.95 1.239 67.04 1. 905 7.70 :.572 

.619 73688.95 1.286 103.34 1.953 3.91 :.620 

MOMENTS : M0• 801973.73 M1= 46801.04 M2= 14032 
M3= 8259.78 M4= 5727.34 

SPECTRAL WIDTH PARAMETER = .978330370038 

SPECTRAL PEAKEDNESS PARAMETER 0 • .506092396181 

LIMIT VALUE OF n•PEAK= 73688.9536815 

••••••• REFLECTED SPECTRUM • •••••• 

EFFECTIVE RESOLUTION BANDWIDTH= .0516 Hz 

ALL S2 <F > ARE THE AVERAGE OF 13 RAW ESTIMATES 

NORMALIS£D STANDARD ERROR- 27.7% 

CUT-OFF FREQUENCY= 2.5 Hz 

DIVIDE ALL 52 < F l BY 10~ 0 

F Hz 52 < F l F Hz 52 < F > F Hz 52< F > F Hz 52 < F > 

0.000 73688.95 .667 73688.95 1.334 300.81 2.001 
.048 736 88.95 .715 73688.95 1. 381 65.00 2.048 
.095 73688.95 .762 73688.95 1.429 77.37 2.096 
. 143 4675.54 .810 73688.95 1. 477 89.01 2. 144 
. 191 5663.27 .857 73688.95 1.524 47.93 2. 191 
.238 2837.55 .905 73688.95 1. 572 35 .28 2 .239 
.286 4132.85 .953 2994.50 1. 620 28.11 2.287 
.333 73688 .95 1.000 73688.95 1.667 9.26 2 . 334 
.381 73688.95 1.048 2216.56 1.715 22:17 2.382 
.429 73688.95 1. 096 179 . 54 1. 763 10.53 2.429 
.476 73688.95 1.143 139.08 1.810 10.27 2 .477 
.524 73688.95 1. 191 75 .48 1.858 15.42 2.525 
.572 73688.95 1. 239 147.71 1. 905 3.21 2.572 
.619 73688.95 1. 286 205.20 1.953 3.82 2 .620 

MOMENTS : M0• 79988 9.67 M1= 45856.97 M2= 13567 
M3 .. 8044.86 M4= 5650.44 

SPECTRAL WIDTH PARAMETER .. .979423339273 

SPECTRAL .PEAKtDNESS PARAMETER 0 = .507971641707 

LIMIT VALUE OF n•PEAK= 73688.9536815 
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THESE NOTES ARE DESIGNED TO HELP YOU SET UP THE MICROLINK 
THEY SHOULD BE READ IN CONJUNCTION WITH THE BIODATA MANUAL 

ONLY ONE A-D CONVERTER MAY BE PRESENT IN THE MICROLINK 
AT ANY ONE TIME. THE OTHERS MUST BE REMOVED 
AN 8 BIT CONVERTER = A-80 OR A 12 BIT CONVERTER : A-120 
IS AVAILABLE 

THE 8 BIT COLLECTS ONE BYTE PER SAMPLE 
THE 12 BIT TWO BYTES <ONE WORD> PER SAMPLE 

. THE A-D CONVERTER MUST BE TO THE LEFT OF THE ANALOGUE INPUTS 

YES 

THE ANALOGUE INPUT MODULES ALL HAVE SECONDARY ADRRESSES 
SEC ADDR 
THIS IS PRINTED ON THE LOWER PART OF THE MODULE 
IT IS NOT NECESSARY FOR THESE TO BE IN ASCENDING ORDER 

ANY MODULE IN THE MICROLINK CAN BE ADDRESSED INDI VIDUALLY 
OR AS PART OF A SCAN <MULTIPLEX> 
THE MICROLINK WILL SCAN THROUGH THE MODULES FROM LEFT TO RIGHT 
REGARDLESS OF SEC ADDR'S 

IF A MODULE IS NOT TO BE INCLUDED IN A SCAN IT IS REFERRREO 
AS A SI\IP MODULE 
THE MODULE IMMEDIATELY TO THE RIGHT OF THE LAST ACTIVE MODULE 
IS THE 'RETURN' MODULE 

YES 

THE HSC <HIGH SPEED CLOCK > CONTROLS THE MULTIPLEXING 
BY SCANNING ALL ACTIVE MODULES SIMULTANEOUSLY 

THE DATA IS LOGGED TO A BUFFER FROM WHERE IT IS SORTED 
INTO FILES FROM EACH MODULE AND THEN STORED ON THE BOAT FILES 

IF A PROTECT CODE IS REQUIRED FOR THE BOAT FILES IT IS 
CHOSEN AS FOLLOWS : 

AFTER THE PROGRAM HAS COMPLETED 
TO PROTECT FILE 6185032101 
TYPE PROTECT ' G 185032101' 'AA' 
WHERE AA IS THE REQUIRED PROTECT CO DE 
NB THE ' IN THE ABOVE LINE SHOULD BE A DOUBLE APOSTROPHE 
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YES 

TIMING 

ANY LOGGING RATE CAN BE CHOSEN BY CORRECT CHOICE OF 
THE BASIC RATE OF LOGGING (CLOCK RATE> 
AND INTERVAL BETWEEN THE CLOCK RATE <No. OF CLOCK UNITS> 
FOR EACH SAMPLE 

THE CLOCK RATES AVAILABLE ARE : 
100 MICROSECONDS 
1 MILLISECOND 
10 MILLISECONDS 
100 MILLISECONDS 
1 SECOND 

ANY No. OF CLOCK UNITS FROM 1 TO 255 CAN BE CHOSEN 

YES 

THE CALIBRATION IS TO CONVERT THE VALUES COLLECTED OFF 
THE MICROLINK AND BE ABLE TO CONVERT THEM TO WAVE HEIGHT 
IN MM. 
IT MUST ••ALWAYS•• BE CARRIED OUT IN THE CORRECT ORDER 
WHICH IS : 
START AT A LOW HOLE <9 or 10 > AND MOVE THE PROBE I HOLE 
< 10MM )•••INTO••• WAT ER FOR EACH SUCCESIVE CALIBRATION 

S.W.L. ••MUST•• BE HOLE 4 FROM THE FIRST ONE SELECTED 
i .e.HOLE 6, IF 9 WAS THE STARTING POINT 

YES 
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APPENDIX 8 

THE FREQUENCY RESPONSE FUNCTION METHOD 

Complete expansion of algebra: 

Given: X=I+HR 

Y = HI + R 

From theory set out in Chapter 3. 

(8.1) 

(8 . 2) 

where X,Y,I and Rare the Fourier transforms as defined in Chapter 3. 

Also x*x = Sxx where x* is the complex conjugate of X (8.3) 

v*x = Syy where Y* is the complex conjugate of X (8 .4) 

x*v = Sxy = c+iq (8.5) 

and 

r*r = sii where r* is the complex conjugate of X 

R*R = Srr where R* is the complex conjugate of X 

where sii and Srr are the incident and reflected spectra respectively 

in 8.1 I = X-HR 

in 8.2 R = Y- HI 

I = X-H(Y-HI) 

= X-HY+H2I 

I-H2 I = X-HY 

I(l-H2) = X-HY 

or I = X-HY 
(l-H2) 

I* = (X-HY) * 
(l-H2) 

I*I = s .. 
ll = (X-HY)* (X-HY) 

( l - H2 )*( l-H2 ) 

(8.6) 

(8.7) 

(8.8) 
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Similarly in 2 

R = Y-HI 

in B.l I = X- HR 

R = Y-H(X-HR) 

= Y-HX + H2R 

R- H2R = Y-HX 

R( 1-H2 ) = Y-HX 

R = Y-HX 
( 1-H2 ) 

R* = (Y-HX)* 
(l-H2 )* 

= (Y-HX)*(Y-HX) 
( l - H2 ) *(l-H2) 

(8.9 ) 

(8.10 ) 

Equations 8. 8 and 8. 10 are used to find the incident and reflected 

spectra in terms of spectra at X and Y and the cross spectrum Sxy· 

To keep the algebra cle.ar the algebraic expansions will be done 

separately for the numerator and denominator. 

l. Expansion of ( l - H2 )* (1-H2) 

For waves in a laborat ory channel H=e- ks where k = wave no . 

s = separation of X and Y. 

e - ks = cos (ks ) - i s i n(ks ) (8 .11 ) 

( l - H2) * = (1- IDI) * = (1-H*H*) (8 .12) 

(1- H*H*)( l - HH) = l - HH - H*H* + H*H* HH (8.13 ) 
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Evaluating the terms separately: 

HH = (cos.(ks)- isin(ks))(cos(ks)- isin(ks )) 

= cos2(ks) - 2isin(ks )sin(ks ) - sin2(ks ) 

H*H* = (cos. (ks)- isin (ks ))(cos (ks ) + isin(ks)) 

= cos2(ks) + 2isin (ks )cos(ks) - sin2(ks ) 

H*H*HH = (cos2(ks ) + 2icos(ks)sin(ks ) - sin2 (ks ))x 

(B.l4) 

(B.l5 ) 

(cos2(ks) - 2icos (ks ) sin (ks ) - sin(ks)) 

= cos4(ks ) - 2isin(ks).cos3(ks) - cos2(ks)sin2(ks ) 

+ 2isin(ks )cos 3(ks ) + 4sin2(ks ) cos2(ks ) 

- 2i sin3(ks ) .cos (ks ) - sin2(ks ) .cos2(ks ) + 2i sin3(ks ) cos (ks ) 

+ sin4(ks) 

~ cos 4(ks) + 2 sin2(ks ) cos2(ks ) + sin4(ks ) ( B. 16) 

In 8.13 

B.l3 = l - (B.l4) - (B.l5) + (B.16) 

.~( B . 13 )=1- (cos 2(ks )-2icos (ks )sin(ks)-sin2(ks )-(cos2 (ks ) + 2isin(ks ) 

cos (ks ) - s i n2(ks )) 

+ (cos4(ks ) + 2 s in2( ks ) cos2(ks ) + sin4(ks)) 

s i nce cos2(ks)+ sin2(ks ) = 1 

cos2(ks) = 1 - sin2 (ks ) 

(8.17) 

(B.13) = 1- cos 2(ks ) + 2icos(ks) sin(ks )+sin2(ks )-cos 2(ks )-2icos (ks ) 

sin (ks ) + sin2(ks ) 

+ cos 4(ks ) + 2 s i n2( ks ) cos 2(ks) + s i n4(ks) 
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= 1-2 cos2(ks) + cos4(ks) + 2 sin2(ks) cos2(ks) + sin4(ks) 

= 1-2(1-sin2(ks)) + (cos4(ks) + 2 sin2(ks) cos2(ks) + sin4(ks)) + 

2sin2 (ks) 

= 1-2 + 2 sin2(ks) + (cos2(ks) + sin2(ks))2 + 2 sin2(ks) 

= 1-2 + 2 sin2(ks) + 1 + 2 sin2(ks) 

= 4 sin2(ks) 

2. Expansion of (X-HY)*(X-HY) for Sii 

(X-HY) * = (X* - H*Y*) 

(X-HY)* (X-H*Y*) = (X*-H*Y*)(X-HY) 

= x*x - x*HY-H*v*x + H*v*HY 

= X*X + H*HY*Y - H*Y*X - HX*Y 

H*H = 1 

X*X = Sxx :. => = SKK + Syy - H*Y*X - HX*Y 

v*v = syy 

also SKK = x*Y = c+iq :. (SKy)* = c-iq 

in B.l9 -H*<sxy) = - H*(c-iq) 

since H = cos(ks) - isin(ks) 

-H*<sxy)* = -(cos(ks) + isin(ks))(c-iq) 

(8.18) 

(B.l9) 

= -(ccos(ks)-iq cos(ks) + icsin(ks) + qsin(ks )) (B.20) 

also 

in B. l9 -H(Sxy) = -H(c+iq) 

= -(cos(ks) - isin(ks))(c+iq) 

= -(ccos(ks) + iqcos(ks) - icsin(ks) + qsin(ks)) (B.2l ) 



(B.20) + (B .21) = -ccos(ks)-qsin(ks)-iqcos(ks)+icsin(ks)-ccos(ks)­

qsin(ks)+iqcos(k~)-icsin(ks) 

= -2ccos(ks) - 2qsin(ks) (B.22) 

combining (B.l9) and (B.2l) 

:. equat i on (B . 8) becomes 

Sii = <Sxx + Syy - 2 ccos (ks ) - 2qsin(ks))/4 sin2 (ks) (B.23 ) 

3. Expansion of (Y-HX)*(Y-HX) for Srr 

(Y-HX)* = (Y*-H*X*) 

(Y- HX ) *(Y-HX ) = (Y*-H*X*)(Y-HX) 

H*H = 1 

x*x = sxx 
Y*Y = Syy 

= Y*Y-Y+HX-H*X*Y +H*X*HX 

= Y*Y + H*HX*X - Y*HX - H*X*Y 

also Sxy = X*Y = c+iq (Sxy)* = c-iq 

= Sxx + Syy - H(Sxy) * - H*(Sxy) 

in (8.24) - H(Sxy )* = -H(c-iq) 

since H = cos (ks ) - isin(ks) 

H(Sxy)* = - (cos(ks)-is in( ks )(c-iq) 

= -(ccos (ks ) - iqcos(ks) - icsin(ks) - qsin(ks) 

also in (8.24) - H*(Sxy) = - (cos(ks ) + isin(ks ) (c+iq) 

= -(ccos (ks ) + iqcos(ks) + isin(ks ) - qsin(ks )) 

2 37 

(B.24) 

(8 .25) 

(8.26) 



(B.25) + (B.26) = -ccos(ks) + iqcos(ks) + icsin(ks) + qsin(ks) -

ccos(ks) - iqcos(ks) - icstn(ks) + qsin(ks) 

= -2ccos(ks) + 2gsin(ks) (B.27) 

Combining equations (B.l8), (8.24) , (B.27) equation (B.lO) becomes: 

Srr = (Sxx + Syy- 2ccos(ks) + 2qsin(ks))/4sin2 (ks ) (8.28) 

equations (B.23) and (B.28) are those used to calculate the incident 

and reflected spectra . 

The reflection coefficient p (t) is given by 

(B .29) 
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APPENDIX C 

WAVE GAUGE SPACING 

The pertinent equations in the Frequency Response Function analysis 

are: 

Sii = (5xx + Syy- 2ccos(ks) - 2qsin(ks))/4sin2 (ks) (C.l) 

Srr = <Sxx + Syy - 2ccos(ks) + 2qsin(ks))/4sin2 (ks) (C.2) 

where (C.l) and (C.2) were described and derived in Chapter 3. From 

the above equations it is seen that Sii and Srr are undefined if 

sin2 (ks ) = 0. 

In order to gain maximum resolution from the technique without the 

use of many pairs of wave gauges the gauges must be separated to give 

maxumum resolution around the area of maximum interest ( i.e. the peak 

spectral frequency, fp). 

To ensure maximum resolution about fp let sin2 (ks) = 1. 

In radians 
sin [ ;n ) = 1 = ks (C.3) 

:. for maximum r-esolution choose a spacing, s, such that: -

nrr 
(C.4) 

2k 

where s1 is the spacing between the two gauges l and 2 for maximum 

resolution. 

k the wave number is given by k - 2rr / L 

where the wavelength L is given by: 

L = gTZ tanh [ 2rrd } 
2rr L 

(C.5) 

Equation (C.5 ) was solved for L by means of an iterative program 

"WAVELEN" written to store the k values on disc for use by the 

Frequency Response program "FREQRES". 
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Since the analysis is undefined when Sin(ks )=O , a third wave gauge is 

required to give information in the area where S1 is· invalid. 

The second spacing, S2 , is calculated to have maximum resolution of 

the point where S1 is invalid. S2 is the spacing between gauges 2 

and 3. In this fashion a third spacing, S3 , the sum of S1 and S2 can 

be used to check the validity of the results. 

The wave parameter generation program NEWSYN was modified to make the 

calculation of s1 and S2 at the same time as it calculates the 

spectral densities for wave generation. All the output from the 

program is sent to a line printer for hard copy output. The r·evised 

program was called NEWSYNP (P for printer) . Each generated spectrum 

thus has different spacings S1 and S2 and users should be aware of 

this when performing tests with different spectra. 

Example of calculation of spacing, S 1 . 

Given - Spectrum RAN 

Significant wave height Hg = O.l3m 

Peak frequency fp = 0.544Hz 

Modal period Tp = l.838S 

From an iterative solution to (C.5 ) L = 4.323m 

hence nTT 

2k 

Calculation of S2 : 

= 1.08 

K = __:f!!__ 
4.324 

= l. 453 

n = l is the primary case 

S1 will be invalid if Sin(ks) = 0 

or if k = 3.14 
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The period associated with this wavelength T = 1.36s 

Frequency at which S1 analysis is invalid f = 0.73Hz 

:. calculate S2 such that nrr 

2k 

s2 = 0.540m 

Spacing values used in the absorption system tests and the 

overtopping tests are given below: 

Spectrum type Hs m fp Hz Tp s s1 m S2 m 

P-M 0.12 0.57 l. 75 1.04 0.52 

P-M 0.18 0.46 2.17 l. 33 0.67 

P-M 0.19 0.45 2.22 1.42 o. 71 

P-M 0.20 0.44 2.27 1.42 0.71 

P-M 0.22 0.42 2.35 1.51 0.76 

Table C.l Wave Gauge spacings for Frequency Response Analysis 
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APPENDIX D 

Dl SPECTRAL KQUkTIONS 

Wave spectra which the Hydraulics Research Soft war e and their 

defini ng equations for use i n random wave generation ar·e as follows: 

Dl.l . Moskowitz 

Peak frequency fm =~9 
/H; 

if the significant wave height Hg is defined parameter 

or fm = 0.8212/ T 

if the zero-crossing period Tz is the defi ned parameter 

Spectral ordinates given by: S( f) = 0.7795 exp 

( - l. 25 ( ( fm/ f) 4) ) j 2rJ4 f5 

where f = I fm/8 for I = l to 16 

Dl. 2. Jonswap 

Peak frequency fro = 0.87/ T 

where 

where 

S( f) = Kg
2 

exp 
( 2rr ) *fS 

g = acce l erat i on 

k = 0.076/ X0·22 

X = gLfUw 

due to gravity 

2 4 2 

(D.l ) 



where Lf = effective fetch length 

Uw = wind speed lOm above the sea surface 

fm = 3.5g/UwX0· 33 

0: = 3. 3 

w = 0.07 for f ~ fm or 0.09 for f > fm 

01.3. Oarbyshire 

Peak frequency fm = l/(2.703 ~~ + 3.55 x 10_6 x Uw4) 

Spectral Ordinates S(f) = 

23.9 mo exp(- ~f-fm) 2/ (0.0085(f-fm+0.042 )) 

when f-fm > 0.042 else S(f) = 0 

where mo = 1. 083 x 10-s 

D 1. 4. Newman 

Peak frequency fm = 1.275/Uw 

Spectral Ordinates S(f) = 2.518 ~ 10-4 exp - f 3~m2 } 

01.5. ISSC 

Peak frequency fm = 0.7714/T 

Spectral ordinates S(f) = 0.313Hs2fm4 exp - ( 1.25fm4j f4) 

fS 

In each of the the spectra generated by NEWSYN the first 3 ordinates 

are set to zero. 

In addition there is the option of supplying a spectrum as a set of 

16 ordinates, in units of metres-squared seconds; 

interval between the ordinates must also be supplied. 

the frequency 

The selection of any of the above spectra is achieved by typing the 

initial letter of the choice then <return>. 
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0. 2 SOME FREQUENCY WINDOWS AND THEIR USE 

As mentioned in Chapter 3 the data for wave spectra is tapered by an 

appropriate taper window, some of the more co~non windows are given 

below: 

02.1. Rectangular window 

Used to simply truncate data 

W (i/2T-f) = J Texp [ -c(i/2T-f)t ) dt = 2Tsin c(i-2Tf) 

-T 

w(t) = l -T<t<T 

w(t) = 0 elsewhere 

02.2. Bartlett (triangular) window 

No longer generally used it is the only window that can be 

implemented in hardware. 

From w(t) = 1-lti / T 

W (i/2T-f) = T[sinc (i-Tf)]2 

02 . 3. Parzen window 

From 

w(t ) = l-6t2 /T2 + 61 ti 3 / T3 for t<T/ 2 

w( t) = 2( l-1 tl )/T3 for T/2 < t < T 

w( t ) = 0 elsewhere 

-w ( i / 2T-f) = 3/ 4T [sin c ( i-Tf) ]4 
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02.4. Tukey Window 

For w(t) = ~ + (1-~) cos (nt/T) for -T <t <I' 

W (i/2T-f) = 2a'l'sinc (i-2Tf) + (1-~) T [sine (i-2Tf+1) + 

sinc(i-2Tf+l)] 

If ~ = 0.5 then 

W(i/2T-f) = Tsinc (i-2Tf)/[1-(i-2Tf)2] 

This is known as a hanning window. 

If ~ = 0.54 then the window is known as a hamming window. 

Tukey windows have a simple fourier transform. 

02.5. Cosine Taper 

The cosine taper window is the window used in all the analysis 

routines writen. 

-T/2 

For w(t) = 1 for -4/rT < t < 4/5T 

w(t) = ~ + Y2cos(snt/t) -T <t and 4/5 T<t<t 

w(t) = 0 elsewhere 

W (i/2T-f) = Tsinc (i-2Tf) + 4/5 TSinc(i-8/5Tf) 

C T/2 (t) 

0 

Figure D.l Cosine Taper Window Function 
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02.6. Oaniall Window 

wj/ 2 = (2rn+l)-1 for j = m, (-m+l ) ...... (m-1 ) , m 

= 0 elsewhere 

m 
W(i/2-f) = (2m+l) L sinc(i-2f-j) 

j =-m 

02.7. Modified Daniall wi ndow 

-
Here Wj/z = ~ for (-m+l ) ( j ( (m-1) 

= ~ for j = :tm 

= 0 elsewhere 

m 
W(i/2-f) = (2m+l)-1 L sinc(i-2f-j) 

j=-m 

A full appraisal of all the above windows can be found in Di gital 

Spectral Analysis by Yuen and Fraser19, 
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APPENDIX E 

VERTICAL ACCELERATION TERM 

The 1-D momentum equat)on (10.2 ) is given with a term Fx to allow for 

the vertical accel eration . Fx is derived below: (Gopalakrishnan 

1980) . 

Th0 terms whi eh account for vertical acce] erations in Lh(-' momr:>ntwn 

equation are de r·ived from consideralions of pressure variation on a 

vertical sect)on . An expression for the vadation can be obtained 

from the momentwn equabon for the z-dirertiou. Once this var·ia t-ion 

is established Lhe ' :orresponding effect can be introduced in 1 he 

term 

1 ap 
of the momentum equation for the x-direction equation . 

p ax 

Thus, we obtain an equation for the x-d)rect)on in which the effects 

of vertical accelerations are included. The steps are as follows: 

u (X ' z ' t) .. u (X ' t) + U* (X' -'!: ' l) (E . ]) 

Equation (E . l) describes the x- direction velocity as the combination 

of a mean and f) uctu;:d ing vcloci t.y . 

Applying (E.l) Lo the Eulerian equation of motion (E.2) below: 

au au au 1 ap 
+ u + w =- -- (E .2) 

at ax Clz p Clx 

~ve obtain: 

acu + u*) cu + u*) acu + u*) w acu + u*) 1 ap 
+ + = (E.3 ) 

at ax az p a·· 
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At this stage it is assumed that u* is negligible compared to U i.e. 

the horizontal velocity is assumed to be uniform over a vertical 

section. This assumption has been found to introduce negligible 

errors in most shallow water motions. 

u*, equation (E .3) becomes: 

On removing terms containing 

au au au 1 ap 
+ u + w = ( F. . 4 ) 

at ax az p ax 

Since U is not a function of z, 

au 
= 0 

az 

Thus: 

au uau 1 ap 
( R.5) - + = 

at 

The corresponding z-direction momentum equation is: 

aw uaw waw 
- + - + = 

l ap 
g (8.6 ) 

at ax p az 

Also the continuity equation becomes: 

au aw 
- + = 0 ( E.7) 

ax az 

Thus: 

aw - au 
= ( IL 8 ) 

ax 

Inlegrating equation (H .8 ) with regard to z yields: 

- au 
w = z + k ( E.9 ) 

ax 

248 



The constant of integration k can be evaluated using the bottom 

boundary conditions of which w(-h) = - uah 

Udh 
w = at z = -h 

where w is the vertical particle velocity at a point. 

Therefore: 

-uah -au 
- = (-h) + k 
ax ax 

k = -a 
(Uh) 

Hence: 

-au a 
w = z (Uh) (R.lO) 

ax ax 

Thus, w is a linear function of z under the assumption that u* is 

negligible. Based on equation (R.lO), the derivatives of w in the z 

direction momentum equation, equation (E.6) can be written as 

follows: 

Thus, the LHS of equation (R.6) cru1 be expressed as a function E of U 

and its time and space derivatives, hand z, i.e. equation (K .6) can 

now be written as: 
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I: [ ut h t ~ t ~~ t ~;4 t ~~ t z ) = - ~ ~ - g 

Integrating equation (E.l2) with regard to z yields : 

J r: dz = - ~ - gz + k 

At z = n, p = 0 therefore: 

Jn I: dz = -gn + k 

0 

Hence 

or 

J I: dz = - ~ -gz + gn + Jn r: dz 
0 

- ~ = f I:dz + g ( z + n) - r: I:dz 

Differentiatng equation (B .l6) with respect to x: 

The last term on the RHS shows that 

is a function of z, substituting for 

1 ap 
---from equation (E .l7) in equation (E .l5 ) yields: 
pax 

(E.l2 ) 

(E.l3) 

(E.l4) 

(E. l5 ) 

(E.l6) 

(E .l7) 

(E.l8) 

In order to remove the z dependence, equation (E.l8) is inlegrated 

with t•egard to z from -h to n. 

i.e. 

( :~ + u :~ ) <n + h) = - g ~~ <n + h) -J:h :h [ J: I:~ -J I:dz ] dz 

(E.l9) 

250 



Dividing equation (E.l9) throughout by (n +h) we obtain: 

au u au = -g an 1 Jn a 
at + ax ax - n+h - h ax (E.20) 

Comparing equation E. 20 with the vertically integrated or shallow 

water equation without friction, it is seen that the effect of 

vertical acceleration comes in through the term: 

l 
- n+h 

As U and h are not functions of z, the integration involved can be 

easily carried out. For example the term: 

aw 

at 

which forms one of the terms in the function t undergoes the 

following operations during the integrations indicated above: 

[ a
2u ~2 a 

axat 2 + ax 

Therefore: 

= - [ f ~X [ 

and 
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haU ] 
at 

(E.2l ) 

(E.22 ) 

[ haU ] Jn = 
at -h 

(E.23 ) 



also: 

a r ~ dz [ n2 a ( a2u J a2 
c3x = - 2 ax axat + n ax2 0 

[ 2n an~ ( a2u ] n2 a2 ( a
2u 

] + 2 ax c3x c3xat + 2 ax2 axat 

hau } J at 

Therefor-e: 

a 
ax [ In aw az = 

0 at [ 
an a 

(h+n) 11 ax ax 

where Fx 

[ h~~ ] ] = 

an a2 
( haU 

] + ax P at 

(E.24) 

(E.25 ) 

Equation (E .25) is thus the 1-0 momentum equation which accounts for 

vertical accelerations and hence may be called the "quasi 2-0 

equation''. It is evident from the above deve l opment of the quasi 2-D 

momentum equation that t he consideration of vertical accelerations 

does not affect the form of the l - 0 continuity equation. 

Together with equation ( 10.1 ) , equation (E .25) is used in t he 

solution system of the numerical model. 
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