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ABSTRACT 

TRACE METALS IN BWOD AND URINE AS POTENTIAL MARKERS OF 
BONE BREAKDOWN IN PATIENTS WITH BONE METASTASES. 

Fiona Jane Roberts 

In the western world cancer is the second most important cause of death, after heart disease, 
accounting for 20-25% of all mortalities, and is today probably one of the most feared diseases. 
Approximately one third of all cancer patients will develop skeletal metastases (secondary bone 
cancer). Early diagnosis and effective monitoring during treatment is therefore essential in terms 
of making any impact on survival rates and developing new cancer therapies. 

Unfortunately, the current methods for diagnosing and measuring bone metastases, such as bone 
scans and urinary hydroxyproline determinations, lack sensitivity and specificity. The urinary 
pyridinium crosslinks, pyridinoline (PYD) and deoxypyridinoline (DPYD), have recently been 
identified as sensitive and specific markers of bone breakdown. However the analysis of the 
pyridinium crosslinks using high performance liquid chromatography (HPLC) has proved far from 
ideal for routine clinical assessment. The results from studies to critically evaluate this method 
are presented and particular problems encountered when the crosslinks are extracted from the 
urine samples are discussed. The tedious, time consuming and cumbersome sample preparation 
procedure are also shown to adversely effect the robusmess and reproducibility of the method. 
The recent introduction of an immunoassay method potentially overcomes many of the inherent 
problems with the HPLC analysis. This enzyme linked immunoasorbant assay (ELISA) is 
evaluated and found to compare favourably with the HPLC method, offering several distinct 
advantages. The method is quick, simple, robust, demonstrates good accuracy and precision, is 
less prone to interferences and can be easily introduced into clinical laboratories on a routine 
basis. In addition it also minimises sample preparation time. However, there is still a requirement 
for alternative and better biochemical markers to measure bone breakdown. 

It is well known that bone is an active, living tissue and that bone metabolism and remodelling 
are tightly coupled processes, where the rate of bone formation equals the rate of bone resorption 
in healthy bone. When an imbalance occurs, this leads to unhealthy bone and ultimately a clinical 
disease of the skeleton. Some trace metals, e.g lead, accumulate in the bone and since the 
development of bone metastases results in extensive bone breakdown, the subsequent release of 
these metals into the blood and urine may potentially serve as markers. In this work inductively 
coupled plasma-mass spectrometry (ICP-MS) has been used and methods developed to determine 
such metals in clinical matrices. 

The development of a simple dilution method is described for use in preliminary trials to measure 
the blood lead levels and other trace metal profiles, in patients with bone metastases. The blood 
lead results attained agree closely with a certified reference material, and the method is shown 
to remain under analytical control. The trial results are presented and discussed with reference 
to further and more detailed investigations. The selection criteria for other suitable elements such 
as AI, Ba, Cd, Ce, Pb, Sr, and Zr in blood and urine, along with an assessment of the analytical 
and clinical praticalities of the methodology which must be considered for subsequent full clinical 
trials is also discussed following a critical evaluation. 

Finally the results obtained in a extended clinical trial are presented. The crosslink levels (serving 
as the reference marker), measured by ELISA, were compared with the trace metal levels (Cd, 
Pb and Sr) in blood and urine samples, measured by ICP-MS, in order to assess their diagnostic 
potential and effectiveness in monitoring treatment. The blood lead levels were found to offer the 
greatest potential, correlating well with the DPYD values in the majority of cases. The blood 
strontium levels also showed some promise. However the blood cadmium and the urinary trace 
metal levels proved less suitable. The results attained in this feasibility study support a more 
detailed clinical investigation, on a much larger scale, and over a longer period of time. The need 
to incorporate a full statistical evaluation of all factors that can influence the final results is 
highlighted. 

ii i 



AUTHOR'S DECLARATION 

At no time during the registration for the degree of Doctor of Philosophy has the author 

been registered for any other University award. 

This study was financed by the South and West Regional Regional Health Authority and 

carried out in collaboration with the Radiotherapy Research Unit, Department of 

Oncology, Freedom Fields Hospital, Plymouth, Devon, U.K. 

Relevant scientific seminars and conferences were regularly attended at which work was 

often presented, external institutions were visited for consultation purposes and several 

papers prepared for publication. 

Sigoed.J.E. .... e.~···v···· 
Date . ./?'!..7)1·· !1.1l 

iv 



ACKNO~DGEMENTS 

I would-like to thank my supervisors Professor Steve Hill and Professor Les Ebdon from 

the university and my colleagues at the Radiotherapy Research Unit, consultant Dr. Chris 

Tyrell, and registrars Dr. Matthew Collinson and Dr. Anand Mehadevan, for their 

suppon and guidance during this project. Special thanks must go to Sister Jayne Elms and 

Staff Nurse Chrissie Poner, at the Radiotherapy Research Unit, for all their hard work 

and effons in running the clinical trials, for their warm welcome on my visits "it's the 

wee-wee lady", their cheery smiles and words of encouragement at difficult times. 

I am very grateful to the South and West Regional Health Authority, University of 

Plymouth and the Radiotherapy Research Unit, Freedom Fields Hospital, Plymouth for 

their financial support. 

To all the technical staff at the university, especially Ian Doidge, Andy Arnold, Andrew 

Tonkin, Alex Fraser and Pete Smithers. Many thanks for their expenise and help, and 

for making my life in the realms of academic research not quite so impossible!!! I reserve 

a very special thank you to Rob Harvey for his sterling effons in fixing the instruments 

as well as putting up with us researchers! I would also like to thank Pete Bendle and Dr 

Roger Williams, from the clinical biochemistry labs at Derriford Hospital, Plymouth, for 

conducting the creatinine analyses as well as their general co-operation throughout this 

research project. 

V 



To all my friends in the department, past and present, my sincerest gratitude and thanks, 

not only for sharing the odd beverage or two, but also for their continual support, help 

and encouragement without which I would never have come to see the light at the end 

of the tunnel! I I would particularly like to thank Andy Fisher, Warren Cairns, Cristina 

Rivas, Neil Chilcott, Gavin O'Connor, Elena Menendez, Linda Rowley, Kathryn Lamble, 

Amanda Homfray, Phil Goodall and Les Pitts. 

To all my friends back home, and elsewhere, all at number 66, SALHC and PLHC, 

many thanks for helping to keep my sanity. 

And finally to my family, particularly my parents, who have always stood by me and 

supported me in all my ventures, good and bad. I am deeply grateful and appreciative for 

everything they have done, for all their sacrifices and for giving me the chance to pursue 

my career and interests. 

vi 



LIST OF CONTENTS 

Copyright statement 

Title page 11 

Abstract i i i 

Author's Declaration IV 

Acknowledgements V 

List of contents vii 

List of tables XV 

List of figures XVIII 

Abbreviations XXII 

CHAPTER 1: INTRODUCTION. 

1.1: Basic biology of bone and cartilage 1 

1.1.1: Principle bone cells (osteoblasts and osteoclasts) 1 

1.1.2: The bone matrix 2 

1. 1. 2 .1: Collagen 2 

1.1.3: Bone remodelling 3 

1.1.4: Measurement of bone turnover using biochemical markers 4 

1.2: Basic facts about cancer 6 

1. 2 .1 : What is cancer 6 

1.2.2: The prevalence of cancer in todays society 9 

1.2.3: Causes of cancer 14 

1.2.4: Treatment of cancer 14 

1.3: Bone metastases (secondary bone cancer) 22 

VII 



1.3.1: Distibution and route of spread 

1.3.2: Disruption to normal bone remodelling 

1.3.3: Diagnosis of skeletal metastases 

1.3.3.1: Plain radiography 

1.3.3.2: Radionuclide bone scanning 

1.3.3.3: Computed tomography (CT) 

1.3.3.4: Magnetic resonance imaging (MRI) 

1.3.4: Assessment of response to treatment 

1.3.4.1: Plain radiography 

1.3.4.2: Radionuclide bone scanning 

1.3.4.3: Computed tomography (CT) 

1.3.4.4: Magnetic resonance imaging (MRI) 

1.3.4.5: Biochemical monitoring 

1.3.4.6: Tumour markers 

1.3.4. 7: Subjective assessment 

1.4: Biochemical markers of bone formation 

1. 4.1: Serum alkaline phosphatase 

1.4.2: Osteocalcin 

1.4.3: Procollagen peptide 

1.5: Biochemical markers of bone resorption 

1. 5.1: Tartrate resistant acid phosphatase 

1.5 .2: Hydroxyproline 

1.5 .3: Hydroxylysine glycosides 

1.5 .4: Pyridinium crosslinks 

VIII 

22 

23 

23 

24 

24 

25 

27 

27 

28 

28 

29 

31 

31 

32 

32 

34 

34 

38 

39 

41 

41 

44 

45 

46 



1.5.5: Telopeptides of type I collagen 46 

1.5.5.1: The aminoterminal telopeptide (INTP) 46 

1.5.5.2: The carboxyterminal telopeptide (ICTP) 47 

1.6: The pyridinium crosslinks 50 

1.6.1: Basic mechanism of formation 50 

1.6.2: General properties of the pyridinium cross! inks 55 
and their uses as biochemical markers 

1.6.3: Analysis of the pyridinium crosslinks 58 

1.6.4: The use of pyridinium crosslinks as biochemical markers to 59 
measure bone resorption in metabolic bone diseases 

1.6.5: The use of pyridinium crosslinks as markers of bone 63 
breakdown in patients with skeletal metastases 

1. 7: Trace metals in the human body 64 

1. 7.1: Measurement of trace metals in biological samples 69 

1. 7.2: Trace metals in bone 70 

1.8: Aims of investigation 72 

1.8.1: Objectives 72 

1.8.2: Plan of investigation 73 

CHAPTER 2: INSTRUMENTATION 

2.1: Inductively coupled plasma-mass spectrometry (ICP-MS) 75 

2.1.1: Historical background 75 

2.1.2: Plasma generation 76 

2.1.3: Sample introduction 78 

2.1.4: Ion extraction 79 

2.1.5: Ion focusing and detection 83 

IX 



2.1.6: Interferences 

2.1.6.1: Spectral interferences 

2.1.6.2: Non-spectral interferences 

2.1. 7: Biological\clinical applications of inductively coupled 
plasma-mass spectrometry 

2.1. 8: Experimental instrumentation 

2.2: High performance liqiud chromatography (HPLC) 

2.2.1: Basic principles 

2.2.1.1: Reverse phase chromatography 

2.2.1.2: Ion pair chromatograpy 

2.2.2: Chromatographic parameters 

2.2.3: Experimental instrumentation 

2.3: Immunoassays 

2.3.1: General theory and basic principles 

2.3.2: Metra Biosystems assay kits 

CHAPTER 3: ANALYSIS OF THE PYRIDINIUM CROSSLINKS BY 
IDGH PERFORMANCE LIOIUD CHROMATOGRAPHY IIIPLC) 

83 

83 

86 

87 

91 

92 

92 

95 

95 

96 

99 

101 

101 

102 

3.1: Introduction 104 

3.2: Experimental 109 

3.2.1: Reagents and chemicals 109 

3.2.2: Preparation of standards 110 

3.2.3: Urine sample preparation 111 

3.3: Results and discussion 111 

3.3.1: Evaluation of the chromatographic conditions 111 

3.3.1.1: Separation of the DPYD and DPYD crosslinks 112 

X 



3.3.1.2: Analysis of calibration standards and detector response 116 

3.3.1.3: Evaluation of the resuspension solution 121 

3.3.2: An investigation into the sample preparation procedure 126 

3.4: Use of an alternative chromatography method 132 

3.4.1: Experimental 132 

3.4.2: Results and discussion 132 

3.5: Conclusions 134 

CHAPTER 4: ANALYSIS OF THE PYRIDINIUM CROSSLINKS 
BY ENZYME LINKED IMMUNOASORBANT ASSAY <ELISAl 

4.1: Introduction 

4.2: Experimental 

4.3: Results 

4.4: Conclusions 

CHAPTER 5: A PRELIMINARY INVESTIGATION INTO THE 
BLOOD LEAD LEVELS IN PATIENTS DIAGNOSED WITH 
BONE METASTASES 

5.1: Introduction 

5 .1.1: Sources of lead 

5 .1.2: Physiology of lead 

5.1.3: Distribution of lead 

5.1.3.1: Lead in bone 

5.1.3.2: Blood lead levels 

5.1.4: Lead toxicity 

5.1.5: Blood lead analysis 

5.2: Aims of this study 

XI 

137 

138 

141 

141 

143 

143 

144 

145 

145 

151 

154 

154 

159 



5.3: Experimental 

5.3.1: Reagents and chemicals 

5.3.2: Procedures 

5.4: Results and discussion 

5 .4.1: Analytical figures of merit 

5.4.2: Preliminary trial 

5.5: Conclusions 

CHAPTER 6: OTHER POTENTIAL TRACE METAL MARKERS 
FOR BONE METASTASES 

160 

160 

160 

162 

162 

166 

180 

6.1: Introduction 181 

6.2: Reagents and chemicals 182 

6.3: Selection of other elements 183 

6. 3.1: Experimental 183 

6.3.2: Results and discussion 184 

6.4: Determination and control of blank values 185 

6.4.1: Experimental 185 

6.4.2: Results and discussion 186 

6.5: An investigation into the storage and pretreatment of urine samples 193 

6.5.1: Experimental 195 

6.5.2: Results and discussion 195 

6.6: Interference study 196 

6.6.1: Experimental 196 

6.6.2: Results and discussion 198 

6. 7: Analytical figures of merit 205 

6. 7.1: Experimental 205 

xii 



6.7.2: Results and discussion 206 

6.8: Summary 210 

CHAPTER 7: A COMPARISON OF THE TRACE METAL LEVELS 
(Cd, Pb AND Srl IN BLOOD AND URJNE WITH 
URINARY DEOXYPYRIDINIUM CROSSLINK LEVELS AS A 
MEASURE OF BONE RESORPTION IN PATIENTS WITH 
SKELETAL METASTASES <EXTENDED CLINICAL TRIAL). 

7.1 Introduction and Aims 211 

7 .1.1: Biological significance of lead in the human body 212 

7.1.2: Biological significance of cadmium in the human body 212 

7.1.2.1: Sources of cadmium 212 

7.1.2.2: Metabolism and body burden of cadmium 215 

7.1.2.3: Blood cadmium levels 215 

7.1.2.4: Urine cadmium levels 216 

7.1.2.5: Measurement of cadmium in blood and urine samples 217 

7.1.3: Cadmium and cancer 223 

7.1.4: Biological significance of strontium in the human body 223 

7 .. 1.4.1: Sources of strontium 223 

7.1.4.2: Metabolism and body burden of strontium 224 

7.1.4.3: Analysis of strontium in blood and urine 226 

7 .1.5: Correction factors to adjust urine analyte concentrations 230 

7.2 Experimental 230 

7.2.1: Reagents and chemicals 230 

7.2.2: Patient selection 231 

7.2.3: Sample collection 232 

7.2.4: Procedures 233 

xiii 



7.3 Results and discussion 234 

7.3.1: Quality control measures 234 

7.3.2: Extended clinical trial 242 

7.3.2.1: Comparison of the initial levels of Cd, Pb, 243 
Sr and DPYD 

7.3.2.2: Comparison of trace metal levels in blood and urine 257 

7.3.2.3: Comparison of trace metal and dexoypyridinoline 260 
levels in urine 

7.3.2.4: comparison of the trace metal levels in blood 263 
with urinary DPYD levels 

7.4: Conclusions 271 

CHAPTER 8: GENERAL CONCLUSIONS AND SUGGESTIONS 273 
FOR FUTURE WORK 

REFERENCES 279 

APPENDICES 

Appendix 1.1: Further details on UK cancer incidence, for males 314 
and females 

Appendix 1.2: Further details on UK cancer mortality rates for 315 
males and females 

Appendix 1.3: Further details on cancer survival tates in England and Wales 316 

Appendix 2.1: Graphical presentation of individual patient results - 319 
comparison of trace metal levels in blood and urine 

Appendix 2.2: Graphical presentation of individual patient results - 322 
trace metal levels in urine with deoxypyridinoline levels 

Appendix 2.3: Graphical presentation of individual patient results - 325 
trace metal levels in urine with deoxypyridinoline levels 

PRESENTATIONS AND MEETINGS ATTENDED 326 

XIV 



LIST OF TABLES 

1.1 Summary of environmental risk factors. 15 

1.2 Dietary factors and cancer risk. 17 

1.3 Viruses associated with human cancers. 17 

1.4 Carcinogens from occupational exposure. 18 

1.5 Example of a symptomatic assessment form given to patients. 33 

1.6 Comparison of bone formation markers. 35 

1.7 Comparison of bone resorption markers. 42 

1.8 Distribution of the pyridinium crosslinks in human tissues. 56 

1.9 Summary of clinical studies using the pyridinium 60 
crosslinks as markers of bone resorption. 

1.10 Physiological concentrations of essential trace elements in 66 
body fluids. 

1.11 Concentrations of non-essential elements in body tissues. 67 

2.1 Main spectral interferences encountered in the analysis of 89 
biological materials by ICP-MS. 

2.2 Typical ICP-MS operating conditions. 91 

2.3 Summary of the various forms of HPLC available. 94 

3.1 Summary of HPLC methods to measure the pyridinium crosslinks. 105 

3.2 Results for repeated measurements on the two calibration standards. 120 

3.3 Results for repeated measurements on real samples. 122 

3.4 Type of resuspension solutions evaluated. 125 

3.5 Summary of results attained for acid hydrolysed versus 127 
non acid hydrolysed samples. 

3.6 Results showing evaporation rate during acid hydrolysis. 129 

3.7 Results for acid hydrolysates prepared under normal 129 
conditions (i.e. shaking) compared to centrifuging. 

XV 



3.8 % recovery results for the various stages of the sample preparation 136 
procedure. 

4.1 Results obtained from % recovery trials for deoxypyridinoline. 142 

4.2 Results obtained for deoxypyridinoline (DPYD) control standards. 142 

5.1 Comparison of the mean bone lead concentrations (J.tg Pb\g bone ash) 148 
taken from five different anatomical sites, from different age groups. 

5.2 Results from vetebral bone biopsies, showing the lead concentration 149 
differences between exposed and non-exposed individuals. 

5.3 Summary of chelatable lead and the lead levels in blood and bone 153 
in active and retired workers and in occupationally non-exposed 
individuals. 

5.4 Summary of ETAAS methods for measuring lead in blood. 155 

5.5 Summary of results for the quality control samples. 163 

5.6 Summary of results for certified reference material BCR 194 164 
lead and cadmium in whole blood. 

5.7 Results summary for the standardisation of the pooled blood samples 165 
(IQC's) against the certified reference material BCR 194. 

5.8 Summary of the results for IQC 1 during the preliminary trials. 167 

5.9 Summary of the results for IQC 2 during the preliminary trials. 167 

5.10 Patients who showed a downward trend in blood lead concentration 169 
over time. 

5.11 Patients who showed an upward trend in blood lead concentration 172 
over time. 

5.12 Patients who showed no clear trends in blood lead concentration 174 
over time. 

6.1 Summary of blank study on blood collection tubes filled with test 187 
solution (2% v\v Aristar nitric acid and 100 p.g J·1 Tl internal 
standard) and left for 1 week. 

6.2 Summary of blank study on blood collection tubes with test solution 189 
(2% v\v Aristar nitric acid and 100 p.g 1·1 Tl internal standard) 
and left for 1 hour. 

XVI 



6.3 Summary of blank study on blood collection tubes with test solution 191 
(2% v\v Aristar nitric acid and 100 p.g (·1 Tl internal standard), 
collected,using plastic syringes and metal needles, then injected into 
plastic trace metal free tubes. 

6.4 Summary of the blank study for the test solution collected initially 192 
in the glass Vacutainer tubes, and then immediately decanted into 
the plastic tubes. 

6.5 Summary of the blank studies on the urine collection procedure. 194 

6.6 Summary of the investigation into the storage and pretreatment 197 
of urine samples. 

6.7 Limit of detection (LOO) results for the three selected elements. 207 

6.8 Percentage recovery results for pooled blood samples. 207 

6.9 Results for Seronorm whole blood reference material. 208 

6.10 Results for BCR certified reference material for blood. 208 

6.11 Percentage recovery results for pooled urine samples. 209 

6.12 Results for Seronorm urine reference material. 209 

6.13 Results for NIST 2670 urine certified reference material. 209 

7.1 Cadmium levels measured in various alcoholic beverages 214 

7.2 Summary of ET AAS methods for measuring cadmium in blood 218 
and urine. 

7.3 Analytical methods used to determine strontium in biological fluids. 227 

7.4 Patient numbers recruited for the extended clinical trial. 244 

7.5 Summary of patients recruited for the full clinical trials. 245 

7.6 Summary of trends in the trace metal levels measured in blood 258 
and urine. 

7. 7 Comparison of trends in the urinary trace metal levels with the 261 
urinary deoxypyridinoline crosslink levels. 

7.8 Comparison of trends in the trace metal levels measured in blood 264 
with the urinary deoxypyridinoline crosslink levels. 

N.B. Unless otherwise indicated all error limits in tables are one standard deviation. 

XVII 



UST OF F1GURES 

1.1 Schematic diagram showing clonal selection and tumour progression. 7 

1.2 A simple diagram showing the stages of invasion and metastasis. 8 

1.3 Ten commonest human cancers, UK 1988. 10 

1.4 Ten commonest cancers for men, UK 1988. 11 

1.5 Ten commonest cancers for females, UK 1988. 11 

1.6 Ten commonest causes of human cancer deaths, UK 1994 12 

1.7 Ten commonest causes of cancer death in men, UK 1994. 13 

1.8 Ten commonest causes of cancer death in females, UK 1994. 13 

1.9 Male 5 year % survival rates, England and Wales, 1981. 20 

1.10 Female 5 year % survival rates, England and Wales, 1981. 20 

1.11 Schematic diagram of the procedures used in the diagnosis 26 
of skeletal metastases. 

1.12 Diagram summarising the possible results from bone 30 
scanning when assessing the response to treatment. 

1.13 Model depicting the three markers of bone formation. 36 

1.14 Model depicting the markers of bone resorption. 43 

1.15 Structure of the pyridinium crosslinks. 51 

1.16 Schematic diagram showing the reactions of the peptides 52 
lysine and hydroxylysine in collagen crosslink biosysnthesis. 

1.17 Diagram showing the tissue specificity and maturation 54 
changes in crosslinking. 

1.18 Idealised curve showing the response of an organism 65 
to increasing doses of an essential element. 

2.1 Schematic diagram of an inductively coupled plasma. 77 

2.2 Schematic diagram of the ICP-MS sample introduction system. 80 

2.3 Diagram showing a typical ICP-MS ion extraction interface. 81 

XVIII 



2.4 Diagram of the supersonic expansion formed in the expansion 82 
chamber, showing the barrel shock and position of the Mach disc. 

2.5 Schematic diagram of a commercial ICP-MS instrument. 84 

2.6 Schematic diagram showing the basic HPLC system. 93 

2.7 Illustration of paramaters for retention and resolution. 98 

3.1 A typical chromatogram showing the St. Bartholomew's 113 
crosslin.k standard, analysed under the original conditions. 

3.2 A typical chromatogram showing the St. Bartholomew's standard 114 
(A) and the Metra commercial crosslin.k standard (B), 
analysed under modified conditions. 

3.3 Chromatograms comparing the St. Bartholomew's crosslink standard 115 
(A), with crosslin.ks extracted from a urine sample (B), 
and a eo-injection of the sample and standard (C). 

3.4 A typical chromatogram of calibration solution 1, prepared from 117 
bovine pelvic bone, compared to the St. Bartholomew's crosslink 
standard. 

3.5 A typical chromatogram of calibration solution 2, prepared from 118 
bovine pelvic bone, compared to the St. Bartholomew's crosslink 
standard. 

3.6 A typical chromatogram showing the crosslin.ks extracted from 119 
human femoral bone. 

3.7 Fluorescence response for pyridinoline (PYD). 123 

3.8 Fluorescence response for deoxypyridinoline (DPYD). 124 

3.9 Optimisation of the sample preparation procedure. 131 

3.10 A typical chromatogram showing the St. Bartholomew's crosslink 133 
standard using the alternative chromatography method. 

3.11 Procedure used in recovery tests, where samples were spiked with 135 
calibrant 2 solution, at difference stages of the sample preparation 
procedure, as indicated by the arrows. 

4.1 Summary of the ELISA procedure to measure the DPYD crosslink. 140 

5.1 Lead content in various fractions of blood. 146 

XIX 



5.2 Multiple bone pool kinetic model. 152 

5.3 Preliminary trial results - male patients who showed a downward 170 
trend in blood lead concentration over time. 

5.4 Preliminary trial results - female patients who showed a downward 171 
trend in blood lead concentration over time. 

5.5 Preliminary trial results - patients who showed an upward 173 
trend in blood lead concentration over time. 

5.6 Preliminary trial results - patients who showed no clear trends 176 
in blood lead concentration over time, catogory A 
(initial blood [Pb] > 80 p.g 1"1). 

5.7 Preliminary trial results - patients who showed no clear trends 177 
in blood lead concentration over time, catogory B 
(initial blood [Pb] 40- 80 p.g )·1). 

5.8 Preliminary trial results - patients who showed no clear trends 179 
in blood lead concentration over time, catogory C 
(initial blood [Pb] < 80 p.g )·1). 

6.1 Calibration graphs comparing aqueous standards with matrix 199 
matched standards for blood analyses. 

6.2 Calibration graphs comparing aqueous standards with matrix 200 
matched standards for urine analyses. 

6.3 Graphical presentation of the matrix effects of potential interfering 202 
ions on the Sr: Internal standard ratio. 

6.4 Graphical presentation of the matrix effects of potential interfering 203 
ions on the Cd: Internal standard ratio. 

6.5 Graphical presentation of the matrix effects of potential interfering 204 
ions on the Pb: Internal standard ratio. 

7.1 Chart plotting the analytical performance for cadmium in 235 
Seronorm blood reference material. 

7.2 Chart plotting the analytical performance for lead in 236 
Seronorm blood reference material. 

7.3 Chart plotting the analytical performance for strontium in 237 
Seronorm blood reference material. 

XX 



7.4 Chart plotting the analytical performance for cadmium in 239 
NIST CRM 2670 urine. 

7.5 Chart plotting the analytical performance for lead in 240 
NIST CRM 2670 urine. 

7.6 Chart plotting the analytical performance for strontium in 241 
NIST CRM 2670 urine. 

7.7 Graphical presentation of the initial blood cadmium levels 248 
for females and males in each group. 

7.8 Graphical presentation of the initial blood lead levels 250 
for females and males in each group. 

7.9 Graphical presentation of the initial blood strontium levels 251 
for females and males in each group. 

7.10 Graphical presentation of the initial urinary cadmium levels 252 
uncorrected (NC) and corrected with creatinine (C), 
for females and males in each group. 

7.11 Graphical presentation of the initial urinary lead levels 254 
uncorrected (NC) and corrected with creatinine (C), 
for females and males in each group. 

7.12 Graphical presentation of the initial urinary strontium levels 255 
uncorrected (NC) and corrected with creatinine (C), 
for females and males in each group. 

7.13 Graphical presentation of the initial urinary deoxypyridinoline 256 
crosslink levels, uncorrected (NC) and corrected with creatinine (C), 
for females and males in each group. 

7.14 Graphical presentation of the trace metal level and DPYD values for 266 
patients 004, 018 and 027, studied over a longer time period. 

7.15 Graphical presentation of the trace metal level and DPYD values for 267 
patients 010 and 018, studied over a longer time period. 

7.16 Graphical presentation of the trace metal level and DPYD values for 268 
three patients who showed variable results over a longer time period. 

N.B. Unless otherwise indicated all error limits in figures are one standard deviation. 

XXI 



AAS 
ACP 
AH 
AP 
B 
B-Cd 
B-Pb 
B-Sr 
CCMP 
C-PCP 
CSF 
CT 
DA 
DC 
DHLNL 
DHNL 
DNA 
DPYD 
EDTA 
ELlS A 
ETAAS 
FI 
GGHYL 
GHYL 
GLA 
HEX-HYL 
HEX-LYS 
HFBA 
HG 
h-HLNL 
HHMD 
his 
HLNL 
HNL 
HPLC 
HYL 
HYP 
ICP 
ICP-AES 
ICP-MS 
ICTP 
ID 
INTP 
LP 
LYS 
MIP 

ABBREVIATIONS 

Atomic absorption spectrometry. 
Aldol condensation product. 
Aldol histidine. 
Alkaline phosphatase. 
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Electrothermal atomic absorption spectrometry. 
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Histidine. 
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Magnetic resonance imaging. 
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1.1: BASIC BIOLOGY OF BONE AND CARTILAGE. 

Bone is a specialised connective tissue that, together with cartilage, makes up the 

skeleton. These tissues serve three main functions: a) mechanical support and site of 

muscle attachment for locomotion, b) protection for vital organs and bone marrow and 

c) a metabolic reserve of ions for the entire organism, especially calcium and phosphate. 

There are two types of bone: compact and cancellous bone. Compact or cortical bone is 

solid and composed of numerous cylindrical structures (Haversian systems) and is a major 

component of long bones and of the outer sheet of predominantly cancellous bones, such 

as vertebrae. Cancellous bone, also known as spongy or trabecula bone, is much less 

dense than cortical bone, but can still provide considerable structural support. It is also 

more metabolically active than cortical bone. Bone is made up of two fundamental 

components:- cells (osteoblasts and osteoclasts) and an intercellular matrix (1 ,2). 

1.1.1: Principle bone cells (Osteoblasts and Osteoclasts). 

The two principle cell types are osteoblasts and osteoclasts, which have evolved to 

regulate the growth and turnover of bone and mediate ion fluxes between the bone and 

blood. The osteoblasts are cells that form new bone. They are derived from precursor 

cells in the blood, and are capable of forming the bone matrix, which in a well regulated 

process ultimately becomes fully mineralised bone. They are also capable of synthesising 

the various structural proteins and growth factors. Osteoblasts migrate to areas where 

bone has been eroded by the osteoclasts, laying down new bone in the cavities. 



Osteoclasts are bone resorbing cells which originate in the bone marrow. Precursor cells 

from the blood stream collect at bone resorption sites and fuse to form multinucleated 

osteoclasts. The osteoclasts can erode any region of the mineralised organic matrix, but 

in particular damaged sites since, as with other supporting materials, bone suffers from 

wear and tear (1). 

1.1.2: The bone matrix. 

The bone matrix is composed in part of organic materials, which consists predominantly 

of type I collagen (85-95 %), non collagenous constituents or components of proteins and 

carbohydrates, and proteoglycans which are specific to bone and dental hard connective 

tissues (1,3). The rest consists of inorganic salts, which confer on bone its hardness and 

much of its rigidity. Major ions which compose the mineral part of bone include calcium, 

phosphate, hydroxyl and carbonates, less numerous ions are those of citrate, magnesium, 

sodium, potassium, fluoride, chloride, iron, zinc, copper, aluminium, lead, strontium, 

silicon and boron, many of these being present only in trace quantities (1) 

1.1.2.1: CoUagen. 

Collagen is a protein and is the major structural component of the body (1 ,2). The 

structure and biosynthesis of collagen is very complex (4), plus there are several 

genetically distinct types of collagen, each type specifically tailored to the particular 

function of each body tissue (5). The special properties that enable collagen to act as the 

major supporting framework of the body are largely dependant on the high structural 

stability of the collagen fibres. Collagen fulfils this function by means of its unique 

molecular configuration, the highly specific alignment of the molecules during 
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extracelluar aggregation and finally by the formation of covalent crosslinks (4-7). These 

crosslinks are particularly important in conferring on the fibres the high tensile strength 

and resistance to chemical attack necessary for their function ( 4-7). Both bifuntional and 

trifunctional crosslinks are formed and it is known these crosslinks in bone collagen 

change with maturation (8,9). 

Many of the non-collagenous proteins originate from plasma or other non-bone sources. 

It has been suggested that they act as cementing material in which the collagen fibres are 

embedded, hence preserving the structure and orientation of the fibres which ultimately 

appears to contribute to the overall structure and functional quality of the bone. The 

matrix is calcified by means of the deposition of hydroxyapatite crystals along the 

collagen fibres and as a result more than 95% of the body's calcium resides in bone (1). 

1.1.3: Bone remodelling. 

Bone remodelling is the removal of bone by the osteoclasts and the deposition of new 

bone by osteoblasts. It converts woven bone into mature bone and it is involved in bone 

growth and changes in bone shape, the adjustment of the bone to stress, bone repair and 

calcium ion regulation in the body (1,2). Bone is a highly dynamic connective tissue with 

the capacity for continuous remodelling. The activities of bone formation and bone 

resorbing cells are regulated by local and systemic humoral factors, such as parathyroid 

hormone, cytokines, 1 ,25-dihydroxy vitamin D3. the eicosanoids, growth factors, bacterial 

products and mechanical stress. (1,2,10,11). 

Since bone is a living tissue, the process of bone synthesis and bone breakdown are going 
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on simultaneously and the status of the bone represents the net result of a balance 

between these two processes. The osteoclasts invade the bone surface and erode it 

dissolving the mineral and matrix, over a period of about 7 - 10 days, followed by the 

osteoblasts which arrive to build new bone, laying down collagen and minerals over a 

period of about three months (1,10,12). 

In healthy individuals this rejuvenating process of formation and resorption are tightly 

coupled processes. However when an imbalance occurs, as a result of any dysfunction 

of either the local or systemic regulatory systems, pathological changes in the rate of 

bone formation and resorption will occur, which will lead to unhealthy bone and 

ultimately a clinical disease of the skeleton (13,14), such as osteoporosis (15), Paget's 

disease (16) and malignancy (17, 18). 

1.1.4: Measurement of bone turnover using biochemical markers. 

Biochemical markers are by far the most commonly used parameters to obtain an insight 

into the process of bone turnover. The principle advantages of these biochemical markers 

compared to the other procedures currently in use, for example, bone density, bone 

biopsy and calcium kinetic studies, are that they are non-invasive, and therefore have the 

potential to be used routinely. In addition they reflect the activity of the whole skeleton, 

including cortical, subcortical and trabeculae bone, which have different remodelling rates 

in normal and abnormal states, and hence can readily detect acute changes in skeletal 

metabolism. However it should be noted that such markers will not detect a specific 

defect of the cellular activity of one compartment of bone if the summated turnover of 

the skeleton is unchanged. 
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Due to these advantages, interest has now focused on the use of biochemical markers in 

the evaluation and management of patients with a number of diseases. The need for more 

sensitive and specific circulatory and urinary markers that reflect the metabolic activities 

in bone, has resulted in an explosion of research interests and activities within this area. 

It is important that any marker should be able to distinguish accelerated bone loss 

associated with disease from the normal bone turnover. Many of the available markers 

used to measure bone formation and resorption (19-23), will be discussed in more detail 

in Sections 1.4, 1.5 and 1.6. 

Currently available biomarkers such as alkaline phosphatase and pyridinium crosslinks, 

have considerably enhanced the possibility of monitoring changes in bone turnover, 

particularly bone loss. Nevertheless there is still no "ideal" marker and although 

biochemical markers are useful for monitoring the severity of a certain disease, the effect 

of treatment, and may potentially be useful in predicting bone loss, it is still impossible 

to make a diagnosis based solely on the level of a specific biochemical marker. To date 

there is insufficient evidence to suggest that one marker is better than another, or one is 

better than another for a particular type of metabolic disease. Only further detailed studies 

will ultimately determine which markers or combination of markers are best suited to a 

particular application (19-23). 
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1.2: BASIC FACTS ABOUT CANCER. 

1.2.1: What is cancer. 

Cancer is a general term used to refer to malignant tumours, that is tumours capable of 

progressive growth and distant spread, resulting in the development of secondary 

tumours, known as metastases. Cancer is probably the most feared disease of our time. 

It is second only to cardiac disease as a leading cause of death in the western world, and 

in spite of major progress in cancer treatment, about half of the patients die of their 

disease. 

The development of cancer (carcinogenesis) is a gradual, multistep process. It is 

fundamentally a genetic disease at the cellular level, initially resulting from acquired 

changes or mutations in the genetic makeup of a particular cell or group of cells (24,25) 

which fail to respond to the regulatory factors controlling normal cell growth and 

division. Consequently the cells continue to grow and divide, yielding an ever increasing 

mass of cancer cells (Figure 1.1). Unless unchecked, the cancer cells invade surrounding 

normal tissues, enter the circulation, and spread throughout the body, i.e. metastasise 

(Figure 1.2) eventually interfering with the function of normal cells, tissues and organs, 

and progressively leading to the death of the patient (26-30). Such loss of growth control 

usually requires the accumulation of damage to several different cellular regulatory 

mechanisms (24,25), so most cancers tend to develop late in life. Further details can be 

found in a range of general texts on cancer, such as those by Oppenheimer (26) and 

Cooper (27). 
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Figure 1.1: Schematic diagram showing clonal selection and tumour progression. The 
development of a malignant neoplasm occurs by a series of steps, each of which involves 
mutations and selection for more rapidly growing cells within the tumour cell population 
(27). 
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Figure 1.2: A simple diagram showing the stages of invasion and metastasis. Cancer cells 
first invade underlying normal tissue and eventually reach and penetrate blood and 
lymphatic vessels. The cancer cells can then be carried throughout the body, leading to 
the establishment of metastic tumours at distant body sites (27) . 
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1.2.2: The prevalence of cancer in todays society. 

The prevalence of cancer in current society is largely a consequence of the elimination 

of other diseases that constituted major killers in the past. The general improvements in 

public health, as a result of, sanitation, nutrition and personal hygiene, combined with 

the triumphs of medical science with respect to developments in vaccines and antibiotics, 

has virtually eliminated infectious diseases, such as influenza, pneumonia and 

tuberculosis. This has also increased life expectancy in western society to over 70 years, 

and hence the focus is now on new health problems, such as cancer and heart disease. 

Figure 1.3 identifies the ten most common cancers overall in the UK (31), and Figures 

1.4 and 1.5 identify the ten most common cancers for males and females respectively 

(32,33). Further statistical details concerning the incidence of cancer in the UK can be 

found in Appendix 1.1 (32,33). 

Although much feared, cancer is not the primary cause of death. Heart disease accounts 

for 35% of all deaths, followed by cancer, accounting for approximately 20-25% of 

deaths in the western world. Other causes of death such as accidents, murders and AIDS 

each account for less than 5% of all deaths each year (27). Figure 1. 6 gives the ten 

commonest causes of cancer deaths, overall in the UK (34), and Figures 1. 7 and 1.8 give 

a breakdown of the ten cancers which cause the most deaths in the UK for males and 

females respectively (35,36). Further statistical details on mortality rates for males and 

females can be found in Appendix 1.2 (35,36). 
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Figure 1.3: Ten commonest human cancers, UK 1988 (31). 
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Figure 1.4: Ten commonest cancers for men, UK 1988 (32). 
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Figure 1.5: Ten commonest cancers for females, UK 1988 (33). 
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EJgure l.6: Ten commonest causes of human cancer deaths, UK 1994 (34). 
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Figure 1.7: Ten commonest causes of cancer death in men, UK 1994 (35) . 

(Total number of cancers = 83,340) 
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Figure 1.8: Ten commonest causes of cancer death in women, UK 1994 (36). 
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1.2.3: Causes of cancer. 

The cause of cancer remains largely unknown, however a variety of factors have been 

implicated. Substances that cause cancer are known as carcinogens. Many carcinogens 

react with the DNA, to induce mutations (37). These carcinogens are called initiating 

agents, since the induction of critical mutations is generally thought to be the initial event 

leading to cancer development. Such carcinogens include ionising radiation and some 

chemicals. Other chemicals contribute to the development of cancer not by inducing 

mutations but by stimulating cell proliferation. These chemicals are called promoting 

agents, for example hormones and those found in the diet (27 ,38-39). It has been 

estimated that up to 80% of human cancers may be attributable to such environmental 

risk factors, which are summarised in Table 1.1 (26,27 ,40-53). 

Cancer is generally not considered to be a hereditary disease, however, there are a 

number of ways in which susceptibility to cancer can be genetically transmitted (27 ,54). 

These inherited cancers are extremely rare and account for only a small fraction of total 

cancer incidence. 

1.2.4: Treatment of cancer. 

Substantial progress has been made in the treatment of cancer, but in most cases current 

therapies ultimately fail, and about 50% of patients with cancer eventually die of their 

disease. Due to the progressive nature of the development of tumours, early detection and 

diagnosis is critical to the outcome of cancer (26,27). Cancer is generally treated by 

surgery, radiation and chemotherapy (26,27 ,55). 
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Table 1.1: Summary of environmental risk factors (carcinogens). 

Risk factor Causes\implications References 

Smoking Causes about 30% of all cancer deaths. 27,40-41 
Directly responsible for the majority of 
lung cancers (80-90%). Also implicated 
in the development of other cancers, 
e.g. oral, pharynx, larynx, oesophagus, 
bladder, kidney and pancreas. 

Alcohol Excessive consumption has been 27 
associated with increased risks of cancer 
to the oral cavity, larynx, pharynx and 
oesophagus. In addition excess drinking 
results in cirrhosis leading to an 
increased incidence in liver cancer. 

Ultra violet radiation A major cause of the very common but 27,42 
usually curable skin cancer. Also 
responsible for the more serious skin 
cancer, melanoma. 

Ionising radiation (x- Different kinds of radiation vary both in 27,42 
rays\decay of radioative their ability to penetrate tissue and in 
particles the amount of biological damage they 

cause. In general increased levels of 
leukaemia, bone, and bronchus cancers 
have been linked to radiation exposure. 

Diet Many potential carcinogen are found in 27,42-49 
food, but attempts to specify dietary 
agents that effect cancer incidence have 
yielded controversial and contradictory 
results. Hence no conclusive evidence 
exists. Table 1.2 shows a number of 
dietary components which have been 
linked to increased or decreased cancer 
risks. 

Viruses Several viruses are known to be 27,42,50-53 
associated with human cancers (refer to 
Table 1.3). It has been estimated that 
viruses can contribute to over 20% of 
human cancers worldwide. 
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Table 1.1: Continued. 

I Risk factor I Causes\implications I References I 
Occupational carcinogens Generally easy to identify, since a high 27,42,43-47 

incidence of a particular type of cancer 
becomes apparent in a specific group of 
workers (see Table 1.4}. Once 
occupational carcinogens are recognised, 
appropriate action can be taken. 
Occupational exposure probably 
accounts for approx. 5% of cancer 
mortality. 

Pollution A number of potential carcinogens have 27,42-43,47 
been introduced into the environment as 
industrial pollutants, but are present at 
such low amounts, it is unlikely they 
have any major effect on cancer 
incidence. However the effects of long 
term exposure to low levels is currently 
unknown. 

Carcinogenic medicines Some medicines may increase the risk 27,47 
of cancer (1 %) as a side effect of their 
actions on cells in patients receiving 
treatment. These drugs are banned 
unless their therapeutic benefit 
outweighs their possible dangers. 
Hormones, e.g. oestrogen (linked to 
increases in cervical and breast cancer). 
Immunosuppressive drugs (linked to 
increases in lymphomas and 
reticulosarcoma). Steroid contraception 
and anabolic steroids (androgens}, 
linked with increases in liver cancer. 
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Table 1.2: Dietary factors and cancer risk (27). 

Dietary Component Effect on Cancer Risk 

High fat Increased risk of colon and possibly 
breast cancer 

High calorie Obesity resulting in increased risk of 
endometrial and possibly breast cancer 

Cured, smoked and pickled food Increased risk of stomach cancer 

Aflatoxin Increased risk of liver cancer 

Vitamin A or 8-carotene Decreased risk of lung and other 
epithelial cancers 

Vitamin C Decreased risk of stomach cancer 

Vitamin E and selenium Deficiencies associated with increased 
cancer risk 

Fibre Decreased risk of colon cancer 

Cruciferous vegetables Decreased cancer risk 

Table 1.3: Viruses associated with human cancers (27). 

Virus Type of Cancer 

Hepatitis B virus (HBV) Hepatocellular carcinoma 

Human papillomaviruses (HPV) Cervical and other anogenital carcinomas, 
squamous cell skin carcinoma 

Epstein-Barr virus (EBV) Burkitt's and other B-celllymphomas, 
nasopharyngeal carcinoma 

Human T-cell lymphotrophic virus Adult T-cell leukaemia 
(HTLV-1) 

Human immunodeficiency virus (HIV) Lymphomas, Kaposi's sarcoma, 
anogenital carcinomas 
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Table 1.4: Carcinogens from occupational exposure (27). 

Carcinogen Occupational Exposure Cancer Risk 

4-aminobiphenyl Chemical and dye workers Bladder 

Arsenic Mining, pesticide workers Lung, skin and liver 

Asbestos Construction workers Lung 

Auramine Dye workers Bladder 

Benzene Leather, petroleum, rubber Leukaemia 
and chemical workers 

Benzidine Chemical, dye and rubber Bladder 
workers 

Bis(chloromethyl) ether Chemical workers Lung 

Chromium Metal workers, Lung 
electroplaters 

Isopropyl alcohol Manufacturing by strong Nasal 
acid process 

Leather dust Boot and shoe Nasal and bladder 
manufacturing and repair 

Mustard gas Mustard gas workers Lung, larynx and nasal 

Napthylamine Chemical, dye and rubber Bladder 
workers 

Nickel dust Nickel refining Nasal and lung 
. 

Radon Underground mining Lung 

Soots, tars and oils Coal, gas and petroleum Lung, skin and bladder 
workers 

Vinyl chloride Rubber workers, polyvinyl Liver 
chloride manufacturing 

Wood dusts Furniture manufacturing Nasal 
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However the success of these treatments varies considerably according to the kind of 

cancer and how early it is detected. The success of the treatment of most cancers is 

usually measured as the fraction of patients who survive for five years without evidence 

of disease. The survival rates for the ten most common adult cancers for males and 

females are shown in Figures 1. 9 and 1.10 respectively (56). The survival rates are of 

course substantially influenced by the time at which the cancer is detected and treatment 

is initiated. More detailed statistics can be found in Appendix 1.3 (56-59). 

The limiting factor in cancer treatment is metastasis. Localised cancers can usually be 

effectively treated by surgery or radiotherapy. Once invasion of surrounding normal 

tissue has occurred, the effectiveness of surgery as a treatment depends on removing all 

of the tissue that contains cancer cells. Once the cancer has metastasised to distant body 

sites surgery is no longer effective and must be combined with chemotherapy to treat the 

disseminated disease. In general, treatment of the most common kinds of cancer is 

ineffective once metastasis has occurred. In some cancers, metastasis has occurred by the 

time of diagnosis in more than 50% of patients. The chances of survival once metastasis 

has occurred are dramatically reduced, for example the five year survival rate for breast 

cancer is over 90% if the cancer is detected early enough but declines to 20% once it has 

metastasised (27). 

A variety of chemotherapeutic drugs are used in an attempt to kill the cancer cells. 

Unfortunately, the chemotherapeutic drugs currently available are not specific for cancer 

cells. Since cancer cells closely resemble normal cells, the fundamental problem in cancer 

treatment is selectively interfering with the growth of cancer cells without adverse side 
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1.3: BONE METASTASES <SECONDARY BONE CANCER). 

Metastasis is one of the most serious and deadly aspects of cancer. The ability of 

malignant tumours to spread throughout the body rather than remaining confined to their 

site of origin is responsible for most cancer deaths. The skeletal system is the third most 

common site of metastasis in terms of both frequency and clinical affects (60,61). 

Primary cancers of the bone are rare, but secondary cancers or metastases in bone are 

common. Bone metastases are particularly common in patients with advanced cancers of 

the breast, prostate, bronchus, kidney and thyroid (20, 62-66). 

1.3.1: Distribution and route of spread. 

Irrespective of the tissue of origin of the primary cancer, the distribution of bone 

metastases is predominantly in the axial skeleton. It is rich in red marrow with a large 

capillary network and sluggish blood flow, which may be suitable for tumour growth. 

The lumbar spine is most commonly affected, followed by pelvis, ribs, sternum, femur, 

humeral shaft and shin (15). There are four known routes that may result in skeletal 

metastases (67):-

i) Direct invasion:- Soft tissue tumours may involve adjacent bone by direct extensions 

into underlying bone structures, although this is often not called "true" metastic disease. 

ii) Lymphatic spread:- Deposits may occur in regionally draining lymph nodes which can 

have secondarily affects in adjacent bone structures, for example carcinoma of the cervix 

can lead to pelvic malignancy. 
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iii) Haematogenous spread:- more commonly via venous involvement rather than arterial 

invasion. 

iv) Interspinal fluid:- cerebrospinal fluid is an additional pathway for the dissemination 

of secondaries from intercranial tumours. 

1.3.2: Disruption to normal bone remodelling. 

As discussed in Section 1.1.3, bone is a metabolically active tissue continuously being 

remodelled. The normal physiological process can be disturbed by the direct local and\or 

distant systemic effects of tumour cells. Recent research has indicated that many of the 

factors that may be involved in the regulation of bone remodelling (13), and produced by 

normal cells in the bone environment, can also be produced in excessive amounts by 

tumour cells. Thus metastic malignant cells could directly interfere with the function of 

normal bone cells and so disrupt the bone architecture. (15,67-69). 

1.3.3: Diagnosis of skeletal metastases. 

Bone metastases can result in intense pain, interference with the surrounding neural and 

muscular structure causing impaired mobility, pathological fractures, spinal cord 

compression, hypercalcemia and suppression of bone marrow function (20,21,70). The 

assessment of metastic disease of the skeleton has been and remains a difficult problem, 

despite the variety of techniques available (71,72). 
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1.3.3.1: Plain radiography. 

Plain radiography indicates net results of bone resorption and repair, providing structural 

information on the damage from malignant disease (73, 74). However the sensitivity of 

this technique is relatively low and substantial damage has to occur before radiographs 

become abnormal. To be detected, lesions must be greater than 10-15 mm in diameter 

with a loss of about 50% of the bone mineral content (75). 

Although this technique is not as sensitive as bone scanning (refer to Section 1.3.3.2) for 

the detection of bone metastases, it is more specific (76). Radiographs are generally used 

to compliment bone scans to guard against erroneous results and to assess the localised 

bone pain and any pathological fractures. 

1.3.3.2: Radionuclide bone scanning. 

This technique is far more sensitive than conventional radiology for detecting lesions, 

since it detects functional changes which occur much earlier than structural changes 

(77, 78). Radionuclide bone scanning remains unchallenged in its role of investigating 

skeletal pathology, because of its high sensitivity for lesion detection and its ability to 

rapidly evaluate the whole skeleton, despite the introduction and advancements in imaging 

techniques such as computed tomography (CT) and magnetic resonance imaging (MRI) 

(79). 

The bone scan uses technetium - 99 (!9 Tc) diphosphonate to reflect the skeletal activity 

(80). It is believed to work via the chemisorption of the phosphorus group onto calcium 

found in the hydroxyapatite in bone, i.e. the diphosphonate molecule is absorbed onto the 
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surface of the bone. This reflects the metabolic reaction of bone to a disease process 

(80,81). Bone scans are performed by acquiring multiple images 3-4 hours after an 

intravenous injection of the 99Tc-diphosphonate. If a lesion is identified, due to bone 

scanning's lack of specificity further investigation is required (Figure 1.11). Appropriate 

plain x-rays are taken on areas of abnormal uptake to further study the structural nature 

of the problem. If the radiograph is normal and clinical metastases are likely, CT or MRI 

of the area may also be used for diagnosis. If clinically relevant a bone biopsy may be 

necessary to resolve the issue. 

Extensive skeletal metastases may produce a diffuse increased uptake of the 99Tc

diphosphonate, resulting in super scans, which are particularly common in prostatic and 

breast cancers {77). Since these cancers account for a large proportion of skeletal metastic 

cases, this clearly presents a major problem. The occurance of such super scans leads to 

a misreading of the presence of metastic bone disease, and hence a misdiagnosis and 

treatment of the patient. 

1.3.3.3: Computed Tomography fCTl. 

Computed tomography is a more sensitive radiographic technique, but more readily 

applied to elucidate specific lesions, rather than more regular use in assessing the 

skeleton. It is more sensitive than radiography in diagnosing spinal metastases. It is also 

used in cases where bone scanning gives negative results or suggests degenerative 

disease, especially if there are persisting clinical symptoms, such as bone pain. It is likely 

to be used more frequently in future to monitor response (82). 
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Figure 1.11: Schematic diagram of the procedures used in the diagnosis of skeletal metastases (77). 
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1.3.3.4: Magnetic Resonance lmaging (MRI). 

Magnetic resonance imaging is a relatively new technique to the clinical management of 

patients with bone metastases (83-85). Current evidence suggests MRI is a highly 

sensitive method for detecting tumours in bone marrow, and in many cases can be more 

sensitive than either bone scanning, or CT for lesion detection (86). 

It is impractical to image more than a limited area of the skeleton with CT, but larger 

sections of the skeleton can be assessed with MRI (87). MRI is also an excellent non 

invasive technique for visualising the spinal cord, and hence offers several advantages 

over other techniques for assessing spinal cord compression (87,88). It will no doubt be 

increasingly used for diagnosis and follow up of bone metastases, however its use is 

limited by cost and availability. 

1.3.4: Assessment of response to treatment. 

There are many treatments available for bone metastases, such as radiotherapy (89), 

endocrine manipulation (90) and chemotherapy (91-96), all of which may produce 

significant clinical improvement. However, as with the diagnosis of bone metastases, 

monitoring the response to treatment is also difficult to measure objectively. This is due 

to both the indirect observation of regression of cancer in bone, as well as the 

insensitivity of current assessment methods (64). A number of methods are available, 

none however are ideal, each having a number of advantages and disadvantages 

(71,87,97). 
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1.3.4.1: Plain radiography. 

Metastic bone destruction results from the invasion of malignant cells from the bone 

marrow cavity. These cells stimulate osteoclasts to resorb bone and disturb the normal 

coupling between osteoblast and osteoclast function (14). When bone resorption 

predominates, area of lysis will be visible on plain radiographs and conversely, areas of 

sclerosis indicates increased osteoblastic activity (98). It is generally accepted that 

sclerosis of lytic metastases with no radiological evidence of new lesions constitutes 

tumour regression. However, some patients have a mixture of sclerotic and lytic lesions 

before starting therapy, making interpretation of serial radiographs difficult. Even when 

radiological evidence of a response to successful treatment is achieved, it is often not 

evident for 6 months or more. Thus, this method is basically too insensitive to study the 

response to therapy. 

1.3.4.2: Radionuclide bone scanning. 

The use of bone scanning in the assessment of therapy is limited. Despite bone scanning's 

greater sensitivity when compared to plain radiology, it is less specific (76). An increase 

or decrease in the intensity and the number of lesions on a bone scan (i.e. hot spots) does 

not necessarily mean progression of the disease or a response to treatment respectively. 

A number of interpretations are possible. 

Following successful therapy for metastic disease the increased production of immature 

new bone, and hence the cause of the hot spot, eventually ceases and isotope uptake 

gradually falls. However the healing process initially causes an increase in uptake i.e. the 

flare response (87,99), and scans performed during this period may be incorrectly 
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interpreted as progression of disease (100). Conversely a reduction in isotope uptake is 

occasionally seen in rapidly progressive disease when the overwhelming destruction 

allows little chance for new bone formation. Such appearances are easily mistaken for 

improvement (101). These different patterns of response are illustrated in Figure 1.12. 

Providing these limitations are taken into consideration, bone scanning may be useful in 

the assessment of response of bone metastases to treatment in some patients (102, 103). 

1.3.4.3: Computed tomography (CTI. 

This technique offers three dimensional information and high quality images. The bone 

density discrimination is far superior to that possible with plain radiographs, providing 

excellent bone to soft tissue resolution. Bone destruction can be identified easily hence 

can be used not only for diagnosis but also in the assessment of disease spread (87). 

Metastic involvement of the skeleton results in a gross structural change and usually 

involves both cortical and trabeculae bone. Detection of minor changes in mineralisation 

is technically difficult but this is probably not relevant in the context of metastic disease, 

as only major changes in the size of a lesion or in mineralisation are accepted as a 

response to treatment. Quantitative assessment of bone mineralisation has been used to 

monitor healing of bone metastases following radiotherapy (104), and systemic therapy 

(63,105). 
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Figure 1.12: Diagram summansmg the possible results from bone scanmng when 
assessing the response to treatment (87). 
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1.3.4.4: Magnetic Resonance Imaging (MRI). 

The use of MRI for monitoring response to treatment is at present very limited, since 

there is limited machine availability. However MRI may have a use or role for detailed 

evaluation, for example of specific lesions prior to surgery. 

1.3.4.5: Biochemical monitoring. 

There is no specific marker to monitor the progress of metastic disease in the skeleton. 

However, metastic involvement of bone disturbs bone cell function and perturbs a variety 

of biochemical parameters. Major changes in bone cell activity are seen within the first 

few weeks of starting effective treatment, reflecting the changes in rates of formation and 

resorption that occur (106, 107). 

Although plain radiography is at the moment the "gold" standard for assessing the effects 

of treatment, it is clear that reliable alternatives are necessary. Modern imaging 

techniques will undoubtedly be refined, although such techniques are likely to remain 

expensive, time consuming and confined to specialist centres. The monitoring of bone 

metabolism shows much promise and appears to be the most likely method to replace 

and\or compliment plain radiography. The tests are relatively straightforward and could 

be readily available to most centres. Biochemical monitoring therefore appears to be a 

good alternative to plain radiography and preliminary clinical studies have shown 

biochemical markers provide an indication of response to therapy long before radiological 

changes can be expected (108-111). These markers have the potential to improve patient 

management for the evaluation of specific treatments and will be discussed in more detail 

in Sections 1.4, 1.5 and 1.6. 
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1.3.4.6: Tumour markers. 

The development of reliable tumour markers would provide the most direct method to 

assess the response to therapy in specific cancers. Such monitoring has had a major 

beneficial affect on the management of testicular and ovarian cancer (87). In prostatic 

cancer, prostate acid phosphatase [PAP] (112) and prostate specific antigen [PSA] can be 

monitored, the latter tending to be a more reliable marker (113). Unfortunately to date 

no such marker is routinely available for breast cancer (87). 

1.3.4. 7: Subjective assessment. 

The assessment of response to therapy purely on analgesic use is very difficult to measure 

objectively and in general is not accepted as a true marker of response. Nevenheless the 

use of pain scores, records of analgesic consumption and mobility (i.e. performance 

status) enables an approximate measurement of pain and provides useful corroboration 

to more objective responses (87, 114). Table 1.5 illustrates the type of symptomatic 

assessment sheet given to patients. 
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Table 1.5: Example of a symptomatic assessment form given to patients (87). 

I 
Parameter 

I 
Description 

I 
Score 

I 
Pain None 0 

Mild 1 

Moderate 2 

Severe 3 

Very severe 4 

Intolerable 5 

Analgesic use None 0 

Simple analgesic or NSAID 1 

Simple analgesic + NSAID 2 

Moderate analgesic (eg Dihydrocodeine) 3 

Opiates ( < 40mg morphine daily) 4 

Opiates ( > 40mg morphine daily) 5 

Mobility None 0 

Vigorous exercise\activity impaired 1 

Climbing stairs\ walking\bending 2 
impaired 

Difficulty with dressing\washing 3 

Difficulty with all activities 4 

Totally dependant and bedbound 5 

Performance status Normal 0 

Light work possible 1 

Up and about >50% of the day 2 

Confined to bed >50% of the day 3 

Completely bed bound 4 

NSAID = non-steroidal anti-inflammatory drug 

33 



1.4: BIOCHEMICAL MARKERS OF BONE FORMATION. 

At present, all markers used to monitor bone formation (Table 1.6) are the products of 

osteoblasts. Alkaline phosphatase is a marker of enzyme activity of osteoblasts, whereas 

oestocalcin and procollagen are produced and released by osteoblasts during bone 

formation (Figure 1.13). 

1.4.1: Serum alkaline phosphatase. 

Alkaline phosphatase (AP) is probably the best known marker for bone formation and in 

fact for many years has been the only available indicator of bone formation. It is one of 

the most frequently performed assays in clinical chemistry (115). 

Serum alkaline phosphatase (AP) consists of bone, liver, intestinal, placental and kidney 

alkaline phosphatase isoenzymes. Bone and liver AP are predominant in human serum 

and are the clinically most relevant isoenzymes. Bone AP is present on the plasma 

membrane of osteoblasts and bone matrix vesicles. An increase in the serum bone AP 

reflects osteoblastic proliferation or an increased activity, usually stimulated by bone 

stress, strain, weakness, injury or disease (116). 

Unlike other bone formation markers AP has little diurnal variation and can be obtained 

from serum at anytime during a twenty four hour period for a valid assessment of bone 

formation. Alkaline phosphatase is not cleared by renal excretion and can therefore be 

used in patients with kidney failure. 
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Table 1.6: Comparison of bone formation markers (23). 

Ideal Bone oc Procollagen 
AP 

Specificity Bone Bone Bone Type I collagen 

Only increases Yes No No No 
with increased 
bone formation 

Renal excretion No No Yes No 

Diurnal variation No No Yes Yes 

Metabolised in No No No Yes 
liver 

Discriminates Yes Yes Yes Yes 
between normal 
and high bone 
formation 

Discriminates Yes No No No 
between normal 
and osteoporotics 

AP = Alkaline phosphatase, OC = Osteocalcin 
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Figure 1.13: Model depicting the three markers of bone formation. 
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As illustrated, alkaline phosphatase is an ectoenzyme of the osteoblast that is shed in 
proportion to bone formation. Osteocalcin is synthesised exclusively by osteoblasts. Due 
to its affinity for hydroxyapatite, approximately 50% of the osteocalcin is deposited in 
bone, and the other 50 % under normal conditions, finds its way into the circulation. 
Procollagen peptide is cleaved at both the N-terminal and the C-terminal ends inside the 
cell. The collagen molecule is secreted and eventually deposited in bone matrix . The 
procollagen peptides are also secreted from the cell theoretically in proportion to the 
amount of collagen synthesised (23) . 
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In skeletal metastic disease, raised levels of AP reflect new bone formation and generally 

correlate well with hydroxyproline excretion (bone resorption marker) and bone scan 

activity (117). The highest values are often seen with osteoblastic metastases or in 

response to healing (71), but increased levels are not observed until extensive metastases 

are present, and not if pure osteolytic metastases are present (107, 117). In prostate 

cancer, AP is a sensitive marker of response with raised levels falling to normal a few 

months after therapy (118). 

The presence of the other isoenzymes has however resulted in this assay lacking sufficient 

specificity and sensitivity. In many instances the elevation is mild and its clinical 

interpretation unclear. Correctly identifying the contribution that the bone AP makes to 

the total serum AP levels is necessary to accurately monitor osteoblastic activity and 

hence serve as a marker of bone formation. In an attempt to improve the specificity and 

sensitivity of serum AP measurements, techniques have recently been developed to 

differentiate between the bone and liver isoenzymes (82,119-120). 

Promising results have been achieved in recent clinical trials of these new assays 

involving electrophoretic (121), immunoradiometric (122) and lectin precipitation methods 

(123) to measure the bone AP isoenzyme in cancer patients with bone metastases. The 

improved specificity and consequent enhancement in sensitivity has demonstrated potential 

use for the clinical diagnosis and monitoring of response to treatment. With the 

development of these bone specific AP methods, this marker can now be used to monitor 

bone formation in patients with elevated total serum AP due to liver disease. Bone AP 

can be used in any clinical situation to monitor bone formation except in patients being 
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treated with 1 ,25-dihydroxy vitamin D, since this will increase osteoblast AP and in 

severe cases of osteomalacia, where AP can be markedly increased without an increase 

in bone formation (23). 

1.4.2: Osteocalcin. 

Osteocalcin (OC) also known as bone GLA-protein, is the most abundant non collagenous 

protein (25%) found in bone (124) which contains three residues of gamma

carboxyglutamic acid (GLA), a unique calcium binding amino acid. It is specific for bone 

tissue and dentine. Its precise function in the physiology of bone remains unknown, but 

it is synthesised predominantly in the bone matrix by osteoblasts and binds strongly to 

hydroxyapatite. However a fraction is released into the circulation, where it can be 

measured by radioimmunoassay (125). The metabolic pathway involved in the clearance 

of serum OC is also unknown, although the serum OC levels vary reciprocally with the 

glomeruli filtration rate and a large quantity of OC fragments are detectable in the urine 

(126). Since it is cleared by the kidney, patients with renal failure exhibit higher serum 

OC levels but with no concomitant increase in bone formation. 

The main advantage of serum OC is its relatively high discriminating power, and 

providing the marked diurnal variation of serum OC levels is taken into account, it can 

be used as a sensitive marker for several metabolic bone diseases for example, 

osteoporosis, hyperparathyroidism and hyperthyroidism. In such cases it correlates well 

with histomorphometric measurements of bone turnover (127). Levels of serum OC, 

reflecting new bone formation also correlate well with AP activity and the mineralisation 
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rate (128). However, as with AP, there are some situations where the serum OC levels 

do not reflect bone formation, for example in Paget's disease (23,119). 

In patients with skeletal metastases increased levels of OC are not consistently attained, 

and hence are of limited value. However the measurement of OC levels in the therapeutic 

management of cancer patients with bone metastases has indicated that increased levels 

of OC can be considered a biological marker of recovered osteoblastic activity during 

therapeutically induced stabilisation or agreation of skeletal metastases (129). However 

the clinical significance of OC as a marker of the response of bone metastases should be 

carefully considered with regard to the direct hormonal effect" on bone metabolism, for 

example in monitoring endocrine treatment in prostate cancer patients with bone 

metastases (130). 

1.4.3: ProcoUagen peotide. 

Type I collagen is the most abundant collagen in bone, accounting for over 90% of total 

bone protein. Similar to other fibrillular collagen, type I collagen is synthesised and 

secreted as procollagen, a precursor molecule characterised by amino- and carboxy

terminal extension peptides (5). Prior to the aggregation of individual collagen molecules 

into fibrils, these terminal propeptides are cleared proteolytically, and released into body 

fluids. Since collagen and collagen propeptides are generated in a stoichiometric manner, 

the levels of circulating procollagen type I propeptides can be used as a quantitative 

marker of new type I collagen synthesis, and hence a measure of the rate of bone 

formation. 
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Due to the lack of clinical data concerning this marker, its full clinical potential has yet 

to be evaluated. So far, the procollagen appears to act as a good and specific marker of 

cancellous bone formation in some metabolic disease, correlating well with bone 

histomorphometry measurements (131). Other studies have shown that the serum levels 

of the procollagen peptide are elevated in conditions of increased bone formation, such 

as Paget's disease, hyperthyroidism and normal adolescent growth. A decrease has been 

observed in conditions of decreased bone formation, such as osteogenic imperfecta. 

However it appears unable to distinguish between normal adult and patient osteoporosis 

and osteomalacia. Also, as with serum OC, a diurnal variation for the procollagen peptide 

exists. (23). 

Procollagen pep tides appear to be the least discriminating of the bone formation markers, 

probably attributed to the fact there are other sites of type I collagen synthesis, for 

example the skin which contribute to the circulating levels of procollagen peptides. 
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1.5: BIOCHEMICAL MARKERS OF BONE RESORPTION. 

In general, bone resorption markers (Table 1.7) can be separated into two groups. The 

frrst are markers of osteoclast function, for example tartrate resistant acid phosphatase. 

Whereas the second group consists of breakdown products of bone matrix degradation, 

such as hydroxyproline, galactosyl hydroxylysine, pyridinium crosslinks and crosslinked 

telopeptides of type I collagen (Figure 1.14). 

1.5.1: Tartrate resistant acid phosphatase. 

Acid phosphatase is a lysomal enzyme primarily present in bone, prostate, platelets, 

erythrocytes and the spleen, although it is the prostatic acid phosphatase that is most 

commonly in clinical use (132). Bone acid phosphatase is released during bone resorption 

and is resistant to L,( +)-tartrate, whereas the prostatic isoenzyme is inhibited. Acid 

phosphatase circulates in blood at much lower concentrations compared to alkaline 

phosphatases and shows a higher activity in serum than in plasma because of the release 

of platelet phosphatase during the clotting process. 

Hence osteoclasts, the cells responsible for bone resorption, can be differentiated from 

other bone cells in histological sections by the presence of tartrate resistant acid 

phosphatase (TRAP). Although electrophoretic methods can separate these different 

isoenzymes, they generally lack sensitivity and specificity. The more recently developed 

immunoassay methods, appear to offer some improvement (133). Studies have shown that 

the TRAP levels rise with progressive metastic disease although with treatment a fall in 

levels is observed, correlating with a response to endocrine therapy (134). Other studies 
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Table 1.7: Comparison of bone resorption markers (23). 

Ideal TRAP HYP GHYL PYD\ Telo-
DPYD peptide 

Source Only Mostly Many Mainly Mainly Mainly 
bone bone tissues bone bone bone 

Released only Yes No No Yes* Yes* Yes* 
during collagen 
breakdown 

Metabolised in No No Yes No* No* No* 
liver 

Affected by diet No No Yes No* No* No* 

Discriminates Yes Yes Yes Yes Yes Yes* 
between normal 
and high bone 
resorption 

Discriminates Yes No No Yes Yes Yes* 
between normal 
and osteoporotics 

* These tissues have not been fully established 

TRAP = Tartrate resistant acid phosphatase, 

HYP = Hydroxyproline 

GHYL = Galactosyl hydroxylysine 

PYD\DPYD = Pyridinoline\deoxypyridinoline 
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Figure 1. 14: Model depicting the markers of bone resorption. 
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Perhaps the most abundant enzyme in osteoclasts is lysomal acid phosphatase, which is 
secreted into the space forming the interface between bone and the ruffled border of the 
osteoclasts . The acid phosphatase finds its way into the circulation, and its concentration 
is proportional to the amount of bone resorbed. Hydroxyproline is largely found in 
collagen, and thus its excretion into urine tends to reflect bone resorption. Galactosyl 
hydroxylysine is much more abundant in bone collagen than in type I collagen from other 
sources, making the excretion of this breakdown product of collagen a marker of bone 
resorption. Pyridinoline and deoxypyridinoline are collagen cross! inks, and because they 
are formed extracelluarly and are not metabolised, their excretion in urine is proportional 
to bone resorption (23). 
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have shown that levels are elevated in early bone metastases from any site as well as 

many non malignant diseases, such as Paget's disease (107). 

1.5.2: Hydroxyproline. 

Hydroxyproline is found mainly in collagen, representing approximately 13% of the 

amino acid content of the molecule. Free hydroxyproline is released during the 

degradation of collagen and cannot be re-utilised in collagen synthesis, hence most of the 

endogenous hydroxyproline present in biological fluids is derived from the degradation 

of various forms of collagen ( 135). As half of human collagen resides in bone, where its 

turnover is faster than in the soft tissues, excretion of hydroxyproline in urine is regarded 

as a marker of bone resorption (135). 

However other proteins are known to contain significant amounts of hydroxyproline, such 

as elastin (4) and a subcomponent of the compliment system (C1q), which can account 

for up to 40% of the urinary hydroxyproline (136). This shows that the relationship of 

urinary hydroxyproline to the metabolism of collagen is much more complex. About 90% 

of hydroxyproline released by the breakdown of collagen in tissues and especially during 

bone resorption, is degraded to the free amino acid. This circulates in the plasma, is 

filtered in the kidney, and is then almost entirely reabsorbed. It is eventually completely 

oxidised in the liver and is degraded to carbon dioxide and urea (137). The remaining 

10% of hydroxyproline released by the breakdown of collagen circulates in the peptide 

bound form and these hydroxyproline containing peptides are filtered and excreted in the 

urine without any further metabolism. Thus, total urinary hydroxyproline represents only 

about 10% of total collagen. 
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Most studies appear to measure hydrolysed urine samples and hence the total urinary 

hydroxyproline content. As a consequence of its origin in tissue and its metabolism 

patterns, urinary hydroxyproline is poorly correlated with bone resorption as assessed by 

calcium kinetics and bone histomorphometry, except in the case of Paget's disease (19). 

However reasonable correlation with radioisotopic tracer methods in osteoporosis have 

also been reported (138). In metastic bone cancer hydroxyproline excretion can be at least 

as sensitive as bone scans, but its accuracy is dependant on the type of metastasis, i.e. 

whether it is predominantly osteoblastic or osteolytic (107). 

The total pool of urinary hydroxyproline is derived, not only from endogenous sources, 

but also from collagenous proteins in the diet, especially meat and gelatin. Patients are 

therefore usually instructed to adhere to a meat and gelatin free diet prior to urine 

collection. This is difficult to control and hence false results are possible. It has now been 

accepted that since hydroxyproline is strongly influenced by diet, age and soft tissue 

destruction, it lacks sufficient specificity, sensitivity and discriminatory powers to be 

considered a useful and reliable marker in most metabolic diseases including skeletal 

metastases (87). 

1.5.3: Hydroxylysine Glycosides. 

Hydroxylysine, like hydroxyproline is an amino acid found primarily in collagen and 

collagen like peptides. Hydroxylysine is not re-utilised for collagen synthesis, and 

although it is less abundant than hydroxyproline, it can be used as a potential marker of 

collagen degradation. The amino acid undergoes further modification by glycosylation, 

giving rise to galactosyl hydroxylysine (GHYL) and glucosylgalactosyl hydroxylysine 
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(GGHYL) (139). Although the galactosylated hydroxylysines are found in all collagens, 

the ratio of GHYL to GGHYL appears to be tissue specific, with bone having a higher 

proportion of GHYL than other tissues (140,141). 

Hydroxylysine glycosides are final products of collagen degradation (142) and are 

excreted into the urine unchanged in the free form (143). Unlike hydroxyproline, the 

hydroxylysine glycosides do not undergo any major liver metabolism (139-140,144) and 

are not influenced by diet. Hence these glycosides fulfil the requirements for a specific 

marker of bone resorption. The hydroxy lysine glycosides measured by HPLC (145) have 

demonstrated good potential and superiority over hydroxyproline measurements m a 

number of clinical studies (146-148). 

1.5.4: Pyridininm crosslinks. 

The pyridinium crosslinks are generally accepted as the best available biochemical 

markers of bone resorption demonstrating excellent sensitivity and specificity. These 

crosslinks will be discussed in detail in Section 1.6. 

1.5.5: Telopeptides of type I collagen. 

During bone resorption only about 40% of the crosslinks are released as free pyridinium 

crosslinks. The remaining 60% is in the form of peptide-attached crosslinks (149). It has 

been established that type I collagen has two crosslink forming sites: the first is the amino 

terminal peptide region and the second the carboxyl terminal region of the molecule 

(150). During the course of extensive studies on the pyridinium crosslinks, particularly 
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since the development of immunological methods of analysis, assays have simultaneously 

been developed for the telopeptides of type I collagen. 

1.5.5.1: The aminotenninal telopeptide CINTPl. 

The aminoterminal telopeptide (INTP) has been shown to be the most abundant crosslink 

telopeptide found in urine and proved to be the source of about 60% of the bound 

deoxypyridinoline found in urine (150). A recently developed immunoassay for INTP was 

developed against a peptide purified from adolescent human urine and has been shown 

to correlate with both urinary hydroxyproline and pyridinoline measured by HPLC (151). 

Furthermore this assay reliably measured bone resorption, in response to acute increases 

and decreases induced by thyroid hormone and bisphosphonate treatment respectively. 

These changes indicated better accuracy when compared to pyridinoline or 

hydroxyproline (152). A similar study has shown a decrease in INTP linked with the 

successful treatment of osteoporotic patients given adendronate treatment (153). This 

assay has also been used to study the bone growth rates in children (154). 

1.5.5.2: The carboxvtenninal telopeptide <ICTPl. 

An immunoassay to measure ICTP has been developed from a peptide prepared by the 

proteolytic digestion of intact demineralised human bone (155). This assay is used to 

measure serum levels of the peptide, and thus is different to the INTP assay which uses 

urine (151, 155). The ICTP assay has been shown to correlate with bone resorption 

measured histomorphologically (156), and by calcium kinetic studies (157), indicating that 

ICTP reflects bone resorption. 
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Some clinical studies have been conducted recently although the results have been 

variable. Raised levels of ICTP levels were seen in cancers characterised by osteolytic 

lesions (158). ICTP has also been used to assess genetic influences on bone turnover 

(159). Another clinical study has shown that ICTP discriminates just as well as the 

urinary pyridinium crosslinks between normal and osteoporotic women. However ICTP 

offers the advantage in that since it is measured in serum, bone resorption and formation 

measurements on the same sample are possible, an important factor since bone loss is due 

to an uncoupling between the two processes (160). Serum is also generally easier and 

quicker to collect. 

In another clinical study however, postmenopausal osteoporotic women showed that 

although ICTP reflected bone metabolism, it was not as sensitive when used as a marker 

for the changes in bone resorption induced by hormone replacement therapy. In addition 

it did not correspond with other measures of bone resorption during anabolic steroid 

therapy. Both these therapies are well known and established with respect to decreasing 

bone resorption in osteoporosis (161). A further limitation is that the ICTP exhibits a 

clear circadian rhythm (162, 163). 

Both the INTP and ICTP assays measure the telopeptides bound to pyridinoline and 

deoxypyridinoline. There has been a suggestion that these assays may demonstrate a 

degree of cross reactivity with peptides linked to other crosslinking molecules of type I 

collagen (164). A recent ELISA method claims not to suffer from this problem, since the 

assay is based on a different binding site mechanism (164), and this new assay has been 

used in clinical assessments to successfully monitor treatment in a number of metabolic 
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1.6: THE PYRIDINIUM CROSSLINKS. 

The two best known and documented crosslinks are pyridinoline (hydroxypyridinoline) 

and deoxypyridinoline (lysyl pyridinoline). Pyridinoline (PYD) was first discovered and 

isolated in 1977 in bovine achilles tendon (166). It is a 3-hydroxypyridinium derivative 

with three amino acid side chains (166-168) [Figure 1.15] and is present in cartilage and 

bone, but it is not found in skin (169). During the many studies on PYD, a new novel 

fluorescent compound believed to be another pyridinium derivative was discovered in 

1982 in bovine femur (170). This compound was very similar to PYD but did not have 

the aliphatic hydroxy group attached. This compound was subsequently named 

deoxypyridinoline - DPYD (168,170-172) [Figure 1.15]. A glycosylated form of the 

crosslinks also exists (168). 

1.6.1: Basic mechanism of formation. 

The pyridinium crosslinks are products of a unique series of reactions during the 

maturation process of collagen fibrils. Collagen cross links are initially formed from lysine 

and hydroxylysine residues by two major pathways yielding two major groups of 

crosslinks, i.e. those initiated by the enzyme lysyl oxidase and those derived from non 

enzymatically glycosylated lysine and hydroxylysine residues (7). These pathways are 

summarised in Figure 1.16. 

Since the pyridinium crosslinks were discovered, many mechanisms of formation have 

been postulated. Initially it was thought these cross! inks were formed by the condensation 

of one hydroxylysine and two hydroxy lysine-derived aldehydes (173). Later studies 

indicated that the crosslinks were formed by interaction of two di-functional keto amines. 
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Figure 1.15: Structure of the pyridinium cross links. 
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Figure 1.16: Schematic diagram showing the reactions of the peptides lysine and 
hydroxylysine in collagen crosslink biosynthesis (7). 
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This explains why the reducible keto-amine crosslinks disappear from the skeletal 

connective tissues with age and indicates that the pyridinium crosslinks are mature, non

reducible crosslinks of collagen. 

The electrochemical behaviour of PYD also confirms it is a non-reducible crosslink 

(174). This also provides a novel mechanism for lateral crosslinking within and between 

fibrils which may account for some of the unique physical properties of hard tissue 

collagen (175,176). This also rules out the possibility that PYD is an artefact produced 

during the acid hydrolysis of collagen (177). However recent studies have shown that the 

pyridinium crosslinks are in fact formed by interaction of two hydroxylysine residues, 

forming the Schiff base which then undergoes an Amadori rearrangement to form the 

more stable keto amine (7, 178, 179). This keto amine reacts with either another 

hydroxylysine residue to give pyridinoline (PYD), or with a lysine residue to give the 

deoxypyridinoline (DPYD) crosslink [Figure 1.17] (7). Studies have also shown that the 

keto amine may react with lysine to give a second non-fluorescent deoxy analogue, 

prominent in skin (180). 

Many of the lysyl oxidase crosslinks may also be present in a glycosylated form if they 

are derived from a hydroxylysine residue containing the 0-glycoside linkage, an 

enzymatically mediated reaction that occurs intracellularly. These types of glycosylated 

crosslinks, which feature 0-linked galactosyl or glucosyl-galactosyl residues bound to the 

hydroxyl moieties, are distinct from the sugar-derived crosslinks (7). 
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Figure 1.17: Diagram showing the tissue specificity and maturation changes in 
crosslinking. The structures of the principle crosslinks in mature tissue are also shown 
(5). 
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Clear evidence now indicates the existence of PYD in collagen in vivo (181-183). These 

crosslinks play a major role in the stabilisation of collagen fibres (184,185) and through 

the course of maturation it has been established that the crosslink concentration correlates 

well with an increase in the mechanical stiffness and tensile strength of muscles (186). 

1.6.2: General properties of the pyridinium crosslinks and their use as biochemical 
markers. 

Pyridinoline (PYD) has the wider tissue distribution being prevalent in cartilage and 

tendon (187, 188) whereas DPYD was initially thought to be found exclusively in bone 

and dentine. However significant amounts have also been detected in soft tissues, such 

as the aorta and ligaments (Table 1.8), although due to their slow turnover these tissues 

make a negligible contribution to the urinary output (189). 

The ratio of PYD:DPYD is 3-4:1 in bone and > 10:1 in cartilage (187). The urinary 

isolation of the crosslinks (190) has shown that the ratio of PYD:DPYD in urine is 

usually similar to that found in bone indicating that bone resorption is the major source 

of urinary pyridinium crosslinks and that the values for the two crosslinks in urine are 

usually highly correlated, as determined by radioisotopic (191) and histomorphometric 

(192) measurements. 

Studies have shown that the urinary crosslinks exist in both free and bound forms (149), 

and a significant linear relationship between free and total forms of both crosslinks 

suggests the possibility of measuring the crosslinks in the free form. Further, it has been 

shown, that in general good predictability of 24 hour urine concentration can be obtained 
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Table 1.8: Distribution of the pyridinium crosslinks in human tissues (189). 

Tissue Pyridinium crosslink content of human tissue 

n PYD DPYD 

Articular cartilage 15 1.47+/-0.23 not detected 

Cortical bone 15 0.35+/-0.09 0.08+ /-0.02 

Trabecula bone 7 0.26+ /-0.08 0.06+/-0.01 

Aorta 14 0.31 +/-0.07 0.07+/-0.01 

Intervertebral disc 25 1.14+/-0.11 not detected 

Ligaments 10 0.47+/-0.35 0.05+/-0.03 

The data for pyridinoline (PYD) and deoxypyridinoline (DPYD) are shown as 
residues\molecules of collagen + 1- SEM. 

56 



based on a early morning void urine samples. This makes collection and measurement 

of the crosslinks easier, adding to the appeal of using these crosslinks as a marker (193). 

Both the free and conjugated forms of PYD and DPYD have demonstrated excellent 

chemical stability whilst stored at -20°C, and freeze thawing several times has shown no 

affect on the concentration of the crosslinks (194). 

The cyclic pyridinium structures are stable and fluorescent, their typical fluorescence 

forming the basis of their detection in most assays (refer to section 1.6.3). However it 

should be borne in mind that these crosslinks are also photosensitive (195-197), and this 

should be taken into consideration during the collection and analysis of the crosslinks. 

Age related changes in urinary PYD and DPYD crosslinks have been noted (187,198) and 

further studies have shown that urinary crosslink values reflect age related changes in 

bone resorption. Urinary crosslink excretion is increased in childhood (0-19 years) and 

in the early postmenopausal period, i.e. 50-59 years (199,200). In this early 

postmenopausal period, the urinary crosslink levels are significantly higher for females 

than males (201). Since the urinary levels in children is higher than in adults the 

crosslinks can be useful in monitoring growth in children (202,203). 

The crosslinks are not influenced by diet (204) nor by kidney function (205). The 

physiological variations in the urinary excretion of total PYD crosslinks of collagen 

expressed relative to creatinine are minor compared to changes resulting from bone 

disease. 
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Bone resorption shows a circadian rhythm in human subjects (206,207), and appears to 

be unaffected by growth and ageing as well as being independent of the absolute level of 

bone turnover (208). This fact must also be borne in mind upon measurement of the 

crosslinks. 

Immobilisation induces decalcification of bone, and in the early stages bone matrix is 

absorbed without any activation of osteoclasts, resulting in rapid decalcification of 

vertebral and cortical bones, without any discernable changes in anatomical structure 

(209). In short term immobilisation, TRAP and AP tend not to change, suggesting that 

the functional activity of osteoclasts and osteoblasts were unaltered. However urinary 

PYD and DPYD levels initially increased then declined, suggesting resorption of bone 

matrix initially, which reduced without any involvement of oestocyclic activity (210). 

1.6.3: Analysis of the pyridinium crosslinks. 

The current method of choice and until recently the only way the two crosslinks could 

be measured with any degree of success is high performance liquid chromatography 

(HPLC). Due to the various problems associated with the HPLC technique, research has 

been conducted into immunological methods to measure the pyridinium crosslinks. 

However it is only within the last few years that this approach has shown any sign of 

success. The analysis of the pyridinium crosslinks is discussed in greater detail in 

Chapters 3 and 4. 
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1.6.4: The use of pvridinium crosslinks as biochemical markers to measure bone 
resorption in metabolic bone diseases. 

Since the discovery of the pyridinium cross links it was realised that collagen crosslink:ing 

compounds could act as biochemical markers of polymeric collagen and their 

quantification would provide an unambiguous and clinically useful measure of degradation 

of extracelluar collagen. Consequently these crosslinks offer potential as sensitive and 

specific markers of bone resorption. A large number of studies have been conducted over 

the last few years, too vast to be included here, but details are provided in a number of 

recent reviews (189,211-216). The major clinical areas of interest (except skeletal 

metastases) in which these crosslinks have been used are summarised in Table 1. 7. 

In comparison to other markers, clinical studies have shown that the pyridinium 

crosslink:s, in particular deoxypyridinoline (DPYD), are highly correlated with the 

hydroxylysine glycosides, demonstrating similar accuracy and discriminatory powers with 

respect to distinguishing between subjects with altered bone resorption from normal 

subjects (147 ,217). However the crosslinks have the advantage that unlike the 

hydroxylysine glycosides, the pyridinium crosslink:s are naturally fluorescent, and 

therefore do not need to undergo a derivatisation step prior to HPLC analysis (247). The 

crosslinks also show greater accuracy and a higher discriminating power than 

hydroxyproline (147,201). 

The analytical and biological variability of the urinary crosslink: measurements have 

affected its clinical utility as a biochemical marker of bone turnover (249). More recently 

the crosslinks have been identified and measured in serum (248), which should 
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Table 1.9: Summary of clinical studies using the pyridinium crosslinks as markers of 
bone resorption. 

Clinical Description Ref. 
condition 

Arthritis Most clinical studies have found that the 217-
crosslink levels are increased in both 224 
rheumatoid arthritis (RA) and osteoarthritis 
(OA). PYD levels are particularly elevated 
whereas the DPYD levels are only slightly 
elevated or not significantly different from 
control levels. This corresponds to the fact 
that PYD is prevalent in cartilage and bone 
whereas DPYD is bone specific. 

One study however shows conflicting results 225 
in which the PYD levels in articular cartilage 
were unaffected in both RA and OA patients. 

Successful treatment with gold and D- 218, 
penicillamine results in a decrease in the 221 
crosslink levels. However treatment with 
corticosteroids results in an increase in the 
crosslink levels, probably due to the induction 
of bone resorption. 

The pyridinium crosslinks, particularly PYD 
can provide useful information on the stage, 
activity and level of bone involvement as well 
as the efficacy of drug therapy in arthritic 
disease 

Growth The effect of growth hormone therapy resulted 226 
hormone in an increase in the crosslink and osteocalcin 
deficient adults levels, indicating an increase in the bone 

resorption and formation rate respectively. 

Hyperpara- The crosslink levels were significantly higher 227 
thyroid ism in patients compared to controls. Patients who 

were treated surgically showed levels 
comparable to the controls and significantly 
lower than untreated patients. 
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Table 1. 9: Continued. 

Clinical Description Ref. 
condition 

Hyperthyroid- It is believed that thyroid replacement therapy 228 
ism used to treat hyperthyroidism, may cause or 

increase the risk of osteoporosis. This study 
showed that the crosslink levels increased in 
untreated patients and in postmenopausal 
woman taking sufficient medication, compared 
to the controls. However premenopausal 
woman appear to have a lower risk to 
osteoporosis when receiving similar treatment, 
since the crosslink levels were virtually the 
same as the controls. 

Inherited Some abnormalities in the crosslink excretion 229 
connective levels were observed in these disorders, 
disorders eg. however firm conclusions were not drawn 
Ehlers-Danlos until the results of further investigations were 
syndrome available. 
(EDS), Marfan 
syndrome 
(MS) and 
Funnel chest 
(FC) 

Malnutrition The crosslink levels were lower in 230 
(children) malnourished children compared to recovered 

children, indicating a decrease in the cartilage 
and bone turnover rate. The study of crosslink 
levels could therefore be used to assess the 
therapeutic intervention designed to alleviate 
stunted growth. 

Menopause The crosslinks increase at the menopause but 231-
a reduction in these levels is observed with 235 
successful hormone replacement therapy. 

Osteoporosis The pyridinium crosslink levels are higher in 236-
osteoporotic patients compared to controls. 240 
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Table 1.9: Continued. 

Clinical Description Ref. 
condition 

Osteoporosis The use of the pyridinium crosslinks has also 241 
(continued) allowed a greater insight and understanding 

into the mechanisms of osteoporosis. The 
crosslinks demonstrated that postmenopausal 
osteoporosis does not have an increased 
responsiveness to parathyroid hormone, hence 
the higher bone turnover associated with 
osteoporosis is due to other systemic of local 
factors regulating bone resorption. 

Osteoporotic patients show abnormalities in 242 
the circadian rhythm of bone resorption. A 
higher resorption rate exists which would 
account for the increased bone loss seen in 
osteoporotic patients. 

Paget's Patients with active Paget's Disease of bone 243 
Disease showed higher crosslink levels compared to 

controls and these levels decreased with 
successful treatment with bisphosphonate 
pamidronate. 

Another study evaluated a wide range of bone 
resorption and formation markers and 244 
concluded that when disease activity was high 
most of the bone turnover markers were 
increased. However when disease activity was 
low only serum bone alkaline phosphatase and 
urinary pyridinium crosslinks improved the 
detection of the disease 

Ullrich-Turner Pyridinium crosslinks levels were increased 245 
Syndrome compared to controls, whereas hydroxyproline 

showed little difference. The higher crosslink 
excretion reflects enhanced bone resorption 
activity. 

Vitamin D Crosslink levels were higher in patients with a 246 
deficiency deficiency compared to controls. 
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demonstrate lower intra individual variability and will hopefully be a more suitable and 

reliable marker. 

1.6.5: The use of pyridinium crosslinks as markers of bone breakdown in patients 
with skeletal metastases. 

Many clinical studies have shown that the crosslinks maybe useful in the assessment of 

neoplastic disease. Raised levels have been observed in patients known to have bone 

metastases when compared to controls, and these levels fall with subsequent successful 

treatment (250-256). 

However the diagnostic ability of the crosslinks is not so clear. In some studies levels 

were elevated in some patients with no known or diagnosed bone metastases 

(250,253,257). Only further investigation and long term follow up studies will determine 

whether these observations were false positives or that the crosslinks offer a possible 

early diagnosis method. A number of other studies have shown that the crosslinks 

diagnostic ability was low (257). 

As expected the crosslink levels have been shown to be higher in in-patients compared 

to ambulatory outpatients with cancer (253), which is attributable to the greater degree 

of immobilisation of in-patients. Crosslinks have also been used to assess the activity of 

malignant haematological disorders by measuring bone resorption, increased levels being 

attributed to the leukaemic infiltration of the bone marrow space (258). 
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1. 7; TRACE METALS IN THE HUMAN BODY. 

The human body is composed of a vast number of elements which are categorised 

according to their concentration and biological significance (259-261). Elements are 

denoted as major or minor, the latter being subdivided into trace ( < lOOJlg/g) or ultra

trace ( < lOng/g) in terms of concentration. In spite of the low levels of trace and ultra 

trace elements they are of great importance for the health of living organisms, and in this 

context a distinction is made between essential and non-essential elements. 

In addition to C, Ca, Cl, H, K, Mg, N, Na, 0, P, and S which are essential major 

elements, the trace elements Co, Cr, Cu, F, Fe, I, Mn, Mo, Se, V and Zn are also 

considered as essential (261). Figure 1.18 shows schematically the typical health response 

profile for an essential element. Death, or at best, bare survival results if the element 

is withdrawn from the diet. As the organism is exposed to increasing amounts of the 

element, the response improves until a plateau is reached indicating full health. In excess 

the element produces undesirable side effects and gradually results in a deterioration of 

health until death finally occurs (262). The non-essential elements include all other 

elements in a living organism, although it is accepted that for many of these elements 

their "essential" character may not as yet have been proved. Tables 1.10 and 1.11 

summarises the physiological concentrations of those elements generally considered to be 

essential and non-essential (263). The determination of essential and non-essential trace 

elements in biological samples is important with respect to understanding health and 

disease, i.e. metabolism, physiology, nutrition, toxicology, for reaching a diagnosis and 

for selecting the appropriate treatment for a disease (259,263-268). 
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Figure 1.18: Idealised curve showing the response of an organism to increasing doses of 
an essential element (260). 
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Table 1.10: Physiological concentrations of essential trace elements in body fluids (263). 

Element Matrix Reference 
concentration for 
health controls 

J.' \nmol 1·• 

Zinc (Zn) P\S 11-24 
u 4.5-9.0 

Iron (Fe) s 11-36 
u 0.2-1.0 

Copper s 3.o-u· 
(Cu) s 12.0-26" 

s 27-40< 
u <0.8 

Manganese B 73-110 
(Mn) s 9-24 

u 2-27 

Selenium B 1.2-2.2d 
(Se) B 1.0-2.0• 

s 1.1-1.9 
u 0.1-0.7 

Chromium B\S <20 
(Cr) u <20 

Molybdium s 2-12 
(Mo) 

Cobalt B <17 
(Co) u < 17 

Vanadium B <6 
(V) u <6 

• Neonates. 
b Children over 6 months and adults. 
c Healthy pregnant women. 

B: Blood. 
P: Plasma. 
S: Serum. 
U: Urine. d Adults. 

• Children: Se concentrations is age. 

N.B. Urine values assuming 24 h collection. 
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Reference 
concentration for 

health controls 

j.tg 1·1 

720-1570 
294-558 

614-2010 
11-56 

191-700 
763-1652 
1716-2542 

<51 

4-12 
0.5-1.3 
0.1-1.5 

95-174 
79-158 
87-150 
7.9-55 

< 1.0 
< 1.0 

0.2-1.2 

< 1.0 
< 1.0 

<0.3 
<0.3 



Table 1.11: Concentrations of non-essential elements in body tissues (263). 

Element Matrix Concentrations in Concentrations in 
(unit) tissues\fluids tissues\fluids 

Reference levels Therapeutic levels 
1-Lmol\nmol J·• 1-Lg J·l 1-Lmol J·• 1-Lg J•l 

Aluminium (AI) s <0.4 <11 1.8-22 48-593 
(1-Lmol 1"1) u <2.0 <54 > 15 405 

CSF 0.15-0.19 4-5 0.22-1.26 6-34 

Gold (Au) s <0.01 1.97 5-40 985-7879 
(1-Lmol 1"1

) 

Bismith (Bi) s <0.05 <10 0.2-14 42-2926 
(1-Lmol 1"1

) u <0.05 <10 0.2-14 42-2926 

Gallium (Ga) s <1 70 up to 70 976 
(1-Lmol 1"1

) u <1 70 

Platinium (Pt) B <0.005 <I 0.1-50 20-9755 
(1-Lmol 1"1

) s <0.005 <I 0.1-50 20-9755 

Silver (Ag) B <0.01 <1 - -
(1-Lmol 1"1

) 

Lead (Pb)* B 0.2-1.0" 41-207 - -
(1-Lmol 1"1

) B 0.2-1.2b 41-249 - -
u 0.05-04c 10.83 - -

Cadmium (Cd)* B 1.8-27d 0.2-3 - -
(nmol 1"1) B 1.8-54< 0.2-6 - -

u <27 <3 - -

Beryllium (Be)* u 44-100 0.4-0.9 - -
(nmol 1"1

) 

Nickel (Ni)* s 19-14 1.1-0.8 - -
(nmol 1"1

) u 7.68 0.4-4.0 - -
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Table 1.11: Continued. 

Element Matrix Concentrations in Concentrations in 
(unit) tissues\fluids tissues\fluids 

Reference levels Therapeutic levels 
~mol\nrnol I-1 ~g I-1 ~mol 1"1 ~g 1-1 

Asenic (As)* B 7-125 0.5-9.4 - -
(nrnol 1"1) u 40-700" 3-53 - -

Mercury (Hg)* B <30 <6 - -
(nmol 1"1) u <50 <10 - -

Antimony (Sb)* B 8 1.0 - -
(nmol I·1) 

Tellurium (Te)* B 2 0.26 - -
(nmol 1·1) 

Thallium (TI)* u < 1.0 <0.2 - -
(nmol I·1) 

*Known toxic trace elements: concentrations are expressed for exposed healthy controls. 

• For women. 
b Children and men. 
c Men. 
d non smokers. 
• Smokers. 

B: Blood. 
CSF: Cerebral spinal fluid. 
P: Plasma. 
S: Serum. 
U: Urine. 

N.B. Urine values assuming 24 h collection. 
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The potential for metals to be toxic has traditionally been regarded as a function of dose 

and potency of the metal itself. More recently however, it has become clear that several 

metals participate in biotransformation reactions and consequently metabolism may have 

important implications in terms of toxicity to humans, pharmacology and occupational 

health (269). In estimating metal levels for biomonitoring purposes adequate knowledge 

of the metabolic patterns is needed to establish relationships between external exposure 

and internal dose (270). As well as the type of metal present, speciation of the metals and 

their metabolites is also extremely important with respect to understanding metabolism 

and toxicology (271). 

1.7.1. Measurement of trace metals in biological samples. 

Analytical techniques have changed within a matter of a few years to such a profound 

extent that degrees of sensitivity and precision can now be attained that could not have 

been dreamt of one or two decades ago. Consequently the analysis of trace and ultra trace 

metals affecting human health and disease is now possible (261 ,272,273). 

The performance characteristics of the analytical method, such as detection limits, 

accuracy, precision, speed etc, depend on a number of factors including the element 

concerned, the concentration of the element in the sample of interest, the sample matrix, 

(i.e. blood, serum, plasma, urine, organs and tissues such as hair, liver, kidney or 

lungs), on the homogeneity of the sample and the number of samples to be analysed. 

The main techniques used for trace metal analysis in biological samples are neutron 

activation analysis (NAA) (274-277), electrothermal atomic absorption spectrometry 
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(ETAAS), (263,273,276,278-282), inductively coupled plasma-atomic emission 

spectrometry (ICP-AES) (273,276,283-285) and inductively coupled plasma-mass 

spectrometry (ICP-MS) (273,276,277 ,285-286). 

The normal reference values for trace metals in various biological samples has varied 

considerably over the years. This has been attributed to the changes in analytical 

technology, allowing more accurate and sensitive methodology to be used (287), coupled 

to a greater understanding of the importance of quality control measures (288-292), 

sampling, collection and storage etc (282,293-302). A number of reviews provide details 

of the normal reference values for many elements in various biological samples (303-

308). 

1. 7 .2. Trace metals in bone. 

Bone is a complex material and knowledge of its composition is of fundamental 

importance in the application and interpretation of elemental analysis. Bone is an active 

tissue comprising of an organic part (30%) and an inorganic part (70%) (309). About 

98% of the elements found in bone are calcium, phosphate, carbonate, sodium and 

magnesium. There are smaller amounts of other elements, although often their role in 

normal bone function and in bone pathology is not fully established. It is known that bone 

acts as a reservoir for some potentially toxic elements, such as lead, but other elements 

may be important in bone metabolism (309). 

A number of studies have been conducted to evaluate the elements present in bone and 

their concentration levels (309-313). However large variations exist, which have been 
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attributed to both the different analytical techniques and procedures used, as well as the 

type of bone sample analysed. Since cortical and trabecula bone differ structurally, there 

may well be a difference between the two types biochemically (309). 

The measurement of metals in bone, especially trace elements is of particular interest 

because they are laid down over a period of time, being consistently and slowly renewed 

and replaced. Consequently the trace element content of bone can serve as useful 

indicators of dietary habits and nutrition (313), the assessment of deliberate or accidental 

long term exposure\pollution (314,315), as well as disease. In terms of the latter, the 

determination of metal levels in bone may help with the diagnosis of the skeletal state, 

assess the efficacy of the treatment, and supply data to help gain a better understanding 

of bone physiology and pathology (316-319). 
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1.8.AIMS OF INVESTIGATION: 

1.8.1: Objectives:-

The principle objective of this study was to determine, using serial blood and urine 

samples taken from patients who regularly visit the oncology outpatient department 

(Freedom Fields Hospital, Plymouth), whether there is a rise in trace metal levels in 

patients who develop bone metastases, and additionally if there is a subsequent decrease 

in levels with successful treatment. A comparison is also made with existing methods for 

measuring bone breakdown and detecting bone secondaries, especially with respect to the 

specificity and sensitivity of these tests. A look at the predictive value of trace metal 

levels has also been conducted, in order to identify a potential increase in levels prior to 

bone secondaries being clinically apparent or identified by bone scans. 

A secondary objective of this work was to gain an insight into bone metabolism, trace 

metal metabolism and the behaviour of bone metastases. The study hopes to promote the 

use of inductively coupled plasma-mass spectrometry for clinical applications. This 

development, along with the information obtained about trace metal and bone metabolism, 

may provide a number of opportunities for further research into associated topics, and 

in addition provide another technique to measure bone breakdown. 

It is anticipated that by providing an additional technique for measuring bone breakdown 

this work may provide a further method of predicting, diagnosing and following up bone 

secondaries. Such a method would be of value in reducing the frequency of bone scans, 

which are currently usually used to detect bone metastases. It would also help to clarify 
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confusing scans, so called "super scans" when diffuse skeletal involvement produces a 

normal looking scan. Thus this work could have relevance to other conditions in which 

bone breakdown is a feature, such as osteoporosis, and may also be relevant to the study 

of the toxicology of trace metals, providing information about metabolism with respect 

to bone. 

1.8.2. Plan of investigation:-

Patients with a histological diagnosis of cancer seen in the outpatients department, were 

selected to participate in the trial according to the inclusion and exclusion criteria:-

A) INCLUSION CRITERIA:-

i) Histological diagnosis of cancer. 
ii) Informed consent obtained. 
iii) Prognosis greater than 3 months. 
iv) Adequate performance status. 

B) EXCLUSION CRITERIA:-

i) Evidence of other significant bone disease, for example Osteoporosis, Vitamin D 
deficiency, Primary Hyperparathyroidism, Paget's disease of bone. 

ii) Current therapy with drugs affecting bone metabolism 
iii) Abnormal diet. 

Once suitable patients had been selected and consented to participate in the trial, blood 

and urine samples were taken at each hospital visit. A bone scan was performed every 

3 months or if clinically indicated, as were plain X-rays if clinically dictated. The 

selected patients are grouped as follows:-
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i) Patients with cancer with bone metastases but not commenced on 
treatment. 

ii) Patients with cancer and bone metastases, already commenced on 
treatment. 

iii) Patients with cancer but no evidence of bone metastases (control 
group 1). 

iv) Patients with no known forms of cancer (control group Il). 

The group of patients without bone metastases at the outset of the study were divided into 

those who developed metastases during the course of the trial and those who were free 

of evidence of bone secondaries. 

The trace metal levels in the blood and urine samples were determined using ICP-MS, 

and compared to the levels of urinary pyridinium crosslinks, measured using an ion pair 

reverse phase HPLC method and an ELISA method. 

The results are finally compared and correlated with other clinical indices for example 

alkaline phosphatase and PSA levels, bone scan and plain X-ray results, as well as the 

patients clinical performance. The study also assesses the variables: age, sex, treatment, 

primary diagnosis and bed rest on the trace metal levels and urinary pyridinium crosslink 

levels measured. 
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CHAYfER 2: JNSTRUMENTATION 

2.1: INDUCTIVELY COUPLED PLASMA-MASS SPECTROMETRY 

2.1.1 Historical background. 

The use of mass-to-charge ratio to identify ions, the basic principle of mass spectrometry 

(MS), dates back to the beginning of the century (320), and is now widely used in 

chemical analysis (321). Flames, spark and arc discharge ion sources, suffer from 

interferences, low temperatures, contamination and sample introduction problems (322), 

and as a consequence the electrode-less ion sources, such as micro-wave induced plasmas 

(MIP) and inductively coupled plasmas (ICP) have beome the more favoured ion sources 

(323). Both plasmas overcome the contamination problems and are capable of very high 

temperatures, however with MIP's, the mean average temperature can be low and thus 

poor volatilisation and dissociation of many species results in strong matrix effects 

(322,323). Nevertheless, such a plasma has been used with some sucess as an ion source 

for mass spectrometry (324). The ICP ion source (325,326) as well as offering 

sufficiently high temperatures, also allows the rapid and complete introduction of the 

sample into the plasma, resulting in very efficient sample volatilisation, dissociation and 

excitation. This source had been used widely in emission spectrometry (327) and has also 

become the more accepted and widely used ion source for mass spectrometry (322). 

Inductively coupled plasma-mass spectrometry (ICP-MS) was first expressed as a concept 

back in 1970, however the problem of coupling an ICP which operated at atmospheric 

pressure with a MS which operated in a vacuum, delayed the release of a commercial 
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instrument until 1983. Collaboration between Houk et al in the USA and Gray et al in 

the UK (328), along with the work by Douglas and French (324), resulted in overcoming 

these inherent problems and led to the development of the system and interface now 

employed in commercial ICP-MS instruments (322,323,329-335). 

The combination of an inductively coupled plasma (ICP) as a high temperature ion source 

with a quadrupole mass spectrometer (MS) as a high sensitivity detector has produced a 

versatile analytical technique capable of elemental and isotopic analyses of samples. ICP

MS offers excellent detection limits for many elements (0.01-0.1/lgi-1
), a broad linear 

range (at least 4 orders of magnitude) and a multi element capability allowing fully 

quantitative measurements for elements across the mass range. ICP-MS can also offer a 

high sample throughput, simple spectra (compared to optical emission spectroscopy), 

relative freedom from chemical interferences and information about isotope ratios. 

ICP-MS can therefore be used for quantitative isotope determination, isotope dilution 

analysis, rapid spectral scanning due to the peak hopping capability of the mass 

spectrometer and use of multi channel analysis and semi-quantitative determinations to 

within a factor of 2 or 3 in a wide range of samples (322,323,334-336). 

2.1.2: Plasma Generation. 

The ion source is generated by coupling the energy from a radiofrequency generator to 

an appropriate gas (usually argon) flowing through a quartz glass torch (Figure 2.1). The 

RF energy is transferred to the plasma via a water cooled copper coil. The incident 

power is usually between 1-2kW, at a frequency of 27.12 MHz. The plasma is formed 
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Figure 2.1: Schematic diagram of an inductively coupled plasma. 
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when the gas is seeded with electrons from a spark from a Testa coil. These electrons are 

accelerated in the magnetic field causing ionisation of the gas. Further collisions between 

gas atoms results in a self sustaining plasma reaching a temperature of 6,000 to lO,OOOK 

(337). This process occurs almost instantaneously. 

The nebuliser or injector gas, punches a hole at the base of the plasma, producing a 

cooler central channel. A coolant gas flow protects the quartz glass torch walls, centres 

and stabilises the plasma and an auxiliary gas flow ensures the hot plasma is kept clear 

of the tip of the nebuliser gas flow, preventing the central capillary injector tube from 

melting (Figure 2.1). 

2.1.3: Sample introduction. 

The ICP requires the sample to be introduced into the nebuliser gas flow as a gas, 

vapour, aerosol of fine droplets or as finely ground dispersed solid particles (333). 

Sample introduction systems can therefore be achieved by a variety of methods, such as 

nebulisation, hydride generation, flow injection, laser ablation and electrothermal 

atomisation (322,323,335-338). The most common method for introducing a sample is 

as a gas-supported aerosol from a pneumatic nebuliser, producing a wide range of droplet 

sizes which are discharged into a spray chamber. The larger droplets are filtered to waste 

in this spray chamber, since they cause signal fluctuations, plasma instability and can 

eventually extinguish the plasma. The smaller droplets (approximately 81-'m or less), 

accounting for only 1-2% of the sample introduced, remains supported in the gas stream 

and are allowed to pass through into the plasma. Upon entering the plasma the sample 

is desolvated and vaporised and the constituent analytes are disassociated, excited and 
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ionised. This standard sample introduction system is shown in Figure 2.2. 

2.1.4: Ion extraction. 

A portion of the ionised gas from the tail flame of the ICP enters the ion extraction 

interface (Figure 2.3) and impinges onto a water-cooled sampling cone, typically made 

from nickel. Gas from the ICP is extruded through a small aperture (approx. l.Omm 

diameter) drilled in this cone and enters the first (expansion) stage. The gas pressure in 

this first stage is maintained at 1-3 torr. The resultant sample beam expands rapidly, 

causing a drop in temperature essentially freezing the ion population and hence inhibiting 

reactions occurring in the sampled plasma gas. This results in the formation of a freely 

expanding region, known as the zone of silence or "free jet". The temperature at the 

centre of the free jet is approximately 200K and this helps to cool the skimmer cone. The 

zone of silence is bounded by shock waves known as "barrel shock" and the "Mach disc" 

(Figure 2.4), which are caused by collisions between fast moving atoms from the jet and 

the surrounding gas. Beyond the "Mach disc", the flow becomes subsonic and the 

extracted gas mixes with surrounding gas. To avoid losses of ions due to scattering and 

collisions from these shock waves surrounding the zone of silence, the tip of the skimmer 

cone (a second sharper nickel cone, approximately 0. 75 mm diameter) is mounted 

upstream of the "Mach disc". This ensures that a small percentage of the gas from within 

the "barrel shock" region is sampled (Figure 2.4). The pressure behind the skimmer cone 

is usually below 5 x 104 torr. A slide valve is situated behind the expansion stage and this 

isolates the high vacuum of the mass spectrometer from the expansion stage, when the 

instrument is not in use (334,341,342). 
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Figure 2.2: Schematic diagram of the ICP-MS sample introduction system (339) . 
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Figure 2.3: Diagram showing a typical ICP-MS ion extraction interface (340). 
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Figure 2.4: Diagram of the supersonic expansion formed in the expansion chamber, 
showing the barrel shock and position of the Mach disc (323). 
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2.1.5: Ion focusing and detection. 

A series of electrostatic lenses separate ions from neutral species, focuses them and 

transmits them to the third vacuum stage and into the quadrupole mass spectrometer 

where ions are separated with respect to their mass-to-charge ratio (m\z) and are detected 

with a channel electron multiplier, placed just off axis to avoid being struck by residual 

photons (343-345). The electron multiplier pulse is then passed on to a suitable amplifier 

and discriminator and then onto a data handling system. A schematic diagram of a typical 

ICP-MS instrument is shown in Figure 2.5. 

2.1.6: Interferences. 

ICP-MS does have some limitations. It is expensive to purchase and maintain. It may be 

prone to long term stability and sensitivity problems as a result of environmental 

temperature fluctuations and therefore benefits from being kept in a controlled laboratory 

environment (air conditioned and clean room facilities). However the single largest 

shortcoming of the technique is that in a large number of applications it suffers from 

spectral interferences and non-spectral interferences (323,334,335,346,347). 

2. 1.6. 1: Spectral interferences. 

Spectroscopic interferences are caused by atomic or polyatomic ions that have the same 

nominal mass as the analyte of interest. Isobaric interferences are caused by the overlap 

of isotopes of different elements, which cannot be resolved by a commercial quadrupole 

mass analyser. Isobaric interferences are generally easy to predict and overcome simply 

by using an alternative isotope of the element of interest. 
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Figure 2.5: Schematic diagram of a commercial ICP-MS instrument (323). 
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When an element is introduced into the plasma, the monatomic singly charged analyte ion 

(M+) is not the only species observed in the final mass spectrum. Doubly charged ion 

formation is controlled by the ionisation energy and the condition of the plasma (348). 

Elements with a lower second ionisation energy than the first ionisation energy of argon 

(15.76eV) will be partly doubly ionised (~+). Their formation results in a loss of 

sensitivity for the singly charged species due to the small loss of signal and generates a 

number of isotopic overlaps at one half of the mass of the parent element. 

Elements that have a high MO bond strength, result in the formation of oxide (MO+) and 

hydroxide ions (MOH+), collectively known as refractory oxide ions. The intensities of 

these species can be reduced to 1-2% by adjusting instrumental settings for MO+:M+ 

even for the most refractory elements. The RF forward power and the nebuliser flow rate 

exerting the greatest influence (349,350). 

In addition to oxide formation, polyatomic ions originating from the plasma (Ar), from 

the matrix (0, Hand often C, N, P, Sand Cl) and from the air surrounding the plasma 

(C, N and 0) exist. These ions result from the short lived combination of two or more 

atomic species, for example, ArO+. They are the cause of serious interference effects, 

particularly below m\z 80 (351). 

In general the majority of spectroscopic interference effects can largely be overcome by 

a careful choice of operational conditions (352-354), or by reducing the amount of water 

(355) or solvent reaching the plasma (356-359), or by introducing the sample in a dry 

form using electrothermal vaporisation (360-363), direct sample insertion (364) or laser 
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ablation (365). Alternatively interferences can be overcome by eliminating the 

interference generating constituents prior to measurement (366-369), or by adding 

alternative gases to replace wholly or partially the usual argon plasma gas and thus 

changing the conditions of the plasma (370-374). 

2.1.6.2: Non-spectral interferences. 

Unlike spectroscopic interferences, where the analytical signal is enhanced by another 

element or polyatomic species with the same nominal mass, non-spectroscopic 

interference is characterised by a reduction or enhancement in analyte signal due to 

factors exerting an influence on sample transport, ionisation in the plasma, ion extraction, 

or ion throughput in the resultant ion beam (346,347). 

Sample introduction and transport is affected by the nebuliser design and nebuliser gas 

flow, and the viscosity, surface tension, density, evaporation rate and vapour pressure 

of the sample. It is therefore critical to matrix match samples and standards with respect 

to the solvent. The sample matrix can also affect the atomisation, excitation and 

ionisation characteristics by altering the plasma temperature (375). The nature and 

concentration of the sample matrix also has a direct bearing on the severity of these 

effects (376). 

The presence of excess heavy, easily ionisable elements in the matrix creates the most 

serious non spectral interferences (377-380). Suppression of the analyte signal and long 

term stability problems can also result from the physical deposition of material on the 

sampler and skimmer cones and the subsequent restriction of the orifice (381 ,382). 
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Non-spectral interferences can generally be overcome or at least minimised by internal 

standardisation (377,383-385), standard additions, isotope dilution (386) or sample 

preparation techniques (346,347), for example liquid chromatography (387) and on line 

preconcentration (388). The careful setting of the instrument parameters will also help 

(389). 

2.1. 7: Biological\clinical applications of inductively coupled plasma-mass 
spectrometry OCP-MSl: 

In the clinical environment, knowledge of concentrations of both biologically essential 

and trace elements in body fluids is very important. In clinical analyses one must be able 

to measure accurately small changes in concentrations that can be significant with respect 

to disease, deficiency and toxicology. The ability to determine rapidly and simply several 

trace elements, some at the JLgl-1 level, in body fluids such as blood and urine is essential. 

Simultaneous multi-element methods are preferred to sequential single element methods 

of analysis, simply because of the additional advantages offered, such as providing more 

information per sample, and thus conserving both time and sample (390). The collection 

of samples is also of utmost importance: direct multi element analysis would simplify 

sample handling and reduce the risks of pre-analysis contamination. The advantages 

inductively coupled plasma-mass spectrometry (ICP-MS) can offer, such as speed, 

sensitivity and the ability to determine isotope ratios can satisfy many of these 

requirements and hence lend itself well to clinical studies at the ultra trace level. 

However the analysis of biological materials is prone to a number of additional 

interferences (391). 
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The analysis of biological materials often results in a dramatic increase in the number of 

potential spectral overlaps, generally as a result of the acids used for sample digestion 

and\or by the large variety of matrix elements present (392). Destruction of the matrix 

with one or more acids, such as HCl, HC104 and H2S04 increase the chance of spectral 

overlap. Whenever possible only HN03 should be used in sample preparation, because 

H, N and 0 do not add any additional spectral interferences to those already existing in 

a pure water spectrum (351). Other matrix elements, representative of most biological 

materials, such as C, Ca, Cl, K, Na, P and S, also give rise to spectral overlap. The 

most important polyatomic ions in biological materials are listed in Table 2.1. Numerous 

methods have been developed to overcome many of these additional spectral 

interferences, examples of which have been detailed widely in the literature (391). The 

recent introduction of high resolution ICP-MS instruments (393) can also reduce the 

problems from spectral interferences associated with biological samples (394). 

Additional non-spectral interferences are usually caused by high protein content and high 

dissolved solids, which can lead to clogging of pneumatic nebulisers, the injector tube of 

the torch and the entrance aperture of the sampling cone (381 ,382). The high salt 

concentrations can also lead to suppression or enhancement of the ion signal (395,396). 

A decrease in these matrix effects is possible using flow injection (397,398}, which 

reduces the sample loading, or dilutes the matrix (399-401). 

Despite these interferences inductively coupled plasma-mass spectrometry has 

demonstrated its suitability for the determination of trace amounts of inorganic elements 

in a variety of clinical and biological samples (286,402-410}, and in applications relating 
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Table 2.1: Main spectral interferences encountered in the analysis of biological materials 
by ICP-MS (392). 

Mass Analyte Abundance (%) Interfering ions 

44 Ca 2.1 12C16Q
2 

45 Se 100 12c•6o H •3c•6o 2 ' 2 

46 Ti 8.0 23Naa 

47 Ti 7.3 3•p•6o, 23NaaH 

48 Ti 73.8 31pl6QH,31p17Q, 
32s•6o J6Ar12c 

' 

49 Ti 5.5 35CJ14N 3•p•so 
' ' 31pl6QH 32S16QH 

2• ' 
33S16Q,36Ar13C 

50 Ti 5.4 34SI6Q ns•6QH ' 2• 
ns•so 

51 V 99.7 35CJI6Q 37CJ14N 
' 

52 Cr 83.8 3scl•6QH,3sc117o, 
36s•6o 40 Ar•2c 

' 

53 Cr 9.5 35Cli6Q,40Ari3C 

54 Fe 5.8 37CJI60H 37Cl170 
' 

55 Mn 100 37cpso, 39J(•6o 

56 Fe 91.7 40Ca160 

57 Fe 2.2 40Ca160H 40Ca170 
' 

58 Ni 68.3 42ca•6o, 40ca•so 

59 Co 100 43ca•6o, 
42Ca160H 

60 Ni 26.1 44ca•6o 12c•6o ' 3• 
43ca•6oH 

62 Ni 3.6 23Na2•6o 

63 Cu 69.2 3•p•6o 40Af23Na 2• 

64 Zn 48.6 4sca•6o,3•p•6o, 
31p16Q H 

2 ' 
31pl6Q17QH ns•6o ' 2 
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Table 2.1: Continued. 

Mass Analyte Abundance (%) In~~ 
65 Cu 30.8 3lpl6Q'so 32S'6Q H 

' 2 ' 33S'6Q2 

66 Zn 27.9 34S'60 33S'60 H 
2' 2 , 

32S'60'so 

67 Zn 4.1 3scl'60 34S'60 H 
2' 2 , 

32S'60'sOH 

68 Zn 18.8 36S'60 34S'60'so 
2• 

70 Ge 20.5 3sCl2 

71 Ga 39.9 40A~1P 

72 Ge 27.4 40Ca 160 40 Ar32S 2• 

75 As 100 40Ar3sCI 

77 Se 7.6 40Ar37CI 

79 Br 50.7 31 pl6Q 40 A~!IJ< 
3• ' 

40Ar23Na•6o 

81 Br 49.3 33S'60 40Ar4'K 3• 

82 Se 9.2 34S'60
3 

94 Mo 9.3 39K
2
•6o 

95 Mo 15.9 40Ar9J<'6o 

96 Mo 16.7 39K4'K'60 

97 Mo 9.6 40Ar41K160 
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to human nutrition and toxicology (411,412). Isotopic ratios have been used to monitor 

metabolism in vivo and to study the bioavailability of elements (413-415), and isotope 

dilution methods have been developed for clinical studies (416,417). In addition, the 

coupling of ICP-MS as a detector, to a liquid chromatography system, has demonstrated 

vast potential in many applications (418}, including the analysis of metals (418,419) and 

their species (418,420-422) in a number of clinical studies. 

2.1.8; Experimental Instrumentation. 

The ICP-MS results in this study were obtained using a PlasmaQuad II (VG Elemental, 

Winsford, Cheshire, U.K.) equipped with a Gilson Miniplus 2 peristaltic pump, an Ebdon 

nebuliser, water cooled Scott type double pass spray chamber and a Fassel demountable 

torch, with a 2mm injector. Details of the typical operating conditions are summarised 

in Table 2.2. 

Table 2.2: Typical ICP-MS operating conditions. 

Rf Power Forward 1.4- 1.5 kW 

Reflective SW 

Gas flows Auxiliary 0.5 - 1.0 I min·• 

Coolant 15 I min·• 

Injector 0.95 I min·• 

Peristaltic pump 1 - 2 ml min·• 

Sampler cone Nickel - 1.0mm orifice 

Skimmer cone Nickel- 0.75mm orifice 

Expansion stage 3.3 x 10° mbar 

Intermediate stage < 1.0 x 104 mbar 

Analyser stage 1.0 x J0-6 mbar 
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2.2: IDGH PERFORMANCE LIOUID CHROMATOGRAPHY <HPLC). 

2.2.1: Basic principles. 

Chromatography is a technique for the separation of components in a mixture and their 

subsequent identification and quantification, based on their chemical and physical 

properties. In high performance liquid chromatography (HPLC) rapid separation and 

quantitation of many compounds is possible, at trace levels, using only small sample 

volumes. The components are partitioned between a mobile liquid phase (eluent) and a 

microparticulate stationary phase with a large surface area. The sample, dissolved in a 

solvent is injected into a flowing stream of eluent and pumped to the column where the 

components of the mixture are separated by interaction with the stationary phase. 

Separation occurs because each component has a different partition rate between the 

mobile and stationary phase. Components with the highest affinity for the column packing 

material are retained on the column longer. This differential elution is the basis for HPLC 

separation. As components elute from the column transient signals for each component 

are detected typically using a flow through cell. A schematic diagram of the basic HPLC 

components is shown in Figure 2.6 and further details concerning the theory and 

principles can be found in general text books on liquid chromatography (423-426). 

High performance liquid chromatography is a highly versatile analytical technique. 

Several different modes are available [fable 2.3] (423-426), and a number of methods 

for detection are possible, such as electrochemical (amperometric), conductivity, 

fluorescence, photodiode array, radioactive monitoring, refractive index, UV\ Visible 

using both fixed and variable wavelength (423-426). However, detection based on the use 
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Figure 2.6: Schematic diagram showing the basic HPLC system. 
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Table 2.3: Summary of the various forms of HPLC available. 

Mode of Description 
chromatography\ 
separation 

Adsorption Stationary phase is a relatively high polar material 
(normal phase) with a high specific surface area, e.g silica, 

alumina. The mobile phase is relatively non-
polar, e.g hexane. 

Adsorption Reverse of above: i.e. The stationary phase is 
(reverse phase) very non-polar, and the mobile phase is relatively 

polar. 

Liquid-Liquid A liquid that is insoluble in the mobile phase is 
partition absorbed onto the porous support material. Can be 

used in either normal or reverse phase modes. 

Bonded phase The stationary phase is not applied to a porous 
particle in liquid film form but is covalently 
bonded by chemical reaction. Can be operated 
either in normal or reverse phase modes. 

Ion-exchange The stationary phase contains ionic groups which 
interact with the ionic groups of the sample 
molecules. 

Ion-pair Also useful for separating ionic compounds and 
overcomes certain problems inherent in the ion 
exchange method. Ionic sample molecules are 
"masked" by a suitable counter ion. 

Ion Developed as a means for separating the ions of 
strong acids and bases. It is a special case of ion-
exchange chromatography utilising different 
equipment. 

Size-exclusion Gel permeation: for organic solvents. 
Gel filtration: for aqueous solutions. 
In either mode the molecules are separated by 
size. 

Affinity Highly specific biochemical interactions provide 
the means of separation. The stationary phase 
contains specific groups of molecules which can 
only absorb the sample if certain steric and 
charge-related conditions are satisfied. 

" 
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of atomic spectrometry or mass spectrometry (including ICP-AES and ICP-MS) are of 

increasing importance, especially for speciation studies (418). 

2.2.1.1: Reverse phase chromatograPhy. 

Reverse phase chromatography can be used in either adsorption or partition modes. Here 

the stationary phase is less polar than the mobile phase. This form of chromatography is 

probably the most frequently used and certainly one of the most versatile modes of 

chromatography available, since a wide variety of samples can be analysed. The most 

frequently used stationary phases are the chemically bonded octadecylsilane (ODS), an 

n-alkane with 18 carbon atoms. Alternative stationary phases include C8 and shorter alkyl 

chains, cyclohexyl and phenyl groups. The most frequently used mobile phases are based 

on water\methanol and water\acetonitrile systems. In this mode of chromatography the 

interactions of the solute and solvent in the mobile phase are of great importance with 

respect to retention and obtaining satisfactory separations (423-426). 

2.2.1.2: Ion pair chromatography. 

Ion pair chromatograpy is a subset of reverse phase chromatography which can be applied 

to ionised or ionisable species on the reverse phase column. The separation of charged 

compounds or ones that can be ionised present problems, such as poor peak shape and 

inadequate resolution, on a reverse phase system using simple solvent mixtures. 

Modifications to either the mobile phase (i.e. sample ionisation) or the surface of the 

column can overcome these problems. The use of ion pairing reagents is just one way 

such modifications can be achieved. 
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There are two basic theories which describe the role or performance of the ion pairing 

reagent. Firstly the ion pairing reagent can be considered as a counter charged organic 

molecule, added to the mobile phase. They form an "ion-pair" with the analyte in 

question in the solution, such that it becomes one long non-polar pseudomolecule with 

a masked charge couple in the centre. The pseudomolecule then partitions with the 

bonded phases as if the charges do not exist. Hence the pseudomolecule is now retained 

on the column, and a separation is possible. 

Alternatively the ion pairing reagent reacts frrst, interacting with the bonded phase 

forming a non bonded phase ion exchange column. This modified bonded phase column 

then interacts with the analytes in the solution through a mixed partition\ion exchange 

mode of action (424,426). 

2.2.2: Chromatographic parameters. 

In order to determine and compare the performance of different chromatographic 

columns, there are several fundamental parameters and factors that can be derived from 

the chromatogram, some of which are outlined below. More detailed descriptions of these 

parameters are given in chromatography texts such as those by Hamilton (423) and 

Meyers (426). 

Phase preference can be expressed by the distribution or partition coefficient, denoted 

by K. This gives the ratio of the concentration of the solute in the stationary and mobile 

phase:-
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where C, and Cm are the molar concentrations of a solute in the stationary and mobile 

phase respectively. The various components of the mixture in a chromatographic 

separation must have different distribution coefficients if the mixture is to be separated. 

The time taken for a component to elute to its maximum concentration is known as the 

retention time, denoted by tR. Two compounds can be separated if they have different 

retention times. Figure 2. 7 defines the retention time where to is the dead time or 

retention time of an unretained solute, and tR is the net retention time:-

tR=to + t'R 

to is identical for all eluted substances and represents the mobile phase residence time 

whereas t' R is the stationary phase residence time which is different for each separated 

compound. 

A chromatographic column may be considered as a series of narrow layers known as 

theoretical plates. The ability of a column to minimise band broadening is termed the 

column efficiency and can be expressed as:-

where N = the number of theoretical plates, tR is the peak retention time, and W is the 

peak width. 

Resolution, R, is a measure of the ability of a column to resolve two solutes. It is 

experimentally defined as the difference in retention times of the two peaks, divided by 

the average peak width:-
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Figure 2.7: Illustration of paramaters for retention time and resolution. 
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Key:-
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W 2 = peak width for compound 2 

tR2 •. 
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R,=WU~ 
w, + W2 

where tR1 and tR2 are the retention times, and W, and W2 are the base widths of the two 

peaks. This is illustrated in Figure 2. 7. When R. equals unity there is overlap of the two 

peaks but it is clear that two components are present. At R.= 1.5 the overlap is 

considerably reduced and values such as this are considered suitable for the majority of 

analyses. The difference between the degrees of retention of the different solutes can also 

be described as the selectivity factor, a, which is always calculated so that the value is 

greater than, or equal to unity. If the value is unity, the components cannot be separated 

by that particular set of chromatographic conditions. The selectivity factor can be defined 

as:-

where K8 is the partition coefficient for the more strongly retained solute and KA the 

partition coefficient for the less strongly retained solute, which therefore moves more 

rapidly through the column. 

2.2.3: Exoerimental instrumentation. 

All chromatographic results in this study were obtained using ion pair-reverse phase-high 

performance liqiud chromatography (IP-RP-HPLC). The chromatographic system used 

consisted of a Varian 9001 isocratic pump coupled to a Varian 9070 fluorescence detector 

[xenon lamp] (Varian Ltd, Walton-on-Tharnes, Surrey, UK). Samples were loaded using 

a Rheodyne 7125 injection valve (Cotati, CA, USA) with a 20 141 sample loop (onto a 
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2.3 IMMUNOASSA YS 

2.3.1 General theory and principles. 

lmmunoassays are major diagnostic tools used in the field of clinical chemistry. An 

immunoassay is an analytical technique that uses antibodies or antibody-related reagents, 

i.e. an immunological reaction, for the determination of sample components. The specific 

binding, characteristic of these reagents, allows the development of methods that are 

highly selective and which can often be used with complex matrices, such as blood and 

urine, with little or no sample preparation. More details concerning antigen-antibody 

interactions employed in immunoassays can be found in general text books on 

immunology (427-429). Immunoassays use readily detectable labels such as radioisotopes 

or enzymes, which helps to provide many of these methods with extremely low limits of 

detection (below 1 ng\ml). Such properties, plus the relatively low cost involved with 

most of these techniques, make an immunoassay the method of choice for many clinical 

applications. 

Although fluorescent or chemiluminescent markers are tending to replace radioisotopes 

for labelling, enzyme labels are by far the most common type of immunoassay used at 

the present time. The enzyme linked immunosorbant assay (ELISA) is one of many 

enzyme immunoassay methods (EIA) available (430,431). Enzyme linked immunosorbant 

assays provide a technique with the advantages of radioisotopic immunoassays (RIA), 

such as good sensitivity, simplicity and ease of handling multiple samples, but with none 

of the disadvantages associated with the handling of radioactive isotopes. Like RIA, 

ELISA can be used to assay quantitatively and qualitatively for either antigens or 
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antibodies. Three major variations exist: indirect, sandwich and competitive ELISA 

(430,431). 

2.3.2 Metra Biosystems Assay Kits. 

Metra Biosystems Ltd, Oxford, UK, have made two ELISA based test kits commercially 

available for the measurement of urinary pyridinium crosslinks. Pyrilinks™ measures the 

mature collagen crosslinks pyridinoline (PYD) and deoxypyridinoline (DPYD) whilst 

Pyrilinks-D™ measures only deoxypyridinoline. Pyrilinks™ uses a polyclonal antibody 

to determine free PYD and DPYD present in urine from the breakdown of mature 

collagen (432,433). Pyrilinks-D™ uses a highly specific monoclonal antibody to 

determine free DPYD present in urine from the breakdown of bone collagen (434). 

For the purpose of the clinical trial presented in this thesis, only the bone specific 

crosslink deoxypyridinoline is measured, using the Pyrilinks-D™ kits. The basic principle 

of the assay is based on a competitive enzyme immunoassay in a microtitre plate format 

(434). The DPYD antibody (rabbit or mouse anti-deoxypyridinoline monoclonal antibody) 

is coated onto the microtitre plates. The samples, standards and controls are diluted I in 

10 with a buffer solution (phosphate buffered saline {PBS} and Tween {polyoxyethylene 

(20) sorbitan monolaurate}, 0.15M NaCl, IOM sodium phosphate, pH 7.0, and 0.05% 

Tween 20), then added to individual wells on the plate. Any DPYD present binds to the 

immobilised DPYD antibodies. An enzyme conjugate (DPYD-alkaline phosphatase) is 

added to the reaction mixture and left to incubate for 120 +\- 5 minutes, in the dark 

between 2-8 °C. During this incubation period the DPYD in the sample competes with 

the conjugated DPYD-alkaline phosphatase for the antibody bound to the plate. The high 
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immunological specificity of the DPYD antibody, combines with the catalytic ability of 

the alkaline phosphatase enzyme to bind with any DPYD molecules previously bound, 

creating an antibody-antigen-antibody sandwich. After washing away any unbound 

conjugate with a PBS-Tween solution, p-nitrophenyl phosphate is added to each well, 

resulting in a colour forming reaction to occur with the DPYD during an incubation 

period of 60 + \- 5 minutes at room temperature in the dark. The colour development is 

stopped by the addition of sodium hydroxide (lN) and the optical density is measured at 

405nm using a microplate reader (Titertek Multiskan Plus Mk 11, Labsystems Life 

Science International (UK) Ltd, Basingstoke, Hampshire, UK). The amount of substrate 

converted is proportional to the concentration of bound DPYD (435). The data analysis 

was performed using a Multiskan Mk 11 programme Vl.5 (Labsystems, Life Science 

International (UK) Ltd, Basingstoke, Hampshire, UK) and a curve fitting programme, 

Softmax V2.34 (Metra Biosystems Ltd, (UK}, Oxford, UK). 
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CHAPTER 3: ANALYSIS OF THE PYRIDINIUM CROSSLINKS BY IDGH 

PERFORMANCE LIOUID CHROMATOGRAPHY CHPLCl. 

3.1: INTRODUCTION. 

The powerful separating powers of HPLC, combined with the excellent sensitivity and 

specificity of tluorometric detection, capitalising on the natural fluorescent properties of 

both pyridinium crosslinks, has resulted in the development of a number of reverse phase 

high performance liquid chromatography methods, as summarised in Table 3.1. The 

HPLC analysis of the two crosslinks usually involves the measurement of the total 

crosslink levels and since the crosslinks exist in both a free and bound form (149), an 

acid hydrolysis step is required to convert the bound into the free form. The crosslinks 

are then separated from the hydrolysate by partition chromatography using a cellulose 

column (446). These HPLC methods therefore involve a multi stage sample preparation 

procedure, and although this is simple and effective, it is time consuming, cumbersome 

and tedious, as well as being prone to a large number of variables which result in poor 

recoveries and irreproducible results. Some sources of variation have been identified 

(444), however the fact that these methods often Jack suitable standards and sufficient 

robustness for routine clinical analysis has been the "achilles heel" in using the 

pyridinium crosslinks as biochemical markers to measure bone breakdown. 

To make this technique more useful and attractive for routine clinical use, automated 

sample preparation systems have been developed (447-449). The recent development and 

commercial availability of an internal standard - acetyl pyridinoline (450) should also 

improve the precision of the HPLC assay. However certain precautions must still be 
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Table 3.1: Summary of HPLC methods to measure the pyridinium crosslinks. 

Type of Conditions Refs. 
chromatography 
(Sample type) 

Molecular Sieve Columns: a)Bio-Gel P2, 100-200 mesh, 2.5 x 175 
(urine) 90 cm. b) Bio-Gel P2, 200-400 mesh, 2.5 x 40 

cm 

Mobile phase: a) 1M CaCI2 , 0.05M Tris/HCI, 
pH 7.5. b) 0.1M acetic acid 

Ion-exchange Column: glass packed with lO~tm Separon 436 
(urine) HEMA-BIO 100 SB (sulphobutyl), 15cm x 

3mm 

Mobile phase: 0.3M sodium sulphate, pH 1.8 

Flow rate: 0.3 ml min·1 

~. 297nm, A.m 389nm 

Gradient ion pair Column: Altex Ultrasphere ODS C18, 5J.tm, 437 
reverse phase 250 x 4.6mm 
(urine) 

Mobile phase: 1) Solvent A: 0.1 % v\v 
tritluoroacetic acid (TFA) in water. Solvent B: 
Acetonitrile titrated with trifluoroacetic acid 
(TFA) to give the same UV absorbance at 
220nm as solvent A. 

2) Solvent A: 0.01M n-heptofluorbutyric acid 
(HFBA) in 5% v\v acetonitrile, Solvent B: 
0.01 M HFBA in acetonitrile. 

Gradient: various tested using both systems. 

Flow rate: 1.0 ml min-1 

~. 297nm, A.m 380nm 
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Table 3.1: Continued. 

Type of Conditions Refs. 
chromatography 
(Sample type) 

Gradient ion pair Column: Hypersil ODS, 5/-'m, 250 x 4.6mm 438 
reverse phase 
(urine) Mobile phase: Solvent A: 20mM N~CI, pH 

3.5, containing 5 mM octanesulphonic acid 
(OSA). Solvent B: 75% acetonitrile and 25% 
solvent A. 

Gradient: 10% solvent B increasing to 40% 
solvent 8 in 30mins, increasing to 70% for 
15mins, followed by 10% solvent B re-
equilibration. 

Flow rate: 1.0 ml min·1 

A. .. 295nm, A..., 400nm 

Isocratic ion pair Column: Excil 100 ODS, 5/-'m. lOO x 4.6mm 439 
reverse phase 
(urine) Mobile phase: 25mM sodium formate, 5mM 

OSA and 1mM EDTA, pH 3.25 in 20%v\v 
methanol 

Flow rate: 1.5 ml min· 1 

A.. 295nm, A..., 400nm 

lsocratic ion pair Supelco LC-18-DB, 33 x 4.6mm, IOOA 440 
reverse phase 
(urine) Mobile phase: Solvent A: 0.01M HFBA in 

2mM NH4CI. Solvent B: 75% acetonitrile, 
25% solvent A. 
Ratio used A:B = 88:12 

Flow rate: 1 .0 ml min·1 

A.. 295nm, A..., 395nm 
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Table 3.1: Continued. 

Type of Conditions Refs. 
chromatography 
(Sample type) 

Isocratic ion pair Column: Altex Ultrasphere ODS, 5J.tm, 250 x 441 
reverse phase 4.6mm 
(urine) 

Mobile phase: O.Olmol 1·1 HFBA:acetonitrile 
(91:9) 

Flow rate: 0.8 ml min·1 

X.. 297nm, X., 380nm 

Isocratic ion pair Column: lntersil ODS-2,5J.tm, 250 x 4.6mm 442 
reverse phase 
(tissue) Mobile phase: 0.1M sodium phosphate, pH 3.5 

and acetonitrile (75:25 v\v) containing 1g 
sodium dodecyl sulphate (SDS) and 25mg 
EDT A per litre. 

Flow rate: 1.0 ml min·1 

X.. 295nm, X., 395nm 

Isocratic ion pair Column: Excil 100 ODS-2,5~tm, 100 x 2.1mm 443 
reverse phase 
(serum) Mobile phase: 10mM pentafluoropropionic acid 

(PFPA) in water. 

Flow rate: 0.15 ml min·1 

A.. 290nm, X., 400nm 

Isocratic ion pair Column: Supelco LC18-DB, 3~tm, 33 x 4.6mm 444 
reverse phase 
(urine) Mobile phase: Solvent A: lOmM HFBA, pH 

2.5, Solvent B: 75% v\v acetonitrile, 25% v\v 
solvent A 
Ratio solvent A:B 90:10. 

Flow rate: 1.0 ml min·1 

X.,. 295nm, X..., 395nm 
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taken into consideration (451). For example studies have highlighted interference 

problems using the HPLC method to measure the crosslinks in urine samples taken from 

patients prescribed sulfasalazine for rheumatoid arthritis (452). Despite the recent 

development of other methods to measure the crosslinks in serum (443,445) the HPLC 

measurement of the crosslinks in urine samples is still the accepted method despite its 

inherent problems. 

This chapter describes the development and modifications to the HPLC methodologies 

in order to achieve good "in-house" chromatographic results for the pyridinium 

crosslinks. Details concerning the evaluation into the mobile phase and sample 

preparation procedures are also described. 

3.2: EXPERIMENT AL. 

3.2.1: Reagents and chemicals. 

Analar or HPLC grades of hydrochloric acid, sodium hydroxide, sodium formate, glacial 

acetic acid and formic acid were obtained from Merck (Poole, Dorset, U.K.). Methanol, 

acetonitrile (HPLC grade) and butan-1-ol (analytical grade) were obtained from Rathburns 

Chemical Ltd (Walkerburn, Scotland). Heptatluorobutyric acid (HFBA), 1-

octanesulphonic acid (OSA), ethylenediaminetetraacetic acid (EDTA) and cellulose (CF1 

and CF11) were obtained from Aldrich (Gillingham, Dorset, UK). 

The pyridinium crosslink standard solutions were prepared from bovine pelvic bone 

(supplied by Dr. Matthew Collinson, Radiotherapy Research Unit, Freedom Fields 
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Hospital, Plymouth) and human femoral bone (supplied by Dr. Norman Roberts, 

Department of Clinical Chemistry, University of Liverpool). These solutions were 

standardised against a commercial pyridinium crosslink standard (Metra Biosystems Ltd, 

Oxford, U.K) and a pyridinium crosslink standard prepared from human tibial bone, 

(supplied by Dr. Ian James, St. Bartholomew's Hospital, London, U.K). All water used 

throughout the study was deionised using a MilliQ purification system (Millipore, 

Bedford, MA, USA) or an Elgastat Maxima purification system (Elga Ltd, High 

Wycombe, Bucks., UK) at a resistivity of 18 MO. The instrumentation used was as 

described in Chapter 2 (Section 2.2.3). 

3.2.2: Preparation of standards. 

The two pyridinium crosslinks, pyridinoline (PYD) and deoxypyridinoline (DPYD) were 

extracted from bovine pelvic bone and human femoral bone (439). The bone samples 

were decalcified in 8% v\v formic acid in 10% v\v formal saline solution for several 

weeks. After freeze drying, 112g of bone was refluxed in 1500ml of 6M hydrochloric 

acid for 16hrs at 116°C, and then reduced to 500ml by distillation. The hydrolysate was 

then mixed with glacial acetic acid (500ml), a slurry of 50g of CFll cellulose powder 

in 500ml butanolic eluent (butan-1-ol:glacial acetic acid:water, 4:1: 1), and 2L ofbutan-1-

ol, and stirred at room temperature for 30 minutes. The mixture was filtered and washed 

with 5L of butanolic eluent to remove the bulk of the fluorescent hydrolysis components. 

Pyridinoline (PYD) and deoxypyridinoline (DPYD) were eluted with lL of MilliQ water. 

The aqueous fraction was freeze dried and resuspended in 10mls of 0.05M hydrochloric 

acid to provide a stock solution of crosslink standard. 

110 



3.2.3: Urine sample preparation. 

Urine samples were prepared by a modified procedure described by James et al in 1990 

(439). Aliquots of urine (lml) were hydrolysed with hydrochloric acid (lml) at ll6°C for 

16hrs. Hydrolysates (0.5ml) were mixed with glacial acetic acid (0.5ml), 5% w\v CFl 

cellulose powder in butanolic eluent (0.5ml) and butan-1-ol (2ml) in glass vials. Columns 

were prepared using 5ml Gilson pipette tips plugged with glass wool filled to a level of 

3cm with 5% w\v CFl cellulose in butanolic eluent. The cellulose was allowed to settle 

and then washed with 5ml ofbutanolic eluent. Samples were loaded onto the column, and 

the glass vials rinsed with butanolic eluent (3 x 5ml) and the washings applied to the 

column. Interfering tluorophores were eluted with butanolic eluent (15ml) and the 

crosslinks were eluted with MilliQ water (12ml) and collected in 15ml plastic conical 

centrifuge tubes (Labsystems, Life Science International (UK) Ltd, Basingstoke, 

Hampshire, UK). After centrifugation (2000rpm, 5min), the upper butanolic layer was 

removed using a Pasteur pipette. The lower aqueous layer containing the crosslinks was 

freeze dried and the samples were stored at 4 °C. 

3.3: RESULTS AND DISCUSSION. 

3.3.1: Evaluation of the chromatographic conditions. 

For the purpose of this study a simple isocratic reverse phase ion pair HPLC method was 

selected (439). The mobile phase consisted of 25mM sodium formate, 5mM 

octanesulphonic acid (OSA), lmM EDTA, in 20% v\v methanol, with the pH adjusted 

to 3.25 using 6M hydrochloric acid. A flow rate of 1.5 mls min·' was used. Samples 

were resuspended with 200 ~tl of a loading buffer (25mM sodium formate) prior to injection. 
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3.3.1.1: Separation of tbe PYD and DPYD crosslinks. 

Figure 3.1 shows the chromatogram obtained for the St. Bartholomew's crosslink 

standard, analysed under the conditions given. The retention times for both PYD and 

DPYD were less than 5 minutes and the peak shapes were good, although baseline 

resolution between the two analyte peaks was not complete. However the ODS column 

used in this study was from a different manufacturer, which may account for this 

incomplete resolution. Analysis of the St. Bartholomew's standard and the Metra 

commercial crosslink standard, using slightly modified conditions, (17.5% v\v methanol 

instead of 20% v\v, and a pH of 3.4 instead of 3.25), resulted in better separation with 

slightly longer, although comparable retention times (Figure 3.2). 

Figure 3.3 compares the chromatograms for the St. Bartholomew's standard (A), a urine 

sample (B), and a 50:50 eo-injection of the sample and standard (C). The results show 

that the urine sample preparation procedure selectively extracted the crosslink:s PYD and 

DPYD, and that the urine sample also had an unknown peak (UNK-2), which was 

different from the unknown peak in the bone standard (UNK-1). Unfortunately a slight 

shoulder on the PYD peak in the standard and some peak splitting in the real sample was 

also apparent. Both i) a clean up of the column, and ii) replacement with a new column, 

resulted in little or no obvious improvement and as a consequence of these observations 

further method development was necessary. 
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Figure 3.1: A typical chromatogram showing the St. Bartholomew's crosslink standard, analysed under the original conditions. 
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Figure 3.2: A typical chromatogram showing the St. Bartholomew's standard (A) and the 
Metra commercial crosslink standard (B), analysed under modified conditions. 
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Figure 3.3: Chromatograms comparing the St. Bartholomew's crosslink standard (A), 
with crosslinks extracted from a urine sample (B), and a eo-injection of the sample and 
standard (C). 
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3.3.1.2: Analysis of calibration standards and detector response. 

Evaluation of the methodology was further continued by analysing the "home" prepared 

crosslink standard, as described in Section 3.2.2., using the modified chromatographic 

conditions (i.e. 17.5% methanol and pH 3.4). Two calibration solutions were prepared 

from the pyridinium crosslink standard (bovine) stock solution. A 1 in 40 dilution and 

1 in 4 dilution of the stock solution gave calibration standards 1 and 2 respectively. Both 

of these calibration standards compared well with the St. Bartholomew's standard (Figure 

3.4 and Figure 3.5), indicating that the two analyte peaks were originally extracted 

cleanly, and that their retention times correlated well , thus confirming the two crosslinks 

identity. However the PYD:DPYD ratio was clearly different (i.e. 26: 1). This could be 

attributed to variances between different species. Unfortunately the analysis of the 

standard made from human femoral bone (Figure 3.6) which should give a PYD:DPYD 

ratio of 3-4: 1 (187) , similar to the St. Bartholomew's standard (human tibial bone), 

clearly showed some DPYD was lost during the extraction process. Despite this, the two 

crosslinks were well resolved and therefore these diluted solutions could be used as 

calibration standards. These results did however suggest that the extraction procedure was 

the major source of error. 

The standardisation of these two calibration solutions against the St. Bartholomew's 

standard, provided additional evidence to support further method development (Table 

3.2). Excellent % RSD's were attained for both solutions ( < 3% for PYD and < 10% 

for DPYD), indicating that the chromatography was capable of supporting qualitative and 

quantitative studies. However upon the analysis of real samples, where the crosslinks 

were extracted from a pooled urine sample, highly variable quantitative results were 
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Figure 3.4: A typical chromatogram of Calibration solution 1, prepared from bovine 
pelvic bone, compared to the St. Bartholomew's crosslink standard. 
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Figure 3.5: A typical chromatogram of Calibration solution 2, prepared from bovine 
pelvic bone, compared to the St. Bartholomew's crosslink standard. 
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.Eigure 3.6: A typical chromatogram showing the crosslinks extracted from human femoral bone. 
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Table 3.2: Results for repeated measurements on the two calibration standards. 

Sample Standard Standard Standard 2 Standard 2 
1 1 

Retention Retention time [PYD] [DPYD] 
time [PYD] (minutes) (nM) (nM) 

(minutes) (nM)" PYD DPYD 

1 8.29 1067.88 8.90 10.90 8686.77 296.10 

2 8.40 1060.03 8.78 10.76 8931.09 376.72 

3 8.37 1031.25 8.75 10.71 9065.73 334.4 

4 8.34 1006.63 8.75 10.84 9159.92 336.94 

5 8.29 1053.59 8.76 10.72 9191.37 394.36 

6 8.27 1000.68 8.76 10.73 9255.40 360.29 

7 8.29 1029.73 8.71 10.67 9224.71 362.83 

8 8.18 1030.52 8.70 10.66 9258.69 361.78 

9 8.21 1030.28 8.70 10.64 9199.13 300.83 

10 8.26 1041.29 8.72 10.67 9289.02 395.50 

11 8.26 1048.81 8.76 10.71 8496.75 386.97 

12 8.31 1037.44 8.74 10.68 8908.41 304.13 

AVG 8.29 1036.51 8.75 10.72 9055.58 350.90 
S.D. 0.06 18.99 0.05 0.07 241.49 34.59 

(%RSD) (0.71) (1.83) (0.58) (0.69) (2.67) (9.86) 

• DPYD values not given (below the limit of detection) 
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attained (Table 3.3), with% RSD's of25% and 19% for PYD and DPYD respectively. 

The PYD:DPYD ratio also varied considerably. This clearly illustrated that the sample 

preparation procedure, rather than the chromatography, was responsible for the observed 

irreproducibility. 

The linear response range using the Varian fluorescence detector for the crosslinks was 

evaluated using the "home made" bovine stock solution prepared as described in Section 

3.2.2. A series of diluted samples were prepared and the peak area values for both PYD 

and DPYD were plotted against concentration. Figure 3. 7 shows that PYD was linear up 

to 960nM and from Figure 3.8, DPYD was linear up to at least 700nM. 

3.3.1.3: Evaluation of the resuspension solution. 

The solution used to resuspend the freeze dried sample could also have a profound effect 

on the chromatography and\or its reproducibility, since it could interact and change the 

ion paring conditions of the column. Another series of extracts were therefore prepared 

as described in Section 3.2.3. 

Different types of resuspension solutions were examined, as summarised in Table 3.4. 

A slight shoulder\split on the PYD peak, and the slight tailing on the DPYD peak were 

subtly changed by the resuspension solution. Hence the type of loading buffer used did 

affect the peak shape, particularly for the PYD crosslink. The best results were achieved 

when the samples were resuspended with 1mM octane sulphonic acid (OSA). Although 

the resuspension solution improved the peak shapes the % RSD values remained poor. 
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Table 3.3: Results for repeated measurements on real samples. 

Sample [PYD] [DPYD] PYD\ PYD DPYD 
DPYD retention retention 

(nM) (nM) Ratio time time 
(minutes) (minutes) 

1 943.59 168.29 5.6:1 9.07 10.63 

2 654.93 165.67 4:1 9.06 10.54 

3 610.3 139.87 4.4:1 9.12 10.62 

4 523.19 81.04 6.5:1 8.91 10.46 

5 530.19 127.2 4.2:1 9.03 10.57 

6 670.77 181.37 3.7:1 9.10 10.52 

7 537.32 144.15 3.7:1 9.13 10.67 

8 562.48 132.34 4.3:1 9.06 10.51 

9 472.11 ND - 9.08 -

10* 570.00 168.89 3.4:1 8.39 10.28 

11* 505.16 174.86 2.9:1 8.73 10.08 

12* 344.18 ND - 8.19 -

13* 400.29 124.05 3.2: l 8.29 10.06 

AVG 571.12 146.16 
S.DD 141.17 28.24 

(%RSD) (24.72) (19.32) 

* Samples analysed on a different day 

ND = Not Detected 
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Figure 3. 7: Fluorescence response for pyridinoline (PYD). 
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Figure 3.8: Fluorescence response for deoxypyridinoline (DPYD). 
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Table 3.4: Type of resuspension solutions evaluated. 

Sample number Resuspension Solution 

1 0.05M HCI 

2 1mM OSA 

3 5mM OSA 

4 5mM OSA* 

5 50mM OSA 

6 50mM OSA* 

7 5mM sodium formate 

8 5mM sodium formate* 

9 25mM sodium formate 

10 25mM sodium formate* 

11 5mM sodium formate: 5mM OSA (50:50) 

12 5mM sodium formate: 5mM OSA 
(50:50)* 

• pH adjusted to 3.4 using 6M HCI. 
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3.3.2: An investigation into the sample preparation procedure. 

Since neither the column condition, nor the chromatographic conditions were responsible 

for the poor peak shapes, further evaluation of the sample preparation procedure was 

conducted. Pooled urine samples were prepared, and the following parameters assessed 

to obtain the optimum conditions:-

A) Acid hydrolysis 

B) Wash volume with butanolic eluent (6-30 mls). 

C) Elution volume with MilliQ water (2-12 mls). 

D) Cellulose column length (1-5 cm). 

Table 3.5 shows the results for acid hydrolysed samples compared to non acid hydrolysed 

samples. As expected the acid hydrolysed samples (i.e. total crosslinks) gave higher 

values than the non acid hydrolysed samples (i.e. free fraction). However due to the 

lower concentrations, the analysis of the DPYD peak was more difficult and in many 

instances could not be quantified. 

The literature states the free fraction constitutes approximately 40% of the total crosslink: 

value (149). The experimental ratios for PYD and DPYD are given below:-

[PYD] = [non-hydrolysed\free fraction] = 297.0 x 100 = 53.5% 
[hydrolysed\total fraction] 554.9 

fDPYDJ = [non-hydrolysed\free fraction] = 121.2 x 100 = 72.5% 
[hydrolysed\total fraction] 167.2 
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Table 3.5: Summary of results attained for acid hydrolysed versus non acid hydrolysed 
samples. 

I I Acid hydrolysed I Non acid hydrolysed 

PYD concentration (nM) 

average ± s.d 554.9 ± 161.0 297.0 ± 63.7 

RSD ( %) 29 21 

no. of samples (n) 13 15 

DPYD concentration (nM) 

average ± s.d 167.2 ± 43.6 121.2 ± 38.6 

RSD (%) 26 32 

no. of samples (n) 12 6 

Ratio PYD:DPYD 3.3:1 2.5 :1 
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The higher ratios particularly for DPYD, suggested that either the value for the non 

hydrolysed sample was too high or that not all the crosslinks were converted and\or 

extracted in the acid hydrolysed samples, thus giving a low value. Since the ratio of 

PYD:DPYD in the acid hydrolysed sample was in the normal range (3-4: 1), whereas in 

the non acid hydrolysed sample it was low, this supported the view that the DPYD value 

in the non acid hydrolysed sample was too high. This could be attributed to the data 

handling by the chromatographic software, since the low concentrations involved made 

accurate quantification and peak identification difficult. Therefore on a practical basis, 

the analysis of the acid hydrolysed samples was easier and within the data handling 

capabilities of the software. However little difference in the RSD's were observed 

between the two types of samples, indicating that acid hydrolysis was an unlikely source 

of the quantitative irreproducibility observed. 

To further support this conclusion, very little evaporation of the sample occurred during 

the acid hydrolysis stage (Table 3.6), indicating that none of the the HCI, present to 

convert the bound crosslink portion into free crosslinks was lost, hence complete 

conversion should take place. Also present in all the hydrolysates were fine black 

particles, which could interfere with the extraction of the crosslinks. Table 3. 7 shows that 

under the normal preparation conditions (where the hydrolysate is shaken prior to an 

aliquot being taken), the correct PYD:DPYD ratio was attained, indicating the 

particulates do not appear to interfere with the crosslink extraction. However if the 

hydrolysate was centrifuged and the supernatant used, a lower ratio was attained. The 

PYD concentration was also lower, whilst the DPYD concentration was slightly higher. 

This suggested that some of the PYD becomes trapped or absorbed onto the fine 
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Table 3.6: Results showing evaporation rate during acid hydrolysis 

Sample Weight before Weight after* %Loss 
(lml urine + 1ml HCI) hydrolysis (g) hydrolysis (g) 

1 16.6039 16.5985 0.03 

2 16.4705 16.4313 0.07 

3 16.6778 16.6688 0.05 

4 16.7994 16.7946 0.03 

5 16.3277 16.3226 0.03 

6 16.6144 16.6112 0.02 

* Samples hydrolysed for 16 hours at 116°C 

Table 3. 7: Results for acid hydrolysates prepared under normal conditions (i.e. shaking) 
compared to centrifuging. 

Hydrolysates prepared Hydrolysates prepared 
after shaking after centrifuging 

PYD concentration (nM) 

average ± s.d 604.5 ± 158.0 497.1 ± 144.3 

RSD (%) 26 29 

no. of samples (n) 6 6 

DPYD concentration (nM) 
average ± s.d 

156.4 ± 37.8 178.1 ± 46.2 
RSD (%) 

24 26 
no. of samples (n) 

6 6 

Ratio PYD:DPYD 3.9:1 2.8:1 
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particulates or that some is released or redissolved on shaking. However the RSD's for 

both types of sample were again high, further indicating that the acid hydrolysis stage 

was probably not the source of error. 

Figure 3.9 summarises the results concerning the optimisation of the butanolic wash 

volume, elution volume and cellulose column length. Some trends can be seen which 

confrrm the initial suspicions that the sample preparation stage is critical with respect to 

achieving reproducible quantitative results. The volume of butanolic wash solution 

(Figure 3.9a) should be 25mls or more in order to remove the bulk of the interfering 

fluorophores, since little change in the total peak areas was observed after this. The PYD 

peak areas did not change greatly, which indicated that the butanolic wash solution had 

a minimal effect on this crosslink. However the peak areas for the DPYD peak were 

reduced after washing with more than 15mls, suggesting that some of the DPYD was 

washed off the column along with the interfering fluorophores. 

The elution volume (Figure 3.9b) should be greater than 8 mls of MilliQ water. This 

removed the maximum quantity of the crosslinks from the column, although the total 

peak area did vary. The column length (Figure 3.9c) should be 4-5 cm long in order to 

extract the maximum crosslink levels. The flow rate through the cellulose columns was 

the only parameter not controlled and since the amount of cellulose appeared to be 

important, it was possible that the flow rate would also play a critical role. This 

optimisation experiment was therefore repeated using polypropylene disposable columns, 

manufactured with a porous frit sealed in at the bottom (Bio-Rad Laboratories Ltd, Hemel 

Hempstead, Herts, U.K.). It was hoped that the use of these columns would remove the 
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Figure 3.9: Optimisation of sample preparation procedure. 
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uncertainty associated with the flow rates through the columns and hence the time the 

cross! inks were in contact with the column for each sample. Unfortunately these columns 

made little difference to the % RSD values. 

3.4: USE OF AN ALTERNATIVE CHROMATOGRAPHY METHOD. 

When multiple samples were analysed during the method development work, the column 

conditions deteriorated quite quickly. Attention therefore focused on an alternative ion 

pair isocratic reverse phase HPLC method (444). 

3.4.1: Experimental. 

This alternative method's mobile phase consisted of solvent A (lOmM HFBA, pH 

adjusted to 2.5 with lOM NaOH) and solvent B (75% v\v acetonitrile, 25% v\v solvent 

A). The final mixture of solvent A:solvent B was 90:10, using a flow rate of 1.0 ml m in· 

1
• Samples were resuspended with 200 ~I of a resuspension solution (lmM HFBA). The 

equipment and column used were as described in Section 2.2.3. 

3.4.2: Results and discussion. 

This alternative method also resulted in good resolution and peak shapes, within 

reasonable (less than 8 minutes) analysis time for both standards and samples (Figure 

3.10). However better column stability and hence longer column life was possible when 

running a large number of samples. For these reasons this alternative method based on 

acetonitrile\HFBA was favoured over the methanoi\OSA based method, and used in all 

the remaining experiments. 
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Figure 3.10: A typical chromatogram showing the St. Bartholomew's crosslink standard using the alternative chromatographic conditions. 
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Following on from the findings of the optimisation experiments described in Section 

3.4.2, a series of spiked samples were prepared as summarised in Figure 3.11, to explore 

which stage of the sample preparation was responsible for the quantitative variability of 

the results. The % recovery results (Table 3.8) did not really clarify the nature of the 

problem in the sample preparation procedure. The results clearly showed each stage was 

susceptible to variable results and that no clear trend could be observed. The first stage 

gave % recovery results of 100% or greater? Stage two however only gave % recovery 

results of approximately 50%. It appeared the loss of cross links could occur during one 

or more of the preparation stages. These results underline the difficulties encountered 

with the HPLC method where the extraction procedure was not under control and thus 

giving good extraction efficiencies on some occasions whilst poor on others. 

3.5: CONCLUSIONS. 

Good separation of the PYD and DPYD crosslinks was possible using two different 

isocratic ion pair reverse phase HPLC methods. However the system based on acetonitrile 

and heptafluorobutyric acid, (as opposed to methanol and octanesulphonic acid), was 

preferred because it provided extra column stability and hence prolonged the column life. 

The HPLC technique provided excellent qualitative results, but the quantitative results 

were irreproducible. The sample preparation procedure appeared to be responsible for 

these variations but despite detailed examination and optimisation of the conditions, 

improvement to the quantitative precision was not achieved. Therefore the use of the 

HPLC methodology for routine assessment of the crosslinks was considered 

unsatisfactory. Either further improvements to this methodology or an alternative method, 

capable of the necessary accuracy and precision was therefore required. 
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Figure 3 .11: Procedure used in recovery tests, where samples were spiked with calibrant 
2 solution, at different stages of the preparation procedure, as indicated by the arrows. 
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Table 3.8: % recovery results for the various stages of the sample preparation procedure. 

I Spiket 

I 
% Recovery PYD 

1 (a) 90.4 

131.2 

97.8 

144.9 

146.5 

2 (a) 35.1 

(b) 44.7 

3 (a) 92.3 

(b) 87.9 

4 (a) 88.0 

(b) 85.4 

5 (a) 78.3 

(b) 82.9 

t Refer to Figure 3.11 for details 

* Same sample analysed 48 hours later 

(a) spiked blank (water) samples 

(b) spiked urine samples. 

123.9* 

125.2* 

135.0* 
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CHAPTER 4: ANALYSIS OF THE PYRIDINIUM CROSSLINKS BY ENZYME 

LINKED IMMUNOASORBANT ASSAY CELISA). 

4.1: INTRODUCTION. 

Alternative ways to HPLC to measure the pyridinium crosslinks, have been investigated 

in particular immunological methods. The first enzyme linked immunoassay (ELISA) 

method (432) demonstrated good sensitivity, but could not distinguish DPYD from PYD, 

and the desmosine crosslink of elastin also showed some cross-sensitivity (453). 

It is now known that about 40% of urinary PYD and DPYD is present in the free form 

(149), and that measurements of the free forms correlate well with total PYD and DPYD 

in normal subjects and in those with levels elevated due to metabolic bone disease or 

menopause. Also the peptide bound forms of PYD and DPYD are mixtures of several 

molecular species (454). Based on this knowledge immunoassays have been developed 

using antibodies that preferentially recognise free PYD and DPYD, rather than the 

glycosolated and large peptide bound forms (433,434). Where only urinary free DPYD 

is measured, less than 1% cross-reaction with free PYD has been observed (434). These 

immunoassays require no sample preparation and suffers negligible sample interferences. 

In addition when compared to the HPLC technique (see Chapter 3) such techniques 

provide a rapid and simple method for evaluating the pyridinium crosslinks in urine 

(433,434,455). The only major disadvantage of this approach is that unlike HPLC it is 

unable to simultaneously distinguish between PYD and DPYD. 

The ELISA method has demonstrated satisfactory correlation with the HPLC technique 
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(246) and has been used to monitor various metabolic diseases, such as vitamin D 

deficiency (246), Paget's disease (243), and osteoporosis (235). However these studies 

have shown that the ELISA method is not as sensitive as the HPLC technique, 

particularly where changes in calcium metabolism have occurred at menopause or during 

hormone replacement therapy (235). Whether this limitation will be balanced out by 

avoiding the inconvenience of the cumbersome, expensive and time consuming HPLC 

procedure is debatable. However, it is generally accepted that the ELISA technique offers 

the greatest potential for routine clinical use in a large number of metabolic bone 

diseases. 

This chapter considers the potential of the ELISA method for the analysis of the urinary 

pyridinium crosslinks with the intention of utilising this approach (if successful) in the 

clinical trials. The ELISA kits manufactured and sold commercially by Metra Biosystems 

(Oxford, UK) were evaluated in order to ascertain their suitability for the analysis of a 

large number of samples, with both accurate and precise results, over a period of time. 

4.2: EXPERIMENTAL. 

The pyridinium crosslinks were measured using a commercially available ELISA kit 

(Metra Biosystems Ltd, Oxford, UK). Pyrilinks-DTM only measures the bone specific 

crosslink deoxypyridinoline, utilising a highly specific monoclonal antibody to determine 

free DPYD present in urine from the breakdown of bone collagen (434). The data 

analysis was performed using a Multiskan Mk II programme Vl.5 (Labsystems, Life 

Science International (UK) Ltd, Basingstoke, Hampshire, UK) and a curve fitting 

programme, Softmax V2.34 (Metra Biosystems Ltd, Oxford, UK). 
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For the deoxypyridinoline crosslink analyses, the procedures described in Section 2.3.2 

and summarised in Figure 4.1 were followed. The samples, standards and controls were 

diluted 1 in 10 with a buffer solution (phosphate buffered saline [PBS] and Tween 20 

{polyoxyethylene (20) sorbitan monolaurate}; 0.15M NaCl, lOM sodium phosphate, pH 

7.0, and 0.05% Tween 20). These solutions were then added to individual wells coated 

with the DPYD antibody (rabbit or mouse anti-deoxypyridinoline monoclonal antibody) 

on a microtitre plate. Any DPYD present binds to the immobilised DPYD antibodies. An 

enzyme conjugate (DPYD-alkaline phosphatase) was added to the reaction mixture and 

left to incubate in the dark at between 2-8 oc for 120 ± 5 minutes. During this 

incubation period the DPYD in the sample competes with the conjugated DPYD-alkaline 

phosphatase for the antibody bound to the plate. The high immunological specificity of 

the DPYD antibody, combines with the catalytic ability of the alkaline phosphatase 

enzyme to bind with any DPYD molecules previously bound, creating an antibody

antigen-antibody sandwich. After washing away any unbound conjugate with a PBS

Tween solution, p-nitrophenyl phosphate was added to each well, resulting in a colour 

forming reaction to occur with the DPYD during an incubation period of 60 ± 5 minutes 

at room temperature in the dark. The colour development was stopped by the addition of 

sodium hydroxide (IN) and the optical density was measured at 405nm using a microplate 

reader (Titertek Multiskan Plus Mk II, Labsystems Life Science International (UK) Ltd, 

Basingstoke, Hampshire, UK). The amount of substrate converted is proportional to the 

concentration of bound DPYD. 
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Figure 4.1: Summary of the ELISA procedure to measure the DPYD crosslink. 
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4.3: RESULTS. 

Table 4.1 shows that excellent% recovery's for DPYD (range: 96.6% to 106.5%) were 

attained at different concentration levels. Both of the control standards also gave values 

within the accepted reference ranges, i.e. 14.3 ± 0.9 nM (range: 12.4- 17.7 nM), and 

91.1 ± 5.2 nM (range: 82.2 - 117.3 nM), and with RSD's of 6.1% and 5.7% 

respectively (Table 4.2). 

4.4: CONCLUSIONS. 

The ELISA technique utilising the commercial kits from Metra Biosystems provided both 

an accurate and precise way of measuring the deoxypyridinoline crosslink in urine 

samples. The technique offered several other advantages when compared to the HPLC 

method in that it was quick and simple to use, required very little sample preparation (i.e. 

just dilution as opposed to extraction), was more robust, less prone to interferences and 

could easily be introduced into clinical laboratorys on a routine basis. For these reasons 

the ELISA method was adopted for the clinical trials. 
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Table 4.1: Results obtained from % recovery trials for deoxypyridinoline (DPYD). 

Test [DPYD] Added [DPYD] Observed [DPYD] Recovery 

(nM) (nM) (nM) (%) 

1 71.2 12.6 80.9 96.6 

2 71.2 89.0 161.9 101.1 

3 37.5 12.6 53 .35 106.5 

4 37.5 89.0 130.6 103.2 

Table 4.2: Results obtained for deoxypyridinoline (DPYD) control standards. 

Control Sample Reference Range Average [DPYD] RSD (%) 

(nM) ± s.d (n=6) 

Low 12.4- 17.7 14.3 ± 0.9 6.1 

High 82 .2 - 117.3 91.1±5.2 5.7 
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CHAPTER 5: A PRELIMINARY INVESTIGATION INTO THE BLOOD LEAD 

LEVELS IN PATIENTS DIAGNOSED WITH BONE METASTASES. 

5.1: INTRODUCTION. 

5.1.1: Sources of lead. 

Lead is widely distributed in the earth's crust, although lead does not exist in its 

elemental state in nature. Natural lead consists of four stable isotopes: Pb204 (1.48%), 

Pb206 (23.6%), Pb207 (22.6%) and Pb208 (52.3%). The principle lead ores are galena, 

cerrusite and anglesite containing lead sulphide, lead carbonate and lead sulphate 

respectively. Lead is mined from mixed lead and zinc ores and has been used extensively 

for many centuries (456,457). 

Mans exposure to lead from natural sources is minimal compared to the exposure from 

anthropogenic sources of lead (458). The preparation and\or storage of food, especially 

acidic foods and drinks in containers such as glazed earthenware, pewterware, leaded 

decanters, and other packaging materials can result in contamination of the food with 

variable levels of lead (456,457). 

Paper, newsprint and highly coloured magazines contain lead pigments, as do paints, hair 

dyes and eyepaints, all these can be potentially harmful not only to the user but to young 

children in the house (456,457). Airborne dust and soils are other sources of lead 

exposure, with higher lead levels found in inner cities and around highways, compared 

to rural areas. These levels have been ascribed to industrial pollution from, for example, 
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lead smelters, battery plants, scrap production, glassworks etc, and from the exhaust 

fumes from leaded petrol (456-463). Children are particularly susceptible to lead 

poisoning and the relationship between pica (i.e. the habit of eating non-food stuffs) and 

lead poisoning has been recognised for many years (456,464). 

However the principle source of exposure to the general population and the main non

industrial source of lead is from the diet, i.e. food, drinking water and other beverages 

(458,465). Exposure to lead from drinking water is on average very small, unless the 

water treatment and distribution system utilises leaded pipes, particularly in areas with 

acidic or "soft" water. Alcoholic drinks, particularly in combination with smoking can 

be a significant source of lead (466,467). The amount of lead intake in man from food 

depends on four major inter-related factors: the concentration of lead in the food, the 

amount of food consumed, the species or the chemical form in which the lead is present 

in the food and the degree of absorption of the lead into the body (456-458,461). 

5.1.2: Physiology of lead. 

Lead is a general protoplasmic poison that is cumulative and slow acting. Lead inhibits 

nearly all the enzymatic steps involved in the haem synthesis and inhibits the uptake of 

iron from transferrin (456). Inorganic lead is an effective substituent for calcium (Ca) 

and influences calcium dependent processes (461). 

Lead may be absorbed into the body by ingestion, inhalation and through the skin, 

although the degree and rate of absorption is dependant on the chemical form, for 

example, organic lead, such as tetraethyl lead is absorbed more rapidly by body tissues 
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compared to inorganic lead (461). Major routes of lead absorption include the respiratory 

and gastrointestinal tract. About 5-10% of lead ingested is absorbed into the body, the 

remainder is excreted in the faeces. Children generally exhibit higher absorption rates 

(456-458,461). 

5.1.3: Distribution of lead in the body. 

Following absorption into the blood stream, the bulk of the lead is transferred to the 

erythrocytes, primarily bound to the haemoglobin (468,469). The plasma concentrations 

are significantly related to whole blood concentration (470), and accounts for about 6% 

of the blood lead content (Figure 5.1). Lead disappears from the blood into the tissues, 

with first order kinetics, diffusing from the red cells to plasma then to extracelluar 

spaces, and then into the intracellular spaces or tissue cells. The liver and kidney, among 

soft tissues, contain the highest concentrations. Lead then diffuses from the soft tissues, 

such that part is stored in the bone and teeth, and part is excreted. Several other factors 

influence the lead body burden, the most important are:- sex and age, lifestyle, and 

geographic region for living and occupation (461). Absorbed lead is excreted primarily 

in the urine (76%), gastrointestinal secretions (16%), hair, sweat, nails and others 

accounting for the remaining 8% (461). Lead is excreted in human milk (471) and 

organolead is rapidly excreted in urine, partly metabolised to inorganic lead (472,473). 

5.1.3.1: Lead in bone. 

Lead approximates other bone seeking elements such as calcium, strontium, barium and 

fluoride, although the rates are different for each element (474,475). In the stable state 

more than 90% of the total body burden of lead is stored in the skeleton (476,477). The 
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Figure 5. 1: Lead content in various fractions of blood ( 461). 
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lead stored in the bone is believed to assume a position within the bone crystal either by 

displacing other cations or by occupying lattice intersities (474). However the possibility 

that lead is also bound to organic compounds or deposited as a discrete crystal of an 

insoluble compound cannot be excluded. At very low concentrations lead is an effective 

nucleating agent for inducing calcium phosphate crystal formation (478), which may be 

important in trapping lead at the surface of bone crystal. 

Lead in bone is unevenly distributed between cortical and trabecula bone hence will 

contribute different lead concentrations to the total skeletal burden (479,480). An 

indication of the different bone lead concentrations between cortical and trabecula bone, 

as well as differences found between bone samples of the same type but collected from 

different anatomical sites is given in Table 5.1. Trabecula bone represents a lead pool 

with a faster turnover, whereas cortical bone represents a pool with a slower 

turnover\kinetics (480,481), hence why the lead levels in cortical bone are higher than 

in trabecula bone (477,480,481), accounting for more than 70% of the total body burden 

(476,477). 

The lead levels in bone of exposed individuals is greater than in non exposed individuals 

in the same age group (476,477). Table 5.2 gives an example of the effects exposure can 

have on the bone lead concentrations. Adult males have higher lead levels than females 

(476,477 ,481). It has been found that the lead concentration in cortical bone is dependent 

on the intensity and duration of exposure, whereas the lead concentration in trabecula 

bone is dependent on intensity rather than duration of exposure (483). 
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Table 5.1: Comparison of the mean bone lead concentrations (pg Pb\g bone ash) taken 
from five different anatomical sites, from different age groups (479). 

Age group Age Tibia Ilium Rib Vertebra Skull 
(years) 

Senior adults 86.3±1.0 29.0±3.4 17.0±2.6 20.5± 18.8±2.6 26.1± 
(>75) (31)* (28) (29) 2.4 (30) 3.2 

(31) (28) 

Mature 63.9±1.1 24.2±2.3 19.2±2.4 22.3± 22.4±2.6 22.8± 
adults (42) (38) (40) 2.6 (41) 2.9 
(51-75) (40) (29) 

Mid adults 42.3±1.3 16.6±4.1 9.9±1.6 9.7±1.7 11.9±2.1 15.2± 
(36-50) (15) (14) (15) (15) (15) 3.3 

(15) 

Young 24.6±1.0 5.9±1.2 5.3± 1.6 5.0±1.2 6.3±1.3 4.9± 
adults (18) (18) (16) (18) (17) 1.1 
(21-35) (17) 

Adolescents 17.6±0.5 2.3±1.0 2.3±0.9 2.9±1.4 3.8±1.4 3.2± 
(14-20) (13) (13) (13) (12) (12) 1.7 

(12) 

Infants 0.3±0.1 0.3±0.2 0.0±0.0 0.7±0.4 0.6±0.6 0.6± 
(0-2) (12) (11) (11) (12) (12) 0.4 

(12) 

N.B. Sample population contains no subjects between the ages of 3 and 13 years. 

* Numbers in parentheses represent the total number of samples contributing to the mean 
value. 
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Table 5.2: Results from vertebral bone biopsies, showing the lead concentration 
differences between exposed and non-exposed individuals (481). 

Exposed Retired Controls 
(n= 27) (n=9) (n=14) 

Mean age 46 67 62 
(range) (26-65) (61-71) (34-88) 

Mean exposure time 11 29 -
(range) (0.6-39) (6-46) 

Mean lead 29 19 1.3 
concentration (2-155) (5-76) (1-4) 
{vertebral bone} 
(pg\g wet weight) 

N.B. All participants were male. 

149 



The lead content of childrens bone is lower compared to adults, accounting for 

approximately 75% of the total body burden (477), which can be attributed to the fact 

that children have had lower exposure levels, and that they do not possess the same 

capacity to retain lead in the bone (471). Bone turnover rates vary with age and health 

(475), with the bone lead content generally increasing with age at a rate dependent on the 

skeletal site (see Table 5.1) and extent of lead exposure (475,479,482,484). This is in 

contrast to the lead levels in soft tissues which tend not to change with age 

(476,479,485). 

Skeletal lead is fairly inert and is in equilibrium with the blood where the skeletal lead 

leaves the skeleton very slowly, accompanying calcium in its osteoclastic transfer from 

the bone to the blood and the osteoblastic transfer from blood to bone (480). However 

a number of different physiological, pathological and degenerative conditions, can result 

in a release of lead stored in the bone into the blood (486,487). This mobilisation of 

skeletal lead can therefore act as a major endogenous source of lead exposure and may 

result in symptoms of acute lead intoxification (486,487). The degree of mobilisation is 

dependent on the lead content of the bone, which is in turn dependent on the lead 

exposure rate which will influence the location and concentration of lead in different 

sites, and hence may influence its availability for mobilisation (475). For example in one 

study the leukaemic infiltration of bone marrow was believed to have caused mobilisation 

of lead stored in the skeleton (488), and further studies have shown that even without 

undue exposure, osteolytic processes may result in high blood lead levels (489). Other 

conditions known to cause such mobilisation include renal disease (490), immobilisation 

(491), pregnancy (492,493), lactation (494), postmenopausal osteoporosis (495) and 
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chemotherapy treatment with cis-platin (496-499). 

5.1.3.2: Blood lead levels. 

The measure of bone lead reflects the cumulative exposure to lead, due to its long 

residence time [30-70 years] (500). In contrast the lead residence time in blood is only 

a few weeks, hence blood lead levels can reflect recent accumulation\exposure (refer to 

Table 5.3), mainly to inorganic lead (484,487,501), although a recent study has shown 

that organolead compounds may also influence the blood lead content (502). However 

interactions between the skeleton, blood and soft tissues means that even if exposure is 

removed, the skeleton continues to release lead into the blood (Figure 5.2) and thus 

contribute to the lead concentration found in the blood and soft tissues. Therefore 

chelateable lead in general is not a good indicator of total body burden, since it mainly 

reflects the blood and soft tissue lead pool, and a fraction of the trabecula bone lead pool, 

which has a relatively rapid turnover (503,504). The concentration of lead in blood is 

widely used to assess environmental lead exposure (505,506), and as with the bone lead 

concentrations, the levels of blood lead are influenced by lifestyles such as smoking and 

drinking habits, consumption of dairy products etc, and environmental factors such as 

community size, density of traffic, nearness to smelters etc (466,467 ,507 ,508). 

Over the years a decrease in the measurable amounts of lead in blood has been observed. 

This is due to a natural fall in lead levels found in the diet, the introduction of "unleaded" 

petrol (458) and improvements in the analytical methodology and instrumentation used. 
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Figure 5.2: Multiple bone pool kinetic model (475). 
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Table 5.3: Summary of chelatable lead and the lead levels in blood and bone in active and retired lead workers and in occupationally non 
exposed individuals (503). 

Parameter Active lead workers Retired lead workers Non-exposed subjects 
N Median Range N Median Range N Range 

Blood lead 21 2 .2 0.77-3.96 14 1.49 0 .72-1.91 2 0 .19-0.22 
(J.Lmoll-1

) 

Bone lead: -
Vertebra [trabecula] 11 0.15 0.03-0.56 10 0.34 0.06-1.17 2 0 .01-0.04 
(J.Lg g·1 Ca) 

Finger [compact] 16 32 <20-79 14 72 <20-135 2 <20 
(J.Lg g·1 Ca) 

Urinary lead 20 0 .023 0.002-0.156 14 0.014 0.004-0.048 2 0.19-0.22 
(J.Lrnol/mmol 
creatinine) 

Chelatable lead 21 0.085 0.003-1.225 14 0.049 0.012-0.116 2 0.004 
6 h after PCA 
(J.Lmol/mmol 
creatinine) 
(J.LmOl) 21 0.37 0.06-5.17 14 0.17 0 .08-0.58 2 0.01-0.02 

Chelatable lead 21 0 .042 0.002-0.552 14 0.029 0.007-0.062 2 0.002 
24 h after PCA 
(J.Lmol/mmol 
creatinine) 
(J.LmOl) 19 0.61 0 . 14-6.54 14 0.32 0.10-1.02 2 0.04 

PCA Penicillamine 



5.1.4: Lead toxicity. 

The blood lead, concentrations, regarded as a marker of the permissible occupational 

exposure levels to lead have deceased over the past two decades due to the growing 

awareness and concern that toxic biochemical and functional effects were occurring at 

lower levels of exposure than those that produce overt clinical and pathological signs and 

symptoms (509). A recent study has stated that the use of < lOO /lg 1·' as the normal 

reference limit for blood in non occupationally exposed adults appears appropriate for 

today's population (510). However with respect to controlling lead poisoning, particularly 

in children, it has now been suggested that there may be no level of blood lead that does 

not produce a toxic effect, particularly in the developing central nervous system. This 

also applies to the fetus in vivo and in women of child bearing age. As a consequence 

research has been concerned with all aspects of lead toxicity such as neuropsychological 

effects, cardiovascular disease, bone, reproductive effects, nephrotoxicity and 

carcinogenesis (509). 

5.1.5: Blood lead analysis. 

Lead is probably one of the most widely determined elements in biological samples. 

Several methods have been developed , with the Delves Cup (DC) AAS method being one 

of the most routinely used (511). However the need for more sensitive methods to 

measure lower levels of blood lead has resulted in electrothermal atomic absorption 

spectrometry (ETAAS) becoming the main analytical technique used. Several methods 

for the determination of lead in blood by ETAAS have been published over the past 

decade (263,278,279,512,518-521), as summarised in Table 5.4. A number of analytical 

problems do exist but these can be eliminated or minimised by appropriate sample 
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Table 5.4: Summary of ETAAS methods for measuring lead in blood. 

Procedure L.O.D Linear Range % RSD Comments Refs. 

1 + 19 dilution with 1% 0.08 J.tmOl 1·1 <4. 8 J.tmOlJ·I 6.9% (within) Zeeman background 513 
v\v ammonia solution, correction, L'vov 
0 .003M (NH4) 2H2EDTA, 7. 3 % (between) platform 
0.29M NH4H2P04 

Cal: spiked blood at 0.5 J.tmol 1·1 

Vol: 10111 

1 + 9 dilution with 0.5% 0.07 j.tmOl 1·1 < 4 j.tmOll-1 2-5% Deuterium background 514 
v\v Triton X-100, 0 .2% at 0 .24 - 2.4 11mol 1·1 correction, L'vov 
v\v cone. HN03 , 0.2% platform 
m\v (NH4) 2HP04 

Cal: spiked blood 
Vol: 20111 

1 + 4 dilution for [Pb] 36 pg Pb 0 - 60 jlg ,.J 4.6% (within) Deuterium background 515 
< 300 11mol J·1

, and 1 + correction, L'vov 
9 dilution for [Pb] > 300 9% (between) platform 
J.tmoll-1

, with O.OOSM 
(NH4) 2HP04 , 0.2% 
Triton X-100, 0.014M 
HN03 

Cal: Spiked blood 
Vol: 20111 



Table 5.4: Continued . 

Procedure L.O.D Linear Range % RSD Comments Refs. 

1 + 9 dilution with 0.1% 0. 7 flg t-l Deuterium background 516 
NH4H2P04 and 0.05% correction with L'vov 
Mg(N03) 2 platform 
Vol: 10fll 

1 + 9 dilution with 0.1% Zeeman background 517 
Triton X -100 correction with L'vov 
Vol: 20fll platform 

1 + 9 dilution with 1.2 flg I-' 1 - 4% (within) Deuterium background 518 
0.01% v\v Triton X-100, correction with pyrolytic 
inject 10fll of diluted 0. 7 flg I-1 1 - 6% (between) graphite coated tubes and 
sample plus 10fll of (with L'vov L'vov platform 
matrix modifier [0.6% platform) 
m\v NH4H2P04 and 
0.15% m\v Mg(N03) 2 in 
O.OlM HN03] 

Cal: Aqueous 
Vol: lOfll 



Table 5.4: Continued. 

Procedure L.O.D Linear Range % RSD Comments Refs. 

1 + 9 dilution with 10 p.g dl"1 5 % (5p.l) Deuterium background 5 19 
0.05% m\v Triton X-100 correction, with pyrolytic 
Cal: Aqueous > 10% (lO~-tl) graphite coated tubes and 
Vol: 5-lOp.l L'vov platforms. Better 

sensitivity observed 
without the addition of 
(NH4hHP04 modifier 
when using platform 
atomisation. 

1 + 9 dilution with 0.5% 0.5 p.g dl"1 < 60 p.g dl-1 1 - 3% Longitudinal Zeeman 520 
v\v Triton X-100, 0.2% background correction 
m\v NH4H2P04 , 0.2% with transversely heated 
HN03 graphite atomizer 
Cal: Aqueous (THGA) and L'vov 
Vol: 10~-tl platform 

1 + 9 dilution with 0 . 1% 0.1 1-'g ,.J < 50 p.g 1"1 2.2% Deuterium backround 521 
Triton X-100, lOp.l correction 
injected followed by 1 Op.l 
matrix modifier [0.5 mg 
1·1 Pd and 2% m\v citric 
acid] 
Cal: Aqueous 
Vol: 10~-tl 



preparation, for example sample dilution, addition of matrix modifiers, deprotonisation, 

background corrections and calibration by matrix matched standards (512). 

Typically Triton X-100 (a surfactant) is added to whole blood to eliminate dispensing 

problems by reducing the viscosity of the sample, improve contact between sample and 

furnace wall, and homogenise the sample by lysis of the erythrocytes (517,519). Other 

matrix modifiers such as NH4 H2P04 or (NH4)zHP04 may also be added, allowing higher 

ashing temperatures and ensuring the complete removal of any carbonaceous material that 

may otherwise build up, reducing sensitivity and precision. It is believed the NaCI 

interference is removed by forming volatile NH4CI at high temperatures, while the 

phosphate ions react with Pb (ll) to form the relatively thermally stable P~(P04)2 (278). 

Alternative modifiers include Mg(N03h which probably acts by embedding lead in a 

matrix of MgO, thereby delaying volatilisation (516,518). A palladium modifier has been 

used to control the volatilisation loss of lead in conjunction with the carbon reducing 

effect achieved by the addition of citric acid (521 ,522). Other AAS methods have been 

developed, such as flow injection hydride generation AAS [FI-HG-AAS] (523) and a 

second generation filter paper based Delves Cup flame AAS (FPDC) procedure for blood 

lead screening purposes in children (524). 

Alternative methods to AAS techniques include electrochemical methods such as 

voltammetry (461) and proton induced X-ray emission spectrometry [PIXE] (525). 

However more recently both inductively coupled plasma-atomic emission spectrometry 

(ICP-AES) and particularly inductively coupled plasma-mass spectrometry (ICP-MS) have 

been used, owing to their multi-element capacity and high sensitivity. Inductively coupled 
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plasma mass spectrometry has been successfully used to measure total lead levels in blood 

samples (526) as well as the lead isotope ratios, in order to identify potential sources of 

environmental pollution and lead poisoning in children (526-528). Isotope dilution ICP

MS (10-ICP-MS) gives particularly accurate and precise measurements (417,529,530), 

and size exclusion chromatography ICP-MS has been used to determine lead species in 

blood components (531). More recently a capacitively coupled microwave plasma atomic 

emission spectrometry (CCMP-AES) method has been developed, which offers similar 

sensitivity and accuracy as both the GFAAS and ICP-MS methods, but has the advantage 

that no sample dilution or pretreatment is required, and thus has potential as a more 

appropriate screening method (532,533). 

5.2: AIMS OF THIS STUDY. 

Since bone metastases results in extensive bone resorption the release of stored skeletal 

lead into the blood may potentially be used as a marker of bone breakdown. The aim of 

this preliminary investigation was to develop a simple, accurate and precise method to 

measure lead levels in whole blood samples, to assess the practicality of measuring the 

blood samples taken from patients diagnosed with bone metastases, and to observe 

whether any changes in the blood lead concentrations could be measured over time and 

with treatment. 
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5.3: EXPERIMENTAL. 

5.3.1: Reagents and chemicals. 

All the water used to rinse laboratory ware and for the preparation of solutions, standards 

and samples was deionised using either a MilliQ purification system (Millipore, Bedford, 

MA, USA) or an Elgastat Maxima purification system (Elga Ltd, High Wycombe, 

Bucks., UK) at a resistivity of 18 MO. 

Aristar nitric acid and Spectrosol lead nitrate standard solution (1000 mg 1" 1
) were 

obtained from Merck (Poole, Dorset, UK). Thallium nitrate standard reference material, 

NBS SRM 3158, (10,000 mg 1" 1
) was obtained from the National Institute of Standards 

and Technology (Washington DC, USA) and Triton X-lOO was obtained from Aldrich 

(Gillingham, Dorset, UK). 

Lead and cadmium in whole blood certified reference material BCR-194 was obtained 

from the Community Bureau of Reference (Brussels, Belgium). Lead in whole blood 

quality control samples were kindly donated by Dr. Andrew Taylor (Robens Institute, 

University of Surrey, Guildford, UK) and pooled blood samples, used as internal quality 

control samples, were obtained from Freedom Fields Hospital (Plymouth, Devon, UK). 

5.3.2: Procedures. 

Blood samples from patients diagnosed with bone metastases and receiving treatment at 

the Department of Oncology, Freedom Fields Hospital, Plymouth, were collected by 

venepuncture into Yacutainer tubes, B-D 6484 (Beckton-Dickinson, East Rutherford, NJ, 
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USA), containing lithium heparin anticoagulant, and stored at -20°C. Control samples 

were collected in the same manner from healthy volunteers (i.e. nursing staff) in the 

Department of Oncology, at Freedom Fields Hospital, Plymouth. 

After defrosting, the blood samples were shaken thoroughly and 1ml of blood was 

pipetted into 15ml trace metal free plastic tubes (Lasbsystems, Life Science International 

(UK) Ltd, Basingstoke, Hampshire, UK) and 9mls of diluent was added using an 

automatic dispenser (OptiflX, Merck, Poole, Dorset, UK). The diluent consisted of 0.1% 

v\v Triton X-100, used to promote cell lysis and to improve nebuliser efficiency and 

sample transport; 0.1% v\v Aristar nitric acid, to provide a stable pH environment; and 

100 p.g J·• thallium internal standard, to correct for any instrumental drift. The samples 

were shaken and then analysed by inductively coupled plasma-mass spectrometry {ICP

MS) as discussed in Section 2.1.8. 

All laboratory ware was soaked at least overnight in 10% v\v nitric acid, rinsed 

thoroughly with MilliQ or Elga water and left to drain. A 10mg J·• lead stock solution (in 

5% v\v Aristar nitric acid) was prepared from the Spectrosollead standard (1000 mg J-1
). 

This stock solution was used to freshly prepare a series of calibration standards by 

pipetting 0, 10, 50, 100, 250 and 500 p.l into lOOml plastic volumetric flasks and made 

up to the mark with the same diluent to give 0 (blank), 1, 5, 10, 25 and 50 p.g 1·• lead 

calibration standards. 
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5.4: RESULTS AND DISCUSSION. 

5.4.1: Analvtical figures of merit. 

The method developed gave excellent linear calibration over the sample concentration 

range (1-50 p.g I-1
), with a limit of detection of 0.4 p.g J-1 (average + 3 x S.D, n=20). 

The accuracy and precision of the method was evaluated initially against the quality 

control samples from the Robens Institute, University of Surrey. Table 5.5 summarises 

the results attained. In general the initial results were in close agreement with the 

indicated values and within the accepted tolerance limits, with the exception of samples 

1 and 7. The concentration of sample 1 was within the limit of determination (10 x 

LOO), which may account for the experimental value falling outside the accepted 

tolerance limits. With respect to sample 7, an experimental error or some contamination 

may be possible. However these initial results generally provided a satisfactory indication 

that the methodology used could provide an accurate and precise measure of lead levels 

in whole blood samples. Confirmation was achieved by the analysis of a certified 

reference material BCR 194. Table 5.6 shows that the experimental value (128.24 ± 1.34 

p.g I-'> agreed closely with the certified value (126 ± 4 p.g 1-1), with an excellent RSD 

value of 1% (n=6). 

During the preliminary trials, some form of quality control procedure was essential to 

ensure the method remained under control. The pooled blood samples were standardised 

against the certified reference material BCR 194, assigned values and used as internal 

quality control samples (IQC's). The standardisation of the IQC's was conducted on five 

separate days, and Table 5. 7 summarises the results (I QC 1 assigned value = 152 p.g 1-1 
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Table 5.5: Summary of results for the quality control samples (supplied by the Robens 
Institute, University of Surrey). 

Sample Actual lead Measured lead Difference(%) 
concentration concentration 

(p.g dJ-1) (p.g dl-1), n=2 

1 2.53 2.33 ± 0.11 -7.9 

2 3.85 3.83 ± 0.04 -0.5 

3 4.14 4.03 ± 0.14 -2.7 

4 5.5 5.25 ± 0.01 -4.5 

5 7.14 7.08 ± 0.07 -0.8 

6 12.15 12.29 ± 0.18 1.2 

7 22.98 27.37 ± 0.04 19.1 

8 34.93 36.06 ± 0.71 3.2 

9 46.91 49.02 ± 1.07 4.5 

Accepted tolerance levels:-

Samples I- 5 = ±5% 

Samples 6 - 9 = ± 15% 
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Table 5.6: Summary of results for certified reference material BCR 194 lead and 
cadmium in whole blood. 

Run number Measured lead concen {uo ]·l) 

1 128.35 ± 2.8 

2 127.95 ± 3.2 

3 128.85 ± 2.5 

4 128.18 ± 3.0 

5 125.80 ± 2.0 

6 130.31 ± 0.7 

Overall average 128.24 ± 1.34 

Certified value 126 ± 4 

RSD 1% 
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Table 5. 7: Results summary for the standardisation of the pooled blood samples (IQC's) 
against the certified reference material BCR 194. 

Sample IQC 1 IQC 1 average IQC 2 IQC 2 
measured [Pb] [Pb] {J!g 1·1) measured average [Pb] 
{J.!g 1•1) (%RSD) [Pb] {J!g 1•1) 

{J.!g 1•1) (%RSD) 

Day 1 149.99 ± 1.6 151.7 ± 2.2 70.88 ± 1.3 71.82 ± 1.3 
154.21 ± 2.4 72.75 ± 1.3 
150.97 ± 3.9 (1.5%) (1.85%) 

Day 2 151.51 ± 2.6 152.8 ± 1.8 69.58 ± 0.6 71.35 ± 2.5 
154.04 ± 4.1 73.12 ± 1.6 

(1.2%) (3.5%) 

Day 3 156.51 ± 3.3 153.7 ± 4.0 72.29 ± 0.7 72.29 ± 0.7 
150.9 ± 1.4 I.F 

(2.6%) (0.9%) 

Day4 150.84 ± 1.7 149.6 ± 1.8 71.08 ± 0.6 71.58 ± 0.7 
148.33 ± 3.4 72.07 ± 

(1.2%) 1.66 (1.0%) 

Day 5 150.73 ± 0.9 152.0 ± 1.7 73.65 ± 1.4 73.65 ± 1.4 
153.17 ± 2.7 I.F 

(1.1 %) (1.8%) 

Overall 151.93 ± 2.2 151.96 ± 1.5 71.93 ± 1.3 72.14 ± 0.9 
average (1.5 %) (1.0%) (1.7%) (1.3%) 
(RSD) 

Assigned 152.0 #'g ··I 72.0 #'g t·l 
value 

I.F = instrument failure 
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and IQC 2 assigned value = 72 p.g 1"1
). Table 5. 7 also shows that both the inter and intra 

assay RSD's were less than 2% in most cases. 

5.4.2: Preliminary trial. 

During the course of the preliminary trials, the methodology was checked by analysing 

the IQC's after every five- ten patient samples. Tables 5.8 and 5.9 gives the results for 

IQC 1 and IQC 2 respectively. The results clearly show that the methodology remains 

under control throughout the trials, giving inter and intra assay RSD's of 5% or less. 

A total of 44 patients (24 male, 20 female) diagnosed with bone metastases and receiving 

treatment were studied over a period of several months. Blood samples were taken each 

time the patient attended the outpatient's clinic, although this meant that the samples were 

collected at random time intervals. This factor along with the trial drop out rate resulted 

in only 18 out of the 44 patients studied having three or more samples collected within 

the trial period. Overall these results could be categorised into those patients who: 1) 

showed a downward trend in blood lead levels over time, 2) showed an upward trend in 

blood lead levels with time, and 3) showed no clear trend with respect to the blood lead 

levels over time. None of the results were eliminated from the study, unless the IQC 

results were out of specification for that batch. Although there was a fair amount of 

variation, both between and within individuals, all the results were retained, since there 

was no evidence to support the case that a value was an outlier, caused by contamination 

or some other experimental error, or whether a result was as a consequence of some 

biological\clinical factor, not studied during the trials. 
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Table 5.8: Summary of the results for IQC 1 during the preliminary trials. 

Trial number Average lead Number of RSD (%) 
concentration samples (n) 

{Jtg 1•1) 

1 152.51 + 4.04 10 2.6 

2 154.97 ± 4.42 12 2.9 

3 150.63 ± 6.28 5 4.2 

4 148.93 ± 2.04 3 1.4 

5 165.79 ± 4.26 3 2.6 

6 145.52 ± 4.91 9 3.4 

Overall average 153.06 ± 4.91 

I % RSD 4.2 

Table 5.9: Summary of the results for IQC 2 during the preliminary trials. 

Trial number Average lead Number of RSD (%) 
concentration samples (n) 

(}.tg 1•1) 

1 70.23 ± 3.34 5 4.8 

2 75.78 ± 1.62 3 2.1 

3 70.33 ± 2.78 8 4.0 

4 68.82 ± 3.65 3 5.3 

5 78.39 ± 1.18 8 1.5 

6 68.94 ± 3.13 6 4.5 

Overall average 72.08 ± 3.66 

I % RSD 5.1 
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Table 5.10 and Figures 5.3 and 5.4 depict the results for patient category 1 (i.e. those 

patients who showed a decrease in blood lead levels over time), for male and female 

patients respectively. All the male patients had higher initial blood lead levels compared 

to the females which is not unexpected since males are more likely to have had a higher 

occupational lead exposure. The lead levels appear not to be influenced by other 

parameters such as age and bone scan rating. 

The results for patient category 2, i.e. those who showed an increase in blood lead levels 

over time, are depicted in Table 5.11 and Figure 5.5. These two patients, one male and 

one female, are of the same age, and showed different initial blood lead levels. The male 

patient had a higher bone scan rating, indicating a greater extent of skeletal metastases, 

but had a lower initial blood lead concentration in comparison to the female patient. This 

result appears to be unaffected by sex and bone scan rating. 

Table 5.12 summarises the results for patient category 3 (i.e. those who showed no clear 

trends in blood lead levels over time), which has been sub-divided, according to the 

initial blood lead concentration:- A = > 80 p.g J-1 (Figure 5.6), B = 40 - 80 p.g J- 1 

(Figure 5.7), and C = <40 p.g I- 1 (Figure 5.8). Again these results indicate there is no 

relation with age or bone scan rating. Only female patients made up sub-division C. 

168 



Table 5.10: Patients who showed a downward trend in blood lead concentration over time. 

Patient Sex Age at start Bone Primary Treatment Comments 
Code of trial Scan Cancer 

Rating 

001 Male 75 2 Prostate Casodex Refer to Figure 5.3: High initial blood 
Zoladex [Pb] compared to controls (10-80 llg 1·'). 
Estracyt 

002 Male 73 2 Prostate Casodex Refer to Figure 5.3: High initial blood 
Zoladex [Pb] compared to controls (1 0-80 llg 1·1). 

Possible error at 7 months. 

003 Male 65 3 Prostate Casodex Refer to Figure 5. 3: High initial blood 
Zoladex [Pb] compared to controls (10-80 llg l·') 
Estracyt 

004 Female 80 2 Breast Pamidronate Refer to Figure 5.4: Blood lead levels 
Radiotherapy lower than for male couterparts. Possible 

error at 14 months. 

005 Female 52 1 Breast Chemotherapy Refer to Figure 5.4: Initial blood [Pb] on 
Radiotherapy the upper level of control values. Again 

values are lower than for the male 
counterparts. 



Figure 5 .3: Preliminary trial results - male patients who showed a downward trend m 
blood lead concentration with time. 
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Figure 5.4: Preliminary trial results -female patients who showed a downward trend in 
blood lead concentration over time. 
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Table 5.11: Patients who showed an upward trend in blood Lead concentration over time. 

Patient Sex Age at start Bone Primary Treatment Comments 
Code of trial Scan Cancer 

Rating 

006 Male 83 3 Prostate Zoladex Refer to Figure 5.5: High bone scan 
rating , indicating extensive bone 
metastases, but a lower blood [Pb] 
compared to age matched female 
counterpart. 

007 Female 83 1 Breast Arimadex B Refer to Figure 5 .5: High blood [Pb] 
compared to controls and age matched 
male counterpart, despite having a lower 
bone scan rating. 



Figure 5.5: Preliminary trial results- patients who showed an upward trend in blood lead 
concentration over time. 
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Table 5. 12: Patients who showed no clear trends in blood lead concentration over time. 

Patient Sex Age at start Bone Primary Treatment Comments 
Code of trial Scan Cancer 

Rating 

008 Male 64 1 Prostate Zoladex Refer to Figure 5.6: Initial blood [Pb] 
greater than 80 p.g l-1 

009 Female 70 1 Breast Pamidronate Refer to Figure 5.6: Initial blood [Pb] 
greater than 80 p.g l-1 

OlO Male 63 1 Prostate Zoladex Refer to Figure 5.7: Initial blood [Pb] 
between 40- 80 p.g l-1 

011 Female 69 2 Breast Pamidronate Refer to Figure 5. 7: Initial blood [Pb] 
between 40- 80 p.g l-1 

012 Female 65 2 Breast Pamidronate Refer to Figure 5. 7: Initial blood [Pb] 
Pharmarubicin between 40- 80 p.g l-1 

Mitomycin 

013 Female 60 2 Breast Pamidronate Refer to Figure 5.7: Initial blood [Pb] 
between 40 - 80 p.g I-1 

014 Female 52 1 Breast Pamidronate Refer to Figure 5.7: Initial blood [Pb] 
Pharmarubicin between 40- 80 p.g I-1 



Table 5.12: Continued . 

Patient Sex Age at start Bone Primary Treatment Comments 
Code of trial Scan Cancer 

Rating 

015 Female 66 2 Breast Pamidronate Refer to Figure 5.8: Initial blood [Pb] 
below 40 p.g 1·1 

016 Female 65 2 Breast Pamidronate Refer to Figure 5.8: Initial blood [Pb] 
Clodronate below 40 p.g 1·1 

017 Female 64 2 Breast Pamidronate Refer to Figure 5.8: Initial blood [Pb] 
Pharmarubicin below 40 p.g J·' 

Clodronate 

018 Female 58 2 Breast Arimadex Refer to Figure 5.8: Initial blood [Pb] 
Pamidronate below 40 p.g 1·1 



Figure 5. 6: Preliminary trial results - patients who showed no clear trends in blood lead 
concentration over time, catogory A (initial blood [Pb] > 80 p.g l-1

). 
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Figure 5 . 7: Preliminary trial results - patients who showed no clear trends in blood lead 
concentration over time, catogory B (initial blood [Pb] 40 - 80 p.g J-1). 
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Figure 5. 7: Continued. 
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Figure 5.8: Preliminary trial results- patients who showed no clear trends in blood lead concentration over time, catogory C (initial blood [Pb] 
< 40 p.g "1) . 
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5.5: CONCLUSIONS. 

An accurate and precise method for the determination of lead in whole blood by 

inductively coupled plasma-mass spectrometry has been developed. The method is simple 

and has been shown to remain under full control over time. The results from the 

preliminary trials were in general encouraging and demonstrated the ability of the method 

to measure and monitor changes in blood lead levels. It also demonstrated the individual 

variability and uncertainties encountered with respect to measuring blood lead levels. 

There are many factors which could be responsible for the blood lead levels observed 

which must be taken into consideration if correct and accurate conclusions are to be 

drawn. 

These results indicate a fuller clinical trial is warranted, where parameters such as age, 

sex, primary diagnosis, treatment, bone scan rating etc should be assessed by full 

statistical analysis. Samples need to be collected in a more systematic and regular fashion, 

i.e. once a month, and more information concerning the patient's history and lifestyle 

should be collated, i.e. details concerning their nutritional habits, drinking and smoking 

habits, present and previous occupation(s), and place(s) of residence. All these factors 

could have a significant bearing on the blood lead levels measured. 
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CHAPTER 6: OTHER POTENTIAL TRACE METAL MARKERS FOR BONE 

METASTASES. 

6.1: INTRODUCTION. 

The preliminary trial results (Chapter 5) showed that further investigations into the use 

of trace metals as biochemical markers to measure bone breakdown, via a fuller clinical 

trial was needed. It is known that bone contains many trace metals (309), and in order 

for this study to be more robust and potentially clinically useful, a number of elements, 

including lead should be studied in both blood and urine samples. The metabolic 

pathways for elements differ from one another, hence the analysis of urine samples taken 

at the same time would be useful in order to assess whether any trends and\or 

relationships between the blood and urine levels exist. Urine samples can be easier and 

more convenient to collect and are generally easier to analyse, due to their less viscous 

nature. However it is also recognised that the analysis of urine samples does introduce 

additional problems, such as greater concentration variations due to renal efficiency and 

dilution effects. 

This chapter discusses studies undertaken to evaluate the selection of other elements to 

be incorporated along with lead in the clinical trials. Initially trace metal profiles were 

obtained by semi-quantitative analyses, with more accurate data collected in subsequent 

fully quantitative assessments, yielding a pool of potential elements. Whilst it was known 

that the developed method (Chapter 5) gave accurate and precise measurements for the 

blood lead concentrations, it was not clear whether or not the same methodology was 

suitable for the measurement of the other elements selected. Consequently the analytical 
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methodology was reviewed, and the collection, storage and analysis procedures employed 

investigated to ensure accurate and precise measurement of the selected elements was 

possible. Based on this data, the final selection of which elements to include in the 

subsequent clinical trials was made. 

6.2: REAGENTS AND CHEMICALS. 

All the water used to rinse laboratory ware and for the preparation of solutions, standards 

and samples was deionised using either a MilliQ purification system (Millipore, Bedford, 

MA, USA) or an Elgastat Maxima purification system (Elga Ltd, High Wycombe, 

Bucks., UK) at a resistivity of 18 MO. All laboratory ware was soaked in 10% v\v nitric 

acid and rinsed several times with Elga or MilliQ water. 

Aristar nitric acid was obtained from Merck (Poole, Dorset, UK), and the Triton X-100 

was obtained from Aldrich (Gillingham, Dorset, UK). Thallium nitrate standard reference 

material, NBS SRM 3158, (10,000 mg J- 1
) was obtained from the National Institute of 

Standards and Technology (Washington DC, USA) and Spectrosol standard solutions or 

equivalent (1000 mg 1-1
) for the various elements studied (see Section 6.3) were obtained 

from Merck and Aldrich respectively. All the standards were prepared, at appropriate 

dilutions from these solutions. 

Seronorm whole blood and urine reference materials (Nycomed (UK), Birmingham, UK), 

certified reference materials: BCR 195 whole blood (Community Bureau of Reference, 

Brussels, Belgium) and NIST freeze dried urine 2670 (National Institute of Standards and 

Technology, Laboratory of the Government Chemist, Teddington, London), were used 
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to verify the analytical methodology. Pooled blood samples, used as internal quality 

control samples (refer to Section 5.4.1), were provided by Freedom Fields Hospital 

(Plymouth, Devon, UK). 

6.3: SELECTION OF OTHER TRACE METALS. 

6.3.1: Exoerimental. 

In order to ascertain which other elements should be studied, those samples collected 

from the patients recruited for the preliminary trial, which had initial blood lead levels 

greater than 100 p.g I-1 were analysed and compared to the blood metal levels of the 

control samples from healthy volunteers (i.e. nursing staff). Initial investigations using 

ICP-MS in the semi-quantitative mode provided trace metal profiles, and indicative values 

for suitable elements which could then be selected for fully quantitative assessment 

To a clean plastic 100 ml volumetric flask, 0.1ml of a pre-prepared solution (containing 

10 mg J-1 Be, Mg, Co, In, Pb, U) was pipetted and made up to the mark with diluent to 

give a 100 p.g I-1 standard solution for use in the semi quantitative study_ A separate 

plastic flask was filled with diluent only, to serve as the blank. The blood samples were 

prepared as described in Section 5.3.2, where 1ml of blood was pipetted into 15 ml trace 

metal free plastic tubes and 9mls of diluent was added using the automatic dispenser. 

The diluent consisted of 0.1% v\v Triton X-100, 0.1% v\v Aristar nitric acid and 100 

p.g J- 1 thallium internal standard_ 

The elements selected following semi-quantitative analysis of the patient and control 
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blood samples, were subsequently analysed by ICP-MS in the fully quantitative mode. 

The procedures used were as described in Section 5.3.2. 

6.3.2: Results and discussion. 

All the elements with known spectral interferences [refer to Table 2.1] were not 

considered further, neither were elements whose concentrations were known to be above 

trace levels, such as Na, K, Mg, Ca, Fe (refer to Table 1.10}, since the release of these 

elements into the blood would in comparison be very small and therefore negligible. 

Although the semi-quantitative experiments conducted during the preliminary trials, gave 

variable results for many elements, the trace metal profiles were carefully evaluated. The 

remaining elements which showed levels above 1 p.g 1'1 and reasonable ( > 25%) 

percentage differences between the patient and control samples, were considered to offer 

the most potential. This data coupled with information from the literature (309) resulted 

in the following elements being selected for fully quantitative analysis:- AI, Ba, Cd, Ce, 

Cs, Pb, Rb, Sb, Sr and Zr, along with some rare earth elements (e.g La, Sm, Tb, Th, 

Tm, Y). 

Following the fully quantitative analyses, elements were excluded if the concentrations 

were both too low (i.e. < 1 p.g )'1) or too high (i.e. > 1000 1-'g 1'1}, such as Rb. The 

remaining elements which showed consistently measurable levels (generally between 1-

100 p.g 1'1) were AI, Ba, Cd, Ce, Pb, Sr and Zr. From the literature, all these elements, 

with the exception of Ce and Zr, are known to be present in bone (309). Following the 

selection of these elements, further evaluation of the analytical methodology was required 

to ensure both accurate and precise measurement of the selected elements was possible. 
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6.4.: DETERMINATION AND CONTROL OF BLANK VALUES. 

The blood collection tubes and the urine collection containers were assessed as to their 

suitability for all the selected elements (AI, Ba, Cd, Ce, Pb, Sr and Zr). An investigation 

was carried out in order to determine whether or not any contamination from the 

collection vessels occurred. 

6.4.1: Experimental. 

In order to assess any leaching\contamination from the sample collection vessels a "worse 

case scenario" was employed where the containers were studied using a test solution 

consisting of 2% v\v Aristar nitric acid and internal standards. Although the acidity of 

this solution was much greater than the actual samples, under these conditions any 

potential contamination sources could be identified. 

Two types of blood collection tubes were evaluated: evacuated glass Vacutainer tubes 

coated with lithium heparin anticoagulant (B-D 6484, Beckton-Dickinson, East 

Rutherford, NJ, USA) and a plastic non-evacuated tube coated with lithium heparin 

anticoagulant (Teklab, [Medical Laboratories] Ltd., Sacriston, Durham, UK). Both these 

tubes were compared against the plastic trace metal free tubes (Labsystems, Life Science 

International (UK) Ltd, Basingstoke, Hampshire, UK). Each tube was filled with 10 mls 

of the test solution (2% v\v Aristar nitric acid and lOO p.g 1·1 thallium internal standard), 

stoppered, shaken thoroughly and left for a period of a)l hour and b)l week. 

With respect to the urine collection procedure, lOOmls of the test solution was poured 

into a 250ml plastic beaker, a portion was then decanted into a 30ml plastic amber screw 
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cap bottle (Merck, Poole, Dorset, UK), from which lOml aliquots were pipetted into the 

plastic trace metal free tubes. 

A lOmg 1-• stock solution containing AI, Ba, Cd, Ce, Pb, Sr and Zr in 5% v\v Aristar 

nitric acid was prepared from the respective Spectrosol or equivalent standards (1000 mg 

1-1). This stock solution was used to freshly prepare a series of calibration standards by 

pipetting 0, 10, 50, 100, 250 and 500 ~tl into lOOm! plastic volumetric flasks and making 

up to the mark with the diluent (2% v\v Aristar nitric acid and 100 1-Lg t-• thallium 

internal standard), to give 0, 1, 5, 10, 25 and 50 1-'g 1-• calibration standards. 

6.4.2: Results and discussion. 

Table 6.1 summarises the results obtained for the test solutions left for one week. The 

concentrations of all the selected elements in the plastic trace metal free tubes 

(Labsystems) were virtually the same as the blank concentrations i.e. < 1 1-'g 1-•. except 

for aluminium. The high aluminium levels could be attributed to its ubiquitous nature 

(534,535) and the environmental condition in the laboratory. These results clearly showed 

that the trace metal free plastic tubes from Labsystems did not suffer from any 

contamination problem for the selected elements, and hence were suitable for trace metal 

analysis purposes. 

A comparison of the plastic blood collection tubes containing lithium heparin 

anticoagulant (Teklab), with the trace metal free plastic tubes, showed an increase in the 

cadmium and barium levels and a slight increase in the strontium levels. The glass 

Vacutainer tubes, also showed increased levels of Ba and Sr compared to the trace metal 
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Table 6.1: Summary of blank study on blood collection tubes filled with test solution (2% 
v\v Aristar nitric acid and IOOftg J· 1 Tl internal standard) and left for 1 week. 

Element Blank Concentration in Concentration Concentration in 
concentration trace metal free in plastic glass Vacutainer 

(ftg J·l) plastic tubes, no tubes with Li tubes, with Li 
Li Heparin Heparin Heparin 

(ftg J·l) (ftg J·l) {ftg J·l) 

(Labsystems) (Teklab) (Beckton-
Dickinson) 

n = 3 n = 5 11 = 3 11 = 10 

A In 7.64 ± 0.21 9.97 ± 0.27 8.41 ± 0.37 61.42 ± 3.36 

Srss 0.20 ± 0.04 0.18 ± 0.01 0.48 ± 0.02 1.63 ± 0.08 

Zr90 0.69 ± 0.06 0.58 ± 0.06 0.55 ± 0.06 8.02 ± 0.83 

Cdlll 0.38 ± 0.05 0.35 ± 0.01 7.03 ± 0.88 0.36 ± 0.05 

Ba138 0.18 ± 0.06 0.15 ± 0.01 4.51 ± 0.44 70.38 ± 5.54 

Cel40 0.14 ± 0.02 0.12 ± 0.01 0.11 ± 0.01 16.54 ± 0.91 

Pbws 0.21 ± 0.05 0.22 ± 0.07 0.24 ± 0.02 0.47 ± 0.08 
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free plastic tubes. These increased levels were greater than those seen for the Teklab 

plastic blood collection tubes, particularly for barium. The glass Vacutainer blood 

collection tubes also showed increased levels of aluminium, cerium and zirconium, but 

no increase in the cadmium levels. 

These results suggest that both the lithium heparin and glass were responsible for 

significant increases in the barium levels and only a slight increase in the strontium 

levels, whereas the glass was also responsible for significant increases in the aluminium, 

cerium and zirconium levels. The increased levels of cadmium observed in the Teklab 

tubes could be attributed to the orange stoppers used. This observation was supported by 

comments in the company literature, and the replacement of these stoppers with white 

stoppers should overcome this problem. 

The glass Vacutainer tubes clearly gave the worse results especially for aluminium, 

barium, cerium and zirconium and to a lesser extent strontium. Table 6.2 summarises the 

results obtained for tubes in the one hour soak test. The results again show an increase 

in the aluminium, barium, cerium and zirconium levels and a slight increase in the 

strontium levels. The increases are similar to those for tubes soaked for one week, 

indicating that significant increases in contamination occur after only a short period of 

time. 

It is clear from these results that the collection of the blood samples using the glass 

Vacutainer tubes resulted in significant increases in the AI, Ba, Ce and Zr levels. The 

collection of blood samples therefore would be best in the Teklab plastic tubes with 
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Table 6.2: Summary of blank study on blood collection tubes filled with test solution (2% 
v\v Aristar nitric acid and lOO~g t·• Tl internal standard) and left for l hour. 

Element Blank cone. Cone. in trace metal Cone. in glass 
<~g n free plastic tubes, no Vacutainer tubes, 

Li Heparin with Li Heparin 
(~g t·') (~g t·') 

(Labsystems) (Beckton-Dickinson) 

n = 3 n = 5 n = 5 

A[27 10.07 ± 0.16 23.98 ± 2.65 65.79 ± 6.11 

Srss 0.24 ± 0.01 0.18±0.10 0.80 ± 0.10 

Zr90 0.32 ± 0.01 0.31 ± 0.01 2.80 ± 0.24 

Cd111 0.24 ± 0.01 0.22 ± 0.01 0.23 ± 0.01 

Ba•Js 0.44 ± 0.01 0.50 ± 0.04 43.34 ± 2.75 

Ce140 0.29 ± 0.01 0.30 ± 0.01 13.71 ± 0.85 

Pb2os 0.11±0.01 0.04 ± 0.01 0.18 ± 0.05 
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lithium heparin anticoagulant. However since these tubes are non-evacuated, a syringe 

and needle would be necessary in order to collect the blood samples, and this process 

may act as another source of contamination. Table 6.3 shows the results obtained in an 

experiment to evaluate this possibility. As can be seen the use of plastic syringes (Termo 

Europe NV, Leuven, Belgium) and needles (Beckton-Dickinson, Dublin, Ireland) did not 

result in contamination of the selected elements. Unfortunately due to the quantity of 

blood that must be taken for both the clinical trial and for the patients' normal routine 

medical tests, and the frailty of the patients, the use of a syringe and needle may cause 

the veins to collapse. The use of the evacuated Vacutainer tubes of course, do not suffer 

from this problem. 

Due to this limitation, the next best available option was to collect the blood samples 

using the Vacutainer tubes, and then immediately decant the contents into the Teklab 

plastic tubes. Unfortunately significant contamination still occurred (Table 6.4). The 

samples were collected in the glass Vacutainer tubes, stoppered, shaken, and then 

decanted immediately into the plastic Teklab tubes (with white stoppers), and compared 

to values for solutions collected directly into the Teklab tubes. Significant increases in 

the AI, Ba and Ce levels was evident, as well as a slight increase in the strontium levels. 

The cadmium levels this time remained constant at a similar level to the blanks, 

conflfming the original suspicion that the orange stoppers were the source of 

contamination. 

A compromise between the clinical and analytical factors therefore had to be made. Many 

of the samples had already been collected and further blood collection was only possible 
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Table 6.3: Summary of blank study on test solution (2% v\v Aristar nitric acid, 100 p.g 
1-• Tl internal standard), collected using plastic syringes and metal needles, then injected 
into plastic trace metal free tubes (Labsystems), {n=3}. 

Element [Blank] [Control I] [Control 2] [Sample] 

(p.g t·•) (p.g t-•) (p.g t-•) (p.g t·•) 

Al27 9.04 ± 0.25 6.16 ± 0.27 6.13 ± 0.09 6.74 ± 0.09 

Srss 0.78 ± 0.01 0.44 ± 0.02 0.43 ± 0.01 0.44 ± 0.01 

Zr90 2.73 ± 0.14 2.11 ± 0.27 1.85 ± 0.02 1.82 ± 0.02 

Cdu• 0.35 ± 0.05 0.29 ± 0.02 0.29 ± 0.04 0.30 ± 0.02 

Ba138 0.26 ± 0.02 0.15 ± 0.06 0.10 ± 0.01 0.12 ± 0.03 

Ce140 0.08 ± 0.01 0.06 ± 0.01 0.04 ± 0.01 0.05 ± 0.01 

Pb20s 0.03 ± 0.01 0.02 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 

Control 1: Trace metal free plastic tubes (Labsystems) filled with the test solution 
directly from the plastic volumetric flask (blank). 

Control 2: The amber plastic bottles used in the collection of urine samples were filled 
with the test solution, and then 10 ml aliquots were pipetted into the trace metal free 
plastic tubes (Labsystems)_ 

Sample: A plastic syringe and metal needle were used to draw up 10 mls of the test 
solution from the amber plastic bottles. The contents were then injected into the trace 
metal free tubes (Labsystems). 
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Table 6.4: Summary of the blank study for test solution collected initially in the glass 
Vacutainer tubes, and then immediately decanted into the plastic tubes (Teklab). 

Element Concentration in Concentration in Concentration after 
trace metal free plastic tubes with transfer form glass 
plastic tubes, no Li Heparin Vacutainer tubes, to 

Li Heparin (j.tg t·l) plastic Teklab tubes 
(j.tg J•l) (j.tg J·l) 

(Labsystems) (Teklab) 

n = 3 n = 3 n = 3 

Al27 4.85 ± 0.58 3.36 ± 0.19 23.11 ± 3.42 

srss 0.31 ± 0.01 0.48 ± 0.02 l. 16 ± 0.11 

Zr90 3.07 ± 0.50 2.64 ± 0.11 3.10 ± 0.08 

Cdlu 0.05 ± 0.01 0.05 ± 0.03 0.04 ± 0.02 

Ba138 0.09 ± 0.03 2.34 ± 0.11 26.02 ± 3.07 

Cel40 0.04 ± 0.01 0.05 ± 0.02 7.81 ± 1.15 

Pb2os 0.11 ± 0.01 0.15 ± 0.03 0.25 ± 0.08 

192 



using the glass Vacutainer tubes. Consequently aluminium, barium, cerium and zirconium 

were dropped from the clinical trials. Aluminium and zirconium were also prone to high 

and variable blank levels, and since the clean up of the water supply appeared to make 

little difference, this contamination was attributed to the laboratory environment and ICP-

MS instrument respectively. The collection of blood samples with the glass Vacutainers 

resulted in no contamination in the levels of cadmium and lead and only a very slight 

increase in the strontium levels. 

The blank studies conducted on the urine collection containers, summarised in Table 6.5, 

showed that no contamination occurred. Thus the integrity of the urine samples was not 

compromised during the collection of the samples by the given methodology. 

6.5: AN INVESTIGATION INTO THE STORAGE AND PRETREATMENT OF 
URINE SAMPLES. 

Biological samples are prone to extraneous contamination, while unne, which is 

supersaturated at room temperature, has the further problem of precipitation following 

collection. The exact nature of the precipitate is unclear, although it is probably a 

calcium-base precipitate, such as calcium phosphate (536). This precipitation is intensified 

during sample storage at low temperatures, and any analyte within this precipitate will 

not be fully detected, since ICP-MS requires the sample to be in an homogenous form. 

The precipitate formed is not easily redissolved by dilution and can therefore significantly 

reduce the concentration of certain cations in solution. Therefore it is necessary to 

ascertain whether or not such precipitation and any pretreatment of the urine samples 

affected the measurement of the cadmium, lead and strontium levels. 
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Table 6.5: Summary of the blank studies on the urine collection procedure. 

Element Blank concentration Concentration in trace 
{J.tg I-') metal free tubes 

following urine collection 
procedure 

{J.tg I-') 

AJ27 3.52 ± 0.05 3.46 ± 0.18 

Srss 0.58 ± 0.05 0.30 ± 0.01 

Zr90 3.70 ± 0.53 2.50 ± 0.05 

Cd111 0.09 ± 0.02 0.03 ± 0.01 

Ba138 0.18±0.02 0.12 ± 0.03 

Ce140 0.07 ± 0.02 0.04 ± 0.01 

Pbws 0.23 ± 0.03 0.1 ± 0.01 
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6.5.1: Experimental. 

A recent study (536) suggested that if the urine sample was diluted with nitric acid, 

warmed to 40°C and then re-equilibrated to room temperature, all the elements would 

be maintained in a soluble form as required for accurate analysis. Based on this study the 

following experiments were conducted. The urine samples were collected in 250 ml 

plastic beakers, and then immediately decanted into 30 ml amber plastic screw cap bottles 

(Merck, Poole, Dorset, U .K). From these, 10 ml aliquots were pipetted into 15ml trace 

metal free plastic tubes (Labsystems, Life Science International (UK) Ltd, Basingstoke, 

Hampshire, UK). These tubes were stored at room temperature, 4 oc and -20°C. At each 

temperature, one tube was stored with 0.1% v\v Aristar nitric acid added, and one tube 

stored with no acid added. All the samples were left overnight and then re-equilibrated 

to room temperature and the amount of precipitate assessed. The samples were analysed 

following a simple dilution method (404), where the samples were shaken, 1ml of urine 

pipetted into 15ml trace metal free tubes and 9mls of diluent added using an automatic 

dispenser (Optiftx, Merck, Poole, Dorset, UK). The diluent consisted of 2% v\v Aristar 

nitric acid and 100 p.g t·1 thallium internal standard. Each sample was analysed by ICP

MS and a comparison made between samples heated to 40°C and those without heating 

to see if the metal concentrations differed. Calibration solutions were prepared as 

described in Section 6.4.1. 

6.5.2: Results and discussion. 

The amount of precipitate formed at -20°C was found to be greater than that formed at 

4 oc, which in turn was greater than that compared to the samples stored at room 

temperature. In all cases the addition of acid appeared to increase the relative amounts 
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of precipitate. However the measured metal concentrations appeared to be unaffected by 

the addition of acid (Table 6.6). The results also showed that very little difference was 

observed between samples heated to 40°C and left to re-equilibrate prior to analysis, 

compared to those samples analysed directly. Therefore, with respect to the analysis of 

strontium, cadmium and lead, the addition of 0.1% v\v nitric acid did not cause major 

problems, and maintained a stable pH environment for the cations. In addition the urine 

samples could be analysed after simple dilution, without prior heating. 

6.6: INTERFERENCE STUDY. 

Biological samples are known to be prone to a number of non-spectral interferences (refer 

to Section 2.1.7). Initially a series of experiments were conducted to evaluate whether 

or not such interferences were present, by comparing the slopes of calibration graphs 

obtained using both aqueous standards and matrix matched standards. This was followed 

by a study of the effects of increasing the concentration of the main potential interfering 

ions with respect to the ratio of the analyte and internal standard signal, to ascertain 

whether or not internal standardisation satisfactorily corrected for any enhancement or 

suppression of the analyte signal. 

6.6.1: Exoerimental. 

Aqueous calibration solutions were prepared by pipetting 0, 10, 50, 100, 250 and 500 J£1 

of a 10mg 1·1 stock solution (Cd, Pb and Sr) into lOOm! plastic volumetric flasks and 

made up to the mark with diluent to give 0, 1, 5, 10, 25 and 50 Jlg 1"1 calibration 

standards. The diluent consisted of 2% v\v Aristar nitric acid containing 100 Jlg 1·1 

thallium internal standard for the urine analyses, and a solution of 0.1% v\v Triton X-
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Table 6.6: Summary of the investigation into the storage and pretreatment of urine 
samples. 

Element Storage Addition of Concentration with Concentration 
condition 0.1% v\v no heating to 40°C with heating to 

Aristar nitric prior to analysis 40°C prior to 
acid {J.tg 1-1) analysis 

(j.tg 1-1) 

srss Room Yes 14.62 ± 0.29 15.86 ± 0.15 
Temp. 

Room No 12.66 ± 0.41 16.17 ± 0.67 
Temp. 

4°C Yes 15.18 ± 0.31 15.45 ± 0.19 

4°C No 14.73 ± 0.19 14.95 ± 0.77 

-20°C Yes 15.36 ± 0.46 14.82 ± 0.20 

-20°C No 15.44 ± 0.62 14.45 ± 0.19 

Cd1u Room Yes 0.36 ± 0.04 0.55 ± 0.07 
Temp. 

Room No 0.31 ± 0.05 0.54 ± 0.05 
Temp. 

4°C Yes 0.39 ± 0.07 0.47 ± 0.07 

4°C No 0.44 ± 0.01 0.53 ± 0.18 

-20°C Yes 0.57 ± 0.07 0.42 ± 0.04 

-20°C No 0.51 ± 0.11 0.46 ± 0.02 

Pbws Room Yes 0.32 ± 0.05 0.20 ± 0.01 
Temp. 

Room No 0.41 ± 0.03 0.31 ± 0.08 
Temp. 

4°C Yes 0.30 ± 0.04 0.25 ± 0.07 

4°C No 0.75 ± 0.07 0.24 ± 0.04 

-20°C Yes 0.18 ± 0.02 0.32 ± 0.05 

-20°C No 0.17 ± 0.01 0.23 ± 0.05 
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100, containing 0.1% v\v Aristar nitric acid and 100 p.g 1"1 thallium internal standard for 

the blood analyses. The matrix matched standards were prepared in a similar fashion 

using a 1 in 10 dilution of blood or urine. The appropriate amount of the 10mg t 1 stock 

solution was pipetted into 30 ml plastic trace metal free tubes (Merck, Poole, Dorset, 

UK), along with 2 mls of blood or urine and 18 mls of the respective diluent as described 

above, to give a series of calibration solutions (0 - 50 p.g 1"1). 

For the second interference study, a series of solutions were prepared in plastic flasks 

containing between 0- 10 g 1-1 of KN03, NaN03, Mg(N03) 2 , Ca(C03) 2, HCl, H2S04 , and 

H3P04 , in 2% v\v Aristar nitric acid. Each flask also contained 10 f.tg 1-1 Cd, Pb and Sr 

(analyte ions) and 100 f.tg 1"1 of Cs, Y, In and Tl (internal standards). ICP-MS in the fully 

quantitative mode was used to collect the raw data (i.e. counts), to study the effects on 

the ratio of the analyte to internal standard signal ratio, as the concentration of the 

potential interfering ions (i.e. K +, Na +, Mg2+, Ca2+, c1·, SO/· and PO/) increased. 

6.6.2: Results and discussion. 

Figures 6.1 and 6.2 show the calibration graphs for aqueous versus matrix matched 

standards for blood and urine samples respectively for each of the three analytes -

strontium, cadmium and lead. These graphs are linear within the sample concentration 

range tested. The slopes for Cd and Sr in blood were similar, with only a slight 

suppression of signal at the lower concentration ranges compared to that of the aqueous 

standards. Lead in blood showed greater variation but the sensitivities of the two types 

of calibration standards were still close to one another, indicating only minor matrix 

effects. The slopes of the graphs for the urine samples clearly showed greater matrix 
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Figure 6.1: Calibration graphs comparing aqueous standards with matrix matched 
standards for blood analyses. 
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Figure 6.2: Calibration graphs comparing aqueous standards with matrix matched 
standards for urine analyses. 
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effects compared to the blood samples, particularly at the higher concentration range. 

These effects became more pronounced as the analyte mass increased. These results 

indicated that the use of aqueous standards would probably suffice for the blood analyses, 

however their use in the urine analyses may be problematic. 

Figure 6.3 depicts the effects of individual potentially interfering ions on the ratio 

between strontium and the various internal standards. These graphs clearly show that all 

of the internal standards evaluated, satisfactorily correct for any changes in the analytical 

signal , except in the presence of calcium. However using a 1:10 dilution, the 

concentration level of Ca in the sample would be approximately 1 gl-1 and therefore, 

based on these results would only have minimal consequences on the strontium: internal 

standard ratio. 

Figure 6.4 shows that all the internal standards evaluated satisfactorily corrected for any 

analytical signal changes for cadmium. However, as expected the internal standards, In 

and Cs , with masses closest to the analyte mass, demonstrated marginally more stable 

ratios compared to Y and Tl. Similarly Figure 6.5 clearly shows that thallium was the 

best internal standard for the lead measurements. 

It was noted that throughout these experiments the stability of the In internal standard in 

the blood diluent solution was responsible for inconsistent results, with the indium counts 

varying throughout a run, whereas the other internal standards gave more consistent 

readings. This observation was probably due to a pH effect, with the In requiring a 

slightly more acidic environment. However the addition of more acid would result in 
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Figure 6.3: Graphical presentation of the matrix effects of potential interfering ions on the Sr: Internal standard ratio. 
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Figure 6.4: Graphical presentation of the matrix effects of potential interfering ions on the Cd:lnternal standard ratio. 
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Figure 6.5: Graphical presentation of the matrix effects of potential interfering ions on the Pb:Internal standard ratio. 
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more rapid deprotonisation of the blood samples, which would in turn lead to clogging 

of the nebuliser. Consequently Cs was used as the internal standard instead of indium in 

the blood analyses. 

6.7: ANALYTICAL FIGURES OF MERIT. 

The experiments into the collection and storage of the samples, the methods and 

procedures employed, plus the equipment used, demonstrated that no major contamination 

of Sr, Cd and Pb occurred. Verification of the accuracy and precision of the analytical 

methodology for these analytes was achieved by use of spiking experiments and use of 

reference\certified reference materials. 

6.7.1: Exoerimental. 

The blood samples (pooled blood samples (IQC's), or Seronorm samples) were diluted 

1 in 10 with a diluent consisting of 0.1% v\v Triton X-100, 0.1 %v\v Aristar nitric acid 

and 100 iJ.g 1"1 internal standard (Y, Cs and Tl). The urine samples (Seronorm or pooled 

sample) were diluted 1 in 10 with a diluent consisting of 2% v\v Aristar nitric acid 

containing 100 ilg J·' internal standard (Y, In and Tl). 

Calibration was achieved using standards (0-50 ilg J·') made up to the mark with the 

appropriate diluent in plastic volumetric flasks. The % recovery tests were conducted by 

spiking the samples at three different concentration levels (10, 20 and 30 ilg J·'), with a 

standard stock solution (10 mg J·' Sr, Cd and Pb). Seronorm whole blood and urine 

reference materials were initially used to assess the accuracy and precision of the 

methodology for all three elements. Further verification for both lead and cadmium was 
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achieved by analysing certified reference materials: BCR 195, lead and cadmium in 

whole blood, and NIST SRM 2670 freeze dried urine. All the reference\certified 

reference materials were supplied in a freeze dried form, which were stored at 4 °C, (as 

directed), and reconstituted as instructed using MilliQ or Elga water. 

6. 7.2: Results and discussion. 

The limits of detection (3o) for all three selected elements in the respective diluents used 

for both blood and urine analyses were less than 1 p.g 1"1 (Table 6. 7). In general the 

percentage recovery results for spiked pooled blood samples for the selected elements was 

very good (Table 6.8), although the % RSD's were slightly high for both Sr and Cd. 

Table 6.9 shows the results attained for Seronorm whole blood reference material. 

Although a reference value is not available for Sr the results indicate reasonable 

reproducibility at all three concentration levels. High cadmium values for level 1 (low) 

could be attributed to the reference value being within the determinable limit. The Cd 

values for level 2 were within range and only slightly high at level 3. The lead levels 

were well within specification for level 1 but consistently high at both levels 2 and 3. 

This could be attributed to the enhancement of signal due to the blood matrix at these 

higher concentration as depicted in Figure 6.2, and in the case of level 3 compounded by 

the fact that this value was outside the tested calibration range. However the analysis of 

certified reference materials BCR 194 (Chapter 5) and BCR 195 showed that the results 

for lead at both levels were within the certified range, although the cadmium value was 

again slightly high, but still within range (Table 6.10). 

The urine samples gave excellent percentage recovery results for all the elements with 
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Table 6.7: Limit of detection (LOO) results for the three selected elements (n=ll} 

Element LOO (3u) for Blood LOO (3u) for Urine 
Analysis • Analysisb 
(J.Lg J·l) (J.Lg J·l) 

Sr88 0.15 0.27 

Cd111 0.24 0.36 

Pb20s 0.06 0.06 

• Repeated measurements on blank solution consisting of 0.1% v\v Triton X-100, 0.1% 
v\v Aristar nitric acid and 100 11-g 1·• Y, Cs and Tl internal standards. 

b Repeated measurements on blank solution consisting of 2% v\v Aristar nitric acid and 
100 11-g 1·• Y, In and Tl internal standards. 

Table 6.8: Percentage recovery results for pooled blood samples (n=9) 

Element 10 11-g 1·• spike 20 11-g 1·• spike 30 11-g 1·• spike 
average (%RSO) average (%RSD) average (%RSD) 

srss 109.7 (11.8) 113.8 (9.3) 111.2 (10.1) 

Cd•u 98.2 (11.6) 99.2 (12.2) 102.2 (11. 9) 

Pb20s 106.0 (6.6) 107.8 (5.9) 109.7 (4.6) 
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Table 6.9: Results for Seronorm whole blood reference material (n= 10) 

Seronorm sample Reference Range Experimental Result (pg 1'1) 

(pg ,_,) Average ± s.d 

Level 1 Srss - 70.6 ± 2.5 
Cd111 0.8- 1.0 2.33 ± 1.2 
Pb20s 31 - 41 32.9 ± 0.7 

Level 2 Srss - 17.0 ± 3.5 
Cd111 5.9- 6.8 6.7 ± 0.9 
Pb20s 361 - 396 416.3 ± 6.0 

Level 3 Srss - 75.0 ± 4.8 
Cd111 11.2 - 12.5 12.9 ± 0.9 
Pb20s 626- 702* 707.5 ± 7.4 

* Outside calibration range 

Table 6.10: Results for BCR certified reference material for blood (n=6) 

CRM Certified Value Experimental Result (pg I-1
) 

(pg ,_,) Average ± s.d 

BCR 194 Pb 126 ± 4 128.2 ± 1.3 

BCR 195 Cd 5.37 ± 0.24 6.92 ± 1.60 

Pb 416 ± 9 422.8 ± 2.8 
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The urine samples gave excellent percentage recovery results for all the elements with 

good RSD's (Table 6.11). Similarly no reference value is available for strontium in 

Seronorm urine reference material, however repeated measurements gave reproducible 

results. The cadmium level was again slightly high, whilst lead agreed very closely with 

the reference value (Table 6.12). The analysis of a certified reference material NIST 

2670, (Table 6. 13) gave values in the correct area at the low level where only a guideline 

value was indicated. However both cadmium and lead were in good agreement with the 

certified value at the elevated level. 

6.8: SUMMARY. 

The semi-quantitative and fully quantitative modes of ICP-MS analysis provided the trace 

metal profiles from which a number of potential elements to measure alongside lead in 

the clinical trials were identified. Most of the selected elements agreed closely with the 

literature with respect to the type of elements normally found within the skeletal system. 

Following detailed investigations into the collection, storage and analytical procedures, 

along with the clinical practicalities, only strontium, cadmium and lead were selected to 

be measured in the subsequent extended clinical trials in both blood and urine samples. 
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Table 6.11: Percentage recovery results for pooled urine samples (n = 12) 

Element 10 p.g 1-1 spike 20 p.g 1-1 spike 30 p.g 1-1 spike 
average (%RSD) average (%RSD) average (%RSD) 

Srss 96.4 (13.3) 103.7 (3 .8) 108.2 (5.8) 

Cdl11 98.6 (6.7) 103.5 (4.2) 106.7 (7.1) 

Pbws 99.2 (5 .2) 104.0 (2.2) 103.6 (7.4) 

Table 6.12: Results for Seronorm urine reference material (n = 10) 

Element Reference Value Experimental Result (p.g l-1) 
(p.g 1-1) Average ± s.d 

Srss - 105.5 ± 3.7 

Cdm 5.0 6.2 ± 1.0 

Pbws 100.0 98.2 ± 4.1 

Table 6.13: Results for NIST 2670 urine certified reference material (n = 6) 

CRM: NIST 2670 Certified Value Experimental Result (p.g 11
) 

(p.g 1'1) Average ± s.d 

Normal level Cd (0.4) 2.29 ± 0.4 

Pb (10.0) 6.2 ± 0.5 

Elevated level Cd 88 ± 3.0 88.4 ± 3.8 

Pb 109 ± 4.0 109.7 ± 1.3 

Values given in parentheses are non-certified and are for information only 
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CHAPTER 7 

A COMPARISON OF THE 
BLOOD AND URINARY LEVELS 
OF CADMIUM, LEAD AND 
STRONTIUM, WITH URINARY 
DEOXYPYRIDINOLINE 
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MEASURE OF BONE 
RESORPTION IN PATIENTS 
WITH SKELETAL METASTASES 
(EXTENDED CliNICAL TRIAL). 



CHAPTER 7: A COMPARISON OF THE BLOOD AND URINARY LEVELS OF 

CADMIUM. LEAD AND STRONTIUM. WITH URINARY 

DEOXYPYRIDINOLINE CROSSLINK LEVELS. AS A MEASURE OF BONE 

RESORPTION IN PATIENTS WITH SKELETAL METASTASES <EXTENDED 

CLINICAL TRIAL). 

7.1: INTRODUCTION AND AIMS. 

The preliminary trial results presented in Chapter 5, where the blood lead levels were 

measured in patients with skeletal metastases and receiving treatment, indicated that the 

measurement of lead showed some potential as a bone resorption marker and warranted 

further and more detailed investigation. In Chapter 6, several other potential trace metals 

were also identified and assessed. However after assessing both analytical and clinical 

practicalities, only cadmium and strontium were selected alongside lead to be measured 

in the extended clinical trials. 

The purpose of these extended clinical trials was to measure the urinary 

deoxypyridinoline (DPYD) crosslink levels, using the ELISA technique (serving as the 

reference marker), and to compare these levels with the selected trace metal levels (Cd, 

Pb, and Sr}, measured by ICP-MS, in blood and urine samples taken at the same time. 

The trials were essentially a feasibility study, where examination of the diagnostic 

potential, coupled with the ability to monitor the effectiveness of treatment would be 

made, along with associated studies of other influencing factors on the results such as, 

age, sex, treatment, primary cancer and bed rest. 
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7.1.1: Biological significance of lead in the human body. 

Many of the key areas relating to the biological significance of lead in the human body 

have already been discussed in Chapter 5. The majority of measurements have centred 

on lead levels in whole blood, since lead is primarily found in the erythrocytes, bound 

to haemoglobin (468,469). The lead concentration of plasma and serum are generally in 

the region of 0.1 - 0.5 p.g 1·1 (306) and often considered too low to measure. The 

presence of lead in urine although lower than for blood, (usually < 20 p.g 1·1 (263,306)), 

can be regarded as an indirect index of the renal and total body burden of this metal. 

Hence the determination of lead in urine may be useful for monitoring occupational and 

environmental exposure to this element. However due to the low level of lead in urine, 

only the most sensitive analytical techniques may be used successfully, such as ET AAS 

(263,537,538) and ICP-MS (384). 

7.1.2: Biological significance of cadmium in the human body. 

7.1.2.1: Sources of cadmium. 

Cadmium occurs naturally in soils and rocks (539,540). Anthropogenic sources of 

cadmium include smelter emissions, steel production, non-ferrous metal production, 

refining, cement manufacture, pigment manufacture, electroplating, battery manufacture 

and plastic stabiliser manufacture. Other sources of cadmium include combustion: oil 

combustion, waste incineration, coal combustion, along with applications of phosphate 

fertilisers and sewage sludge to land (539-543). 

Such contamination of the environment, results in cadmium becoming incorporated into 
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the food chain and thus potentially causing serious health problems (542). The main 

routes of human exposure to cadmium include the working environment, for example by 

the inhalation of fumes and dust, and occasionally by oral intake (542), and more 

generally from food, air and water (539-541,543). The concentration of cadmium found 

in food is low, although elevated levels can be found in some foods, such as kidney, 

shellfish, cereals and leafy vegetables (539,540). The cadmium levels in drinking water 

are generally low and the contributions from storage tanks and plumbing is generally 

regarded as negligible (539,540). 

There are a number of factors which affect the susceptibility to cadmium toxicity in man, 

although the relationship between toxicity and intake is complex. Such factors include 

age, sex, tobacco, and alcohol consumption. Smokers have a higher cadmium intake 

compared to non-smokers (467, 544-547). The blood cadmium levels increase from age 

20 to 60 years, and then decreases again (546). The cadmium levels of the liver, pancreas 

and kidney increase with age, although the average concentration found in the kidney 

tends to decrease after about 50 years of age (544). The urinary cadmium levels also tend 

to increase with age (548), and are generally higher in females compared to males (548). 

However the cadmium levels in blood tend to be higher in males than females (467,546). 

In contrast to lead, the consumption of alcohol has been associated with a decrease, as 

opposed to an increase, in the blood cadmium levels (467). However a study of different 

alcoholic beverages has shown a wide range of cadmium concentrations (Table 7.1), such 

that their consumption could contribute a large fraction of the cadmium intake and 

therefore this factor should be taken into consideration and control may be advisable in 
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Table 7.1: Cadmium levels measured in various alcoholic beverages (549). 

Sample 

Brandy 

Red wine 

White wine 

Rose wine 

Whisky 

Gava 

Gin 

Olossa 

Sherry 

Rum 

Cider 

Beer 

Liquor 

Anisette 

Mean values with range in parentheses 

n.d = not detected 

Cadmium concentration (J.tg 1" 1
) 

5.31 (n.d - 11.52) 

3.34 (0.19- 15.05) 

3.44 (0.10- 15.38) 

3.26 (2.00- 4.50) 

3.20 (0.15 - 10.21) 

I. 11 (0. 70 - 1.35) 

0.64 (0.08 - I. 12) 

0.52 (0.34- 0.70) 

0.36 (0.30 - 0.45) 

0.36 (n.d - 0. 70) 

0.34 (0.21 - 0.66) 

0.21 (n.d - 0.80) 

0.13 (n.d- 0.10) 

0.04 (n.d - 0.23) 
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any study (549). 

7.1.2.2: Metabolism and body burden of cadmium. 

The absorption of cadmium compounds varies considerably depending on its chemical 

form and particle size. Oral absorption of inhaled cadmium in air is 10-50%, while 

gastrointestinal absorption accounts for about 5% (539,540). Absorption of cadmium is 

higher for females than males, due to differences in iron stores (540). Transport of 

cadmium in the gastrointestinal tract is also influenced by compounds, such as proteins 

and amino acids (539,540). 

After inhalation and gastrointestinal absorption, the cadmium accumulates in the body 

organs, particularly the liver, kidney cortex, kidney medulla, urine, bladder, lungs and 

glottis (539). Accumulation within the liver and kidney constitutes 50% of the total body 

burden of cadmium (550). There is a limit to the renal storage of cadmium, above which 

renal damage prevents further metal accumulation, and results in a decrease in the 

cadmium kidney concentration. However the body burden of the liver appears to be 

independent of the functional state of the kidney. Changes in the environmental cadmium 

levels have been reflected in a change in the body burden of cadmium in the general 

population (305 ,539). 

7 .1.2.3: Blood cadmium levels. 

Greater than 90% of the cadmium in blood is bound to the erythrocytes (551), and it is 

believed that the binding in the erythrocytes may be partly due to the haemoglobin, but 

also to higher as well as lower molecular mass proteins (metallothienein) (540). The 
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blood cadmium levels represent the recent exposure levels and in the general population 

is usually ~ 4 p.g 1-• (552)_ Smokers have higher blood cadmium levels compared to non 

smokers, similarly workers slightly exposed to cadmium tend to show higher levels, with 

the blood cadmium levels correlating with the intensity but not the duration of cadmium 

exposure. 

7.1.2.4: Urine cadmium levels. 

At low exposure, urine cadmium reflects the total accumulation of cadmium in the body. 

In the presence of short term occupational exposure the urinary cadmium levels fluctuate 

depending on the cadmium exposure intensity concerned. However the urinary cadmium 

levels generally correlate with the blood cadmium levels (553). In the more common long 

term exposure scenario the urinary cadmium levels reflect and correlate more closely with 

the total body burden before severe renal damage has occurred (554). For adults, not 

occupationally exposed and under 65 years of age, the urine cadmium levels are usually 

~ 2 p.g g-• creatinine (555). 

If exposure to cadmium has been excessive, the Cd binding sites become progressively 

saturated and despite continued exposure, the cadmium concentration in the kidney tends 

to plateau. At this point, the cadmium that is still absorbed cannot be further retained in 

the kidney and is rapidly excreted into the urine. Although this excretion is usually low 

(i.e. 0.001% - 0.01% of the total body burden of Cd in 24 hours), it increases as renal 

damage increases. Therefore the excretion of urinary cadmium and hence the urinary 

cadmium levels is influenced both by the body burden of cadmium as well as the degree 

of renal impairment (541). 

216 



7.1.2.5: Measurement of cadmium in blood and urine samples. 

The determination of cadmium in blood and urine has suffered from several problems, 

mainly due to the low concentrations involved, coupled with matrix interference effects 

and contamination problems. Electrothermal atomic absorption spectrometry (ET AAS) 

has become the most popular and widely used technique to date and a number of 

procedures have been employed to overcome the above problems (263). Some of the 

more recent methods are summarised in Table 7.2. The methods have included 

preconcentration of the Cd by solvent extraction (557 ,560) and electrodeposition (566) 

as a means of reducing the interferences from the matrix, whilst improving the 

sensitivity. However such methods are prone to losses and contamination. Other 

applications have employed direct injection of the sample into the furnace in ETAAS 

followed by the addition of matrix modifiers to overcome the interference effects. A wide 

variety of modifiers, or combinations of, have been tried, such as (NH4) 2HP04 , 

(NH4)H2P04 , Pd(NO:J2, N~N03 , nitric acid and Triton X-100 (555-

559,562,563,565,567-569). Although these modifiers are known to provide separation of 

the Cd analytical signal from the matrix interferences by allowing higher charring 

temperatures, they can also act as a source of contamination at the low levels of Cd 

normally found in blood and urine. Other workers have tried novel furnace atomisers that 

provide more precise temperature control, such that the analytical signal can be 

differentiated from the background signal (563,570), and continuum source ETAAS 

(564). 

Other methods that have been evaluated include electroanalytical techniques 

(539,540,543), ICP-AES (571), isotope dilution gas chromatography mass spectrometry 
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Table 7.2: Summary of ETAAS methods for measuring cadmium in blood and urine. 

Sample Procedure L.O.D Linear % RSD 
type Range 

Blood 1 + 9 dilution with 0.05 % m\v 1.3pg 3 ng ml-1 

Triton X-100 with 1% nitric acid 
added separately. 

Cal: Aqueous (1% v\v nitric acid 
with 0.2% m\v (NH4) 2HP04 and 1 
mg\ml Mg(N03) 2 solution). 
Vol: 5~-tl 

Blood 1 + 4 dilution with Triton X-100 0.4 1-tg l-1 3.9% 
Serum (blood), and 1 + 2.5, and 1 + 2 0.14 1-tg 1-1 33.3% 
Urine dilution with 0.2% nitric acid 0.10 1-tg 1-1 17.5% 

(serum and urine respectively). 
Palladium nitrate and ammonium 
nitrate used as the matrix 
modifier. 

Cal: Matrix free reference 
solutions 

Comments Ref. 

Deuterium background correction 555 
with L'vov platform. Stabilised 
temperature platform furnace 
conditions (STPF). Addition of 
the stabiliser mixture to the 
aqueous calibration solution 
results in thermal behaviour 
resembling that of Cd in the 
blood matrix. 

Zeeman background correction. 556 
Values for reference materials 
within their respective certified 
ranges. 



Table 7.2: Continued. 

Sample Procedure L.O.D Linear % RSD Comments Ref. 
type Range 

Blood 1 + 3 dilution with 1 M nitric ~ 2 J,tg 1"1 Blood: Stabilised temperature platform 557 
Urine acid (blood), 1 + 3 or 1 + 5 (blood) 30% at furnace (STPF) with Zeeman 

dilution with ultrapure water 0.4~-tg 1"1 background correction. 
(urine - direct determination). ~0.2 J,tg 1"1 

Urine samples also prepared by (urine, 3.8% at 
solvent extraction with aqueous direct) 9.3J,tg 1"1 

2% sodium diethyl 
dithiocarbamate (NaDDC) ~ 0.1 J,tg 1"1 Urine: 
solution, followed by methyl (urine, 26% at 
isobutyl ketone (MIBK). solvent 0. 6~-tg 1"1 

extraction) 
Cal: Matrix matched 7.1% at 
Vol: 10 - 25~-tl (blood) 27 J,tg 1"1 

10~-tl (urine - direct) 
10 - 50~-tl (urine - solvent 
extraction) 

Blood 1 + 4 dilution with 0.1 % Triton 0.22 J,tg 1"1 <400pg <3% Zeeman background correction 558 
Urine X-100 (blood) or 0.2% nitric acid and stabilised temperature 

(urine), added to graphite tube platform furnace conditions 
platform where the "in-situ" dried (STPF). Palladium based 
and decontaminated modifier modifiers and "in-situ" 
already added. decontamination studied. 

Comparison of modifiers:- Pd, 
Cal: Matrix matched and Aqueous Pd with ammonium nitrate and 
Vol: 10~-tl Pd with magnesium nitrate . 
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Table 7.2: Continued. 

Sample Procedure 
type 

Urine 1 + 4 dilution with ultrapure 
water. Matrix modifier consisted 
of 200 1-tg (NH4) 2HP0 4 in 30ml 1·1 

HN03• 

Cal: Aqueous standards. 
Vol: 10~-tl. 

Urine Solvent extraction sample 
preparation used: The sample is 
dried, ashed in the presence of 
nitric acid, the residue is dissolved 
in hydrochloric acid and the Cd is 
extracted as its 
tetrahexylammonium iodide into 
methyl isobutyl ketone. The 
organic phase is then analysed by 
ETAAS. 

Cal: Matrix matched 
Vol: 20~-tl 

Urine 1 + 1 dilution with deionised 
water. No matrix modifiers used. 

Cal: Standard additions 
Vol: 20J.£l 

L.O.D Linear % RSD Comments Ref. 
Range 

0.04~-tg 1"1 5% Stabilised temperature platform 559 
furnace (STPF) with Zeeman 
background correction. 

1 ng g·1 ~4.2 ng g·1 10% Deuterium background 560 
correction. 

0.06 1-tg 1"1 up to L'vov platform and selective 561 
12 J.tg 1·1 atomisation. 
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Table 7.2: Continued. 

Sample Procedure 
type 

Urine a) 1 + 4 dilution with 6% v\v 
nitric acid. 
or 
b) 1 + l dilution with 1% v\v 
nitric acid. 

Cal: Standard additions 
Vol: a) lOf.A.I 

b)20JA.I 

Urine 1 + 1 dilution with 1.5% nitric 
acid. 

Cal: Standard additions 
Vol: 30JA.I 

Urine 1 + 3 dilution with ultrapure 
water. No chemical modifier used 
or sample pretreatment. 

Cal: Aqueous 
Vol: lOJA.l 

L.O.D 

a) 0.07 f.A.g 1·1 

b) 0.13 f.A.g 1'1 

0.05 f.A.g 1'1 

0.3 f.A.g 1'1 

Linear % RSD Comments Ref. 
Range 

up to a) < 5% a) 4 stage furnace programme 562 
8 f.A.g 1'1 (intra), using L'vov platform in an 

uncoated graphite tube. Selective 
15-20% volatilisation separates Cd from 
(inter) background absorbance. 

b) <2% b) Analyses off the wall of an 
(intra), uncoated tube with a short 3 

stage programme using no ashing 
10% (inter) stage. 

< 10% Zeeman background correction. 563 

3-40 f.A.g 1'1 2% at Deuterium background 564 
3.5 f.A.g 1'1 correction. 

Probe atomisation. 
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Table 7.2: Continued. 

Sample Procedure 
type 

Urine 1 + 1 dilution with nitric acid, 
digest at 60°C in water bath for 1 
hour in a sealed plastic vial. No 
matrix modifiers used 

Cal: Aqueous 

Urine Digest 20 ml of urine with either 
cone. perchloric acid and nitric 
acid or just nitric acid. Dissolve 
and dilute residue in O.lM 
sulphuric acid (IOOml) . Add 20 
mls of solution into the 
electrolysis cell. Insert electrodes 
and after 2 minutes 
preconcentration time, remove 
electrodes and carefully remove 
the residue from the tungsten wire 
into the graphite tube. 

Cal: Aqueous 

L.O.D Linear % RSD Comments Ref. 
Range 

0.03 ng ml·1 0.03-3 ng 3.5% Continuum source AAS with a 565 
ml-1 diode array detector used with a 

conventional graphite furnace 
atomiser. 

0.01 ng mi-1 ~ 0.55 ng 3.35% Preconcentration of Cd by 566 
ml-1 electrodeposition onto a tungsten 

wire. 



(572) and isotope dilution ICP-MS (529,573). 

7.1.3: Cadmium and cancer. 

The potential carcinogenic effects of cadmium might be affected by several factors such 

as smoking, hormones and the presence of other metals, such as selenium and zinc (574). 

A recent study could neither prove or disprove the role of cadmium in breast cancer 

initiation, promotion or progression (574). However in another study cadmium induced 

prostate tumours in rats appeared to be associated with metallothienein deficiency (575). 

It is known that upon entering the body system via absorption through the lungs and 

intestine into the blood stream, cadmium first accumulates in the liver where it induces 

the synthesis of metallothienein, to which the cadmium binds. 

Therefore since the patients recruited for this clinical trial were suffering from primary 

cancers of the breast and prostate, the suggestion that cadmium may be linked with these 

cancers, or may affect the pathology of such cancers should be taken into consideration, 

since it could influence the findings of this study. Doubt may well be cast over the 

suitability for using cadmium as a biochemical marker of bone resorption in this oncology 

study. 

7 .1.4: Biological significance of strontium in the human body. 

7.1.4.1: Sources of strontium. 

Strontium occurs naturally in the sea, rocks and land (576) and possesses four stable 

isotopes: Sr84 (0.55%), Sr86 (9.75%), Sr87 (6.96%) and Sr88 (82.74%), and 
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several radioisotopes. Strontium resembles calcium and barium and has properties 

intermediate between the two elements (576). Strontium is used as a scavenger to remove 

traces of gases from vacuum tubes and as a colouring agent in fireworks. Strontium 

compounds are also used in ceramics, plastics, greases, permanent magnets and iron 

castings (576). In addition to these chemical applications Sr plays an important role in 

medicine, where stable and radioactive Sr isotopes are used as markers for calcium 

metabolism (577) and Sr89 is used as a palliative agent in the treatment of bone metastases 

(578-580). 

Strontium is an element naturally occurring in foods and beverages. Components that 

contribute to a major portion of the diet (meat, poultry, fruit and vegetables) contain 

lowest amounts of strontium (0.3-5.1 p.g ml-1
). Cereals, grains and sea foods contain up 

to 25 p.g m1·•. Amounts over 100 p.g m1·• have been found in brazil nuts, cinnamon, and 

some kinds of fish flour made with white fish including bones (576). Daily intake 

therefore varies depending on the type of diet. Lower Sr intake is associated with diets 

in societies where Sr and Ca primarily originate in dairy products. Whereas higher 

amounts are found in foods in societies where cereal or other grain products constitute 

55-65% of the Ca intake and the remainder is derived from milk and dairy products 

(576). 

7 .1.4.2: Metabolism and body burden of strontium. 

The gastrointestinal tract represents the main route of entry into the body, but the fraction 

absorbed by the intestine is relatively low (30%}, in comparison to the fraction absorbed 

via the lungs (85 %). The skin absorbs 0.26% in an undamaged state, compared to 57.4% 
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through damaged skin (576). 

It is known that strontium can replace calcium in many biological processes, but the 

intestinal absorption of Sr is lower compared to calcium. The fraction absorbed from 

dietary intake is calculated to be approximately 20%. Intestinal Sr absorption is 

negatively affected by age, chelating agents (e.g. sodium alginates), food in general and 

high dietary contents of Ca and\or phosphates (576). 

The distribution of Sr is similar to Ca, i.e. 99% of the body burden is in bone (576). It 

is believed that the incorporation of Sr in bone is by ion exchange with calcium 

(474,581,582). The preference of hydroxyapatite crystals to bind with calcium rather than 

strontium seems mainly due to the larger size of the Sr ion, which produces a mild 

distortion of the crystal lattice and this probably results in a weaker binding of Sr to the 

components of the hydroxyapatite crystal (583). Within long bones Sr is preferentially 

deposited in the shafts (584). 

The Sr concentration in bone varies, possible due to the fact that the content is positively 

affected by dietary intake or aging (585) and negatively affected by dietary intake of 

calcium and phosphate. The various techniques used to analyse the bone samples also 

adds to the diversity of values measured (576). 

The second important compartment for Sr is blood. Analogous to bone, the blood

strontium concentration is influenced by the dietary intake of Sr, Ca and phosphate (586), 

plus the values measured tend to vary with analytical technique used. Strontium in blood 
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is bound by serum proteins and transferred to the interstitial fluid to the same extent as 

Ca but intra cellular penetration appears to be more limited. However Sr has the unique 

capacity of being able to replace Ca even at sites highly specific for Ca. The normal 

levels of Sr found in the blood range between 16 - 43 p.g ]·1 (587). Sr is eliminated from 

the body in the urine, and to a lesser extent in the faeces, milk and sweat. 

7 .1.4.3: Analysis of strontium in blood and urine. 

A wide range of analytical techniques have been used for the measurement of strontium 

in biological fluids (576), with some of the more recent examples summarised in Table 

7.3. However many of these techniques are not available in clinical laboratories, hence 

procedures such as FAAS and ETAAS have found more widespread applications. The 

behaviour of strontium in FAAS is intermediate of calcium and barium, i.e. it can be 

determined in both nitrous oxide\acetylene and air\acetylene flames, although the latter 

is prone to a larger number of chemical interferences. This can be overcome by the use 

of lanthanum chloride (595). The nitrous oxide\acetylene flame reduces the chemical 

interferences but gives rise to ionisation interference, although this can be avoided by the 

addition of an excess of an easily ionising element such as rubidium (596) or potassium 

(597). 

Electrothermal AAS (ET AAS) is the preferred technique, mainly due to its greater 

sensitivity as well as its greater suitability for analysing smaller sample volumes. A 

variety of furnace tubes have been studied, such as graphite tubes (591) and pyrolytic 

coated tubes with or without a platform (587 ,591 ,598). 
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Table 7.3: Analytical methods used to determine strontium in biological fluids . 

Technique Sample L.O.D Linear Range % RSD Comments 
type 

FAAS Blood 0.56 p.g lOOml-1 20 p.g 1 OOml-1 <8% A selective extraction into isobutyl 
methyl ketone used, followed by 
determination of Sr in the organic phase 
using an air\acetylene flame. 

FAES Serum 3 ng mJ-1 100 ng mJ-1 <5% A rapid, direct method for the 
Urine determination of normal levels in serum 
Saliva without separation or preconcetration. A 
CSF nitrous oxide-acetylene flame used 

ETAAS Blood 4.6 p.g ,-I =::;; 260 p.g I-1 <10% Zeeman background correction used . 
Blood (50p.l) diluted 20 fold with 950p.l 
of Triton X-100. A 10p.l aliquot 
introduced to the pyrolytically coated 
graphite tubes. Calibration was achieved 
using either aqueous standards (in 1 % 
v\v HN03) or spiked diluted blood 
(standard additions). 

Ref. 

588 

589,590 

587 
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Table 7.3: Continued. 

Technique Sample 
type 

ETAAS Plasma 

Urine 

ETAAS Plasma 

L.O.D Linear Range % RSD 

2 p.g I-1 ~250 p.g I-1 <10% 

3 p.g I-1 

0.02 p.g l-1 ~5 p.g 1-l <3% 

Comments Ref. 

The plasma and urine samples were 591 
diluted with dilute nitric acid 20 fold 
and 50 fold respectively. Samples (20 p.l 
aliquot) were analysed using 
pyrolytically coated graphite tubes, by 
optimised temperature programming in 
the automatic background correction 
mode (tungsten, halogen source). Matrix 
matched calibration standards were 
used . Good accuracy and precision was 
achieved. 

Zeeman background correction and 592 
pyrolytically coated graphite tubes were 
used. Samples were diluted 451 fold by 
adding 50p.l of sample to 2ml of 0.2% 
HCI (dilution 1), followed by addition 
of lOOp.! of dilution 1 to lml 0.2% HCJ. 
An optimised temperature programme 
and matrix matched calibration 
standards used. 
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Table 7.3: Continued. 

Technique 

ICP-AES 

ICP-MS 

ICP-MS 

NAA 

FAAS 
ETAAS 
ICP-MS 
CSF 

Sample L.O.D Linear Range 
type 

Blood 0 .3 p.g 1"1 ~25 p.g 1"1 

Serum 

Serum 0.05 p.g 1"1 

Serum 0.02-0.05p.g J·' 

Flame atomic absorption spectrometry 
Electrothermal atomic absorption spectrometry 
Inductively coupled plasma-mass spectrometry 
Cerebral spinal fluid 

% RSD 

<5% 

<3% 

<10% 

FAES 
ICP-AES 
NAA 

Comments Ref. 

Blood samples are digested in a mixture 593 
of nitric and perchloric acid in 
combination with a microwave oven. 
Aqueous calibration solutions were 
used. 

Serum was diluted 10 fold with 384 
deionised water (MilliQ). A study into 
internal standardisation and interference 
effects revealed that accurate 
measurement could be achieved 
providing a suitable internal standard 
i.e. Y was used. 

Serum was diluted 10 or 5 fold with 594 
0.14 M nitric acid. Indium was used as 
the internal standard (100 p.g J·') along 
with aqueous calibration solutions. 

The Sr87
m produced was radiochemically 594 

separated by extraction with oxine in 
chloroform 

Flame atomic emission spectrometry 
Inductively coupled plasma-atomic emission spectrometry 
Neutron activation analysis 



7 .1.5: Correction factors to adjust urine analvte concentrations. 

It is usually not practical to collect urine samples over long and fixed periods of time. 

Therefore, it is now common place to do spot tests and adjust the analytical values 

obtained according to reference parameters, such as creatinine, specific gravity and 

osmolarity. All of these parameters are used to eliminate the influence of dilution, 

although creatinine is also used to obtain values comparable to that observed with a 24 

hour sample. Since the quantity of creatinine excreted in 24 hours is generally accepted 

to be consistent and little influenced by diuresis, correction with creatinine has become 

a common and accepted practice. 

However doubts have now been expressed as to creatinine's suitability as an adjustment 

parameter, since contrary to expectations the level of creatinine has showed marked inter 

and intra individual variations (548,599). Some studies have shown that analytes should 

be corrected using specific gravity and osmolarity, rather than with creatinine (600), 

whilst other studies suggest that adjustment is not always necessary (544,601). Each 

analyte should therefore be assessed individually with respect to the merits of adjusting 

values with one or more reference parameters. 

7.2: EXPERIMENTAL. 

7.2.1: Reagent and chemicals. 

All of the water used to wash laboratory ware and for the preparation of solutions, 

standards and samples was deionised using either a MilliQ purification system (Millipore, 

Bedford, MA, USA) or an Elgastat Maxima purification system (Elga Ltd, High 
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Wycombe, Bucks., UK) at a resistivity of 18 MO. All laboratory ware was soaked in 

10% v\v nitric acid and rinsed several times with Elga or MilliQ water. 

Aristar nitric acid was obtained from Merck (Poole, Dorset, UK), and the Triton X-100 

was obtained from Aldrich (Gillingham, Dorset, UK). Thallium nitrate standard reference 

material, NBS SRM 3158, (10,000 mg J-1
) was obtained from the National Institute of 

Standards and Technology (Washington DC, USA) and cadmium, cesium, indium, lead, 

strontium and yttrium Spectrosol standard solutions or equivalent (1000 mg J-1
) were 

obtained from Merck and Aldrich respectively. All of the calibration standards were 

prepared, at appropriate dilutions from these standard solutions. 

Seronorm whole blood and urine reference materials (Nycomed (UK), Birmingham, UK), 

and NIST freeze dried urine 2670 (National Institute of Standards and Technology, 

Laboratory of the Government Chemist, Teddington, London), were used as quality 

control measures. 

7 .2.2: Patient selection. 

During the extended clinical trials it was proposed to collect blood and urine samples 

concurrently, once a month. The following selection criteria (see Section 1. 8) were 

chosen:-

i) Patients with primary cancers of the prostate or breast, diagnosed with 
bone metastases and receiving treatment (Group 1). 

ii) Patients with primary cancers of the prostate or breast, diagnosed with 
bone metastases but who had not commenced on treatment (Group 2). 

iii) Patients diagnosed with primary cancers of the prostate or breast but with 
no known bone metastases (Group 3). 
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iv) Age and sex matched patients with no known primary or secondary 
cancers, e.g. spouses (Group 4). 

7.2.3: Sample coUection. 

Urine sampling kits were given to each patient involved in the clinical trials. These kits, 

sealed in a plastic bag, consisted of a 250ml plastic beaker, and 30ml amber screw cap 

plastic bottle. To minimise any possible contamination the beaker and bottle were soaked 

for at least 24 hours in 5% v\v Decon-90, rinsed thoroughly with distilled water, soaked 

for a further 24 hours in 10% v\v Aristar nitric acid, rinsed thoroughly with MilliQ or 

Elga deionised water, dried in an oven, and then immediately sealed in the plastic bags. 

The sampling kits were taken home by the patients, who were instructed to keep the kits 

in a clean, dry place and only to use them if the seal had not been broken. 

On the morning of the patient's clinic, they were instructed to collect their frrst void 

urine sample, providing the integrity of the sampling kits had not been compromised, and 

to store the bottle in a clean, dry, cool place out of direct sunlight. Upon arrival at the 

clinic the urine sample was collected by the nursing staff who issued a new sterilised kit 

ready for the next visit. The urine sample was shaken and two 10 ml aliquots were 

removed. One aliquot was placed into a trace metal free plastic tube with 0.1% v\v 

Aristar nitric acid added (for the trace metal analysis by ICP-MS), whilst the other 

aliquot was placed in a trace metal free plastic tube with no acid added (for the creatinine 

tests and deoxypyridinoline crosslink analysis by ELISA). Both the tubes were stored at-

20°C. 

The blood samples were taken on the same day, whilst the patients attended the clinic as 
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part of their routine treatment. The blood samples were collected by venepuncture into 

Vacutainer tubes, B-D 6484 (Beckton-Dickinson, East Rutherford, NJ, USA), containing 

lithium heparin anticoagulant, and stored at -20°C. 

7.2.4: Procedures. 

The procedures employed have been discussed in detail in Chapters 5 and 6. In summary, 

after defrosting, the blood samples were shaken thoroughly and 1ml of blood was pipetted 

into 15ml trace metal free plastic tubes (Labsystems, Life Science International (UK) Ltd, 

Basingstoke, Hampshire, UK) and 9mls of diluent was added using an automatic 

dispenser (OptifiX, Merck, Poole, Dorset, UK). The diluent consisted of 0.1% v\v Triton 

X-100 (to promote cell lysis, to improve nebuliser efficiency and sample transport), 0.1% 

v\v Aristar nitric acid (to provide a stable pH environment), and 100 p.g 1-1 yttrium, 

cesium and thallium internal standards (to correct for any instrumental drift). The samples 

were shaken and then analysed by ICP-MS as discussed in Section 2.1.8. 

The urine samples were defrosted and shaken thoroughly. For the trace metal analysis, 

1 ml of urine was pipetted from the tubes (with added acid) into a clean trace metal free 

plastic tube (Labsystems, Life Science International (UK) Ltd, Basingstoke, Hampshire, 

UK), and 4 mls of diluent was added using the automatic dispenser. The diluent consisted 

of 2% v\v Aristar nitric acid, and contained 100 p.g 1·1 yttrium, indium and thallium as 

internal standards to correct for any instrumental drift. For the deoxypyridinoline 

crosslink analysis the procedure used was exactly as described in Chapter 4. 

Creatinine measurements were made on each urine sample (analyses performed by the 
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Clinical Biochemistry Laboratory, at Derriford Hospital, Plymouth, Devon, UK). The 

ELISA technique for measuring the DPYD crosslinks was based on spot tests followed 

by correction with creatinine values. For this reason creatinine was selected as the 

reference adjustment factor and the trace metal concentrations measured in the clinical 

trial are presented below in both a corrected and non corrected format. 

7.3: RESULTS AND DISCUSSION. 

7.3.1: Quality control measures. 

Throughout the clinical trial standards were measured at regular intervals in order to 

ensure the methodology remained under control for all the analytes of interest. Figures 

7.1, 7.2 and 7.3 show charts plotting the analytical performance of Seronorm blood 

standards for cadmium, lead and strontium respectively. Figure 7.1 shows that the 

experimental cadmium results for level 1 were more variable and generally higher than 

the certified range (0.8 - 1.0 p.g 1"1) although this was not unexpected since this was near 

the limit of detection for the method. The results for level 2 were more stable and 

generally within the certified analytical range (5.9 - 6.8 p.g J· 1
) whilst the experimental 

results for level 3 tended to be slightly higher than the certified analytical range (11.2 -

12.5 p.g 1"1), although the results were again reasonably consistent over time. 

The experimental results for lead, as depicted in Figure 7.2, show that consistent results 

within the certified analytical range (31 - 41 p.g 1"1) was attained for level 1, which 

correlates with the normal blood lead levels expected and measured. The results for both 

levels 2 and 3 were also consistent but higher than the upper certified range values (361 
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Figure 7.1 : Chart plotting the analytical performance for cadmium in Seronorm blood 
reference material. 
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Figure 7.2: Chart plotting the analytical performance for lead m Seronorm blood 
reference material . 
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Figure 7.3: Chart plotting the analytical performance for strontium in Seronorm blood 
reference material. 
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- 396 p.g 1·1 and 626 - 702 p.g 1·1 respectively) . Since these high levels of blood lead were 

not determined during the course of the trial the results were considered less relevant 

compared to results for level 1. 

No certified values was given for strontium in the Seronorm samples and Figure 7.3 

shows that the results obtained were quite variable. Although level 1 gave the most 

consistent results it also appeared most prone to large errors for each measurement, 

compared to levels 2 and 3. All three levels showed a similar pattern over time, in that 

the concentrations measured tended to decrease over runs 1-6 (day 1), followed by an 

increase on day 2 (up to run number 9) , and then decreased and plateaued on day 3. The 

results showed that although the blood strontium measurements were subject to some 

variation , the values did remain within a sufficiently narrow analytical range. 

Figures 7.4 , 7.5 and 7 .6 show charts plotting the analytical performance of NIST CRM 

2670 urine for cadmium, lead and strontium respectively. Guideline values were given 

for the normal level standard, whilst the values for the elevated level standard were 

certified. In Figure 7.4, the cadmium levels for the normal level standard were more 

variable, which is not unusual at low concentrations. Consistent results were attained at 

the elevated level , although slightly below the certified reference range (88 ± 3 p.g 1"1
). 

In Figure 7 .5, more consistent levels were shown for lead at both levels . The values were 

just below the guideline value (i.e. 10 p.g 1"1) in the normal level standard, and were 

within the certified range for the elevated level standard (109 ± 4 p.g 1"1) throughout the 

trial period, despite the tendency towards a downward drift. As with the Seronorm 

samples, no reference value was given for strontium in the NIST CRM urine sample but 

238 



Figure 7.4: Chart plotting the analytical performance for cadmium in NIST CRM 2670 
unne. 
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Figure 7.5: Chart plotting the analytical performance for lead in NIST CRM 2670 urine. 
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Figure 7.6: Chart plotting the analytical performance for strontium in NIST CRM 2670 
urine. 
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Figure 7.6 shows that at the elevated level the values were reasonably consistent over 

time. However the values for the normal level inexplicably suffered from a downward 

drift (about 17% over 16 runs). 

For the DPYD measurements, high and low controls were analysed on each plate. The 

results were in excellent agreement and within the reference ranges, as discussed in 

Chapter 4. 

Overall although some of the experimental values fell outside the certified ranges for all 

the elements involved, the results were generally considered to be satisfactory, and in all 

cases close to the analytical concentration areas indicated. Therefore for the purposes of 

this clinical trial , since the results were only to be used in-house, and therefore subjected 

to the same procedures, instruments and conditions etc, and coupled with the fact that the 

best results were often attained for the normal concentration ranges for each of the 

elements (particularly in the blood analyses), the analytical methodology was considered 

to remain under control. 

7.3.2: Extended clinical trial. 

Ideally between 25 - 50 patients were required for each subject group (refer to Section 

7.2.2) with a full medical and personal history. These patients wou ld be studied for at 

least 6 months with one blood and urine sample taken concurrently once a month. 

Unfortunately major problems with respect to recruiting suitable and willing candidates, 

along with a high "drop out rate", resulted in three or more samples being collected from 

only 27 patients, of which 6 participated in the preliminary lead trial, discussed in 
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Chapter 5. The fact that only a small number of patients were recruited for groups 1, 3 

and 4, and no patients at all for group 2, (as summarised in Table 7.4) , meant that 

comparisons between analyte levels for each group was difficult. Also information 

concerning the patient's lifestyles and habits , such as smoking, alcohol consumption, diet, 

occupational and geographical history were not available. These factors can have a very 

influential effect on the levels of the trace metals measured. The information available 

concerning the patients recruited for this study is summarised in Table 7.5. The lack of 

numbers and subsequent lack of personal details meant that any major, significant or 

conclusive comments on differences between the groups would be difficult to make. 

7.3.2.1: Comparison of initial levels of Cd, Pb. Sr and DPYD. 

The relationship between the trace metal levels and age and sex would also be dependant 

to some degree on the above mentioned factors. The length of time the patient had 

received treatment, combined with the success of such treatment would also be important. 

This would influence the levels observed for patients in group 1, and possibly in group 

3. Consequently the data on the initial levels of Cd, Pb and Sr measured in blood and 

urine samples was quite variable as expected. No clear trends or differences could be 

distinguish between the sexes, and no change was observed with age. The level of trace 

metals measured also did not appear to relate to the degree of metastic disease (i.e. bone 

scan rating) . 

The initial blood cadmium levels , (Figure 7.7) , for each patient within each group, were 

all fairly constant within the range from 1 - 6 p.g l-1
. Only a few results were at a slightly 

higher level , the majority of these being in the group 1 category (i .e. cancer with bone 
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Table 7.4: Patient numbers recruited for the extended clinical trial. 

I I 
Group 1 

I 
Group 2 

I 
Group 3 

I 
Group 4 

I 
Males 8 0 6 2 

Females 7 0 2 2 

Total 15 0 8 4 
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Table 7.5: Summary of patients recruited for the full clinical trials. 

Patient code Group Sex Age at start of Bone scan Diagnosis Treament 
trial rating 

004* 1 Female 83 2 Breast Pamidronate 
Radiotherapy 

008* 1 Male 66 1 Prostate Zoladex 

010* 1 Male 73 1 Prostate Zoladex 

015* 1 Female 69 2 Breast Pamidronate 

016* 1 Female 69 2 Breast Pamidronate 
Clodronate 

018* 1 Female 61 2 Breast An mad ex 
Pamidronate 

019 1 Male 64 3 Prostate Zoladex 

020 1 Male 65 3 Prostate Casodex 
Zoladex 

021 1 Male 70 1 Prostate Triptorelin 

022 1 Male 70 2 Prostate Triptorelin 

023 1 Male 76 3 Prostate Zoladex 
Kidney 

024 1 Male 81 3 Prostate Triptorelin 



Table 7.5: Continued. 

Patient code Group Sex Age at start of Bone scan Diagnosis Treament 
trial rating 

025 1 Female 49 2 Breast Radiotherapy 
Zoladex 
BM21 

026 1 Female 52 1 Breast Surgery 
Bisphosphonate 

027 1 Female 66 1 Breast Pamidronate 

028 3 Male 66 0 Prostate Casodex 

029 3 Male 69 0 Prostate N.D 

030 3 Male 70 0 Prostate N.D 

031 3 Male 71 0 Prostate N.D 

032 3 Male 74 0 Prostate N.D 

033 3 Male 76 0 Prostate Triptorel in 

034 3 Female 44 0 Breast Surgery 

035 3 Female 62 0 Breast BM21 



Table 7 .5: Continued. 

Patient code Group Sex Age at start of Bone scan Diagnosis Treament 
trial rating 

036 4 Male N.D (61)" 0 Control None 

037 4 Male N.D (62)" 0 Control None 

038 4 Female N.D (70)" 0 Control None 

039 4 Female N.D (66)- 0 Control None 

* Patients also participiated in the preliminary lead trials. 

N. D Not Declared 

# Patients age not declared but age of spouse given in brackets, giving an indication of the possible age. 
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Figure 7.7: Graphical presentation of the initial blood cadmium levels for females and males in each group. (Each graph plotted in increasing 
age order). 
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metastases). Similarly Figure 7.8 summarises the initial blood lead levels. The bulk of 

the experimental results gave blood leads of less than 70 p.g I-1
, with only 4 out of the 27 

patients (15%) with higher blood lead levels. All these patients were males in the group 

1 category. This could be attributed to the release of stored lead from the skeletal system, 

or it could be due to higher exposure levels to lead, for example, occupational exposure. 

However if this was so, then similar trends should be observed in the other groups. This 

factor may not be apparent due to the small numbers studied. Alternatively it could be 

speculated that these two factors are linked in that due to occupational exposure their 

bone lead store was higher, hence upon bone breakdown the amounts released were 

greater compared to non exposed individuals. The differences were therefore much more 

discernable. 

Figure 7. 9 summarises the initial blood strontium values for each patient in all groups. 

The initial blood strontium levels were in the range of 5 - 30 p.g I-1
, and fairly constant 

across all the groups, with the exception of one (patient code 038), which had an initial 

level of 60 p.g J-1
• Again due to the lack of information about the individual patient, 

reasons for this elevated level can only be speculated, with diet being the most likely 

cause. 

The initial urinary cadmium levels, summarised in Figure 7 .10, were similar to the blood 

levels, with fairly constant values observed in the range 1 - 6 p.g I-1
• Adjustment of the 

values using creatinine levels did effect the relative concentrations of cadmium in each 

group, and therefore will have an effect on any subsequent interpretation of the data. The 

urinary lead concentrations were around the normal expected values of 10 p.g I-1 or less, 

249 



N 
Ul 
0 

Figure 7.8: Graphical presentation of the initial blood lead levels for females and males in each group. (Each graph plotted in increasing age 
order). 
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Fi2ure 7.9: Graphical presentation of the initial blood strontium levels for females and males in each group. (Each graph plotted in increasing 
age order). 

GROUP 1 Sr LEVELS (FEMALE) GROUP 3 Sr LEVELS (FEMALE) GROUP 4 Sr LEVELS (FEMALE) 

70 
70 

~ 60 j ~ 60 

so 
~ 8 

so 

I I= 40 40 

i 30 ~ 30 

fi 20 1:.1 20 CJ 

~ 0 :z: 
CJ 10 8 10 CJ 

0 0 
2S 26 18 27 16 IS 4 22 23 39 38 

PATIENT CODE PATIENT CODE PATIENT CODE 

GROUP 1 Sr LEVELS (MALE) GROUP 3 Sr LEVELS (MALE) GROUP 4 Sr LEVELS (MALE) 

70 

~ 
70 

:;i' 
60 60 :;i' .J 

:z: so :z: so .! 

I 
0 ~ 40 

~ 
40 

30 30 ~ 1:.1 20 1:.1 20 

fi ~ 0 10 10 ~ CJ 0 
CJ 0 CJ 

19 20 8 21 22 10 23 24 28 29 30 31 32 33 
36 37 

PATIENT CODE PATIENT CODE 
PATIENT CODE 



Figure 7.10: Graphical presentation of the initial urinary cadmium levels, uncorrected (NC) and corrected with creatinine (C), for females and 
males in each group. (Each graph plotted in increasing age order). 
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as summarised in Figure 7.11, with only a few patients showing slightly higher initial 

levels. Again as in the blood analyses these were all males in the group 1 category. As 

with the cadmium results, adjustment with creatinine had influenced the results. 

The urinary strontium levels were generally higher and more variable compared to the 

blood levels, with concentrations ranging from 15 - 754 p.g 1-1 (Figure 7. 12). Again the 

highest strontium level in urine corresponded to the patient with the elevated blood-Sr 

level. Adjustment with creatinine again made some difference to the overall end results. 

These observations suggest that adjustment with creatinine can change results and trends, 

therefore influencing any interpretation of the data. However whether adjustment offers 

any advantage over absolute values is not clear, and therefore both corrected and non 

corrected values will be assessed throughout the discussions. 

Figure 7. 13 summarises the initial DPYD levels for each patient in each group. In group 

1 60% of the patients had levels above the normal upper limit (7.4 nM\mM Cr for 

females aged 25-44 years, and 5.4 nM\mM Cr for males aged 25-55 years) (435) , 

compared to 25 % and 50% for groups 3 and 4 respectively. Since the majority of the 

patients were above these age limits , higher normal levels could be expected, hence the 

slightly higher levels seen in all the groups was not unexpected. Taking this into account, 

any major increases in levels can be considered representative of the extent of bone 

resorption, as expected in those patients diagnosed with skeletal metastases (group 1), 

although the extent of bone breakdown will be dependant on the effectiveness of their 

treatment. Figure 7. 13 shows that as expected the highest levels were seen in the group 

1 category, particularly the male participants. The higher levels observed for patients 030 
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Figure 7. 11: Graphical presentation of the initial urinary lead levels, uncorrected (NC) and corrected with creatinine (C), for females and males 
in each group. (Each graph plotted in increasing age order) . 
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Figure 7.12: Graphical presentation of the initial urinary strontium levels , uncorrected (NC) and corrected with creatinine (C) , for females and 
males in each group. (Each graph plotted in increasing age order) . 
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Figure 7.13: Graphical presentation of the initial urinary deoxypyridinoline crosslink levels, uncorrected (NC) and corrected with creatinine 
(C), for females and males in each group. (Each graph plotted in increasing age order). 
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and 032, may be attributed to undiagnosed skeletal metastases. Only continued assessment 

will determine the predictive capability of this parameter. 

7 .3.2.2: Comparison of trace metal levels in blood and urine. 

Although comparisons between the groups was difficult, as highlighted in the previous 

sections, comparisons between the analyte levels within the individual patients was 

possible. Those patients whose levels followed a similar pattern for all but one point 

plotted, were considered as showing a good similarity between levels. Those patients 

whose levels followed a similar pattern for at least half the points plotted were considered 

to show some similarities. 

Table 7.6 summarises the results for each individual patient where the concentrations of 

the trace metals in blood were compared and correlated with the trace metal levels 

measured in the urine samples over time. Further details and full graphical presentations 

for individual patients can be found in Appendix 2.1. 

Only a few patients in group 1 showed any similarity between the blood cadmium and 

urinary cadmium results, whereas all of group 3 and all the female patients in group 4 

showed at least some degree of correlation. Only a few patients overall did not show any 

similarities between the blood lead and urine lead values. In contrast to lead, very few 

similarities were observed between the strontium levels measured in blood and urine. 

Correction of the urine values with creatinine also made some difference to the overall 

end results. 
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Table 7.6: Summary of trends in the trace metal levels measured in blood and urine. 

Patient code Group B-Cd VS U-Cd B-Pb VS U-Pb B-Sr vs U-Sr 
NC c NC c NC c 

004 1 y y 

008 1 p p 

010 1 y p y p 

015 1 p y 

016 1 y y y 

018 1 p 

019 1 y p p p 

020 1 p p 

021 1 

022 1 p p p 

023 1 y 

024 1 y y y 

025 1 y y 

026 1 y 

027 1 

028 3 y y p p p p 

029 3 y y 

030 3 y y p p 

031 3 p y y 

032 3 y y y 

033 3 p p p 

034 3 y p p 

035 3 p p p 
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These results indicate that in normal bone resorption (as depicted in groups 3 and 4) lead 

and cadmium levels in blood and urine correlate, whereas in general there is no 

correlation in the levels of strontium measured in blood and urine samples. However in 

the patients with bone metastases and therefore increased bone resorption (group 1), the 

lead levels maintain this good correlation, whilst the number of patients whose blood and 

urine cadmium levels correlate decreases. This could be attributed to possible renal or 

hepatic damage incurred during the course of cancer treatment or through some other 

medical complication. Again without the full medical and life history of the patient 

explanations can only be speculative. 

7.3.2.3: Comparison of trace metal and deoxypyridinoline levels in urine. 

Table 7. 7 summarises the results for each patient where the trends in the trace metal 

levels in urine were compared with the urinary DPYD levels over time. Further details 

and full graphical presentations for individual patients can be found in Appendix 2.2. The 

best results were obtained for lead, followed by cadmium, and finally strontium. In all 

cases the extent of the correlation with DPYD was less than that for the respective blood 

metal values (refer to Section 7.3.2.4). 

All group 3 patients and some of the group 1 and 4 patients showed at least some degree 

of correlation between the urinary levels of cadmium and lead with DPYD, whilst only 

a few group 1 patients showed some similarity between the urinary strontium and DPYD 

levels. Again adjusting the values with creatinine appeared to make some difference to 

the overall end result. 
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Table 7. 7: Comparison of trends in the urinary trace metal levels with the urinary 
deoxypyridinoline crosslink levels. 

Patient code Group U-Cd vs DPYD U-Pb vs DPYD U-Sr vs DPYD 
NC c NC c NC c 

004 1 y y y 

008 1 y p 

010 1 

015 1 y y 

016 1 p y 

018 1 

019 1 y y p y p p 

020 1 p p 

021 1 p p 

022 1 p 

023 1 y y 

024 1 

025 1 

026 1 y 

027 1 

028 3 p p p p 

029 3 y y y y 

030 3 y y 

031 3 p y y 

032 3 y y 

033 3 p p 

034 3 y 

035 3 p p p p 
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7.3.2.4: Comparison of the trace metal levels in blood with urinary DPYD levels. 

Table 7.8 gives a summary for each patient where the trends in the trace metal levels in 

blood were compared with the urinary DPYD levels over time. Further details and full 

graphical presentations for individual patients can be found in Appendix 2.3. The blood 

lead measurements gave the best results with only a small proportion showing no 

correlation with the DPYD levels. Contrary to the urinary results the blood strontium 

levels also corresponded with the DPYD levels in the majority of cases. Both lead and 

strontium are stored in the bone, and subsequently released into the blood during bone 

breakdown. These results also agreed to a large extent with the current reference marker 

for bone breakdown (i.e. the DPYD level), hence these results are particularly 

encouraging and offer potential for further and more detailed investigations. 

The cadmium levels showed some correlation with the DPYD levels. However due to the 

low levels present in the blood and the fact that cadmium accumulates in the liver and 

kidney, rather than the skeleton, this trace metal is probably not as suitable as lead or 

strontium to measure bone resorption. 

The interpretation of data obtained over a short time scale does not give any indication 

of whether the patient is showing any improvement or deteriation in their clinical 

condition. A much clearer picture can be attained by studying patients over a longer 

period. For the majority of patients recruited this was not possible, however 8 out of the 

27 patients studied had blood samples collected for several months prior to the start of 

the extended clinical trial. Figures 7.14, 7.15 and 7.16, show the complete history of 

analyte concentrations measured for these patients. Throughout this study the blood lead 
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Table 7.8: Comparison of trends in the trace metal levels measured in blood with the 
urinary deoxypyridinoline crosslink levels. 

Patient code Group B-Cd vs DPYD B-Pb vs DPYD B-Sr vs DPYD 

004 1 p y 

008 1 p p p 

010 1 p y p 

015 1 y 

016 1 p p 

018 1 y p 

019 1 y y 

020 1 p p p 

021 1 

022 1 p y y 

023 1 y p y 

024 1 p p p 

025 1 y y y 

026 1 y 

027 1 y y 

028 3 

029 3 p 

030 3 y p 

031 3 y y y 

032 3 y p p 

033 3 p 

034 3 p 

035 3 p p 
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Figure 7.14: Graphical presentation of the trace metal and DPYD values for patients 004, 
018 and 027, studied over the longer time period. 
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Figure 7.15: Graphical presentation of the trace metal and DPYD values for patients 010 
and 016, studied over a longer time period. 
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Figure 7.16: Graphical presentation of the trace metal and DPYD values for three 
patients who showed variable results over the longer time period. 
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values were measured, however cadmium and strontium were only measured in the latter 

stages, and of course the DPYD values were only measured during the extended clinical 

trial stages at the very end. In Figure 7.14 patient 004 initially showed a decrease in their 

blood lead levels upon the commencement of treatment. The lead levels steadily decrease 

over a period of 23 months, corresponding to the fact that this patient was responding 

well to treatment. The blood lead levels then started to steadily increase and at the very 

end tending to plateau or decrease slightly. This could be attributed to the patient's 

clinical condition no longer responding to the treatment, followed by a positive response, 

if the treatment was changed. Only careful evaluation with all the clinical records could 

confirm this hypothesis. Both the blood strontium and DPYD values correlated with the 

blood lead measurements. 

Similarly patient 018 also showed an overall downward trend in blood lead levels over 

the first 20 months. The levels then remained fairly constant for a further 13 months, as 

the patient continued to respond well to treatment. A sharp increase in the blood lead 

levels occurred, which again could be attributted to a deteriation in the patients clinical 

condition as a result of either no longer responding to treatment, or that treatment had 

been stopped for whatever reason. However confirmation can only be achieved by 

consulting with the medical personnel and records. Both the blood strontium and DPYD 

values correlated well with the blood lead measurements. In patient 027, a decrease in 

the blood lead levels was initially observed over the first 9 months. This was followed 

by a sharper increase in the blood lead levels and again the blood strontium and DPYD 

values compared well with the blood lead values. Similar reasons to those given above 

can be used to interpret these observed trends. 
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In Figure 7.15, both patients 010 and 016, showed small fluctuations in their blood lead 

levels for the first 28 and 25 months respectively, as they both responded well to 

treatment. Thus the blood lead levels gave a good indication of the stability of their 

clinical condition. This was then followed by an increase in the blood lead levels, and in 

the case of patient 010, a levelling off in the blood lead values was shown. Again similar 

reasons to those given above, describing the observed trends may apply. The DPYD 

values corresponded with the blood lead levels, although the very last measurement for 

patient 010 showed more of a decrease rather than a plateau effect. In the case of the 

blood strontium values, for patient 010, if the measurement at month 37 was low due to 

an experimental error, then this parameter too corresponded well with the blood lead and 

the DPYD values. However if this lower value was due to natural fluctuation, then blood

Sr shows only some agreement with the blood lead and DPYD trends. The blood 

strontium values for patient 016 showed a constrasting decrease in levels. 

In all cases shown in Figures 7.14 and 7.15, the DPYD values correlated well with the 

blood lead levels, and trends could be observed in the blood lead levels during the course 

of the study. Whilst the clinical performance of the patient was known at the beginning 

and in the early stages of the study, it would be extremely useful to know if the observed 

increased levels of blood lead and DPYD corresponded with a deteriation in the patients 

condition. This information is essential to ascertain the potential of the blood lead levels 

with regard to their use as a biochemical marker to measure bone resorption. 

However as in all clinical trials there are patients who show more variable or even 

contrasting results as shown in Figure 7 .16. Patient 008 demonstrates rather erratic blood 
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lead measurements, although it is also evident that the collection of blood samples every 

3 or 6 months rather than once a month is not satisfactory. The blood lead measurements 

were in poor agreement with the DPYD or strontium values. The blood lead levels for 

patient 015 decreased over the first 11 months, and this was followed by an increase in 

the blood lead levels over the remaining period. However both the DPYD and strontium 

levels although rather erratic did show some correlation with each other, but did not 

agree with the blood lead values. In the case of patient 023, the blood lead levels tended 

to increase over 12 months, followed by a steady decline over the last 3 months. 

However neither the DPYD nor the blood strontium values showed any correlation with 

one another or the blood lead values. 

7.4: CONCLUSIONS. 

Proper interpretation of the results from this extended clinical trial is limited by the small 

number of patients recruited, and the fact that each patient was studied over a very short 

time scale (i.e. about 3 months). This was also compounded by the lack of information 

on each patient concerning their full personal and medical history, which would have 

provided essential information on their lifestyle, habits, occupational and geographical 

history etc. Consequently conclusions concerning the analtye levels measured between the 

different clinical categories cannot be made, and only provisional comments can be made 

on the information gleaned from comparing the cadmium, lead, strontium and DPYD 

levels in individual patients. 

In terms of a preliminary feasibility study, the results obtained are more than satisfactory 

to warrant further and more detailed clinical studies. The results indicate that the blood 
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lead levels show the greatest potential as biochemical markers to measure bone 

breakdown. Differences in lead concentrations can be clearly distinguished between blood 

samples collected each month from the same patient. The blood lead levels also clearly 

demonstrated the best correlation with the DPYD values. The blood strontium values may 

also be determined, and also show reasonable correlation with the DPYD values and 

therefore should not be discounted from any further studies. However the blood cadmium 

levels were generally too low to observe any changes in concentration and hence offer 

only poor correlation with the DPYD values. 

In general the results for the urinary levels of all the trace metals were not as good as the 

blood results. The urinary lead values although lower than the blood levels again gave 

the best results when compared to the DPYD values. The urinary cadmium levels were 

also low and again made differentiating differences very difficult, although some 

correlation was observed. The urinary strontium levels were higher, making measurement 

and hence differentiating differences easier, however there was little correlation between 

strontium and the DPYD values. 
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CHAPTER 8: GENERAL CONCLUSIONS AND SUGGESTIONS FOR FUTURE 

WORK. 

The purpose of this study was to establish if trace metals measured in blood and\or urine 

samples showed potential as biochemical markers to measure bone resorption in patients 

diagnosed with skeletal metastases. To evaluate their potential, the trace metal levels were 

correlated against an established reference marker, known to be both sensitive and 

specific for the measurement of bone resorption. Currently the best available markers are 

the pyridinium crosslinks, which are unique maturation products from the breakdown of 

mature collagen. Chapters 3 and 4 details the investigations into the two analytical 

methods (HPLC and ELISA) available to measure these pyridinium crosslinks: 

pyridinoline (PYD) and deoxypyridinoline (DPYD). Chapter 3 provided clear evidence 

that the use of high performance liquid chromatography was far from ideal for the routine 

measurement of the crosslinks and confrrmed the findings published by various other 

establishments. The technique gave excellent qualitative information for both crosslinks. 

Unfortunately the sample preparation procedure, whilst selective in extracting the 

crosslinks from the urine sample, is very time consuming and tedious. It has also been 

shown in this work to be responsible for the quantitative variations observed. Thus it is 

the "Achilles heel" when using the crosslinks as biomarkers of bone resorption in routine 

clinical assessments. With improvements in the field of automation, availability of 

internal standards etc, the problems associated with this sample preparation procedure 

may be overcome to facilitate the use of HPLC on a routine basis as well as in research 

laboratories. 
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In the last few years, whilst research has focused on the pyridinium crosslinks, an 

immunological method has been successfully developed and became commercially 

available. Chapter 4 evaluated this enzyme linked immunoasorbant assay (ELISA) with 

respect to the measurement of the bone specific deoxypyridinoline crosslink in urine 

samples. The results compared well with the literature, demonstrating excellent accuracy 

and precision. The technique was simple, quick and easy to use, and proved more robust 

and less prone to interferences when compared to the HPLC methods. All these factors 

favour the ELISA technique for the analysis of the crosslinks, plus it offers a higher 

sample throughput and is easily introduced into clinical laboratories for routine 

assessments. The only major disadvantage is that unlike the HPLC method, ELISA 

cannot simultaneously measure both PYD and DPYD crosslinks. However for the 

purpose of the clinical trials to be conducted in this research programme the ELISA 

method was selected as the best and most suitable technique available. The development 

of this ELISA method has resulted in increased research activities with respect to clinical 

studies into a wide range of metabolic diseases. 

Chapter 5 describes the development of a simple dilution method to analyse blood lead 

levels in a preliminary clinical trial. The results obtained using the method agreed closely 

with a certified reference material, gave excellent % RSD's and remained under control 

throughout the preliminary clinical trials. The results demonstrated that changes in the 

blood lead levels in individual patients could be identified and the measured levels relate 

to the clinical performance of the patients in the majority of cases. These results 

warranted further and more detailed clinical trials. 
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In the extended clinical trials a number of other elements (in addition to lead) were 

selected to investigate their potential as biochemical markers to measure bone breakdown. 

Chapter 6 emphasises the need for a thorough investigation into all aspects of the 

analytical methodology, when measuring the trace metals in biological fluids in 

conjunction with clinical trials. The need for a robust, accurate and precise method must 

be emphasised alongside the needs and praticalities of the clinical trials, the patients 

needs, as well as the medical and scientific requirements. This is often difficult to achieve 

and a number of compromises may be necessary. The results of the initial investigations 

identified seven elements (aluminium, barium, cadmium, cerium, lead, strontium and 

zirconium) to be incorporated into the extended clinical trials. Unfortunately AI, Ba and 

Ce had to be excluded from the trial due to major contamination from the glass 

Vacutainers used to collect the blood samples (the hospital was unable to collect the blood 

samples by alternative means). High blank levels were consistently attained for Zr and 

after extensive investigations it was concluded that this contamination could probably be 

attributed to the ICP-MS instrumentation, and hence Zr was also excluded from the 

clinical trial. Investigations into Cd, Pb and Sr demonstrated no contamination problems 

during the sample collection procedure. Calibration using aqueous standards compared 

well with matrix matched standards. An interference study evaluating the effects of the 

major potential interferants found in biological samples {K, Na, Mg, Ca, Cl, PO/ and 

SO/) showed that any suppression or enhancement of the analyte signal was satisfactorily 

corrected by use of the internal standards. The limits of detection were also at acceptable 

levels, between 0.1 - 0.5 J.l.g J·1 (based on the average value + 3 S.D, n= 10). Hence, 

after all the analytical and clinical considerations were taken into account only cadmium, 

lead and strontium were finally selected to be measured in the subsequent extended 
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clinical trials. 

Chapter 7 discusses the results of the extended clinical trial where the blood and urinary 

levels of cadmium, lead and strontium were compared with the reference marker, urinary 

deoxypyridinoline (DPYD). The blood lead levels showed the greatest potential as a 

marker of bone resorption, with values closely related to the DPYD values over time for 

the majority of patients studied. The blood strontium values showed less of a correlation 

with the DPYD values, but demonstrated sufficient promise not to be discounted from 

this feasibility study. The blood cadmium levels along with the urine cadmium levels 

were generally too low to distinguish any changes in the concentration levels over time. 

The urinary lead levels showed some correlation with the DPYD values but to a lesser 

extent than the blood levels. This could be attributed to the fact that the urinary lead 

levels were lower and therefore any changes in concentration over time were much more 

difficult to observe. In contrast to the blood results the urinary strontium levels did not 

correlated well the DPYD levels, despite showing higher concentration values. 

Since both lead and strontium accumulate in the skeleton, and cadmium accumulates in 

the liver and kidney, it was not surprising that cadmium should show the least potential 

as a biochemical marker of bone breakdown. The results for this feasibility study are 

encouraging with the measurement of blood lead and to a lesser extent blood strontium 

levels showing the greatest potential as biochemical markers to assess bone breakdown. 

However more conclusive evidence is required, and hence more detailed clinical trials 

should be conducted to explore this more fully. However the results presented in this 

thesis suggest that the lead and strontium stored in the skeletal system, and subsequently 
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released into the blood upon bone resorption can be used as potential biochemical 

markers to measure bone breakdown in skeletal metastases and any other bone diseases. 

It is essential that any future clinical trials should encompass a much larger number of 

patients, and that each patient is studied for a much longer period of time (minimum of 

six months). It is also essential that a full patient history is obtained, where details 

concerning their dietary, drinking and smoking habits, as well as their occupational, 

geographical and medical history can be incorporated into the full statistical evaluation 

of the results. Only on this basis can a viable statistical evaluation be conducted, from 

which clearer evidence and firmer conclusions can be drawn. 

The wider implications of this research, suggest these results could provide a valuable 

insight into bone metabolism, trace metal metabolism, the behaviour of bone metastases, 

as well as relevancy to other conditions, such as osteoporosis and trace metal toxicology. 

The improvements suggested for the analytical techniques and methodologies, along with 

a greater understanding and awareness with respect to contamination control, has enabled 

sensitive, accurate and precise measurement of many trace elements in complex matrices, 

including biological samples to be made. Clearly quality control\assurance measures are 

also important. The measurement of trace elements has helped to study, understand and 

evaluate their biological significance and the essential and\or toxic roles they play in 

human health and disease. As technology and our understanding improves, greater 

opportunities will exist to explore the relevance of other potentially essential and\or toxic 

elements, and how these element interact with one another. Further metals may be used 

in drug formulations and treatments. Research will also continue in order to ascertain 
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how, and why elements and itheir. species, which; ~cOnstitute 1the 'foundations Qf ial), !living 

biologicaLptocesses, ;dictaw llealth:and theipatl10logy ofdiselJ.Se. 11hese,exciting advances 

will ,theref9re place greater emphasis;and ,responsibility' on the,amilyst, clinicians and the 

scientific and I medical fraternity :i·n generaH 
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Appendix 1.1: Further details on UK cancer incidence, for males and females . 
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Appendix 1.2: Further details on UK cancer mortality rates for males and 
females. 
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Appendix 1.3: Further details on cancer survival rates in England and Wales. 

All Graphs relate to patients diagnosed In 1981. The 5-year relative surttval rates for "AU Ages· Is shown In: D 
Key: 
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Appendix 1.3: Continued. 

Key: 

All Grapha rel111e to patlen13 dlag~ In 1981. The 5-year relattw survival rates IOf" "AU Ages" I$ Shown In: D 
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Appendix 1.3: Continued. 

All Graphs relalelo patients diagnosed In 1981 . 
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Appendix 2 .1: Graphical presentation of individual patient results - companson 
of the trace metal levels in blood and urine. 
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Appendix 2.1: Continued. 
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Appendix 2.1 : Continued. 
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Appendix 2.2: Graphical presentation of individual patient results - comparison 
of the trace metal levels in urine, uncorrected (J.tg\L) and corrected with creatinine 
f .. n'\.a'l mith thP riPrw,mvrirlinnl inP. lP.vP.l<: (nM\mM) 
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Appendix 2.2: Continued. 
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Appendix 2.2: Continued. 
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Appendix 2.3: Graphical presentation of individual patient results - comparison 
of the trace metal levels in blood {J.tg\L), with the deoxypyridinoline levels 
(nM\mM) 
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PRESENTATIONS AND MEETINGS ATTENDED. 

1) Research and Development Topics m Analytical Chemistry, University of 
Bradford, 16 - 17 July 1993. 

2) Fisons Elemental (VG) users group meeting, Northampton, 16 - 17 November 
1993. 

3) "The detennination of trace metals in whole blood, as potential markers of bone 
breakdown in patients with bone metastases". Poster presented at Research and 
Development Topics in Analytical Chemistry, University of Hertfordshire, 18 -
19 July 1994. 

4) "Trace metal levels in blood as markers of bone breakdown in patients with bone 
metastases ". Poster presented at the 7th Biennial National Spectroscopy 
Symposium (BNASS), University of Hull, 20-22 July 1994. 

5) "Determination of trace metal levels in whole blood by ICP-MS as potential 
markers of bone breakdown in patients with bone metastases ". Poster presented 
at the European Winter Conference in Plasma Spectrometry, Cambridge, 8 - 13 
January 1995. 

6) Atomic Spectrometry Updates, Royal Society of Chemistry Meeting" Applications 
of atomic spectrometry in trace element speciation", University of Bristol, 30th 
March 1995. 

7) "A clinical evaluation into the potential of trace metals as biochemical markers 
to measure bone breakdown in patients with bone metastases ". Poster presented 
at Research and Development Topics in Analytical Chemistry, University of Hull, 
10- 11 July 1995. 

8) "The diagnostic potential of trace metal profiles in blood and urine, measured by 
inductively coupled plasma-mass spectrometry, as markers of bone resorption in 
patients with skeletal metastases ". Lecture presented at the 8th Biennial National 
Spectroscopy Symposium (BNASS), University of East Anglia, Norwich, 17- 19 
July 1996. 

9) "A clinical evaluation of trace metals in blood and urine as potential biomarkers 
of bone resorption in patients with skeletal metastases ". Lecture presented at 
Research and Development Topics in Analytical Chemistry, Nottingham Trent 
University, 22- 23 July 1996. 

10) "A clinical evaluation of trace metals in blood and urine as potential biomarkers 
of bone resorption in patients with skeletal metastases". "Runner-up" paper 
presented for the 1996 Pharmaceutical Analysis Science Group (PASG) Award. 
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Royal' Society of GJhemisfry !lectures and! lectures: by invited :speakers, anhe 
'UniversitY :o(Plymoiith, 1993-1996. 

Viu;iolls weekly '<lepartme_ntal :re~earc.h lectures at ihe UniversitY :of Piyrii.otith, 
:1993 - ,11996. ... ' ' 
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