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Prediction of the Risk of Capsize of Small Ships 

E. Deakins, B.Sc. (Hons) 

Abstract 

The lack of a necessary rational framework for assessing ship stability was the main concern of 

this research. The aim was to develop a rational philosophy and a logical procedure of assessing 

intact stability in order to ensure a consistent and unified approach to design for operation and for 

survival. 

The method uniquely brings together a linearised analysis for assessing a potentially dangerous 

roll motion with a probabilistic assessment of ship performance in rough seas on a standard 

test-track. This represents a significant advance on previous research. 

A novel feature of the analysis was that prediction of the extreme capsize roll motion was not 

attempted per se. Instead a reduced level of roll response termed "potentially dangerous" roll 

motion was selected (based on discussions with seagoing personnel) beyond which there was 

evidence that loss of the vessel is likely. 

Validation of the linear spectral analysis used in the simulations was performed using full scale 

trial results of a fisheries protection vessel. Provided that measured values of roll damping 

coefficient were used, the predicted values of extreme roll closely matched the maximum values 

experienced on sea trials up to the chosen value of critical roll angle of 30 degrees. 

Particular attention was paid to the realistic modelling of total system behaviour in rough seas. 

Families of wave spectra were used to represent the complete range of wave conditions 

encountered in nature. Avoidance and pacifying seamanship were incorporated based on the 

results of available trials data and discussions with serving masters. 

Independent (Bernoulli) trials procedures were used to calculate the cumulative probability of a 

critical roll motion being exceeded at least once during the vessel's passage through the test­

track. 

The value of critical motion exceedance obtained was 5x1o-2 for the fisheries protection vessel 

which has a large metacenlic height and is reported to have good seakeeping characteristics. 
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Chapter 1 

Introduction 

1.1. The Need for Stability Assessment in the Marine Environment 

• .... in any engineering enterprise, particularly where human life is exposed to dangerous 
conditions, it is the responsibility of the designer as well as the statutory authorities concerned to 
ensure that the structure, vehicle ate. is sale, -judged by the scientific knowledge of the day." 

Bird et al (1982) 

For as long as man has ventured onto the sea there has always been present the possibility 

that his craft might capsize and be lost. This is still the situation today. Shipbuilders from the 

oldest times understood that in order to survive in the hostile marine environment their ships had 

to be stable. They developed, by trial and error, the practical knowledge of how to build 

comparatively stable ships although there was still no guarantee that the vessel would safely 

complete the voyage. In more modern times an understanding of the basic laws of the ship's 

geometry has enabled the naval architect to make calculations of ils static stability during the 

design stages. Developments in ship hydrodynamics assisted the calculation of the behaviour of 

the ship in a seaway and the effect of external forces on stability. Nevertheless the survival of a 

vessel in heavy seas as a result of extreme motions, and roll motions in particular, remains one of 

the fundamental requirements still to be satisfactorily considered by the naval architect when 

designing a ship. 

The problem remains how to model the complex, irregular, six degrees of freedom vessel 

motion with sufficient accuracy to predict when a "dangerous" roll motion may be experienced. 

Dangerous motion might give rise to cargo shifting, progressive flooding and damage to vessel 

and crew and possibly even to the loss of the vessel itself. Of course, the aim of the designer is 

to achieve the required degree of safety economically. The vessel must be functional, reliable 

and of reasonable first cost as well as being safe. Thus it is not surprising, particularly in the 

absence of appropriate guidelines, that a designer will occasionally step across the hazy 

borderline between safety on the one hand and disaster on the other. In any event perfect safety 

can never be guaranteed and one is forced to consider degrees of safety, or of risk, even on the 

rare occasions when there are no economic constraints on the design. 
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For more than two decades the International Maritime Organisation (IMO) 1 has attempted to 

establish international stability requirements. In 1968 the "Recommendation on Intact Stability for 

Passenger and Cargo Ships under 100 metres in leng1h", Resolu1lon A167 (1968), was adopted. 

Similar recommendations were adopted In 1975 for fishing vessels in excess of 12 metres 

registered length with some provisions applying to smaller vessels, Resolution A168 (1975). 

However these recommendations, for reasons which are explained in Chapter 2, are generally 

recognised to be not fully satisfactory and IMO is continuing its work towards development of 

more rational criteria, Plaza et al (1986). 

Fundamental research into vessel stability continues to attract considerable international 

attention. Since 1975 three international stability conferences have been held to enable 

researchers and practitioners in the field to meet and discuss at leng1h research programmes and 

results achieved and to consider how best to apply these rules in practice. The first of these was 

held In Glasgow in 1975, entitled the "First International Conference on Stability of Ships and 

Ocean Vehicles". Further conferences were held in Tokyo (1982) and Gdansk (1986). The 

venue for the next international stability conference will be Naples in 1990. In addition there have 

been several nationally funded stability projects including the United Kingdom SAFESHIP Project, 

which concluded in 1986, to which this work at Plymouth was officially affiliated, and lhe SIS 

(Ships in Rough Seas) Project in Norway. 

In spite of these many efforts there is still a lack of fundamental understanding and of an 

adequate mathematical description of the basic physical phenomena which may lead lo a ship 

capsizing. This lack of a mathematical model (or of experimental data) upon which to base 

criteria for judging the survivability of a particular design, when coupled with the philosophical and 

practical problems associated with establishing a rational approach to the problem (based on the 

assurance of an acceptable risk), has tended to concentrate research into small specialist 

aspects of the overall problem. 

1t is this lack of the necessary rational framework for assessing stability that is the main concern 

of this research. 

In order to assess the severity of the capsize problem it is instructive to consider the casualty 

rates of vessels and men. In this context data from the fishing industry provides useful 

information to compare these mortality rates with the corresponding figures for other industries. 

1The lnt9mational Mar~ime Organisation (IMO) was known as the Intergovernmental Mar~ime Consultative 
Organisation (IMCO) until 20th May 1982. 
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1.2. Casualties to U.K. Fishing Vessels and Accidents to Fishermen 

Commercial fishing has long been recognised as a hazardous occupation e.g. Schilling (1966). 

From lime to time a disaster would occur that would cause people to locus on the risks being 

laced. For instance the loss of two vessels off Greenland in 1955 due to icing led to an 

investigation of this hazard and resulted in recommended design changes to mast structures, 

BSRA (1957). The loss of the Hull trawlers St.Romanus, Kingston Peridot and Ross Cleveland 

during the winter of 1968 within a few days of one another, when 56 lives were lost, led to an 

examination of the major factors affecting the safety of deep sea trawlers and their crews. This 

Committee of Inquiry into Trawler Safety (CITS) under the chairmanship of Admiral Sir Deric 

Holland·Martln (1969) reported its findings and recommendations 18 months later. These were 

mainly concerned with vessels in excess of 80 feet (24.4 metres) registered length. 

On 1st May 1975 as a direct consequence of the Holland· Martin report "The Fishing Vessels 

(Safety Provisions) Rules 1975" came into effect covering the safety features which had to be 

incorporated into all fishing vessels in excess of 12 metres registered length ·with some 

provisions applying to smaller vessels. 

1.2.1. Fishing Vessel Casualty Rates 

Reilly (1984) analysed the safety record of fishing vessels and their crews for the period 

1961-1980 to assess whether the action that was taken since CITS was having any effect. 

Chaplin (1986) has carried out a similar analysis using additional data for 197 4-1985 indusive 

to see if the rates and trends noted by Reilly still apply. Chaplin's premise was that the safety 

measures introduced In the mid 1970's, resulting from the errs inquiry, did not become fully 

effective until after 1980 because of the inevitable phasing-in programme to survey all new and 

existing vessels. This phasing-in programme was not completed until the mid 1980's and it was 

suspected this would be reflected in the casualty figures after 1980. 

The principal data sources used by Reilly and Chaplin were: 

1. "Casualties to Vessels and Accidents to Men" published annually by the 
Department of Transport (Marine Division), hereafter referred to as D.Tp. 

2. "Sea Fish Industries Statistical Tables" published by the Ministry of Agriculture, 
Fisheries and Food (MAFF) and the Department of Agriculture and Fisheries for 
Scotland (OAFS). 

Casualty data as published by D.Tp. is of three categories. These are "total losses", 'serious 

casualties' and "minor casualties". The term 'total losses' is self explanatory but "serious 

casualties' is defined where: 

(a) the vessel in in danger of becoming a total loss, for instance where salvage assistance is 

required; or 
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(b) serious damage is sustained so as to affect the seaworthiness ofithe vessel; or 

(c) the vessel· sank: but is known to have been subsequently raised arid repaired; or 

(d) human life is lost; or 

(e) serious financial loss·occurs In relation to the· size and value of the vessel. 

"Minor casuaitles", although not deiined by D.Tp, clearly do not meet ihe above criteria. 

The "Sealish Industries Statistical Tables" detail the 'number of fishing vessels on the UK 

register but can give no Indication of whether a vessel Is fishing part-lime or fuiHime. Large 

variations which occur in the. number cif vessels registered, particularly of those below 12 metres, 

are due mainly to part-time activity brought about by better economic conditions In the industry, 

Chaplin (·1986). Thus any statistics in which the total number of vessels below 1.2 metres is a 

factor should:be regarded with caution. 

1.2.2. Total Losses 

Figure 1.1 which was compiled from results by Reilly (•1984) and Chaplln (1986) Indicates a 

sustained and increasing casualty rate (for Total Losses) for fishing vessels of all lengths for the 

years 1960-1982 inclusive. The peak of 7.4 casualties per 1000 vessels at risk (7.4x1o-3) 

achieved in 1982 (Table 1.1) fell to 5.4x 1 o-3 in 1985. Subdivision of the data by vessel size 

revealed that the hump after 1980 was almost entirely due to a significant increase in the rate of 

loss of vessels of .less than 12 metres. This arises because for vessels in excess of 12 metres 

the rate of total loss has fallen from a maximum of 15.0x 1 0'"3 in 1978 to 1 0.2x1 o-3 in 1985, a 

reduction of 32 percent (Table 1.2 and Figure 1.2)'. 
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RI::CISTERED• TOTAl UlSS SERIOUS '""" "''"" LOSS + ""llll!rl~,.-
YEAII VESSELS VESSELS PER 1000 PER 1000 . """ ~"" 
1974 6916 28 4.0 8 1.2 

1975 6691 47 7-0 5 0.7 

1976 6740 35 5-2 12 1.8 

1977 6953 37 5-3 14 2.0 

1978 7067 38 5-4 13 1.8 

1979 7242 42 5.8 11 1.5 

1980 6890 39 5.7 13 1.9 

1981 7351 52 7.1 11 1.5 

1982 6797 50 7-4 12 t.8 

1983 7010 43 6.1 18 2.6 

1984 7584 41 5·4 16 2.1 

1985 7354- 40 5-4 10 1.4 

• Sea i'ianories ~ I loj lo.&.o:l lt.LLOII.L Tables IIAFF 
- Esumatad 

Table 1.1 Total Loss and Serious Casualties lor 1974/1985 

All Vessels 

. -

36 

52 

47 

51 

51 

53 

52 

63 

62 

61 

57 

50 

PER 1000 

5.2 

7.8 

7.0 

1·3 

7-2 

7-3 

7-5 

8.6 

9.1 

8.7 

7-5 

6.8 

REC ISTEREn- TOTAL LOSS SERIOUS CASUALTIES LOSS • CASUALTIES 
YEAR VESSELS VESSELS PER 1000 VESSELS PER 1000 VESSELS 

1974 2833 16 5·6 

1975 2538 36 14.2 

1976 2433 25 10.3 

1977 2352 29 12.3 

1978 2335 35 15.0 

1979. 2364 31 ,,, 
1980 2378 29 12.2 

1981 2381 28 11 .a 

1982 2312 30 n.o 
1983 2204 23 10.4 

1984 2151 21 9·8 

1985 2054 .. 21 10.2 ... Sea Fleherlee Statiatlcal Tables KAFF 
- lletimated 

7 2.5 

5 2.0 

11 4·5 

13 5·5 

12 5·1 

10 4·2 

10 4·2 

7 2.9 

11 4·8 

13 5·9 

10 4·7 

9 4·4 

Table 1.2 Total Loss and Serious Casualties lor 1974/1985 

Vessels Over 12 metres 

10 

23 

41 

36 

42 

47 

41 

39 

35 

41 

36 

31 

30 

PER 1000 

5.1 

16.2 

14·8 

17-9 

20.1 

17·3 

16.4 

14·7 

17·7 

16.3 

14·4 

14.6 
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There was a corresponding reduction of 35 percent for vessels in the size range 12 - 24 metres 

where the rate was 14.3xto-J in 1979 and 9.2xto-3 in 1985 (Table 1.3). 

YE All 

1974 

1975 

1976 

1977 

1978 

1979 

1980 

1981 

1982 

1983 

1984 

1985 

-

BEG ISTERED• 
VESSELS 

2378 10 4.2 3 1-3 

2139 32 15.0 2 o.9 

2087 23 11.0 9 4·3 

2023 21 10.4 11 5·4 

2033 26 12.8 6 3·0 

2092 30 14.3 9 4-3 

2132 29 13-6 7 3·3 

2136 26 12.2 6 2.8 

2073 28 13-5 9 4·3 

1973 20 10.1 12 6.1 

1934 18 9·3 8 4-1 

1855- 17 9-2 6 3-2 

Est !.mated 

Table 1.3 Total Loss and Serious Casualties for 1974/1985 

Vessels Between 12 and 24 metres 

13 5-5 

34 15-9 

32 15.3 

32 15.8 

32 15-7 

39 18.6 

36 16.9 

32 15.0 

37 17.8 

32 16.2 

26 13-4 

23 12.4 

There has been some small increase for vessels In excess of 24 metres but the number of such 

vessels was so low that a difference of one loss results in a change of 5 per 1000 (Table 1.4). 

Thus Chaplin (1986) concluded that any Increase in casualty rates (total losses) apply to vessels 

which are of length less than 12m and which therefore do not fall within the 1975 Safety Rules. 

For those vessels which do fall within the 1975 Rules he concluded that the loss rate has 

improved for the "major segment" of the fleet which consists of vessels in the range 12 to 24 

metres. However Chaplln noted that "it is reasonable to assume that the 1975 Safety Rules are 

having some impact.... this is not to say that the position Is now satisfactory since the rate for 

these vessels Is still slgnilicanUy greater than that which applied up to the early 1970's {figure 1.2) 

and further improvement should be sought". The rise in the loss rate since 1981 for vessels 

below 12 metres is emphasised by Chaplln (1986). However it is noted that many of these may 

be open boats used primarily for angling and that their Inclusion could be distorting data as far as 

vessels seriously engaged in fishing are concerned. 
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BEGISTEREI)<t TOTAL LOSS SERIOUS CASUALTIES LOSS + CASUALTIES 
YEAR VESSELS VESSELS PER 1000 VESSELS PER 1000 VESSELS PER 1000 

1974 455 6 13·2 4 8.8 10 22.0 

1975 399 4 10.0 3 7·5 7 17·5 

1976 346 2 5·8 2 5.9 4 11.6 

1977 329 8 24·3 2 6.1 10 30·4 

1978 302 9 29·8 6 19·9 15 49·7 

1979 272 1 3·7 1 3·7 2 7·4 

1980 246 0 0 3 12.2 ' 12.2 

1961 245 2 6.2 I 4·1 3 12.2 

1962 239 2 6.4 2 8-4 4 16-7 

1963 231 3 IJ.O 1 4-3 4 17·3 

1964 217 ' 1J.8 2 9·2 5 23.0 

1965 199- 4 20.1 ' 15·1 7 35.2 

• Sea Fisheries Statistical Tables ~p 
- Estl.J:Jated 

Table 1.4 Total Loss and Serious Casualties for 197411985 

Vessels Over 24 metres 

Caldwell et al (1986) presented the results of a study into worldwide casualties to ships of all 

types (1970-1980), Table 1.5. This table confirms the loss rate of4.9x1o-3 obtained for all fishing 

vessels using Reilly's casualty values for (1970-1980) in figure 1.1. 

Class Risk 

World Fleet (1970 - 1980) 6.0xl0- 3 

Oil Tanker 4.0x10- 3 

Roll-on Roll-off Ships 3.0x 10- 3 

Fishing Vessels 5.2x 10- 3 

Table 1.5 Risk of Vessel Casualty for World Fleet (1970·1980) 
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1.2.3. Vessel Losses by Cause of Loss 

Figure 1.3, taken from Reilly (1984), illustrates the causes of fishing vessel losses and serious 

casualties (1961-1980 inclusive) and shows that Founderings (35.6%) have been the major 

cause of casualty followed by Strandings (25.5%), Collisions (15.7%) and Fires (10.9%). 

Capsize 
1181 
2.5'k 

Mining ----.. 
124) 
3.4% 

F ounderingl 
1252) 

35.6% 

Figure 1.3 Total Losses and Serious Casualties by Cause of Loss 1961-80 

lt is noted that Fires, Collisions, Strandings and "Other" together account for 58.5% of all total 

losses/serious casualties. The remaining 41.5% due to Foundering, Capsize and Missing may 

therefore be reasonably attributed to the vessel becoming overwhelmed by the seaway. This lack 

of seaworthiness will, in general, be either due to a capsize or a laundering. Missing vessels may 

reasonably be associated with a laundering or capsize in heavy weather conditions or to a rapid 

explosion, fire or collision which prevents a distress message being sent. 

Foundering is related to the vessel's freeboard and to its watertight integrity; thus laundering 

might be considered as a loss of the weathertight integrity of the hull. By .contrast capsizing 

occurs when upsetting influences, -wind and waves, act upon a vessel which is deficient in 

transverse stability. it is also likely that a vessel may appear as a founder statistic even though 

the initial casualty was caused by deficient stability which is not always readily apparent. and this 

will affect the statistics to an unknown degree. 

Figure 1.4 clearly indicates that the increasing total loss/serious casualty rate (TUSC) when 

subdivided into its seven constituent causal rates was particularly influenced by changes in ·the 

rates offounderings, collisions and fires/explosions. 
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Figure 1.4 Total Loss and Serious Casualty (TUSC) Rates and Component 
Causal Rates (Reilly, 1984) 

The individual increases/decreases in the different causes of loss are detailed in Table 1.6 

which indicates that 64 per cent of the increase recorded could be accounted for by the 

corresponding increase of founderings alone. This compares with an increase of only 20 per cent 

for collisions and approximately 17 per cent for fires and explosions. Capsize recorded an 

increase of 8 percent. 

C•u•~ or loss/ 
~•su•hy 

found~ ring 
Slnnding 
Collision 
l'ir~/•·•plusion 
Missing 
C•psi•~ 
01h~r · 
All COUS<S 
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coellici~nt 

+o·•54 
+o·oo4 

+o·o4' 
+o·o.p 
+ o·oo J 
+o·oJo 
-o·oJ9 
+o·J,p 

lncreascfUccrease (•~u) 

+6J"64 
+ •·65 

+lo·JS 
+ 17")6 

+o·HJ 
+ 8·16 

- ,,.,~ 

100'00 

Table 1.6 Rates of Change in Causal Loss Rates 1961-80 (Reilly, 1984) 

Reilly also states that the overall increase in the TLISC rate was the product of separate trends 

for inshore vessels (length less than 80 feet) and larger vessels and that the Inshore vessels 

accounted for much of this trend. Thus in terms of loss of vessel, combining the results of llgure 

1.1, "Total Losses for all Fishing Vessels", with the percentages in figure 1.3, "Total Losses by the 

Cause of Loss", it is apparent that the overall risk of capsjze among fishing vessels is of the order 

of 10x1o-5 to 18x1o-5 (14x1o-5 average) for the period 1970-1985. The corresponding figures for 

laundering are 1.4x1o-3 to 2.6xto-3 (2.0xto-3 average) for the same period. 
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1.2.4. Deaths to Fishermen 

Considerable doubt exists as to the actual numbers of fishermen at risk and the death rates 

must be treated with some caution. In a second paper Reilly ( 1985) analysed the deaths of 

fishermen on board fishing vessels for the years 1961-1980 inclusive. Again Chaplin ( 1986) has 

extended this survey and noted some encouraging trends In the mortality rates for the 

subsequent years 1981-1985 induslve. 

a) Fishing Vessels of Length > 24 metres 

While the death rate for personal accidents (1.47x1 o-3) on board vessels of length > 24 metres 

has shown no improvement (Table 1.7) the death rate due to vessel loss has fallen from 

1.75x1o-3 (1971/1980) to 0.27x1o-3 (1981185), an improvement of 84 percent. This, in turn, has 

reduced the annual death rate from all causes on these vessels from 3.21 x1 o-3 (1971180) to 

1.74x1o-3 (1981185), an improvement of 46 percent. However vessels In this category currently 

comprise only 3 percent of the total fleet (1985 figures) with only 10 percent of the total serving 

manpower of 19,000 men, Chaplin ( 1986). 

b) Fishing Vessels of Length < 24 metres. 

For vessels of less than 24 metres registered length again the death rate due to personal 

accidents has been virtually constant (5.6x10-4) since 1971 (Table 1.7). The death rate due to 

vessel loss has improved by 13 percent from 6.7x10-4 (1971180) to 5.8x10-4 (1981185). This has 

reduced the annual death rate from all causes by 8 percent from 1.23x1 o-3 (1971180) to 

1.13xlo-3 (1981/85). 

c) All Fishing Vessels 

The annual risk of death due to personal accident (all fishing vessels) Is currently 6.3x10-4 

(1981185) compared with 7.7x10-4 (1971180). The death rate due to vessel loss has Improved by 

41 percent from 9.3x10-4 (1971180) to 5.5x10-4 (1981185). This has reduced the overall annual 

death rate (all vessels) from all causes by 30 percent from 1.7x1o-3 (1971180) to 1.18x1o-3 

(1981185). 

Thus the mortality risk due to ship capsize (all fishing vessels) is of the order of 3.6x10-4 

assuming that the majority of "missing" casualties (Table 1.8) are due to capsize (average figure 

1971185). The corresponding figure for laundering is 2.4x10-4 (average figure for 1971185 in 

Table 1.8). 
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CAUSE OF. DEATH VESSEL LOSSES PERSONAL ACCIDENTS ALL CAUSES 

GROUP 1961/70 1971/80 1981/85 1961/70 1971/80 1981/85 1961/70 1971/80 19B1LB5 

On Vessels >24 Metres 1·33 1-75 0-27 o.9a 1.46 1-47 2-31 3-21 1-74 

On Vessels <24 Metres 0-44 0-67 0-58 0-84 0-56 0-55 1.28 1-23 1 -13 

All Fishermen 0-78 0-93 0-55 o.a9 0.77 0-63 1-67 1-70 1.18 

Table 1.7 Accident Death Rates Per 1000 Men At Risk 

... 

...... 

CAUSE OF LOSS ON VESSELS >24 METRES .ON VESSELS <24 METRES ALL FISHERMEN 
CONTRIBUTING IN 

DEATH 1961-70 1971-80 1981-85 1961-70 1971-80 1981-85 1961-70 1971-80 1981-85 
No. Rete No. Rate Ho. Rate Ho.· Rete No. Rete Ho. ·&ate No. Rate Ho. Rate No. Rete 

Foundering 43 0-55 18 0-46 1 0.13 10 o.o8 25 0.16 22 0.28 53 0-26 43 0.21 23 Q.26 
Fire/Explosion 17 0.18 23 0-43 1 0-13 4 0-03 8 o.o6 1 0.01 21 o.o9 31 0-15 2 0.02 
Stranding 9 o.o9 0 o.oo 0 o.oo 8 0-07 7 0-04 0 o.oo 17 0-09. 7 0-03 0 o.oo 
Collision 0 o.oo 3 0-05 0 o.oo ·a 0-05 9 o.o6 0 o.oo 8 0-04 12 0-05 0 o.oo 
Other 0 o.oo 0 o.oo 0 o.oo 3 0-03 1 0-01 3 0-04 3 0-01 1 0;01 3 0-03 
Missing 42 0-51 45 0-81 0 o.oo 25 0.18 53 0~34 20 o;25 67 0-29 98 0-48 20 0.23 

All causes 11 1-33 89 1-75 2 0-27 58 0-44 103 0-67 46 0-58 169 0-78 192 0-93 48 0-55 

Table 1.8 Accident Death Rates Per 1000 Men At Risk: Vessel Losses 



1.2.5. Comparison of Risk Level with Other Risks 

Table 1.9 indicates the various levels of risk involved in other activities and occupations. The 

concept of an acceptable level of risk is addressed in chapter 9. For the moment it is useful to 

compare the risk levels obtained in the previous section to the values given in the table. 

Class Risk 

Mountaineering 2.7x10-• 

Distant Water Trawling 1.7x10-' 

Air Travel (crew) 1.2x10-' 

Coal Mining 3.3x10-• 

Car Travel 2.2x1o-• 

Construction site 1.7x10-• 

Air Travel (passenger) 1.2x10-• 

Home accidents (all persons) 1.1x10-• 

Home accidents (able bodied) 4.0x10-1 

Manufacturing 4.0xto-• 

Structural failure 1.0xl0-r 

Table 1.9 Occupational Accident Rates. Caldwell et al (1986) 

lt can be seen that the above value tor distant water trawling (1.7x1o-3) is identical to the overall 

fishing vessel mortality rate obtained in the previous section tor the years 1971/80 (some 

improvement has been demonstrated for 1981/85). These are very similar to the accident rate 

figure for air crew (1.2x10-3). Values are an order of magnitude larger than shore based risk 

activities of both a voluntary and an involuntary nature. 

The above results indicate that there Is a real need to improve fishing vessel casualty rates. 

This requires a survivability framework for assessing risk to be established. Such a framework 

would enable the risk of laundering and capsize tor any vessel to be assessed and pinpoint areas 

tor improvement. The remainder of this chapter briefly outlines the steps that were taken and the 

methods of approach used to solve the problem of assessing a lifetime of risk. 

1.3. The Present Work 

In chapter 2 this work is placed into context by consideration of the principal developments in 

ship stability theory. In particular the complex nature ol the capsize phenomenon is emphasised 

together with how different researchers have tackled· the various aspects of a multi-faceted 

problem. Finally, chapter 2 concludes with a critical review of certain of the more important 

current and proposed stability criteria that have resulted from the many studies. 
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Chapter 3 illustrates and emphasises the stochastlc nature of the capsize problem in contrast to 

the deterministic method of stability assessment which is embodied in the current IMO stability 

criteria. The need for a truly rational probabillstlc motion prediction method Is argued. This is 

followed by a description of modern reliability and safety assessment methods which were 

considered for this research with special reference made to the hindcast methods which are 

being used in high risk activities such as the nuclear and petro-chemical Industries. lt is argued 

that the lack of suitable marine casualty information limits the usefulness of such studies and 

leads one to condude that the formulation of a suitable prediction method Is to be preferred to 

take account of the many complex Interrelated parameters (including the effects of human 

behaviour) which affect vessel response to the environment. 

The difficulties of assessing the actual lifetime risk of capsize are discussed In chapter 4. 

Capsize phenomena are considered in some detail and the point is made that a vessel should 

ideally be tested for all of these in any considered operational scenario. The present study 

utilises the superposition principle of St. Denis and Plerson (1953) for predicting vessel response. 

1t is argued that the full study would consider all of the appropriate methods necessary for 

predicting the capsize phenomena. These would simply "plug into" the method which is being 

proposed for evaluating risk. However, because the main aim is to formulate an overall 

framework for assessing risks, this question is not pursued in detail. Finally in chapter 4 the 

concept is introduced of the test-track and proving ground for systematically assessing vessel 

pertormance. The analogy to the road vehicle test-track is drawn and the advantages of 

standardising procedures from a regulatory viewpoint are discussed. Statistical derivation of the 

test-track and proving ground probabilities of critical motion exceedence are presented. 

Chapter 5 considers the use of linear seakeeping theory for predicting vessel capsize. A brief 

survey Is made of the theoretical models which are available for analysing large angle roll motion. 

lt is argued that the capsize phenomena are non-linear in nature, -particularly at the large capsize 

roll angles. The concept of a "potentially dangerous" roll motion is introduced to represent the 

onset of capsize and possible objections to this approach are presented. Finally, chapter 5 

introduces the subject vessel used for the investigation and presents the results of computer­

predicted responses obtained lrom the British Maritime Technology Ltd (BMT) "Britsea" suite of 

linear seakeeping programs against available model and full scale sea trials in both regular and 

irregular waves. 

Key factors which must be included within the proposed procedure, in order to accurately 

assess the risk of capsize, are considered in chapter 6. Particular emphasis is laid on their 

appropriate treatment from a regulatory viewpoint. Fundamentally each test-track can be 

reduced into the four main considerations of route, climatology, seamanship and (resulting) 

response for any given vessel of a particular displacement condition. These factors are 

described in detail. 

Chapter 7 considers the development of the computer simulation and presents the algorithms 

used, including the represention of master's action in a severe seaway. Assumptions made and 

their limitations are given particular consideration. Finally a worked example is presented, for a 
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particular scenario which gave rise to a large response level, in order to demonstrate the 

probability calculations. 

The sensitivity of vessel motions to various key parameters Is considered in chapter 8. 

Parameter values used in the main simulation are described which incorporate the sensitivity 

information. Results of the final calculation are presented for an as-built vessel condition making 

use of information obtained from the serving masters whenever possible. Some possible future 

improvements to the computer model are described. 

Chapter 9 considers the future of safety studies which are based on achieving an acceptable 

level of risk. Conclusions and details of required further work are presented which would enable 

a lull implementation of the risk framework proposed In this study. 
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Chapter 2 

Review of Principal Developments in Ship Stability Theory 

2.1. Introduction 

"As in other branches of engineering, safety rules have grown up from cumulative experience of 
failures and in the case of ship stability such an entirely empirical approach has led to simple but 
rather crude statical stability criteria which are of questionable value In assessing safety .• 

Bird et al (1986) 

Stability Is a property of ships and other marine vehicles which is not amenable to simple 

definition. To naval architects 'stability' means safety against capsizing in a very general sense, 

and the development of the relevant theory has had a long period of evolution which is still far 

from complete. 

Seagoing vessels, during their lifetime, are required to operate in a great variety of seastates 

with different cargoes and with different dlsplacements. Speed and heading to waves are 

variable and are dictated both by the operating routes and the skill of the ship's officers in 

avoiding or pacifying the effects of severe weather conditions. 

Dangerous roll motion could lead to cargo shifting, progressive flooding into the hull through 

unsecured openings and bodily damage to the vessel and its crew. UHimately the vessel could 

even capsize (usually very rapidly) due to a complete loss of stability. The problem is further 

compounded by the vessel responding to the external excitatlons in 6 degrees of freedom. 

Essentially the problem facing the designer and the regulatory authorities is to safeguard the 

stability of a ship or other marine vehicle which must necessarily operate in such a regime. 

Because the overall problem is so complex there have been numerous studies into the various 

related aspects of ship stability. In order to place the present study into context a brief review of 

the principal developments will now be presented, followed by a critical review of certain of the 

current and proposed stability criteria that have resulted. 

One could possibly group the studies as follows: 

1. Studies Into 'conventional' ship stability that are based on stability in still water 
(statlcal stability). 

2. Studies relating to the form of the roll motion equation. 

3. Motion stability methods. 

4. Studies into suitable stability criteria. 

21 



2.2. Stability Studies 

2.2.1. Stability in Still Water 

This first group of studies assumes that the stability of a ship can be detennined from its 

geometry and its weight distribution. 

The couple fanned by weight and buoyancy, in still water when the ship is heeled, is taken as a 

measure of stability and the lever of the couple GZ is chosen as the representative quantity, 

Figure 2. 1 . Certainly the understanding of this concept of ship stability is very old. 

Weight 

GZ 
Buoyancy 

Hemetacent re. 
G•centre of gravity 
&•centre of buoyancy 
GZ•righting Lever 

Figure 2.1 Stability (GZ) Curve 

80 • 

heel angle P 

Pierre Bouguer ( 17 46) defined the met acentric radius BoM (shown in figure 2.1) as the ratio of 

waterplane moment of inertia I to the Immersed volume v ; BrJtl=l/V. Thus the metacentric 

height, GM, which is used as a measure of stability was defined by: 

where KB0 is the vertical coordinate of the centre of buoyancy and KG is the vertical coordinate 

of the centre of gravity. The righting lever, GZ, was approximated by: 

GZ=GMsin$ 

where ell is the heel angle in radians. 

Attwood (1796) derived his celebrated formula for more accurate calculations of the righting 

levers which was given as: 
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where vis the volume of the immersed or emerged wedge, 11 1/r2 is the horizontal component of 

the shift of volume, V is the underwater volume and B0G is the vertical distance between the 

centre of buoyancy and the centre of gravity. 

Canon Mosely (1850) introduced the idea of "dynamical stability". He derived the expression for 

the work done by the ship under the influence of some potential external forces and expressed 

this work as the area under the righting moment curve, where the righting moment is simply the 

value of the product of GZ and ship displacement. So long as the inequality: 

J ~ma.r 

0 
(M,i!I-M,$)d$ > 0 

held, the ship was assumed to be stable. Here M,$ and M,!ll are the righting and heeling 

moments respectively and 4tma.r is the maximum angle of heel. 

The significance of this early study was its attempt to relate the stability of ships to their rolling 

motion although, as with previous works, the results obtained were a significant step away from 

the case of a rolling ship in actual seawaves. 

2.2.2. Roll Motion Equation 

This group of studies endeavoured to define the rolling motion of ships in a general sense but 

without considering lhe stability of the motion itself. Again, the important developments may be 

summarised as follows: 

Neglecting the damping effect, W.Froude (1861/1862) derived the expression for rolling motion 

in regular beam seas as: 

where 

ill is the roll angle 
ro~ is the ship's natural roll frequency 
ro,. is the regular wave frequency 
cxma.r is the maximum effective waveslope 

He assumed that the beam and draft of the ship were small in comparison to the wavelength 

and that the presence of the ship did not alter the wave form. In 1874, Froude also introduced 

the effect of roll damping by using the best empirical damping as: 

-(/$=al!l+bl!l2 
dn 

where n is the number of oscillations and a,b are constants to be determined from experiments. 

Krylov (1896) gave a more comprehensive representation of the theory of ship oscillations and 

the theory of ship rolling was further developed on the basis of the Froude-Krylov equation of 

motion. This assumes that the ship behaves as a "phantom hull" which is disturbed by the 

seawaves without itself disturbing the surrounding flow. 
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In order to improve the estimate of motions for normal ship forms the effect of added mass was 

included e.g. Lewis (1929) and Ursell (1949). 

Manning (1939) included the effect of ship speed and heading to waves by introducing the 

period of encounter. 

In 1953 St Denis et al presented a statistical approach for analysing ship motions in irregular 

seas by a superpositon of its response to an infinite number (in theory) of regular sinusoidal 

waves. This development opened up the field of ship motions. The majority of this research was 

concerned with determining the longitudinal responses heave and pitch in head seas (surge 

being neglected). Korvin-Kroukovsky et al (1957) presented such a strip theory based on 

heuristic arguments which was later modified by Gerritsma et al (1967). 

Transverse motions (roll, sway, yaw) were presented by Vugts (1971) and Salveson et al 

(1970). These later theories were formulated with a velocity potential (Ursell(1949), Tasai (1961)) 

so that the effect of viscosity was not included. The roll damping coefficient thus derived was 

usually modified to account for this by using empirical results e.g. lkeda (1978). 

2.2.3. Motion Stability Studies 

The relevance between ship motions and their stability was recognised a long time ago and 

through the end of the 19th century A. M. Lyapunov derived the conditions for stability of motion of 

a freely floating rigid body (Lyapunov (1892)). Unfortunately the potential importance of that 

novel study was not recognised at that time. 

During the early 1950's Grim (1952) and Wendel (1954) both introduced the effects of the 

variations with time of the ship's restoring moment in a seaway, but used this variation for 

different purposes. In fact the basic idea was not new, Pollard and Dudebout (1892) and Kempf 

(1938) had mentioned the importance of the subject. 

Statistical analysis of casualty records indicated that an important pa1t of capsized ships, 

especially those between 30 and 60 metres in length, were under the action of following or 

quartering seas with 5 • 7 Beaufort wind forces. Inspired by this fact Wendel concluded that the 

most critical stability condition arises when the ship is acted on by a wave which has length and 

velocity the same as those of the ship, and that the worst case occurs when the wave crest Is at 

amidships. In order to make the magnitude ol these results more realistic Amdt and Roden 

(1958) proposed the introduction of Smith effect (Smith 1883) in the wave pressure computations 

to account lor the orbital motion of water particles. Further studies by Paulllng (1961 ), Upahl 

(1961) and many others have lollowed e.g. Hamamoto (1986). 

Grim considered the equation of rolling as: 

d2Q 
I drl +6(GM+SGMCOSOll)cp=O 

where 
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I is the virtual mass moment of inertia about the rolling axis 
~ is the roll angle 
<1 Is the displacement 
GM is the metacentric height 
SGM is the maximum variation in metacentric height 
oo Is the wave frequency 

is the time 

By making use of the known results on the stability of Mathieu's equation, he pointed out the 

possible Instability regions. Grim (1954) further considered more general rolling as: 

I d2~ +<1GZ(il!)=M 
d/2 

where M Is the excitation. He showed that the time dependent variation of the restoring 

moment may result in severe roll motion resonance in following seas, a phenomenon known as 

'parametric excitation'. This attempt to relate the stability of a ship to Its motions forms the basis 

of a large amount of todays research activity e.g. Skomedal (1982), Boroday (1986). 

While the deterministic case was being studied extensively, the behaviour of a ship In random 

sea conditions was also examined. Following the work of St.Denis and Plerson in 1953, 

Cartwright et al (1956) paid more attention to rolling motion. Kato (1957) presented an 

experimental study for irregular wind and wave conditions. Hasselman (1966) and Vassilpoulos 

(1967) showed how to treat the nonllnear systems under random excltatlons. Kastner extended 

this application (1969) and studied the behaviour of phase trajectories, Figure 2.2. 
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Figure 2.2 Example of a solution for a stochaslic roll motion at random parametric seaway 

excitation plotted in the <H'> plane. 
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De Jong (1970) tried to solve the problem with the aid of Fokker-Pianck-Kolmogorov equations 

(Amold 1973) and defined the stability with the probability of threshold crossing. Similar studies 

have been carried out both theoretically and experimentally by many research centres, e.g. 

Haddara (1971), Dalzell (1971) and Roberts (1982). 

One of the most important features or all this work was the tendency towards solving the single 

or coupled nonllnear roll equations and then searching for the stability with the aid of the 

determined solution. When the equations of motion are severely non-linear the approximation 

methods which linearise them in one way or another may not yield reliable solutions. To 

overcome this difficulty, Odabasi (1973) re-introduced Lyapunov's Direct Method into the stability 

computation of ships. Later the general definition of stability has been further studied by Odabasl 

(1982) and Caldelra Saraiva (1986) among others. 

2.2.4. Stability Criteria 

This group of studies is aimed at determining a safe minimum amount of stability for devising 

stability criteria. lt is known that load line rules existed as early as the 11th century, but the real 

efforts for establishing rules In ship stability came after 1870. In 1870 a British warship "Captain" 

capsized and this accident brought forward the question of safe minimum stability, Brown (1981 ). 

One of the first measures for judging the stability was the initial metacentric height. In the 

beginning of the 20th century, depending on the type and size of vessel, an initial metacentric 

height of between 0.2 - 0.6 metres was considered sufficient. Efforts were also made to establish 

principles based on the main dimensions of vessels for judging stability but these proved 

unsuccessful In practice. The use of the righting arm curves for judging stability was first 

proposed by Reed (1 868) but its use followed the paper by Denny (1 887). This type of stability 

criterion was in frequent use in the design of vessels and there were various standard curves 

suggested by different authors, Figure 2.3. 
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The following features were considered to be significant: 

1. The initial part of the righting arm curve up to an angle of heel of 1 0 degrees, which 
depends on the initial metacentric height; 

2. The angle <)m at which the righting arm curve reaches its maximum value is very 
important; 

3. The vanishing angle c)l. where the righting angle becomes zero is also important; 

4. Magnitudes of the righting arms at 20, 30 and 40 degrees have a strong influence 
on the vessel's stability. 

Rahola (1939) made a significant contribution towards achieving workable stability criteria. His 

study was based on the results of official inquiries into some 30 capsizes and, by selecting a level 

of stability which exceeded that of most of the casualties, he proposed the following combined 

criteria: 

GZ 2! 0.14 metres for 20 degrees 
GZ 2! 0.20 metres for 30 degrees 
GZ 2! 0.20 metres for 40 degrees 
c)lm 2! 35 degrees 

and e = 0.08 metre-radians for 41, 

where the limit angle 41, was defined as the smallest of 41m , angle of heel for immersion of 

non-watertight openings, angle of heel for shifting of cargo or 40 degrees. Rahola, himself had 

reservations about proposing the standards for general .use on the grounds, inter alia, of the 

"unsuitablility of the same standard stability arm curve for large and small vessels". However, 

such statical ·stability criteria formed the basis for several national criteria, amongst them the 

current IMO Res.A167 (1968) for ships less than lOOm in length and Res.A168 (1975) for fishing 

vessels of lenQth 12m and over. 

The original Rahola stability criteria are illustrated in Figure 2.4, and the current stability criteria 

for fishing vessels (Res.A 168) shown in Figure 2.5. 
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Figure 2.4 Original Rahola Stability Criteria, Rahola (1939) 
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Figure 2.5 Current Fishing Vessel Stability Criteria, Res.A 168 (1975) 

Statical stability criteria of this kind have the chief advantage of being simple to apply by naval 

architects and ship's officers, being based on hull form geometry and weight distribution. They 

involve no explicit use of external forces or motion characteristics so that for the regulatory 

authorities the advantage is that there is no commitment to difficult decisions about wind and 
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wave parameters and the possibility of giving false guarantees of safety in any particular sea 

conditions, Bird et al(1986). Their disadvantages are that they cannot give any indication of 

safety margins or of likely motion behaviour in any seastate except still water. Additionally when 

some significant departure from previous design practice occurs, for example as occurred with 

the twin hulled SWATH ships and mobile oil drilling rigs, no recourse can be made to previous 

experience and a different approach to intact stability assessment is required. 

Further approaches to ship stability attempt to account for the external forces affecting 

behaviour of the vessel in an assumed environmental condition. Steel ( 1956) analysed several 

casualties of specific ship types and stated that the minimum standards must only be accepted 

with due consideration given to the type of ship service and the nature of the cargo. 

The so-called moment balance methods advocate a static balancing of restoring and upsetting 

moments for assessing stability. Among these include methods by Steel (1956) and Abicht, 

Kastner et al (1977). Wendel's criterion Is illustrated in Figure 2.6 . 
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Figure 2.6 Balancing of Righting and Heeling Curves proposed by Wendel (1977) 

The dynamical lever curve, which is the integral of the righting arm curve is also used as a 

stability criterion. Originating with Moseley's (1850) work proposals were made, both on the basis 

of vessels which had operated successfully Benjamin (1913), and on theoretical bases which 

attempted to take account of the work done by wind, waves, centrifugal force and the movement 

of passengers on board, Pierrotet ( 1935). These were known as energy balance methods. 

Sarchin et al ( 1962) introduced one form of a dynamic wind heel or 'weather criterion', Figure 

2.7. This type of criterion is intended to provide sufficient stability for a vessel to withstand the 

dynamics of being subject to a sudden wind gust while rolling. The recent IMO weather criterion, 
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A 14/562 (1986) which is intended to supplement rather than to replace Res.A 167, is illustrated in 

Figure 2.8.. 
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Figure 2.7 The Classical 'Weather Criterion' (1962) 
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Figure 2.8 The IMO Weather Criterion (1986) 

lW2 

90 

A natural development of the weather criterion , which has been developed by Vassalos (1986) 

at Strathclyde University within the U.K. Safeship Project, is illustrated in Figure 2.9. This has 

become known as a 'butter11y diagram'. 
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Figure 2.9 The Butterfly Diagram (1986) 

This criterion is concerned with the pure loss of stability in following seas and the eHects of 

wind, waves and motions is accounted for in a quasi-dynamic manner. The energy balance is 

considered between restoring and upsetting moments during an extreme half roll cycle to 

discriminate between 'safe' and 'unsafe' ships. 

Although moment and energy balance methods take account of the external forces aHecting 

behaviour of the vessel in an assumed environmental condition, they are at best fairly simple 

models of the real world and present only a quasi-dynamic picture, especially of the influence of 

wave motion. 

Such criteria use conventional principles and procedures which are familiar to naval architects. 

Because of the inadequacies in the two preceding approaches attempts have been made to 

develop stability criteria based on Lyapunov's Direct Method, Caldeira-Saraiva ( 1986). Lyapunov 

theory is applied to the equations of motion which can be made to account for coupling eHects, 

wave diffraction, parametric excitation, linear and non-linear damping and wind eHects. A 

simplified stability criterion, Figure 2. 1 0, is then derived from the vessel's region of motion 

instability in the phase plane. 
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Figure 2.10 Criterion proposed by Caldeira-Saraiva(1986) 

The main (present) disadvanlages are that, while the resulting criteria are simple to apply, naval 

architects are not yet familiar with the basic concepts. Such new forms of stability criteria may 

need considerable validation from practical experience to be generally accepted. 

Table 2.1 summarises the comments of this section. 
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Criterion T~pe Regulations Regs.Appl~ To Advantages and Disadvantages 

Roholo IMO Res. 167 Shiplength < lOOm Simple to understand and oppl~ 
(1968] 

Tol:es no account of external forces due 
Roholo IMO Res. 168 Fishing Vessels of to wind, waves or current 

C I 975] Length > 12m 
-1 
Ill 
CT 
iD 

Gives no ideo of Li l:el~ motions or 
. sofet~ margins 

!'l 
() 
0 
3 
3 

Expected to apply to aLL Load conditions 
and aLL shiptypes and Lengths Cwi thin the 
respective rules} 

(I) 
::::1 

t.) iii t.) 
0 

Oi ff icult to extrapolate to novel ship forms 
::::1 

en 
Di Moment Balance Methods - - Simple to understand and apply 
g 
~ 
() 
::::!. 
iP 
~ 

iii" 

Energy Balance Methods IMO RES.AI4 Shiplength < lOOm Attempts to account for external forces 
/562 [1986] oc t i ng on the vessel in on assumed 

environment 

Quasi-dynamic treatment of motions 
given by Strathclyde method 

Lyopunov Method - - Resulting criteria simple to apply 

Based on principles unfamiliar to designers 

May require much validation for acceptance 

Table 2. I Summary of Different Types Of Stability Criteria 



2.3. Related Studies: United Kingdom SAFESHIP Project 

Ship stability continues to attract considerable research effort. The SAFESHtP Project, to which 

this work was officially affiliated, ran from April 1981 and culminated in a conference held during 

April 1986 (Rina Saleship Symposium 1986). The extensive programme of work was as 

indicated in Figure 2.11. 
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Figure 2.1 1 Saleship Project Areas 

• Circled numbers were SAFESHIP project numbers 
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The SAFESHIP Working Group identified that one of the specific projects should be concerned 

with exploring the feasibility of developing and applying risk analysis methods as a basis for 

assessment of ship safety from capsize. The need for such methods, which are central to this 

study, are discussed in Chapter 3. 
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Chapter 3 

Assessment of Capsize Risk in the Marine Environment 

3.1. Introduction 

"Traditionally the stability is deemed adequate depending on compliance with certain parameter 
values of the still water statical stability curve .•... 

Since these parameter values are the same for all ships regardless of size, type, operating and 
weather conditions, the margin of safety must vary considerably and Is unknown". 

Bird et at (1982) 

The current I.M.O. Resolution A 167 "Recommendation on Intact Stability for Passenger and 

Cargo Ships under 100 m in length", which recommendations have been adopted by many 

countries, embodies the current deterministic approach to assessing ship stability. This is in spite 

of advances made in the various aspects of the stability problem as well as the fact that ship 

stability is fundamentally a dynamic and stochastic phenomenon. To illustrate this latter point, 

Table 3.1 is included. This is a non-exhaustive list of parameters which are likely to have a 

greater or lesser effect on ship stability. They may cause the vessel to respond in six degrees of 

freedom or may influence the vessel's ability to return to the upright following a response (these 

may be referred to in terms of 'demands' made on the vessel and 'capability' of the vessel to 

resist the demands respectively). lt may be argued that any study which seeks to quantify ship 

"stability" should ideally take into full account all of these parameters in a rational way. Further it 

will be necessary to take into account the variability of these as they occur in practice. For 

example it Is readily apparent that the environmental factors wind, waves and current display 

great variability and prediction error is likely to be present (uncertainty) particularly when data is 

sparse. Other studies indicate that certain of the factors that have hitherto been treated 

deterrninistically, such as the metacenlric height and vertical centre of gravity, actually vary in a 

random way during the life of a vessel, Tucker (1978). These types of argument have led various 

researchers to suggest that the long-term future of marine safety lies with methods that may be 

used to allow for the intrinsic uncertainties and lo assure acceptable standards and levels of risk, 

e.g. Caldwell (1983), Kastner (1982), Krappinger (1975). 

This chapter examines the prospects for a rational assessment of vessel stability in the light of 

the available methods and data. The subject of acceptable risk and ils assurance is discussed in 

chapter 9. 
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VESSEL DESIGN 

ENVIRONMENTAL PARAMETERS 

OPERATIONAL PARAMETERS 

SEAMANSHIP 

ACCIDENTAL 

Principal dimension ratios, Length 

Beam, roll g~rodius 
Age, structural deterioration 

Moss occret ion 

Freeboord, watertight integrit~ 

Cooming and sill heights 

Extent of freeing ports 

Bow and stern form 

Provision of deck shelters 

Bilge keels or active fins 

Extent of superstructure 

Lateral area 
Provision of hold subdivision 

Wove height, period, energ~ spread 
Wind strength, gusting effects 

Breaking waves, .shallow water effects 

Steep waves, Icing 

Displacement, KG, drought, trim 

Stab i l i t~ curve (roLL s t i F Fness) 

Range of stobilit~, angle of 

vanishing stobilit~ 
Free surfaces, suspended weights 
Autohelm 

Speed and heading to waves 

Storm avoidance 

Training, experience, information 

ovoi Lob le 

Cargo shift, slurries 

Engine FaiLure 

Steering Loss 
Sudden structural failure 

Fire or collision admitting water 
into the huLL 

TABLE 3. I Parameters For Consideration ([deaL Simulation) 
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3.2. Reliability and Safety Assessment Methods 

The 'core' of any risk analysis is to establish the risk level. This fundamentally involves th~ 

assessment of the probability of hazardous events and the assessment of the severity of the 

events. The evaluation of the two properties can be carried out in a number of ways. 

An extensive review of the available literature revealed several promising risk analysis methods, 

-promising from the point of view that they may be suitable for transfer of application to ship 

stability. Although it subsequently became apparent that certain of these methods were not 

appropriate (for reasons given below) they have been included for completeness. Methods have 

been classified as follows: 

1. Methods used predominantly in the defence, nuclear, petro-chemical and 
electronics industries which combine component probabilities to obtain the 
probability of failure of the undesirable 'top event'. 

2. Structural reliability methods which seek to evaluate the probability that the 
demands (loads) on the structure will be greater than the capability (strength) of the 
structure to resist the demands. 

3.2.1. Failure Mode and Effect Analysis (FMEA) and Fault Tree Analysis (FT A) 

Reliability methods, per se, were originally evolved during the Second World War in connection 

with electronics and guided weaponry. They became the norm in the defence and aerospace 

industries and, particularly during the last decade, have been used extensively in the higher risk 

industries, petro-chemical and nuclear for instance, where large communal databases of reliability 

data were created e.g. Kletz (1982), Griesmeyer et al (1981). 

The key to successful failure analysis lies in the application of basic tools which discipline the 

analyst to subdivide the design and its operation into discrete parts. For a petro-chemical or 

nuclear plant, particularly where there has been no previous experience in the design process, 

the structural and engineering drawings are broken down Into signillcant parts and events which 

may interact during operation. Failure Mode and Effect Analysis (FMEA), US Dept of Defence 

(1973), is a qualitative analysis tool which is designed to observe the possible failure states of 

components of a system and to identity all possible consequences within the design during 

normal, but also including abnormal, operation. 11 is ideal for identifying the need for corrective 

measures in a single random failure analysis, Aldwinckle et al (1983). Table 3.2 illustrates an 

example FMEA Sheet. 
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Failure Mode and EFFect Analysis 

S~stem: 

Subs~stem: 

I. Component Name: 2. Function: 

3. Mode oF Operation: 

4, Failure Mode: 

5. Failure Cause: 

6. EFFect oF Failure: 

7. Failure Detection Method: 

8. Corrective Action: 

Table 3.2 Example FMEA Sheet 

A FMEA is rarely adequate in projects involving large and complex arrangements of 

components. In these cases Fault Tree Analysis is used (FT A), Fusseil (1976), to logically 

represent the many events which lead to the system failure or 'top event'. A compilcaled network 

of logic gates (AND or OR gates, Figure 3.1) results. 

0 
'ANO' 
GArE 

'OR' 
GATE 

Figure 3.1 General Representation of a Fault-Tree 
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Working downwards the failure event tree structure is created terminating at basic events 

(which are usually independent). Once a tree has been created, a qualitative analysis can often 

reduce it into combinations of basic events (known as 'minimal cut sets') using Boolean algebra 

sufficient to cause the undesirable top event to occur. Following this procedure a quantitative 

analysis involves the transformation of the tree structure into an equivalent probability form from 

which the probability of the 'top event' may be evaluated very simply from the probability of 

occurrence of the basic events. 

lt was concluded that the practical value of this approach to the capsize problem is severely 

limited by the necessity to accurately determine these basic event probabilities. The data simply 

does not exist at this time. In addition this type of analysis is better suited to systems with large 

numbers of relatively simple discrete components having little or no interaction. 

3.2.2. Structural Reliability Analysis 

Structural reliability as a discipline is quite distinct from reliability engineering. Whereas FMEA 

and FTA are concerned with systems consisting of a large number of small elements of relatively 

simple modes of operation and with simple or no interaction, engineering structures are 

characteristically made up of complex elements with complex mod_es of operation and 

interactions, ·thus in this respect there exists close analogy with the ship stability problem. 

Several approaches to marine structural design are now available. In the conventional 'safety 

factor' approach a single valued worst demand design or working load o0 is related to a similarly 

dimensioned failure or upper limit capability (strength) of the structure c u by a scalar quantity F. 

Cu~FDv 

In principle the strengths Cu can allow for interactive failure modes but the concept of a single 

unique scalar safety factor F is then illusory, Faulkner et al (1979). lt is also usual for minimum 

specified material and section properties to be used so that, for example, a limiting strength Is 

assumed when the stress reaches the yield stress. By direct analogy with the current (statical) 

stability regulations (Res.A 167/68) the statutory rule section modulus approach to design, Lloyd 

( 1976), is implicitly and explicitly based on the static wave balance principle coupled with still 

water loads, Muckle ( 1975). No allowance is made for different mission profiles or ship motion 

effects and thus no account is taken of the variability in either the strength of nominally Identical 

structures or in the maximum loading to which they are subjected. The safety factor F is intended 

to account for all the unknowns in the load and strength and yields a structure that should have 

an acceptable performance based on past experience, though the degree of structural adequacy 

is unknown. In addition the approach is not entirely satisfactory for novel vessel forms and this, in 

parallel with scientific development, has led to the development of more rational concepts and 

approaches. These all have one common feature; that is the definition of the probability of failure 

Pt is given by 'adding' all probabilities that the failure governing load (D) exceeds the failure 

governing strength (C). Symbolically this is expressed as 

Pt=p(C < t;Jl 
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Faulkner et al (1979). This probability is represented by the ·area of the overlapping tails of the 

load (demand) and strength (capability) probability distributions shown in Figure 3.2. In principle 

this offers the opportunity to select an appropriate 'strength' on the basis of acceptable risk. 

Another way to view this is that the failure will occur when the margin "M' between capability 

and demand is negative (p
1
=p(C < D)=p(C-D < O)=p(M < 0)). lt follows that provided the 

probability density functions of demand and capability are known then the probability of failure 

can be evaluated from: 

p1= 1-fo .. (F 0 (x)) fc(x)dx 

Where j{x) are the probability density or frequency distributions and F(x) the distribution 

functions of two uncorrelated2 random strength and load variables c and D, Freudanthal (1956). 

FREQUENCY 

DEW. NO 
CURVE 

Failure Region 

CAPABILITY 
CURVE 

Figure 3.2 Demand and Capability Curves 

Because of the difficulty associated with the determination of these failure governing load and 

strength functions and distributions a number of semi-probabilistic approaches have evolved: 

• Safety Index Approach 

Mansour (1974) used an approximate semi-probabilistic design method which required that only 

the means and variances of the load and strength be known. This approach expresses the safety 

index y as: 

21n I act it is known that certain of lhe demand and capability parameters which .affect ship stability in Table 3.1 are not 
independent of each olher. For example as a wave crest passes down the shiplength lhe sealoads (demand) will vary. 
So too will lhe capabllity since the righting levers are modified by lhe varying buoyancy forces as lhe wave crest 
progresses. 
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where 

e-o 

6-1 =-== 

M is the mean safety margin C-D 

, 
a;;, is the variance of the safety margin 

C ac Be are the mean, standard deviation and c.o.v. of strength respectively 

D ad BJ are lhe mean, standard deviation and c.o.v. of load respectively 

6 is the central safety factor ~ 
o 

Obviously the equation will yield a different safety index for each mode of failure and, lacking an 

adequate method to combine such indices, the minimum safety index "{ should be used 

comparatively as a measure of structural safety of the hull. 

• Partial Safety Factors 

Regulatory bodies have for many purposes adopted a slightly varied form of the above 

explained pure probabilistic approach. Instead of considering the overlapping tails directly on a 

basis of acceptable risk (figure 3.2), the concepts of design values have been introduced for both 

demand and capability. The relationship between the characteristic loads (Dt) and strengths 

(Ct) will generally be of the form: 
n 

(Cki)";!.YcYs { ~ YJ;(A)(Dk;) i 

-Faulkner et al (1979) 

The subscripts i refer to the different loads factored by the correct transformation matrix (A) to 

give the load-effect for load combination j in the n-dimensional space. 

By ignoring interactive effects between different failure modes and adopting a weakest-link 

model for ultimate collapse of the ships hull, Mansour (197 4), and by making use of the fact that 
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the probability of failure Pt is dominated more by variability In load than in strength the amount of 

work is dramatically reduced· to one (weakest-link) case and the equation reduces to: 

Ckl D~c="fc 'Ya"f,(C,/ Dd) 

where cd and Dd are design values for strength and load and are usually assumed to be equal 

when applying the partial safety factor concept. Then: 

where ro=rc Ya'Ys is an overall partial safety factor which is very similar in concept to the 

traditional (deterministic) safety factor F. 

The subjective partial safety factors by which the objectively derived characteristic loads are 

multiplied to obtain the design loads are: 

which takes account of the variability of the applied loading and its methods 
of determination. 

which takes account of the nature of the structure (lailsale etc.) and the 
seriousness of failure in economic and loss of life terms, i.e. D a=D" YaYs 

The partial safety factor by which the characteristic strengths are divided to obtain the design 

strength is: 

which takes account of the diHerences between the strength of the material 
by testing and the effect of local defects, i.e. Ca=C1Jyc 

The merit in using the Safety Index and Partial Safety Factor Concepts is that they rely on lour 

parameters only; the mean values and variances of load and strength, which can be measured or 

assessed objectively and adjusted for subjective uncertainties. No knowledge is required of the 

nature of the distributions in the tails. All random uncertainties are treated uniformly through the 

coefficient of variation with systematic errors affecting the mean values. 

Unfortunately semi-statistical methods cannot combine the risks of failure for independent 

modes of failure nor provide a rigorous procedure for proportioning a structure against diHerent 

load combinations and multi-modal failures. Only a fully probabilistic approach can do this. 

Nevertheless, Kure(1979) has suggested that the Partial S.F. approach might be suitable for the 

ship stability problem once the subjective safety factors have been determined with suHicient 

confidence. Such information will be more forthcoming once 'black box' motion and stress 

recorders, similar to ihose on aircraft, are routinely provided on ships. Lloyds Classification 

Society is currently developing such a device, Spencer (1986). 

43 



3.3. The Role of Available Casualty Information 

To a very large extent the approach that was finally adopted at Plymouth was governed by the 

lack of availability and the poor quality of casualty information which is currently available. 

Initially it was considered that if sufficiently detailed casualty information could be obtained then 

a hlndcast probability analysis could be undertaken (FMEA,FTA or Demand/Capability). In fact it 

soon became apparent that where casualty data did exist it was generally poorly detailed and 

was probably not very accurate, a not unexpected result given that a characteristic feature of all 

forms of capsizing is the great speed at which the vessel founders, together with the fact that the 

only wreckage which is found as a rule are those objects which are loosely stowed and which are 

able to float to the surface after the vessel has sunk, Hanssen (1982). 

Casualty data for the years 1973-1984 (inclusive) were obtained from the Department of Trade, 

Marine Division, together with summary statistics provided by 'Casualties to Vessels and 

Accidents to Men' published annually by the department of Transport. The fact that the format of 

the published data has not always been consistent from one year to another and that large 

variations in the number of vessels on the register is apparent_ ensures that absolute judgements 

are not possible unless elaborate steps are taken to assess the actual numbers at risk. 

Fortunately this is not a problem when comparative judgements are required regarding the actual 

total number of casualties. For example, Figure 3.3 illustrates the breakdown of founderings and 

capsizals by vessel for all years 1973-84 inclusive and shows that vessel loss through laundering 

and capsize is largely a 'small ship' problem. 
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Figure 3.3 Total Number of Founderings/Capsizals with respect to Vessel Length (1973-1984) 

Similarly by examining Figure 3.4 it may be stated (regarding the environmental conditions): 

• A great majority of founderings and capsizes occur in estuaries, port approaches and 
coastal waters. 

• Casualties are likely to happen all year round with almost equal likelihood of 
occurrence. 

• Except in those cases of dangerous loading or water inrush, almost all founderings 
and capsizes occurred in moderate or rough weather conditions. 

• Mild/Moderate wind strengths are as dangerous as strong wind strengths. 

Regarding the operational conditions: 

• Light load condition and ballast conditions appear to be more hazardous than the 
fully laden condition. 

Such a qualitative analysis of casualty records can lead towards a better understanding of 
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capsize which will eventually guide one to the appropriate methods of stability assessment. 

Unfortunately, this level of information is not sufficient for such an analysis as failure mode and 

effect analysis or fault tree analysis when information is required on the sequences of events 

giving rise to capsize as well as the probability of each of the 'base events' occurring. Structural 

reliability methods, that have been outlined, also require greater detail (means and variances of 

demand and capability) than is currently available in the casualty records before the safety 

indices or partial safety factors may be used for (especially) new ship types - when no recourse is 

possible to past design values. Indeed an extensive survey of current risk analysis methods 

including Cox (1981) and Fairley (1981) leads one to the conclusion that, whatever method is 

chosen, the confidence in the final estimate of output uncertainty depends on the confidence one 

can place In the basic estimates of parameter uncertalntles. Thus poor estimates would be 

expected with the current state of knowledge. 

Another approach, fuzzy set theory, has been developed to cater for significant parameters 

which are difficult to quantify, Yao(1985). Thus linguistic descriptors are used to describe the 

damaged state of certain structural components in a subjective manner, such as 'the structure is 

moderately damaged' or 'the structure is severely damaged'. These descriptors may be assigned 

numerical values (known as 'membership functions') which are logically manipulated to provide 

an answer to the question "How severely damaged is the total structure?". This would be 

couched in such terms as "lhe total structure has a weak/moderate/strong membership of the 

severely damaged set". 

lt was fell that, although such theory might be very useful for assessing certain values such as 

damage states or the nature of human behaviour for example, unfortunately lack of knowledge of 

the interrelationships between the highly individual critical parameters (as evidenced by Table 

3.1) would undermine the value of such an approach to the capsize problem. 
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4.1. Introduction 

Chapter 4 

Managing a Lifetime of Risk 

• .. .lt is essential to develop a rational philosophy and a logical procedure of assessing intact 
stability In particular wherein the essential steps and decisions are clearly indicated. Such a 
procedure when applied to a conventional or novel vessel will not only ensure a consistent 
approach to design but will show clearly where the uncertainties lie and where further research is 
most needed". 

Morrall (1982) 

Most of the noteworthy papers on intact stability of ships have concentrated in recent years on 

the theoretical aspects of an apparently intractable problem to predict large angle roll motion very 

accurately in idealised wave conditions e.g. Roberts(1984). Little or no reference has been made 

to safety and ship performance in rough seas in order to develop a framework for future design 

and stability criteria. 

The most universal stability criterion should be the probability of non-capsizing of a ·vessel 

during its lifetime but as Kastner ( 1982) points out: 

"11 would be an almost impossible task to solve for the real actual probability of capsizing for any 

ship during her lifetime, because of the many parameters involved such as ship characteristics, 

environment, service routes of ship etc". 

A question also arises whether it is possible to calculate the capsize probability with sufficient 

accuracy since the occurrence of extremely severe conditions of wind and waves causing 

extreme roll motions is a very rare phenomenon which may not be accurately predicted on the 

basis of statistics at present. Unless this Inaccuracy In the probability calculation is of a lower 

order than the final predicted value of risk the usefullness of this concept in assessing stability 

criteria may be questioned, Sevastlonov ( 1970). 

In spite of these observations, and in order to avoid a large safety margin which would be 

inappropriate to use throughout the entire life of the vessel and would lead, amongst other things, 

to poor seaworthiness and unsatisfactory economic factors, it has been suggested that it would 

be useful to analyse chosen critical situations (scenarios) of the vessel taking into account their 

probability of occurrence e.g. Kobylinski (1975). Thus, using this concept, logically the stability 

criterion is motion based -· being the probability of non-capsizal of the vessel during several 

selected dangerous seagoing scenarios. Such an approach requires the identification and proper 

selection of the potentially capsize-causing situations (combining features of design with 
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environmental and operational factors) together with the probability of their occurrence and a 

realistic modelling of the total system (including human) behaviour. lt Is felt that, provided 

consistent and plausible assumptions and values are applied, the estimates of survivabillty which 

result should have meaningful comparative significance, Caldwell (1983). 

In any event the limitations imposed by data availability and quality, which have been described 

previously in chapter 3, will inevitably lead to a comparative survivability assessment and it is 

probably most useful to ensure that all vessels are judged comparably safe for their respective 

intended modes of operation until the data quality improves. 

To summarise, the probability approach to stability assessment that was finally adopted at 

Plymouth comprises three distinct but interacting parts: 

1. Identification, selection and treatment of the critical (potentially capsize causing) 
scenarios 

2. Evaluation and combination of the probabilities of the critical scenarios identified in 
(1) above 

3. Modelling of total system behaviour comprising primarily vessel response but also 
containing aspects of human behaviour 

The remainder of this chapter is concerned with the important parameters that should be 

included in the analysis and the handling of the assodated probabilities to manage a lifetime of 

risk. 

4.2. The Capsize Phenomenon 

By consideration of the capsize phenomenon some useful pointers to the dangerous situations 

which are being sought may be found. Careful analysis of casualty records as well as 

observations of capsizing model experiments in rough seas has provided a good picture of 

capsize e.g. Boroday et al (1975), Takaishi (1982). For example Table 4.1 from Takalshl (1982) 

classifies the flooding and capsizing accidents of some 448 ships into 1 0 modes corresponding to 

ship and navigation conditions as well as environmental conditions. Similarly Table 4.2 also 

taken from Takaishi (1982) reveals the main factors causing capsize in rough seas. These tables 

reveal the great diversity of factors that may contribute to a capsize and the relatively high 

incidence of human factors having major contributory effect. An ideal analysis would seek to 

account for all of these factors but in practice some means of standardising them, particularly for 

regulatory purposes, is clearly both necessary and desirable. 
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case 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

*Note: 

causes or Conditions of Casualties Number of Casualties 
Fishing Boats Cargo Vessels 

Navigating in Quartering or Follow- 25 (191 * 26 (191 ing Seas 

Navigating in Head, Bow and Beam 
Seas 49 (371 101 (641 

Navigating in Calm Water 5 ( 51 15 (15 I 

Working as Fishing or Towing Ship 5 ( 51 25 (20) 

Hull Break Down 17 ( ll 37 ( 51 

Mishandling of Piping or Valve System Z4 ( 31 22 ( 51 

Anchoring in Harbour When Storm or 12 ( 31 12 ( 41 Typhoon 

Misleading of Cargo 3 ( 3) 47 ( 451 

Icing or Drift Ice 8 ( 81 0 ( 01 

Reasons Other Than l-10 5 ( 21 10 ( 61 

TOTAL 153 (861 295 (1831 

Number in parenthesis indicates the number of capsizing accidents. 

Table 4.1 Classification of Flooding and Capsizing Accidents 

Takaishi (1982) 

Factors Causing Capsize Fishing Cargo Total 
Boat Vessel 

Over Loaded 9 8 17 

Top-Heavy 13 11 24 

Insufficient Lashing l 20 21 

Inferior Loading 7 17 24 

Cargo Shift lJ 41 54 

Open Door 9 22 3l 

Inferior Hatch Cover 2 18 20 .. 

Hull Break Down 2 l J 

Shipping Water on Deck 29 26 55 

Broaching l J 4 

TOTAL 52 87 139 

Table 4.2 Classification of Main Factors Causing Capsize 

Takaishl (1982) 
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51 (381 
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20 (201 

30 (251 

54 ( 61 
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8 ( 81 
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Closer examination of capsizals during model tests has shown that several distinct capsize 

mechanisms exist. These may be classified with respect to heading of vessel to the incident 

waves: 

4.2.1. Capsizing Experiments In a Beam Sea 

Experiments with models side-on to the waves have revealed that the large heel angles are the 

result of two mechanisms e.g. Morrall (1975 and 1978), Dahle et al (1980): 

1. The impact of the wave as it strikes the superstructure and the hull. 

2. The high front of the wave upon which the vessel may float. 

lt is this second factor which is the main reason for the vessel adopting large heel angles. 

Experiments have revealed that these will occur on the whoie irrespective of the stability of the 

vessel and that the models lay at this large angle after the wave had passed. Whether or not the 

vessel 'survived' was dependent on the value of the righting lever (positive or negative) at the 

large heel angle. 

In addition Takaishi ( 1982) and other researchers have demonstrated that shipping of water on 

deck and cargo shifting due to large lateral accelerations acting on the weight are major 

contributory factors to consider in the beam-sea situation. 

4.2.2. Capsizing Experiments in a Following Sea 

Three kinds of capsizing phenomena have been identified by experiments with models in 

following seas: 

1. Pure loss of stability occurs when the model is moving with a speed nearly equal to 
the wave phase velocity, when a wave crest may assume a stationary position 
amidships, Paulling et al (1972). Reduction in waterplane area reduces the initial 
stability and GZ values at all angles of heel. The vessel capsizes in the same way 
as an unstable vessel in calm water i.e. in a non-oscillatory manner. The effect is 
exacerbated when the . height of the wave is sufficient to wash over the deck, 
Takaishi (1982), Hanssen (1982). 

2. Parametric excitation (or Mathieu effect) occurs when the encounter frequency of 
the ship to waves is around half the natural roll frequency. In the event of a wave 
crest being located amidships the vessel's righting levers will be reduced (as 
described above) and the vessel may heel over to a large angle. At complete 
synchronization as the vessel reaches maximum deflection the wave has moved on 
until there is now a trough positioned at amidships with consequent increase in 
righting levers. The vessel will return rapidly to the upright where its righting levers 
are again reduced as the wave crest approaches amidships. The vessel assumes 
larger and larger angles of heel until it may capsize if the initial stability is very low 
[GM/Beam = 0.0075 according to Paulling et al (1972)]. Regular choppy waves 
with a wavelength between 1 - 2.5 times the shiplength are frequently quoted for 
this phenomenon to occur. 

3. Broaching occurs when the ship is overtaken by a large wave, (l, • .,,.,>>Lship), 
accelerated on the waveslope and forced to move at the same speed as the wave. 
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The vessel is forced to yaw off her course suddenly and will come about only to 
heel over to leeward. Directional control is lost as a result of the low relative speed 
between the rudder and the wave and the vessel will tend to turn rapidly 
encouraged by the asymmetrical flow of water past the bow. The combination of 
dynamic forces exerted by the waves and the centrifugal force generated by the 
turning action produce large heel angles or capsize angles. 

4.2.3. Capsizing Experiments in a Quartering Sea 

Model experiments indicate that when the ship navigates in steep and short quartering waves 

with high speed the worst beam-sea and following-sea factors can occur simultaneously, Takaishi 

(1982). lt is apparent that the vessel can be subject to all of the above mentioned phenomena it 

the conditions are sufficient. the difference being that the relative wave elevations on the ship's 

side become large in the quartering waves at amidships so that water can enter onto the deck 

easily. Because of these facts the quartering sea case deserves special attention in a motion 

based stability assessment. 

4.3. Conceptual Model Outline 

lt follows that every seagoing situation should be analysed to take account of all the possible 

capsize phenomena described above. This is especially true of smaller vessels under 

investigation when, due to scaling effects, the ratio of exciting moment to restoring moment is 

likely to be larger than for a larger vessel. Consideration should also be given to the possibility of 

one phenomenon giving rise to another e.g. heavy seas from the beam causing cargo shifting or 

water ingress. With the current state of knowledge this would lead to the ideal demand/capability 

assessment indicated in Figure 4. 1. This would be a mixture of analytical time and frequency 

domain techniques and experimentai techniques to predict the occurrence of the various capsize 

mechanisms. The largest roll motion obtained from consideration of all of these would be 

recorded in this case. 

Since the main aim of this study is to formulate an overall risk framework for assessing the 

safety of a vessel against capsize, only certain capsize phenomena are modelled in the present 

work as discussed in Chapter 5. Eventually it is envisaged that the appropriate motion prediction 

techniques tor analysing all of the various capsize modes will simply 'plug·in' to the (modular) 

computer program which has been written and is described in detail in Chapter 7. 

Major attention has been focussed on synthesising the component parts which must be given 

consideration so that a realistic assessment of the probability of extreme roll motions is obtained. 

This will provide an index of survivability for each vessel given the difficulties of accurately 

predicting the actual capsize probabiliiy that have already been noted. 
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4.4. Short-Term versus Long-Term Analysis 

There are two particular types of prediction method that may be generally considered for ship 

stability as advocated for the design of an offshore structure. These are: 

1. the long-term prediction method, which considers all variations of the responses for 
every cycle of wave encounter in the ship's lifetime regardless of their magnitude, 
Ochi (1976a). 

2. the short-term prediction method which considers only certain of the wave 
encounters, usually the severest which are likely to occur in a vessel's lifetime, Ochi 
(1978a). 

4.4.1. Long-term Anal ysls 

In operability-type studies such as a latigue analysis it is necessary to consider every cycle of 

vessel response during its lifetime since all cycles contribute to structural fatigue failure. 

However, for estimating extreme values this long-tenn method has the serious disadvantage that 

because a significant percentage of vessel response are of small magnitude in relatively mild 

seas these do not contribute to the extreme values. The magnitude of vessel response will not 

reach a critical level irrespective of how long she operates in mild seas, while the magnitude will 

reach the critical level within a short period of time in moderate/severe seas. Indeed for certain 

classes of vessel it has been shown that the inclusion of responses in mild seas in predicting 

extreme values introduces a significant inaccuracy in establishing the probability function used for 

the prediction, Ochi (1976b). 

4.4.2. Short-term Analysis 

11 is thus considered appropriate to consider only severe seas and several others below the 

severest since quite often only the severest seastates will cause the extreme motions. Provided 

that the relatively rare catastrophic responses in mild seas can be accounted for then the amount 

of computation can be reduced. Obviously it is not sufficient to seek the worst cases in an ad hoc 

manner and some ordered approach is desirable: 

4.5. Test-tracks and Proving Ground 

in an attempt to 'trap' the worst-case scenarios, the proposed method consists essentially of a 

subject vessel being required to successfully (i.e. without capsizing) negotiate a series ol "test 

tracks" which have been designed to represent the range of critical (potentially capsize causing) 

scenarios that it will encounter during its lifetime. 

In the automobile industry, in particular, this type of procedure is common. A road vehicle is 

caused to perform a series of manoeuvres over varying terrain in a variety of conditions 

(environmental, load, speed etc.) where each test-track represents one such set of conditions. 

For example there will exist a handling and stability test-track, a steep gradient test-track and so 
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on. The total test-track set is termed the "proving-ground" and its overall nature reflects the 

vehicle's intended use and type. Thus a sports car will have a different set of test-tracks to 

negotiate than an articulated lorry, though some will be identical, Figure 4.2. 

l rnqlh 5.2. .. '" 
E flteh-wt lt"Qih ~d"-m 

~utfoce Ut•.,"P fl.S,M. 

, .... , ....... . 

PU .. P ...... 

Figure 4.2 Handling and Stability Circuit at M IRA, Williams (1983) 

The main advantages to the vehicle designer of using this approach are: 

1. The full range of operating conditions, including the very important severe 
conditions, can be reproduced in a manner which is difficult to achieve on the open 
road; thus making repeatability of results possible. 

2. Vehicles are tested under tightly controlled conditions where individual 
characteristics such as handling can be assessed, in isolation if necessary, and 
compared against previous and other vehicles' performances. 

3. Attention is focused on individual elements e.g. vehicle suspension settings so that 
if a poor performance characteristic manifests itself on one particular test-track the 
design can be precisely retested after suitable modification. 

11 is believed that these are valuable procedures which can be used to assess the capability of a 

seagoing vessel to perform its duty in safety. However, leaving aside the immense difficulty of 

physical modelling of severe sea conditions, expense would preclude the use of a purely physical 

marine proving ground for every single vessel, even if the conditions could be precisely and 

routinely recreated. Thus it is envisaged that at first the test-tracks will be largely analytical in 

nature with some experimental back·up for certain difficult aspects until, as the theory improves, 

eventually no physical experimentation would be required (?) 
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4.5.1. Choice of Test-Track 

As with the road vehicle case, the vessel type and intended zone or zones of operation dictate 

the nature of the proving ground that the seagoing vessel will be required to negotiate 

successfully by regulation. Thus a vessel which is intended for operation in a sea-area which is 

well sheltered or has shelter to hand will not have to 'negotiate' certain of the more stringent 

test·tracks required of a vessel which is intended for extended operation in high icing latitudes for 

example. A vessel which Is intended for unlimited international operation would be subjected to 

the worst possible weather conditions. 

Indeed, some form of licensing (or alternatively an appropriate equipment level) might be 

envisaged for individual operational zones since this would avoid the potential overdesign (or 

underdesign) of vessels which the current 'blanket' regulations may encourage. 

By direct analogy with the case of a road vehicle which is made to perform a series of 

manoeuvres over varying terrain, during which lime various measurements of handling, vibration, 

stability, power etc. may be taken simultaneously, the subject vessel proving ground is subdivided 

with due consideration of: 

a) distinct climate conditions 

b) distinct wave conditions 

c) distinct operating procedures 

d) distinct displacement conditions. 

The vessel is examined over the same sea areas (the same circuits for the road vehicle) for 

diHerent capsizing phenomena and thus the concept of a "layered test-track" approach may be 

considered. Figure 4.3 illustrates this for a single operation. 
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Figure 4.3 Layered Test-Tracks 

These test-track layers may be overlayed to give the largest roll response for any individual 

scenario as indicated in figure 4.3. Alternatively, by separating the layers and considering 

individual test-track performance (for pure loss of stability as an example) the effect on the 

performance of selected design and operational features can be considered in detail. This 

concept would allow detail design improvements to be made for any of the layer characteristics. 

Overall proving ground performance will allow comparison of total performance and safety 

levels across a fleet of vessels for example, though this 'average' value should be treated with 

caution. 

In this study the single test-track which is concerned with "general ship rolling• Is being studied 

and the other test-track layers are not considered due to the constraints on available time. In 

general less calculation will be necessary for the other capsize phenomena since they tend to be 

very heading/speed dependent and thus many scenarios could be eliminated on this basis at the 

outset. 

A typical subject vessel can be expected to operate, over its lifetime, in a wide range of 

environmental and displacement conditions and to be subject to different masters' action. The 

correct choice of test-tracks to isolate the potentially capsize-causing scenarios from amongst all 

possible operating scenarios encountered by the vessel, during its lifetime, is vital if certain critical 

operations are not to be overlooked along the way. Whereas it is computationally desirable that 

the proving ground should encompass (only) all of the possible scenarios which could cause 

capsize, it is obviously not possible to pre-define them all and it is thus necessary to initially 
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consider that all scenarios are potentially capsize causing. However, if an initial assumption is 

made that only the severest seastates cause the severest responses then the amount of 

computation for any scenario is reduced if the order of severity of seastates to which the vessel is 

subjected (everything else remaining unchanged) is progressively reduced from the most severe 

possible to the least severe in the operating zone being considered. it was intended that the 

results of multi-variate (pattern recognition) analysis of casualty data (for the broad vessel type 

and size under consideration) could be used to ensure that no proven (frequently recurring) 

capsize scenarios have been missed, particularly in mild seas. These positively Identified 

"capsize nuclei" (each one representing a distillation of many similar casualties) form critical 

scenarios for consideration and are embedded in the test-tracks with respect to time and location, 

Figure 4.4. 

Identified Capsize 
Nucleus 

Identified Capsize 
Nucleus 

Patrol Area 

Vessel in 
Port 

Nucleii Embedded 
in Test-Track 

w.r.t. Both Space 
and Time 

Figure 4.4 Capsize Nucleii 

4.5.2. Managing the Lifetime of Risk 

The process of handling all of the scenarios comprising a lifetime of risk is best described with 

the aid of an example. The subject vessel being used for the present study is a fisheries 

protection vessel which has an operational area encompassing the northern North Sea and north­

eastern Atlantic in the region of the 100 fathom line around north west Scotland. There are also 

occasional sorties of up to 200 miles into the open North AUantic. 

Essentially, the adopted prediction method aims to calculate p(cllc <ell) the cumulative probability 

of a 'critical roll motion' cllc being exceeded, at least once, during the vessel's lifetime of operation. 

This value is represented by the proving ground result. 

Probabilities of motion exceedance due to the individual capsize phenomena, represented by 

individual test-track per1ormance, is also being sought. 

The cumulative probability p(cllc < $) can be obtained from a knowledge of the underlying lifetime 
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response probability density function p(<!l). This in turn can be found by computer-predicting 

independent trial samples of roll response over the vessel's lifetime together with the independent 

single trial probabilities of occurrence. These independent trial results are then combined using 

Bernoulli trial procedures, Appendix A4. 

A preliminary analysis is necessary to determine a vessel's intended missions (operating 

practices and operating areas). From the known mission profile fo_r the vessel which, in this case, 

is already built and operating it is assumed that the vessel will only ever operate in the sea areas 

labelled 2 and 4 in Figure 4.5. 
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Figure 4.5 North Atlantic Basin Climatology Regions 

Bales et al (1981) 
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This figure indicates the boundaries, called domain boundaries, of the sea-areas in the North 

Atlantic basin into which the chosen dimatology data is divided, Bales et al (1981). 

it is assumed that each sea-area has its own distinct climatology and that this is homogeneous 

(uniform) within the domain boundaries shown. 

Thus the sea-areas 2 and 4 together comprise the proving ground for the subject vessel. 

Typical missions indentify routes within the proving ground. One of these is shown in Figure 4.6. 
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Figure 4.6 Identification of a Typical Test·track Location 

4.5.3. Application of the Method 

in 

For the remainder of this chapter the term "test-lrack" is referring to the frequency domain 

"general ship rolling" test·track unless otherwise stated. 

A typical mission is involved in proceeding from the home port (Position A in the figure) to the 

patrol area at position C where time is spent on station before returning to A by the same route. lt 

can be seen that the intended course track is ABB'C which crosses the domain boundary at 8'. 

Thus this test·track comprises 2 separate spatial domains where the climatology is assumed 

homogeneous. In order to reflect the varying wave conditions within the same climatology, each 

domain may be divided into sub-domains. This is only necessary if it is required to model 

different wave conditions, such as open-sea and fetch-limited wave conditions, within the bounds 

of a single domain. 

Each spatial domain/sub-domain is further subdivided inlo domain segments which are 

segments along the intended lrack where the vessel's displacement condition (6k_.rt,;.,)can be 

assumed constant. Thus in figure 4.6 between AB and BC the displacement conditions are 

assumed constant and different. (For convenience, and to facilitate comparison of performance 

with the existing stability criteria, the actual load conditions which are used are based upon 
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values given in the vessel's stability booklet to represent the complete range of vessel capability 

in operational practice). 

4.5.4. Independent Trial Samples 

In order to be able to use the simple procedures for manipulating probabilities, which are given 

in Appendix A4, for risk and operability studies it is necessary to ensure that all the predicted 

responses (trial samples of the underlying lifetime response probability density function) are 

independent. This necessitates that the response obtained from one scenario shall not have 

been influenced by any previous responses obtained in the domain 'segment i.e. the response 

obtained should have no 'memory'. 

Thus it is required to know how many independent trial samples of the underlying response 

distribution can be taken in each domain segment since this has an important bearing on the 

probabilities obtained. For this purpose an independence interval was introduced by Hutchison 

(1981 ). This 'interval' represents the minimum distance in time and/or space that a vessel must 

travel before the seastates (and by inference the resulting responses) can be considered 

independent trial samples of the underlying seastate probability density function. This is an 

important concept since conditional information concerning the seastate (and thus the responses 

obtained) at one instant strongly alters the probability distribution for seastates (responses) at 

nearby times or locations. The influence of the conditional data diminishes as one moves further 

away in time or space until eventually the underlying seastate (response) probability distribution is 

again dominant. 

Hutchison proposed a simple fonn of metric for the number of independent ship exposure 

cydes, N: 

where 

T. =independence period, hours 

L. =independence distance, nautical miles 

T=exposure time, hours 

v =average vessel speed 

The independence period/distance is the time/distance required between two observations for 

them to be independent. These are indicated as a • symbol in figure 4.6. Further work is 

required in this area but values for the independence period of between 13 and 24 hours have 

been quoted based on some available seastate process sampling rates on a scale significant to 

ship routeing, Hutchison(1981). In fact a simpler measure: 
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N _ £tposure Distance R 

VT. 

is more appropriate if vessel speed relallve la lhe advancing weather condilions is used. 

4.6. Applied Probability Concepts 

A particular vessel design which is operaling in a domain segment (i.e. of a particular load 

condition) will have a molion response dependent upon the combination of factors route, 

climatology and seamanship. These factors are considered in detail in chapter o. 

lt is apparent that lhe single trial probability of obtaining a roll response level (41) is equal to the 

single trial probability of encountering the particular load condilion, route, climatology and 

seamanship giving rise to the response. 

Thus the single trial probability of obtaining the predicted roll response (ell) given lhe domain 

Localion (L), Season (S) and load condition (a) is: 

p 1 (ljl/ LS t.) 

where p 1 indicates lhe single trial probability equal to lhe single trial probability of encountered 
' 

seastate (HJml' relalive heading to waves (l.l) and speed (V) given the domain localion (L), 

season (S) and load condilion (a) i.e. 

p 1 (Ill/ LS a)=p1 (l.l V H> m/ LS a) 

The value of p1 (IJ. V H> m/ LS t.) is obtained by manipulation of the component probabilities 

given in Table 4.3 from chapter 6. 

63 



Probab lll.ty 
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location and season 
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Table 4.3 Component Probabilities Required in the Analysis 

There are several ways of combining these probabilities but in the present study the adopted 

procedure is as follows:-

a) For a Given Domain Segment (A constant): 

The desired relative heading to waves llo , before any modifying seamanship, is given by 

[ flo =C-ID] where C is the course and ID the predominant wave direction. 

Now the joint probability of seastate, desired heading, wave spectrum and speed (prior to 

seamanship) given the location Land seasons (for a given load displacement A) is: 

=Lp(CV0 1 LS). p([C-J.lo)H,Tml LS) dC 

=Lp(CV0 1 LS). p([C-flo)H,ILS). p(F 1 L) dC 
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where F is the wave spectrum family member [F=J{T .. >I described in chapter 6. 

b) Incorporating the avoidance type seamanship, p(H/ H,), gives after avoidance: 

, 
c) Incorporating the pacifying type seamanship p(j.l V I llo V0H, T .. > yields the required joint 

probability of seastate, heading and speed (after seamanship action) given the location and 

season: 

' , 
=p(j.l V IIlo V0 HJ .. >. p(j.10 V0 HJ .. ILS) 

This is the single independent trial probability of obtaining the predicted roll response 1!1 resulting 

from this scenario in a given domain segment for one set of conditions. There are many such 

sets or combinations of conditions which must be considered. 

At this stage of combining all the possible combinations the opportunity is taken to obtain 

directly the single trial probability of roll response$ exceeding the critical value !!le' p 1l$c < ljl). To 

every scenario a response level $ is predicted, such as the expected maximum roll angle, which 

has a value dependent on the duration of exposure to each seastate. If a counting functional is 

constructed from: 

~ = { I tor 4>c < 4> 
.;. 0 otherwise 

the cumulative single trial probability of exceeding the critical roll angle !!le in the domain 

segment (for a given load condition, location and season) is given by: 

r:!Jtr'" t=F • • = Jo Jo- J; J: J,:
1 

p(j.l V /j.i0 V0 HJ .. l . p(H,IIl,). p(C V0 / LS). p([C-jJ.0]H,/ LS). p(F /L). 'Y.;. 

dC djJ.0dV0dH,df 

If required, further counting tunctionals can be added lo this equation, e.g. 

~- = {I tor$;< f 
.;. 0 otherwise 

would give lhe cumulative single trial probability of roll angle $ exceeding !!le with a roll 

acceleration f exceeding .Pc: 

The number of independent trials in the domain segment is found from: 
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where 

R 
N=­

VT. 

R is the distance along the course track between entrance and exit boundaries of a domain 

segment e.g. distances AB, BB', B'C in figure 4.6 

vis the vessel speed relative to the weather speed of advance 

T. is the independence period 

Then the probability of <ellc < $) in N independent trials in the domain segment is given by 

(Appendix A4): 

Since the p'v(cllc < 9) processes are independent processes in each domain segment ~. 

domain/sub-domain location (L) and season (S) the probability that ell exceeds «!le at least once is 

given by: 

This final expression yields the proving ground result i.e. the overall probability that ell exceeds 

cllc for a lifetime of operation. 

For a vessel having a mission profile which involves multiple sea, displacement and operational 

conditions it may be more convenient to partition the operating locations into totally separate 

contiguous regions. Alternatively it may be desired to extend the proving ground at a later stage. 

In this case the required probability is given by; 

pL Q;<$ < e~~>= 1-IT [t-p~<c~~ < «<l>JQ; p c c 

where Q; is the number of distinct proving-ground partilions of type i. 

A worked example of the probability calculation is included in chapter 7. Quantification of the 

actual test-tracks used in the study is described in chapter 8. 
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Chapter 5 

Linear Seakeeping Theory for Capsize Prediction 

5.1. Introduction 

"A complete mathematical description of the rolling motion of a ship in waves, taking all possible 
factors into account, is at present well beyond the state of the art." 

Roberts (1984) 

When a vessel capsizes, from whatever cause, it assumes a large angle of inclination from 

which it cannot recover. 

In order to proceed with the probability analysis described in Chapter 4, a reliable method of 

predicting the r:nagnitude of the large roU motion of a ship capsizing In waves is required. Indeed, 

ideally the chosen method should have the following main attributes: 

• 11 should be capable of predicting the large capsize roll motion while taking account 
of the non-linearities Inherent in the roll damping and restoring moments, as well as 
in the extreme wave excitations. 

• The stochastic nature of the wave excitation and the roll response should be 
recognised. 

• Roll, sway and yaw coupling effects must be included, particularly when considering 
the case of a vessel operating in following or quartering seas. Roll-sway coupling In 
particular leads to significant roll damping e.g. Vugts (1969). 

• In addition, for risk analysis purposes, the method should take into account the 
various design leatures and operational effects such as varying displacement, speed 
and heading to waves as well as the effects of waves themselves. 

The capability simultaneously to predict pitch, heave and surge as well as the manoeuvring 

characteristics of the vessel and the various capsize phenomena which were identified in Chapter 

4, would enable a totally integrated approach to capsize risk assessment. • 

Consideration of human behaviour and fallibility as well as any exceptional circumstances such 

as the occurrence of freak waves or equipment failure would complete the picture. 

Unfortunately such a general theory for non-linear system response to stochastic processes 

which is suitable for a risk analysis does not currently exist. An extensive review was made of the 

available methods which might be suitable for the extremely daunting task outlined above. At that 

time there appeared to be lour main methods worthy of consideration: 

1. Mathematical Simulation 
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2. Fokker-Pianck-Kolmogorov (FPK) Method 

3. Lyapunov Method 

4. Unear Spectral Analysis 

5.2. Theoretical Methods Available for Capsize Prediction 

5.2.1. Mathematical Simulation 

The most obvious approach to the problem is to use numerical simulation, thus including all 

relevant non-linear terms. The simulated motion history is analysed as if it were an experimental 

record and the resulting histogram approximates to the motion probability density function. 

Estimates may be made of: 

1. Probability of a given roll angle being exceeded 

2. Likely maximum roll angle (probable-extreme roll angle) 

3. Roll angle with a certain percentage chance of being exceeded in a particular 
number of samples (design-extreme roll angle). 

These values may be obtained by fitting an appropriate distribution, such as a double­

exponential distribution, to a histogram of a number of peak (extreme) roll angles which occur in 

N samples e.g. Brook (1986). 

The problems are exactly the same as with other methods in that the equation/s of motion for 

large amplitude waves and motions are unknown. lt is also very expensive to perform 

simulations to represent several years of sea conditions. 

5.2.2. Fokker-Pianck-Kolmogorov (FPK) Method 

This method which is not derived from linear theory is capable, in principle, of predicting the 

form of the response distribution for non-linear responses. The F.P.K. method, Caughey (1963), 

is related to the general theory of Markov processes and Roberts has introduced the concept of 

stochastic averaging to allow a solution with non-linear damping and restoring forces, Roberts 

(1982). 

This approach makes certain very restrictive assumptions which devalue its worth for the 

proposed risk analysis procedure. For example, the conventional (single degree of freedom) roll 

equation is assumed valid up to the large roll angles and coupling effects, although possible in 

principle, would involve complex mathematics and a lengthy solution. In addition the effects of 

forward speed and heading can only be approximately accounted for, Roberts et al (1983). 

However, parametric excitation can be evaluated. 

lt was concluded that this Markov technique will require further development before it may be 

used as the central prediction method for the analysis. Nevertheless, for the case of a vessel at 
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zero speed of advance in irregular beam seas, close agreemenl with experiment has been 

demonstrated when the roll damping is light, Roberts (1984). 

5.2.3. Llapunov Method 

The concept of relative stability, which is particularly Important for small ships, can be related to 

Uapunov's theory of the stability of motion, Caldwell et al (1986). it can be shown that a sufficient 

condition of dynamic stability follows directly from a theorem on the extent of asymptotic stability 

using Uapunov's direct method, Odabasi (1978). 

Liapunov's so-called "second" method of investigating the stability of non-linear dynamic 

systems, without solving the differential equation, requires the formation of a function of the state 

variables having a special property such that its time derivative Is negative along the trajectory of 

the system. If such a function can be found, then it can be said that the system is stable, since it 

is known from the properties of the function that the energy of a stable system will decrease after 

a disturbance. This function is termed a "Uapunov Function", V(.r), and is often represented as 

the sum of the kinetic and potential energies of the system. Hence it can be used to determine 

the explicit bounds on a perturbed motion from an energy point of view. 

From this is defined an energy bound as a stability margin 'M' for a system under transient 

excitation. This is a measure of the disturbance in the exciting force that a ship in an equilibrium 

state can withstand before that state becomes one of unstable equilibrium. M is defined, using a 

Liapunov function expressed in energy terms, as an energy bound determined in relation to the 

relative positions of two equilibrium points (one stable, one unstable) at which the static stability 

curve is intersected by a steady heeling moment. The latter is taken here to be a constant wind 

moment; the additional excitation could then be due to wave and/or wind gust moments. 

As an example consider Figure 5.1, from Caldwell et al (1986), which illustrates the results for a 

vessel under a steady wind heeling moment. 
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Figure 5.1 Stability Boundaries 

11 the single degree of freedom roll equation is. for example, that shown at the top of figure 5.1 

and the staUc stability cuiVe as in figure 5.1 (a), then figure 5.1 (b) is the potential energy V= G(X) 
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corresponding to any displacement Yl. A subdomain of asymptotic stability is drawn in the phase 

plane, figure 5.1 (c), in which trajectories of the motion (Initiating at various positions) are shown 

to illustrate the usefulness of the energy bound concept in stability problems. Here the use of the 

two functions VI and V2 gives similar results, which also agree closely with that obtained using a 

Runge-Kutta solution of the roll equation. 

From the definition of marginal stability at the stable equilibrium points, the reserve of energy of 

the ship can be determined, using the Uapunov function, as the difference between the nearest 

unstable equilibrium state (B) and the stable equilibrium state (A) in figure 5.1 (a). This energy 

value, which is the minimum energy the system must acquire to escape from the equilibrium 

stale, can be regarded as the reserve stability corresponding to point A. Comparison of this 

reserve energy with the energy of wave excitation provides a measure of the stability margin "M" 

for the ship at this point A on the curve I.e. 

M= energy req11ired to make the ship 11nstab/e 
excitation energy 

Unfortunately, mathematical stability theory also depends heavily on the equations of motion for 

stability assessment. In its present form it is not really suited to a probabilistic assessment of 

capsizing since it is mostly concerned with conditions under which an initial perturbation becomes 

unbounded e.g. Odabasi (1982), whereas in the present study of capsizing we are concerned 

with conditions under which motion exceeds a prescribed practical bound. This aspect is 

currently being addressed by Caldeira-Saraiva (1986). There are further drawbacks to the use of 

Uapunov functions, including their lack of uniqueness (giving a sufficient but not necessary 

condition for stability) and the absence of a general method for their construction. 

However, more recently, work has been reported which is addressing the problems of non­

linear damping, parametric excitation and coupling with the other modes of motion, Caldelra­

Saraiva (1986), Phillips (1986). This will make Uapunov methods a very powerful tool for 

assessing stability of motion, once the unfamiliar methods on which the above procedure is 

based become understood and accepted by naval architects. 

5.2.4. Linear Spectral Analysis Approach 

Although extensive efforts have been made in recent years to develop a more realistic theory 

for rolling motion, by treating the wave input as a stochastic process, e.g. Salveson et al (1970) 

and Schmltke (1978), the linear spectral analysis is not really suited to predicting the large 

capsize roll angles. This is due to the non-linear nature of the roll damping and restoring 

moments with changing roll angle as well as non-linearities in the wave excitation. Since the 

analysis is performed in the frequency domain, certain capsize phenomena such as broaching 

and parametric resonance cannot be predicted - being more suited to a lime-domain analysis. 

Unfortunately, a general theory for non-linear system response to stochastic processes, having 

the same scope as linear theory is not yet available. 

Linear theory can include motion coupling terms together with the effects on response of 
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underbody hull features and sectional properties and operational features such as load condition 

and· vessel speed and heading. The importance of roll-sway coupling in following and quartering 

seas has already been mentioned and, in addition, the ability to (accurately) predict coupled 

vertical (pitch and heave) motions is important from the viewpoint of predicting excessive sea­

loads and motions. For example slamming may influence the master to subsequently alter 

heading or speed to seek acceptable motion/sea-loading limits. 

The linear approach can yield useful information on the probability distribution of roll angle 

(usually obtained by assuming the response is a narrow-band process) but not on extreme 

motions. 

To summarise this review it is apparent that motion prediction methods which are available tend 

to either give accurate prediction of uncoupled large roll angles for an intact vessel stopped in 

beam seas, or else to have the scope for a risk analysis study but not the capability to predict the 

large roll angles. The linear superposition principle of SI Denis and Pierson falls into the latter 

category. Whilst it can give reasonably good results for coupled pitch and heave motions the 

prediction of large amplitude coupled lateral motions is less satisfactory because of the inherent 

motion non-linearities. 

5.3. Basis for the Investigation 

5.3.1. Potentially Dangerous Motion 

11 is apparent, from the preceding discussion, that a great deaf of work is necessary before 

large-amplitude rolling motion can be routinely and accurately predicted. The development of 

more advanced theory for fluid active and reactive forces that vary with amplitude, together with 

mathematical models describing the coupled roli-sway-yaw motions is required. This would 

appear likely to take a very long time. 

Thus a further important feature of the present analysis is that the prediction of the actual 

large-angle capsize is not attempted per se. Instead a lesser roll angle termed the "potentially 

dangerous· roll angle is selected, beyond which it is assumed that a capsize is likely. Thus the 

potential for disaster is being predicted rather than the disaster itself. This novel approach can be 

justified for the following reasons: 

• Long before the vessel reaches its capsize angle there is oHen great likelihood of 
cargo shifting. 

• Simultaneously there is great likelihood of water downflooding into the hull as well as 
water trapped on deck. 

• Large changes in the hydrodynamic coefficients occur as the deck edge is 
immersed. Further changes occur as the superstructure becomes immersed. 

The distinction is extremely important because, now, there is no necessity to describe the large 

motions themselves and the use of a linear theory may be defensible in certain circumstances. 1t 
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is being proposed that linear theory be stretched to its prediction limits In order to estimate the 

occurrence of a roll motion judged to be potentially dangerous. 

5.3.2. Value of Potentially Dangerous Roll Angle 

For many vessels the range of statical stability, as evidenced by the GZ curve, typically takes 

the form indicated in Figure 5.2. 

GZ 

where 

~I is the flooding angle 

~. is the angle of vanishing stability 

Figure 5.2 Typical Stability Curve 

If the heel angle ~ exceeds ~ •• ~ > ~ •• the vessel will theoretically capsize and probably tum 

over to the stable position at~= 180 degrees. 

If ~=~I< ~. and the opening in question is allowing large quantities of water to flood into the hull 

there is no longer a case of intact stability. The further turn of events depends on several factors 

but the ultimate result may well be a capsizing if the ingress of water cannot be controlled, 

Hanssen (1982). The prospect of having to predict accurately large angle damage stability In 

these circumstances Is extremely daunting, bearing in mind the state of the art for the Intact case. 

Similarly, the possibility of cargo shifting, which can be the direct cause of the capsize has great 

implications for accurately predicting actual capsize angles. At the present time little is known 

about the dynamics of cargo shifting, particularly for the case of slurry cargoes, and urgent 

research is required, Green et al (1981 ). 

The angle of downfloodlng is considered an important factor in the regulations. Res. A 167 
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(1968). Unfortunately the value of this parameter is unique for every vessel as are the values of 

roll angle/lateral acceleration which would cause cargo to shift In addition the cargo shifting 

values are frequently unknown and will vary from one cargo to the next. 

Thus from these considerations it was felt difficult to justify adopting a single critical roll motion 

based on strict analytical considerations. 

The alternative was to consult with seagoing personnel In order that (possibly) some realistic 

subjective measure of vessel performance could be obtained based on experience. During 

lengthy discussions with Mr. J. Tvedt, an ex-trawler skipper active in the SAFESHIP project 

arena, it was concluded that attained angles of roll up to about 60 degrees (i.e. 30 degrees from 

the upright, Figure 5.3) were not considered too serious for the ship's safety provided that: 

• openings into the vessel leading to large spaces are not submerged for too long 
before the vessel rights Itself 

• all loose objects are adequately lashed and the (fish) cargo properly pounded 

• motion is not too severe for the crew, Tvedt(1983). 

Figure 5.3 Potentially Dangerous Roll Angle 

Beyond this 30 degree threshold value it was felt that there is increasing cause for concern. 

This was not to say that roll angles less than 30 degrees were treated with complete impunity. 

Indeed it was felt that there was increasing unease to the skipper and crew around the 30 degree 

level, although this may be compounded by the effects of lateral acceleration acting in 

conjunction with the roll. As the number of occurrences of roll angles greater than 30 degrees 

from the upright increases there is increasing cause for concern. 

In these discussions no distinction was made between apparent roll values which, due to lateral 

acceleration, would be greater at the bridge position than in the engine room, say. Thus 30 

degrees is assumed the value at the ship"s centre of gravity. 
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For the purposes of the present work, and in the absence of solid evidence to the contrary, it 

was decided to make this roll angle of 30 degrees the threshold value beyond which it may be 

assumed that 'a large potential for danger' exists. Thus the reliability of the vessel 

(R =p( capability > demand)) is given by the probability that the attained roll angle is less than 30 

degrees, p(~ < ~c)=p(~ < 30°), during a lifetime of operation. 

11 was necessary to consider a limiting roll angle rather than a limiting roll velocity or 

acceleration because no references could be found which even indicate what these values might 

be. 

5.3.3. Possible Objections to the Approach 

Bishop et al (1982) presented a paper concerning the role of encounter frequency in the 

capsizing of ships at the 2nd international stability conference. In their rather specialist area of 

research, they too advocated predicting when capsizing can become a possibility using linear 

theory and cited the following criticisms of their approach by others: 

1. that no attempt is made to describe the process of actual capsize is held to be a 
basic weakness of the approach; 

2. since actual capsize is governed by non-linear equations it is possible that some 
crucially important behaviour is altogether missed by a linear analysis. 

At this stage for the research investigation the author can only be reassured to some extent by 

the response to these questions: 

1. "The first objection seems to be little more than an injunction not to try what was set 
out to be done•. 

2. "The theoretical possibility is accepted that something vital is missed. However in 
the apparent total absence of any solid evidence on the point the authors could do 
no more than keep open minds". 

The next problem was to assess the suitability of using a coupled-linear system for the risk 

analysis. The advantage of the spectral technique for predicting the threshold value is that it can 

account for motion cross-coupling, varying displacements, speeds, headings to waves etc. Thus 

it can readily provide the necessary scope sufficient for it to be the central core of a realistic 

stability risk assessment, even though certain of the 'time domain' capsize phenomena will 

require incorporation at a later stage. A further important advantage is that the method is widely 

understood and is readily available to the profession. 
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5.4. Application of Linear Motion Theory 

Previous papers have described how the operability of ocean-going vehicles and structures may 

be assessed using the linear superposition principle e.g. Hutchison (1981). 

By predicting the magnitude of the vessel motions/sea-loads in seas which are representative of 

the selected operational site or route the probability of motions and loads remaining within 

acceptable limits, throughout a period of time sufficient to permit completion of the operation, can 

be estimated e.g. Hoffman et al (1978). 

A valuable extension of these techniques, if viable, would be the ability to use the same linear 

spectral analysis techniques to assess the ultimate survivability of the marine vehicle. 

The ultimate survival of the vehicle would be assessed by predicting the probability of a 

potentially dangerous motion being exceeded during a wholly contrived 'proving voyage' 

comprising a series of test-tracks, as described in chapter 4. Thus it was first necessary to 

consider the accuracy of linear theory for estimating the occurrence of dangerous roll motions: 

5.4.1. Britsea Seakeeplng Computer Programs 

Britsea is one example of a strip theory computer program. The ship, which is treated as a rigid 

body, is represented by a number of transverse strips. Each strip is considered as a part of an 

infinitely long cylinder with constant cross-section, whose axis lies initially on the still water 

surface. Two-dimensional hydrodynamic coefficients of added mass and damping for each strip 

are calculated based on results by Ursell (1949a, 1949b) and Tasai (1959, 1961) for a cylinder 

which is executing simple harmonic oscillations in still water. Stripwise integration is used to 

deduce the hydrodynamics of the whole ship taking due account of speed and heading to waves. 

The equations of motion for the ship in regular waves are formed by combining the added mass 

and damping coefficients with the forces or moments created by sinusoidal waves moving past 

the ship and the hydrostatic restoring forces (or moments) due to the instantaneous heave . pitch 

and roll of the ship. The equations are solved in two sets with the vertical plane motions, pitch 

and heave, assumed to be independent of the lateral plane motions, sway, roll and yaw. 

Interactions within each set are taken into account. The effects of appendages such as bilge 

keels, fins and rudders may be taken into account in the lateral motions by using empirical data 

e.g. lkeda (1978). 

Solution of the equations of motion yields the heave, pitch, roll, sway and yaw of the ship in 

regular waves of unit wave amplitude. 
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These so-called transfer functions are combined with wave spectrum values to give motion 

spectra using: 

where 

1 H(oo,) 12 Is the Response Amplitude Operator (RAO) 

IH(oo,)l is the Transfer Function defined as the ratio of motion amplitude to unit wav~ amplitude 

(unit waveslope for rotational motions) 

oo, is the encounter wave frequency (rad sec- 1) 

4>R is the response spectrum ordinate 

4>~ is the encountered wave spectrum ordinate 

Britsea is described in detail in Appendix A I. 

5.4.2. Version of Brltsea used in the Analysis 

The Britsea programs are commercially available from British Maritime Technology (BMT) Ltd. 

As originally supplied they were not suitable for research application because of their 'black-box' 

nature which prevented variation of all but the most frequently used parameters such as vessel 

speed and heading. In addition it was necessary to create five data files containing details of hull 

and appendages, lightship condition, compartmentation and displacement conditions for each 

program run. Responses were only available to a long or short-crested Pierson-Moskowitz 

'seaway' and the response range was limited to RMS motion values which were presented in 

normalised form. 

Extensive dialogue and correspondence with staff at BMT was aimed at reworking Britsea for 

the risk analysis, although greatest emphasis was placed on improving the quality of the lateral 

responses and on streamlining the programs for ease of use in order to render them more 

commercially attractive, Gedling ( 1983-1988). 

Suggested improvements to the suite of programs included: 

• Changes to hull definition to improve quality of hydrodynamic coefficients 

• Extensions to the range of wave spectra to cover fetch-limited seas in particular 

• Extensions to the range of spreading functions 

• Output of wave and motion spectrum moments and spectral bandwidth 

• Ability to change coordinate origin to enable de-coupling of motions 

• Extend range of wave frequencies and allowable headings to waves 
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• Direct input of key parameters to speed up program runs 

• Improvements to output to include graphics output 

• Extension of resulls into slamming and deck wetness calculations. 

In fact many of these suggestions have subsequently been incorporated into the new suite of 

(BMT) programs known as SEADAS. Gedling (1988). 

Eventually, in August 1987, following several improvements to the quality of the lateral 

responses (these were checked at Plymouth against model tests and full scale trials resulls), a 

modified set of lateral response computer programs was made available to the author. The 

vertical pitch/heave programs were found to give reasonable predictions and were not updated. 

Thus it was now possible to input directly to the lateral response calculations global values of: 

• Displacement 

• Vertical Centre of Gravity 

• Longitudinal Centre of Gravity 

• Roll gyradius 

• Yaw gyradius 

• Metacentric height 

• Bilge Keels/Fin details. 

This avoided the necessity to prepare lengthy input data files for different load conditions. In 

addition measured roll damping values were input directly. This is an important consideration 

given the tendency of current strip theory programs to underestim-ate these values (Section 5.5.4) 

For the present research purposes a post-processor program has been written at Plymouth. 

This uses only the basic transfer functions (amplitudes and phases) from Britsea and operates on 

them to derive motion spectra. These are used in further simulation routines within the main 

program RISK.F77 described in Chapter 7. 

5.5. Correlation of Linear Motion Theory (Britsea) with Model and Full Scale 
Seakeeping Trials 

5.5.1. F.P.V. SULISKER 

The Fisheries Protection Vessel "SULISKER" has been the subject of an extensive series of 

full-scale seakeeping trials conducted by NMI Lld (now part of BMT). The same ship was used 

for model experiments and theoretical work under the SAFESHIP project and subsequent 

research into ship rolling for the Department of Transport. 

SULISKER is one of the newest ships in the OAFS fleet, which undertakes the fisheries 

protection task in Scottish waters. She was designed by Hall Russell Shipbuilders, and was built 

by Ferguson Brothers at Port Glasgow in 1981. She is shown shortly after commissioning in 

Plate 5.1. 
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The SULISKER's principal particulars are given in Table 5.1. The ship has a 1.4 m designed 

rake of keel so that the zero trim condition has a 1.4 m aft keel trim. A simplified general 

arrangement is given in Figure 5.4. The body plan is shown in Figure 5.5. The bilge keels are 

8.86m long and have a span of 0.38m. The ship is also lined with a 0.16m deep bar keel, which 

runs along the length of the keel. 

SULISKER has a complement of 9 officers and 14 crew. She is powered by two turbo-charged 

Ruston V12 diesels, with a 2820 bhp continuous rating, driving two 4-bladed Ulstein CP 

propellers. The shafts are supported by two large bossings and A-brackets, and the ship is 

steered by two large spade rudders. Her maximum service speed is 16.5 knots, with a cruising 

speed of 14 knots. 

Length overall 
Length B.P. 
Beam mid. 
Depth mid. to upper deck 
Depth mid. to lower deck 

Tonnage 

Designed loaded departure condition 

Displacement 
Draught (lull) 
Draught (mid) 
Trim of baseline (bow up) 
Trim of keel (bow up) 
KG 
GM (solid) 
GM (fluid) 
LCG (aft of midships) 

Propeller dimensions 

Propeller type 
Diameter 
Hub diameter 
Mean pitch 
Blade area ratio 

71.33 m 
64.00 m 
11.60 m 
7.32m 
4.95m 

1176.7 GAT 

1532.00 tonnes 
4.595 m 
4.435 m 
0.055 m 
1.455 m 
4.630 m 
0.849 m 
o.n8m 
1.527 m 

Ullstein twin 4-bladed CP 
2.90m 
0.85m 
2.66m 
0.50 

Table 5.1 F.P.V. SULISKER General Particulars 
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Figure 5.5 Body Plan 

The GZ curve for the designed loaded condition is given in Figure 5.6. Curves are also given for 

three other GMs at the same displacement, which were used in the model tests. 
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Figure 5.6 GZ Curves 

The curve for the designed GM is markedly linear at low angles, and all the curves may be 

accurately represented up to about 30 degrees by linear plus cubic stiffness coefficients. 

5.5.2. Correlation Tests 

BMT Ltd has per1ormed a series of model tests and full scale trials on the SULISKER to enable 

correlation of model measurement, theoretical predictions and full-scale measurements to be 

made for this vessel. Thus there are several sets of results available for comparison:-

• Model Scale trial in regular waves [designated 4SK-overweight, Freeman (1986) 

• Model Scale trial in irregular waves (designated 4SK·overweight, Freeman (1986) 

• Full scale trial in irregular seas (designated 4SK, BMT (1986a)) 

• Full Scale trial in irregular seas (designated 8SK, BMT (1986b)) 

The 1:30 scale model of F.P.V. SULISKER used in the rolling and seakeeping research was 

made to the moulded lines in figure 5.5, fitted with all appendages and ballasted to the scaled full 

displacement. The model was made of GRP with wooden decks. The hull was modelled up to the 

top of the bulwarks on the weather decks for use in the seakeeping experiments. 
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a) Model Scale Comparison 

The 1 :30 scale model that BMT used in the experiments was radio controlled and used radio 

telemetry to send the measured motions ashore. Speed and course were monitored using an 

ultrasonic tracking system. 

11 was not possible to obtain the same model displacement as used in both lull-scale trials 

examined. The departUre in displacement for the two trials from the achieved model condition is 

given in Table 5.2. The model was given the correct trim and metacentrlc height (equal to the 

ship's metacentric height including the effect of free-surfaces), and consequently had the wrong 

centre of gravity. The error in this is also given in table 5.2. The effect of these errors on the 

model motions was assessed by theoretical predictions and roll decrement tests, Freeman 

(1986). 

Designed loaded departure condition 

Displacement (tonnes) 

Draught ( full) (m) 

Trl.m ( boV up) (m) 

KG (m) 

GM (solid) (m) 

GM (fluid) (m) 

4SJC cpnditign 

Displacement (tonnes) 

Draught ( full) (m) 

Trim (boV up) (m) 

KG (m) 

GM (solid) (m) 

GM (fluid) (m) 

DSK condition 

Displacement (tonnes) 

Draught ( fu 11 ) (m) 

Trim (boV up) (m) 

!t:G (m) 

GM (solid) (m) 

GM (fluid) (m) 

SHIP 

1532 

4,595 

0,055 

4,630 

0.849 

0,778 

H56 

4.447 

0,280 

4.754 

0.723 

D.646 

1500 

4.527 

0.357 

4.690 

0.805 

0.732 

I'DDEL 

0.057 

0.155 

0.010 

0,162 

0,02186 

0.02186 

0.057 

0,155 

0,010 

0.159 

0,0245 

0,0245 

Table 5.2 Achieved Model Condition 
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SCALE I'DDEL 

1578 

4.65 

0,30 

4.85 

0,656 

0,656 

1578 

4.65 

0.30 

4.77 

0,735 

0,735 



Stationary and forward speed roll decrements were analysed by BMT (1986c) using the ROLAS 

suite of analysis programs, BMT (1986d), to give linear and quadratic or linear and cubic 

coefficients. Unear and quadratic damping coefficients used with Britsea are summarised in 

Table 5.3. 

CONDITION SPEED LINEAR QUI\DRATIC 
( 111/S) COEl"F Kl COEl"F K2 · 

4SK overweight 0 0.029 0.190 

0.3 0.039 0.186 

0.6 0.063 0.193 

0.9 0.102 0.146 

1.2 0.115 0.129 

1.5 0.115 0.126 

8SK 0 0.030 0.240 

4Sk Correct Disp 0 0.055 0.198 

Table 5.3 Roll Damping Summary 

Damped natural roll frequencies are shown in Table 5.4 which indicates a clear increase with 

increasing speed. Roll gyradius calculated from the GM and natural frequency values are also 

given in table 5.4. The roll gyradius decreases with increasing speed .due to the decrease in 

added mass. The correct displacement 4SK condition had a roll gyradius 1.9% lower than the 

4SK condition used for the forward speed tests. 
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CONDITION SPEED GM I" AIRED G'CAAO(US 
(m/s) (H) NATURAL BEI\H 

FREQUENCY 
( rad/s) 

4SK overweight 0 0,02196 3.27-t 0.366 

0.45 0,02196 3.27 .. 0.366 

0,75 0,02196 3.292 0.365 

1.05 0.02186 3.314 0,361 

1.30 0.02196 3.368 0.356 

1.40 0.02196 3.400 0.352 

1,60 0.02196 3,513 0.3'11 

9SX 0 0.02-t50 3.561 0,356 

4SX correct 0 0,02186 3.337 0,359 
Disp 

Table 5.4 Nalural Roll Frequency and Radius of Gyration Results 
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5.5.3. Data Requirements for Theoretical Seakeeping Tests 

Ideally, details of the following parameters are required for Britsea so that best accuracy may be 

obtained:-

a) General Particulars: 

b) Hull Particulars: 

Length Overall and B.P. 

Beam mid. 

Block coefficient 

Drafts and trims Mid. 

Table of hull offsets and stem/stern profile data. 

Rise of floor and half siding 

Bilge keel/Fin extent 

Shell plating thickness 

c) Ughtship Weight Distribution: 

Ideally required as a weight distribution diagram, in order that the disposition 
of all structure can be taken account of, i.e. the program considers the 
lightship weight to be comprised of a whole series of 'fixed items' and the 
following information for each fixed item is required. 

Weight 

Length of the weight distribution 

LCGand VCG 

Distance of the alter end of the fixed item from A.P. 

d) Load Condition Details: 

For each loaded compartment the following information is required: 

Weight 

VCG (Vertical centre of gravity) 

LCG (Longitudinal centre of gravity) 

FSM (Free surface moments) 

The body sections of the ship are required at a sufficient number of stations to allow for 

curvature in the hull at the fore and aft ends. Manual digitisation was used to obtain sectional 

values of cross section area, beam, draught and vertical centre of buoyancy. Details of the weight 

distributions were obtained from OAFS Support Unit, Corse (1984). 

This data is required to calculate the added mass and damping coefficients and also the wave 

exciting forces and moments in regular seas for a range of wave frequencies. 

5.5.4. Results for Regular Wave Tests, Model Scale 

N.B. The derived response curves for model scale and lull scale trials in both regular and 

irregular waves are presented in Appendix A2. 

BMT Ltd performed a series of seakeeping tests in regular waves on the model which was 

87 



ballasted to the 4SK (overweight) condilion. The model was run at 7.1 knots (full scale) at a 

range of 5 headings (0,45,90, 135, 180•) to the waves. The wave height was chosen to give 

reasonable motion amplitudes without significant non-linearities, Freeman (1986). 

The regular wave response curves for the measured and theoretical (Britsea) roll, pitch and 

vertical accelerations are presented in Appendix A2, Figures A2. 1 - A2.20 inclusive. Presentation 

is in terms of motion amplitudes for a 1 m wave amplitude. Error bars for 95% confidence limits 

are also indicated. Details of the error analysis are given in Freeman (1986). 

Figures A2. 1 and A2.2 show the effect of using empirical roll damping values on theoretical 

(Britsea) roll response. Peak roll amplitudes of 70 degrees and 40 degrees were obtained using 

lnoue roll damping and lkeda ( 1978) roll damping respectively, at the natural roll frequency (0.6 

rad sec-1). Measured roll damping coefficients are presented in Figure A2.3. When these were 

used in the theoretical predictions a much· better fit to the measured response values was 

obtained, peaking at a value of 10.4 degrees, Figure A2.4. Thus for roll motions, provided the 

measured roll damping values were used, good agreement between model results and theory 

was obtained for ail headings. 

The pitch theoretical results show good agreement with experiment for head and following seas. 

Reasonable agreement for bow and quartering seas was also obtained with most deviation from 

experiment at higher wave frequencies. 1t was demonstrated in a similar study that this 

discrepancy was due to differences between the model track and heading, Freeman (1986). 

The measured accelerations show good agreement with theory for head, bow and beam seas 

although, as with the pitch results, some discrepancy due to leeway angles are present. For 

other headings at lower encountering frequencies the measured accelerations are greater then 

theorelical predictions. Freeman noted that additional errors due to shaft/motor vibration might 

have a significant e~ect on the (small valued) measured accelerations. In general bow 

acceleration results were closer to experiment than stem acceleration results, especially for 

incident waves forward of the beam. 

Heave motion at amidships was calculated from the measured acceleratlons and these are 

shown in Figures A2.21 - A2.23 inclusive. Theorelical heave values using Britsea show good 

agreement with measured values at all headings. 

5.5.5. Results for Irregular Wave Tests, Model Scale. 

Freeman( 1986) carried out a series of model seakeeping tests in irregular waves lor the 4SK 

(overweight) condilion. The wave spectrum used in the model tests was the idealised spectrum 

which most closely matched the actual· wave spectra measured In the sea trials. This was the 

ISSC spectrum with the identical significant waveheight and modal period. A comparison with the 

measured trials spectra is given in Figure A2.24. 

The model was run at 7.1 knots (lull scale) over a range of 7 headings in both long-crested and 

short-crested seas (with cosine-squared spreading). 
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The RMS motion amplitudes for the 4SK tests are plotted against ship heading in Figures A2.25 

- A2.30 inclusive. Error bars for 95% confidence limits are included on the measured data from 

Freeman (1986). The figures also show the Britsea theoretical predictions, for which the roll . 

motions were obtained using the measured roll damping. 

Theory and experiment for the 4SK (overweight) condition show good agreement for roll motion 

in long-crested waves. Theoretical predictions for pitch are in close agreement for waves on or 

abaft the beam and rather less agreement for waves forward of the beam (at high encounter 

frequencies), showing similar trends to the regular wave results previously discussed. 

The acceleralions are not in such good agreement. They demonstrate similar trends to the 

regular wave results i.e. good agreement is obtained at high encounter frequencies but high 

model results are obtained at low encounter frequencies (quartering waves). 

The 4SK (overweight) results for short-crested waves are presented in Figures A2.29 and 

A2.30. The effect of wave energy spreading on responses can be seen by the increase in roll 

motion in head seas and the increase in pitch motion in beam seas. A large amount of scatter in 

the model results was noted by Freeman (1988). This is typical of predictions in short-crested 

waves when longer run limes are required for consistent results. Again the roll results are in 

close agreement at all headings and the pitch results not so good, but reasonable agreement for 

waves abaft of the beam were obtained as for the longcrested case. 

5.5.6. Results for Irregular Waves, Full Scale Trial (4SK) 

The seakeeping manoeuvre 4SK was carried out on 20 September 1984 in the North Minch 

between the Bun of Lewis and Cape Wrath. There was a regular swell from ENE from a recent 

storm in the Atlantic with a wind-blown sea component running at 20 degrees to the swell 

direction BMT (1986a). Subsequent analysis revealed that the ship responded almost exclusively 

to the swell, Freeman (1986). Two wave buoys were deployed on a N-S line 1. 7 miles apart, to 

monitor the variation in wave height that was apparent over the trials area. The degree of wave 

energy spreading was not monitored. A speed of 7 knots was chosen and a pattern of headings 

set in order to give head, bow, beam, quartering and following seas without moving too far away 

from the buoys, Figure A2.31. The fin stabilisers were turned off for the trial and the ship was 

steered manually. 

The ship condition during the trial was calculated from the known state of the tanks and was 

given in table 5.2 (labelled "4SK" condition). 

The variations in significant wave heights from the two buoys during the trial are reproduced in 

Figure A2.32 and the variations in wave period for buoy 1 is reproduced in Figure A2.33 (buoy 1 

and buoy 2 measured periods were almost identical). Comparison of a sample wave spectrum 

with a theoretical (ISSC) spectrum having the same significant waveheight and modal period as 

the mean values is given in Figure A2.24, and demonstrates a good agreement. 
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Full scale results for the 4SK condition are presented in Figures A2.34 - A2.39 inclusive. 

Although no error bars are shown for the full scale data it was expected that they would be of a 

similar magnitude to the model errors, i.e. ± 10% on motions and ± 5 degrees on heading, 

Freeman (1986). 

Despite the scatter in the results due to variations in waveheight (in particular) the 4SK full scale 

trials re~ults for RMS roll, sway, pitch and heave show good agreement with theory at all 

headings to the waves when a cosine to the power 4 wave spreading envelope is used. Results 

for RMS yaw are less good and a program error is suspected to be responsible for this. 

Comparison of the maximum roll angle obtained on trial, taking account of duration, shows good 

agreement with the theoretical probable-extreme values calculated for the same time interval, 

Figure A2.39. 

5.5.7. Results for Irregular Waves, Full Scale Trial (SSK) 

Seakeeping manoeuvre SSK was carried out on the 16th November 1984 in the North Sea 60 

miles east of Peterhead. The fetch length was approximately 250 miles with water depth of 100 

m. Conditions were quoted as being very rough with a gale force 8-9 wind with an associated 

long-crested seaway, BMT (198Gb). A plan of the manoeuvre is given in Figure A2.40 and this 

also shows the position of the single (non-directional) wave buoy which was deployed. The ship 

(condition SSK in Table 5.2) was run with the fin stabilisers off. A triangular pattern of 3 headings 

was manually steered to give head, beam and quartering seas and this was repeated twice at 

different speeds. Variation in significant waveheight and wave period for the single wave buoy is 

shown in Figures A2.41 and A2.42 respectively. Comparison of a sample wave spectrum with a 

theoretical (mean) Jonswap wave spectrum (significant waveheight 6.27m, modal period 12.22 

sec.) is shown in Figure A2.43 and the fit is seen to be quite close, being more sharply peaked 

than a comparable ISSC spectrum (figure A2.24). 

Full scale results for the SSK condition are presented in Figures A2.44 - A2.55 inclusive. No 

error bars are shown but again these are expected to be of the order of ± 1 0% on motions and ± 
5 degrees on heading, Freeman (1986). In spite of the limited amount of full scale data the RMS 

roll, pitch and heave results indicate close agreement with theoretical (long-crest) values for the 

trial speeds at the chosen headings to waves. 

Comparison of the maximum roll angles obtained on trial taking account of duration are 

particularly encouraging when compared against the theoretical probable-extreme values 

calculated for the same exposure time to the seaway, Figures A2.53 - A2.55 inclusive. The 

largest value obtained on trial was 27.5 degrees. 
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5.5.8. Motion Results Summary 

The results of a series of model tests and sea trials on the F.P.V. SULISKER have been 

compared with theoretical predictions for the same vessel using the Britsea suite of computer 

programs. The model tests were pertormed in both regular and irregular waves. The model 

experiments and sea trials have shown that the theory accurately predicts roll motions and heave 

motions to within experimental error provided that measured roll damping coeHicients are used in 

the prediction of roll motion. Empirical formulae tend to underpredlct the damping values. lt 

should also be noted that the regular waveheights were chosen to avoid non-linearities, Freeman 

(1986). The theory accurately predicts the pitch motion provided the leeway angle due to wave 

drift is small. 

The measured accelerations, particularly bow accelerations, are in good agreement with theory. 

Freeman reported that where diHerences do occur it is of a similar magnitude for all 

measurements and is thought to be due to the accelerometers picking up stray motion/shaft 

vibrations. 

Wave energy spreading was not measured during the trials on the SULISKER and roll motion is 

particularly sensitive to this. Nevertheless the RMS roll values show good agreement when 

calculated using cosine to the power 4 wave spreading (4SK trial). Of course the relevance of 

this choice of spreading function is open to question in the absence of measured data. For the 

8SK trial lhe seas were reported to be apparently long-crested and this is borne out by more 

accurate theoretical results being obtained without the spreading function. 

lt is worth noting that the restoring moment curve of this vessel is particularly linear up to about 

30 degrees (figure 5.6). For many vessels the restoring curve is non-linear at much lower angles 

and consequently for these vessels the agreement between seakeeping and simulation results 

may not be as good for large angles of roll. However, for the SULISKER which does have a 

linear restoring moment curve it has been shown that, provided measured values of roll damping 

coefficient are used, the calculated values of probable-extreme value closely match the maximum 

values of roll obtained on trial. 11 was on this basis that the simulation was able to proceed with 

some degree of confidence. 
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Chapter 6 

Important Factors for Consideration 

6.1. Introduction 

The approach to risk analysis, which was outlined in Chapter 4, is preferred because it enables 

a vessel's risk cycle to be assessed by the use of the test·track concept. This chapter is 

concerned with the treatment of key factors which must be included within the outlined procedure 

in order to facilitate the accurate determination of risk. Fundamentally each test-track reduces 

into the four considerations of route, climatology, seamanship and (resulting) response for any 

given displacement condition. These together define a particular scenario. A vessel actually 

encounters a large range of operath:mal scenarios during its lifetime. Thus a consistent and 

plausible procedure for treating the key aspects is required so that the proposed method may be 

equally applicable to all seagoing vessels. Since a full treatment of these aspects is beyond the 

scope of this research the procedure finally adopted was governed by the desire to render it most 

useful for regulatory purposes (through simplification without undue loss of realism) and to 

provide a base for further work. In this way an acceptable stability assessment procedure might 

be developed to supplement the existing statical stability criteria. 

6.2. Displacement Condition 

Under this global heading, lor convenience, may be grouped due considerations of: 

a) Hull design features 

b) Displacement 

c) Cargo characteristics/loading condition. 

a) Hull design features 

This important area of the investigation is one of the most difficult to quantity. lt is feasible that 

ultimately a form of indexing might be developed and the design parameters accounted for, 

possibly by the use of a semi-probabilistic procedure, Kure (1979). In this way if a vessel 

displays certain design features that improve its capsize resistance e.g. by the provision of bilge 

keels or fins to increase roll damping or has features that contribute to its recovery from the 

extreme roll motion e.g. by the provision of freeing ports to clear deck water, it will be "credited" 
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within the analysis by appropriate adjustment of the partial safety factors (section 3.2). In this 

study the benefits of bilge keels are included within the motion prediction method and also only 

one vessel is being studied. For these reasons the above "semi-probabilisllc" approach is noted 

but has not been incorporated at this time. 

b) Displacement. 

Variation In the loaded condition of the vessel will affect .the wetted underwater surface of the 

hull as the draught and trim are altered. In addition different loading configurations influence the 

vertical and longitudinal centres of gravity, and to a lesser extent the various motion gyradii. 

Values of the righting levers are further influenced by the presence of free surfaces within the 

fuel, fresh water, ballast and cargo tanks. 

Some element of poor seamanship may be present, possibly due to inexperience (or motion 

fatigue in the case of a fishing vessel which loads its cargo at sea), which leads to conditions of 

vessel stability outside of the acceptable limits. 

In this study a relatively narrow range of displacement conditions is considered because the 

fisheries protection vessel under study has only a narrow range ol load configurations, compared 

with say a fishing vessel, as evidenced by the vessel's stability booklet. To facilitate comparision 

of simulation results the load conditions actually used in the study are taken directly from the 

stability booklet, with the actual values of draught and trim used when deriving the hydrodynamic 

particulars. 

c) Cargo. 

Cargo shifting can be the direct cause of a capsize. 1t is necessary to consider the range and 

frequency of cargoes to be carried in order to ascertain typical loading conditions as well as to 

study the possible onset of a cargo shift. This latter aspect has a direct bearing on the choice of 

critical roll motion which should therefore ideally contain a lateral acceleration term. 

Unfortunately little is known about the magnitude of the critical values. While it is reasonably 

easy to set limit values of acceleration for cargo lashings, e.g. Varheim et al (1982), it Is no simple 

matter to do the same for bulk cargoes, in particular those which demonstrate sliding liquefaction 

instability, Green et al(1981 ). Again it is noted that the semi-probabillstic approach may be 

ultimately appropriate but because the fisheries protection vessel has modes of operation more 

reminiscent of a naval vessel than of a merchant vessel, this aspect is not considered further 

since no cargo is actually transported. Although the vessel used in the study is not representative 

of a typical merchant vessel or fishing vessel it was felt that this disadvantage was outweighed by 

the large amount of lull scale and model scale trials data which would enable some verification of 

simulation results to be made. 
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6.3. Route 

The route embodies consideration of the geographical location (L), season (S), initial intended 

course (C) and initial speed (V0). The problem of determining the route Is to determine the joint 

probability distribution of the location, season, initial course and initial speed p(CV0 LS). 

Consideration of the test-track segment being used governs the joint probability of location and 

season, p(LS), where Lis actually representing a distance along the vessel's intended track for 

which the displacement condition can be assumed constant. The test·track segment also 

governs the conditional probability distribution of initial course and speed given the location and 

season, p( C V0 I L S). 

Then the required probability is given by : 

Chapter 8 describes the database values used in the final calculation. 

6.4. Climatology 

Environmental demands made on the vessel are an essential element in any ship motion 

performance assessment. particularly when smaller vessels are being considered, Hanssen 

(1982). During their lifetime certain seagoing vessels will operate in a wide variety of sea areas 

while others will be confined to a single area. In all cases some coastal seastates will be 

encountered and these may be influenced by refraction and diffraction of waves by the coastline 

and seabed, Varheim (1982). This suggests that some differentiation by operating zone is 

possible and that certain vessels may be licensed to only operate in designated areas if desired. 

This would be an improvement on the current "blanket" regulations which take liHie or no account 

of likely areas of operation. Hogben et al (1967) divided the oceans into wave data collection 

areas and it is proposed that these areas could be extended and used for licensing purposes. 

6.4.1. Spectral Representation of the Seaway 

Since 1953, when the wave spectrum concept was first introduced to the ship design 

community, it has been most common to use idealised wave spectra (as opposed to measured 

spectra) in analytical studies of ship performance, due to their inherent simplicity and ease ol 

calculation. These idealised spectra are used to represent the variety of shapes of wave spectra 

measured in the ocean which may be present at the desired sea severity. Wave spectrum 

formulations due to Pierson et al (1964), Bretschneider (1959) and Voznesenski et al (given in 

Mirskhin et al (1975)) may be used for evaluating responses in the open oceans. Alternatively, 

Darbyshire ( 1 961) and Hasselman et al ( 1 973) among others have presented spectral 

formulations appropriate for coastal, fetch-limited seas. In reality the shape of wave spectra 

observed in the seas and oceans varies considerably (even though the significant wave heights 

are the same). This is dependent on the geographical location, duration and fetch of wind, stage 
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of growth and decay of a storm, ~nd existence of swell. Because a ship encounters an infinite 

variety of wave conditions, which in turn significantly influence the magnitude of the response, 

there is some reservation on the reliability of the predicted responses unless the variability of 

wave condilions is reflected in the prediction technique. One way to cover the variety of spectral 

shapes is to develop a systematic series of wave spectra consisting of several members (called a 

family of wave spectra) for each sea severity. This concept of a family of wave spectra was 

considered by several researchers, e.g. Hoflman et al (1976), however Ochi et al (1978) derived 

three families of wave spectra using a statistical analysis of available data whereby each member 

of the family was weighted according to the frequency of its occurence. Two of these are 

. appropriate for use with open sea areas and one is intended for use with coastal, fetch-limited 

sea areas, Ochi et al (1976c), Ochi et al (1977), Ochi (1979). The derivations of these wave 

spectral families will now be considered and the chief advantages for the present risk analysis 

study highlighted. 

a) Two-Parameter Wave Spectrum Family. 

The idea of expressing wind-generated wave spectra in terms of two parameters was first 

presented by Bretschneider (1959). The original spectral formulation was given as a function of 

the non-dimensional average wave height and period: 

( 1 ) 

where 

<P~(w)= wave (frequency) spectrum 

F 1 = non-dimensional wave height = gf/1 u2 

F 2 = non-dimensional wave period = gT 12n u 

H= average wave period 

fo-r.~~<DJt 
= 

<11~ m= wave (period) spectrum 

U = wind speed 

g~ gravity constant 

The wind speed U in equation (1) essentially disappears and the spectrum can be expressed by 

two parameters, average wave height H and average wave period T. If T is defined from the 

wave frequency spectrum then: 
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where 
I-w . <J)~ (w)Jw 

W= average frequency =-
0
---­

fo- <D~(w)Jw 
The spectrum can be further modified to be expressed in terms of significant wave height H, 

and modal frequency oom. From the narrow-band spectrum assumption, in general: 

I 

oom= ((0.8)41r(0.75)) W=0.77iii thus 

(2) 

In reality the magnitudes at the modal frequency and number of occurences in a given sea are 

random therefore statistical data on wave height and period are required to determine the modal 

period in a given sea. Wave statistics given in references by e.g. Hogben et al (1967) and Draper 

et al (1967) are extremely valuable for this purpose, however data for severe seas are sparse and 

no reliable information can be obtained. Ochi et al (1977) established the conditional probability 

of the modal frequency for a given significant wave height derived from statistical analysis of 

North Atlantic data. His results pertained to records taken at Weather Station India (59° N, 19° W), 

Draper (1967), and Weather Station Juliet (52"N.20"W), Draper (1965), and to Walden's 

information obtained at nine weather stations (A,B,C,D,E,I,J,K and M) in the North Atlantic shown 

in Figure 6.1, Walden (1964). 

11 was found that the statistical properties of both wave height and period can be evaluated 

based on the log-normal probability distribution and this law appears to be valid in the range of 

the cumulative distributions up to 0.99 for both measured and visually observed data. This result 

contradicts the view held by some that the data can be better fitted by the Weibull distribution, 

Ochi (1976b), although Jasper obtained the same log-normal distribution result, Jasper (1956). 
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10 60 10 ;o 10 10 

Figure 6.1 Weather Stations in the North Atlantic 

A full description of the analysis method is given in Ochi ( 1978b) and the main results are given 

below. The log-normal probability distribution applicable for wave height can be written: 
l 
- 2 

-----e-'1((/nHs-IJ.H )faH} 
s s 

(3) 

where llH and crH are parameters associated with the log-normal distribution of significant 
s s 

wave height Hs which, for simplicity, may be reduced to : 

fl..Hs) - A (f.l.H • cr H ) 
s s 

(4) 

Similarly for modal period: 

(5) 

where A(~ , crr ) is the log-normal probability density function with parameters ~ and crr . 
m m m m 

Since both wave height as well as wave period are log-normal distributed it can be derived that 

the combined statistical properties of significant wave height and modal period follow the bivariate 

log-normal probability law which may be written as: 

f(H s,Tm) - A(llH , (JH · ~ •0 T ,p) 
s .r m m 

(6) 
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where p is the correlation coefficient between wave height and period. This equation makes it 

possible to evaluate the joint probability of occurrence of a specified significant wave height and 

modal period particularly for severe seas (which is in contradiction to the statistical information 

given in the original data). 

The conditional log-normal probability distribution gives the statistical properties of the modal 

period T m for a specified significant wave height H, i.e. 

arm -~--2 
fl..TmiH,)-A(tJ.r +p-(lnH,-IlH),vl-p aT) 

"" au s m 
s 

(7) 

6.4.2. Derivation of family of spectra 

lt was mentioned in the last subsection that the joint probability of significant wave height and 

modal period follows the bivariate log-normal distribution of equation (6) which carries five 

parameters. Ochi deduced values of these five parameters llH , aH , tJ.r , ar , p at each of the 
s s m nt 

weather ships mentioned earlier. He found that the results of the statistical analysis indicated the 

sea severities at Stations A,B,C,D,i,J, and K were not significantly diHerent but that the severities 

at Stations E and M are substantially low by comparision, Table 6.1. For this reason the results 

of the analysis obtained from data at Stations A,B,C,D,I,J and K are averaged and refered to as 

the "mean North Atlantic" data. 

Weather Station A B c D E I J K M 

Significant UK 0.946 0.910 1.024 0.968 0.671 1.112 1.053 0.748 0.605 

Height 
OK 0.619 0.588 0.571 0.578 0.577 0.562 0.565 0.680 0.571 

lloda1 Uy 2.505 2.462 2.494 2.483 2.415 2.588 2.594 2.600 2.516 
Period 

Oy 0.218 0.218 0.216 0.209 0.228 0.142 0.147 0.174 0.202 
Cor re 1 at ion p 
Coet ticien t 0.498 0.594 0.578 0.586 0.508 0.358 0.339 0.331 0.686 

Table 6.1 Statistical Analysis- Wave Data North Atlantic 

In order to generate a family of wave spectra through the probability density function of the 

modal frequency given in equation (7), the modal frequency which is most likely to occur (most 

probable value) and the upper and lower values of modal frequency for a specified confidence 

coefficient were obtained: 

Most probable modal period, T.,(ml 
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(8) 

Upper and lower values oflhe modal period, T m (y) for a given confidence coefficient y. 

aTm --, 
T m (y)=exp{J.ir +p-(lnH,-IlH) ± cVl-p- a7 I 

m OH s m 
s 

(9) 

where 
, 

I fc x- >-
;;- e2""'=y 
-1t --

Specifically: 

c = 1.96 for Y= 0.95 

c = 1.44 for Y= 0.85 

c = 1.15 for Y= 0. 75 

c = 0.67 for Y= 0.50 

Thus by choosing confidence coefficients of 0.95, 0.85, 0.75 and 0.50 a total of nine modal 

periods (induding the most probable value) is determined for a specified significant wave height 

(Table 6.2). This table also indicates the weighting factors for each modal pertod from the 

analysis, which are applicable irrespective of sea severily. 

Confidence 
Coefficient -y Modal Frequency p(F/L) 

0.95 0.048 (8.75 - In Hs) 0.0500 

0.85 0.054 (8.44 - In Hs) 0.0500 

0.75 0.06 1 (8.07 - In Hs) 0.0875 

0.50 0.069 (7.77 - In Hs) 0.1875 

Most Probable 0.079 (7.63 -In Hs) 0.2500 

0.50 0.099 (6.87 - In Hs) 0.1875 

0.75 0.111 (6.67- In Hs) 0.0875 

0.85 0.11 9 (6.65- In Hs) 0.0500 

0.95 0.1 34 (6.41- In Hs) 0.0500 

Table 6.2 Modal frequencies and spectrum weightings for a given coniidence coelficent for the 

(mean) North Atlantic as a function of significant wave height (wm in radians sec- 1, H, in metres). 

Stations E and M are not induded in the data. 
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An example of a Bretschneider 2-parameter wave spectral family (for a significant wave height 

of 3m} is given in Figure 6.2. 

2.4 0.95 CONFIDENCE COEFFICIENT 25 u u w w 0.85 V) 
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0.75 
. 

r-1 t ~ 
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a: 
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Figure 6.2 Bretschneider Spectral family, Hs = 3 metres 

b) Six Parameter Wave Spectrum Family. 

This family of wave spectra includes swell or (secondary peaks} in its formulation since it has 

been well illustrated by Hoffman et al (1976} that many measured open ocean spectra (moderate 

to high sea conditions} have at least two energy peaks corresponding to a local wind sea and one 

or more swells of distant origin. The omission of this second peak, near the natural period of 

some ship response mode, may cause a much larger response than that due to the primary peak 

to be missed. For example, in roll, a large ship will detect and respond to a long swell which may 

be virtually hidden to !he observer's eye by a local wind sea of much larger amplitude. 

In order to cover a variety of shapes of wave spectra associated with the growth and decay of a 

storm, including the existence of swell , a series of wave spectra involving six parameters was 

developed by Ochi et al (1976c}. 

Hotfman et al (1976} illustrated very well !hat many measured wave specta have a spectral 

shape similar to the one shown in Figure 6.3. 
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Figure 6.3 Decomposition of Wave Spectrum 

Although the wave energy at the higher frequencies is usually much less than at the lower 

frequencies its contribution to responses of marine vehicles may be significant, thus it is highly 

desirable to follow the shape of the entire spectrum as closely as possible and this may be 

achieved by separating the spectra into two parts. Thus the wave spectrum is decomposed into 

components representing the lower and higher frequency contributions to the wave energy, figure 

6.3. 

Following Ochi et al (1976c) the spectrum of each part is expressed by a mathematical formula 

with three parameters- significant wave height Hs, modal frequency oom and shape parameter A.. 

(1 0) 

where r(A.) is a gamma function. 

The parameter A. controls the shape (sharpness) of the spectrum, when the other two 

parameters are held constant, and the spectral shape becomes sharper with increasing A.. In 

particular, by lelting A. = 1 this equation reduces to the Bretschneider 2-parameter spectrum of 

equation (2). By combining 2 sets of 3-parameter spectra, one representing the low-frequency 

components and the other the high frequency components of the wave energy the following 

six-parameter spectral representation can be derived: 

(11) 
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where j = 1 ,2 stands for the lower and higher frequency components respec1ively. The six 

parameters H,I'H,2,w,.1,wm2) .. 1 and ~ are determined numerically such that the difference 

between theoretical and observed spectra is minimal. 

A total of 800 available spectra observed in the North Atlantic (Bretschneider (1959) and 

Moskowitz et al (1962)) were classified into ten groups depending on severity and then for each 

group a statistical analysis was carried out on the parameters H,1,H,2,w'" 1,w,.2) .. 1 .~ in equation 

( 11 ) . 

Table 6.3 indicates the values of these parameters, for the family consisting of eleven members, 

expressed as functions of significant waveheight. 

Woat Probable 
Specti"WD 

0.95 Coatldeace 
Spectn. 

• .. " •I 
w 

ol "•• '• 
o.u a, o.~t a, 0 _70 .-o.ota a, l.lS 

8
-0,DlliJ 8

1 3.00 

o.as a, 0.31 8 • 0 _70 .-o.ou u, l.~O 8 -0.048 H1 1.3~ 

o.as a, 0.78 s, 0.81 -0.039 8 • • 0 _84 0
-o.oJe a. 

4.9~ 

o. u a, o. 5t a, 0
_
93 

·
11
-o.ose a, 

1 _50 e··O.o.u a, 3.00 

o:at a . o.st a, 0.41 .-0.018 u, 0.81!1 8 -0.028 8 1 2.6~ 

o.so a o.u a 0.81 .-0.052 s, l.ao 0 -0.0ll a, 1.80 • • 
o. 71 o, o.ec s 0. ~· . -o.oJs n • • 0.81 4.,0 

Q.Tl.H
1 

0.88 o, o.To .-o.ou a, o.ss 0 -o.oJs a, 8.40 

a.a2 a, o.3s a, 0.70 .-0.048 s, 1.37 .-0.039 u. O. TO 

o.u a, 0.54 H
1 

0.74 .-0.052 u. 1.30 • -0.038 H 
2.U • 

o. u a. O.:!lt &
1 

0
_
82 8

-0.039 B
1 1.03 .-0.030 s. 2.80 

Table 6.3 Values of six parameters given as 

f (significant wave height (m) ) 

'• 
l.St .-o.o&2 a, 

2 _48 .-0.102 a, 

2 _
48 0-o.1o2 a, 

2 _77 .-o.u2 a, 

1.&2 8 -o.oaa a, 

2 • 9~ .-o.1os a, 

l.B.S 8 -0.082 H1 

l.TB 0-o.oes a, 

l.TB • -o. ass a, 

3.80 • -0.085 B . 
o.~3 .-o.ose a, 

The weighling factor for each member of the family, the probability of the wave family member 

occuring given the location, is p(F 1 L)=0.50 for the most probable spectrum and 0.05 for all other 

spectra. These values arise from the derivation of the parameters which is detailed in Ochi et al 

(1976c). An example of a 6-parameter wave spectrum family is given in Figure 6.4. This family 

covers a wider variety of spectral shapes than other commonly used spectra and the co-existence 

of swell and sea waves is admitted by the presence of spec1ra with double peaks. 
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Figure 6.4 Ochi 6-Parameter Wave Spectrum Family, H,=3m 

c) JONSWAP Wave Spectrum Family. 

A similar analysis has been performed for a family of JONSWAP wave spectra, which are 

suitable for fetch limited seas, to cover the variation in expected spectral shape. 

The original JONSWAP spectrum was derived from the analysis of data observed in the North 

Sea and was given by: 

-Hasselman et al ( 1973) 

where 

y is the peak shape parameter (3.30] 

a=aa for w ::> wm [0.07] 

a=ab for w > wm [0.09) 

a is the scale parameter (0.076(X)-0·22) 

wm is the modal frequency [71t b (X)-0·33] 
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ro is the wave frequency (rad sec- 1) 

F L is the fetch length 

u is the wind speed. 

Values in brackets [ - ] are the average values for each parameter and the resulting spectrum is 

called the mean JONSWAP spectrum. The peak shape parameter was found to vary 

considerably in the JONSWAP measurements. Ochi (1979) showed that the histogram of they 

values follows the normal probability law and hence various y values with appropriate weighting 

factor were determined, Table 6.4. The peak shape parameter is defined as the ratio of the 

maximum spectral energy to the maximum of the corresponding Plerson-Moskowitz spectrum 

(1964) for the same a and rom value, Figure 6.5. Figure 6.5 also shows an example of the 

resulting family of 5 JO~SWAP wave spectra for the severest seastate expected at station N-2 In 

the North Sea. it can be seen that the range of modal frequendes is smaller and the peaks are 

much sharper for the JONSWAP family than for the open-sea spectral families .. 

y -Value 'lleigbting 
Factor 

1. 75 0.081 

2.64 0.256 

( Mean ) 3 · 30 JONSWAP 0.326 

3·.96 0.256 

4.85 0.081 

Table 6.4 y-Value and Weighting Factor for the Jonswap 

Family of Wave Spectra 
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Figure 6.5 Family of JONSWAP Wave Spectra, 

Severest Sea at Station N-2 in the North Sea 

6.4.3. Notes on the adopted seastate definition 

r • (MAX 

~~~. 
l'lfASON MOIKOWfT1 
S'ICTIIIUMI 

This study uses families of wave spectra which are appropriate for both open-sea and fetch­

limited sea conditions. The ability to represent a variety of spectral shapes which would be 

expected to occur in nature, by a mathematical representation which is based upon statistical 

considerations of actual data, is held to be an important feature of the simulations. 

In addition, by using the two-parameter, the six-parameter, or the Jonswap family of spectra for 

the short-term response prediction for each sea severity, one of the family members yields the 

largest response, while another yields the smallest response with a confidence coefficient of 0.95. 

Hence by connecting the points obtained in each sea severity the upper and lower bound 

responses can be established. 

Ochi and Bales (1977) have shown that the upper and lower bounds (with a confidence 
' 

coefficient of 0.95) of responses for the Bretschneider 2-parameter and Ochi 6-parameter 

spectral families reasonably well cover the variation of the magnitudes computed using the 

spectra measured at various oceanographic locations around the world, although in seas of great 

severity the 2-parameter family results in a wider range between upper and lower bounds. For 

this reason the use of Ochi 6-parameter spectra was favoured in the present study. 

Figure 6.6 is a typical result presented by Ochi and Bales (1977). lt shows probable-extreme 

values of the pitch motion of a conventional displacement ship in head seas using both measured 

and (bounds of) idealised spectra. The plus marks on the figure represent predicted pitch 

motions using the measured spectra reported by Hoffman et al (1977) for Station India in the 

North Atlantic. lt can be seen that agreement with results for the measured spectra is generally 
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good, though calculated results may be somewhat low for wave heights of 15 feet (4.6 metres) or 

less. 
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Figure 6.6 MARINER probable-extreme pitch amplitudes in head seas 

6.4.4. Wave Energy Spreading 

The directional nature of wave energy must be taken into account, since the use of uni­

directional seas in performance prediction is known sometimes to bias design considerations e.g. 

Cox et al (1977). A complicating factor is the relatively wide directional distribution of wind seas 

and the usually narrower directional distribution of swells. In general for lower seastates there is 

a mix of directional components. As the seas intensity, usually a single primary direction is noted, 

though it is not generally as symmetric as that represented by the cosine-squared function, Bales 

(1984). 

There is some evidence that storm seas are confused and short-crested, derived from a limited 
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number of visual (aerial) observations and directional measurements of the sea, Forristall et at 

( 1978). However it is unlikely that the seas are symmetrically defined and at a dispersion of ± 90 

degrees, since the effect of land mass to one side of the operating area or the presence of swell 

from a distant or locally decaying storm would perturb the symmetry of the cosine-squared model. 

Bales et at (1982) presented the analysis of the relative contributions of energy from each 30 

degree band during a storm near Station India (59 deg. N,19 deg. W) in the North Atlantic. These 

contributions were computed from the 20 year hindcast climatology which is being developed by 

the U.S. Navy, Lazanoff (1975). 

Bales concluded that the cosine-squared spreading function may be an adequate model for the 

North Atlantic near Station India, although the use of cos2 spreading with the Bretschneider 2-

parameter spectrum generally gave over-predicted responses compared with the hindcast 

responses, Bales et at (1982). This over-prediction was heavily dependent on the type of vessel 

being considered. lt was also suggested that the cos2 spreading function should be used with the 

JONSWAP wave spectrum for fetch-limited seaways until the data improves. 

Roll motion Is highly sensitive to wave direction. Figure 6.7 gives a comparison of roll motion 

for long and short-crested seas for the SULISKER. There is a distinct variation in roll motion over 

ship-to-wave relative headings in long-crested and short-crested seas. This has clear 

implications for the accurate assessment of extreme roll motion probability. 
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Figure 6.7 Comparison of Roll Motion For Long/Short-Crested Seas 
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'6.4.5. Climatology Probability Aspects 

11 is required to determine the conditional probability of significant waveheight (Hs), modal period 

(T m> and predominant wave direction (<11) given a location (L) and season (S) i.e. 

p(HJm <11/LS)=p(Hs<llm/LS). p(Tml HsL) 

However, because the spectral weighting for a wave spectrum family member (F) is a function 

of modal period, we may write: 

p(Hs Tm <111 LS)=p(Hs <111 LS) . p(FI L) 

The necessary climatological datap(Hs<li/LS) are to be found in many sources e.g. Hogben et 

at (1967), Andrews et al (1983). An extensive database, which is convenient and contains 

climatological data for different geographical areas and seasons, is documented in Bales et al 

(1982), and this has been used in the present study: . 

6.4.6. Spectral Ocean Wave Model (SOWM) 

The Spectral Ocean Wave Model (SOWM) is based on the work of Pierson et al (1964) who 

produced an empirical deepwater model providing a prediction of the directional wave spectrum 

for locations called grid points spread throughout the northern hemisphere. Numerical predictions 

are based upon the driving wind field, the prediction from the previous time step and the 

propagation of energy into the area from distant storms. 

The open ocean spans the North Atlantic from the latitudes of the northeast Trade Winds (up to 

about 30 deg. N) through those of the prevailing westerlies (30 deg. - 60 deg. N) and into the 

Polar northeasterlies (above 60 deg. N), so that it is not surprising that the climatology of the 

operational area is strongly a function of latitude. Additionally the influence of land mass, 

currents, continental shell, and local storm tracks each cause a similar climatology variation with 

longitude. Hence the open ocean area has been subdivided into sub-areas which are identified in 

Figure 6.8. 
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Because of the previous wide usage of the wave statistics provided by Hog ben et al ( 1967) it 

was decided to adopt their definition of geographic zones where possible. Areas 

1 ,2,3,4,6, 7,8,9, 10 and 11 are taken as defined by Hog ben et al. Areas 15, 16,17 and 18 are also 

taken as defined by Hogben et al but truncated at the Tropic of Capricorn (23 deg N). Areas 00 

and 0 are new and have been added to span the more northerly operational regions. 

The Spectral Ocean Wave Model (SOWM) utilizes archived wind fields from which directional 

wave spectra are hindcast at approximately 15000 locations at 6 hourly intervals for a continuous 

period of up to 18 years, Bales et al ( 1984). The propagation of wave energy from one location to 

another is reflected as well as the growth and decay of the seaway with local winds. A typical 

hindcast spectrum is given in Table 6.5. From the set of such spectra a series of parameters are 

derived which provide a simple summary of the character (height, period and direction) of the 

seaway and which can be used to define families of representative wave spectra. As the wind 

speed and direction is carried along with the data set, the joint probability of wind and wave 

parameters are also constructed. 
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DATETIME LOCATION WINO DIRECTION AND SPEED, WHITE CAP 
WAVE /PERCENTAGE, FRICTIONAL WINO VELOCITY 

\OUENCY 
9Z 31 MAR 68 &11.292N 12.291W 

WINO OIR 267.6 WINO SPO 22.8 WHITE CPS 0 USTR .89} 

rea .lOB .208 .158 .133 .111 .103 .092 .081 .012 .067 .061 .058 .050 .044 .D39 DIR IFROMI 
IN 
HZ .00 .00 .01 .OD .00 .01 .00 .oz .Q6 .00 .00 .00 .00 .00 .00 .1 U8 

.03 .OB .16 .16 .17 .07 .00 ,03 .00 .oo .00 .00 .00 .00 .00 .7 336.58 

VARIANCE .05 .16 .27 .25 .30 .22 .01 .04 .00 .00 .00 .00 .00 .00 .00 1.3 306.58 

ENERGY .06 .21 .38 .38 .56 .42 .31 .00 .00 .00 .00 .00 .00 .00 .00 2.3 276.58 

.06 .19 .34 .30 .40 .06 .18 .11 .00 .00 .00 .00 .OD .00 .00 1.6 Z48.1i8 

.04 .12 .19 .14 .14 .00 .01 .03 .00 .oo .00 .OD .00 .00 .OD .7 216.58 

POINT { .24 .75 1.34 1.22 1.67 ,78 .51 .23 .D6 .00 .00 .00 .00 .00 .00 8.7 WAVE 
SPECTRUM DIRECTIONS 

Hl/3 10.35 FT TOTAL 

SIGNIFICANT WAVE 
ENERGY 

HEIGHT 

Table 6.5 A Typical SOWM Wave Spectrum 

The parameter sets developed from the hindcast spectra are: 

1. Significant wave height vs modal wave period. 

2. Significant wave height vs wind speed. 

3. Significant wave height vs primary wave direction• •. 

4. Wind speed vs wind direction. 

5. Significant wave height vs wind speed (WMO). 

6. Persistence of significant wave height. 

7. Persistence of significant wind speed. 

• • Values used in this study. 

Both annual and seasonal distributions are provided. Partial verification of SOWM has been 

carried out, Cummins et al (1980) and Chen (1979), which appears to indicate a reasonable 

standard of accuracy, although the hindcasting methods on which it is based have been criticised 

by oceanographers because they do not take account of the wave/wave interactions which play 

an important role in wave spectral development. it is diHicult to develop a general conclusion 

regarding the validity of these results for all conditions and ocean regions. However, statistical 

comparisons with other data sets generally indicate good correlation and the U.S. navy has 

adopted SOWM data as a design standard since 1981, Bales {1986). 
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6.4.7. Frequency of Encounter with Extreme seas 

Information of the frequency of encounter with seas for each sea severity is necessary in order 

to evaluate the extreme responses. This information on the frequency of occurence of each sea 

state may be oblained from hindcast (SOWM) data as previously described. Ochi (1978b) has 

shown that the occurence of sea severities can be obtained based on the log-normal distribution 

for the cumulative distribution up to about 0.99 and then the asymptotic extreme distribution is 

used for estimating the frequencies of extreme seas. On this basis the frequency of occurence of 

various sea states in the (mean) North Atlantic is presented in Table 6.6 for each one-metre 

interval of significant waveheight (HJ Information from Ochi (1978b). 

Signilicant 
Frequency ot Significant Frequency ot Wave Height Wave Height 

(111 Meters) Occurrence (in Meters) Occurrence 

< 1 0.0503 9 - 10 0.0079 

1 - 2 0.2665 10 - 11 0.0054 

2 - 3 0.2603 11- 12 0.0029 

3 - 4 0. 1757 12 - 13 0.0016 

4 - 5 0.1014 13 - 14 0.00074 

5 - 6 0.0589 14 - 15 0.00045 

6 - 7 0.0346 15 - 16 0.00020 

7 - 8 0.0209 16 - 17 0.00012 

8 - 9 0.0120 17 < 0.00009 

Table 6.6 Frequency of Occurrence of Seastates 

6.5. Seamanship 

This factor can have a large influence on both the motion probabilities obtained and the motions 

themselves once the severe seastates have been encountered. Firstly, by manoeuvring to avoid 

a storm area or (in the case of small vessels in particular) by not sailing at all until the storm has 

passed, the vessel is exercising avoidance seamanship. This is a function of the accuracy of 

weather forecasts and the skill of the ship's oHicers. Secondly, a vessel experiencing excessive 

motions and sea-loads may be manoeuvred to reduce these to perceived acceptable levels. The 

vessel is exerdsing what might be termed pacifying seamanship which is a function of the 

motion/sea-loads information available to the ship's oHicers and their skill in reducing these 

motions and sea loads. 

Avoidance type seamanship can be represented by a Markov mapping, Hutchison (1981) i.e. 

p(i I j) • the probability of encountering each seastate in the absence of avoidance seamanship to 

the probability of encounter w!th avoidance seamanship. An example transition matrix p(H,I H,) is 

given in Table 6.7 where H, is the seastale encountered after avoidance action and H, the 

seastate which would have been obtained in the absence of avoidance action. 
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Seastate which would have 
been encountered 

H 
5 

1 2 J 4 s 
Encountered 1.0 0 0 0 0 
se.astate 
after 2 0 1.0 0.2 0 0 
avoidance 
seamanship l 0 0 0.8 o.s 0 .I 

Hs 
. 4 0 0 0 o.s 0.6 

s 0 0 0 0 O.J 
-

1.0 1.0 1.0 1.0 1.0 

Table 6. 7 Avoidance Seamanship Transition Matrix 

Pacifying seamanship consists primarily in changes of speed and/or heading once a severe 

seastate has been encountered. These can be represented as conditional properties of speed V 

and relative heading to waves J.1 given the seastate actually encountered after appropriate . ' 
avoidance (H,Tm), unaltered speed V0 and relative heading f.io i.e. p(J.LV/f.10 V0 HJm) where J.lo• J.1 

ru:e functions of the ship course c and wave direction Ill. 

The achieved speed V and heading J.L for each case of encountered seastate (HJml and initial 

speed v0 and heading f.io may be assembled from a pair of transition matrices: 

' . 
{VIJ.Lo V0HJml and (J.LIJ.Lo V0H, T'") 

i.e. 

' ' . 
p(J.L V lf.io V0 H,Tm)=p(J.Liflo V0 H, Tm) . p(VIf.io V0 H, Tm) 

Ship speed in a seaway comprises the involuntary speed reduction due to the added resistance 

and reduced propulsive efficiency in waves together with the voluntary speed reduction due to the 

master's action to reduce excessive motions and sea-loads. The present study is primarily 

concerned with higher seastates where the master's voluntary action overrides any consideration 

of natural speed reduction. Thus added resistance is not accounted for within the simulatlons. 

This is an area requiring further refinement. 

The problem of voluntary change of speed/heading criteria to reduce motions and loads is no 

less difficult. 11 is inevitable that any proposed criteria will be subjective and based upon the 

master's previous experience. They will also depend upon how well the master perceives the 

motions and sealoads from his conning position, and will also be vessel dependent. 

Once the criteria have been agreed. a more objective response from the master should be 

possible when suitable instrumentation is provided to indicate the motions and loads being 

imposed, together with suggested optimum courses of action to reduce these to acceptable 

levels, Chazal (1980). 
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In the meantime, and for the purposes of the present study, it has been necessary to assign a 

set of criteria which it will be assumed the master will adhere to in order that his vessel will be 

rendered more seakindly. The master is likely to take action to avoid damage to his vessel's 

structure, engines or cargo and to avoid undue discomfort to his passengers and crew. There 

have been several studies with both merchant and warships including Aertssen {1966), Kehoe 

{1973), Bledsoe et al{1960) and Conolly{1975) into limiting-motion criteria for different types of 

vessel. Several of the proposed criteria suffered from the drawback that they could not be readily 

assessed from the master's conning position and were also not relevant to the environment being 

experienced by the crew. For example Conolly {1975) proposed a criterion based upon slamming 

at 0.2 Lbp abaft the fore perpendicular and Aertssen {1966) used the amplitude of acceleration at 

the fore perpendicular. To address these deficiencies LLoyd et al {1977) proposed the following 

measures of ship behaviour in connection with predictions of voluntary speed loss in rough 

weather: 

i) Slam-induced whipping vibration acceleration at bridge not to exceed 0.05 g in a 15 minute 

sampling period. 

ii) Subjective motion magnitude {SM) weighted according to personnel location and averaged 

along the ship length not to exceed a value of 15. 

iii) Average deck wetness interval at F.P. to be not less than 100 secs. 

iv) Average propeller emergence interval to be not less than 30 secs. 

The actual estimates for the limiting conditions were based on seakeeping trials with destroyers, 

Kehoe{1973), and the cargo ship "JORDAENS", Aertssen {1966). 

The slamming criterion {i) has been subsequently amended because it is possible, by using the 

original criterion, to apparently improve the seakeeping performance by moving the bridge to the 

region of a node where there is no whipping response and thus no speed limitation. The 

amended slamming criterion refers to the "average whipping acceleration experienced over the 

entire ship" which should not exceed 0. 18g and is based on full scale trials with 2 frigates, 

Andrew et al { 1981 ). Aertssen meanwhile, in the discussion to this paper proposed a value of 

0.20 g for the bridge whipping acceleration based on trials with the trawler "Belgian Lady", 

Aertssen { 1965 ). 

The Subjective Motion Magnitude (SM) concept attempts to quantify the motion environment 

within the ship experienced by the crew and to relate this to the human response to motion, Lloyd 

et al {1977). The original concept was proposed by Schoenberger {1975). 

Subsequent full scale trials and results of questionaires have borne out the original proposed 

SM Value of 12-15 over a 12 hour period in head seas and it is therefore expected that higher 

values might be tolerable in the short term. 11 is generally agreed that a subjective magnitude 

criterion should not be based solely upon vertical accelerations in head seas but that rolling and 
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lateral plane motions should also be accounted for in one single SM value if possible. 11 was 

reported by Lloyd et al ( 1985) that Hosoda et al (1983) have proposed a method based on 

reliability engineering techniques. By treating the human being as a series system an overall 

"human effectiveness"was obtained by multiplying individual effectiveness appropriate to each 

motion level being experienced. Baitis et al (1984) have also reported studies to determine 

criteria for limiting motions based on vertical-with-lateral forces though few details were available. 

The average deck wetness interval has been changed to 40 seconds following full scaie trials 

although this figure takes no account of sensitive equipment or men on deck, Lloyd ( 1981 ). 

The above represents a great deal of ongoing work which, for the reasons outlined, are 

inconclusive except for some particular full scale trials results, which were obtained mostly with 2 

frigates. For this reason the limiting motion criteria in Table 6.8 will be assumed in the present 

study. 

fisheries Stern 
Criterion Protection Trawler 

( 6 4ml (58Hl 

No of slams 60 per hour 60 per hour 

SM • 12 I 5 

No of deck 90 per hour 90 per hour 
wetness+ 

No of 120 per 
propeller 

hour 120 per hour 

emergcnccs 

Table 6.8 Limiting Motion Criteria Used in the Study 

(All of these values reflect the calculation assumptions and do not therefore necessarily reflect 

the physical situation observed). 

N.B. For this length of vessel slamming whipping is not considered a problem. A slam is 

deemed to occur when the impact velocity exceeds 0.093 (g/Lj2, Ochi ( 1973a). 

• Especially relevant in a survivability study when the master will tend to keep the seas on the 

bow if possible. 

+ Method of calculation takes no account of distortion by hull of incident waves nor 

static/dynamic swell-up. 

If the subject vessel exceeds one or more of these motion criteria it will be caused to alter 

heading/speed conducive to the continued "success" of the mission, which will reduce the 

motions to acceptable levels. 
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6.6. Responses 

6.6.1. Introduction 

In Chapter 5 the concept of a "potentially dangerous" roll motion was introduced. This was 

stated to be a pre-assigned roll angle (30 degrees in the present case) beyond which it can be 

assumed that the vessel will be considered potentially unsafe from a capsize point of view. 

Before the required probability of exceedance of the potentially dangerous roll motion $c can be 

ascertained, p($c < $), an appropriate response statistic $ is required. For operability studies this 

$-response is likely to be an average-type process such as the significant roll response, whereas 

when considering survivability some measure of the expected maximum is required. 

The approach being advocated is now being more widely adopted in the design of offshore 

structures to take account of the whole range of sea conditions encountered by the structure, 

-rather than using a single severe wave which has been the procedure until now, Standing 

(1982). There are three design values which are considered to be most useful. These are the 

probability that a certain value will be exceeded (the "threshold value" which was discussed 

earlier); the 'probable-extreme value' which may be compared with experimental results since it is 

the most likely value expected in a series of experiments and the 'design·ex1reme value' which is 

the value which would not be exceeded with a preassigned probability. This last value is held to 

be particularly useful in design and rule formation work e.g. Morrall(1982). 

6.6.2. Short-Term Prediction Method 

11 was discussed in Chapter 4 that it is appropriate to apply a short-term prediction method 

rather than a long-term method for the estimation of extreme values. Indeed Ochi (1978b) 

demonstrated that the estimation procedure for the extreme values is simpler and leads to more 

accurate results when using the short-term method provided that responses in seas up to the 

severest expected in the service area are considered. 

In previous sections the severity and duration of sea states in the North Atlantic and sustained 

ship speed in each seaway have been discussed. Extreme values of ship responses may now be 

evaluated by applying order statistics to the probability function which represents the statistical 

properties of ship responses for a given speed/heading in a given sea. 

6.6.3. Choice of Probability Function 

In general. the Rayleigh probability distribution has been used for evaluating the statistical 

characteristics of the maxima (peak values) of ship responses in a seaway. This assumption is 

valid if the following conditions are satisfied: 

(a) Random sea is a steady·state Gaussian (normal) process with zero mean. 
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(b) Ship response to waves is linear. 

(c) Spectrum is narrow-banded. 

Conditions (a) and (c) are usually satisfied. Seawaves, for example, are usually represented as 

a Gaussian ·random process, Longuet-Higgins (1952), and the bandwidth parameter e of 

Cartwright et a1 (1956) allows the narrow banded assumption to be relaxed. 

where mn= moment of the spectral density function 

For a narrow-banded spectrum E is equal to zero and the p.d.l. is of Rayleigh form. For a 

wide-band spectrum E is equal to one and the p.d.f. has a normal distribution. 

However for estimating the extreme values of ship rolling in a seaway there may still remain a 

serious problem regarding the linearity assumption because, as was described earlier, rolling 

motion is distinctly non-linear by nature. This may not completely exclude a linear treatment and 

thus the use of conveniently assuming Rayleigh distributed peak responses. Rather it should be 

realised that (for any trial) as the probability of exceedance of 30 degrees of roll increases.- the 

absolute values of the probability obtained reduces in accuracy3 . 

To illustrate this, consider a typical roll response spectrum which may be transformed into an 

·amplitude" spectrum as shown in Figure 6.9. 

3This argument assumes that roll angles up to 30 degrees can be computed with complete accuracy lor the SULISKER. 
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Figure 6.9 Amplitude Spectrum 

11 can be seen that certain of the contributions to the variance (variance denoted by m0, the area 

under the response spectrum) cannot be predicted with accuracy by the linear superpositian 

principle. Indeed the Rayleigh distribution aver-predicts the probability of occurence of larger 

amplitude roll motions of the subject vessel, Roberts (1984), since the Rayleigh distribution is 

given by: 

and 
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Pr. 

In order that the degree of confidence in the predictions may be assessed the idea of a 

"confidence level" is introduced. This is simply a melric for describing lhe level of confidence in 

the probability obtained. As far as the author can ascertain, the partitioning of responses into 

regions of linear and non-linear behaviour for a marine vehicle has not been apportioned in quite 

this way. 11 is only applicable if the accuracy of the response prediction can be assured up to a 

certain response level. 

Thus if p($ > 30)=0 then consider that C.L.(confidence limit) = 1 i.e. one can be 100% sure that 

the probabilities obtained are accurate. 

Similarly if p($ > 30)= 1 then consider C.L. = 0 i.e. one can be 0% sure that the probabilities are 

accurate. 

Thus C.L. = 1-p($ > 30) as illustrated in Figure 6.1 0. 

C.L. =l-pC(i1>30') Pr. Pr. 
C. L. =I -p C(il> 30") 

• ·. C.L. =I 

Figure 6.10 Definition of Confidence Limit 

Thus if a Rayleigh distribution is assumed for the rolling response of a vessel it is suggested 

that this simple concept of "confidence limit" can be used to give a feel for the probabilities 

obtained since an indication of the proportion of the contributions to the variance, which are 

correctly predicted, can be obtained. 

In the short-term prediction method used in this study, encounters with each seastate of a 

particular severity (characterised by significant waveheight, H,) are considered and the peak 

values fitted to the Rayleigh distribution through the slatistical variance (area under the response 

spectrum). The lifetime probability of response is not being calculated because of the use of the 

counting functional of section 4.6 to record only the occasions when 30 degrees of roll ~ 

exceeded. 
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The alternative, which will not be pursued here, is to carry out a series of experiments for the 

non-linear responses and to then fit a function to the histogram of the responses obtained. Many 

such functions have been proposed such as a generalisation of the Rayleigh or gamma 

probability function, Ochi ( 1978c). 11 should be noted that all the parameters for these 

distributions are obtained from the data observed and have no relationship with spectral analysis 

in the frequency domain. AI present no theory exists for expressing the extreme values in a 

simple closed form, as for the Rayleigh distribution, hence the extreme values are evaluated only 

through numerical computations. 

Various other researchers have proposed distributions fitted to observed data. For example 

Jasper(1956) fitted the measured data using the theory of extremes as developed by 

Gumbel(1954) to records of rolling under the assumption that the underlying distribution is of the 

log-normal type. In all of these fitting procedures the difficulty is in knowing where the underlying 

assumptions fail. 

6.6.4. Prediction of Extremes 

Figure 6.11 is an explanatory sketch of a random process x(r) for which the maxima could be 

anywhere in the range (-oa, +oa) and several maxima could occur during one cycle as defined by 

zero crossings. 

~ro~U4i.loiJ. 

INEGHIVEI 

NAXI"'A 
(POIITIVf) 

I 

~AXI"'A 

(NfGHIVf) 

EXTRE•E VALUE 

Figure 6. 11 Random Process x(r) 

The probability function of the maxima of a random process having an arbitrary bandwidth 

spectrum is given in Cartwrlght et al ( 1956), while the probability function of the positive maxima, 

defined as the peak value which will occur throughout the range of 0 to - is discussed by Ochi 

(1973b). Let x be the motion response in a seaway and let r. be the extreme value of the 

response in n-encounters with waves. By applying order statistics the probability density function 

for the extreme value, r •. denoted by g(v
0

) becomes: 

g(y .>=nU{x).(F(x))"- 1 J .. x=y,. 

-Ochi( 1973b) 
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wherej{.r} is the p.d.f. of the response and F(.r} is the cumulative distribution function of x. 

From the above equation the extreme value which is likely to occur (the probable-extreme value 

denoted by Y.) is the modal value of the p.d.f. of s<Y.> and is obtained (Figure 6.12) by letting the 

derivative of g(y.) with respect to Yn be zero, thus: 

d d 2 
-(g(y.})=l -j{.r).F(.r)+(n-1)(/{.r)) l...,y = 0 
~. ~ " 

PROBABILITY 
DISTRIBUTION 

OF X 

! 
PROBABILITY 
DISTRIBUTION 

OF EXTREME X 

PROBABILITY 
1-e-1 

UN (CHARACTERISTIC 
LARGEST VALUE) 

Y N (PROBABLE EXTREME VALUE) 

Figure 6. 12 Explanation of Probable-Extreme value 

On the other hand the expected number of positive maxima in the observed data which are 

greater in extreme value than the most probable is rather higher. Indeed, it can be proved that if 

the number of wave encounters is large then the probability that the extreme value will exceed Y. 
is theoretically 1-e-1 = 0.632, regardless of the spectrum bandwidth, Ochi(1973b). lt appears 

therefore that the most probable-extreme value f. is too low to be considered for engineering 

design consideration. A certain margin above the expected largest value is required, and this can 
A 

be obtained by estimating the extreme value, y "' which is unlikely to be exceeded with a 
A 

preassigned probability a, i.e. Y. can be found by obtaining the solution (Figure 6.13) of: 

r· g(y.}dy. =ll 
Yn 
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Figure 6.13 Explanation of Design-Extreme Value 

Under the assumption that n is large and that the peak values of responses follow the Rayleigh 

probability law, as previously discussed, the amplitudes of extreme values are as follows, Ochi 

(1973b). 

Most Probable-Extreme value: 

Design-Extreme value: 

where E = bandwidth parameter and m0, m2, m4 are the zero'th, 2nd and 4th moments of the 

response spectrum respectively. 

For the present purpose it is more convenient if the number of observations is expressed in 

terms of lime hence: 

Most Probable-Extreme Value: 

Design-Extreme Value: 
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Where r is the time in hours. These formulae include the eHect of the bandwidth of the 

response spectrum E on extreme values. 

The risk parameter, a, represents the probability that the extreme response in a given sea will 

exceed the predicted value. If a is chosen by the designer to be 0.01 it implies that the extreme 

value experienced in a certain specified time will exceed the predicted value once in 100 

occurences of a storm of the same severity. 

In general the storm duration and frequency of its occurrence have to be considered in 

determining the a value. If a ship may encounter seas of the same severity k times in her lifetime 

then it is necessary to divide a by k to maintain the percentage assurance in the calculation. 

Hence the Design-Extreme value becomes: 

y:=V2/n((60)2 T/(2n(a/k)) ..Jm2 tm0) . ~ 

These aspects require individual attention in the actual calculations. 

6.6.5. Operation (or exposure) time 

The extreme values of responses are a function of the number of encounters with waves and 

hence the persistence of each sea state has to be considered in the estimation. 

Figure 6.14 taken from Ochl et al (1974) shows the persistence of every 1.52m (Sit) interval of 

significant wave hei_ght estimated from an analysis of North Atlantic data given In Moskowitz et at 
(1965). For example a sea of significant wave height 10m would not last more than 20 hours 

during one storm: hence it is suHicient to evaluate the extreme responses for 20 hours of ship 

operation in this sea severity. 
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The effect on the extreme roll angles of seastate duration is shown in Figure 6.15 for the 

Bretschneider 2-parameter wave spectrum (H, = 5m). The (SULISKER) extreme values Increase 

significantly during the first 1 0 hours approximately and thereafter at a slower rate. 
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Figure 6.15 Effect of Seastate Duration on Extreme Roll 

6.7. Chapter Summary 

The treatment of the important factors described in this chapter which are considered in this 

study may be summarised as shown in Table 6.8. Any short-comings are also highlighted. 
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~'Factor Treatment Comments """' 

Hull Design Features Strip theory & empirical No modelling of above-·water 
formulae using measured values features occurs 

Displacement Conditon Range of values taken No values used outside 
from stability booklet of operating norm 

-t 
Dl 

Cargo - No cargo carried 
0" 
iD 
~ 
lXI 

Route Domain segments chosen to Method is iterative and 
give worst expected responses seeks worst cases 

-t 
~ 

(!) 
Dl 

3 
CD 
::!. 
2. 

.... 3 N "C 

""' 0 

Statistically derived open-sea Covers a great range of and fetch limited families 
Climate of wave spectra used spectral shapes 

(Waves) Extreme values of wave height Cosine squared wave 
energy spreading and probabilities of occurence used 

~ 
Dl 
::J -(/) 

3" 
c: 
eT er 
::J , 
Dl 
!l 
0 
~ 

Climate - Wind effects and gusting are 
(Wind) not considered 

Avoidance and Pacifying...:.type 
seamanship are considered This area is somewhat subjective 

Seamanship with reasonable values used 
Empirical values of critical based on correspondence 

motion are assumed 
"' Upper and lower bound 

Based on Statistics of extremes responses obtained with 95 
percent confidence 

Responses Rayleith distributed process assumed 
Corrected for bandwidth) Assumes that roll response 

is accurately predicted up to 

'- 30 degrees ~ 



Chapter 7 

Description of the Simulation Computer Program 

7.1. Introduction 

In chapter 4 it was described how the probability of exceeding a potentially dangerous roll 

motion can be estimated by making use of independent (Bernoulli) trial concepts. lt was 

proposed that every new vessel design be subjected to a set of analytical test-tracks. These, 

taken together, comprise the proving ground appropriate in nature to the particular vessel's likely 

operating cycle. This chapter is concerned with the practical application of such concepts. lt 

brings together the motion prediction aspects of chapter 5 and highlights the treatment of the 

important factors ·climatology, seamanship and resulting response which were previously 

described in chapter 6. Any limitations and assumptions are given particular attention. 

A computer program RISK.F77 has been written in Fortran 77 for the analysis. Structurally it 

comprises a main program which may further access up to eleven subroutines depending on: 

• user requirements set externally to the program; 

• decisions taken within the program (for example simulation of the the master's likely 
courses of action) 

The complete program logic is presented in Appendix A3 as a set of flowcharts. Reference will 

be made to these throughout the chapter but Figure 7.1 is reproduced here to show the overall 

logic flow of the main program. 

it can be observed that the main program of figure 7.1 may be conveniently divided into two 

parts. The first and major part is concerned with the realistic prediction of vessel motions when 

subject to various factors induding climate and master's action (which when taken together 

comprise a scenario). The second part is concerned with calculating the associated probability of 

occurrence of these factors in order to calculate the scenario probabilities which gave rise to the 

motions. 
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7.2. Motion Prediction 

7.2.1. Wave Spectra 

Responses to the following wave spectra are available within the program (numbers in brackets 

(-) indicate the number of wave spectra in the family}: 

• Plerson·Moskowitz (ISSC formulation) [1) 

• Bretschneider 2·parameter (with optional Ochi North Atlantic data} [9) 

• JONSWAP (North Sea data by Ochi} (5) 

• Ochi 6-parameter (North Atlantic data) (11) 

For the present study the last two spectra are predominantly used, with families of spectra being 

considered for the reasons discussed in chapter 6. A difficulty which Is associated with using the 

response amplitude operators (RAO's} derived from Britsea is that they are only available for the 

range of frequency (ro) of between 0.3 rad sec-1 and 1.3 rad sec- 1 (0.04 rad sec-1 Increment). 

This truncated frequency range was judged by the original 'author' of Brilsea to contain most of 

the wave energy for the Pierson·Moskowitz point spectrum (the only spectrum available to users 

of Britsea}. However, for the present purposes this may lead to the truncation of the wave 

spectrum from which the extreme responses are eventually calculated. Figure 7.2 illustrates this 

for an ISSC spectrum. The effect of this truncation on computed responses will vary depending 

on the shape of the wave spectrum as well as on the shape of the RAO curve with respect to 

frequency, Figure 7.3 and Figure 7.4. 
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Figure 7.3 Truncated RAO Spectra 

130 
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Figure 7.4 Truncated Response Spectra 

Since the roll response amplitude operator curve tends to be very highly peaked, figure 7.3, at a 

frequency value close to the ship natural roll frequency (0.6 rad sec-1 for the SULISKER) and 

falls away sharply on either side, this is not judged too much of a problem for roll, provided that 

values of roll velocity or acceleration are not considered. These values are proportional to oo2 and 

oo4 respectively. 

The effect is likely to be more pronounced for pitch, heave and the associated vertical 

responses, figure 7.4, but it is extremely difficult to quantify this given the large number of runs 

through the program, thus a systematic error is assumed in the present study. 

7.2.2. Response Amplitude Operators 

These are pre-computed using Britsea and held in a database for access by the main program 

(using subroutine DATAIN). The database contains both transverse and longitudinal response 

amplitude operators (amplitudes and phases) for different frequencies and headings to waves. A 

typical entry for roll is outlined in Table 7.1. There is a separate entry relating to each 

displacement condition and speed. 
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Heading to Waves 

Wave Frequency CJ 0 30 60 90 120 150 180 

Amplitude 

0.30 

0.34 

Roll Amplitude 

1.30 

Phase 

0.30 

0.34 

Roll Phase 

1.30 

Table 7.1 RAO Database for a given Speed v0 and Displacement condition~ 

The computer interpolation of the RAO values, with respect to heading, use.s a Lagrange 

technique based on Everett's formula, Froberg (1969), with a finite difference error estimation. 

The net result of this is that motions may be computed to within a 3 knot speed resolution and a 

15 degree heading resolution. This was felt to be a reasonable tradeoff belween practical 'real­

life' accuracy and the potentially enormous increase in computing lime and storage that would 

result if the speed/heading resolution were made any finer. 

7.2.3. Response Spectra 

The superposition principle of St Denis and Pierson ( 1953) is used throughout i.e. the 

responses are assumed linearly related to wave amplitude or wave slope. This may not be the 

case (even for vertical responses) when the seaway is very severe but this was felt to be not too 

great a problem as the actual capsize roll angles themselves are not being predicted. Only the 

exceedance ol the threshold value of potentially dangerous roll motion is being monitored in this 

study. 

The following responses are available in subroutine AS PONS: 
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• Roll motion, velocity and acceleration 

• Sway motion, velocity and acceleration 

• Yaw motion, velocity and acceleration 

• Pitch motion, velocity and acceleration 

• Heave motion, velocity and acceleration 

• Pitch/Heave coupled absolute motion, velocity and acceleration • 

• Pitch/Heave coupled relative motion and velocity • 

• Pitch/Heave/Roll coupled absolute motion, velocity and acceleration • 

• Pitch/Heave/Roll coupled relative motion and velocity • 

• Added resistance 

·vertical responses are available for up to 5 positions of interest on the hull, measured from the 

centreline and amidships. These are the bow, bridge and propeller positions at which vertical 

motion values are required for subsequent evaluation of critical motion/sea-load values. 

Responses to both long and short-crested seas are available. In the latter case, which is the 

case usually considered for realism, cosine squared or cos4 spreading of wave energy is 

generally used. 

Subroutine INTEGR per1orms the necessary integrations of the long and short-crested response 

spectra to obtain RMS values and broadness correction factors. A third order difference 

technique, with error estimates according to a method by Gill and Miller (1972), is used for this 

purpose. Again it is noted that the response spectra are necessarily truncated. 

7.2.4. Responses Critical to Master's Action 

(a) Deck wetness (subroutine CRITRS) 

lt was stressed in chapter 6 that the maximum number of deck wetnesses of 90 per hour is 

assumed to be acceptable to the master of the SULISKER. 

(i) The actual number of deck immersions/hour (NJ is obtained, Bhattacharrya (t978), from: 

P,.. 
=- 0 3600 

Tf 

1 f'lz 
=- "- 0 p 0 3600 21t mo w 

N = Probability of Deck Wetness . 
3600 

w Average Rei.Motion Period at FPP 

_3600 !"z -J.I(Zm .CFZ)) 
--- . V- . exp • 0 

2rt m0 

133 



where 1~ is Uie ellectiveifreeboard,at.ihe bow accouniingifor staiic and dynamic,swelbup 

CF = ( 1 - eZ)M is .the spectrurn' bandwidth correction.iactor 

m0 m2 m4 are moments of the relatlve,motlon spectrum. 

(ii) I Effective Freeboard if.)' 

Shipping of .greeri water, is caused primarily by deck motion relative to· the wave .surface. lt Is• 

therefore f:i.iunction oi .the freeboard·oHhe· ship. The actual freeboard of. the ship is modified by 

both static and dynamic:sweii-up to give, the, effective freeboard.((.). 

(lii) Statical Sweilliup at the bow. 

lhls is caused by.2 phenomena;ibow waves;generated bfthe·ilessel whileJmovlng ·In stili water 

and sinkage·oi Uie boYiwhiie•running·at speed. The-effect is aireduction otthe·freeboard te; 
., 

f.=f-11 

'where 

'· 
f~ is the.tr.eeboard correCted for. stalical swell-up 

[is the actual freeboard in!still water (bowheigllt ~ifor.Vardidralight) 

h is the. siatlcal swell-up 

~8 is the elevation!due to the!bow wave 

~5 .is:the'slnkage due to. speed 
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An approximate formula for staticat swell-up is given by: 

• Tasai( 1969) 

where 

8 is the ship breadth 

L 2 
lr=0.75 8- Fn 

L, 

L is the length between perpendiculars 

L, is the length of entrance 

Fn is the Froude number 

thus 

r.=f-0.229 8!:.. F';, (m) 
L, 

(iv) Dynamic Swell-up of Water at the bow 

This phenomenon is not considered because of a lack of reliable data pertinent to the subject 

vessel. 

(b) Slamming 

The maximum number of slams that the master will accept is assumed to be 60 per hour for the 

subject vessel. 

Slamming is the impact experienced when the forefoot hits the water sur1ace during a severe 

pitching motion. This most sudden change in the acceleration takes place at the bow and stern 

where both acceleration and motion are greatest. Slamming causes excessive pressure on the 

bottom plating with the possibility of stress-whipping in the main structure. 

Although it may occur without forefoot emergence, there is a greater probability of slamming 

with emergence of the forefoot. Thus there are three kinetic conditions to be investigated in the 

study of slamming: 

• Does forefoot emergence occur in a given seaway? 

• Value of phase diNerence between wave motion and bow motion 

• Magnitude of relative bow velocity. Is it greater than a threshold value necessary to 
cause a slam to occur? 

(i) Probability of Slamming 

The probability of forefoot emergence is the probability that the relative bow displacement 

exceeds the forward draught i.e. 
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' ' 
p( Forefoot Emergence )=e-<T""I2moCFjl 

where 

T is the draught at the bow 

m
0 

is the zero'th moment of the (relative) bow motion spectrum 

CF
1 

is the motion spectrum bandwidth correction factor 

Similarly the probability that the relative bow velocity exceeds the threshold velocity is given by: 

' ' 
p( Rei.Vely > Vc)=e--{v;l!m!CFil 

where 

Vc is the threshold velocity 

m2 is the second moment of the relative bow (vertical) motion spectrum 

c F 2 is the vertical velocity spectrum bandwidth correction factor 

If it is assumed that bow emergence and relative bow velocity are statistically independent then: 

(ii) Number of Slams 

The number of slams per hour, N, is given by: 

N, Probability of a Slam . 3600 
Average Rei. Motion period at F PP 

where, for the SULISKER, it is assumed in the absence of available data: 

Vc=0.093 .Jg'L= '1'9.81. 64=2.33 m sec-1, Ochi(1964) 

11 is noted that this formula does not hold for all lull scale trials results e.g. Aertssen ( 1966). 
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(c) Subjective Motion Magnitude 

In order to predict voluntary speed loss In rough weather it is important lhat the captain's 

perception or the ill-ellects on his ship and crew are considered. Thus it is important to relate 

criteria to the way in which the caplain detects the occurrence and severity of slamming, ship 

motions, deck wetness and propeller emergence. The subjective motion (SM) magnitude is given 

by: 

. .[_16 7 0.715 
SM= 13.087 + l.392(1n (ll2!t) -)-).m4 

m4 

-Uoyd et al ( 1977) 

where 

m4, m6 are absolute (vertical) motion variances 

SM is calculated at the bridge position. 11 SM > 12 it is assumed that the master will choose to 

alter speed and/or heading. 

N.B. Involuntary speed loss is not covered in this work since it is assumed that, in the main, 

severe seas cause the largest responses and the master will have over-ridden added resistance 

effects in lhese circumstances. 

(d) Propeller Emergence 

Assuming that the propeller has emerged when one quarter or its diameter is exposed above 

the water surface the number of emergences per hour NE is given by: 

where 

PE 
N£=-.3600 

TR 

PE is the probability of propeller emergence 

T R is the average relative (vertical) motion period at the propeller 

T P is depth of propeller shalt below still water level 

m0 is the variance of the relative motion at the propeller 

m2 is the variance of the relative velocity at the propeller, Figure 7.5. 
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Figure 7.5 Propeller Emergence Definitions 

If the number of propeller emergences exceeds 120 per hour it Is assumed that the master will 

alter speed and/or heading. 

(e) Roll Motion 

lt is assumed that if the average roll motion exceeds 15 degrees the master will alter speed 

and/or heading - although this is a secondary effect for the subject vessel because there is no 

cargo which might break loose. lt is a figure based on consideration of crew comfort only, which is 

generally not exercised on the SULISKER, Dickson (1984). 

7.2.5. Master's Action 

When one or more of the motion or seaload criteria of section 7.2.4 are exceeded the master 

will adjust ship speed and/or heading to try and bring levels to within acceptable limits. 

The principle adopted within subroutine MASTER is that speed/heading will be adjusted in an 

anempt to bring motions and sea-loads to just within acceptable limits while simultaneously 

maintaining 'best progress' in the desired direction. Thus the assumption being made is that 

'least time on passage' is a primary concern of the master. While this is certainly true of certain 

vessel types, such as container ships, it may be questionable for other vessels such as naval 

ships or fishing vessels. In fact it is apparent that in a true survivability situation the reduction of 

motions and sealoads is paramount arid the actual choice of heading/speed to attain this is 

largely irrelevant provided that the vessel does not stand into further danger, - from risk of running 

aground for example. 
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'Best progress' may be adjudged by simple geometric considerations, Figure 7.6. 

c 

where 

AB is the unaltered heading/speed vector 

AC is the heading/speed vector after alteration 

CB is the "Residual" heading/speed vector 

Figure 7.6 Best Progress 

The magnitude of the residual vector is found from: 

CB=..fAC2+AB2-2 .AC .AB cos A0 

where A o is the change in ship heading. 

In order to reduce the amount of computation while still achieving a reasonable degree of 

realism the vessel is allowed to alter heading in 30 degree increments 

(0°, ± 30, 60, 90, 120, 150, and 180°) and speed in 6 knot increments (0,6, 12 and 18 knots). This 

gives 48 different heading/speed combinations, -and leads to the mapping given in Figure 7.7. 

This shows the order of the heading/speed changes in order to maintain best progress. lt is 

assumed that these are the attained values of speed (after added resistance has been 

considered). 
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Figure 7.7 Order ol Speed/Heading Changes Attempted by the Master 

11 should be noted that the order ol computation shown in the mapping ol figure 7.7 does not 

infer that the master will slavishly follow this pattern order. The program. will consider all ol the 

speeds and deviations tram the initial speed and heading, it necessary, in order to reduce 

motions and sealoads to within acceptable levels. On the first occasion that this occurs the 

extreme roll values are evaluated using order statistics (section 6.6.4) and the loop ends. 

11 all of the 48 combinations of heading and speed have been tried and the motions and 

sealoads are still too large then the 'best' combination of heading/speed is sought: 

Subroutine OPTCSE uses the response mapping obtained from the 48 combinations in order to 

ascertain which critical-response profile most closely matches the maxima allowed. The mean 

value of normalised response level is calculated tor each of the 48 cases and the heading/speed 

combination which gave the minimum mean value is chosen to be the 'best' case. To illustrate 

this consider Table 7.2 with Figure 7.8. 

These indicate just two critical response profiles which have been designated (A) and (B). In 

this case (B) is preferred. For the SULISKER an equal weighting ol the critical responses has 

been assumed (Wt "' 1.0) in the absence of relevant infonnation. Nevertheless the eventual 

inclusion of such a weighting of obtained critical response levels is desirable to reflect how the 

vessel's master may "view" his vessel for a particular condition ol load displacement. For 
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example a masler may be more concerned to reduce rolling and will be willing to accepl more 

deck wetnesses or slams if his cargo is liable to shilt due to severe roll levels being experienced. 

Once the 'best' value for heading and speed has been selected the corresponding probable­

extreme and design-extreme roll angles are evaluated in subroutine ROLLER. Using order­

statistics, lull account is taken of the duration of exposure to the seastate severity. 

Response Levels Obtained 
A 

Critical Response Criterion 
(maximum value allowed) 1 2 1 

Deck Wetnesses/hour (90) 95 0.056 75 

Slams/hour (60) 62 0.033 47 

Subjective Motion (12) 10 -0.167 13 

Prop.Emergences/hour (120) 140 0.167 160 

Average roll (15) 17 0.134 12 

Mean 0.045 

Key: 

(1) Response Level Obtained 

(2) 

Normalised Response Level = (Response Obtained - Criteron). Weight 
Criterion 

Table 7.2 Response Profile 
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7.3. Prediction of the Scenario Probability 

If the design-extreme roll angle exceeds the critical value of potentially dangerous roll motion 

(30 degrees in this study), subroutine PROS is used to calculate the single independent trial 

probability that the potentially dangerous roll motion was exceeded. This is equal to the single 

independent scenario probability which gave rise to this large response. 

The scenario probability is the basic building block for the probability calculation. Essentially, 

program Risk.F77 is used many times to calculate appropriate scenario probabilities and to 

construct the test-track response probabilities from them. Ultimately the proving ground 

probability of critical roll-motion exceedence is calculated according to the method presented in 

chapter 4. This proving ground probability is obtained according to the following order of 

computation in program RISK.F77: 

1. Loop for different domain Locations L, 1 to M 

2. Loop for different Seasons S, 1 to 4 

3. Loop for different Domain segments i.e load conditions a, 1 to N 

4. Loop for different significant waveheights H, 

5. Loop for different primary wave directions <Il 

6. Loop for different wave modal periods T m 

7. Loop for different initial headings Jlo 

8. Loop for different initial speeds V0 

9. Calculate the design-extreme roll angle experienced (ljl) as a function of seastate 
duration 

1 0. Calculate the single independent trial probability of obtaining the predicted roll 
response (IJI). This is the same as the single independent scenario probability 
p 1(H>mJl VI LSM 

In fact this step actually occurs between steps (12) and (13) for each (J.10 V0) 

combination, since knowledge of final relative heading and speed given ,the initial 
heading and speed (Jl V I Jlo V 0) in a given encountered seastate (HJ m <Il) is 
required 

11. Initial speeds continue V0 

12. Initial headings continue Jlo 

13. Wave periods continue T m 

14. Primary wave directions continue <Il 

15. Significant waveheights continue H, 

16. Calculate the cumulative single trial probability that <Il will exceed <Il c at least once 
given the location, season and displacement, p 1(q,c < <Ill LS 6) 

17. Calculate the number of independent trials, N=R 1 T. V where R is the distance along 
the course track for which the load condition 6 is assumed constant. T. is the 
independence period, V is the attained ship speed 

18. Calculate the cumulative multiple independent trial probability of critical motion 
exceedance: 
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r/'($c < $1LS ~)= 1- I l-p1($c < $1 LS ~)IN 

19. Load Conditions (domain segments) ~ continue 

20. Seasons S continue 

21. Domain locations L continue 

22. Calculate the cumulative single lest track probability of exceeding $c at least once: 

pf$c < $/LS~)= 1- I 11 11 11 (1-r/'<cllc < $1 LS ~))} 
23. Repeat all and calculate the provin~ gfou~d probability of exceeding $c at least 

once in Q different test regions: 

pLQ;<<> <$)=t-l1o-p'<cll <$)Q; p c . c 

Thus if it is assumed initially that all combinations of M significant waveheights, L primary wave 

directions, K wave spectrum family members, J initial headings and 1 initial speeds are 

considered; the order of calculation for any particular combination of sea area, season and load 

condition will be as shown In Table 7.3. 

lt should be noted that the order of sea severity Hs is from the most severe expected in the 

operating area to the least severe expected. This continues until the value of obtained design­

extreme roll angle $ is less than $c for all values of heading, speed, family member and wave 

direction encountered (tJ.o V0 F<ll) when the simulation skips lower seastates in favour of the next 

load condition value (~). In addition, simulation will only occur if the sea severity H, can exist i.e. 

if p{Hs Ill) > 0 and a test is made for this at the start. 

The simulation pauses at position "A" indicated in table 7.3 i.e. at every increment of wave 

spectrum family member F, (a function of modal wave period Tm). in order to calculate the 

probabilities of attained heading and speed for the given initial heading, initial speed and 
' ' 

encountered seastate p(1J.ItJ.oV0HJ) and p(VItJ.oV0 H,F). The significance of this step is 

explained in the next section. 

The remainder of this chapter describes fully, with the aid of a worked example, the procedure 

for calculating the scenario probability within subroutine PROS. 
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Domain= L1 Season = S1 Load=~~ Hs = Hs1 41 = 41, F = F1 J.J-o = J.J-o, V o =V o1 

V o = V oz 

I 
V o =V o1 

J.J-o = J.J-oz V o =V o1 

I 
V o =V o1 

[A] .J.J-o = f..Loj V o =V o1 

F=F V o =V o1 z J.J-o = f..Lo, 

I 
V o = V·ol 

f..Lo = f..Loj V o =V o1 

F = F11 J.J-o = f..Loj V o =V o1 

$=41 f' = F, f..Lo = f..Lo, V o =V o1 J 

l 
V o =V o1 

f..Lo = f..Loj V o =V o1 

F = Fl( J.J-o = f..Loj V o =V o1 

$=41 
~ 

F' =F. f..Lo = f..LoJ V o =V o1 

Hs = Hs 2 $ = cfl, F = F, f..Lo = f..Lo, V o =V o1 

I 
V o =V o1 

J.J-o = J.J-oj V o =V o1 

F = Fl( J.J-o = J.J-oJ V o =V o1 

cJI = cpl F = r. f..Lo = f..LoJ V o =V o1 

Hs = Hs,. 41 = <I>~ F' =F. J.J-o = J.J-oj V o =V o1 

Domain = L1 Season = S, Load = ~ 2 ETC ETC ETC ETC ETC 
ETC ETC ETC 

Table 7.3 Order of Simulation 
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7.3.1. Worked Example Using Subroutine PROB. 

Consider the following Scenario: 

The F.P.V. SULISKER operating fully laden in the N. AHantic in winter encounters a severe 

storm. This forces a change in course c and speed v0 from 150 degrees (T) and 15 knots to 120 

degrees (T) and 12 knots in order to reduce motions and sealoads, due to vertical motion, to 

within acceptable limits. This 'best' course and speed still yields a design-extreme roll angle of 35 

degrees, taklng account of seastate duration. Calculate the single independent trial probability of 

obtaining this roll response. 

Additional data: 

Location code L =2 
Season codes =4 
Load index li = 1 
Significant waveheight Hs = 15 m 
Primary wave direction <Il = 270" 
Ochi 6 - parameter 1amily member F = 1 
Initial relative heading J.lo =60° 
Initial speed v0 = 15 knots 
Final relative heading J.l =30° 
Final speed V = 12 knots 
Design-extreme roll angle lj) = 35o 

N.B. this data has been chosen for convenience and ease of calculation in order to avoid 

protracted iteration steps. 

(Additional probability tables will be introduced where appropriate in the calculation) 

According to the notation of chapter 4 it is required to calculate p 1(J.l V H> m I LS) for a given (ti) 

i.e. the probability of encountering the scenario which gave rise to the response. 
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• Calculation Summary 

The order of computation in subroutine PROB for calculating the single independent trial 

probability of obtaining the predicted roll response is: 

Step( a) Calculate the two transition matrices: 

T(fllflo V0H,F)- the probability of final attained heading given the initial heading, initial speed 

and encountered seastate. 

' 
T(V 1 f.lo V0H, F)- the probability of final attained speed given the initial heading, initial speed and 

encountered seastate. 

Step (b) Calculate the climate probability: 

p(H_T m <lll LS)- the probability of seastate given the location and season. 

Step (c) Calculate the encountered climate probability following avoidance seamanship by the 

master: 

Step (d) Calculate the probability of initial course and initial speed for a given location and 

season: 

Step (e) Calculate the probability of initial course, initial speed and encountered seastate given 

the location and season: 

Step (f) Calculate the probability of the initial heading, initial speed and encountered seastate 

given the location and season: 

Step (g) Calculate the required single trial probability of final heading, final speed and 

encountered seastate incorporating pacifying seamanship given the location and season (the 

scenario probability): 
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Calculation 

Step (a) Calculate the transilion matrices: 

' ' 
T(f.l/(.10 V0 HsF)"' T(f.l =30° I Jlo=60° V0 = ISktsHs= 15 mF= 1) 

- the probability of final heading given the initial heading, inilial speed and encountered seastate 

(from knowledge of the attained final speeds and headings from the simulations) 

Similarly calculate the probability of final speed given !he initial conditions: 

' ' 
T(V I J.1o V0 HsF) = T(V= 12kts IJ.1o=60 ° V0 = 15 kts Hs= 15 mF= 1) 

For each wave spectrum family member (F - a function of modal wave period) for a given 

seastate severity the program runs through all the available combinations of initial heading J.lo and 

initial speed v0 , according to the order given previously in table 7.3. For each of these (49) 

heading/speed combinations, values of final attained heading f.l, final speed V and design­

extreme roll angle~ are calculated by the main program, Table 7.4. 

This informalion is stored in compact matrix form in Table 7.5 and Table 7.6 to show values of 

final heading given initial heading and final speed given initial speed. For example the tables 

indicate how an inilial heading J.lo of 60 degrees and an initial speed V0 of 15 knots gave a final 

heading f.1 of 30 degrees and final speed V of 12 knots. 
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f..Lo vo f..L V (/) f..Lo vo f..L V (/) 

0 0 0 3 12 90 12 30 6 17 

0 3 30 6 14 90 15 90 12 16 

0 6 60 12 17 90 18 120 3 13 

0 9 90 15 14 120 0 60 9 18 

0 12 90 18 15 120 3 0 0 15 

0 15 30 15 12 120 6 0 3 22 

0 18 90 18 9 120 9 60 15 24 

30 0 60 9 17 120 12 0 0 22 

30 3 30 0 17 120 15 150 6 19 

30 6 90 0 21 120 18 90 6 20 

30 9 60 6 25 150 0 30 3 20 

30 12 30 6 21 150 3 60 0 15 

30 15 60 18 22 150 6 90 18 17 

30 18 30 3 19 150 9 90 6 12 

60 0 60 0 18 150 12 30 18 15 

60 3 90 3 22 150 15 30 12 17 

60 6 60 12 27 150 18 60 3 15 

60 9 30 12 27 180 0 30 3 5 

60 12 30 18 25 180 3 30 3 5 

60 15 30 12 35 180 6 30 6 8 

60 18 150 9 29 180 9 60 15 9 

90 0 30 3 28 180 12 30 3 12 

90 3 60 9 28 180 15 0 15 7 

90 6 90 15 17 180 18 30 3 5 

90 9 90 9 18 

Table 7.4 Example Response Mapping 
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Enter In i t i a L 
Heading Vo 

Enter Initial 
Speed 

"' 0 0 .30 60 90 90 .30 90 

0 3 6 9 12 15 18 

3 6 12 15 18 15 18 

.30 60 30 90 60 30 60 .30 9 0 0 6 6 18 3 

60 60 90 60 (30) .30 ~ 150 0 3 12 (i2) 18 12 9 

90 ,}() 60 90 90 JO 90 120 3 9 15 9 6 12 3 
120 60 0 0 60 0 150 90 

15 0 ,}() 60 90 90 ,}() ~ 60 

180 ,}() 30 30 60 30 0 30 

9 0 3 15 0 6 6 

3 0 18 6 18 u 3 
~ 

3 3 6 15 3 15 3 

Go To 

Table 7.5 (J..IIJ..Io) Table 7.6 (V I V0 ) 

lt is required that all of the initial heading/speed (f..lo V0) combinations which resulted in the final 

attained heading/speed values of ll = 30 o and V= 12 J...ts be identified 

i.e. 

This was achieved by considering the corresponding matrix positions with final heading J..l of 30° 

and final speed V of 12 kts (indicated by the circled positions in table 7.5 and 7.6) 

Step(b)- Calculate the required climatology probability (before avoidance seamanship) 

p(HJ m <f) I L S) =p(F I L ) . p(Hs <f) I LS) 

Table 7.7 contains values of the probability of the wave spectrum family m~=Jmber given the 

location p(F I L). The Ochi 6-parameter spectrum family with 11 members, rather than the 

JONSWAP spectrum family, is used in this example. 

Family Member (F) Most Probable Spectrum All Other Spectra 

p(F/L) 0.50 0.05 

Table 7.7 Wave Spectrum Family Weighting p(F 1 L ) 

Ochi 6-parameter spectra, Ochi(1978) 

150 

V 



Table 7.8 contains values of the joint probability of significant waveheight and primary wave 

direction tor the relevant location Land seasonS, p(H/D f LS). 

H.AIIal\tlc ('lit I I\ le r) Area l : Sample Size J~28 

HI H NE £ S£ 5 SW 'ft NW To I. 

14 0. 1 0.1 

·~ 0.0 0 . 1 0. 1 0.2 

I l 0.2 O.J 0.0 0.5 

11 0.0 0 .0 0.7 o.a 0.1 1.& 

~ - ~ 0.1 0.1 0...5 1. 1 0.1 1.9 

a.~ 0.1 o.J 0. 1 1 .~ La 0.2 A.O 

7.5 O.J 0.1 0 .& 0.7 Ul u 0.2 u 
6.~ 0.7 O.l a.o 0.7 1.1 u u O.l 7.JJ 

5 . 5 0.11 0.7 0.4 o.a 1.J 0 J. ~ 0.~ 12.4 

4.5 t.a 1.1 0.4 1.7 2.0 ~.7 J .O o.a 16.6 

3 . ~ .l.O 1--' Q..J 1.4 2...5 A.J 2.0 o.g l~u 

l.S .l.A u o.J 1.7 1.7 4.0 2.7 O.A 17. 1 

.. , l.!l 1...5 O..l 1.4 1.7 u 1.!1 O.J 12.7 

0.5 0.6 0.8 0 .0 0 .2 0.3 0...5 O.IJ 0.0 l.4 

r o 1. U .. l 6.A 2.0 9.6 12.2 li.J 21.2 3.11 100.0 

Table 7.8 Joint Probability of Significant Waveheight and Primary 

Wave Direction: p(Hs <l>)x 102 

The required climate probability : 

p(Hs= 15 F= 1 <t> = 270 / L =2S =4) = p(F = 1/ L =2) .p(fls= 15 <1> = 270 / L = 2 S =4) 

=0.50xO.lOx w-2 

=5x 104 
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Step (c) Encountered climate after avoidance seamanship: 

Correspondence with the masters of SULISKER and the sister ship VIGILANT, Dickson (1984) 

and Rattray (1984), indicated that no avoidance seamanship is attempted for winds less than 

Beaufort force 8. For winds in excess of force 8 the ships proceed to or remain in sheltered 

waters until the weather improves. 

The example transition matrix of Table 7.9 states that on 10% of the occasions when a 

significant waveheight H of 15m would have been encountered, in the absence of avoidance 
s ' 

seamanship, the master's action will result in exposure to a significant waveheight H, of 11 m 

(reading the 15 m column in table 7.9). 

Seastate Before Avoidance (Hs) 

0 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 11 13 15 18+ 

0.5 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.2 
1.5 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

~ -.. 2.5 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 J: 
~ 

"' 3.5 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 u c: a 4.5 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 "tl ·a 
5.5 0.0 0.0 ~ 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.1 0.0 0.2 0.0 0.0 

.... 6.5 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.1 0.0 0.2 0.0 .!!! 
":;( 7.5 
"' 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 o. 1 0.0 0.1 0.0 0.2 
:E 8.5 
"' 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.1 0.0 0.1 0.0 
a 9.5 0.0 0.0 0.0 0.0 0.0 0.0 .. 

V1 
0.0 0.0 0.0 0.4 0.0 0.1 0.0 0.1 

11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.1 0.0 
13 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.1 
15 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.01 
18+ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 

Table 7.9 Seastate Transition Matrix: p(H/ H,) 

Similarly on 10% of the occasions when H, = 15 m would have been encountered a seastate of 

H, = 8.5 m is encountered and again on 20% of occasions a 6.5 m waveheight is encountered. 

On 40% of the occasions when H, = 15 m would have been encountered the master either takes 

no action or takes action which is not effective. On the remaining 20% of occasions when a 

significant waveheight H, = 15 m would have been encountered the master opts to proceed to or 

remain in port. A similar pattern is reflected in the choice of master's action for other seastates 

when winds greater than force 8 are experienced. 

Now, the probability of encountered seastate: 

p(HJm cf.l/ LS) 
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' 
= p(H, = 15 F= I <II =270/ L=2S =4) 

' 
p(H,IH).p(HJ<IIILS) clfl, 

' p(H,= 151 H,) .p(H,F= I <11=270/ L=2S=4) dH, 

=0.40. S.r lo-"(when H, = 15m) + 0.0( for all other H, values -table 7.9) 

hence 

p(H> 15F= I <11=270/ L= 2S=4)=2.0x I0--1. 

Step (d) Initial Course and speed for a given Location p(CV0 1 LS) 

Table 7.10 illustrates an example of an initial course/speed probability matrix for the North 

Atlantic in winter. 

Initial Speed V, 

lnlllal 
Course C. 0 J 6 9 12 15 18 

0 0 0 0 

15 0 0 0 

JO 0 0 0 

45 0 0 0 

60 0 0 0 

75 0 0 0 1 

90 0 0 0 

105 0 0 0 

120 0 0 0 

135 0 0 0 

150 0 0 0 

165 0 0 

180 0 0 

195 0 0 

210 0 0 0 

225 0 0 0 

240 0 0 1 

255 0 0 0 

270 0 0 

285 0 0 0 

300 0 0 0 

315 0 0 0 

330 0 0 0 

345 0 0 0 0 

Table 7.10 Initial Course and Speed Probability p(C V0 !LS)x 102 
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For this example it is assumed that initial speeds of 3 knots and 9 knots are not possible and 

that all initial courses are equally possible for the initial spefi!dS of 0, 6 and 18 knots. For initial 

speeds of 12 and 15 knots the situation is more involved. 

Step (e) Calculation of the probability of Initial Course and Speed in the Encountered Seastate. 

This 7 x 24 matrix of speed/course combinations will combine with the 8 primary wave 

directions ell, in some instances to yield the same initial heading to waves (iJ.o). Certain of these 

are not of interest in the light of the data pairs that were identified in step (a). 

lt is necessary to consider all of the relevant combinations of initial heading (llol and speed (V0) 

which gave rise to J.1=30° and V= 12 knots, in the seastate in order to calculate p(J.l V IIJ.o V0 H,F) 

i.e. from step (a) 

1Jo=60°. V0 =9knots 
llo =60°. V0 = 15 knots 
llo = 150°. V0 = 15 knots 

Each of these data pairs has associated with it 2 courses. Recalling that the primary wave 

direction ell was 270 degrees then, as example, for the last data pair (iJ.o = 150° v0 = 15 knots) the 

associated courses will be 240 degrees (T) and 300 degrees (T), Figure 7.9, since J.l=ell- c. 

PWO 
270" m 

240"T CCOURSE IJ 

HEADING ANGLE ~ =ISO" 

SPEED V =IS KTS 

300" T CCOURSE 2J 

Figure 7.9 Two Courses for a Single Relative Heading to Waves 

Hence, C = 240° (n, V0 = 15 !..1s and p(C V0} = 1 x 1 o-2 from table 7.1 0. 

Also C=300o <n. V0 = 15 kts and p(C V0}=0 from table 7.10. 

This process is repeated and the values are given in Table 7.11. 
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lniliol Heading/Speed Courses p(C, V 
0

) 

J1. 0= 60', V.= 9 kls C,= 030' T p(30, 9) = 0.00 

li.= 60', V 0= 9 kls c,= 1so• r p(150, 9) = 0.00 

11-.= 60', V.= 15 kls C,= 030' T p(30, 15) = o.oo 

J1.0= 60', V.= 15 kls C = 150' T-• p(150, 15) = 0.00 

11-.= 150', V 0= 15 kls C,= 240' T p(240, 15) = 0.01 

11-.= 150', V.= 15 kls C,= 300' T p(300, 15) = 0.00 

Table 7.11 Values of p(CV01 LS) 

Step (f) Calculate the probability of the initial heading, initial speed and encountered seastate 

given the location and season. 

As example consider the case when f.lo= 150• and V0= 15 kts in table 7.11. 
. . 

p(f.lo V0 H,FI LS) = p(f.lo= 150 V0 = 15 Hs= 15 F= 1/ L=2S=4) 

= f" p(C V0 = 151 L=2S =4) .p(H:= 15 F= 1 <II=270/ L=2S=4) dC 
0 -1 -1 

=0.01.2x 10 + 0.00.2x 10 

=2x 10-.s 

This process is repeated for each of the (tJ0 , V0 ) values of table 7.11. In this contrived case the 

resulting values are all zero. 

Step (g) Finally, incorporating the pacifying seamanship: 

(section 6.5) 

Thus 

p(tJVH~FILS)= J: t" p(f.lVIf.10 V0 H~F).p(f.1t1V0H~FILS) df.1t1dV0 

=I: J:" p(f.llf.1t1V0 H~F).p(VIf.10 V0 fl:F).p(f.l0 V0H>ILS) df.l0 dV0 

p(f.l=30V= 12H,= 15 F= 1/L =2S =4) 

' ' 
= p(f.l=301f.1t1= 150 V0 = 15H,= 15 F= 1) .p(V= 12/f.ltl= 150 V0 = 15H,= 15F= 1). 

p(f.lo= 150 V0 = 15Hs = 15 F= 11 L=2S=4) 
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I. 
' 

= (i /:]):r(l/4)x2.r!I0;-6 ='7•.14xil0"'8' 

Hence the.scenario probabiiity = 7.N!X J0:-:8 

'rhus for this'special example. this iflgure is the lndependeni single .triai probability!of the scenario 

occuring, in the specified location\and season;, which: gave rise to the design:extreme value1of 35 

degrees: 
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Chapter 8 

Simulation of the Capsize Probability 

8.1. Sensitivity of Roll Motion to Parametric Variation 

8.1.1. Introduction 

In this section the factors with primary influence on vessel rolling are studied for an operationally 

meaningful range of speed and sea conditions. This is necessary because the idealised "long· 

term" calculation of motion probabilities described In Chapter 4, which uses apparently 

continuous probability distributions, is not possible in practice. This arises because certain of the 

variables used in the calculation are conceptually discrele (e.g. spatial domain, season) while for 

others there is insufficient data to provide continuously variable probabilities. One example of this 

is the vessel's load condition which displays continuous changes over a voyage as well as longer 

term variation of the lightship weight. This long term variation is largely due to the accumulation 

of equipment items, corrosion and paint as the vessel ages. The sensitivity study is intended to 

demonstrate how such variations affect the roll motion so that the complete variation of the 

motions for each parameter is revealed. lt is important that the resulting discretisation scheme for 

each of the parameters reflects this sensitivity so that the final long·term motion distributions may 

be accurately assessed from the "integrations" of the (well chosen) discrete probability 

distributions. 

8.1.2. Scope of the Sensitivity Study 

The parent vessel used in the study is the F.P.V. SULISKER at the full design displacement 

condition. Leading particulars are given in Table 8.1. Results were derived from the main 

simulation program RISK.F77 using transfer functions obtained from the Britsea seakeeping 

computer programs. 
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/ 
Parameter Value 

Displacement 1532 tonnes 

Length Overall 71.03 metres 

Length perps. 64.00 metres 

Beam mid. 11.60 metres 

Draft mid. 4.595 metres 

Metacenlrlc Height 0.778 metres 

Roll Gyradlus 3.90 metres 

Yaw Gyradius 16.0 metres 

Lengthl-Displacement 
Ratio @ 5.60 

Block Coefficient Cb 0.4574 

Midship Area 0.8464 Coefficient Cm 

Waterplane Coefficient 0.7052 Cw 

Bilge Keel Length 8.68 metres 

Bilge Keel Width 0.38 metres 

Table 8.1 Parent Vessel, Leading Particulars 

Variation of the main hull design parameters was not attempted in this study since a vessel 

already built was used. A comprehensive study of the seakeeping characteristics of a new 

design would have included the effect of the variation of hull form parameters on roll. One 

example of such a study is by Schmitke (1980) for frigate rolling. 

The parameters which were varied in this study may be grouped into 2 categories: 

a) Internal Parameters Affecting Roll Response: 
. 1. Displacement; 

2. Weight distribution (roll gyradius and metacentric height); 

3. Trim. 

b) External Parameters Affecting Roll Response: 
1. Significant Waveheight; 

2. Wave period; 

3. Wave energy spreading; 

4. Wave spectra; 

5. Duration; 

6. Vessel speed and heading. 
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A further important consideration is the standard of seamanship demonstrated by the master. 

This aspect is discussed within the main simulation section. 

a) Internal Parameter Variation. 

The general philosophy in varying parameters from the parent values is to achieve a reasonably 

large variation whilst keeping within practical limits. The overall scheme of internal parametric 

variations is summarised in Table 8.2 and these may be compared against the likely range of 

vessel load conditions taken from the stability booklet, DTI (1981) ·Table 8.3. 

Parameter Low Value Parent Value High Value 

tl 1380 ( -10%) 1532 1685 (+10%) 

GM 0.500 ( -36%) 0.778 0.810 (+4%} 

Kxx 4.060 (-4%) 4.234 4.408 (+4%) 

Trim 0.038 ( -31%) 0.055 0.318 (+478%) 

Table 8.2 Summary of Internal Parametric Variations used 

Parameter Low Value Parent Value High Value 

A 

GM 

Kxx 

Trim 

1229 ( -20%)• 1532 1546 (+1%) 

0.500 ( -36%)• 0.778 0.778 (+0%) 

no Information 4.234 no Information 

0.038 (-31%) 0.055 0.318 (+478%) .. 

• Light Condition •• Ice Condition 

Table 8.3 Range of Actual Parameter Values 

(F.P.V. SULISKER Stability Booklet) 

lt can be seen that the range of internal parameter values used in the sensitivity study (table 

8.2) generally encompasses the actual range of parameter values taken from the stability booklet. 

Exceptions to this rule are the 'low value' of displacement which was the non-seagoing lightship 

displacement condition and the value of roll gyradius, Kxx, the likely range of values for which has 

been taken from measured model data, Freeman (1986). 

The basis ship condition tor all of the realistic variations was given in table 8.1. A ship speed of 

10 knots at a heading of 90 degrees to longcrested waves is assumed. The ISSC wave spectrum 

with significant waveheight of 5 metres and modal period 10 seconds was used in all cases. 
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b) External Parameter Variation. 

External parameter variation was according to Table 8.4. The parent hull was used in all cases 

for a speed of 10 knots at a heading of 90 degrees to waves. Again, unless otherwise stated, 

longcrested waves of the ISSC spectrum with significant waveheight 5 metres and modal period 

of 10 seconds were used throughout. 

Parameter Value Range Comments 

Significant Wovehelghl (m) 4-12 

Wave Modal Period (sec.) 4-14 Natural roll period 8.5 ·sec. 

Initial Heading (deg.) 0- 180 Head Sea 180 deg. 

Initial Speed (kts.) 0-15 

Brelschnelder 
Wave Spectrum Ochl 6-Paromeler 

Jonswap 
Longcresl 

Wove Energy Spreading Long/Shorlcresl cos 1 cos• 
180 deg. spread 

Independence Period (hours) 1-60 

Table 8.4 Summary of External Parametric Variations 

The implications of the results of the sensitivity study for the simulation are discussed within the 

following sections. 

8.2. Parameter Values Used In the Main Simulation 

8.2.1. Introduction 

Figure 8.1 shows the proving ground divided into two distinct climatology domains (labelled 2 

and 4) for the simulation. Each domain has associated with it two sub-domains which reflect the 

different wave conditions (open-sea/fetch-limited) likely to be encountered within the same 

climate domain: 
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2 

Figure 8.1 Spatial Domains and Sub-Domains 

Sub-Domain A 

An area along the north-east coast of Scotland, sheltered from .the west and with a limited fetch 

from the south. This is mainly a transit area for the vessel to/from the patrol areas; 

Sub-Domain 8 

An open sea area (mainly} in the northern North Sea (patrol area); 

Sub-Domain C 

An open sea area in the eastern North Atlantic (patrol area) ; 

Sub-Domain D 

An area along the north-west coast of Scotland with limited fetch from the south and east (patrol 

area). 

Sub-domains A and B lie wholly within the spatial domain "4" given in the long-term climatology 

used in this study, Bales et al (1981 ). Sub-domains C and D similarly lie within spatial domain 

"2". 

lt was assumed that of the total time spent at sea, 10 percent was spent in sub-domain A, 20 

percent in sub-domain 8 with 70 percent being spent in sub-domains C and D combined. This 

was confirmed by a single voyage analysis of the SULISKER by Spouge (1985). 
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8.2.2. Displacement Condition 

Figure 8.2 shows that the ship internal parameters of displacement, roll gyradius and trim have 

only a small effect on roll response over the realistic range of parameter values used. Also, that 

the roll response varies in a linear manner with change in each parameter. Corresponding values 

for heave and pitch (not shown) indicate virtually no change in response level for each of the 

above parameters. 

Correspondence with the commanding officer of SULISKER, Dickson (1984), and the sister ship 

VIGILANT, Rattray (1984), confirmed that the operating values of displacement and trim alter 

very little during a patrol because, as fuel and freshwater is consumed, the ship condition is 

adjusted by appropriate ballasting. In addition, the stability booklet indicates that the metacentric 

height will only take values between 0.6- 0.7 metres for which range of values the resulting roll 

response may reasonably be assumed constant, figure 8.2. 

Thus only one (constant) condition of ship displacement was used in the main simulation and it 

was not necessary to divide the sea area sub-domains into domain segments each of distinct 

(dilferent) displacement condition. In this respect the treatment of the SULISKER was unusual. 

Most merchant and fishing vessels display relatively large variation of displacement. trim and 

metacentric height particularly between the ballast and fully-laden conditions. Indeed the 

SULISKER displays small variation of load condition more reminiscent of a naval vessel. The 

ship condition used was the same full-scale trial condition (designated 4SK) for which good 

correlation with full scale measured sea trials was obtained in chapter 5. 
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8.2.3. Wave Climate 

• Wave Spectrum 

Figure 8.3 shows that RMS roll response effectively varies linearly with signilicant waveheight. 

The effect is distinctly non-linear with regard to modal wave period (figure 8.3) since the response 

is highly tuned to waves with frequency close to the natural roll frequency. For this reason it Is 

important to ·ensure that values of wave frequency close to the resonant value are not left out of 

the analysis. For subdomain C, the open-sea area of the North Atlantic, it is appropriate to use 

the Ochi 6-parameter family of wave spectra to cover the likely range of spectral shapes which 

occur in practice. This comprises eleven family members i.e. eleven modal periods for any given 

significant waveheight. 

In subdomain D the fetch is limited for winds from the east and southeast. Analysis of the North 

Atlantic wave climate (later table 8.6) revealed relatively small probabilities of occurence of 

severe seastates for these wind directions, compared with the probabilities of the (prevailing) 

winds from the south and west which have the fetch of the whole of the North Atlantic. This was 

confirmed by correspondence with the ships' masters. lt was for this reason that the Ochi 6-

parameter (open-sea) family of wave spectra was also used for sub-domain D to predict the 

severest responses. For subdomains A and Bin the North Sea the JONSWAP family of (5) wave 

spectra was used with the fetch length set as a function of location and primary wave direction. 

Figure 8.3 shows that a greater spread of roll response is obtained (for the same sea severity) 

using the Ochi 6-parameter and Bretschneider 2-parameter families of wave spectra compared 

with the family of Jonswap spectra. 

• Wave Energy Spreading 

Figure 8.4 illustrates the effect of different wave energy spreading on RMS roll. Cosine-squared 

wave energy spreading at ±90 degrees about the primary wave direction was assumed 

throughout the simulations in all of the sea areas. 

The reasons for this were: 

a) unidirectional seas are rare; 

b) spreading about a predominant wave direction as narrow as ±60 degrees and as broad as 

± 120 degrees is not rare with ± 90 degrees probably representing the most frequent case, Bales 

et at (1981); 

c) the severest seastates generally have a single predominant wave direction, Bales (1984); 

d) the 16th International Towing Tank Conference (ITTC) recommended its use in 1981. 

164 



•• RWS ROLl ws SIGNIFICANT WAYEHEIGHT • •• EXTREWE ROLl vs SIGNIFICANT WAYEHEIGHT 
(U P[RC(Mt CDMRD[IjC[ BOUNDS) .. -. 

e .. 01 e .. ·---------· .., w IAETSCHNEID[I 
15" 

.... 0 s. " c: .... •• 5 OCMII-PARAMUU 
Cil 0 .. 

:> "' (X) 5 
.. 
~ .. .. ~ • • (..) 0 

"' . 
:0 .. ; 

:1 
___ .. 

CD I e "' 0 
c: .. .. .. w 
u; ' "' • 
2. 

.. I 0 .. 
;;; 
w 

Ul .. 
CD 
::> 

"' a: 
:S. • • I I ' I •• " •• • • • I ' I •• ~ SIGNifiCANT WAV[H[IGHt (WORES) SIGNifiCANT WAV[H[IGHt (WETRES) ... Ul en c tn 

EXTREWE ROLl vs SIGNIFiCANT WAYEHEIGHT c. RWS ROLl vs WODAL WAVE PERIOD 
'.:< .. ... 
m 

(11~ P£11C£NT CONFIDENCE BOUNDS) 

)( 

lD .. ~ 

::> ::: 
~ ~ e .. 
"""0 .. w .... 0 
Dl s. .. " ~ s Ill .... 
3 0 . 

:> "' JOIIISWAP 
CD t: .. 
<n ~ 

I ::: •• .. 0 
~ "' . 
< .. w .. "' Dl .. w 
:::!. 0 = Dl .. I : g· .. 

' "' " ::> .. 0 .. 
~ .. 

• • • ' I I •• " •• .. .. .. • I • • I ' I 10 
WOOAL WAVE PERIOD (SEC.) SIGNifiCANT WAVEHEIGHT (WETRES) 



Further work is required in this area and it is likely that a future refinement would be to use a 

variable model of directionality for particular operational scenarios in specific geographic areas 

once they have been verified. 
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Figure 8.4 Effect of Wave Energy Spreading on Roll 

• Probability Aspects 

The required joint probability of significant wave height, modal period and primary wave direction 

before avoidance seamanship is, as before: 

p(H, T'" <11) =p(F I L) .p(H, <11 I LS) 

where p(F I L) is the probability of the wave family member (Table 8.5) for a given location and 

p(H, <11 I LS) is the joint probability of significant waveheight and primary wave direction for a given 

location and season. 

Family Member 

Location 1 2 3 4 5 6 7 8 9 10 11 

N. Atlantic 0.500 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

N. Sea 0.081 0.26 0.33 0.26 0.081 

Table 8.5. Wave Spectrum Family Weighting 

Values of the joint probability of significant wave height and primary wave direction, p(lf, <111 L S), 

for the North Atlantic and North Sea climate domains are given in Table 8.6. and Table 8.7 

respectively. 
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This represents a 10 year (long-term) average of the wave conditions in each area and season, 

Bales et a1 (1981). In the medium-term (on a voyage by voyage basis) il is inevitable that the 

vessel will experience seastates which are more severe than the long-term average conditions. 

The medium-term climate is simply a sample drawn from the long-term climate and will display 

·variability above (and below) the mean. The results of the sensitivity study confirmed that the 

greatest effect on vessel motions is likely to be due to the variability in the encountered wave 

climate and thus, ideally, this variability should be taken into full account. One approach would 

be to compute individual motion results for each of (in this case) 10x12 monthly hindcast periods 

and this would demonstrate the complete climate variability as far as is possible. Equally, it is 

important when predicting long-term (average) per1ormance to use reliable long-term wave 

climate statistics and not the wave data from any individual voyage, month or season which may 

be quile untypical of the climate. 

The proposed method falls somewhere between these two extremes. On the one hand it is 

desirable that the method should predict every conceivable instance when capsize could occur 

(with the associated probability of occurence) for each individual vessel. On the other hand it is 

desirable that the method should be capable of incorporation as a stability assessment procedure 

which requires that typical plausible and consistent values be used. 

Thus in this preliminary study the 10 year average hindcast climatology was used. The 

necessary refinement of the method to account for medium-term climate variability between 

different medium-terms may require an unacceptable 30 fold increase in the number of runs 

through the program. Indeed further work is required to assess how best to incorporate climate 

variability in order that the framework might be used for correlation purposes. An alternative likely 

way forward is to use, say, a 95 or 99 percentile sea severity to give expected bounds of extreme 

motion. 

8.2.4. Avoidance Seamanship 

Correspondence with the Fleet Support Unit of the Department of Agriculture and Fisheries for 

Scotland, Gorse (1984), revealed typical values of the sea areas by season in which the fisheries 

protection vessels SULISKER and VIGILANT may be expected to operate. 

lt was reported that typically 254 days are spent at sea and 111 days in port. In addition the 

master of VIGILANT indicated that "There are many occasions in winter when winds are in 

excess of force 9. the ship proceeds to or remains in sheltered waters until weather conditions 

improve", Rattray (1984). Assuming that no avoidance seamanship is attempted for wind 

strengths less than force 9 gave the following avoidance seamanship transition matrix of Table 

8.8. 
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Seaslale Before Avoidance (Hs) 

0 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 11 13 15 18+ 

0.5 . 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.20 0.20 0.20 

1.5 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o:oo 0.00 
~ 

2.5 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -.. 
:I: 
~ 

3.5 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ., 
u c 4.5 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 a 
:2 

5.5 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0 

~ 
0.00 0.00 0.00 0.00 0.15 0.00 0.00 .. 6.5 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

.2! 
< 7.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.15 0.00 
.2! 8.5 0.00 0.00 0.00 0.00 o.oo 0.00 0.00 o.oo 1.00 0.00 0.25 0.00 0.00 0.15 .!! .. 

9.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.25 0.00 0.00 a ., 
VI 

11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.00 0.25 0.00 

13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.00 0.25 

15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.00 

18+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40 

' Table 8.8 Seastate Transition Matrix p(H,I H,) 

This shows that no avoidance seamanship would be attempted for seastates of less than 11 

metres significant waveheight (Beaufort wind force 8/9). There is a uniform treatment of all 

seastate severities of 11 metres and above which is summarised in Table 8.9. 

Percentage Reduction 
p(Hs'/Hs) in Seastate Severity 

0% (no change) 0.4 

25% 0.25 

50% 0.15 

100% (proceeds to 
or remains in port} 0.2 

Table 8.9 Summary of Avoidance Seamanship 

lt is assumed that on 40 percent of occasions the master either takes no action or takes 

avoidance seamanship which is not effective. On 25 percent of occasions avoidance 

seamanship enables the vessel to obtain some degree of shelter resulting in a 25% reduction in 

waveheight. On 15 percent of occasions a corresponding reduction of 50% is assumed. Finally 

(for seastates of 11 m and above) it is assumed that on 20 percent of occasions the vessel 

remains in or returns to port. 
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This is a somewhat subjective area of the analysis which is dependent on the Individual master. 

Assumed values must be used in the absence of a statistical analysis of previous avoidance 

seamanship. 

As the result or the avoidance seamanship the seastate actually encountered is given by: 

' ' 
p(H,Fif>/ LS) =p(H,/ H,).p(H_Fif>/ L S) 

8.2.5. Initial Course and Speed 

The main problem to be addressed is how to define a typical operating pattern in order to 

determine the likely combinations of intended heading and speed. 

Figure 8.5 shows that response in roll is very sensitive to the vessel speed and heading to 

waves. Roll response is particularly non-linear with respect to heading and the figure emphasises 

the need for a fine discretisation mesh of headings to be used in order that severe responses are 

not overlooked. This is achieved within the risk model by enabling the simulated vessel to 

achieve any desired course between 0° (T) and 345° (T) in 15 degree increments. In addition, 

the vessel was able to achieve any intended speed between 0 and 18 knots in 3 knot increments. 

The SULISKER is based at Leith. Her patrol area extends out to the median line with 

Norwegian waters in the east, and to the 200 mile limit north and west or Rockall and the 

Shetlands, although she usually patrols around the Scottish islands and westwards out to the 1 00 

fathom line. The patrol area is reached from the Firth of Forth by the east coast thence to 

westward mainly through Pentland Firth. At times the route is varied by using the westward leg 

via the Fairisle Passage or a more northerly route is taken about Shetland. 

The SULISKER displays operating profile characteristics which are a combination of a merchant 

vessel, having a well defined transit route to the patrol areas, as well as those of a small warship 

or fishing vessel which is required to hunt prey on an opportune basis. Her routine task is to 

patrol the Scottish fishing grounds, gathering information for the Department of Agriculture and 

Fisheries for Scotland (OAFS), and checking that the fishing vessels are operating within the law. 

In calm weather the fishing vessels may be boarded, otherwise they are questioned by radio. 

The SULISKER may also be used for cleaning up oil spillages and to undertake a firefighting role 

if necessary. At times the patrol area is the northern North Sea. The patrol frequency is not 

influenced by the time of year since it is reported that "there are numerous occasions in the 

summer when severe· gales can be experienced, but these generally do not last more than a 

couple of days, and patrols are not restricted unduly at this time of year", Rattray (1984). 

Values of the joint probability of initial (intended) course c and speed v0 are obtained from: 

p(C V0) =p(C).p(V0 ) 

Values of the course probability, p(C) are given in Table 8.10 for each subdomain location in 

figure 8.1. 
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Figure 8.5 Roll Response to Vessel Heading and Speed 

p(C) Course p(C) Course p(C) Course p(C) Course p(C) 

0.01 90 0.01 180 0.01 270 0.01 0 0.04167 

0.01 105 0.01 195 0.01 285 0.01 15 0.04167 

0.39 120 0.01 210 0.39 300 0.01 30 0.04167 

0.01 135 0.01 225 0.01 315 0.01 

0.01 ISO 0.01 240 0.01 330 0.01 I I 
0.01 165 0.01 255 0.01 345 0.01 345 0;04167 

p(Cl Subdomain A p(C) Subdomains 8, C, D. 

Table 8.10 Values of p(C): All Areas 
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Subdomain "A" is strictly a transit area to and from the patrol areas. A medium-term voyage 

analysis would rellectthese constraints on the initial courses in detail. However, since the aim of 

the present study is to "license" the vessel for operation anywhere within the subdomain "A", thus 

other course probabilities are admitted while still maintaining a strong bias towards transit course 

values of 030°T and 21 0°T. 

In subdomalns B,C,D it is assumed that (while on patrol) there is a uniform probability of 

intended course value. 

Values of the probability of initial (intended) speed are given in Table 8.11. 

v, p(v,) v, p{V,} 

0 0.05 0 0.05 

3 0.00 3 0.00 

6 0.00 6 0.00 

9 0.05 9 0.30 

12 0.00 12 0.00 

15 0.90 15 0.60 

18 0.00 18 0.05 

p(V0 ) Subdomain A p(V0 ) Subdomains 8, C, D. 

Table 8.11 Values of p(V0) All Areas 

11 is assumed that while on transit in subdomain A the vessel will tend to cruise at an intended 

speed of 15 knots, which is close to the two-engine cruising speed value. Some occasions of 0 

knots and the single engine cruising speed of 9 knots are also admitted. These are attained 

speeds i.e. no allowance Is made for added resistance in waves within the simulation. 

For subdomains B,C and D values are used which are based on a single voyage monitoring of 

the SULISKER by Spouge (1985). lt can be observed that the ship spent most time near its two 

engine cruising speed but also reduced to the single engine cruising speed of 9 knots on 

occasion. In addition to the monitored values some occurences of 0 knots (station keeping) and 

18 knots (lull speed) are admitted. Thus values of p(CV0 ) are given in Table 8.12 for all 

subdomains. The table for the transit subdomain "A" reflects the strong bias towards the 

reciprocal course values of 030°T/210°T and speeds close to the two engine cruising speed. 11 is 

inevitable that there will be a certain degree of subjectivity with the values used but, provided 

comparative assessments of survivability between vessels (or for the same vessel) are intended 

over the same proving ground, this is not considered a problem. Correlation exercises would 

require that actual values be used whenever possible. 
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Initial Speed V 1 Initial Speed V 1 

Initial Initial 
Course C. 0 3 6 9 12 15 18 Course C. 0 3 6 9 12 15 

0 5 0 0 5 0 90 0 0 20.833 0 0 125 0 250 

15 5 0 0 5 0 90 0 15 20.833 0 0 125 0 250 
30 195 0 0 195 0 3,510 0 30 20.833 0 0 125 0 250 
45 5 0 0 5 0 90 0 45 
60 5 0 0 5 0 90 0 60 
75 5 0 0 5 0 90 0 75 
90 5 0 0 5 0 90 0 90 
105 5 0 0 5 0 90 0 105 
120 5 0 0 5 0 90 0 120 
135 5 0 0 5 0 90 0 135 
150 5 0 0 5 0 90 0 150 
165 5 0 0 5 0 90 0 165 
180 5 0 0 5 0 90 0 180 
195 5 0 0 5 0 90 0 195 
210 195 0 0 195 0 3,510 0 210 
225 5 0 0 5 0 90 0 225 
240 5 0 0 5 0 90 0 240 
255 5 0 0 5 0 90 0 255 
270 5 0 0 5 0 90 0 270 
285 5 0 0 5 0 90 0 285 
300 5 0 0 5 0 90 0 300 
315 5 0 0 5 0 90 0 315 
3JO 5 0 0 5 0 90 0 J30 
HS 5 0 0 5 0 90 0 345 20.833 0 0 125 0 250 

p(C V0 ) Subdomain A p(CV0)Subdomains B. C, D. 

Table 8.12 Values of p(C V0)x104 , All Areas 

8.2.6. Independent Trials Cycles 

In order to use the Bernoulli trials procedures for combining the scenario probabilities (Appendix 

A4) it is necessary to ensure scenario independence. In chapter 4 it was explained how this is 

achieved by using the concept of an independence period T, - the time that must elapse between 

two scenarios for them to be considered independent. 

Thus the expected number of independent trial samples for each sub-domain location (L) and 

season (S) for this long-term calculation is found from: 

where 

R 
N=­

VT, 

R is taken as the average (maximum) course-track distance 

V is the average vessel speed relative to the advancing weather 
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r. is the average independence period 

The value of the average independence period r. was based on heuristic arguments by 

Hutchison (1981) given an absence of firm calculated values. Thus a value of 24 hours was used 

for the North Atlantic domain and 20 hours was used for the more enclosed domain of the North 

Sea. This is a reasonable assumption for the present long-term comparative study but a 

medium-term study or a correlation study would require that the degree of correlation of adjacent 

seastates be correctly ascertained. 

The average distance/speed in each sub-domain R should strictly be given as a function of 

attained course/speed - alter both avoidance and pacifying seamanship have taken place. If the 

assumption is made that on most occasions of mild/moderate sea conditions no alteration of 

course or speed from the intended values would be necessary, and that only a small deviation is 

necessary for the remainder, then it is reasonable to use intended values rather than attained 

values of distances and speeds. 

The required average course track distance in each sub-domain was obtained as the weighted 

sum of all possible course track distances multiplied by their respective probabilities of 

occurence. The distances were taken to be the maximum traversible distance on each intended 

course in each sub-domain in order that the vessel might be licensed to operate anywhere within 

the proving ground, Table 8.13. 

The required average speed relative to the advancing weather conditions is more difficult to 

obtain, being a function of both the location and the predominant wind direction in each season. 

Again, given the long-term nature of the calculation it is considered reasonable to use the 

average intended vessel speed in each sub-domain location. On a roughly equal number of 

occasions the vessel will be travellling with/against the prevailing weather conditions. The 

weighted sum of all intended speeds multiplied by their respective probabilities of occurence were 

used. Table 8.14 summarises the calculations. 
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r Subdomai n "" Course 
Attai n ed (T) A a c 0 

0 300 555 555 300 
15 200 574 574 310 

30 160 616 641 308 

45 145 435 785 218 

60 135 356 794 178 

75 140 318 712 159 

90 15-4 308 688 15-4 

105 159 318 712 150 

120 178 356 794 178 

135 218 435 785 218 

150 308 616 641 309 

165 310 574 574 310 

180 300 555 555 300 
195 200 574 574 310 

210 160 616 641 308 

225 145 435 785 218 

240 135 356 794 178 

255 140 318 712 159 

270 15-4 .308 688 15-4 

285 159 318 712 159 

300 178 .356 794 178 

315 218 435 785 218 

.330 .308 616 64 1 308 

~·5 .310 574 574 31~ 

Table 8.13 Maximum Course Track Distances (N.Miles), All Sub-domains 

Sub-domain 

A 8 c 0 

Average Distance R (N.miles) 225 455 688 233 

Average Speed V (knots) 13.95 12.60 12.60 12.60 

Independence Period T .. (hours) 20 20 24 24 

Number of Bernoulli Cycles N 0 .81 1.8 0 2.28 0.77 

Table 8.14 Summary of Independent Trials Calculation 
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8.3. Main Simulation Results 

8.3.1. Computation 

The motion simulation and probability calculations were perlormed by a PRIME 6350 super·mini 

computer. The results for each sub-domain and season were processed separately and the 

probability information combined using the principles of chapter 4. 

The maximum possible number of compuler program ileralions, for one displacement condition, 

was given by: 

• North Atlantic 

2 X 4 X 1 X 14 X 8 X 11 X 7 X 7 = 482,944 

• North Sea 

L x S x ~ x H, x <D x F x llo x V0 

2 X 4 X 1 X 14 X 8 X 5 X 7 X 7 = 219,520 

Total = 702,464 

In addition, the master may try up to 48 combinations of heading and speed during his attempt 

to reduce excessive motions and sea-loads. Thus potentially there were approximately 34 million 

program iterations during the simulation. 

Certain simplifications were made in order to reduce this number of calculations: 

1. Sub-domains C and D were treated as one large area and the average maximum 
traversible distances "R", in the independence cycle calculation, adjusted 
accordingly. 

2. A test was made at the start to ensure that only physically realiseable values of 
significant waveheight and primary wave direction were used. 

3. it was assumed that the master, for the same seastate severity (characterised by its 
spectrum, significant waveheight, wave direction and family member) will always 
choose the same optimum heading/speed combination regardless of the original 
intended heading/speed combination. 

These savings reduced the total number of program iterations from around 34 million to 

approximately 256,000. This is still a considerable number when it is considered that four­

dimensional matrices of 27,000 data elements occur frequently within the program although this 

does include short-crested seaways. 
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No attempt was made to use the linearity of vessel motions with respect to significant 

waveheight or to interpolate for the smooth variation of roll motion with ship speed, in order to 

reduce the calculations. This would have increased the file handling complexity considerably. 

In using a JONSWAP wave spectrum family, a 5 fold increase of the number of computations 

over the more usual single wave spectrum formulation was experienced, with an 11 fold increase 

when using the Ochi 6-parameter wave spectrum family. lt was observed that for many of the 

severest seastates all of the family members produced motions in excess of the maximum 

seakeeping criteria allowed. This at least suggests that, when calculating the probability of a 

critical roll motion being exceeded, certain of the severest seastates may be represented by an 

appropriately weighted single wave spectrum. Only when the seastate, characterised by 

significant waveheight, was reduced did certain of the family members disappear from the 

extreme roll response results. 

8.3.2. Results 

The single independent trial probability of critical motion exceedance was obtained for each 

sub-domain and season in order to locate the particularly hazardous segments of the test-track, 

Table 8.15. 

p '( rp>rp .)x10l 

Sea Area Spring Summer Autumn Winter 

North Sea 

Transit Subdomain "A" 8.182 2.974 6.475 19.481 

Patrol Subdomain "8" 11.118 2.502 8.054 21.580 

North Atlantic 

Patrol Subdomain "C&D" 41.140 10.293 42.353 70.411 

Table 8.15 Values of the Single Independent Trial Probability 

lt may be observed that operations in the North Atlantic (subdomains "C&O") are particularly 

hazardous. They account for almost 60.5% of the cumulative probability value before any 

account is taken of location probability and number of independent trial cycles. This value may 

be largely attributed to the more severe seastates encountered in all seasons. Corresponding 

values for the (transit) subdomain "A" and (patrol) subdomain "8" are 23.5% and 16.0% of the 

total probability respectively, with the larger value for "A" reflecting the severely fetch-limited wave 

conditions in this sea area. Operations in the North Atlantic in the winter months are particularly 

hazardous ·yielding the largest single contribution to the total probability. 
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Final probabilities were obtained by the principles of chapter 4 using parameter values 

described in earlier sections. Table 8.16 shows values of the multiple independent trial 

probabilities after the vehicle location, season and number of independent trial samples was 

incorporated. As was previously noted, no allowance was necessary for the location being 

constrained by operating season. 

p"( ifJ>ifJ .)x1o• 

Sea Area Spring Summer Autumn Winter 

North Sea 

Transit Subdomain "A" 2.046 0.744 1.619 4.870 

Patrol Subdomain "8" 5.591 1.251 4.027 10.790 

North Atlantic 

Patrol Subdomain ''C&D'' 71.994 18.012 74.117 123.219 

Table 8.16 Values of the Multiple Independent Trial Probabilities 

When lhese factors are taken into account, operations in the North Atlantic account for almost 

94 percent of the total Proving Ground value of 4.951x1o-2. This represents the probability that 

the potentially dangerous roll angle of 30 degrees would be exceeded at least once on the 

passage through the proving ground, which represents a lifetime of operation. 

Major factors which may have influenced this result include: 

1. the assumption that no fin stabilisers were used. This was a failing of Britsea to 
account lor roll damping due to active fins. This will tend to increase the probability 
of critical roll motion exceedance obtained from the simulations. 

2. the assumption that the master will infallibly select the "best" heading/speed 
combination. In the first case, for the severest seastates when it is necessary to 
choose an optimum combination of heading and speed, this will always tend to 
reduce the probability by definition. 

In the second case the master selects the heading/speed combination which 
simultaneously gives least deviation from the intended track and satisfies the 
vertical motion seakeeping criteria. The effect of this on the motion probabilities will 
vary depending upon the values of extreme roll which are experienced. However, 
this is a secondary influence on the overall probability of critical motion 
exceedance. 

3. certain of the capsize phenomena have not been modelled i.e. only a single 
"general ship rolling" test-track has been used. This will have two effects. The 
most obvious is that the attained final probability value will be smaller than actual 
due to the exclusion of capsize phenomena. Secondly, the vessel will tend to 
favour headings and speeds which would normally be avoided in practice. Thus 
there is a tendency for the vessel to assume high speed In following or quartering 
seas when broaching and parametric resonance is likely to be a problem. 

4. steady wind-heel and wind gusting effects were not considered. 
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These factors are future refinements to the existing program. In order to investigate (2) the 

program was amended so that the master was further constrained in his choice of an optimum 

heading/speed combination in the severest seas. Correspondence with the officers commanding 

SULISKER and the sister vessel VIGILANT indicated that in severe weather conditions there is a 

tendency to reduce speed and to keep the seas on either bow. Adjustment of the master's action 

was made so that an optimum heading/speed combination was chosen only from among the 

motion results obtained for seas forward of the beam. Although larger roll angles were 

experienced than without these additional constraints, the original assumption of a uniform 

distribution of initial desired courses when the vessel is on patrol, tended to yield very similar 

scenario probabilities. The situation for lower seastates was unchanged when no decision 

regarding an optimum was required. Thus for the hazardous North AUantic, which accounts for 

94% of the Proving Ground probability little change was experienced and it may be concluded 

that, for the SULISKER, the probability of critical motion exceedance is of the order of 5x1o-2. 

The value of S.Ox 1 o-2 that was obtained from the simulation is not the same as the actual risk of 

vessel capsize. Rather, it represents the probability that a roll angle of 30 degrees will be 

exceeded at least once during the lifetime of the vessel. Thus it may be argued that it is more 

representative of the probability of being overwhelmed by the seaway which could eventually lead 

to a capsize. Unfortunately, the corresponding actual probability of loss is difficult to determine 

from casualty data because the vessel used in this study has a highly specialised role and there 

are relatively few of this type in service. However, as a rough guide, close examination of fishing 

vessel casualty statistics presented in chapter 1 indicates a value of 2.3x 1 o-J for the probability of 

being overwhelmed by the seaway (vessels capsized, laundered and missing). The value 

obtained from the simulation for the SULISKER, which is reported to have good seakeeping 

characteristics, represents the larger probability of exceedance of a potentially dangerous roll 

motion. The inadequacy of present knowledge of the basic physical processes immediately prior 

to capsize and lack of the required prediction methods necessarily leads to this compromise 

evaluation. The result should have meaningful comparative significance between different 

vessels provided that the 30 degree threshold value described by seagoing personnel and used 

in this study has significance as a potentially dangerous motion. 

The inclusion of further test-tracks (capsize phenomena) to improve the prediction is also simple 

in principle. it is suggested that, in order to utilise the results of these other specialist techniques, 

it is probably simplest if a heading/speed specific database of vessel responses i~ appended to 

the motion response amplitude operators used in this study and accessed in the same way. 

In principle the method may also be used to pinpoint operating scenarios which are of particular 

concern. This is especially relevant for a vessel which, because of the nature of its operational 

profile, displays large variation in displacement condition with consequent affect on motions. For 

the SUUSKER this was not the case; the vessel had a very fixed displacement condition. Thus it 

is only possible to highlight the fact that operations in the North Atlantic in winter are particularly 

hazardous since these gave the largest contribution to the final attained Proving Ground 

probability. 
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The SULISKER has a large metacentric height (0.778m) and is reported to have good 

seakeeping characteristics, especially when the active fin stabilisers are used. In order to assess 

how the stability of the SULISKER compares with other vessels it is necessary to repeat the 

procedure for a wide range of vessels including those that have capsized or nearly capsized. In 

this way the relative stability of different types of vessel may be obtained based upon a rational 

stability assessment procedure which correctly accounts for the probability of the governing 

parameters. 

The complete calculation occupied typically 3300 minutes of CPU time and 127 minutes of disk 

input/output time. Over two-thirds was attributed to the "North Atlantic" calculation with the 

remainder almost equally divided between the two North Sea subdomains. The PRIME 6350 (32 

bit) processor was operating at 11.4 MIPS (millions of instructions per second). This computing 

time requirement could be reduced by incorporating sophisticated file handling techniques as 

noted above. In addition, by taking advantage of the single wave spectrum in the severest 

seastates, it is estimated that an eight-fold reduction in computing time could realistically be 

achieved. This would enable the complete calculation to run overnight. 

11 should be emphasised that this is a once-only survivability calculation which it is being 

proposed should be performed in the design stages before a vessel is even built. No further 

assessment would be required unless the vessel is subsequently required to extend its operating 

domain or it undergoes alterations which materially affect its motion response. 
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Chapter 9 

Conclusions and Further Work 

9.1. Overall Approach 

For as long as man has ventured onto the sea there has always been present the possibility 

that his craft might capsize and be lost. This is still the situation today. The problem remains how 

to model the complex, irregular, six degrees of freedom vessel motion with sufficient accuracy to 

predict when a "dangerous" roll motion may be experienced, which could lead to the loss of the 

vessel, in order that a sufficient margin of stability may be provided. 

The current I.M.O. Resolution A.167(ES.IV) "Recommendation on Intact Stability for Passenger 

and Cargo Ships under 100 metres in Length", which recommendations have been adopted by 

many countries, embodies the current deterministic approach to assessing ship stability. While 

criteria of this kind have the main advantage of being simple to apply, they involve no explicit use 

of external forces or motion characteristics. They cannot give any indication of safety margins or 

of likely motion behaviour in any seastate except still water. Also, when some significant 

departure from established design practice occurs, no recourse can be made to previous 

experience. 

The lack of a necessary rational framework for assessing ship stability was the main concern of 

this research. The aim was to develop a rational philosophy and a logical procedure of assessing 

intact stability in order to ensure a consistent approach to design. This would show clearly where 

the uncertainties lie and where further research is most needed. 

The method uniquely brings together a linearised analysis for assessing a "potentially 

dangerous" roll motion with a probabilistic assessment of ship performance on a standard test­

track. A realistic modelling of total system behaviour included the effects of likely human 

behaviour on the performance. This represents a significant advancement on previous research 

work which has tended to ignore safety and vessel performance in rough seas in favour of an 

apparently intractable problem to predict large angle roll motion very accurately in idealised wave 

conditions. 

lt was demonstrated that retrospective reliability analyses, such as a fault-tree analysis, require 

information on the sequences of events giving rise to capsize as well as on the probability of each 

of the causal events occurring. Structural reliability methods also require greater detail (means 

and variances of demand and capability) than is currently available in the casualty records before 
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the safety indices or partial safety factors may be used with confidence. In this respect the 

requirement for motion/accident recorders, similar to those which are fitted to aircraft, to be 

routinely provided on seagoing vessels would appear to have particular merit. 

The probability approach to stability assessment that was developed at Plymouth comprised 

three distinct and interacting parts: 

1. Modelling of total system behaviour comprising primarily vessel response but also 
containing aspects of human behaviour. 

2. lndentification, selection and treatment of the potentially critical (capsize causing) 
operating scenarios. 

3. Evaluation and combination of the probabilities of the critical scenarios in order to 
predict the cumulative probability of critical roll motion exceedence. 

9.1.1. Potentially Dangerous Roll Motion 

A great deal of work is still necessary before large amplitude roll motion may be routinely and 

accurately predicted. The development of more advanced theory for fluid active and reactive 

forces that vary with amplitude, together with mathematical models describing the coupled roll· 

sway-yaw motions is required. 

Thus a further important and novel feature of the analysis was that the prediction of the actual 

large-angle capsize was not attempted per se. Instead, a lesser roll angle termed the "potentially 

dangerous" roll angle was selected, beyond which there was evidence that loss of the vessel is 

likely by being overwhelmed by the seaway. Thus the potential for disaster was being predicted 

rather than the disaster itself. This distinction is extremely important. In predicting a potentially 

dangerous motion there is no longer the necessity to describe the nonlinear extreme roll motion 

and the use of a linear theory may be defensible in certain circumstances. In essence it was 

proposed that linear theory be stretched to its prediction limits in order to estimate the probability 

of a roll motion judged to be potentially dangerous. 

This novel approach to intact stability assessment can be justified for the following reasons: 

1. The nature of the roll motion equation/s at large angles is uncertain since large 
nonlinear changes in the hydrodynamic coefficients occur as the deck edge is 
immersed. Further changes occur as the superstructure becomes immersed. 

2. long before the vessel reaches its capsize angle there is often great likelihood of 
cargo shifting. 

3. Simultaneously there is great likelihood of water downflooding into the hull as well 
as water trapped on deck. 

The requirement simultaneously to predict large angle damage stability, including the effects of 

cargo shifting and water on deck, is particularly daunting given the current state of the art for the 

intact case. 

Following discussions with seagoing personnel a roll angle of 30 degrees from the upright was 
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judged to be appropriate as the potentially dangerous roll motion. tt was not possible to 

incorporate velocity or acceleration terms since no references could be found to even indicate 

what values these might take. 

The investigation was able to proceed based upon the prediction of the probability of 30 

degrees being exceeded at least once during the vessel's lifetime. Thus no emphasis was placed 

on the actual roll angles obtained; simply that they exceeded the critical value. This is an 

important feature of the analysis given the nonlinear nature of extreme roll motion as well as the 

severely nonlinear nature of the severe wave excitation which is still not fully understood. 

9.1.2. Ll near Motion Theory 

In order to demonstrate the probabilistic framework which is being proposed for the assessment 

of intact stability, the spectral technique was judged to be the most suitable vehicle for the 

analysis. lt is concerned with general ship rolling over all headings and speeds and provides the 

major contribution to lhe capsize probability using the definition of potentially dangerous motion 

given above. The advantage of the spectral technique for predicting this threshold value, 

compared with other available methods, is that it has the necessary scope to be the central core 

of a probabilistic stability assessment even though certain (predominantly) time domain capsize 

phenomena will require incorporation at a later stage. lt can account lor the important motion 

cross-coupling and the effect of varying displacement conditions as well as different headings and 

speeds. A further important advantage is that the method is widely understood and it is readily 

available to the profession. 

Extensive dialogue with staff at British Maritime Technology Ltd, Wallsend was aimed at 

modifying the BAITSEA suite of seakeeping programs, and assessing their accuracy, for the 

analysis. Following many improvements a modified set of computer programs was made 

available to the author for predicting the linear response amplitude operators. 

Correlation exercises with the fisheries protection vessel SULISKER (Lbp. 64 metres) indicated 

that, provided measured values of roll damping coefficient were used with Britsea, the calculated 

values of probable-extreme roll angle closely matched the maximum values of roll obtained on 

sea trials up to approximately 30 degrees. lt was noted that the righting lever curve for this 

vessel is linear to angles of heel in excess of 35 degrees. For many vessels the restoring curve is 

nonlinear at much lower angles and consequently for these vessels the agreement between 

predicted and trial results may not be so good for the larger angles of roll. Good agreement was 

also obtained for the vertical motions and accelerations used to investigate compliance with 

seakeeping criteria, which influence the master's decision to change speed and heading. 
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9.1.3. Test-Tracks and Proving Ground 

The most universal stability criterion should be the probability of non-capsizing of a seagoing 

vessel during its lifetime. In practice this would be an almost impossible task to solve for the real 

actual probability of capsizing because of the many varying parameters involved such as vessel 

characteristics, environment and service routes. Since a lull treatment of these aspects is 

beyond the scope of this research the procedure that was finally formulated was governed by the 

desire to render it most useful for regulatory purposes (through simplification of important 

governing parameters without undue loss of realism) and to provide a basis for further work. 

Major attention was focused on synthesising the component parts which must be given 

consideration so that a realistic assessment of the probability of extreme roll motions would be 

obtained. 1t was felt that the estimates of survivability which result should have meaningful 

comparative significance provided that consistent and plausible assumptions were applied. 

Previous authors had suggested that it would be most useful to analyse chosen critical situations 

of the vessel (scenarios) taking into account their probability of occurrence e.g. Kobylinski 

(1975). Thus using this concept, logically the stability criterion is motion based, -being the 

probability of non-capsizal of the vessel during several selected dangerous seagoing scenarios. 

One of the first requirements was to formulate an appropriate framework that would allow any 

motion probabilities obtained to be compared in a standard manner (for both identical and 

different vessels). 

In an attempt to 'trap' the worst-case scenarios, the proposed method consists essentially of a 

subject vessel being required successfully (without capsizing) to negotiate a series of standard 

analytical "test-tracks" which have been designed to represent the range of potentially capsize 

causing scenarios that it will encounter during its lifetime. The total test-track set is termed the 

"proving ground" (by analogy with a road vehicle proving ground). 

The main advantages to the marine vehicle designer of using this proposed method are: 

1. The lull range of operating conditions, including the very important severe 
conditions, can be reproduced in a manner which is impossible to achieve in the 
open sea, thus making repeatability of results possible (even though, in practice, 
the results of model and lull-scale trials are used for particularly difficult aspects). 

2. Vehicles are tested under tightly controlled conditions where individual 
characteristics such as broaching-to can be assessed and compared against 
previous and other vehicles' performances. 

3. Attention is focused on individual elements so that if a poor performance 
characteristic manifests itself on one particular test-track the design can be 
precisely retested after suitable modification. 

The vessel type and intended zone or zones of operation dictate the nature of the proving 

ground that it will have to negotiate successfully by regulation. Indeed, some form of licensing 

might be envisaged for individual operational zones since this would avoid the potential 

overdesign (or worse, the underdesign) of vessels which the current 'blanket' regulations 

encourage. Alternatively appropriate levels of equipment could be specfied. 
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The vessel is examined over the same sea areas for different capsizing phenomena (different 

test-tracks) and thus the concept of a "layered test-track" approach was introduced. The test­

track layers may be overlayed to give the largest roll response (the proving ground result) or else 

the largest response for any individual scenario. Alternatively, by separating the layers and 

considering individual test-track performances, the effect on the performance of selected design 

and operational features can be considered in detail. In principle this concept allows detail design 

improvements to be made for any of the layer characteristics. 

Overall proving ground performance allows comparison of total performance and safety levels 

across a fleet of vessels though this 'average' value should be treated with caution. 

By direct analogy with the case of a road vehicle which is required to perform a series of 

manoeuvres over varying terrain, during which time various measurements of handling, vibration, 

stability, power etc. may be taken simultaneously, the proving ground is subdivided with due 

consideration of: 

1. distinct climate conditions (climate domains); 

2. distinct wave conditions (climate subdomains); 

3. distinct displacement conditions (domain segments); 

4. distinct operating procedures. 

Essentially the proposed prediction method aims to calculate p(I;Jc < 4>), the cumulative probability 

of a 'critical roll motion' $< being exceeded at least once during the vessel's lifetime of operation. 

This value is represented by the proving ground result. 

The cumulative probability can be obtained from a knowledge of the underlying lifetime 

response probability density function. This in turn can be found by computer-predicting 

independent trial samples of roll response together with their associated independent single trial 

probabilities of occurrence. 

In this study, to illustrate these principles, the single test-track concerned with general ship 

rolling was considered. In general, less calculation will be necessary for the remaining capsize 

phenomena since they tend to be very heading/speed specific and thus many scenarios could be 

eliminated on this basis. Eventually it is envisaged that the results of the various specialist 

motion prediction techniques will simply 'plug-in' to the current (modular) computer program in the 

form of an additional/extended database of response values. 
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9.2. Risk Management 

9.2.1. Key Factors 

Key factors which were given particular attention within the simulations included climatology, 

seamanship and resulting response. Each factor presented different requirements in terms of 

their treatment so that simplifications might be made which would not unduly compromise the 

quality of the results. 

a) Climate 

Environmental demands made on the vessel are the essential element in any ship motion 

per1ormance assessment, particularly when smaller' vessels are being considered. During their 
' lifetime seagoing vessels will encounter coastal seastates which are influenced by refraction and 

diffraction of waves by the coastline and seabed. In addition, the shape of wave spectra 

observed in the seas and oceans varies considerably for the same significant wave height due to . 

geographical location, duration and fetch of wind, stage of growth and decay of a storm and 

co-existence of swell. 

Fetch·limited and open-sea wave conditions were represented by families of wave spectra in 

spite of the increased computing requirements. The ability conveniently to represent a variety of 

spectral shapes which would be expected to occur in nature, by a mathematical representation 

which is based upon statistical considerations of actual data, is held to be an important feature of 

the simulations. 

In the absence of firm data, cosine-squared wave energy spreading at ± 90 degrees to the 

primary wave direction was assumed. it was judged that to have used long-crested seaways 

would have led to unacceptably conservative results. A future refinement would be to use a 

variable model of wave energy spreading appropriate to individual locations, once the data 

becomes available. 

Constraints of time meant that steady wind· heel and wind gusting effects were not considered in 

the study. These are recognised to have an important effect on the results obtained, particularly 

for small vessels having low freeboard values. One way that these effects could have been 

incorporated into the proposed approach is by using equivalent wind-moment spectra. 

Values of the joint probability of significant waveheight and primary wave direction were used, 

based on results derived from the Spectral Ocean Wave Model (SOWM) which is being 

developed by the U.S. navy. This currently represents a 10 year (long-term) average of hind cast 

wave conditions in each location and season. Further work is needed to determine how best to 

incorporate climatic variability which will inevitably lead to relatively rare sea conditions being 

used which are more severe than the 10 year average values. 11 was suggested that individual 

months' data could be analysed and the 99 percentile values used in a future study to provide 

confidence bounds on the probabilities obtained. 
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b) Seamanship 

Seamanship has a large influence on both the motion probabilities obtained and the motions 

themselves once the severe seastates have been encountered. Firstly, by manoeuvring to avoid 

a storm area or (in the case of small vessels in particular) by not sailing at all until the storm has 

passed, the master exercises avoidance seamanship which dictates the probability of 

encountering severe seastates. This is a function of the accuracy ol weather forecasts and the 

skill of the ship's officers. Secondly, a vessel experiencing excessive motions and sealoads may 

be manoeuvred to reduce these to perceived acceptable levels. The master exercises what 

· might be termed pacifying seamanship which is a function of the motion and seaload information 

available to the ship's officers and their skill in reducing these motions and loads. Both of these 

important effects were incorporated into the study. 

0 

Avoidance seamanship was represented by a Markov mapping i.e. p(Hsl Hs) ·the probability of 

encountering each seastate in the absence ol avoidance seamanship to the probability of 

encounter with avoidance seamanship. Values used in the simulations were based on 

correspondence with the officers commanding SULISKER and the sister ship VIGILANT. They 

are thus considered to be realistic tor this size of vessel. 

In order that the procedure may be readily incorporated into future stability regulations it was 

appropriate that the simulations utilise non vessel-specific seakeeping criteria. These were 

based on available lull-scale trials data with a variety ol vessels. Measures ol deck wetness, 

number ol slams, subjective motion (SM), number ol propeller emergences and average roll were 

used. Provision was made for appropriate weighting olthe criteria, based on how a master might 

"view" his vessel/cargo combination. An important consideration was that the criteria should 

concern values of motions and sealoads ·which are readily discernable to the master at his 

conning position rather than at some arbitrary position in or on the hull. lt was noted that 

inclusion of apparent roll in the subjective motion (SM) calculation would be a distinct 

improvement. 

A standard human behaviour pattern was assumed in this study. Although actual values of 

criteria may not matter in comparative work, so long as they are consistent, caution is required 

when two vessels which are being compared are limited by different parameters. If the subject 

vessel exceeded one or more of the seakeeping criteria it was caused to alter heading and/or 

speed conducive to the continued "success" ol the mission. In this study "success" was 

measured by the ability to deviate from the intended heading and speed by the smallest margin 

which was sufficient to reduce motions and sealoads to within acceptable limits. This definition 

was only ol secondary importance since in most cases of survivability the eventual heading and 

speed are not the primary concern of the master; only that the vessel survives. This was borne 

out by the simulations. By similar reasoning involuntary speed loss, due to added resistance and 

reduced propulsive efficiency, was not considered. In severe seastates, at least, the master will 

override these effects with his own changes ol heading and speed. 

Up to 48 combinations of heading/speed change were made available to the master. 
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Frequently, in the severest seastates, it was not possible to reduce vertical motion and seaload 

effects to within acceptable limits in which case an optimum heading/speed combination was 

chosen from among the 48 available. A major assumption was made that the master will infallibly 

choose the optimum heading/speed combination which most effectively reduces lhe motions and 

sealoads to be closest to lhe maxima allowed. 

Because certain of the capsize phenomena in stern and quartering seas were not modelled the 

vessel tended to adopt these headings. Correspondence with the commanding officers indicated 

that in severe seastates lhe tendency is to reduce speed and to put the sea on either bow. Thus, 

within the main program, the master's action was further constrained so that an optimum was 

selected based on motions for seas forward of the beam. lt was demonstrated that the effect on 

lhe probabilities obtained was small for the particularly hazardous test-track segment involving 

the North Atlantic. This was due in part to the uniform distribution of desired headings and 

speeds for the vessel when on patrol. 

Masters are all individuals and it is inevitable that personality will influence seakeeping 

pertormance. A future refinement would be to incorporate a variable model of seamanship, 

based on a survey of ship masters and officers, in order to cater for a range of ability with 

appropriate weighting. 

c) Independent (Bernoulli) Trial Cycles 

In order to use lhe independent (Bernoulli) trials procedures advocated in this study the concept 

of an independence period was used after Hutchison (1981). 11 was noted that further work is 

required by oceanographers to provide values of lhe independence period, through consideration 

of the correlation of adjacent seaslates at various geographic locations. 

9.3. Results 

Using the philosophy and methods described in lhis study the results of a calculation for the 

fisheries protection vessel SULISKER were presented. This vessel has operational profile 

characteristics similar to a naval vessel. 

In order that no extreme responses were overlooked, the results of a sensitivity study were used 

to ensure adequate coverage of important parameters affecting roll. lt was intended that the 

results of mulli-variate (pattern recognition) analysis of casualty data (for the broad vessel type 

and size under consideration) would be used to ensure that no proven frequenlly recurring 

capsize scenarios had been missed, particularly in mild seas. These positively identified 

·capsize-nuclei" (each one representing a distillation of many similar casualties) form critical 

scenarios for consideration and are embedded in the test-tracks with respect to lime and location. 

Unfortunately this proved to be not possible in practice given lhe poor level of detail of the 

casualty information that was available to the author. However, this is felt to be a very useful 

subject for further study. 
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The proving ground value of 5.0x1o-2 that was obtained from the simulation represents the 

probability that a roll angle of 30 degrees will be exceeded at least once during the lifetime of the 

vessel. Factors having a major influence on this figure include: 

1. the assumption that no fin stabilisers were used. This was due to a.deficiency of 
Britsea, which is overcome in modern seakeeping computer programs. 

2. the assumption that the master will infallibly choose the best heading and speed 
combination for any scenario. 

3. the exclusion of certain of the capsize phenomena. 

4. the exclusion of steady wind-heel and wind gusting effects. 

The value that was obtained from the simulation is not the same as the actual risk of vessel 

capsize. lt was argued that it is more representative of the probability of being overwhelmed by 

the seaway, which could eventually lead to a capsize. Unfortunately the vessel used in this study 

has a highly specialised role and there are few similar vessels in service. However, as a rough 

guide, close examination of fishing vessel casualty statistics indicated a value of 2.3x1o-3 for the 

probability of being overwhelmed by the seaway (vessels capsized, laundered and missing). The 

value obtained from the simulation for the SULISKER, which is reported to have good seakeeping 

characteristics, represents the larger probability of exceedance of a potentially dangerous roll 

motion. The inadequacy of present knowledge of the basic physical processes immediately prior 

to capsize and lack of the required prediction methods necessarily leads to this compromise 

evaluation. The result should have meaningful comparative significance between different 

vessels provided that the 30 degree threshold value, described by seagoing personnel and used 

in this study, has significance as a potentially dangerous motion. 

There is little point in developing a complex theoretical model of capsize until the underlying 

physical processes are better understood. In the event that the linear theory used in this study 

should be superseded, the proposed framework for assessing intact stability will be equally valid. 

Notwithstanding the physical processes of deck immersion, cargo shifting and downflooding etc. 

an improved theory which is capable of routinely predicting large-angle roll would yield a 

simulation probability value which is closer to the value obtained from casualty statistics. 

9.4. Extensions to this Work 

Researchers into ship stability have tended to concentrate their efforts into predicting the 

dynamic behaviour of an intact vessel in (at best) idealised environmental conditions and then 

formulating simple statical stability criteria with the results. This lack of realism has 

understandably led to concern about the criteria. Also, in practice, vessels are unlikely to be 

completely watertight at angles of inclination sufficient to cause capsize and a shift of cargo may 

be experienced. These factors are likely to be difficult to take into account in any deterministic 

approach to stability assessment. 

This research has established the necessary rational framework and probability procedure for 

assessing the probability of exceedance of a potentially dangerous roll motion. For the first time 
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a linear analysis has been used, in this way, to predict the onset of roll motion which is judged to 

be potentially dangerous to a vessel operating in severe seas. The method correctly recognises 

the physical facts and has a great advantage that it avoids the necessity to accurately predict the 

extreme capsize roll angles which are highly nonlinear in nature. 

A further major advantage of the proposed method is its potential use as a unified design and 

regulatory tool in which the operability prediction is the information required by the designer and 

the extension into a survivability prediction may be used in future stability criteria. 

Although the present study considers an enormous range of combinations of seastates, heading 

and speed for various seasons and operating zones each weighted according to its probability of 

occurence; in principle the method may be used to enable current standards of statical stability to 

be recast to relate to the real dynamic situation at sea. Particularly hazardous operating 

scenarios could be identified to enable appropriate values of metacentric height, maximum 

righting lever etc. to be set for any individual vessel. As an interim measure the method may also 

readily be used to ensure that vessels are judged comparably safe for their respective modes of 

operation, until more experience has been gained with the method. 

Ultimately some form of indexing could be developed for certain of the more subtle design 

features. A semi-probabilistic approach which "credits" the provision of features beneficial to 

capsize resistance, with appropriate adjustment of partial safety factors, could be incorporated 

into the method. 

In particular, the estimates of roll damping require improvement to avoid the necessity to use 

measured values. Agreed limiting seakeeping criteria are also required as well as an agreed 

procedure for incorporating subjective parameters, such as seamanship action, which can be 

treated as a random process. Long-term monitoring of vessel motions would enable correlation 

of results in order to gain confidence with the procedures that have been used. 

A complete probabilistic study based on the philosophy and methods proposed would pinpoint 

particularly hazardous segments of the operating cycle. In this way specialist deterministic 

techniques can be used which lead to greatest returns for a given amount of effort. Any 

improvements can be gauged by precise retesting of the appropriate scenarios and the effect on 

the overall probability of critical motion exceedance observed. This is one of the chief strengths 

ot the analysis. 

By retrospective studies of a wide range of vessels. including those that have capsized or nearly 

capsized, it should be possible to formulate criteria for use with the proposed method based on a 

level of acceptable risk. Given that per1ect safety is not achievable, it is generally agreed that an 

acceptable level of individual risk for shipboard fatalities is of the order of 1 o-5. Casualty data 

indicated that there is a need to improve fatality rates on all fishing vessels, due to laundering or 

capsize, which currently lie at a level of around 3x10-4. This is an order of magnitude larger than 

most shore-based risks of both a voluntary and involuntary nature. Only by comparing values of 

predicted risk against an acceptable risk value will it be possible to complete the rational 

procedure to assess the dynamic treatment of assessing intact stability that is being advocated. 
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The consequences of vessel loss -in terms of the loss of life, financial losses, hazards to the 

environment etc. have not been discussed explicitly. Nevertheless these are an extremely 

important element when considering the risks associated with an activity, even though the actual 

probabilily of occurence might be very small. Hence this type of procedure is increasingly being 

promoted for other lypes of marine casualty including collisions at sea e.g. Spouge (1988). 

Public awareness, which has been heightened by the loss of the Roll-on Roll-off passenger ferry 

"Herald of Free Enterprise• (193 lives) and the recent loss of the oil production platform "Piper 

Alpha" (167 lives), increases the likelihood that the future requirement will be for marine hazards 

to be routinely assessed, particularly when many lives are at risk. lt is hoped that this work may 

contribute to this debate in order that such tragic losses will be avoided in the future. 

Finally, regarding the compuling requirement, it is inevitable that the real cost of the once-off 

calculation will fall as faster parallel processing chips, such as the INMOS transputer chip, 

become more widely adopted for intensive computing applications. 

9.5. Future Work at Plymouth 

The principles described in this study can be used to assess lhe stability performance of any 

seagoing vessel. The method is also suitable for a wide range of operability and seakeeping 

studies, particularly when motions lie wholly in the linear domain. The motion prediction and 

human behavioural aspects of this research are currently being integrated into an advanced 

optimum weather-routing model which is under development as one of the projects of the Ship 

Control Group based at Plymouth. lt is envisaged lhat predicted vessel motions, when used in 

conjunction with appropriately weighted seakeeping criteria, will provide a range of 

heading/speed alternatives at every voyage waypoint. From among these alternatives a decision 

can be made for the type of route being planned, for example shortest time on passage, least fuel 

used etc. A six-degrees of freedom, real-time controller Is then used to maintain the vessel on its 

optimum track. This will be compared against the actual track taken by a weather-routed 

container ship which has an intended great circle route across the North Atlantic. 
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A 1.1 Introduction 

Appendix A1 

Description of Britsea 

In order to predict vessel response in an irregular seaway, using the linear superposilion 

principle of St. Den is and Pierson ( 1953), it is first necessary to predict the response of the vessel 

in longcrested, regular, sinusoidal waves. Considerable effort has been made to formulate an 

adequ~le theory for this and the vessel is idealised in one of several ways within the analytical 

methods. The essential differences between four common analytic approaches are shown in 

Table A 1.1, Newman et al (1964). 

B T A. w(~ r/2 u 
L L L Fn = .Jii 

Thin ship oW) o(I) o(I) o(I) zero or o( I) 
theory 

Flat ship o( I) o(fJ) o(l) o(l) zero or o( I) 
theory 

Slender ship o(fJ) o(fJ) o(I) o(I) zero or o( I) 
theory 

Strip theory o(fJ) o(fJ) o(fJ) o(p-1/2) zero or o( I) 

B =ship beam A.= wavelength 

T = ship draught ro= wave circular frequency 

L = ship length 13 < < I 

F n = Froude number V= speed 

Table A 1.1 Analytical Motion Theories 

The entries 0(1) and 0(13), where 13 < < I describe the order of the ratios referred to. 



The first two theories, which are relatively mathematically rigorous, do not describe the 

geometry of the ship adequately since usually the Beam < < Shiplength and Draught < < 

Shiplength in practice. 

Slender ship theory attempts to account for differences in the flow condition in the fore and aft 

directions due to ellher wave effects or forward velocity. However, this refinement is achieved at 

the expense of neglecting any flow interaction between transverse points on the hull sur1ace • 

since the beam is assumed small compared with the wavelength. Further it is assumed that the 

wavelength of waves striking or radiating from the ship are of the same order as, or greater than 

the length of the ship. 

The Strip theory, which assumes two dimensional flow in transverse planes at each section of 

the ship, holds good only if the wavelength is small compared with lhe shiplength. Thus 

inter1erence between the bow and stern are negligible since they are many wavelengths apart, 

and the three dimensional hydrodynamic problem is reduced to one in two directions. Britsea is 

one example of the use of a strip theory and this will now briefly be described. A fuller description 

is available in British Ship Research Association Memorandum No 476, Katory (1974). 

A 1.2 General Formulation of Equations of Motion (After Salveson et al 1970) 

it is assumed that the oscillatory molions are linear and harmonic. Let (x,y,z) be a right·handed 

coordinate system fixed with respect to the mean position of the ship with z vertically upward 

through the centre of gravity of the ship, x in the direction of forward motion, and the origin in the 

plane of the undisturbed free sur1ace. Let the translatory displacements in the x, y and z 

directions with respect to the origin be 'lp 'lz and 111 respectively, so that 11 1 is the surge, 11 2 is the 

sway, and 113 is the heave displacement. Furthermore, let the angular displacement of the 

rotational motion about the x, y and z axes be 114• 'ls and 116 respectively, so that 114 is the roll, 115 

is the pitch and 116 is the yaw angle. The coordinate system and the translatory and angular 

displacements are shown in Figure A 1. 1. 

1 

17~ • '1t 
--~~.------------~------------~7-~,----

1 I 

~--------------------J 
111 = sur~e 
'77 = swar 

'll = beave 
'l• = roll 

'1• = pitch 
"' = yaw 

.-

Figure A 1.1 Sign Convention for Translatory and Angular Displacements 
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Under the assumptions that the responses are linear and harmonic, the six linear-coupled 

differential equations of motion can be written, using subscript notation, in the following 

abbreviated form: 

( 1 ) 

6 

2, (Mjk+Ajk)T)>BjkT)>CjtTlt=F/"''; j=l.. .. 6 
h-I 

where Mit are the components of the generalized mass matrix for the ship, Aik and Bik are the 

added-mass and damping coefficients, c1k are the hydrostatic restoring coefficients, and F1 are 

the complex amplitudes of the exciting force and moment, with the force and moment given by 

the real part ofF/"''· 

Note that Aik (for j "~' k) are the added-mass cross-coupling coefficients for the kth mode coupled 

into the jth mode of motion, so that for example A35 Is the added-mass coefficient for pitch 

coupled into heave. 

Here c1k are defined as the hydrostatic restoring coefficients and hence independent of 

frequency, while the added-mass coefficients AJk are so defined that they include all the 

oscillatory hydrodynamic forces proportional to the acceleration. Some other authors prefer to 

include certain hydrodynamic terms in the c1t"s which are included in the A1k•s here. lt is 

understood the real part is to be taken in all expressions involving e; "''. 

Fl' F2 and F3 refer to the amplitudes of the surge, sway, and heave exciting forces, while F4, F5 
and F6 are the amplitudes of the roll, pitch, and yaw exciting moments; oo is the frequency of 

encounter and is the same as the frequency of the response. The dots stand for time derivatives 
' so that Tit and Tit are velocity and acceleration terms. 

If it is assumed that the ship has lateral symmetry (symmetric about the x,z plane) and that the 

centre of gravity is located at (O,O,z.). then the generalized mass matrix is given by 

M 0 0 0 lo{z, 0 
0 M 0 -Afz, 0 0 

Jlf,k = (I () M () () 0 
() -Jl!z, (J 14 () -/46 

Jfz, () () u I~ 0 
() (l (J -],6 0 l& 

(2) 

where M is the mass of the ship, 11 is the moment of inertia in the jth mode, and 1
1

k is the. 

product of inertia. Here the inertia terms are with respect to the coordinate system shown in 

figure A 1. 1. The only product of inertia which appears is I 46, the roll-yaw product, which vanishes 

if the ship has lore-and-aft symmetry and is small otherwise. The other non-diagonal elements all 

vanish if the origin of the coordinate system coincides with the centre of gravity of the ship; 
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however, it is frequently more convenient to take the origin in the waterplane, in which case zc 'is 

not equal to zero. 

For ships with lateral symmetry it also follows that the added-mass (or damping) coefficients 

are: 

(3) 

Au 0 Au 0 Au 0 
0 A22 0 Au 0 Am 

A 31 0 A 33 0 A i6 0 
U A ~~ 0 A u 0 A ea 
A~~ U A u 0 A r.& 0 . 
0 A&: 0 Au 0 A 56 

Furthermore, for a ship in the free surface the only non-zero linear hydrostatic restoring 

coeflidents are: 

(4) 

If the generalized mass matrix (2); the. added,mass and damping coefficients (3), and the 

restoring coefficients (4) are substituted in the equations of motion ( 1 ), it is seen that for a ship 

with laterai symmetry, the six coupled equations of motion (1) reduce to two sets of equations: 

one set of three coupled equations for surge, heave, and ·pitch and another set of three coupled 

equations for sway, roll and yaw. Thus, for a ship with lateral symmetry, surge, heave,-and pitch 

are not coupled with sway, roll, and yaw. 

If one assumes that the ship has a long slender hull form in addition to iateral symmetry; then it 

can be shown that the hydrodynamic forces associated with the surge motion are much smaller 

than the forces associated with the live other modes of motion so that it is consistent within these 

assumptions not to include surge. Hence the three coupled equations of motion for surge, heave, 

and pitch reduce to two:coupled equations for pitch and heave, 

A 1.2.1 Heave .and Pitch Motions 

Under the assumption that the oscillatory motions are linear and harmonic, it follows from 

equations (1) through (4) that for a ship with. lateral symmetry and a slender hull form the coupled 

equations of motion for heave and pitch can be written in1the form: 

.. . . ' 
(M +A33l '13 +8 33 '13 +C33 '13 +AJS ils + D3slls +C 35 lls = F3 t"" 

(5) 
" I .. I 

ASJ'll3 + 8s3 llJ + CnilJ +!/5 +Assl'ls + Bss 'ls + Css 'ls =Fs e;..,, 

(6) 



A1.2.2 Sway, Roll and Yaw Motions 

lt follows from the general formulation.of the equations of motion (equations(1) through (4)) that 

for a ship with lateral symmetry the coupled differential equations governing the sway, roll, and 

yaw motions can be written in the form: 

(An +M) 11.; + 82211; + (A24- Mzc)11: +82411: +Az611~ +82611~ = Fl eiwt 

(7) 

(8) 

(9) 

A 1.3 Evaluation of the Hydrodynamic Coefficients and Forces 

A 1.3.1 Formulation of the Problem within Brit sea 

The ideallinearised theory for calculating the hydrodynamic coellicients would make allowances 

for three dimensional flows satisfying boundary conditions on the hull while the ship is moving 

ahead and simultaneously per1orming the appropriate parasitic motion. Unfortunately such a 

theory does not exist and the various coefficients have to be derived by an appropriate stripwise 

integration method. The ship, which is treated as a rigid body, is represented by a number of 

transverse strips. Each strip is considered as a part of an infinitely long cylinder, with constant 

cross section, whose axis lies initially on the still water sur1ace. Consequently it is possible-to 

obtain the hydrodynamic coefficients necessary to define the ship motion and the forces acting on 

it from the hydrodynamic forces and moments acting on a heaving, swaying and rolling cylinder 

due to waves. The six modes of ship motion are classified into three types of oscillation for this 

purpose: 

a) Vertical oscillations, in the z-direction, which represent heaving and pitching motions when 

the pitching amplitude is assumed small. 

b) Lateral oscillations in the y-direction, which represent swaying and yawing motions when the 

yawing amplitude is assumed small. 

c) Rotational oscillations about the x-axis which represent rolling motions. 

The motion of a cylinder executing simple harmonic oscillations with small amplitude in 
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comparison with the cylinder diameter, about the mean position, was studied by Ursell ( 1949a) tor 

vertical oscillations (circular sections) and for rotational osCillations (elliptical sections), Ursell 

(1949b). Tasai extended this work to provide a solution tor a cylinder having a cross-section 

which is represented by a Lewis ( 1929) section tor the three cases of vertical, lateral and 

rotational oscillations [Tasai (1959, 1961 )). Tasai also provided a general solution for the case of 

vertical oscillations of a cylinder having a cross-section represented by a multi-coefficient section 

using close-tit techniques, Tasai (1960). This aspect was extended by Katory (1974) tor use in 

the Britsea programs to provide an analogous general solution tor the case of lateral and rolling 

oscillations. In the present work the representation of ship sections by Lewls coefficients has 

been used throughout since this was the version of Britsea supplied by BMT Ltd. In this method 

the geometrical shape of the section is mathematically defined by a Lewis form which has the 

same beam, draught and sectional area as the given ship section but not necessarily the same 

shape as the section. The method is recognised to be 'accurate' for many common ship sections 

but breaks down at sections with large bulbs or small sectional area, Odabasi et al (19n). 

The fluid motion is assumed to be non-viscous, irrotational and the surface tension is neglected. 

Unear wave theory is assumed. Consequently a velocity potential <!I and a conjugate stream 

function 'I' will exist, both satisfying Laplace's equation. 

For the purpose of defining the velocity potential <!I and the stream function 'I' around the unit 

cylinder in the ~-plane whose transformed cross-section represents a ship section in the y-z plane 

the following mapping function is used: 

(10) 

where 

B = section beam 

N 

y+iz=MI~+ L a2n- 1 ~-{Zn-l)} 
=I 

The original ship shaped section is described by the coordinates (y,z) and the a2 ._ 1 are the 

transformation variables. 

For the Lewis method (used in this work) N=2 and the contour of the Lewis form section (a=O) 

is expressed as follows:-

( 11 ) 
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(12) 

Laplace's equation, which is the condition for the flow being incompressible, irrotational and 

inviscid, in two-dimensional form is: 

(13) 

and 

(14) 

The linearised free sur1ace dynamic boundary condition is: 

li~ <n + (g 1 u2> li <ll = o at z = o 
lix2 o z 

(15) 

which implies that the disturbance caused by the movement of the ship has a small effect on the 

surrounding fluid sur1ace. 

The linearised ship sur1ace boundary conditions are: 

o<n=v 
on " 

(16) 

and 

(17) 

The first of these means that the derivitive, with respect to the direction normal ii at any point on 

the ship sur1ace y(x, z), of the velocity potential <ll is equal to the normal velocity at that point. The 

second expression is to make the velocity potential <ll satisfy the ship sur1ace boundary condition. 

The progressive wave (related to motion damping) which dominates at a large distance from the 

cylinder, with amplitude fi, is assumed to be expressed as a function of the geometry of the 

cylinder section by means of a stream function in the following form: 

'1'0 = gfi f'l'ccos w t+'l',sin w tl 
Jt(l)e e e 

(18) 

where 'l'c is the conjugate of the standing wave potential <l>c and '1', is the conjugate ot the 

~potential <ll,. 

6 



The velocity potenlial for each of the motion modes is arrived at as follows: 

a) Vertical Oscillation. 

The equation of motion for the vertical oscillations assuming a regular harmonic motion is given 

by: 

(19) 

z=:acos(ro,t+E.} 
·a 

The linearised boundary condition on the surface of the cylinder is given by: 

o<ll . oz 
-=-z ro,sln(ro.t+E.}-
Oi a ·a Oi 

(20) 

and 

(21) 

The velocity potentials <llc and <lls of the standing wave created by the cylinder oscillations, and 

of an equivalent source represenling the cylinder are given by: 

<llc=1te-K=cos Ky 

(22) 

i.. e-lo:y 
<lls=1te-K=sin Ky-

0 
-- (kcos kz--Ksin kz} dk 
K2+J(2 

(23) 

- Ursell (1949a), Tasai (1959) 

where 

k = integration parameter. 
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b) Lateral Oscillation 

By similar argument for vertical motion the required velocity potentials are given by: 

et» =-ne-K=sin Ky c 

(24) 

and 

et» =±ne-K•cosKy+ Y lr- e±kJI {Kcosky+ksinkyl dk 
s K(i+z2) Jo K2+~ 

(25) 

-Tasai (1961) 

where the upper sign is for y > 0 and the lower sign is for y < 0. 

c) Rotational Oscillation. 

The required velocity potentiafs are given by 

<t»c=-ne-K=sin Ky 

(26) 

and 

(27) 

-Tasai (1961) 

where lhe upper sign is for y > 0 and the lower sign for y < 0. 

d) Total Velocity Potential 

In each case of lhe above three types of motion the tolal velocity potential et» is fitted by the 

series: 

- -
q2miP2ml cos ro,t+<ll,+{ I P2miP2m+ I 

nt=~l m=l 

(28) 

where <t»Zm is a multipole potential and iPZm the associated standing wave potential, both of 

which take into account the shape of the cylinder cross section and the boundary conditions of 

the free sur1ace. 

8 



P2m and q2m are the polynomial coefficients which are functions of the ship section and 

frequency of oscillation. 

Hydrodynamic pressure on the surface of the cylinder is calculated by: 

li<l> . 
P=-p-=p cos ro l+p Sin ro 1 l>l c • s ' 

(29) 

where Pc is the amplitude in phase with the acceleration and P, is the amplitude in phase with 

the velocity. 

A 1.3.2 Hydrodynamic Coefficients 

a) Added Mass 

Physically the added mass is associated with the stationary wave system created by the ship. 

The hydrodynamic force per unit length· acting on the cylinder is found by integrating the 

pressure. By definition the hydrodynamic force component in phase with the acceleration over 

the acceleration is the added mass m'. For a ship floating at a free surface there are two 

coefficients of added mass Cv and CH where: 

(30) 

and 

(31) 

for vertical (symmetric) motion and for horizontal (antisymmetric) motion respectively. 

. ' 
B is the beam and T the draught of the section; mv and mH are the respective vertical and 

horizontal added masses. Landweber et al (1957) have shown that the added mass of a 

symmetrical hull sectional shape is given by the following expressions when the oscillatory motion 

is of high frequency: 

(32) 

N ' rtp , 
mv=T ( l +2a 1 +I, (2p-l)a~1 ) 

p=l 

in vertical oscillatory motion and 
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(33) 

in horizontal oscillatory motion. For Lewis forms N=2. 

Thus the coefficients C are given as: 

Cy=Sm~lnp 8 2=( l +a1)2+ 3 a it ( l +a1 +a3)2 

(34) 

(35) 

b) Wave-making Damping 

Physically the damping coefficients are associated with a travelling wave system set in motion 

by the ship which dissipates energy from the ship-wave system. lt is a function of the amplitude 

of the progressive wave fi of equation (18). Linear wave-making damping which is proportional to 

motion velocity is given by: 

(36) 

-Tasai (1961) 

where A is the ratio of travelling wave amplitude to body motion amplitude and 8 is the beam. 

This and other representations are discussed in Himeno ( 1981 ). The wave roll damping tends to 

be small due to cancelling effects for normal ship sections. 

c) Exciting Force 

Integration of the time-dependent pressure on the hull over the hull surface yields the 

hydrodynamic force and moment amplitudes. These values may be divided into two parts as the 

exciting force and moment and the force and moment due to the six degrees of body motion. 

Calculation of the hydrodynamic properties for the ship are obtained by integration of the above 

two-dimensional sectional properties over the length of the ship. 

10 



d) Viscous damping 

Added mass and damping coefficients obtained using linear potential flow theory cannot be 

used for the case of sway, yaw and roll without including a correction for viscous damping. 

Comparison between theory and experiment shows that the roll damping coefficient is 

significantly affected by viscosity even in the absence of bilge keels e.g. Vugts (1969). 

The original version of Britsea was supplied with an empirical method by lnoue for predicting roll 

damping. This used the ship sectional area coefficients at each station together with the bilge 

keel position and extent to predict the bilge keel contribution to damping. 

Subsequently an updated version was received from BMT Ltd which uses theoretical estimates 

by lkeda (1978) to predict contributions due to lilt, eddy, bilge keels and friction. The eddy, bilge 

and friction components are non-linear and can be assumed proportional to the square of the roll 

velocity. The eddy and friction contributions are usually negligible in comparison with the wave 

making, lift and bilge contributions. 

The later version of Britsea can also accept experimental values of (linear + quadratic) roll 

damping if required. 

Solution of the linear second order motion equations yields the amplitudes of pitch, heave, roll, 

sway and yaw motions for unit wave amplitude together with their phase relationships with the 

wave. For the purposes of the risk analysis, selected amplitude and phase values are stored in a 

database for subsequent use within the main computer program RISK.F77. 
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6 6 FIGURE A3 1b 
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FIGURE A3.4 Subroutine OATAIN 
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FIGURE A3.4b 

2 f 1 

:-...No More Componen~ 
Longcres t Cas'.?' Waves Ye Yes No 

s 

Read Appropriate 
RAOS From F i Le 

::-...Yes Longcres t Cas".Y 
No 

~ 

Compute Component Compute Encounter 
Encounter Wave Wave Spectrum 

Spectra 

Compute Component 
Wave Spectral 

Moments 

Compute Component 
Wave Broadness 

Correction 

(RETURN) 

48 



FIGURE A3.5 Subroutine RSPONS 
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FIGURE A3.6 Subroutine INTEGR 
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FIGURE A3 .. 7 Subroutine CRITRS 
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FIGURE A3.8 Subroutine MASTER 

(START) 

Set Motion/ 
SeoLood Weigts 

Compute Sum 
OF DiFFerences 

More Mo t ion/ Yes 
SeoLood Comb'n 

No 
Minimise Sum 

OF DiFFerences 

Set Optimum 
Heading/Speed 

Comb i notion 

(RETURN) 
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FIGURE A3. 12 Subroutine OUTPUT 
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A4.1 Random Processes 

Appendix A4 

Probability Concepts 

Most of the variables studied herein are defined over the positive real-number line (for example 

significant waveheight). They are therefore property associated with probability density p(.r) such 

that: 

J: p(.r) dl"= l 

and the probability (.r 1 < .r < x2) is given by: 

I
.x=2 

p{.r) dx 
.x=l 

Thus p(.r) defines the probability that the variable x lies within any one of a given set of 'bands'. 

For example that significant waveheight (H,) is in one of the bands 0- 1 metre, 1 - 2 metres etc. 

Also the cumulative probability is defined as the probability of observing a value less than or 

equal to y i.e. 

p(x ~ y)= I~ p(x) dl" 

Certain variables are only discrete because there is insuHicient data to provide continuously 

variable probabilities, one example of this being the load condition which is necessarily 

discretised into "departure condition" and "ballast condition" etc. Other variables such as the 

spatial domain and the season are conceptually discrete as they are used within this theory. 

Thus where the variable under consideration is continuously defined on the real numbers it is 

presented as continuous or discrete whichever is most appropriate. 

Integration is the preferred form of presentation within the text, while all the probabilities are 

made discrete in the numerical analysis within the computer program. 
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A4.2 Independent (Bernoulli) Trial Concepts 

a) Independence of samples or random processes is an important concept in this study. 

Independence can be defined as existing if either of the following two conditions are satisfied, 

Chatlield (1981): 

p(xly)=p(x) and plv/x)=p(y) 

i.e. the conditional probability of x occurring given that y has already occurred is the same as the 

probability of x occurring regardless of whether y has occurred. 

p(x,y)=p(x) . p(y) 

i.e. the joint probability of x and y occurring is the product of the probabilities of x and y occurring 

separately. 

An alternative consideration for this last e)!pression is that for an independent trials process the 

sampling process does not alter the underlying probability for the next individual trial. Thus 

knowledge that an event has occurred has no bearing on the next event to occur. This is 

achieved in this study by the use of the independence period r. in order to calculate N, the 

number of independent trial samples from;: 

R 
N=­

VT. 

where R is the distance along the course track and V is the vessel speed (strictly) relative to the 

advancing weather conditions. 

b) In general, the probability of at least one event ( e ) inN independent trials is: 

rf"<e )=l-(p1(e ))N 

where 

rf"< e ) is the probability of at least one event e in N independent trials. 

p 1( e ) is the probability of not obtaining event e on a single independent trial. 

The value of rf"< e) varies not quite linearly with N, Hutchison(1981). Specifically, when 

considering the probability of roll motion (cr) exceeding a critical roll value (ac) in N independent 

trials: 

p'" (ac < a)= l-{p1 (ac > a)}N 

= 1-ll-p1(ac < cr)IN 
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Critical motion simulation m the random marine environment 
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ABSTRACT 

Traditionally the measure of a seagoing vessel's 
capsize safety has been based on various properties of 
a still-\later righting lever curve. llovever, in recent 
years it has been argued that any nev and improved 
stability criteria should seek to take account of the 
variability of the environmental conditions encountered 
and the vessel~ design features, as uell as the 
variation in vessel load conditions and masters action. 

Ue have adopted this type of approach in order to 
predict the probability that a critical roll motion 
Yill be exceeded at least once during the vessel's 
operational lifetime. This involves computer 
simulation to assess motion performance in various 
critical scenarios, vhich have been identified as 
being potentially hazardous vith respect to capsize, 
since it is not feasible to consider every cycle of 
response over many years of operation. Thus, in 
essence, the vessel is required to negotiate success­
fully a series of "tcsc-u·acks", each comprising 
several scenarios vith thclr associated probabilities 
of occurrence. Independent (Bernoulli) trial 
procedures are then used in the evaluation of the final 
required probabilities. The vessel speed and its 
heading to vaves fall under the control of the master. 
lie may manoeuvre to avoid a storm if possible, but in 
all cases he will seck to reduce the resulting motions 
and sealoads to acceptable levels. n,c simulation 
take$ account of these in order to derive the most 
likely response to a given scenario • 

. The assurance of a seagoinc vessel's safety 
acainst capsize requires the synthesis of many 
variables, vhich affect the response obtained, and is 
the subject of much ongoing work. It is envisaced that 
the type of simulation being proposed vill eventually 
lead to improved stability criteria and in the short­
term will highlight areas for further research. 

I , ltfl'RODUCTION 

ln considering safety at sea, ship stability 
itself is of prime importance. Ship stability is taken 
to mean 11 Safety from capsizing11

, in uhich a vessel 
rolls from a stable upright position into an inverted 
position, which although also stable is highly 
undesirable in viev of the damage and loss of life 
sustained. The current I.H.O. (1968) international 
stability criteria c~n be regarded ~s being directly 
derived from the uork of Raholo (1919) on the properties 
of the still-water righting lever (CZ) curves, fig. t. 

"This uork however, based as it is on classical 
mechanical criteria in still-..,ater, is .inadequate as a 
predicto~ of the possible fate of vessels encountering 
rough weather in a sea-way (Bird et &~1. 197~). It is 
no~ Renerally agreed th~t improved criteria should take 
account of the variability of the environmental 
conditions, the vessel's design, as "'ell as variations 
in load and the master's actions (K.ostner 1982). A 
probabilistic approach is now being taken in the 
structural design of ships in "'hich it is recognized 

ss 

that structurol elements uill hnve to vithstand loads 
of different magnitude and frequency \llthin their lifo­
time. An overoll strntegy for probabilistic stability 
assessment based on these modern design methods is 
shoun in fig. 2. 

GZ 

Buoyancy 

M 

Weight 

H-mctacentric heicht 
C•ccntrc of ~ravity 
B•centre of buoyancy 
CZarighting lever 

fig. I 
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heel angle 

The concept of risk is not new. In many instances 
where there is a large body of historical information an 
appropriate interrGgation of the database can assign the 
ri3k of death. injury or otl,er loss involved in a 
particular activity, table I. llo"ever no such database 
exists which is capable of providing sufficient detail 
to assign the probability of any individual vessel's 
risk of capsize. This is hardly &uprising given the 
nature of capsizal, vhich is usually rapid and gives no 
time for noting the environmental factors involved. 
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FIQ: 2. 

The purpose of the present work is to explore the 
feasibility of developing and applying such a 
probability analysis model as a basis for ship safety 
from capsize, which may Lead to improved stability, 
Jcsign and regulation criteria. 

1. TilE CO!"IPUTER SIHULATION 

The probability of exceeding a "potentially 
Jo1ngerous 11 roll motion auy be estimated using indcpend­
\!nt (Bernoulli) trial concepts.· That is. in general, 
the probability of at least one event (d) in N 
independent trials is 

StobLU.ty disc.ssMU~.t .1(T11AllmoNAI..lr STIITJSTICAL) 

...,here PN(a) is the probability of at least one event tS 

in N independent trials. prl(cr) varies not quite 
linearl¥ with the value of N. (llutchison 1981)i 
also p c•> is the probability of not obtaining the 
event~ on a single independent trlaf. Specifically, 
~hen considering the probability of roll motion (-) 
exceeding a critical value (~,) in N independent trials 

PN(<r, <")•1- ~I (O".>d")] N 

•1- (1-P 1(<;,<"l)N. 

It is proposed that to assess the risk of capsize a 
vessel be subjected to a set of (mostly) analytical 
test-tracks ~hich together comprise the proving ground 
appropriate in nature to the vessel being considered. 

3. TilE TEST-TRACK CONCEPT 

3,1 Problem outline. 
When applying probability concepts to the problem 

of vessel capsizing, it is appropriate to consider the 
probability of a critical roll response being exceeded. 
In an attempt to "trap 11 the vorst-case scenarios, the 
proposed method consists essentially of a subject 
v~ssel being required to negotiate successfully (ie, 
w1thout c:~psizing) 11 series of test-trucks which hnvc 
been designed to represent the range of critical 
(potentially causing capsize) scenarios that it vill 
encounter over its lifetime. It is envisaged that at 
first the test-tracks could be largely analytical in . 
nature vith some experimental back-up for certain 
difficult aspects until the theory improves. 

For this preliminary investigation and for 
illustration of the overall 11 package" a vholly 
~nalytical frequ~ncy domain analysis vill be used. 
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Obviously this means that certain physical capsize 
phenomena uhich m4Y be best suited eo time domain 

·analysis (such as the broaching-eo phenomenon) uill 
not be modelled and thus the test-tra.cks will not be 
fully activated initially. 

3.2 Choice of Teat-Track. 

The vessel type and intended zones of operation 
dictate the nature of the proving ground. Thus, for 
example, a vessel which is intended for operation in 
a sea-area which is uell sheltered or has shelter to 
hand will not have to negotiate the more stringent 
test-tracks required of a vessel intended for ex­
tended operation in high icins latitudes. 

A vessel uhich is intended for international 
operation uould be subjected to the worst possible 
ueather conditions. 

By considering individual test-track performance 
the effect on the performance of des1gn and operat­
ional features can be considered in detail ul1ilst 
overall proving ground performance uill allou 
comparison of total performnnce and safety levels 
across a fleet of vessels for example though this 
11average11 value should be treated with caution. 

A typical subject vessel can be expected to 
operate, over its lifetime, in a wide range of 
environmental and displacement conditions and to be 
subject eo different masters' action. It is coro­
putationally desirable that the proving ground should 
only encompass all of the possible scenarios which 
could cause capsiEe, it is obviously not possible to 
pre-define them, and it is thus necessary initially 
to consider that all scenarios are potentially 
capsize causing. llo~ever, if an initial assumption 
is made that only the severest seastates cause the 
severest responses, the amount of computation for any 
scenario may be reduced. The order o{ severity of 
scast~tes to which the vessel is subjected (everything 
~lsc remaining unchanged) is progressively rcducctl 
from the most severe possible in the operating zone 
under conSTderation. Once the predicted response 
level falls below tha limiting sife v~lue the computer 
simulation program moves on to consider the next 
scenario and so on. 

4. APPLICATIOil 

4.1 Managing the Lifetime of Risk. 

The method of handling all the scenarios compri­
sing a lifetime of risk is best illustrated with the 
aid of a simulation example. The subject vessel 
being used for the present study is a fisheries 
protection vessel which has an .operational area 
encompassing the Northern North Sea and North Eastern 
Atlantic in the region of the 100 fathom line 
around North West Scotland. There are also occasional 
sorties of up to 200 miles into the open Horth 
,\tlantic. 

The prediction method aims to calculate P(Oc<O), 
the cumulative probability oC a 'critical roll motion' 
(:c) being exceeded, at least once, during the vessels 
litetime of operation. This v~lue is of course 
represented by the proving ground result. 

The 1critical roll motion, oc' is defined, in the 
Cirst instance, as the value of roll angle beyond 
~hich there is increasing concern that the vessel will 
be in danger of capsizing. This is referred to as the 
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pntentially dangerous roll angle, thoush it may sub­
sequCntly be defined to include velocity or acceler­
ation terms. 

A preliminary analysis is necessary to determine 
the vessel's intended missions (operating practices 
and operating areas). For ease of illustration it is 
assumed that our subject vessel vill only ever operate 
in the sea areas labelled 2 and 4 in Fig J. 

••• "' ... w " ( 

!.!.!:..l.llorth Atlontic Basin Climatology Regions 

This indicates the boundaries of the sea-areas in 
the North Atlantic Basin into uhich the climatology 
dato ia divided (Boles et al 1981). 

It is assumed that each sea-area has its oun 
distinct climatology and that this is homogenous 
(unifo~) vithin the area boundaries shoun. 

TI1us the sea-arcns 2 and 4 tocether co~r~prisc the 
proving r.round for the subject vessel. 

Typical missions identify routes within the prov­
ing ground vhich form the individual test-tracks. One 
of these is sho\10 in Fig 4. 

A typical mission is involved in proceeding from 
the home port (Position A in the Figure) to the patrol 
area at position C where time is spent on station 
before returning to A by the same route. It can be 
seen that the intended track is ABB'C which crosses 
the domain boundary at B'. 

4.2 Route. 

The route embodies consideration of geographical 
location (L), season (S), initial or intended course 
(C) and initial speed (V0 ). The problem of deter­
mining the route is to determine the joint probability 
distribution of th~ location, season, initial course 
and initial speed ie, P(L,S,C,V

0
). 

Consideration of the test-track segment being 
used vill sovern the joint probability of location 
and season, P(L,S) vhere L is actually representing a 
distance along the vessels intended track for \lhich 
the displacement condition (O,k ,k ,k ) can be 
assumed constant. The test-era~~ s~~e~~ also governs 
the conditional probability distribution of initial 
course ond speetl given tl1e location ond season, 
P(C.v

0
./I..S). 



Then the requited probability 

P(L,S,C,V0 ) • P(C,Y0 /L,S).P(L,S). 

boMAIN_.A­
&1/Nc:AR.Y 

v!toN 
STATION 

Key: Test-Trade. • ABB'C 

Assumption: Displacement is constant between legs 
AB and BC. leg BC crosses th~ domain 
boundary at B1 

, A indicates independent 
trial sampling points. 

!.!..&.:..± 
Application of the Hethod 

4.3 Climatology 

This aspe~t is of vital importance in the 
analysis and, despite increased effort, is still far 
from resolved, It is required to determine the con­
ditional probability of significant waveheight (H 5 ), 

mean wave period (T ), vave spectrum family member 
(F) and predominantmvave direction (9) given a 
location (L) and season (S) ie, 

The necessary climatological data, 
P(H ,T .~/L,S) are to be found in many formats and in 
manJ s~urces.(Bales et al. 1981) provide an extensive 
database which is convenient and has been chosen for 
use in the present study. 

A further consideration is how realistic are the 
predicted responses if we use the commonly available 
simple spectral fo~lations such as Pierson­
~oskowitz, Bretschneider's two-parameter, Darbyshire's 
(etch-limited etc, which have been developed for some 
idealised conditionsl In reality th~ shape of vave 
spectra observed in the ocean varies considerably 
([or the saQe waveheight) depending upon the geo­
graphical location, duration and fetch of wind, stage 
of grovth and decay of a storm, and existence of 
s""e 11. 

In order to cover a variety of spectral shapes 

58 

which a vessel may encounter in her lifetime two 
families of wave spectra are us~d in the present 
work. One of the families consists of 11 • 
members for an arbitrarily specified sea sever1ty and 
is called the Ochi-6 parameter wave spectral family. 

0( (Col) • l [ 
J 

where j • 1,2 stands for the lower and higher 
frequency components respectively. 

4.4 Seaman~hip. 

This factor can have a large influence on both 
the motion probabilities obtained and the motions 
themselves once the severe seastates have been 
encountered. Firstly by manoeuvring to avoid a storm 
area (or in the case of certain particularly small 
vessels by not sailing ot all until the storm has 
passed) the vessel is using avoidance seamanship. 
This is a function of the accuracy of weather 
forecasts and the skill or the ship 1 s officers. 
Secondly a vessel experiencing excessive motions and 
sea loads may be manoeuvred to reduce these to 
perceived acceptable levels. The vessel ia using 
what might be termed pacifying seamanship which is a 
function of the motion/sea loads information avail­
able to the ship's officers and their skill in reduc­
ing these motions and sea loads. 

Paci[yin$ seamanship consists primarily in 
changes o[ speed and/or heading once a severe 
seastate has been encountered. These can be repre­
sented as conditional properties of speed, V and 
relative heading to ~aves, given the seaatate 
actually encountered after appropriate avoidance 
(H 1 ,T ,F) and unaltered speed V and relative 
he~dinW ~ 0 ie, P(V,~/H 5 1 ,Tm,r,v0 ,~ 0) ~here~. ~0 are 
functions of ship course C and wave direction q. 

Ship speed in a seaway comprises the involuntary 
speed reduction due to the added resistance and 
reduced propulsive efficiency in waves together with 
the voluntary speed reduction due to the master's 
action to reduce excessive motions and sea loads. 

Although the present study ls primarily con­
cerned with the higher seastates where master's 
voluntary action overrides any consideration of 
natural speed reduction, nevertheless the approximate 
increase in added resistance is accounted for by 
using a conveniently available method due to Haruo 
(1957), to estimate the initial attained speed of the 
vessel on any heading. This is an area requiring 
further work but recourse can be made to experimental 
results if necessary. 

For the purposes of the present study, it has 
been necessary to assign a set of criteria which it 
will be assumed the master vill. adhere to in order 
that his vessel vill be rendered more seokindly. The 
master is likely to take action to avoid damnge to 
his vessel's structure, englnes, or cargo and to 
avoid undue discomfort to his pasaengers and crew. 

4.!'J Responses. 

A "potentially dangerou1 11 roll angle is taken to 



be a pre-assigned roll angle (]0 degrees in the 
presc!lt case) beyond which it can be assumed that 
the Vessel ~ill be considered potentially uns.:~fc 
from a .capsize point of View. Before the required 
probability of eKceedance of the potentially 
dangerous roll motion ~c can be ascortained P(q>~c) 
an appropriate response statistic t is required. for 
operability stUd~es tllis t- "response is likely to be 
an average-type process sUch as the significant roll 
response, Whereas when considerinc survivabH ity 

. some measure of the expected .maximum is required. 

A useful development by Ochi (i973) is the 
extreme response value vhich \.ril-l be exceeded with 
3 pre-assigned smnll probability the 1dcsir.n-cxtrcmc 
value 1 • This is neceSsary ~ecausC the most proba~lc 

extreme valuC a I vhich can be used for comparison 
with tl'e ~bscr~~d cxtrc~c value, has a high proba­
bility (0.632) of being eKceeded for a large number 
of observations n, if the process is narrov band, 
where the most prob.:~blc extreme value:-

Cor • ' 0; 9 

and c is the spectral bandvith parameter ~f tho a 
process. 
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. . vhere m
0

• m2 • m~ are 
the zeroth. second 
and fourth moments of 
the response process. 

In terms of exposure time the most probable 
extreme value a

1 
is given by: 

._.here t is the exposure time in hours; Hutchison 
(1981) argued that t should be the in~cpcndence 
period 1*. The desi~ extreme value a is similarly 
given in terms of nu er of observat1ons and exposure 
time: 

------·!!. l:lo ~ Jf .~a: 

"T • 

Fig. 5 illustrates how a complete study would 
seek to encompass the time, frequency and probability 
domains; though ooly the frequency and probability 
aspects are being considered in the present study. 
Essentially the computer simulation reduces ·to the 
manipulation of the three databases containing. 
climatology, component probability and complex 
functioned response amplitude operator in!o~tion 
respectively. An important feature of the database 
is that it reflects the sensitivity of motion 
response to internal ship p~ramcters, such as hull 
form and load conditions, as well as to external 
parameters Such as encountered wave conditions. 

The right hand side of fig. 5 indicates how the 
component probabilities combine to yield the indepen­
dent single-trial probability of a particular 
scenario. This is equal to the independent single­
trial probability of obtaining the resulting roll 
response provided that the response sampling interval 
is not less than the independence period. 

To simulate responses realistically. roll motion 
is evaluated assuming that the master will seek to 
maintain 11 best progress" towards his destination or 
voyage vay point, The chosen criteria for master's 
voluntary action are: 

number o[ slams per hour < 60; 
number o[ propeller emergence& per hour < 120i 
subjective motion magnitude < 12; 
averaee roll angle < 15". 

These lLmiting criteria are used because they repre­
sent motions and sealoads actually perceived by the 
master at his bridge conning position (Lloyd 1977). 
Thus the simulation considers a response ~pping of 
up_ to 50 course/speed coiJ'Ibinations in its attempt to 
bring vertical motions and sea loads.is below the 
maxi~ alloved by the above criteria. If it does 
this successfully it is assumed that the master has 
chosen this new course and speed and the design­
extreme roll motion is then evaluated. Otherwise a 
neave-to position to the waves is adopted based on the 
"best" response-mapping value of the course and speed, 
found by a simple minimitation technique. 

For example. the !alloYing extract from the 
computer output file. table 2, relates to the vessel 
ope,rating in a typical very severe, short and steep 
coastal seaway. 

60 

PROGRAM ENTERED 
SPEED•15.0 SHlPHD•JO 
HUKBER OF DECK WETNESSES PER HOUR•44 
SLAMH1NG CRITERION OF 60 PER HOUR EXCEEDED (216) 
SH CRITERION OF 12 HAS BEEN EXCEEDED (15) 
PROP.EHERGENCE CRITERION OF 120 HAS BEEN EXCEEDED (253) 
AVERAGE ROLL ANGLE•2 

srEED•18.D S111P11D•15 
NUHBER OF DECK 1/ETNESSES PER UOUR•O 
SLAMMING CRITERION OF 60 PER HOUR EXCEEDED (93) 
SH CRITERION OF 12 HAS BEEN EXCEEDED (14) 
PROP.EHERGENCE CRITERION OF 120 HAS BEEN EXCEEDED (202) 
AVERAGE ROLL ANGL£•5 

SPEED•12.0 SH1PHD•15 
NUHBER OF DECK WETNESSES PER HOUR•O 
NUHBER OF SLAHS PER HOUR•2 
SH VALUE AT BR!DGE•2 
NO. OF PROP.EHERGENCES PER HOUR•11 
AVERAGE ROLL ANGLE•B 

PROBABLE EXTREHE ROLL ANGLE•30.16 

DESIGN EXTREHE ROLL ANGLE•l7.14 

SULlSKER PATROL - LEG 
LOAD COHDlTlON lHDEX 
SHIP SPEED 

IIAVE SPECTRUM 
SlGNlFlCANT IIAVE HEIGHT 
FETC11 LENGTII 
SPREADING FUNCTION 

Table 2 
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ABSTRACT 

·:'· 

This intarim report• 

ongoing work since· 1982,_ 

Polytechnic, into the 

describes the 

11t Plymouth 

probubi lis tic 

·aaaessment·of veosel oafety against capsize 
. . 

in a __ representative ranqe of 1ikoly. t.o be 

encoun~ered ·environmental and operating 

conditions. 

The . proposed risk friunework utilises 

probabllist_lc. procedureo . w~ich hAve 

recently. -been applied to · operability 

studies. The method . is capable , of · 

accounting for vAriation& . in seastate, 

vesoel design · featurea ·and load condition 

as well as ve.ssel apeed a'nd hP.ading_ oubject 

to master's. intervention. 

The concept of a teat-track lo 

·introduced· as a means of standardising, 

porticulerly for- regulatory purposes, the 

operating· scenario& which ahould be 

included• in. any analysie which seeks to 

predict,-_.in a. realistic manner, vessel 

capaize safety. 

The preliminary _Analysis described 

utilises a ·linear superposition technique 

to predict vessel response and the concept 

of: a "potentially dangerous• roll motion is 

introduced to avoid. the necessity to 

predict large non-linear capsize roll 

angles. 

This work is affiliated to the United 

Kingdom.Safeship project, 

t. ·INTRODUCTION 

Ship stability 4s a· property ~hich is 

not amenable to 

naval architect& 

simple definit>on. To 

otability meano "safety 

against capsizing• in a very general oensc 

and the development of the underlying 

theory has had a long period of evolution 

which io still. far from complete. Current 

international stability criteria can be 

trace_d directly to· the _work, in 1939, ·of 

Rahola 1341 who proposed that a ship'o 

measure of oafety. be related_ 'to certain 

properties of ·still-water righting lever 

(GZt curves. However, in recent· years it 

ha& been argued that these er iteria ,_ which 

neqlect the action of the sr.~w~y, ~an~ot be 

a sufficient ·indicator of vessel t:apsizC! 

resistance in t.he seawAy 19). Furthermore, 

it is general~y agreed that any new and 

improved er iter lo . should seek to ·· take 

·account of thO! var lablli ty of tho> 

env lronmental concli tionn encountered, the 

vessel's design features as well ·no the · 

variation in load conditions and master's 
a•;tlon 1221 , 

It is in- the area of structural 

deolgn, especially~ that there has been a 

movement away from the deterministic 

0\pproaches, where satisf11ctory rules. are 

gradually evolved by " process of trial and 

error, to one where the variability in the 

demands made on : and the capabi 11 ty of a 

structural element to reoist _the load 

actiono impos"d lo taken into account 112, 

38). In such a probabilistic approach·- it 

is recognioed tha_t a structural element. 

will have to withstand loads of .different 

magnitude and frequency during its lifetime 

and similarly that ita capability to resist 

these loads will not have a single 

deterministic value, Fig 1. 

t ... 

I 

WORKINf:. 
LOAf; 

"NOMINAL 
.srUNtm~ 

CAflf8/LITY. 

C.APASILITY/DI!IMND 

!:!JLl.. 
Varlotfon of Ucmand and · 

Capability o( a Structural Element 

The problem to overCome in such an appt"oach 

is to ascertain the nature of the tails of_ 

the demand and capability distributions 

since it is in the overlap region that the 

comparatively rare hi9h demand and_ low 

capability may occur simultaneously to 

cause failure. 

An ~verall strategy for·probabilistic 

stability assessment, · baser1 on modern 

structural deoign mothodo 112) is shown in 

Piq la and ·this cnn be compared with the 

trDditionol (current) stability ass~ssmcnt. 

- 10 -



·:. .· 

', I ' 

CAUSE. 
-, 

{)£FINITION OF ENVIRONMENT 
' -

TRADITIONAl. M£THOb 

STILL WATE~ CAI...CJJLATION 

{MA_Y INCLLII>£ INF"LUENU OF" 
__._ 

I 
WIN() II££L./Nu IV/OMENTS) I 

~ I 

I 
r 

CAUSE.- meeT R£LAnoNS I 
R£SPON$£ TO £NVIRONMENT I 

- - I 

.ST.IfTIC CALCIJLAnoN 
-I 
... 

OF R.J6HTIN~ AI(.M i tv~eve ( 11/Vtd Htding) I 
I 

E.FFEC..T- PR£b/CTION 
Of SHIP R.£SPONSE. 
OVER. ITS Ll FETIME. 

l>EPENOE:NC.E. OF HEEL. 
ANGLe ON I(£ST~NG 
MOMENT{I(AHOU TYI'f. 
(.fliT£/f..llf) 

I 

------------~------------------------~-------------
STATISTICAL 
METUOb.S 

OPERATINGr i)qTA 
rOI(. .SHIP 

I 

FVLL .SCALE 1-- CAUBRATIDN 
1E.J T S ATJ'£JI OF .SHIP 

--~•~------~·==~--n· ..---L.....,' I ~ LONG TEIYf MonoN.sr~r~ne.s~ l I RovTT:.s l -I ~t.r tW llllf.IT'E I I uFE I E.XT/U.ME VALue STAnsncs 

£'D"K.EME MOnDN 
~ VlfLUE..S £XPEG:I£b 

·oyER. ~11/P LIF'c . 

. i . I -- I .SHORT TER.Irt /)ISTX.IIJIJ17~ h l 
SEA OA~WS~L IL-~--------~~--------------------·~ ;~~~~ 
MEA~U~ ~~HIIIDI:AST . f : j . 

MOnON PIU81tBILITY 
bi~TR.IBfJTION 

1 · I rar.r o,.j· MODELS 1 
- ~ _ _ I.ONGt re~ b/STJUBVTltJN 

1 
r1 

1 
s~ STII.TI.STIC.S, WINO or .SEASTIIrEs I I I · ·"' F 

I IMTIIEMIITIC-II_L. 'rNAL'I$1.S I -,_... ~SrtNJATE.. 0 
F'OI..C£, SEA .STATE. WArE . t I I EXTilEME M0110N 
HEIGHT, WAVE PEICJOl> · t I ... 8'(' TH£{)f(E.T/CAL _ 

' ·-l : y T/tAN.SF/!1(. FVNC.TION5 ~ I . . TI{£.4TMENT 

· ENcKfi'f .SPE.c:n./1 t11-_---~ ONE 0/ME~ONIIL r---!' . . _ _ --'- _ _ _ _ _ I _ . __ . -: . __ _ . 
7WI) bl.tiEN.SION,fL :. /.. 

. · Fl Cj 14 · St~bLLi.o/. A.ssessM&Lt. l"~mDil4t.tr .sTATISTICA/.J · . ··: 

. 



AB v,•Jl as b(!inrJ rnuc-h rnnrc PXtt~n~iv•~, thco 

moct~rn approach u~.1t.urcs cxpPrirr:cntill and 

analytical mod.,ls backr.d up by full ~,-,,le 

triAl& where Rppropri.H.,. 

The ma1n purpose of the work at 

Pl)·mouth_ la to explore the feasibill•y of 
developinq and applying such a probability 
analysis frame~ork as a basis for ship 

safety from capsize which may lead to 
improved stability, design and regulation 
criteria. lt ia also hoped that the 

framework viil help mesh together the 

different and often highly individual 
analytical techniques for modelling the 
various capsize phenomena, ln a concise Hnd 
efficient manner. 

1.1 Assessment of Risk in the 
Marine Environment 

The concept of risk is not new. -In 
many instances wh~re a large body of 
information exists,. based on accident 

history, an Appropriate interrogation of 
. the database can assign the- risk of death, 

injury .or other loss involved in partaking 

. ot a particular activity, eg, Table 1. 

Risk Source FAFR 
Average for British 4 

Industry 

Chemical Industry ·J.5 FAFR•Fatal 
Steel Industry 8 Accidsnt 
Fishing JS Frequenc} 
Coal Mining 40 Rate 
Construction workers 67 a No of 

.Air crew 250 deaths 
Staying at. home l per 108. 

Driving a car 60 hours of 
Rock climbing 4000 risk 

.exposure 

(21) 

Table·l 

Risk levels by Activity_ 

Unfortunately no database currently 
exists which is capable of providing 
sufficient detail to assign the ~robabllity 
of an· individual vesset•s risk ~f Cdpstzc. 

This is hardly surprising give~ tl1e 11ature· 

nf a. capsizal· which 1s frc"lucnt.ly rilpitJ 

with .l.ittlo rcsult.inq C'.,sualty Wl"l!ck.lCJC t.•> 

provide: cvith.'nt."•! nf th11 likr.ly ,:.a•l!ot~:;. 

Uhllsl' ~orr~e u~e(ul jnfnrmatlon can be 

l'hlinn~·l from t:hc t:aRihllty records, such as 

tlu• gun<.ro1\ naturo of the capshe and the 
s\arro\lndJng circ,lmntanc~n, no suit~bly 

1tP.tailed information can be obtained 

,-.,ga rdin<J the soquence or the probablll ty 
of Ci\USill events which would be 
pdl'ticularly useful for a more tr~dltion~l 

risk analysis such as "fault-tree• Ill. 

Even if this information was availablo 
it would not 
it to cover 

which are 

be appropriate to extrapolate 

many of the unique projects 
undertaken in the marine 

environment today. 

The alternative is to develop an 

appropriate prediction technique which aims 
to incorporate that information which la 

available from casualty records Cwhere it 

exlstsl as well as catering for those 
casualties which nearly occurred le, the 
"near misses•. Fortunately probability 
methods have recently been- developed 1201 

.. t.ich have direct application to the 
problem of assessing the risk of a vessel 
,-~psizing in a seaway. These will now be 

discussed within the context of application 
to capsize assessment. 

2. TilE TEST-TRACK CONCEPT 

2.1 Problem Outline 

Risk prodir.tlon can be generally 

stated as determining the probability that 
a pre-assigned event will-occur in a number 
of trials Cor over 11 period of time). ·rhia 
definition is particularly suited to games 
of chance, to assess the likelihood of 
obtaining a part'icular face value of a die, 
for example, in so many trial throws. 

When applying probabill ty concepts -to 
the problem of vessel capsizing, it is more 
appropriate to_consider the probability of 
a critical roll response being exceeded 

since thia will determine the area of the 
overlapping 
probabi ll ty 
envit"onmental 

tails in 
that the 

domands 

Flg le, the 
operational and 

exceed the vessel 

r.~p~bllity to resist the demands. 

In operability-type studies such as 
[ill ic.JUC an,llysis it is ncc~t:JSUl"y to 

'~on~ider r.vnry cyelt~ of vessel responsP. 

clu r i 1111 its lifctlmc.! since all cycl~s 

- 1? -



contribute to fatigue f~ilura. In 

taurvivab1lityl_ rlsk-type nuclias ·this is 

not· the case since ·quite c.ortan only the 

severest aeaatates will cause the severest. 

moticina,. and,· provided that the relatively 

rare cataatrophic responoas in · mild seas 

can bo accounted for, thiB · suggusts that 

the amount cif computation can be reduced in 

some way;·. Obvioualy,_ .it i8 not sufficient 

to seek the 'worst cases' on an ad· hoc. 

basis and some ordored approach io 
· desirable. 

z.z Teat Tracks and·Proving Ground 

In an attempt to 'trap' the worst-cRsa 

- ·. acenarios, . i;ha proposed method conoista· 

a.assntially_ of_. a subject vessel being 

,,- .. ·· required ··to· successfully Ua, · without 

. capaizingJ. negotiate a series . of 

· ·~~· which have been designed to 
repre.sent 

(potentially 

that it will 

the range of critical 

capsize cauoinql scenarios 

encou~ter over ito lifetime. 

In the· automobile industry, in 

particular, this type of procedure io 

common. A r~ad vehicle is made -to perform 

. a series of manoeuvres over varying terrain 

in a variety of conditions !environmental, 

load, speed etcl where each test-track 

represents one ouch set of conditions. For. 

_example _there will exist a .handling and 

. otabllity test-track, a steep gradient 

·test-track and so on. The total test-track 

·;set la termed the "provinq-qround" and its 

.overall natura refle~ts the vehicle's 

Intended use and type. : Thus a sports car 

will have a different oet of test-tracks to 

·negotiate tha_n an articulated lorry, though. 

·.soma wil_l be .identical. Bee Fig 2, 

.-----::;;:---..... 

l•n<J1·· ~ 1•1'1 . 
e ll«.h•• Ltrq~tt ... a~"' 
.w .. ~r O.lugr•P.q.s.M .. ·. 

"'" ..... •• u - :-~-._ .. _ 

~-

llandling and Stability Circuit at M!Rft (401 

The main advantages to the vehicle 

designer of usir\q _this approach ·are:-

~I The full range of.oper.ating 

conditions, including the very 

important oevern conditions, can be 

produced_ in " monnnr difficult to 

achievQ on the open road, for example, 

talso ma~ing repeatability of results 

possible I. 

bl Vehicles are tasted .under tiyhtly 

contr.olled conditione where individual 

characteristics such as handling can 

be assessed, in ioclation if 

necessary, a~d-compared against 

previous and other vehicle~' results. 

cl Attention is focused on individual 

·elements ~g, · v_ehicle suspension 

settings' so· that if a poor performance 

characturlstJc m .. nlfests itself on. one 

particular test-track"thodesign can 

be precisely reteAted after suitable 

modification. 

The authors believe that these are 

va luHble pro~P.duros which can btt used to 

asseoR the capability of ~ seagoing vessel 

to perform its duty in safety. However, 

leaving aside the immense difficulty of 

physical modelling of severe oes 

conditions, sheer expense would preclude 

the use of a purely physical marina proving 

ground for every single vessel. Thus it ·is 

envisaged that at first the test-tracks 

will be largely analytical in nature with 

some experimental 

difficult aspects until, as 

for , certain· 

the theory 

imprc.oves, eventually no physical 

experimentation would be required.t?l. 

For this preliminary investigati~n end· 

for illustration of the overall-·' package' a 

-wholly analytical frequency domain analysis 

·will be·' usod, · ~bviouoly this. means, that 

certain physical capsize phenomena which. 

may be best suited to time domain anaiy.sis. 

tsuch as the broaching-to phenomononl will 

not be modelled and thus the test-tracks . 

will not be. fully activated initially. 

Section 4. addresses the baslo for· using a 

linear frequency domain .analysis for what 
are. essentially non-linear -large 

_capRize phenomena. 

1) -

angle 
' 



2.3 Choice of Teat-Track 

. . 
·As vith. the road vehicle case, the 

venal type ·and intended .zone or zonee of 

operation dictate the nature of the proving 

vround, ·and thus·. the individual 

teat-tracke, th~t the ~eagolng vessel vlll 

be required ·to ·negotiate aucceoafully. 

Thu·a, for example, a . vesse 1. which is 

intended for operation in a sea-area which 

ia well sheltered or has aheltBr to hand 

will no.t .have to negotiate the more 

stringent test-tracks required. of a vessel 

intended for extended operation in. high 

icing .latitudes,· . Indeed, some form of 

licensing might be desirable for individual 

operational zonae -since thia.would assist 

in avoiding the potential overdesign or 

undsrdeaign of veeaele which the current 

'blanket •. re9ulations may encour_age. 

A vessel which la intended for 

international operation would be subjected 

to the worat · poaaible veather condition& 

(Appendix 2.21 .• 

By conaidering individual teat-track 

performance the effect on the performance 

of design and operational features can be 

considered in detail whilst overall proving 

ground performance-will allow comparison of 

total· performance·and aafety levels acrosa 

a fleet of veaae la for example though. this 

~average"· value should be treated with 

caution. 

A .typical· subject vessel can .be 

expected to .operate, over its lifetime, in 

a wide . range of environmental and 

displacement conditions and to be subject 

to different masters' action, The correct 

choice of test-tracks to holata the 
· potential capaize scenarios . from amongst 

all.·· posaible operating .acenarios 

encountered. by the· vessel during ita 

"lifetime la ·.vital· if· certain critical 

operations a_re not to be overlooked along 

the . _way. Whereas .it ·is computationally 

desirable that the proving ground should 

·only encompass all o·f the possible 

ecanarioa.which could.cause capaize, it ia 

·obvloualy not·posslble ·to pre-define them, 

and it la thus necesaary to initially 
conalder that all scenario& are potentially 
capsize causi'nq. llowever, if an lpi~ial 

assumption i_s made that only the severest 

aeastatea caus_e · t~e. ~eve rea~. responses the 

amount of .computation for 11ny scenario ia 

reduced . if . t.he order of severity of 

.aeastatea to which the vessel ·is. •ubjeeted 

(everything else remaining unchanged) la 

progressively .reduced. from tho !!!2.!1 severe 

. possible in the operating zone under 

conaideration. Once tho predi.cted response 

level falls~ the limiting aofe"value 

· the computer proqram movea on ·to consider 

the next scenario and ao· on. (Section 51 · 
The results of Hulti-variate I pattern 

rec_ognitionJ analysia of. casualty date (for 

the broad veaaal ·type and size) is also 

uae~ to ensure that . no proven (frequently 

recurring) capaize scenarios have been 

mia~ed, particularly in mild aeae, These 

· poaitively identified "caps he nuclei • 

(each one representing a .dlatillation of 

·many aimilar casualties) form critical 

scenarios for consideration and are 

embedded in the test-tr.acks vlth respect to 

time and location. Fig J. 

+ T£Sr rRAC.X: · TI!RMINAI. PDINT.S 

ll>ENr!FIEb 
Nat..uus 

IIXNTIFI£0 
CAPSIZE. 
NIIGL£1/S 

vc:ssa. 
IN POR.T 

. NQCLE I I DIIBEZJbEb 
-IN T£:;r TRACK. 
w.r./:: BoTII .SPAU: 
ANb TIME. 

!.!L2. 
Yeeael Stoamlns to Petrol A~oa 

Teat-~rack containlns 2 identified capei~e nuclel 

l. 

· 3.1 Managing the Lifetime.of Risk 

The method of handl.ing . all :the 

scenario& comprising a lifetime of risk is 

beet· llluatrated with the aid of an· 

example. The subject. vessel being used for 
the present study is· a fisheries protection. 

vessAl which h~s an operational· area 

encompassing the Nor~hern North Sea and 
NoL·th Eastern Atlantic in ·the region of the 
100 fathom line around.North West Scotland. 
Th~re arc also occasional sorties ."or" up to 

14-
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200 miles lnt.o thP. "open North r.t. l-ont1c:. 

Princlpnl VCStit".\ pilrlir.ular!': a.:-:•.!' ql\.'!'!11 

in T11ble 2 And t~igurP 4 shnwa :!~c. generit I 

nrrnn')cment, 

Length Overall 

L<'nqth b.p. 

BeaD! mid. 

7l.ll m 

64.00 m 
1 L 60 m 

OP.si9n Oisplacement ISli tonnes 

!able 2 - l'rinci_p_al. P~rtlcula_r~ 

The prediction method aims 

'cal.<::ulftte PC t<' < t), the cumulativ-> 

. probability of a 'critical roll motion' 

(tcl being exceeded, at least once, during 

the. vessels lifetime of operation. This 

value Ls of course represented by the 

proving ground result, AddJtionally the 

probahllitles of exceeilance <luring cP.rtaln 

ind~vidual veR&el operations, represented 

by individual test-track results, is b<>ing 

sought. 

The •critical roll motion, ' . c is 

defined,- in ·the first ir1slance, as the 

value of rQll an']le beyond which there is 

increasing conr.ern that the vessel will be 

in danger of cap•izin9. This is referred 

to· as the potentially dangerous roll angle, 

though it may subsequently be defined to 

'include velocity or acceleration terms. 

(These ao:pects are discussed In Section 41. 

The cumulative probability P ( •c < f I 

can be obtained from a knowledge of the 

underlying lifetime response probability 

density function Pl+l- This in turn can be 

found by taking (ie, computer-predicting) 

independent· trial samples of roll response 

over the vesaels lifetime together with tho 

independent single trial probabilities of 

occurrence . . These independent trial 

result&. are then CODibined using Bei:noulli 

trial procedures,. (Appe_ndix 11 •. 

A.preliminary analysis is necessary to 

determine the vessel's intended missions 

(oporating· practices and operatin9 nreas). 

Fo~ ease of. illustration it is assumed that 

our .sub)ect vessel will only ever oJ,Jerat.:~ . . 

in· the ee~ areas labellttd 2 and 4 in Fiq 5. 

This int.il.~ates the hounda.r i.es of tht~ 

&e~-are~s in the North Atlantic Ddsin ir1to 

which the climatology: do.1ta iA diVl!...ll.!cl in 

16 • 

P•"f 181. ll is as~u•~d lhi>t ent"h sea-area 

h~s lts own !llslinct cllmatology '!nd that 

thi, iR homoqonoua (uniform) w1thin th~ 

an-·;,. buundar ies shown. 

Thus the sea-areas 2 an<l 4 toga~ 

r.o~prise thu ~ovi~-9~ for the subject 

VP.Hse 1. 

Typical missions Identify · routes 

within the proving ground which form the· 

lndl V I dual test-t ritcks. on.. n f these "Is 

ohmm in Fig 6. 

<c·l i_~:,-,-~;:1 o:::r,::,.===:!::~~O::=:.:c;,;.;;ll;::.""'~t~o~l~o=g=y==';-; 
Dumnln (Code 2) Domaln (Code 41 

Key: Test-Track • AHB'C 

Assumption: Displacement is constant between Jega 
AB and BC. loK BC cro11110a tho domain 
boundary at H'. * indicotes Jndepcndent 
trial •amplinR points. 

fu..~ 
~cation of the HeLhod 

1\ typical OliRHton .la involved in 

proceeding from the homtl port (Position A 

Ln the Pigurel to the . patrol area at. 

position c where time is spent on station 

bef~tJre roturnincJ · to A by the same route. 

It can bo seen that the intended track is 

ABB'C which crosses tho domain boundary at 

B'. Thus. the test-track is subdivided into 

2 · separate spntial dnmdins where the 

climatology is assumed h,omogeneous. · Each· 

sp•lial domaJ.n is further subdivided into 

rln.!fl_a.in~ents which arc 

th~ intended trQck whore 

segments along 

the vcsso 1' s 

d~sp lacement cond i ti~n I it., kxx, k.yy, kz z) can 
bt~ ;~ssumed constllllt. Thus Jn Piquro 6, 

between All 

·concH t ions 

di ffCl"t:!lll. 

10nd 

are 

I For 

Ul. Lhe displacement 

c1nd 

•nd 

to 

f;.Iciliti1l1~ co111p.1risun .of perfonn~nce with 
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the existing stability criteria, the actual 

load conditions which are used are taken 

from tha vessel's stability b.ooklet to 

repr~sent the complete. range of vessel 

capabilityl, 

3.2 Independent Trial Samples 

In order to be able to use the simple 

procedures, for manipulating probabilities 

which are given in Appendix 1, for risk and 

operability studies, it is necessary to 

ensure that all the predicted responses 

(trial samples of the underlying lifetime 

response probability density functionl are 

independent. This necessitates that the 

response obtained from. one scenario shall 

not have been influenced by any previous 

responses obtained along a domain segment 

ia, the response obtained should have no 

'memory•. 

Thus it is required to know how many 

independent trial samples of the underlying 

response distribution can be taken in each 

domain segment since this has an important 

bearing on the probabilities obtained 

(Appendix 11. For this purpose an 

independence interval was introduced by 

Hutchison (201. This 'interval' represents 

the minimum distance in time and/or opaca 

that a vessel must travel before the 

oaastatao land by inference the resulting 

responsesl can be considered independent 

trial samples of the underlying seastate 

probability density function. This is an 

important concept since 

information concerning the 

thus the responses obtainadl 

strongly alters the· 

conditional 

seastate (and 

at one instant 

probability 

distribution for seastates (responsesl at 

nearby times or locations but the influence 

of the conditional data diminishes as one 

. moves. further away in time or space until 

eventually the underlying seastate 

lresponsel probability distribution is 

again dominant. 

Hutchison proposed a simple form of 

metric for the number of independent ship 

exposure cycles, N• where 

(20) 
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where T• independence period, Hours 

L• independence distance, 
nautica 1 miles 

T exposure time, hours 

V average vassal speed 

The independen'ce period/distance is 

the time/distance required between two 

observations to be independent. See Fig 6. 

Further work is 'required in this area but 

values for the independence period of 

between 13 and 26 hours have been quoted 

based on some a~allable seastate process 

sampling rates ~n a scale siqnificant to 

ship routeing )201. 

In fact a simpler measure 

N = Exposure ~istance R 

VT 0 

is more appropriate if vessel speed 

relative to the advancing weather 

conditions is used. 

3.3 Applied Probability Concepts 

A particular design which is operating 

in a domain segment (ie, of a particular 

load conditionl will have a motion response 

dependent upon the combination of broad 

factors route, climatology and seamanship.· 

These factors are considered in detail in 

Appendix 2. 

It is apparent that the single trial 

probability of obtaining a roll response 

level ( ~ 1 is equal to the single trial 

probability of encountering the particular 

load condition, route, climatology and 

seamanship giving rise to the response. 

Thus the single trial probability of 

obtaining the predicted roll response t, 
given the load condition A• location L and 

season S . 

pl ( o/ 4 ,L,SI, where P1 indicates the 

single trial probability, is equal to the 

single trial probability of encountered 

seastate (H
9

',Tm,F), relative heading to 

waves _ ( ~ I and speed lVI given load 

condition (41, loc.ation ILl and season (SI. 

Thus 

,·. 



The value of P1 CH
8

',Tm,P,u,V/6,L,SI is 
obtainad by manipulation of the compo~ent 

probabilities given in Tabla l from 
Appendix 2, Thera are several ways of 
combinin; tha•e probabilities but in the 

· praaant study the adopted procedura ia a a 
followao 

la) Por a given domain segment 

[6,kxx'kyy'k
1

"1 constant), the relative 
heading to waves, before any modifying 
seamanship, 1a given by lu

0 
• .c - t I 

·whera C la the course and t the 
predomin~t wave diraotion. 

Now,· tha _joint probability of saaatate, 
haading, wave spectrum and speed (prior 
to seamanship) given the location and 
season is 

P(H
8

;Tm,F,u
0

,V
0

/L,SI 
• P[C,V

0
/L,S),P(H

8
,Tm,F,t/L,S) 

a P[C,V
0

/L,SI .PIH
8
Tm,F,[C- u

0
)/L,S) 

(b) Incorporating the avoidance typa 
seamanship P[H

8
'/Hs) gives after 

·avoidanceo 

P(H
8

' ,Tm 1 F, p0 _,V0 /L,S) • . 

PCHs'/H
8

),P(H
8

,Tm,F,u
0

,v
0

/L,SJ 

(c) Incorporating the pacifying typa 
seamanship, PCV,u/H

8
' ,Tm,P,V

0
,u

0
1 

yields tha raquired joint probability 
of aaaatate, heading and apaed [after 
seamanship action) givan tha location 
ai..d 'season le, 

P(H
8

',Tm,P,u,V/L,SI • 
P[V,u/H

8
',Tm,P,V

0
,u

0
J, 

. P(H
8

' ,Tm,P,V
0

,u
0

/L,S) ~ 
P(H8 ',Tm,F,~,V/L,S) • 

P(V,u/H
8

',Tm,F,V
0

,u
0

J, P[He'/H
8
), 

P(C,V
0

/L,S),P[H
8

,Tm,F,[C.- u0)/L,S) 

This 1a tha single independent trial 
probability of obtaining the predicted roll 
reaponaa + rasulting from this scenario in 
a givan domain aa!Jment for 1. aat of 
condi tiona, There are many such a eta or 
combinations of conditions which must be 
conaidarad, 
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Probability 

P(L,S) 

P(H 8 ' ,Tm,F,t/ 

L,S) 

P IV, "''"s' ,Tm, 
F,V0 ,t.~0 1 

Description 

Joint Probability of V/L 
location and season 

Joint Probability of 
intended course and apeed 
given the location and 

·season 

Joint Probability of-· 
encountered significant 
waveheiqht and mean wave 
period, wava family 
spectrum and predominant 
wave direction given 
location and season. 

Probability of 
encountering a seastate 
of severity H 'after 
taking avoidaHce action 
given that H would have 
been encountBred if no · 
bad weather avoidance had 
been attempted 

Joint Probability of new 
speed and new headin; to 
waves after master's 
alteration in response to 
excessive motions caused 
by seaatate severity and 
original speed and 
heading 

Table J 
Component Probabilities used 
in the Analysis (Appendix 21 

At this stage of combining all ths 
possible combinations, the opportunity ie 

taken to obtain directly the single trial 
probability of roll angle t exceeding the·· 

1 . . 
critical value 0 c , P C •c< t I, · To .every. 
scenario a response level t is predicted, . 
ouch .as the expected maximum roll angle 
which has a value dependent on the duration 
of exposure to each seaotate, [ultimately 
the independence period - Appendix A2, 4.1 , _ 

If a counting 
constructed from•-

y 0 • [1 for t < •] 
· 0 other:iae 

functional is ;. 

- .. 

the cumulative single trial probability of 
exceeding the critical roll t c· in the . 

domain segment (for a given load condition, 
location and season) is given by 

• 



P1 Uc<O/I.,SI • 

. 2a • 211 F•f 

J J I I P(V,~/H8 ',TmF,V0 ,~0).P(H1 '/H 1 ). 
o o o P•l 

d~0 ,dH1 ,dCpr 

If required, further counting 

functional• can be added to this equation, 
eg1 

·o otherviae 

would give the cumulative single trial 

probability of roll ang~,e ~ exceed~:'g Q c 
with Q roll acceleration Q exceeding Qc. 

The number of independent trials in 
the domain segment is found from 

N ~ R 

where R is the distance along the course 

track between entrance and exit'boundariea 

of a domain . segment eg, 
'· 

distances 
AB,BB',B'C in Figure 6 

V • vessel speed relative to weather 
speed of advance 

T• m independence period. 

Then the probability of 

independent trials in the 

given by. (Appendix ll• 

( ~c .< ~~ in N 

domain segmen~ is 

N 1 N 
P (~c< ~/I., SI • 1 - (1-P l;cq/1.,51 l 

Since the N P ( t c < ~ I processes are 
independent processes in each domain 

segment L, domain D and season S the 

probability that ~ exceeds +c at least once 
on a single independent test-track is given 

bi 

. P110
0

<tl • 1 - { nnn ll-P" l t q/L,SI 1} 
LDS c 

this is the required single test-track 

!!.!ill· 

For Q repeated identical test-tracks. 
in a lifetime of operation 

Since the proving qround involves 

se.veral distinct types o_f test-track 

where 0 1 = number of test-traCks of type· i 

gives the proving ground result le, the 

overall risk that • exceeds ~ c for a 
li fetlme of opera·tlon. 

Thus PrQi l+cq) ~ 

I • + -[I - b;[l 

where P 1 (~c<~/L,SI 
2u 2n F .. l 

f I f I P(V,"/H 8 ',Tm,F,V0 ,~ 0).P(H8 '/H 8). 
0 0 0 Fal 

4. SCOPE OF THE PRESENT WORK 

The previous section has outlined tho 

method of manipulating probabilities of 

independent response samples so that the . 

probability of exceeding, at least once, a 
critical roll motion can be found for each 

· of the test-tracks and the proving ground. 
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of 

Of equal importance is the prediction 

the motions themselves in what is 

essentially 
phenomenon. 

a large angle non-linear 

Poor stability 
(operational or icing effects) 

Wave amidships causing stability loss 

M a thien effect 
(periodic resonance with waves) 

Broaching-to (directional instabllity 
in followinq waves) . 

Heavy seas from one side 

Breaking Waves 

cargo Shift 

water on Deck 

Table 4 (J9) Capsize Phenomena 



Investigations of casualty data and 
ex per imanta vi th a ea le mode le haa led to 
the categories of capsize shown in Table 4. 

Especially for smaller vessels physical 
wave affects can· be critical, especially in 
some local conditions which may be 

'encountered off the Norwegian coast for 

example .139). 

It follows that every teat-track 

segment should be analysed to take account· 
of !!! possible capshe phenomena, 
especially when smaller vessels are under 

investigation. Consideration should also 
be given· to ·the possibility of one 
phenomenon giving rise to another eg, heavy 

seas from one aide causing cargo shift. 
This would · lead to the ideal 
demand/capability assessment of Figure 7 

. which is· necessarily a mix of analytical 
techniques (time domain and frequency 
domain) and experimental techniques at this 

time. The largest roll motion obtained 
from all these procedures would be carried 
forward in the calculation. However in 
these early .stages, for illustration, only 

certain of.the capsize phenomena are being 

investigated, through the use of the linear 
auparpoaition theory, . The basis for this 
choice is now explained. 

4.1 The Potentially Dangerous 
Roll Angle 

When a vessel capsizea, from whatever 
cause, it assumes a large angle of 
inclination ·from which it cannot recover. 
It follows that the measurs of the vessel's 
overall capsize safety . should be ita 
capability to resist this ultimate roll 
motion. durinq ita lifetime. · This requires 
a reliable ·method for predicting the large 
roll angles which can ·properly handle the 
non-linear nature of the roll damping and 
restoring moments aa well aa the important 
coupling of roll, avay,·yaw motions giving 
rise to considerable . roll motion damping. 
In addition, for ·risk ·analysis purposes, 
the method should . ideally be capable of 
taking account of the key parameters such 
as th!'.· .en.vironmant, · speed and· heading to 
waves as wall a,s· changes in hull foxm and 
load.condition. A method which could also 
aimultaneoualy. predict' pitch and heave • 
motions v'?ulil be particularly useful in a 
computer' aimuiation . becauae :the magnitude 
of t"he vertical motion and .acceleration 

·- 20 

together with associated physical phehomana 
such as slammin9 may cause the master to 

change a~eed/heading to seek acceptable 

motion llmi ts. 

Unfortunately such a general theory 
for non-linear syStem response to 
stochaatic proceaaea ·which la suitable for 

a risk analysis does not currently •xist. 
Methods which are available tend to 'either. 
give accurate prediction of uncoupled large 
roll angles for an intact vessel stopped in 
beam seas, for example (35) or alae to have 
the scope for a ri~k analysis study but not 
the capability to predict the large roll 

angles. The linear suparposition principle 
of St Denis and Pierson [161 falls under. 
the latter category,. Whilst it can· give 

reasonably good results for coupled pitch 
and heave motions the prediction of large 
amplitude coupled lateral motiona io leas 
satisfactory because of the inherent motion 
non-linearities. 

Thus a further important feature of 
the present analyaia is that the prediction 

of the actual large angle capsize io not 
att.empted per se. Instead a lesser roll 

angle termed the "potentially dangerous 
roll angle" la chose!' beyond which it le 

assumed that a capsize is likely. Thua the 

potential for disaster le being predicted 
rather than the diaaater itself. Thia 
novel approach can be juati fled for the 

following reasons•-

a) Long before the vessel reaches its 
capsize angle there la often great 
likelihood of cargo shifting.· 

b) Simultaneously there la great 
likelihood of water downflooding as 
well aa .water trapped on deck. 

This would necessitate the · accurate 
prediction of large angle damage stability 
and roll taking account of posdble cargo 

shifting .effects and water on deck and 
further complicated by· larg~ changes in 
hydrodynamic coefficients as the deck edge 
is immersed. Until ouch methodologies 
become available,· it is proposed that .the 
linear theory be stretched to the limit of 
ita capabilities in order to. estimate the. 
occurrence of a roll 'motion _judged 

•potentially dange~ous•. 

...... 
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Baaed on diacuaaions and 

correspondence with fleet operators and 

serving commanding officers Ill) an angle 

from the upright of lO degreee haa been 

&elected for the subject vesael (length of 

60 ml aa the potentially , dangerous roll 

angle. This does not imply that when a 

veaael rolla to 30 degrees it will capsize. 

It does, however, reflect the view that 

· beyond this angle there is increaaing cause 

for concern by the vessel operators and 

that a vessel •rsgularly" rolling to 30 

degrees· and beyond should ba considered 

suspect. This would ba reflected in a high 

probability of 30 degrees being exceeded in 

a particular oper~tional scenario.· Through 

the SAFESIIIP project Brook Ill) . ha a 

demonstrated that, provided the. righting 

lever curve is approximately linear to the 

angle in question it la more important, for 

roll prediction, to include coupled motions 

through linear theory rather than to use an 

uncoupled non-linear prediction method. He 

also demonstrated that in some casea the 

coupled-linear roll anglea were greater 

than the coupled non-linear roll angles and 

sometimes less. (See Table 51 

~ave Direction 30 degrees 

if; hip 1 l 

• max 2 hra 

Coupled, Non-linear 18.1 11.7 

Coupled linear 14.6 9.1 
Uncoupled Non-linear - -

!!&Ye Duect1on ~u aegrees 

if; hip 1 2 

• max 2 hrs 

Coupled~ Non-linear 34.3 19.0. 
Coupled linear 40.5 16.2 
Uncoupled Non-linear 25.2 54.2 

Ship 1- • Offshore Supply V/L (53 ml 
Ship 2 • Stern Trawler (60 ml 
Ship l Coastal Tanker. 167 ml 

Table 5 from Raf Ill) 

l 

9.9 
7.2 

-

3 

21.7 

26.0 

5.2 

- 22 -

The linear nature of the subject 

vessel's GZ curve is illustrated in Fig 8 

for angles up to well in axcesa of 

30 degrees. 

It is envisaged that in due course 
better motion prediction methods, having· 

the required scope for risk studies, will 

become available and the linear spectral 

analysia used in thia work will be 

superseded. This argument will not be 

pursued here any further since the primary 

aim of this work is to synthesise the 

components of demands made on the vessel 

and the capability of the vessel itaelf, 

where the demand and capability is 

constantly changing over the vessel's 

lifetime. 

loO 

o·t 

A. I S3"1 1-0M•S; 
O·t. GMa O•"'I"IQ '"· 

CZ curve - Fiahetiea Protection Vessel 

5. THE COMPUTER SIMULATION 

The foregoing aactions have outlined 

how the probability of exceeding a 

"potentially dangerous• roll motion can be 
estimated, making use of independent 

(Barnoullil trial concepts. It haa also 
been proposed .that every vessel be 

subjected to a set of (mostly) analytical 

test-tracks which together comprise· the 

proving ground appropriate· in nature to the 

vessel being considered·. This aspect is 

particularly suited to regulatory purposes 

where vessels are. subject' to standard 
procedures and assumptions. 

·Work 
program 

is continuing 
which 1s 

on the computer 
required for 

implementation of the method' however 
Figure 9 indicates the overall extensive 
nature of the program as far as it can be 
envisaged at this time. The figure 
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illustrates how a complete study would seek 
to encompass the time, frequency and 

·probability domains though only the 

. frequency and probability aspects are being 
considered in the present study • 

. ' 

The figure also indicates to which 

stages in th~ .frequency domain calculation 

.the component probabilities relate. 
Essentially the computer simulation reduces 
to the manipulation of 3 databases 
containing climatology, component 
probability and complex functioned response 

.amplitude operator information 
respectively. An important feature of the 
RAO database is that it reflects the 
sensitivity of motion response to internal 
ship parameters such as hull form and load 
condition as well as to eY.ternal parameters 
such as encountered wave conditions (36) 

for example .• 

Once a particular scenario has been 

established le, the load condition and 
intended speed and heading for a particular 
location and season,- the appropriate 

climatology and RAO information is combined 
to assess t~e degree of added resistance in 
waves once any avoidance seamanship 

(Appendix A2.31 has been carried out. With 
new vessel speed as argument the vessel's 

vertical .responses are predicted and 
ac~utinlaed for resulting severe motions 
and sealoada which are likely to cause the 
master to alter speed or heading (Appendix 

A2 .3). 

If these motions perceived by tho 
master are .acceptable the extreme roll 

'response is then evaluated (Appendix 2.41. 
However, in the event that critical motions 
are exceeded the heading and/or speed is 

varied (conducive with best progress in the 
desired direction) until the perceived 
motions are again 'within acceptable limits. 
The vessel may have to assume a hove-to 

attitude at this time but in any event the 
roll response is still evaluated, taking 
account .of the exposure time to each 
scenario through the use or the 
independ~nce period (Appendix 2;21. 

Provided that the roll motion la 
larger than the potentially dangerous value 
the scenario probability ie carried forward 
tor inclusion in the calculation to find 
the cumulative probability of critical 

motion exceedance, as outlined in 

Section l;~. Thus the prediction method 
proceeds through all possible _combinations· 

of•-

.. , Wave spectrum family membora (max. 111 
b) Courses · I Heading ( 7) 
c) Wave primary heading to waves 
d) Significant waveheight (10) 
e) Modal period (10) 
f) Speeds (10) 

t77,000 

for a given single. load condition, location 
and season. 

It is apparent that the amoul)t' of 
computation for the several required load 

conditions, locations· and seasons is 
potentially enormous, and while this can be 
reduced (from 77,000 to about 8, 000) by 

excluding certain- physically . impossible 
seastates and by assuming that responses. 

vary linearly with significant waveheight 
for the same modal period, on the ·other 

hand theoe aspects also introduce their own 
data handling difficulties. 

At the present time main 
calculation has not been carried out, thus 

it is difficult to make estimates of the 
eventual computing requirements. However, 

a recent roughly equivalent operability 
study (SI used about 2 hours of mainframe.· 

computer time for around 1,300 calculation~ 
the cost of which can be expected to fall 
as the processing capabilities of computers 
continue to increase.· It should· be 
emphasised that this is a .. onco-only 
survivabllity calculation which it is being 
proposed should be carried out in the. 
design stages before a vessel is ·even 

launched. No further assessment would be; · 
required unless the vessel is subsequently 
required to · operate in different 

zones or it geographical 

alterations which materially 
response to waves. 

undergoes 

affect its 

6. SUMMARY AND REQUIRED FURTHER WORK 

In any engineering enterprise, 

particularly where human life is exposed to 
cJRngerous conditions, it ··is the 
responsibility of the designer as well as 
the statutory ~uthoritios cnncarnod to 

onsure that the vehicle, structure eto, is 

- 24 -



,. 

safe, judged by the scientific knowledge of 
the day. 

In this interim report a procedure has 
been outlined, which is intended as a 
once-only calculation, to evaluate by using 

independent (Bernoulli) trial concepts the 

probability that a "potentially dangerous• 
ro11·motion will be exceeded at least once 
in . a series of typical missions 
(test-tracks) which have been identified ae 
being representative ·of a vessel's 
operating lifetime, 

In the· present pilot study the 
interpretation of the term 'test-track' is 
that it ·represents an identified typical 

· mieeion · of the subject vessel. This is 
necessary because it is _not known a priori 

.which scenarios could cause capsizing and 
thus the marine equivalent of the 
automobile test-tracks, where individual 
characteristics are exclusively tested, are 

·not derivable (until, possibly, _experience 
has been gained with the method), However, 
while this causes difficulty at present for 
·novel veBBel types, the proposed present 

analysis is able to incorporate specific 
scenarios which historic casualty data have 
indicated as frequently recurring and 
potent'ially capsize causing, (using pattern 

recognition analysis) 

It is 

obtained 

felt 
are 

that, 

not 

while the 

likely 

results 

to be 
mathematically rigorous, the proposed 

overali framework ie of vital importance 

sincez-

· al The problem of vessel capsizing is a 
pressing one which cannot wait until 
every aspect of every analytical 

'technique has _been perfected. 

b) There exists a patchwork of analytical 
and experimental techniques for 

,predicting the various capsize 
phenomena and these ultimately need to 

. be fitted into an overall risk frame­
work. 

cl Lack of mathematical rigour does not 
prevent the results generated being 
used in a comparative mahner in these 

early stages, 

.d) It will highlight areas for fu~ther· 

research. 

Thus the proposed method is primarily 
a framework for evaluating, in a.realistic 
manner, the effects of the variation in 

demand and capability- which will enable the . 

comparative risk of a critical roll motion· 
being exceeded while_accounting for likely 
operational scenarios. There are 6 basic 

elements to consider.1-

(i) .Identify the critical' scenarios 
which give rise to large roll 

motion an·d possible capsize. 

(iil Assign the probability of 
encountering each of the critical 

scenarios which have been 

identified in (i). 

(iii) Predict the 6 degrees of freedom 
motion response for each 

operational scenario. 

(iv) Manipulate scenario responses and 

associated probabilities using 
independent (Bernoulli) trial 

procedures to find the probability 
that a critical roll response will 
be exceeded at least once during 

an individual typical mission as 
wall as during a lifetime of 
operation. 

(v) Compare the probabilities obtained 
·against· an accepted risk leveL ,. 

(vi) Adjust the, operational procedures 

and/or the deaign to impro"~ . the . 
risk levels (if neceasaryl. \ · . 

. . 

Unfortunately the procedure raises 
more questions than it answers .. Given that 

a full treatment, as proposed, would 

re fleet the risk of · a large roll motion 
being exceeded 'by all. of· the mechanisms 

which have been identified·_ eg,. 

broaching-to, Mathien effect etc, etc, 
there still remain some fundamental 

unanswered questions which .- would form 
research projects in their own right, ego 

(i) Is roll angle alo~e a sufficient 
description of the capsize 

potential? 
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(ill_ What assurance against capsize risk 

is acceptable to the industry since 

perfect safety is not possible? 

(iii) Haw may the risks be reduced to the 

acceptable standard? 

(~v) Can the method yield a sat of 

stability criteria as simple to 

enforce as those currently in use? 

A large angle prediction method to 

incorpoFate all of the non-linearities and 
to take account of the associated dynamic 

effects will probably be a long time 

coming. ·Thus, it is particularly important 

that a method which seeks to predict the 

~. of capSize has a proper measure of 

potentially dangerous motion which may 

contain velocity and/or acceleration terms. 

The illustration of ·such a joint 

probability process is shown in Fiq 10. 

(By· assuming narrow bandedness of the 

response the roll angle, velocity and 

acceleration can be shown to be independent 

processes and the probability of a critical 

angle/velocity combination being exceeded 

can thus be deduced. This is represented 

by .the shaded portion in Fig 10), 

PR.OBAB!UTY 

Unfortunately · little is known about 
what the critical values of velocity/ 
acceleration . should be. Whilst it is 

reasonably possible to. set limiting 
acceleration values, for example on tho 

cargo lashings, it is .no simple matter to 

do the sa~e for bulk cargoes let alqne to 

consider sliding 'liquefaction' instability 

of damp fine grained minerals for example 
( 17). 

Assuming that the capsize phenomenon 

can be quanti fled the. issue of acceptable 

risk levels is a vexing one. Essentially: 

the analysis of_ costs versus benefits, such 

a measure of acceptable risk seeks to 

incorporate the • value' of a human life· 

(21) and to assess how an individual. 
accepts risk whether consciously or 
unconsciously. It seems reasonable that a 

starting point is ·-to demonstrate that an 

individual's risk of fatality has .been 

reduced by appropriate measures which arise 

from the type of analysis proposed, without 

involving oneself in ~bsolute values of 

risk !provided that they are comparable 

with the majority of current .'equivalent' 

industrial risksl. In any e\rent absolute 

safety cannot ever be guaranteed and an 

appropriate acceptable risk level is needed 

as the measure of survivability. 

Ultimately, through refinement of the 

method it may be possible to formulate a 

set of stability criteria which take 
realistic account of the environmental and 

operational variations and yet are as 

simple to apply as the current regulations. 

Howevor, simplicity of application is no 

longer .a strict necessity given the 
potential speed and capacity of the new 

qeneration of parallel-processor computers, 

and thus a standard agreed procedure would . 
seem most appropriate for future stability 

requirements (with an appropriate risk of _.· · 

capsize as the desirable ai.ml. Indeed it. 

is more important that one builds into the 
procedure the experience of .serving ship's 

officers and crews. 

The proposed method is very much a 
first attempt and contains many areas for 

further research," In addition to the 

obvious uncertainties inherent within the 

motions prediction there is also 

uncertainty regarding the value of the 

independence period T* which determines 
the number of independent trials, N. in a 

domain segment and thus the probabilities 

9btnlned. 

Finally, although the method is 
initially being applied to a 64 m fisheries 
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protection vessel it is actually suitable 
for any fixed or moving ocean vehicle or 
structure. Perhaps one day these might 
even individually be licensed to operate in 
specific areas with known risk levels from 
both an operability and survivability point 
of view. 
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NOMENCLATURE 
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Vessel (true) course 

Domain 

Wave spectrum family member 

Significant Waveheight before/after avoidance seamanship 

Radius of gyration with respect to axes 

Geographical location 

_Independence distance 

Number of independent trial samples 

Identical test-track number 

Domain segment length 

Season 

Independence period 

Mean wave period 

Ship speed before/after pacifying seamanship 

Counting functional with respect to roll angle/acceleration-

Displacement 

Relative heading to waves before/after pacifying seamanship 

Random variable 

'Critrcal' random variable 

Roll angle/velocity/acceleration 

Critical (potentially dangerous) roll angle/velocity/ 

Predominant wave direction 

Probability density 

Single independent trial probability 

acceleration 

Multiple indepen~ent trial probability 

Cumulative single trial probability of (oc<o), 

Cumulative multiple trial probability of (o <o) 
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APPENDIX l1 INDEPENDENT 

TRIAL CONCEPTS 

a) Independence of samples or random 
proce saes 1e an important concept, · 

Independence can be defined as existing if_ 

either of the following two conditions are 

satisfied Ill)•-

il PIA/B) • PIAl (and P(B/Al • P(Bl I 

is the probability of A given that B ,' 
has already occurred is the same aa 

the probability of A regardless of 
whether B has occurred. 

ii) PIA, B) • PIA) .P(B) 

ie, the joint probability of A and B 

occurring is the product of the 
probabilities of A and B occurring 
separately. 

·.:. 

Another way of looking at lil is that 

for an independent trials pro~esa the 
sampling process does not alter the 

underlying probability for the . next 

individual trial, thus knowing that an 
event has occurred has no bearing on the 

next event to occur. 

b) In general, the probability of at 
least one event (a) in H independent trials 

is 

where PN(a) • probability of at least one 
event a in N independent 
trials. PHial varies not. 
quite linearly with ~he value 

.. of H·(20). · 

probability of ~ obtaining 
the event a on a single 

independent· trial', ·. 

Specifically, ~o~hen considering . the 
probability 'of roll motion ltl· exceeding a 

critical value ( ~cl in H independent 

trials. 

1 . H 
(P. (ac>all . 

1 . H.' 
• 1 - I 1-P (ac<a) l • _ 

• )0 -



APPEMOIX 2: FACTORS FOR COMSIOERATIOM 

Fundamentally each test-track reduces 

.into the four considerations of Route, 

Climatology, seamanship and Response. A 

full treatment of these aspects is beyond 

the scope of the present work. However, an 

underlying aim is to render them useful for 
requlatory purposes, through simplification 
without undue loss in realism. 

A2 .1 Route 

The route embodies consideration of 

geographical location (L), season (S), 

initial or intended course (Cl and initial -
speed (V

0
). The problem of determining the 

route is to determine the joint probability 
distribution of the location, season, 

initial course and initial speed ie, 
.P(L,S,C,V

0
). 

Consideration of the test-track 

segment being used will govern the joint 
probability of location and season, P(L,S) 
where L is actually representing a distance 

along the vessels intended track for which 

the displacement condition (A, kxx ,kyy' k
22

) 

can be assumed constant. The test-track 

segment also governs the "conditional 

probability distribution of initial course 
and speed given the location and season, 

-~(C,V0/L,S), 

Then the required probability 

A2. 2 Climatology_ 

This aspect is of vital importance in 
the analysis and, despite increased effort, 
is still far from resolved, It is required 

to determine the conditional probability of 
significant waveheight · (Hs) , mean wave 

period (Tm), wave spectrum family member 
(F) and predominant· wave direction I o ) 
given a location (L) and season (S) ie, 

P(H 8 ,Tm,F,o/L,S) • 

P(F/L,S) .P(Hs,Tm' 0 /L,S). 

The necessary climatological data, 

P (ff 9 ,Tm' 0 /L,S) are to be found in many 
formats and in many sources (6. B' 18). 

Reference (8) is an extensive database 

J1 

which is convenient and has been chosen for 

use in the present study. It contains 

climatological data for different . 
geographical areas and seasons of the year.· 

An important recent development has been a 

method for correcting the masses of raw 

visual observations held in many 

meteorological archives (6). 

A further consideration is how 
realistic are the predicted responses if we 

use the commonly available simple spectral 
formulations such as Pierson-Moskowitz, 

Bretschneider•s two-parameter, Darbyshire•s 

fetch-limited etc, which have been 
developed for some idealised conditions? Jn 
reality the shape of wave spectra observed 

in the ocean varies considerably (for the 

same waveheight) depending upon the 
geographical location, duration and fetch 
of wind, stage of growth and decay of a 

storm, and existence of swell. 

Unfortunately data is very scarce 

regarding the occurrence and sever! ty of 

severe seas and this data is particularly 

impo~tant in an extreme risk analysis. 

Ochi (291 presents a method to estimate the 
frequency of occurrence of seas of various 

severity from available data based on the 
underlying probability function. He also 

presents a method to predict the severest 

sea condition likely to be encountered. 

In order to cover a variety of 

spectral shapes which a vessel may 

encounter in her lifetime two families of 
wave spectra are used in the present work. 

One of the famlles consists of 11 members 
for an arbitrarily specified sea severity 
and is called the Ochi-6 parameter wave 

spectral family. 

[
4A. +1 •lAJ _+. "'mJ- "·2· 

·~ ( .. ). ~ ~ -1--"----.J_ .Hr 
1 r(Ajl ., J 

e 

-- 4 
(4Aj+1 )("'m/"'> 

4 

where • 1, 2 stands for the lower and 

higher frequency components respectively.· 

An example is given in Fig 11 for a 

significant waveheight of J m uainq the 

values, which were derived from BOO 

available spectra observed in the Morth 

Atlilntic I 32 l. considcril tion or the 



underlyinq spectrum parameter probab~lity 

functions yields the required probability 

of encountering in a given location and 

season the particular wave spectrum family 

member, P(F/L,SI. 

..... 
M 

OCHI 6-P~RAMETER WAV. S?ECTRA 

6-Porometor Spectrum 

It. should be noted that the 

6-parameter wave spectrum family covers a 

wider variety of shapes than other commonly 

us~d spectra and that some have double 

peaks indicatinq the co-existence of swell 

and sea waves. 

\ 
of 

In usinq the Ochi-6 parameter family 

wave spectra for the short-term 

.prediction for each sea severity, one of 

the family members yields the largest 

response with confidence coefficient of 

0.95 while another yields the smallest 

response with confidence coefficient 0.95. 

Hence by connecting the points obtained in 

each sea severity, the upper and lower 

responSe bounds can be established eg, 

Fiq 12. 

PROBABLE-EXTREME 
~ICII,I .... III.•• .. •I.I••· 

..... 

Ochi and Bales (30) have demoqstrated 

that, for a range of vessels and offshore 

structures, the bounds obtained by using 

the 6-parameter family with N Atlantic data 

reasonably covers the variation of 
responses computed using measured spectra 

in various locations Df the world. Fig 13 • 

A similar analysis has been performed 

for a family of Jonawap wave spectra 

suitable for fetch limited seas, to'cover 

the variation in expected spectral shape 

Ill I . 

The current" investigation uses both 

6-parameter and Jonswap spectral famil i ·--~ 

for open-sea and fetch limited seas 

respectively . 

In order 

short-crestednesa 

to 

of 

account 

the seaway 

for 

and 

followinq the recommendation in (8) from 

which the wave climatology is extracted, 

cosine squared spreading of wave energy is 

assumed. This aspect requires further 

attention by oceanographers. 
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!!.L!1 
Mariner Probable Extreme Pitch Values (head seas) 

A2,3 Seamanship 

This factor can have a large influence 

on both the motion probabilities obtained 

and the motions themselves once the severe 

seastates have been encountered. Firstly, 

by mano~uvring to avoid a storm area (or in 

the case of certain particularly small 

i---.,---..---..---..---.,...--.,...--,....-"H'"- vcs se la by not sa i 11 ng at a 11 unt 11 the 

storm has passed) the vessel is using 

!:!.A...!!. avoidance seamanship. This is c1 function 

Probable Extre~ Roll Ansle of the accuracy of weatho_r forecasts and 
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-the skill of the ship's officers. Secondly 

a vessel experiencing excessive motions and 

sea loads may be manoeuvred to reduce these 

to perceived acceptable levels. The vesael 
is uaing what might be termed pacifying 

aeamanahip . which la a- function of the 
·motion/sea loads 'information available to 

the ship'a officers and their akill in 
·reducing these'motiona and aea loads. 

Avoidance· . type seamanship can be 

repreaented' by a Markov·mapping (20) ie, 

PU/jl from the probability of encountering 

each seastate in the absence .of avoidance 

seamanship to the probability of encounter 

with avoidance.: :seamanship.- An example 

trana'ition matrix P(Hs'/~sl la ·given in 
Table 6 where Hs' is the aeastate 

encountered after avoidance action and H
5 

the aeastate which would have been obtained 

in the abaence of avoidance action. 

Pacifying . seamanship conaists 

primarily._ in changes _of apeed and/or 

heading once a severe seastate has been 

encountered. These can be represented as 

conditional properties of speed, V and 

relative heading to waves, given the 

sea state actually· encountered after 
·.appropriate·· avoidance (H ',T , F) and s m 

unaltered speed V
0 

and relative heading "o 

ie, P(V,'-'/H8 ',Tm,F,V0 ~u0 ) where u ,lJ0 are 

. functions of· a hip_ course C and wave 

direction 0 • 

Seastate which would have 
been encountered 

Encountered 
seastate 
after 
avoidance 
seamanship 

H ' a 

2 

3 

4 

5 

"a 
I 2 3 4 5 

I.o o o o o 

0 1.0 0.2 0 0 

0 0 0,8 0.5 0.1 

0 

0 

0 

0 

0 

0 

0.5 

0 

0.6 

0.3 

1.0 1.0 1.0 1.0 1.0 

Table 6 

Ship speed in a seaway comprises the 

involuntary speed reduction due to the 
added resistance and reduced propulsive 

efficiency in wavea together with the 
voluntary speed reduction due to the 

master's action to reduce excessive motions 

and soo. loads. 

Although the · 

primarily concerned 

present 
with 

study is 
the higher 

aeastates where master's voluntary action 

overrides any consideration of natural 

speed reduction. nevertheless the 
approximate increase in addod resistance is 

accounted for by ~sing a conveniently 

available method due to Maruo (26), to 

estimate the initial attained speed of the 
vessel on any heading. This is an area 
requiring further work but recourse can be 

made to experimental results if necessary. 

Tho problem of voluntary slowdown/ 

change of heading criteria to reduce 

motions and loads is no less difficult. It 

is inevitable that any proposed criteria 
will be aubjective le, based upon th~ 

master's previous experience,· will depend 

upon how well the master perceives the 
motions and loads from his conning 

position, and will also be vessel 

dependent. 

Once criteria have been agreed a more 

objective response from the master should 

be possible, if suitable instrumentation is 

provided, to indicate the motions and loads 

being imposed together with suggested 

critical motion/load limita and even 

possible optimum courses of action to 

reduce these to acceptable level&. (141 

In the meantime, and for the purposes 

of the present study, it has been necessary 

to assign a set of criteria which it will 

bs aasumed the master will adhere to in 

order that his vessel will be rendered more 

seskindly. The master is likely to take 

action to avoid damage to his vessel's 

structure, engines, or cargo and to avoid 

undue discomfort to his passengers and 

crew. There have been-several studies with 

both merchant 

(1,2,10,15,23) 

and 

into 

warship_s 
limiting. 

eg, 

motion 

criteria for different types of vessel, but 

several of the proposed criteria suffered 

from the drawback that they could not be 

readily assessed from t_he master's conning 

position and were also not relevant to the· 

environment being experienced by the crew. 

For example- Conolly proposed a criterion 

based upon slamming at 0. 2 L bp abaft the 
fore perpendicular {15) and Aerttscn used 

the amplitude of acceleration· at the fore 
perpendicular 121. To address ·· thoso 

deficiencies Lloyd and A~drew· I 24 I proposed 
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the following measures of ship behaviour in 
connection with predictions of voluntary 
apeed loss in rough weatherr-

Slam-induced whipping vibration 
acceleration at bridqe not to exceed 

~.os g in a 15 minute sampling 
period. 

i.u Subjective motion magnitude (SHI 
weighted according to personnel 
location and averaged along ship 

length SH • 15. 

iiil Average deck wetneea interval at 

F.P. not lees than lOO secs, 

lvl Average propeller emergence interval 
to be greater than 30 eeca. 

The actual estimates for the limiting 

conditions were based on eeakeeplng trials 
with destroyers (101 and the cargo ship 

JORDAENS ( 21 , 

The Slamming Criterion I I) has been 

subsequently amended because it is 
possible, by using the original criterion, 
to apparently improve the eeakeeping 
performance by moving the .bridge to the 

region o~ a node where there le no whipping 
response and thus no speed limitation. The 
all!ended 'slamming criterion refers to the 
•aVerage whipping acceleration experienced 

over the entire ship" which should not 

exceed 0.18 g and 1e based on full scala 
trials with 2 frigates (41. Aertesen, 
meanwhile in the discussion to 141 proposed 
a value of 0. 20 g for the bridge whipping 
acceleration based on trials with the 
trawler 'Belgian Lady ( 1 I. 

The Subjective Hot! on Magnitude ISH I 
concept (241 attempts to quantify the 

motion environment within the ship 

experienced by the crew and to relate thie 

to human response to ship motions, The 

original concept was proposed by 

Schoenbe~ger (371. 

Whilst ' subsequent full scale trials 
and· resul.ts of questionnaires have borne 
~ut the original proposed SM value of 12-15 
over a 12 hour period in head seas, and it 

ta therefore expected that higher values 
might be tolerable in the short term, it is 
generally agreed that a subjective 

. 

magnitude criterion should not be . based 
solely upon vertical accelerationa in head 

seas but .that rolUnq and lateral plane 
motions should also be accounted for in one 
single SM value if possible. Hosodo at al 

(191 proposed a method based on reliability 
angineerinq techniques by treating the 
human being as a series system and obtained 
an overall effectiveneaa• by 
multiplying individual effectiveneae 
appropriate to each motion level being 
experienced. Baitie at al (7( also 
reported studies to determine criteria for 
limiting motions based on vertical with 
lateral forces. 

The average deck wetness interval haa 
been changed to 40 seconds following full 

scale trials · ( 4 I, although . this figure 

takes no account of sensitive equipment or 
men on deck. The above represe!lta 1! great 

doal of ongoing work which, for the reasons 

outlined,·ara inconclusive except for aome 

particular full scale trials results, 
mostly on 2 frigates. For this reason the· 
following limiting motion criteria will be 

assumed in the present study. 

Fisheries Stern 
Criterion ~ro~rction ·trawler 

64m CSBMl 
No of slams + 60 per hour 60 per hour 

SM + 12 15 

No of deck I 90 per hour 90 per hour 
wetness 

No of 120 per hour 120 par hour 
propeller 
emergence a 

Table 7 

(All of these values reflect the 
calculation assumptions and 

therefore necessarily reflect the 
situation obeervedl • 

do not 
physical 

NB + For this length of vessel alammlng 
whipping is not considered a problem. 
A slam is deemed to occur when the 
impact velocity ·> 0,093 (g/LJ 1' 2 (281. · 

+ Especially relevant in a eurviv­
ability study when the master will aim 
to keep the seas on the bow. 

1 Hethod of calculation takes no 
account of distortion by hull of 
incident waves nor static/dynamic 
swell-up. ' 
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If the aubjact vaaaal axcaeda one or 
mora of thaae raot1on criteria it will be 
caused to altar headinq/apeed conducive to 
the continued •aucoeaa• of the· mission, 
which will reduce the motions to acceptable 
levels, otherwise the vassal will achieve a 
hove-to poaition if motione and loada 
cannot be reduced to acceptable levels. 

A~. 4 Reaponaes 

In &action 4 .1 the ·concept of a 
"potentially danqeroua• roll anqla vas 
introduced. Thia waa stated to be a pre­
aasiqned roll anqle (30 deqreea in the 
present caaa) beyond .which it can be 
aaauraad that the vaaael will be considered 
potentially unsafe from a capaiza point of 

·view. ·. Before the required probability of 
axceedanca of the potentially danqarous 

roll raotlon ~c can ba ascertained, P ( f > fcl 
an appropriate reaponaa atatiatic f la 
required. For operability studies this f­

response la likely to be an averaqe-type 
procasa ouch aa the alqnlflcant. roll 
response, whereas when conalderlnq 
survivabillty some measure ·of the expected 

maximum la required. 

' A useful development by· Ochl (~71 la 

the .extreme re~ponae value which will be 

exceeded with a pre-aaalqned small 
probability, the· 'dealqn-extreme value•. 
This is necessary because the moat proba~la 
extreme value ~ n, which can be used for 
comparison with the observed extreme value, 
haa ·a hlqh probabilliy (0.63~1 of belnq 

··exceeded for a larqe number of observations 
n, if the process la narrow band, where the 
moat probable extreme value•-

• • n 

and 

{ 2~}F ~10 r:---; a m for c ' 0.9 
1 +~ 1 - c2 0 

. ! . 

la the spectral bandwith parameter of 

·.the ~ proceaa. 

where m
0

,m2 ,m4 are the 
zeroth, second and 

'tourth'momenta of the 
response process. 

In term a of exposure t lme. the meat· 
probable extrema.value "T la qlven by (27); 

where T • exposure time in 
arqued in Ref (20) that T 
independence period To I.· 

extreme value a is almllarly 
of number of observations 
time•-

A 
0 • 

n 

A • • T 

21n {2 n . ~tf.· . r.---:t Q D 
1 +J. - • . 

... l~J~lF 
for smell a and for cf0.9. 

hour a. (It la 
should be the 

The design 
qlven in terms 

and exposure 

Chooslnq a as 0.01 for example, implies 
that only one vessel in 100 sister vessels· 
operatlnq under statlatlcally idPntlcal 
environments may suffer . from a response 

·qreater than the predicted value ln a qlvan 
period of time. 
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