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Gastrointestinal Antigen Processing and its Relevance to Enteric Vaccine Delivery in Rainbow 

Trout, Oncorhynchus mykiss (Walbaum, 1792) 

Edward Charles Lavelle BSc. (Hons) 

ABSTRACT 

An investigation of antigen processing in the rainbow trout gastrointestine was carried out to 
provide a rational basis for the design of oral delivery systems for protein antigens. Using in vitro 
systems involving isolated lumenal enzymes and gut cell suspensions the degradation of human 
gamma globulin (HGG) and bovine serum albumin (BSA) was analysed by Western blotting and 
laser densitometry. Proteolysis by lumenal enzymes was dependant on pH and temperature and 
serine proteases were found to be partly responsible for antigen degradation in the intestine. The 
extent of intracellular proteolysis depended on the antigen used and on the gut region from which 
the cells were isolated. To test the predictive value of results obtained from the in vitro studies, 
the processing of HGG in the digestive tract after oral .administration was investigated. The 
findings indicated that different regions of the gut perform distinct bur complementary roles in 
proteolysis. Measurement of the uptake of HGG into the bloodstream of these fish by erizyme 
linked immunosorbent assay (ELISA) and Western blotting indicated that the nature of proteins. 
absorbed from the gut could be influenced by altering the conditions in the gastrointestine. After 
parenteral and oral immunisation of HGG the antibody response was investigated in plasma and 
in mucosal and biliary secretions and found that a fragment of HGG produced by partial digestion 
with intestinal enzymes was highly antigenic in trout. The methods developed to study antigen 
processing in the gut were applied to assess the potential value of modern enteric delivery systems 
in teleosts. Encapsulation ofHGG in poly lactide-co-glycolide (PLG) microparticles partially 
protected HGG from degradation in the gut and increased its absorption into the bloodstream. A 
live attenuated strain of Aeromonas salmonicida was shown to adhere to and invade isolated trout 
enterocytes and Atlantic Salmon tissue culture cells using a range of light - and electron 
microscopical techniques. These results indicate that an investigation into antigen processing by 
the gut is a valuable preliminary step in the formulation oforal delivery systems for teleosts. 
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MALT . . . . . . . . . . . . . . mucosa associated lymphoid tissue 

MDP . . . . . . . . . . . . . . . muramyl dipeptide 

mg . . . . . . . . . . . . . . . . milligrams 

min . . . . . . . . . . . . . . . . minutes 

MLN . . . . . . . . . . . . . . . mesenteric lymph node 

ml . . . . . . . . . . . . . . . . millilitres 

mRNA . . . . . . . . . . . . . . messenger RNA 

MHC . . . . . . . . . . . . . . major histocompatibility complex 

N~HC03 • • • • • • • • • • • • sodium hydrogen carbonate 

ng . . . . . . . . . . . . . . . . nanograms 

NK cell . . . . . . . . . . . . . natural killer cell 

OD . . . . . . . . . . . . . . . . optical density 

OPD . . . . . . . . . . . . . . . 0-Phenylenediamine 

OVA ovalbumin 
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PAS 

PBS 

PCS 

PLG 

periodic acid - Schiff 

phosphate buffered saline 

photon correlation spectroscopy 

poly lactide-co-glycolide 

PMA . . . . . . . . . . . . . . . phorbol myristate acetate 

PMSF . . . . . . . . . . . . . . phenylmethane sulphonate 

pVC . . . . . . . . . . . . . . . polyvinyl chloride 

Quii-A . . . . . . . . . . . . . . extract from Quil/aja saponaria [molina] 

RNA . . . . . . . . . . . . . . . ribonucleic acid 

SBTI . . . . . . . . . . . . . . . soybean trypsin inhibitor 

se . . . . . . . . . . . . . . . . . subcutaneous 

se . . . . . . . . . . . . . . . . secretory component 

SCID . . . . . . . . . . . . . . . severe combined immunodeficiency disease 

SOS-PAGE . . . . . . . . . . . sodium dodecyl sulphate polyacrylamide gel electrophoresis 

slgA . . . . . . . . . . . . . . . surface lgA 

S-IgA . . . . . . . . . . . . . . secretory lgA 

S-IgM secretory lgM 

SE . . . . . . . . . . . . . . . . standard error of the mean 

SEM 

SFB 

TCR 

TEM 

TGFa 

scanning electron microscopy 

segmented filamentous bacteria 

T cell receptor 

transmission electron microscopy 

transforming growth factor alpha 

TGF8 . . . . . . . . . . . . . . transforming growth factor beta 

Th . . . . . . . . . . . . . . . . T helper cell 

Tris . . . . . . . . . . . . . . . Tris(hydroxymethyl) aminomethane 

Ts . . . . . . . . . . . . . . . . suppressor T cell 

TSA . . . . . . . . . . . . . . . trypticase soy agar 

TSB . . . . . . . . . . . . . . . trypticase soy broth 

TSM 

Tsw 

Tris-saline + non-fat dried milk 

switch T cell 

UV . . . . . . . . . . . . . . . . ultraviolet 

o/w . . . . . . . . . . . . . . . . oil-in-water 

w/o/w . . . . . . . . . . . . . . water-in-oil-in-water 

p.g . . . . . . . . . . . . . . . . micrograrns 

p.l • . . . . . . . . • . . . . • . . microlitres 
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CHAPTER 1 
GENERAL INTRODUCTION 

28 



The vertebrate gastrointestine represents the interface between nutrients and other extraneous 

substances and the interior milieu of the animal thus playing a critical role in the maintenance of 

homeostasis. In addition to its role in nutrient digestion and absorption the digestive tract occupies 

a vital defensive position responding to incessant immunological challenges via a number of 

specific and non-specific factors (Walker, 1982). The function of the epithelium is highly 

complex, being influenced by endocrine, neurocrine, stromal and immune elements (McKay and 

Perdue, 1993). The previously held belief that macromolecules were completely reduced to their 

component monomers in the gut prior to uptake into the body has been challenged by numerous 

studies which have demonstrated macromolecular absorption through the gut in immunologically 

significant quantities (Owen and Ermak, 1990; Jenkins et al., 1991). Macromolecules absorbed 

in such fashion in mammals have been found to interact with immunologically responsive cells in 

the gut, part of an immune machinery which in conjunction with lymphoid tissues at the other 

mucosae comprise a common mucosal immune system (Kraehenbuhl and Neutra, 1992; McGhee 

and Kiyono,1993). The capacity for intact antigen uptake and for inducing immunological 

responsiveness via the gut indicates the feasibility of enteric vaccination against pathogens. 

The significance of a.protective local immune system in the mammalian gut was first suggested 

by the demonstration of protection against fatal dysentery in rabbits after oral immunization with 

killed 'Shiga' bacillus regardless of serum antibody titre (Besredka, 1919). Oral immunization was 

introduced in the early part of the 2()1h century as a means to protect against intestinal infections 

(Besredka, 1927) and was first applied successfully in immunisation against poliovirus (Ogra et 

al., 1968). The identification of secretory lgA -a unique antibody isotype in external body fluids 

(fomasi and Zigelbaum, 1963) with characteristics ideally suited to its defensive role in the gut 

environment led to great interest in the role of gut-associated lymphoid tissue (GAL T) in 

immunological protection. The secretory lgA (S-lgA) isotype constitutes more than 80 % of all 

antibody produced in mucosa associated lymphoid tissue (MALT) and is induced, transported and 

regulated by mechanisms distinct from those involved in systemic antibody responses (Hanson and 

Brandtzaeg, 1989). 
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It is becoming increasingly appreciated in mammals at least, that many of the dogmas set for 

peripheral immune responses may not hold for mucosal immunity (James et al., 1988; Mayer et 

al., 1991a). This may relate to some extent to antigen handling in the gastrointestine as a result 

of pre - processing of antigens by digestive enzymes (Bland and Whiting, 1990). GAL T in 

mammals consists, in addition to organised lymphoid tissue, of a diffuse collection of lymphocytes 

and plasma cells in the lamina propria and in the epithelial layer. Antigens induce initial 

sensitization and differentiation principally through organised lymphoid tissues while the diffuse 

lymphoid collections in the lamina propria and intra- epithelium are efferent lymphoid areas where 

antigen interaction with cells leads to terminal differentiation resulting in lgA production, 

immunoregulatory or cytotoxic reactions (McGhee and Kiyono, 1993). These two compartments 

are linked by a "homing system" (Gowans and Knight, 1964). Separating the organised lymphoid 

tissues from the intestinal lumen is a lympho-epithelium comprising a single layer·of specialised 

microvillous/ membranous 'M' cells (Jepson et al., 1993a) and epithelial cells rich in microvilli 

resembling villous epithelium (Owen and Jones, 1974). M cells sample antigenic material from 

the lumen via pinocytosis and transport it to cells bearing MHC class 11 determinants potentially 

capable of antigen presentation (Nagura et al., 1991). Beneath this dome area is a follicular area '· 

and germinal core where B cells differentiate into mature IgA producing plasma cells (McGhee 

et al., 1992). The critical role of secretory lgA in antibody mediated defense at the mucosal 

surface is now firmly established (Nagura and Sumi, 1988). In addition to humoral factors, 

distinctive cell mediated immune mechanisms also exist in the intestinal mucosa (Ganguly and 

Waldman, 1978), it is thus apparent that a complex immunological network involving both 

humoral and cellular arms exists in the gut. This complexity is evidenced by the wide variety of 

immunologic events initiated by the mucosae ranging from the production of secretory IgA and 

cytotoxic responses to the induction of hypo-responsiveness and systemic interactions (Kagnoff, 

1987; McGhee et al., 1992). Serum immune responses in mammals have often been found to be 

of little value as indicators of local intestinal immunity (Forrest et al., 1992) so the investigation 

of mucosal immunity is essential to assess enteric vaccine efficacy. 
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Recent work indicates that considerable interactio.n between T lymphocytes and intestinal epithelial 

cells occurs which affects the immune responses elicited to lumenal antigens (Brandtzaeg et al., 

1991; Panya et al., 1993). In addition to specific immunological mechanisms a number of non 

specific factors such as highly glycosylated mucin glycoproteins, lysozyme, lactoferrin and 

proteinase inhibitors reside in the mucous coat which acts as an "unstirred layer" for these agents, 

increasing their effectiveness by preventing loss by peristalsis (Russel and Walker, 1990; Wallace 

and Bell, 1993). This mucous coat acts independently of or in conjunction with specific 

immunological factors to prevent adhesion and uptake of dietary macromolecules and 

microorganisms from the digestive tract, thus forming a mucosal barrier (Walker, 1982). 

The presence of immunologically responsive lymphoid cells at the mucosae of teleosts is well 

documented (Hart et al., 1988; Rombout et al., 1993a). The suggestion by Ell is (1985) that the 

skin, gills and gut of fish may provide portals for entry of certain pathogens and that local 

immunity at these sites might be important, suggests that the induction of specific immune 

responses at the teleost mucosae would be beneficial in protecting fish against infectious 

organisms. Application of oral vaccines against infectious diseases in teleost fish has however met 

with little success to date. In contrast to higher vertebrates teleosts do not possess highly organised 

mucosal lymphoid tissues, rather the lymphoid cells of the teleost mucosae reside as single cells 

or small aggregates in diffuse tissues in the gastrointestine (Georgopoulou and Vernier, 1986; 

Rombout et al., 1993a), gills (Goldes et al., 1986) and skin epidermis (Peleteiro and Richards, 

1985). The existence in teleost mucosal secretions of immunoglobulin is firmly established, 

antibody being detected in the bile (Lobb and Clem, 198la; Rombout et al., 1986), cutaneous 

mucus (Lobb, 1987; Rombout et al., 1993b) and occasionally in the intestinal mucus (Fletcher and 

White, 1973; Rombout et al, 1986a). In contrast to higher vertebrates however, only a single 

immunoglobulin type has been detected in teleosts, a tetrameric IgM - like molecule. Significant 

heterology in its structure has been reported however (Glynn and Pulsford, 1990; Sanchez et al., 

1993) and the existence of a J chain (Sanchez et al., 1989) and of a secretory component type 

structure (Lobb and Clem, 1981b) has been proposed. 
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The capacity for macromolecular protein absorption from the gut has been documented in a 

number of teleost species (Georgopoulou et al., 1988; Jenkins et al., 1992; Doggett et al., 1993) 

and reviewed by McLean and Donaldson (1990). Enterically administered antigen has been 

observed in contact with lymphocytes in the epithelium and lamina propria (Rombout et al, 1989b; 

Georgopoulou and Vernier, 1986). Specific antibody to such antigens has been detected in serum 

and external secretions (Jenkins, 1992; Rombout et al., 1993b) so the mechanistic requirements 

necessary for the induction of immune responses via enteric antigen administration appear to exist 

in the teleost intestine and the existence of a common mucosal immune system in teleosts has been 

proposed (Lobb, 1987; Rombout et al., 1993a). Oral administration was in fact the first mass 

immunization method employed to vaccinate fish against furunculosis (Duff, 1942) and vibriosis 

(Fryer et al., 1978), reviewed by Klontz and Anderson (1970). Unfortunately the early indications 

of high protective efficacy have not materialised, the oral administration of bacterin vaccines in 

field trials indicated that vaccine consumption was higher and level of protection lower than for 

injection, immersion and spray methods (Amend and Johnson, 1981; Ell is, 1988). Studies have 

indicated that immunisation with bacterins via the anal rather than the oral route resulted in a 

higher degree of protection upon challenge suggesting that secretions .of the gastric and upper 

intestinal regions pose a major barrier to the oral delivery of antigens (Johnson and Amend, 1983a, 

b). To circumvent problems associated with gastric destruction of antigens and the poor immune 

responses often produced recent studies have centred on the development of strategies to reduce 

gastrointestinal degradation of antigen and to adjuvant vaccine preparations (EIIis, 1988; Jenkins 

et al., 1992; Wong et al., 1992). Oral vaccination is however regarded as the optimal means of 

disease prophylaxis since it alleviates the stress associated with fish handling, enables repeated 

boosting and is easily incorporated into routine fish husbandry practices (EIIis, 1988). 

Presently, in mammals all widely used vaccines except the Sabin trivalent oral polio vaccine are 

administered by systemic routes and while being effective in inducing cell mediated and systemic 

antibody responses they are poor at inducing mucosal immunity in humans who have not had a 

previous mucosal infection by the causative organism (McGhee and Kiyono, 1993). The 
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development of strategies for enhancement of immune responses elicited to orally administered 

antigens is presently an expanding sphere of mammalian research and initial indications suggest 

that similar strategies may be applicable in fish vaccination. A common approach involves 

avoidance or modification of gastrointestinal secretions by the use of gastric inhibitors (Ciemens 

et al., 1986) anti-proteases (Udall et al., 1984) acid resistant films (Lehmann and Drehner, 1981) 

or encapsulation (Morris et al., 1994). A range of other substances such as penetration enhancers, 

surfactants, detergents and a range of adjuvants have also been applied with variable degrees of 

efficacy and have been reviewed in detail previously (Jenkins, 1992). Soluble antigens tend to 

elicit poor responses when delivered orally, however, a number of elegant strategies have been 

devised to increase their efficacy as mucosal immunogens. Incorporation of antigens into 

liposomes or microparticles protects them from harmful digestive secretions and thus allows the 

use of lower doses than is the case when soluble antigen is administered. The use of poly~ lactide 

- co glycolide (PLG) biodegradable microparticles whose formulation may be modified to effect 

controlled release and allow targeting to specific tissues (Aguado and Lambert, 1992) Is an 

approach showing promise as an enteric delivery system for soluble protein antigens. Cholera 

toxin is a potent enteric immunogen and exerts strong adjuvant effects on gut immune responses 

to unrelated antigens when presented concurrently (Holmgren et al., 1993; Vajdy and Lycke, 

1993). Another way to increase the efficacy of orally administered vaccines involves incorporation 

into immuno-stimulatory complexes (ISCOMS) (Mowat and Donachie, 1991). ISCOMS confer 

imrnunogenicity on proteins delivered by the oral route and very low amounts of antigen in such 

structures are imrnunogenic. Quit-A saponin, a constituent of ISCOMS itself acts as an adjuvant 

when given orally (Campbell and Bede, 1989). Oral live vaccines yield higher antibody titres in 

remote site secretions and in serum than do oral killed vaccines and research is now focusing on 

the use of attenuated live organisms both as oral vaccines and as carrier vehicles for enteric 

delivery of heterologous antigen (furner et al., 1993; Offit et al., 1994). 

While the above strategies have been widely applied in mammalian studies their use to date in fish 

research has been limited. Anti - proteases and detergents have been used to enhance the 

absorption of orally administered soluble proteins (McLean and Ash, 1990). Similarly, gastric 
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inhibitors have been shown to increase the effectiveness of oral delivery of protein hormones 

.Solar et al., 1990).1Additionally Wong et al. (1992) found that protection of antigens by enteric 

coating resulted in increased antibody responses to an orally deliveredVibrios~~lvaccine. The use 

of Quil-A saponin alone or incorporated into micelles or ISCOMS led to enhanced immune 

response and antigen uptake in tilapia (Jenkins, 1992). Recently an attenuated live aromatic amino 

acid dependent Aeromonas salmonicida vaccine has been developed (Vaughan et al., 1993) and 

found to be effective as a parenterally delivered vaccine. This indicates the potential for 

application of a new generation of vaccines and strategies in fish farming. In addition to these 

approaches the opportunity to devise novel strategies for fish due to their aquatic habitat also 

exists. An example of this is bioencapsulation- the enveloping of vaccines in living feed organisms 

(Campbell et al., 1993), this approach has been successfully applied in the plankton - mediated 

oral delivery of Vibrio anguillarum to juvenile ayu (Kawai, et al., 1989) and may be of particular 

use for oral vaccination of larval and juvenile fish species. 

The objective of the present study was to investigate in detail the nature of the gastrointestinal 

enzymic barriers to the enteric delivery of protein antigens in rainbow trout, Oncorhynchus mykiss 

(Walbaum, 1792). Rainbow trout were selected as the experimental animal since salmonids are 

among the most widely farmed and economically important fish species. Additionally, a number 

of studies have investigated the infectious agents responsible for salmonid disease and their 

immunological responses to vaccination. It was intended to develop methods to analyse antigen 

processing by secretions and cells in the trout gut so strategies to reduce the extent of antigen 

degradation in the digestive tract could be devised. These methods could then be applied to 

investigate the potential value of modern oral delivery systems such as encapsulation in 

biodegradable microparticles and the use of live recombinant bacteria as carriers of heterologous 

antigens. It was further hoped to investigate the antibody response to orally delivered antigen to 

determine the immunological consequences of antigen degradation in the gut. 
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CHAPTER2 

A COMPARATIVE REVIEW OF mE liTERATURE ON MAMMALIAN AND TELEOST 

MUCOSAL IMMUNOLOGY AND mE SCOPE FOR ENTERIC VACCINE DEVELOPMENT. 
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Of the available external surface area for microbial colonisation and invasion in vertebrates the 

mucosae comprise the greatest part, leading to the evolution of a complex immune system to 

defend these sites. The mucosal environment possesses many features uniquely adapted to its role 

in allowing for the diverse requirements of nutrient digestion, maintenance of a stable micro flora, 

macromolecule absorption and the induction of immunological reactivity. This review is intended 

to survey the literature on mammalian and teleost specific and non - specific mucosal defense 

.systems and to discuss the means by which.enteric presentation of antigens may be used to.activate 

such systems to induce immunological protection. 

2.1 Non-specific gastrointestinal defenses in mammals. 

2.1.1 Non-specific protection associated with normal gastrointestinal physiology. 

The digestive tract by virtue of its role in macromolecule degradation provides a hostile 

environment to microorganisms and their products. Features such '!5 gastric acidity, the mucus 

layer, peristalsis, the gut microflora and lumenal pro teases may therefore be regarded as the first 

line of non- specific lumenal defense in vertebrates. This barrier function may be subdivided into 

anatomical/ physiological, biochemical and immunological components although in vivo these 

factors act in concert to provide a comprehensive defense to infection. 

Within the lumenal environment two phases may be distinguished - the "bulk phase" of the 

lumenal contents and the microenvironment immediately overlying the epithelium (Ecknauer, 

1981). A dynamic environment is maintained in the digestive tract by intestinal motility shunting 

lumenal contents along the gut (Sarna and Otterson, 1993) this enhances enzyme interaction with 

food and associated substances and is a deterrent to microbial colonisation of the intestine (Walker 

and Owen, 1990). Peristalsis is thus regarded as an important defense mechanism against 

colonisation by foreign microorganisms, indeed it has been found that bacterial translocation 

(passage of bacteria from gut lumen to regional lymph nodes and systemic organs) in mammals 

is promoted by prolonging intestinal transit, this translocation is secondary to overgrowth of 

enteric bacteria in the intestinal lumen (Runkel et al., 1993). Other mechanical phenomena such 
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as the pumping movements of villi and contraction of microvilli may also be important in the 

maintenance of the mucosal barrier (reviewed by Ecknauer, 1981). 

2.1.2 Gastrointestinal barriers of non-epithelial origin. 

A harsh environment in the digestive tract is maintained by the presence of an acidic gastric pH 

(Schubert, 1993), bile salts (Ecrantz and Sjovall, 1957; Sung et al., 1993), proteolytic enzymes 

(Borgstrom et al., 1957) and very low iron concentrations as a result of lactoferrin activity (Payne 

and Finkelstein, 1978). The gastric barrier is an efficient protection against invading pathogens 

since the low pH maintained (in most vertebrates) is lethal for the majority of ingested organisms. 

Gastric juice drastically reduces the numbers of ingested bacteria (Giannella et al., 1994) and 

begins the digestion of proteins (chapter 3). The important sterilising role of low gastric pH in 

establishing a gastric barrier to infection has long been recognised (Drasar et al., 1969). Bacteria ,,. 

in the small intestine are not normally pathogenic but lack of gastric acid and small intestinal hypo 

- mobility and stasis may lead to ordinarily nonpathogenic bacteria colonizing the small intestine 

and contributing to malabsorption (Drasar et al., 1969). Bacteria have been found to contribute 

to the pathogenesis of tropical sprue and blind loop syndrome, diseases, frequently associated with 

achlorhydria (Ecknauer, 1981). The large differences in infective doses of enteropathogens 

ranging from the 10- 500 Shigella species necessary to cause dysentery in healthy adults (DuPont 

et al., 1972) to the Hf Vibrio cholerae organisms required to induce cholera in similar studies 

(Cash et al., 1974) may at least partly be attributed to differences in acid sensitivity. A 

comparative study found that 75 % of Shigella species tested were acid resistant ( > 10% of 

inoculum survived exposure to pH 2.5 for 2 hr) contrasting with 66% of enteroinvasive E. coli 

strains and only 0.001 % of Salmonella isolates (Gorden and Small, 1993). The capacity of 

Shigellajlexneri for survival at low pH was found in the latter study to be dependent on time and 

growth phase -the acid resistance phenotype not being expressed until the late exponential growth 

phase. The infectious dose of Vibrio cholerae in human volunteer experiments was reduced from 

108 to 10" organisms by the administration of sodium bicarbonate with the inoculum (Cash et al., 

1974) and intestinal colonisation of oral shigella vaccine strains was similarly enhanced by 

37 

., 

',', 



concurrent administration of sodium bicarbonate (DuPont et al., 1972; Herrington et al., 1990). 

Epidemiologic data has also suggested an association between achlorhydria and salmonellosis 

(Drasar et al., 1969) indicating an important role for gastric acidity in protection against this 

species. The recognition that the immunologically important toxin constituents of Vibrio cholera 

and Escherichia coli vaccine preparations are acid labile has led to routine treatment with sodium 

bicarbonate prior to vaccine delivery (Clemens et al., 1986). In addition to acidity the stomach 

possesses proteolytic activity, the principal gastric endopeptidase being pepsin - an endoprotease 

active at low pH which is likely to commence the degradation of labile pathogen-associated 

proteins (section 3 .I). 

A number of potent hydrolytic enzymes are found in the intestine of both mammals and fish which 

function in the breakdown of large nutrient polymers (after initial gastric cleavage) to their 

component monomers or to short polymer chains (section 3.1). Proteolysis by pancreatic enzymes 

in mammals limits penetration by bacterial toxins (Walker and Owen, 1990) and interference with 

the proteolytic activity of digestive secretions has been found to increase the quantity of orally 

administered protein reaching the bloodstream. Studies utilising the protease inhibitors, soybean 

trypsin inhibitor and aprotinin to reduce the activity of intestinal serine proteases in both teleosts 

(McLean and Ash, 1990) and in rats (Udal! et al., 1984) have reported increased absorption of 

soluble proteins into the bloodstream. Bile salts in mammals have been shown to have cytotoxic 

and bacteriostatic properties (Sung et al., 1993). The delicate balance which prevails in the 

gastrointestinal tract is revealed by the observations that where bacterial overgrowth occurs bile 

acids are metabolically transformed by such processes as deconjugation and dehydroxylation to 

products which damage the intestinal mucosa (Ecknauer et al., 1981). 

2.1.3 Non-specific humoral defense in the mammalian gut. 

A number of constitutive bacteriostatic and bactericidal humoral factors are present in the digestive 

tract of mammalian species. Antimicrobial agents have been described in gastric (Smith, 1966) 

and pancreatic juice (Pierzynowski et al., 1993); the latter study suggesting that such factors may 

be of importance in regulation of the small bowel microbiota and in maintenance of bacterial 
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homeostasis. Lactoferrin is an iron binding protein commonly present in external secretions with 

a bacteriostatic effect potentiated by antibody (Bullen et al., 1972). The role of antibody in this 

process appears to be in preventing the synthesis, secretion or activity of bacterial iron-chelating 

compounds (Bullen et al., 1974) so lactoferrin can bind iron which is therefore not available as 

a bacterial growth factor. Lactoferrin in mammals has been implicated in antibacterial activity, 

promotion of lymphocyte growth and in stimulating the activity of macrophages, granulocytes and 

neutrophil leucocytes (Sakai et al., 1993). Lysozyme (muramidase) has also been found in a 

number of secretions and is active against the cell wall of gram positive bacteria, lysozyme is 

involved in a number of defense mechanisms including bacteriolysis, opsonization, immune 

response potentiation and possibly in restricted anti- viral activity (Jolhfs and Jolles, 1984; Lie and 

Syed, 1986). It has also been found that lactoperoxidase present in external secretions plays a role 

in defense against infection (Gothefors and Markerlund, 1975; Moldoveanu. et al., 1983). 

Secretory lgA has been shown to enhance the effect of the lactoperoxidase system by a mechanism 

independent of its antibody specificity (Tenovno et al., 1982; Moldoveanu et al., 1983). 

Interferon may also play a role in mucosal defense, its synthesis being stimulated by infection or 

topical application of viral vaccines and has been detected in nasal secretions within 24 hours of 

infection/ stimulation (Danielescu et al., 1975). Analogues of receptors for bacteria may also 

be present in exocrine secretions which can prevent bacterial attachment (Andersson et al., 1985; 

Andersson et al., 1986). Indeed, it has been hypothesised that parts of the glycocalyx shed from 

cells may bind to potentially harmful lectins present in the lumen, thus preventing these 

compounds reaching the epithelial cells (Ecknauer, 1981). Desensitization of the adenylate cyclase 

has been observed after enteric exposure of mice to cholera toxin (Uinroth and Lange, 1981). 

Treatment of rats with cholera toxin resulted in the induction of a 25 kDa hormone-like factor 

implicated in desensitisation which was detectable in bile and milk but not in the serum (Lange and 

Lonroth, 1986). 

2.1.4 The microenvironment overlying the gastrointestinal epithelium. 

This region appears to be very stable, its composition depending on secretions of the intestinal 
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mucosa, gut motility, the glycocalyx and its adsorbed.components (Ecknauer, 1981). Studies have 

been carried out in higher vertebrates on the bacterial composition (van der Waaij, 1992) and the 

pH on the epithelium surface while other work has focused on the effects of the "unstirred layer" -

a component of this microenvironment, on absorption kinetics (Ecknauer, 1981). The indigenous 

microflora is partly determined by the composition of this microenvironment however it tends to 

be relatively stable for a given individual and resists colonisation by "new" bacterial species (Van 

der Waaij et al., 1971). Where lumenal barriers fail to control bacterial populations in the gut 

bacterial overgrowth may occur with metabolic and clinical-consequences (Runkel et al~. 1993), 

the final result of this may be bacterial invasion of the internal organs but earlier in the process 

a reduction in the number of intraepithelial lymphocytes and disturbances in goblet cell mucus 

secretion have been.described (Ecknauer, 1981). The normal human colonic microflora contains 

a relatively stable population of more than 300 distinct bacterial species with a biomass of 1013 
-

1014 bacteria (Holdeman et al., 1976). The participation of a range of bacteria with different roles 

in mucin degradation appears to contribute to this diversity (Hoskins, 1993). Van der Waaij et 

al. (1971, 1972) first recognised the importance of the barrier formed by the relatively benign 

indigenous flora by using poorly absorbable antibiotics that suppressed the facultative flora but left 

the anaerobic flora intact. Disruption of the indigenous intestinal microflora was associated with 

overgrowth by resistant microorganisms which may have resulted in their translocation to the 

internal organs (Van der Waaij, 1992). The anaerobic flora in particular appears to interfere with 

colonisation by opportunistic pathogens, Wells et al. (1987) finding that the elimination of 

anaerobes led to significant rates of dissemination of intestinal bacteria into mesenteric lymph 

nodes. Antimicrobial metabolites produced by normal enteric flora ,especially anaerobic or 

\ 
'colonisation-resisting flora,' significantly control non - indigenous flora (Walker and Owen, 

1990). The protective effect of gut colonisation by the endogenous anaerobic fraction of the 

intestinal microflora has been termed 'Colonisation resistance' (Van der Waaij et al., 1971) and 

the anaerobic flora responsible called 'Colonisation resistance factor' (Van der Waaij et al., 1977). 

The mucous membranes in addition to the immune system of the gut may contribute to the stability 

and maintenance of the endogenous flora (Van der Waaij, 1989). 
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The autochthonous gut microbiota or components of it can enhance both specific and non - specific 

immunity at systemic and/ or mucosal levels. Lipopolysaccharide (LPS) produced by gram 

negative bacteria in the intestine constantly stimulates host immunity through interaction with 

intestinal phagocytes or after transport into Peyer's patches (Walker and Owen, 1990). Oral 

administration of Lactobacillus casei for example was shown to increase non - specific immunity 

in mice by increasing the activity of peritoneal macrophages (Perdigon et al., 1986). Development 

of the intestinal microbiota in mice resulted in an increase in the number of duodenal lgA plasma 

cells (Moreau et al., 1982) and intestinal bacteria have also been implicated in- the regulation of 

peripheral T cell activity (fak:euchi et al., 1993). In mice, gut colonization by the normal 

intestinal flora greatly increased the number of all T cell receptor (aflTCR) bearing T lymphocytes 

but had little effect on the number of -yo T cell receptor (-yoTCR) bearing cells present (Bandiera 

et al., 1990) suggesting an important role in antigen driven T cell expansion in the gut. A recent 

study suggested that segmented filamentous bacteria (apathogenic autochthonous bacteria found in 

the distal small intestine of various animal species) stimulate the mucosal immune system of mice 

(Kiassen et al., 1993). A comparison between mice mono-associated with segmented filamentous 

bacteria (SFB) and germ free mice found that SFB' s resulted in increases in the numbers of 

lymphoid cells in the lamina propria of the ileal and caecal mucosae, the numbers of IgA secreting 

cells in the intestinal mucosa, the lgA titres in serum and intestinal secretions and in the 

Concanavalin A (Con A) induced proliferative responses of mesenteric lymph node cells. The 

effects of colonisation by a specific pathogen free flora were similar but less pronounced. The 

means by which these organisms exert their effects is uncertain, some workers suggesting that 

SFB' s competitively exclude pathogens from the distal small intestine thus contributing to 

gastrointestinal colonization resistance (Garland et al., 1982) while others propose that SFB' s 

enhance host resistance by directly influencing GALT (Giick et al., 1978). 

2.1.5 Lumenal barriers of epithelial origin. 

In mammals a mucus gel forms a barrier over the epithelial surface with which most intestinal 

microbes are associated (Lamont, 1992). Mucus produced by goblet cells along the gut acts as 
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a physical barrier by impeding diffusion and by making the tract more slippery (Forstner et al., 

1981). This substance may protect the epithelium by covering glycolipid and glycoprotein 

receptors on the cell surface or can mimic cellular receptors to which bacteria attach or may 

physically entrap microbes (Walker and Owen, 1990). Immune complexes especially those 

incorporating IgA may contribute to the release of goblet cell mucus onto the intestinal surface 

(Walker et al., 1982) thus preventing interaction of immune complexes with the microvillous 

surface. It has been suggested that the ability of guinea pig mucus to inhibit the invasion of 

mammalian tissue culture cells by Shigellajlexneri was associated with the animals relatively high 

resistance to developing dysentery (Dinari et al., 1986). In contrast, mucus from monkeys did 

not prevent invasion of the bacteria in vitro and these animals were more susceptible to infection. 

Mucus\ mucin has also been shown to prevent the adhesion of virulent Yersinia enterocolitica to 

epithelial cell membranes (Mattle et al., 1989). Deterioration of the murine mucus barrier as a 

result of ionising.radiation has been found to increase the susceptibility of mice to oral challenge 

with Pseudomonas aeruginosa (Walker et al., 1985). There is evidence that it is the combination 

of specific lgA and mucus which is effective in specific pathogen exclusion in the gut and not 

mucus or antibody alone (Burr et al., 1988). The principal component of mucus and that 

responsible for its characteristic visco - elastic properties is mucin - a high molecular weight - , 

glycoprotein (Neutra and Forstner, 1987). Mucus/ mucin can protect against infection with enteric 

pathogens by entrapping them in the gut lumen, inhibiting their attachment to epithelial cells and 

assisting in their removal from the body. This contention is based on findings in mammals that 

pathogens (Khavkin et al., 1980) and their secretory products particularly enterotoxins (Forstner 

et al., 1981) cause a marked increase in mucin secretion. On some occasions however the 

possession of mucus receptors by bacteria may be regarded as a pathogenicity factor, piglet ileal 

mucus for instance contains protein and glycolipid receptors specific for Escherichia coli K88 

fimbriae (Biomberg et al., 1993) and adhesion of Yersinia enterocolitica to purified rabbit and· 

human intestinal mucin is associated with the possession of the virulence plasmid (Mantle and 

Husar, 1993). Therefore the possession of receptors for mucins may in certain cases facilitate 

colonisation and in others the removal of microorganisms. 
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The role of the immune system in. the control of goblet cell activity is not fully defined but mucus 

release in mammals is affected by anaphylactic antigen challenge (Walker et al., 1982), mediators 

of inflammation (Tao and Wilson, 1984) and possibly T cells (Miller et al., 1979). Intestinal 

mucus production during Salmonellosis has been found to be regulated by Tumour necrosis factor 

a (TNFa) (Arnold et al., 1993). It has been suggested that immune reactions occurring at 

epithelial surfaces may stimulate mucus release from goblet cells increasing the effectiveness of 

the mucus barrier (Walker et al., 1982). Using animal models it has been demonstrated that 

goblet cell function may be dependent on functional T lymphocytes (Ahlstedt and Kristofferson, 

1982) and this may also be the case in man (Karlsson et al., 1985). In addition to the physical 

barrier posed by mucus it has been demonstrated that antigens trapped within the mucous layer in 

immune complexes are more rapidly degraded by intestinal proteases (Walker et al., 1975). 

Enzymes produced by intestinal epithelial cells can be found in the lumen include peptidases, 

disaccharidases and enterokinase (chapters 3&4). In addition, the brush border membranes of the 

adult villus has been found to be rich in hydrolytic enzymes (Quaroni, 1985). Indeed Holmes and 

Lobley (1989) reported the presence of 22 constitutive brush border digestive enzymes in 

mammals. Digestive enzymes in the apical cell membrane or in the cell interior such as 

carbohydrases, peptide-hydrolases and lysosomal enzymes can also degrade macromolecules and 

enterokinase plays a crucial role in the intestine by activating trypsinogen to produce trypsin which 

initiates protein digestion in the small intestine (sections 3.1 and 4.1). 

2.1.6 Non-specific cellular barriers in the gastrointestine. 

Epithelial cells, mesenchyme - derived cells and extracellular matrix molecules comprise the three 

elements of an integrated functional unit which is influenced by lymphocytes, hormones and 

cytokines (Louvard et al., 1992). Columnar epithelial cells and their precursors form 

approximately 90% of the cell population of the small intestine, these cells actively secrete the 

glycocalyx forming a pre-epithelial barrier, particularly to diffusion of molecules with negatively 

charged groups (Ecknauer, 1981; Walker and Owen, 1990). Antibodies and pancreatic proteases 
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adsorb to this glycocalyx (Walker et al., 1985) and these adsorbed proteases are implicated in the 

digestion of complexes formed by local secretory antibody with bacteria and other antigens 

(Walker et al., 1975). Thus, the glycocalyx provides the close physical proximity necessary for 

the function of lumenal/ mucosal components. T cell factors have been shown to be capable of 

modulating such epithelial functions as tight junction permeability (Madara and Stafford, 1989), 

ion secretion (Holmgren et al., 1989a), proliferation of small intestinal crypt cells and mucosal 

morphology (Marsh and Cummins, 1993). After crossing the glycocalyx the next barrier to 

antigens is the apical cell membrane which forms characteristic microvilli and is "loaded" with 

enzymes, carriers, binding sites and pores (Louvard et al., 1992) playing roles both in 

communication and in separation between the glycocalyx and epithelial layers. Its communication 

function is referred to as the "digestive absorptive function" (Ecknauer, 1981). The apical 

epithelial membrane acts as a selective barrier against large, hydrophilic and charged molecules. 

In addition to the discrete apical surface architecture of cells the barrier function of the epithelium 

also depends on the characteristics of spaces between the cells. The cytoskeleton of the intestinal 

brush border can be divided into two distinct areas -the microvilli and the terminal web, the latter 

is a cytoskeleton-rich area in the apical cytoplasm, the structural organisation of the vertebrate 

brush border cytoskeleton is highly conserved (Louvard et al., 1992). Intestinal epithelial cells 

are effectively 'welded' together by an intricate system of cell -cell connections whose order from 

the apical cell pole to the basement membrane is zonula occludentes (tight junctions), zonula 

adherentes (belt desmosomes), macula adherentes (spot desmosomes) and macula occludentes (gap 

junctions) (Ecknauer, 1981; Louvard et al., 1992). It is believed that the tightness of the 

epithelium is represented by the tight junctions, epithelium tightness is higher in the villi than in 

the crypts and increases along the intestine, being highest in the colon (Ecknauer, 1981 ). The role 

of tight junctions in preventing uptake of macromolecules is evidenced by their increased uptake 

in both mammals, and in teleosts in the presence of Qui! - A saponin which is reported to result 

in 'loosening' of these junctions (Campbell and Bede, 1989; Jenkins, 1992). 
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2.1. 7 Non-specific mucosal dejense in teleosts. 

Non-specific defenses in fish have been the subject of a number of comprehensive reviews 

(lngram, 1980; Ellis, 1981; Fletcher, 1982; Alexander and Ingram, 1992). The mucosal non 

specific defenses in teleosts however have received considerably less attention than their 

mammalian counterparts. It may be assumed that such factors as gut motility and the structural 

integrity of the epithelial layers in teleosts play a similar role in teleost mucosal defense as those 

described for mammals. 

The epithelial surfaces of fish and theirmu~us secretionsprovide a physical barrier between the 

animal and environmental microorganisms (Fletcher, 1978; Pickering and Richards, 1980; Roberts 

and Bullock, 1980). Particularly important in this regard may be the scales covering the epidermal 

surface of most species, the secretion of copious amounts of mucus by fish lacking scales, it has 

been suggested may be a compensatory mechanism for the absence of this physical barrier to 

infection by aquatic microorganisms (AI-Hassar et al., 1985). Piscine surfaces are covered by a 

layer of mucus secreted as in higher vertebrates by goblet cells in the epidermal layers (Harris et 

al., 1973; Pickering, 1974), similar in structure to mucins in other animals. The chemical 

composition of fish mucins have been described (Harris et al., 1973; Pickering, 1976; Wold and 

Selset, 1977). A role of this layer in providing a defense against colonisation by pathogens has 

been appreciated for some time (Jakowska, 1963). In addition to the presence of 

mucopolysaccharide constituents, mucus is also a source of natural (non-specific) agglutinins 

(Kamiya et al., 1988), lysins (Suzuki, 1985; AI - Lahham et al., 1987)and specific immunoglobulin 

(chapter 6). Additionally a C reactive protein (CRP)- like substance has been detected in higher 

concentrations in the epidermal mucus of tilapia than in the serum after induced stress (Ramos and 

Smith, 1978). The presence of substances inhibitory to the growth of a number of organisms 

including fungal and bacterial species in cutaneous and gut mucus has also been reported (Harrell 

et al., 1976; Takahashi et al., 1987; Austin and Mclntosh, 1988; Lie et al., 1989). Antibacterial 

activity against a number of gram positive and gram negative pathogens was demonstrated in the 

skin mucus of turbot (Fouz et al., 1990), the inhibition being most extensive against Aeromonas 
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sa/monicida. The latter authors suggested that the antibacterial component responsible was a 

glycoprotein. Rose (1990) however found that Atlantic salmon and rainbow trout mucus did not 

exert an inhibitory effect on the growth of Aeromonas salmonicida. It has been suggested that 

complement activity is present in fish mucus (Harrell et al., 1976) in addition to complement

independent defensive toxins (Cameron and Endean, 1973). Lactoferrin activity has not been 

identified in teleosts to date but Sakai et al. (1993) found that oral administration of bovine 

lactoferrin lead to increased protection against V. anguillarum challenge. The presence of 

haemolysins in some fish species has also been demonstrated (Suzuki, 1985; AI - Lahham et al., 

1987), but the latter study suggested that they were not involved in defense. 

It has been suggested that proteases present in the mucosal secretions of teleosts play a role in 

defense (Hjelmeland and Raa, 1982; Hjelmeland et al., 1983; Braun et al., 1990). Hjelmeland 

et al. (1983) suggested that·the Vibriolytic activity present in skin mucus could be accounted for 

by its trypsin activity. This author found the enzyme to be indistinguishable to its pyloric caecae 

counterpart so one may assume that in the intestine this enzyme and the barrage of other 

proteolytic enzymes present (section 3.1) pose a considerable barrier to colonisation by bacteria, 

particularly against secreted products and susceptible surface components. Chitinase has also been 

found to be present in the digestive tract of fish (Jeuniaux, 1961; Micha et al., 1973; Lindsay, 

1984), but it is uncertain if it plays a role in defense against chitinous organisms (Alexander and 

Ingram, 1992). Lysozyme has been identified in fish mucus (Fletcher and White, 1973; Takahashi 

et al., 1986). In rainbow trout, lysozyme was found to be most abundant at sites where the risk 

of bacterial invasion was greatest such as in the mucus and gills, consistent with a function in host 

defense (Lindsay, 1983; Murray and Fletcher, 1976). Indeed Lindsay (1984) reasoned that since 

the presence of gastric lysozyme in fish was not associated with species which ingest a significant 

proportion of bacteria in the diet it was likely that rainbow trout oesophageal and gastric lysozyme 

plays a role in defense rather than digestion, a contention supported by the tindings of Lie et al. 

(1989) who also indicated a defensive role for lysozyme in the teleost gut. A role for digestive 

enzymes in degrading foreign protein antigens in the teleost lumen is discussed in chapters 3 and 
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5. 

2.1.8 1he gut microjlora.ofteleosts. 

The gut microflora of teleost species has not received the same attention as that of mammals 

although some studies have reported that it is less stable and more dependent on the environmental 

microflora. There have been a number of reports of high bacterial numbers in the intestines of 

fish (Trust and Sparrow, 1974; Yoshimizu et al., 1976; Kamei et al., 1985). Yoshimizu et al. 

(1976) found that the numbers of such bacteria fluctuate seasonally and Horsley (1977) proposed 

that the commensal bacterial flora of the piscine gastrointestine tends to be similar to that of the 

skin and gills but is often characterised by high numbers of Vibrio species and strict anaerobes. 

Wood (1967) however suggested that there didn't appear to be a specific bacterial flora within the 

piscine digestive tract, a belief which may find support in the findings of Shewan (1961) and Seki 

(1969) that the bacterial genera in the piscine intestine reflected those present in the ingested food. 

This contention was crystallised in the suggestion of Horsley (1977) that the digestive tracts of 

marine fish rather than. possessing an autochthonous microflora act as enrichment vessels for· 

ingested bacteria. Lesel (1979) suggested that the trout microflora present at an ambient 

temperature of l7°C was small compared to that of homeotherms and that it was a specialised 

variant of the environmental microflora. Yoshimizu and Kimura (1976) and Ham id et a/ . ( 1978) 

however found the piscine gut microflora was different from the ambient microtlora, the latter 

study reporting that among 10 species of marine fish I in no case was the intestinal flora similar 

to the ambient flora. Yoshimizu et al. (1980) suggested that the microtlora in early salmonid fry 

is similar to the diet and does not assume a distinct character (Aeromonad dominated) typical of 

adults until the advanced fry or fingerling stage. Findings that bacteria do not persist in the 

intestine of fasting fish (Margolis, 1953; Liston, 1957) led to the remarkable suggestion that the 

digestive tract becomes effectively sterile soon after emptying (Ruby and Morin, 1979). Trust 

(1975) and Lesel (1979) in contrast found that in salmonids the microtlora was still detectable in 

the digestive tract after prolonged starvation. 

Anaerobic bacteria have been reported in the gut" of salmonid fish (Trust and Sparrow, 1974; 
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Austin and AI-Zahran, 1988), the main species described being Bacteroides and Clostridia (Sakata 

et al., 1981; Karnei et al., 1985). Trust et al. (1979) however could not isolate significant 

numbers of strict anaerobes from the rainbow trout gastrointestine and postulated that difficulties 

in obtaining significant counts of strict anaerobes in salmonid fish may be a result of the low 

ambient temperatures pertaining at which the generation time for anaerobic bacteria is too slow 

to allow the organisms to reach a population level sufficient to establish a gut microflora before 

peristaltic washout occurs. Large numbers of aerobic heterotrophic bacteria have also been found 

in the piscine gut (Sakata et al., 1978; Austin and AI- Zahran, 1988), in freshwater salmonid fish 

the main species isolated were Enterobacteriaecae, Aeromonas and Acinetobacter (Trust and 

Sparrow, 1974; Niento et al., 1984). lt has been proposed that Aeromonas and 

Enterobacteriaecae are the principal aerobic species in the intestines of freshwater fish whilst 

Vibrio and Pseudomonas are dominant in marine.fish (Aiso et al., 1968; Kamei et al., 1985). 

Studies on anadromous species suggested that salinity plays a pivotal role in determining the 

genera constituting the piscine microflora (Yoshimizu and Kimura, 1976; Sugita et al., 1982). 

In conclusion, the microflora of the teleost gastrointestine appears less stable and less numerous 

and diverse than that of mammals so one may surmise it may pose less of a barrier to colonisation 

than is the case with mammals. 

2.2 Absorption of materials from the gastrointestine. 

2.2.1 Uptake of macromolecules by the gut. 

Macromolecule absorption is a process of alimentation which is the sole means of nutrient 

procurement in evolutionary simple organisms and has traditionally been regarded as a feature of 

such animals (Georgopoulou et al., 1985). The importance of macromolecular uptake and 

intracellular digestion apparently declines as the capacity for extracellular digestion increases and 

macromolecular absorption is considered to be of little importance in higher organisms 

(Georgopoulou et al., 1985). Three possible pathways exist in mammals for movement of 

macromolecules across the intestinal barrier - transcellular movement through the enterocytes, 

uptake by specialised 'M' cells and paracellular movement between cells and via tight junctions 
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(McKay and Perdue, 1993). There have additionally been suggestions that 'solvent drag' of small 

molecules including oligopeptides ( < 1900 Da) may occur across the guinea pig epithelium in 

conjunction with glucose absorption (Pappenheimer and Reiss, 1987; Atisook and Madara, 1991 ). 

Direct penetration of bacterial and plant toxins into cells has also been described but this route 

does not appear to apply to molecules such as protein hormones (Goldstein et al., 1979). The 

advent of modern immunological techniques has enabled the demonstration of macromolecular 

uptake in both mammalian and in a number of teleost species (section 4.1). The general features 

of macromolecule uptake and subsequent processing appear to be similar in mammalian and piscine 

species so the processes will be discussed simultaneously. One pivotal difference however is that 

while only absorptive intestinal enterocytes are implicated in transcellular macromolecule 

absorption in teleosts, enterocytes (Mayer et al., 1990; Panya et al., 1993), 'M' cells (Wolf and 

Bye, 1987) and Paneth cells (Erlandson and Chase, 1972) appear to be involved in such processes 

in mammals - M cell mediated uptake apparently being dominant. 

2.2.2 Transcellular absorption pathways. 

Macromolecular uptake pathways may be divided into transcellular pathways where 

macromolecules are transported across cells and paracellular pathways where macromolecules pass 

between cells. The details of transcellular transport depend on whether macromolecules are I iving 

or nonliving, soluble or particulate and are described in detail for uptake of macromolecules in 

teleosts in section 4.1. The process of soluble antigen uptake is termed pinocytosis while 

phagocytosis is used to describe uptake of particulates, in addition to this dichotomy the mechanics 

of uptake depend on whether or not specific receptors for the molecule are present on the cell 

surface. The process of receptor - mediated endocytosis is initiated by specific ligand binding to 

receptors on infoldings of the apical surface of the plasma membrane (Udal! and Walker, 1987) 

resulting in clustering of receptors in the coated pits areas of the cells allowing increased binding. 

This clustering is followed by invagination and internalisation of the coated pit to form a coated 

vesicle, the ligand being still attached to the receptor may be protected from intracellular 

degradation (Rodewald and Abrahamson, 1982). A second ligand may also be present which 
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allows macromolecule internalisation (McLean, 1987). This process involves cells ingesting 

extracellular materials by trapping them within inward foldings of the plasma membrane which 

'pinch off from the surface to form intracellular vesicles. The contents of the coated vesicle may 

then be discharged into the lateral intercellular space and the vesicle receptors re - utilised through 

recycling (Goldstein et al., 1979). Conversely in the case of fluid - phase endocytosis 

macromolecules bind non-specifically to the apical cell surface ( Nicklin, 1987; Udall and Walker, 

1987) and are internalised into vesicles in the cytoplasm. 

It has been demonstrated in teleost species that changes in membrane fluidity occur upon 

adsorption of soluble proteins after which macromolecules are internalised (McLean, 1987; 

Georgopoulou et al., 1988; Doggett, 1989; Jenkins et al., 1992). Vesicle formation ensues to 

envelope the absorbed material (Silverstein et al., 1977; Goldstein et al, 1979). The precise 

details of vesicle size and the mechanics of uptake differ depending on the macromolecule· in 

question (Georgopoulou et al., 1988; Rombout and van den Berg, 1989). This process either 

results in vesicle fragmentation or multi - vesicular coalescence (lida and Yamamoto, 1985; 

Georgop.oulou et al., 1988) progressing to produce supranuclear vacuoles (Georgopoulou et.al, 

1988). Secondary lysosomes are formed upon coalescence of supranuclear vacuoles with cellular 

Iysosomes (Watanbe, 1982). This is not always the outcome however - either lysosomal merger 

or intercellular exocytosis may occur depending on the pathway involved (Abrahamson and 

Rodewald, 1981). Distinct vesicle populations may be involved in determining whether selective 

degradation or escape of proteins from Iysosomes occurs (McLean, 1987). Cytoplasmic tubules 

are also implicated in intracellular transport of macromolecules, these tubules can form complex 

extensions linking endocytic vesicles with the basolateral membrane where antigen has been 

demonstrated in studies of protein uptake in teleosts (lida and Yamamoto, 1985). Based on 

ultrastructural features of macromolecule uptake in the posterior gut/ second gut segment the 

uptake of macromolecules by the teleost gut has been compared to that in newborn mammals 

(Watanabe, 1981). Mehrazar et al. (1993) found up to 30% of anti-bovine gamma globulin 

antibody fed to 3/5 day old piglets was absorbed, this nonselective and massive uptake in 
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milligram quantities was followed· by 'gut closure' after which a second stage characterised by 

selective absorption of immunoglobulin in microgram quantities (0.02 - 0.01 % of dose) ensued. 

Gut closure is a characteristic of some neonatal mammals which prevents further transfer of large 

quantities of macromolecules from the gut of neonates. The quantities of absorption found in some 

telecists (see section 5.4) are however extremely small and are thus somewhat in conflict with the 

view that the uptake is somehow analogous to that of mammalian neonates, however as outlined 

in section 5.4 the extent of such absorption varies considerably between teleost species. 

2.2.3 Uptake of inert particulate materials across the digestive tract 

Uptake of particulate material across the intact gastrointestinal tract into the blood and lymph was 

first reported 150 years ago by Herbst (1844) but for some time such findings were regarded as 

a pathophysiological accident (Herbst, 1844; Voit and Bauer, 1869; Verzar, 1911). Later studies 

by Thompson et al. (1960) and Sanders and Ashworth (1961) again reported uptake of solid 

particles followed by the even-now highly contentious studies of Volkheimer and Schultz (1968) 

and Volkheimer (1975) claiming uptake of orally administered 7 - 100 !Lm starch granules into 

venous blood and postulating that passage of particulate matter across the intestinal barrier resulted 

from the activity of the muscularis mucosa layers of the gut kneading particles between cells at 

the desquamation zones of the intestinal villi, a paracellular process the author termed 

'persorption'. Renewed interest in this area and the advent of sophisticated analytical technology 

has resulted in a number of workers reporting particulate uptake using polystyrene and 

biodegradable particles in the nanometre- micro metre size range (Eidridge et a£, 1989; Pappo and 

Ermak, 1989; Eldridge et al., 1990; Jepson et al., 1993b). Three possible routes for 

gastrointestinal uptake of small particles exist; - intracellular uptake by enterocytes, intercellular/ 

paracellular uptake or uptake via the M cells of Peyer's patches (Kreuter, 1991). The dominant 

opinion appears to suggest that particulate uptake in mammals is principally via the M cells of 

Peyer's patches (LeFevre and Joel, 1984; Sass et al., 1990; Jepson et al., 1993a, b; Scherer et 

al., 1993) and although uptake by enterocytes in the villous part of the gastrointestine, (Sanders 

and Ashworth, 1961; Matsumo et al., 1983; Kataoka et al., 1989; Jani et al., 1992), and 
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absorption by paracellular means (Aprahamin et al., 1987; Jani et al., 1992) has been 

demonstrated, these routes probably only play a minor role in particulate uptake (Eidridge et al., 

1990). Jani et al,-; (1992) suggested that the upper size limit for absorption by intestinal 

enterocytes and the paracellular route may be 100 !LID. The extent of particulate uptake depends 

on the size (Eidridge et al., 1990; Sass et al., 1990; Jani et al., 1992), hydrophobicity (Eidridge 

et al., 1990), charge (Jani et al., 1989, 1992), and polymeric composition (Eidridge et al., 1990) 

of the particles. Accurate modern techniques for the measurement of fluorescent microparticle 

absorption indicate that levels of uptake constitute only a small fraction of the administered dose 

and indicate that earlier reports of high absorption levels were exaggerated ~Davfs, im; Jenkins 

et al., 1994). The capacity for particulate uptake by the teleost gut has been the subject of very 

little study and is discussed in chapter 7 in relation to the use of biodegradable microparticles in 

oral vaccination. A different mode of particle internalisation - gastrointestinal uptake/ invasion 

of epithelia by live bacteria is discussed in chapter 8. 

2.3 Specific defense in mammalian mucosa-associated lymphoid tissue (MALT). 

This review thus far has discussed nonspecific constitutive components of the mucosal barrier, a 

very sophisticated specific inducible immune system is also present in the vertebrate gastrointestine 

which possesses many unique features and acts somewhat independently of the systemic immune 

system. The process of induction of immune B and T cells in MALT followed by their migration 

to effector sites for the development of mucosal immune responses is termed the common mucosal 

immune system (Mestecky, 1987), GALT is a major component of this interconnected network. 

Evidence for the concept of a common mucosal immune system initially came from antibody 

induction studies (Goldblum et al., 1975), cell migration experiments (Gowans and Knight, 1964) 

and morphologic studies including the demonstration of specialised antigen-trapping cells in the 

gut (Owen, 1977). Specialised lymphoreticular tissues in the gastrointestinal and upper respiratory 

tract possess the capacity to take up environmental antigens (Craig and Cebra, 1971; Rudzik et 

al., 1975) and oral delivery of antigens in mice and humans leading to stimulation of lgA 

precursor B cells can result in dissemination of B and T cells to mucosal effector sites such as 
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lamina propria regions of the intestinal, respiratory and genitourinary tracts and to secretory glands 

for antigen specific secretory lgA responses (Mestecky, 1987; Phillips- Quagliata and Lamm, 

1988; Scicchiatano et al., 1988). It is the induction of this local immune system which in most 

cases is the target of oral vaccination. The mammalian mucosal immune system may be divided 

into two separate interconnected compartments both functionally and anatomically (McGhee et al., 

1992; McGhee and Kiyono, 1993), sites where antigens are encountered and where initial 

responses are induced and sites where lgA plasma cells are found and where production of 

secretory lgA leading to local immune protection occurs. Mucosal inductive regions include 

GALT and are the sites where environmental antigens are encountered. Stimulation ofT helper 1., 

cells and lgA precursor B cells in GALT, particularly in Peyer's patches with orally delivered 

antigen leads to dissemination of B and T helper cells to mucosal effector sites such as the lamina 

propria of the gastrointestinal tract and to secretory glands leading to antigen specific secretory 

lgA antibody responses. Mucosal effector tissues consist mainly ofT cells, particularly CD4+ 

cells of memory/ effector phenotype, they are enriched for B cells and plasma cells (lgA) and are 

covered by epithelial cells expressing secretory component (SC) which transports polymeric lgA 

into external secretions. 

2.3.1 Morphological and cellular aspects of MALT. 

GAL T in higher vertebrates is composed of the Peyer's patches, appendix, small solitary 

lymphoid nodules, mesenteric lymph nodes and isolated lymphoid cells in the intraepithelium and ,, 

lamina propria (McGhee et al., 1992; McGhee and Kiyono, 1993). The Peyer's patches possess 1,~ 

a "dome" region enriched with Iymphocytes and macrophages and some plasma cells which is 

covered by a unique epithelium rich in specialised antigen sampling M cells showing thin 

extensions around lymphoid cells (Owen and Jones, 1974; Wolf and Bye, 1984). These M cells 

possess short microvilli, small cytoplasmic vesicles and few Iysosomes and are specialised for 

endocytosis and transport of both protein antigens (Bockman and Cooper, 1973; Owen, 1977) inert 

particles (section 2.2.3) and microorganisms including bacteria, viruses and protozoans (Russell 

and Walker, 1990) into GALT. M cells transport antigen from the surface lumenal membrane 
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to the pocket membrane with no degradation or chemical alteration (Inman and Cantey, 1983). 

Peyer's patches have a reduced number of mucus - secreting goblet cells and are therefore more 

accessible for microorganisms than other epithelial surfaces (Walker and Owen, 1990). Particle 

binding to the apical membrane of M cells leads to rapid internalisation and shuttling to pocket 

lymphocytes and to mucosal immune inductive regions (Pappo and Ermak, 1989). Distinct 

follicles are found under the dome region of the Peyer's patch containing germinal centres. where 

significant B cell division occurs. It is in these germinal centres that the processes of B cell 

switching to IgA production and affinity maturation occur, indeed these sites contain the majority 

of surface IgA + (sigA +) B cells (Lebman et al., 1977; Butcher et al., 1982), in contrast, few c: 

plasma cells are found in these regions. It has been shown that a very high percentage (30 - 40 

%) of Peyer's patch B cells are in cell cycle due to the constant environmental stimulation of 

GAL T cells. As a result of this stimulation these cells have been used in stUdies on cytokine 

production~thout adding the B cell mito_g~n LPSin contrast with splenic B cells (Beagley et al.·, 

1988). T cell dependent areas are located adjacent to the follicles; Peyer's patch T cells are 

mature containing a T cell receptor - CD3 complex and more than 95 % of these cells display the 

a6 form ofT cell receptor. Additionally, approximately 60% of Peyer's patch T cells are CD3+ 

CD4+ CD8- demonstrating properties ofT helper cells including the provision of support for IgA 

responses (Hanson and Brandtzeag, 1989). Functional cytotoxic T lymphocytes (CTLs) can also 

be induced in the Peyer's patch - around 25 % of Peyer's patch T cells having a CD3 + CD4-

CD8+ phenotype (London et al., 1987; Hanson and Brandtzaeg, 1989). It is thus apparent that ,, 

all the necessary cells for the induction of mucosal immune responses are present at the MALT 

inductive sites including CD4+ T helper cells, CD8+ cytotoxic T lymphocytes, sigA+ B cells 

and accessory cells. T helper cells (CD3+ CD4+ CD8-) are induced to epitopes presented in 

conjunction with MHC class 11 molecules on antigen presenting cells (Marrack and Kappler, 1986; 

Bierer et al., 1989). Cells present in GAL T which may function in antigen presentation include 

dendritic cells (Steinman, 1991), macrophages (Unanue, 1984), B cells (Chesnut and Grey, 1985), 

activated T cells (Kabelitz et al., 1987), endothelial cells (Nunez et al., 1983) enterocytes (Mayer 

and Schlien, 1987) and possibly M cells (Finzi et al., 1993). Liu and MacPherson (1993) found 
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that orally delivered antigen was effectively presented by intestinal dendritic cells but not by other 

cells present in the draining lymph. Moreover, antigen-bearing dendritic cells in the lymph\_~ 

were found to prime naive T cells directly in vivo while T cells or macrophages could not. Acid 

phosphatase-positive macrophages were found to process particulate antigens which were 

transported by M cells from the gut lumen to the dome region· of Peyer's patches (Van Reece et 

al., 1988). A function of macrophages in antigen presentation at this site agrees with the finding 

that in contrast to dendritic and B cells, macrophages are especially equipped to process and 

present particulate antigen (Van Rooijen, 1990). Studies on murine species have however 

demonstrated that mucosa - associated (alveolar and intestinal lamina propria) macrophages can .r, 

actually have a suppressive effect on immune responses in vitro and in vivo (Fireman et al., 1988; ' 

Thepen et al., 1989; Pavli et al., 1990). Data from a comparative study utilising human cells 

suggested that intestinal macrophages played no role in stimulation of mixed leucocyte response 

stimulation despite a high level of class 11 MHC antigen expression in contrast with dendritic cells 

which were highly effective in antigen presentation (Pavli et al., 1993). This study suggested that 

dendritic cells are the major cell population capable of inducing a mixed leucocyte response in the 

human colonic lamina propria. It has been proposed that the dendritic-.cell endocytic apparatus 

is specialised for antigen presentation (lnaba et al., 1993) while the bulk of phagocytic activity in 

macrophages may result in degradation (Steinman and Cohn, 1972). Overall, dendritic cells are 

regarded as the major antigen presenting cell population in the Peyer's patch dome and in the T 

cell region where these cells are referred to as interdigitating cells (Biewenga et al., 1993). 'r 

After antigen entry into the Peyer's patch and presentation to B and T lymphocytes, activated B 

and T cells depart the patches via efferent Iymphatics eventually reaching the systemic circulation 

via the thoracic duct. Transported systemically, these Iymphocytes arrive at the mucosal effector 

sites (lamina propria of respiratory, gastrointestinal and reproductive tracts and glandular tissues) 

where they are selectively retained (Kraehenbuhl and Neutra, 1992; McGhee and Kiyono, 1993;). 

Lymphocytes constantly circulate from the bloodstream into lymph nodes and lymph ducts 

travelling via the Iymphatics to re- enter the bloodstream (Yednock and Rosen, 1989), a process 

55 



which enables antigen specific B and T cells to survey all the sites where pathogens might appear. 

Factors controlling the localisation and persistence of lamina propria and other mucosal cells are 

poorly understood. Antigen was initially believed to be the signal determining the localisation of 

lgA committed B cells in mucosal sites (Husband, 1982), it is now recognised however that 

antigen alone is insufficient for B cell localisation and additional T-cell signals also appear 

necessary (Dunkley and Husband, 1991). Therefore, in addition to their role in providing cognate 

help for precursors of lgA-producing B cells in Peyer's patches (section 2.3.5) T cells may also 

provide differentiation signals to incoming plasma cell precursors in lamina propria effector sites 

(Dunkley and Husband, 1991). The process of lymphocyte escape from blood (extravasation) is " 

facilitated by the differentiation in the endothelial lining of blood vessels in lymph nodes where 

capillaries widen into postcapillary venules. This endothelium of postcapillary venules (high 

endothelium) in lymph nodes and related organs is thicker, has a distinctive cell phenotype and 

is specialised for trapping lymphocytes. Specific migration patterns of lymphocytes activated..in 

peripheral lymph nodes and Peyer's patches respectively are dictated by receptor/ ligand . 

interactions between lymphocyte adhesion molecules 'homing receptors' (Shimizu et al., 1992) 

with site- specific 'addressins' on high endothelial venules (Jalkanen et al., 1986; Picker and 

Butcher, 1992). The receptor molecule on lymphocytes which mediates initial recognition and 

adherence of lymphocytes to high endothelium has been demonstrated to be a member of the 

'selectin' family of adhesion molecules (addressins) (Stool man, 1989). These molecules are named 

on the basis of the cell type on which they were first demonstrated - L selectin being the peripheral 

lymph node homing receptor. A mucin - like molecule, Gly CAM-I, identified on high 

endothelium venule cells has been proposed as an important component of the structure recognised 

by L selectin on high endothelial venules (HEV), it is uncertain whether this interaction involves 

protein - protein or lectin - carbohydrate interactions or a combination of both (Seed, 1992). 

Another group of important adhesion molecules on lymphocytes are the integrins which bind to 

extracellular matrix proteins or to proteins on the surface of neighbouring cells, a range of such 

molecules has been identified both in mice and in humans (Hollander, 1993). Under the tripartite 

influence of antigen, T cells and cytokines B cells undergo clonal expansion to form mature lgA 
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producing plasma cells (Mestecky and McGhee, 1987; McGhee et al., 1989). In the lamina propria 

effector region the cellular repertoire includes 20 - 40 % B cells (including mainly IgA + plasma 

cells), :::: 10 % macrophages, :::: 5 % eosinophils, :::: I - 3 % mucosal mast cells and 40 - 60 % 

T cells making T cells the most abundant cell type present in these areas (Bull and Bookman, 

1977; Kanof et al., 1988). The majority of these T cells are CD3 + CD4+ CDS- demonstrating 

helper function (Kanof et al., 1988), but :::: one third are CD3 +, CD4-, COS+ and may possess 

cytotoxic T lymphocyte or suppressor functions. The previously held belief that gastrointestinal 

plasma cells were all derived from Peyer's patch B cells has been challenged by the recognition 

that a significant number of murine gastrointestinal IgA plasma cells can derive from a self 

renewing Ly - 1 + (CD5 +) B cell population resident in the peritoneal cavity (Solvason et al., 

1991). Results indicate that this B cell lineage may differ from B cells from bone marrow since 

they are derived from the fetal omentum (Kroese et al., 1988) and demonstrate unique phenotypic 

and localisation characteristics (Herzenberg et al., 1986; Solvason et al., 1991). Peyer's patches 

are markedly deficient in Ly- I+ B cells (Hayakawa et al., 1984). The peritoneum may be seen 

as an additional induction site for mucosal lgA responses since up to half of the plasma cells in 

the lamina propria are derived from peritoneal B - 1 cells (Ly - 1 + B cells) (Biewenga et al., 

1993). Additionally there has been a suggestion in humans at least that omental 'milky spots' and 

related lymphoid tissue are implicated in development of abdominal and gastrointestinal immunity 

particularly during infancy (Koten and Otter, 1991). These omental 'milky spots' which are 

present in young children gradually transform into fatty tissue only reappearing upon 

intraperitoneal infection. Omental lymphatic tissue constitutes a discrete lymphatic unit closely 

associated with the spleen and haemal lymph nodes which surround the branches of the 

portosplenic venous tree (Dux, 1988; Shimotsuma, 1991). It has been proposed that the function 

of these spots may be related to food ingestion since after a meal there is a greatly increased blood 

flow and pooling of blood in the portal venous system resulting in contact between blood which 

has passed through the gut and the lymphatic tissue associated with the portal system. Therefore 

in infancy, in a process akin to thymic self\ non- self recognition, the omental lymphatic system 

may adapt so it does not respond to incompletely digested antigenic material transported by the 
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portal blood (Kotten and Den Otter, 1991). McGhee et al. (1992) suggested therefore that both 

Peyer's patches and the peritoneum may represent sites for B cell development capable of 

repopulating mucosal tissues. 

There is evidence to suggest that there is an element of compartmentalisation in the common 

mucosal immune system, possibly even within the gastrointestinal tract (McGhee and Kiyono, 

1993), therefore considerable caution must be exercised in the design of vaccines and delivery 

systems so that the immune response is generated at the appropriate site. In addition to the antigen 

presenting cells described above other phagocytic cells are also present including basophils, ~· 

eosinophils and neutrophils (McKay and Perdue, 1993), the number of polymorphonuclear 

leucocytes being elevated in the intestine after helminth infections (Capron et al., 1986). A role 

for mucosal mast cells in defense against parasitic infection has also been described (Arizono and 

Nikao, 1988), these cells may produce a range of mediators which influence the epithelium and 

may induce or exacerbate inflammatory reactions (McKay and Perdue, 1993). 

2.3.2 Spec{fic secretory lgA (S-lgA) mediated humoral defense at the mucosae. 

In the mucosae of mammals, secretory IgA may be regarded as the first line of specific 1 · 

immunological defense. In terms of the quantity produced, the IgA isotype predominates in 

humans, representing more than 60% of all antibody isotypes generated (Conley and Delacroix, 

1987; Mega et al., 1992). Indeed it has been shown that a normal individual produces in excess 

of 5 g of IgA daily. In mammals, most IgA is produced from plasma cells in mucosal effector 

regions, particularly in the lamina propria of the gastrointestine (McGhee et al., 1992). IgA may 

be divided into two subclasses, lgA1 and IgA2 which differ in their distribution in serum and in 

various external secretions (Mestecky and McGhee, 1987). More than 90% of serum IgA is of 

the IgA1 subclass and is mainly monomeric. Various secretions contain 50-70% IgAI and 30-

50 % IgA2, a higher percentage being found in external secretions. Serum IgA is mainly 

monomeric, only approximately 10 % being detected in the form of dimers and larger polymers 

(Delacroix et al., 1982). Secretory IgA is heterologous, being composed principally of dimers, 
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the proportion of larger polymers may amount to 5 - 20 % of the dimeric fraction however 

(Delacroix·et al., 1982). In external secretions, IgA is found principally in dimeric and tetrameric 

forms, therefore possessing 4 or 8 binding sites and demonstrating greater avidity than monomeric 

lg - the functional significance of this being shown by the observation that polymeric lgA 

neutralizes viruses more effectively than its monomeric counterpart (Dimmock, 1984; Taylor et 

al., 1987). This multivalence also enables lgA to neutralise biologically active antigens such as 

toxins and enzymes and to agglutinate bacteria more effectively than monomers (Killian et al., 

1988). S-lgA consists in addition to heavy and light chains, of a 15 kDa joining (J) chain 

polypeptide (also found in polymeric !gM) (Halpern and Koshland, 1970) disulphide linked to a 

cysteine moiety on heavy chains (Mestecky, 1976). Immunocytochemical evidence however 

indicated that there may have been 2 J chains present per lgA polymer which existed as a dimer 

in the molecular complex (Brandtzaeg, 1985a, b), It is currently believed that regardless of 

polymer size a single J chain acting as a 'clasp' binds only two subunits while the remaining 

polymer subunits (in polymers greater than dimeric) are connected by inter - heavy chain 

disulphide bridges (Garcia- Pardo et al., 1981). S-IgA differs from serum polymeric IgA by its 

association with an epithelially derived glycoprotein- secretory piece or secretory component (SC). 

Therefore the secretory polymer consists of an lgA dimer, I or 2 J chains and a secretory 

component with a total molecular weight of 375 kDa (Hanson and Brandtzaeg, 1989). J chain 

appears to be essential for the association of lgA with Se. Among the principal features allowing 

S-lgA a selective advantage to fulfil its biological functions in the harsh environment of the gut 

is its innate proteolytic resistance and its association with secretory component (Mestecky and 

McGhee, 1987; Kilian et al., 1988). The proteolytic resistance of S-IgA appears to result from 

the dimeric structure per se and to the incorporation of se (Lindh, 1975), the J chain however is 

very prone to proteolytic degradation. A deletion of 13 amino acids in the hinge region of the a2 

heavy chain in IgA2 contributes to the molecule's high degree of resistance to proteolytic enzymes 

(Mestecky and McGhee, 1987; Killian et al., 1988). It was demonstrated that Escherichia coli 

produces a protease capable of degrading colostral IgA (Moore et al., 1964) but S-IgA can also 

exhibit antibody activity against some microbial enzymes thus neutralising their activity (Gilbert 
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et al., 1983). Indeed, S-lgA has been found to be resistant to most lgA proteases as a result of 

antibody-mediated neutralisation of the enzymes (Kobayashi et al., 1987). Proteases from a 

number of oral and enteric bacteria are directed against lgA I (Kilian and Reinholdt, 1986) but 

while serum IgA is comprised of"" 80% lgAI S-IgA is 30-40% IgA2 (Delacroix et al., 1982). 

A protease has been isolated from Clostridia species capable of degrading both lgA I and lgA2 of 

the A2m(l) allotype (Fujiyama et al., 1985) and the yeast species Torulopsis and Candida also 

produce proteases capable of degrading IgA I, lgA2 and S-IgA (Reinholdt et al., 1987). It may 

be surmised therefore that in vivo S-lgA is not likely to be totally resistant to proteolysis, indeed 

it was found that only 20 - 80 % of milk S-lgA was left undegraded in the stool of breast fed 

babies (Davidson and Uinnerdal, 1987) this study did not however take into account lgA adsorbed 

onto microbes in the stool. Secretory lgA has been shown to.function in immune exclusionin the 

gut, prior exposure to a foreign antigen leading to diminished absorption of that but not of 

unrelated antigens due to the presence of specific S-lgA (Andre et a£, 1974; Killian et a£, 1988). 

This property of S-lgA limits absorption of undigested antigenic material and the resultant 

formation of potentially harmful circulating immune (mainly lgG) complexes, a phenomenon seen 

in lgA deficient individuals (Cunningham - Rundles et al., 1979). A novel method enabling 

production of lgA hybridomas from Peyer's patches and delivery of monoclonallgA into intestinal 

secretions via the transepithelial transport mechanism has demonstrated that monoclonal S-lgA 

directed against single surface antigens on Vibrio cholerae (Winner et al., 1991) and Salmonella 

typhimurium (Michetti et al., 1992) is protective against oral challenge with the homologous 

organism. Human serum or secretory lgA when complexed with antigen, unlike lgG is unable to 

activate complement by either the classical or alternate pathways, thus precluding the formation 

of C3 and CS cleavage products and consequent induction of local inflammatory reactions such 

as influx of polymorphonuclear leucocytes and release of mediators leading to tissue damage and 

increased permeability of mucosal membranes (McGhee et al., 1992). lgA can also prevent 

against anaphylactic and arthus type hypersensitivity reactions mediated by lgE and lgG isotypes 

(Russell- Jones et al., 1981). These studies indicate an important role for lgA in the abrogation 

of inflammatory side effects in the gut due to other effector mechanisms. Secretory lgA also 
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functions in an anti-bacterial capacity at the mucosae by inhibiting the adherence of microbes to 

host mucosal epithelial cells (Wold et al., 1990). The inhibition of adherence, whether involving 

nonspecific hydrophobic interactions or specific bacterial factors and corresponding cell surface 

receptors is more effectively achieved by S-IgA than IgG of the same specificity due its unique 

charge, extensive glycosylation and proteolytic resistance (Magnusson and Stjernstrom, 1982). 

In addition to this specific antibody function S-IgA can inhibit adherence of a broad range of 

Enterobacteriaceae via terminal mannose containing oligosaccharide side groups on the heavy 

chain (especially on IgA2 molecules) recognised by mannose specific lectins which are present on 

type I fimbriae. SlgA can also render bacteria mucophilic (Magnusson and Stjernstrom, 1982) 

thus enhancing the barrier formed by the mucous layer. Bacteria selectively disadvantaged by 

specific S-IgA appear to be more effectively displaced by other bacteria in the competitive gut 

environment, the possession of IgA proteases by certain bacteria (see above) however may be 

regarded as virulence determinants (Kilian et al., 1988). lgA can also enhance the anti- microbial 

effects of some innate anti - bacterial factors in external secretions such as: 'lactoferrin and 

lactoperoxidase (section 2.1.3). A particularly important interaction of IgA may be that with 

mucosal phagocytic cells and lymphocytes involved in antibody dependent cellular cytotoxicity ·I 
(ADCC) since in vitro, S-IgA can enhance the antibacterial activity of monocytes and lymphocytes 

of mucosal or peripheral origin (Tagliabue, 1989). The CD3+, CD4+, Leu8+ T lymphocyte 

subset can bind IgA via Fe receptors and effectively kill Salmonella and Shigella bacterial species, 

oral immunization with the Salmonella typhi Ty21 a vaccine resulting in increased numbers of T 

cells participating in IgA-mediated ADCC (Tagliabue, 1989). S - IgA is also implicated in the 

process of virus neutralisation (Ogra et al., 1989), binding of a single antibody molecule to a virus 

can result in its inactivation (Dimmock, 1984) and secretory IgA has been shown to be particularly 

effective in this process. S-IgA shows broader specificity in viral neutralisation than comparable 

serum antibodies (Shvartman et al., 1977) which may be of advantage in contending with antigenic 

drift of organisms. In the mucus layer, S-IgA can prevent viral attachment to epithelial cells and 

subsequent penetration (Gartner et al., 1986). The biological importance of the polymeric IgA 

structure in defense against viral infection was evidenced by the finding that while rat biliary IgA 
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anti-influenza haemagglutinin prevented viral attachment, both its dissociated monomeric form and 

lgG allowed attachment, penetration and viral genome accumulation in the cell nucleus (Taylor 

et al., 1987) indicating that it resulted in a stearic inhibition of haemagglutinin attachment to cells. 

In addition to the well accepted role of secretory lgA as an immune barrier, preventing adherence 

and absorption of antigens in the gut recent studies utilising polarised epithelial monolayers have 

suggested additional roles for lgA (Mazanec et al., 1993). It has been proposed that lgA may 

neutralise intracellular microbial pathogens such as viruses directly within epithelial cells (Mazanec 

et al., 1992) in the intraepithelial compartment and may bind absorbed antigens in the mucosal 

lamina propria and excrete them through the adjacent epithelium into the lumen thus ridding the 

body of locally formed immune complexes and decreasing their access to the systemic circulation 

(Kaetzel et al., 1991; Mazanec et al., 1991). Thus lgA may provide a comprehensive humoral 

mucosal defense by operating at the lumen, epithelium and lamina propria to inhibit surface 

spreading of infection along the mucosa. 

2.3.3 Antibody isorypes other than lgA in MALT. 

Antibody isotypes other than lgA have also been described in external secretions. Secretory lgM 

(S-IgM) has been found in small quantities in the gut of adult humans but in greater amounts in 

young infants and in patients with selective lgA deficiency (Mellander et al., 1986). Secretory 

lgM (S-IgM) in secretions is found associated with Se, in fact pentameric lgM shows higher 

affinity for Se and binds it with stronger covalent forces than does dimeric IgA (Brandtzaeg, 

1985a). ilncontrast to S-IgA, S-lgM is sensitive to proteolytic degradation (Haneberg, 1974). 

Some patients with selective IgA deficiency (at least in countries with good hygiene) live healthy 

lives, an observation which may be partly explained by a compensating appearance of lgM in 

external secretions (Hanson et al., 1988). SlgM can exhibit antibody activity (Mellander et at, 

1986), lgM antibodies being highly effective in promoting phagocytosis and complement mediated 

bacteriolysis and in protection against intestinal infections (Heddle and Rowley, 1975). lgM 

derived from human duodenal fluid was found to enhance neutrophil phagocytosis of E coli, an 

effect which was enhanced by complement (Girard and Kalbertmatten, 1970). Small traces of IgG, 
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lgE and lgD have been detected in most normal human secretions. Transfer of JgG appears to be 

a passive process and in contrast with SlgA and SlgM is not associated with se (Brandtzaeg et 

aJ, 1971a). More than 90% oflgG in nasal fluid is of serum origin (Mygind et al., 1975) and this 

'leakage' of IgG is enhanced during inflammation (Brandtzaeg et al., 1971). There have been 

suggestions that transmitted lgG differs in terms of size and antigenicity from serum IgG (Rossen 

et al., 1966), an observation which may be explicable by preferential local synthesis of some IgG 

subclasses (Keller et al., 1983). lgG in external secretions has the capacity of complement -

dependent bactericidal and opsonizing activities (Eddie et al., 1971) and of immune exclusion of 

soluble antigens (Stokes et al., 1975), IgG however appears to be rapidly degraded in the gut 

(Haneberg and Endresen, 1976). IgE in secretions is not associated with Se (Bennick and 

Johansson, 1971), and relative enrichment in IgE levels in secretions compared to serum are 

believed to result from passive diffusion through the epithelium (Nakajima et al., 1975) and partly 

from locally produced lgE by plasma cells but principally by mast cells armed with lgE in regional 

lymph nodes (Brandtzaeg, 1985). The biological significance of IgE in secretions is- unknown and 

the isotype is rapidly degraded in intestinal fluid (Brown et al., 1975). lgE is believed to be of 

importance in mucosal membranes for defense against parasites by arming macrophages, platelets 

and eosinophils (eapron et al., 1987). IgD has been found in trace amounts in colostrum and 

saliva but not in intestinal juice (Sewell et al., 1979) indicating the possibility of local secretion. 

IgD producing plasma cells are also absent from the gastrointestinal tract unlike other secretory 

sites (Brandtzaeg, 1983). Exocrine IgD can demonstrate antibody activity (Keller et al., 1985) 

but its biological activity is unknown. In some patients with lgA deficiency an increase in IgD 

imrnunocytes in the nasal mucosa was noted. 

2.3.4 The role of cytotoxic T cells in MALT. 

The second major aspect of cell - mediated immune responses in MALT is the activity of cytotoxic 

T lymphocytes. Virus- infected cells in general are lysed by eD3+, eD4-, eDS+ cytotoxic T 

lymphocytes which to be induced must recognise a complex of virus -derived peptide and MHe 

class I molecule expressed on the surface of infected target cells (Marrack and Kappler, 1986; 
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Bierer et al., 1989). Investigations on the mucosal tissues of both humans and experimental 

animals have revealed the occurrence.of cell mediated cytotoxicity, antibody dependent cytotoxicity 

and natural killer (NK) activity (Davies and Parrott, 1981; Ernst et al., 1985). Major differences 

exist in humans between lymphocyte populations in GAL T and peripheral blood lymphocytes, for 

example many of the CD4- CD8+ intraepithelial and lamina propria lymphocytes do not express 

CD5 - a cell surface marker present on nearly all peripheral blood T lymphocytes and thymocytes 

(Selby et al., 1983). lntraepithelial (IEL) and lamina propria (LPL) lymphocytes reside in 

different areas and are significantly different in terms of phenotype, function and morphology 

(Brandtzaeg et al., 1988). Studies of intraepithelial lymphocytes in many species indicate that 

most express CD8, exhibit cytotoxic activity and a variable percentage contain cytoplasmic 

granules (Dobbins, 1986). Lamina propria and intraepitheliallymphocytes are mainly CD45RO+, 

a .marker associated with previously activated or memory T cells (Brandtzaeg et al., 1989). 

Within CD3+ lymphocytes there are two distinct subpopulations defined by expression of either 

the all (Marrack and Kappler, 1986) or 'fO (Bell and Bell, 1994) heterodimeric T cell receptor 

(TCR). IEL • s are a unique population of lymphocytes found individually interspersed within the 

intestinal epithelium (Ernst et al., 1985). They are a very heterogeneous cell population 

distinguished by their TCR expression, granularity and expression of several activation and 

differentiation markers. The majority ofT lymphocytes in the peripheral blood express the all 

TCR which recognises antigen in association with classic MHC class I and 11 molecules. The 

population of 'fO T cells in peripheral circulation and peripheral lymph nodes is small ("" 5% ), 

mainly CD4-CD8- (Groh et al., 1989) and recognises MHC in addition to non - MHC encoded 

ligands (Farstad et al., 1993). Lymphocytes resident in the intraepithelium possess unique features 

and may be important in the induction and regulation of mucosal immune responses. 

Intraepithelial T cells may be delineated on the basis of cell surface markers into 4 subsets; CD4-, 

CD8+ (== 75%), CD4+, CD8- (== 7.5%), CD4-, CD8- (== 7.5%) and CD4+, CD8+ ("" 

10%), (Klein and Kagnoff, 1987). In mice, small intestine- derived IEL's can be subdivided into 

two populations:- a population of thymus -dependent, antigen - dependent CD3 + CD8 +, Thy -

1 + cells most of which use the all form ofT cell receptor (all TcR) and a population of thymus -
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independent, antigen - independent C03 + COS+ Thy - 1- cells most of which use the -yu form 

of TCR (Guy-Grand et al., 1991). While thymus-dependent Thy- I+, allTCR:+· intraepithelial 

Iymphocytes are recruited to the gut after antigenic stimulation by the normal gut flora the thymus 

-independent Thy- 1-, -yu TCR+ population can appear in the absence of antigenic stimulation 

(Bandiera et al., 1990). This observation and the recognition of a lack of allTCR!+ IEL but not 

-yu TCR+ IEL in athymic and germ- free mice suggests that the factors necessary for expansion\ 

maturation of the populations are likely to differ (Bandiera et al., 1991). Although it was 

believed that only the Thy- 1- IEL subset was extrathymically derived subsequent work suggested 

that some Thy- I+ cells may also be of extrathymic origin (Yoshikai et al., 1991). Murine -yo 

T lymphocytes preferentially localise to epithelial surfaces such as the gut, skin and reproductive 

tract where they constitute a major lymphocyte subset (this population is much smaller in the 

human intestine), this epithelial predominance has led to suggestions that such cells may engage 

in immunological surveillance at these sites (Van Kerckhove et al., 1991). -yo intraepithelial 

Iymphocytes are the first lymphoid cells -to appear in the intestine and may play roles in control 

of oral tolerance, bacterial colonisation and in elimination of damaged epithelial cells (Dunon et 

al., 1993; Bell and Bell, 1994). It has been noted that in mice there is a greater heterology among 

-yo T cells in the intestine (relative to other epithelia) in terms of junctional diversity and the 

germline gene segments utilised suggesting perhaps a role as foreign antigen - specific cells 

(Takagaki et al., 19S9). Murine studies have indicated the presence in addition to -yo cells of 

thymic origin (Dunon et al., 1993) of a thymus-independent subset of -yo.'f_C!~! intraepithelial 

lymphocytes (Bandiera et al., 1991) and evidence also exists to suggest that two populations of a6 

TCR IEL's exist, one of which expresses COS molecules composed of COSa chains only (as 

opposed to the usual COSa6 heterodimer) which appears to be of extrathymic origin (Rocha et al., 

1991). Among subsets of intraepithelial and lamina propria Iymphocytes functional cytotoxic T 

Iymphocyte activity has been demonstrated (Ernst et al., l9S5). Unlike other primary T cells, 

freshly isolated murine IEL's are constitutively cytolytic (Lefrancois and Goodman, 19S9), an 

activity associated with the presence of the cytolytic granule markers perforin and granzyme A 

(Guy- Grand et al., 1991). There is some evidence to suggest that !EL's are activated 'in situ' 

65 



by the presence of antigen in the intestinal lumen (Lefrancois and Good man, 1989). !EL's cannot 

be stimulated in vitro with conventional T cell mitogens, interleukins or TCR specific antibodies 

(Mosley et al., 1991) and it is not known from where these cells originate and where their 

selection and maturation occur. There is evidence that !EL's mature extrathymically (LeFrancois, 

1991) and after injection into SCID mice it was found that these cells preferentially repopulated 

the intestinal epithelium. The possible existence of a precursor type cell that preferentially 

regenerates cells of its own population was proposed by Sydora et al. (1993a). There is 

convincing evidence for the presence of large numbers of extrathymically derived !EL's in the 

murine intestine (Lynch et al., 1993; Sawyerr et al., 1993) a recent study however suggested that 

the thymus does influence the development of these cells (Lin et al., 1993). In addition to the 

recognition of antigen specific CTL' sin the intra epithelial compartment a cell subset with natural 

killer function exhibiting spontaneous cytotoxic activity has b'een demonstrated (Ernst et a£, 1985). 

Antigen and alloantigen specific CTL' s have been induced respectively by oral antigen 

administration in murine Peyer's patches (Kagnoff, i 978) and intraepithelium (Kiein et al., 1985). 

The latter CTL clones could be subdivided into. two subsets- a subset with classic CD8+ cytotoxic 

T cell characteristics in relation to their proliferative and cytolytic activity, and a subset with the 

unique property that high concentrations of IL-2 fledr.to their activation to exhibit an antigen non -

specific lytic capability including NK activity. IELs were thought to be an imrnunocompromised 

population since they responded poorly to T cells mitogens, however a study where Thy - I 

enriched and Thy-! depleted lymphocytes from murine intestinal epithelium were studied 

separately found that Thy-1 enriched IEL are functionally competent T cells capable of 

proliferation and lymphokine (IL- 3) secretion with T cell mitogens (Con A and PMA) and anti 

CD3 monoclonal antibody whereas the majority of Thy- I depleted !EL did not proliferate and 

secreted minimal levels of lymphokines (Viney and McDonald, 1992). Sydora et al.(l993b) found 

intraepitheliallymphocytes are activated and cytolytic but do not proliferate as well as other T cells 

in response to mitogens. Among murine CD3+ intraepithelial T cells 50- 60% express the '{U 

form ofT cell receptor (Fujihashi et al., 1990) not seen in other organised lymphoid tissues. The 

capacity for induction of virus specific CTL' sin GALT and in other mucosa-associated lymphoid 
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tissues by oral administration has been demonstrated. In rats, oral administration of vaccinia virus 

led to the production of virus-specific CTL' s in Peyer's patches and mesenteric lymph nodes 

(lssekutz, 1984). Within 1 week of administration vaccinia specific CD4-, CD8+ CTL' s were 

demonstrated in mesenteric lymph nodes indicating that antigen induced CTL' s were transported 

lymphatically from Peyer's patches to the MLN' s. Induction of virus specific CTL' s in MALT 

has also been shown by oral administration of reovirus and rotavirus (London et al., 1987; Offit 

and Dudzik, 1989) where in addition to the induction of virus specific en.: s in lgA inductive 

tissues within 6 days of oral administration, antigen specific CTL' s were also demonstrated in 

' 
systemic tissues such as the spleen. 

2.3.5 Regulation of specific immune responses in MALT. 

In mammals the mucosal immune system has been shown to be regulated by T cells and cytokines. 

Induction of effective immunity to pathogenic bacteria and viruses requires participation of both 

helper and cytotoxic T lymphocytes. lgA responses in MALT are subject to control by T cells, 

indeed there are indications that a separate T cell subset enriched in Peyer's patches but not 

present in spleen can selectively induce lgA synthesis while suppressing synthesis of lgM and lgG 

(Kawanishi et al., 1982, 1983). It was found that these murine Peyer's patch switch T cells (Tsw) 

could selectively induce increased numbers of slgA + B cells but did not result in their terminal 

differentiation into plasma cells. A subset of Peyer's patch T helper cells expressing the Fe a 

receptor however selectively interacted with slgA + B cells resulting in their induction to lgA 

producing cells (Kiyono et al., 1983). It has been determined on the basis of differential cytokine 

production that murine CD4+ T helper cells may be subdivided into T helper I and T helper 2 

cells (Mosmann and Coffman, 1989; Xu-Amano et al., 1993). While Th I cells upon activation 

by foreign antigen, alloantigen or concanavavin - A produce interleukin-2, interferon 'Y and 

lymphotoxin (tumour necrosis factor 6) Th 2 cells produce interleukins 4, 5, 6 and 10 (Mossman 

and Coffman, 1989; Xu-Amano et al., 1993). Interleukins 4, 5 and 6 play roles in B cell 

responses and Ig synthesis (Beagley et al., 1989) so the higher expression of Th2 cells in MALT 

may be related to lgA responses at these sites (Taguchi et al., 1990) .. Th2 cytokines especially 
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IL - 4, 5, 6 and 10 induce lgA - isotype committed lgA B cells to differentiate into lgA secreting 

cells (Beagley et al., 1992). Oral immunisation with tetanus toxoid as antigen and cholera toxin 

adjuvant selectively induced antigen specific Th2 type response thus this may represent the major 

helper type phenotype involved in the mucosallgA response in the gut (Xu-Amano et al., 1993). 

Dunkley et al. (1990) found that in addition to the presence of specific cytokines cognate T cell 

help is required for stimulation of lgA + B cells in Peyer's patches. It was determined that 

lymphocyte populations from all mucosa-associated lymphoid tissues contained higher numbers of 

IL-l and IFN-y secreting cells than those from spleen (faguchi et al., 1990). In GALT lgA 

effector sites were found to possess higher numbers of IL-5 producing Th2 cells than IFN-y 

producing Th l cells while an equal distribution of Th I and Th2 cells was found in lgA inductive 

sites. Functionally the Th l cells are responsible for the early inductive phase of B - cell responses 

to antigen (Giedlin et al., 1986) and Th2 are memory cells which can provide help for secondary 

IgA committed B cells (Kawakani and Parker, 1992). The intraepithelial lymphocyte T cell 

fraction is mostly ( == 80 %) CD8+ (faguchi et al., 1990). CD8 + cells in this compartment were 

found to possess the capacity to secrete both IL-5 and IFN-y but very few splenic or Peyer's patch 

CD8 + T cells secreted these cytokines. 

Therefore in MALT, cytokines are involved in controlling lgA responses via their roles in 

influencing isotype switching to IgA and in the induction of lgA + B cells to terminally 

differentiate into lgA plasma cells. lnterleukins 4, 5 and 6 appear to constitute the protagonists 

in regulation of lgA responses in GAL T. Recombinant interleukins 5 and 6 but not interleukin 

4 have been shown to result in significant increases in lgA production in Peyer's patch B cell 

cultures (Beagley et al., 1989). Interleukins 5 and 6 are the most effective in inducing IgA 

synthesis (Beagley et al., 1989; McGhee et al., 1989) and this induction has been shown to be 

selective for lgA (Beagley et al., 1988; Lebman and Coffman, 1988) at least in the case of IL-5, 

since IL 6 is produced by most cell types and is involved in providing help for both B and T cell 

responses (McGhee et al., 1992). Indeed it has been shown that addition of recombinant IL- 5 to 

Peyer's patch B cell cultures while increasing IgA synthesis had little effect on synthesis of lgM 
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or lgG (Beagley et al., 1988). Studies on LPS induced splenic B cell cultures indicated an 

enhancement of lgA production by purified IL - 5, an effect which was augmented by IL - 4 

(Murray et al., 1987). IL- 5 produced by murine Th2 cell clones increased lgA production by 

LPS induced B cell cultures (Coffman et al., 1987). It was determined however that IL- 5 can 

induce IgA production in LPS stimulated lgA + but not lgA- B cells (Harriman et al., 1988). 

IL - 5 appears to act specifically in inducing the terminal differentiation of IgA committed B cells 

to secrete lgA in a means similar to its action on other B cell isotypes. The initial switching to 

lgA and increased expression of IL - 5 receptors may be induced by LPS so IL-5 could 

subsequently direct such cells to secrete lgA. IL 6 also appears to induce terminal differentiation 

of B cells activated with antigen or mitogen and was 2/ 3 times more potent than IL - 5 but in 

addition to its effect in inducing IgA production by large blast B cells also induced lgA production 

in small resting B cell cultures (Beagley et al., 1989). Cells in the human lamina propria 

constitutively produce IL - I and granulocyte - macrophage colony - stimulatory factor (GM -

CSF) (Pullman et al., 1992) mediators which in vitro result in the stimulation of dendritic or 

epidermal Langerhans cells to mature into potent stimulators of the mixed Iymphocyte response 

(Heufler et al., 1988). A role for transforming growth factor 6 (TGF 6) in mucosal immunity has 

also been suggested (McGee et al., 1992), this cytokine may be important in such processes as 

induction of surface lgM + B cells to commit to IgA and in promoting the maturation of intestinal 

epithelial cells (Coffman et al., 1989; Sonoda et al., 1989). TGF 6 is a multifunctional cytokine 

produced by a range of cell types including macrophages, lymphocytes and intestinal epithelial 

cells, it inhibits proliferation of cell types including B cells, T cells and intestinal epithelial cells. 

2.4. The nature and functions of-MALT in teleosts. 

2.4.1 Morphological and cellular aspects of teleost MALT. 

The structure of MALT in fish has been the subject of a considerable amount of study but its 

function is still relatively poorly understood. The apparently organised lymphoid tissue in the gut 

of elasmobranchs (Tomonaga et al., 1986; Hart et al., 1987a,b) and cyclostomes (Linna et al., 

1975; Ostberg et al., 1976) associated with the spiral valve are absent from the gut in teleosts. 

69 



Instead the MALT of teleosts resides as isolated single cells or small accumulations in the mucosae 

of the gastrointestine (Davina et al., 1980; Rombout et al., 1986; Georgopoulou and Vernier, 

1986; Doggett, 1989; Rombout et al., 1989a; Davidson, 1991; Rombout et al., 1993a), gills 

(Smith, 1982; Goldes et al., 1986) and skin epidermis (Lobb, 1987; Peleteiro and Richards, 1985, 

1988, 1990; Davidson, 1991). 

The GALT of teleosts has been described in a number of species, (Krementz and Chapman, 1975; 

Weinberg, 1975; Temkin and MacMillan, 1986; Doggett, 1989; Davidson, 1991; Rombout et al., 

1993a). Doggett (1989) found GALT in all regions of the tilapia gut but lymphoid cells were most 

numerous in the intestine. Among these cells were found lymphocytes, plasma cells, macrophages 

and granulocytes, lymphocytes and plasma cells were found in both the lamina propria and intra 

epithelial compartments. In contrast,macrophages were present mainly in the lamina propria and 

of three granulocyte types found in the mucosa two were found in the lamina propria which were 

not detectable in tilapia peripheral blood. Large and small intestinal macrophages have been 

described in the rainbow trout (Davidson, 1991) and carp (Rombout et al., 1985; Rombout et al., 

1989b), in the latter studies the small cells being found in the laminapropria and capillaries and 

the larger cells between epithelial cells. Such phagocytes have been demonstrated to take up both 

soluble (Rombout et al., 1985; Georgopoulou et al., 1988; Rombout and van den Berg, 1989) and 

particulate (Davina et al., 1982; Rombout et al., 1986) antigens. It has been suggested that the 

ability of intestinal macrophages to take up antigen and to express antigenic determinants on the 

cell surface may reflect an antigen presentation capacity (Georgopoulou et al., 1988; Rombout and 

van den Berg, 1989). Neutrophils have been described in the digestive tract mucosa of carp 

(Rombout et al., 1989b) and rainbow trout (Sharp, 1990). The presence of macrophages and 

neutrophils in the piscine cutaneous mucosa has also been demonstrated (Mittal et al., 1980; 

Peleteiro and Richards, 1985; Davidson, 1991 ). Macrophages can act as accessory cells in fish 

producing cytokines which can lead to lymphocyte activation (Miller et al., 1985; Vallejo et al., 

1990). Granulocytic cells have also been demonstrated in teleost mucosae (Doggett, 1989; Vallejo 

and Ellis, 1989; Davidson, 1991). Eosinophilic granular cells (EGC) are found in the salmonid 
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gut (Vallejo and Ellis, 1989; Powell et al., 1993) and have been likened to mammalian mast cells. 

In a recent study Dorin et al. (1993) found that after enteric administration of homologous and 

heterologous (bovine) somatotropin to rainbow trout, both proteins were detected inside intestinal 

macrophages whilst only the heterologous protein was found in ECG's. This may indicaHija 

specific defensive role for these cells in the salmonid gut. ECG's l.l!Q)not appear to be present in 

the salmonid cutaneous mucosa (Davidson, 1991). The existence of Langerhans -like cells in 

teleost mucosae has been proposed (Mittal et al., 1980; Davidson, 1991). The lymphocytes 

identified in the epithelium of tilapia in contrast to those in the peripheral blood were not periodic 

acid schiff stain (PAS) positive (Doggett, 1989). All cell types except lymphocytes were present 

in greater numbers in the lamina propria, lymphocytes being dominant in the intraepithelium. 

Among the number of studies listed above differences in the distribution of lymphoid cells are 

apparent but in accordance with the findings of Doggett (1989) greater numbers of lymphocytes 

were identified in the epithelium than in the lamina propria of goldfish (Weinberg, 1975) and rosy 

barb (Davina et al., 1980) respectively. Davina et al. (1980, 1982) found that the number of 

leucocytes in the intestine of cyprinids increased considerably after antigenic stimulation and 

Davidson (1991) suggested that the finding in rainbow trout of large and smalllymphocytes in the 

intestine might reflect the presence of cells in a constant state of stimulation as is the case with 

mammals due to incessant interactions with lumenal antigens. That lymphocytes in fish act as 

effector immune cells has been well demonstrated with cells from the systemic compartment 

(Graham and Secombes, 1988; Vallejo et al., 1991; Vallejo et al., 1993). Davidson (1991) found 

that lymphocyte - like cells were much less frequent in the cutaneous compared to the intestinal 

mucosa possibly suggesting the greater exposure to antigen via the latter route. The. presence of 

antibody - containing cells in the intestinal (Rombout et al., 1989b) and cutaneous mucosa 

(Peleteiro and Richards, 1988) has also been demonstrated in addition to antibody-binding, 

antibody secreting (Georgopoulou and Vernier, 1986) and plasma cells in the intestine (Doggett, 

1989). 

The large numbers of lymphocytes present in the teleost epithelium suggests a similarity with the 
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mammalian ·GALT, however an analogy requires a more careful delineation of the nature and 

functions of the cells present. Unfortunately, there is little definitive information available on the 

exact nature of the lymphocytes in teleost GAL T. Weinberg ( 1975) suggested that putative T cells 

were present in the goldfish intestine and Davina et al. (1980) indicated the existence of thymus

derived cells in the cyprinid intestine. Studies which demonstrated an increase in the numbers of 

IEL's after enteric administration of antigen indicated that these cells were responsive to antigenic 

stimuli (Weinberg, 1975; Davina et aL, 1980; 1982). The most convincing evidence to date that 

the lymphocyte distribution in the teleost GAL T (in the lamina propria and intraepithelium) is 

analogous to that in mammals comes from a recent study by Rombout et al. (1993a). Using 

monoclonal antibodies directed against carp immunoglobulin or carp leucocytes the authors found 

that the cell population of the intestinal epithelium consisted mainly of Ig- negative lymphoid cells 

whereas in the lamina propria numerous Ig-positive lymphoid cells were found . Granulocytes and 

lg-negative cells were found in the vicinity of the lg-positive cells in the lamina propria. The 

authors suggested that this cell distribution may indicate the presence of putative T cells or natural 

killer cells in the intraepithelium and B cells and/ or plasma cells in the lamina propria. If this 

postulate proves correct it indicates a considerable degree of homology with the diffuse GAL T of 

mammals. 

The role of cytokines in regulating immune responses in GAL T has not been investigated in great 

detail to date. Davidson (1991) investigated the cell-mediated immune functions of isolated 

intestinal cells in rainbow trout in vitro, finding that gut cells released powerful chemoattractants. 

Interestingly, the author found that intestinalleucocytes appeared unable to migrate upontreatment 

with these chemoattractants, to which head kidney cells did respond, and suggested that the 

accumulation of leucocytes in the gut may be a result of active migration of cells to this site rather 

than these cells having originated in the gut. The same author demonstrated that intestinal cells 

were responsive to the T cell mitogen, phytohaemagglutinin (PH A). Additionally, a factor capable 

of up - regulating bactericidal pathways in macrophages was secreted by intestinal cells upon 

stimulation with concanavalin A (Con A) or phorbol myristate acetate (PMA). Davidson (1991) 

thus postulated that the ability of rainbow trout intestinal cells to activate and sequester cells from 
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other branches of the immune system might be greater than their capacity to act as effector cells. 

2.4.2 Evidence for a common mucosal immune system in teleosts. 

Suggestions that a common mucosal immune system exists in teleosts have been based primarily 

on the finding of specific secretory antibody at mucosal sites remote from that of enteric antigen 

application (Kawai et al., 1981; Kawai and Kusuda, 1983; Rombout et al., 1985; 1989a; 1993b). 

The secretory antibody responses produced to enterically delivered antigen are discussed in detail 

in chapter 6 and will only be outlined here. After enteric delivery of particulate antigens specific 

antibodies have been detected in cutaneous mucus and bile but rarely in the serum (Rombout et 

al., 1989a; Fletcher and White, 1973; Kawai et al., 1981). Other factors such as the uptake of 

antigens in the second gut segment (section 4.1), its transport to large intraepithelial macrophages 

and the demonstration of antigenic determinants on their surface suggesting an antigen presenting 

function (Rombout et al., 1985; 1986; 1989b) indicated that the GAL T of teleosts could initiate 

immune responses. 

Before any analogy can be drawn between the common mucosal immune system and the local 

immune mechanisms of teleosts can be drawn a number of points must be considered. Firstly the 

enterocytes of the second gut segment/ posterior gut of teleosts which are implicated in 

macromolecule uptake appear dissimilar to M cells in that they appear to actively degrade antigen 

(section 4.1) unlike M cells which shuttle macromolecules undegraded to the pocket region of the 

Peyer's patch (section 2.3.1). There have been some indications that M cells may degrade certain 

absorbed antigens and partake in antigen presentation (McGhee and Kiyono, 1993) but it is widely 

accepted that these cells shuttle macromolecules intact across the epithelium. Second, there appear 

to be no organised germinal centres or T cell regions present beneath the absorptive enterocytes 

in this second gut segment, at most only a few lymphoid cells have been observed interacting with 

absorbed antigen unlike Peyer's patches where a highly organised inductive environment exists. 

Third, there is presently no evidence for specific recirculation of GAL T derived lymphocytes back 
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to gut effector regions and indeed no evidence for a functional separation between inductive and 

effector regions in teleost GALT. To establish whether a common mucosal immune system akin 

to that in mammals exists a great deal more fundamental work on such aspects as the functional 

heterogeneity of lymphoid cells in teleost GAL T, the capacity of lymphocytes, activated in GALT 

to 're-seed' these regions and the origin and function of secretory immunoglobulins in teleost 

secretions. Presently it appears plausible to suggest that teleost GAL T merely represents an 

ancestor of its mammalian successor. GALT is recognised as the most ancient lymphoid organ 

in vertebrates (DuPasquier, 1993). It is thus conceivable that the presence of lymphoid cells in 

the intraepithelium and lamina propria was an early adaptation in vertebrates to provide a first line 

of specific defense. The suggestion by DuPasquier (1993) that the evolution of 'classic' secondary 

antibody responses replete with the characteristic of affinity maturation in birds and mammals 

coincided with the appearance of germinal centres, reliant on follicular dendritic cells as their 

organisational unit if correct may be of value in elucidating the phylogenetic position of teleost 

GALT. The appearance of germinal centres in Peyer's patches may have been required to 

facilitate the potent antibody responses, albeit difficult to induce, produced in mammals to some 

enterically presented antigens. If mammalian GALT for its organisational and functional 

(inductive and effector sites) integrity depends on the Peyer's patches and particularly on a type 

of dendritic cell and if these components are absent in the GAL T of teleosts then any direct 

analogy appears flawed. There have been a number of suggestions that the presence ofT and B 

cells of unconventional phenotype and origin (i.e extrathymic or extra - bursa respectively) in the 

mammalian gut may indicate that they derived from an ancient cell lineage (Sawyerr et al., 1993; 

Bell and Bell, 1994; Ohtsuka et al., 1994). These cells have been shown to be immunologically 

responsive to antigen but at present are still very poorly understood. With increased understanding 

of the nature of the diffuse GAL T in mammals it may become apparent that the teleost mucosal 

immune system is its homologue and thus the elucidation of the function of the diffuse GAL T in 

mammals may cast light on its function in the teleost or vice versa. Therefore there may well be 

an alternative analogy, between the teleost GAL T and the diffuse GAL T of mammals. 
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2.5 Immunological roles of epithelial cells in the gut 

There is accumulating evidence to suggest that intestinal epithelial cells play a more pro - active 

role in immunological responses in the gut than was formerly believed (Panya et al., 1993). The 

importance of enterocytes in immune responses in the gut is highly contentious (Stenson and 

Alpers, 1994). Intestinal epithelial cells have been shown to express class 11 MHC antigens and 

to present antigen to COS+ T cells in both rats and humans (Bland and Warren, 1986; Mayer and 

Shlien, 1987; Kaiserlien et al., 1989; Mayer et al., 1991; Olivier et al., 1994). In contrast to 

typical non - professional antigen presenting cells enterocytes, particularly in the small intestine 

constitutively express class 11 molecules in vivo (Mayer et al., l99lb). The distribution and 

intensity of class 11 molecule expression on gut epithelial cells can be altered by immune 

parameters (Gilhar et al., 1993). The ability of these cells to take up and present large peptides 

to primed T cells in vitro suggests they may play an important immunological role, possibly 

relating to the generally suppressed tone of the gastrointestine. In addition to the expression of 

class 11 antigenlthefel is evidence that COld - a class I - like molecule expressed on murine and 

human intestinal epithelial cells may be important in intestinal epithelial cell - T cell interaction 

(Panya et al., 1993). Class 11 antigen expression on enterocytes can be upregulated following 

enteric parasitic infection probably via cytokine release from T cells (Masson and Perdue, 1990). 

The finding reported by Kaiserlian (1991) that the class 11 antigens expressed by enterocytes are 

antigenically distinct from those on conventional antigen presenting cells may also have 

implications with regard to the consequences of enterocyte-mediated antigen processing. It has 

been found that class 11 antigen expression on enterocytes is regulated by cytokines, particularly 

IFN-y (Hughes et al., 1991). Treatment of colonic epithelial cell lines with IFN-y and TNFa 

resulted in a pattern of class 11 antigen expression similar to that observed in the intestinal 

epithelium in vivo (Brandtzaeg et al., 1992). IEL can secrete IFN-y and IL - 5 after antigen 

challenge (Fujihashi et al., 1992) and IFN-y, IL-3 and IL- 2 after stimulation with parasite antigen 

(Dillon and MacOonald, 1986) which may increase class 11 expression on enterocytes. A number 

of inflammatory mediators can also activate epithelial cells (McKay and Perdue, 1993) and the 

epithelial cells can up -or down-regulate immune cell activity (Shanahan et al., 1988). The 
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recognition ofreceptors for TGF 6 on intestinal epithelial cells in addition to its secretion by such 

cells suggests that the cytokine may act as an autocrine regulatory factor for intestinal epithelial 

cells (Coffey et al., 1987; Bamard et al., 1989). Functional IL-2 receptors have also been 

reported on intestinal epithelial cells and it was suggested that this cytokine may serve to integrate 

epithelial and lymphocyte responses in the intestinal mucosa (Ciacci et al., '1992). Therefore in 

addition to the role of intestinal epithelial cells in the transport of locally produced polymeric IgA 

to the intestinal lumen (Mestecky and McGhee, 1987) these cells are also implicated both as 

immune regulatory and effector cells in GALT. IEC's can produce and may express receptors for 

IL-6 (Shirota et al., 1990) and after LPS stimulation have also been shown to contain mRNA for 

IL-l (Mayer et al., 1990), IL-l and IL-6 are produced by most antigen presenting cells and 

provide help for both B and T cell responses. TGF 6 can enhance expression of secretory 

component and MHC class I antigen on an epithelial cell line (McGee et al., 1991). Utilising an 

adenocarcinoma cell line ·both IFN')' (an effect enhanced by IL-4) and TNFa enhanced SC 

expression (Sollid et al., 1987; Kvale et al., 1988) and IFN')' also enhanced MHC class 11 antigen 

expression on these cells (Phillips et al., 1990). TGF6 results in enhanced IL-6 secretion by an 

intestinal epithelial cell line in dose dependent fashion (McGee et al, 1992). LPS activated M cells 

also produce IL-l in Peyer's patches (Pappo and Mahlman, 1993). In addition to this role of 

intestinal enterocytes Peyer's patch M cells also produce IL-l upon activation by LPS (Pappo and 

Mahlman, 1993) and since M cells recognise and translocate gram negative bacteria in vivo (Owen 

et al., 1986) the interaction of M cells with lumenal LPS may result in the delivery both of antigen 

and IL-l as signals for the induction of mucosal immune responses. In contrast to these reports 

of positive immunological effects for enterocytes, Llana and Bell (1993) identified a factor 

produced by rat enterocytes which inhibited lymphocyte responses to con A and IL-2. The authors 

suggested that this agent may contribute to the low levels of intestinal T cell reactivity observed 

in vivo. 

Very little is known of any immunological function for enterocytes in the gut of fish. Tomonaga 

et al. (1986) described structural modifications of absorptive enterocytes over discrete lymphoid 
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aggregations in the elasmobranch gut but similar modifications have not been described in teleosts. 

It has been suggested that IFN'Y is present in fish (Graham and Secombes, 1990), if this is 

confirmed it would be interesting to examine its effects, if any on enterocyte processing of antigen. 

Fish lymphocytes respond to mammalian interleukin I (Hamby et al., 1986) and similar factor(s) 

are produced by fish epithelial cells (Siege! et al., 1986) possibly indicating an immunoregulatory 

function. 

2.6 Oral tolerance 

That the effector, accessory and regulatory components necessary for the induction of specific 

immunity via enteric presentation of antigen exist is now widely accepted; in many cases however 

oral delivery of antigen results not in an immune response but in the induction of specific tolerance 

to that antigen. Indeed it is believed that under normal conditions a state of oral tolerance to 

intestinal antigens is actively established (Tiaskalova- Hogenova and Mandel, 1992; Manganaro 

et al., 1994). Oral administration of allergens, foreign proteins or cell - bound antigens can 

induce systemic suppression of subsequent humoral and cell - mediated immune responses - a 

phenomenon termed 'oral tolerance' (van Hoogstraten et al., 1993). Immune responses subject 

to this form of unresponsiveness include lgG, lgM and IgE antibody production, antigen - specific 

T cell proliferation and delayed skin reactions (Kagnoff, 1978, 1987; Elson, 1985; Revillard et 

al., 1992). Observations on oral tolerance have normally been made by the study of antibody 

production and delayed type hypersensitivity (DTH) but recent evidence indicates differences in 

the patterns of lymphokines produced after priming and tolerising regimes (Hayne et al., 1993). 

It was determined that short feeding periods with the non - cross reactive contact allergens nickel 

and chromium resulted in a dose dependent and metal - specific suppression of subsequently 

induced allergic contact hypersensitivity (van Hoogstraten et a£, 1993). This study found that with 

orally treated guinea pigs cutaneous contacts with the allergens provided boosting tolerogenic 

signals indicating that oral tolerance resulted not from clonal deletion but from active antigen 
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specific immunosuppression and additionally reported that unresponsiveness to cutaneous 

immunization was transferable by lymphoid cells from guinea pigs in metal-specific fashion. It 

is however the potential induction of oral tolerance to protein antigens (or rather its avoidance) 

which is of most importance to enteric vaccine (particularly protein/ peptide vaccines) design and 

formulation of oral immunization regimes. 

Ovalbumin (OVA) has frequently been shown to result in oral tolerance and has been used to 

investigate the nature of the phenomenon. Suppression of the systemic antibody response to OVA 

may be transferred between animals with cells derived from the Peyer's patches or spleen (Ngan 

and Kind, 1978; Richman et al., 1978). Bruce and Ferguson (1986a) found that serum collected 

from mice 1 hr after oral exposure to ovalbumin contained a factor which could induce systemic 

suppression of cell mediated immunity in mice when administered i.p. The factor was absent from 

serum of parenterally exposed mice and the authors suggested that after absorption from the gut 

into the serum the immunological properties of the molecule are altered. Subtle alterations to the 

native protein as a result of intestinal processing of the molecule could thus result in exposure of 

suppressor determinants on the molecule or the loss of helper determinants or both (Bruce and 

Ferguson, 1986b). An alternative explanation for these findings might have been the release of 

a factor by cells in the gut after contact with the antigen which down-regulated subsequent 

responses. Kay and Ferguson (l989a, b) suggested that serum factor(s) present 1 hr after feeding 

and suppressor cells found in mesenteric lymph nodes and spleen 1 week after feeding contributed 

to mediating oral tolerance of cell mediated immunity in mice orally exposed to cholera toxin. 

It was proposed that a radiation sensitive 'afferent' suppressor T cell population with a Ly 1- 2+ 

3+ surface phenotype active in early inductive stages of the immune response was responsible. 

That these cells were initially stimulated in GAL T and thereafter migrated to other lymphoid 

tissues was indicated by the observation that suppressor T cells were found in Peyer's patches 

three days after feeding and in spleen only after seven days (Richman et al., 1981). A primary 

role for T suppressor cells in inducing oral tolerance was suggested by a number of authors 

(Richman et al., 1981; Lamont et al., 1987; Cowdery and Johlin, 1984). It has been postulated 
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that other mechanisms such as clonal inhibition might be implicated, indeed in mice fed HGG, in 

addition to the demonstration of suppressor cells indirect evidence for inhibition of HOG-specific 

8 cell clones was reported (Vives et al., 1980). MacDonald (1982) however provided strong 

evidence for a role of suppressor T cells in the immunoregulation of oral tolerance and it was 

suggested (in line with previous data) that suppressor T cells generated in Peyer's patches migrate 

to mesenteric lymph nodes and inhibit systemic immune responsiveness (MacDonald, 1983). 

Development of DTH to nickel was suppressed in dose dependent fashion and the 

hyporesponsiveness could be transferred by CD8 + cells (Van Hoogstraten et al., 1993). Recently 

Melamed and Friedman (1993) found evidence for specific T lymphocyte anergy after a single oral 

administration of ovalbumin and excluded the involvement of bystander or specific suppression in 

this process, this direct evidence for oral tolerance resulting from T cell anergy is in contrast to 

the general view that the process is a result of suppression. Hayne et al. (1994) have reported 

differences in epitopes recognised by T cells during oral tolerance and priming which suggests that 

the initial antigen presentation event may be pivotal in determining the immunological outcome 

of enteric antigen administration. 

The whole concept ofT cell-mediated immune suppression is presently a highly contentious field, 

so much so in fact that in a recent article Green and Webb (1993) stated "There is little doubt that 

the 'S' word is the nearest thing to a dirty word we have in cellular immunology". Much of this 

scepticism has resulted from the absence of distinct phenotypic markers for such cells. The 

findings that the cells implicated in suppression do not express the cell marker, CD45RA in 

contrast with cytotoxic T lymphocytes (lnoue et al., 1993) and the production of candidate 

monoclonal antibodies for both human and murine T suppressor cells (Torimoto et al., 1992) may 

indicate an imminent acceptance of a function role for these cells. T suppressor cells may 

suppress immune responses via the inhibitory effects of cytokines released in response to the 

presentation of specific antigenic peptides - production of TGF6 after antigen challenge for 

example (Miller et al., 1992). This occurs in response to a specific antigen by T cells which were 

originally activated by oral administration of small amounts of antigen such as myelin basic protein 
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or type 11 collagen, re-exposure to the antigen by injection results in the inhibition not only of 

those immune responses directed to the same antigen but also those directed at accompanying 

antigenic determinants on the same or different molecules. Possible roles have been suggested for 

other cytokines in addition to TGF6 such as IL-4, IL-10, and IL-2 and a number of other factors 

as the means of action of suppressor T cells (Green and Webb, 1993). 

The requirements for induction ofT suppressor cells have been reported to be distinct from those 

for induction ofT helper cells. 10- fold fewer antigen presenting cells are required for induction 

of T suppressor than T helper cells. It has been suggested that the -macrophage is the most 

efficient antigen presenting cell in the induction of suppressor cells and these macrophages may 

be distinguished from those which induce T helper cells by the criteria of UV and 

cyclophosphamide sensitivity .. MHC class 11 molecule expression on antigen presenting _cells is 

necessary forT suppressor cell induction and interferon 'Y which induces MHC class 11 expression 

enhances the capacity of macrophages to generate T suppressor cells. Induction ofT helper and 

suppressor cell responses can be mediated by the same MHC class 11 -bearing macrophage cloned 

cell lines (Jayaraman et al., 1991; Simon et al., 1991). Macrophages or related cells residing in 

privileged sites such as the brain selectively induce tolerance via murine T suppressor cell 

responses thus making these sites less prone to immunological attack (Wilbanks et al., 1992). 

Phenotypic analyses ofT suppressor cell populations indicate that both CD4 + and CD8 + subsets 

are required for suppression. CD4+ MHC class 11 - restricted inducer T suppressor cells are 

necessary early in an immune response but do not usually directly mediate suppression. Barone 

and Michael (1994) recently found that CD4+ but not CD8+ T cells were required for the 

induction and maintenance of high-dose oral tolerance. The regulation of oral tolerance induction 

appears to be very complex and depends on a range of interdependent factors. A recent study 

found that oral exposure to OVA in mice could result either in oral tolerance or in the induction 

of circulating anti OVA antibodies (Faria et al., 1993). This study found that the principal 

deciding factor was the age of mice; strains of mice susceptible to induction of oral tolerance at 

8 weeks of age became refractive at 24 weeks. It has been reported that both B cell (Doken et al., 
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1980) and T cell populations (Dekkruyff et al., 1980) in 24/28 week old mice are more refractory 

to tolerance induction than 6/ 8 week old mice. In concert with the decrease in susceptibility to 

oral tolerance induction in 24/ 44 week old mice is a parallel increase in the capacity to induce 

specific serum antibody after oral antigen administration (Kawanishi and Kiely, 1987). It has been 

proposed that it is in the period between the achievement of immunological maturity and before 

full adulthood that oral tolerance is most likely to occur (Hanson, 1981). Brandtzaeg et al. (1989) 

suggested that intestinal tolerance could be abrogated in the presence of enhanced class 11 MHC 

molecule expression on epithelial cells; normally with only minor levels of expression of such 

molecules induction of T suppressor cells is predominant, increased expression of class 11 c1 

molecules may result in general overstimulation of helper T cells with the production of specific 

antibodies and effector T cell clones (Pawalec et al., 1988). Non- T cells may also participate 

in the induction of class 11 molecules presumably by producing cytokines such as interferon -y 

(Gilbar et al., 1993). 

The dose of and intervals between antigen doses are also critical determining factors in induction 

of oral tolerance (Nick! in and Miller, 1987). The extent and duration of unresponsiveness to OVA 

depends partly on dose but a single bolus feeding could lead to partial unresponsiveness lasting 

for months (Eison, 1985). In a previous study it was found that with 24 week old mice (Faria et 

al, 1993) gavage administration of OVA resulted in an immune response, while voluntary ingestion 

of the antigen did not. Stokes et al. (1982) suggested that oral immu~sation may require 

intermittent and rapid antigen uptake whereas oral tolerance induction needs gradual and 

continuous antigen administration, the most effective means of inducing tolerance being continuous 

administration of antigen in small doses. An interesting recent study however (Fitzpatrick et al., 

1992) found that feeding of OVA daily for 2 weeks to adult ponies led to significantly greater 

serum anti OVA lgG and antigen specific lymphocyte responses after parenteral injection with 

OVA in saponin. This study suggested that rather than becoming tolerant and despite the absence 

of B - or T - cell activation in peripheral blood during OVA feeding the animals were actually 

primed for an active secondary immune response and indicated that the equine gastrointestine may 
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exhibit novel food antigen handling properties. 

The form of antigen presented to the gut appears to of great importance, Enomoto et al. (1993) 

found that feeding of milk whey protein as a constituent of the diet led to oral tolerance and a 

systemic humoral response but heat - denatured whey protein led only to oral tolerance. An 

important role antigen fragments produced by digestive enzymes in the induction of oral tolerance 

has been proposed (Michael, 1989; Michael, 1993; Hachimura et al., 1993; Brown et al., 1994 

). Michael (1989) found that a non - immunogenic peptic digest of BSA was immunosuppressive 

when administered orally or injected into the mouse ileum whereas untreated BSA was only 

to! erogenic when administered orally but immunogenic following ileal administration. The author 

proposed that degradation of orally administered proteins by digestive enzymes of the 

gastrointestine was necessary to acquire tolerogenic properties. A subsequent study (Michael, 

1992) followed the logic that if digestive processing is implicated in the induction of oral 

tolerance, its abrogation would lead to the induction of immune reactivity. This study found that 

OVA dissolved in water and administered orally resulted in unresponsiveness to subsequent 

intraperitoneal challenge while oral administration of OVA made resistant to proteolytic digestion 

induced a vigorous humoral (in blood and intestinal secretions) and cellular immune response. It 

was further noted that oral administration of this proteolysis resistant antigen broke the orally 

induced tolerance to systemic challenge. 

There have also been suggestions in teleosts of reduced responses to parenteral immunisation with 

vaccine after prior or concurrent oral immunisation (Udey and Fryer, 1978; Rombout et al., 1989; 

Davidson et al., 1993). Davidson et al. (1994) found that pre-exposure of rainbow trout to HGG 

for up to ten days had no effect on the subsequent antibody response to parenteral immunisation 

but when the antigen was administered simultaneously via the oral/anal and i.p routes the serum 

antibody response was significantly delayed. The suppression was almost complete when antigen 

was administered simultaneously via the anal and i.p routes. The authors also reported that no 

such effect resulted when Aeromonas salmonicida was used as the antigen which may indicate as 
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in mammals that oral tolerance in teleosts is more difficult to induce with particulate antigens. 

2. 7 Oral vaccination 

Strategies for the oral immunisation of mammals and teleosts has been reviewed in detail 

previously (Jenkins, 1992) so only a brief overview is presented here. The literature on oral 

vaccination against enteric disease and experimental studies on mucosal responsiveness is beset by 

variable efficacy and is frequently difficult to interpret. Certain rules appear to apply however; 

live microorganisms provide much better antigens than killed bacterial or viral antigens possibly 

as a result of their capacity to adhere to mucosal surfaces (McGhee et al., 1992). Most soluble 

antigens are less effective in inducing mucosal responses than particulate antigens (Biewenga et 

al., 1993). This is thought to result from different routes of entry and subsequent differences in 

the cell types involved in antigen processing. Uptake of particulates into Peyer's patches may lead 

to presentation by dendritic cells and macrophages leading to the induction of immunity while 

uptake of soluble antigens by Peyer's patches is less efficient and antigen is taken up mainly across 

the villi and processed by macrophages in the lamina propria which may have a suppressive effect 

on immune responses (Soesatyo, 1992). Not all soluble proteins are poor mucosal immunogens 

however- some proteins/ glycoproteins such as cholera toxin (Walker, 1994) ricin.and influenza 

virus haemagglutinin (Bergman et al., 1986; Bergman and Waldman, 1989) and others (Mestecky 

and McGhee, 1989) can effectively induce antibody responses in serum and secretions of orally 

immunised subjects. An enhancement in the systemic and mucosal immune responses produced 

to orally administered BSA as a result of encapsulation in liposomes bas been reported (Fujii et 

al., 1993). MDP, liposomes and recombinant gram negative bacteria exhibit adjuvant activity 

when given orally (Michalek et al., 1989). Aizpurna and Russel-Jones (1988) found proteins with 

lectin/ lectin - like binding activity are good mucosal immunogens whereas those lacking such 

activity are ineffective or suppressive. A number of problems hamper the development and 

delivery of oral vaccines however. Much higher and more frequently administered antigen doses 

are generally needed for oral compared to systemic immunization (McGhee et al., 1992). It is 

believed that the poor responses elicited to orally delivered antigens is a result of gastrointestinal 
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enzymic degradation and low absorption levels resulting in little immunogenic antigen reaching 

the GALT (Hemmings, 1978). 

In general live replicating antigens which multiply in the gut lumen or ideally in the GALT more 

effectively stimulate local and generalised systemic and secretory immunity (Mestecky, 1987; 

Mestecky and McGhee, 1989). Basic strategies have been applied to enhance the response to 

orally delivered antigens such as the administration of sodium bicarbonate to protect antigens from 

gastric acidity and proteolysis (Black et al, 1983; Mestecky, 1987). A wide range of other 

strategies such as the use of prills, immune stimulating complexes (ISCOMS), saponins and 

adjuvants for oral immunisation are also the subject of investigation (Jenkins, 1992). ·The use of 

gastric inhibitors (chapter 5), anti - proteases (chapter 3), microparticles (chapter 7) and live 

recombinant vectors (chapter 8) are discussed later in this thesis. Only cholera toxin will be 

discussed here as an example of an effective mucosal immunogen and adjuvant for heterologous 

antigens. 

Cholera toxin (CT) is an enterotoxin produced by Vibrio cholerae which exhibits a very high 

affinity for many nucleated cells including intestinal enterocytes via a specific GM1 ganglioside 

receptor (Cuatrecasas, 1973): CT comprises a toxigenic A subunit which acts in ADP -

ribosylation of the adenylate cyclase regulatory G proteins and a B subunit of five non - covalently 

associated subunits which acts as a carrier for the toxic A subunit (Betley et al., 1986) and binds 

to the GM1 monosialoganglioside (Cuatrecasas, 1973). CT is a very potent mucosal immunogen 

resulting in specific S - lgA response and a plasma IgG response after oral administration 

(Lebman, Griffin and Cebra, 1977). This is not a universal phenomenon however, the S - IgA 

and plasma IgG responses to CT are restricted by the I - A subregion of the H - 2 MHC locus 

(Eison and Ealding, 1985) indicating that knowledge of the genetic status of subjects is necessary 

prior to use of CT as an adjuvant. Two immunological features of the immune response to CT 

make it particularly suitable as a mucosal adjuvant. The antibody response to CT appears to 

regionalise, the plasma cell response being most abundant at sites directly exposed to CT (Pierce 

and Cray, 1982), this suggests that by judicious local mucosal - oral combined immunisation! the 
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lgA response may be induced at desired intestinal or non - intestinal sites. A prolonged systemic 

and/or mucosal memory response to CT itself and to unrelated antigens when administered 

simultaneously has been demonstrated after oral immunisation in mammals (Lycke and Holmgren, 

1986; Vajdy and Lycke, 1992, 1993a, b; DeVos and Dick, 1993). CT and CTB are among the 

few proteins that do not induce oral tolerance (El son and Ealding, 1984). The use of cholera toxin 

(CT) or its non-toxic B subunit (CTB) as an adjuvant in oral delivery systems has indicated that 

CT and CTB can prevent the induction of oral tolerance (Pierre et al., 1992). Oral delivery of 

OVA with CT or CTB to mice prevented hyporesponsiveness to a subsequent parenteral injection 

of OVA. Enteric immunization of CT\ CTB with OVA actually appeared to prime the immune 

response leading to a stronger response to subsequent parenteral injection of OVA with FCA than 

in mice primed with OVA alone or saline controls Challacombe et al., 1992. 

The consequences of enteric antigen delivery to teleosts are less well understood but can result in 

systemic and mucosal immune responses in fish which may involve humoral or cellular factors 

(Davina et al., 1980; Johnson and Amend, 1983a, b; Ellis, 1988; Rombout et al., 1989b; McLean 

and Donaldson, 1990; Davidson, 1991; Jenkins, 1992). Oral immunisation with bacterins has 

been shown to induce protective immunity to bacterial challenge (Kawai et al., 1981; Rombout 

et al., 1989b). As yet effective oral delivery systems for immunisation ofteleosts are not available 

and potent mucosal immunogens have not been identified. 
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CHAPTER 3 

IN VITRO ANALYSIS OF SOLUBLE PR01EIN ANTIGEN PROCESSING BY RAINBOW TROUT 

LUMENAL ENZYMES. 
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3.1 INTRODUCTION 

The principal role of the vertebrate gastrointestinal tract has been regarded as the digestion of 

nutrient macromolecules to fundamental bioavailable units, their absorption into the tissues and 

subsequent excretion of indigestible components and waste products, thus precluding the absorption 

of bioactive molecules (Gardner, 1988). Recognition of the role of the gut in immunological 

protection and ofthe capacity for macromolecular absorption from the lumen has revealed a much 

greater complexity in gut physiology (Udal! and Walker, 1982; McGhee and Kiyono, 1993). The 

modification of orally administered vaccines and macromolecules - particularly in the case of 

soluble proteins by gut digestive secretions will influence the functional nature and absorption of 

these agents and their consequent biological action. An understanding of the susceptibility of test 

antigens to modification in the gut is therefore a valuable, if not essential, initial step in the design 

of oral delivery systems. 

Gastrointestinal proteolysis and gastric acid secretion have been recognised as obstacles to the oral 

delivery ofvaccines in teleosts (Wong et al., 1992) and in higher vertebrates (Morris et al., 1994). 

Indeed mammalian studies. indicate that the collective action of lumenal proteases can remove 

orally delivered peptides and proteins within minutes of administration (Bunnett et al., 1985). 

Proteolytic enzymes may be classed into endopeptidases and exopeptidases (Bergmann, 1942). 

Endopeptidases, such as pepsin and trypsin, hydrolyse proteins by splitting central and terminal 

peptide bonds to yield a mixture of peptides and amino acids. Exopeptidases cleave peptide bonds 

adjacent to a free terminal amino or carboxyl group and include aminopeptidases and 

carboxypeptidases. Extensive studies on proteolytic enzymes in fish have been undertaken (Kapoor 

et al., 1975; Sastry, 1977; Hofer, 1979) and in Table 3.1 the wide range of proteases so far 

recognised in teleosts is outlined. In discussing proteolytic degradation in teleost fish, a clear 

distinction must be drawn between gastric (those possessing a functional stomach) and agastric 

(those without a functional stomach) species (Fange and Grove, 1979). In both groups food is 

passed rapidly through the buccal cavity and pharynx to the post - pharyngeal part of the tract, 

generally termed the gut, where digestion occurs (Barrington, 1957). In most studies, enzymes 
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have not been detected in the buccal cavity and although protease activity in the oesophagus and 

pharynx of teleosts has been reported this may be attributable to regurgitation of intestinal or 

stomach enzymes (Fange and Grove, 1979). Nonetheless, Sabapathy and Teo (1993) have 

suggested a more active role for the oesophagus in protein digestion in the rabbitfish, Siganus 

caTIIlliculatus. In gastric teleosts as in higher vertebrates proteolysis normally begins in the 

stomach where pepsin at acidic pH hydrolyses proteins to a mixture of peptones, peptides and 

amino acids with the final hydrolysis of peptides to amino acids occurring in the intestine (Dawson 

and Holdsworth, 1962). The stomach of gastric teleosts secretes both hydrochloric acid and 

pepsinogen (Tarr, 1972), a pepsin precursor from which active pepsin is produced by acidic 

hydrolysis and subsequently by autocatalysis in the optimal peptic environment of the stomach 

(Twining et al., 1983). The optimal proteolytic activity in the fish stomach has been reported at 

various pH values including pH 2, pH 3, pH 5 and pH 8 (Creac'h, 1963), perhaps indicating that 

the gastric fluid contains several types of protease. Many studies indicate that fish peps ins are less 

acidic proteases than their mammalian counterparts and some results suggest that they have higher 

activity, although inhibitor specificities appear similar for pepsins from ftsh and mammalian 

species (Norris and Mathies, 1953; Noda and Muramiki, 1981). The large number of proteases 

identified in the pyloric caecae and intestine of teleosts (Table 3. I) are pancreatic in origin 

(Croston, 1960; Bergoti, 1979) and are secreted into the anterior intestine as inactive zymogens. 

The pancreatic tissue of rainbow trout is diffuse and is located in the fat and mesentery 

surrounding the pyloric caeca (Weinreb and Bilstad, 1955). Pyloric caecae are not a general 

feature of all teleosts however, and are absent in a number of gastric and in all agastric species 

studied (Fange and Grove, 1979). Pancreatic trypsinogen is cleaved by enterokinase (from the 

intestine) to form active trypsin which is consequently capable of autocatalysis (Uchida et al., 1973) 

and activates the precursor forms of other pancreatic proteases such as chymotrypsin and elastase 

(Cohen et al., 198Ja, b). Most enzymes tend to show a sharp decline in activity towards the 

posterior intestine and rectum (Barrington, 1962) and there is some evidence for resorption of 

digestive enzymes in the posterior region of the teleost intestinal tract (Hofer and Schiemer, 1981 ). 

Although there have been few investigations of the entire lumenal protease repertoire of individual 
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species, comprehensive studies of catfish enzymes indicate that a range of pancreatic proteases 

of differing specificities are present in the intestine (Yoshikana et al., 1977, 1981, 1984a, b, 

1985a, b). While protein digestion in teleosts is a sequential process involving a number of stages, 

lumenal degradation is the first and most extensive stage and thus warrants investigation .as a 

prerequisite to further studies on protein absorption. 

In vivo models of antigen absorption have revealed the capacity· for macromolecular uptake in fish 

and proposed a role for lumenal enzymes in antigen degradation in the gut (M cLean and Ash, 

1990; Jenkins et al., 1992) but these are not amenable to the investigation of the specific role of 

lumenal proteases in antigen degradation prior to absorption. In this study an experimental in vitro 

system was utilised to investigate the role of lumenal proteases in isolation which enabled strict 

control of environmental conditions and of the volumes and concentrations of enzymes and 

antigens. Teleosts as ectothermic aquatic vertebrates. must adapt their physiology to a wide range 

of environmental conditions, particularly temperature, which influence the rate and efficiency of 

protease action and consequently the modification of enterically administered antigens. The 

objective of this study was to investigate the proteolysis of two antigens commonly employed in 

immunological studies, human gamma globulin (HGG) and bovine serum albumin (BSA) by 

enzyme preparations from both gastric and intestinal regions of the rainbow trout. The influence 

of time, temperature, pH and a range of inhibitors and modulators were investigated to assist in 

developing strategies for the oral administration of macromolecules to rainbow trout and other 

species. 
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Table 3.1: Proteasesfound in the gastrointestine of some teleosts. 

Enzyme name Protease class M. (kDa) pH Reference 
species and optimum 
source 

TfYP'in Serine protease Catf l4h pancrc:!.S ~0( determined Mcl..cese and Stcvcns, 1982. 

Chymotrypsin Serine proll:3se I ,211.2 kDa 9.0 Krisljanuon and Nielsen, 1992. 

11 ,211.8 kDa 

Rainbow trout 

MctalJoprotc:aae Mc.t:J.Uoprotease Not determined 7.5 
Y oshinalca ~· al., 19853. -- Serine prntease 26.0 kDa catfiSh 8.0 Yor.hi.nak:a ~~al .. 1985a. 

pone<= 

(Elastase B) 

Elastolytic: mctalloprotcasc Metallapn>~ease 24.0 kDa Not determined Yoshin:dca ~·al., 1984a. 

c:atftSb pancreas 

Collagawc Serine protease 29.5 kDa 
7.5 Yc..hinaka. ~~al., 1986. 

calfUih pancreas 

Carboxypeptidase A Motallap"""""' 34.0 kDa 
7.5 Yoshinaka ~• al., 198Sc. 

_catfiSh pancreas 

Carboxypeptidase 8 Metallap- 33.0 kDa 7.5 Yosb.inaka ~· al.,l984b. 

CJ.tftsb pan~ 

Aminopcptldaoeo Nc<clclcrmined Not ddermincd Ne< de!ennined Ash, 1980. 

Pepsin Aqartic protease I '32.0 kDa 
3.0 Sanchez. • Chiang ~• al., 1986. 

11 ,27,0 kDa 

OncorlryN:hus J:.~ra 
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3.2 MATERIALS AND METHODS 

3.2.1 Animals 

Adult rainbow trout, Oncorhynchus myldss (Walbaum, 1792) 100-200 g of both sexes were 

maintained in a freshwater recirculating system at 14 ± I oc and fed to satiation once daily on a 

commercial trout pellet preparation. 

3.2.2 Isolation and preparation of lumenal enzyme samples. 

The procedure was a modification of that used in an in vitro analysis .of protein digestibility in 

rainbow trout (Grabner and Hofer, 1985). Fish were deprived of food for 24 hours, killed by a 

sharp blow to the head and dissected to expose the gut. The gut from the oesophagus immediately 

anterior to the stomach, to the anus was dissected out and divided carefully into gastric and 

intestinal regions which were opened longitudinally to reveal the lumen. Contents were collected 

by flushing with 0.5 M Tris-HCI buffer, pH 7.75 (intestinal samples) or 0.5 M Citrate-NaOH 

buffer, pH 3.8 (stomach samples) and gentle scraping with a spatula into plastic containers on ice. 

Pooled samples were centrifuged at 12,000 x g for 20 min at re and supernatants collected and 

defatted by shaking with an equal volume of chloroform on ice. The upper aqueous layer was 

removed, frozen at -70°C for 48 hr and lyophilised for 24 hr. Samples were resuspended 

overnight at 10 % of the original volume in a HCI solution, pH 3.0 (stomach samples) or 0.5 M 

Tris-HCI solution, pH 9.0 (intestine samples) and dialysed against large volumes of the 

corresponding buffers for 48 hr. After dialysis, samples were centrifuged at 6,500 x g for 10 

minutes, frozen at -70°C for 48 hr, lyophilised for 24 hr, reconstituted to a volume approximating 

that present initially in Citrate-NaOH, pH 3.8 (stomach samples) or Tris-HCI, pH 7.75 (intestine 

samples) and finally aliquoted and stored at -70°C. 

3.2.3 Determination of protein content of enzyme solutions. 

Protein content was estimated by a Bradford protein dye binding assay (Bradford. 1976) with a 

commercial Biorad (Watford, UK) assay kit. Solutions of BSA at a range of concentrations were 

used to construct a standard curve. 
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3.2.4 Optimisation of conditions for analysing proteolysis. 

Enzyme solutions were added to antigens in corresponding buffers at a range of concentrations 

from 10 p.g mJ·1 to lO mg mJ·1 of either BSA (Fraction V, Sigma, Poole, Dorset) or HGG (Cohn 

fraction 11, Ill, Sigma) for I hr. Reactions were terminated by snap freezing at - 70°C and 

samples were subsequently subjected to sodium dodecyl sulphate polyacrylamide gel 

electrophoresis (SDS-PAGE) analysis (section 3.2.9). Optimum antigen concentrations of 4 mg 

mJ·1 were used in all experiments and enzyme solutions were mixed I: I with antigens for 

incubations. Initially freezing at -70°C was used to terminate reactions but this was found 

unsatisfactory since it did not stop proteolysis immediately. Using substrate SDS - PAGE (section 

3.2.11) it was determined that the optimal method for terminating reactions was by adding an 

equivalent volume of non-reducing electrophoresis sample buffer and boiling for 3 minutes. 

Boiling was necessary since the addition of reducing or non-reducing sample buffer alone did not 

fully abrogate proteolysis. Using sample buffer served a dual function, in terminating enzymolysis 

and in preparing samples for electrophoresis. 

3.2.5 Tzme course of antigen degradation by proteases. 

All incubations were performed in Eppendorf tubes at IS°C, antigens (4 mg m("!) and enzyme 

samples (preincubated at !SaC for I hour) were mixed and incubated over a range of times from 

I min to IS hr or from I min to ll.S hr, the in vivo food retention times in rainbow trout stomach 

and intestine respectively (Grabner and Hofer, 198S). The reactions were terminated by adding 

sample buffer and boiling. For each experiment both positive (antigen + buffer at corresponding 

pH) and negative controls (enzyme solution + buffer at corresponding pH) were included. 

3.2.6 Effect of temperature on antigen degradation. 

Corresponding antigen (4 mg ml-1
) and enzyme solutions were preincubated independently for I 

hour at a range of strictly controlled temperatures from 2 ac to 30°C before mixing and subsequent 

incubation at equivalent temperatures for 2 hours. An additional control was used for this 

investigation in which the enzyme solution was added to antigen immediately before boiling to 
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ensure that any degradation occurring prior to enzyme denaturation was made apparent. 

3.2. 7 Effect of pH on antigen degradation. 

Incubations were allowed to proceed for 2 hours in each case. Corresponding antigen (4 mg ml.1) 

and enzyme solutions were adjusted to pH values from 2-9 in Tris-HCI or Citrate-NaOH buffers, 

monitored by means of a microprobe (Aidrich Chemical Co, Poole, Dorset, U .K). Following the 

2 hour incubation the pH in each tube was readjusted to 7.0 and reactions were terminated. 

3.2.8 Influence of a range of potential inhibitors on antigen degradation. 

The various compounds used and their concentrations are listed in Table 3.2. Enzyme solutions 

were incubated with each substance for 30 min prior to addition of antigen (I mg mJ·1
) and 

incubations allowed to proceed for a further 2 hr before termination. 

3.2.9 Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis (SDS- PAGE). 

Samples derived from experimental incubations were subjected to discontinuous SDS - PAGE 

(Laenunli, 1970) to assess the extent of antigen proteolysis. Reagents for sample preparation, gel 

formulation and electrophoresis are outlined in Appendix A. To determine optimal electrophoretic 

conditions, samples were initially separated on 7% and 11% gels but for subsequent analyses non

reducing conditions with 11% gels were used for both BSA and HGG as this enabled optimal 

visualisation and analysis of the wide range of peptides liberated by proteolysis. 

Gel constituents were de-gassed for 20 min after which anunonium persulphate was added and the 

resultant solution poured between glass electrophoresis plates (separated by 0.5 mm spacers) on 

a level casting stand. Gels were overlaid. with isobutanol to exclude air and left for 45 minutes 

at room temperature to polymerise. lsobutanol was then removed by rinsing with distilled water 

and residual liquid removed by blotting with tissue paper. To prepare stacking gels, constituents 

were mixed and de-gassed prior to addition of ammonium persulphate. Stacking gel solution was 

then overlaid onto the separating gel and 10 well polystyrene combs inserted to produce wells. 
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After polymerisation, combs were removed, wells wererinsed with distilled water and all liquid 

removed with a syringe to dispose of unpolymerised acrylamide. Samples were applied to the 

wells and on each gel, molecular weight markers (Appendix A) were included. Two 

electrophoresis systems were utilised - a small scale mini Protean 11 system (Bio Rad, Herts) with 

which sample volumes of 10 JLI were electrophoresed at a constant voltage of 200V for 40 minutes 

and a larger scale LKB 2001 system (LKB Bromma, Sweden) with which 50 J.!l sample volumes 

·were electrophoresed at 8mA for 18 hours and which enabled better resolution of protein bands. 

In most cases only the Mini Protean system was used. After electrophoresis, gels were either 

stained directly or electrotransferred for specific immunostaining (section\3TIO\. 

3.2.10 Gel staining for total protein. 

Three stains were compared - amido black, Coomassie Brilliant Blue R.250 (CBB) and neutral 

silver stain. CBB appeared to be more sensitive than amido black and although less sensitive than 

neutral silver was chosen for routine application due. to i_ts ease of use. For CBB staining, Brilliant 

blue reagent (Appendix A) was added to gels which were incubated overnight at room temperature. 

Gels were destained in fixative (Appendix A) until bands were clearly visible. Molecular weight 

markers (Appendix A) were included on each PAGE gel to enable calculation of apparent 

molecular weights of protein bands after electrophoresis and staining. 

3.2.11 SDS- PAGE with protein substrate incorporated. 

To determine optimal conditions for terminating enzymic reactions a modification of the procedure 

of Heussen and Dowdle (1983) was applied. Enzyme samples were mixed 1: I with sample buffer 

(reducing or non - reducing) and either left at room temperature for I hour or boiled for 3 

minutes. Samples were applied to wells of the substrate gel and electrophoresed as described 

above. Subsequently gels were incubated in 2.5% Triton X- 100 (Sigma) for 2 hr to remove SDS 

and further incubated at 15°C for 4 hr iniCitrat~NaOH, pH 3.8 or Tris-HCI, pH 7.75 for gastric 

and intestinal enzymes respectively, to allow for enzymic degradation of the substrate. Gels were 

then stained with CBB and destained as described in section 3.2.9. Zones of clearance on gels 
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indicated enzyme activity. 

3.2.12 Western blotting. 

For immunoblotting (Western blotting) and staining for specific antigen detection an adaptation of 

the procedure of Towbin et al. (1979) was used. Subsequent to electrophoresis, proteins were 

electrotransfered to 0.45 ~tm nitrocellulose membranes (by a "wet" blotting procedure) in transfer 

buffer (Appendix B) at30 mA constant current for 18 hours using a Trans-Blot™ cell (Biorad). 

Blots were stained for total protein with Ponceau S (Appendix B) for 5 minutes and destained 

through several washes in PBS, pH 7.2, prior to specific immunostaining. After electrophoresis 

blots were washed in 0.5 M Tris -saline pH 7.5 for 20 min. A blocking step was then performed 

for I hr in Tris - saline + 3% non-fat dried milk pH 7.5 (TSM) (the blocking agent and diluent 

for all antisera for HGG immunoblotting) or 0.8 %gelatin, I% Tween 20, in Tris-saline pH 7.5 

(the blocking agent and diluent for all antisera for BSA immunoblotting). Blots were incubated 

in primary antisera (rabbit anti-BSA at I: 1000 dilution or rabbit anti-HGG at I :500 dilution) for 

6 hr. After washing 3 times in Tris-saline and twice in TSM, secondary antiserum (swine anti

rabbit IgG peroxidase conjugate• at l :1000 (Dako Ltd., High Wycombe, U.K.) was added for a 

further hour. Blots were washed in Tris- saline and developed in a 3,3'-diaminobenzidine (DAB) 

chromagen solution (Appendix B) for l-5 min. Reactions were terminated by thorough washing 

in Tris-saline. 

3.2.13 Laser densitometry. 

To quantify the relative amounts of peptides present on immunoblots, an LKB UL TROSKAN XL 

densitometer with a helium neon laser beam scanning at.633 nrn was applied. By correlation of 

densitometry data with approximate molecular weights the relative abundances of individual 

fragments could be determined. Densitometry data was derived in two ways -

A: By scanning entire lanes of immunoblots the relative percentages of fragments as a function of 

the total amount of protein present was determined. 

B: By scanning immunoblots laterally the relative percentages of individual fragments as a function 
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of the total amount of that fragment on the blot was determined. 

Table 3.2 : Inhibitory/ modulatory agents used in the study of lumenal proteases. 

I 
Inhibitor/ modulator 

I 
Targ<t pn>toasei.- allldlon 

I 
Contmlnd.ion used 

I 
Rd'ermce 

I 
Pbenylmethan.e sulphonate (PMSF) All serine· protea:sca. Cysteine I mM .bm~. 1978. 

prolc:ise8. 

Soybcan tlyplin inhibitor (SBTI) Serine protcases IOmM Birl:., 1985. 

L.eupeptin Trypsin • like serine and some 100 ,.,.M Umezawa. 1976. 

cysteine: protease. 

Pep<tatia Some aspartic prutc:ase~ IOfiM Saino et 011., 1982. 

-

Elhylenediaminetetr.Jacc:t.ic acid Melallop..-. Met:J.I activated 10 mM Rich n al .. 1985. 
(EDTA) pro<=a 

Quillaja Sopanari> (QUIL· A) Potential serine and aspartic I mM lsho:taya and Bitk. 196.5. 

p-

Sodium. Bicarbonate Cbatric. acidity 35 mg mJ·• Clemcnl5 r:r al .• 1986. 

Cunetidine Oastric acidity 10 mg mJ·' Oima t:t al., 1992. 
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3.3 RESULTS 

3.3.1 Estimation of protein content and molecular weights of enzymes present in gastric and 

intestinal secretions. 

The protein concentrations in gastric and intestinal enzyme samples as determined by Bradford 

assay were 0.27 ml/ml and 1.03 mg/ml respectively. In Fig 3.1 (a,b) enzyme bands are visible 

in the negative control lanes (arrowed) and at corresponding positions in each lane containing 

digested HGG. By reference to molecular weight standards, approximate molecular weights were 

calculated for enzyme samples electrophoresed under reducing and non-reducing conditions and 

stained with Coomassie Blue. In intestinal samples run under non-reducing conditions only 2 

bands were observed of 18.6 kDa and 25.7 kDa molecular weight (arrowed in Fig 3.1 (a). In the 

same samples run under reducing conditions 7 bands were detected of molecular weight 14.8 kDa, 

21.6 kDa, 26.3 kDa, 28.1 kDa, 34.1 kDa, 35.0 kDa, and 36.0 kDa (not all visible in Fig 3.1 (b)). 

In gastric samples 3 bands were detected in reduced preparations of molecular weight 19.5 kDa, 

21.5 kDa and 26.9 kDa while under non-reducing conditions only a single band of 25. 4 kDa was 

found. 

3.3.2 Densitometric analysis of the dynamics of antigen processing by lumenal enzymes. 

In Fig 3.2 a representative densitometric analysis of the course of an enzyme mediated reaction 

is presented. This shows the progressive changes in the patterns and relative abundances of 

fragments produced by the degradation of HGG with intestinal enzymes at various temperatures. 

The data was derived from laser scans of entire lanes of immunoblots (Fig 3.10 displays this data 

in graphical form) thus representing the total range of antigen fragments present at a particular 

temperature. The densitograms presented in Fig. 3.3 show the stages involved in the derivation 

of data from individual bands on immunoblots. 

3.3.3 Ttme courses of antigen degradation by gastrointestinal enzymes. 

The breakdown patterns for both HGG (Fig 3.4) and BSA (Fig 3.5) by gastric enzymes were 

similar, proteolysis progressed rapidly until approximately 2 hours- post incubation with antigen 
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(leading to a reduction in the relative percentage of intact antigen to 43 % and 31 % for HGG and 

BSA respectively). After 2 hrs, the patterns of specified fragment groups were found to remain 

relatively constant. From Figs 3.4(c) and 3.5(c) it is apparent that the time course of changes in 

the relative percentages of discrete fragments reflect those of fragment groups (Figs 3.4(b) and 

3.5(b), increasing until approximately 2 hours post incubation and subsequently remaining 

relatively constant. 

The time course patterns for HGG and BSA degradation by intestinal enzymes (Fig 3.6 and 3.7) 

were also similar. Degradation occurred very rapidly, the relative percentage of intact antigen 

decreasing by 57.6% and 66.6% within I minute and by a further 71% and 63.4% after 11.5 

hours incubation, for HGG and BSA respectively (Figs 3.6(a) and 3.7(a)). Both antigens were 

degraded to low molecular weight peptides the patterns of which changed with time. Some 

fragments were detectable at high levels throughout the time course while others were apparently 

degraded over time. The relative percentage of the 13.7 kDa HGG fragment for example 

increased until after 6 hr post-incubation after which it decreased and was undetectable at I 1.5 hr.. 

3.3.4 Temperature dependence of antigen proteolysis. 

Little degradation of either HGG or BSA by gastric enzymes occurred at temperatures less than 

5°C, but at 35°C, proteolysis amounting to 32.8% and 16.6% of the intact antigen for HGG and 

BSA respectively was observed (Figs 3.8 and 3.9). The relative percentages of HGG and BSA 

fragments released by proteolysis increased with increasing temperature up to 35°C (Fig 3.8(c) 

and 3.9(c)). 

The degradation of both antigens by intestinal enzymes increased with increasing temperature up 

to 35° C (Fig 3.10 and 3.11), this effect was particularly marked in the case of HGG. There was 

a marked increase in the relative percentages of HGG fragments less than 50 kDa in molecular 

weight with increasing temperature. It was found that less than 45% of the antigen remained intact 

in the controls to which enzyme was added immediately before boiling (Fig 3.10(a)) indicating that 
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a considerable amount of proteolysis occurred before the enzymes were denatured which 

highlighted the rapid rate of proteolysis by intestinal enzymes. 

3.3.5 pH dependence of degradation. 

There appeared to be two pH optima for the degradation of HGG and BSA by gastric enzymes, 

one at pH 4-5 and the other at pH 7-8 with a clear intermediate point at pH 6.0 where relatively 

little proteolysis occurred. These optima were apparent both with respect to the relative 

percentages of the intact antigens present and the percentages of fragments released by degradation 

(Fig 3.12 and 3.13). In the case of BSA the effect of pH was most apparent in changes in the 

relative percentages of the 17.5 and 10.6 kDa fragments. 

Intestinal enzyme degradation of antigens demonstrates a clear monophasic relationship with pH 

within the experimental pH range studied. The breakdown of intact HGG and BSA and 

accumulation of fragments steadily increased up to pH 9.0 (Figs 5.14 and 5.15). Analysis of the 

influence of pH alone on antigen degradation indicated that both antigens were stable between pH 

2.0 - 9.0 suggesting that this breakdown was due solely to enzymic action (data not presented). 

3.3.6 Effects of inhibitors on antigen degradation. 

Breakdown of both BSA and HGG by gastric enzymes was partially inhibited by PMSF while 

pepstatin and leupeptin led to almost total abrogation of proteolysis (Figs 3.16 and 3.17). 

The effects of Ieupeptin and pepstatin on proteolysis of BSA were apparent in terms ofboth an 

increase in the relative percentage of the intact antigen and as a reduction in the relative 

percentages of the 8.4, 16.3 and 18.4 kDa fragments present. Similarly in the case of HGG these 

inhibitors resulted in a reduction in the relative percentages of the /40.2, 14.9 3,!)d 10.4~ kDa 

fragments. 

The effects of inhibitors on intestinal enzyme proteolysis of HGG and BSA are presented in Figs 

3.18 and 3.19. Only the serine protease inhibitors, PMSF, SBTI and leupeptin led to a reduction 

in degradation of BSA and HGG, the effect of PMSF being most marked. These serine protease 

inhibitors did not prevent the degradation of intact antigen but instead resulted in the accumulation 
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of a range of peptides of differing nature and relative abundances depending on the inhibitor used. 

Proteolysis in the absence of inhibitors was almost complete (Figs 3.18, 3.19 and 3.20 (c)), so 

while the densitometry data yields information on the relative amounts of the various fragments 

of each antigen present there is no indication of the low overall quantity of antigen remaining after 

incubation with intestinal enzymes, particularly in the case of BSA. Fig 3.20 also presents 

photographic information on the effects of time and pH on gastrointestinal proteolysis. 

) 
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Fig 3.1. (a): Coomassie Blue stained 11% PAGE gel di!>playing the time course of HGG 
degradation by rainbow trout intestinal enzymes. Samples were run under non-reducing 
conditions. Loading order: Lane I : 7H molecular weight markers (apparent molecular weights 
in kDa). Lane 2: negative control (enzyme solution only). Lane 3: positive control (2 mglml 
HGG). Lanes 4-10: HGG samples exposed to intestinal secretions for I min, 5 min, I 5 min, 30 
min, I hr, 2 hr and 5 hr respectively. Protein bands present in the enzyme solution are 
highlighted. 

B 

-

Fig 3.1. (b): Coomassie Blue stained ll% PAGE gel displaying the time course of HGG 
degradation by rainbow trout intestinal enzymes. This gel is identical to Fig 3.1 (A) above except 
that the samples were electrophoresed under reducing conditions. Bars represent apparent 
molecular weights of prestained molecular weight markers as in Lane I of Fig. 3. 1 (a). 
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Fig 3.2. Densitometric analysis of the intestinal enzyme proteolysis of HGG over a range of 

temperatures. Data was derived from laser scans of entire lanes of an immunoblot. The apparent 

molecular weights of HGG bands are on the x axis and absorbance units (arbitrary) derived from 

the laser densitometer on they axis. 
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Fig 3.3. Densitometric analysis of the pH dependence of gastric enzyme degradation of HGG. 

Data was derived from laser scans of individual lanes on immunoblot. The graphs demonstrate 

the relative abundances of two HGG fragments at various pH values. 

Fig 3.3 (a). Lanes ofimmunob/otfrom which densitometry data was derived. The loading order 

on the immunoblot strips for both fragments from left to right corresponds with the pH values on 

the profile in Fig 3.3(B) below 

Fig 3.3 (b). Laser scans of the bands above demonstrating the relationship between band density 

and pH of incubation medium. 

Fig 3.3 (c).Tabulated numeric values derived from densitometer software for the 17.5 kDa 

fragment. 
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Fig. 3.4: 1ime course of the proteolysis of HGG by gastric enzymes. 

Fig. 3.4 (a): Antigen degradation represented in terms of changes in the relative amount of intact 

HGG present with time. Data derived from laser scan of entire lanes of immunoblot. 

Fig. 3.4 (b): Antigen degradation represented in terms of changes in the relative amounts of 

fragment groups (defined on the basis of relative molecular weight) present with time. Data 

derived from laser scans of entire lanes of immunoblot. 

Fig. 3.4 (c): Antigen degradation represented in terms of changes in the relative percentage of 

discrete antigen fragments present with time. Data derived from laser scans of individual bands 

on immunoblot. 
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Flg.3.4(a):Gastrlc enzyme degradation of HGG. 
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Fig. 3.5: Tune course of the proteolysis of BSA by gastric enzymes. 

Fig. 3.5 (a): Antigen degradation represented in terms of changes in the relative amount of intact 

BSA (including mu/timers) present with time. Data derived from laser scans of entire lanes of 

immunoblot. 

Fig. 3.5 (b): Antigen degradation represented in terms of changes in the relative amounts of 

fragment groups present with time. Data derived from laser scans of entire lanes of immunoblot. 

Fig. 3.5 (c): Antigen degradation represented in terms of changes in the relative percentages of 

discrete fragments with. time. Data derived from laser scans of individual bands on immunoblot. 
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Flg.3.5(a): Gastric enzyme degradation of BSA. 
Time oouree of proteolyele 
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Fig.3.5(b): Gastric enzyme degradation of BSA. 
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Fig.3.5(c): Gastric enzyme degradation of BSA. 
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Fig. 3.6: 1ime course of the proteolysis of HGG by intestinal enzymes. 

Fig. 3.6 (a): Antigen degradation represented in terms of changes in the relative amount of intact 

HGG present with time. Data derived from laser scan of entire lanes of immunoblot. 

Fig. 3.6 (b): Antigen degradation represented in terms of changes in the relative amounts of 

fragment groups present with time. Data derived from laser scans of entire lanes of immunoblot. 

Fig. 3.6 (c): Antigen degradation represented in terms of changes in the relative percentage of 

discrete fragments present with time. Data derived from laser scans of entire lanes·of immunoblot. 
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Flg.3.6(a): Intestinal enzyme degradation of HGG. 
nme oouraa of protaolyala 
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Fig.3.6(b): Intestinal enzyme degradation of HGG. 
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Fig.3.6(c): Intestinal enzyme degradation of HGG. 
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Fig. 3.7: nme course of the proteolysis of BSA by intestinal enzymes. 

Fig. 3. 7 (a): Antigen degradation represented in terms of the relative amount of intact BSA 

(including mu/timers) present with time. Data derived from laser scan of entire lanes of 

immunoblot. 

Fig. 3.7 (b): Antigen degradation represented in terms of changes in the relative amounts of 

fragment groups present with time. Data derived from laser scans of entire lanes of immunioblot. 

Fig. 3. 7 (c): Antigen degradation represented in terms of changes in the relative percentages of 

discrete fragments with time. Data derived from laser scans of entire lanes of immunoblot 
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Flg.3.7(a): Intestinal enzyme degradation of BSA. 
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Fig.3.7(b): Intestinal enzyme degradation of BSA. 
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Fig.3.7(c): Intestinal enzyme degradation of BSA. 
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Fig. 3.8: Temperature dependence of the proteolysis of HGG by gastric enzymes. 

Fig. 3.8 (a): Antigen degradation represented in terms of changes in the relative amount of intact 

HGG present with increasing temperature. Data derived from laser scan of entire lanes of 

immunoblot. (Reactions allowed to proceed for 2 hours in each case). 

Fig. 3.8 (b): Antigen degradation represented in terms of changes in the relative amounts of 

fragment groups (defined on the basis of molecular weight) present with increasing temperature. 

Data derived from laser scan of entire lanes of immunoblot. 

Fig. 3.8 (c): Antigen degradation represented in terms of changes in the relative percentages of 

discrete fragments present with increasing temperature. Data derived from laser scans of 

individual bands on immunoblot. 
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Flg.3.8(a): Gastric enzyme degradation of HGG. 
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Fig.3.8(c): Gastric enzyme degradation of HGG. 
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Fig. 3.9: Temperature dependence of the proteolysis of BSA by gastric enzymes. 

Fig. 3.9 (a): Antigen degradation represented in terms of changes in the relative amount of intact 

BSA (including mu/timers) present with time. Data derived from laser scan of entire lanes of 

immunoblot. (Reactions allowed to proceed for 2 hours in each case). 

Fig. 3.9 (b): Antigen degradation represented in terms of changes in the relative amounts of 

fragment groups present with increasing temperature. Data derived from laser scans of entire 

lanes ofimmunoblot. 

Fig. 3.9 (c): Antigen degradation represented in terms of changes in the relative percentage of 

discrete fragments present with increasing temperature. Data derived from laser scans of 

individual bands on immunoblot. 
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Flg.3.9{a): Gastric enzyme degradation of BSA. 
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Fig.3.9(b): Gastric enzyme degradation of BSA. 
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Fig. 3.10: Temperature dependence of the proteolysis of HGG by intestinal enzymes. 

Fig. 3.10 (a): Antigen degradation represented in terms of changes in the relative amount of intact 

HGG present with increasing temperature. Data derived from laser scans of entire lanes of 

immunoblot (Reactions allowed to proceed for 2 hours in each case). 

Fig. 3.10 (b): Antigen degradation represented in terms of changes in the relative amounts of 

fragment groups present with increasing temperature. Data derived from laser scans of entire 

lanes of immunoblot. 

Fig. 3.10 (c): Antigen degradation represented in terms of changes in the relative percentages of 

discrete fragments present with increasing temperature. Data derived from laser scans of entire 

lanes of immunoblot. 
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Flg.3.10(a): Intestinal enzyme degradation of HGG. 
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Fig. 3.11: TemperaJure dependence of the proteolysis of BSA by intestinal enzymes. 

Fig. 3.11 (a): Antigen degradation represented in terms of changes in the relative amount of intact 

BSA (including mu/timers) present with increasing temperaJure. DaJa derived from laser scans of 

entire lanes of immunoblot (Reactions allowed to proceed for 2 hours in each case). 

Fig. 3.11 (b): Antigen degradation represented in terms of changes in the relative amounts of 

fragment groups present with increasing temperaJure. DaJa derived from laser scans of entire 

lanes of immunoblot. 

Fig. 3.11 (c): Antigen degradaJion represented in terms of changes in the relative percentages of 

discrete fragments present with increasing temperaJure. Data derived from laser scans of entire 

lanes of immunoblot. 
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Flg.3.11(a): Intestinal enzyme degradation of BSA. 
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Fig.3.11(b): Intestinal enzyme degradation of BSA. 
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Fig. 3.12: pH dependence of the proteolysis of HGG by gastric enzymes. 

Fig. 3.12 (a): Antigen degradation represented in terms of changes in the relative amount of intact 

HGG present with increasing pH. Data derived from laser scans of entire lanes of immunoblot 

(Reactions allowed to proceed for 2 hours in each case). 

Fig. 3.12 (b): Antigen degradation represented in terms of changes in the relative amounts of 

fragment groups present with increasing pH. Data derived from laser scans of entire lanes of 

immunoblot. 

Fig. 3.12 (c): Antigen degradation represented in terms of changes in the relative percentages of 

discrete fragments present with increasing pH. Data derived from laser scans of individual bands 

on immunoblot. 

112 



Flg.3.12(a): Gastric enzyme degradation of HGG. 
pH dependance of proteolyela. 
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Fig 3.13: pH dependence of the proteolysis of BSA by gastric enzymes. 

Fig. 3.13 (a): Antigen degradation represented in terms of changes in the relative amount of intact 

BSA (including multimers)present with increasing pH. Data derived from laser scans of entire 

lanes of immunoblot (Reactions allowed to proceed for 2 hr in each case). 

Fig. 3.13 (b): Antigen degradation represented in terms of changes in the relative amounts of 

fragment groups present with increasing Ph. Data derived from laser scans of entire lanes of 

immunoblot. 

Fig. 3.13 (c): Antigen degradation represented in terms of changes in the relative percentages of 

discrete fragments present with increasing pH. Data derived from laser scans of individual bands 

on immunoblot. 

113 



Flg.3.13(a): Gastric enzyme degradation of BSA. 
pH dependance of proteolyele. 
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Flg.3.13(c): Gastric enzyme degradation of BSA. 
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Fig. 3.14. pH dependence of the proteolysis of HGG by intestinal enzymes. 

Fig. 3.14 (a): Antigen degradation represented in terms of changes in the relative amount of intact 

HGG present with increasing pH. Data derived from laser scan of entire lanes on immunoblot 

(Reactions allowed to proceed for 2 hours in each case). 

Fig. 3.14 (b): Antigen degradation represented in terms of changes in the relative amounts of 

fragment groups present with increasing pH. Data derived from Laser scans of entire lanes of 

immunoblot. 

Fig. 3.14 (c): Antigen degradation represented in terms of changes in the relative percentages of 

discrete fragments present with increasing pH. Data derived from Laser scans of entire Lanes of 

immunoblot. 
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Flg.3.14(a): Intestinal enzyme degradation of HGG. 
pH dependance of proteol~la. 
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Flg.3.14(b): Intestinal enzyme degradation of HGG. 
pH dependance of proteolyale. 
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Flg.3.14(c): Intestinal enzyme degradation of HGG. 
pH dependance of proteolyale. 
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Fig. 3.15: pH dependence of the proteolysis of BSA by intestinal enzymes. 

Fig. 3.15 (a): Antigen degradation represented in terms of changes in the relative amount of intact 

BSA (including mu/timers) present with increasing pH. Data derived from laser scans of entire 

lanes of immunoblot (Reactions allowed to proceed for 2 hours in each case). 

Fig. 3.15 (b): Antigen degradation represented in terms of changes in the relative amounts of 

fragment groups present with increasing pH. Data derived from laser scans of entire lanes of 

immunoblot. 

Fig. 3.15 (c): Antigen degradation represented in terms of changes in the relative percentages of 

discrete fragments present with increasing pH. Data derived from laser scans of entire lanes of 

immunoblot. 
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Flg.3.15(a): Intestinal enzyme degradation of BSA. 
pH dependance of protaolyala. 
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Fig.3.15(b): Intestinal enzyme degradation of BSA. 
pH depenctance of prcteolyela. 
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Fig.3.15(c): Intestinal enzyme degradation of HGG. 
pH dependance of prcteolyala. 
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Fig. 3.16: Effects of specific inhibitors on the proteolysis of HGG by gastric enzymes. 

Fig. 3.16 (a): Antigen degradation represented in tenns of changes in the relative amount of intact 

HGG present under various conditions. Data derived from laser scan of entire lanes of 

immunoblot (Reactions allowed to proceed for 2 hours in all cases in the presence or absence of 

inhibitors). 

Fig. 3.16 (b): Antigen degradation represented in terms of changes in the relative amounts of 

fragment groups present under various conditions. Data derived from laser scans of entire lanes 

of immunoblot. 

Fig. 3.16 (c): Antigen degradation represented in terms of changes in the relative percentages of 

discrete fragments present under various conditions. Data derived from laser scans of individual 

bands on immunoblot. 

Descriptions of abbreviations used on barcharts opposite. 

C = Control 

2hr = 2 hour digest 

SB = + SB11. 

PM = +PMSF. 

Leu = + Leupeptin. 

Pep= 

QA = 
Cim = 
Bic= 
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Flg.3.16(a): Gastric enzyme degradation of HGG. 
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Fig.3.16(b): Gastric enzyme degradation of HGG. 
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Fig. 3.17: Effects of specific inhibitors on the proteolysis of BSA by gastric enzymes. 

Fig. 3.17 (a): Antigen degradation represented in terms of the relative amount of intact BSA 

(including mu/timers) present after 2 hours incubation. Data derived from laser scans of entire 

lanes of immunoblot (Reactions were allowed to proceed for 2 hours in each case in the presence 

or absence of inhibitors). 

Fig. 3.17 (b): Antigen degradation represented as a function of the relative amounts of fragment 

groups present after 2 hours incubation. Data derived from laser scans of entire lanes of 

immunoblot. 

Fig. 3.17 (c): Antigen degradation represented in terms of the relative percentages of discrete 

fragments present after 2 hours incubation. Data derived from laser scans of individual bands on 

immunoblot. 

Descriptions of abbreviations.used on barcharts opposite. 

c = Control 

2hr = 2 hour digest Pep= + Pepstatin. 

SB = + SB11. QA = + Qui/ - A saponin. 

PM = +PMSF. Cim = + Cimetidine. 

Leu= +Leupeptin Bic= +Bicarbonate 
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Flg.3.17(a): Gastric enzyme degradation of BSA. 
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Fig.3.17(b): Gastric enzyme degradation of BSA. 
Effect of Inhibitor• on protaolyala. 
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Fig. 3.18: Effects of specific inhibitors on the proteolysis of HGG by intestinal enzymes. 

Fig. 3.18 (a): Antigen degradation represented in terms of the relative amount of intact HGG 

present after 2 hours incubation. Data derived from laser scans of entire lanes of immunoblot 

(Reactions allowed to proceed for 2 hours in each case in the presence or absence of inhibitors). 

Fig. 3.18 (b): Antigen degradation represented in terms of the relative amounts of fragment groups 

present after 2 hours incubation. Data derived from laser scans of entire lanes of immunoblot. 

Fig. 3.18 (c): Antigen degradation represented in terms of the relative percentages of discrete 

fragments present after 2 hours incubation. Data derived from laser scans of entire lanes of 

immunoblot. 

Descriptions of abbreviations used on barcharts opposite. 

c = Control 

2hr = 2 hour digest Pep= 

SB = + SB11. QA = 
PM = +PMSF. Cim = 
Leu= +Leupeptin Bic= 
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Flg.3.18(a): Intestinal enzyme degradation of HGG. 
Elfeot of Inhibitor• on proteolyale. 
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Flg.3.18(b): Intestinal enzyme degradation of HGG. 
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Flg.3.18(c): Intestinal enzyme degradation of HGG. 
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Fig. 3.19: Effects of specific inhibitors on the proteolysis of BSA by intestinal enzymes. 

Fig. 3.19 (a): Antigen degradation represented in terms of the relative amount of intact BSA 

(including mu/timers) present after 2 hours incubation. Data derived from laser scans of entire 

lanes of immunoblot (Reactions allowed to proceed for 2 hours in all cases in the presence or 

absence of inhibitors). 

Fig. 3.19 (b): Antigen degradation represented in terms of the relative amounts of fragment groups 

present after 2 hours incubation. Data derived from laser scans of entire lanes of immunoblot. 

Fig. 3.19 (c): Antigen degradation represented in terms of the relative percentages of discrete 

fragments present after 2 hours incubation. Data derived from laser scans of entire lanes of 

immunoblot. 

Descriptions of abbreviations used on barcharts opposite. 

c = Control 

2hr = 2 hour digest Pep= + Pepstatin. 

SB = + SB11. QA = + Qui/ - A saponin. 

PM = +PMSF. Cim = + Cimetidine. 

Leu= +Leupeptin Bic= +Bicarbonate 
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Flg.3.19(a): Intestinal enzyme degradation of BSA. 
Eflaot of lnhlbltora on protaolyala. 
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Fig 3.20. Western blots demonstrating the effects of various factors on gastric and intestinal 

enzyme proteolysis of BSA and HGG. Apparent molecular weights of protein markers are labelled 

in Fig 3.20(a) and bars representing these markers are displayed on Fig 20 (b) and Fig 20(c). 

Fig 3.20(a). Time course of gastric enzyme degradation of HGG (JOp.g protein loaded per lane). 

Loading order. Lane 1: Prestained protein standards. Lane 2: Negative control (enzyme solution 

only). Lane 3: Positive control (HGG only). Lanes 4 - 10: HGG samples exposed to gastric 

enzymes for 1 min, 30 min, 2 hr, 4 hr, 6 hr, 8 hr and 15 hr respectively. 

Fig 3.20(b). pH dependence of gastric enzyme degradation of HGG (JOp.g protein loaded per 

lane). Loading order. Lane 1: Prestained protein standards. Lanes 2 - 10: HGG samples 

incubated with gastric enzymes at pH 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 and 9.0 respectively. 

Fig 3.20(c). Effects of inhibitors on intestinal enzyme degradation of BSA (JOp.g protein loaded 

per lane). Loading order. Lane 1: Prestained protein standards. Lane 2: Positive control (BSA 

only). Lane 3: 2 hr digest of BSA by intestinal enzymes. Lanes 4 - 10: 2 hr digest of BSA by 

intestinal enzymes in the presence of PMSF, SBTJ, leupeptin, pepstatin, Quit- A, cimetidiize and 

bicarbonate respectively. 
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3.4 DISCUSSION 

In vitro analyses have previously been used in biochemical studies of teleost proteases (Ferraris 

and Ahern, 1984; Gildberg, 1988; Kolodzeiskaya et al., 1988; Simpson et al., 1989) and in 

nutritional studies offeed utilisation (Grabner and Hofer, 1985) to simulate gut conditions. In this 

study an in vitro system was devised to analyse protein antigen breakdown by lumenal proteases. 

The use of SDS- PAGE, immunoblotting and laser densitometry analyses in this study has enabled 

a detailed investigation of the dynamics of antigen degradation and of the fragments released. The 

capacity of this method to detect and analyse individual antigen fragments is particularly valuable 

from an immunological viewpoint since mammalian studies suggest that enzymic release of 

immunogenic or tolerogenic epitopes may play a critical role in determination of the immune 

response to enterically presented antigens (Michael, 1989; Hachimura et al., 1993). 

Evidence exists from both mammalian (Russell and Walker, 1989) and teleost (Jenkins et al., 

1992) studies that the gastrointestinal mucosal barrier does not exclude the capacity to absorb 

macromolecules in a bioactive form. However, gastric and pancreatic secretions are recognised 

as major barriers to the absorption of intact protein macromolecules by the teleost gut (Johnson 

and Amend, 1983a, b; Jenkins et al., 1992). The current study demonstrated that degradation of 

intact soluble protein antigens in the rainbow trout stomach resulted in partial proteolysis to a 

range of peptides. A large proportion of antigen was also found apparently intact even after 15 

hours, the estimated gastric retention time in rainbow trout held at I5°C (Grabner, 1985). This 

supports previous findings on rainbow trout (Dabrowski et al., 1986), cod, Gadus morhua (Lied 

and Solbakken, 1984) and other species (Sabapathy and Teo, 1993) and suggests that the stomach 

of gastric teleosts plays a primary role in the digestion of proteins to peptides prior to exposure 

to the intestinal peptidases and proteases (Glass et al., 1989). Only very small amounts of free 

amino acids were found to be released from proteins in the stomach (Dabrowski et al., 1986; Lied 

and Solbakken, 1984). The former study found that the stomach peptide content was only 28.4 

% of the total protein present 10 hr after a meal while peptide amino acids accounted for up to 

89% of total protein in the pyloric caecae region. The role of gastric secretions in protein 
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digestion is influenced by various factors such as food retention time, stomach distensibility, food 

bulk, the degree of food penetration by gastric secretions and the specific activity of pepsin (Ash, 

1985). Although the trout stomach may play a limited part in antigen degradation, the preparation 

of protein for further digestion in the intestine and in the potential release of immunogenic 

fragments may be of greater importance. In this study only intact antigens were used as a 

substrate and the effect of gastric exposure on the rate of subsequent intestinal proteolysis was not 

assessed. Results presented later in this thesis (sections 5.3 and 7 .3) indicate that the dose of 

soluble protein antigen orally administered to rainbow trout in vivo can play a critical role in 

determining the extent of degradation. Smaller doses are more rapidly and extensively degraded 

in the stomach which suggests that the large amounts of intact antigen which were found remaining 

after incubation with gastric enzymes in the present investigation may reflect an 'overloading' of 

the proteolytic capacity of the isolated proteases. 

Intestinal enzymes from rainbow trout were found to rapidly degrade both BSA and HGG in this 

study suggesting that highly active proteases were present. Both HGG and BSA were rapidly 

converted to fragments which were themselves further degraded and after 11.5 hours incubation 

(the estimated intestinal retention time in rainbow trout at 15° C) (Grabner, 1985) very little 

antigen in any form was detectable. This rapid and extensive proteolysis is in accordance with 

previous studies on rainbow trout (Grabner, 1985; Dabrowski et al., 1986) and cod (Lied and 

Solbakken, 1984) which have demonstrated that the intestinal proteases of these gastric teleosts are 

highly effective in digesting proteins to small peptides and amino acids. The final products of 

intestinal enzyme degradation were not detectable in this study due to the experimental limits of 

gel pore size in SOS-PAGE. A comparative study on pancreatic proteases from mammalian, avian 

and piscine species found that trypsin and chymotrypsin derived from trout were more active than 

those from all other species tested (Krogdahl and Holm, 1983). Trout trypsin and chymotrypsin 

when compared with the corresponding human enzymes were more than I 0 and 5 times as 

effective, respectively, in hydrolysing the synthetic substrates N - benzoyl - L - arginine- p - nitro 

- analide and N - benzoyl - L -tyrosine- ethyl ester. The speed and extent of antigen degradation 
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by rainbow trout intestinal enzymes indicates that degradation of unprotected protein antigens could 

be expected to commence immediately after entry into the intestine. The release of a large number 

of fragments which may subsequently be absorbed could result in difficulty in predicting and 

controlling the immune response to orally administered protein antigens. Many workers concur 

that macromolecular uptake in gastric teleosts occurs principally in the second intestinal segment/ 

hind gut and that absorption at this point is necessary for the induction of an immune response 

(Georgopoulou et al., 1988; Rombout et al., 1993a). If this is indeed the case then some degree 

of antigen protection from lumenal secretions may be necessary. There is also evidence that 

antigen is absorbed in other regions of the gastrointestine including the gastric region and that 

immunologically competent cells are present at these sites, albeit in low numbers (Doggett, 1989: 

Jenkins, 1992). In these anterior gut regions a greater proportion of protein antigens could be 

predicted to remain intact and if absorbed may be of immunological significance. 

A clear increase in antigen degradation by gastric and intestinal enzymes with increasing 

temperature (up to 35°C) was noted in this study. Very little degradation was apparent at 

temperatures less than soc which is in accordance with other studies which indicate that activity 

at low temperatures is reduced in most species (Kitimikado and Tachino, 1960; Simpson and 

Haard, 1987). Under optimal conditions most fish pepsins have a temperature optimum around 

40oc (Gildberg, 1988). Krogdahl and Holm (1983) found that the activity of rainbow trout 

pancreatic proteinases was roughly halved when the temperature was reduced from 37° C to l0°C 

and proposed that at low water temperatures the hydrolytic efficiency oftrout pancreatic proteases 

would be relatively low. Certain fish species appear to display the characteristic of temperature 

adaptation of digestive enzymes to enable digestion at lower temperatures. This may be achieved 

by increased enzyme secretion or by the possession of enzymes with lower activation energies 

enabling relatively high activity at low temperatures (Gildberg, 1988). Owen and Wiggs (1971) 

found that pepsin activity was 30% greater in cold acclimated brook trout Salvelinusfontinalis than 

in warm acclimated fish when assayed at the same temperature but a similar effect was not 

apparent in the case of trypsin and chymotrypsins from rainbow trout (McLeese and Stevens, 

123 



1982). Nonetheless, degradation increases considerably with temperature up to and beyond the 

optimal trout habitation temperature (l5°C) suggesting the possibility that oral vaccination at lower 

temperatures may reduce the degree of antigen proteolysis and thus improve the efficacy of this 

method of administration. Additionally, a lowering of temperature would be expected to result 

in a general slowing of metabolic processes thus leading to reduced secretion of enzymes further 

reducing proteolysis. However, low temperatures result in an increase in gastric retention times 

(Jones, 1974) and this increased exposure to less active enzymes may achieve an equivalent effect. 

Also the suppressive effect of low temperatures on piscine immune responses (Zapata et al., 1992) 

may abrogate any advantage gained in terms of the quantity of intact antigen reaching the 

absorptive regions of the gastrointestine. 

The activity of rainbow trout lumenal proteases was also shown in this study to be pH dependent. 

Gastric enzymes were optimally active at two distinct points, pH 4.0-5.0 and pH 7.0-8.0, with 

little proteolysis apparent at other pH values. A wide range of hydrolases including proteases have 

been recorded in the teleost stomach (Fange and Grove, 1979). Pepsin has been reported as the 

dominant enzyme in this region with an optimal activity around pH 3.0 (Gildberg, 1988) although 

proteases with optima at pH 5.0 and pH 7.0 have also been described (Fange and Grove, 1979). 

Furthermore, Fish (1960) demonstrated the presence of an "alkaline" protease in the stomach of 

perch and tilapia. In a study of the gastric proteases of cod by Squires et al. ( 1986) three enzymes 

were detected which were optimally active at pH 3.0-5.0. One of the proteases was highly 

unstable at pH values greater than 5.0 while the other two exhibited additional peaks of activity 

at pH 7 .0. In the case of one of these proteases, activity at pH 7 was almost two thirds as great 

as at pH 4.0. This pattern is remarkably similar to that observed in the present study suggesting 

that a number of gastric proteases may be produced by rainbow trout. Alternatively, it is possible 

that a single enzyme may exhibit multiple activities which are pH dependant. Gildberg and Raa 

(1983) found that the optimal pH for pepsin from Arctic capelin Mallotus villosus varied according 

to the substrate used and Lindsay (1983) reported marked differences in the effects of pH on 

rainbow trout gastric chitinase activity which were also substrate dependant. 
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A study on Dover sole, Solea so/ea found three separate peaks of activity for gastric proteases 

acting on casein at pH 1.7, pH 6.0 and pH 10.0 (Ciark et al., 1985). Similarly, a stlidy on gastric 

enzymes from capelin identified a pepsin which demonstrated greatly different optima, from pH 

3.7 with cod sarcoplasmic protein as the substrate to a pH greater than 5.5 with cod myofibrillar 

protein as substrate (Gildberg and Raa, 1983). It is also possible that the second pH optimum, 

observed at 7.0-8.0 in this study was a result of contamination during the isolation procedure by 

pancreatic proteases. This is unlikely since as outlined below intestinal enzymes displayed 

sequentially increasing proteolytic activity up to pH 9. 0 whereas the gastric enzymes were 

minimally active at this pH. Therefore it is proposed that either more than a single type of 

protease is present in the trout stomach or that the enzymes present can exhibit differential activity 

which is pH dependant. Since rainbow trout are opportunistic carnivores which 'gorge' themselves 

when food is available it is likely that the low pH necessary for "classical" pepsin-like activity is 

not maintained at all times, particularly after heavy feeding when acid present in the stomach 

would be considerably diluted leading to a pH closer to neutrality. Under these conditions it may 

be advantageous to possess an additional enzymic activity which operates at higher pH values until 

acidification of the contents is achieved in the trout stomach. 

In contrast, intestinal enzymes demonstrated a clear increase in proteolytic activity with increasing 

pH from 2.0 to 9.0, in accordance with previous studies on rainbow trout which have 

demonstrated an optimal activity around pH 9 (Kitamikado and Tachino, 1960; Grabner, 1985). 

The optimal pH for two chymotrypsins from the rainbow trout pyloric caecae was reported to be 

9.0 and such enzymes were unstable at pH values less than 5 (Kristjansson and Nielsen, 1992). 

It is likely that the range of intestinal proteases present in the rainbow trout intestine have different 

pH optima so the results in this study likely reflect the variable contributions of a range of 

enzymes depending on the pH. 

For the purposes of oral vaccination the most obvious point at which pH (and possibly proteolysis) 

may be altered is the stomach. The use of gastric inhibitors has been suggested as a potential 
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strategy to enhance intact macromolecular absorption in fish, (McLean and Ash, 1987) and in 

mammals sodium bicarbonate is routinely administered prior to Vibrio,'ciWieraeJ vaccines in order 

to protect the acid labile cholera toxin and prior to Salmonella typhi Ty 21a vaccine in field trials 

(Ciemens et al., 1986). Use of such a system would appear from this study to be of limited value 

in enhancing uptake of BSA and HGG in rainbow trout. However, in cases where antigens are 

particularly susceptible to low pH this may be of considerable value. Additionally, if the putative 

"pH window" observed in gastric proteolysis of BSA and HGG in this study in the trout stomach 

is confirmed in vivo, adjustment of stomach contents to pH 6 may reduce antigen degradation, and 

possibly enhance the ilnmune response to such orally delivered antigens. 

An effort was made in this study to determine which protease class, or classes were responsible 

for. protein antigen degradation in the gut lumen. Gastric proteases were partiaily inhibited by 

PMSF and almost totally inhibited by pepstatin and leupeptin. The inhibition by pepstatin was in 

accordance with previous work on salmonid pepsins (Cisternas et al., 1983; Gildberg and Raa, 

1983; Sanchez-Chiang et al., 1986) indicating an aspartil protease activity. The inhibition by the 

serine protease inhibitors, PMSF and leupeptin was not expected as serine proteases have not 

previously been reported in the trout stomach. The degree of inhibition ofgastric proteolysis by 

pepstatin and leupeptin was almost identical and it is possible that leupeptin can inhibit pepsin -

like activity in the trout. If serine proteases were involved in gastric proteolysis, pepstatin would 

not have been expected to efficiently prevent proteolysis. In contrast with leupeptin, SBTI which 

is also a serine protease inhibitor, had little effect on gastric enzyme proteolysis further suggesting 

that PMSF and leupeptin may inhibit gastric enzymes by a means not related to their function as 

serine protease inhibitors. Alternatively since SBTI is not acid stable (Krogdahl and Holm, 1983) 

it is possible that the conditions applied in this study altered the substance and reduced its activity. 

Analysis of the effects of inhibitors on intestinal enzyme proteolysis of HGG and BSA indicated 

that serine proteases were principally responsible, PMSF, SBTI and leupeptin all abrogated 

intestinal enzyme degradation to some degree. PMSF was most effective, but even with this broad 
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range serine protease inhibitor, significant degradation was noted suggesting that additional 

protease classes may be in operation. Krogdahl and Holm (1983) found that among a range of 

animal species the caseinolytic activity in extracts of pancreatic tissue from trout was more 

sensitive to inhibition by SBTI than that from all other species, hydrolysis of casein by trout 

pancreatic proteases in the latter study was almost halved by addition of SBTI. Other studies 

(Reece, 1988) have found that PMSF and SBTI only partially inhibited alkaline proteases from 

salmon viscera. Cohen et al. (1981) in a study on carp found that SBTI only inhibited 

chymotrypsin activity to a small extent and did not inhibit elastase activity. The greater inhibition 

due to PMSF observed in this study may, therefore, reflect the inhibition of chymotrypsin or 

elastase which was not observed when SBTI was used. Use of the metalloprotease inhibitor, 

EDTA appeared to have little effect on intestinal enzyme proteolysis (results not presented) and 

it is possible that the effect of metalloprotease inhibition was not apparent due to overwhelming 

serine protease activity. Therefore, it may only be possible to detect metalloprotease activity in 

the absence of serine proteases. Various studies have utilised protease inhibitors to enhance intact 

antigen uptake in both mammals and teleosts. Use of soybean trypsin inhibitor (SBTI) led to an 

increased uptake of BSA in mice (Udall et al., 1984) and of HRP in rainbow trout (McLea~.and 

Ash, 1990). However, studies <in mammals suggest that due to the multiple potential cleavage 

sites on most proteins and the widespread presence of a range of proteolytic enzymes at various 

points between the site of entry and that of action that protection of proteins/peptides from 

degradation in this way may not necessarily lead to a marked increase in stability or in the amount 

of the substance reaching the site of action (Lee I -,, 1986). Furthermore, there are differences 

in the effects of proteinase inhibitors on enzymes from different animal species (Mallory and 

Travis, 1975; Combs and Poston, 1978; Krogdahl and Holm, 1983) so the use of inhibitors for 

the enhanced oral delivery of proteins would need to be tailored for each individual species 

utilised. 

A number of other approaches to modify teleost physiology in order to enhance intact 

macromolecule absorption are also possible. Teleost enzyme activity has in some cases been 
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shown to be highly malleable to starvation (Pederson and Hjelmeland, 1988), seasonal changes 

(Ananichev, 1959), temperature accl imation (Hochachka and Clayton-Hochachka, 1973; Tsukuda 

and Ohsawa, 1974; Tsukuda, 1975) and feed composition (Hofer, 1979; Reimer, 1982). In 

addition, some studies have correlated various enzyme activities with the levels of proteins, 

carbohydrates and lipids in the diet (Ph ad ate and Srikar, 1988) suggesting that judicious 

manipulation of diets prior to antigen delivery may enhance the uptake of intact antigen. Fange 

(1973) found that high dietary protein and low cellulose content can enhance proteolytic activity 

in rainbow trout and that elevated starch levels can reduce such activity. Similarly, Kawai and 

lkeda (1972) found that increased levels of dietary protein led to increased protease activity, 

although no such effect was noted by McLeese and Stevens (1982) in rainbow trout. 

Compensatory growth is a phase of rapid growth greater than control or normal growth which 

occurs upon adequate refeeding after a period of undernutrition (Quinton and Blake, 1990). This 

novel physiological adaptation may lend itself to enhanced delivery of antigens. lt may be 

hypothesised that in order to maintain/ gain weight in conditions of limiting nutrient levels a 

facility for enhanced uptake exists which may be utilised in oral vaccination regimes. 

In conclusion this in vitro investigation indicates that rainbow trout possess considerable lumenal 

enzymic barriers to orally delivered intact protein macromolecules and that some form of 

protection for antigens through this environment may increase the efficacy of iJ!ununisation/via 

the oral route. The method used may provide a useful model to investigate the susceptibility of 

vaccine antigens to degradation by digestive tract secretions from rainbow trout 
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CHAPTER 4 

CEUULAR PROCESSING OF SOLUBLE PROTEIN ANT7GENS BY ISOLATED RAINBOW 

1ROUT INTESTINAL CELLS IN V/1RO. 
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4.1 INTRODUCTION 

Orally administered protein antigens encounter a strongly proteolytic environment in the digestive 

tract. Those antigens which remain intact must penetrate the epithelial .cells to gain access to the 

body tissues prior to stimulating gastrointestinal immune mechanisms. In mammals, although 

enterocytes are involved in macromolecular absorption antigen uptake is primarily a function of 

specialised. microfold (M) cells located in the epithelium overlying the Peyer's patches (Owen, 

1977; Wolf and Bye, 1984). Macromolecular absorption in teleosts however appears to occur 

principally via the absorptive enterocytes of the intestine (Noaillac-Depeyre and Gas, 1973). A 

number of studies have investigated the morphological and histological characteristics of 

enterocytes in teleost species such as carp, Cyprinus earpio, (lwai, 1969; Noaillac-Depeyre and 

Gas, 1973); tench, Tinea tinea, (Noaillac-Depeyre and Gas, 1976); goldfish, Carassius auratus, 

(Y amamoto, 1966; Gauthier and Land is, 1972); tilapia, Oreoehromis mossambieus (Doggett, 1989) 

and rainbow trout, jOneortrynehusj mykiss (Yamamoto, 1965; Bergot, 1976). Similarities have 

been noted between the absorptive enterocytes of the teleost intestine and those of neonatal 

mammals which are specially adapted for antigen absorption (Walker, 1982). This circumstantial 

evidence suggests a role for teleost enterocytes in antigen uptake (Noaillac-Depeyre and Gas, 1973, 

1979; Rombout et al., 1985; Georgopoulou and Vernier, 1986). Initial studies of antigen 

absorption in mammals used direct microscopic visualisation of enzymatically active antigens, such 

as applied by Graham and Karnovsky (1966), which involved the detection of horseradish 

peroxidase in tissues on the basis of its enzymatic activity. This technique was first applied to 

demonstrate macromolecular uptake in mouse renal tubules (Graham and Karnovsky, 1966) and 

subsequently in the mouse and rat intestinal mucosa (Owen, 1977) and has also been successfully 

used to demonstrate macromolecule endocytosis by human absorptive epithelial cells (Blok et al., 

1981). Adaptation of this method to piscine studies revealed the capacity for exogenous protein 

uptake in the intestine of agastric cyprinids (Noaillac-Depeyre and Gas, 1973, 1976) and 

subsequently in a range of gastric species including rainbow trout (Bergot, 1976), perch (Noaillac

Depeyre and Gas, 1979), and catfish (Stroband and Kroon, 1981). The disadvantages of this 

method include the presence of endogenous peroxidase activity in normal tissues and the need for 

130 



functionally intact antigen for microscopic visualisation (Larssen, 1988). Furthermore, fragmented 

antigens may possess intact epitopes of immunological significance which are not detected using 

this technique, a factor which complicates the detailed analysis of antigen processing in the gut. 

Subsequent studies have applied immunocytochemical techniques for the detection of intact as well 

as processed antigen (Rombout and van den Berg, 1989). These studies have yielded much 

information on the nature and dynamics of antigen absorption by intestinal enterocytes of both 

agastric (Rombout et al., 1986) and gastric teleosts (Georgopoulou et al., 1986; Jenkins et al., 

1992). In addition, the application of the enzyme linked immunosorbent assay (ELISA) and also 

of Western blotting has clearly shown the capacity for macromolecular uptake by teleost 

enterocytes and the occurrence of antigen processing prior to detection in the tissues or serum 

(McLean and Ash, 1987; Doggett, 1989; Jenkins et ai, 1992). Most of the above studies used in 

vivo models of antigen uptake which provided fundamental information on the dynamics of 

macromolecular absorption by the gut. These studies did not however permit a detailed analysis 

of antigen modification following administration and preceding detection in the serum of the 

animal. In vitro systems for the study of macromolecular uptake have received relatively less 

attention in piscine investigations to date although everted gut sacs (Georgopoulou et al., 1986), 

intestinal segments in organ culture (lida and Yamamoto, 1985; Iida et al., 1986) and isolated 

enterocytes (Ash and Mason, 1983) have been utilised to study the role of gut cells in the uptake 

and processing of antigens. The rationale for the use of in vitro models for the analysis of intact 

antigen uptake and processing in the present study was based on piscine studies which have 

indicated the retention of functional activity by isolated intestinal cells (Ash and Mason, 1983; 

Davidson, 1991). Mammalian studies using in vitro methods have revealed a role for intestinal 

enterocytes in antigen processing and presentation to immunologically responsive cells in the gut 

(section 2.5). Antigen presentation by intestinal epithelial cells can lead to selective induction of 

suppressor T cells which may play a role in the induction of immune hyporesponsiveness to some 

orally delivered antigens (Bland and Warren, 1986). In addition, evidence points to intimate 

interactions between enterocytes and lymphocytes in the follicle associated epithelium of mammals 

and the possibility exists that intraepitheliallymphocytes modify the normal process of enterocyte 
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development in their immediate vicinity (Cremaschi et al., 1989). It has been hypothesised that 

heterogeneity in the structure of the epithelial brush border in mammals could arise as a result of 

the transformation of mature enterocytes by lymphocytes (Bhalla and Owen, 1982; McKay and 

Perdue, 1993). An understanding of these interactions may be of importance in elucidating the 

nature of antigen uptake and immune responses in the gut. 

The present investigation used an in vitro system in order to study the processing of soluble protein 

antigen by isolated intestinal cells from rainbow trout and to help determine the origin of antigen 

fragments detected in the trout circulation after in vivo antigen administration. The method for 

the isolation of rainbow trout intestinal cells was that described by Davidson (1991). It was 

hoped to formulate a system which reflects in vivo antigen processing by teleost intestinal cells and 

which could be applied as a fundamental step in the analysis of macromolecular uptake and cellular 

interactions in the teleost gut. This system was used to compare antigen processing by cells 

isolated from different regions of the rainbow trout gut and to investigate the nature of the 

enzymes involved in cellular processing of soluble protein antigen. 
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4.2 MATERIALS AND METHODS 

4.2.1 Animals 

Fish were maintained as described in section 3.2.1. 

4.2.2 Isolation and preparation of intestinal tissue. 

Fish were killed by a sharp blow to the head and the digestive tract from the pyloric caecae to the 

rectum was excised (unless otherwise stated). This tissue' ·was \placed in an ice cold petri dish 

with 0.15 M PBS, pH 7.2 and any adherent connective and vascular tissue was dissected away. 

A longitudinal cut was made and lumenal contents were removed by rinsing thoroughly with PBS. 

Tissue was then cut into 0.5 cm2 sections. 

4.2.3 Isolation of intestinal cells. 

(A) EDTA - chelation method 

This procedure was performed as described by Ray et al. (1990). Tissue sections were incubated 

in EDTA buffer (2 rnl buffer per piece of tissue) for 5 minutes at 37°C with gentle agitation and 

immediately transferred into ice cold Eagles minimal essential medium (MEM) (Gibco, Paisley, 

Scotland). Epithelial tissue was released using a wide bore Pasteur pipette and the resultant 

suspension was centrifuged at 100 x g for I min, washed 3 times in MEM and resuspended in 

fresh MEM + 0.5 % D - mannose. 

(B) Isolation lJy the collagenase digestion method (after Davidson, 1991). 

Tissue pieces in 25 rnl PBS, pH 7.2 containing 0.37 mg m~-• EDTA and 0.145 mg mi·' 

dithiothreitol to prevent cell aggregation were incubated at 18 oc in a shaking water bath for 10 -

15 min. The supernatant was discarded and tissue pieces were removed and washed in Leibovitz 

L-15 medium containing 50 mM L - glutamine, 100 units m1·• penicillin, 0.1 mg mi·' 

deoxyribonuclease and 100 ILg mi·' streptomycin adjusted to pH 7 • 2. The tissue was then 

incubated for 2 hours at I8°C in this medium + 0.15 mg m1·• collagenase with shaking, pressed 

through a 100 IJ.m nylon gauze using a spatula and flushed through with the supernatant and 

medium into a petri dish on ice. The resultant suspension was washed 3 times by centrifugation, 

resuspended in a 5 ml tissue culture medium and refiltered through a I mm gauze. 
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4.2.4 Assessment of cell viability. 

Cells were counted using a haemocytometer and the viability established by trypan blue exclusion 

(Appendix D). 

4.2.5 Microscopic analysis of intestinal cells. 

A sample of the cell suspension produced by collagenase digestion was centrifuged at 500 x g for 

5 min. The resultant pellet was fixed overnight in 4% glutaraldehyde, dehydrated through a series 

of alcohols, post- fixed in I % osmium tetroxide and embedded in Spurrs resin. Sections (100 

run) were stained with uranyl acetate and lead citrate and observed under a JEOL transmission 

electron microscope. 

4.2.6 Determination of protein concentration. 

Cells isolated by collagenase digestion were counted and lysed by sonication on a 50% cycle with 

15 second bursts (Heat Systems Ultrasonics, Farmingdale, New York) for 5 min. Protein 

concentration in these samples was determined as outlined in section 3.2.3. 

4.2.7 Analysis of antigen processing by intestinal cells. 

Cells isolated by collagenase digestion were incubated in L-15 medium containing either bovine 

serum albumin (BSA) or human gamma globulin (HGG) at 10 mg m1·• for a period of I min to 

2 hr. After incubation, cells were immediately washed twice in L-15 medium and resuspended 

in 0.5 ml culture medium. Supernatants were retained and both cells and supernatants were snap 

frozen in liquid nitrogen and stored in 0.5 ml aliquots until required. Cells were lysed by 

incubating 1.5 ml of cell suspension with a lysis buffer (I mM EDTA, I% Tween-20, I% SDS, 

I mM PMSF) at o•c for 30 min (Bland and Whiting, 1990). 

4.2.8 Analysis of the influence of specific inhibitors on antigen processing. 

The substances at the concentrations outlined in Table 4.1 were added to cells for 30 min prior 

to incubation with antigens for I hr. 
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4.2.9 Analysis of antigen processing by cells from individual regions of the gut. 

For this investigation the entire digestive tract from the oesophagus to the rectum was dissected 

from fish. The gut was divided into 5 regions; stomach, pyloric caeca, anterior intestine, mid 

intestine and posterior intestine. From each region, cells were isolated by collagenase digestion 

(section 4.2.3) and an equal number of viable cells from each region (10") incubated with either 

HGG or BSA (10 mg ml"1
) for I hour and snap frozen in liquid nitrogen. 

4.2.10 SDS-PAGE, Western blotting and densitometry. 

Samples derived from the various experiments described above were electrophoresed under both 

reducing and non-reducing conditions, electrotransferred to nitrocellulose sheets, immunoblotted 

and analysed by laser densitometry as described in sections 3.2.9, 3.2.12 and 3.2.13. 

Densitometric analysis was performed three times and the standard deviations and standard errors 

of means were calculated. 

Table. 4.1 : Substances used in analysis of antigen processing by isolated intestinal cells. 

Substance used Mode of action Reference 

Ammonium chloride lnm::aace lylosomal pH, inhibitJ pinocytoBis,oon L..indmarlc ~· al .• /994. 
apccif"tc i.mm1.1Dostimulator 

Cimetidine !Jihihila polric acid occrelion by bindiog H2 Plouffc tl CJl, 1986. 
recepton. abo has immunological cffcctl 

Pepstatin AsJ>a""' p ....... inhibitor. !Jihibila l)'IO'Omol Umez:awa tl Ill. 1976 
cnbepoiJP. 

Leupeptin Serine protease inhibitor. Inhibits lyaosomaJ Umezawa, 1976 

cnbepoiJP. 

Quit- A - inhibitM. blmaya ond Birk. !965. 
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4.3 RESULTS 

4.3.1 Viability of isolated intestinal cells. 

Immediately after isolation up to 75% of intestinal cells were found to be viable. A slow but 

progressive decline in cell viability with time was subsequently noted. However, even after 2 hr 

60% of the cells remained I viable /(Fig 4.1). 

4.3.2 Intracellular processing of soluble protein antigens by isolated intestinal cells 

HGG detected in cell lysates was largely intact up to 15 min post-incubation. From 15-30 min 

after incubation considerable fragmentation was noted, amounting to a 14.3% reduction in the 

relative percentage of HGG after 30 min but at subsequent time points little breakdown of HGG 

was found to have occurred (Figs 4.2 and 4.14(a)). Higher levels of the 10.6 and 17.7 kDa 

fragments were found in lysates after a 15 min incubation than at all other times. In contrast, BSA 

was fragmented to a greater extent, amounting to a31.5% reduction in the relative percentage of 

the intact antigen following a l min incubation and the fragmentation pattern did not change 

greatly over a subsequent 2 hr period (Fig 4.3). 

4.3.3 Analysis of supernatants from cells after incubation with HGG or BSA. 

Under non-reducing conditions, the HGG detected in supernatants appeared to be largely intact. 

However, when samples were reduced prior to electrophoresis a modification of the antigen was 

apparent (Fig 4.4). This was reflected in changes in the relative percentages of the 37 .I and 26.5 

kDa fragments present over the time Course of incubation. BSA detected in supernatants was more 

substantially fragmented, the effect being apparent as a 29% decrease (at 2 hr) in the relative 

percentage of intact antigen present, accompanied by an increase in the relative percentages of the 

32.2 and 44.4 kDa fragments present (Fig 4.5). The relative percentag~·-lof the 20.5 kDa 

fragment however declined from I min to 2 hr. 

4.3.4 Comparative analysis of intracellular processing of BSA and HGG by cells isolated from 

various gut regions. 
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When electrophoresed under non-reducing conditions, HGG appeared intact (results not presented). 

However under reducing conditions differences in the relative percentages of the 118.5, 55.8 and 

27.2 kDa fragments produced in cells isolated from individual regions of the gut were apparent 

(Fig 4.6). Intracellular processing of BSA was also highly variable depending on the origin of the 

cells. Fragmentation of this protein was most extensive in cells isolated from the pyloric caecae 

(85.5% reduction in the relative % of intact HGG) and mid-intestinal region while little 

fragmentation was apparent in BSA detected after incubation with cells isolated from the gastric 

and anterior intestinal regions (Figs 4. 7 and 4.14(b)). A greater amount of BSA appeared to be 

absorbed by stomach cells than by cells isolated from other gut regions and this antigen appeared 

to be intact (Fig.4.13(b)). 

4.3.5 Comparative analysis of supernatants from cells isolated from various gut regions after 

incubation with BSA or HGG. 

Differences were found in the relative percentages of the 71.1, 55.2 and 25.4 kDa HGG fragments 

detected in supernatants from cells isolated from different gut regions when electrophoresed under 

reducing conditions (Fig 4.8) while under non-reducing conditions there was little evidence of 

processing (results not presented). Fragmentation of BSA was also noted in supernatants after 

incubation of antigen with cells from all regions of the gut. Processing was least extensive in 

supernatants from cells isolated from the posterior intestinal region (Figs 4.9 and 14.14(c)). 
I . 

4.3.6 Analysis of the effects of a range of specific inhibitors on intracellular processing of BSA 

and HGG. 

Fragmentation of HGG was not apparent in samples when electrophoresed under non-reducing 

conditions. After the treatment of cells with specific inhibitors differences in the relative 

percentages of the 122.5, 79.9 and 52.4 kDa fragments in Iysates were found when samples were 

electrophoresed under reducing conditions (Fig 4.10). Intracellular processing of BSA was 

partially inhibited by cimetidine and pepstatin and was completely abrogated by Ieupeptin (Fig 

4.11) resulting in the detection only of apparently intact antigen. The reduction in the extent of 
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degradation after treatment with inhibitors was most apparent as a reduction in the relative 

percentages of the 22.4 and 29.7 kDa fragments. 

4.3. 7 Analysis of the effects of a range of potential inhibitors on the nature of BSA and HGG 

detected in supernatants. 

Under non-reducing electrophoresis conditions differences were found in the relative percentages 

of the 37 .5, 31.6 and 12 kDa HGG fragments present in supernatants from cells previously treated 

with inhibitors (Fig 4.12). Leupeptin, pepstatin and Quii-A appeared to limit processing to the 

greatest extent, leading to a reduction in the relative percentages of the 37.5 and 12 kDa 

fragments. Leupeptin had the greatest effect in reducing the extent of fragmentation of BSA, 

leading to a reduction in the relative percentages of the 18.7 and 25.2 kDa BSA fragments to 

control levels. Quil - A saponin and pepstatin also reduced degradation of BSA in supernatants 

but to a lesser extent (Fig 4.13). 
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Fig. 4.1: Influence of time on viability of intestinal cells 
isolated by collagenase digestion. 

0 5 min 15 min 30 min 60 min 120 min 360 min 
Time elapsed after isolation. 

I + /- SEM I !•i'i'''<'i Mean 

Fig. 4.1: Relationship between cell viability of intestinal cells isolated by collagenase digestion in 

Leibovitz L-15 medium and time after isolation. 
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Fig. 4.2: Ttme course of intracellular processing of HGG by isolated intestinal cells. Analysis was 

carried out on non-reduced protein samples. 

Fig. 4.2(a): Processing represented in terms of the relative % of intact HGG present. Data 

derived from laser scans of entire lanes of immunoblot. 

Fig. 4.2(b): Processing represented in terms of the relative % of discrete fragments present. Data 

derived from laser scans of individual bands on immunoblot. 
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Fig.4.2(a): Time course of intracellular processing of HGG 
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Fig. 4.2(b): Time course of intracellular processing of HGG. 
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Fig. 4.3: Time course of intracellular processing of BSA by isolated intestinal cells. Analysis was 

carried out on non-reduced protein samples. 

Fig. 4.3(a): Processing represented in terms of the relative % of intact BSA present. Data derived 

from laser scans of entire lanes of immunoblot. 

Fig. 4.3(b): Processing represented in terms of the relative% of individual BSAfragments present. 

Data derived from laser scans of individual bands on immunoblot. 
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Fig. 4.3(a): Time course of intracellular processing of BSA. 
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Fig. 4 .3(b): Time course of intracellular processing of BSA. 
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Fig. 4.4: Analysis of supernOJants from cells incubated with HGG over a 2hr time course. 

Analysis was ca"ied out on reduced protein samples. 

Fig. 4.4(a): Processing represented in terms of the relative % of the 56.6 kDa fragment present. 

Data derived from laser scans of entire lanes of immunoblots. 

Fig. 4.4(b): Processing represented in terms of the relative % of the 37. 1 kDa fragment present. 

Data derived from laser scans of entire lanes of immunoblot. 

Fig. 4.4(c): Processing represented in terms of the relative % of the 26.5 kDafragment present. 

Data derived from laser scans of entire lanes of immunoblot. 
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Fig. 4.4(a): Analysis of supernatants from Intestinal cells 
Incubated with HGG over 2 hours 
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Fig. 4.4(b): Analysis ol supernatants from intestinal cells 
Incubated with HGG over 2 hours. 
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Fig. 4.4(c): Analysis of supernatants from Intestinal cells 
Incubated with HGG over 2 hours. 
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Fig. 4.5: Analysis of supernatants from cells incubated with BSA over a 2hr time course. Analysis 

was carried out on non-reduced protein samples. 

Fig. 4.5(a): Processing represented in terms of the relative% of intact BSA present. Data derived 

from laser scans of entire lanes of immunoblot. 

Fig. 4.5(b): Processing represented in terms of the relative %of individual BSA.fragments present. 

Data derived from laser scans of individual bands on immunoblot. 

143 



100 

60 

60 

40 

20 

0 

Fig. 4.5(a): Analysis of supernatants from cells incubated 
with BSA over 2 hours 
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Fig. 4.5(b): Analysis of supernatants from cells incubated 
with BSA over 2 hours 
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Fig. 4.6: Intracellular processing of HGG by cells isolated from various gut regions. lncubations 

were terminated after 1 hr in each case and analysis was carried out on reduced protein samples. 

Fig. 4.6(a): Processing represented in terms of the relative % of the 118.5 kDa band present. 

Data derived from laser scans of entire lanes of immunoblot. 

Fig. 4.6(b): Processing represented in terms of the relative % of the 55.8 kDa band present. Data 

derived from laser scans of entire lanes of immunblot. 

Fig. 4.6(c): Processing represented in terms of the relative %of the 27.2 kDa band present. Data 

derived from laser scans of entire lanes of immunoblot. 

Key: Pyl cae = Pyloric caecae. 

Ant.int = Anterior intestine. 

Mid.int = Mid intestine. 

Post.int = Posterior intestine. 
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Fig. 4.6(a): Intracellular processing of HGG by cells 
Isolated from various gut regions 
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Fig. 4.6(b): lntracellurar processing of HGG by cells 
Isolated from various gut regions 
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Fig. 4.6(c): Intracellular processing of HGG by cells 
Isolated from various gut regions 
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Fig. 4.7: Intracellular processing of BSA by cells isolated from various gut regions. lncubations 

were terminated after I hr in each case and analysis carried out on non-reduced protein samples. 

Fig. 4. 7(a): Processing represented in terms of the relative % of intact BSA present. Data derived 

from laser scans of entire lanes of immunoblot. 

Fig. 4.7(b): Processing represented in terms of the relative %of individual BSAfragments present. 

Data derived from laser scans of individual bands of immunoblot. 

Key: Pyl cae = Pyloric caecae. 

Ant.int =Anterior intestine. 

Mid. int = Mid intestine. 

Post.int = Posterior intestine. 
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Fig.4.7(a): Intracellular processing of BSA by cells 
isolated from various gut regions 
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Fig.4.7(b): Intracellular processing of BSA by cells 
isolated from various gut regions 
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Fig. 4.8: Analysis of supernatants from cells isolated from various gut regions after a 1 hr 

incubation with HGG. Analysis was carried out on reduced protein samples. 

Fig. 4.8(a): Processing represented in terms of the relative % of the 71.1 kDa fragment present. 

Data derived from laser scans of entire lanes of immunoblot. 

Fig. 4.8(b): Processing represented in terms of the relative % of the 55.2 kDa fragment present. 

Data derived from laser scans of entire lanes of immunoblot. 

Fig. 4.8(c): Processing represented in terms of the relative % of the 25.4 kDa fragment present. 

Data derived from laser scans of entire lanes of immunoblot. 

Key: Pyl cae = Pyloric caecae. 

Ant.int = Anterior intestine. 

Mid.int = Mid intestine. 

Post. int = Posterior intestine. 
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Fig. 4.8(a): Analysis of supernatants from cells Isolated 
from various gut regions after Incubation with HGG. 
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Fig. 4.8(b): Analysis of supernatants from cells isolated 
from various gut regions after Incubation with HGG 
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Fig. 4.8(c): Analysis of supernatants from cells isolated 
from various gut regions after Incubation with HGG 
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Fig. 4.9: Analysis of supernatants from cells isolated from various gut regions after a 1 hr 

incubation with BSA. lncubations were terminated after 1 hr in each case and analysis carried 

out on non-reduced protein samples. 

Fig. 4.9(a): Processing represented in terms of the relative % of intact BSA present. Data derived 

from laser scans of entire lanes of immunoblot. 

Fig. 4.9(b): Processing represented in terms of the relative %of individual BSAfragments presem. 

Data derived from laser scans of individual bands on immunoblot. 

Key: Pyl cae = Pyloric caecae. 

Ant.int = Anterior intestine. 

Mid.int = Mid intestine. 

Post.int = Posterior intestine. 

147 



Fig.4.9(a): Analysis of supernatants from cells isolated 
from various gut regions after incubation with BSA 
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Fig. 4.9(b): Analysis of supernatants from cells isolated 
from various gut regions after incubation with BSA 
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Fig. 4.10: Influence of a range of inhibitors on intracellular processing of HGG by isolated 

intestinal cells. Reactions were allowed to proceed for I hr in each case and analysis carried out 

on reduced protein samples. 

Fig. 4.10(a): Processing represented in terms of the relative % of the 122.5 kDafragment present. 

Data derived from laser scans of entire lanes of immunoblot. 

Fig. 4.10(b): Processing represented in terms of the relative %of the 79.9 kDafragment present. 

Data derived from laser scans of entire lanes of immunoblot. 

Fig 4.10(c): Processing represented in terms ofthe relative % of the 52.4 kDafragment present. 

Data derived from laser scans of entire lanes of immunoblot. 

Key: AC =Ammonium chloride. 

Cim = Cimetidine. 

Pep = Pepstatin. 

QA =Quit-A. 

Leu = Leupeptin. 
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Flg.4.10(a): Effect of potential Inhibitors on intracellular 
processing of HGG 

ReiaUYe X or 122.6 kDa band preoenl 
30r-----------------~--------------------------------, 

25 1-"""-"'"""""" """"' 

20 !--·--·"""'"'-

15 1-·-··""""'_"_,,_ 

10 1-"' ........................... . 

control 1 hr .U,eol + AC + Cim + Pep + QA + Leu 

Lncubation condition• 

I +/- SEll CJ llean 
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Fig. 4.11: Influence of a range of inhibitors on intracellular processing of BSA by isolated 

intestinal cells. Reactions were terminated after 1 hr in each case and analysis carried out on 

non-reduced protein samples. 

Fig. 4.ll(a): Processing represented in terms of the relative % of intact BSA present. Data 

derived from laser scans of entire lanes of immunoblot. 

Fig. 4.1l(b): Processing represented in terms of the relative % of discrete fragments present. 

Data derived from laser scans of individual bands on immunoblot. 

Key : AC = Ammonium chloride. 

Cim = Cimetidine. 

Pep = Pepstatin. 

QA = Quil-A. 

Leu = Leupeptin. 
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Fig.4.11(a):Effects of potential inhibitors on intracellular 
processing of BSA 
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Fig.4.11(b):Effects of potential inhibitors on intracellular 
processing of BSA 
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Fig. 4.12: Influence of a range of inhibitors on the nature of HGG detected in supernatantsfrom 

intestinal cells after incubation. Reactions were allowed to proceed for 1 hr in each case and 

analysis was carried out on non-reduced protein samples. 

Fig. 4.12(a): Processing represented in terms of the relative % of intact HGG present. Data 

derived from laser scans of entire lanes of immunoblot. 

Fig. 4.12(b): Processing represented in terms of the relative % of discrete fragments 

present. Data derived from laser scans of entire lanes of immunoblot. 

Key: AC =Ammonium chloride. 

Cim = Cimetidine. 

Pep = Pepstatin. 

QA =Quit-A 

Leu = Leupeptin. 
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Fig.4.12(a):Effect of potential inhibitors on form of HGG 
detected in supernatants from cells after incubation 
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Fig.4.12(b):Effects of potential inhibitors on form of HGG 
detected in supernatants from cells after incubation 
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Fig. 4.13: Influence of a range of inhibitors on the nature of BSA detected in supernatants from 

intestinal cells after incubation. Incubations were terminated after 1 hr in each case and analysis 

was carried out·on non-reduced protein samples. 

Fig. 4.13(a): Processing represented in terms of the relative % of intact BSA present. Data 

derived from laser scans of entire lanes of immunoblor. 

Fig. 4.13(b): Processing represented in terms of the relative % of discrete fragments 

present. Data derived from laser scans of individual bands of immunoblot. 

Key : AC = Ammonium chloride. 

Cim = Cimetidine. 

Pep = Pepstatin. 

QA =Quit-A. 

Leu = Leupeptin. 
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Fig.4.13(a): Effects of potential inhibitors on form of BSA 
detected in supernatants from cells after incubation 
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Fig.4.13(b): Effects of potential inhibitors on form of BSA 
detected in supernatants from cells after incubation 
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Fig. 4.14: Western blots showing processing of HGG and BSA by isolated intestinal cells. 1he 

molecular weights of the prestained markers are labelled in lane 1 of Fig 4.14(a) and the bars in 

lane 1 ofFig.4.14 (b&c) represent the same molecular weights. 

Fig. 4.14(a): Time course of intracellular processing of HGG by isolated intestinal cells. Samples 

were electrophoresed under non-reducing conditions. Loading order: Lane I, prestained 

molecular weight markers. Lane 2, negative control (cells only). Lane 3, positive control (HGG). 

Lanes 3 - 10, cell lysates from cells incubated with HGG for 1 min. 5 min. 15 min, 30 min, 60 

min and 120 min respectively. 

Fig. 4.14(b): Comparative analysis of intracellular processing of BSA by cells isolated from 

individual regions of the rainbow trout gut. lncubations were for 1 hr in each case and samples 

were electrophoresed under non - reducing conditions. Loading order: Lane 1, prestained 

molecular weight markers. Lane 2, positive control (BSA). Lane 3, negative control (lysate from 

intestinal cells incubated in the absence of BSA). Lanes 4 - 8, celllysates from cells isolated from 

gastric, pyloric caeca, anterior intestine, mid intestine and posterior intestinal regions respectively 

after a 1 hr incubation with BSA. 

Fig. 4.14(c): Comparative analysis of supernatants after incubation of cells from individual gut 

regions with BSA. lncubations were for 1 hr in each case and samples were electrophoresed under 

non- reducing conditions. Loading order: Lane 1, prestained molecular weight markers. Lane 2, 

positive control (BSA). Lane 3, negative control (lysate from intestinal cells incubatedfor 1 hr in 

the absence of BSA. Lanes 4 - 8, supernatants from cells isolated from gastric, pyloric caeca, 

anterior intestine, mid intestine and posterior intestinal regions respectively after incubation with 

BSA. 
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4.4 DISCUSSION 

An in vitro system involving an isolated intestinal cell preparation was used to analyse the cellular 

processing of soluble proteins. The capacity of isolated intestinal cells to absorb BSA and HGG 

was clearly demonstrated and considerable differences were noted in the intracellular processing 

of the proteins. BSA was considerably degraded inside the cells while processing of HGG was 

less extensive. The rapid absorption of both BSA and HGG by trout gut cells in this study is in 

accordance with previous in vivo (Georgopoulou et al., /1986'; Jenkins et al., 1992; Doggett et al., 

1993a) and in vitro studies (Georgopoulou et al., 1986) which confirmed the uptake of these 

antigens from the gut into both the tissues and bloodstream. The rapidity of uptake of both 

antigens ( < I min) also correlates with previous studies which demonstrated internalisation of 

HRP within as little as 5 seconds of exposure to tissue pieces (Iida and Yamamoto, 1985). It 

appeared in the present study that a greater quantity of BSA than HGG was absorbed by intestinal 

cells. In vivo studies on uptake of BSA and HGG enterically presented to tilapia, Oreochromis 

mossambicus and rainbow trout also suggest that higher levels of the former protein are absorbed 

by both species (Georgopoulou et al)f9~; Doggett, 1989; Jenkins et al., 1992). Levels of HGG 

absorption in rainbow trout appear very low in comparison to those observed in tilapia and carp 

(McLean and Ash, 1986; Jenkins et al., 1992). It may also be significant that since HGG is a 

much larger molecule than BSA (150 kDa compared to 66 kDa) the incubation of cells with equal 

concentrations of both antigens would lead to exposure of cells to a much greater number of BSA 

molecules which may partly account for the greater uptake observed. 

BSA was considerably fragmented by intracellular factors within one minute of exposure to trout 

gut cells but the degree of fragmentation did not increase greatly with time. This may have 

reflected overloading of the enzyme systems by the high concentration (10 mg mJ-') of BSA used 

or alternatively may have been a result of the limited specificity of the cellular enzymes for 

cleaving certain regions of the BSA molecule. Intracellular processing of HGG appeared to be 

complex; only after 30 minutes incubation with cells was substantial fragmentation observed. At 

time points later than 30 min after incubation HGG detected intracellularly was largely intact. 
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Previous studies have shown that intracellular processing of HGG in intestinal enterocytes of both 

tilapia (Jenkins et al., 1991) and rainbow trout (Georgopoulou et a/.,[19860 is a complex process 

possibly involving both degradative and non-degradative pathways for its intracellular processing 

after absorption. This hypothesis might account for the appearance of fragmentation only at 

certain time points after incubation since if HGG was channelled into a degradative lysosomal 

pathway the macromolecule would be progressively degraded leading to detection of immunogenic 

fragments only during an intermediate point between entry into the degradative milieu· and 

digestion to non-antigenic components. Diversion of some HGG into an alternative non

degradative pathway could then account for the detection of apparently intact HGG at a1.1 time 

points. Previous studies have proposed the existence of alternative routes for antigen processing 

in teleosts. For example Rombout et al. (1985) proposed that HRP and ferritin were processed 

in different ways by the carp gut, only small amounts of HRP entering secondary Iysosomes for 

transport to supranuclear vacuoles for degradation while ferritin was widely found in such 

structures. The latter authors proposed the existence of a 'protected' pathway for HJU' involving 

a receptor-mediated pinocytotic mechanism resulting in the formation of clathrin coated vesicles 

which can protect macromolecules from fusion with lysosomes as described· in mammals 

(Abraharnson and Rodewald, 1981; Rodewald and Abrahamson, 1982). In contrast, Rombout et 

al. (1985) proposed that the uptake of ferritin was via fluid phase pinocytosis involving 

accumulation of antigens in small vesicles or vacuoles which subsequently fuse with lysosome like 

bodies before reaching supranuclear vacuoles where the macromolecules are degraded (Rodewald, 

1973; Walker, 1981). The pattern and extent of BSA fragmentation\ __ \by trout gut cells reported 

in this study compares favourably with the results of Rombout et al. (1985). While exact 

absorption pathways cannot be defined from the present immunoblotting study, it is possible that 

the considerable differences in the patterns of intracellular processing of BSA and HGG reflect the 

existence of a selective pathway for HGG absorption in adult trout. Davidson (1991) found that 

the cell population resulting from collagenase digestion of gut tissue comprised 22% goblet and 

epithelial cells, 69.8% lymphocytes, 4.2% granulocytes and 3.6% macrophage-like cells. Since 

only a percentage of the isolated cells were of epithelial morphology a direct comparison with 

154 



studies which only investigated enterocyte uptake is only partly valid since it is likely that 

macrophages and other lymphoid cells also absorbed antigen and contributed to processing. 

After the incubation of cells with antigens supernatants were analysed to determine if exocytosis 

of antigens occurs and/or factors present on the cell surface contribute to protein fragmentation. 

Rombout et al. (1985) described the exocytosis of absorbed HRP in cyprinids. Moreover a 

number of in vivo studies have previously demonstrated the presence of enterically administered 

antigens in the tissues and the circulation suggesting that in fish, as in mammals, antigens can be 

transported across the gut epithelium. Studies on teleosts and on mammalian species have 

indicated that peptidases present on the brush border membrane play a terminal role in protein 

hydrolysis prior to absorption by enterocytes (Ash, 1980; Ugolev and Kuzmina, 1994). In the 

present study BSA detected in supernatants was partially fragmented while HGG was modified to 

a lesser degree. This may · be a consequence of the greater intracellular hydrolysis of BSA 

compared with HGG and may thus reflect exocytosis of intracellularly degraded antigen. The 

considerable intracellular fragmentation of HGG after 15 - 30 min incubation was not reflected in 

the antigen detected in supernatants which suggests that the fragments generated inside the cells 

were not exocytosed. This may be due to the presence of both degradative and non - degradative 

pathways as proposed by Rombout et al. (1985) which could account for the presence of intact 

antigen within the cells and also the subsequent appearance of antigen in the tissues. Alternatively, 

HGG may not be as readily degraded as BSA by gut cells. Although BSA detected intracellularly 

and in supernatants was extensively degraded the fragments present differed considerably. A 

greater amount of low molecular weight BSA fragments ( < 20 kDa) were present in celllysates 

than in supernatants suggesting that if these fragments were derived from within the cells there 

may have been an element of specificity which determined which fragments were exocytosed. The 

possibility also exists that some of the degradation of BSA apparent in supernatants was a result 

of proteolysis by factors on the cell surface. If the only membrane associated enzymes present on 

the cell surface of epithelial cells are di- and tri- peptidases then the fragmentation of native 

proteins would not be expected perhaps further suggesting that the fragmentation observed here 
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was a result of exocytosis. Additionally since the method which was used for the isolation of gut 

cells removes most of the surface epithelial layer (Davidson, 1991) it is perhaps unlikely that the 

brush border peptidases present on surface enterocytes were expressed at a high level. 

A comparative study of intracellular processing of BSA and HGG by cells isolated from different 

gut regions indicated that cells from all areas of the gut possessed the capacity to absorb both BSA 

and HGG but that processing in different regions differed considerably. The intestinal tract of 

teleosts shows a regional differentiation with a proximal segment consisting of 60 - 75 % of gut 

length with enterocyte features characteristic of lipid absorption, a middle segment of 20 - 25 % 

gut length with epithelial cells capable of protein absorption by pinocytosis and a distal segment 

of 5 - 15 % of gut length with enterocytes characteristic of water and ion transport (Yamamoto, 

1966; lwai, 1969; Gauthier and Landis, 1972; Noaillac-Depeyre and Gas, 1976; Stroband and 

Debets, 1978; Stroband et al., 1979). The intracellular digestion of macromolecules is reported 

to occur in the supranuclear vacuoles of enterocytes in the second gut segment in all larval teleosts 

and in adult cyprinids, this is supported by the observation of intense acid phosphatase activity in 

supranuclear vacuoles in this region (Noaillac-Depeyre and Gas, 1973, 1976; Stroband et al .. 

1979; Ezeasor and Stokoe, 1981; Watanabe, 1981, 1982). The findings of this study showed that 

BSA was absorbed maximally by cells from the gastric region while HGG was maximally absorbed 

by cells from the anterior intestine. Interestingly, while BSA was absorbed by cells from the 

gastric region no fragmentation was apparent and it is possible that this absorption was by goblet 

cells which could not subsequently degrade the antigen. Uptake of soluble antigens by goblet cells 

in tilapia has been noted (Jenkins, pers. comm.) but may be non-productive for oral vaccination 

unless the antigen can be transported from these cells to the body tissues. In contrast, BSA 

detected within cells from the pyloric caeca was extensively degraded. BSA absorbed by the 

anterior and posterior intestinal regions appeared largely intact while the antigen was fragmented 

partially by cells from the mid intestine. This data suggests that the components necessary for the 

intracellular processing of BSA may be absent from or differ considerably between cells from 

different gut regions. Differences in intracellular processing of HGG between cells from different 
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gut regions were only evident when samples were electrophoresed under reducing conditions 

suggesting that the processing of HGG intracellularly may be less destructive in terms of gross 

digestion of the macromolecule than for BSA and that changes made to the antigen may be less 

acute. It is possible that the detection of apparently intact antigen under non-reducing conditions 

reflected the relatively low levels of HGG absorption rather than a lack of degradation. 

Differences in the form of HGG detected under reducing conditions suggests that as in the case 

of BSA the cellular handling of the antigen depended on the region of the gut from which cells 

were derived. Low molecular weight fragments of HGG were not detected in most cases and the 

27 kDa band (presumably light chain) was present at a much lower level than in the control 

suggesting perhaps that binding of this fragment to cell components may have occurred accounting 

for the higher molecular weight' forms of HGG detected. These results conflict with those of 

Georgopoulou et al. (1986) who found in an immunocytochemical study that the Fe portion of 

HGG was degraded intracellularly by rainbow trout intestinal enterocytes and that the Fab portion 

was not. However, if the light chain (Fab) has become associated with constituents inside the cell 

then though it might not migrate electrophoretically as "classical" light chain it would react 

normally with antisera against Fab in immunocytochemistry. An in vivo analysis of HGG uptake 

into the rainbow trout circulation after oral administration (section 5.3) found greater amounts of 

immunoreactive HGG in the plasma possessing determinants recognised by antisera to the Fe than 

the Fab portions of the molecule which correlates with the present findings and again conflicts with 

those of Georgopoulou et al. (1986). Numerous studies have demonstrated protein 

macromolecule absorption by the posterior intestinal enterocytes in teleost larvae (lwai and 

Tanaka, 1968; Iwai, 1969) and in adult agastric teleosts such as goldfish (Gauthier and Landis, 

1972), carp (Noaillac-Depeyre and Gas, 1973) and grasscarp (Yamamoto, 1966). The widely held 

supposition that macromolecular absorption by distally disposed enterocytes of agastric fish is an 

alternative mode of protein nutrition in fish devoid of a functional stomach (lwai, 1969; Noaillac

Depeyre and Gas, 1973; Watanbe, 1982) has been challenged by the finding that the posterior 

intestine of gastric species such as channel catfish (W atanabe, 1984), perch (Noaillac-Depeyre and 

Gas, 1979), tilapia (Jenkins et al., 1992; Doggett et al., 1993a) and rainbow trout (Stroband and 
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Kroon, 1981; Georgopoulou et al., 1985, 1986, 1988; McLean and Ash, 1986; Doggett et al, 

1989) has the capacity for macromolecular protein absorption. A number of studies have reported 

the slow rate of antigen degradation by enterocytes of the second gut segment of teleosts indicating 

that intracellular degradation is not the primary function of this region (Watanabe, 1982; Rombout 

et al., 1985). Macromolecular uptake by anterior intestinal cells has been less frequently reported 

(Lamers, 1985). Scherbina et al. (1976) and Stroband and van der Veen (1981) however, found 

that in cyprinids 80% of protein absorption occurs in the first gut segment. Doggett (1989) also 

demonstrated significant uptake of HRP and ferritin by enterocytes in the anterior intestine of 

Oreochromis mossambicus. In addition similarities have been found between the distally disposed 

enterocytes of carp (Lamers, 1985) and tench (Noaillac-Depeyre and Gas, 1973) which are thought 

to be specifically adapted for macro-molecular absorption and those from the anterior intestine of 

0. mossambicus (Jenkins, 1992). In addition considerable absorption of HRP and ferritin by the 

proximal segment of carp albeit at a lower level than in the distal region, has been demonstrated 

(Rombout et al., 1985). The present study is unique in analysing macromolecule absorption and 

processing by cells from all areas of the teleost gastrointestine. The detection of antigen absorbed 

by cells from all gut regions may be partly artefactual since in vivo only the lumenal aspect of 

surface epithelial cells is in contact with proteins whilst in vitro the macromolecules have access 

to all external cell surfaces. It is also likely that differences in the intracellular processing of 

soluble proteins from different regions of the gut partly reflects the presence of phagocytic 

lymphoid cells. Rombout and van den Berg (1989) found a greater number of and larger 

intraepithelial macrophages in the second gut segment of carp compared with the first segment and 

antigen was detected within these cells after oral intubation. This might account for the greater 

degradation of BSA by cells from the mid intestine rather than the anterior and posterior regions. 

However, since no characterisation of the cell populations present in the different gut regions was 

carried out such possibilities are open to conjecture. Many studies have revealed the presence of 

large numbers of immunologically responsive cells in the intestinal epithelium and lamina propria 

of various fish species (Davina et al., 1980; Doggett, 1989; Rombout et al., 1993a). In a study 

of the gastric species, tilapia, Doggett (1989) found roughly equal numbers of intraepithelial 
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leucocytes in all regions of the intestine, thus the recognition in this study of macromolecular 

absorption in all three intestinal zones may be significant if the intestinal cells involved in 

processing can present antigen to lymphocytes. Jenkins (1992) also used tilapia to demonstrate 

interactions between antigen and lympbocytes in the gut. The observation of antigen absorption 

by cells derived from the gastric region in this study may not be insignificant since studies have 

reported the presence of leucocytes in the stomach tissue of tilapia (Doggett and Harris, 1991) and 

elasmobranchs (Hart, 1987) but the numbers of lymphocytes described in this region is generally 

much less than in the intestinal regions. Mammalian studies indicate an important role for 

absorptive enterocytes in antigen processing and presentation and therefore in the induction of 

mucosal immune responses by the gut (section 2.5). Since teleosts do not possess the highly 

organised gut associated lymphoid tissues (GAL T) present in higher vertebrates the absorptive 

enterocytes may assume the roles of antigen sampling and immunological regulation at the 

digestive mucosae. 

To determine which enzymes were involved in cellular processing of BSA and HGG, inhibitory 

and other modulatory agents were utilised some of which have been previously applied in vivo to 

enhance antigen absorption by the teleost gut (Jenkins, 1992). ln the present study leupeptin was 

found to completely abrogate intracellular processing of BSA. Leupeptin is a potent inhibitor of 

the lysosomal cysteine proteases cathepsins B, Hand L (Seglen, 1983) and its ability to efficiently 

enter intact cells has been documented (Clarke and Williams, 1984). Pepstatin is an effective 

inhibitor of the lysosomal enzyme, cathepsin D (Barth and Afting, 1984) and partially inhibited 

the intracellular degradation of BSA in this study. However, it has been reported that peps tat in 

is taken up very slowly by mammalian cells (Gordon and Seglen, 1989) which may account for 

its partial effectiveness in this study. Cathepsin B is a cysteine proteinase whose action is similar 

to papain (Aronson and Barrett, 1978; Graf et al., 1979, 1981) and Cathepsin D is an 

endopeptidase with a role similar to pepsin which functions in the degradation of endogenous and 

absorbed exogenous proteins (Barrett, 1972, 1977; Van der Westhuyzen, 1980; Okitani et al., 

1981; Barth and Afting, 1984). Cathepsins B and D are recognised as the most important 
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lysosomal enzymes and previous work has indicated that certain proteins have a specific 

vulnerability to either cathepsin B or D whilst other proteins may be attacked initially by either 

endopeptidase. Lysosomal proteolysis of haemoglobin in mammals for example is initiated by 

cathepsin D (Huang and Tappet, 1971) while cathepsin B or another thiol cathepsin is involved 

in the final stages of the degradation of albumin and other native proteins (Huisman et al., 1974). 

The results of the present study suggest that a cysteine protease, possibly cathepsin B, _is 

principally involved in intracellular processing of 8SA by rainbow trout intestinal cells. The 

posterior intestine of trout was previously reported to be characterised by high catheptic activity 

which increased immediately after food ingestion (Georgopoulou et al., 1985, 1986). Leupeptin 

is also an effective inhibitor of at least I cytoplasmic calcium activated neutral protease found in 

various tissues (Toyo-Oka et al., 1978) so the complete abrogation of 8SA degradation by 

leupeptin may also reflect an effect of the inhibitor on cytoplasmic enzymes. Georgopoulou et al. 

(1986) eo-localised cathepsin D (by immunofluoresence) with absorbed HGG and hepatitis 8 

surface antigen in the same vacuolar system and showed vacuolar localisation of cathepsin 8 in 

the same tissue suggesting a role for these enzymes in intracellular digestion in the rainbow trout 

intestine. In an earlier study, the activity of a lysosomal protease (cathepsin) and of acid 

phosphatase were shown to increase strongly at the rainbow trout posterior intestine after first 

feeding occurred also'~ting_ a role for cathepsins in the digestion of protein in juvenile fish 

(Georgopoulou et al., 1985). Ammonium chloride did not appear to influence the intracellular 

processing of 8SA in this study which is surprising since this agent can effectively inhibit 

pinocytosis in various cell types (Liversey et al., 1980). A study on lysosomal degradation of 

radio-labelled albumin in yolk sacs (Ciarke and Williams, 1979) indicated that tissues exposed to 

ammonium chloride rapidly regained most of their proteolytic activity after treatment which may 

explain the present results. Quii-A appeared to reduce intracellular fragmentation of 8SA. Quii-A 

saponin has been reported to have inhibitory effects on certain proteolytic enzymes such as trypsin 

and pepsin (lshaaya and 8irk, 1965) and may have inhibited lysosomal cathepsins with similar 

properties. Cimetidine, a H2 histamine receptor antagonist also appeared to partly inhibit 8SA 

intracellular processing. Differences in the processing of HGG after treatment with potential 
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inhibitors were only apparent when lysates were electrophoresed under reducing conditions. While 

ammonium chloride, cimetidine and pepstatin appeared to have little effect on intracellular 

processing of HGG, leupeptin and Quii-A did alter its processing, both agents having similar 

effects. It is difficult to draw any firm conclusions from this data however since the differences 

may reflect subtle modifications in antigen processing due to the action of the various agents rather 

than the gross changes that were observed with BSA. Analysis of the effects of the inhibitors 

described previously on the nature of the antigens detected in supernatants indicated that leupeptin 

was most effective in reducing fragmentation of BSA and HGG. Pepstatin and Quii-A also 

appeared to have an inhibitory effect but in the case of both antigens the effects of inhibitors on 

degradation were minimal. 

The evidence from this study supports the use of an in vitro methodology in the analysis of cellular 

processing of antigens in the teleost gut. Data indicates that considerable differences exist both 

in the modes of antigen handling in different gut regions and for different proteins by the same 

cells. Intracellular processing of BSA resulted in considerable degradation but processing of HGG 

appeared to be more complex. The observation of substantial antigen modification in cell 

supernatants indicated that fragmented and possibly intact antigen was exocytosed from cells after 

uptake. This study postulates that a great complexity exists in the mode of cellular antigen 

processing by the teleost gut involving, perhaps, a degree of specificity and that such fundamental 

work may be of value in devising strategies and formulations for oral vaccination of teleosts. 

Future work could apply this model to investigate the capacity for intestinal absorption of 

candidate antigens or of the value of modulatory agents in enhancing uptake prior to large scale 

in vivo experimentation. 
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CHAPTER 5 

AN INVES17GA170N INTO mE VALUE OF GASTRIC INHIBITORS IN mE ORAL DEUVERY 

OF SOLUBLE PROTEIN AN11GENS TO TELEOSTS 
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5.1 INTRODUCTION 

The· gastric barrier has commonly been cited as an obstacle to the effective oral delivery of intact 

protein macromolecules to gastric teleosts (Lillehaug, 1989; Wong et al., 1992). This contention 

was supported by the observation that the anal administration of soluble protein antigens and 

bacterins enhanced both their absorption and the resultant immune response when compared with 

oral administration (Johnson and Amend, 1983a, b; Jenkins et al., 1992). In mammals, gastric 

acid has been demonstrated to have an adverse effect on the viability of live orally administered 

enteric organisms (Giannella et al., 1973) and can alter the immunogenicity of inactivated oral 

vaccine preparations (Ciemens et al., 1986; Sanchez et al., 1993a). Furthermore, trypsin, small 

intestinal contents or acid alone had little effect on Escherichia coli pilus protein colonization 

factor antigens (CFA 's) whilst acid and pepsin or stomach contents led to a rapid loss of 

antigenicity and conversion of the antigens to low molecular weight fragments (Schmitt et 

al.,1985). 

The teleost stomach is lined by columnar epithelial cells with scattered goblet cells. Tubular 

glands are located in the cardiac and fundic regions of the stomach and open into foveolae (Fange 

and Grove, 1979). In most sub-mammalian vertebrates gastric glands are formed of a single cell 

type, - oxynticopeptic cells; which secrete both HCI and pepsinogen; in mammals this cell 

differentiates into an acid secreting (oxyntic/parietal) cell and a pepsinogen secreting cell 

(Michelangeli et al.,1988). Weinreb and Bilstad. (1955) indicated that the structure of gastric 

gland cells in rainbow trout resembled that of chief cells in other vertebrates. The piscine 

oxynticopeptic cell contains abundant secretory granules, presumed to be pepsinogen (Tan and 

Teh, 1974), and is also believed to produce HCI (Barrington, 1957; lro, 1967; Mattisson and 

Holstein, 1980). A study which investigated the ultrastructure of gastric gland cells in teleosts 

described a basal region rich in rough endoplasmic reticulum and zymogen-like secretory granules 

which were released apically by exocytosis (Noaillac-Depeyre and Gas, 1978). These 

ultrastructural features are consistent with the hypothesis that gastric glands are active in both acid 

(HCI) production and pepsinogen synthesis and acidic gastric fluid has been frequently reported 
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in teleost species (Western and Jennings, 1970; Grabner and Hofer, 1985; Smith, 1989). 

Gastric acid secretion in mammals is precisely regulated by neural (acetylcholine), hormonal 

(gastrin) and paracrine (histamine, somatostatin) mechanisms. The stimulatory effect of 

acetylcholine is mediated via an increase in cytosolic calcium and that of histamine by activation 

of adenylate cyclase and generation of cAMP (Shamburek and Schubert, 1993). Extensive 

research on the mechanisms involved in gastric acid secretion and the subsequent identification of 

specific receptor subtypes has led to the development of potent drugs capable of inhibiting acid 

secretion. These drugs include the histamine H2 receptor antagonists such as cimetidine, 

ranitidine, famotidine, nizatidine and roxatidine acetate (Shamburek and Schubert, 1993). While 

most hormonal control of digestive tract physiology in higher vertebrates is extrinsic involving 

autonomic nerves and externally produced hormones, control in fish is mainly intrinsic with many 

of the hormone producing cells preSent in the intestinal epithelium (Smith, 1989). The 

mechanisms of action of some regulatory peptides found in the piscine gut have been described 

(Holmgren, 1985; Holmgren et al., 1986). A role for histamine in stimulation of gastric acid 

secretion has been demonstrated in the European catfish, Silurus glanis (Gzgyzon and Kuzina, 

1973) and in the Atlantic cod, Gadus morhua (Holstein, 1975). The observation that exogenous 

histamine leads to acid secretion indicates a physiological role for histamine in the regulation of 

acid secretion (Reite, 1969; Lorentz et al., 1973). Holstein (1976) found that the injection of 

histamine or carbachol amine into cod led to considerable secretion of gastric acid, an effect which 

was blocked by the H2 receptor antagonist metiamide. H2 receptors have also been detected on 

a wide range of other cell types in mammals including lymphocytes (section 6.1). 

A range of strategies have been used to reduce the impact of gastric secretions on orally 

administered macromolecules in both mammals and teleosts. Sodium bicarbonate has been 

administered prior to enteric vaccination with Vibrio cholerae whole cell/ B subunit vaccines in 

humans to prevent acid denaturation of the cholera toxin B subunit (Ciemens et al., 1986; Sanchez 

et al., 1993). The H2 receptor antagonist, cimetidine, has also been used as a gastric inhibitor prior 

to the administration of irradiated Escherichia coli vaccine against enterotoxigenic E. coli induced 
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diarrhoea (Dima et al., 1992). The application of gastric inhibitors in teleost enteric delivery 

systems has been relatively limited, although sodium bicarbonate has been used to enhance the 

absorption of both standard antigens (McLean and Ash, 1989) and protein hormones (Thomas and 

Boyd, 1989; McLean et al., 1990; Solar et al., 1990). A range of strategies other than simply the 

neutralisation of gastric acid or inhibition of acid synthesis also exist for reducing the impact of 

gastric secretions on labile vaccines including enteric coating (Wong et al., 1992) and 

microencapsulation (section 7 .I). 

The aims of the present study were to investigate the use of gastric inhibitors in reducing the 

impact of the gastric secretions of rainbow trout on the proteolysis of protein antigens and in 

enhancing antigen uptake. This involved determining the concentrations of sodium bicarbonate 

and cimetidine which were necessary to establish a desired gastric pH (in 100 - 150 g fish) and 

also devising an in vivo method for assessing the impact of gastric inhibitors (and other potential 

delivery systems) on lumenal proteolysis. The criteria chosen for assessing the effects of the 

gastric inhibitors used in this study were gastrointestinal pH, stability of antigens in the gut lumen 

and the quantity and nature of antigen in the plasma. This work was also intended to test the 

predictive value of an in vitro model described in chapter 3 with regard to the pH dependence of 

the gastric proteolysis of HGG. 
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5.2 MATERIALS AND METHODS 

5.2.1 Animals 

Rainbow trout were maintained as described in section 3.2.1. 

5.2.2 Sample collection 

Each group of fish was isolated in a separate tank for the duration of experiments. Animals were 

killed by administering a sharp blow to the head after which blood was collected from the caudal 

vein using a 23 gauge needle into heparinised syringes. Blood was stored overnight at 4°C before 

centrifugation at 5,800 x g for 5 min and plasma was stored in 200 ~-tl aliquots at -2ooc until 

required. After bleeding, a longitudinal incision was made in each fish from the anus to a point 

in line with the operculum, a transverse incision was made and one flank pulled aside to expose 

the gut. The gut was excised at the anterior end of the oesophagus and immediately anterior to 

the anus, divided into 5 regions (Fig 5.1) and the pH of each region was recorded by means of 

a glass pH microprobe (Aldrich, Poole, Dorset). After making a longitudinal incision to expose 

the lumenal surface, mucosal scrapings were collected from each gut region with PBS, pH 7.2 and 

decanted into plastic containers on ice. Contents from each group (n=5) were made up to 6 ml 

with PBS and 50 ~-tl of 100 mM PMSF was added. Samples were stored at -20°C until required. 

Table.5.1: Overview of experimental protocols applied in the study of gastric inhibitors. 

Analysis performed 

Expt Gastric Antigeo Time Serum level Serum Mucosal Gut pH 
uumber iubibitor (HGG) before ofHGG preseote of preseoce of values 

used\ dose dose giveo sample (ELISAJ HGG HGG 
per fish) (Tune 0) coDectiou (Blotting) (Blotting) 

I - 0-75 mg I hr + . -

2 NaHCO, 35 mg I hr + + + 
(0-35 mg) 

3 Cimetidine 35 mg I hr + + . + 
(0-100 mg) 

4 - 35 mg 15 min-48hr + + -

5 NaHCO, 35 mg 15min-48hr + + + + 

6 Cimetidine 35 mg 15min-48hr + + + + 
(I mg) 

7 Cimetidine 35 mg 15min-48hr + + -
(10 mg) 

8 Cimetidine 35 mg 15min-48hr + + + + 
(50 mg) 
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Fig. 5.1: Experimental procedures used in the investigation of antigen proteolysis and absorption. 

A: oral intubation of antigen into pyloric curvature. B: Collection of plasma from the caudal sinus. 

C: Measurement of gut pH. D: Collection of scrapings from regions of the gut. Numbers 1 - 5 

represent the regions of the digestive tract in which the pH was measured. 1, stomach. 2, pyloric 

caecae. 3, anterior intestine. 4, mid - intestine. 5, posterior intestine. For collection of mucosal 

scrapings, samples were taken and subsequently analysed from the stomach and pyloric caecae and 

the remainder of the intestine was bisected and referred to in the text as anterior and posterior 

intestine. 

5.2.3: Establishment of optimal doses of HGG and gastric inhibitors for oral administration 

The experimental protocols used in this study are presented in condensed form in Table 5.1. To 

establish an optimal HGG dose, individual groups of fish (n=S) were intubated with a range of 

HGG doses from 1 to 75 mg per fish administered in 0.2 ml, PBS,..pH 7.2. Solutions were 

delivered to fish through a 1 mm diameter polyvinyl chloride (pVC) tubing attached to a 21 gauge 
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needle and a 1 ml syringe. Blood samples were collected 1 hr after intubation. ELISA analysis 

of plasma samples (see section 5.2.5) indicated that a dose of 35 mg HGG per fish resulted in 

optimal plasma levels of the antigen and this dose was chosen as the basis for further studies. A 

range of doses of sodium bicarbonate or cimetidine were administered to fish 1 hr prior to HGG 

administration. Blood samples were collected 1 hr later and analysed by ELISA. Additionally, 

the pH of all regions of the trout gastrointestine was measured by means of a glass microprobe 

(Aldrich). Following ELISA analysis, appropriate doses of cimetidine and bicarbonate were 

chosen and were subsequently used to investigate the effects of gastric inhibitors on the time 

course of HGG absorption . 

5.2.4: Investigation of the effects of gastric inhibitors on the time course of HGG absorption 

Time course experiments were performed with gastric inhibitors (Table 5.1). Doses of I, 10 and 

50mg cimetidine and 35 mg bicarbonate were administered to fish I hr prior to HGG 

administration. Samples were collected from fish at 15 min, 30 min, 45 min, 60 min, 2 hr, 6 hr, 

12 hr, 24 hr and 48 hr after HGG intubation and subsequently analysed. To serve as a control for 

the gastric inhibitor study, 0.2 ml PBS was administered to fish I hr before HGG delivery and 

samples were collected and analysed over a 48 hr time course. 

5.2.5: Enzyme linked immunosorbent assay (EUSA) for HGG detection. 

The antigen capture ELlS A used was a modification of that optimised previously (Jenkins et al, 

1992) from the method of Ambler and Peters (1984). A representative example of the layout of 

a microtitre plate for HGG detection and a photograph of a developed ELISA plate are presented 

in Fig 5.2. Microtitre plates (Falcon) were coated with lOO Jll of a polyclonal goat anti-HGG 

antiserum (Sigma) at a I :4000 dilution in carbonate-bicarbonate buffer, pH 9.6 (Appendix C), 

wrapped in aluminium foil and incubated in a humid box overnight at 4 °C. Solutions were 

aspirated and wells washed x 4 by means of a Titertek Handiwash 110 plate washer (Labsystems, 

U .K) and dried thoroughly. Plasma samples (100JLI) diluted I: 10 in PBS-Tween (Appendix C) and 

standard HGG solutions (lOOJ.!I) at 10 Jlg mt·' in 10% control trout serum were titrated down the 
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plate. Plates were wrapped in aluminium foil and incubated in a humid box at room temperature 

for 2 hr. Following this the plates were washed, dried and IOO~tl of goat anti-HGG peroxidase 

conjugate (Sigma) at a 1:2000 dilution in PBS-Tween was added to each well. In addition, control 

wells were included on each plate from which one reagent was omitted to determine if any cross 

reactions were present and to allow for the correction of sample absorbances. The plates were 

wrapped in foil and incubated at room temperature for I hr. After this final incubation, plates 

were washed, dried and 100 ~tl chromagen (Appendix C) was added to each well. The reactions 

were terminated after 10 min by the addition of 50~tl of I M sulphuric acid to each well. The 

absorbance values were read at 492nrn by an automatic ELl SA plate reader (Labsystems, U .K). 

5.2.6: Modified Western blotting methods for detection of HGG. 

A: lmmunodetection with antisera to HGG (whole molecule) 

The procedure described in section 3.2.12 was modified as follows to enable the detection of HGG 

in plasma and to abrogate cross reactions with control trout plasma. 

The primary antiserum (goat anti-HGG peroxidase conjugate) was pre-adsorbed overnight with 5% 

control trout plasma to which I% SDS had been added 24 hr previously and centrifuged at 11,600 

x g for 10 min. The resultant supernatant was used as primary antiserum diluted I :250 in Tris

saline + 4 % non-fat dried milk pH 7.5 (fSM). The secondary antiserum used was a rabbit anti

goat IgG peroxidase conjugate (Sigma) diluted I: 1000 in TSM. 

Plasma samples, diluted 1:5 in electrophoresis sample buffer were electrophoresed under both 

reducing and non-reducing conditions. Lumenal scrapings were homogenised by vigourous 

shaking (WhirliMixer, Fisons) and centrifuged at 4,800 x g for 5 min to remove solid matter. The 

resultant supernatant was diluted I: I with non-reducing sample buffer, boiled for 3 m in and 

incubated at room temperature for 2 hr prior to electrophoresis and immunoblotting. 

B: lmmunodetection with goat antisera to the Fe and Fab regions of HGG. 

The protocol was identical to that described above except that the anti-Fc and anti-Fab antisera 
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(Sigma) were used as primary antisera at a dilution of 1:250 in TSM after pre-absorption as 

described in 5.2.6 (A) 

5.2.7: Image analysis of immunoblots 

lmmunoblots were analysed using the UVP gel analysis suite program GeiBase/ GelBlot (Ultra 

Violet Products Ltd, Science Park, Milton Road, Cambridge) and the results were subsequently 

expressed in tabular fashion as described in Fig.5.3. 

5.2.8: Statistical analysis of results from EUSA analyses 

ELISA data expressed as ng HGG ml·1 was entered into Statgraphics software and an analysis of 

variance (ANOY A) test was performed to assess if significant differences existed between groups 

(at p < 0.05 and p < 0.25). If variances between groups were considerably different the data 

was log (log 10) transformed prior to analysis. 
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Fig. 5.2.(a): Example of the layout of an EL/SA microtitre plate for assessment of plasma HGG 
levels. X- Doubling dilutions of HGG standard solution (lOJ.Lg mt1

) down column 2. Y- Doubling 
dilutions of control trout plasma down column 3. Z- doubling dilutions of test plasma down 
columns 4-11. 

Fig. 5.2.(b): Photograph of a representative EL/SA microtitre plate demonstrating the presence 
of HGG in rainbow trout plasma samples. The loading order on the plate was as outlined in 
Fig.5.2(a). The samples in columns 4-11 were of plasma, collected.fromfish orally intubated with 
35 mg bicarbonate 1 hr priorto delivery of 35 mg HGG at 15 and 30 min and I, 2, 6, 12, 24 and 
48 hr after HGG delivery. 
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Fig.5.3. Derivation of semi - quantitative data from immunoblots by image analysis - origin of 

tabulated data in section 5.3. A: Represents the process used to derive data in columns of tables 

in section 5. 3; single lanes were scanned by image analyser and relative percentages of each band 

calculated as a percentage of the total signal in that lane only. B: The process used to derive data 

in top row of tables in section 5.3; all lanes on immunoblot were scanned by image analyser and 

total signal for all antigen present calculated, the proportion of the total signal present in each 

single lane was then calculated. 
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5.3 RESULTS 

5.3.1: Dose response to HGG 

The relationship between the dose of HGG administered orally to rainbow trout and levels of HGG 

detected in the plasma of fish I hr after administration is presented in Fig 5.4. Doses of 35 and 

50 mg HGG per fish resulted in plasma HGG levels (detected by ELlS A) significantly greater (p < 

0.05) than all other groups. The peak level was detected after administration of 35 mg HGG per 

fish resulting in plasma levels significantly (p < 0.05) greater than those detected after all other 

treatments. This was thus chosen as the standard dose for subsequent experiments. 

5.3.2: Dose effects of gastric inhibitors on gastrointestifUll pH and HGG uptake 

A: Sodium bicarbonate 

The effects of administering various doses of bicarbonate (I hr before HGG delivery) on a range 

of parameters are presented in Fig 5.5 and Table 5.2. Regardless of the bicarbonate dose 

administered, the pH in all gut regions other than the stomach I hr after HGG delivery (i.e 2 hr 

after administration of bicarbonate) did not change significantly (p < 0.05). Gastric pH, in 

contrast increased almost linearly from pH 3.4 to 8.0 with increasing bicarbonate dose (Fig 5.5(a). 

All bicarbonate doses from 1.0 to 35 mg per fish resulted in significantly higher (p < 0.05) gastric 

pH compared with control PBS administration and differences in gastric pH induced by doses of 

10, 20 and 35 mg bicarbonate per fish were not significant. ELISA analysis of HGG levels in 

plasma (Fig 5.5(b)) indicated that administration of I, 20 or 35 mg bicarbonate per fish before 

HGG administration resulted in plasma HGG levels significantly (p < 0.05) greater than those 

detected after the delivery of PBS or all other doses of bicarbonate. Differences between the 

plasma levels of HGG detected after prior administration of I, 20 or 35 mg bicarbonate were not 

significant. The semi-quantitative immunoblotting data presented in Table 5.2 shows that the 

highest total HGG signal was detected in plasma from fish which were administered with 20 or 

35 mg bicarbonate prior to the delivery of HGG. This was similar to the results obtained by 

ELISA except that the relatively high signal detected by ELISA after prior delivery of I mg 

bicarbonate was not reflected in the immunoblotting data. The greatest number of HGG bands 
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were also detected in plasma from fish administered 20 (9 bands) or 35 mg (8 bands) bicarbonate. 

The qualitative nature of the HGG fragments detected after delivery of various doses of sodium 

bicarbonate also differed considerably. Plasma from fish orally intubated with control PBS or 0.1 

mg bicarbonate contained greater amounts of fragments of low apparent molecular weight (10.6 

and 7.4 kDa) than that from fish receiving I or 10 mg bicarbonate. At higher doses of 

bicarbonate similar sized fragments were again apparent although the 10.6 kDa fragment was 

present at a lower level. The high signal detected in plasma from fish given 20 or 35 mg 

bicarbonate was accounted for mainly by the 43.2 and 18.4 kDa fragments. lt is important to note 

that the very high apparent molecular weight band ( == 202 kDa) detected at the top of almost all 

immunoblots may be artefactual although it was not detected in control plasma. Intact HGG has 

a molecular weight of 150 kDa and the presence of a band at 200 kDa only in plasma of fish 

receiving HGG may have been a result of antigeri precipitation prior to electrophoresis or to 

complexing with plasma factors. After consideration of the data a dose of 35 mg bicarbonate per 

fish was chosen for use in further experiments. 

B: Cimetidine 

The effects of increasing doses of the H2 receptor antagonist cimetidine on antigen absorption and 

gut pH are presented in Fig. 5.6 and Table 5.3. Although the pH in the intestine only varied 

between 6. 7 and 7.2 after different treatments the pH in the anterior and mid-intestinal regions of 

fish receiving control PBS prior to HGG was significantly greater than that recorded in these 

regions in all groups except untreated fish and fish receiving lOO mg cimetidine. Gastric pH 

increased with increasing dose from 1-30 mg cimetidine per fish to a pH== 7 .0, pH values recorded 

after prior treatment with 30, 50, 75 or 100 mg cimetidine per fish were significantly greater than 

controls and fish receiving l mg cimetidine (p < 0.05) (Fig.5.6(a)). Differences between gastric 

pH values measured in fish receiving 30, 50, 75 or lOO mg cimetidine prior to HGG 

administration were not significant. The ELISA data on HGG absorption into the plasma (Fig 5.6 

(b)) shows a remarkably large peak in the group given l mg cimetidine per fish, being 

significantly greater than all other groups (P < .05). In contrast, immunoblotting data indicated 
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that the greatest total H GG signal and greatest number of H GG fragments ( 1 0) were present in the 

plasma of fish given 75 mg cimetidine (fable 5.3\J). Plasma from fish receiving I mg cimetidine 

was only remarkable for the detection of high levels of the 10.2 kDa and 42.1 kDa fragments 

which were not present at a high level in other groups. The low apparent molecular weight 

fragments (10.2 and 8.2 kDa) were most noticeable in the group given I mg of cimetidine per 

fish. Between 38 and 55% of the signal detected in plasma from the fish intubated with 30, 50, 

75 or 100 mg cimetidine was accounted for by the 20.4 and 18.9 kDa bands (similar to pattern 

obtained with high doses of bicarbonate). Due to the absence of an unambiguous dose response 

with cimetidine three separate doses (1, 10 and 50 mg per fish) were used to further investigate 

the use of this substance. 

5.3.3 Effects of gastric inhibitors on a range of parameters over a time course after antigen 

administration 

(A): Prior PBS administration 

A number of time course experiments were pursued in order to examine in detail the nature and 

kinetics of the processing and absorption of HGG in the gut of rainbow trout. Firstly, a control 

time course was performed by delivering PBS prior to the administration of 35 mg HGG (Fig.5.7 

and Table 5.4). A biphasic pattern of antigen uptake into the plasma was observed by ELISA. 

A small peak was apparent at 45 min (not significant at p < 0.05) and a larger peak at 12 hr which 

was significantly higher (p< 0.05) than at all other time points. Immunoblotting data showed that 

the very large peak at 12 hr found by ELISA was not reflected in terms of the total HGG signal 

detected (fable 5.4). A higher percentage (19.6%) of possibly intact HGG (152.3 kDa) was 

detected after 12 hr however than at any other time point. The highest signal in plasma was 

detected at 24 hr on Western blots at which point the greatest number (8) of HGG bands were also 

found. When the same plasma samples were probed with antiserum against the Fe portion of 

HGG 5 bands were detected and with antiserum against the Fab portion, 2 bands were recognised. 

(B): Prior bicarbonate (35 mg) administration. 
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Fig 5.8(a) presents a PAGE gel showing the protein profile in plasma collected from fish over a 

48 hr time course after the administration of 35 mg of sodium bicarbonate followed 1 hr later by 

the oral administration of HGG. The corresponding Western blot is presented in Fig. 5.8(b) 

demonstrating the presence of HGG in the plasma of these fish. The pH in all gastrointestinal 

regions except the stomach was relatively constant over time. Nonetheless, a significant increase 

in pH (p < 0.05) was noted 6 hr after HGG delivery in the pyloric caecae, anterior and mid -

intestinal regions, greater than all times except 45 min and 12 hr after intubation (Fig.5.9(a). 

Gastric pH remained at approximately pH 8.0 until 6 hr after intubation after which a significant 

decrease was found. Interestingly, the rise in intestinal pH found after 7 hr following bicarbonate 

administration occurred at the same time as the fall in gastric pH. A biphasic pattern of HGG 

absorption was observed by ELISA analysis with peak levels detected 30 min and 12 hr after HGG 

administration, the levels detected 15 min, 30 min, 6 hr and 48 hr after HGG delivery were also 

significantly greater than controls (P< 0.05). This biphasic pattern of uptake for can be seen in 

Fig.5.2(b). Peak values found after 30 min and 12 hr were not significantly different to each 

other. Immunoblotting data on these samples (Table 5.5) showed that the highest total signals 

were detected 2 hr and 12 hr after HGG delivery. Notable is the large amount of the'IO}lkDa 

band detected 45 min, 1 hr and 2 hr after delivery and that of the 18.4 kDa fragment I, 2 and 12 

hr after delivery. Using antisera to the Fe and Fab regions it was found over the 48 hr time 

course that anti-Fc antisera recognised 7 bands and anti-Fah antisera 5 bands, a number of bands 

(45.5, 18.4, 10.3 and 7.5 kDa) were recognised by all three antisera used. 

Analysis of scrapings from the gastric mucus of these fish (Table 5.6) demonstrates the large 

number of HGG bands present (18) relative to those found in the plasma of these fish (10). HGG 

was only detected in scrapings up to 12 hr after HGG delivery. In scrapings collected 15 m in -

6hr after intubation, only 2040 % of HGG was detected in apparently intact form, much of the 

remainder being present as 107.5, 65.3, 52.7, 25.9 and 20.2 kDa fragments. Maximal levels were 

found in scrapings from the intestinal regions of these fish at 45 min and from 2 hr to 12 hr after 

antigen delivery (Table 5.7). Most fragments were found 2 hr (15) and 6 hr (14) after intubation. 
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The presence of the 18.5 and 10.4 kDa fragments in the intestine appears to reflect to some extent 

their presence in the plasma at I and 12 hr after HGG delivery (fables 5.5 and 5.7). 

(C): Prior cimetidine (1, 10 and 50 mg) administration 

A photographic representation of the in vivo proteolysis of HGG in the trout gastrointestine after 

administration of HGG subsequent to delivery of I and 50 mg cimetidine is presented in Fig.5.10. 

In the cases of the time courses where I and 50 mg cimetidine were administered prior to HGG 

in addition to analysis of HGG levels in plasma and pH, data is presented on scrapings from 5 

separate gut regions to demonstrate the effects of changing pH on in vivo lumenal proteolysis. In 

the case of the time course where 10 mg cimetidine was delivered prior to HGG only data on the 

presence of the antigen in the plasma is presented. 

1 mg cimetidine: pH data 

A pH between 4.0 and 6.0 was measured in the gastric regions of fish for up to 12 hr after HGG 

delivery and differences between pH values at different time points up to 12 hr were not significant 

(Fig 5.11 (a)). This may have been a result of the high degree of variability in gastric pH values 

between fish. The pH in the intestine ranged between 6.6 and 7.4 over the time course but was 

significantly higher at 15 min, 12 hr and 24 hr after intubation than at all other time points. 

1 mg cimetidine: Analysis of HGG in plasma 

ELISA data indicated that only at 30 min, 45 min, I hr, 2 hr and 6 hr after intubation were the 

HGG levels detected significantly greater than controls (p < 0.25). The level of HGG in the 

plasma 6 hr after intubation was significantly (p < 0.05) greater than that at all other time points. 

As before, the immunobloning data (fable 5.8) did not reflect the ELISA data - the greatest total 

HGG signals being found 2 and 12 hr after delivery and the greatest number of HGG bands (12) 

were also found 12 hr after administration. A considerable amount of the HGG detected at 15 

min, I hr, 2 hr and 24 hr after delivery was in the form of a 10.4 kDa fragment (57.2% of the 

total signal 2 hr after delivery which may reflect the ELISA peak at this time). 
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1 mg cimetidine: Analysis ofmucosal scrapings- lmmunoblotting data 

In gastric scrapings from fish administered I mg cimetidine prior to HGG, 22 bands were 

detected. HGG was detectable at all time points analysed from 15 min to 6 hr after HGG 

administration after which time no HGG was found (fable 5.9). In scrapings taken from the 

pyloric caecae the highest HGG signals were found at 45 min and 6 hr - the latter peak possibly 

a result of gastric evacuation. HGG fragments of an apparent molecular weight less than 50 kDa 

were only present at a high level in the pyloric caecae of these fish at 2 hr (fable 5.10 and Fig 

5.10). Most of the HGG detected at other time points was apparently intact or in the form of large 

fragments(> 100 kDa). In contrast, atthe corresponding time points in the stomach a significant 

amount of the HGG present was in the form of fragments smaller than 50 kDa. In scrapings from 

the anterior intestine of these fish (fable 5. 11) the highest HGG signal was detected at 2 and 6 hr, 

the greatest number of bands (15) were also present 6 hr after HGG intubation. In contrast to the 

pyloric caecae very little intact or high apparent molecular weight ( > 100kDa) antigen was 

detected in the anterior intestine; most fragments found being in the 30-65 kDa size range. This 

indicated that considerable breakdown of the intact antigen and· large fragments by anterior 

intestinal enzymes had occurred. No antigen was detected in scrapings from the anterior intestine 

of these fish at time points later than 12 hr after delivery. The highest levels of HGG were found 

in scrapings from the posterior intestine at 30 min, 45 min and 24 hr after antigen delivery (fable 

5.12). Between 64.7 and 94.3% of the HGG detected at 15 min, 30 min and 45 min after delivery 

was in the form of 30 - 52 kDa fragments. In contrast, fragments in this size range only 

represented 28.9% of the total signal at 12 hr and 6.6% at 24 hr and although present did not 

represent a significant percentage of the total at 2 and 6 hr. At 2 and 6 hr after delivery, 100% 

of the total signal detected in the posterior intestine was in the form of possibly intact HGG (149.8 

kDa) but the intact antigen was not detectable at time points before 2 hr. 

10 mg cimetidine: Analysis of HGG in plasma 

The results of administering 10 mg cimetidine per fish priorto HGG are presented in Fig 5.12 and 

Table 5.13. The uptake of HGG as measured by ELISA was significantly higher (p < 0.05) at 
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6 hr than at any other time point. As found in some of the earlier time courses this peak was not 

reflected in terms of a greatly increased total HGG signal detected by immunoblotting (Table 

5.13), rather the highest total signal was detected on Western blots I hr after antigen delivery. 

The only distinguishing feature in plasma collected from fish 6 hr after antigen delivery was the 

relatively high percentage of the 40.3 kDa fragment present which was also recognised by anti-Fc 

antisera. 

50 mg cimetidine: pH data 

After administration of this dose of cimetidine a pH"" 7.0 was measured in the stomach and in all 

intestinal regions until > 12 hr after HGG administration (Fig 5.13(a)). Gastric pH appeared to 

decline at 24 and 48 hr but this was not significant at the 5% level. 

50 mg cimetidine: Analysis of HGG in plasma 

ELlS A analysis of plasma HGG levels demonstrated a biphasic pattern with peaks at 45 m in and 

6 hr after antigen delivery which were significantly greater (p < 0.05) than values detected at all 

other times. Immunoblotting analysis of the plasma (Table 5.14) from these fish shows the highest 

total HGG signal was found at 6 hr and 24 hr after antigen delivery. Plasma collected from fish 

6 hr after antigen administration was also notable for the high percentage of the 10.4, 82.4 and 

98.9 kDa bands present. 

50 mg cimetidine: Analysis of mucosal scrapings - lmmunoblotting data 

Immunoblotting analysis of scrapings from the gastric region of these fish (Table 5.15) shows that 

the total HGG signal detected was relatively constant until up to 2 hr post - administration after 

which a large decrease was found. Compared with tish given I mg cimetidine there was a greater 

amount of HGG fragments of 30-65 kDa (60.1% of the total HGG detected as compared with 

30.6% in fish given I mg cimetidine) and an absence of a fragment of approximately 10 kDa. 

The highest levels of HGG in scrapings from the pyloric caecae of these fish were found at 2 hr 

and 12 hr after antigen delivery, the greatest number of bands (14) were also detected at 2 hr, 
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again possibly a consequence of gastric evacuation (fable 5.16). It is noteworthy as in Table 5.10 

that very little HGG in any form < 50 kDa was detected in the pyloric caecae of these fish 

whereas up to 50% of the HGG detected in the gastric region of the same fish was in the form of 

fragments < 50 kDa. In scrapings from the anterior intestine of these fish the highest total HGG 

signal was detected at 6 hr and 12 hr after intubation. Much of the signal detected 45 min, l hr 

and 2 hr after delivery was in the form of the 29.2 and 23.9 kDa. fragments while more intact 

HGG was found 6 hr, 12 hr and 24 hr after delivery (Table 5.17). Finally, in scrapings from the 

posterior intestinal region of these fish the highest total signal was found I hr after antigen 

delivery, this being mainly in the form of the 31.7 and 38.1 kDa fragments. The 38.1 kDa 

fragment constituted 35 - 63.3% of the total signal in scrapings taken from fish from 15 min to 

2 hr after antigen delivery after which its presence was not detected. Very little antigen in this 

case was detectable in scrapings from the posterior intestinal regions of fish at time points later 

than i2 hr after HGG administration (fable 5.18). 
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Fig. 5.4: HGG dose Response measured 1 hr after antigen administration 
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ELISA reading from fish receiving PBS only. 
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Fig. 5.5(a): Dose effect of sodium bicarbonate on gastrointestinal pH 
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Fig.5.5(b): Bicarbonate Dose Response 
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Fig. 5.5. (a): pH values (mean + /- SE) recorded by pH microprobe in regions of the trout 

digestive tract 1 hr post HGG delivery after prior administration of sodium bicarbonate at a range 

of doses. Symbols used to represent gut regions in which pH was measured: • = Stomach. • = 
Pyloric caecae. "' = Anterior intestine. + = Mid intestine. * = Posterior intestine. (b): Bffect 

of prior administration of bicarbonate at a range of doses on levels of antigen (mean + /- SE) 

measured by EUSA in plasma of fish 1 hr after delivery of 35 mg HGG. Control represents 

measurements from untreated fish. 

182 



Table: 5.2: Apparent molecular weights (kDa) and relative percentages of HGG bands detected 

in the plasma of.fish orally intubated with 35 mg of HGG 1 hr after intubation with various doses 

of sodium bicarbonate. 

0 0.1 1.0 10 20 35 

HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total 

(14.5%)" (11.0%)" (14.9%)" (15.7%)" (15.8%)" (18.1 %)" 

202.1 202.1 202.1 207.1 202.1 202.1 

(91.9%) (61.9%) (83.6%) (42.8%) (23.3%) (40.9%) 

153 153 153 153 

(23.8%) (4.9%) (21.8%) (28.3%) 

80.5 80.5 80.5 80.5 

(••) - (••) ("") (2.9%) 

68.8 68.8' 68.~ 

(2.4%) (2.2%) (••) 

48.1 48.1 48.1 48.1 48.1 48.1 

( .. ) ( .. ) (2.5%) (••) (1.4%) ( .. ) 
43.2 43.2 43.2 43.2 43.2 43.2 

( .. ) ( .. ) (2.7%) ( .. ) (29.6%) (14.9%) 

18.4 18.4 18.4 18.4 18.4 18.4 

( .. ) ( .. ) (3.3%) (33%) (2.3%) (35.9%) 

10.6 10.6 10.6 10.6 10.6 

(8.1 %) (8.9%) (3.1) (5.6%) (2.5%) 

7.4 7.4 7.4 7.4 

( .. ) (5.1 %) (6.0%) (2.9%) 

- Percentage of the entire amount of HGG detected on immunoblot present in lane. 

** - Fragment present but yielding a value < 10 (arbitrary units) by image analysis. 
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Fig.5.6(a): Dose effect of cimetidine on gastrointestinal pH 
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Fig.5.6 (b) : Cimetidine Dose Response 
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Fig. 5.6. (a): pH values (mean + 1- SE) recorded by pH microprobe in regions of the trout 

digestive tract 1 hr post HGG delivery after prior administration of cimetidine at a range of doses. 

Symbols used to represent gut regions in which pH was measured: • = Stomach. • = Pyloric 

caecae . ..- = Anterior intestine. + = Mid intestine. * = Posterior intestine. (b): Effect of prior 

administration of cimetidine at a range of doses on levels of antigen (mean + 1- SE) measured by 

EUSA in plasma of.fish 1 hr after delivery of 35 mg HGG. Control represents measurements from 

untreated fish. 
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Table 5.3: Apparent molecular weights (kDa) and relative percentages of HGG bands detected in 

the plasma of.fish orally intubated with 35 mg of HGG 1 hr after intubation with various doses 

of cimetidine. 

I,~ I J.Omg I JOmg ~~~ I"~ I 75mg I }()() mg I 
HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total 

(6.0%). (13.2%). (5.7%). (8.8%). (13%}. (39.3%). {14%}. 

207.9 207.9 207.9 207.9 207.9 207.9 207.9 

(100%) (57.2%) (76:8%) (52.0%) (48.7%) (28.6%) (54,7%) 

187.0 187.0 

( .. ) ( .. ) 
151.8 

(••) 

73.5 - 73.5 

(••) (2.9%) 

56.1 

(4.7%) 

48.1 48.1 48.1 48.1 48.1 48.1 

(••) (••) (••) (••) (••) 7.0%) 

42.1 42.1 42.1 42.1 42.1 42.1 

(••) (15.5%) (••) (••) (••) (2.1 %) 

20.4 20.4 20.4 20.4 

(31.6%) (28.1%) (33.4%) (15.5%) 

18.9 18.9 18.9 18.9 18.9 18.9 18.9 

(••) (14.3%) (23.2%) (16.4%) (23.2%) (21.3%) (29.7%) 

10.2 10.2 

(13%) (••) 

8.2 

(••) 

- Percentage of the entire amount of HGG detected on immunoblot present in lane. 

** - Fragment present but yielding a value < 10 (arbitrary units) by image analysis. 
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Fig. 5.7: Time course of HGG absorption into plasma 
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Fig. 5.7: Levels of HGG (mean +I- SE) measured by EL/SA over a 48 hr time course in 

plasma of.fish orally intubated with 35 mg HGG 1 hr after administration of 0. 2 ml PBS. 

The EL/SA reading at time 0 was from .fish which received PBS only. 
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Table. 5.4: Apparent molecular weights (kDa) and relative percentages of HGG bands detected 

in the plastrUl of.fish orally intubated with 35 mg of HGG I hr after intubation with control PBS. 

15 min 45 min 1 hr 2 hr 6 hr 12 hr 24hr 48hr 

HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total 

(15.1%)" (17 .l%)" (16.6%)" (10.1 %)" (5.0%)" (14.0%)" (16.9%). (5.1%)" 

198.6 198.6 198.6 198.6 198.6 198.6 198.6 198.6 

(17.5%) (29.5%) (35.7%) (50.5%) (100%) (80.4%) (33.1 %) (51.0%) 

152.3 152.3 a Fe 152.3 

("") (19.6%) (8.7%) 

108.1 108.1 108.1 108.1 a Fe 108.1 a Fe 108:1 a Fe 108.1 a Fe 

(15.1%) ("") (9.1 %) (••) ("") (26.4%) (7.7%) 

76.6 76.6 a Fe 76.6 76.6 

(14.2%) (••) (9.0%) (10.0%) 

48.2 aFab 48.2 aFab 48.2 a Fe 48.2 aFab 48.2 a Fe 48.2 

(29.5%) aFc (31.2%) aFc (31.9%) (39.5) 8FC (12.3%) (24.5%) 

40.7 40.7 40.7 40.7 a Fe 40.7 40.7 

(26.9%) (24.6%) ("") ("") ("") ("") . ·.·· 

18.2 aFab 18.2 aFab 18.2 18.2 a Fe 18.2 18.2 aFab 18.2 a Fe 18.2 

(11.0%) (14.7%) aFc (9.1 %) ("") (••) ("") (10.5%) (6.7%) 

10.2 10.2 10.2 10.2 

(••) ("") (••) (""l 

8.4 

("") 

- Percentage of total amount of HGG detected on immunoblot present in lane 

** 
a Fe 

aFab 

- Band present but yielding a value < 10 (arbitrary units) by image analysis 

- Detected using antisera to the Fe region of HGG. 

- Detected using antisera to the Fab region of HGG. 
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Fig. S.8.(a): Coomassie Blue stained PAGE gel showing the presence of proteins in plasma 
samples collected from fish which were orally intubated with 35 mg of sodium bicarbonate 1 hr 
before administration of 35 mg HGG. Loading order. Lane 1, 7H molecular weight markers. Lane 
2, control (plasma from .fish intubated with control PBS). Lanes 3- 10, samples collectedfromjish 
at 15 min, 45 min, 1 hr, 2 hr, 6 hr, 12 hr, 24 hr and 48 hr after HGG delivery. 

:. 

Fig. S.8.(b): Corresponding immunoblot to the PAGE gel in (a) above showing the presence of 
HGG in the plasma. Loading order is identical to the above except lane 1 contains prestained 
molecular weight markers. The HGG bands present are arrowed. 

188 



Fig 5.9(a): Effect of bicarbonate (35 mg/fish) on gastrointestinal pH 
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Fig. 5.9(b): Effect of bicarbonate (35 mg/fish) on HGG absorption into plasma 
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Fig. 5.9.(a): pH values (mean +I- SE) recorded by pH microprobe in regions of the trout 

digestive tract over a 48 hr time course post HGG delivery after prior administration of 

35 mg of sodium bicarbonate. Symbols used to represent gut regions in which pH was 

measured: • = Stomach. • = Pyloric caecae. ..- = Anterior intestine. + = Mid 

intestine. *=Posterior intestine. (b): Effect of prior administration of 35 mg of sodium 

bicarbonate on Levels of antigen (mean + /- SE) measured by EL/SA in plasma of fish over 

a 48 hr time course after delivery of 35 mg HGG. EL/SA reading at time 0 was from fish 

receiving PBS only 
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Table. 5.5: Apparent molecular weights (kDa) and relative percentages of HGG bands detected 

in the plasma of fish orally intubated with 35 mg HGG 1 hr after intubation with 35 mg sodium 

bicarbonate. 

15 min 45 min 1 hr 2 hr 6hr 12 hr 24hr 

HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total 

(5.8%). (11.8%). (13.4%). (22.6%). (16.5%). (22.3%). (4.1%). 

198.2 <>Fe 198.2 <>Fab 198.2 <>Fab 198.2 <>Fab 198.2 <>Fab 198.2 <>Fab 198.2 <>Fab 

(100%) (**) <>Fe (**) <>Fe (6.0%) <>Fe (12.6%) <>Fe (5.2%) <>Fe (100%) <>Fe 

63.0 <>Fe 63.0 <>Fe 63.0 <>Fe 63.0 <>Fe 

(••) (••) (••) (••) 

49.5 49.5 

(20.6%) (8.7%) 

47.0 <>Fe 47.0 47.0 <>Fe 47.0 47.0 <>Fe 47.0 <>Fe 

(••) (••) (••) <>Fe (••) (••) 

(••) -

45.5 <>Fe 45:5 <>Fab 45.5 <>Fab 45.5 <>Fab 45.5 <>Fab 45.5 <>Fab 

(••) (17%) <>Fe <>Fe (8.5%) <>Fe (16.5%) <>Fe (13.8%) <>Fe 

37.5 

(11.8%) 

18.4 18.4 <>Fe 18.4 <>Fah 18.4 <>Fab 18.4 of ab 18.4 <>Fe 

(••) (*•) (42.5%) <>Fe (56 .3%) <>Fe (15.3%) <>Fe (54.7%) 

10.9 10.9 

(23.7%) (9.3%) 

10.2 <>Fab 10.2 <>Fah 10.2 <>Fe 10.2 10.2 

(48%) <>Fe (57.5%) <>Fe (12.9%) (11.3%) (8.3 %) 

7.5 <>Fab 7.5 <>Fe 

<>Fe 

- Percentage of total amount of HGG detected on immunoblot present in lane 

** 
a Fe 

aFab 

- Band present but yielding a value < 10 (arbitrary units) by image analysis 

-Detected using antisera to the Fe region of HGG. 

- Detected using antisera to the Fab region of HGG. 
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Table. 5.6: Apparent molecular weights (kDa) and relative percentages of HGG bands detected 

in gastric scrapings of.fish orally intubated with 35 mg HGG 1 hr after 35 mg bicarbonate. 

I~ 30min 45 min I hr 2 hr 6hr /2 hr 24hr 48 hr 

UGC :Total HCC"falal HCC"fOial HGG:Tolal IICC"fOial HGG:T~I HGG:Tocal HGG:TotaJ HCC,TOial 
(lll ..... ,. (11 .... ,. (JII.l1L)" (11 ..... ,. (11.4 .. ). (ll..S .. l" (1.2 .. )" (0.0 .. )" (O.O'J,) • 

157 157 157 157 157 157 157 
(20.8%) (31 %) (31.4%) (34.2%) (34.9%) (27.0%) (38.3%) 

133.1 133.1 133.1 133.1 133.1 133.1 133.1 
(2.0%) (••) (••) (3.2%) (••) (••) (••) 

114 114 114 114 114 114 114 
(••) (••) (••) (2.0%) (••) (16.3%) (17.8%) 

107.5 107.5 107.5 107.5 
(10.6%) (14.2%) (13.3%) (16.3%) 

77.3 77.3 77.3 
(••) (2.1 %) (I. I%) 

71.5 71.5 71.5 71.5 
(3.0%) (4.7%) (0.8%) (2.3%) 

65.3 65.3 65.3 - 65.3 65.3 
(3.0%) (12.2%) (6.7%) (1.7%) (3.9%) 

60.8 60.8 
(2.6%) (1.8%) 

52.7 52.7 52.7 52.7 52.7 52.7 52.7 
(26.6%) (24.1 %) (25.7%) (33.3%) (30.5%) (25.4%) (36.2%) 

46.1 46.1 46.1 46.1 46.1 
(••) (••) (6.0%) (7.0%) (••) 

39.7 39.7 37.9 39.7 39.7 
(2.0%) (••) (••) (••) c••J 

37.8 37.8 37.8 37.8 37.8 
(1.4%) (••) (••) (••) (••) 

33.2 33.2 33.2 33.2 33.2 33.2 33.2 
(2.0%) (2.9%) (2.7%) (••) (1.5%) (7.2%) (••) 

30.5 
(4.9%) 

25.9 25.9 25.9 25.9 25.9 25.9 25.9 
(12.9%) (7.9%) (5.5%) (6.8%) (4.4%) (8.0%) (••) 

23.1 23.1 23.1 23.1 23.1 23.1 
(4.6%) (••) (0.8%) (••) ( .. ) (••) 

20.2 20.2 20.2 20.2 20.2 20.2 20.2 
(6.1 %) (7.7%) (9.5%) (3.6%) (2.0%) (5.1 %) (2.0%) 

10.4 10.4 10.4 10.4 
(••) (••) (I. I%) (1.8%) 

- Percentage of total amount of HGG on immunoblot present in lane 

** - Band present but yielding a value < 10 (arbitrary units) by image analysis 
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Table. 5.7: Apparent molecular weights (kDa) and relative percentages of HGG bands detected 

in scrapingsfrom the intestine of fish orally intubated with 35 mg HGG 1 hr after intubation with 

35 mg bicarbonate. 

/5 mln 30min 45 mln I hr 2 hr 6 hr /2 hr 24hr 48 hr 

HGC:Total HCC<To>lal HGG:ToCal HGG:Tolal IIGG:Total HGC:Total HGG:Total IIGG:Total HGG:Total 

Cl-4 ... ). (3.3 ... ). (18.5 ... ) • (6.0'1o) •• (19.5 ... ) • (27.8 ... ). (18.7~). (3.5 ... ). (0.3 ... ) • 

152.2 152.2 152.2 152.2 152.2 152.2 152.2 152.2 152.2 
(34.1%) (44.2%) (11.8%) (14:2%) (12.8%) (11.8%) (7.9%) (8.4%) (40.1 %) 

139.0 139.0 139.0 139.0 139.0 139.0 139.0 139.0 139.0 
("") ("") (2.8%) (••) (••) ("") <"") ( .. ) (••) 

121.7 121.7 121.7 121.7 121.7 121.7 121.7 121.7 
(20.2%) (24.8%) (10.7%) (••) (15.6%) (18.9%) (5.0%) (3.3%) 

91.3 91.3 91.3 91.3 91.3 
(1.4%) (••) (13.1 %) (6:7%) (10.0%) 

79.2 79.2 79.2 79.2 79.2 
(4.2%) (1.6%) (1.1%) ("") (2.3%) 

72.0 
(3.8%) 

69.5 69.5 69.5 69.5 69.5 69.5 
(2.0%) (4.5%) (2.2%) ("") (2.8%) (6.4%) 

55.5 555 55.5 55.5 55.5 55.5 55.5 55.5 
(36.5%) (1.5%) (18.7%) (21.6%) (18.0%) (15.3%) (7.8%) (8.6%) 

47.6 47.6 47.6 47.6 47.6 47.6 47.6 47.6 47.6 
(5.0%) (26%) (8.0%) (14.6%) (12.9%) (8.0%) (14.2%) (32.0%) (16.7%) 

41.9 41.9 41.9 41.9 41.9 41.9 
(2.8%) ("") ( .. ) (7.8%) (13.5%) (43.1%) 

34.7 34.7 34.7 34.7 34.7 34.7 34.7 
(9.1%) (10.6%) (12.4%) (10.9%) (15.7%) (14.2%) ("") 

27.3 27.3 27.3 27.3 27.3 
(19o3%) (9.8%) (18.9%) (17.0%) (8.5%) 

18.5 18.5 18.5 18.5 18.5 
(4.4%) (5.5%) (7.9%) (10.2%) (9.5%) 

16.5 16.5 16.5 
(1.7%) (1.2%) <"") 

14.2 14.2 
(0.3%) (0.3%) 

10.4 10.4 10.4 10.4 10.4 10.4 
(6.2%) (5.2%) ("") (11.8%) (8.2%) (6.5%) 

- Percentage of total amount of HGG on immunoblot present in lane 

** -Band present but yielding a value < 10 (arbitrary units) by image analysis 
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·. 

A.3 B.3 

•• 

B.4 

Fig.S.lO: Photographic representations of immunoblots demonstrating the presence of HGG in regions of 
the rainbow trout gut at various times after administration of HGG and prior administration of cimetidine. 
A (1-4), scrapings from the stomach, pyloric caecae, anterior intestine and posterior intestine respectively 
of .fish orally intubated with 1 mg cimetidine 1 hr before delivery of 35 mg HGG. B(l-4), scrapings from 
the stomach, pyloric caecae, anterior intestine and posterior intestine respectively of fish orally intubated 
with 50 mg cimetidine 1 hr before delivery of 35 mg HGG. Loading order. Lane 1, prestained molecular 
weight markers (molecular weights in kDa). Lanes 2-10, scrapings collectedfromfish at 15 min., 30 min., 
45 min., 1 hr, 2 hr, 6 hr, 12 hr, 24 hr and 48 hr after HGG administration. Bars on prestained marker 
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Fig 5.11(a): Effect of cimetidine ( 1 mg/fish) on gastrointestinal pH 
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Fig.5.11(b): Effect of cimetidine ( 1 mg/fish) on absorption of HGG 
into plasma 
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Fig. 5.11.(a): pH values (mean +/- SE) recorded by pH microprobe in regions of the trout 

digestive tract over a 48 hr time course post HGG delivery after prior administration of 1 mg 

cimetidine. Symbols used to represent gut regions in which pH was measured: • = Stomach. • 

= Pyloric caecae. T =Anterior intestine. + =Mid intestine. * = Posterior intestine. (b): Effect 

of prior administration of 1 mg cimetidine on levels of antigen (mean + /- SE) measured by EL! SA 

in plasma of.fish over a 48 hr time course after delivery of 35 mg HGG. ELISA reading at time 

0 was from fish which received control PBS only. 
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Table. 5.8: Apparent molecular (kDa) weights and relative percentages of HGG bands detected 

in the plasma of fish orally intubated with 35 mg HGG 1 hr after intubation with 1 mg cimetidine. 

15 min 45 min I hr 2 hr 6 hr /2hr 24hr 48 hr 

HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total 

(4.4%). (7 .3%) • (14.8%). (19.2%) • (12.3%) • (20.5%). (8.6%). (12.9%). 

201.5 201.5 201.5 201.5 201.5 201.5 201.5 201.5 
(26.9%) (12.6%) (7 .4%) (7.9%) (23.2%) (13.4%) (12.0%) (55.2%) 

151.2 151.2 151.2 151.2 151.2 151.2 151.2 
(9.9%) (7.4%) (1.8%) (13.8%) (16.7%) (19.1%) (29%) 

109.1 109.1 109.1 109.1 109.1 109.1 109.1 
(••) (••) (••) (••) (••) (2.8%) (9.8%) 

76.4 76.4 76.4 76.4 76.4 
(••) (••) (••) (••) (2.9%) 

63.2 63.2 63.2 
(••) (2.8%) (9.6%) 

45.6 45.6 45:6 45.6 45.6 45.6 45.6 45.6 
(•") (••) (1.2%) (1.9%) (••) (••) (••) (••) 

37.9 37.9 37.9 37.9 37.9 37.9 37.9 
(••) (7.2%) (10:3%) (12.5%) (29%) (••) (8.2%) 

30.6 30.6 30:6 30.6 30.6 
(*•) (20.9%) (7.3%) (1.9%) (••) 

26.9 26.9 26.9 26.9 26.9 26.9 
(••) (16.1%) (21.7%) (4.4%) (15.4%) (••) 

27.3 
(25.8%) 

25.6 25.6 25.6 25.6 25.6 
(10.5%) (3.8%) (I I. I%) (12%) (38.4%) 

18.8 
(••) 

10.4 10.4 10.4 10.4 10.4 10.4 
(56.7%) (39.9%) (57.2%) (14.9%) (6.0%) (67.0%) 

7.5 7.5 7.5 7.5 7.5 7.5 
(4.6%) (••) ( .. ) (1.3%) (7.1 %) (••) 

7.1 
(11.7%) 

- Percentage of the total amount of HGG on immunoblot present in lane 

** - Band present but yielding a value < 10 (arbitrary units) by image analysis 
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Table. 5.9: Apparent molecular weights (kDa) and relative percentages of HGG bands detected 

in gastric scrapings of fish orally intubated with 35 mg HGG 1 hr after intubation with 1 mg 

cimetidine. 

15 min 30min 45 min I hr 2 hr 6 hr 12 hr 24hr 48hr 

HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total 

(21.8%). (16.7%). (15.3%). (U.4%)" (11.9%)" (10.9%). (0.0%). (0.0%). (0.0%). 

152.4 152.4 152.4 152.4 152.4 152.4 

(12.2%) 
(16.8%) (24.4%) (27.2%) (25.6%) (42.8%) 

97.6 97.6 97.6 
(1.6%) (3.7%) (9.5%) 

87.1 87.1 87.1 87.1 
(3.8%) (7.0%) (11.1%) (10.5%) 

75.6 75.6 75.6 75.6 75.6 75.6 
(18%) (6.1 %) (13.7%) (12.9%) (19.6\'o) (5.3%) 

69.3 
(1.7%) 

65.9 65.9 65.9 65.9 65.9 65.9 
(2.7%) (3.2%) (3.0%) (14.1 %) (16.7%) (••) 

63.4 63.4 63.4 
(8.8%) (10.8%) (9.1 %) 

60.1 60.1 60.1 60.1 60.1 60.1 
(12.9%) (••) (••) (••) (••) (••) 

55.4 55.4 
(3.1 %) (6.5%) 

52.7 52.7 52.7 
(5.8%) (2.9%) (1.3%) 

47.0 47.0 47.0 47.0 47.0 47.0 
(8.9%) (15.4%) ,(17.1%) (4.9%) (10.3%) (6.3%) 

43.6 43.6 43.6 43.6 43.6 
(••) (••) (4.9%) (8.4%) (3.6%) 

39.5 39.5 39.5 39.5 39.5 
(4.8%) (2.6%) (4.4%) (3.1 %) (12.2%) 

36.0 36.1 36.0 
(2.3%) (1.4%) (0.6%) 

33.6 33.6 33.6 33.6 33.6 33.6 
(9.9%) (5.6%) (5.7%) (2.0%) (1.7%) (2.9%) 

29.0 29.0 29.0 29.0 29.0 
(6.1 %) (10.4%) (1.9%) (6.3%) (0.3%) 

25.6 25.6 25.6 25.6 25.6 
(3.2%) (••) (1.5%) (3.8%) (0.7%) 

21.6 21.6 21.6 21.6 
(3.0%) (2.0%) (2.5%) (0.7%) 

19.5 19.5 19.5 19.5 19.5 19.5 
(6.6%) (4.7%) (6.5 %) (2.7%) (1.4%) (2.2%) 

14.5 14.5 
(0.9%) (••) 

12.2 12.2 
(0.5%) (••) 

10.2 10.2 10.2 10.2 
(2.9%) (5.7%) (3.3%) (7.8% 

- Percentage of total amount of HGG detected on imrnunoblot present in lane 

** - Band present but yielding a value < 10 (arbitrary units) by image analysis 
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Table. 5.10: Apparent molecular weights (kDa) and relative percentages of HGG bands detected 

in scrapingsfromthe pyloric caecae of.fish orally intubated with 35 mg HGG 1 hr after intubation 

with 1 mg Cimetidine. 

15 min 30min 45min I hr 2 hr 6hr 12 hr 24hr 48hr 

HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total 
0.0%. 10.2%)" (24.9%)" (10.6%)" (18.7%)" (27.7%)" (7.9%)" (0.0%). (0.0%). 

148.3 148.3 148.3 148.3 148.3 148.3 
(32.2%) (87.4%) (76.7%) (61.7%) (33.7%) (86.4%) 

113.8 
(12.2%) 

110.0 110.0 
(60.5% (••) 

90.0 
(14.3%) 

75.1 
(15.4%) 

66.8 66.8 66.8 66.8 
( .. ) (••) (••) (5.0%) 

65 
(17.3%) 

62.3 62.3 62.3 62.3 62.3 
(2.3%) (••) (••) (••) (1.8%) 

58.6 58.6 58.6 58.6 58.6 
(2.2%) (12.6%) (4.0%) (••) (7.1 %) 

56.7 56.7 56.7 56.7 
(••) (19.2%) (••) (••) 

52.0 52.0 52.0 52.0 
(2.8%) (••) (14.3%) (••) 

45.3 45.3 45.3 
(••) (13.7%) (••) 

42.1 42.1 42.1 42.1 
(••) (••) (••) (••) 

30.7 30.7 
(••) (••) 

26.1 26.1 
(8.9%) (••) 

22.2 22.2 
(1.6%) (••) 

- Percentage of total amount of HGG detected on immunoblot present in lane 

** - Band present but yielding a value < 10 (arbitrary units) by image analysis 
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Table. 5.11: Apparent molecular weights (kDa) and relative percentages of HGG bands detected 

in the anterior ponion of the intestine of fish orally intubated with 35 mg HGG 1 hr after 

intubation with 1 mg cimetidine. 

IS min 30min 45 min I hr 2 hr 6 hr /2 hr 24hr 48 hr 

HGG:Total HGG:Total HGG:Total IIGG:Total HGG:Total HGG:Total IIGG:Total HGG:Total HGG:Total 

(0.0%). (5.9%)" (4.0%)" (11.6%)" (30.9%)" (35.3%)" (2.3%)" (0.0%). (0.0%). 

154.1 154.1 154.1 
("") <"") (3.5%) 

135 135 
(3.2%) (••) 

123.9 
(3.6%) 

109.5 
(2.1 %) 

104 
(7.0%) 

99.8 
(1.5%) 

92.6 
(9.5%) 

85.5 
("") 

80.3 80.3 80.3 
(21.6%) (6.3%) (5.9%) 

75.5 15.5 
(18.2%) (4.4%) 

63 
(5.0% 

60.4 
(14.1%) 

58.3 
(12.6%) 

52.2 52.2 
(17.4%) ("") 

36.4 36.4 36.4 36.4 
(91 %) (66%) (46.6%) (69%) 

35.7 
(••) 

33.9 33.9 
(18.4%) (31 %) 

32.7 32.7 32.7 32.7 
(9.0%) (12.9%) ("") ("") 

31.6 31.6 
(38.3%) (1.2%) 

29.6 29.6 29.6 
(61.7%) (14.2%) (3.0%) 

28.2 
(2.0%) 

- Percentage of total amount of HGG detected on immunoblot present in lane 

** -Band present but yielding a value < 10 (arbitrary units) by image analysis 
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Table. 5.12: Apparent nwlecular weights (kDa) and relative percentages of HGG bands detected 

in scrapings from the posterior portion of the intestine of fish orally intubated with 35 mg HGG 

1 hr after intubation with 1 mg cimetidine. 

J5 min 30min 45 min I hr 2 hr 6 hr 12hr 24hr 48 hr 

HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total 
(7.6'11>). (36.6'11>). (30.8'11>). (0.0'11>). (0.3'11>). (1.5'11>). (2.3'11>). (20.9'11>). (0.0%). 

149.8 149.8 149.8 
(100%) (100%) (38.4%) 

134.7 
(0.7%) 

98.4 98.4 
(9.6%) (6.3%) 

90.8 90.8 90.8 
(••) ( .. ) (15.9%) 

83.8 83.8 83.8 
(5.7%) (3.8%) (18.9%) 

77.6 
(33.1%) 

73.3 
(10.2%) 

71.2 71.2 
( .. ) ( .. ) 

66.2 
(50.5%) 

64.8 64.8 
(1.4%) ( .. ) 

59.6. 59.6 
(4.4%) (••) 

56.5 56.5 56.5 56.5 
(9.7%) (••) (1l.S%) (5.8%) 

53.8 
(7.1%) 

51.4 51.4 51.4 51.4 51.4 
(11.9%) (7.9%) (12.9%) (23.7%) (2.0%) 

48.4 
(4.6%) 

46.8 46.8 46.8 
(••) (••) (8.2%) 

42.7 
(••) 

39.7 
(18.2%) 

37.9 
(••) 

37.5 37.5 37.5 
(17.7%) (37.5%) (34.6%) 

34.9 34.9 34.9 34.9 
(27%) (23%) (••) (••) 

33.1 33.1 
(19.3%) (••) 

31.3 31.3 
(19.4%) (••) 

29.3 
(••) 

- Percenta g e ot total amount of HGG detectel on mununoblot p resent m lane 

** - Band present but yielding a value < 10 (arbitrary units) by image analysis 
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Fig.5.12: Effect of cimetidine {10 mg/fish) on absorption of HGG into plasma. 
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£jfect of prior administration of 10 mg cimetidine on levels of HGG (mean +1- SE) 

measured by EL/SA in plasma of.fish over a 48 hr time course after administration of 35 

mg HGG. EL/SA reading at time 0 was from fish which received PBS only. 
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Table. 5.13: Apparent molecular weights (kDa) and relative percentages of HGG bands detected 

in the plasmtl of.fish orally intubated with 35 mg HGG 1 hr after intubation with /0 mg cimetidine. 

15min 45 min 1 hr 2 hr 6hr 12 hr 24hr 48hr 

HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total 

(6.6'.11>). (10.7'.11>)" (27.6'.11>)" (16.7'.11>). (16.2'.11>). (16.3'.11>). (4.6'.11>). (1.3'.11>). 

201.4 aFc 201.4 a Fe 201.4 aFab 201.4 aFab 201.4 aFab 201.4 aFab 201.4 aFab 201.4 aFab 

{1.9%) (10.0%) (10.2%) aFc (14.5%) aFc (0.0%) a Fe {4.2%) aFc {41.3%) a Fe {100%) a Fe 

152.2 152.2 152.2 152.2 152.2 a Fe 

{46.3%) (27.0%) ( .. ) (13.3%) (19.7%) 

107.4 107.4 107.4 107.4 a Fe 

(14.1%) {31.4%) (13.1 %) (16.4%) 

76.2 76.2 76.2 76.2 

{17.3%) {10%) (20.3%) (10.8%) 

47.6 47.6 a Fe 47.6 aFc 47.6 47.6 

{5.1 %) (••) {16.4%) {20.1 %1 {19.8%) 

40.3 a Fe 40.3 a Fe 40.3 40.3 a Fe 40.3 

{29.5%) (14.2%) ("") (38.9%) . {12.5%) 

37.8 37.8 a Fe 37.8 37.8 a Fe 

(8.0%) ("") (14.2%) {24.2%) 

18.5 18.5 18.5 

(17 .8%) {29.8%) {25.6%) 

10.8 10.8 aFab 10.8 aFab 10.8 

{27.7%) {31.9%) aFc {9.5%) aFc {33.2%) 

7.6 aFab 7.6 a Fe 7.6 aFab 

(••) a Fe {"") ("") a Fe 

-Percentage of total amount of HGG on imrnunoblot present in lane. 

** - Band present but yielding value < 10 (arbitrary units) by image analysis. 
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Fig 5.13{a): Effect of cimetidine {50 mg/fish) on gastrointestinal pH 
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Fig.5.13(b): Effect of cimetidine (50 mg/fish) on absorption 
of HGG into plasma 
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Fig.S.13.(a): pH values (mean +1- SE) recorded by pH microprobe in regions of the trout 

digestive tract over a 48 hr time course post HGG delivery after prior administration of 50 mg 

cimetidine. Symbols used to represent gut regions in which pH was measured: • = Stomach. ... 

= Pyloric caecae. ~ = Anterior intestine. + = Mid intestine. * = Posterior intestine. (b): Effect 

of prior administration of 50 mg cimetldine on levels of antigen (mean + /- SE) measured by EL/SA 

in plasma of fish over a 48 hr time course after delivery of 35 mg HGG. EL/SA reading at time 

0 was from fish which received PBS only. 
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Table. 5.14: Apparent molecular weights (kDa) and relative percentages of HGG bands detected 

in plasma of.jish orally intubated with 35 mg HGG 1 hr after intubation with 50 mg cimetidine. 

lJ min 45 mln 1 hr 2hr 6hr 12 hr 24hr 48hr 

HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total 

(0.0%)" (0.0%)" (9.4%)" (0.0%)" (26.3%)" (11.8%)" (37.6%)" (4.9%)" 

197.4 197.4 197.4 197.4 197.4 

("") (19.5%) (35%) (14.5%) (20.4%) 

144.1 144.1 144.1 144.1 144.1 144.1 

("") (**) (••) (30.5%) (19.5%) (29.2%) 

98.9 98.9 98.9 98.9 98.9 98.9 

(••) ("*) (••) (23.7%) (35.4%) (••) 

82.4 82.4 82.4 82.4 82.4 82.4 

("") ("") ("*) (34.3%) ("") (••) 

56.1 56.1 56.1 

("") (••) (••) 

47.2 47.2 47.2 47.2 47.2 47.2 47.2 47.2 

(••) ("") (••) ("") (••) ("") (••) ("") 

38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 

(••) (••) ("") (••) (••) (••) (11.1%) ("") 

29.2 29.2 29.2 29.2 

("") (••) (••) (••) 

25.8 

("") 

18.5 18.5 

(46.3%) (50.4%) 

10.4 10.4 10.4 

(100%) (22.5%) (8.6%) 

8.3 8.3 

(••) (••) 

• - Percentage of total amount of HGG detected on immunoblot present in lane 

** - Band present but yielding value < 10 (arbitrary units) by image analysis 
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Table. 5.15: Apparent molecular weights (kDa) and relative percentages of HGG bands detected 

in gastric scrapings offish orally intubated with 35 mg HGG 1 hr after intubation with 50 mg 

cimetidine. 

JS min 30min 4Smin 1 hr 2 hr 6 hr 12hr 24hr 48hr 

HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total 
(22.4%)" (18.5%)" (18.7%)" (14.2%)" (18.1 %)" (7.8%)" (0.2%)" (0.1%). (0.0%)" 

149.3· 149.3 149.3 149.3 149.3• 149.3 149.3 149.3 
(17.6%) (18.2%) (16.1 %) (26.5%) (18.9%) (26.1%) (100%) (100%) 

103.2 103.2 103.2 
(3.4%) (3.2%) (7.3%) 

91.6 91.6 91.6 91.6 
(5.2%) (3.5%) (2.7%) (5.7%) 

79.5 79.5 
(4%) (13%) 

72.9 72.9 72.9 72.9 72.9 
(7.9%) (12.1%) (4%) (14.9%) (16.6%) 

68.2 
<4.5%J 

65.1 65.1 65.1 65.1 65.1 65.1 
(5.1 %) (7.6%) (5.9%) (12.3%) (8%) (6.5%) 

60.0 60.0 60.0 60.0 60.0 
(11.8%) (3.4%) (8.9%) (2.8%) (4.6%) 

57.3 57.3 57.3 
(4.7%) (4.8%) (5.3%) 

50.9 50.9 50.9 
(7.5%) (6.6%) (5.9%) 

45.3 45.3 45.3 
(16.8%) (9.6%) (16%) 

43 
( .. ) 

40.4 40.4 40.4 40.4 40.4 
(9.4%) (5.3%) (12.4%) (7.1 %) (7.3%) 

37.6 37.6 37.6 37.6 
(3.2%) (1.8%) (13.4%) (29.1 %) 

35.5 35.5 35.5 35.5 
(8.6%) (5.5%) (4.4%) (7.6%) 

31.1 3LI 31.1 31.1 31.1 31.1 
(10.9%) (4.4%) (6.4%) (3.4%) (3.4%) (13.4%) 

28.6 28.6 28.6 
(2.5%) (6.4%) (••) 

23.2 23.2 23.2 23.2 23.2 
(3.5%) (2.0%) (1.2%) (••) (5.7%) 

21.1 21.1 21.1 
(2.7%) (3.8%) (••) 

18.2 18.2 18.2 18.2 18.2 
(4%) (8.6%) (7.2%) (5.6%) (8.4%) 

- Percentage of total amount of HGG detected on imrnunoblot present in lane. 

** - Band present but yielding value < 10 (arbitrary units) by image analysis. 
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Table. 5.16: Apparent molecular weights (kDa) and relative percentages of HGG bands detected 

in scrapings from pyloric caecae of fish orally intubated with 35 mg HGG 1 hr after 50 mg 

cimetidine. 

15 min JOmin 45 min 1 hr 2 hr 6 hr 12 hr 24hr 48hr 

HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total 
(5.4%)" (5.1 %). (8.0%)' (0.0%)' (30.7%)" (19.1%)" (27%)' (4.7%)' (0.0%)" 

151.2 151.2 151.2 151.2 151.2 151.2 151.2 
(34.7%) (36.5%) (50.7%) (34.4%) (82.6%) (37.6%) (100%) 

103.9 103.9 103:9 
(10.7%) (14.5%) (••) 

91.3 91.3 91.3 91.3 
(19.3%) (22.5%) (28.9%) ( .. ) 
80.7 80.7 80.7 
( .. ) ( .. ) (34.5%) 

74.3 
(19.7%) 

68.7. 
(9.2%) 

61.8 61.8 61.8 
(7·.8%) (5.1 %) (••) 

58.1 58.1 
(I. I%) (11.9%) 

53.1 53.1 53.1 53.1 53.1 
(12.5%) (7.9%) (9.2%) (28.5%) (26.8%) 

45.3 45.3 45.3 
(8.6%) ( .. ) (5.2%) 

41.0 41.0 41.0 41.0 
(6.4%) (3.4%) (2.1 %) (••) 

35.4 35.4 35.4 35.4 
( .. ) (2.2%) (1.5%) (1.1 %) 

31.9 31.9 31.9 
( .. ) ( .. ) (1.2%) 

30.4 30.4 
(1.7%) (2.5%) 

27.4 27.4 27.4 27.4 
(1.6%) ( .. ) (••) (4.9%) 

19.3 
(1.6%) 

- Percentage of total amount of HGG detected on immunoblot present in lane 

** - Band present but yielding value < 10 (arbitrary units) by image analysis 
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Table. 5.17: Apparent molecular weights (kDa) and relative percentages of HGG bands detected 

in scrapings from the anterior ponion of intestine of.fish orally intubated with 35 mg HGG 1 hr 

after intubation with 50 mg cimetidine. 

/Smtn 30min 45 mln 1 hr 2 hr 6 hr 12 hr 24hr 48 hr 

HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total HGG:Total 
(0.0%)" (9.1 %)" (3.7%)" (7.5%)" (7 .3%)" (24.8%)" (36.9%)" (9.3%)" (1.4%)" 

150.3 150.3 150.3 
(12\1\) (61 %) (63.2\1\) 

124.9 124.9 124.9 
(10.2\1\) (10.5%) (9.3%) 

111.5" 111.5 
(7.2\1\) (9.3%) 

91.7 91.7 91.7 
(5.7%) (10.6%) (22.6%) 

80.2 80.2 80.2 
(4.6%) (8.6%) (12.7%) 

70.9 
(4.0%) 

68.5 68.5 68.5 
(5.9%) (4.6%) (3.3%) 

65.1 65.1 
(4.8%) (8.6%) 

61.4 61.4 61.4 61.4 
(3.3%) (7.3%) (5.1 %) (13.8%) 

55.1 55.1 55.1 55.1 55.1 
(12.1%) (7.8%) (13%) (9.8%) (6.9%) 

47.2 47.2 47.2 47.2 47.2 
(13.4%) (17.5%) (31.7%) (18.9%) (2.2%) 

39.6 39.6 
(7.0%) (2.0%) 

35.9 
(83.5%) 

34.0 34.0 34.0 34.0 
(••) (9.0%) (3.7%) (2.0%) 

29.2 29.2 29.2 
(18.7%) (6.5%) (6.2\1\) 

23.9 23.9 23.9 23.9 
(25.3%) (33.8%) (16.6%) (4.1%) 

22.7 
(4.4%) 

20.2 20.2 20.2 
(9.1 %) (6.0%) (7.4%) 

18.1 
(7.1 %) 

- Percentage of total amount of HGG detected on immunoblot present in lane 

** - Band present but yielding value < 10 (arbitrary units) by image analysis 
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Table. 5.18: Apparent molecular weights (kDa) and relative percentages of HGG scrapings from 

the posterior ponion of the intestines offish orally intubated with 35 mg HGG 1 hr after intubation 

with 50 mg cimetidine. 

15 min 30min 45mln 1 hr 2hr 6 hr 12 hr 24hr 48hr 

HGG:Tolal HGG:Tolal HGG:Tolal HGG:Tolal HGG:Tolal HGG:Tolal HGG:Tolal HGG:Tolal HGG:Tolal 
(18.7'11>)" (9.9'11>)" (17.7'11>)" (36.3'11>)" (7.7'11>)" (6.5'11>)" (1.4'11>)" (1.8'11>)" (0.0'11>)" 

150 150 150 150 150 150 150 
'(12.8%) {10.1%) (6.7%) (1.4%) (16%) (••) (••) 

97.1 
(1.0%) 

76.0 
(11.4%) 

73.3 73.3 73.3 73.3 73.3 
(12.6%) (4.8%) (6.3%) (••) (••) 

68.2 68.2 68.2 
(7.0%) (5.9%) (••) 

66.8 66.8 
(3.1%) (••) 

61.2 61.2 
(••) ' (••) '' 

55.3 
(6.8%) 

50.9 50.9 50.9 
(7.3%) (8.0%) (11.4'!L) 

48.1 
(15.7%) 

44.4 
( .. ) 
42.4 42.4 42.4 42.4 42.4 
(••) (••) (34.1 %) (100%) (100%) 

38.1 38.1 38.1 38.1 38.1 
(35'!L) (39.5'!L) (43.9'!L) (41.7'!L) (63.3%) '' 0 

35.2 35.2 
(50.3'!L) (••) 

33.0 33.0 
(21.4'!L) (16.7'!L) 

31.7 31.7 31.7 
(23.1'!L) (32.3'!L) (20.7'!L) 

27.9 27.9 
(••) (23.2%) 

22.9 
(2.6%) 

- Percentage of total amount of HGG detected on immunoblot present in lane 

** - Band present but yielding value < 10 (arbitrary units) by image analysis 
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5.4 DISCUSSION 

The approach adopted in this study represents the first attempt to delineate the exact nature of the 

lumenal processing of a protein antigen in the teleost gut in vivo. The results indicate that lumenal 

processing is a complex process with different gut regions apparently playing distinct but 

complementary roles in protein antigen handling. Additionally, it was demonstrated that the form 

of orally delivered antigen ultimately reaching the circulation may be predicted to some degree by 

understanding the mechanics of in vivo lumenal proteolysis. HGG delivered into the trout gut 

either alone or after the administration of gastric inhibitors was absorbed into the bloodstream. 

Gamma globulins have previously been used as marker proteins to assess the intestinal uptake of 

protein macromolecules in fish (Fujino et a/.,1987; Hart, 1987; Georgopoulou et al., 1986; 

Jenkins et al., 1992) but their processing in the lumen has not been described. The present study 

has investigated the condition of orally delivered HGG in the gut and quantified the levels of HGG 

reaching the rainbow trout circulation using ELISA and Western blotting methods. This was in 

contrast to previous studies of the absorption of HGG by the rainbow trout which had centred on 

cytochemical and immunohistochemical techniques. 

A relationship was noted in the present study between the quantity of HGG administered to fish 

and the levels of antigen subsequently detected in the plasma. This result is similar to previous 

studies on the uptake of soluble proteins in Oncorhynchus mykiss. McLean (1987) reported 

maximal absorption of HRP after administering an oral dose of 50 mg and Georgopoulou et 

a/.(1988) found a clear correlation between dose of HRP delivered (within the range from 10 to 

30 mg per fish) and subsequent plasma levels detected. Studies on Oreochromis mossambicus 

found the optimal absorption of HRP and HGG respectively after an oral dose of 2 mg per fish 

(Doggett, 1989; Jenkins, 1992). The present study has found that the optimal uptake of HGG by 

rainbow trout as determined by ELISA occurred after an oral dose of 35 mg per fish but higher 

doses resulted in significantly lower levels than this peak. McLean (1987) suggested that these 

dose responses may reflect saturation - type kinetics on coated pits at the microvillous surface. 

If this is correct one might expect the levels of antigen reaching the bloodstream to increase with 
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increasing dose until. a saturation state was reached and that doses greater than this saturation level 

would result in similar levels of antigen uptake. Jenkins (1992) reported that optimal levels of 

HGG absorption occurred in tilapia after the oral delivery of 2 mg per fish but found significantly 

lower levels after the delivery of 4 or 10 mg HGG per fish. In the same study, when HGG was 

administered via the anal route maximal absorption was found after intubation with a dose of 4 mg 

per fish but less absorption was found after delivery of 10 mg. Similarly, Doggett (1989) found 

maximal absorption of BSA in tilapia (by rocket immunoelectrophoresis) after the administration 

of 12.5 mg per fish but lower uptake after delivering 15 mg. These results may reflect 

inadequacies in the techniques used. Alternatively, in the case of orally delivered proteins the 

greater viscosity of the more concentrated solutions may have slowed their gut passage and since 

the dose responses described above were only assessed l hr after intubation then less of the more 

concentrated solutions may have reached the absorptive sites of the intestine. Differences in the 

intracellular processing of particular orally administered antigens in teleosts have been described 

(chapter 4) so the observed dose responses may partly reflect the mode of intracellular processing 

in the intestine prior to entering the circulation. The capacity for uptake is therefore likely to 

depend both on the physiology of a particular fish species and the nature of the protein antigen 

administered. Nonetheless such approaches did serve as a rational basis for the determination of 

appropriate antigen doses for subsequent experimentation. 

The overall levels of HGG absorption measured in this study were in accordance with those 

reported for uptake of other soluble proteins by rainbow trout (M cLean, 1987; Dorin et al., 1993). 

These uptake levels (generally in range I - SOng mJ·') were considerably less than those reported 

for the same antigens in tilapia where peak values as high as 300 JLg HRP mJ·' (Doggett, 1989) 

and 700 JLg HGG mJ·' (Jenkins, 1992) have been reported. Such wide differences in the levels of 

soluble protein uptake were also reported between rainbow trout and carp (McLean and Ash, 

1986, l987b) where the tissue levels of orally delivered HRP were up to 1000-fold greater in the 

"agastric" carp than in the "gastric" trout. Differences in the degree of macromolecular protein 

uptakeinto the bloodstream may reflect differencesjn gastrointestinal physiology (Ash, 1985) such 
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as the absence of an initial peptic gastric phase or in the extent and rates of intracellular digestion 

between species (Watanabe, 1982). The gastric phase ofdigestion may be of less importance to 

the destruction of intact protein than previously thought since high levels of macromolecular 

protein antigen were found to be absorbed by the "gastric" species, tilapia (Jenkins et al., 1992; 

Doggett et al., 1993a). A comparative study of the absorption of soluble proteins in carp, tilapia 

and rainbow trout found that the uptake of protein was greatest in tilapia and least in rainbow trout 

with carp occupying an intermediate position (Doggett, 1989). In the present study a biphasic 

temporal pattern of HGG uptake was found (by both ELISA and inununoblotting analyses) with 

an increase in absorption from 45 min-2hr after antigen delivery and a second (usually larger) peak 

6-12 hr after antigen administration. A similar pattern was reported for the uptake of HGG in 

tilapia (Jenkins et al., 1992) where levels of HGG detected in plasma were maximal 6 hr after oral 

administration but an initial smaller peak was found 30 min after delivery. Studies of the oral 

administration of HGG to rainbow trout reported its absorption after I hr in vitro (using an everted 

gut sac technique) and its intracellular detection 5 hr after oral administration in vivo; in the same 

species the absorption of rabbit IgG into intestinal epithelial cells was detected 3 hr after oral 

administration (Fujino et al., 1987). HRP which had been orally administered to rainbow trout was 

first detected in the bloodstream after 7 to 8 hr and reached a maximum after 16 hours 

(Georgopoulou et al., 1988). However the first sample was taken 3 hr after delivery so an earlier 

peak may have existed. This possibility is supported by the results of McLean and Ash (1987b) 

which showed that maximal absorption of HRP into the plasma of rainbow trout occurred 30 min 

after delivery although uptake was only monitored for a total time of 75 min. The present work 

and the findings of Jenkins et al. (1992) and McLean and Ash (1987b) indicate that regardless of 

the quantitative differences the absorption of soluble antigens into the bloodstream of teleosts 

occurs very rapidly, within 15 min of delivery. The biphasic patterns of uptake reported in these 

studies may reflect gastric evacuation rates which have been reported to be biphasic in tilapia fry 

(Hofer and Newrkla, 1983) and this may also occur in rainbow trout. Obviously the dynamics 

of such processes would be influenced by physiological differences between species. 
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A number of techniques have been used in the past to investigate the uptake of protein antigens 

into the bloodstream of teleosts. These include rocket immunoelectrophoresis (Doggett, 1989), 

ELISA (McLean, 1987; Doggett, 1989; Davidson, 1991; Jenkins, 1992), ELISA combined with 

luminescence (Georgopoulou et al., 1988) and Western blotting (Jenkins, 1992). The present study 

used ELISA and Western blotting to analyse plasma levels of absorbed HGG and found that in 

some cases large peaks in absorption which were detected by ELISA were not found when the 

same samples were analysed by Western blotting. The large peaks of absorption detected by 

ELlS A may have been a consequence of the presence of particular antigenic fragments identified 

on Western blots. The presence of such highly antigenic fragments may have influenced the 

ELISA results leading to apparent uptake levels of greater than I ILg HGG mJ·' in some groups 

while in general, values in the range 0-50 ng m1·' were found. Jenkins (1992) also used these 

techniques to investigate HGG absorption in tilapia and in some cases found a correlation between 

peaks of absorption detected by ELISA and the recognition of particular fragments by Western 

blotting. In the latter study the very high ·absorption values reported ( > IOO~tg mJ-1) may have 

been less prone to alteration by a highly immunogenic fragment than was the case in the present 

study where low levels of absorption were found. There is a wide discrepancy between the 

reported levels of absorption of HRP into the circulation of rainbow trout which may reflect 

differences in the techniques used. McLean and Ash (1987b) found that uptake amounted to only 

0.5% of the intubated dose while Georgopoulou et al. (1986) found that 6% of the intubated dose 

was absorbed. The detection of HRP was dependent upon the retention of functional enzymic 

peroxidase activity (McLean and Ash, 1986) while detection of HGG in the present study relied 

on retention of antigenicity. HGG was detected in the present study in intact and fragmented 

forms so a higher apparent level of uptake (compared with HRP) might have been expected. The 

results suggest that in rainbow trout or in other species exhibiting low levels of macromolecular 

protein absorption the use of ELlS A alone to quantify absorption may result in misleading findings 

but by the application of Western blotting or another technique to assess the qualitative nature of 

the antigen present such an interpretation may be avoided. Considerable differences in the sizes 

and relative abundances of HGG fragments detected at various times after antigen administration 
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were noted. Previous investigations involving a variety of fish species have reported the 

generation of antigenic fragments after the oral. delivery of BSA (Doggett et a/.,1991), ferritin 

(Rombout and van den Berg, 1989), HGG (Jenkins et a/.,1992) and antigens from Vibrio 

anguillarum (Rombout and van den Berg, 1989). Hemmings (1979) in a study on rats similarly 

found that 57.7-68.8 %of the BSA which was absorbed after oral administration was in the form 

of 20 -50 kDa breakdown products. It has previously been found in teleosts that the processes 

of absorption of macromolecules and their retention in enterocytes may differ from that of 

antigenic fragments (Georgopoulou et al. ,1988; Doggett, 1989; Rombout and van den Berg, 1989; 

Jenkins, 1992). Intact antigen may be selectively retained intracellularly while smaller antigenic 

fragments may gain rapid entry to the bloodstream (Rombout and van den Berg, 1989). Jenkins 

(1992) found increased plasma levels of intact HGG from 24-48 hr after antigen delivery when the 

total quantitative levels of the antigen were in decline. Likewise in the present study, albeit at a 

much reduced level, lower molecular weight fragments appeared in the plasma more rapidly than 

either high molecular weight fragments or the apparently intact antigen which, although present 

rarely and in very small amounts, appeared predominantly more than 12 hours post intubation. 

This suggests that intestinal processing of HGG may be similar in trout and tilapia despite the 

considerably greater uptake of the protein in the latter species. In the present study the ·levels of 

HGG in the plasma which were detected by ELISA and Western blotting decreased considerably 

after 12-24 hr. This reduction was probably a result of clearance mechanisms involving antigen 

trapping in the liver, kidney and spleen (McLean and Ash, 1987; Doggett, 1989; Smedsrud et 

a/.,1984; Dannevig et al, 1990, 1994). The kinetics of rainbow trout plasma clearance has been 

described as monophasic and exponential at a rate of 3 % per minute by Georgopoulou et al. 

(1988) and as biphasic by McLean (1987). The exact nature of this process will determine the 

quantity and form of orally administered antigen present in the plasma at various times after 

delivery. 

Western blot analysis in this investigation showed that antigenic fragments containing determinants 

recognised by antisera to the Fah and Fe regions of HGG were absorbed into the bloodstream of 
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rainbow trout after oral delivery. A greater number of fragments were recognised by antisera to 

the Fe portion in this study which is in agreement with the findings of Jenkins (1992) in tilapia. 

In contrast, Georgopoulou et al. (1986) found that 30 min after the incubation of everted trout gut 

sacs with HGG, antisera to both Fe and Fab regions located epitopes in the apical vacuoles of 

lining epithelial cells but 60 or 90 minutes after incubation no material reactive with antisera to 

the Fe component was detected. The authors proposed that the Fe region underwent intracellular 

digestion. However, an in vivo analysis in the same study showed that HGG reactive with antisera 

to both the Fe and Fab components was present within intestinal cells. The results in section 4.3 

of the present thesis indicated that the heavy chain of HGG was found intact more often 

intracellularly than the light chain in cells isolated from the trout intestine. Since the present study 

provides unequivocal evidence for absorption of HGG fragments possessing determinants 

recognised by antisera to th-e Fab and particularly the Fe components these must have passed 

through the gut epithelium intact. If some of the absorbed antigen was selective) y exocytosed from 

the cells used by Georgopoulou et al. (1986) this may explain the apparent loss of Fc-related 

antigenicity. 

Two gastric inhibitors were used in this study which altered gastric pH in different ways. Sodium 

bicarbonate resulted in acid neutralisation leading to a rise in gastric pH to a level approximating 

that of the intubated solution itself(> pH 8.0). Cimetidine administered at doses greater than 10 

mg per fish resulted in a pH of approximately 7 which was consistent with its role as a competitive 

histamine H2 receptor antagonist. The measurement of a gastric pH of 7 at the first sampling 

point, 75 minutes after cimetidine administration, indicated that a constant and considerable 

secretion of HCI occurred in the rainbow trout stomach in order to maintain an acidic 

environment. This study determined that the intubation of control PBS alone, because of its 

inherent buffering capacity resulted in a significant rise in gastric pH. This outcome has not been 

considered previously in studies of antigen absorption in teleosts but may be of importance. The 

oral administration of antigen to rainbow trout in volumes of up to 2 ml of buffered diluent has 

been reported (Georgopoulou et al., 1988) and this would be expected to result in neutralisation 
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of gastric pH for some time. This may be important for future studies which should take 

appropriate measures in order to avoid the generation of possibly misleading results. In the 

present study, changing the gastric pH altered the qualitative nature of HGG fragments detected 

in the gut lumen and in the plasma. Fragments of low apparent molecular weight were more 

prominent in the plasma of fish with a low gastric pH (4- 5) while a greater quantity of somewhat 

larger fragments was found in the plasma of fish with a gastric pH ::::: 7.0. These findings were 

in accordance with the predictions of the in vitro model described in section 3.3. However, the 

use of gastric inhibitors did not appear to greatly increase the quantitative levels of HGG reaching 

the plasma. Gastric inhibitors may be of considerable value in cases where orally administered 

antigens are highly acid-labile. In such cases the incorporation of bicarbonate or other inhibitor 

may significantly increase the quantity of intact antigen available for absorption, as found for 

example in the case of cholera toxin B subunit in mammalian studies (Clemens et al., 1986; 

Sanchez et al., 1993b). Previous studies on both teleosts and mammals have assumed that if the 

gastrointestinal destruction of protein molecules could be reduced then the enhanced absorption 

of such molecules would result. The efficacy of PLG microparticles in mammals has for example 

been partly attributed to the protection of antigens from acidic degradation and intestinal 

proteolysis (section 7.1). Studies on teleosts have also suggested that by modifying the conditions 

in the digestive tract, the extent of protein macromolecular absorption may be enhanced. The use 

of soybean trypsin inhibitor (McLean, 1987; McLean and Ash, 1989) increased the quantity of 

orally delivered HRP in the liver and spleen of rainbow trout. Moreover Jenkins (1992) found 

that the prior or concurrent treatment of HGG 7 intubated tilapia with Quii-A saponin increased 

plasma levels of HGG and altered the fragmentation patterns of the HGG detected, an effect which 

may have involved Quil - A mediated inhibition of lumenal proteases. Additional evidence is 

provided by Wong et al. (1992) who found that the enteric coating of orally delivered Vibrio 

bacterins resulted in enhanced protection to challenge as compared with unprotected vaccine. It 

may be concluded that by modifying the gut environment or protecting labile protein antigens the 

efficacy of oral vaccines may be enhanced. 
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To date this study is the first to attempt to analyse in depth the exact. nature of in vivo proteolysis 

of a protein antigen in the teleost gastrointestine. The methods of analysis which were used have 

allowed a detailed assessment of the roles of various regions of the gut in antigen degradation. 

This is a critical step in assessing the likely efficacy or otherwise of oral delivery systems for 

protein or peptide molecules. If detailed information on the factors involved in the degradation 

of proteins in vivo can be determined then specifically tailored delivery protocols may be 

developed. Using this method a relatively large proportion of the antigen detected in the stomach 

was found in intact form indicating that the intubated proteins were only partly digested and would 

have left the stomach in this form. This is in accordance with the predictions of the in vitro model 

described in section 3.3 of this thesis and with a previous study on protein digestion in the Atlantic 

cod (Lied and Solbakken, 1984). The finding that a similar amount of degradation of the intact 

HGG occurred in the trout stomach at pH 7 as at pH 4 - 5, although the fragmentation patterns 

of the processed antigen differed, indicated that the enzymes in the trout stomach can operate over 

a wide pH range (see also section 3.4). This is in contrast to the suggestion that abrogation of 

gastric acidity would lead to reduced proteolysis and possibly in enhanced macromolecular uptake 

(McLean and Donaldson, 1990). 

The role of the pyloric caecae in salmonids has been a matter of some debate. Lipid absorption, 

enzyme synthesis and vitamin production have all been proposed as functions but little evidence 

exists to support this (Smith, 1989). The surface area of the rainbow trout pyloric caecae is 3 

times that of the remainder of the midgut and twice the area of the entire intestine and this has led 

to suggestions that it is merely an expansion of the surface area of the midgut (Ezeasor and 

Stokoe, 1980). Studies on the inner epithelium of salmonid pyloric caecae indicated that cells 

secreting digestive enzymes were absent (Fange and Grove, 1979). Utilising isolated everted 

pyloric caecae it was found that this tissue can absorb amino acids and sugars across its epithelial 

cells (Diamond and Buddington, 1985) and it has been determined that intestinal contents move 

into and out of the pyloric caecae by contraction of the caecal musculature. Pyloric caeca have 

been used as a source of intestinal proteases in salmonids. The pancreas in these species has been 
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described as a diffuse tissue dispersed over the mass of cells comprising the mucous epithelium 

of the pyloric caecae (Kolodzeiskaya et al., 1988) thus making isolation of enzymes from the 

pancreas difficult. Digestive proteases have been isolated from the pyloric caecae of a number of 

teleost species (section 3.1). Previously there has been little information concerning the role of 

the pyloric caecae per se in the digestion of proteins. The present study indicates an important 

role for the pyloric caecae in the degradation of soluble proteins. A number of HGG fragments 

present in the stomach were not detected in the pyloric caecae of these fish which suggested that 

either the fragments were degraded in the pyloric caecae to peptides or amino acids which were 

not detectable by the methodologies used or absorbed. Most of the antigen which was detected 

was apparently intact or in the form of large ( > 100 kDa) fragments. It thus appears that enzymes 

residing in the pyloric caecae of rainbow trout are highly effective in digesting peptides released 

by prior gastric treatment but not in fragmenting large proteins. A study which used the same 

division of the digestive tract as the present work analysed protein and free amino acid levels in 

regions of the rainbow trout digestive tract after feeding (Dabrowski and Dabrowska, 1981) and 

found a 20-200 fold increase in the amount of free amino acids released from dietary protein in 

the pyloric caecae as compared to the stomach. Overall the evidence indicates that the proteolytic 

activity in the lumen of the rainbow trout pyloric caecae is considerable. In agreement with this 

are the results of Lied and Solbakken (1984) which found mainly proteins and polypeptides in the 

stomach but polypeptides, short peptides and amino acids in the pyloric caecae and anterior 

intestine. Ulla and Gjedrom (1985) found a significant correlation between the length of the 

rainbow trout intestine and protein digestibility but found no such correlation between digestibility 

and either the number or the length of pyloric caecae leading the authors to propose that pyloric 

caecae were not involved in protein digestion. It is conceivable that in the present study that HGG 

fragments produced in the stomach were subsequently absorbed in the pyloric caecae (see section 

4.3) but since such large scale antigen absorption has not been previously reported to occur in vivo 

previously this is perhaps unlikely. This region is more probably implicated in the proteolysis of 

peptides. 
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In contrast to the results on HGG degradation in the pyloric caecae, the anterior half of the post -

pyloric caecae gut appeared to possess enzymes which were highly effective in degrading intact 

proteins and large protein fragments. Very little intact antigen was found in this region. This is 

in agreement with reports of the presence of highly active proteases and peptidases in the teleost 

intestine (section 3.1). The results collected in this study on scrapings from the posterior portion 

of the intestine are more difficult to assess. Antigen was detected in this posterior intestinal region 

soon after intragastric intubation and this is difficult to envisage in the context of normal gut 

physiology. Intact HGG was detected in scrapings from the posterior intestine up to 24 hr after 

HGG delivery, at which time no HGG fragments were detected. This suggested that antigen may 

have reached the posterior intestine under the force of injection and remained intact in this region. 

If this is indeed the case then the results are highly artefactual since if antigen was incorporated 

into food and administered to fish the normal processes of bulk food handling and gastric 

evacuation would presumably dictate that antigen would not reach such posterior gut regions for 

some time. A number of previous studies have used similar intubation procedures (M cLean and 

Ash, 1986, 1987b; Georgopoulou et al., 1988; Jenkins et al., 1992; Doggett et al., 1993) and the 

biphasic patterns of antigen uptake into plasma reported in the present and earlier studies (Jenkins 

et al., 1992) may be a result of this procedure and not a de facto physiological phenomenon. 

Whatever the reason it appeared that little antigen proteolysis occurred in this posterior intestinal 

region; antigen being found up to 24 hr after delivery in apparently intact and high molecular 

weight forms. A decline in the activity of intestinal proteases in the posterior intestine has been 

reported previously (Hofer and Schiemer, 1981) as has an important role for this region in intact 

protein absorption (M cLean and Ash, 1987a; Georgopoulou et al., 1988; Dorin et al., 1993). The 

rainbow trout hindgut is deeply folded, possibly resulting in a functional separation between the 

central lumen and the spaces between the folds (Ezeasor and Stokoe, 1981). Nonvacuolated cells 

line the central lumen while the sides of the folds are lined by vacuolated cells indicative of 

macromolecular uptake by pinocytosis, the latter authors postulated that this folding pattern 

increases food retention time in the hindgut and therefore presumably increases the capacity for 

absorption. 
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It was not possible in this study to predict the exact nature of plasma-borne HGG fragments by 

examining the nature of the antigen which was present in the gastrointestine. In some cases 

fragments were detected in the plasma which were not detectable in any gut region. It is thus 

likely that such fragments were the result of post - lumenal processing possibly involving 

membrane- associated factors (Ash, 1980; Ugolev and Kuzmina, 1994), intracellular processing 

(Georgopoulou et a/.,1986; Dorin et al., 1993) or possibly even peptidases in the bloodstream 

(McLean, 1987). It is perhaps noteworthy that a HGG fragment of approximately 10 kDa, similar 

in size to that detected in the plasma of fish with a mildly acidic gastric pH (pH 4 - 5), and not 

detectable in any region of the gut was found to be produced within cells isolated from the 

intestine of rainbow trout (section 4.3). It is conceivable that intracellular processing followed by 

exocytosis generated fragments which subsequently reached the circulation. In conclusion, the 

results of this in vivo investigation support the results derived from the in vitro model described 

in chapter 3, particularly with regard to the occurrence of gastric proteolysis of HGG when the 

stomach pH is neutralised. In addition, the finding of HGG fragments in the plasma of orally 

intubated fish which were not detectable in any region of the digestive tracts of these fish indicates 

as suggested in chapter 4, that intracellular proteolysis may contribute to the degradation of orally 

administered proteins. 
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I 

CHAPTER 6 
THE NATURE AND KJNE17CS OF THE SYSTEMIC AND MUCOSAL ANTIBODY PRODUCED 

TO HGG FOLLOWING ORAL AND PARENTERAL ADMINISTRA170N. 
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6.1 INTRODUCTION 

The gut mucosa of a number of fish species has been shown to be capable of responding 

immunologically to orally administered antigen. Gut associated lymphoid tissue (GAL T) in fish 

comprises a repertoire of lymphoid cells capable of such functions as antigen binding, antigen 

presentation, antibody secretion and cell-mediated immunological reactivity (section 2.4.1). In 

mammals the existence of a common mucosal immune system possessing a number of features 

distinct from those of the systemic system is well documented (McGhee and Kiyono, 1993). In 

a number of cases a lack of correlation between serum antibody titre and resistance to infection 

by enteric pathogens has been demonstrated; the induction of a mucosal immune response being 

the most effective means of protection. A vital component of this defence is the production of 

secretory IgA (S-IgA), an antibody isotype uniquely adapted to its role in defence at the gut 

mucosa and lumen. The importance of the role now attributed to this facet of mucosal immunity 

is indicated by the use of intestinal mucus S-IgA as the 'gold standard' for assessing the efficacy 

of enteric vaccines (Forrest, 1992). 

The existence of a common mucosal immune system in teleosts has similarly been proposed (see 

section 2.4.2). Antibody has been detected in the bile (Lobb and Clem, 1981a; Lamers, 1985; 

Rombout et al., 1986; Davidson, 1991; Jenkins, 1992), cutaneous mucus (Harrell et al, 1976; 

Lobb and Clem, 1981b; Ourth, 1980; St. Louis-Cormier et al., 1984; Rombout et al., 1986, 

1989a; Lobb, 1987; Burgess, 1988; Davidson, 1991; J enkins, 1992) and in the intestinal mucus 

(Fletcher and Grant, 1969; Bradshaw et al, 1971; Di Conza and Halliday, 1971; Harris, 1972; 

Fletcher and White, 1973; Rombout et al., 1986). Fletcher and Grant, 1969; Fletcher and White, 

1973). A protective role for such antibody has rarely been demonstrated although Horne and 

Baxendale (1983) demonstrated a reduced adherence of Vibrio anguillarum to excised sections of 

rainbow trout gut in vaccinated fish and a reduction in bacterial establishment in the skin mucus 

of ayu, Plecoglossus altevelis has been described after oral immunisation (Kawai et al., 1981). 

Some authors have described differences between mucosal and systemic derived antibody (Lobb 

and Clem, 1981c) leading to suggestions that secretory immunoglobulins are not derived from the 
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general circulation. Secretory component (SC) and J chain, pivotal features of mammalian S-lgA, 

have not been unequivocally identified in the secretory immunoglobulin of teleosts to date. A 'J' 

chain has been described as a component of I gM in the sheepshead, Archosargus probatocephalus, 

(Lobb and Clem, 1981d), and rainbow trout (Sanchez et al., 1989) but could not be detected in 

chum salmon, Oncorhynchus keta (Kobayshi et al., 1982) or in flounder, Platicthysjlesus (Giynn 

and Pulsford, 1990). Lobb and Clem (1981b) suggested that a peptide associated with the 

cutaneous mucus lgM in the sheepshead, Archosargus probatocephalus may represent a secretory 

component type molecule and Underdown and Socken (1978) demonstrated that the secretory 

component - binding site is present on high molecular weight immunoglobulin in vertebrate species 

as primitive as the nurse shark, Ginglymostoma cirratum. 

There is some evidence to suggest that in teleosts as in mammals enterically presented soluble 

protein antigens are poor mucosal immunogens compared with particulate antigens (Rombout et 

al., 1989; Davidson, 1991). The former study demonstrated the presence of specific antibody to 

Vibrio anguillarum in cutaneous mucus and bile but not in serum after enteric administration. In 

contrast, most reports of enteric immunization with soluble proteins have found serum titres which 

were significantly greater than those in secretions (Burgess, 1988; Doggett, 1989; Rombout et al., 

1989a; Davidson, 1991; Jenkins, 1992). In the elasmobranch, Scyliorhinus canicula the oral 

administration of sheep red blood cells and Vibrio anguillarum bacterins resulted in detectable 

biliary antibody but no systemic response (Hart et al., 1987). Specific antibody secreting cells 

have been identified in the gut mucosa of rainbow trout after oral delivery of both soluble 

(Georgopoulou and Vernier, 1986) and particulate antigen (Davidson et al., 1993). Lobb (1987) 

immunised catfish, Ictalurus punctatus by immersion in dinitrophenylated-horse serum albumin 

and found that a greater number of fish possessed specific antibody in the cutaneous mucus than 

in the serum. The importance of antibody levels in determining protection of teleosts against 

certain infections has frequently been questioned and many studies have reported little correlation 

between protection from bacterial challenge and serum antibody levels (Kawai et al, 1981; Kawai 

and Kusuda, 1983; El lis, 1988). Support for the belief that other factors are of greater importance 
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may be derived from a recent study on Atlantic salmon, Salmo salar,I_{Barrattand Leadbeater, pers\ 

1 comm2fwhich showed that following oral administration of a commercial furunculosis vaccine 

(Furovac) in a water in oil emulsion serum antibody was barely detectable butprotection against 

challenge was comparable to that resulting from parenteral administration of the vaccine. Smith 

et al. (1980) found that oral vaccination against furunculosis did not result in an enhanced antibody 

response but did enhance the cell - mediated immune response. In many cases only systemic 

antibody titres have been investigated and the possibility exists that a specific and perhaps 

protective humoral response may have been induced at the mucosae has not been examined. In 

addition, a non-specific response which may have been induced either systemically or locally by 

antigen administration must also be considered in instances where oral immunisation leads to 

protection from subsequent challenge. 

HGG has previously been demonstrated to induce antibody production in rainbow trout after both 

parenteral (Tatner et al., 1987; Burgess, 1988; Davidson, 1991) and oral (Burgess, 1988; 

Davidson, 1991) administration. Jenkins (1992) found that the plasma and mucosal antibody titres 

to HGG enterically administered to tilapia could be increased by the addition of Quit-A saponin 

in various formulations. This indicated the potential for the design of oral delivery systems which 

increase the extent of antigen uptake across the gut and the resultant immune response. In 

mammals oral feeding of soluble antigen may induce a state of specific unresponsiveness and the 

oral delivery of fragments of protein antigens generated by digestive protease action has been 

found to result in the induction of oral tolerance (section 2.8). Therefore the protection of 

antigens from proteolysis in the gut may reduce the likelihood of oral tolerance resulting from the 

oral administration of antigens. 

The use of gastric inhibitors to alter gastric pH was found to alter the nature of the HGG 

fragments absorbed (section 5. 3). As a result an investigation to determine if these changes in 

the nature of HGG absorbed influenced the subsequent antibody response was carried out. In 

addition to their presence on parietal cells, H2 receptors have also been found on a range of other 
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cell types in mammals and Cimetid ine has been shown to exert a number of immunological effects 

(Markiewicz et al., 1985; Bury et al, 1992). Cimetidine has been found to increase synthesis of 

immunoglobulins both in vitro and in vivo (Friedman et al., 1982; Badger et al., 1983). In this 

study it was hoped to determine if prior administration of cimetidine could increase the antibody 

response to HGG by a method not related to its role as a gastric inhibitor. This study also sought 

to determine if fragments of HGG generated by enzymes in the rainbow trout gut retain 

antigenicity by probing antigen fragments with antisera from immunised fish. Additionally, using 

this system attempts were made to determine if differences existed in the recognition of such 

fragments by antibody present in the plasma and secretions from fish immunised parenterally or 

orally. 
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6.2: MATERIALS AND METHODS 

6.2.1 Animals 

Rainbow trout, Oncorhynchus myldss of 100 - 150 g in weight were maintained as described in 

section 3.2.1. 

6.2.2 Immunisation protocol 

Four groups of fish (n = 30) were immunised either orally or intra-peritoneally (i.p.) with HGG. 

For i.p. injection, each fish received 35 mg HGG dissolved in 0.1 ml 0.15 M PBS, pH 7.2 

emulsified in 0.1 ml Freunds complete adjuvant (FCA). Orally immunised fish were divided into 

3 groups; those which 

a) received 0.2 ml PBS I hr before receiving 35 mg HGG (in 0.2 ml PBS). 

b) received 35 mg N"-2C03 in 0.2 ml PBS I hr before receiving 35 mg HGG. 

c) received 10 mg Cimetidine in 0.2 ml PBS I hr before receiving 35 mg HGG. 

Five weeks after primary immunisation an identical booster immunisation (including prior 

administration of gastric inhibitor) was administered to the oral groups but for the i.p. immunised 

groups Freunds incomplete adjuvant (FIA) was used to emulsify the antigen in place of FCA. 

Each week for 10 weeks following pri1_11ary immunisation 3 fish were sacrificed from each group. 

Samples of plasma, bile, cutaneous, intestinal and gastric mucus were collected from each fish and 

antibody levels to HGG were assessed by ELISA and Western blotting. To serve as controls, a 

group of fish were orally intubated with two concurrent administrations (I hr apart) of 0.2 ml PBS 

and samples of plasma and secretions were collected 3 weeks after administration. The antibody 

titres detected for these fish by ELISA were treated as baseline levels against which titres for the 

immunised fish were determined. 

6.2.3 Procedure for the collection of blood and secretions from fish. 

Fish were starved for 24 hr prior to sampling to ensure the presence of bile in the gall bladder and 
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were sacrificed by a sharp blow to the head before the collection of samples. 

Cutaneous mucus 

Immediately after sacrifice that portion of the fish anterior to the operculum was clothed in tissue 

paper to prevent any potential contamination of skin mucus with blood. Fish were placed in dry 

polythene bags and a small volume of PBS was added. Mucus was collected from the dorsal body 

surface by gentle stroking with cotton buds (Boots Ltd) from the operculum to the tail to minimise 

scale detachment. Two cotton buds were used to collect mucus from each fish after which the 

cotton was stripped off, placed in plastic tubes with 2 ml of PBS and mixed for I min (Whirlimix). 

Samples were centrifuged at 4, 800 x g for 10 min and the supernatant was removed and stored 

at -2o•c until required. 

Plasma 

Blood samples were drawn from the caudal sinus of fish via 23 gauge needles into heparinised 2.5 

ml syringes. Blood was left overnight at 4•c and subsequently centrifuged at 4,800 g for 10 min. 

Supernatants were taken off and stored at -2o•c until required. 

Bile 

After collection of cutaneous mucus and plasma, fish were dissected ventrally to expose the 

digestive tract (section 5.2). Bile was collected from the gall bladder via 23 gauge needles into 

I ml syringes and stored undiluted at -2o•c until required. 

Intestinal mucus 

The digestive tract from immediately posterior to the pyloric caecae to the anus was excised and 

opened to expose the lumen (section 5.2). Mucus was collected by gently scraping the gut wall 

with a spatula. The mucus was washed with PBS into plastic tubes on ice. This volume was made 

up to 2 ml with PBS and SO ~-tl of IOOmM PMSF was added. The mixture was vortexed for I 

min, centrifuged at 4,800 x g and the supernatant stored at -2o•c until required. 
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Gastric Mucus 

After dissecting out the gastric region of each fish (see section 5.2) gastric mucus was collected 

and processed as described for intestinal mucus. 

6.2.4 Production of rabbit antiserum to rainbow trout /gM 

Rainbow trout lgM was purified from the serum of fish immunised i.p. with 5 mg HGG emulsified 

in FIA. Serum was separated by gel filtration chromatography on an ACA-22 column (LKB, 

Bromma, Sweden). Fractions were tested by ELISA (see section 6.2.6) for anti-HGG activity, 

protein concentration was measured and reactive fractions were pooled and dialysed against 200 

mM Tris-saline, pH 7.5 to remove azide. The second separation step was performed by anion 

exchange chromatography using a 0.5 M sodium acetate stepped gradient at room temperature 

(Burgess, 1988; Grayson et al., 1991). A mono-Q HRS/5 column was connected to a Fast Protein 

Liquid Chromatography system (Pharmacia, Milton Keynes, U .K). Fractions were monitored at 

280 nm (UV-1, Pharmacia) and peaks collected (Frac-100, Pharmacia). Fractions were again 

assessed for anti-HGG activity by indirect ELISA, reactive fractions were pooled and 200 J.l.g of 

the resultant protein administered sub-cutaneously (se) to Dutch rabbits. After 24 days the rabbits 

were given a booster injection of ISO JJ.g of the protein and 3 weeks later blood samples were 

taken and tested by immunoelectrophoresis (Hudson and Hay, 1988) against rainbow trout lgM 

(anti-HGG reactive fractions from column; see above). The precipitin band after being excised 

and homogenised in 1.5 ml saline, pH 7.2 was used to immunise the rabbits 5 weeks after the first 

booster immunisation. The animal was re-immunised 6 months later as described above and bled 

8 months after the final injection. 

6.2.5 Determination of the speci.ficity of the rabbit anti-trout /gM antiserum and of the 

susceptibility of trout /gM to degradation by rainbow trout intestinal proteases. 

Samples of plasma, bile, cutaneous mucus, intestinal mucus and gastric mucus collected from fish 

as described above were diluted in reducing electrophoresis sample buffer, boiled for 3 min, 

subjected to SOS-PAGE and electroblotted (sections 3.2.9 & 3.2.12). Blots were washed in Tris-
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saline, pH 7.5 and blocked in Tris-saline + 4% non fat dried milk (TSM) (section 3.2). Blots 

were incubated for 4 hr in rabbit anti-trout lgM antiserum at a dilution of I: 500 (in TSM), and 

for I hr in swine anti-rabbit peroxidase conjugate (Sigma) at a dilution of I: 1000 in TSM. Blots 

were developed as described in section 3.2.12 To determine the susceptibility of any lgM which 

may have been present in these secretions to rainbow trout digestive enzymes, samples of each 

were taken and added to an equal volume of a solution containing enzymes from the rainbow trout 

intestine (section 3.2) for 2 hr. The resultant mixture was diluted with reducing electrophoresis 

sample buffer and boiled for 3 min. SOS-PAGE and Western blotting was then performed on 

these samples. 

6.2.6 Indirect EUSA for detection of antibody to HGG. 

This assay was performed essentially as described previously (Burgess, 1988; Jenkins, 1992). 

Ninety six well microtitre plates (Falcon) were coated with 100 Ill per well of 100 1-'g ml·1 HGG 

in 0.5 M carbonate-bicarbonate buffer, pH 9.6 (Appendix C) and incubated in a humid box 

overnight at 4°C. Some wells were left uncoated to serve as controls. Plates were washed 4 

times with 0.5 % PBST (fitertek Handiwash I 10, Labsystems, U .K) and patted dry on paper 

towels. Samples (200 Ill) of plasma (starting dilution I: 10), bile (starting dilution I :2), cutaneous 

mucus (starting dilution I :2), intestinal mucus (starting dilution I :2) or gastric mucus (starting 

dilution 1:2) in PBST were added to plates and doubly diluted down a single column (intestinal 

and gastric mucus samples) or 2 columns (plasma, bile and cutaneous mucus) in PBST. Control 

samples from fish administered PBS only were included on each plate and titrated according to the 

same pattern. After incubation at room temperature for 2 hr the samples were aspirated and the 

plates were washed 4 times with PBST and patted dry. To each well, except controls, was added 

100 Ill of rabbit anti-rainbow trout lgM antiserum at a dilution of I :500 in PBST and the plates 

were incubated at room temperature for I hr. Samples were again aspirated, washed 4 times with 

PBST and patted dry. Subsequently, 100 Ill of swine anti-rabbit lgG peroxidase conjugate (Sigma) 

at a dilution of I: 1000 in PBST was added to each well and the plates were incubated at room 

temperature for I hr. S~ples were aspirated and the plates were washed 4 times with PBST and 
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patted dry. Finally 100 ~tl of developing solution (Appendix C) was added to each well, reactions 

were terminated by addition of 50 ,tl of I M H2S04 and the absorbance at 492 nm was read 

spectrophotometrically (fitertek Multiscan, Labsystems, U .K) 

6.2. 7 Determination of the specificity of rainbow trout antisera in plasma and secretions. 

HGG (4 mg mJ·• in Tris-HCI buffer, pH 7.75) was added to an equal volume of a solution of 

rainbow trout intestinal enzymes (seesection 3.2) and incubated at I5°C for 30 min. The reaction 

was terminated by adding non-reducing electrophoresis sample buffer and then boiling for 5 min. 

SOS-PAGE and immunoblotting were carried out as described previously (section 3.2) except in 

this case the 'comb' for creating wells in the stacking gel possessed only a single 'tooth', the 

remainder creating a large well occupying most of the gel length (Fig 6.1). Prestained marker 

proteins (Sigma) were inserted into the first well while 100 ~tl of digested HGG sample was added 

to the large well. After electrophoresis, gels were electroblotted (section 3.2) for 18 hr. Blots 

were washed and placed in blocking solution (see section 3.2) afterwhich the blots were inserted 

into a multiscreen apparatus (Miniprotean 11 Multiscreen, Biorad) which enabled screening of a 

single antigen preparation by a number of different antisera (Fig 6.1). Samples (600 ,tl) of plasma 

or secretions made up in TSM at the same dilutions as the starting dilutions outlined for ELISA 

above were added to 'slots' and incubated at room temperature for 4 hr. Samples were carefully 

removed from slots and each slot was washed 3 times with Tris-saline, pH 7.5 and twice with 

TSM. Rabbit anti-rainbow trout lgM (600 ,tl diluted I :500 in TSM) was added to each slot and 

the blots were incubated at room temperature for 2 hr. Blots were washed as described above and 

600 ~tl of a I: 1000 dilution of swine anti-rabbit lgG peroxidase conjugate (Sigma) added to each 

slot. Blots were incubated for I hr at room temperature, washed 3 times in Tris-saline, pH 7.5, 

removed from the apparatus and developed as described in section 3.2. Image analysis of 

immunoblots was performed as outlined in section 5.2. 

6.2.8 Expression of antibody titres and statistical comparison of groups of immunised fish 

End point titres for each sample were determined by comparing absorbance values at each sample 
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dilution with that of a control sample using Chi square (Wardlaw, 1987), at a 5% level of 

significance. Mean titres from groups (n = 3) were compared by analysis of variance (ANOV A) 

on Statgraphics software. 
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6.3 RESULTS 

6.3.1 Specijicity of the polyclonal rabbit anti-rainbow trout /gM antiserum and susceptibility of 

trout /gM to rainbow trout intestinal proteases. 

Western blots showed that the rabbit anti-trout IgM antiserum recognised two bands in the plasma 

of molecular weight 72 and 26 kDa which may correspond to the heavy and light chains of trout 

IgM. In addition, bands of apparent molecular weights 63, 59, 54 and 51 kDa were recognised 

by the antiserum as well as bands > 100 kDa albeit very weakly (Fig 6.2(a)). After 30 min 

incubation of plasma with intestinal enzymes the 72 kDa band was considerably reduced as a 

proportion of the total positive signal (from 25.2 % to 9.1 %) and a number of additional bands 

of between 10 and 70 kDa were detected (Fig 6.2(b and c)). 

Similarly, in the cutaneous mucus a band of approximately 72 kDa was recognised by the 

polyclonal anti-trout lgM antiserum in addition to bands of 252, 167, Ill and 62 kDa. After 

incubation with intestinal enzymes the 72 kDa band appeared to be almost completely absent. 

Interestingly, in the case of biliary and mucus samples a greater number of bands of molecular 

weight > 72 kDa were detected on blots after digestion with intestinal enzymes. These may have 

represented breakdown products of high MW proteins in the secretions. In the bile, 3 strongly 

staining bands of 211, 196 and 143 kDa were found in addition to bands of 69, 54, 72 and 26 kDa 

(the latter two possibly represented IgM heavy and light chains respectively. In the intestinal 

mucus, strongly staining bands of 201 and 183 kDa were detected in addition to a number of less 

intense bands including one of 72 kDa. Unlike plasma, bile and cutaneous mucus the undigested 

intestinal mucus sample possessed positively staining low molecular weight ( < 10 kDa) bands. 

After incubation with intestinal enzymes the band of72 kDa was absent but the strongly staining 

band at 183 kDa did not appear to be susceptible to digestion. In gastric mucus only weakly 

staining bands were apparent after blotting with rabbit anti-trout 1gM primary antiserum. 

However, a band of 72 kDa was found which was not detectable in samples after incubation with 

intestinal enzymes (result not shown), extra bands of 118 and 90 kDa were detected after digestion 

with enzymes. 
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6.3.2 Detection of antibody to HGG in plasma, bile and mucus 

A: Plasma 

An example of the dilution profiles of peak titre plasma samples from all 4 groups is presented 

in Fig 6.3. The levels of antibody to HGG determined by ELJSA were highest in the i.p. 

immunised group which over the 10 week period were significantly greater (p < 0.05) than all 

three oral groups. Titres in the i.p. immunised group increased to > 12 (log2) by week 4 after 

a primary injection but decreased significantly after boosting at week 5, thereafter titres remained 

low ( < 8) until 4 and 5 weeks after boosting at which time titres were not significantly different 

from those immediately prior to boosting (Fig 6.5(a)). By Western blotting (Table 6.1) it was 

determined that antibodies in plasma from trout immunised i.p. recognised a number of HGG 

fragments more strongly than controls. It was remarkable that the intensity of staining of the 52 

kDa band appeared to correlate very closely with the peak titres determined by ELJSA (Fig 6.4 

& Fig 6.5(b)). Although other bands were also recognised, their intensity did not appear to reflect 

the ELISA titres or to follow a clearly discernable pattern. 

Although antibody was detectable in the plasma of all three groups of orally immunised fish, 

patterns in the titres were difficult to define. Boosting did not result in a significant increase or 

decrease in titres in any of the 3 groups. Antibody titres in the group administered bicarbonate 

prior to HGG were significantly higher than in the other oral groups 5 weeks after the primary 

immunisation but appeared to decrease after boosting (Fig 6.5(a)). In the group administered PBS 

prior to HGG the differences between titres measured from 3-10 weeks post-immunisation were 

not significant (p < 0.05. Administration of cimetidine prior to HGG did not significantly alter 

plasma antibody titres but by lowering the level of significance to 25% the titres from samples 

collected 3 weeks after primary immunisation and 5 weeks after boosting were significantly greater 

than those I and 5 weeks after primary and 2 weeks after secondary immunisation. The signal 

detected on Western blots with plasma from groups of fish immunised orally was very weak 

compared with i.p. immunised fish. Nevertheless, greater numbers of fragments were recognised 

by plasma from orally immunised fish after boosting (Table 6.1 ). In contrast with the i.p. group 
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the fragment of approximately 52 kDa was rarely detected by plasma antibodies from orally 

intubated groups although a fragment of70 kDa was recognised by plasma from all 3 oral groups. 

8: Cutaneous mucus 

The kinetics of antibody production in cutaneous mucus collected from the i.p. immunised fish was 

very similar to that found in plasma from these fish (Fig. 6.6). The titres initially increased 

rapidly but differences between titres at weeks 3-5 after primary injection were not significant 

(p < .05). Titres decreased significantly after boosting but recovered relatively rapidly and 4 and 

5 weeks after boosting the titres were not significantly different from those 5 weeks after primary 

injection. The number of fragments recognised by antisera in Western blotting appeared to reflect 

the kinetics of antibody production found by ELISA (fable 6.2) and as was the case with plasma 

from these fish the intensity of staining of a fragment of approximately 52 kDa appeared to match 

the peaks of absorbance found by ELISA. Titres in cutaneous mucus collected from fish orally 

intubated with HGG were significantly less (p < 0.05) than those from fish immunised i.p. and 

differences in titres between the 3 orally immunised groups were not significant. The titres in 

orally intubated fish were relatively erratic and no clear pattern was evident. Boosting did not 

result in a significantly increased titre in any of the 3 oral groups. The signals produced using 

these samples in Western blotting were very weak but as for plasma samples a greater number of 

fragments were recognised by samples collected from fish after boosting (fable 6.2). 

C: Bile 

Antibody titres of bile samples collected from fish which were injected i.p. with HGG were 

highest 4 and 5 weeks after boosting. Unfortunately the groups of fish 4 and 5 weeks after 

primary immunisation were inadvertently fed prior to sample collection so no bile was collected 

from these fish (Fig 6.7). Western blots probed with samples from these fish showed that a 52 

kDa fragment was relatively weakly recognised by biliary antibody in samples collected 4 and 5 

weeks after boosting. This recognition appeared to reflect the peaks of absorbance measured by 
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ELISA (Table 6.3). Antibody titres in bile collected from fish orally intubated with HGG were 

erratic and titres in the range 04 were recorded. Boosting did not result in a significant rise in 

titre (Fig 6.7). Western blots were only very weakly stained using these samples and in contrast 

with plasma and cutaneous mucus samples, boosting did not appear to alter this (Table. 6.3). 

D: Intestinal mucus 

Antibody titres > 4 were measured in intestinal mucus from i.p. immunised tish 4 and 5 weeks 

after boosting (Fig.6.8). A high background staining was found on Western blots when intestinal 

mucus was used as a primary antiserum but a 52 kDa fragment was present which appeared to 

reflect the ELISA peak absorbance (Table.6.4). Specific antibody was only detected by ELISA 

in the intestinal mucus of a small number of orally immunised fish and the titres were rarely 

significantly greater than controls (Fig 6.8). No bands were detected on immunoblots probed with 

mucus from fish administered PBS prior to HGG and for the 2 other oral groups weak and 

ineonsistent results were recorded. 

E: Gastric mucus 

Following the primary immunisation, antibody titres in gastric mucus of i.p. immunised fish were 

not significantly different from controls. However, after boosting titres of between 1-3 were found 

(Fig.6.9). This finding was supported by Western blotting (Table.6.5), although a fragment of 

52 kDa was not detected. Antibodies to HGG were barely detectable in gastric mucus from fish 

orally intubated with HGG until after boosting. In the case of the group administered prior 

cimetidine the titres at weeks 2 and 5 after boosting were not significantly different from those in 

the i.p. injected group. Using Western blotting a greater number of fragments were detected by 

samples taken from orally immunised groups after boosting (Table 6.5). It should be noted that 

the signal was extremely weak and barely detectable by the techniques used. 

233 



8 

' 

Fig. 6.1: Procedure used to screen partially digested HGG with a range of antisera from .fish on 

Western blots. A: Use of a comb with a single large 'tooth' to produce a large well for loading of 

antigen samples. B: Application of antigen to well after polymerisation of acrylamide and removal 

of comb, after electrophoresis the gel was electroblotted and transferred to the 'Multiscreen' 

apparatus. C: 'Multiscreen ' apparatus showing the application of a number of antiserum samples 
to a single nitrocellulose blot. 
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Fig. 6.2: Western blots demonstrating the specificity of the polyclonal rabbit-anti-trout /gM 

antiserum and the susceptibility of rainbow trout /gM to digestion by intestinal proteases. 

Fig.6.2(a): Recognition of heavy (H) and light (L) chains of trout /gM present in plasma by the 

polyclonal rabbit anti-trout /gM antiserum. Loading order: Lane 1, prestained molecular weight 

markers. Lanes 2 & 3, Plasma samples from .fish at a dilution of 1:100 and 1:400 respectively. 

Fig.6.2(b&c): Bands recognised in plasma and secretions of trout and the effects of intestinal 

proteases. Fig 6.2(b) is an 11% PAGE gel which shows the low molecular weight bands clearly 

and Fig 6.2(c) is a 4-15% gradient gel showing the high molecular weight bands more clearly. 

Loading order; Lane 1, prestained molecular weight markers. Lane 2, Plasma at a dilution of 

1:20. Lane 3, plasma at a dilution of 1:20 after digestion with enzymes. Lane 4, cutaneous mucus 

at a dilution of 1:5. Lane 5, cutaneous mucus at a dilution of 1:5 after digestion with enzymes. 

Lane 6, bile at a dilution of 1:5. Lane 7, bile at a dilution of 1:5 after digestion with enzymes. 

Lane 8, intestinal mucus at a dilution of 1:2. Lane 9, intestinal mucus at a dilution of 1:2 after 

digestion with enzymes. Lane 10, gastric mucus at a dilution of 1:2. Lane // (Fig 6.2(c) only, 

gastric mucus at a dilution of 1:2 after digestion with enzymes. 
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Fig.6.3: Dilution profiles of plasma samples from fish orally or 
intra - peritoneally immunised with HGG. 
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HGG after prior administration of PBS. 

- Plasma collected from fish 3 weeks after oral immunisation with HGG after prior 

administration of 35 mg sodium bicarbonate. 

+ -Plasma collected from fish 10 weeks after immunisation with HGG after prior 

administration of 10 mg cimetidine 

* - Plasma collected from fish 5 weeks after i.p. immunisation with 35 mg HGG in FCA. 
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Fi~. 6.4: Western blot showing the recognition of HGG fragments produced by intestinal enzyme 

degradation with antisera from i.p. immunised trout. Lane I, prestained molecular weight 

markers. Lane 2, partially digested HGG screened with a rabbit-ami HGG polyclonal antiserum. 

Lanes 3 , partially digested HGG screened with control trout plasma Lanes 4-13, partially 

digested HGG screened with plasma .from rainbow trout collected 1-10 weeks after immunisation 

with 35mg HGG in FCA B Booster immunisation with 35mg HGG in FJA Arrow points to the 

52kDa HGG fragment. 
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Fig.6.5(b): Cormparison of anti-HGG antibody titres in plasma 
with the recognition of a 52 kDa HGG fragment 
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Table. 6.1: HGG fragments produced by pania/ digestion of HGG by rainbow trout intestinal 

enzymes which were recognised by antibody in plasma from fish immunised orally or i.p. with 35 

mgHGG. 

Immunisation Fragment Week No 

regime 
size (kDa) 

I 2 3 4 S(Boost) 6 7 8 9 10 

ORAL:PBS + 146 + + + + + 
HGG 

70.6 + + + + 

SI + + 

13 + + 

ORAL: 151.2 + + + + + + 
Bicarbonale + 
HGG 

70.2 - + 

49.7 + + + 

39.2 + 

7.5 + + + + 

ORAL: 150.6 + + + + + 
Cimeridine + HGG 

94 + + 

70.6 + + + 

39.2 + + + 

13 + + 

7.5 + + + 

i.p. injected 153 + + + + 

126.5 + + + + + + 

80 + + + + + + 

51.8 + + + + + + + + 

7.5 + + + + + + + + + 
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Fig.6.6: Anti-HGG antibody titres in cutaneous mucus of fish immunised 
orally or i.p with 35 mg HGG 
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Table. 6.2: HGG fragments produced by panial digestion of HGG by rainbow trout intestinal 

enzymes which were recognised by antibody in cutaneous mucusjromjish immunised orally or i.p. 

with 35 mg HGG. 

Immunisation Fragmenl WukNo 

regime size (kDa) 

I 2 3 4 5(boosl) 6 7 8 9 10 

ORAL· PBS + 148.5 + + + 
HGG 

ORAL· 148.5 + + 
Bicarbona1e + 
HGG 

90 + + 

50.9 + + 

-
ORAL: 148.5 + + + 
Omelidine + HGG 

101.3 + + + 

50.9 + + + 

38.6 + + + 

injected 153 +. + + + + 

121.4 + + + + + 

52.7 + + + 

7.5 + + + + + + 
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Fig.6.7 : Anti-HGG antibody titres in bile of fish immunised 
orally or i.p with 35 mg HGG 
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Table. 6.3: HGG jragmenJs produced by partial digestion of HGG by rainbow trout inJestinal 

enzymes which were recognised by antibody in the bile of.fish immunised orally or i.p. with 35 mg 

HGG. 

Immunisation Fragmf!Til Week No 

regime size (kDa) 

I 2 3 4 5(boost) 6 7 8 9 10 

ORAL:PBS + 153 + NO + + + 
HGG 

100.6 + NO + + 

ORAL· 155.3 NO + + 
Bicarbonate + 
HGG 

100.6 NO + + 

61.8 NO + + 
-

ORAL: 151.6 + + NO + + + 
Cim~ridine + 
HGG 

46.7 NO + 

injected 151.6 NO NO + + + + 

73.1 NO NO + + + 

52.2 NO NO + + 
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Fig.6.8: Anti-HGG antibody titres in intestinal mucus from fish immunised 
orally or i.p with 35 mg HGG 
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Table. 6.4: HGG jragmerus produced by panial digestion of HGG by rainbow trout fruestinal 

enzymes which were recognised by aruibody in the iruestinal·mucus of .fish immunised orally or i.p. 

with 35 mg HGG. 

Immunisation Fragmmt WukNo 

regime size (kDa) 

I 2 3 4 5(boosl) 6 7 8 9 10 

ORAL· PBS + 
HGG 

ORAL· 152 + + + 
Bicarbonale + 
HGG 

103.4 + 

ORAL: 152 + + + 
Omeddine + HGG -

103.5 + + 

inj~cted 152.5 + + + + 

76.6 + + 

51.4 + + + + + 
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Fig.6.9: Anti-HGG antibody titres in gastr ic mucus from fish immunised 
orally or i.p with 35 mg HGG 
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Table. 6.5: HGG fragments produced by partial digestion of HGG by rainbow trout intestinal 

enzymes which were recognised by antibody in the gastric mucus of fish immunised orally or i.p. 

with 35 mg HGG. 

Immunisation Fragmenl Week No 

size (kDa) 

regime 

I 2 3 4 S(boosr) 6 7 8 9 10 

ORAL: PBS + 150.4 + + + + + 
RGG 

103.2 + + 

ORAL: 150.4 + + + + 
Bicarbonate + 
HGG 

99.6 + + 

-
ORAL: 150.4 + + + + + + 
Cimeridine + 
HGG 

102.8 + + + + 

46.8 + 

7.7 + + + + + 

Injected 151.4 + + + + + 

101.3 + + + + + 

62.4 + 

46.8 + 
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6.4 DISCUSSION 

This study has demonstrated the induction of a humoral immune response to HGG with specific 

antibody detectable both in plasma and in secretions after oral and parenteral delivery. At all sites 

the magnitude of the antibody response was greater after injection of antigen than after oral 

delivery. Prior administration of the gastric inhibitors cimetidine and bicarbonate did not appear 

to significantly influence the resultant antibody response to HGG. The most important findings 

of this work were a recognition that the kinetics of antibody production to parenterally 

administered HGG were similar in both the plasma and secretions and that the antibody produced 

reacted strongly on Western blots with a fragment of HGG which was released by incubation of 

the antigen with rainbow trout intestinal enzymes. Indeed, in the case of the antibody response 

in the plasma and cutaneous mucus.the peak titres determined by ELISA appeared to parallel with 

the recognition of this 52 kDa fragment by immunoblotting. 

Relatively few studies have examined the nature and kinetics of antibody production to soluble 

antigens in teleosts, particularly in secretions but interest is likely to grow with the increased 

application of modern vaccine technology and the generation of protein or peptide vaccines 

(Leong, 1993). There have been suggestions that soluble antigens and antigens which are known 

to beT -dependent in mammals are poorly immunogenic in fish (Etlinger et al., 1979; Ellis, 1982). 

While definitive evidence for a distinct T cell subset is presently lacking in fish, processes 

indicative of T cell - B cell interactions, particularly in the catfish have been well documented 

(Ellis, 1982; Miller and Clem, 1984: Miller et al., 1985, Vallejo et al., 1991, 1993). However, 

antibody responses to soluble proteins have been found to depend on the particular antigens and 

fish species used (Trump and Hildeman, 1970; Burgess, 1988). The latter study found that BSA 

was a very poor immunogen in rainbow trout while Trump and Hildeman (1970) detected high 

titres of anti-BSA antibody in immunised goldfish. Variation in the nature of antigens 

administered, the route of delivery, stock genotype and the fish species used make it difficult to 

generalise about such findings. 
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The indirect ELISA assay used in this study for detection of antibody to HGG in the plasma, bile 

and mucus of rainbow trout was a method optimised by Burgess (1988). The author found that 

the use of this method enabled the detection of specific antibody to HGG without interference from 

non-specific 'background antibody'. Using this system in the present study, antibody against HGG 

was detected in plasma, cutaneous mucus, bile and more rarely in the intestinal and gastric mucus. 

Western blotting demonstrated that the polyclonal rabbit anti-rainbow trout IgM antiserum 

appeared to be raised primarily against the heavy (H) chain of rainbow trout IgM (72 kDa band) 

but also reacted with a band of 26 kDa which may represent light (L) chain. A number of 

additional bands of 51, 54, 59 and 63 kDa were also recognised. Heavy and I ight chains of 

similar sizes have been described in a number of other fish species (Acton et al, 1971; Lobb and 

Clem, 1981c; Lobb eral, 1984; Ghaffari and Lobb, 1989; Glynn and Pulsford, 1990). Sanchez 

et al. (1989) reported the detection of two H chains of 70 and 60 kDa in rainbow trout IgM which 

may offer some explanation for the detection of bands of 51-63 kDa in rainbow trout plasma in 

the present study. A faint immunoreactive band of 72 kDa in addition to a number of higher 

molecular bands were detected in the bile and mucus but the significance of this result is at present 

unknown. The expression of antibody titres from mucus samples is a somewhat contentious field 

due to variability in the quantity of mucus collected from individual fish and the variable dilution 

factor resultant from the amount of water collected with the mucus. The use of protein content 

as a means to standardise the quantity of mucus present has been reported (Davidson, 1991), 

although to the authors knowledge an assessment of the degree of variability in the protein content 

of teleost cutaneous mucus has not been carried out. It may be possible that handling stress, 

anaesthesia, and differences in stock genotype and feeding regimes affect both the volume and 

protein content of the mucus. If this were the case then protein may not be a good standard 

against which to gauge antibody level. Additionally, in cases where antibody constitutes a higher 

or lower than average proportion of the total protein then correction for total protein content would 

result in a distortion of the antibody titres. Obviously a similar difficulty may pertain to the use 

of protein content as a standard for correcting intestinal mucus titres since there may be a residual 

food content which varies according to gut evacuation rates (section 5.3). There may also be 

249 



differences in the levels of lumenal enzymes present in the gut. In the absence of a definitive 

standard the present study adopted a relatively arbitrary approach. Fish of similar sizes were used 

in each group and mucus samples from each fish were made up to an identical volume, titres were 

then expressed with reference to this original volume. Further study is required to determine a 

feature which reliably indicates mucus content such as viscosity or a mucus constituent such as a 

polysaccharide or glycoprotein. In extensive mammalian studies investigating intestinal antibody 

responses, no correction for the protein content of the mucus has been made (Forrest, 1992). 

The finding in this work that the heavy chain of rainbow trout IgM was rapidly degraded by 

rainbow trout intestinal proteases is perhaps significant since if there is only a single isotype of 

lgM present in rainbow trout as suggested by Harrell et al. (1976), for this to be functionally 

effective it would require some form of protection akin to the secretory component of mammalian 

S-IgA to prevent it from degradation in the gut. Using antiserum against human secretory 

component, a positive reaction with bile or mucus samples was not found (results not presented), 

a similar finding has recently been reported for carp (Rombout et al., l993b). The polyclonal 

antiserum used, although appearing to be directed principally to the heavy chain in plasma, 

detected or cross reacted with a number of high molecular weight bands in the bile and mucus. 

The identity of these proteins was not investigated but it is possible that they represent forms of 

IgM complexed with other constituents in these secretions. The finding of low molecular weight 

protein bands reactive with our polyclonal antiserum only in the intestinal mucus of fish indicated 

that some digestion of this mucosal IgM may occur in vivo, alternatively processing of the sample 

may have made the antibody susceptible to protease action. 

The highest antibody titres detected at all sites were found after injection of HGG with Freunds 

complete adjuvant (FCA). FCA has been found to have a significant immunopotentiating effect 

on the humoral immune response of rainbow trout to the parenteral but not the oral administration 

of HGG (Burgess, 1988). A number of studies have found that the levels of antibody detected in 

plasma and secretions were greater after i.p. than oral immunisation with soluble antigens 
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(Burgess, 1988; Rombout et al., 1989a; Davidson, 1991; Jenkins, 1992). The induction of a 

systemic antibody response to HGG after parenteral delivery has previously been reported in 

rainbow trout (fatner et al., 1987; Burgess, 1988; Davidson, 1991) and in tilapia, Oreochromis 

mossambicus (Jenkins, 1992). The present finding that parenteral boosting led to a significant 

reduction in the plasma antibody titre may have been a result of antibody-antigen complexing but 

the rapid increase in titre which was found after this temporary decline did not indicate the 

occurrence of any immune suppression. Tatner et al. (1987) found a very similar pattern after 

i.p.immunization of rainbow trout with 2.5 mg HGG emulsified in FCA. 

Specific antibody to HGG was also detected at a higher level in bile and mucus of fish after i.p. 

injection than in any of the orally immunised groups. Interestingly, the kinetics of antibody 

appearance in the cutaneous mucus of the parenterally immunised fish appeared to parallel those 

seen in the plasma and boosting resulted in a similar decline and subsequent rise in titre. This 

suggested either that the injected antigen reached the skin mucosa to complex locally produced 

antibody or formed complexes with some of the circulating antibody pool which was destined for 

the cutaneous mucus. Burgess (1988) could only detect antibody to HGG in the skin mucus and 

bile of parenterally immunized rainbow trout which had detectable levels of plasma anti-HGG 

antibody, a result which may indicate that the secretory antibody was derived from the general 

circulation. The finding that the kinetics of antibody appearance in plasma and secretions were 

similar after i.p. injection was in accordance with previous studies on rainbow trout (Davidson, 

1991) and the tilapian, Oreochromis mossambicus Jenkins (1992). Detection of specific antibody 

in the bile of teleosts has been reported less often than in the cutaneous mucus. In mammals the 

importance of biliary immunoglobulin is species-dependent, in certain species such as man 

intestinal polymeric IgA is mainly derived from a trans-epithelial transport mechanism while in 

rabbits, rats and in birds for example transport of intestinal immunoglobulin is principally by the 

hepatobiliary route (Brown and Klappel, 1989; Rombout et al., 1992). It was additionally found 

in some species that disruption of the flow of bile led to a depletion in intestinal mucus antibody 

(Andrew and Hall, 1982). A recent study (Rombout et al., 1993b) using an antiserum raised in 
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rabbits to cutaneous mucus immunoglobulin from carp found positive staining by 

immunohistochemistry with skin epithelia and with bile ducts and capillaries but not with the 

intestinal epithelium and postulated that the hepatobiliary route may be the principal transport route 

for intestinal immunoglobulin in carp. The antibody responses of teleosts to immunisation with 

soluble preparations appear to contrast with responses to particulate antigens. Agius et al. (1983) 

found that soluble extracts of Vibrio anguillarum resulted in better protection than whole cells via 

the intra-peritoneal route while the reverse was true via the oral route. Rombout et al. (1986) 

detected antibody in intestinal and cutaneous mucus and in bile of carp after anal and oral 

administration of V. anguillarum but in serum only after anal administration. 

In the present study antibody was detected in a greater number of fish in the bile than in the 

intestinal mucus. It is possible as suggested by Davidson (1991) that the levels of intestinal lg may 

depend on biliary evacuation and if fish are starved prior to collection of samples less intestinal 

antibody will obviously be detected, this hypothesis awaits investigation however. Antibody titres 

in the bile were highest after i.p. injection in the present study, the highest titres being found 4 

and 5 weeks after booster injection. Interestingly, no antibody was detectable in fish from this 

group 4 arid 5 weeks after the primary injection although the plasma and skin mucus titres were 

elevated, additionally these fish were accidentally fed prior to sampling the bile contents were 

liberated into the gut. Since no antibody was detectable in the intestine of these fish one may 

suggest either that biliary antibody was not present or that the antibody was degraded in the 

intestine. Burgess (1988) also found low levels of specific anti-HGG antibody in the intestinal 

mucus of i.p immunised trout but in contrast Davidson (1991) could not detect specific antibody 

in the intestinal mucus of rainbow trout immunised i.p. with KLH. The mucus samples in the 

latter study were dialysed extensively before analysis which may have resulted in degradation of 

any IgM present since in addition to the finding that what appeared to be the H chain of rainbow 

trout IgM was highly susceptible to intestinal protease action, dialysis was found (see section 3.3) 

to be a highly effective means of degrading lumenal gut contents and isolating intestinal proteases. 

However a number of other authors have also reported an inability to detect antibody in the 
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intestinal mucus (Smith et al., 1980; Kawai et al., 1981). An important factor to consider in the 

case of the present results at least, since little processing of bile and mucus samples was carried 

out, is the finding by Burgess (1988) that a depression of apparent titres in an anti-BSA antibody 

reference sample was caused by addition of secretions in the following order; reference sample 

> PBS > skin mucus > bile > gut mucus. Therefore it is possible that titres reported in such 

samples in the present work were artificially low. This study also attempted to detect antibody 

in the gastric mucus since it was felt that if intestinal mucus antibody is bile-derived then antibody 

detection in the stomach might indicate local secretion of antibody as lymphoid cells have 

occasionally been described in the gastric region of both elasmobranchs (Hart et al., 1986) and 

teleosts (Doggett, 1989). Very little antibody was detected in the gastric mucus however, only 

in a few cases were titres significantly greater than controls; antibody was detectable 2, 4 and 5 

weeks after booster injection in the i.p. immunised fish antibody but only in a single fish (of 3) 

in each case. 

Specific antibody was rapidly synthesised in the plasma of fish which had been orally immunised 

with HGG after oral delivery of antigen. The titre increased relatively rapidly but in most cases 

there was no clear peak or pattern in the response and boosting did not result in a significant 

increase in titre. The low levels of antigen absorbed after the oral delivery of HGG (section 5.3) 

were presumably not great enough to cause the same complex forming effect as seen following i.p. 

booster administration. Since the titres in the plasma of orally immunized fish did not decline 

after boosting it is possible that this second immunisation actually sustained antibody production. 

Burgess (1988) could not detect specific antibody to HGG in the plasma of fish given 2 mg of 

HGG by the oral or anal route. This may not be surprising due to the small dose administered, 

since administration of doses of 5 mg per fish resulted in very little antigen in any form reaching 

the intestine (section 7.3). Results from a number of studies on both mammals (Rothberg et al., 

1970; Nicklin, 1987) and fish (Rombout et al., 1989a) have indicated that repeated enteric 

exposure to antigen may be required to induce a strong immune response. Evidence exists to 

suggest that 'trickle' vaccination of fish with vaccine incorporated into food over a protracted 
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period is a more effective regime in inducing a protective response in fish to bacterial challenge 

indicating that if a sufficient dose of vaccine is administered, oral vaccination may indeed be a 

feasible.alternative to other modes of vaccine delivery (Smith, pers comm). Such findings cannot 

be compared with the present work since the immunological basis of protection has frequently not 

been established. The finding that prior administration of gastric inhibitors did not appear to 

influence the antibody response to orally delivered HGG indicated that differences in the HGG 

fragments absorbed after delivery of cimetidine and bicarbonate (section 5.3) had no effect on the 

subsequent immune response. 

The use of immunoblotting in addition to serving as a second method to assess the specificity of 

the antibody under investigation enabled the determination of whether HGG fragments released 

by exposure to intestinal proteases retained antigenicity. The finding of an apparent correlation 

between the detection of a 52 kDa HGG fragment by the same antisera responsible for the peak 

antibody titres determined by ELISA suggests that antigen fragments generated by intestinal 

protease action may indeed retain antigenicity in this species and possibly indicates the existence 

of an immunodominant epitope (at least for rainbow trout) on the molecule. That 

immunodominance may be an important phenomenon in lower vertebrates has been postulated by 

Vallejo et al. (1993) who found that catfish lymphocytes responded to a single highly 

immunogenic peptide of the cytochrome c antigen. The method used in the present study did not 

set out to determine the importance of individual HGG epitopes in the induction of a humoral 

immune response and was limited in that SOS treatment and electrophoresis result in linearisation 

of proteins and thus the only antibodies detectable by this process are those which recognise 

sequential determinants. It is possible and perhaps likely that conformational epitopes on the HGG 

molecule are also important in the immune response to the antigen in rainbow trout. Nevertheless 

the finding of a correlation between the recognition of this fragment and the ELlS A titre suggests 

that it is of some importance. Additionally, the finding that this fragment is recognised almost 

exclusively by plasma and secretions from i.p. immunised fish in addition to the similarities in the 

kinetics of antibody detection in the plasma and secretions after i.p. immunisation indicates a 
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possible homogeneity in this response. Unfortunately, little definitive information on the nature 

of antibody induced by oral immunisation was gained due to the poor sensitivity of this technique 

and the low titre of antibody detected. However, although the 52 kDa fragment detected by 

antibodies from immunised fish was not detected by plasma antibodies from orally intubated fish 

plasma from all 3 groups of orally immunised fish appeared to detect a 70 kDa fragment whose 

detection appeared to coincide to some extent with the peak ELISA titres. This, although being 

far from definitive, indicates that differences exist in the specificity of antibody generated by oral 

or parenteral antigen delivery. The majority of HGG after oral delivery (see section 5.3) was 

absorbed in the form of fragments of less than 50 kDa in size, and although a fragment of 

approximately 52 kDa was detected in many cases in the gut lumen it was not detectable in the 

plasma. A small amount of possibly intact and high apparent molecular weight HGG fragments 

was also absorbed which may have possessed the epitope present on the 52 kDa fragment. It 

would be interesting to determine the minimum size of this fragment retaining antigenicity and if 

it possesses any characteristics which are particularly effective in inducing an antibody response 

in this species. This finding may simply reflect the recognition of fewer epitopes on protein 

antigens by teleosts than by mammals. A number of previous studies found that salmonids 

responded to relatively fewer vaccine components after immunisation than mammals (Hastings and 

Ellis, 1990; Grayson et al., 1991). If this is a general feature of teleost antibody responses then 

it would appear necessary to determine the specificity of antibody produced after vaccination in 

addition to its titre. 
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CHAPTER 7 

A PREliMINARY INVEST1GAT10N INTO 11IE USE OF BIODEGRADABLE (POLY-LACTIDE-CO 

-GLYCOUDE) MICROPARTTCLES FOR mE ORAL IMMUMSAT10N OF TELEOST FISH. 
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7.1 INTRODUCTION 

Exploitation of a new generation of vaccine antigens and the delivery of peptides and proteins has 

been hampered by a lack of appropriate delivery systems (Aimeida et al., 1993); a situation which 

is particularly acute in the case of the oral delivery route. Antigens capable of inducing protective 

immunity may be attached to a suitable carrier which possesses adjuvant or sustained release 

properties in order to induce effective and long - lasting local immunity by interacting with MALT 

and/ or eliciting protective systemic immune responses on reaching immune competent organs such 

as spleen (Gregoriadis, 1990). The administration of bioactive molecules in microparticles is an 

expanding area of mammalian oral vaccine research (McGhee et al., 1992; Morris et al., 1994) 

and accumulated evidence indicates that biodegradable micro - and nanoparticles may act as 

efficient antigen delivery vehicles (Damg~ et al., 1988; Eldridge et al., 1990, 1991; Michel et al., 

1991; O'Hagan et al., 1991; Aguado, 1993; Moldoveanu et al., 1993). The ability of the 

mammalian gut to absorb microparticulate material is now firmly established (section 2.2.3), 

although its extent and nature remain highly contentious issues 

The rationale behind the use of controlled release systems for vaccine delivery is to reduce the 

number of repeated administrations required to establish long - term protection since the number 

of doses required for a vaccine to be effective against an infectious agent is pivotal in achieving 

the appropriate level of immunity (Aguado and Lambert, 1992). Spherical sustained release 

polymer particles may be classified into the 'reservoir type' in which the agent is in solution in 

cavities formed by the polymeric material and which are normally referred to as microcapsules and 

the 'monolithic type' where material is evenly dispersed throughout the polymeric matrix which 

are referred to as microspheres (Tice and Cowsar, 1984; Kissel et al., 1990; reviewed by Morris 

et al., 1994). Using such controlled release systems two types of delivery may be possible:

continuous antigen release where antigen is progressively released over a period of time and pulsed 

antigen release where a mixture of particles of different sizes and compositions are used to effect 

pulses of antigen release somewhat akin to conventional booster immunisation with vaccines 

(Aguado and Lambert, 1992). A wide range of antigens including influenza virus (Moldoveanu 
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et al., 1993), Bacillus penussis filamentous haemagglutinin (Cahill et al., 1993), Escherichia coli 

colonization factor antigen 1 (Edelman et al., 1993), tetanus toxoid (Aimeida et al., 1993) and 

cholera toxin B subunit (O'Hagan et al., 1993) have been incorporated into biodegradable 

microspheres for use in parenteral and oral immunization. Microsphere technology has the 

potential advantages of reducing the number of inoculations, enhancing the immune response after 

both parenteral and oral immunisation and reducing the total antigen dose needed to achieve 

protection (Morris et al., 1994). The favoured eo- polymer for oral (Peyer's patch) vaccination 

studies is presently poly (DL-Iactide-co-glycolide) (DL-PLG) (Beck et al., 1980, 1981, 1983). 

Their preferential status results from their biocompatibility (Vischer et al., 1987), biodegradability, 

composition of non - toxic pharmaceutically approved components, adequate rates of absorption 

and a history of safe use in humans (Eidridge et al., 1990). In vivo the polymer undergoes 

random non - enzymatic hydrolysis of its backbone ester linkages into the endogenous metabolites 

lactic and glycolic acids at a rate influenced by the molecular weight of its components, surface 

area, mono mer stereoregularity, and lactide : glycolide ratio (Morris et al., 1994 ). Polymers with 

different characteristics can be produced by altering a number of parameters (Lewis, 1990) 

including the ratio of the monomers lactide and glycolide and the incorporation of surfactants 

(Aionso et al., 1993). By changing the ratio of polylactide to polyglycolide the delivery system 

may be 'programmed' to degrade and thus liberate antigen at predetermined intervals (Aguado and 

Lambert, 1992). Antigen is released from microparticles both by diffusion through matrix pores 

and by matrix degradation (Morris et al., 1994). A possible problem with the use of PLG 

microparticles as a delivery system for delivery of labile macromolecules is the instability of the 

molecules in the acid environment created in vivo as some of the polymer degrades (Pitt, 1990). 

Particle size appears to be a critical determinant of the fate of microparticles after absorption and 

possibly of the elicited immune response to the antigen (Aguado and Lambert, 1992; O'Hagan et 

al., 1993; Jenkins et al., 1994). Particles of less than 10 11m are absorbed by M cells and 

translocated to the Peyer's patch T and B cell zones (Eidridge et al., 1989, 1990, 1991; Jenkins 

et al., 1994). Studies with PLG microparticles found that those of less than 5 11m diameter were 
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endocytosed and transported by MAC-I (a cell surface marker for macrophages) positive cells 

through efferent lymphatics to systemic lymphoid tissues to stimulate a serum antibody response. 

Particles greater than 5 ~tm diameter remain in the Peyer's patch leading to the sustained release 

ofantigen in this SlgA inductive area (Eidridge et al., 1990). These particles may protect antigen 

from breakdown in the acidic stomach and from proteolysis_ in the gut (Eidridge et al., 1990; 

Challacombe et al., 1992; Edelman et al., 1993; Morris et al., 1994). The reported absence of 

exposed antigen on vaccine-containing microparticles is in contrast with live recombinant vectors 

(chapter 8) whose adherence to and uptake by Peyer's patches may be inhibited by pre-existing 

antibody (McGhee et al., 1992). Accurate quantification of microparticle uptake in the rat gut by 

Jenkins et al., (1994) indicates that the levels of microparticle absorption may be insufficient for 

effective drug delivery but may be sufficient to deliver an immunogenic dose of antigen to the 

immune system. Oral immunisation with antigen incorporated in microparticles has been 

demonstrated to induce systemic (Eldridge et al., 1989; Challacombe et al., 1992; Edelman et al., 

1993; Moldoveanu et al., 1993) and secretory (Eidridge et al., 1989,1990; Challacombe et al., 

1992; Moldoveanu et al., 1993) antibody responses. Additionally, proliferative and cytotoxic T 

cell responses have been found after intraperitoneal injection of encapsulated antigen (O'Hagan et 

al., 1993). It has been suggested that the efficacy of PLG microparticles in enhancing immune 

responses to antigens may reflect the need for high local antigen concentrations in the Peyer's 

patches and associated GALT in order to induce immune responses. Encapsulation may fulfil this 

requirement (Reid et al., 1992) and reduce the dose necessary for oral immunisation. The exact 

means by which PLG microparticles exert their immunopotentiating effects by sustained antigen 

release are uncertain but may include a depot effect as with aluminium salt adjuvants, the delivery 

of antigen directly to antigen presenting cells or continuous exposure to antigen as with chronic 

infections (Morris et al., 1994). 

Very little work investigating microparticulate absorption by the teleost gut has been performed. 

Teleosts do not appear to possess M cell analogues but an antigen sampling function has been 

attributed to the second gut region/ hindgut (Davina et al., 1982; Rombout and van den Berg, 
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1989) although whether this function extends to uptake of inert particulate matter is uncertain. A 

number of studies have demonstrated the absorption of bacterins by the teleost intestine (Davina 

et al., 1982; Rombout and van den Berg, 1985) and some have reported that absorbed bacterial 

cells were not transported further but remained in the mucosa after uptake (Nelson et al., 1985). 

Evensen et al.(1993) detected the uptake of Aeromonas salmonicida bacterins in the hindgut 

epithelial cells of Atlantic salmon up to 7 days after oral administration. In a study of particulate 

absorption by the gut of larval teleosts, Olafsen and Hansen (1992) found that the hindgut 

epithelial cells which resembled those of adult teleosts endocytosed a range of bacterial strains but 

did not absorb fixed erythrocytes or bacterial sized latex particles. Studies in our laboratory and 

at the University of Nottingham using a sensitive flow cytometric technique to measure 

microparticle absorption (Jamieson et al., unpublished observations) have indicated that all areas 

of the rainbow trout gut can absorb polystyrene microspheres of 1.0 JLm and 0.1 J.lm in quantities 

similar to those observed in mammals. If secretory immune responses may be induced by the 

administration of particulate antigen then it could be expected that microparticles, if absorbed, may 

be effective in inducing immune responses to encapsulated antigen. The use of biodegradable 

microparticles as a delivery system in fish has not been extensively studied but initial results using 

parenterally delivered PLG microparticles appear encouraging (Davidson, pers comm). The 

present study sought to apply the strategies devised in earlier parts of this study (chapters 5&6) 

to assess whether encapsulation of HGG in PLG microparticles protects the antigen from 

degradation in the gastric and intestinal gut regions, increases its presence in the circulation and 

results in an enhanced antibody response to the antigen. 
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7.2 MATERIALS AND METHODS 

7.2.1 Animals 

Groups of rainbow trout (150-200g in weight) were maintained as described in section 3.2.1. 

7 .2.2 Preparation and characterisation of PLG (Poly-lactide-co-glycolide) microparticles 

incorporating HGG. 

Microparticles were formulated in Nottingham University by Dr P.G Jenkins using a water- in

oil - in - water (w/o/w) emulsion evaporation method adapted from the processes of Beck et al. 

(1979) and Jeffery et al. (1991). A 6% solution of Poly (DL-Iactide-co-glycolide; PLG) 

copolymer, composition 50:50 (Resomer RG 503, Boehringer-Ingelheim, Germany) in 

dichloromethane (HPLC grade, May and Baker, Essex) was emulsified with Sml of distilled water 

containing 250 mg of HGG (Sigma) at 13,000 x g for 7 min with a Silverson hoinogeniser 

(Silverson Machines, Chesham, Bucks). The resultant oil-in-water (o/w) emulsion was again 

emulsified with 60 ml poly-vinyl alcohol (20% w/v in water) at 13,000 x g for 10 min to produce 

a water-in-oil-in-water (w/o/w) .emulsion. This was stirred for 12-18 hr under ambient conditions 

while microparticles formed. Microparticles were collected and washed by centrifugation (3 times 

at 15,000 x g for 15 min), (Beckman), freeze dried overnight and stored at 4°C. 

Microparticles were characterised by scanning electron microscopy to check surface characteristics 

such as shape and Jack of porosity and to serve as a primary evaluation of the poly-dispersity of 

the batch of particles. Particles were measured by laser photon correlation spectroscopy (PCS) 

and sizes expressed as 'volume mean diameter'. The content of HGG in microparticles was 

established by a BCA protein assay (Pierce). Aliquots (15 mg) of each batch of encapsulated 

antigen was degraded in 1 ml of 5% SDS in 0.1 M NaOH overnight with shaking under ambient 

conditions. 100 ~tl of each sample and of standards (ovalbumin) was mixed with BCA reagent (49 

ml BCA + I ml copper sulphate (Sigma)) at 65°C for 30 min. The protein content of each 

sample was assessed spectrophotometrically at 562 nm and interpolated into an ovalbumin standard 

curve. 
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7 .2.3 Antigen delivery and collection of samples, 

For the determination of whether encapsulation protected HGG from gastrointestinal proteolysis 

and increased. its uptake into the bloodstream, fish were intra-gastrically intubated with either 5 

mg HGG in 0.2 ml PBS or 58.4 mg PLG-encapsulated HGG (equivalent to 5 mg HGG in the first 

batch of microparticles) in 0.2 ml PBS after being starved for 48 hr. Three fish were sacrificed 

from each of the 2 groups 15, 30 and 45 min and I, 2, 6, 12, 24 and 48 hr after antigen delivery 

and samples of gastric mucus, intestinal mucus and plasma collected as described in section 5.2.2. 

For the antibody response study groups of 18 fish were intra - gastrically immunised with either 

2 mg HGG in 0.6 ml PBS or 100 mg PLG-encapsulated HGG (equivalent to 2 mg HGG in the 

second microparticle batch) in 0.6 ml PBS or with control PBS. Cutaneous mucus, intestinal 

mucus, bile and plasma samples were collected (section 6.2.3) over a period of 9 weeks after 

immunisation when a second immunisation of 2 mg HGG in 0.6 ml PBS was administered to the 

remaining fish in both groups. Samples were again collected bi - weekly for a further 6 weeks. 

7 .2.4 Analysis of antigen proteolysis, antigen uptake and antibody responses to HGG. 

Mucus samples from gastric and intestinal regions and plasma samples were diluted I :5 with non -

reducing sample buffer, boiled for 15 min and subjected to SDS- PAGE and Western blotting as 

described in section 5.2.6(A). The system for detection and evaluation of antibody in secretions 

and in plasma was as described in section 6.2.6. 
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7.3 RESULTS 

7 .3.1 Influence of encapsulation on the retention time and fate of HGG in the gastric region of the 

trout digestive tract after oral delivery. 

A scanning electron micrograph showing the spherical shape and relatively uniform size of the 

microparticles containing HGG is presented in Fig 7 .I. The effect of encapsulation on the intra

gastric fate of HGG is presented in the form of immunoblots in Fig 7.2. In addition to the 

detection of intact HGG a large number of HGG fragments were detectable in the.gastric region 

of fish administered soluble HGG alone 15 min after antigen delivery. The number of bands 

detected did not subsequently increase greatly but at times later than 45 min post-delivery little or 

no intact antigen was detected. After 2 hr post-intubation no antigen in any form was detectable 

suggesting that it had been evacuated from the stomach or degraded completely. The pattern of 

fragmentation detected in the gastric regions of fish administered encapsulated HGG was similar 

although the overall staining was less intense (Fig 7.2 (B)). However the intensity of staining for 

this group fluctuated considerably between time points. By comparing immunoblots for each of 

the immunised groups it was found that the total antigen detected in the gastric region by image 

analysis for the PLG-encapsulated HGG group was 44 % of that present in the soluble HGG group 

suggesting that most of the antigen in the PLG group was within the microparticles. Most of the 

antigen detected in these fish was in a fragmented form and in contrast with fish administered 

soluble HGG, antigen was still detectable in the gastric region of these fish up to 12 hr after 

delivery (Fig 7.3). 

7 .3.2 Effect of encapsulation on the form of HGG detected in the intestines of fish after oral 

delivery. 

Semi - quantitative data demonstrating the presence of HGG in the intestinal regions of fish at 

various times after antigen administration is presented in Table 7. I. It is apparent that no intact 

or high molecular weight HGG was detectable in the intestines of fish administered HGG in 

soluble form. Antigen was only detected at a low level. at 15 min and, in particular, at 30 min 

after administration in the form of a 43.6 kDa fragment. No HGG in any form was detected 
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between 45 min and 48 hr, In contrast, when scrapings from the intestines of fish administered 

encapsulated HGG were analysed no antigen in any form was detected until after 2hr post-delivery. 

Subsequently, antigen was detectable up to 24 hr post-delivery. At 2 hr and 12 hr most of the 

antigen detected was apparently in an intact form, although a considerable amount of fragmented 

HGG was detected after 6 hr and 24 hr. 

7.3.3 Effect of encapsulation on the form of HGGdetected in the plasma of .fish after oral delivery. 

As was the case with the intestinal scrapings from fish intubated with soluble antigen little HGG 

was detected in the plasma and none in high molecular weight or intact form. Fragmented HGG 

was detectable 15 min, I hr and 6 hr after delivery. In the case of fish administered encapsulated 

HGG a number of fragments and also intact antigen were detectable although at an extremely low 

level (fable 7 .2). 

7 .3.4 Antibody responses to soluble and encapsulated HGG in plasma and secretions. 

Fig 7.4 presents the antibody titres recorded in the plasma of fish orally intubated with soluble or 

PLG-encapsulated HGG over a period of 15 weeks. The primary response in the group 

immunised with encapsulated antigen appeared to be delayed compared to the group immunised 

with soluble antigen, although by week 5 titres were very similar in both groups. The response 

declined rapidly to a level not significantly different from controls by 9 weeks post immunisation. 

After boosting with soluble HGG at week 9 the responses in both groups increased, the highest 

titres recorded in the entire study were at week 11 (2 weeks after boosting) in 2 of 3 fish which 

were initially primed with PLG-encapsulated HGG. The mean titre of this group was reduced 

since a third fish did not respond so the overall mean was not significantly different from the titre 

in the soluble HGG group. As with the response after priming the titres declined rapidly after 

boosting to a low level by week 13. 

Antibody was not detected in bile or cutaneous mucus of fish from either group (results not 

presented). Similarly, titres in the gut mucus from both groups were not signiticantly different 
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from controls at any week other than in fish primed with PLG-encapsulated HGG at week 11 

(week 2 after boosting) when titres greater than controls were detected in all 3 fish and relatively 

high titres were recorded in 2 of the 3 fish (Table 7.3). 
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Fig. 7.1: Scanning electron micrographs of PLG micropanicles incorporating HGG. a: 

Magnification x 10, 000. b: Magnification x 20, 000. 
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Fig.7.2. (a): Western blot demonstrating the presence of HGG in gastric scrapings of rainbow 

trout over a time course after administration of 5 mg HGG in 0.2 ml PBS. Loading order: Lane 

1, prestained molecular weight markers. Lanes 2-9, gastric scrapings collected from fish 15 m in, 

45 min, 1 hr, 2 hr, 6 hr, 12 hr, 24 hr and 48 hr after antigen administration . .- - Intact HGG. 

-

Fig.7.2. (b): Western blot demonstrating the presence of HGG in gastric scrapings of rainbow 

trout over a time course after administration of 58.4 mg of PLG-encapsulated HGG (containing 

5mg antigen) in 0. 2 ml PBS. Loading order: Lane 1, prestained molecular weight markers 

(molecular weights in kDa. Lanes 2-9, gastric scrapings collectedfromfish 15 min, 45 min, 1 hr, 

2 hr, 6 hr, 12 hr, 24 hr and 48 hr after antigen administration . .-- Intact HGG. Bars in Lane 1 

represent molecular weight markers as in (a) above 
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Fig.7.3: Effect of microencapsulation on retention time of HGG in stomach 
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Data generated by image analysis of immunoblots. Relative percentages represent the proportion 

of the signal detected in gastric scrapings at a particular time point as a proportion of the total 

signal detected in samples collected over the entire time course after a particular treatment. The 

percentages are therefore not directly comparable between treatments (n = 3). 

o = Group administered soluble HGG. 

• = Group administered encapsulated HGG. 

- = No signal detected. 
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Table. 7.1: Apparent molecular weights and relative percentages of HGG bands detected in 

intestinal scrapings from fish administered either soluble HGG or HGG encapsulated in PLG 

microparticles. 

Time elapsed after antigen delivery 

Frapnenl. 15 mln 30mln 45 min I hr 2 hr 6 hr 12 hr 24 hr 48 ht 

llze(kl)a) 

Soluble 50.2 10011' 

HGG 
43.6 69.2% 

32.3 13.311' 

31.1 17.6% 
-

PLG 151.4 10011' 87.3% 7.711' 

encapsulated 
77.5 13% 

HGG 
63.7 46.7% 

51.2 9.7% 12.7% 

45.5 31.511' 92.311' 

Data was generated by image analysis of individual lanes on immunoblots and percentages 

represent the percentage of a particular band as a proportion of the total HGG signal detected in 

that lane. 
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Table. 7.2: Apparent molecular weights and relative percentages of HGG bands detected in 

plasma from fish administered either soluble HGG or HGG encapsulated in PLG microparticles. 

Time elapsed after antigen delivery 

f'rar1n<nt 15 mln 45 min I hr l hr 6 hr U h r l4 hr 48 hr 

aae(kDaJ 

Soluble HGG 80.1 (") 

52.4 100!5 (") 

42.5 100!5 36.6% 

36.5 S3.4!5 

PLG 149.4 28. 1" - 47.S!5 44.1" 62.2!5 S6.7!5 00.4110 

encapsulated 
61.4 IS.S!5 

HGG 
51.7 41.4!5 22.1" 18.2!5 28.1" 19.8% 

44.5 44.8ll0 19.4ll0 27.8ll0 l4.9ll0 23.3ll0 19.8110 

33.8 15!5 14.9!5 22.9!5 20110 

Data was generated by image analysis of individual lanes on immunoblots and percentages 

represent the percentage of a particular band as a proportion of the total HGG signal detected in 

that lane. 

(**) - Band present but yielding value < 10 (arbitrary units) by image analysis. 
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Fig.7.4: Antibody levels in plasma after oral immunisation of fish 
with soluble or encapsulated HGG 
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Antibody tires determined by ELISA in plasma of fish immunised with soluble {D) or PLG -

encapsulated <• ) HGG at week 0 and boosted with soluble HGG at week 9 ( t ). 

Table 7.3 Antibody titres measured in intestinal mucus of fish after boosting with soluble HGG. 

Mean Titre (Log2) (n=3) Standard deviation 

Soluble HGG NS -

PLG - encapsulated HGG 7.44 2.26 

Antibody titres determined by ELISA in mucus of fish immunised with soluble or PLG -

encapsulated HGG 2 weeks after boosting with soluble HGG. 

NS - not significantly different from controls (p < 0 .05) 
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7.4 DISCUSSION 

The evidence from the present study suggests that the encapsulation of antigens in PLG 

microparticles may be a useful oral delivery system for teleost fish. Encapsulation was found to 

protect a percentage of the antigen from proteolysis in the digestive tract and to increase the level 

of intact antigen subsequently reaching the bloodstream. The detection of fragmented HGG in the 

gastrointestine of fish orally intubated with PLG-encapsulated antigen indicated that a considerable 

amount of HGG was present on the microparticle surface. This suggests that caution must be 

exercised in the interpretation of results after oral compared to parenteral delivery of PLG 

encapsulated antigen since in addition to the uptake of encapsulated (intact) antigen fragmented 

and/or intact soluble antigen may also be absorbed. Microencapsulation of HGG did not result 

in an enhanced plasma antibody response compared with the response produced to soluble HGG. 

However, detection of antibody in the gut mucus of fish primed with PLG-encapsulated HGG and 

boosted with soluble HGG may provide encouragement for further research. 

The uptake of particulate matter by the gut is a controversial field in mammalian research. 

Indeed, O'Mullane et al. (1987) concluded that "the transport of intact carriers across the 

gastrointestinal tract is restricted to exceptional and unusual circumstances". Although this is in 

conflict with a number of reports of microparticulate uptake across the mammalian gut (see section 

2.2.3), it serves to demonstrate the extent of the debate regarding the extent and role of such 

processes. Little information is available on the uptake of inert particulate matter from the teleost 

gut. Previous work in our laboratory (Jamieson et al., unpublished observations) indicated that 

0.1 p.m and 1.0 p.m inert fluorescent latex microspheres were absorbed by gastric and intestinal 

regions of the trout gastrointestine. Although the uptake of HGG was not quantified by ELlS A 

in the present work the increased plasma levels of intact HGG detected on Western blots after 

delivery of microencapsulated antigen suggested that the particles were absorbed across the trout 

gut. 

A number of in vitro studies on mammals have found that there are two stages in the release of 

antigen from PLG niicroparticles. An initial period when 15-35 % of antigen is released, possibly 
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by diffusion through water filled channels and a later prolonged period over which antigen is 

slowly released (Eidridge et al., 1990; Alonso et al., 1993). [The \details of this second phase of 

release depends on the particular characteristics of the microparticles used. The release kinetics 

of encapsulated antigen have been found to depend on the ratio of lactic/ glycolic acid, polymer 

molecular weight, surface characteristics, vaccine composition, vaccine loading and microparticle 

size (Aguado and Lambert, 1992; Alonso et al., 1993). The results of the present investigation 

indicate that this classic pattern of a 'spike' release of surface associated antigen and subsequent 

slow release of antigen may occur if microparticles are parenterally administered when given orally 

it is likely that surface associated antigen will be degraded in the gut. 

The strategy devised and described earlier in this thesis (section 5.2) for analysing the extent of 

antigen degradation in the trout gastrointestine in vivo was successfully applied in this investigation 

to determine whether the encapsulation of HGG in PLG microparticles protected the antigen from 

proteolysis in the gut. The results obtained with gastric scrapings from fish orally intubated with 

5 mg soluble HGG were similar to those described previously (section 5.3) with substantial 

degradation of the protein to peptides as quickly as 15 min post-administration. The absence of 

detectable intact antigen in the gastric scrapings of these fish at time points later than I hour post 

intubation may reflect either gastric evacuation and/or the complete degradation of the intact 

antigen in the stomach. If the intact protein was fully degraded in the stomach then the earlier 

findings that a proportion of HGG remained intact for up to 15 hr in gastric secretions (sections 

3.4, 5.4) may have been a result of the high levels of antigen used. These high doses may have 

exceeded the enzymic capacity of the gastric proteases. Analysis of gastric scrapings from fish 

administered encapsulated HGG were difficult to interpret because of the variation in the amount 

of antigen detected at different time points by immunoblotting. This may retlect the inadequacy 

of boiling samples in electrophoresis sample buffer to release antigen from the microparticles. The 

method was not optimised and it is likely that there was variability between samples in the amount 

of antigen released since organic solvents are required for complete dissolution of particles 

(Jenkins, pers comm). Nonetheless, it was evident that the greater amount of the surface 
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associated and/ or released antigen in the stomach was in the form of fragmented HGG. The 

pattern of fragmentation of the released antigen was very similar to that observed after delivery 

of the soluble protein. The microencapsulation of HGG resulted in an increase in gastric retention 

time from 2 to 12 hr. Furthermore, encapsulation delayed the time before HGG was first 

detectable in the intestine from 15 min to 2 hr. It was suggested earlier (section 5.4) that reports 

of a biphasic pattern of soluble antigen uptake in teleosts (Jenkins, 1992) may have been a result 

of the intubation procedure used and of the use of soluble HGG in fluid form. The finding of 

HGG in the intestinal region of fish administered soluble antigen at 15 and 30 minutes after 

intubation may add further support to this contention. The results with the encapsulated antigen 

on the dynamics of gut passage may therefore be closer to that of antigen delivered in feed in vivo. 

Antigen was only detectable up to 30 minutes after delivery and in the form of small peptides in 

the intestines of fish administered 5 mg soluble HGG which is in contrast to earlier findings in this 

thesis (section 5.3). This again may have reflected the higher dose of HGG administered (35 mg 

per fish) and indicates that high doses of protein antigens may be necessary to effect transport of 

soluble proteins in detectable quantities to the intestinal regions. 

A considerable percentage of the HGG which was detected in scrapings from the intestinal regions 

of fish was apparently intact which indicated that encapsulation protected the antigen from 

proteolysis in the gut. The detection of HGG mainly as intact antigen and high molecular weight 

fragments indicated that the fragmented HGG found in the gastric region of these fish was either 

fully degraded or absorbed from the lumen. A greater amount of both intact and fragmented 

antigen was found to be present in the plasma of fish receiving encapsulated HGG as compared 

with fish receiving the soluble antigen. After administration of soluble HGG, antigen was 

detectable in the plasma after 15 minutes and at a higher level after I hour and 6 hours post 

delivery, a pattern similar to that described previously (section 5.3). No intact antigen was 

detected at any time in the plasma of these fish however. Since only 8.6 percent (w\w) of the 

microparticles used in this study consisted of HGG and since a considerable amount of the 

associated antigen was degraded it was encouraging to detect any antigen in the plasma. Indeed, 
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if the loading of antigen and the proportion of entrapped antigen could be increased one may 

assume that a considerably greater amount of antigen would be absorbed since the determining 

factor is the extent of particle absorption. 

A number of studies in mammals have reported increased levels of systemic antibody after oral 

administration of antigen in PLG microparticles (Challacombe et al., 1992; Edelman et al., 1993; 

O'Hagan et al., 1993). These have partly attributed the efficacy of PLG microparticles in 

enhancing the immune response against soluble protein antigens to the protection of the antigen 

from gastric and intestinal destruction1~the polymer wall (Challacombe et al., 1992; Edelman 

et al., 1993). Although, in the present work encapsulation protected HGG from degradation in 

the. gut and increased its plasma presence it did not significantly increase the specific antibody 

titres in the plasma. For the purposes of immunisation the absorption of fragmented antigen 

derived from the microparticle surface into the bloodstream may raise some complications. If oral 

tolerance is the normal outcome of antigen feeding (Challacombe and Tomasi, 1980; Strober et 

al., 1983; Enders et al., 1986; O'Hagan, 1990) then the absorption of degraded soluble protein 

might be expected not to result in an immune response; the observation of considerably enhanced 

immune responses after oral immunisation with PLG-encapsulated antigen (Challacombe et al., 

1992; Edelman et al., 1993; Moldoveanu et al., 1993) however suggests that this is not the case. 

It would be interesting to produce microparticles with no surface antigen and to compare uptake 

and immune responses with those possessing surface associated and entrapped antigen since protein 

antigen fragments have been found to have a role in the induction of oral tolerance (Michael, 

1989, 1992; Hachimura et al., 1993). The adsorption of antigen onto biodegradable microparticles 

has however been shown to enhance secretory immune responses in comparison with soluble 

antigen in gastrically immunised rats (O'Hagan et al., 1989). This may indicate that the PLG 

particles exert an adjuvant effect unrelated to antigen encapsulation but this was not supported by 

the present findings. The plasma antibody titres in fish immunised with microparticles in this 

study initially appeared lower than in fish administered soluble antigen but five weeks after 

primary immunisation the responses in both groups were similar and both declined to control 
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levels by week 9. The slower kinetics of antibody production in the fish intubated with PLG

encapsulated antigen may have reflected the degradation rates of the particles used which were 

formulated to release antigen in 4-6 weeks (Jenkins, pers comm). Two weeks after boosting with 

soluble HGG high levels of antibody were detected in 2 of 3 fish primed with PLG-encapsulated 

HGG but as with the response after priming the titres declined rapidly. Therefore, further studies 

with larger numbers of fish are necessary to further establish the significance of these results. 

Antibody was undetectable in most cases in the secretions of immunised fish in these experiments. 

This was in contrast to the results described earlier (section 6.3) when antibody in the cutaneous 

mucus was regularly detected albeit at a low level in fish orally immunised with 35 mg HGG and 

probably reflects the lower antigen dose used (2.2 mg). A previous study on rainbow trout 

(Burgess, 1988) also found very little antibody in the cutaneous mucus, intestinal mucus or bile 

of fish orally immunised with I mg HGG. Perhaps a higher antigen dose is needed to generate 

local rather than systemic responses. Similarly, biliary antibody was not detectable in any of the 

fish receiving either soluble or encapsulated HGG. In contrast while antibody was not detectable 

in the intestinal mucus of any of the fish immunised with soluble HGG it was detected in the gut 

mucus of all 3 PLG immunised fish 2 weeks after boosting and was present at a high level in 2 

of these fish. Oral immunisation with 35 mg HGG did not result in gut antibody levels of this 

magnitude (section 6.3). In fact, in the latter investigation high titres were only found in the 

intestinal mucus of parenterally immunised fish. Due to the small number of fish tested and the 

absence of gut antibody titreS in this group at all other times it is difficult to assess the significance 

of this finding but if it is a general feature this may be highly promising for the prospects of oral 

vaccination. Only a single priming immunisation with microparticles was administered in the 

present work which is in contrast to mammalian studies where microparticles are administered on 

three or more occasions. However, a number of these studies found that the secretory antibody 

responses to encapsulated antigens may be short lived (Eidridge et al., 1989; Challacombe et al., 

1992; Edelman et al., 1993). Therefore, the transient detection of antibody in the gut mucus of 

fish immunised with PLG - encapsulated HGG here may not be anomalous but may be a feature 
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of this delivery system. Davidson et al. (1993) detected considerable numbers of antibody 

secreting cells in the head kidney and intestinal mucosa of rainbow trout 3 weeks after peroral 

intubation with Aeromonas salmonicida bacterins and this response declined rapidly in both sites 

to undetectable levels by week 4. This may help to explain the transient presence of antibody to 

encapsulated HGG in the gut mucus. Georgopoulou and Vernier (1986) induced an antibody-

secreting cell response in the intestine of rainbow trout after oral administration of HGG but it was 

not determined if the antibody produced was destined for the gut lumen. In contrast, Davidson 

(1991) was unable to detect an antibody secreting cell response to orally intubated soluble keyhole 

limpet haemocyanin (KLH) and suggested that particulate antigens may more effectively stimulate 

local immunity in the teleost gastrointestine. Previous studies on teleosts have reported the 

detection of secretory antibody after the repeated enteric administration of particulate but not 

soluble antigen (chapter 6) but it is difficult to determine at present if a similar outcome is possible 

using PLG microparticles as a delivery system. 

While the present results are. relatively encouraging a considerable amount of work is required to 

establish whether the encapsulation of antigen in PLG is a viable oral delivery system. 

Unfortunately the microparticles used for the antibody response study had an antigen loading of 

only 2.2%. Typical loading amounts are in the range I - 10% but may be considerably increased 

(Aguado and Lambert, 1992) and further studies should investigate the effects of increased antigen 

loading. Detection of antigenically intactHGG in the gut and plasma and the detection of specific 

antibody in the plasma and gut mucus indicated that the encapsulation process did not damage the 

antigen. A previous study found that the molecular weight and antigenicity of ovalbumin remained 

unaltered by the same encapsulation process as used in the present study (Jeffrey et al., 1993). 
' 

The use of particles of different sizes and release rates should be applied to determine if responses 

can be enhanced and sustained. There is some evidence to suggest that in mammals that fast 

release particles may be more effective in inducing primary immune responses while delayed 

release microspheres are more effective in boosting the response (Staas et al., 1991; Aguado and 

Lambert, 1992). Similarly, it will be interesting to determine if larger beads are retained in the 
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mucosa to generate a local response as occurs in mammals (Eidridge et al., 1989; Jani et al., 

1992). Much more fundamental work on microparticulate uptake and the capacity for inducing 

local immunity in teleost species is required. It will be of particular imponance to determine 

which cells are involved in absorption of microparticulate material in teleosts since the efficacy 

of PLG microparticles in inducing local immunity in mammals may be a result of the accumulation 

of large antigen doses inside Peyer's patches. If the uptake in the teleost gut is diffuse this 

localised concentration of antigen may not occur and the potential advantages of PLG 

microparticles as an oral delivery system for inducing secretory immune responses for such species 

might not materialise. However, if the adjuvant effect of PLG particles which has been noted in 

mammals also applies in fish then encapsulation may be of value in increasing the effectiveness 

of oral vaccines. Additionally, the finding in the present work that encapsulated antigen was 

absorbed into the bloodstream indicates that orally delivered micropanicles may reach the primary 

lymphoid organs to induce a systemic immune response. 
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CHAPTER 8 
THE ADHERENCE TO AND INVASION OF SALMONID EPITHEUAL CELLS BY WILD 1YPE AND 

ATTENUATED (twroA) STRAINS OF Aeromonas salmonicida. 

279 



8.1 INTRODUCTION 

Amongst the greatest advances in the quest for effective vaccines in recent years has been the 

development of a potential new generation of live attenuated organisms resulting from the 

application of modern molecular biology and improved understanding of microbial pathogenicity 

at the molecular level (Chatfield et al., 1993). The use of such organisms as vaccines and as 

carrier vehicles for delivery of heterologous antigens is an approach being increasingly applied in 

mammals and more recently in piscine species (Leong, 1993). These vaccines can induce better 

protection than conventional killed vaccines, probably as a result of their ability to establish limited 

infections in the host thus mimicking the early stages of natural infection to stimulate a potent 

immune response. Live replicating antigens have been described as more effective mucosal 

immunogens than their dead, non-replicating counterparts which generally induce weak mucosal 

responses (Lycke and Svennerholm, 1986; van der Heijden et al., 1991; McGhee et al., 1992). 

Additionally, mass production, distribution and administration are easier and less costly for.such 

live attenuated organisms than for purified component vaccines (Cardenas and Clements, 1992) 

A considerable amount of work has been performed investigating the use of recombinant live 

viruses as potential vaccine vectors, including vaccinia (Andrew et al., 1992; Tartaglia et al., 

1992), adenovirus (Gallichan et al., 1993; Zheng et al., 1993) and varicella zoster virus (Lowe 

et al., 1987). The present study, however, focuses only on the application of attenuated bacterial 

strains as mucosal vaccines and as enteric delivery systems incorporating foreign antigens. 

The use of chemical or UV mutagenesis to attenuate bacteria was the original approach to the 

generation of a number of effective vaccines (Chatfield et al., 1993). The Salmonella typhi Ty21a 

oral vaccine generated by chemical mutagenesis, for example, has resulted in some degree of 

success in field trials (Germanier and Furer, 1975; Wahdan et al., 1982) and has been used 

experimentally as a carrier vehicle for foreign antigen (Baron et al., 1987; Tacket et al., 1990). 
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Similarly, the live oral cholera vaccine CVD103-HgR has shown better efficacy than the killed 

whole cell B subunit vaccine (wc\bs) in field trials (Dragonsky et al., 1992). Unfortunately such 

methods result in poorly defined genetic lesions, batch - to - batch variation in vaccine 

formulations, are hampered by the potential for reversion to virulence and have been largely 

superseded by the application of modern molecular biological techniques. The application of such 

strategies has resulted in the identification of genes vital for in vivo groWth and survival and it 

is now possible to introduce defined mutations into individual genes thus attenuating strains in a 

rational manner and producing safe, non - reverting vaccines that can be reliably quality 

controlled. Research into the use of attenuated bacterial species including Yersinia enterocolitica 

(Van Darnme et al., 1992), Escherichia coli (Newland et al., 1992), Bordetella penussis (Roberts 

et al., 1990), Bacillus anthracis (lvins et al., 1990) and Shigellajlexneri (Verma and Lindberg, 

1991; Klirnell et al., 1992) as live vaccines and as carriers is ongoing but the organism of choice 

for much of this work has been Salmonella. This is because apart from Escherichia coli, 

Salmonella is the most genetically defined organism in existence and the transfer of genetic 

material between the latter two species is feasible. Manipulation and characterisation work can 

therefore be performed in E. coli and DNA subsequently introduced into the Salmonella strain 

(Chatfield et al., 1993). The ability to adhere to and invade the gut epithelium is obviously a 

prerequisite for gaining access to the underlying GAL T and the subsequent presentation of foreign 

antigen at this site. Salmonella is an invasive organism and can replicate in the immunologically 

responsive tissues of the gut. Therefore the organism may be used to deliver foreign antigens to 

the appropriate site for processing and presentation to immunologically responsive cells (Cardenas 

and Clements, 1992). A wide range of attenuated Salmonella strains have been produced which 

are deficient in such characteristics as purine biosynthesis (O'Callaghan et al., 1988), LPS 

biosynthesis, galactose metabolism (Hone et al., 1987), adenylate cyclase regulation (Curtiss Ill 

and Kelly, 1987), phosphate metabolism (Miller et al, 1989a), regulation of porin genes (Dorman 

et al, 1989), porins (Chatfield et al., 1991), stress response (Chatfield et al., 1992a), PABA 
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synthesis (Stocker, 1990), haem biosynthesis (Benjamin et al., 1991) and aromatic compound 

biosynthesis (Miller et al., 1989b; Jones et al., 1991; Chatfield et al., 1992b). Studies have 

mainly focused on genetically defined attenuated auxotrophic Salmonella strains, especially on 

genes encoding enzymes of the prechorismate biosynthetic pathway (aro genes). Salmonella 

strains with defined lesions in several aro genes including aro A, aro C and aro D either alone 

or in combination are effective single dose vaccines in several animal models (Dougan et al., 

1988; Miller et al., 1989; Jones et al., 1991). Genetically defined candidate oral typhoid vaccines 

based on double aro mutants of Salmonella typhi have been produced (Hone et al., 1991; Chatfield 

et al., 1992), one of which, CVD908 after a single dose resulted in a high rate of seroconversion 

to 0-antigen and a specific lgA-antibody se~reting cell response in the gut of 100% of volunteers. 

Using such strains as vaccine vectors, antigens from eukaryotic and prokaryotic species as diverse 

as malaria (Sadoff et al., 1988), hepatitis B virus (Wu et al., 1989), human immunodeficiency 

virus (Charbit et al., 1993), aostridium tetani (Fairweather et al., 1990), Streptococcus 

pneumoniae (Paton et al., 1993) and Streptococcus sobrinus (Doggett et al., 1993b) have been 

cloned into and expressed in Salmonella strains in attempts to produce multivalent vaccines. 

Induction of both a specific mucosal (Doggett et al., 1993b) and systemic antibody response to a 

variety of antigens expressed by orally delivered recombinant S. typhimurium (Stabel et al., 1991; 

Chatfield et al., 1992c; Sji:istedt et al., 1992) has been demonstrated and in some cases these 

responses accompanied protection against a subsequent challenge with the pathogen (Chatfield et 

al., 1992c; Poirier et al., 1988; Sji:istedt et al., 1992). Attenuated Salmonellae have additionally 

been shown to induce cytotoxic T- cell responses to carried antigens (Tite et al., 1990) so the 

capacity exists to elicit a range of immune responses to antigens incorporated in live bacterial 

vaccines. 

An aromatic deficient strain of Aeromonas salmonicida, the aetiological agent of the disease 

furunculosis in salmonids, has been constructed and shown after parenteral,l"immunisatioiilto induce 
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a protective immune response in salmon and trout (Vaughan et al., 1993). The aroA gene codes 

for the synthesis of 3-enolpyruvylshikimate-5 phosphate synthetase which catalyses the conversion 

of phosphoenolpyruvate and shikimate-3-phosphate into 5-enolpyruvoylshikimate-3-phosphate in 

a pathway eventually leading to the synthesis of chorismate, a common intermediate compound 

in the synthesis of aromatic amino acids, p- aminobenzoic acid (essential for folate synthesis), 2,3 

-dihydroxybenzoic acid (needed for synthesis of enterochelin-an iron chelator), p-hydroxybenzoic 

acid (precursor of ubiquinone) and o-succinylbenzoic acid (a precursor of vitamin K). The latter 

two compounds are not essential for bacterial growth and survival; tyrosine, tryptophan and 

phenylalanine are essential but are available in mammalian cells so their de novo synthesis is 

unnecessary. 2, 3-dihydroxybenzoic aci~ and p-aminobenzoic acid, however, are essential 

nutrients which are not available in mammalian tissues and mutants unable to synthesize these 

metabolites are avirulent since they cannot replicate in host cells (Ciements, 1987; Pitard, 1987). 

Studies are ongoing to incorporate the gene encoding 6 galactosidase into the A. salmonicida ~ 

aro A strain and to examine the feasibility of using this strain to stimulate an immune response 

against heterologous antigens whose genes are incorporated in its genetic material (DeVoy and 

Foster, 1993). The present study sought to determine if this aro A strain possessed the capacity 

to adhere to and invade primary intestinal epithelial cells of rainbow trout. The molecular basis 

of the pathogenicity of A. salmonicida is relatively poorly understood at present, nonetheless 

important roles for extracellular factors including proteases (Price et al., 1989; Gudmundsdottir 

et al., 1990), haemolysins/ cytolysins (Nomura et al., 1988; Lee and Ellis., 1990) and enzymes 

involved in lipid metabolism (Campbell et al., 1990; Lee and Ellis, 1990) have been suggested 

as virulence determinants. Indeed the glycerophospholipid: cholesterol acyltransferase (GCAT)

LPS complex and a 70 kDa protease have been correlated with cytotoxicity, production of 

furuncules and mortality in salmonids (Kawahara et al., 1990; Ellis., 1991; Huntly et al., 1992). 

A regular paracrystalline surface array (S - layer) composed of a 50 kDa A - protein attached to 

the cell surface by the 0 - polysaccharide chains of LPS with which it interacts to form the A 
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layer (Belland and Trust., 1985) is a macromolecular structure which has been implicated in the 

pathogenesis of furunculosis (lshiguro et al., 1981; Munn et al., 1982; Chu et al., 1991; 

Karczewski et al., 1991). The A- layer has been demonstrated to mediate binding to and 

penetration of macrophages (Trust et al., 1983; Garduiio and Kay, 1992; Garduiio et al., 1992) 

and binding to the extracellular matrix proteins fibronectin, laminin (Doig et al., 1992) and 

collagen (Trust et al., 1993). A study using a novel method of growing A. salmonicida inside 

intraperitoneal diffusion chambers in vivo found that recovered bacteria had acquired a capsular 

layer, apparently covering the A - layer and associated with complete resistance to host lytic 

factors and phagocytosis (Garduiio et al., 1993). Questions still remain therefore as to the precise 

role of the A-layer in the overall path()genesis of furunculosis. Despite a large body of 

accumulated knowledge regarding epidemiology, pathology, virulence mechanisms and vaccination 

against Aeromonas salmonicida infections, the route of entry of the organism into the fish is still 

uncertain. Studies have indicated that the A layer increases the capacity of A. salmonicida to 

adhere to fish tissue culture cells and to excised rainbow trout intestinal tissue (Parker, 1985; 

Parker and Munn, 1985). To date, however, an invasive potential for Aeromonas salmonicida has 

not been definitively established. An invasive capacity has been suggested for a number of 

mesophilic aeromonad species implicated as enteropathogens in humans including A. hydrophila, 

A. sobria and A. veronii (Pitarangsi et al., 1982; Lawson et al., 1985; Watson et al., 1985; 

Krovacek et al., 1989; Gray et al., 1990; Grey and Kirov, 1993) although little is known about 

colonization factors, receptors or adhesins (Atkinson et al., 1987; Nandopalan and Chang, 1989; 

Hokama and lwanaga, 1991). The ability to invade cells is an important virulence attribute of a 

number of mammalian enteropathogens and endows these organisms with the opportunity to gain 

access to the internal milieu and body tissues (Finlay and Falkow, 1989; Falkow et al., 1992; 

Rosenshine and Finlay, 1993). In view of the paucity of information pertaining to the invasiveness 

of A. salmonicida, this study sought to investigate the interactions between rainbow trout intestinal 

cells and the wild type and live-attenuated A. salmonicida strains. If the attenuated strain of 
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Aeromonas salmonicida does possess the capacity to invade the salmon id gut then this may provide 

a putative oral vaccine. as well as a means to deliver foreign antigens to the salmonid GALT. 
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8.2 MATERIALS AND METIIODS 

8.2.1 Bacterial strains 

Aeromonas salmonicida 644 Rb NaiR, virulent A layer positive strain isolated from clinical disease 

outbreak (in vivo passaged) was obtained from the fish disease group, University College Galway. 

Ireland. 

Aeromonas salmonicida 644 Rb wild type and 644 Rb I M. Aro A· aro A:: KanR mutant were 

kindly provided by L. Vaughan. Trinity College Dublin. 

Renibacterium salmoninarum MT 444, a natural isolate from infected Atlantic salmon was supplied 

by the Marine Laboratory SOAFD fish cultivation unit. Strains of Yersinia ruckeri, Enterococcus 

faecalis, Staphylococcus aureus and Escherichia coli K-12 strain DH 1 were obtained from the 

culture collection of the Department of Biological Sciences. University of Plymouth. 

8.2.2 Bacteriological media and growth conditions 

A. salmonicida strains were grown in brain heart infusion (BHI, Difco) broth or trypticase soy 

agar or broth (TSA\ TSB, Difco). Kanamycin was included for growth of A. salmonicida ~ aro 

A on TSA at a concentration of 40 p.g/ ml. Stock cultures were maintained in glycerol at- 20 ac. 

R. salmoninarum was grown in Mueller - Hinton broth including 0.1 % cysteine hydrochloride, 

pH 6.5 at 15a C for 6 weeks in static conditions. All other bacterial strains were taken from 

liquid nitrogen, grown once in TSB, plated on TSA and inoculated into fresh TSB to produce 

cultures for invasion studies. 

A. salmonicida and Y. ruckeri strains were incubated with shaking in TSB at 20 ac for 24 hr 

before use. E. coli, S. faeca/is and S. aureus strains were grown overnight with shaking at 37aC 

in TSB. 
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8.2.3 Isolation and culture of primary intestinal cells and tissue culture cells 

A) Primary rainbow trout intestinal cells 

Cells from the intestinal epithelial layer and lamina propria were .isolated and cultured as outlined 

in section 4.2. 

B) Atlantic salmon (AS) epithelial -like tissue culture cells 

Atlantic salmon cells (Flow) were grown at zoo C in Eagles modified minimal essential medium 

with Earle's salts containing 10% foetal calf serum (FCS) in a 5 % C02 atmosphere. Cells (grown 

on coverslips) reached confluency in 7 - 10 days and were sub -cultured at a split ratio of l : 4. 

8.2.4 Infection of cells with bacteria 

Cells were counted using a haemocytometer and their viability established by trypan blue 

exclusion. Aeromonas salmonicida were added to cells at multiplicities of infection (m.o.i) of 

10: l, lOO: I or 1000: l and allowed to incubate in polystyrene tubes in L -15 medium with 5% FCS 

with shaking over a time course from l min to 2hr. A. salmonicida were washed 3 times in PBS 

+ 0.1% SDS and enumerated with reference to a standard curve of bacterial number v optical 

density at 490 nm. After incubation with bacteria cells were washed three times (500 x g for 5 

min in each case) in L -15 + 5% FCS and pellets were processed for transmission electron 

microscopy. A m.o.i of lOO: l was chosen as optimal (based on TEM analysis) for visualisation 

of bacteria-cell interactions and was used subsequently as the bacteria:cell ratio for SEM, light and 

fluorescence microscopic investigations. For all other bacterial species enumeration of a washed 

bacterial culture was achieved by staining for lO min in crystal violet and placing in a bacterial 

counting chamber. For investigations of bacterial uptake into tissue culture cells an arbitrary 

number (lOB_} of bacterial cells were added to each coverslip. To examine the effect of 

cytochalasin D (Sigma) on bacterial invasion this agent was added to host cells at a concentration 

of 40 JLgl ml for 15 min prior to addition of bacteria and for the entire duration of the subsequent 

incubation. 
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8.2.5 Transmission electron microscopy (TEM): 

Cell pellets were resuspended and fixed in a solution of 2.5 % glutaraldehyde in 0.1 M sodium 

cacodylate buffer, pH 7.2 for I hr at 4"C. Samples were centrifuged and washed three times (500 

x g for 5 min) with cacodylate buffer, resuspended and post - fixed in I % osmium tetroxide in 

sodium cacodylate buffer for I hr at 4" C and washed twice with buffer as above. Pellets were 

dehydrated through an ascending graded series of ethanols of 30, 50, 70, 90 % and finally two 

changes of lOO % ethanol (for 5 min in each case). Samples were then infiltrated in Spurrs resin 

(Spurr, 1969) by adding to mixtures in ratios of absolute alcohol: Spurrs of 3:1, 1: I, 1:3 (for 

2 hr in each) and completed by incubating in pure resin first for 2 hr and then overnight. 

Specimens were placed in pure resin in BEEM capsules and allowed to polymerise at 60"C for 

12 hr. Ultrathin ('gold' or 'silver') sections were cut (Reichert OmU3 Ultracut microtome) and 

mounted on inert (nickel) mesh grids. Sections were routinely stained with aqueous uranyl acetate 

for 15 min, washed in distilled water, counterstained with Reynolds lead citrate for 15 min, 

washed with distilled water, dried and observed under a Jeol JEM 1200 - EXII transmission 

electron microscope operated at 80KV1and 100 kv. 

8.2.6 Scanning electron microscopy (SEM) 

A) Conventional SEM 

Specimens for conventional SEM were fixed in 2.5 % glutaraldehyde in 0.1 M sodium cacodylate 

buffer, pH 7.2 at 4"C for 1 hr. Subsequently samples were rinsed in cacodylate buffer, 

dehydrated in a graded series of ethanols and critically point dried using C~ as the transitional 

fluid. Dried material was mounted on brass specimen stubs, sputter coated with gold or palladium 

(6nm thickness) and observed under a Jeol JSM 6100 SEM operated at 10- 15 KV1. 

B) Cryo - SEM (Droplet method -using rivets) 

Specimens were lightly fixed in I% glutaraldehyde for min. Material was collected on 
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millipore/ nucleopore filters by connecting a 10 !Lm filter to a 2ml syringe containing the 

resuspended cellular material. Tissue was then subjected to a rapid plunge fix in reduced liquid 

nitrogen (nitrogen 'slush'/ supercritical nitrogen) at -212 oc and transformed under vacuum to the 

cryoprep chamber of the oxford CT1500 cryotrans unit. The rivet preparation was manipulated 

to reveal a fractured droplet surface. Specimens were transferred to the SEM cryo - stage 

(operated at -170°C) and observed at 2-3 KV. Surface ice was carefully etched away (sublimation) 

by gradually raising the cryo-stage temperature to - 80°C. When sufficient sublimation (etching) 

had occurred to reveal all the required detail, samples were transferred back to cryo - prep and 

copper coated prior to observation on the SEM cryo-stage (-l70°C) at 15 KV. 

8.2.7 Light microscopy- Giemsa staining 

Glass slides were smeared with a small volume of foetal calf serum and dried prior to use to 

enhance adherence of cells to slides. Smears produced from control epithelial cells and after 

incubation with bacteria were stained with giernsa for 10 min (Appendix D) after prior fixing with 

methanol for 10 min. Cells were viewed under a Canon Vannox research microscope. 

8.2.8 Acridine orange/ crystal violet fluorescence microscopy 

The procedure used was adapted from those of Goldner et al. (1983) and Miliotis (1991). Samples 

derived from incubations of bacteria and cells were washed (3 times at 500 x g) with L-15 + 5% 

FCS. Pellets were resuspended in 0.5 m1 of0.05% acridine orange (Sigma) and allowed to stain 

for 1 min, made up to 20 m1 with PBS and washed twice (500 g). The pellets were then 

resuspended in 0.5 m1 of 0.05 % crystal violet (Sigma) and allowed to stain for I m in, made up 

to 20 ml with PBS and finally washed (3 times at 500 x g). Resultant preparations were smeared 

on glass slides and mounted with DPX. Preparations were viewed!--J by fluorescence 

microscopy incorporating a narrow pass excitation filter for blue fluorescence at 450-495 nm and 

a long pass barrier filter at 405 nm. Photographs were taken onto Fujicolour super G 400 ASA 
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film. 

8.2.9 Specific immunostainingfor actin. 

This process was adapted from that described by Teysseire et al. ( 1992). Samples from incubations 

of bacteria with cells were centrifuged at 500 x g and washed three times (500 x g) in L-15 + 5% 

FCS. Pellets were fixed for 30 min in 3% paraformaldehyde in cacodylate buffer and 

subsequently washed twice in L - 15 medium. Cells were permeabilized by resuspending for I 

hr in 0.1% Triton X-100. A blocking step in Tris-Saline pH 7.5 + 3% non fat dried milk (TSM) 

for 1 hr was then carried out. Samples were washed X 3 (500 x g) in Tris-saline, pH 7.5 and 

incubated for 2 hr in a 1:50 dilution of rabbit anti-actin (Sigrna) in TSM. Samples were washed 

X 3 in Tris saline and twice in TSM. Goat anti rabbit fluorescein isothiocyanate (FITC) conjugate 

at 1: lOO in TSM was added for I hr, cells were washed X 3 in Tris-saline, pH 7.5, mounted, 

viewed and photographed as outlined in 8.2.6 above. 
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8.3 RESULTS 

8.3.1/nteraction of Aeromonas sa/monicida strains with rainbow trout enterocytes 

Wild type and attenuated Aeromonas salmonicida strains were visualised interacting with primary 

trout enterocytes by SEM (Fig. 8.1) but little information on the nature of the invasion process 

was gained. By transmission electron microscopy both wild type and attenuated (~ aro A) strains 

were observed to adhere to and invade rainbow trout enterocytes within 5 min of incubation. 

Bacteria were seen to adhere very closely to cells (Fig.8.2), an interaction which appeared to result 

in the formation of a 'pedestal' type structure on the cell surface immediately beneath the bacteria. 

The close interactions between host cells and bacteria appeared to involve an extracellular bacterial 

layer since close contact between the bacte!ial outer membrane and the host cell surface was not 

observed (Fig 8.2). Cell organelles appeared to be excluded from the region around this pedestal 

structure and fibrillar material possibly indicative of cytoskeletal components was also apparent 

in this area. In Fig 8.3 (A) there appears to exist a zone separating the cytoplasmic material 

surrounding the bacterium from the general cellular cytoplasm. Bacteria were internalised into 

cells within 5 min of exposure and could subsequently be observed inside endosomes in the cell 

cytoplasm (Fig 8.4). In general, the number of bacteria seen inside individual cells was in the 

range 0 - 5. These interactions were observed over a time course from 5 min to 3 hr but at time 

points later than 30 m in of incubation of bacteria with cells few adherent or internalised bacteria 

were apparent and a considerable amount of cell debris was visible. When cells incubated with 

A. salmonicida were stained with giemsa large numbers of bacteria were visible interacting with 

cells although it was not possible to determine whether these cells were adherent or intracellular 

(Fig 8.5). 

8.3.2 Determination of the viability ofintracellu/ar bacteria. 

Staining of the bacteria alone with acridine orange resulted in their fluorescing an intense green/ 

yellow colour. After counterstaining with crystal violet this fluorescence disappeared leaving only 

a faint background around the bacteria. Similarly, when samples were observed after staining with 
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acridine orange a number of bacteria were visible on the surface of cells although counterstaining 

reduced this fluorescence and only internalised bacteria continued to exhibit a green fluorescence. 

Applying this procedure to cells after 5 min, 30 m in, 2 min and. 6 hr incubation with bacteria led 

to visualisation of green (viable) intracellular bacteria at all time points (Fig 8 .6). Most 

intracellular bacteria even after 6 hr incubation appeared viable although at this time a number of 

the host cells appeared dead (red fluorescence). No differences were apparent between the wild 

type and attenuated Aeromonas strains with respect to the extent of bacterial invasion and bacterial 

cell viability. 

Using the same technique to examine whether a number of other bacterial strains were internalised 

by rainbow trout enterocytes indicated that Renibacterium salmoninarum, Yersinia ruckeri, 

Enterococcus faecalis and Staphylococcus aureus did not invade these cells. A strain of 

Escherichia coli (KI2 - DH I) did appear to invade to some degree. Using the Atlantic salmon 

epithelial cell line very similar results to the above were obtained (fable 8.1). Both A. 

sa/monicida strains were visualised intracellularly in a viable condition I hr after incubation with 

tissue culture cells. Of the other bacterial species tested only E. coli appeared to invade and this 

bacterium was only observed inside cells very occasionally. 

8.3.3 1he role of actin in the internalisation of bacteria. 

Using specific indirect immunofluorescence, control cells which had been stained for actin 

possessed a filamentous web-like pattern of fluorescence (Fig 8. 7). In contrast, cells stained after 

incubation with A. salmonicida displayed intense foci of fluorescence. This effect was visible 

within as little as l min after incubation of cells with bacteria. Additionally, incubation of 

enterocytes with cytochalasin D, an inhibitor of actin polymerisation, at a concentration of 40 

~tglml for 15 min prior to addition of bacteria appeared to inhibit bacterial entry as assessed by 

the acridine orange\ crystal violet fluorescence staining method and no intracellular bacteria were 

visible inside cells 5 min, 15 min, 30 minor I hr after incubation (fable 8.1). 
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Table 8.1: Overview of methodologies used and results obtained in the investigation of the invasiveness of bacterial species. 

TEM (S min - 3 hr) 

STRAIN PRIMARY ATLANTIC 
TKOtrr SALMON 

ENTEROCYTES CELLS 

A • .ra/monkida ./ -
(wild typtl) 

A. sulmonicida ./ -
(11 aroA) 

R.-- - -

Y. I'IICI:.~ri - -

E. ftucali.l - -

$, QJIRW - -

E. coli - -

-Test carried out 
-Test not performed 

SEM(Smln,lhr only) LIGHT 
MICROSCOPY<rn. .... > 

PRIMARY ATlANTIC PRIMARY 
TKOtrr SALMON TKOtrr 

ENTEROCYTES CELLS ENTEROCYTES 

./ - ./ 

./ - ./ 

- - -

- - -

- - -

- - -

- - -

(-)-Non- invasive 
(+)-Few bacteria within cells 
( + +)-invasive 
(+++)-Highly invasive 

ATLANTIC 
SALMON 

CELLS 

-

-

-

-

-

-

-

FLUORESCENCE ACTIN STAINING 
((A<ridDuo oraogo\crya1al vKolet) (ladUoct I~) 

PRIMARY ATLANTIC PRIMARY ATlANTIC 
TKOtrr SALMON TKOtrr SALMON 

ENTEROCYTES CELLS ENTEROCYTES CELLS 

.,/ ./ ./ -
(+++) (+++) 

.,/ ./ ./ -
(+++) (+++) 

.,/ ./ - -
(-) (-) 

./ ./ - -
(-) (-) 

.,/ ./ - -
(-) (-) 

.,/ ./ - -
(-) (-) 

.,/ ./ - -
(+ +) (+) 



Fig. 8.1: Scanning electron micrographs showing the interactions between A. salmonicida (~ aro A) 

and isolated rainbow trout enterocytes. Samples were from a 5 min incubation of bacteria with cells. 

A - C- Micrographs showing bacteria interacting with enterocytes. 

scale bar = 5 pm 

b - bacterium 

e - enterocyte 

n- nucleus 
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Fig. 8.2: Transmission electron micrographs demonstrating the adherence of A. salmonicida (t:.. aro 

A) to isolated rainbow trout enterocytes. Samples were from a 1 min incubation of bacteria with cells. 

A: Bacteria surrounded by cell debris. 

scale bar = 500 nm 

B - Bacterium 

PM - Plasma membrane 

OM - Outer membrane. 

8 - D: Pedestal formation on cells beneath adherent bacteria. 

The cup-like pedestal structure is most apparent in D opposite. 

P- Pedestal 

F - Fibrillar material beneath the pedestal. 

note the exclusion of cytoplasmic organelles from the region around the pedestal 

B: scale bar = 200 nm 

C: scale bar = 100 nm 

D: scale bar = 200 nm 
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Fig. 8.3: Transmission electron micrographs demonstrating stages in the invasion of isolated rainbow 

trout enterocytes by Aeromonas salmonicida (.1. aro A). Samples were from a 5 min incubation of 

bacteria with cells. 

Note the presence of fibrillar material (F) in the region around the bacterium and the exclusion of 

organelles. 

In addition to an invading organism an internalised bacterium (I) is visible in (C). 

A: scale bar = 200 nm. 

B: scale bar = 200 nm. 

C: scale bar = 200 nm. 

D: scale bar = 1 pm 
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Fig. 8.4: Transmission electron micrographs showing the presence of internalised A. salmonicida (Ll 

aro A) bacteria. Samples were from a 15 min incubation of bacteria with cells. 

In each case bacteria (B) are present in the cytoplasm within vacuoles (V). 

A: scale bar = 500 nm. 

B: scale bar = 500 nm. 

C: scale bar = 500 nm. 

D: scale bar = I pm. 
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Fig. 8.5: Giemsa stained smears of cells after 30 min incubation with bacteria 

b - bacterium 

scale bars represent 5 pm in each case. 
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Fig. 8.6: Smears of enterocytes stained with acridine orange and counterstained with crystal violet 

after a 15 min incubation with A. salmonicida (ll aro A). 

scale bar = 5 pm 

e - enterocyte 

n- nucleus 

b- bacteria 
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Fig. 8.7: Indirect immunofluorescent staining of enterocytes before and after infection with A. 

salmonici.da (ll aro A). 

Note the web-like (W) pattern of staining on the control cells in A opposite 

In B-D the sharp foci (F) of fluorescence in cells exposed to bacteria for 5 min. 
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8.4 DISCUSSION 

This study has demonstrated the ability of an attenuated live aromatic dependent strain of Aeromonas 

salmonicida and its parental wild type to adhere to, invade and survive within primary rainbow trout 

intestinal enterocytes and epithelial - like Atlantic salmon cells. No differences were apparent in the 

extent and nature of these processes between the wild type strain and its attenuated derivative. The 

invasion process appeared to be dependent on actin polymerization and was morphologically similar 

to the processes observed with some mammalian enteropathogens. The process was very rapid and 

resulted in substantial modification to the host cell membrane in the vicinity of the adherent bacterium. 

In contrast to the uptake of inert macromolecules or microparticles (chapters 4, 5 and 7) invasive 

bacteria have been shown to encode factors promoting their own adherence and invasion mechanisms 

(Falkow et al., 1992). The present study was a preliminary work which yielded limited but valuable 

information on the invasive nature of Aeromonas salmonicida. Because few similar studies have 

previously been undertaken in relation to fish pathogens much of this discussion concentrates on 

similarities between the processes observed. in this study and those of invasive mammalian enteric 

pathogens. 

The pathogenesis of many bacterial diseases involves the colonization of body sites effected by the 

sequential engagement of their surface-bound adhesins with cognate receptors on host cells or 

components of the extracellular matrix. This recognition process is believed to be necessary to 

establish infection and is thought to determine the tissue and host type targeted by an organism 

(Hopelman and Tuomanen, 1992). Adhesin proteins occur in fimbrial and non-fimbrial forms and 

generally recognise carbohydrates on eukaryotic cells (Ofek and Sharon, 1990; Krogfelt, 1991) 

although strict protein-protein interactions may also occur. Many bacteria can display a number of 

adhesins; more than 9 in the case of E. coli, for example, and 7 or more in the case of Bordetella 

penussis (Hopelman and Tuomanen, 1992). As a consequence of bacterial adherence, adhesins can 

fulfil roles both in toxin delivery and in facilitating subsequent invasion of cells. Fimbriae are widely 

distributed among gram negative bacteria and are implicated in attachment to many types of receptor 

(Willerns et al., 1993). Enterotoxigenic bacterial pathogens such as Vibrio cholerae and Escherichia 

coli for example carry specific appendages to allow colonization of the host ileum (Krogfelt., 1991; 
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Smyth et al., 1991). Special classes of protein fimbriae which promote mucosal adhesion of 

enterotoxigenic E. coli (ETEC) have been identified and termed colonization factor antigens (Knutton 

et al., 1989). The adhesion of enteropathogenic (EPEC) and enterotoxigenic (ETEC) E. coli adhesion 

to enterocytes is mediated by fimbrae (Milon et al., 1990). In many cases adhesin receptors on the 

cell surface have been shown to be sugar molecules with binding specificities which have been 

elucidated by using a range of defined sugar molecules to inhibit the adherence process (Ofek and 

Sharon, 1990). Glycolipids have been demonstrated to serve as receptor molecules for a number of 

adhesins (Payne et al., 1993) and in most cases the oligosaccharide portion of the glycolipid appears 

to predominantly determine the specificity of the ligand - receptor interaction. The K88 fimbria! 

adhesin of.ETEC binds 61- linked galactosyl residues which may form the molecular basis of 

glycoprotein and glycolipid receptors for K88 fimbria! adhesins in the porcine small intestine (Payne 

et al., 1993). The nature of the factors mediating adherence of A. salmonicida is poorly understood 

but may involve mainly non-specific hydrophobic interactions. Hydrophobic interactions have long 

been recognised as important in the adhesion of bacteria to host cells (Macura, 1987; Doyle and 

Rosenburg, 1990; Wibawan et al., 1992). Hydrophobic bonding can overcome short distance 

electrostatic repulsive forces between bacteria and host cells due to their mutual negative charges· 

(Jones, 1977) and may also stabilize receptor-ligand complexes (Doyle et al., 1982). Aggregating 

strains of A. salmonicida were found to adhere to human, rabbit and fish leukocytes and to fish 

intestinal mucosal cells (Udey and Fryer, 1978). Parker (1985) found that among a variety of cell 

types A. salmonicida (A layer• and A layer· strains) adhered best to a fish epithelial cell line and 

suggested this specificity might indicate the presence of specific receptors on fish cells. The A layer 

appeared to be important in this adhesion since the adherence of A • cells was greater than A· to all 

cell types and to excised fish tissue (Parker, 1985; Parker and Munn, 1985). A comparison of the 

amino acid sequence of A. salmonicida A protein revealed similarities with E. coli K88 antigen, 

fimbriae of enterotoxigenic strains and with the outer membrane pore protein of E. coli K 12 

(Evenberg and Lugtenberg, 1982) so it is conceivable that this serves as an adhesin in A. salmonicida. 

Pili have been demonstrated on some strains of the bacterium (Parker, 1985) but a role in adhesion 

has not been established. The presence of surface adhesins on A. salmonicida has been demonstrated 

by haemagglutination with erythrocytes (Brooks and Trust, 1983). lshiguro and Trust (1981) found 
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that specific adhesins on A-layer negative strains could be inhibited by D-mannose although the 

importance of this is difficult to assess since these would be masked by the A layer in virulent A+ 

strains. Parker (1985) demonstrated specific yeast agglutinins and haemagglutinins on A layer -

negative cells and suggested that A. salmonicida adhesins were non - specific since attachment was 

not affected by either pH or the addition of simple sugars. Such a non - specific process might enable 

the organism to interact with a wide array of cell types. The observation in the present study that A. 

salmonicida strains adhere to and invade Atlantic salmon epithelial- like tissue culture cells suggests 

the bacteria may indeed have the capacity to adhere to a range of different cell types. All the surfaces 

of fish exposed to the environment are mucosal and this may allow a greater degree of latitude tor 

pathogens to invade than is the case with mammals. In addition to the obvious advantage of 

possessing strategies to adhere to and invade cell, it is accepted that bacterial adherence endows 

pathogens with a capacity to withstand cleansing mechanisms operating at mucosal surfaces and may 

thus be an important early stage in the colonisation of host tissue (Beachey, 1981; Beachey et al., 

1982). 

The process of cellular invasion in the present study appeared to involve substantial perturbation of 

cell surface structure. This was manifest firstly in intimate attachment, followed by the formation of 

a cup-like pedestal structure and finally in the engulfment of bacteria in large structures extending 

from the cell surface. The formation of a pedestal structure is reminiscent of the lesions resultant 

upon enteropathogenic E. coli (EPEC) adhesion to tissue culture cells (Knutton et al, 1989; Dytoc er 

al, 1993). This process involves peripheral attachment to the intestinal brush border followed by close 

adhesion which results in the disappearance of microvilli on the cell surface in the vicinity of the 

invading organism. An 'attaching and effacing' (ae) lesion now regarded as characteristic of EPEC 

forms and the microvillar architecture is lost leading to a cup-like association between the enterocyte 

and bacteria (Milon et al., 1990). The eae A gene of EPEC is part of a chromosomal gene cluster 

necessary for this phenotype of intimate attachment (Donnenberg et al., 1993). In the present study 

microvilli were never observed in the vicinity of adherent or invading A. salmonicida but were 

frequently observed on the surface of control cells. Whether this reflects an equivalent of 'effacement· 

is uncertain but could be investigated by in vivo studies of these interactions using intubated bacteria. 
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Fibrillar material possibly indicative of cytoskeletal components was visible beneath invading A. 

salmonicida by TEM, similar to descriptions for other invasive bacteria (Mathan et al., 1993). The 

perturbations of cell surface structure during the process of Salmonella invasion into epithelial cells 

is a particularly disruptive process involving prominent cytoplasmic structures 5 - 10 ILm in diameter 

which expand outward to surround and internalise the adherent bacterium (Finlay and Falkow, 1990). 

This contrasts with the uptake of some other invasive enteropathogens such as Yersinia which cause 

little cell disruption. 

Internalization of A. salmonicida occurred very rapidly, within 5 min of incubation with cells, which 

is similar to the speed of uptake reported for Salmonella (Francis et al., 1992). The tield of bacterial 

invasion and its molecular basis has undergone remarkable expansion in the last few years resulting 

in the recognition of a considerably larger number of invasive organisms than was formerly believed 
' -

(Falkow et al., 1992). Indeed it is increasingly appreciated that many microorganisms have evolved 

the capacity to interact with host cell receptor molecules in order to induce their own internalization 

(Moulder, 1985; Falkow, 1991; lsberg, 1991). Only in a limited number of cases is the cellular and 

molecular basis of these processes even partly understood. A well studied example of an invasive 

microorganism is the enteric pathogen Yersinia in which a bacterial surface protein 'invasin' can 

mediate bacterial internalization into non- phagocytic cells {lsberg et al., 1987; Leong et al., 1990; 

Tran Van Nhieu and lsberg, 1991). lnvasin promotes bacterial adherence and entry into eukaryotic 

cells by binding to multiple 61 integrins {lsberg and Leong, 1990; Bliska et al., 1993). The very high 

affinity binding of invasin with integrin results in integrin clustering, triggering host tyrosine protein 

kinase leading to cytoskeletal rearrangements facilitating bacterial uptake. lntegrins are a class of 

dimeric transmembrane protein cell adhesion molecules (Hemler, 1990) which bind to cytoskeleton-

associated proteins (Otey et al., 1990). Other microbial invasion determinants including the Yersinia 

enterocolitica Ail protein (Miller and Falkow, 1988), Listeria monocytogenes internalin (Gaillard er 

al, 1991) and lpa proteins of Shigella species (Sansonetti, 1991) have been characterised but the host 

molecules with which most of these proteins interact have not yet been identitied. 

Large rearrangements of the host cell surface were observed in the present work but without any 
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information on the cellular and molecular basis of the interaction there seems little point in speculating 

on the exact nature of A. salmonicida invasion. Elements of the process appear similar to those of 

a number of mammalian enteropathogens and it will be interesting to determine if these are reflected 

at the molecular·level. Considerable variation exists in the location and numbers of genes. encoding 

proteins which have been shown to be associated with invasion. The Shigella ipa invasion genes and 

the enteroinvasive E. coli (EIEC) invasion genes are plasmid borne (Sansonetti et al. ,1981, 1982) 

while the invasion loci on Salmonella species are located on the chromosome (Elsinghorst et al., 

1989). Interestingly, Yersinia pseudotuberculosis has been demonstrated to possess two invasion 

systems - a highly efficient chromosomally-based inv mediated process (lsberg and Falkow, 1985; 

Isberg et al., 1991), and a less efficient virulence plasmid-based yad A mediated process (Yang and 

lsberg, 1993). Additionally, while single genes appear capable of enabling invasion of Yersinia 

species and Listeria monocytogenes (lsberg and Falkow, 1985; Rosenshine and Finlay, 1993), invasion 

by other bacteria such as enteropathogenic E. coli, Salmonella and Shigella appears to be encoded-by 

multiple gene systems (Galcm et al., 1992a; Ginocchio et al., 1992; Stone et al., 1992; Rosenshine 

and Finlay, 1993). Despite large phenotypic differences in the nature of the invasion strategies and 

the previously held belief that little homology existed between invasion genes a recent study has found 

that an assemblage of chromosomal genes involved in the invasion processes of Salmonella are very 

similar in order, arrangement and sequence to gene clusters on the Shigella virulence plasmid which 

control the presentation of surface antigens (Groisman and Ochman, 1993). Considerable similarities 

have also been noted between the derived amino acid sequences of gene products implicated in 

attachment of ETEC and EPEC to epithelial cells and the invasion proteins of Y. enterocolitica and 

Y. pseudotuberculosis (Donnenberg et al., 1993). It has been appreciated for some time that in 

addition to the presence of specific gene(s), environmental factors also play a role in the regulation 

of bacterial cell entry (Di Rita and Mekalanos, 1989; Mekalanos, 1992). Enteric pathogens experience 

severe environmental changes when they enter the host via the oral route such as low pH, increased 

temperature (in the case of endothermic animals), low oxygen tension and nutrient deprivation. It has 

been found that bacteria respond to these environmental changes by modulating expression of different 

pools of genes and that many of these genes are coordinately regulated (Gross et al ., 1989; Miller 

et al., 1989b). Salmonella entry appears to be regulated by growth phase (Finlay et al., 1989) and 
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oxygen tension (Ernst et al., 1990; Shierman and Shope, 1991) possibly mediated by the state of DNA 

supercoiling in the bacterium (Higgins et al., 1990). A recent study found using lnt- 407 monolayers 

that there was no difference in adhesion or invasion by S. typhimurium from log or stationary phase 

cultures (Kusters et al., 1993). This study found that adherence did not require either host cells or 

bacteria to be viable but the process was saturable suggesting the existence of only a limited number 

of receptors. In contrast, invasion was found to be dependent on live host cells and bacterial protein 

synthesis. Recent evidence shows that there is a distinct overlap between the stimuli growth phase 

and osmolarity in the regulation of adherence to and invasion of human intestinal cells by Salmonella 

typhimurium (fartera and Metcalf, 1993). High osmolarity conditions were found to be necessary in 

late-log phase for the optimal induction of the adherent and invasive phenotype. The S. jlexneri ipa 

invasion genes and Yersinia ·inv, aiC and yadAJoci are temperature regulated (Maurelli et a/, 1985; 

Small et al., 1987). Invasion of epithelial cells by Salmonella and Shigella species requires active 

RNA and protein synthesis but does not appear to· require DNA synthesis (Finlay and Falkow, 1988; 

Finlay et al., 1989). In contrast, organisms such as Yersinia continue to invade despite treatment with 

formalin, UV light inactivation or inhibition with RNA and protein synthesis inhibitors (Vesikari et 

al., 1983; Finlay and Falkow, 1989). Host cell energy production and viable bacterial cells are also 

required for the invasion of human epithelial cells by Campylobacter jejuni (Kashel and Jones, 1989). 

Great caution must be exercised in the interpretation of these studies since it has been demonstrated 

that the invasion property in Shigella is unstable and readily lost upon subcultivation (Sansonetti et al., 

1991). Similarly, the production of a D-mannose resistant adhesin by £. coli was shown to be 

dependent on culture medium and temperature (Milan et al., 1990). Furthermore, the composition 

of culture media has been demonstrated to have a considerable effect on the adherence of A. 

salmonicida to fish cells (Parker, 1985). 

The finding in the present study that A. salmonicida appeared to induce actin polymerisation at the 

site of bacterial attachment is in accordance with a number of previous studies (Falkow et al., 1992). 

Furthermore, although no attempt was made to quantify the process, cytochalasin D (a fungal inhibitor 

of actin polymerization) appeared to completely prevent cell invasion. The uptake of several bacterial 
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pathogens by nonprofessional phagocytes involves cytoskeletal actin microfilaments (Ewanowicb and 

Peppier, 1990). Indeed, cytochalasin D appears to be antagonistic to the internalization of a large 

number of invasive bacterial pathogens (Finlay and Falkow, 1988). It has frequent) y been shown with 

a number of mammalian enteropathogens that short filaments of polymerized actin accumulate beneath 

the host cell cytoplasmic membrane at the site of bacterial entry (Goldberg and Sansonetti, 1993). The 

cellular processes commensurate with bacterial invasion are perhaps best understood for the invasive 

pathogen Salmonella typhimurium. Upon coming into close proximity to epithelial cell brush border 

Salmonella induces profound but transient changes in microvillar architecture (Finlay and Falkow, 

1992; Ginocchio et al., 1992) which are limited to the point of bacterial contact. Its subsequent 

internalization is accompanied by considerable changes in the host cell cytoskeleton, with the 

accumulation of a number of cytoskeletal proteins including actin, a.- actinin, talin, tubulin and ezrin 

around the entering bacterium (Finlay et al., 1991; Ginocchio et al. , 1992). These events suggest that 

the bacterium sends signals to the cell to induce its own uptake. The exact nature of this signal is 

unknown but it was initially found that stimulation of the epidermal growth factor receptor (EGFR) 

appeared necessary forS. typhimurium invasion into cultured Henle- 407 cells (Galan et al. , 1992b). 

It has also been demonstrated that free intracellular calcium mobilization, phospholipase A2 activity 

and leukotriene 0 4 synthesis are needed for Salmonella entry into Henle 407 cells (Pace et al., 1993). 

Stimulation of the EGFR (possibly through tyrosine phosphorylation) results in a variety of immediate 

(Ca2
+ mobilization and membrane ruffling) and long term cell responses (DNA replication) 

(Schlessinger., 1988; Carpenter and Cohen, 1990). Since Salmonella invasion is a very rapid process 

the immediate responses to EGFR activation were presumed to be of greatest importance. Increased 

levels of intracellular Ca2
+ which may be induced by the bacterium from outside the cell and 

reorganisation of the host cytoskeleton appear to be necessary for Salmonella invasion (Pace et al. , 

1993). Attachment of the bacterium and stimulation of the EGFR are genetically separate phenomena 

and probably are mediated by different molecules . A signalling cascade results in depolymerization 

of actin microfilaments leading to the formation of membrane blebs and possibly to the release of 

profilin from the membrane which could participate in the reorganization of the cytoskeleton seen 

during Salmonella invasion (Pace et al., 1993). A recent study has found that Salmonella 

typhimurium induces membrane ruffling by a growth factor receptor - independent mechanism (Jones 
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et al, 1993). It has additionally been shown that invasive Salmonel/ae can enter a line that does not 

express EGFR (Francis et al., 1993) at a similar rate to a cell line expressing the receptor so it 

appears that EGFR is not essential for invasion. Ruffles are specialised plasma membrane 

ultrastructures of mammalian cells which are thought to be integral to growth, development and 

locomotion. Induced by growth factors, mitogens, or oncogene expression ruffles are sites of 

filamentous actin rearrangement (Mellstrtim et al., 1988) and are temporally associated with enhanced 

pinocytosis (Bar-Sagi and Feramisco, 1986; Haigler et al., 1979). Structures resembling ruffles have 

been observed to be associated with the site of entry of invasive Salmonella typhimurium (Francis ec 

al., 1993) and it has been shown that ruffles elicited by invasive Salmonellae and other factors mediate 

internalisation of non-invasive bacteria or inert polstyrene beads in a macropinocytotic fashion - a 

phenomenon termed 'passive entry'. Salmonella-induced ruffling unlike that resulting from other 

factors is localised to the site of bacterium-host cell interaction. Ruffle formation and subsequent 

Salmonella entry are sensitive to inhibitors of actin polymerisation but not to microtubule inhibitors 

(Fin! ay and Falkow, 1988). Stimulation of EGFR and Fe and of Salmonella invasion receptor in cells 

lacking EGFR results in ruffle formation which facilitates macropinocytosis of bacteria (Francis ec al., 

1993), and it appears that a common pathway for ruffle induction may exist which allows for parallel 

entry pathways (Galcrn et al., 1992). The cascade pathways outlined above may therefore be the 

eventual outcome. In contrast to the above, polystyrene beads were not internalised when the same 

HEp - 2 cells were infected with non - invasive bacteria or with invasive Yersinia enterocolitica 

indicating that passive entry correlated with ruffling activity (Francis et al., 1993). The evidence 

appears to suggest that separate genetic loci are involved in adherence and in transmembrane signalling 

in the case of Salmonellae whereas the Yersinia invasin protein alone appears sufficient for the 

adherence and entry of this organism. Similarly, a dichotomy between the genetic loci involved in 

intimate attachment and those genes necessary for signalling to the cytoskeleton also appears to exist 

for EPEC (Donnenberg et al., 1993). Obviously it is impossible to understand the mechanism for 

the entry of Aeromonas salmonicida into epithelial cells at present but the similarities in membrane 

perturbation and the requirement for actin polymerization found in the present study indicate that 

similarities may exist in the molecular bases of these processes. 
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The use of primary intestinal cells in the present study enabled the invasion process to be investigated 

in some detail. In general, the analysis and the elucidation of the molecular basis of such phenomena 

relies on the use of tissue culture cells. A number of experimental cell tissue culture models have 

been developed to study steps in invasion and to identify both the genes involved and the regulatory 

factors involved in invasion (Small et al., 1987; Miller and Falkow, 1988; Elsinghorst et al., 1989). 

Such systems have a number of advantages including their well characterised nature, ease of culture 

and attachment to a solid substratum. In some cases, such as Cac<;> 2 and MDCK cells (Finlay et al., 

1988; Finlay and Falkow, 1990) the cells are highly differentiated producing microvilli and tight 

junctions as with epithelial cells in vivo (Mounier et al., 1990) although it is possible that transformed 

cell lines possess altered receptors which are absent from host epithelial cells (Babakhani and Joens, 

1993). For example, it was found that Treponema denticola attached more to primary cultured 

epithelial cells than to <:<>ntinuous cell lines (Keulers et al., 1993). A comparative study found 

considerable differenceS in the extent of cellular invasion by Salmonella choleraesuis, Shigellajlexneri 

and Yersinia enterocolitica depending on the cell line used (Finlay and Falkow, 1988). Additionally, 

the Y. enterocolitica Ail invasion protein has been shown to exhibit remarkable cell line specificity 

in its ability to promote bacterial uptake, being capable of mediating bacterial binding to the surfaces 

of a wide variety of mammalian cell lines but only in a few cases leading to efficient internalization 

(Miller and Falkow, 1988). The extent of invasivness by L. monocytogenes has also been 

demonstrated to be dependent on the cell line used (Meyer et al., 1992). Despite such limitations 

some studies have established a degree of correlation between bacterial invasion of epithelial cells in 

vitro and bacterial virulence in vivo (Moulder, 1985; Finlay and Falkow, 1988). Gatan and Curtiss 

(1989) for example found that a Salmonella mutant strain which was unable to invade cells in vitro 

was reduced in virulence after oral but not intraperitoneal infection of mice indicating that efficient 

penetration of the intestinal epithelial layer requires uptake via the pathways analysed in cultured cells. 

Primary intestinal epithelial cells were used in the present study to approximate the cell type found 

in the trout intestine and because no well differentiated trout gut epithelial cell line was available. The 

present study was not without precedent since primary small intestinal enterocytes from the intestines 

of piglet and guinea pig gut have been previously used to assay the invasiveness of Campylobacter 

jejuni (Babakhani and Joens, 1993) and L. monocytogenes (Meyer et al., 1992). The present 
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investigation used cells that were in suspension and consequently all aspects of the cell surface were 

exposed to bacteria whereas in vivo or with a well defined cell line only the lumenal\ apical aspect is 

available for interaction with bacterial cells. Therefore no information was gained in this study on 

the specificity of the uptake process with respect to the area of the cell involved. This may be of 

considerable importance since it has been demonstrated that Shigella jlexneri enters polarized 

mammalian cells through the exposed basolateral surfaces rather than the apical cell surface and 

additionally that the paracellular junctions of confluent monolayers are opened allowing bacterial 

access to the basolateral surfaces for invasion (Mounier et al., 1992). It has also been suggested that 

endocytosis by the lateral epithelial cell membrane is the main invasion route of the enteropathogen 

Providencia alcalifaciens (Mathan et al., 1993). This is in striking contrast to Salmonella which 

invade directly through the brush border of polarized cells after inducing cytoskeletal rearrangements 

(Finlay and Falkow, 1990). Another disadvantage of the cell suspension system used in the present 

study is that tight junctions as a route of mucosal invasion cannot be investigated as although this is 

quite rare for enteric pathogens such an invasion strategy has been demonstrated for S. typhimurium 

(fakeuchi, 1967) and Providentia alcalijaciens (Mathan et al., 1993). 

It was determined in this study that bacteria appeared to survive for some time within the gut epithelial 

cells. Using TEM, bacteria were only observed intracellularly within endosomes and not free in the 

cytoplasm and since these cells were in suspension no information pertaining to the subsequent fate 

of the bacteria could be gathered. Using the fluorescence microscopy method with extracellular 

quenching proved a valuable means to assess the viability of intracellular microbes and indicated that 

A. salmonicida remained viable for a number of hours after internalization. Among invasive bacteria 

two intracellular strategies have been observed in epithelial cell lines. The intracytoplasmic site of 

multiplication distinguishes such organisms as Rickettsiae (feysseire et al., 1992), Shigellajlexneri 

(Goldberg and Sansonetti, 1993) and Listeria monocytogenes (Kocks et al., 1993) from other 

intracellular organisms that grow either in phagolysosomes or in phagocytic vacuoles by inhibition of 

lysosomal fusion (lshibashi and Arai, 1990; Falkow et al., 1992). The latter species utilise actin 

polymerization to move within the cell and S. jlexneri and L. monocytogenes have been shown to have 

the extraordinary property of lateral cell-cell spread. Once inside the host cell cytoplasm these 
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bacteria can accumulate short filaments of polymerized cytoplasmic actin and other actin-associated 

proteins including plastin, filamin and vinculin are also located in the tail at one extremity of the 

bacterium (Goldberg and Sansonetti., 1993). Actin is bundled to form an actin-containing tail behind 

the microbe as it moves in the cytoplasm which enables rapid bacterial movement (Bernaddini et al., 

1989; Kocks et al., 1993). Continuous addition of polymerized actin filaments to the tail behind the 

bacterium propels the bacterium forward (Sanger et al., 1992; Theriot, 1992; Theriot et al., 1992; 

Tilney and Tilney, 1993). S. jlexneri and L. monocytogenes are extruded from infected cells in 

macrovilli or pseudopod-like structures which can be internalised by neighbouring cells in a process 

involving the formation of finger-like protrusions from the infected cell surface. These protrusions 

contain the bacterium and its actin tail and the tip of the protrusion penetrates the surface membrane 

of the adjacent cell resulting in phagocytosis (Goldberg and Sansonetti, 1993: Niebhur et al., 1993). 

The bacteria lyse the double membrane to become free in the cytoplasm and begin a new cycle of 

growth and infection (Teysseine et al., 1992 Tilney and Tilney, 1993; Goldberg and Sansoneni, 

1993). In the case of L. monocytogenes an Act A bacterial surface protein· has been implicated n actin 

accumulation. Mutants defective in this gene are incapable of actin accumulation, intracellular and 

intercellular cell- cell spread and are highly attenuated in vivo (Niebuhr et al., 1993). Similarly, the 

S. jlexneri plasmid encoded Ics A protein is vital for intracellular movement and intercellular spread 

(Vasselon et al., 1992). Salmonella typhimurium and Yersinia on the other hand remain within a 

membrane bound inclusion throughout the intracellularphase (Falkow et al, 1992). In the present 

study bacteria were only observed within the cytoplasm inside endosomes and no evidence of 

intracellular replication was found. The production of membrane damaging agents by A. salmonicida 

is well documented (see below) therefore the possibility of internalized bacteria escaping from the 

phagosome/ phagolysosome is not inconceivable. 

The demonstration that a range of other bacterial species in this study did not invade rainbow trout 

epithelial cells indicate that the internalisation of the A. salmonicida does not simply represent an 

'antigen sampling' function which has been suggested for posterior intestinal enterocytes of teleosts 

(chapter 4). It is more likely to reflect a selective process requiring specitic bacterial factors 

somewhat analogous to findings in mammals. However, since the expression of an invasive phenotype 
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depends on environmental conditions and growth phase it is conceivable that the negative results 

reported here merely reflect the experimental conditions. Obviously if this work substantiates an 

invasive capacity for A. salmonicida this may have implications with respect to the pathogenesis of 

furunculosis. Indeed, the demonstration that the strains used can invade both skin and gut cells 

suggests that the pathogen may infect by a number of routes. Parker (1985) demonstrated that A. 

salmonicida can adhere to trout gills and also that A layer positive.strains of A. salmonicida could 

adhere to the outer skin surface of rainbow trout but could not traverse the integument and suggested 

this might not thus represent a portal of entry. Similarly, Bowers and Alexander (1982) failed to 

demonstrate passage of bacteria across trout skin. Discussion of the possible implications are outside 

the scope of the present work whose sole object was to evaluate the potential use of the attenuated 

strain as an oral vaccine vehicle for delivery of antigens to salmonids. It appears that assuming the 

bacterium can survive the biophysical, chemical and enzymic barriers in the proximal gastrbintestine 

A. salmonicida may be capable of invading the gut epithelium and potentially of delivering antigen 

to the underlying GALT and/ or the primary lymphoid organs of the fish. Obviously before such a 

strain can gain access to the intestinal epithelium it must be capable of surviving or be protected from 

the effects of gastric acidity, pancreatic enzymes and bile salts. Indeed, if a live oral vaccines survives 

the gastric barrier antigens expressed by such a strain could be synthesized de novo in their natural 

environment and thus be delivered intact to the teleost GALT. Parker (1985) found that A. 

salmonicida was relatively resistant to the effects of bile salts and a range of proteases but that the 

bacterium did not grow to a detectable extent at a pH less than 5. The pH pertaining in the unfed 

trout stomach of 2 - 4 (see section 5.3) may therefore be inhibitory to the strain. Preliminary 

observations (Jones,unpublished observations) indicate that a small percentage of these bacteria can 

survive a pH as low as 2.75 for up to 6 hr. The use of gastric inhibitors to protect the strain from 

acid- mediated killing may thus be of some advantage. 

The demonstration of high affinity binding of A .salmonicida to type IV collagen found in basement 

membranes (Trust et al., 1993) and to fibroncetin and larninin (Doig et al., 1985) may be of 

considerable importance. If the organism can invade the intestinal epithelium and subsequently 

associate with the basement membrane this might facilitate its passage to deeper tissues. Several 
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microbial pathogens can bind extracellular matrix components including collagen and fibronectin and 

these bridging molecules generally mediate cellular adhesion but not entry (lsberg, 1991). Entry of 

Trypanosoma cr:uzi and Chlamydia trachomatis into cultured mammalian cells can occur via a 

trimolecular mechanism, heparin bridging the interaction between the host cell and receptor (Ortega 

and Pereira, 1991; Zhang and Stevens, 1992). The 61 integrin receptors for Y. pseudotuberculosis 

Inv A protein are involved in cellular adhesion to fibronectin, collagen and laminin (Aargraves et al., 

1987; Hemler, 1990). 

It has been suggested that lectin-mediated adherence may confer growth advantage and enhanced 

toxicity to pathogens due to the restricted diffusion of products secreted by both target cells and 

bacteria (Zafriri et al., 1987). There is some evidence that when compared with nonadherent bacteria, 

the toxins produced by adherent bacteria are targeted more efficiently and become relatively 

inaccessible to neutralization by toxin inhibitors. Toxicity to mammalian cells due to heat labile 

enterotoxin secreted by a K - 12 E. coli strain was greatly enhanced in bacteria adhering to cells 

compared to monolayers exposed to organisms whose adherence was inhibited by mannoside (Ofek 

et al., 1990). In this case, the growth advantage and enhanced toxin efticacy was shown to result 

from the accumulation of products secreted both by the tissue cells and the bacteria in crypts formed · 

by the ruffle structure of the tissue cells and 'lids' formed by the adherent bacteria. Similarly, the 

cytolytic activity towards tissue culture cells and mouse peritoneal macrophages caused by 

Streptococcus pyogenes streptolysin S was greatly enhanced in mixtures containing organisms capable 

of adhering to the target cells compared to nonadherent bacteria (Ofek et al, 1990). In the present 

study, although no quantification was attempted it appeared that cell lysis was occuring when cells 

were incubated with A. salmonicida at a multi pi icity of infection greater than I 00: I, so after more than 

30 min incubation a large amount of cell debris was visible and by TEM, relatively few cells 

containing intracellular bacteria were apparent. It was not possible to determine if this resulted from 

cytotoxin secretion by extracellular bacteria or lysis due to internalized cells. Cipriano et al.(l981) 

found a correlation between virulence and toxicityof A. salmonicida extracellular products to rainbow 

trout gonad cells. Similarly Munro et al. (1980) and Anderson (1972) described toxicity of A. 

salmonicida to rainbow trout gonad cells and lysis of fathead minnow tissue culture cells by A. 

313 



salmonicida ECP respectively. A cytopathic effect of A layer positive strains of A. salmoniCida on 

murine (Garduiio et al., 1992) and trout (Garduiio and Kay; 1992) macrophages has also been 

observed and this resulted in cell detachment from the substratum only in the case of trout 

macrophages. Obviously if a similar effect occurs with trout gut cells in-depth analysis of the longer 

term interactions of such cells with the pathogen will be difficult. 

In conclusion, the present preliminary study indicates that the attenuated aro A strain of A. 

salmonicida and its wild type can adhere to and invade intestinal epithelial cells from rainbow trout. 

Obviously without a further assessment of the subsequent fate of the organism in the fish tissues it is 

impossible to speculate as to the in vivo potential of the attenuated strain as an oral vaccine vehicle. 

However, if this apparent invasive capacity is reflected in vivo and the strain gains access to the 

immunologically responsive tissues it may well be of value as an oral delivery vehicle for salmonids 

and provide a template for the immunization of a number of economically important teleost species. 
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CHAPTER 9 

GENERAL DISCUSSION 
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This study has demonstrated the complexity of antigen processing in the rainbow trout 

gastrointestine. The rapidity and extent of protein antigen degradation in the gut indicated that 

proteolytic enzymes in the digestive tract pose a considerable barrier to the oral delivery of protein 

antigens and suggested that a means to protect labile antigens in the gut may enhance the efficacy 

of oral vaccination. The in vivo and in vitro methods used in this investigation for the study of 

antigen degradation by gut cells and secretions may be of use in future as a preliminary step in 

the rational design of enteric delivery systems for teleosts. 

Chapter 3 described the isolation of lumenal enzymes from the trout gut and their effects on HGG 

and BSA. The findings indicated that both gastric and intestinal enzymes can degrade protein 

antigens in vitro but degradation by intestinal enzymes was most extensive leading to complete 

digestion of the intact antigens. In order to determine if antigen degradation could be reduced by 

altering the conditions in the digestive tract, the effects of temperature, pH and inhibitors on 

proteolysis were investigated: Degradation of both antigens by intestinal enzymes increased with 

increasing temperature from 2°C to 35°C and was greatly reduced at temperatures less than 10°C. 

It has been shown that certain teleosts exhibit a high degree of adaptability in regulating digestion, 

particularly with regard to temperature (Lee and Cossins, 1986) so the use of an in vitro system 

to investigate lumenal processing of proteins may not necessarily directly reflect processing of the 

same antigens in vivo. 

The activity of intestinal enzymes was found to increase with increasing pH from pH 2-9 but little 

activity was noted at pH values less than 5. Results of the investigation of the pH dependence of 

gastric enzyme activity were unexpected, gastric enzymes appeared to degrade both HGG and BSA 

maximally at two distinct pH values, pH 4-5 and at pH 7, little degradation being apparent at the 

intermediate pH 6. It was not determined if these two pH optima were a result of the presence 

of distinct proteases with different pH optima or of a single enzyme(s) with different activities 

depending on pH. To further investigate this surprising result the in vivo proteolysis of HGG after 

oral administration alone or after delivery of gastric inhibitors was studied (chapter 5). The use 

316 



of Western blotting to investigate in vivo lumenal proteolysis proved very useful and demonstrated, 

as found in vitro, that proteolysis occured in the trout stomach at pH 7. Additionally the pattern 

of HGG fragmentation detected in the trout stomach at pH 4-5 and pH 7 was similar to that 

obsetved in vitro. By altering the gastric pH with gastric inhibitors it was found that the nature 

of HGG fragments absorbed into the plasma could also be affected. The analysis of HGG in 

various regions of the gut after oral intubation indicated that different regions played distinct but 

complementary roles in proteolysis but the detection of HGG fragments in the plasma of fish 

which were not detectable in any region of the gut indicated that these were a result of processing 

at a stage following lumenal degradation. 

There have been encouraging indications that the application of enteric delivery protocols 

developed in mammals may enhance antigen uptake and immune responses in fish (Jenkins, 1992; 

Wong et al., 1992). A preliminary investigation into the use of PLG microparticles as an oral 

delivery vehicle for soluble protein antigen in teleosts found that considerable fragmentation of the 

microparticle- associated HGG occurred in the trout stomach (chapter 7). This indicated that a 

proportion of the antigen was on the particle surface. However, analysis of HGG in the intestinal 

region of fish after oral intubation demonstrated that encapsulation did protect a percentage of the 

antigen from proteolysis. Furthennore, encapsulation of HGGresulted in greater amounts of the 

antigen reaching the bloodstream. Relatively little is known about the uptake of particulate 

materials from the teleost gut. Despite the absence of Peyer's patches, which appear primarily 

responsible for particulate uptake in the mammalian gut (Jenkins et al., 1994) unpublished work 

from our laboratory has demonstrated the uptake of O.lJLm and I.OJLm fluorescent microspheres 

by the trout gut. Studies of the gut regions and cells involved in this uptake and of the subsequent 

fate of the particles is nesessaryl ·full determine the value of particulate delivery systems. Our 

findings that these microspheres were detectable in the blood of fish after oral administration may 

be of importance since, in mammals, particulate materials are believed to localise in the lymphatic 

system. The second particulate deliver~syste~investigated in this study was a live attenuated 

aromatic amino acid dependent (.MroA) strain of A. salmonicida. The finding that this strain 

which has proved effective as a parenterally administered vaccine in salmonids can invade 
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enterocytes suggests that it may be useful as an oral carrier vehicle for heterologous antigens. 

Further .investigations on the invasiveness of the bacterium in vivo and of its capacity to withstand 

the harsh lumenal environment are necessary before the value of this mutant strain in oral 

vaccination can be fully ascertained. In comparing the advantages of live recombinant bacteria 

and biodegradable microparticles as enteric delivery systems it has been suggested that in contrast 

with bacteria, the absence of exposed antigen on microparticles prevents exclusion of antigen as 

a result of pre-existing antibody (McGhee et al., 1992). The finding in this study that antigen 

appears to be present on the microparticle surface is in conflict with this contention. However, 

if the degree of internalisation of antigen in the microparticle could be increased and the surface 

exposed antigen removed, oral immunisation may be more effective. 

The possibility of antigen degradation occurring within intestinal cells was addressed in chapter 

4. Using a previously described method (Davidson, 1991) gut cells were isolated and incubated 

with antigens. The results indicated that BSA was extensively degraded within gut cells while 

HGG was only modified to a limited extent. The intracellular processing of HGG appeared to be 

complex since HGG fragments were only detected within cells from 30-45 min after incubation,. 

within cells, at later time points the HGG detected appeared to be intact. This indicated either that 

these fragments were fully degraded within the cells or exocytosed from the cell and therefore no 

longer detectable. If exocytosis did occur this may explain the presence of HGG fragments in the 

plasma which were not detectable in the gut after oral administration of HGG. Indeed, a IOkDa 

HGG fragment was identified within gut cells which was very similar in size to a fragment 

detected in the plasma of fish with a gastric pH of 4-5 and which was not detectable in the lumen. 

Investigation of the intracellular processing of HGG and BSA by cells isolated from different 

regions of the gut indicated, particularly in the case of BSA that degradation was much more 

extensive in some regions than others. Unfortunately, the identity of the cells isolated from 

different regions of the gut was not established so the roles of enterocytes, macrophages, 

granulocytes and other cell types in processing is unknown. Dorin et al. (1993) found that after 

anal administration of recombinant trout somatotropin or native bovine somatotropin that both 
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proteins were detectable within intestinal macrophages while only the heterologous bovine 

somatotropin was found within eosinophilic granular cells in the gut. This suggests that a study 

of the cell types responsible for the processing of proteins observed in the present study may 

provide useful information on the differential roles of gut cells. The identification of genes 

encoding MHC class I and 11 genes in fish (Okamura et al., 1993; Bartl and Weissman, 1994) 

indicates that in future by in situ hybridisation or by immunocytochemical or flow cytometric 

techniques, if antibodies to the proteins are produced, the identity of cells potentially capable of 

antigen presentation in the gut mucosa may be identified. From a comparative viewpoint it would 

be interesting to determine the nature of cells involved in antigen processing and presentation in 

the teleost gut since this may cast light on the role of the diffuse GAL T of higher vertebrates. 

A study of the nature and kinetics of antibody produced against HGG aft(lr parenteral and oral 

administration found that lgM detected using a polyclonal anti - rainbow trout lgM antiserum.was. 

degraded by trout intestinal enzymes which may indicate that unless the immunoglobulin is 

somehow protected from proteolysis in vivo it is unlikely to function as a secretory 

immunoglobulin in the gut. However, specific antibody to HGG was detected in the intestinal 

mucus after i.p injection and after boosting with soluble HGG · in fish which were orally 

administered with PLG -encapsulated HGG (chapter 7). Further study is necessary to determine 

the origin. of intestinal antibody and to determine if it is resistant to proteolysis in vivo. The 

highest antibody titres to HGG were detected in the plasma and secretions of i.p immunised fish. 

This result was similar to earlier studies on the antibody responses of teleosts to soluble protein 

antigens (Davidson, 1991; Jenkins, 1992) and contrasts with earlier reports that i.p injection was 

not an efficient route for the induction of mucosal immune responses (Fietcher and White, 1973: 

Rombout et al., I989a). The latter studies investigated the response to particulate antigens which 

may explain the contrasting results. These studies may indicate than in teleosts as in mammals 

particulate antigens are more effective mucosal immunogens than soluble proteins. 

Although the existence of a local immune system and even a common mucosal immune system in 

teleosts has been proposed (chapter 2) there is relatively little evidence in the literature for a 
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functional immune compartment in the gut independent of the systemic system. To. clarify the role 

of the gut in immune protection it will be necessary in future to determine the aspects of the 

immune response responsible for protection after immunisation since in many cases the limited 

protection observed may have been be the result of non-specific factors. It has been suggested that 

the lymphatic system in the teleost gut may not be as independent of the circulatory system as in 

mammals (Nakanishi, pers comm). If the lymphatic system in the teleost gut can act as a 

'secondary circulatory system' allowing exchange of components with capillaries in the gut, then 

it would be difficult to envisage a local immune system acting completely independently of its 

systemic counterpart. It would therefore appear necessary to investigate the degree of 

interconnection between these two pivotal transport systems in the piscine gut since it may 

elucidate the degree of separation between the gut and systemic lymphoid compartments. Further 

study on the uptake of particulate materials from the gut, particularly. with regard to the roles of 

lymphatics and capillaries in transport may cast some light on this area. If there is a greater 

degree of exchange between the lymphatic and blood circulatory systems this may explain the 

detection of antibody in the cutaneous mucus after enteric delivery of antigen (chapter 6). 

However, it would not explain the finding of antibody in the cutaneous mucus but not in the 

plasma after enteric immunisation (Rombout et al., 1989a). It is possible that plasma cells if 

induced in the gut might retain a predilection for the mucosae and thus preferentially localise in 

the skin. The wide degree of variability between teleosts @!!is, 1986) indicates that it is likely 

that the function of local immunity will differ considerably between species. Therefore until the 

capacity for local immunological responsiveness and characterisation of the lymphoid populations 

in the gut of a range of teleosts is performed, any general statements on the role of local immunity 

in teleosts should be made with caution. 

The peak titres determined by ELISA in plasma of secretions of i.p immunised fish appeared to 

parallel the recognition of a 52 kDa HGG fragment on Western blots. It would be interesting to 

purify this fragment and to determine if it is immunogenic in trout, it is possible that this region 

of the HGG molecule possesses motifs which are immunogenic in this species. Indeed studies into 
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the fine specificity of teleost antibody to protein antigens to determine if epitope 

irnrnunodominance is a feature of such species would be very useful as an aid to vaccine design. 

The recent finding by Vinitnantharat and Plumb (1993) that administration of feed impregnated 

with Edwardsiella ictaluri cell extract maintained antibody levels in fish which were vaccinated 

by injection while levels in fish which did not receive oral vaccine continued to decline suggests 

that until effective oral vaccines are developed the oral administration of vaccines as a booster may 

be effective. If this is a general feature, then an investigation into the means by which oral 

immunisation stimulates antibody production in parenterally immunised fish may be valuable. 

However, the possibility of inducing tolerance by administering antigen orally after parenteral 

delivery exists however (Davidson et al., 1994). 

In conclusion, the trout digestive tract has been shown to possess a number of potent enzymic 

barriers to the oral delivery of protein antigens indicating that a means of protecting labile antigens 

through this environment is a prerequisite to the development of oral vaccines incorporating labile 

protein antigens for teleosts. The strategies developed in this study may provide a rational starting 

point in assessing the potential of oral delivery systems and may reduce the numbers of fish 

required in the preliminary stages of future investigations of this kind. 
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APPENDIX A: REAGENTS FOR SODIUM DODECYL SULPHATE- POLYACRYLAMIDE GEL 

ELECTROPHORESIS. 

All reagents and formulations were prepared according to instructions provided by and with 

materials from Sigma (Poole, Dorset, U .K). 

1: SEPARATING GEL BUFFER (Reagent A) 

Tris. 

N,N,N' ,N'- Tetramethylenediamine 

36.3g 

0.3 ml 

Dissolved and diluted to 90 ml with water, adjusted to pH 8.9 at 25°C with concentrated HCI and 

diluted with water to a final volume of 100 mL 

2: SEPARATING GEL SOLUTION (Reagent C) 

Acrylamide 

N,N' - Tetramethylethylenediamine 

28.0g 

0.46 ml 

Dissolved and diluted with water to a final volume of lOOm! and filtered to remove insoluble 

material. 

3: STACKING GEL BUFFER (Reagent B) 

Tris 

N,N,N' ,N' - Tetramethylethylenediamine 

5.98g 

0.46 ml 

Dissolved and diluted to 80ml with water, adjusted to pH 6.7 at 25°C with concentrated HCI and 

diluted with water to a final volume of lOOm!. 

4: STACKING GEL SOLUTION (Reagent D) 

Acrylamide 

N,N' - Methylenebisacrylamide 

IO.Og 

2.5g 

Dissolved and diluted with water to a final volume of 100 ml and filtered to remove insoluble 

material 

S: SDS SOLUTION 

Sodium Dodecyl sulphate(SDS)0.21g 

Dissolved and diluted with water to a final volume of 100 ml. 

6: PREPARATION OF 11% SEPARATING GELS: 

3.0 ml Reagent A 

9.5 ml Reagent C 

11.5 ml Reagent E containing 17 mg of Ammonium Persulphate (freshly prepared) 
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7: PREPARATION OF 7% SEPARATING GELS 

3.0 ml Reagent A 

6.95 ml Reagent C 

11.5 mJ Reagent E containing 17 mg of Ammonium Persulphate 

(freshly prepared) 

3.5 ml Water 

8: PREPARATION OF STACKING GELS 

1.0 ml Reagent B 

2.0 ml Reagent D 

4.0 ml Reagent E 

1.0 mJ Water containing 8 mg Ammonium Persulphate (freshly prepared) 

9: PREPARATION OF 2 X SAMPLE BUFFER (Reducing Sample Buffer) 

Tris 1.51 g 

Glycerol 20.0 ml 

Dissolved in 35 ml water and adjusted to pH 6. 75 with concentrated HCI. To this the following 

reagents were added. 

SDS 

2- mercaptoethanol 

Bromophenol Blue 

4.0g 

10 ml 

2mg 

This final solution was diluted with water to a final volume of IOOml. 

For non - reducing Sample Buffer 2 - mercaptoethanol was replaced with water. 

10: ELECTRODE BUFFER 

Tris 

Glycine 

SOS 

6.05g 

28.8g 

2.0g 

Dissolved and diluted with water to a final volume of 2.0 litres 

11: FIXATIVE SOLUTION (FOR DESTAINING GELS) 

Methanol 

Glacial acetic acid 

Water 

12: COOMASSIE BLUE STAINING SOLUTION 

400 ml 

70 ml 

530 ml 

Brilliant Blue R (Coomassie Brilliant Blue R) 1.25 g 
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dissolved in 500ml Fixative solution 

13: REAGENTS FOR NEUTRAL SILVER STAINING OF PROTEINS 

A: FIXATIVE 

30 % (VoiNol) Ethanol 

10 % (VoiNol) Acetic acid 

Distilled water 

B: SILVER EQUILIBRATION SOLUTION 

Silver nitrate concentrate 

Distilled water 

C: DEVELOPING SOLUTION 

Sodium carbonate 

Distilled water 

Formaldehyde 

D: STOPPING SOLUTION 

1% Acetic acid. 

E: REDUCING SOLUTION 

Potassium ferricyanide 

Sodium thiosulphate 

Sodium carbonate 

Distilled water 

14: MOLECULAR WEIGHT MARKERS 

A:6h HIGH MOLECULAR WEIGHT MARKERS 

Carbonic Anhydrase (Bovine Erythrocytes) 

Ovalbumin (egg) 

Albumin (bovine plasma) 

Phosphorylase B (rabbit muscle) 

8 Galactosidase (Escherichia coli) 

Myosin (rabbit muscle) 

B: 7h LOW MOLECULAR WEIGHT MARKERS 

a Lactoglobulin (Bovine milk) 

402 

300 ml 

100 ml 

600 ml 

7.5 ml 

292.5 ml 

30 ml 

120 ml 

0,17 ml 

2.0 ml 

4.0 ml 

0.7 ml 

393.3 ml 

Molecular weight 

29.4 kDa 

45.0 kDa 

66.0 kDa 

97.4 kDa 

116 kDa 

205 kDa 

14.2 kDa 



Trypsin inhibitor (soybean) 

Trypsinogen (Bovine pancreas) 

Carbonic Anhydrase (Bovine erythrocytes) 

Glyceraldehyde-3-Phosphate Dehydrogenase 

(rabbit muscle) 

Albumin (egg) 

Albumin (Bovine plasma) 

20.1 kDa 

24.0 kDa 

29.0 kDa 

36.0 kDa 

45.0 kDa 

66.0 kDa 

APPENDIX 8: REAGENTS FOR WESTERN BLOIDNG. 

1: TRANSFER BUFFER 

Tris 

Glycine 

Methanol 

Distilled water 

6.1 g 

28.8 g 

400 ml 

1600 ml 

2: STAINING OF NITROCELLULOSE FOR TOTAL PROTEIN 

PONSEAU S CONCENTRATE 

Ponseau S 

Trichloroacetic acid 

Sulfosalicylic acid 

PONSEAU S WORKING SOLUTION 

Ponseau S Concentrate 

Deionised water 

DEST AINING SOLUTION 

5% Acetic acid 

3: PREPARATION OF BLOCKING SOLUTIONS 

A: TRIS - SALINE 

Sodium Chloride 

Tris 

Made up to I litre with water and adjusted to pH 7 .5. 

2.0% 

30 % 

30% 

2ml 

180 ml 

11.68 g 

6.05 g 

B: To prepare blocking solution for HGG imrnunoblotting Tris - Saline was adjusted to pH 7. 7 

and 3 % (w/v) "Marvel" very low fat dried milk was added. 
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C: To prepare blocking solution for BSA immunoblotting 0.8 % (w/v) Glycine (porcine skin) and 

l % (v/v) Tween 20 was added to Tris- Saline pH 7 .5. 

3: DEVELOPING SOLUTION (For peroxidase activity) 

3'3' Diarninobenzidine 50 mg 

Hydrogen peroxide lOO ~I 

Tris- Saline pH 7.5 100 ml 

Nickel chloride (enhancer) 0.3 % (w/v) 

4: PRESTAINED MOLECULAR WEIGHT MARKERS. 

Triosephosphate isomerase (Rabbit muscle) 

Lactic dehydrogenase (Rabbit musCle) 

Fumarase (Porcine heart) 

Pyruvate kinase (Chicken muscle) 

Fructose- 6 - Phosphate kinase (Rabbit muscle) 

8 Galactosidase (Escherichia coli) 

a 2 Macroglobulin (Human plasma) 

33.0 kDa 

38.0 kDa 

56.0 kDa 

65.0 kDa 

88.0 kDa 

125.0 kDa 

190.0 kDa 

APPENDIX C: REAGENTS FOR ENZYME UNKED IMMUNOSORBENT ASSAY 

1: PHOSPHATE BUFFERED SALINE + TWEEN 20 (PBST) 

Disodium hydrogen orthophosphate 

Potassium dihydrogen orthophosphate 

Potassium chloride 

Sodium chloride 

Adjusted to pH 7.4 and 0.5 % Tween 20 was added. 

1.15 g 

·0.2 g 

0.2 g 

0.2 g 

2: CARBONATE-BICARBONATE BUFFER (COATING BUFFER) 

Sodium carbonate 1.59 g 

Sodium hydrogen carbonate 2.93 g 

Made up to 1 litre with distilled water and adjusted to pH 9.6 

3: CITRATE-PHOSPHATE BUFFER 

Citric acid (anhydrous) 

Disoium hydrogen orthophosphate (anhydrous) 

4.23 g 

5.80 g 

Made up to I litre with distilled water and adjusted to pH 5.0 
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4: DEVELOPING SOLUTION 

Orthophenlyenediamine 

Hydrogen peroxide 

Citrate-Phosphate buffer 

APPENDIX D: FORMULA170N OF GJEMSA STAIN 

Giemsa buffer (BDH pH 6.5) 

methanol 

distilled water 

20 mg 

20 Ill 

50 ml 

2 parts 

I part 

8 parts 

1 volume of giemsa stain (BDH, Gurr traditional formula) was diluted with 3 volumes of the above 

mixture (Wrathmell, pers comm) to prepare a working solution. 
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