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ABSTRACf 

DIAGONAL AND OFF-DIAGONAL MAGNETO-IMPEDANCE 
IN FERROMAGNETIC MICRO WIRES AND TmN FILMS 

The discovery of the giant magneto-impedance (GMI) effect in 1994 had a strong 
impact on the development of micro magnetic sensors. In certain soft magnetic materials, 
such as composites of amorphous thin wires, the magneto-impedance change (MI ratio) is in 
the range of 50-I 00% in the MHz frequency band for external magnetic fields of few Oe. 
Special thin-film structures have been proposed to provide the MI effect in miniature 
elements. 

In the present work, the concept of the magneto-impedance matrix has been 
elaborated, which enables the explanation of variety of MI field characteristics in wires and 
films from the common point of view. The fabrication technologies of the na"ow thin film MI 
samples with different structures also were developed, including layered films and films 
integrated with a helical planar microcoil. The experimental technique employed in the work 
allowed us to measure all components of the total magneto-impedance matrix that came as 
the first verification of the matrix concept of the magneto-impedance. Different methods of 
getting the asymmetrical and antisymmetrical magneto-impedance behaviours were proposed 
demonstrating a great success of the impedance matrix concept. In the case of a simple 
transverse magnetic anisotropy, the diagonal components of the magneto-impedance matrix 
are symmetric and the off-diagonal components are antisymmetrical with respect to the de 
longitudinal magnetic field. The asymmetry in Ml behaviour can be related to either a certain 
asymmetric arrangement of the de magnetic configuration or a contribution to the measured 
voltage due to the ac cross-magnetisation process, represented by the off-diagonal component. 
The first case is realised in the wire and film having the helical or crossed anisotropies 
respectively, which are subjected to an ac current superposed with a de bias current. In the 
other approach, the asymmetric voltage response can be obtained by applying the ac current in 
series through the MI element (wire or film) and the small coil surrounded it. No helical 
anisotropy is required in this case. These kinds of asymmetrical MI are especially important 
for developing auto-biased linear MI sensors. The thin film with the integrated planar 
microcoil allowed us to measure the off-diagonal impedance in the sandwiched film. Results 
obtained for MI in thin films open up the perspective directions for the integrated MI sensors. 

The applications of the M/ effect are not limited only by magnetic sensor technology. 
In this work, a new type of tuneable composite materials was proposed, the effective 
microwave permittivity (dielectric constant) of which dependv on the de external magnetic 
field applied to the composite as a whole. The composite consists of the short pieces of 
ferromagnetic wires embedded into a dielectric matrix. The composite sample can be 
fabricated in the form of thin slab with thickness less than I millimetre. The short wire 
inclusions play the role of "the elementary scatterers", when the electromagnetic wave 
irradiates the composite and induces an electrical dipole moment in each inclusion. These 
induced dipole moments form the dipole response of the composite, which can be 
characterised by some effective permittivity. The field dependence of the effective 
permittivity arises from a high field sensitivity of the ac surface impedance of a ferromagnetic 
wire. In the vicinity of the antenna resonance (related with the short wire inclusions) any 
variations in the magneto-impedance of wires result in large changes of the effective 
permittivity. Therefore, this composite demonstrates both the tuneable and resonance 
properties (selective absorption). Thus, we have demonstrated a possibility of using the MJ 
effect to design field-controlled composites and band-gap structures. A number of 
applications can be proposed, including selective microwave coatings with the field­
dependent reflection/transmission coefficients and selective tuneable waveguides where the 
composite material may be used as an additional field-dependent coating. In addition, in the 
final chapter of future work we will take a quick look at tuneable composites with other 
microstructures and methods of the excitation. 
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Chapter 1 Introduction and background research 

1.0 Actuality and eccentricity of the investigation 

Since the discovery of the magneto-impedance effect (MI) in 1994,[1,2] it has 

received much attention due to its importance for developing micro-magnetic sensors of high 

performance. [3-10] The variety of MI materials has increased significantly. These materials 

include thin metallic ferromagnetic wires (which can be coated by glass), ribbons and thin 

films made of amorphous or nanocrystalline ferromagnetic alloys. In simple terms, the Ml 

effect is understood as a change of the complex resistance (impedance) of a ferromagnetic 

sample subjected to a high frequency current and a de external magnetic field. Strong field 

effect, which makes the MI effect attractive for sensor applications, became possible because 

of discovery of new materials with specific magnetic structures, in the first place, amorphous 

ferromagnetic wires with circumferential or helical anisotropy. At present, the MI effect is 

considered wider as the generalisation of Ohm's law, which includes the off-diagonal 

components originating from the gyrotropic properties of ferromagnetic media. A 

manifestation of the off-diagonal effect is generation of coil voltage by an ac longitudinal 

current flowing in MI element. 

The MI effect, which accumulates many peculiar physical principles used in other 

sensors, provides a wide variety of the field chamcteristics along with simplicity of the sensor 

circuit design. In turn, it requires the detailed analysis of many factors determining the Ml 

effect. However, most of the theoretical work is restricted to specific conditions not always 

consistent with the experiment. In certain cases, conflicting experimental results on MI in 

materials with similar magnetic structures have been reported. This may occur, for example, 

when different types of excitation are used. In particular, this is related to the case of a 

complicated magnetic configuration, as the case of a helical magnetisation in a ferromagnetic 

wire. Therefore, rigorous theoretical and experimental research of the MI effect accounting 

for specific magnetic structures and excitation methods remains to be of a considerable 

interest and importance. 

In the present work, the concept of the magneto-impedance matrix has been 

elaborated, which enables the explanation of variety of MI field characteristics in wires and 

films from the common point of view.[11-14] The experimental technique employed in the 

work allowed us to measure all components of the total magneto-impedance matrix that came 

as the first verification of the matrix concept of the magneto-impedance.[l2] 
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The fabrication technologies of the narrow thin film MI samples with different structures also 

were developed, including sandwiched films and films integrated with a helical planar 

microcoil. [15] This opens up possibilities of creation of the integrated MI sensors. 

The applications of the MI effect are not limited only by magnetic sensor technology. 

In this work, a new type of tuneable composite materials was proposed, the effective 

microwave permittivity (dielectric constant) of which depends on the de external magnetic 

field applied to the composite as a whole.[16] The composite consists of the short pieces of 

ferromagnetic wires embedded into a dielectric matrix. It can be fabricated in the form of thin 

slab with thickness less than 1 millimetre. The wire inclusions have random orientations in the 

plane of the composite slab. The field dependence of the effective permittivity arises from a 

high field sensitivity of the ac surface impedance of a ferromagnetic wire. A number of 

applications can be proposed, including selective microwave coatings with the field­

dependent reflection/transmission coefficients and selective tuneable waveguides where the 

composite material may be used as an additional field-dependent coating. 

The work is organised as follows. In Chapter I, we will consider general physical 

principles of the MI effect. The equation of motion of the magnetisation under the action of an 

external magnetic field plays a key role in MI study. In spite of the fact that this equation is 

excepted without any revisions, the MI structures required new electrodynamics problem 

settings. Considering a weak alternating excitation in the microwave range, the equation of 

motion of magnetisation allows us to calculate the ac permeability matrix of a linear local 

response. This matrix is used to solve the Maxwell equations in the magneto-anisotropic 

medium, where the solution has to satisfY specific boundary conditions. The measurable 

quantity calculated is the surface impedance matrix, which is expressed through the 

components of the permeability matrix. After the consideration of the essential aspects of 

ferromagnetism in Section 1.1, we proceed to the main subject concerning the response of a 

ferromagnetic system to an external magnetic field. In Section 1.2, we begin our analysis with 

the equation of motion of an elementary magnetic moment. This equation prompts the general 

form, which is used in Section 1.3 to obtain the equation of motion of the magnetisation in an 

isotropic and unbounded ferromagnetic medium considered as a strongly correlated system of 

elementary magnetic moments. In addition, in Section 1.3 we introduce a phenomenological 

approach to the dissipative processes in the ferromagnetic system. The modifications of the 

equation of motion for shaped and anisotropic samples are considered in Sections 1.4 and 1.5. 
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In Sections 1.6 and I. 7 we introduce the magnetostatic model used in the present work and 

discuss the role of the exchange effect on the ac response. 

1.1 Essential aspects offerromagnetism 

This Section is undertaken as a comprehensive review of the physical principles of 

ferromagnetism since this magnetic state constitutes the basis of any MI element. Three 3d­

metal crystals are ferromagnetic at room temperature: iron, nickel, and cobalt, as well as, their 

alloys. The ferromagnetic state also can be established in some amorphous ferromagnetic 

alloys, therefore it is not a specific crystalline property. Note that Co-based amorphous alloys 

form the basis of the MI materials [4,7]. 

In general, there are five main magnetic states: (a) diamagnetism, (b) paramagnetism, 

(c) ferromagnetism, (d) antiferromagnetism and (e) ferrimagnetism.[l7] The first two 

magnetic states (a) and (b) are not related with magnetic ordering in material, whereas the last 

three (c)-( e) grow out of a certain magnetic ordering. The magnetic moment per unit volume 

of a magnetic material is the magnetisation M . The relationship between M and the external 

magnetic field H can be expressed by M = M rm + x H , where M"" is the residual 

magnetisation (remanence), x(M) is the magnetic susceptibility. This general relationship 

between M and H takes into account a possible hysteretic behaviour, when x(M) becomes 

a two-valued function having different values for two branches of the hysteresis loop. The 

observed value of susceptibility ranges from w-5 up to 106 and higher. ln some cases, it 

takes a negative value. Sometimes the relationship between M and H is not linear, so x 
depends on the intensity of H . All magnetic states can be characterised through the properties 

of X· 

Diamagnetism is a weak magnetic effect in which the magnetisation is exhibited 

opposite to the direction of the applied field. The susceptibility is negative and is usually 

about 10-5. The origin of this magnetism is an orbital rotation of electrons about the nuclei 

induced electromagnetically by the application of an external field. The induced current 

produces a magnetic flux, which is opposite to the external field. Paramagnetism is observed 

in materials possessing atomic magnetic moments. The application of a weak magnetic field 

results in partial ordering, having a negligible effect on the value of elementary magnetic 

moments. The order of x is 10-5 -10-J. 
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In most cases, paramagnetic materials contain magnetic atoms or ions whose spins are 

isolated from their magnetic environment and can more or less freely change their directions. 

Therefore, the small effect is caused by thermal agitation, which acts to oppose the ordering 

influence of the applied magnetic field. The susceptibility in such paramagnetics is inversely 

proportional to the absolute temperature (the Curie law). Conduction electrons, which form an 

energy band in metallic crystals, also exhibit paramagnetism. In this case, most conduction 

electrons have zero probability to align along the applied field since the energy states with 

parallel states are occupied. Only a fraction of electrons near the Fermi level contribute to the 

permeability, which is independent oftempemture. (the so-called Pauli paramagnetism) 

A ferromagnetic substance has a characteristic property of the spontaneous parallel 

orientation of elementary magnetic moments, which results in a larger magnetisation of the 

whole sample even for a weak external field, if the tempemture does not exceed the Curie 

temperature Tc . On the other hand, it is possible for the magnetisation of the same sample to 

be zero in zero (or nearly zero) applied field. These two experimental facts define the essential 

aspects offerromagnetism.[I1,I8] Thus, the ferromagnetic sample is to be chamcterised as a 

system of strongly ordered magnetic moments. As it was pointed out by Weiss,[l9] the 

thermal agitation could be largely circumvented if one postulated in ferromagnetic materials 

the existence of a strong internal effective field or the so-called "molecular" field HA. The 

effective field gives an approximate representation of the quantum-mechanical exchange 

interaction, which is mutual electrostatic interactions between electrons.[l7,18,20] The 

electrostatic energy of electrons depends on the relative orientation of their spins: the 

difference in energy defines the exchange energy. This intemction tends to line up the 

magnetic moments parallel to one another. The required magnitude for the Weiss effective 

field may be estimated as follows. At the Curie temperature Tc the thermal energy KTc of an 

electron spin is of the same order of magnitude as the intemction energy f.JsH A of the 

magnetic moment f.JB of electron acted on by the effective field HA, so that:[l8] 

HA= KTc, 
f.JB 

(1) 

where K is the Boltzmann constant and f.JB is the Bohr magneton. For typical ferromagnetic 

materials as Fe Tc -103 K, which gives the value of HA of the order of 10 7 Oe. 
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At temperatures below Tc the effect of the effective field outweighs the thermal fluctuation 

energy and substance becomes ferromagnetic. 

The dipole magnetic moment interaction between electrons is much weaker to account 

for the effective field. The dipole field is evaluated as:[18] 

f..lB Hm--3, 
r 

(2) 

where r is the atomic distance. Taking r cc 10-8 cm, H m -104 Oe, which is much smaller 

than the Weiss field HA. The magnetic moment interaction by itself would lead to the Curie 

temperature of about of 0.1 °K. The exchange interaction will be dealt with later in Section 

1.7. 

However, the important property of a ferromagnetic substance, namely, that the 

magnetisation may be much smaller than the saturation one, can not be explained in the 

assumption of the existence of the effective field HA only. This behaviour can be explained 

by assuming that actual samples are composed of a number of small regions called domains, 

within each of which the local magnetisation is saturated. The same effects are observed in 

polycrystalline samples, for which the resultant magnetic moment becomes zero by virtue of a 

random distribution of the local magnetic moments in different granules. The increase of the 

resultant magnetic moment of the whole sample under the action of an applied magnetic field 

arises from two mechanisms: (i) an increase in the volume of domains which are favourably 

oriented with respect to the field at the expense of unfavourably oriented domains, and (ii) 

rotation of the directions of magnetisations towards the direction of the field.[I7,18] In weak 

fields the resultant magnetisation changes mostly due to the domain wall motion, whereas in 

strong fields it is by means of the rotation of magnetic moments. 

Antiferromagnets assume a kind of the magnetic ordering in which the magnetic 

moments completely compensate for each other and this causes zero spontaneous 

magnetisation of the whole sample. In simplest case, this ordering may be realised in the so­

called "chessboard structure" in which each magnetic moment is surrounded by the moments 

with opposite direction. Some more complicated orderings are also possible. 

Antiferromagnetism exists within the limits of a certain temperature range until the Neel 

temperature T N . The origin of antiferromagnetism also lies in the negative exchange 

interaction between electrons, in contrary to the positive one in the case offerromagnetism. 
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Since at low temperature the ordering of opposite moments becomes more pronounced, the 

susceptibility decreases with a decrease in temperature, as opposed to the paramagnetic or 

ferromagnetic behaviour. Above the Nee) temperature the moment arrangement becomes 

random, so that the susceptibility also decreases with an increase of temperature and the 

antiferromagnet passes into the paramagnetic state. 

In a ferrimagnet the magnetic moments with opposite directions occupy two (or more) 

sub lattices, the number of magnetic moments and their magnitude are different in each lattice 

and that gives rise to a resultant spontaneous magnetisation of the whole sample. Therefore, 

ferrimagnetism can be characterised as "uncompenseted" antiferromagnetism. 

1.2 Equation of motion of an elementary magnetic moment 

We begin our study of the basic theory with the classical description of the motion of 

an elementary magnetic moment m in an external magnetic field H, assuming that H may 

possibly vary with time.[l7,21-23] H will produce a torque on the magnetic moment of 

amount (mx H), where the multiplication symbol inside the brackets denotes the vector 

multiplication. If the magnetic moment could turn, it would attempt to line up along H. 

Under the conditions that H is constant in time and there are no losses related with m 

("frictionless" moment), m would actually oscillate about the equilibrium direction. If there 

are some losses, the oscillations would die out until eventually m would be lined up along 

H. 

When the magnetic moment m also possesses angular momentum J , the situation is 

modified, since it now acts like a gyroscope. In the absence of losses, m would remain at a 

fixed angle with respect to H (providing H is constant in time), but would precess about it. 

The conversion of energy back and forth between the potential and kinetic energies would not 

occur. It would still be true, however, that if there are some losses, m would eventually 

become parallel to a static field H. The losses correspond to the relaxation processes with a 

characteristic time t associated with the approach to thermal equilibrium. t is called the "spin­

lattice relaxation time". Phenomenological treatment of the losses in the system of magnetic 

moments will be considered later in Section 1.3. Here, we would like to write the equation of 

motion of the magnetic moment without losses, which is found by equating the torque with 

the rate of change of angular moment, J : [ 17,21] 

dJ 
dt =-(mxH). (3) 
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Since m= yJ, we may eliminate J, getting: 

dm 
dt=-y(mxH), (4) 

where y is a scalar called the gyromagnetic ratio. This equation, which holds regardless of 

whether or not H is time dependent, tells us that at any instant the changes in ""' are 

perpendicular to both ""' and B . 

A simple classical picture will enable us to make a correct order-of-magnitude 

estimate of y. Let us calculate the magnetic moment and angular moment of a particle of 

mass m and charge e moving in a circular path of radius r with period T. The angular 

momentum is then: 

2trr2 
J=m--

T 

while the magnetic moment (treating the system as a current loop) is: 

e trr 2 
m=---. 

c T 

(5) 

(6) 

Comparison of the expressions for m and J therefore gives us y = e 12mc. The important 

result of this formula is that large masses have low y:~. We expect about a factor of 1000 

lower r for nuclei than for electrons. 

In the quantum theory, m and J are treated as operators ~ and J , respectively. We 

define a dimensionless angular moment operator, I , by the equation:[24, 17] 
' A 

J =lii' (7) 

where I 2 has eigenvalues L(L + l), where L is either integer or half-integer. Any component 

' ' '2 
of I (for example, I z) commutes with I , so that we may specify simultaneously 

"2 "' " eigenvalues of both I and I z . The eigenvalues m of I z may be any of the 2L + l values: 

L, L-1, ... , -L. 

The application of a magnetic field H produces an interaction energy of amount 

-(m·B), where the multiplication symbol denotes the scalar multiplication. We have, 

therefore, a very simple Hamiltonian (Zeeman energy): 

' 
H =-m·B. (8) 
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Taking the field to be H 0 along the z-direction, we find: 

(9) 

The eigenvalues of this Hamiltonian are simple, being only multiplies (yliHo) of the 

eigenvalues of J z. Therefore the allowed energies are: 

E=ynH0m, m=L, L-l, ... , -L. (10) 

One should hope to be able to detect the presence of such a set of energy levels by 

some form of spectral absorption. The coupling most commonly used to produce magnetic 

resonances is an alternating magnetic field applied perpendicular to the static field H 0 . To 

satisfy the conservation of energy, an angular frequency ll1 must be that: 

liw=6.E=ynH0 or w=rH0 . (11) 

Note that Planck's constant has disappeared from the resonance equation. This fact suggests 

that the result is closely related to a classical picture. From Eq. (11) we can calculate the 

frequency needed to observe a resonance: wres = rHo . 

The close correspondence of the classical and quantum mechanical treatments is made 

particularly clear by examination of a differential equation relating the time variations of the 

expectation values mx_, my, and mz. The equation is based on a well-known formula whose 

derivation we sketch.[21,24] 

Suppose we have a pair of wave functions 'l'(t) and <l>(t), both of which are solutions 

of the same SchrOdinger equation with an Hermitian operator of energy H : 

nil'P A 
---=H'I' 

; ar • 
niJ<I> A 

---=H<I>. ; at 
A 

Let us have some operator F that has no explicit time dependence. Then: 

di .. ;I.AAAA - <I> F 'I' dx =- <I> (H F - F H )'I' dx , 
dr n 

(12) 

(13) 

where x is the vector of the three rectangular coordinate and the symbol "*" designates the 

complex conjugation. 

We define the operator" dF / d t" by the equation: 

A 

I . dF d I *A <I> -'l'dx=- <I> F'l'dx. 
dt dt 

(14) 
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By using dF /dt in this symbolic sense, we have:[24] 

dF =.!__[H F] 
dt 1i , , (15) 

where [H ,F] is the usual commutator H F- FH . We may use this formalism to calculate 

the time derivative of the expectation values of mx_, my, and ntz. We shall wish to use the 

commutation relations for the components of angular momentum, all of which may be 
. . . 

obtained by cyclic permutation from [I x, I y] = 11 z . Then: 

. 
di i • • • 
_x =-[H ,lx]= rHoi Y' 
dt 1i 
. 

di y i • • • 
-=-[H ,lx]=-rHolx, 
dt 1i 

. 
dlz =0. 
dt 

These equations are the component equations of the vector operator equation: 
. 

dl • 
-=-y(lxH). 
dt 

. . 

(16) 

(17) 

Since m = y1i I, using Eq. (14) we obtain the equation for the expectation value of 

magnetisation m=< n'i. >: d mjd t = -y(mx H), which is just the classical equation (4). 

Therefore, the classical equation correctly describes the dynamics of the magnetisation. 

1.3 Equation of motion of tbe magnetisation in isotropic ferromagnetic medium 

The exchange interaction, which strongly ties together the elementary magnetic 

moments in the magneto-ordered materials, allows a continual macroscopic approach [22] for 

the description of the motion of magnetisation M . The same continual approach was used in 

the Weiss theory of ferromagnetism,[ 17-19] where the exchange interaction ("molecular 

field") was postulated. Since M is the magnetic moment per unit volume, using Eq. (4) we 

can immediately write the equation of motion of M in an isotropic and unbounded 

ferromagnetic medium:[17,2l-24] 

dM 
dt =-y(MxH), (18) 
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where M= -
1
- L m and l\V is a small macroscopic volume containing magnetic moments, 

l\V AV · 

y = ge I 2mc, and g is the Lande factor. Note that the g-factor is assumed, subject to 

experimental verification, to be a constant independent of field orientation, sample shape, etc. 

In the frame of this phenomenological approach, the losses in the magnetic system can 

be taken into account by means of a small dissipative term R added in Eq. (18):[17, 21-25] 

dM 
-=-y(MxH)+R, 
dt 

where R describes a dissipation of energy due to the spin-lattice relaxation. 

(19) 

There are several different notations of the dissipative term in Eq. (19). The simplest 

and natural assumption is that the magnetisation is exposed to an additional effective field (in 

spite of H) proportionate to the velocity of the magnetisation change aMjat, in other words 

"friction" proportionate to the velocity of change. This assumption is quite typical for many 

dynamic systems, and not only for mechanical ones. Then, introducing the dimensionless 

spin-relaxation (damping) parameter T, we obtain the following equation: 

dM T ( aM} -=-y(MxH)+- Mx- , 
dt M at 

(20) 

which is known as the Gilbert equation.[26,27] This equation was first obtained in a slightly 

different form by Landau and Lifshitz in 1935 and used for the study of domain wall 

motion: [28] 

dM =-y(MxH)- md (Mx(MxH)), 
dt M2 

(21) 

where md is the characteristic damping frequency. Both Eqs. (20) and (21) are equal since 

Eq. (21) can be transformed into the form (20) by means the replacements y ~ y 1(1 + r 2
) and 

md ~ r r M 1(1 + r 2
). However, because of physical meaning of r, Eqs. (20) and (21) are 

similar only the limit of a small relaxation ( r « 1 ). For r -1, Eq. (20) has to be used. 

Equations (20) and (21) are characterised by a single dissipative parameter and will be 

collectively called the Landau-Lifthitz-Gilbert equation. 

The main property ofEqs. (20) and (21) is that the dissipative terms are perpendicular 

to M, hence I M I is a constant: a1 M 1/at = 0. In some cases, the processes, which give rise 

to a dissipation, do not provide the constancy of I M 1. 

10 
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In the presence of these processes, Eqs. (20) and (2 1) are not fully valid, but since damping is 

usually found experimentally to be small, I M I still remains nearly time-independent. 

Many attempts have been undertaken to write the equations of motion of M with a 

great number of the dissipative parameters, which would provide a possibility to a change of 

the magnetisation magnitude. In particular, the following so-called 8/och equation was 

proposed, containing two dissipative parameters r 1,2 :[22,23] 

dM = -r(M x H)+ (Mo -M z) (M-M z) , 
dt 1"J 1"2 

(22) 

where the z-axis is directed along the equilibrium magnetisation M 0 and M z is the direct-

axis magnetisation. The dissipative pammeters in Eq. (22) differ for the tmnsverse (M- Mz) 

and longitudinal (Mo- Mz) magnetisations. This equation is used for the description of the 

magnetic resonance in the magneto-disordered systems, such as: the nuclear magnetic 

resonance and electronic pammagnetic resonance.[21] 

The study of damped magnetisation dynamics remains important in modem research 

due to its significance for the development of nanomagnetic devices and high-density 

magnetic recording. As was recently shown by Smith and Arnett [29], thermally generated 

magnetisation fluctuations in very thin (1-3 nm) soft magnetic sensing layers (CoFe and/or 

NiFe) of thin-film magneto-resistive devices may be observed as broadband resistance-noise 

using simple electrical measurements. Thermally induced magnetic noise at lower frequencies 

< 1-2 GHz in particular has potentially serious pmctical implications, as it will serve as a 

fundamental limit of the signaUnoise mtio of these devices when used as sensors. For this 

reason, the study of this phenomenon has received significant recent attention.[30,31] 

The Landau-Lifshitz and Gilbert equations obtained above conserve the absolute 

value of magnetisation (I M I= const) in a single domain region due to the strong exchange 

interaction approximation. The value of magnetisation depending on tempemture remains 

constant during any dynamical process, which is described by a special type of the relaxation 

term. Recently a new theoretical approach was proposed by Safonov and Bertram to correct 

the limitations of the Landau-Lifshitz-Gilbert (LLG) theory. This new theoretical approach 

was developed in the series of papers [32-36]. The main idea consists of the representation of 

the magnetisation dynamics as the motion of damped non-linear oscillators with random 

forces of thermal fluctuations. Nonlinearity in the relaxation process appears with the increase 

of magnetisation deviation from equilibrium.[35] 
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Depending on the situation, the non-linear magnetisation damping either increases or 

decreases the total relaxation rate. According to this approach, for a uniform magnetisation 

motion the crystal symmetry should influence the form of the relaxation terms and therefore 

the phenomenological damping term should contain a damping tensor with several damping 

parameters ("hierarchy of dissipative terms") instead of one (isotropic) damping term.[33,36] 

However, the general problem of magnetisation damping cannot be solved using just 

symmetry considerations. The magnetisation relaxation process appears as a result of 

microscopic interactions of spins with each other and with phonons, conduction electrons, and 

so on. In other words, a direct connection with microscopic physics must be made to clarify 

the nature of the damping terms.[35] 

The approach proposed by Safonov and Bertram was criticised by Smith in [37]. 

Smith has shown that the fluctuation-dissipation theorem (FDT) can be used to quantitatively 

describe the relation between the measured resistance-noise power and the dissipative 

properties of the constituent magnetic films, the latter typically is characterised by a Gilbert 

phenomenological damping term with a scalar parameter r . The FDT was used to argue that 

the phenomenological Gilbert approximation, implicitly assuming a spatially (and temporally) 

local damping mechanism, provides a physically plausible model for damping in 

ferromagnetic materials that is quite analogous to well understood resistive damping in simple 

metallic conductors. The FDT does not prove that Gilbert damping is physically correct. 

Rather, it simply argues that the Gilbert term is physically consistent with more basic 

theoretical considerations of intrinsic physical damping mechanisms in real ferromagnetic 

films and does not lead to physically nonsensical results under examination with the FDT in 

the naturally general case of spatially nonuniform magnetisation fluctuations. Similarly, the 

FDT analysis here does not disprove the possibility of some form of "nonlocal" 

phenomenological damping model. Rather, it would more modestly argue that any nonlocal 

components of such a model should have a physical basis that is related to an actual damping 

mechanism in real ferromagnetic materials, such as discussed elsewhere recently rather than 

rely on broad generalizations based on faulty physics/mathematics or on simple, heuristically 

appealing but otherwise not physically justified, approximations. 

There is no doubt that thermal fluctuations will restrict the signal/noise resolution in a 

real MI sensor. Nevertheless, this factor does not change the general concept of the 

investigation using the LLG theory and it can be taken into account by means of the FDT, as 

it has been fairly noted by Smith. 
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As it will be seen throughout this work, the UG theory is a suitable model which 

allows us to describe the main features of the M/ field behaviour for all components of the 

impedance matrix. Also, it is important to note that MI elements never reach nanoscale 

dimensions (see the discussion on the size effect in Section 3.8), when the thermal effects 

become especially critical. Moreover, in the Ml theory we always consider only a small 

excitation magnetic field (the so-called "linear response theory"), which does not result in 

magnetic reversal, and hence there is no need to consider possible non-linear relaxation 

processes, which the Safonov-Bertram theory appeals to. 

1.4 Equation of motion of the magnetisation in the shaped sample 

Previous consideration in Section 1.3 assumed that M was exposed to the applied 

field H. This assumption is no longer valid for a shaped sample, where the internal magnetic 

field H; does not coincide with H by the direction and magnitude due to the demagnetising 

field. Therefore, we have to modify Eqs. (20) and (21) to take into account this effect. In 

Section 1.5, the methods developed here will be generalised for the anisotropic sample. 

The ac linear response from a small isotropic ferromagnetic ellipsoid was first 

investigated by Kitte1.[38] It was a significant advance after the work of Landau and 

Lifshitz. [28] The Kittel method of the demagnetising factors developed for an isotropic 

ellipsoid was further generalised by MacDonald [39] for the anisotropic one. 

We begin our study with the isotropic and nonconductive ferromagnetic ellipsoid. The 

ellipsoid is subjected to an external magnetic field H, which consists of a larger constant field 

(de) Her and small alternating field (ac) h : H =Her+ h . The ellipsoid dimension is 

assumed to be much smaller than the wavelength inside the material, the so-called quasistatic 

approximation. This allows us to use only magnetostatic equations to determine the internal 

magnetic field H; , which also can be decomposed into the de and ac fields: H; = n? + h;. As 

it is well known from the magnetostatic theory,[40] the field H; inside the nonconductive 

magnetic ellipsoid is homogeneous and can be represented through H and M by means of 

the demagnetising matrix N : 

" H; =H-NM, (23) 

where M may depend on H;. The field HDM = -NM is called the demagnetising field. 

13 
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At the quasistatic approximation, we can neglect the retarding effect inside the 

ellipsoid so that the momentary value of a, a; and M are related by the same equations and 

boundary conditions as the static ones. In this case, the relation (23) can be written separately 

for the de and ac fields: 

0 A a; =aex-NM0 , 

h;=h-Nm, 

(24) 

(25) 

where M= M0 +m, M0 is the equilibrium magnetisation, and m is the ac (small) 

magnetisation induced by b. The equilibrium direction of M 0 is found from Eq. (24): 

0 A 

(Moxa;)= (Mo x(aex -NMo)) = 0, (26) 

where I M 0 I is considered to be field-independent. 

The Kittel method ofthe effective demagnetising factors [38] lies in the fact that using 

Eqs. (24) and (25), the unknown internal field H; can be left out from the equation of motion. 

Since we intend to study a linear response, the ac excitation has to be quite small to provide 

the strong inequality I m 1«1 M 0 1. Because of this, the demagnetising matrix N is a function 

of M 0 only: 

h; = b- N(M0 )m (27) 

This is the main equation of the Kittel method 

Substituting a; instead of a in Eqs. (20) and (21), we obtain new equations with the 

account of the demagnetising effects: 

dm r ( om) -=-y(Mxa·)+- Mx- , 
dt ' M at 

(28) 

~~ =-y(Mxa;)- :~ (Mx(Mxa;)), (29) 

where the equality oM0 /ot = 0 was used. 

The linearisation method of solution consists in the representation of all quantities as 

the sum of a larger de constituent and small ac addition: M= M0 +m and a; =a?+ h;, 

where I m 1«1 Mo I and I h; I< <I a? 1. 
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Using these inequalities and Eqs. (24), (27), (28), we obtain at the single-mode excitation 

- exp( -im t) the following linearised equation in the first approximation by the complex 

amplitude m and h : 

(30) 

... " 0 0 ... 
where N = N(Mo), mH = y H; , H; =I Hex- NMo lz·, and Dz• is the unit vector directed 

along M 0 . 

If the ellipsoid is conductive, the relations (25) and (27) are no longer valid since the 

ac magnetic field h; is not homogenous inside the sample due to the skin effect. In this case, 

to calculate a linear response the equation of motion (20) or (21) has to be solved together 

with the Maxwell equations. This task is extraordinarily difficult. Nevertheless, if the skin 

depth is of the order of the characteristic size of the sample or larger, the relations (25) and 

(27) are still true. Thus, for the weak skin effect the Kittel method may be employed for a 

conductive sample. Another approach to solving electrodynamic problems in ferromagnetic 

conductive sample is to find the so-called "internal" ac permeability parameter without 

account of shape effects for alternating field and magnetisation, and then to solve the Maxwell 

equations with local permeability tensor. In our work, we will use this approach. This is 

possible, if the demagnetising effect is significantly reduced, when the sample magnetic 

structure and applied fields do not tolerate strong magnetic poles on its surface. This condition 

would be provided, for example, by the closure domains in thin film and the de in-plane 

external field, or helical magnetisation in wire and the de longitudinal external field. 

1.5 General equation of motion of the magnetisation 

In this Section, we would like to generalise the Kittel method of the effective 

demagnetising factors (see Eq. (27)) for the ferromagnetic sample the state of which is 

defined by the overall magnetic energy. To conduct this program, we need some additional 

analysis of the internal field H; with relation to the energy accumulated in the sample. 

As it can be noted from Eq. (23), the field H; in the isotropic ferromagnetic ellipsoid 

can be calculated as the derivative -ajaM from a magnetic energy density U, which is the 

sum of the Zeeman energy density U H and the magnetic self-energy density U M associated 

with the sample shape: 

15 
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au A 

H·=--=H-NM 
I iJM , 

where 

U=UH+UM, 

UH =-(M·H), 

1 A 

UM =2(M·(NM)). 

(31) 

(32) 

(33) 

The form of Eq. (31) prompts us that H; can be considered as an effective field 

arising from an effective magnetic energy density U . In general, along with U H and U M , 

there are other contributions to the total magnetic energy density, such as: Weiss exchange 

energy U e , magnetocrystalline anisotropy energy U a , the magnetoelastic energy U ma 

connected with magnetostriction, and domain wall energy U w. The sum all of these energy 

densities is called the magnetic enthalpy density U E: 

(34) 

This energy density defines the state of the ferromagnetic sample at given H and zero 

absolute temperature T = 0° K. For T > 0° K the same role plays the so-called free energy 

density UF: 

(35) 

where S is the entropy density. The entropy term (- ST) in this equation becomes very 

important at high temperatures. It is because of this term, at T > T c the magneto-disordered 

state becomes more preferable than the ferromagnetic one due to its larger entropy. However, 

for our aim of the study of the magneto-ordered system the entropy term can be omitted. 

The free energy density u F is a function of the variables M and a M I a X . Hence, the 

total energy H of the sample is given by the integral over its volume: 

H = fuF(M,iJMfiJx)dx. (36) 
V 

Applying the condition that the total energy H must be stationary with respect to small 

variations of M, we obtain:[22,23,39] 

ofuF(M,iJMfox)dx= f[{auF -±~( au/ )}·oM)dx, 
V V oM i=I ox; iJ(oM ox;) 

(37) 
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where 

0 iJ 3 iJ ( iJ ) 
oM = iJM-~ox; iJ(iJMfiJx;) 

(38) 

is the variational derivative (see any description of the calculus of variations, for example, 

Morse and Feshbach [40]). Since the magnitude of M has been assumed to be a constant (see 

explanation in connection with Eqs. (20) and (21)), the variation oM is not completely 

arbitrary but must lie in the plane perpendicular to the equilibrium magnetisation M 0 . 

Because of this, the stationarity of the functional (37) will be provided if the following 

condition holds true: 

~L. +A.M2]= oUF + 2A.M=O 
oMf..IF oM ' 

(39) 

where A. is the Lagrange constant. 

The magnetisation M inside the sample must be directed along an effective field 

He.ff. By analogy with B; in Eq. (31 ), we can define Heff as the variational derivative from 

UF: 

B =-oUF 
eff oM . (40) 

Using Eq. (39), we make sure that the required complanarity condition between Heff and M 

holds true: (Heff x M)= 0 . 

Substituting Heff instead of B in Eqs. (20) and (21), we obtain the most general 

equations of motion: 

elm r ( am) -=-r(MxB if.f)+- Mx- , 
dt e A4 iJt 

(41) 

dm = -r(M x Heff)- 0Jd
2 

(M x (M x Heff )), 
dt A4 

(42) 

where the effective field Heff is given by Eq. (40). 

MacDonald has shown in [39] that the effective field Heff = H~ff + heff can be 

represented in the same fonns as the internal field H; in Eqs. (23)-(25): 

Heff = H-NeffM, (43) 

17 
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(44) 

(45) 

where Ne.ff = Ne.ff(M0 ) is the matrix of effective factors and b is the external ac magnetic 

field Equation ( 45) is the exact Kittel equation (27). 

Using the linearisation method and Eqs. ( 41 ), ( 43)-( 45), by analogy with Eq. (30) we 

obtain the following equation for the complex amplitude m and b : 

- i(i} m +((i}H- i-r@)(m X Dz•) + r Mo((Ne.ff m)x n z') = r Mo(h X Dz•), (46) 

where Ne.ff = Ne.ff(Mo), (i}H = r(oU F /8Mo)z' is a scalar, which is understood as the value 

at the z' -component of the gradient (au F /8M0 ), and U F is given by Eq. (35). 

Let us indicate the geneml properties of the susceptibility matrix i , which is found 

from Eqs. (30) or ( 46). These properties are more convenient to be formulated in the 

coordinate system concerned with some preferential direction. So, in an isotropic 

ferromagnetic medium there is only one preferential direction, which coincides with the 

direction of the de external field Hex . In this case, i must be invariant with respect to the 

rotations around this axis that gives rise to the off-diagonal and non-symmetric matrix 

form:[17,22,23] 

-iza 

X 
0 ~ l· Xz' 

(47) 

where Xz' is equal to zero in the saturated state (without domains). In general case of a 

shaped or an anisotropic ferromagnetic sample, the simplest fonn of i can be obtained in the 

coordinate system, where the z' -axis is directed along the equilibrium magnetisation Mo at 

the fixed Hex. Then, i has the off-diagonal form similar to Eq. ( 4 7), but the diagonal 

components x11 and x22 are not equal. Absent a dissipation ( -r = 0) in the ferromagnetic 

system, all components of i are at resonance at a certain frequency called the ferromagnetic 

resonance (FMR). A dissipation ( -r cf. 0) results in the resonance dispersion curves with a 

limited amplitude and a finite width. 
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1.6 An isotropy energy density 

In this and next Sections we would like to continue the discussion of the contributions 

to the free energy density U F , which may occur in the MI samples. The most important of 

them is the anisotropy energy. It is necessary to distinguish between the magnetocrystalline 

U a and magnetoelastic U ma anisotropy densities. The latter defines the anisotropy with 

respect to the directions of the internal or external elastic stresses. For example, in such 

popular MI material as glass-covered CoFeSiB amorphous wire [42-44] the high quenching 

rates involved in the fabrication process [45] along with the presence of the glass coating are 

responsible for a large tension stress induced during fabrication. In turn, these tension stresses 

and negative magnetostriction (typical for Co-based amorphous alloys) result in a 

circumferential anisotropy, which play a principal role in the MI effect in wires. The same 

result can be achieved in glassless CoFeSiB wires by means of a wire drawing of an as­

prepared sample.[4,46] A Co-based amorphous alloy is generally used as the material for MI 

applications, although other materials with a crystalline and polycrystalline (nanocrystalline) 

structure can be utilised as well. 

In the MI thin film samples the required in-plane easy axis anisotropy (transverse, 

crossed or longitudinal) can be established during the sputtering process in the presence of a 

strong magnetic field or annealing of an as-prepared film in the presence of magnetic field. 

But for all that the coupling stress between the final film and substrate may significantly 

change the easy axis direction from the predetermined one by a strong magnetic field during 

the sputtering process. In this case, even "a sparing thermal treatment" may restress the whole 

sample and restore the easy axis to the original direction along the operating field. 

Above we took a quick look at main origins of the strain anisotropy encountered in the 

MI samples. Akulov has shown [18] that regardless of the nature of an anisotropy the 

anisotropy energy density can be expanded into the power series in the direction cosines of 

the equilibrium magnetisation M0 . The coefficients at the terms of such series are the 

phenomenological constants defining the magnetic anisotropy. Below we will designate the 

anisotropy energy density as U a regardless its origin. 
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In magnetic materials characterised by single magnetic axis (easy axis) the anisotropy energy 

can be approximated by the following expression:[l7,47] 

2 Ua=-Kcos fl, (48) 

where K is the anisotropy constant, f1 is the angle between the easy axis and M0 . When the 

sample represents single domain, change of its magnetic state under the action of a de external 

magnetic field Hex can take place only by rotation of M 0 . The character of the 

magnetisation process Mo(Hex) is defined by the total magnetostatic energy U0 , which is in 

this case the sum of U a and the Zeeman energy U H . In next Chapters it will be shown that a 

wide variety of the MI field behaviours can be provided by a combination of the anisotropy 

and crossed de fields, which include the drive external field Hex and fixed bias field Hb 

applied perpendicularly to Hex. Using Eq. (32), the Zeeman energy in the presence of 

crossed fields can be written in the following form: 

U H = -(Mo ·(Hex+Hb)) = -MoHexcosB-MoHb sinB, (49) 

where Hb .l Hex and (} is the angle between M 0 and Hex. If a designates the angle 

between the easy axis and Hex, then using Eq. ( 48) U 0 = U a + U H can be written as the 

following:[l4] 

(50) 

The single domain magnetostatic model expressed by Eq. (50) is called the Stoner­

Wohlfarth mode/.[47] A real MI sample, if only it is not saturated, is usually in the 

multidomain state. Nevertheless, for the model calculation we will use only the single domain 

approximation. There are some reasons for such approach. Firstly, the MI materials are 

magnetosoft and have sufficiently small coercivity, therefore applying a moderate bias field 

Hb we can obtain single domain state, and hence Eq. (50) becomes quite true. Secondly, 

considering mainly high frequency properties, a local ac response from the sample also can be 

calculated in the single domain approximation since the domain walls do not have time to 

follow the ac field and hence their motion is strongly damped. Nevertheless, the domain 

structure of an unsaturated sample is essential for the magnetostatic properties and in principle 

can be accounted in the modified joint magnetostatic model, where the magnetisation jumps 

are defined by the domain coercivity and approaching to the saturation state is describe by 

rotation of magnetisation. 
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Furthermore, the ac response of the sample as a whole may differ completely from the local 

ac response, as it takes place for the off-diagonal impedance in a wire with a circumferential 

anisotropy and "bamboo-like" domain structure.[12,14] Thus, in the present work the local ac 

response will be calculated in single domain approximation but the conclusion concerning the 

total ac response wiU be always made on basis of averaging over the whole domain structure. 

Along with the multidomain structure, dispersion of the magnetic anisotropy may take 

place. This weak dispersion of the anisotropy is called magnetisation ripple. Up to now, this 

effect has been studied only in thin films (see, for example, [48-51] and references herein) 

since ferromagnetic wires (amorphous and polycrystalline) are quite new materials. Based on 

micromagnetics, the ripple theory [52-56] relates the measurable magnetic properties of a 

magnetic thin film to its real structural characteristics, such as grain size, stress, texture, etc., 

and explains the deviation from the ideal uniaxial properties described by the Stoner­

Wohlfarth theory. Even though weak, the magnetisation ripple may significantly change some 

measured quantities, such as the ac permeability or impedance (in our case). For example, in 

[49] the analytical calculation of the permeability frequency spectra using Landau-Lifshitz 

theory was compared with the experimental results obtained in thin amorphous ferromagnetic 

films in the vicinity of the ferromagnetic resonance (FMR). It was shown that the initial 

disagreement between theory and experiment can be attributed to magnetic ripples in the film. 

In our case, the influence of the anisotropy dispersion on the impedance components can be 

taken into account by means of their averaging by the anisotropy angle around its direction. In 

practical situations, it will be enough to introduce a small angle deviation from the perfect 

direction, as we do in the case of the circumferential and transverse anisotropies. 

Also it is necessary to take into account the following conditions. First, we believe 

that the size effoct in narrow MI films, which has an electrodynamic nature and is discussed 

in Chapter 3, will reduce the MI effect much more than any "micromagnetic causes" related 

to the size decrease. Second, the MI effect does not relate to FMR (ferromagnetic resonance), 

where on account of the resonance behaviour any "irregularities" will change dramatically 

the measured response. Therefore, the magnetisation ripple effect may not be significant for 

practical MI elements. 
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1.7 Exchange energy density 

In this Section we clarify the role of the exchange effect on the ac response in 

ferromagnetic materials. As it has been mentioned in Section 1.1, the exchange interaction 

gives rise to the internal exchange energy of magnetic moments subjected to the "effective 

molecule field" HA (Weiss field). The field HA is proportional to the magnetisation M. In 

the most general case, the energy U A , related with HA , can be represented in the following 

form:[22,23] 

UA=-..!_MAM 2 , (51) 

where HA= AM and A is the exchange matrix determined by the anisotropy properties of 

the material. In many practical cases, relation (51) can be approximated by a simpler 

functional dependence: 

1 2 
UA =--AM 

2 
(52) 

where A is a constant. However, the energy U A is insufficient for the full account of the 

exchange interaction. The fact is that the exchange energy must increase when the adjacent 

magnetic moments are unparallel that may take place at a rapid spatial changing of M . This 

circumstance can be taken into account by the inhomogeneous exchange energy U q , which 

can be represented in the general case as a quadratic form of the magnetisation 

derivatives:[22,23] 

1 3 3 (aM aM) Uq =-LLq!i -·- , 
2i=lj=l ax; axj 

(53) 

where the scalar multiplication Js inside the brackets and qij is a matrix of the 

inhomogeneous exchange interaction. A scalar approximation of this equation is of the form: 

Uq=~q~(::r. (54) 

where q is the exchange constant. Therefore, the total exchange energy U e is expressed by 
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The principal moment is to clear up a question how the exchange interaction 

influences the dispersion behaviour of the susceptibility matrix i . Let us consider "the scalar 

exchange" described by Eqs. (52) and (54). In this case, the contribution from the exchange 

effect to H eff has to be calculated by means of the variational derivative ( 40) from U e : 

3 2 
H:ff =- oUe =AM+qLo ~. 

oM i=l ox; 
(55) 

As it follows from Eqs. ( 41) and ( 42), the contribution from H:.U to the equations of motion 

for m is defined by the vector multiplication (Mx H!g). Therefore, the first term in Eq. (55) 

has no effect on the dynamics of m . The second term may be important in conducting 

ferromagnetic materials because of the skin effect, in particular, when the skin depth is 

comparable with the characteristic exchange length. The equation of motion for m will 

contain then the term o2 m/ o xl and will have to be solved in conjunction with the Maxwell 

equations. This is a lengthy complicated process. The results of such a solution, reported in 

works of MacDonald,[39] Kittel and Herring,[ 56] indicated no appreciable resonance shift 

!'1lf I H , where H is the external de field at which the ferromagnetic resonance takes place, 

and !'1lf is the resonance shifting in the field scale with respect to the case when the exchange 

is a negligible quantity. The resonance interval is most sensitive in the dispersion curve, 

therefore the exchange effect outside of the resonance should be even smaller. 

Nevertheless, as it was shown by Rado et a1.,[57,58) under suitable conditions the 

effect of the exchange interaction on the ferromagnetic resonance in metals can be observed 

experimentally. The ideas underlying these experiments were the following. To increase 

!'1lf I H , the resonance field H should be made rather small and !'1lf reasonably large, the 

latter was accomplished by producing a fairly small skin depth. Because of the relatively low 

frequency necessitated by the small H, a small skin depth requires a very large effective 

permeability at resonance. A resonance and large permeability were obtained despite the 

small H in a polycrystal with a magnetocrystalline anisotropy, K, of about zero. The 

calculations carried in works [57,58] under conditions of K ~ 0 and weak spin-lattice 

relaxation predicted the resonance shifting !'1lf I H of about 20-30% that had good agreement 

with experimental data obtained for the specially prepared Ni~e34 rod with longitudinal 

magnetisation.[57) In this case, the line width and shape are essentially determined by the 

conductivity and exchange. 
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It is important to make few general comments. Any small contributions in the vicinity of a 

resonance (of an arbitrary nature) add small parameters in the resonance denominator. 

Therefore, the resonance value is determined by the biggest parameter in the denominator, 

such as anisotropy and field. Then, the requirement K il:j 0 seems to be very important to 

observe the exchange effect since in the presence of anisotropy the contribution from the 

dispersion of the anisotropy direction should prevail over the contribution from the exchange 

effect. In fact, this situation is applied to real MI samples, where the dispersion of anisotropy 

always takes place. Furthermore, the MI effect is usually considered outside of the 

ferromagnetic resonance, and therefore the exchange effect is of little importance. 

Nevertheless, in some resent works [59-61] it was proposed that the exchange interaction may 

significantly influence the MI field characteristics. However, the idealised models considered 

in those works with perfectly established anisotropy in a single domain are never observed in 

practice, whereas exactly this "model idealities" make possible "an exarticulation" of the 

exchange effect. The early experiments by Rado and Weertman [57) clearly demonstrated that 

for the observation of the exchange effect, very specific conditions and sample preparations 

are required. Thus, the conditions required for the observation of the exchange effect in MI 

are difficult-to-realise, therefore this effect will be neglected throughout the present work. 

1.8 References 

[1] L. V. Panina and K. Mohri, Appl. Phys. Lett. 65, 1189 (1994). 

[2] R S. Beach and A E. Berkowitz, J. Appl. Phys. 76, 6209 (1994). 

[3] L. V. Panina, K. Mohri, K. Bushida, and M. Noda, J. Appl. Phys. 76, 6198 (1994). 

[4] K. Mohri, L. V. Panina, T. Uchiyama, K. Bushida, and M. Noda, IEEE Trans. Magn. 31, 

1266 (1995). 

[5] K. Mohri, T. Uchiyama, and L. V. Panina, Sensor and Actuators A 59, 1 (1997). 

[6] N. Kawajiri, M. Nakabayashi, C. M. Cai, K. Mohri, and T. Uchiyama, IEEE Trans. Magn. 

35, 3667 (1999). 

[7] L. V. Panina and K. Mohri, Sensors and Actuators A 81, 71 (2000). 

[8) D. P. Makhnovskiy, L. V. Panina, and D. J. Mapps, Appl. Phys. Letters 77, 121 (2000). 

[9] K. Mohri, T. Uchiyama, L. P. Shen, C. M. Cai, and L. V. Panina, Sensors and Actuators A 

91, 85 (2001). 

24 



Chapter 1 Introduction and background research 

[10] K. Mohri, T. Uchiyama, L. P. Shen, C. M. Cai, and L. V. Panina, J. Magn. Magn. Mater 

249, 351 (2002). 

[11] D. P. Makhnovskiy, A S. Antonov, A N. Lagarkov, and L. V. Panina, J. Appl. Phys 84, 

5698 (1998). 

[12] D. P. Makhnovskiy, L. V. Panina, and D. J. Mapps, J. Appl. Phys. 87,4804 (2000). 

[13] D. P. Makhnovskiy, A N. Lagarkov, L. V. Panina, and K. Mohri, Sensor and Actuators 

A 81, 106 (2000). 

[14] D. P. Makhnovskiy, L. V. Panina, and D. J. Mapps, Phys. Rev. B 63, 144424 (2001). 

[15] N. Fry, D. P. Makhnovskiy, L. V. Panina, S. I. Sandacci, M. Akhter, and D. J. Mapps, 

submitted to IEEE Trans. Magn. (2002). 

[16] D. P. Makhnovskiy and L. V. Panina, J. Appl. Phys. 93,4120 (2003). 

[17] S. Chikazumi, Physics of Magnetism, (John Wi1y&Sons Inc., New York, London, 

Sydney 1964). 

[18] C. Kittel, Rev. Mod. Phys. 21,541 (1949). 

[19] P. Weiss, J. de Phys. 6, 661 (1907). 

[20] J. H. Van Vleck, Rev. Mod. Phys. 17,27 (1945). 

[21] C. P. Slichter, Principles of Magnetic Resonance, (Happer&Row publishers; New York, 

Evanston, London, 1963). 

[22] A G. Gurevich, Ferriles at Microwave Frequencies, (New York: Consultants Bureau, 

1963). 

[23] A G. Gurevich and G. A Melkov, Magnetic oscillations and waves, (Boca Ratton: CRC 

Press, 1996). 

[24] L. D. Landau, E. M. Lifshitz and L. P. Pitaevskii, Quantum Mechanics- Non-Relativistic 

Theory, Vol. 3, (Edition: 3d, Elsevier Science, 1977) 

[25] M. J. Hurben and C. E. Patton, J. Appl. Phys. 83, 4344 (1998). 

[26] T. L. Gilbert, Phys. Rev. 100, 1243 (1955). 

[27] R. Kikuchi, J. Appl. Phys. 27, 1352 (1956). 

[28] L. Landau and E. Lifshitz, Phys. Z. Sowjetunion 8, 153 ( 1935). 

[29] N. Smith and P. Amett, Appl. Phys. Letters 78, 1448 (2001). 

[30] N. Smith, V. Synogatch, D. Mauri, J. A Katine, and M.-C. Cyrille, J. Appl. Phys. 91, 

7454 (2002). 

[31] V. Synogatch, N. Smith, and J. R. Childress, J. Appl. Phys. 93, 8570 (2003). 

[32] V. L. Safonov, J. Appl. Phys. 85, 4370 (1999). 

25 



Chapter 1 Introduction and background research 

[33] V. L. Safonov, J. Appl. Phys. 91, 8653 (2002). 

[34] W. Xiaobin, H. N. Bertram, V. L. Safonov, J. Appl. Phys. 92, 2064 (2002). 

[35] V. L. Safonov and H. N. Bertram, J. Appl. Phys. 93, 6912 (2003). 

[36] V. L. Safonov and H. N. Bertram, J. Appl. Phys. 94, 529 (2003). 

[37] N. Smith, J. Appl. Phys. 92, 3877 (2002). 

[38] C. K.ittel, Phys. Rev. 73, 155 (1948). 

[39] J. R. MacDonald, Proc. Phys. Soc. A 64,968 (1951). 

[ 40] L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, (Pergamon 

Press, 1975). 

[41] F. Morse and H. Feshbach, Methods of Theoretical Physics, (New York: McGraw-Hill, 

1953). 

[42] H. Chiriac and T. A Ovari, Progress in Mat. Sci. 40, 333 (1996). 

[43] A. P. Zhukov, J. Gonzalez, J. M. Blanco, M. Vazquez, and V. S. Larin, J. Mat. Res. 15, 

2107 (2000). 

[44] H. Chiriac and T. A Ovari, J. Magn. Magn. Mater 249,46 (2002). 

[45] V. S. Larin, A V. Torcunov, A Zhukov, J. Gonzalez, M. Vazquez, L. V. Panina, J. 

Magn. Magn. Mater 249, 39 (2002). 

[46] I. Ogasawara and S. Ueno, IEEE Trans. Magn. 31, 1219 (1995). 

[47] E. C. Stoner and E. P. Wohlfarth, Phi!. Trans. Roy. Soc. A 240, 599 (1948). 

[48] D. Spenato, A. Fessant, J. Gieraltowski, H. Le Gall, and C. Tannous, J. Appl. Phys. 85, 

6010 (1999). 

[49] T. J. Klemmer, K. A. Ellis, and B. van Dover, J. Appl. Phys. 87, 5846 (2000). 

[50] N. X. Sun and S. X. Wang, J. Appl. Phys. 92, 1477 (2002). 

[51] H. S. Jung, W. D. Doyle, J. E. Wittig, J. F. AI-Sharab, and J. Bentley, Appl. Phys. Letters 

81, 2415 (2002). 

[52] H. Hoffman, Phys. Status Solidi 33, 175 (1969). 

[53] K. Kemiter and H. Hoffinan, Phys. Status Solidi 33,237 (1969). 

[54] H. Hoffinan, Thin Solid Films 373, 107 (2000). 

[55] H. Hoffman, IEEE Trans. Magn. 4, 32 (1968). 

[56] C. K.ittel and C. Herring, Phys. Rev. 77, 725 (1950). 

[57] G. T. Rado and J. R. Weertman, Phys. Rev. 94, 1386 (1954). 

[58] W. S. Ament and G. T. Rado, Phys. Rev. 94, 1558 (1955). 

[59] L. Kraus, J. Magn. Magn. Mater. 195, 764 (1999). 

26 



I:· '-

--
1€hapter llniroduction andr backgr,oundrresearch 

' - I I I ' : I ' ' r • ,. 

27 
I· 



Chapter 2 Magneto-impedance matrix in ferromagnetic wires 

2.0 Generalised Ohm's law 

This Chapter concerns the theoretical and experimental investigations of the magneto­

impedance effect (MI) in amorphous wires in terms of the surface impedance matrix ~ .[1] In 

certain cases [2,3], the MI effect can be understood as the field dependence of a high 

frequency impedance Z(alt>m,a) (complex resistance) in ferromagnetic samples: 

Vz(H ex)= j · Z(al Om,U), (I) 

where Vz is the field-dependent voltage measured across the wire, Hex is the de external 

magnetic field applied along the axis, j is the ac excitation current with a constant 

amplitude, 2a is the sample cross-section dimension, om = c I ~21f u (J) J.Jt (Hex) is the 

magnetic skin-depth, u is the sample conductivity, )J1(Hex) is the ac effective 

circumferential permeability with respect to the ac current flow (axial), c is the velocity of 

light, and (J) is the circular frequency. Here the impedance Z(a I om ,u) is a function of the 

ratio a I Om and conductivity u. However, in a general case, the MI effect requires the 

account of a specific matrix form of the ac permeability ( ~) and impedance ( ~ ), then Z is 

expressed using the components of impedance matrix ~ . [I] In this case, a simple form ( 1) of 

Ohm's law for the Ml response is no longer valid. Numerous experimental results on MI 

require a more realistic theory taking into account a specific matrix form of the ac 

permeability and impedance. Although the permeability of a wire always is a matrix-type 

quantity, the off-diagonal terms have often been ignored due, in part, to the analytic 

complexity of handling such expressions and the difficulty in measuring them. However, 

many applications of magnetic materials require very accurate knowledge of the permeability 

and impedance matrix, therefore the off-diagonal components can not always be ignored. 

Various excitation and measurement methods are required to reveal the matrix forms. An ac 

response can be measured not only across the sample ends, but also by means of an additional 

pick-up coil surrounding the sample. This technique is similar to that, which is used for 

measurements of the off-diagonal components of the permeability matrix.[4] If the 

equilibrium direction of the magnetisation is deflected to some angle away from the circular 

one, the ac current j induces both the longitudinal voltage Vz and the coil voltage Vc, as 

shown in Fig. 2.1(a). This is because the current flow gives rise to an ac antisymmetric 

circulatory magnetisation and a non-zero total longitudinal magnetisation. 
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Chapter 2 Magneto-impedance matrix inferromagnetic wires 

In contrast, if the wire is placed in an ac longitudinal magnetic field hz induced by the ac 

current ib in the primary coil (so-called "ac bias"), the generated longitudinal and circulatory 

magnetisation contribute to Vc and Vz respectively, as shown in Fig. 2. l(b). The crossed 

magnetisation processes that relate to the voltages Vz and Vc are known as the inverse 

Wiedemann and Matteucci effects.[5] Both cases can be described in terms of the surface 

impedance matrix ~ containing the off-diagonal components, which are directly proportional 

to the corresponding voltages. The concept of the impedance matrix allows the conductive 

and inductive effects to be considered from a common view point. [ 1] 

Polarisation induced 
by the ac current j 

in the wire I 

Polarisation induced 
by the ac current j b 
in the primary coil 

\ 
·~ G:_.p, 

Polarisation induced by ( ez, hrp) 

I 
j 

--+ 

(a) 

Polarisation induced by ( erp, hz ) 

Hex I rr "'"" ,N\\ 

j h~c~· ----. 

~-VC __ l (b) 

Fig. 2.1 Various excitation and measurement methods. The wire is subjected to an ac 

current j in (a) and an ac longitudinal magnetic field hz in (b) . The static magnetic 

structure in a wire can be changed by a de longitudinal magnetic field H ex . 
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Chapter 2 Magneto-impedance matrix inferromagnetic wires 

The off-diagonal components should be formally interpreted as the off-diagonal 

impedances in a generalised approach. Thus, the total surface impedance matrix ~ represents 

the generalised Ohms law (matrix form), where the voltage vector (Vz.Vc) is related through 

the surface impedance matrix~ with the excitation current vector (j,JiJ) (see Section 2.2): 

(2) 

Here I is the wire length, 2tra N is the total length of turns in the pick-up coil, N is the 

number of turns, the constants A and B relate the ac excitation currents with the 

corresponding ac magnetic fields at the wire surface: hrp = A· j and hz = B · ib. 

The magnetic structure-dependent impedance matrix ~ will be calculated for any 

frequency and external magnetic field, and is not restricted to the case when only the strong 

skin-effect is present. [ l] A general approach to solving the electrodynamic problems is based 

on the expansion of Maxwell's equations in asymptotic series. The characteristic parameter of 

the asymptotic expansions can be chosen to be the ratio p = a I o where o = c I ~2tr a m is 

the non-magnetic penetration depth. Constructing the asymptotic serious for two limiting 

cases p >>I and p << l and matching them in the intermediate region, the solution for ac 

field distribution becomes valid in the entire frequency (or de magnetic field) range. For 

obtaining the asymptotic series in the case p >> I , a singular perturbation method is used, 

which is needed to describe the field distribution in the surface layer. For p « I , a standard 

regular perturbation method can be employed. The ac magnetisation is assumed to be related 

to the rotational process and is described by a matrix of a general form having 6 different 

components. To demonstrate consistency between theory and experiment, measurements of 

the impedance matrix in amorphous wires with both types of anisotropy have been made 

under proper excitation conditions. 

Before we proceed with the impedance analysis, the properties of the amorphous 

magnetic wires have to be addressed. 
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2.1 Typical materials 

In the last two decades the level of interest in glass-forming metallic alloy, which 

vitrify at relatively low cooling rates from the molten state (compared with conventional 

rapidly quenched metallic glasses), has grown.[6] Owing to their resistance to crystallisation, 

these easy glass-forming alloys can be cast in bulk shape with very small dimensions down to 

microns. Magnetic glassy alloys can be classified into two groups: Fe- and Co-based bulk 

alloys with soft magnetic properties, and Ln-Fe-based (Ln=Nd or Pr) bulk amorphous alloys 

with hard ferromagnetism at room temperature. At present, the mechanisms determining soft 

magnetic behaviour of Fe- and Co-based alloys, on one hand, large values of the coercive 

field for Ln-based bulk amorphous alloys on the other hand, are not well understood. These 

new ferromagnetic bulk amorphous alloys are very attractive for both fundamental science 

and engineering applications. 

Thin amorphous ferromagnetic wues having a negative magnetostriction can be 

considered to be one of the best materials for the MI applications.[2,3] The general 

composition of alloy is FxMy with Fe and/or Co as F and metalloid like Si and B as M. [7-11] 

The content "x" ranges typically between 70 and 80%. The alloys may also contain small 

amounts of other elements such as Cr, Mn, AI, Cu, and Nb in order to improve mechanical, 

corrosion or magnetic properties. In particular, FeSiBCuNb microwires can even improve 

their ultrasoft magnetic behaviour by suitable thermal treatments. Partial diversification may 

result in a stable and homogeneous "nanocrystalline" structure with balanced 

magnetocrystalline and magnetoelastic anisotropies. The magnetostriction plays the main role 

to determine the magnetic behaviour (i.e. domain structure and hysteresis loop).[7,8,10] The 

sign and value of the magnetostriction, ..:t, are decisive. Positive and negative 

magnetostrictions result respectively in radial and circumferential easy axis in the shell, 

whereas the inner core always has the longitudinal magnetisation (although it can be very 

small). The domain models for ..:t > 0 and ..:t < 0 are shown in Fig. 2.2(a) and Fig. 2.2(b), 

respectively.[7,8] The wire sample with circumferential anisotropy is divided into a 

"bamboo" domain structure, where adjacent domains have opposite directions of 

magnetisation, as shown in Fig. 2.2(b). 

11 
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The magnetostriction constant A, is correlated to the alloy composition. In the (Co1_ 

xfex)75Si 15B 10 series, A, is positive for x > 0.06, and it becomes negative when the Fe-content 

drops below down this value. Therefore, the negative magnetostriction is typical for Co-rich 

alloys. For example, a wire of a composition Fe4 _35Co68.15Si 12 _5B15 exhibits excellent soft 

magnetic properties having almost zero (but still negative) magnetostriction of A,= - 10-7 . 

This composition is most popular for the M! applications. The Co-rich microwires with A, < 0 

present an almost nonhysteretic magnetisation curve. In contrast, Fe-rich microwires with 

A, > 0 are characterised by a large Barkhausen jump that results in square-shaped hysteresis 

loops. 

FP. Wire 

(a) 

Circumferential magnetisation 
in the shell 

Longitudinal magnetisation 
in the inner core 

(b) 

Fig. 2.2 Domain structures of wires with positive A, > 0 in (a) and negative A,< 0 in (b) 

magnetostrictions. The posinve magnetostriction is typical for Fe-rich alloys, 

whereas the negative f or Co-rich alloys (bamboo-like domain structure). The wire sample 

with circumferential an isotropy is divided into a "bamboo " domain structure (b) . 
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Chapter 2 Magneto-impedance matrix inferromagnetic wires 

Currently, there are two main techniques of wire fabrication: 

i) Amorphous wires are made by UNITIKA LTD. R&D (Kyoto, Japan) using the in­

water spinning method, and then cold drawn from a diameter of about 125 f.l m of the 

as-cast wire to diameters of 20-30 pm. The fabrication method is shown in Fig. 

2.3.[8] The ftnal sample undergoes annealing with a tension stress to build up a 

certain magnetic structure. This method requires very careful control of the annealing 

process to obtain repeatable magnetic parameters. 

Cooling fluid layer. 

Furnace and nozzle Transversing motion. 

Melted alloy 

Fig. 2.3 Schematic illustration of the in-rotating-! iquid-spinning process 

for the fabrication of amorphous wires. 

ii) Some commercial companies and research laboratories produce amorphous wires with 

a glass coating, by a modified Taylor-Ulitovskiy method.[9, ll] The fabrication 

method is shown in Fig. 2.4. One end of the glass tube with the alloy of a needed 

composition is sealed. Then, it is heated to the temperature at which glass is soften 

and alloy is in a melting state. Drawing the heated end creates a very thin glass 

capillary (ranging between 10-60 microns) where the molten metal streams, as 

demonstrated in Fig. 2.4(a). The final fibre structure shown in Fig. 2.5 is formed by 

the water cooling (water stream in Fig. 2.4(a,b)) to obtain a metallic core (in 

amorphous state). The core has a diameter dm, while the total diameter of the micro 

wire, i.e. core and the coating, is Dw. 
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(a) 

(b) 

Fig. 2.4 Fabrication method of the glass-covered microwires. Drawing the heated end 

(.vee (a)) creates very thin glass capillary where the molten metal streams. 

The final fibber structure is formed by the water cooling (water stream in (a, b)) 

to obtain a metallic core in an amorphous or microcrystalline state. 

The metallic core (ranging between 5-50 microns) has an amorphous and/or 

microcrystalline microstructure in order to achieve the desired magnetic properties, 

such as magnetic anisotropy and coercivity. The ratio of the metaJ core and glass 

coating thickness also affects the magnetic properties.(lO] The fabrication method of 

glass-covered microwires introduces a quite large internal stress mainly arising from 

the difference in thermal expansion coefficients of metal (nucleus) and glass (sheath). 

The value of this internal stress, which has the tensor nature, can be easily controlled 

by the ratio of diameters of the glass cover and the metal core. [ 10, 12] 
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The direction of the easy magnetoelastic anisotropy axis associated with this stress is 

determined by the sign of the magnetostriction constant A, . In context of cost and 

simplicity of the technological process, the glass-covered wires have great advantage 

over those produced by in-water spinning method. 

Fig. 2.5 Final structure of the glass covered wires. The core has· a diameter d111, while the 

total diameter of the micro wire, i. e. core and the glass coating, is D...,. 

2.2 Voltage response and surface impedance matrix 

The MJ effect deals with a voltage response in a thin metallic magnetic material 

subjected to a high frequency excitation and de bias current I b, as shown in Fig. 2.6. 

H ex hex 
I --+ ----. 

b + r.._··l_-_· : _· ____.. Vz -· __ ____.I ( ~) 
Hex h ex --+- ----+ 

Fig. 2.6 Voltage response due to the ac excitation using current j and field hex , measured 

across the wire in (a) and in the coil in (b). 
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An ac current j and/or an ac axial field hex are used as a source of excitation. The time 

dependence exp(- i liJ t) and Gaussian units are chosen. The voltage is measured either across 

the wire ( Vz) or in the coil ( Vc) mounted on it. The value of Vz is determined by considering 

the energy consumption in the wire: 

JVz =_:_J(exh)ds, 
41f s 

(3) 

where the integration is performed along the wire surface, e and h are the ac electric and 

magnetic fields, c is the velocity of light. The voltage Vc is found by integrating e along the 

coil turns: 

Vc = fedl. (4) 

As it follows from (3),(4), the induced voltage can be found by calculating the tangential 

components of the fields e1 , il1 at the wire surface. Since it is assumed that the wavelength is 

larger than the sample size, the field distribution outside the sample corresponds to the static 

case. Then, the excitation method imposes the boundary conditions for the magnetic field il1 . 

Using the cylindrical co-ordinates (r,tp,z) with the axis z along the wire, as shown in Fig. 

2.7, the boundary conditions can be written as: 

(5) 

where a is the wire radius. The electric field e1 is related to the magnetic field il1 via the 

surface impedance matrix ~ :[13] 

(6) 

where n is a unit radial vector directed inside the wire. Comparing (3)-(6) it is seen that the 

impedance ~ is the only characteristic describing the voltage response in the system excited 

by the external magnetic field h (of any origin). In ferromagnetic conductors, ~ is a two­

dimensional matrix even for the electrically isotropic case. 
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j+lb 

Fig. 2.7 Principle directions and quantities used. 

The present analysis is concerned with the calculation of the surface impedance matrix for a 

wire with a uniform static magnetisation having a helical orientation. In this case, the matrix 

~ is constant on the surface. Writing vector equation (6) in the co-ordinate representation, the 

components of~ can be determined as: 

- -
erp = - ;rprp hz +;rpz hrp, 

(7) - -
ez =-;zrphz +;zzhrp, 

where ; zrp = ;rpz because of symmetry. Substituting (7) to (3) and (4) gives the voltage 

responses: 

vz = ezl = (;zz 
21 

-;zrp hex)/ , 
ea 

VC= erp2tranl = ( -t;rprp hex+ t;rpz 
21

)2tranl ' 
ea 

where I is the wire length and n is the number of coil turns per unit length. 

2.3 Basic equations and model assumptions 

(8) 

(9) 

The calculation of ~ is based on the solution of the Maxwell equations for the fields e 

and b together with the equation of motion for the magnetisation vector M. An analytical 

treatment is possible in a linear approximation with respect to the time-variable parameters 

e , h , m = M-M 0 , where M 0 is the static magnetisation. Assuming a local relationshjp 

between m and b: m = i b , the problem is simplified to finding the solutions of the 

Maxwell equations with a given ac permeability matrix t1 = i + 4 tr i : 

rote =i w Ctl. h)/ c, rot b =4tra-e/c (lO) 

satisfying the boundary conditions (5). Here a- is the conductivity. 

17 
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Introducing the local permeability matrix fi corresponds to neglecting the exchange 

effects. This approximation is reasonable for not very high frequencies, such that the skin 

depth is still larger than the exchange length. Further assumptions about fi are needed. 

The ac permeability depends on many factors, including the domain configuration, 

anisotropy and stress distribution, and the mode of magnetisation (domain wall motion or 

magnetisation rotation). These factors can be complex in real materials, making modelling 

very difficult. In this analysis, the domain structure is not considered, it can be eliminated by 

a proper de bias. Jt is assumed that M 0 is aligned in a helical direction having a constant 

angle () with the wire axis. This assumption is true for the central part of a wire piece (i.e. not 

very near the wire ends), the length of which is larger than 1-2 mm. Variation from a constant 

helical direction will take place at the wire ends. Nevertheless, if the wire is long enough (a 

few millimetres) the contribution to the impedance response from the central part, where the 

anisotropy is well established, will prevail over the end effects and so we will not consider 

them. In this case, fi is determined by the magnetic moment rotation and is independent of 

the position. This is approximation even for an ideal material, since a circumferential 

magnetisation near the wire centre results in an infinite exchange energy. Then, there is 

always a radial distribution in permeability, which is stronger in the case of a helical 

anisotropy due to a stress distribution. Because of this, a wire with circumferential or helical 

anisotropy has always the inner core with the longitudinal magnetisation, as it shown in Fig. 

2.2(b). Nevertheless, direct measurements of the longitudinal B-H loops show that the outer 

shell (with circumferential or helical anisotropy) gives the main contribution to the measured 

flux. It follows that the inner core diameter is strongly reduced. Since the magnetic paths are 

always closed in the outer shell during the magnetisation process, there are no magnetic poles 

on the wire surface and ends. Thus, in our case the demagnetising effect is absent if the wire 

is long enough. When we consider the high frequency case, the permeability is predominantly 

a surface permeability, and hence the influence of the inner core effect on the ac response can 

be completely ignored. In the low frequency case, where the radial change in permeability 

becomes important, the magneto-impedance effect is relatively small. In fact, an averaged 

value of the permeability can be used for a low frequency approximation. Thus, in both cases 

a permeability matrix can be introduced. The comparison between the theory and experiment 

is good proving that this approach is reasonable and a radial distribution in permeability is not 

significant for the MI effects. 
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The matrix tl has a general form with: f.ilpr = -p,fP, f.irz = -Pzr, f.ilpz = f.JzlfJ due to 

the magnetic symmetry. Considering that the time dependence is given by exp(-iwt) and 

utilising the cylindrical symmetry (e=(efP,ez}, b=(bfP,bz)), the Maxwell equations can be 

reduced to: 

(11) 

(12) 

where b = tl h is the vector of magnetic induction. Since b, = 0 (which satisfies the boundary 

conditions at the wire surface), the material equations are of the form: 

blp = f.ilhlp + f.JJhz 

bz = f.JJhlp + f.i2hz 
(13) 

The magnetic parameters are given by: 

2 
f.il = f.ilp <p + f.J<p r I f.irr , 

2 
f.i2 = f.J zz + f.ir z I f.irr , f.JJ =f.J<pz -(plprf.irz)/Prr · (14) 

Substituting (13) to (11), (12) and eliminating the electric field e gives the equations for the 

magnetic field components hz and hfP : 

2 
2 ° hlp ohlp {, 2 2 ) 2 2 

r --
2
-+r--+\"l r -1 'hfP =-k3 r hz, 

or or 

r2 o2hz +rohz +k2r2h =-k2r2h 
2 0 2 z 3 lp• 

or r 

(15) 

where k~ = !Jn (4 Jriw a/ c2
) and n = 1, 2, 3. Equations (15) are solved imposing boundary 

conditions (5) at the wire surface. The boundary conditions at r = 0 must exclude the infinite 

solutions, requiring: 

( 16) 

Then, the coupled equations (15) with conditions (5) and (16) are completely determined. 

In the present analysis, asymptotic solutions of equations (15) are found in two 

limiting cases: o <<a and o >> a, where o = c/ ~2 1r a w is the skin depth in a non-

magnetic material ( tl = i }, as power series in a corresponding small parameter ( o /a or a I o ). 

1Q 
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On the other hand, no condition is imposed on the value of the magnetic skin depth 

c511 = c/ J2 1f u w f.J11 , where p11 is a corresponding magnetic parameter defined by (14 ). The 

series representation for the electric field e = (ez, ell') is then deduced from equations (12). If 

the surface values ell', ez are written in the form linear with respect to the boundary values 

hiP and hex, the surface impedance matrix can be calculated from equations (7). 

To simplify the further analysis, it is useful to write the matrix ft in the co-ordinate 

system with the axis z'IIMo where it has the simplest form. In the case of a uniform 

precession of the total magnetisation vector M around M 0 , the susceptibility matrix in the 

prime co-ordinates (r,<p',z') related with the equilibrium magnetisation M 0 (see Fig. 2.7) is 

ofthe form: 

-iza 

X2 

0 

(17) 

This form can be easily obtained from the linearised Landau-Lifshitz equation. The 

expressions for x1 , x2 , X a depend on a given magnetic configuration and will be 

determined later. The susceptibility matrix can be converted to the original co-ordinate 

representation (r,qJ,z) by rotating the prime system by an angle (} which determines the 

direction of M 0 with respect to the wire axis z: 

- iXa cos( B) iza sin( B) J 
x2 cos2 (B) - x2 sin(B)cos(B) . 

- X2 sin(B}cos(B) x2 sin 2 (B) 
X= [ iza ~~s(B) 

- iza sin(B) 

(18) 

Using (18) gives: 

f.JJ = l+41fcos2 (B)i, (19) 

f.JJ = -4,. sin(B}cos(B) i, 

40 
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2.4 High frequency approximation 

The singular perturbation method constructed with respect to a small parameter 

p =§/a« I is used to obtain asymptotic solutions of equations (15) in the case of high 

frequencies. Customarily, this case is treated by considering the plane geometry. However, 

such an approach allows the zero-order terms only to be found. For the purpose of building a 

general asymptotic solution valid in a wide frequency mnge, the higher-order terms in the 

series expansion are also important. 

Introducing a new variable x = r I a and multiplying equations (15) by p2 gives: 

The boundary conditions for equations (20) are: 

htp(1)=htp, hz{l)=hex• 

h'P(x)<oo, hz(x)<oo, O:Sx$1. 

(20) 

(21) 

Here p,~ = 2if.111 • Equations (20) have a small parameter at the second-order derivative and 

are related to so-called singular perturbed equations. [14-16] The solution of such an equation 

can be represented as the sum of two (regular and singular) asymptotic series of powers of the 

small parameter. The regular part approximates the solution within a certain internal area 

whereas the singular series is related to the boundary layer (near x = 1) where the solution 

undergoes rapid changes. Such a layer is named as a frontier layer. In our case it corresponds 

to the skin depth. In the internal area 0 < x < l , the singular part decays exponentially and the 

regular series has a smooth behaviour. 

Following the singular perturbation method, the solution of(20) is written in the form: 

h'P(x,TJ )= LP" R'P 11 (x )+ LP"Stp,(TJ ), (22) 
11~0 11~0 

(23) 

where R'P"' RZII and S'P"' Sw represent regular and singular terms, respectively, and 

77 = (x- l )/ p is "the fast" variable. 

41 



Chapter 2 Magneto-impedance matrix inferromagnetic wires 

Equations (20),(21) written in terms of the fast variable T/ become: 

rP~ ah L ) (11~+ tf-
2 

+ ~(11~+1)~+ 1PH11~+If -~2 
h(f/ = -~H11~+1)2 hz 

a, a, 

(11~+1)2 82
h{ +~(11~+1) 8hz +~H11~+ 1)2 hz = -~H11~+ If h(f/ 

a, a, 
(24) 

h(f/(0}= h(fl, hz(O}= hex 

hlf/ (11) < ex:>, hz (11) < ex:>, -1/ J3 ~ 11 ~ 0 

Substituting the regular series into (20) and the singular series into (24), and grouping 

together terms of the same power n of fJ, the asymptotic solution of degree n is constructed. 

In the case of the regular series, the zero-order ( n = 0) approximation gives: 

Pi Rzo(x)= -Pf Rrp o(x) 

P? Rrpo(x}= -{Jf Rzo(x) 
(25) 

Equations (25) are satisfied only if Rzo(x) = Rrpo(x) = 0. Proceeding in a similar way, it can 

be shown that all higher-order terms turn out to be zero as well. Therefore, in the present case 

the solution does not have a regular part, which could be expected as a consequence of the 

skin-effect. The existence of the regular solution would result in the deep "diffusion" of the 

electromagnetic field inside the wire at high frequencies. According to the general property of 

singular equations, the singular part decays exponentially as exp{-a(l-x)/o), therefore the 

frontier layer corresponds to the skin depth o . 
Considering the singular series, the zero-order terms are found by solving the 

following equations: 

2 o Srpo 2 2 
--':-

2
-+ flt Srp0 = -/33 Szo, Srpo(O)= hrp 

OTJ (26) 

To choose a physically reasonable solution, the following condition has to be imposed: 

lim s((x -1)/ P)= lim s(TJ )= o. 
p~o ,.,~-oo 

(27) 

x<l 

4?. 
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The solution of (26) is taken in the form C y exp(~71) where y is the intrinsic vector of 

coupled equations, C is a constant, and ~ satisfies to: 

~4 +e~f + Pi)+~2Pi- Pi )=o. (28) 

Using p,; = 2ip11 , where f.Jn are determined by (19), we obtain: 

~1 = ±(1- ;1 ~2 = ±(1- ;).Jji 
.U = 1 +4nz 

(29) 

In (29), only the sign "+" has to be taken to be consistent with condition (27) since in this 

case the exponent exp(~ 71) is limited for any 71 < 0. Finally, the general solution of (26) is 

represented as: 

( ~:) " c(1tf: }x{ (I ~)a (x-I))+ c(t::: }x{ (I ~)a ,ffi(x _1)) . (30) 

There are two decay lengths in Eq. (30): o and Om = o I .Jti. The former o is related to a 

non magnetic but electrically conducting case describing the distribution of the 

electromagnetic field having the local polarisation with the magnetic field parallel to the de 

magnetisation Mo. The latter om is a magnetic skin depth corresponding to the mode with b 

perpendicular to M0 . In the case under consideration, the vector Mo is directed along a 

helical path, resulting in the existence of both polarisations and the solution involving the two 

characteristic decay lengths. 

Defining c0·2
) from boundary conditions in Eqs. (24), the zero-order estimate for the 

magnetic field hrp, hz is completed. Substituting Eq. (30) into ( 12) yields the solution for the 

electric field e. Then, from Eqs. (7) the surface impedance matrix is deduced: 

( ) 
( ·)[fficos

2
(B)+sin

2
(B) (.ffi-1~in(B)cos(B)] , ~ z z q zrp c 1- 1 

r- -
.,- qrpz qrprp - 4nao ( \ 

2 2 
· .Jti -1pin(B}cos(B) cos (B)+ JP sin (B) 

(31) 

The high-frequency limit equation (31) for the surface impedance matrix (or its certain 

components) has been obtained in a number of papers,[ 17-20) regarding small regions at the 

wire surface as flat surfaces, and imposing the boundary conditions similar to Eq. (5). 

However, this method restricts to a zero-order approximation only. 
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The higher-order terms can be important to determine more accurately the validity conditions. 

For example, it has been considered that a strong skin-effect approximation yielding (31) 

requires o I a << 1 which is much stronger than that involving the magnetic skin-depth 

lim I a « I. This opinion is based on the field distribution as in Eq. (30) depending on the 

both decay parameters. For an amorphous wire (a= 1016 s-1
) of 30 J.lm diameter the non­

magnetic skin depth becomes of the order of a at GHz frequencies. On the other hand, 

numerous experimental results on MI are concerned with frequencies of 1-100 MHz, and it 

seems that the high frequency case has a very limited use. Within the proposed method, the 

full asymptotic series can be found. Considering the first-order approximation is important in 

context to prove that the condition Om I a « l is sufficient to justify the use of Eq. (31 ). 

The first-order equations for S zl and S'P1 are of the form: 

(32) 

Since the functions oS zO /017 and oS rpO /017 are represented in the exponential form, the 

particular solution of equation (32) is given by: 

szl =(a,1J+~)e,;lll +(a21J+b2)e,;217. 

Srpl = (CJ1J +dt)eqlll +(c27J+d2)eq217, 

(33) 

where 41,2 are determined by Eqs. (29). The general solution of coupled homogeneous 

equations (32) is of the form of (30) where the constants eO) and d 2
) are found from the 

zero boundary conditions in Eqs. (32). The calculation process is straight forward but time 

consuming and results in rather cumbersome expressions. However, substituting the values of 

/]11 specific for the given problem, the result becomes as simple as: 

1]=0 

1 ---h - 2 z, (34) 

77=0 
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Then, the first-order term for the impedance matrix is: 

~
(1 + i) 

__ c(l-i)(o - 4 -
~~- -

4truo a 0 

(35) 

Comparing (35) and (31), it is seen that the ratio of ~ 1 1~0 is of the order (c51a)IJP or 

c5m I a . Therefore, the actual parameter in the expansion for the impedance is Om I a, proving 

the validity of the high frequency results in a wider frequency region if ji is sufficiently 

large. 

2.5 Low frequency approximation 

Let us now construct the solution for the impedance in the opposite limit a I c5 << l. 

Having the high-frequency result (35), it can be expected that in this case the actual parameter 

of the expansion involves the magnetic skin depth as well. Then, it may be difficult to join the 

two asymptotes together. Therefore, we would like to build the low frequency asymptote such 

that it could be expanded to the case a I c5m > I . The solution of ( 15) is taken in the form: 

(36) 

where J 0,1 are the Bessel functions of the first kind. In (36), the first terms give the exact 

solutions for the homogeneous forms of equations (15). This representation for fields hrp, hz 

is proving to be adequate to get almost a monotonic transition from one asymptote to the 

other, changing a frequency or an external magnetic field. 

- -
The functions hrp and hz determining the extent of coupling of equations (5) are 

found from: 

satisfYing the conditions 

hrp(l)=O hz{I)=O 

hrp(x)<oo hz{x)<oo 

(37) 
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Here we use the same notation P = a/ r5 for the small parameter though it is inverse to that 

used in Section 2.4. The solution of equation (37) is represented in terms of the asymptotic 

series of powers of p, using the regular perturbation method: 

htp(x)= LP
11

hiJ1 11 (x), hz (x) = LP11 hz 11 (x ), 
112!0 112!0 

(38) 

Substituting series (38) into equation (37) and grouping together terms having the same 

powers of p, the equations for the regular series hiJ1 11 (x) and hz 11 (x) are obtained. It turns 

out that the terms of the zero degree and of any (2n+ 1 )-th degree are equal to zero. The 

second-degree terms are found from: 

2~ -
2 8 htp2 8htp2 ~ 2 2 

x 2 +x---htp2 =-hexP3 x 
OX OX 
2~ -

2 8 hzz 8hz 2 - 2 3 
X +X--=-h PJ X 

8x2 ox rp 

hiJ1 2(l)= o ~2(1)= o 
hiJ1 2 (x) < oo hz2(x) < oo 

Solving equations (39) gives: 

- 7i M (1 - x3 
) 

h - _I}J~--'----'-z2 - 9 

The equations for the fourth-degree terms are: 

x2 82htp4 + x 8htp4 - h = -h p}: M x2{1- x2)- x2{ ~2 h + IL2 h ) 
8x2 ox tp4 ex 4 ~ \P3 z2 1-'1 tp2 

2 8 2
hz4 8hz4 - P? Pi Jl 2) 2f ~2 ~ 2 ~ ) 

x 2 +x--=-hiP x \l-x -x \P2 hz 2 +/33 hrp2 
OX OX 8 

htp4(1)= 0 hz4(1)= 0 

hiP 4 (x) < oo hz 4 (x) < oo 

4fi 

(39) 

(40) 

(41) 
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Substituting ( 40) into ( 41) gives: 

hn>A=-h PJ4(x2 _xs -~x)-h p}p}(x2 _x4 _Qx)-
'~" (/) 9 3 24 72 ex 4 3 15 45 

-h Pltif (x3 
_ x4 

_ _!_x)' 
ex 3 8 15 120 

(42) 

Equations (36),(40) and (42) give the asymptotic series for the magnetic field, as far as the 

p4 -terms: 

- J1(k1ax) 2- {) 4- {) 
h(/J = h(/J ( ) + P h(/J 2 X + P h(/J 4 X , 

JI kla 
(43) 

Calculating the electric field from Eqs. (12) and representing it in the form linear in hf/J and 

hex, the components of the surface impedance matrix are obtained: 

(44) 

(45) 

(46) 

The second terms in Eqs. (44)-(46) depend on the corresponding magnetic parameters p 11 , 

demonstrating that the actual expansion parameter involves a sort of magnetic skin depth (but 

not exactly Om ). For example, in equation ( 44) in the case of k1a » 1 (but a I o «I ) the 

ratio of the second term to the first becomes (1154)(k3a)4 I k1a. The values of k11 are of the 

same order, as it follows from Eqs. ( 15),(1 9). 

47 



Chapter 2 Magneto-impedance matrix inferromagnetic wires 

Yet, the numerical analysis shows that the first terms in Eqs. (44)-(46) can give the main 

contribution to the impedance even in the case of (k11 I a)~ 1, which is illustrated by a small 

numerical factor 1154 in the above example. This helps joining the low frequency asymptote 

with the high frequency one. In the next Section, the asymptotic behaviour will be discussed 

in more detail for different magnetic configurations. 

2.6 Analysis of the impedance behaviour for two types of an isotropy 

Our approach can be applied to a wire having a circumferential or helical anisotropy. 

In general, the anisotropy axis o K has an angle 45° <a~ 90° with the wire axis (z-axis), as 

shown in Fig. 2.7. The wire is assumed to be in a single domain state with the static 

magnetisation M 0 directed in a helical way having an angle (} with the z-axis. As it has been 

discussed in Section 1.6, the local ac response will be calculated in single domain 

approximation but the conclusion concerning the total ac response will be always made on 

basis of averaging over the whole domain structure. The radial variation in (} is neglected as 

it is explained in Section 2.3. The magnetic configuration changes under the application of 

the external axial magnetic field Hex and the de bias current I b inducing the circular 

magnetic field H b. The stable direction of M0 is found by minimising the magnetostatic 

energy density Uo =UH +Ua (see Section 1.6):[21] 

iJ U 0 I 8(} = 0, 

U0 = -K cos2 (a- 0)-MoHex cos{}- M0 H b sin(}, 
(47) 

where H b is the de circular field induced by the de bias current I b . Equation ( 4 7) describes the 

rotational magnetisation process demonstrated in Fig. 2.8, where the magnetisation plots for 

two types of anisotropy and different values of the de bias H b are given. The domain processes 

may not be essential for the reversal of M 0 , since the magnetisation vector during its rotation is 

held parallel to the surface, without going through high-energy demagnetisation states. In the 

case of a circumferential an isotropy (Fig. 2.8(a)), a de bias current (inducing H b larger than the 

coercivity) eliminates the domain structure, without changing the magnetic symmetry. 
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The case of a helical anisotropy is more complicated. The de bias causes the transition from a 

symmetric hysteresis curve to asymmetric anhysteretic one which happens at H b I H K =cos a 

(see Fig. 2.8(b)). Therefore, in this case a much larger bias field is needed to realise a single 

domain state. 

1.0 I a = gooJ 
H =0 

b , , 

0.5 
, 

,- -- - --~ 0 

~ , 
, , H b /HK = 1 ......_ 

N 0.0 , , 
0 

~ , , 

-0.5 

-1.0 (a) 

-2 -1 0 1 2 
H /H 

ex K 

1.0 

0.5 
0 

~ ......_ 
0.0 N 

0 

~ 
/ 

,/ H = 0 
---·- ,.' . -.- .- , -,, ~ b 

-1.0 ~======-==- .. -tl:Ir_._ __ __ ___ H I H = 0.4 (b) 
b K 

-0.5 

-1.5 -1.0 -0.5 0.0 0.5 1.0 
H /H 

ex K 

Fig. 2.8 Magnetisation curves Moz(Hex) for different magnitudes of the de bias field Hb. 

The cases related to a circumferential (a = 90°) and helical (a = 50°) an isotropy are shown 

in (a) and (b). respectively. 
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The permeability matrix ft = i +4~ri is found from a linearised Landau-Lifshitz-Gilbert 

equation for m = i h written in the co-ordinate system ( r, cp', z' ) with the axis z' parallel to 

M 0 (see Section 1.5): 

-iw m +(wn- irw):m X Dz' )+ r Mo((Ne.ff m)xnz•) = r Mo(h X Dz•) 0 (48) 

Here wn = r(au F /8Mot•, U F is the free energy density, which coincides with U0 in our 

case (see Sections 1.5 and 1.6), r is the gyromagnetic constant, r is the spin-relaxation 

parameter, N e.ff is the matrix of the effective factors in ( r, cp', z' )-system: 

N • • =-
2

K cos2 (B-a) z z 2 , 
Mo 

Nz'rp' = Nrp'z' = K
2 

sin2(B-a)o 
Mo 

(49) 

Solving equation (48) determines the susceptibility matrix i which has the form ofEqo (17) 

with: 

%1 = (OM(WJ -irw)l ~. %2 = wM(Wz -irw)l ~. Xa =W WM I~. 

~ = (w2 - i r w)(WJ - i r w)- w2
, 

WJ = r[Hex cosB+ Hb sinB+ H K cos2(a- B)], H K = 2K I Mo 

w2 = y[Hex cosB+ Hb sin B+ H K cos2 (a- B)], WM = yM0 0 

(50) 

The impedance matrix is determined via the permeability parameters f.-111 (low-frequency 

case) or the parameter j1 (high-frequency case), all of them are determined by the apparent 

susceptibility i in Eqso ( 19)0 Substituting (50) into ( 19) gives: 

- wM(Wz -irw)+4~rwlt x= 
(tq- irw)(Wz + 4~rwM- i rw)- w2 

(51) 

Figures 209(a-d) demonstrates the dispersion curves for the effective permeability parameter 

j1 = 1 + 4~r i (see Eqso (19) and (29)), which enters the impedance matrix in combination 

with the magnetisation angle 8 0 The following magnetic parameters have been chosen: 

circumferential anisotropy (a = 90° ), anisotropy field H K = 2 Oe, saturation magnetisation 

Mo = 500 G, gyromagnetic constant r = 2x107 (rad/s)IOeo In calculations, a small 

dispersion of the anisotropy angle a with respect to 90° should be introduced to model a 

real sample and avoid zero ferromagnetic resonance frequency at Hex = H K 0 

'iO 
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The real part Re(,U(m)) approaches unity at the ferromagnetic resonance frequency 

(a=90°) fFMR=YJIHex-HK14rtMol2n: fFMR=365 MHz at Hex=O (see Fig. 

2.9(a)) and fFMR = 725 MHz at Hex= 10 Oe (see Fig. 2.9(b)). In the gigahertz range, 

Re(,U(m)) is negative being in magnitude in the range of 10-20, and Im(p(m)) is in the range 

of 10-40. Both of them become insensitive to the external magnetic field, as shown in Fig. 

2.9(c). In this case, the field dependence of the impedance is entirely due to that for the static 

magnetisation orientation 8 . Then, if 8 is a sensitive function of Hex , to insure high field 

sensitivity of the impedance it is important only that the conditioni,U(m) I» 1 is held. This 

conclusion clearly demonstrates that the condition of the ferromagnetic resonance is not 

required for the MI effect, contrary to the widely expressed belief[22,23] 

A large difference between fFMR and the frequency where the imaginary part reaches 

a maximum value is caused by the specific form of the effective susceptibility i containing 

all the components of the susceptibility matrix i. The dispersion curves, considered above, 

look very similar to a relaxation spectrum typical of polycrystalline multidomain ferrites. 

However, in our case, the "relaxation-like" dispersion is caused by a complicated fonn ( 18) of 

the effective susceptibility. Such kind of the dispersion is always observed in experiments 

with bulk ferromagnetic conductive samples, where the skin-effect is important and the 

effective susceptibility is composed of the components of the internal matrix i. For example, 

in Ref 24 the dispersion of the initial hard-axis permeability, which corresponds to the 

parameter 1-lz = 1 + 41Tsin 2 (8)i in our designations (involving the same frequency­

dependent parameter i ), was measured in Co-rich and Fe-rich wires with 20 j.Lm diameter at 

the megahertz and gigahertz ranges. The measured dispersion shown in Fig. 2.9(d) (solid line) 

has a qualitative agreement to that shown in Fig. 2.9(a). In Ref 25 the initial hard axis 

permeability of NiFe and FeAIN films was investigated. For films with more than micron 

thickness, the permeability had a relaxation-like dispersion curve where fFMR did not 

coincide with the frequency of the imaginary part peak. On the contrary, the dispersion curves 

in ultrathin layers had the resonance-like dispersion where the peak in the imaginary part 

corresponds to fFMR. 
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Fig. 2.9(a-c) Dispersion curves of the effective permeability ji. calculated for different Hex. 

Magnetic parameters: anisotropy field H K = 2 Oe, saturation magnetisation M 0 = 500 G, 

and gyromagnetic constant r = 2 x 10 7 (radls)/Oe. For frequencies much higher than fFMR 

(gigahertz range) ji. becomes insensitive to H ex as shown in (c). 
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Fig. 2.9(d,e) Experimental permeability dispersions (in (d)) and hysteresis loops along wire 

axis (in (e)) measured in Ref [24} for Co-based and Fe-based wires with 20 p.m diameter. 

Permeability levels are significantly higher for Co-based wire than for Fe-based, especially 

in the low frequency range. The real part of the permeability for Co-based wire is about 350 

below 10 MHz. The measured di~persion ofCo-based wire shown in Fig. 2.9(d) (solid line) 

has a qualitative agreement to that shown in Fig. 2.9(a). The hysteresis loop ofCo-based wire 

has a low coercive force (less than 1 Oe) and a nearly linear response up to the saturation. 

This is a hard axis B-H loop (see Fig. 2.8(a)) corresponding to the circumferential 

magnetisation (see Fig. 2.2(b)). in contrast, Fe-based wire exhibits a coercive field larger 

than 10 Oe, and does not reach saturation before 800 Oe. 
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The easy-axis permeability, which corresponds to the parameter p 1 = 1 + 4.tr cos2 (B) x in our 

designations, is related to a specific excitation method of the sample when the magnetic field 

is circular in the wire and transverse in the film. An indirect investigation of Ill in the wire 

can be carried out by means of the S-parameter measurements. [26,27] 

Having specified the static magnetic configuration and the ac permeability matrix, we 

can proceed with the impedance analysis, using equations ( 44 )-( 46) for the low frequency 

case or equations (31),(35) for the opposite limit. Since both the approximations involve as an 

actual expansion parameter a certain magnetic skin depth, the choice between them depends 

not only on the value of frequency, but also on the value of Hex determining the permeability 

parameters. Figure 2. 10 shows the components of the impedance matrix as functions of the 

expansion parameter a I 8 (or as functions of frequency) for Hex ~ 0.25H K and two 

anisotropies: circumferential (a = 90°) and helical (a = 60° ). 
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Fig. 2.10 Frequency spectra of the components of matrix ~ calculated using the low and high 

frequency approximations for a= 90° in (a) and a = 60° in (b). Hex = 0.25H K, H b = 0. 

For a = 90° in (a), ~rprp monotonically transits to the high frequency case, therefore only one 

line is shown f or low and high frequency approximation. Parameters used: H K = 5 Oe, 

cr = l016 sec- 1
, M 0 =500 G, t = 0.2, y = 2 ·107 rad/sOe. 
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For these parameters, the values of the penneability are fairly large and the transition from the 

low-frequency case to the high-frequency one occurs at a/8=0.04-0.08. For c;zrp,c;rprp 

components, the two asymptotes have an intersection regions (or even for a= 90°, c; rprp 

monotonically transits to the high frequency case), for c;zz there is a certain gap, actually 

rather small, but a sort of interpolation is needed. Considering the field dependences of the 

impedance matrix, a practical rule to replace a low frequency asymptote by the high 

frequency one may be the condition that the second term in expansions (44)-(46) has grown 

up to 10% of the first one. 

The field characteristics of the impedance matrix are determined by the combined 

effect of z(Hex) and ()(Hex), and are presented in Figs. 2.11-2.14 for the two types of 

anisotropy. The case of the circumferential an isotropy (a = 90°) is given in Fig. 2.11. For this 

case, Hex is a hard axis field, then both Moz(Hex) and i<Hex) do not exhibit a hysteresis. 

The positions of maximums for c;zz, c;rprp• c;zrp (=c;rpz) are closely related to those for 

cos2 B, sin 2 B, sin2B, namely, JHexl=HK, 0, HK/2, respectively. With increasing 

frequency, the peaks for c;zz and c;zrp shift towards higher fields which is related to the 

penneability spectra. The application of the circular bias H b makes the peaks smaller and 

broader, but does not lead to a characteristically different behaviour. The diagonal 

components c; zz and c; rprp are symmetrical with respect to Hex, whereas the off-diagonal 

components c; zrp or c;rpz are antisymmetrical that is demonstrated in Fig. 2.11(d) by plotting 

the real and imaginary parts of c; zrp. 
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Fig. 2.11 Field characteristics of the components of matrix ~ for a circumferential 

an isotropy. In (a)-(c) plots of magnitude of c;zz , c;cpcp and c; zcp vs. H ex, respectively, are 

g iven for H b I H K = 0 and I . In (d), real and imaginary parts of c; zcp vs. H ex are plotted for 

H b = 0. 2a = 120 J1 m. f = 20 MHz. 

The case of a helical anisotropy (a = 50°) is more complicated involving hysteresis 

and considerable modifications under the effect of H b . Analysing the behaviour of r; zz vs. 

H ex, shown in Fig. 2.12, we see that as the field decreases from positive value, r; zz exhibits a 

broad flat peak, which occurs between 0 and H K , depending on the anisotropy angle a . 

Upon reversing the field direction, the impedance rapidly drops down to its original low 

value, exhibiting the highest sensitivity. With further increase in Hex, it jumps back to the 

level seen for positive fields, which is associated with irreversible rotational flip in M 0 . With 

increasing the de bias H b , considerable asymmetry appears in the impedance plots. Further 

increase in H b results in a sudden shift of the hysteresis to negative fields with a 

simultaneous shrinkage of the hysteresis area, and H b > H K cos a results in the 

disappearance of the hysteresis. For H b slightly larger than H K cos a , the field sensitivity of 

the impedance change is especially high: for negative fields the nominal change can be more 

than 100% when Hex is changed by only 0.1 H K . 
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The other components of the impedance matrix show characteristically similar behaviour 

under the effect of H b , as demonstrated in Fig. 2. 13 and Fig. 2.14. 
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Fig. 2.12 Modifications of the longitudinal impedance c;zz vs. Hex under the effect 

ofthe dc bias 0 5, Hb / HK 5, 1. a =50°. 2a = 120,um , !=20 MHz. 
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the dc bias O ~ Hb /HK ~ 1. a = 50° . 2a =120,um, / = 20 MHz. 



("() 
I 

-& 
N 

V 

("() 
I 

0 
~ 

~ 

-& 
N 

V 

Chapter 2 Magneto-impedance matrix in ferromagnetic wires 

1.0 

0.5 

0.0 

1.0 

0.5 

0.0 

H = 0 
b 

___ .... 

-2 -1 

'' 
' ,, 

I a= 5oo I 
,' ', H I H = 0.4 

/ y b K 

(a) 

0 1 2 
H /H 

ex K 

Hb/~K - I~ Hb /HK = 0.6 1 o. = sool 

· H I H = 0.55 
b K 

/ 

/ 

I 
, 

I 

, , 

-- -
(b) 

-1.5 -1.0 -0.5 0.0 0.5 
H /H 

ex K 

Fig. 2.14 Modifications of the off-diagonal impedance <;z<p vs. H ex under the effect 

of the de bias 0 ~ H b I HK ~ 1. a= 50°. 2a = 120,um , f = 20 MHz. 

fiO 



Chapter 2 Magneto-impedance matrix in ferromagnetic wires 

2. 7 Experimental results and comparison witb tbe theory 

An important next step is to compare the theoretical impedance characteristics with 

those obtained experimentally. The experimental research on magneto-impedance in 

amorphous wires, although rather wide is mainly restricted to measurements of the voltage 

across the wire, which corresponds to measuring t; zz . A number of results reported by 

different groups on t; zz (Hex) seem to be in conflict. The field characteristics for same 

frequencies, obtained for similar wire samples, can exhibit completely different behaviour. 

This is a consequence of different ac excitations used, resulting in different magnetisation 

mechanisms involved in each case. For example, in the case of a circular or a helical domain 

structure, the ac current may cause the irreversible domain movement if its amplitude is 

larger than that corresponding to the circular coercivity. Such irreversible domain processes 

take place even at frequencies of few MHz. This process will mainly determine the field 

behaviour of the impedance: t;zz(He:•;) has a maximum at Hex =0 and decreases rapidly 

with increasing the field.[3,28,29] This is due to the corresponding behaviour of the 

differential domain permeability under the effect of a hard axis field. If the current amplitude 

is small and irreversible domain displacements are not possible, the longitudinal impedance 

has two symmetrical maximums at Hex ~ H K, in agreement with that shown in Fig. 

2.11.[1 ,30) Regarding the other components of the impedance matrix there are just few 

experimental works on field characteristics of ~up and t; rprp for a wire with circumferential 

anisotropy.[20,30] 

For the sake of accurate quantitative comparison, we have carried out measurements 

of the full surface impedance matrix as a function of Hex, at conditions as close 

corresponding to the theoretical model as possible. Care has been taken to realise a linear ac 

excitation (the amplitudes of ac currents, magnetisation and fields are considerably smaller 

than such de parameters as the coercivity, anisotropy, de magnetisation). Another model 

restriction is considering a single domain state. In the experiment, the domain structure can be 

eliminated by a de current, however, in the case of a helical anisotropy, the field produced by 

this current has to be larger than the anisotropy field (not coercivity). In the cases, where 

domain structure is inevitable, the effect of domain wall dynamics on impedance behaviour is 

less at higher frequencies due to damped wall motion. 
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Two kinds of wires have been used: as-cast 120 pm diameter CoFeSiB wire having a 

nearly zero magnetostrictive constant A< 0 and a circumferential anisotropy (at least in the 

outer region), and tension-annealed 30 pm diameter CoSiB wire (magnetostriction 

A= -3 ·l0-6) having a spontaneous helical anisotropy due to a residual stress 

distribution.[31 ,32] 

2.7.1 Experimental method 

The impedance matrix is measured by means of the Hewlett-Packard 8753£ Vector 

Network Analyser configured in the two-ports measuring option for the S21 -parameter 

(forward transmission): s21 = VOIII I V;,, where V;, is the excitation sinusoidal signal from 

Port I and V 0111 is the output signal measured in Port II. The ac excitation current j and field 

hex in Eqs. 8,9 are determined by V;,, whereas V0111 is equal to Vz or Vc in accordance of 

the excitation method. Thus, the S21 -parameter is directly proportional to the certain 

impedance component. Note that the S21 -parameter includes both the normalised amplitude 

I V0111 I V;, I and phase shifting Arg(V0111 I V;11 ) with respect to the excitation signal. The Ml 

effect is assumed to be linear, therefore the excitation signal has to be quite small to exclude 

any non-linear effects. In this Chapter the linear Ml effects are investigated using only a few 

milliamps of excitation, however, large amplitude excitations (tens of milliamps) can be 

useful for sensor applications where the improvement of the signal-to-noise is important. The 

general view of the measuring system is shown in Fig. 2.15. 

(,') 
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functional generator (OC output) 

(0-lOOmA) 

3.5mm cable 

3.5mm connector cell with a sample 

Fig. 2.15 General view of the measuring system in the two port regime including: 

vector analyser, two measuring channels, functional generator, power amplifier, and coil. 

The magnetic field ( H exJ is produced from a coil driven by a functional generator and power 

amplifier. The operating processes of the Analyser and functional generator are synchronised 

by a computer program. 

Since the Analyser has an unequal sweep parameter- frequency, the field scanning has to be 

produced by an additional device. The magnetic field (Hex) is produced from a coil driven by 

a functional generator and power amplifier. The operating processes of the Analyser and 

functional generator are synchronised by a computer program written using VEE software 

(Hewlett-Packard programming language). The frequency scanning ranged over several points 

(11 has been chosen). The magnetic field was incremented by a small value for each 

frequency range scanned. The field was driven in both positive and negative directions to 

produce the hysteresis plot. Thus, the functional generator is used as a programmable 

stepwise de source to provide the field scans. The S21 -values, obtained within one frequency 

scan, are saved in the Analiser's memory in the form of a column (11 points). Therefore, each 

frequency scan gives a column of S21 taken at some fixed Hex. The total value matrix 

{s2df,Hex consists of columns of frequency coordinate points (f) and rows of field 

coordinate points (Hex). The rows contain the field dependences at a fixed frequency. 
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The measured sample is placed onto an open-type cell made of copper-coated 

fibreglass printed circuit board (pcb), which has the following parameters: 1.8 mm thickness, 

average dielectric constant of s = 4.5, 30 j..L1TI of copper on each side. The connection stripes 

were etched on one side of the pcb and the other was kept copper coated for the ground plane. 

All the connection stripes were made 2. 8 mm wide to provide a wave impedance in the order 

of 50-0hms over a wide range of frequencies. The electrical scheme of the cell for q zz , q rprp, 

qup and q<pz is shown in Fig. 2.16. Blocking capacitors (C) prevent the de bias current Jb 

from entering the Analyser. The cell has input and output 3.5-mm connectors that are 

connected to the Analyser ports via 3.5-mm coaxial cables using 3.5-mm to type-N adapters. 

The microwave track including the cables and adapters was calibrated for the two-port 

measurements. 

Primary coil 

MI sample 

(a) Secondary coil ; sample (b) 

H ex 

coil Jb R Jb 

le • cl • 
v,n Vout coil 

V out Vin 

(c) 
H ex MI samole (d) 

Fig. 2.16 Electrical circuits of the cells for qzz in (a), qffJffJ in (b), qz<p in (c), 

and q <p z in (d). The cells have input and output 3.5-mm connectors. 
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The longitudinal diagonal component ~ zz (Fig. 2.16(a)) is determined by the usual way, 

measuring the wire voltage Vz when it is excited by the ac wire current (hex = 0 ). In this case, in 

equation (8) hex = 0 , with the result that S21 = Vz /V;11 = ~ zz (Hex )f/ilfJ I jV;11 ). The 

circumferential diagonal component ~rprp (Fig. 2.16(b)) corresponds to the voltage Vc in the 

secondary coil mounted on the wire which is excited by the ac axial magnetic field induced in the 

primary coil ( j = 0 ). In this case: 

(52) 

Here a2 is the radius of the secondary coil and n2 is a number of its turns per unit length. In 

equation (52), the first term represents the contribution from the flux (Faraday's law) between 

the wire and the secondary coil (the flux through the air gap), the second term corresponds to 

the coil voltage defined by equation (9) with lirp = 0. For wires having sufficiently large 

diameter (few tens of microns) it is quite possible to wind the secondary coil directly on the 

wire. In this case, the flux through the air gap is nearly zero and there is no large signal 

insensitive to the de external magnetic field. The off-diagonal components ~ z rp and ~ rp z (Fig. 

2.16(c,d)) can be determined by measuring the coil voltage Vc when the wire is excited by the ac 

current j, or measuring the wire voltage Vz in the presence of the ac axial magnetic field hex. 

The latter is used here (Fig. 2.16( c }, j = 0 ). In this case, in equation (8) hrp = 0 with the result 

that S21 = Vz /V;11 = -~ zrp(H ex )(hex I /V;11 ). 

The coil length in all the experiments is about 3 mm and the wire length is about 6 

mm. The secondary coil is mounted directly on the wire: a 2 =a. The primary coil is mounted 

on a glass tube with a diameter of I mm. The number of turns in both coils is 30. The 

amplitudes of the ac excitation current (in the wire or in the coil) are chosen to be less then 1 

mA, then, the non-linear ac magnetisation processes like irreversible domain displacements 

are not possible. The experimental studies are made with the effect of the de current which 

effectively governs the static magnetic structure, as discussed above. 
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2. 7.2 Circumferential anisotropy 

First we consider the impedance characteristics in a wire with a circumferential 

anisotropy a = 90° and a circular domain structure in the outer region. These results have 

been reported in Refs. I ,30. The experimental field dependences for the ~ zz component and 

the comparison with the model calculations are shown in Fig. 2.17. The normalised 

impedance corresponds to the ratio Vz I V;11 • The real and imaginary parts of this ratio are 

given in Fig. 2.17(a), showing two symmetrical peaks at Hex nearly equal to the anisotropy 

field H K ~ 5 Oe (the value of the anisotropy field has been checked by measuring the de 

magnetisation loops). When the de bias is applied, the impedance value at zero field becomes 

considerably smaller. The de current eliminates the domain structure, resulting in the 

decrease in the overall permeability. For not very high 1 h, the values of the impedance at the 

maximuma are almost constant since they are determined by the rotational processes only. 

However, if 1 h is further increased, the value of the impedance at the maximuma becomes 

considerably smaller and the sensitivity drops, resulting from an increase in magnetic 

hardness by 1 h. Figs. 2.17(b ),(c) give the comparison of the experimental and theoretical 

results. The two curves are matched at positive (or negative) saturation, therefore the 

theoretical values are given in S21 -units. For 1 h = 0, the main discrepancy between the 

theory and experiment is for fields Hex smaller than the an isotropy field H K , which is due 

to the contribution of the domain wall dynamics (which is essential even for frequency of 20 

MHz) to the total permeability. The theoretical model considering a single-domain state 

ignores the domain dynamics completely. Applying a sufficiently large current I h = l 00 mA 

eliminates the bamboo domains in the outer shell and significantly decreases the diameter of 

the inner core magnetisation (see Fig. 2.2(b)). In this case, the theoretical curve becomes 

closer to the experimental one. Figure 2.18 presents the longitudinal impedance for higher 

frequency of lOO MHz, showing a much better agreement between the experiment and theory, 

since the domain walls are stronger damped and give considerably smaller contribution to the 

total permeability. 
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Fig. 2.17 Experimental plots of the longitudinal impedance <;zz (Hex) for different values of 

I b and comparison with the theory (normalised curves). In (a), real and imaginary parts of 

the voltage ratio Vz l~n (which is proportional to <;zzJ are given. In (b) and (c) the 

impedance magnitude I <;zz I vs. Hex (in values of I Vz I ~~~ I) is compared with the theoretical 

dependence for a frequency of 20 MHz. 
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Fig. 2.18 Theoretical (normalised) and experimental plots of I c;zz I vs. Hex (in values of 

I Vz I Vf11 IJ for a frequency of 100 MHz, for I b == 0 in (a) and I b = l 00 mA in (b). 
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Figures 2.19 are related to the analysis of the circumferential diagonal impedance 

~ rprp. Figure 2.19(a) presents the normalised voltage Vc IV;, in the secondary coil mounted 

directly on the wire which is excited by the ac axial magnetic field induced in the primary coil. 

This ratio is proportional to ~ rprp which has a maximum at zero field and it decreases rapidly 

near the an isotropy field H K ::::: 5 Oe, whereas there is an insensitive wide region between 

± H K , which is more pronounced for I b = 0. It seems that this insensitive area is determined 

by the demagnetising factor since the sample has a rather small length (6 mm) comparing to 

the diameter (120 llm). However, we could not see this behaviour considering the field plots 

of ~ zz. More probably, it is related to the combined effect of the rotational permeability 

(which has a maximum at zero field and is decreasing with the field) and the domain wall 

permeability (which has a minimum at zero field and is increasing with the field). The 

theoretical curve does not have this flat portion, as shown in Fig. 2.19(b ). The application of a 

relatively small current I b = 5.57 mA increases the sensitivity of the impedance 

characteristics, which may be due to a better defined circumferential magnetisation induced 

by this current when (} is equal almost exactly to 90° without the anisotropy dispersion. The 

insensitive region becomes smaller under the effect of a larger I b as the domain contribution 

is less essential, and this case is in a good agreement with the theoretical plot as demonstrated 

in Fig. 2.19(c). 
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Fig. 2.19 Experimental plots of the circumferential impedance C,cpcp(H ex) for different values 

of I b and comparison with the theory (normalised curves). In (a) , real and imaginary parts of 

the voltage ratio Vc IV;11 (which is proportional to C,cpqJ are given. In (b) and (c) the 

impedance magnitude I C,cpcp I vs. Hex (in values of I Vc I V;n I) is compared with the 

theoretical dependence for a frequency of68 MHz. 
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Figure 2.20 is related to the off-diagonal component~ zrp (= ~rpz ). Figures 2.20(a),(b) 

show the normalised voltage Vz I V;n measured across the wire ends when the wire is excited 

by the external coil producing the ac longitudinal magnetic field (see Fig. 2.16( c)). Without the de 

current I b this characteristic is very small, but it increases substantially when the current is 

enough to eliminate circular domains (compare the characteristics with 1 b = 0 and 1 b = I 00 

mA ). An actual wire sample with circumferential anisotropy is divided into a "bamboo" 

domain structure, where adjacent domains have opposite directions of magnetisation, as 

shown in Fig. 2.2(b). For this structure, the total off-diagonal response from the whole sample 

is formed by averaging over the domain structure, which will result in full annihilation, due to 

the antisymmetrical response from the off-diagonal impedance components in the adjacent 

domains: < ~ zrp >=< ~rpz >= 0 because <sin OcosO >= 0. In reality, the system does not have 

a perfect "bamboo" domain structure and, therefore, the averaging does not produce zero, but 

the ac off diagonal response should be significantly decreased, as seen in Fig. 2.20 for I b = 0. 

However, the situation will change in the presence of a bias field. At H b ;t 0, domains with 

the same direction of the magnetisation as H b will grow, resulting in an uncompensated 

averaging: < ~zrp >=< ~rpz >;t 0. Finally, at a sufficient value of Hb the sample will become 

a single domain state (at least in the outer sheet). This results in the off-diagonal response 

increasing significantly. Therefore, in the case of a circumferential anisotropy and a circular 

domain structure, the presence of I b is the necessary condition for the existence of the off-

diagonal components of the impedance matrix. The off-diagonal component is antisyrnmetrical 

with respect to the field Hex, which is demonstrated in Fig. 2.20(a) by presenting both the real 

and imaginary parts. Such behaviour is an agreement with the theory (compare with Fig. 2.ll(d)). 

A considerable increase in 1 b results in a decrease in sensitivity (see Fig. 2.20(b), 1 b = 500 

mA). In this case, two opposite effects of I b are encountered: (i) the transition to a single­

domain structure (that increases the off-diagonal components and its field sensitivity), and (ii) 

the increase in the magnetic hardness in the circular direction (that decreases the sensitivity). 

Thus, the bias field effect and the field dependence ~(Hex) provide a useful information 

about the magnetic state of any given structure. 
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Fig. 2.20 Experimental plots of the off-diagonal impedance c;z<p (Hex) for different values 

of I b. The result is presented in terms of the voltage ratio Vz I Vin (which is proportional 

to c;z<pJ: real and imaginary parts in (a), and the magnitude in (b). In (c), the impedance 

magnitude I c;z<p I vs. Hex (in values of I Vz I Vin IJ is compared with the theoretical 

normalised plots for a frequency of20 MHz and lb = 100 mA. 
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Figure 2.20( c) shows the comparison of the experimental dependence with the calculated one 

at lb = 100 mA. The experimental plot exhibits considerably faster decrease which may be 

related to some structural changes at the surface due to demagnetising effects since this 

component is very sensitive to the domain formation. 

Let us now suppose that a mixed excitation is used, when the wire is excited by both 

the ac current and the ac field hex (ac bias field) which is produced by the primary coil 

connected serially to the wire. The electrical scheme of the cell for the mixed excitation is 

shown in Fig. 2.21. 

Ib 
c 
I • 

le 
Vout 

• • 
V;n 

cojl 

~ 
Hex 

Fig. 2.21 The electrical scheme of the cell for the mixed excitation. 

The voltage measured across the wire is determined by equation (8) with hex = 4;r nl j I c . In 

this case, the voltage Vz involves both ~ zz and ~ zrp components of the impedance matrix, 

combining symmetric and anti symmetric terms with respect to H ex. As a result, the voltage 

exhibits an asymmetric behaviour, even if the de magnetic configuration does not have 

asymmetry, as shown in Fig. 2.22 The coil gives an additional source of e.m.f which may 

cause the amplitude of the ac current to change during the experiment as well. [33-35] In this 

case, the comparison with the theoretical result is more complicated (see Fig. 2.22). The 

mixed excitation will be concretised in Section 2.8. 
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Fig. 2.22 Asymmetrical voltage response in the presence of the ac bias field. 

I b =I 00 mA. Theoretical (normalised) and experimental curves are shown. 

2.7.3 Helical anisotropy 

The case of helical anisotropy presents considerable interest since the effect of the de 

current results in a completely different appearance of the field plots for the impedance. A 

tension-annealed 30 pm diameter CoSiB amorphous wire (magnetostriction A.= -3 ·10-6 ) 

has been studied. This wire has a spontaneous helical anisotropy due to a residual stress 

distribution, and relatively large anisotropy field of 8 Oe. As it has been reported in Refs. 

31 ,32, it has a spontaneous helical anisotropy with the averaged angle of about 60° , which 

can be revealed by measuring the de magnetisation loops in the presence of the de 

current.[32] Figures 2.23 present the results for the longitudinal impedance ;zz. In this case 

the impedance exhibits a hysteresis. In Ref. 36, where the impedance of a wire with a twist 

induced helical anisotropy has been investigated, the hysteretic behaviour was not seen. This 

is because, the impedance field behaviour is related to domain wall permeability averaged 

over the ac magnetisation cycle due to irreversible helical-wall movement. The indication of 

irreversible non-linear processes involved is the considerable deviation from a sine-wave 

fonn of the measured voltage. The amplitude of the ac current exciting the wire used in Ref. 

36 is 15 mA, which is sufficient to induce irreversible displacements of domain walls. In our 

experiment, such processes are not possible since I j I is just a few mA. 
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Fig. 2.23 Theoretical (normalised) and experimental plots of I <;zz I for a helical anisotropy 

vs. Hex (in values of I Vz I V;11 IJ for a frequency of 20 MHz. 

Ib = 0 in (a) and Ib =50 mAin (b) . 

For I b = 0 , the experimental plot shows two sharp peaks at very small field corresponding to 

the coercitivity field of the de magnetisation process. The domain walls exist in this narrow 

field region and their linear dynamics gives a main contribution to the overall dynamic 

process. For fie lds larger than the coercivity, when the domain structure disappears, the 

impedance behaviour is determined by the ac magnetisation rotation. The theoretical jumps 

related to the irreversible rotational change in M 0 are not seen in the experimental plot since 

the de magnetisation reversal is due to the domain processes. For these higher fields, there is a 

reasonable agreement between the theory and the experiment. Thus, the effect of the de 

current results in a gradual transition to non-hysteretic asymmetrical behaviour, as seen in Fig. 

2.23(b ). Certain discrepancy may be related to an isotropy dispersion, which is quite 

considerable in CoSiB amorphous wire. 
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Figures 2.24 and 2.25 present the field characteristics of qf/Jf/J and qz<p components 

which change with the de bias current i.n a characteristically similar manner. Note that q z<p 

versus Hex plot is very sensitive to the anisotropy angle. The theoretical curves describe the 

rotational portion of the experimental probes very well for a = 60° . This value of the 

anisotropy angle agrees with that found from the shift in the de magnetisation loops.[32] 
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Fig. 2.24 Theoretical (normalised) and experimental plots of I <;<p<p I vs. H ex (in values of 

I Vc I Vin I) for a helical an isotropy (a = 60°) for a frequency of 30 A1Hz. 

Ib = 0 in (a) and Ib = 100 mAin (b). 
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Fig. 2.25 Theoretical (normalised) and experimental plots of I t;up I vs. Hex (in values of 

I Vz I V;11 I) for a helical an isotropy (a = 60°) for a frequency of 20 MHz. 

lb = 0 in (a) and lb = 83.34 mAin (b). 

In the above the wire with a spontaneous helical anisotropy has been considered. Also 

a helical anisotropy can be induced by annealing under a torsion stress.[37-40] In Ref. [40] 

the impedance matrix in a wire with an induced helical anisotropy was measured in a 120 

j..lm -diameter (Co0.95Fe0.05)n.5Si12.5B15 amorphous wue with vanishing negative 

magnetostriction (A. < 0 ). Pre-annealing with 450 mA during 20 minutes was carried out 

without a torsion stress to relax internal stresses induced by the fabrication process. [37-39]. 

Thereupon the sample was annealed with the same conditions but under a torsion stress of 

(n-/4)rad /cm . 
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The magnetic structure in the wire is known to be dominated by the combined effect of the 

wire geometry and residual stress induced anisotropy. If no torsion stress is applied, there is a 

domain structure with an axially magnetised core and circularly magnetised sheath. A torsion 

stress modifies this by introducing a helically magnetised surface layer. The following 

annealing (under torsion stress) preserves this helical structure. 

As it has been demonstrated theoretically in Section 2.6, the existence of the helical 

anisotropy can be reliably recognised by measurements of the axial or circumferential 

hysteresis loops in the presence of de bias field. Figure 2.26 shows the axial ( Bz -Hex) 

hysteresis loops measured by a standard fluxmetric method with a de bias current I b as a 

parameter, which induces the circumferential bias field H b . 
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-5.0 

-I = O 
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-------I = 80 mA 
b 

-2.5 0.0 2.5 5.0 
H ( Oe) 

ex 

Fig. 2.26 Longitudinal hysteresis loops ( B z - Hex) for a helical an isotropy 

for different bias currents I b. 

Without a bias current the hysteresis loop has a symmetrical and nearly rectangular shape. 1n 

the presence of I b "P 0 the rotational portions increase. Another manifestation of the bias 

effect is the decrease in the coercivity that is clearly observed in Fig. 2.26, where the 

hysteresis loop is narrower for I b = 80 mA. The loop also shifts: combination of the induced 

helical anisotropy and the de bias field results in asymmetry in the static magnetic 

configuration. As a result the magnetisation curves do not respond the same to the positive 

and negative directions of sweep field when the bias field is being applied. 
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The circumferential ( Brp - H rp) loops were measured by the transverse magneto­

optic Kerr effect.[ 41] The circular magnetic field H rp (sweep field) has been induced by a 

Low frequency current flowing through the wire. For Kerr effect the intensity of the reflected 

light is measured. A polarised light from a He-Ne laser is scattered from the wire and 

detected. For the transverse effect, the intensity is proportional to the magnetisation, which is 

perpendicular to the plane of the light. Figure 2 .27 shows the ( Brp - H rp) loops with a de axial 

bias field Hex as a parameter. 
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~ 0.0 ---&-
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ex 
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-o- H = 1.1 
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-1.0 
-<>- H = 1.5 

ex 

-0.4 -0.2 0.0 0.2 0.4 
H~(Oe) 

Fig. 2.27 Circumferential hysteresis loops ( Brp - H rp) for a helical an isotropy 

for different axial bias fields H ex · 

The loops are modified by the bias field Hex in a similar way to that for the longitudinal 

loops: (i) increase of rotational portion, (ii) the decrease in the coercivity, (iii) asymmetry 

with respect to the sweep field (with a shift). 

The portions of the experimental hysteresis loop flattening out on the saturation 

correspond to the magnetisation rotational when the single domain state has reached. The 

domain processes define essentially the hysteresis behaviour when the driving field (sweep 

field) is smaller than coercivity H c .[32] For the analysis of magnetisation loops, it is 

convenient to break down the total external field including the driving and bias fields can be 

resolved into two components, one parallel to and one perpendicular to, the anisotropy axis. 
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The perpendicular component is a hard-axis field for the domain wall and the longitudinal 

component is an easy-axis driving field. It is known [32] that the hard-axis field decreases the 

domain wall energy and thus the coercivity. The hard axis field also causes the suppression of 

the Barkhausen jumps, with the result that the parts of the hysteresis loop corresponding to 

the rotation processes increase.[42,32] In the case of the helical anisotropy, the easy-axis field 

results in the shifting of the hysteresis loop along the sweep field. The bias field gives the 

contribution to both the hard and easy axis fields. By this means, the combined effect results 

in the shifting and narrowness of the hysteresis loop along with the suppression of the 

Barkhausenjumps. 

As it has been demonstrated in Section 2.6, the asymmetry in the static magnetic 

structure causes the asymmetrical field characteristics of the impedance matrix when high 

frequency current is combined with the de bias current I b. The modifications in the 

impedance plots due to I b are of the same kind as those for the de magnetisation loops. The 

wire sample has a length of 5 mm and a de resistance of about I n . Coils have 25 turns and a 

length of 3 mm. The diameter of the larger (primary) coil was 1 mm. The wire is subjected to 

the axial de magnetic field Hex and the de bias current I b. The field dependences of 

normalised c; zz component are shown in Fig. 2.28 for a frequency of 20 MHz. The following 

normalisation is used: 

AI V(Hex)l [I V(Hex)l-minl V(Hex)l]1, 0 

Ao IV(H ex) I= [maxi V(H ex) 1-min IV(Hex) I h=o 
(53) 

lf no bias is applied, the impedance plot versus Hex shows a symmetrical hysteresis 

(see Fig. 2.28(a)). Asymmetry in the field dependence appears in the presence of I b (see Fig. 

2.28(b)). For one field direction (negative in Fig. 2.28) the amplitude of the maximum and 

sensitivity increases, whereas for the opposite direction they both decrease. Moreover, a small 

shift of hysteresis accompanied by shrinkage of the hysteresis area is observed for this matrix 

component. Further increase in lb causes a drop in sensitivity (see Fig. 2.28(c)) which is due 

to increasing the hardness in the hard-axis direction. 
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Fig. 2.28 The hysteresis curves of the normalised field characteristics of c; zz versus H ex 

for different bias currents I b at a frequency of 20 MHz. 
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The other components of the impedance matrix show characteristically similar behaviour 

under the effect of bias current, as it is demonstrated in Figs. 2.29 and 2.30. 
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Fig. 2.29 The hysteresis curves of the normalised field characteristics of~ rprp versus H ex 

for different bias current I b at a frequency of 20 MHz. 
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In the case of q'P'P' its maximum does not increase noticeably when lb is applied (see Fig. 

2.29(a)), whereas the sensitivity is improved significantly. For larger bias currents, qrprp- plots 

broaden with increasing 1 b . As far as the off-diagonal component q zrp is concerned (see Fig. 

2.30(b)), it appears to be most sensitive to current biasing: the field sensitivity increases more 

than twice at lb = 150 mA. 

We can conclude that the theoretical model based on the single-domain magnetic 

structure adequately describes the numerous experimental data for wires with different 

anisotropy types. it was shown that the ac rotational magnetisation processes are responsible 

in many respects for the impedance change. Comparing Figs. 2.12-2.14, Figs. 2.23-25 and 

Figs. 2.28-30, we have to conclude that the better qualitative agreement between experiment 

and theory is achieved for a wire with the helical anisotropy induced by annealing under 

torsion stress. 

2.8 Asymmetrical giant magneto-impedance in wires with the circumferential anisotropy 

This Section concerns the asymmetrical giant magneto-impedance (AGMI) in 

amorphous ferromagnetic wires with a circumferential anisotropy.[33-35] This case is 

different from that considered in Sections 2.6 and 2.7.3 since the de magnetic structure does 

not have asymmetry. As it has been shown in Fig. 2.22 (Section 2.7.2), the voltage measured 

across the wire subjected to an ac current j and an ac axial bias field hex (see Fig. 2.21) 

exhibits a considerable asymmetry with respect to the axial de magnetic field Hex . The 

AGMI effect will be studied in terms of the surface impedance matrix, demonstrating that the 

extent of asymmetry is determined by the ratio of the diagonal qzz and off-diagonal qzrp 

components of this matrix. Strong effects on AGMI of the frequency of excitation and the de 

bias current 1 b applied to the wire are demonstrated. Both these factors effect on the linearity 

and sensitivity of the voltage output in a sensor circuit based on the AGMI elements. 
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AGMI characteristics are needed to realise linearisation. Generally, it can be done with 

the use of a de bias field, applying a de current to the external coil (circumferential an isotropy) 

or to the wire directly (helical anisotropy). In the case of magneto-impedance, the ac bias can 

be used for this purpose. This method has the following advantages: (i) the ac bias is generated 

by an ac bias current ih in the external coil, requiring no additional power consumption, (ii) 

the helical anisotropy which can cause problems of stress stabilisation is not needed. 

The effect of an ac bias field hex on the voltage characteristics is related to the ac 

cross-magnetisation process of inducing a circulatory magnetisation by hex. It is convenient to 

analyse this process in terms of the surface impedance matrix ~. The induced voltages are 

determined by Eqs. 8,9. The diagonal components c;zz, c;rprp are even functions of the field 

. (see Figs. 2.17-19) whereas the off-diagonal components c;zrp =c;rpz are odd functions (see 

Figs. 2.20). Therefore, the way to produce an asymmetrical voltage response is to mix together 

the components ofthe impedance matrix, as shown in Fig. 2.21. The wire is subjected to an ac 

current j = Jo exp( -im t) and a variable axial magnetic bias field hex is induced by the same 

current: hex =47rnj/c. In this case, the voltage measured across the wire is (see Eq. 8 with 

(54) 

Here signs "±" correspond to a "left" or "right" coiL The extent of asymmetry depends on the 

ratio c; zrp I c; zz . As it was shown in Section 2. 7.2 for the circumferential an isotropy, the off-

diagonal component is essential only for a single domain state, since the value of sin Bcos 8 

averaged along domains with the opposite magnetisation is zero. The circular "bamboo" 

domain structure can be eliminated by the application of a de circular field H h produced by 

the de current 1 h in the MI element The field H h has to be larger than the coercivity, which 

is still a small field comparing to the anisotropy field - a characteristic field of a major MI 

change. 
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One more factor which strongly affects AGMI is the frequency of excitation since with 

increasing frequency to a MHz region (strong skin effect) ~up becomes similar in magnitude 

to ~zz. Unusual voltage behaviour can be observed in this case. Equation (54) for the voltage 

can be written in terms of the total impedance Z = Vz I j . For certain magnetic configurations 

(determined by Hex) and frequencies the real part of Z decreases down to negative values (but 

the absolute value of Z never becomes zero), as if the system were active. However, in fact, the 

coil is an additional source of e.m.f due to the mentioned cross-magnetisation, which has been 

discussed in Section 2.0 (inverse Wiedemann and Matteucci effects). The negative Z means 

that the two e.m.f's are opposing each other. Yet, there is no a mere signal summation, all is 

happening inside the wire and is related to the wire impedance properties. 

AGMI is measured in amorphous (Co0.94Fe0.06 ) 72.5 Si12.sB15 wire with 120 ~m 

diameter, having a circumferential anisotropy. The wire sample has a length of 5 mm . The coil 

has 30 turns, a length of 3 mm and a diameter of 1 mm . Figure 2.31 shows the components of 

the impedance matrix as functions of Hex , for I b = 100 mA and f = 10 MHz. For this 

current, the wire is in a single domain state. 
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Fig. 2.31 Field dependences of the diagonal ~ zz and off-diagonal ~up components. 

The diagonal component is even function of the field whereas 

the off-diagonal component is odd function. 
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The diagonal component ~ zz is an even function of Hex . Its real part has two nearly 

symmetrical peaks at H ex =±HK equal to the anisotropy field. On the contrary, ~zrp is 

anti symmetric with respect to Hex . The components of the impedance matrix are very 

sensitive to a frequency f and a de current I b as shown in Figs. 2.32( a),(b ). 
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measured for different bias currents I b . 
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As functions of a frequency, c;zz and c; zrp have a maximum at f = 7-8 MHz. The further 

decrease should be related to the frequency behaviour of the effective permeability ji (see Fig. 

2.9). The application of a sufficient large I b causes a transition to a single domain state, 

however, this also increases the magnetic hardness in the axial direction. In the case of c;zz 

this results in a rapid drop in the nominal values at a given Hex, as seen in Fig. 2.32(a), where 

H s is the saturation field. Contrarily, c;up would be zero for an ideal periodic circular domain 

structure ("bamboo"), therefore, it increases substantially when the current is enough to 

eliminate circular domains. Further increase in I b results in a decrease in c; zrp because of the 

same reasons as in the case of c; zz . 

The comparative analysis of the components c; zz and c; zrp as functions of Hex, f, and 

I b is useful to determine the best parameter range for the ac biased AGMI. Figure 2.33(a) 

shows the plots of the voltage magnitude I Vz I versus Hex for two frequencies and I b = 100 

mA. For a higher frequency of 10 MHz, the effect of hex results in a considerable asymmetry 

in I Vz (Hex) I, which can be compared with the same characteristic measured without the ac 

bias field hex (no coil, dashed line). As the frequency is increased, the real part R (is 

represented by the real part of Vz IV;n) of the total impedance Z becomes negative, as seen in 

Fig. 2.33(b). The "negative resistance" is a consequence of two opposing e. m. f., as discussed 

above. The voltage amplitude (or the absolute value of Z) never reaches zero, but in the 

region of negative R there is a characteristic "hill", as seen for the case of to MHz in Fig. 

2.33(a). 

AGMI characteristics can be used to obtain a near-linear voltage output in a differential 

scheme, which connects two wires oppositely biased by means of coils mounted in "left" and 

"right" sense. Figure 2.34 presents examples of a possible output in such a circuit. The best 

linearity is obtained for frequency of 8 MHz, for which the maximum of the off-diagonal 

component almost compares with that for c; zz . The linear region is obtained in the field 

interval ±5 Oe, which is restricted by the value of the anisotropy field. On the other hand, the 

value of the ac bias can be made very small, it has to be ofthe order of the circular field at the 

wire surface, produced by the ac wire current. Application of AGMI for the magnetic sensors 

will be concretised in Chapter 4. 
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Fig. 2.34 Principle of obtaining near-linear voltage output in the differential scheme. 

In summary, we would like to notice, that the method of obtaining AGM! with the use 

of the ac bias is not related with asymmetry in the de magnetic configuration. This case seems 

to be especially important for developing auto-biased linear sensors since it does not require 

eUher introducing a special helical an isotropy or applying a large de bias field. 

2.9 Conclusion 

The surface impedance matrix approach has been used to study various types of MI 

characteristics in amorphous wires with a helical (circumferential) an isotropy. Regarding 

conceptual aspects of the Ml effect, it has been demonstrated that a high sensitivity to the 

external field is caused by the dependence of the current density distribution on the static 

magnetic structure. Therefore, the characteristic field of the major impedance change is the 

anisotropy field, and the MI spectra are very broad (from a few MHz to hundreds of MHz for 

30 J..U11 diameter Co-based amorphous wire). Modifying the static magnetic structure, various 

types of the Ml characteristics can be obtained: symmetrical or asymmetrical with respect to 

Hex, without a hysteresis or exhibiting a hysteresis including that of a bi-stable type. An 

interesting example is the change in Ml characteristics in wires with a helical magnetic 

anisotropy under the effect of the de current. 
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Considering a matrix nature of the impedance, the use of the off-diagonal components results 

in asymmetrical MI in the presence of the ac bias, which is especially important for linear 

magnetic sensing. 

The theory is based on the asymptotic-series expansion of the Maxwell equations. The 

method has no restriction to a specific geometry. It can be expanded to consider practically 

important cases of 2-dimensional magnetic/metallic multi layers. The major limitation of the 

theory is considering a uniform magnetisation ignoring completely a radial distribution of 

permeability and the domain structure. Considering MI effects, the variation in permeability 

may not be important since the surface magnetisation gives predominant contribution. 

Regarding domain wall dynamics, it can be taken into account by modifying the permeability 

matrix on the basis of effective medium approximation for small field perturbations.[2,43] By 

this, the eddy currents due to the local wall displacements are averaged on the domain scale. 

Another restriction is the ignoring of the exchange effects. This is accurate if the exchange 

length is smaller than the skin-depth. The theoretical model has been tested comparing the 

results with the experimental data. For the sake of accurate comparison, a series of 

experiments was carried out. The theory agrees well with the numerical experimental data as 

far as the ac rotational magnetisation processes are responsible for the impedance change. 
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Chapter 3 Magneto-impedance matrix in thin films 

3.0 Magneto-impedance effect in thin films 

Since the discovery of the MI effect in amorphous ferromagnetic wires [1-3] the 

variety of MI materials has increased significantly. These materials include glass-covered 

wires, ribbons and thin films made of amorphous or nanocrystalline ferromagnetic alloys. 

Although wires and ribbons provide very high MI field sensitivity (%/Oe), the need of 

miniaturisation of actual devices, compatibility with integrated circuit technology, and 

improvement of accuracy and reproducibility makes M1 thin films attractive with their 

compromise on sensitivity and miniaturisation. Further to this, MI thin film devices can 

exhibit a much larger impedance change ratio and operate over a wider frequency range than 

wires. [ 4-8] 

It is common knowledge that the inductance of a conductor increases when a high 

permeability material is placed nearby. Because of this, thin film structures containing 

magnetic layers have been used extensively as high inductance elements, which operate up to 

the GHz range.[9-II] Typically the inductor has two different types of structure: (i) planar 

solenoid with a magnetic core or (ii) thin multilayered film having a highly conductive lead 

sandwiched between two magnetic films. The latter structure is similar to the MI sandwich 

films [4-8, 12-15] considered in this Chapter. However, the anisotropy for the thin film 

inductors is typically chosen to be longitudinai.[II] Furthermore, the field dependence of the 

inductor parameters is not of interest. In the case of Ml thin films, the transverse anisotropy 

[4-8] and crossed anisotropy [12-14, 16) are preferable since they provide higher sensitivity to 

Hex: the state of high inductance is set by applying the longitudinal field. 

The importance of the anisotropy to the Ml effect has been understood from the onset 

of M1 research.[l-3] By analogy with the wires, where the circumferential anisotropy is 

preferred, thin films with transverse anisotropy are typically chosen for M1 applications as 

most sensitive. A detailed experimental investigation of the MJ characteristics in multilayers 

with two types of anisotropy: transverse and longitudinal was reported in Ref 17. For the case 

of the transverse anisotropy, I Z(H ex) I has the expected behaviour with two maximums at 

± H K, where H K is the anisotropy field. In contrast, for longitudinal anisotropy, I Z(H ex) I 

has a single maximum at zero field and then monotonically decreases until the saturation 

value. If the angle dispersion of the anisotropy is very small, the maximum becomes quite 

sharp. Therefore, anisotropy and its dispersion appear to be the important parameters when 

determining the Ml characteristics. 

94 



Chapter 3 Magneto-impedance matrix in thin films 

The samples used in Ref. 17 were fabricated from ultrathin multilayers [NiFe/Ag]n, where the 

number n of the NiFe/ Ag bilayers could reach up to a hundred. Using such complicated 

structures, the authors were guided by the knowledge that in multilayers the NiFe layers have 

to be kept thin to preserve their soft magnetic properties. In this case no further thermal or 

field annealing processes would be required. However, the same results can be easily obtained 

for bilayer [8, 16] or three layer [6] sandwich films made of a soft amorphous ferromagnetic 

alloy of composition CoSiB, FeCoSiB, CoFeB or CoNbZr. A nanometre laminated Cr or Nb 

layer between two magnetic layers has been successfully applied to form a perfect stripe 

domain structure with transverse anisotropy.[8] Nevertheless, an annealing and thermal 

treatments may play a significant role for improving the MI response in amorphous and 

nanocrystalline thin films as shown in this Chapter and other works.[l8-20] For sputtered 

films it is widely known that annealing frequently helps to establish the required type of the 

anisotropy and domain structure,[20] as the internal stresses and other defects caused by the 

sputtering process may result in unexpected magnetic structures. fn nanocrystalline materials 

annealing or thermal treatments increase the amorphous phase and therefore improve the MI 

response.[l9] 

The multilayer MI structure consisting of a conductive inner lead and two outer 

ferromagnetic layers has some advantages. Comparing to MI in a single layer film, this 

structure can exhibit a considerably larger change in impedance at lower frequencies of a 

passing current. It has been reported in Ref. 6 that the MI ratio in CoSiB/Cu/CoSiB 

multilayers of several micrometer thick reaches up to 300% for a frequency of 10 MHz and a 

magnetic field of about 10 Oe. On the other hand, for a single CoSiB magnetic layer of the 

same thickness the MI effect is very small (< 5%) at such conditions. For a sandwich film 

with a smaller total thickness of the order of 0.1 J.lm the MI effect decreases down to about 

20%,[4] yet in the case of a similar single layer film the MI effect would not be noticeable. 

Usually the studies on Mf in multilayers are restricted to the case of a transverse in-plain 

anisotropy induced in ferromagnetic layers. The analysis presented in this Chapter includes a 

special type of anisotropy, which is crossed in one film with respect to the other. By 

symmetry, this case is similar to a helical anisotropy in a wire and presents a considerable 

interest. Choosing proper angles, the crossed anisotropy can be reduced to the transverse or 

longitudinal ones. The NiFe/Au!NiFe sandwich thin films with different anisotropies 

(transverse, longitudinal and crossed) were fabricated to measure the field dependences of the 

longitudinal impedance. 
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Similar to the MI behaviour in wires with helical anisotropy, the MI field dependences in 

films with crossed anisotropy can be changed by the effect of a de anti symmetric transverse 

magnetic field (or a de current).[12-14, 16] With increasing the transverse field, the hysteresis 

portion of impedance plots shrinks and shifts and finally disappears, resulting in highly 

sensitive asymmetric MI characteristics, which are important to construct a linear auto-biased 

field sensor. General representations of the impedance matrix ~ for the bilayer 

(ferromagnetic/ferromagnetic) and three layer (ferromagnetic/conductor/ferromagnetic) films 

with various types ofanisotropy have been given in Ref. 12 and Refs. 13,14, respectively. The 

experimental results on the asymmetrical MI in a bilayer CoFeB film with crossed anisotropy 

were reported in Ref. 16. 

As it has been discussed in Chapter 2, if the equilibrium direction of the magnetisation 

is deflected by some angle away from the transverse, the ac current j induces both the 

longitudinal voltage Vz and the coil voltage Vc. Also, if the MI sample is placed in an ac 

longitudinal magnetic field hex• the longitudinal and circulatory ac magnetisations contribute 

to Vc and Vz respectively. Both cases can be described in terms of the surface impedance 

matrix ~ containing the off-diagonal components, so-called off-diagonal impedances. In this 

Chapter the off-diagonal response is studied theoretically and experimentally in the MI 

sandwich structures with the different anisotropies. A narrow NiFe/Au/NiFe sandwich thin 

film with an integrated planar helical microcoil was fabricated to measure the off-diagonal 

impedances in the high frequency range up to 100 MHz. For potential applications, the 

attractive feature of the off-diagonal impedance is that the field dependence of its real and 

imaginary parts are anti symmetrical with respect to the Hex direction. However, we 

demonstrate that off-diagonal response in a film with a stripe domain structure is only 

possible in the presence of a de longitudinal bias current I h . It is shown that only a few 

milliamperes of bias current is required to cause the off-diagonal response where an optimum 

value was found within the range of a few tens of milliamperes. Without l h the off-diagonal 

response is very poor and irregular. The features of the off-diagonal impedance mentioned 

above have been theoretically predicted in thin films [ 15] and wires [21 ], and experimentally 

demonstrated in a ferromagnetic wire [21,22], where similar effects take place for a 

circumferential anisotropy and "bamboo-like" domain structure. 
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As it has been noted above, in the multilayer MI structures a very large change in 

impedance can occur at much lower frequencies when the inductance caused by the outer 

magnetic layers becomes larger than the resistance determined mainly by the inner conductor. 

Then, the impedance varies linearly with the frequency and the permeability. Due to this 

advantage, MI in the sandwich films has a potential to be used in developing small sensitive 

magnetic heads for high density magnetic recording. Considering a real head, the effect of a 

sandwich width on MI has to be studied. In Section 3.8 the problem is approached by finding 

the ac field distributions over the film width under the condition of a weak skin effect.[23,24] 

If the edge effect is neglected (approximation of an infinite width), the magnetic flux 

generated by the current flowing along the inner lead is confined within the outer magnetic 

layers. In the sandwich of a finite width, the flux leaks across the inner conductor. This 

process eventually results in a considerable drop in the MI ratio if the film width is smaller 

than some critical value depending on the transverse permeability and the thickness of the 

magnetic and conductive layers. This result is similar to that known as an inductive head 

efficiency. [25,26] 

3.1 Tbin film fabrication 

The radio frequency (rf) magnetron sputtering system used for depositing thin films 

was a Nordiko NM 2000. A schematic diagram of the system is shown in Fig. 3.1.[27] The 

chamber is firstly evacuated by the rotary pump. When an adequate base vacuum is achieved, 

the diffusion pump is used to evacuate the chamber to the high vacuum required prior to 

sputtering. The base pressure attained before sputtering was 2xl0·7 bar, and the process gas 

pressure (Ar) during the sputtering process was kept at 4.5xl0"3 mbar. RF sputtering is more 

widely used than de sputtering, as it is more efficient and can be used to deposit insulators. If 

a low frequency alternating voltage was applied to the electrodes in a chamber the ions would 

be still mobile enough to complete the plasma discharge at each electrode on each half cycle, 

requiring a source of secondary electrons at both electrodes to be sustained. With applied 

voltages at frequencies above 50 KHz up to the MHz range the minimum pressure of the 

process gas (Ar) at which the glow discharge will be sustained is reduced. At these 

frequencies electrons oscillate in the glow space, acquiring enough energy from the rf field to 

generate ionising collisions. In this respect the rf glow discharge is very different to the de 

glow discharge as the dependence on the secondary electrons is reduced and thus the 

breakdown voltage is lower. 
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Since rf can be coupled through non conductors, .insuJators can be sputtered. The sputtering 

yield is defined as the number of target atoms released for every bombarding ion for a 

particuJar target material. The sputtering rate is determined by the ion energy generated at the 

target surface. In the glow discharge onJy a small fraction of the ion energy is produced as 

kinetic energy at the target, with some 50% to 90% of the applied power being lost as heat. 

Th.is means sputtering is a very inefficient process with most of the input power to the system 

ending up as target heating. Therefore, the target has to be cooled. 
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Fig. 3.1 Schematic diagram of the rfsputtering .system (After N. Fry [27]). 

In order for material to be sputtered from the target only, a high positive ion flux must 

be achieved at the target surface by giving it a high negative potential with respect to the 

plasma. Th.is is achieved by placing a "blocking" capacitor in series with the target. Since 

electrons have much smaller mass than ions their velocities are much higher, and therefore the 

electron current is much greater than the ion current. With a rf voltage applied to the capacitor 

connected in series with the target a large electron current flows from the plasma to the target 

on the first half cycle. With the ion current from the plasma to the electrode on the second half 

cycle being smaller, a charge imbalance begins, eventually causing the target surface to build 

up a high negative charge at its surface over successive cycles. 
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Since there is no charge transferred through the capacitor (allowing only ac current to flow 

and blocking any de one) the voltage on the electrode "self biased" negatively. Consequently, 

the target surface is subjected to high energy positive ion bombardment resulting in 

sputtering. At frequency above I MHz appreciable rates are achievable. Below this, a positive 

charge can be built at the target surface, thus reducing the ion bombardment energy. The 

upper frequency of operation is limited to about 20 MHz. At frequencies above this, inter­

connection impedances cause problems. An L-C matching network is required in order to 

optimise the ac coupling between the power supply and the chamber. 

Magnetron sputtering is used to enhance sputtering rates. The basic idea is to trap 

electrons near the target surface. The magnetic fields used in sputtering systems are typically 

of the order of lOO Gauss, which only affects the electrons, as the ions are too massive. The 

secondary electrons are constrained to follow a helical path due to the influence of the 

magnetic field. Since their trajectories are not in a straight line on leaving the target surface 

they travel further for a fixed mean free path, increasing the probability of ionising collisions 

before they reach the anode. 

The target substrate can be biased by rf or de voltage during the sputtering 

process.[27] This results in the preferential removal of film impurities in the growing film to 

improve the final film purity. The level of substrate bias has been found to be very important 

in determining how much of the process gas is incorporated into the growing film. There is 

normally an optimum bias to achieve minimum gas ion implantation. In many cases a 

negative bias is applied to the substrate to enhance ion bombardment of the growing film. A 

positive bias at the substrate however, would make the substrate becomes a virtual anode, so 

that a large electron current would flow to it, resulting in substrate heating and a non-uniform 

current distribution. Positive bias can also cause contamination by sputtering the anode. The 

most commonly used method of bias sputtering is to apply rf to both the target and the 

substrate. This is achieved with a single power splitter. A rf matching network is required for 

both the target and the substrate. 
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3.2 Magneto-impedance matrix in tbe sandwich film 

In this section we consider MI in a multi layer film having an inner conductive lead of 

a thickness 2 d1 and two identical magnetic layers of a thickness d2 , as shown in Fig. 3.2(a)). 

An ac current j = Jo exp(- i mt) is flowing along the conductive lead in the length direction 

(z-axis). The anisotropy axes in the ferromagnetic layers are directed at an angle ±a with 

respect to the current flow, respectively for the upper ( x > 0) and lower ( x < 0) layers. Such 

anisotropy can be induced by current annealing in the presence of a longitudinal field. The 

application of a de longitudinal field Hex and an anti symmetric transverse field 

Hb(x>O)=-Hh(x<O) results in the antisymmetric arrangement of the de magnetisation 

M 0 . The transverse bias field can be created by applying a de current along the inner lead. 

For such configuration, the ac current induces both the voltage ( Vz) between the film 

ends and the coil voltage CVc ), as shown in Fig. 3.2(b ), since the current flow gives rise to an 

antisymmetric transverse magnetisation (or circulatory magnetisation) and a non-zero total 

longitudinal magnetisation. If the film is placed in a variable longitudinal field hex, not only 

the longitudinal magnetisation, but also the circulatory magnetisation contributing to Vz is 

induced. The crossed magnetisation processes related to the voltages Vc and Vz (the inverse 

Wiedemann and Matteucci effects [28]) are similar to those having place in wires with the 

magnetisation deflected from the circular direction (see Chapter 2). For certain parameters, 

the voltages Vz and Vc are very sensitive to the longitudinal field Hex. Applying the bias 

field H b various kinds of sensitive MI behaviour can be obtained. 

The induced voltages are described in terms of the surface impedance matrix ? which 

relates the variable electric e1 and magnetic h1 fields taken on the external surfaces x = ±d 

(d=dt+d2): 

e1a =~ap(li,xn)p, a,P=z,y, (I) 

where n is a unit vector directed inside the film, e, and h1 lay along the surface. The voltage 

Vz is determined by the surface value of the longitudinal electric field ez (d) = ez (-d) and is 

related to the current j and the variable field hex via the components ~ zz and ~ zy. 
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The contribution to Vz arising from the current flow only is expressed as Vz = (2tr/ / cb ); zz j, 

where I is the film length and b is its width, and c is the velocity of light (Gauss system of 

units is used). The off-diagonal component ; yz linking the circulatory electric field 

ey(d) = -ey( -d) and the current is associated with the coil voltage Vc. 

(a) 

(b) 

Fig. 3.2 Schematic diagram of a multilayer Ml showing principle directions and 

quantities used in (a) and induced voltages in (b). 
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The calculation of~ is based on the solution of the Maxwell's equations for the fields 

e and h together with the equation of motion for the magnetisation vector M. In a linear 

approximation over the variable fields and magnetisation and assuming a local relationship 

between m =M- M0 and h: m = i h, the problem is reduced to finding the solutions of the 

Maxwell' s equations with a given ac permeability matrix P, = i + 47l" i: 

rote=-o(jJh)/ot, roth=47rj/c, j=cre (2) 

satisfying the boundary conditions on the external surface: 

hy(±d) = ±27l" j I cb, hz (±d)= hex, (3) 

and the conditions of continuity across the boundaries and symmetry. 

The permeability matrix P, is related to certain magnetisation processes. At high 

frequencies the domain wall movement is strongly damped and contributes little to the ac 

magnetisation. Then, P, can be determined by the magnetisation rotation only, depending on 

the direction of M 0 . 

The de magnetisation M 0 in each layer is assumed to be independent of x, and 

directed at an angle ± (} to the z-axis for x > 0 and x < 0, respectively. Neglecting the 

interaction between the layers, the stable direction of Mo is found by minimising the 

magnetostatic energy density Uo of each layer: 

o(- K cos2(a- B)- M0H ex cos(}- M0H b sin B)/oB= 0 (see Sections 1.6 and 2.6). The 

domain processes may not be essential even for the reversal of M 0 . In films, the 

magnetisation vector during its rotation is held parallel to the surface, without going through 

high energy demagnetisation states. Besides, the critical field of the irreversible magnetisation 

flip quickly drops as the transverse bias is increased. This process has been demonstrated in 

Fig. 2.8(b) (see Section 2.6), where the magnetisation loops M 0z(H ex) are shown for 

different values of de bias H b. 

To solve Eqs. (2), we introduce two auxiliary co-ordinate systems (x,y',z') and 

(x,y",z") in the upper and lower magnetic layers respectively, where z' -axis and z" -axis are 

directed along the equilibrium position of the magnetisation M 0 in each layer, as shown in 

Fig. 3.3. 
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Fig. 3.3 Auxiliary co-ordinate systems (x,y',z') and (x,y",z") 

in the upper and lower magnetic layers, respectively. 

The susceptibility matrix i found from the linearized Landau-Lifshitz equation has the 

simplest form in the co-ordinate systems (x,y',z') and (x,y",z") : 

- iza OJ 
%2 0 ' 
0 0 

(4) 

where the matrix components are defined as well as in Eq. (2.50) of Section 2.6. The 

permeability matrix is the same in both layers, as ft(a,B,H b)= ft(- a,- 0,-H b). 

Equations (2) applied to the magnetic layers are easily solved in the co-ordinate 

systems, where the susceptibility matrix i is of quasi-diagonal form ( 4). Further, Eqs. (2) for 

the magnetic layers will be written only in (x,y',z'), since the equal form takes place in 

(x,y",z"). For the components of magnetic and electrical fields inside the magnetic layers 

( d1 < lxl < d) we obtain the following system of equations: 

ex• = 0 
2 a ey' . 41l'0'2liJ 

--
2
- +r 

2 
ey• = 0 

ax c 

a2ez' . 41l'0'2W - 0 
--+1 pe ' -
ax2 c2 z -
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where u 2 is the conductivity of the magnetic layers, .U = l +41l"k2 - 41l" x; /(1 +41l" xd) is 

the effective permeability, which has been used in Chapter 2. The edge effect is neglected 

considering that in-plane film dimensions are sufficiently large. (The size effect in the narrow 

sandwich films will be studied later in Section 3.8) The solutions ofEqs. (5) are represented 

by two normal waves rz·,hy• }, ry•,hz·} corresponding to a scalar permeability .u and a unit 

permeability, respectively. The solution of Eqs. (5) for the magnetic field is written in the 

form: 

h:. = A; sinh(ikmx )+ B~ cosh(ikmx 1 
h;. = 4 sinh(ik0x )+ B~ cosh(ikox 1 
where indices"±" are related to the upper and lower magnetic layers, respectively, and 

km =(l+i}/8m, ko =(l+i)/8o, Do =c/J27ruzm, 

8m = 80/fft, .U =I +47r~2 -41l"z;/(t +47rzd) 

(6) 

Unknown constants A~,B~,4 ,B~ are to be found from the boundary condition discussed 

below. Equations (6) can be re-written in the initial eo-coordinate system (x,y,z): 

h; =h;.cosB+h;sinB, 

hy = hy• cos(}- h;. sin B, 
h; = h; cos(}- h;. sin(}, 

h; = h;• cos(}+ hy• sin B. 

(7) 

The equations for the components of magnetic and electrical fields in the inner non-

magnetic layer (lead) I~< d1 can be immediately written in the initial co-ordinate system 

(x,y,z): 

(8) 
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where the symbol "-" designates the inner non-magnetic layer and o-1 is its conductivity. The 

solutions ofEqs. (8) for the magnetic field satisfYing the symmetry conditions are of the form: 

hy =CysinhVkox} hz =Cz coshVkox), 

k0 =(l+i)/J'o, 8'0 =cl J21la1m. 

(9) 

The electric fields can be found from the first Maxwell equation (see Eqs. (2)). 

General solutions (6),(7) and (9) contain ten unknown constants, which can be determined 

from the symmetry conditions and matching the tangential field components across the 

boundaries x = ±d1 : 

h;q~)= -hy-(-j~} ixl E [dJ.dt +d2], 

hy(x)=-hy(-x~ xe[-d~odd, 

hz(x)= hz{-x~ XE [-dl,dd, 

hJ(±(dl +d2))=±21lJ/(ch)=±hy, 

hi(± (dl + d2 ))=hex, 

h;(dd= hy(dd, 

hi(dl )= hz(dl ), 

e;(d1)=ey(d1), 

ei(dd= ez(dd. 

(10) 

Calculating the components of e and b on the external surface, the surface impedance 

matrix can be determined as: 

ikoc r r::::Q R 4 (} Q R · 4 (} 
~zz = l,v'JI 1 4cos + 4 1sm + 41la2 D 

+(2kmko/(ala2)+.JP Q3R2 +Q2R3~in2 ze/4], 

~zy = ~yz = ikoc sinze[(.JP Q1f?.t -Q2R3)cos2 e+(.JP Q3R2 -Q4R1~in 2 {}-
81la2D (11) 

- kokm cos 2(} /(ala2 >1 
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where 

k0 = (1 + i )/ 8o, oo = c/ ~21ra2m , 
D = QIQ2 cos2 (} + Q3Q4 sin 2 (}, 

Q1 = ~ sinhVk0d1 ~inh(ik0d2 )/ u 1 + k0 coshV~d1 ~osh(ik0d 2 )/ a 2 , 

Q2 = k0 coshVkodi ~inh(ikmd2 )/ul +km sinhVkod1 ~osh(ikmd2 )/ a2 , 

Q 3 = k0 coshVk0d1 ~inh(ikod2 )/ a 1 + ko sinhVk0d1 ~osh(ik0d2 )/ a 2 , 

Q4 = ko sinh(ikod1 ~inh(ikmd2 )/ a1 +km cosb(ikod1 ~osh(ikmd2 )/ a2 , 

R1 = k0 coshVk0d1 ~osh(ik0d2 )/ a1 + k0 sinhVk0d1 ~inh(ik0d2 )/a2 , 

R2 = ko sinhVkod1 ~osh(ikmd2 )/ u 1 +km coshVkod1 ~inh(ikmd2)/ a2 , 

R3 = ko sinhVk0d1 ~osh(ikod2 )/ u 1 + k0 cosh(ik0d1 ~inh{ikod2 )/ a 2 , 

~ = k0 coshVkod1 ~osh(ikmd2 )/ a 1 +km sinhVk0d1 ~inh(ikmd2 )/ a2 _ 

If d1 tends to be zero, Eqs. (11) reduce to that obtained in Ref. 12 for a bilayer magnetic film 

having a similar magnetic configuration. 

For multilayers with a total thickness smaller than a few microns, the approximation 

of a weak skin effect is reasonable, up to the gigahertz range. In this case the following 

asymptotic formulas have been obtained in Refs. 13,14: 

_ [I- k6d 1 d 2(aT df} k6 d~(sin2 0+ ,Ucos
2 

0) ] 
~zz -~o ql , 

3(u 1d 1+u 2d 2)a2d 2 3 

k 6 d ~(,U -I )sin (}cos(} 
~ zy = ~ yz = -~ 0 

2 
q 2 , (12) 

~ Y.Y = ~ o[k6d 1 d z- kB d~(cos2 0+ ,Usin2 O)]q 3, 

_ 3d?al +3d1d2u 1a 2 +diai _ 2d1u 1 +d2a 2 _ d1a1 +d2a 2 ql - , q2 - , q3 - , 
(a1d1 +u2d2)u2d2 d2u 2 d2a 2 

where ~0 = cj 41f ( a 1d1 + a 2d2) is the de longitudinal impedance of the layered film per unit 

length, q1 2 3 are the normalisation constants. Equations (12) show that the surface impedance 
' ' 

~ in very thin films is a linear function of the permeability, thus, the dependence of 

impedance on the magnetic properties has an inductive origin. 

106 



Chapter 3 Magneto-impedance matrix in thin films 

The analytical representations (12) give the important conclusions concerning the role of the 

sandwich structure and certain features of the field dependence ~(Hex). Firstly, it is important 

to note that for d1a 1 > d2a 2 the normalisation coefficients q1 2 3 >I amplify the field , , 

sensitivity of ~(Hex)lt;0 [13-15] in comparison with a bilayer structure,[12] where d1 =0. 

Because of this, the inner lead should be chosen as a high-conductivity metal with a 1 >> a2 , 

for example, noble metals Cu, Ag or Au. Secondly, for the transverse anisotropy (a= 90°) 

the diagonal t;zz,yy and off-diagonal t;zy,yz components have a different symmetry with 

respect to Hex direction.[12-l5, 21,22] 

3.3 Calculation oftbe field dependence of the impedance matrix 

Here we are mostly interested in the field behaviour of t; zz and t; yz ( = t; zy) 

components. Since the field dependences of the impedance matrix for wires and films are 

similar in many respects, we will consider only the case of the crossed anisotropy, which 

recently has been realised in the MI film sample.[l6] Asymmetrical field dependences 

predicted in the theoretical works [ 12-14] were verified for the first time in Ref. 16 by 

measurements of the longitudinal impedance t; zz (Hex) in the bilayer film with easy axes 

crossed in the magnetic layers. Experimental results on t;zz(Hex) in the NiFe/Au/NiFe 

sandwich films with the different types of anisotropy (transverse, longitudinal and crossed) 

will be presented in Section 3.5. 

The calculations are made using exact formula ( 11 ), although for d ~ IJ.Lm weak 

skin effect approximation (12) is applicable in a wide frequency range extending to the GHz 

range. The following parameters were chosen for calculations: M 0 = 500 G, H K = 6 Oe, 

a 1= 1018 s-1
, a 2= 4.5 ·1016 s-1

, 2(d1 + d 2 ) = l,u m, spin-relaxation parameter T = 0.2, and 

gyromagnetic constant r = 2.0 · 10 7 (rad/s)/Oe. For 2d = 1 J.Lm and 2d1 = d 2 a large 

impedance change occurs in a MHz frequency range. Figure 3.4 shows the plots of t;zz (a) 

and t; yz (b) versus Hex with the bias field H b as a parameter, for a frequency of 50 MHz. 
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Fig. 3.4 Diagonal component r;zz in (a) and off-diagonal component r; yz in (b) 

as a function of Hex for different values of the de bias H b. 
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The application of H b results in asymmetry in the MI behaviour. When Hex is decreased 

from the positive direction, q zz decreases slowly down to the value of q 0 while at some 

negative field it jumps to a large value. The critical field of the impedance jump is associated 

with the irreversible jump of the de magnetisation, as seen in Fig. 2.8(b) (see Section 2.6). 

Initially, the hysteresis area and the impedance jump slightly change with increasing H b. 

However, further increase in H b results in a sudden shift of the hysteresis to negative fields 

with the simultaneous shrinkage of the hysteresis area. For H b > H K cos a the hysteresis 

disappears, resulting in asymmetrical highly sensitive MI characteristics. The highest field 

sensitivity is seen when H b is only slightly larger than H K cos a. The field behaviour of 

q yz is essentially similar, but can be even more sensitive since it drops down to zero for such 

Hex that brings M 0 in the y- or z- direction. Similar field behaviours have been obtained 

in Chapter 2 for a wire with the helical anisotropy. 

Summarising, we conclude that the multi layer structures with crossed anisotropy allow 

various kinds of MI behaviour to be realized including the asymmetrical MI characteristics 

having a great importance for linear sensing.[3,29-33] The insertion of the inner conductive 

lead makes it possible to reduce considerably the MI element size without a loss in the field 

sensitivity. 

3.4 Fabrication of the NiFe/Au/NiFe layered films with the different types of aoisotropy 

In this Section the fabrication technology developed in Ref. 34, 35 for the 

NiFe/Au/NiFe sandwich films with the different types of anisotropy is described. The 

substrates used for the magnetron rf deposition of the Ml films were 50x50 mm2 CM5 quality 

glass microscope slides having a thickness of0.8 mm. These inexpensive slides are produced 

by a glass floating process. They have annealing and softening points of 535°C and 720°C 

respectively. The base pressure attained before sputtering was 2xl0·7 bar, and the Ar gas 

pressure during the sputtering process was kept at 4.5x 10-<i bar. Each of the NiFe/Au/NiFe 

sandwich layers were sputtered consecutively to a thickness of 0.5 microns during the same 

vacuum process, where the deposition rates for NiFe and Au were 2.35 A!s and 5.75 Als 

respectively. The magnetic-alloy layers were sputtered from an 8lwt%-19wt% NiFe target of 

15 cm diameter and an rf bias of -80 Volts was applied to the substrate to improve film 

purity. The total sandwich thickness h = 2d was 1.5 microns. 
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A substrate holder with an in-plane magnetic field of 60 Oe was used to induce an 

easy axis direction during film deposition. To induce the transverse anisotropy, the magnetic 

field was applied in the transverse direction with respect to the stripe length. In this case, all 

layers (NiFe and Au) can be sputtered at one sputtering cycle, because the field direction was 

not to be changed. To induce the crossed anisotropy, the magnetic field was applied at crossed 

directions: at ±45° with respect to the stripe length for the lower and upper magnetic layers, 

respectively. Therefore, the MI elements were removed from the vacuum chamber after 

deposition of the non-magnetic layer (Au) to change the field direction for the upper layer. 

After deposition the layers were patterned by conventional photolithography methods 

using an in-contact mask aligner with an ultra-violet exposure source. The photo-masks 

shown in Figs. 3.5(a) and 3.5(b) gave MI elements with widths b of200, lOO, 50, 20 and 10 

microns and lengths I of 5 mm and 2 mm. Each MI element had a 2 mm by 1.5 mm 

rectangular connection (bonding) pad at each end. Chemical etching was used for both the 

NiFe and Au layers in the fabrication of the MI structures. Au was used rather than Cu for the 

conduction layer in the Ml structures because it was found to be more reliable and produce 

much better edge definition when chemically etched. It also provided the correct bonding 

surface to connect the MI element to its measuring cell using an Au ribbon bounder. The first 

photo-mask used (Fig. 3.5(a)) produced a positive photo-resist pattern of the complete MI 

structures with their connection pads on the surface of the sandwich layers. Both the upper 

NiFe and the Au layers were then chemically etched to this pattern (Fig. 3.6(a)). After etching 

the upper NiFe layer, the remaining NiFe pattern acted as a mask for etching the Au under­

layer. For the final etching process a second photo-mask was required (Fig. 3.5(b)). This mask 

produced a positive photo-resist pattern that only covered the MI elements. During the final 

chemical etching process the lower NiFe layer was etched to this shape and the upper NiFe 

layer on top of the connection pads was removed (Fig. 3.6(b)). 
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Fig. 3.5 Photo-masks for the Ml elements with different length and width. 
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Fig. 3.6 Ml structure after the first etching process in (a) 

and after the final etching process in (b). 

As chemical etching is isotropic, a certain amount of undercutting (over-etching) and 

profile roughness was expected after each etching stage. Any undercutting that bad occurred 

to the upper NiFe layer during the first etch process was masked against further undercutting 

during the second photo-lithographic process. Here, the second photo-resist layer covered the 

undercut edge of the upper layer. On completion of all etching processes of the sandwich 

structures the undercutting was found to be <2 microns and have an average profile roughness 

of <1 micron. Although not as accurate as the dry etching processes, chemical etching proved 

to be fast and generaJly reliable. With the comparatively large sizes of the Ml structures used 

in this work (Ml widths of 20 microns and above), the undercutting and profile roughness 

were considered to be acceptable. 
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For the sensor applications the transverse and crossed anisotropies are most preferred, 

since they demonstrate a largest field sensitivity.[3,21] In addition, the MI elements with the 

crossed anisotropy own the riches of field dependences modified by the de bias field.[l4,21] 

The type of anisotropy for the as-prepared sandwich films with 200 microns width was 

unambiguously defined by the field direction within which the sputtering was carried out: 

transverse, longitudinal or crossed. However, measurements of the longitudinal impedance of 

the as-prepared samples with the widths less than 200 microns (10-100) shown that the 

anisotropy is directed along its length in spite of the fact that sputtering was carried out in a 

strong transverse or crossed magnetic field (60 Oe). This effect is most probably associated 

with the resulting mutual stress between substrate and film layers during the sputtering 

process. After thermal treatment of the finished samples, the transverse or crossed 

anisotropies were established in the same directions as the strong magnetic field (60 Oe) 

within which the sputtering was carried out. For the re-stress of the final samples only thermal 

treatment was enough to get back the original anisotropy without any magnetic field during 

this process. Nevertheless, to decrease the dispersion of the transverse anisotropy direction the 

samples should be annealed in a strong transverse magnetic field (100 Oe). For obtaining a 

better result in the case of the crossed an isotropy the rotating magnetic field (I 00 Oe) can be 

applied to the MI samples during thermal treatment. 

The annealing system has a small vacuum chamber within which the sample wafer or 

individual sample can be fixed securely. The chamber was evacuated down to a base pressure 

of 50 mTorr. The vacuum chamber is placed in an in-plane magnetic field (fixed or rotating) 

with a field strength of I 00 Oe at its centre. The chamber would take approximately 2 hours 

to reach an annealing temperature of 450°C and a similar time to cool back down to room 

tempemture. The annealing and softening points of the microscope slide glass substrates used, 

were 535°C and 720°C respectively. Once the heating was removed the vacuum was kept until 

the chamber had cooled down to room tempemture. After annealing, the wafer was diced 

manually using a diamond scriber into individual samples. A sample was then glued in 

position onto a rf cell. Here, the connection pads of the sample were bounded to the cell using 

a gold ribbon bounder having ribbon dimensions of 200 microns by 25 microns. 
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3.5 Measurements of the field dependences of the longitudinal impedance 

For measurement of the longitudinal impedance the single channel regime of the HP 

Vector Network Analyser can be used, as shown in Fig. 3.7.[35] For this regime the 

impedance of the sample (more generally, the rf cell including the sample) is calculated by 

means of the reflection coefficient S11 from the foiJowing equation: 

z = Zo 1 +Sn, 
1-S11 

where Z0 = 500 is the characteristic impedance. 

functional generator (DC output) 

DC current (0- I 00 mA) 

/ 

3.Smm connector cell with the sample DC current (0-3 A) 

Fig. 3. 7 General view of the measuring system using the single channel regime. 

(13) 

In comparison with the two channel regime (considered in Section 2. 7.1 ), which is suitable for 

the measurement of all components of the impedance matrix, the single channel regime suits 

only for the longitudinal impedance. As a result, the electrical scheme of the rf cell can be 

simplified, as shown in Fig. 3.8. Blocking capacitor (C) prevents the de bias current Jb from 

entering the Analyser. In the high frequency range a contribution to the total cell impedance 

from the capacitor is less than that from the MI impedance: 11/ m C 1<1 Z 1. Nevertheless, the 

field-independent addition from the capacitor may result in some decrease of the field 

sensitivity of the cell impedance and shifting its value. Furthermore, there are other 

uncontrollable field-independent contributions from the microwave tract and connections. To 

decrease these effects, all connections have to be shorter and rf matching would be useful as 

well. 
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c 
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Fig. 3.8 Electrical scheme of the rJ cell for measurement of the longitudinal impedance 

in the single channel regime. 

Figures 3.9 and 3.10 show the field dependences of the longitudinal impedance qzz 

measured in the sandwich film before and after the thermal treatment respectively, when the 

films were sputtered in the presence of the transverse field (60 Oe).[34,35] The field curves 

shown in Fig. 3.9 correspond to the longitudinal anisotropy,[l7,34,35] whereas a typical 

impedance field dependence for the transverse anisotropy [ 4-8, 17] is shown in Fig. 3.1 0. 

17 1= 5 mm 
longitudinal anisotropy 

16 b =50 Jlffi 

,-.... 
15 

h = 1.5 J.Ul1 

.E 
0 14 
'-" 

N 13 

12 

ll 
-50 -40 -30 -20 -10 0 10 20 30 40 50 

H 
ex 

( Oe) 

Fig. 3.9 Field dependence of the longitudinal impedance measured in the sandwich film with 

the longitudinal an isotropy existing before thermal treatment. The film was sputtered in the 

presence of the transverse magnetic field. Dashed curves show the reversed field behaviour. 

115 



Chapter 3 Magneto-impedance matrix in thin films 

12 1=5mm 

11 b = 50 j.!ID 

...- 10 
] 
0 9 
'-" 

N 8 

6~~~~~~~~~~~~~~~~~~~ 

-50 -40 -30 -20 -10 0 10 20 30 40 50 
H (Oe) 

ex 

Fig. 3.10 Field dependence of the longitudinal impedance measured in the sandwich film with 

the transverse anisotropy existing after thermal treatment. The film was sputtered in the 

presence of the transverse magnetic field. Dashed curves show the reversed field behaviour. 

The experimental curve in Fig. 3.10 can be reasonably well fitted by the theoretical 

one shown in Fig. 3.11. The field dependences of the impedance for the transverse (in film) 

and circumferential (in wire) anisotropies are usually very well described by a simple rotation 

model, which has been successfully used for wires in Chapter 2. Customary as a rule the 

effect of longitudinal anisotropy is fallen out of an attention because the overwhelming 

majority of the MI sensors are designed for the elements with the transverse (cjrcwnferential) 

anisotropy, which have more sensitive field dependences However, the longitudinal 

anisotropy could be useful for sensing larger fields. Below we will address this question. 

As seen in Fig. 3.9, the maxima of the fie ld dependences Z(Hex) in the as-prepared 

films with longitudinal anisotropy have barely perceptible jumps in the vicinity of zero field 

( ~ ±1 Oe) and then the curves slowly fall down to the saturation values. Figure 3.12 shows 

the theoretical field dependence Z (Hex ) for the longitudinal anisotropy, where the angle a 

was chosen with a smaJl dispersion about l 0 around the longitudinal direction (a = 0 ), and the 

anisotropy field H K = 1 Oe. The theoretical curve qualitatively describes all mentioned 

features including small jumps and subsequent slow decay. 
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Fig. 3.11 Typical field dependence ofthe longitudinal impedance calculated from Eqs. (11) 

in the sandwichfilm with the transverse anisotropy. The following parameters were used: 

spin-relaxation parameter -r = 0.2 , and gyromagnetic constant r = 2.0 · lO 7 (radi~)/Oe. 
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Fig. 3.12 Typical field dependence of the longitudinal impedance calculated from Eqs. (1 1) 

in the sandwich film with the longitudinal an isotropy and small an isotropy field H K. 

The material parameters were chosen as those in Fig. 3.11. 
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The magnetisation rotation in the sample plane does not result in large demagnetising fields. 

Thereby, the rotation is an energy-favourable process and hence it can be in charge of the 

small jumps seen in Fig. 3.9. On the contrary, the jumps in a wire with the longitudinal 

anisotropy should be attributed to the domain wall jumps because the magnetisation rotation 

is not energy-optimal due to the large demagnetising fields. To comply with the experimental 

field dependences in Fig. 3.9 the an isotropy field H K in the calculated curves in Fig. 3.12 has 

to be chosen much smaller than that for the sample with a transverse an isotropy in Fig. 3.1 0. 

We used the experimental value of -1 Oe, at which the jumps are observed. ln this case, the 

rotation model describes well all features of the experimental curve in Fig. 3.10. Thus, we 

have to conclude that the thermal treatment produces a significant increase of the anisotropy 

field along with establishing a transverse anisotropy ( H K -9 Oe) from a longitudinal one in 

as-cast state ( H K - I Oe). 

Another interesting effect for the longitudinal anisotropy relates to the bias field H b. 

ln the presence of H b :1= 0 the curve becomes similar to that for the crossed anisotropy with 

H b = 0, as shown, for example, in Figs. 2.12 and 3.4. In other words, the bias field does not 

change the symmetry of hysteretic curve. The fact is that ± H b (the sign differs for the lower 

and upper layers) deflects the equilibrium magnetisation M0 from the longitudinal direction, 

therefore the sample becomes effectively cross-magnetised - the artificial cross anisotropy. 

This effect is especially pronounced in samples with a small anisotropy field (see Fig. 3.12). 

On the contrary, for a higher H K, the bias field H b just constricts the hysteresis area, as 

shown in Fig. 3.13, where the large jumps take place. For any H K the jumps occur at 

- ±H K and their values strongly depend on H K. 

As it has been proven in Chapter 2, the following three main factors determine the 

field sensitivity of the MI effect: (i) value of the ac effective permeability ji, (ii) skin-depth, 

and (iii) rf matching between the rf cell and microwave tract. As long as ji remains quite 

large and the field-independent additions in the total impedance from the rf circuit do not 

prevail over Z(H ex), the field sensitivity of Z(H ex) increases with the frequency due to 

stronger skin effect, as shown in Figs. 3.9 and 3.10. 
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A shifting in the impedance value for a higher frequency (70 MHz in Figs. 3.9 and 

3.10) is related with the field-independent additions, which also increase with the frequency 

and, consequently, are of the inductive character. Therefore, at sufficiently large frequency 

the field sensitivity of the measured MI effect may reduce in spite of the fact that the MT field 

sensitivity of the "pure impedance" Z(Hex) is still high. This process is clearly seen in Figs. 

3.14 and 3.15 for the longitudinal and transverse anisotropies, respectively. Moreover, a 

widening of the field curves takes place in this frequency range. Thus, the rf matching will be 

strongly required for an actual device to avoid these effects. 

12 
a = O 

10 f=SOMHz 

H =9 Oe 
0 8 K 
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!:l 6 V 

4 

2 

-20 -15 -10 -5 0 5 10 15 20 
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ex 

Fig. 3.13 Typical field dependence ofthe longitudinal impedance calculated from Eqs. (11) 

in the sandwich film with the longitudinal anisotropy and large anisotropy field H K . 

The material parameters were chosen as in Fig. 3.11. 
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Fig. 3.14 Field dependences of the longitudinal impedance measured in the high frequency 

range in the sandwich film with the longitudinal an isotropy (before thermal treatment). 

The film was sputtered in the presence of the transverse magnetic field. 
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Fig. 3.15 Field dependences of the longitudinal impedance measured at high frequency range 

in the sandwich film with the transverse anisotropy (after thermal treatment). 

The film was sputtered in the presence of the transverse magnetic field. 

120 



Chapter 3 Magneto-impedance matrix in thin films 

Since the field-independent additions are mostly of imaginary character (inductive) 

and the effective permeability j1 remains still large for frequencies up to several hundred 

megahertz, the real part of Z(Hex) should demonstrate a larger field sensitivity than the 

imaginary one. The field dependences of the real and imaginary parts for two anisotropies are 

shown in Figs. 3.16 and 3.17. The "valve-like" behaviour of I Z(Hex)l in Fig. 3.15, when it 

has two predetermined levels at Hex = 0 and Hex > H K , is caused by the mutually inverse 

fielddependences ofthe real and imaginary parts, while Hex >HK: Re(Z(Hex)) decreases, 

whereas Im(Z(H ex)) increases. This effect has been observed in wires [36] and is typical for 

sufficiently high frequency range. In the GHz range we predict the constant dependences for 

both real and imaginary parts: Z(Hex) ~ const, while Hex> H K. As it has been explained in 

Section 2.6, such kind of behaviour is caused by that the effective permeability j1 loses its 

field sensitivity, as shown in Fig. 2.9(c) (Section 2.6). In this case, the field dependence 

Z(Hex) is entirely related with that for the static magnetisation orientation e: 

Z(Hex)- cos2 (} that results in the "valve-like" curve for the samples with the transverse or 

circumferential anisotropy, as it follows from Fig. 2.8(a). Figure 3.17 demonstrates just a 

beginning of this process because the frequency is not too high. Nevertheless, we can see a 

flattening of the field curve for Hex > H K , where a full saturation is not reached in 

comparison with the MHz range (see Figs. 3. 10 and 3.11). In Chapter 5 the "valve-like" 

behaviour of Z(H ex) in the GHz range will be used for the tuneable composites containing 

the short pieces of wires. Also this bistab1e field dependence can be used as a switch sensor. 

The field sensitivity of Z(H ex) for the samples with the longitudinal anisotropy 

usually is much lower than that for the transverse one (in the operating point). However, these 

samples may be of interest since in the vicinity of zero field they may have larger sensitivity 

than the samples with the transverse anisotropy. The latter ones often require an additional 

longitudinal bias field to shift the operating point to the most sensitive part of the field 

dependence, approximately in the middle point between zero field and H K (see Figs. 3. 10 

and 3.11). Thus, if the larger sensitivity is not strongly required, the samples with the 

longitudinal anisotropy can be successfully used for the sensing without an additional bias 

field shifting. 
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Fig. 3.16 Field dependences of the real in (a) and imaginary in (b) parts 

of the longitudinal impedance measured in the high frequency range in the sandwich film with 

the longitudinal an isotropy (before thermal treatment). The film was sputtered 

in the presence of the transverse magnetic field. 
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Fig. 3.17 Field dependences of the real in (a) and imaginary in (b) parts 

of the longitudinal impedance measured in high f requency range in the sandwich film with the 

transverse an isotropy (after thermal treatment). The film was sputtered 

in the presence of the transverse magnetic field. 
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Wide samples with 200 microns width do not need any additional thennal treatment to 

establish the required anisotropy, which coincides with the field direction applied during the 

sputtering. The field dependences of the impedance in wide samples with the transverse and 

longitudinal anisotropies are shown in Figs. 3.18 and 3.19. The samples with the transverse 

anisotropy demonstrate much higher field sensitivity than narrow ones because the anisotropy 

field is significantly reduced being about - 3 Oe. The field dependences for the longitudinal 

anisotropy do not show visible jwnps in the vicinity of zero field that may be related with a 

larger dispersion of the anisotropy direction in wide samples. Also it is interesting to note that 

the theoretical curve in Fig. 3.11 better describes the narrow samples, where the field curve is 

smoother near zero field. 
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Fig. 3.18 Field dependence of the longitudinal impedance in the wide sandwich film 

with the transverse or longitudinal anisotropy. 
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Fig. 3.19 Field dependences of the real in (a) and imaginary in (b) parts 

of the longitudinal impedance measured in the wide sandwich film 

with transverse or longitudinal anisotropy. 

125 



Chapter 3 Magneto-impedance matrix in thin films 

Figure 3.20 shows the asymmetrical impedance Z(Hex) in the wide sample with the 

crossed anisotropy. The real part was chosen as it has a higher field sensitivity than imaginary 

one. The crossed anisotropy was induced during the sputtering process in the presence of the 

crossed magnetic field: at ± 45° with respect to the stripe length for the lower and upper 

magnetic layers, respectively. The asymmetrical response obtained in the presence of the bias 

current I b is very similar to the asymmetrical impedance which has been measured in the 

bilayer M1 film with crossed anisotropy [16] and wire with the helical anisotropy induced by 

torsion stress [3] or annealing under torsion stress.[37] The latter has been considered in 

details in Section 2.7.3. 

3.6 

3.4 
b = 200 Jlffi I 

b 
=60mA 

I =5 mm ,-.... --------- I = 0 ] 3.2 h = 1.5 Jlffi b 
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,-.... 3.0 
N ...._., 
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~ 
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2 .4 L---...__...L-._,___.___.___.____._----I.___.~..__....___...L-._,___.___.___, 
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Fig. 3.20 Asymmetrical longitudinal impedance in the wide sandwich film 

with the crossed anisotropy. 

All the results obtained above remain for the samples with 2 mm length. Therefore, 

the actual device dimension can be made quite small to include it into the integrated circuit. 

This is the main advantage of the thin film MI elements along with higher field sensitivity and 

simplicity of fabrication. Using dry etching it is possible to significantly decrease the sample 

width, avoiding the under-cutting problems related with the chemical etching. At the moment 

the technology developed by us guarantees quite good properties for the samples with a width 

higher than 20 microns. 
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Also, there is another effect, which causes the size restriction. The decrease of width up to a 

few microns may result to the so-called magnetic flux leakage through the inner lead, which 

eventually reduces the MI field sensitivity. This effect seriously cuts down the use of the MI 

effect in the devices with dimensions of the order of few microns. [23,24] 

3.6 Fabrication of the NiFe/Au/NiFe layered film and helical microcoil 

In this Section we describe the fabrication technology developed in Ref. 35 for a 

narrow NiFe/Au!NiFe sandwich thin film with an integrated planar helical microcoil. The 

sample was fabricated to measure the off-diagonal impedances in the high frequency range up 

to 100 MHz. The MI sandwich film has a transverse anisotropy with respect to the long z­

axis. The sample can be excited by two different methods: ac longitudinal current j and ac 

longitudinal magnetic field hex, where the latter is induced in the planar helical microcoil. A 

plating-coil has been used before as a de negative feed-back coil in a single layer NiFe MI 

sensor,[38) where the field dependence of the longitudinal impedance Z(H ex) was measured. 

In our case the microcoil structure can be used for either ac excitation or ac measurement. For 

potential applications, the attractive feature of the off-diagonal impedance is that the field 

dependence of its real and imaginary parts are antisymmetrical with respect to the Hex 

direction. 

The sample was constructed from a NiFe/Au!NiFe layered film core, with a thin-film 

microcoil wound helically around it along its length. Both the core and coil layers were 

deposited by means of rf sputtering. All sputtering conditions were the same as for the 

sandwich films with the transverse anisotropy, where a strong transverse magnetic field (60 

Oe) was applied during the sputtering process. The final sample was annealed in the presence 

of a strong transverse magnetic field (lOO Oe) to establish a transverse anisotropy. Cured 

photo-resist was used to isolate the lower and upper coil structures from the core layers. The 

NiFe/Au/NiFe core layer was 2 or 5 mm long, 50 J.101 wide, and had a total thickness of 1.5 

!!m. The helical microcoil was constructed from two Au thin-film structures to give I 0 or 23 

turns (for 2 and 5 mm, respectively) with a 50 Jl01 turn width. The film thicknesses of the 

lower and upper coil structures were 0.245 J.101 and 0.7 !!m respectively. 

Figures 3.21 (a) to 3.21 (f) show schematic cross-sections of the NiFe/ Au/NiFe element 

and helical coil structures at key stages of fabrication (the layers are viewed along the length 

of the sample, through the centre of its width). 
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Standard 0.8 mm thick 50x50 mm2 glass microscope slides were the preferred substrate. It 

was found that after the final annealing process, patterned NiFe/Au/NiFe layered films that 

were deposited directly onto microscope slide substrates, gave better results than those 

deposited on higher quality (coming 7059 borosilicate) glass substrates. 

-

Layers .. Au 

(a) Lower Au coil layer 

(b) AhC1 fiU layer 

(c) Lower photo-resist isolation layer 

(d) NiFe/Au!NiFeMI sandwich layers 
revealing the Au bonding pads 

(e) Upper photo-resist isolation layer 

(f) Upper Au coil layer 

.. Photo-resist D NiFe 

Fig. 3.21 Schematic cross-sectional views of the NiFe/Au!NiFe element and 

helical coil structure at key stages of fabrication. The layers are viewed along 

the length of the sample, through the centre of its width. 
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Positive photo-resist was used for every lithographic stage so the photo-mask design 

was replicated in the photo-resist once patterned. The sequence of photo-masks used for 

fabricating the layered film and helical microcoil is shown in Figs. 3.22(a) to 3.22(e). 

Chemical etching was used for fabricating all the metal layer structures of the sample. Au was 

the preferred conductor layer for the core element and main coil layers of the sample because 

it proved to be more reliable than Cu during the chemical etching processes, and produced 

better layer edge definition after etching. Au was also the correct bonding surface for 

connecting the finished device to the RF measuring cell using the Au ribbon bounder. Both 

the lower microcoil structure and the NiFe/Au/NiFe core layers produced by the photo-masks 

in Figs. 3.22(a) and 3.22(c) respectively, have rectangular Au bonding pads at each end. 

Bonding 5mm + pads ~ ....... ...-----· 

ill"'llf. / / l I -.-. 
(a) (b) (c) 

MI element 

] '''''''"'''" 

(d) (e) 

Fig. 3.22 Sequence of photo-masks used for fabricating a typical 5 mm long M! element 

with helical microcoi/. 

The first photo-mask used in the fabrication process, shown in Fig. 3.22(a) was used to 

produce the lower microcoil structure (see Fig. 3.21(a)). Here, a 240 run thick layer of Au 

with a 5 run Cr adhesion layer was deposited, patterned and chemicaJly etched to the 

geometry shown. After etching the Au and Cr, the patterned substrate was placed back into 

the sputtering chamber where a further 245 nm of Ah03 was deposited. The photo-resist was 

then removed revealing the lower microcoil pattern with the Ah03 layer filling the gaps 

between each element of the lower microcoil structure as shown in Fig. 3.21(b). 
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This Ah03 'lift-off' process helped provide a more planer surface for the first isolation layer. 

For the next layer, AZ 1813 photo-resist was spun and patterned on the substrate using photo­

mask in Fig. 3.22(b). The photo-resist was then hard-baked to form the lower isolation layer. 

Once hard-baked the AZ 1813 photo-resist shrinks to an approximate thickness of I micron 

and provides a planerising isolation layer over the first microeoil structure (Fig. 3.2l(c)). 

Gentle inclines are formed at the photo-resist edges that enable subsequent sputtered layers to 

traverse them more readily, maintaining good mechanical and electrical continuity. This was 

important for both the MI structure and the upper microcoil structure that were constructed 

above and over the isolation layers. 

The NiFe/Au/NiFe sandwich layers were next to be deposited, patterned and etched to 

form the core. Using photo-mask in Fig. 3.22(c) a positive photo-resist pattern of the MI 

element (with its connection pads) was produced on the surface of the sandwich layers. Both 

the upper NiFe and the Au layers were then chemically etched to this pattern. The upper 

etched NiFe layer behaved as a mask for Au under-layer. To etch the lower NiFe layer of the 

sandwich film, a second photo-mask was required as shown in Fig. 3.22(d). This mask 

produced a positive photo-resist pattern that only covered the MI element. Whilst etching the 

lower NiFe layer to form the MI element core, the upper NiFe layer that had remained on top 

of the connection pads after the first etching process was removed, revealing the Au bonding 

pads. The resulting structure is shown in Fig. 3.21(d). As chemical etching is isotropic, a 

certain amount of undercutting (over-etching) and profile roughness was expected after each 

etching stage. Any undercutting that had occurred to the upper NiFe layer of the MI element 

during the first etching process was masked against further undercutting during the second 

photo-lithographic process. Here, the second patterned photo-resist layer covered the undercut 

edge of the upper NiFe layer. On completion of all the etching processes of the MI element 

the undercutting was found to be <2 microns and have an avemge profile roughness of <I 

micron. Although not as accurate as the dry etching processes, chemical etching proved to be 

fast and generally reliable. With the comparatively large size of the MI element core used in 

this work the undercutting and profile roughness was considered to be acceptable. 

Above the MI element a second isolation layer was required. Here, the photo-mask 

and processing used was the same as for the lower isolation layer. Other than its bonding 

pads, the MI element was then completely encapsulated between the upper and lower 

isolation layers as shown in Fig. 3.21(e). Finally, the upper microcoil layers of Au and Cr 

were deposited to a thickness of 500 nm and 200 nm respectively. 
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These layers were then patterned and etched to produce the upper microcoil structure using 

the photo-mask given in Fig. 3.22(e) to produce the cross-sectional pattern shown in Fig. 

3.21 (f). The end of each element of the upper microcoil structure connected to those of the 

lower microcoil structure to form a helical microcoil around the sandwich core. In the case of 

the lower rnicrocoil layer, its thickness was kept small to maximise the effect of the 

subsequent isolation and planarising layers. Whereas, for the upper microcoil layer, its 

thickness was made large enough to ensure that good continuity was achieved at the edges 

over which each of its elements traversed. For the upper microcoil structure a thick Cr 

adhesion layer was used to cover and protect the exposed Au of the lower microcoil and MI 

structures chemically etching the upper microcoil Au layer. The photographs of the finished 

MI devices with 5 and 2 mm lengths are shown in Fig. 3.23(a) and 3.23(b), respectively. A 

close-up section of the helical microcoil can be seen in the photograph in Fig. 3.23(c). 

3. 7 Antisymmetrical field dependence of the off-diagonal impedance 

The off-diagonal impedance r; zy (or r; yz ) is measured by means of the Hewlett-

Packard 8753E Vector Network Analyser configured in the two-ports measuring option for 

the S21 -parameter (forward transmission). The same configuration has been used to measure 

the off-diagonal impedance in wires (see Section 2.7.1). The electrical scheme of the cells for 

r;zy and r; yz are shown in Fig. 2.16(c) and Fig. 2.16(d), respectively (see Section 2.7.1 ). 

The field dependences of the off-diagonal impedance have been measured up to 

frequencies of a l 00 MHz, which is the preferred range for practical sensor circuit design. The 

sample investigated has the following parameters: 5 mm length, 50 Jlm width, and 1.5 J.1ffi 

total thickness. The helical microcoil has 23 turns with a 50 1-1m turn width. The sample 

photograph is shown in Fig. 3.23(a). Since the field behaviour of r; zy (Hex) and r; yz (Hex) 

are the same, either excitation scheme, shown in Figs. 2.16( c),( d), can be chosen. Figures 

3.24(a),(b) and 3.25(a),{b) show the real and imaginary parts of the field dependences for two 

frequencies I= 41 MHz and I= lOO MHz, respectively. Without a bias current the off­

diagonal response is very poor and irregular due to the averaging over the stripe domain 

structure. With Ib = 30 mA the off-diagonal response significantly increases showing 

antisymmetrical behaviour.[ 15] 
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(a) 

(b) 

(c) 

Fig. 3.23 Photograph of the sample with the following parameters: 5 mm in (a) and 2 mm in 

(b) long, 50 J.Ul1 width, and 1.5 J.l1Il total thickness. The helical microcoil has 23 turns in (a) 

and 10 turns in (b) with a 50 Jlm turn width. A close-up view of the sample is shown in (c). 
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Fig. 3.24 Real and imaginary parts (hysteresis curves) of the field dependence of the off­

diagonal impedance for f = 41 MHz. Without a bias current I b the off-diagonal response is 

very poor and irregular due to the averaging over the stripe domain structure. With I b = 30 

mA the off-diagonal re!>ponse significantly increases showing anti!>ymmetrical bihaviour, 

as predicted theoretically. 
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F ig. 3.25 Real and imaginary parts (hysteresis curves) ofthefield dependence 

of the off-diagonal impedance for f = lOO MHz. 
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A similar antisymmetrical response has been investigated experimentally and 

theoretically in Chapter 2 for a wire with the circwnferential anisotropy, which is an analogue 

of the transverse anisotropy in thin film. Figure 3.26 shows a typical field dependence 

qzy(Hex) in the megahertz range with Hb as a parameter calculated for the following 

9oo G 9 o 18 -1 l 16 -1 parameters: a= , Mo=500 , HK= e, u 1=10 s , 0"2=4.5· 0 s , 

2(dl +d2)=1.5,um, T=0.2, and r=2.0·l07 (mdls)/Oe. As it follows from Eq. (12), the 

real and imaginary parts of the diagonal components qzz ~ j1cos2 {} and q.Y.Y ~ j1sin2 {} are 

symmetric when Hex changes from negative to positive direction, whereas the off-diagonal 

components qzy = q yz ~ j1sin OcosO are anti symmetrical (with respect to Hex) following the 

equilibriwn magnetisation cos{}. The de bias field Hb does not change the type of 

impedance-field characteristics in a film with the transverse anisotropy, which is the 

consequence of equilibriwn magnetisation behaviour (see Fig. 2.8(a)). However, in real 

samples having a domain structure, the off-diagonal impedances are made possible by H b , 

which has been proven experimentally for a ferromagnetic wire with a circwnferential 

anisotropy and "bamboo-like" domain structure.[21,22] In a film with the stripe domain 

structure, as shown in Fig. 3.27, the response from the whole sample is formed by the domain 

areas with opposite transverse magnetisation. Averaging over the domain structure nulls the 

off-diagonal impedances: < r; zy >=< q yz >= 0, since they are anti symmetric with respect to 

the equilibrium magnetisation. In reality, the system does not have a perfect stripe domain 

structure and therefore the averaging does not result to zero, but the off-diagonal response is 

significantly decreased. (In contrast to this, the averaging in a sample with a crossed 

anisotropy (helical in the wire) does not eliminate the off-diagonal response even in the ideal 

stripe domain structure.) The situation will change in the presence of a bias field. For 

H b * 0, domains with the same direction of the magnetisation as H b will grow, resulting in 

an uncompensated averaging: < q zy >=< r; yz >* 0. In addition, at a sufficient value of H b the 

sample will become a single domain state. As a result, the effect of Hb increases significantly 

the off-diagonal response. However, for larger values of H b the field sensitivity decreases 

due to the magnetostatic hardness increase, determined by the magnetostatic energy 

MoHbsinO. 
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Fig. 3.26 Typical field dependence of the normalised off-diagonal impedance ~ zy ( = ~ yz) 

in the megahertz range for different values of the de bias H b. 

The real and imaginary parts of~ zy (Hex) are antisymmetrical with respect of H ex . 
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Fig. 3.27 Stripe domain structure of a film with the transverse an isotropy. 

The measured MI characteristics are qualitatively similar to the theoretical ones, shown in 

Figs. 3.24 and 3.25, however, they exhibit a hysteresis and are shifted upward to positive 

values. The existence of hysteresis may be associated with the deviations of anisotropy from 

the precise transverse direction. The vertical shifting may be caused by additional impedance 

due to the measuring track and connections inside the cell via an ac interference. This is an 

unfavourable effect reducing the sensitivity. Changing the sample geometry and making the 

connections shorter can significantly reduce the shifting effect. For an actual device, this is 

achieved using an integrated circuit package where the sensor and drive electronics are placed 

compactly. Employing a differential scheme may also help considerably. 

Summarising, we have shown that the real and imaginary parts of the off-diagonal 

impedances are antisymmetric within Hex changes from negative to positive values. The 

significance of the de bias current I b through the film was also demonstrated. There are two 

competing processes related to the circulartory bias field H b induced by the current 1 b , 

which cause increasing or decreasing the field sensitivity of the off-diagonal impedances. 

Since the bias field H b makes possible the existence of the off-diagonal response, even a 

small H b (but larger than the coercivity) results in an effective increase. However, for larger 

values of H b the field sensitivity decreases due to the magnetostatic hardness increase, 

detennined by the magnetostatic energy. The antisymmetrical off-diagonal impedance can be 

utilised to develop a highly sensitive and linear MI sensors considered in Chapter 4. 
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3.8 Size effect on magneto impedance in sandwich films 

The use of thin film technology is more preferable in a number of applications, 

because of compatibility with integrated circuit technology, avoiding wire soldering problems 

and allowing miniaturisation. However, in narrow films, which are important for 

miniaturisation, the impedance change ratio is considerably reduced. This Section concerns 

the effect of the in-plane film size (limited width b ) on the magneto-impedance (MI) 

characteristics in magnetic/metallic multilayers.[23,24] The magnetic flux leakage through the 

conductive layer results in a considerable drop in MI ratio if the film width is less than a 

certain critical value depending on the transverse permeability and the layer thickness. This 

result is similar to that known as an inductive head efficiency.[25,26] 

The problem is approached by a 2-D solution of the Maxwell equations in a 

symmetrical 3-layer film,[24] considering that the magnetic layers are characterised by a 

rotational permeability matrix, a specific form of which being defined by the transverse 

domain structure. The external problem of the field distribution outside the film is replaced by 

approximate boundary conditions at the ftlm edges, which correspond to zero ac fringing flux. 

The magnetic layers are characterised by a permeability matrix defined by the stripe domain 

structure shown in Fig. 3.27. If the edge effect is neglected (approximation of an infinite 

width b ), the ac magnetic flux generated by the current flowing along the film is confined 

within the outer magnetic layers. In the sandwich of a finite width b , the variable flux leaks 

across the inner conductor, as shown in Fig. 3.28. 

primary ac magnetic flux 

magnetic flux leakage 

b I 

... : 

Fig. 3.28 Cross section of a narrow sandwich film showing the flux leakage. 

This effect has been studied in planar inductors showing that it leads to a drop in 

efficiency.[25,26] In the case of MI multilayers, this process eventually results in a 

considerable decrease in the impedance change ratio if the film width is smaller than some 

critical value depending on the transverse permeability, layer thickness and frequency. 
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In the case of a weak skin effect, this result corresponds to that obtained in Ref 23 for a static 

magnetic model. 

The model under consideration is depicted in Fig. 3.2. The film length I is assumed to 

be large, so that the film can be treated as infinite in the z-direction (variable fields are 

functions of x and y only). It is assumed that the magnetic layers have a transverse 

anisotropy (y-axis is an easy direction) and a corresponding stripe domain structure, as shown 

in Fig. 3.27. The magnetisation forms nearly closed loops in they-direction, causing no large 

magnetostatic energy even in the case of very narrow films. If the voltage Vz across the film 

ends is fixed, the impedance Z of the structure is defined as: 

x=d y=b/2 

Z = Vz I j, j = J J p(x,y)dxdy {14) 

x=-d y=-b/2 

where p(x,y) is the current density distribution and d = d1 + d2 . It is convenient to express 

the current density in terms of the vector potential A and the scalar potential rp from the 

Maxwell equations for the electric (e) and magnetic (b) fields: 

j=ae, 

J1 b =rotA, 

1 aA 
e=-gradrp---, 

c at 

b 
41C. 

rot =-J, 
c 

( 15) 

(16) 

where J1 is the permeability matrix for the magnetic layers, and it is equal to the unit in the 

inner non-magnetic layer. 

The variable magnetisation m is a linear function of the magnetic field b induced by 

the current j: m = x b , where x is the susceptibility matrix. For sufficiently high 

frequencies, the main dynamic process is magnetisation rotation. In this case, the form of x is 
determined by the solution of the linearised Landau-Lifshitz equation. After averaging over 

all domains it becomes of a quasi-diagonal form. Then, the permeability matrix, P. = i + 41CX, 

is written as: 

~ ]· 
113 

{17) 
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Considering, that current flows in z-direction, and the permeability matrix j1 has 

quasi-diagonal form ( 17}, the vector potential A and grad Q:~ have only z-compooents. From 

Eqs. (15),(16) the following equation for Az =A is obtained in the inner non-magnetic layer: 

2- 2-a A a A -2- 4Jr -
-+--=-koA--J 
ax2 ay2 c ' 

(18) 

where the symbol "-" designates the inner non-magnetic layer, a 1 is its conductivity, and J 

- -is the initial current density in the inner core. The designations for k0 and o0 have been 

introduced in Eq. (9): wave number and skin-depth in the inner layer, respectively. In the cas~ 

ofthe magnetic layers, Az = A is found from: 

a2 A a2 A 2 4Jr 
172-+77,--=-koA--J, 

ax2 a.l c 

k _l+i 
o- oo , 

(19) 

J = -a2 BQ:~ = a2 Vz az I ' 

where a 2 is the conductivity of magnetic layers, and J is the initial current density in the 

magnetic layers. The designations for k0 and o0 have been introduced in Eq. (6): non­

magnetic wave number and skin-depth in the magnetic layers, respectively. The parameters 

771 and 772 are the corresponding components of the inverse permeability matrix f) = jl- 1 
: 

[ p,l~ . I 2 

0 l [ q, 
17a 

~l 
1J.Ia J.lo 

A • 2 2 

11:3 = -~a (20) '1 = - 'J.I~I J.lo J.lt I J.Lo 772 

0 0 773 

2 2 where J.lo = p 1p 2 - J.la . 

The solutions of the inhomogeneous Helmholtz equations (18),(19) will be found as a 

sum of the general solution of the corresponding homogeneous equation and the particular 

solution of inhomogeneous equation. The homogeneous equations can be solved by the 

separation of variables, A(x,y) = <l>(x)'P(y) and A(x,y) = <i>(x)ifi(y), which yields: 

140 



2-
a ci> + Fii> = o 
ax2 

2-
a 'I' _ jj2\f_J = 0 
ay2 , 

-P2 +F =kl 

Chapter 3 Magneto-impedance matrix in thin films 

a2ci> 2 
112--

2 
+A <b=O 

ax 
B2'P 2 

TJI-- p 'I' =0 
ay2 

- TJtP
2 + TJ2A

2 
= k6 

(21) 

The constants A2 , F and p2, jj2 were chosen with different signs reasoning from the 

physical meaning that the solution is to be oscillating by x, whereas the width effect has to 

decrease exponentially with b ~ oo . The assumption concerning the width effect has been 

proven in Chapter 2, when the boundary and shape effects were taken into account by the 

singular perturbation series. In this series all terms decrease exponentially with a distance 

from the boundary. Moreover, the conclusion on the exponential character of boundary effects 

is a general result for any system, as it is shown in the theory of singular perturbations.[40,41] 

The general solutions of Eq. (21) can be constructed from the following linear 

combinations: 
_._, ...... ...... ........ ........ ---- ,..._, ,..._, 

C1 cos A x ·coshp y+C2 sin A x·sinh P y+C3 cos A x·sinh p y+C4 sin A x-coshp y, (22) 

D1 cosAx·coshP y+ D2 sinAx ·sinh P y+ D3 cosAx ·sinh P y+ D4 sinAx· coshP y. 

In general, the spectrum A2 , F and p2
, jj2 can be discrete, continues or mixed, thus the 

solution is presented as a sum or integral of the linear combinations over all spectrum values. 

Since the width effect can be completely attributed to Eqs. (22), the particular 

solutions of Eqs. ( 18),( 19) can be constructed in the form independent on y : 

- . - 41!" -
C5 cosh ik0x+ C6 smh ik0x ---;::----.!, 

ckl 
(23) 

- - 41!" 
Ds cosh ik0x + D6 sinh ik0x- -

2 
.J, 

ck0 

where k0 = ko I [ti:;. 
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By virtue of the system geometry, the longitudinal electrical field ez must be 

symmetrical with respect to the transformation (x) ~ ( -x): e(x,y) = e( -x,y) for any y. On 

the contrary, the transverse magnetic induction (y-component) must be antisymmetrical with 

respect to the transformation (x,y) ~ ( -x,-y): (Jih)yl = (Jih)yl . Physically this 
x,y -x,-y 

condition mirrors the circulatory character of the ac induced magnetic field inside the film. 

For the film with infinite width this condition has to be replaced by (x) ~ ( -x). The 

symmetry and antisymmetry conditions together with Eq. (15),(16) yield the following 

requirements for Az : 

ez -symmetry: Az (x,y) = Az( -x,y), (24) 

(

A aAz(x,y) aAz(-x,-y) 
Jlh) -antisymmetry: = 

y ax ax 

The conditions of continuity for the tangential components ez, hy and the normal 

magnetic induction (JI h )x =a Az I ay (x-component) imposed at the metallic/magnetic 

interface ( x = ±d1) yield: 

hy-continuity: aA(±di,y)=l'fa aA(±di,y)+l'/2 aA (±d1,y) 
ax ay ax 

(25) 

ez -continuity: A(±d1 ,y) = A(±d~oy) (26) 

(Jih)x -continuity: aA ( ±d1,y) = aA ( ±d1,y) (27) 
ay ay 

The boundary conditions at the external surfaces x = ±d and y = ± b I 2 require certain 

approximations. In the analysis of the magnetic/metallic multilayers used for planar inductors 

it is proven that the fringing ac magnetic flux at the edges is small and can be neglected.[26] 

This implies that they-component of the variable magnetic induction, by= (fth) y = aAz jax, 

averaged over the half thickness turns to zero at y = ±b I 2, viz.: 

0 d 

Jby(x,±b/2)dx= Jby(x,±b/2)dx. (28) 

-d 0 

Boundary condition (28) does not contradict the existence of de fringing flux due to 

transverse stripe domain structure, since in a linear approximation the total magnetisation 

partitions into static and variable parts as mentioned above and the static structure is not 

altered by the ac field. 
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In terms of the vector potential and taking account of symmetry, Eq. (28) becomes: 

A(d,±b/2)= A(O,±b/2) (29) 

The normal magnetic flux through the external surfaces x = ±d is also considered to be 

negligibly small, which is reasonable for d « b . This means that the x-component of the 

magnetic induction is zero at x = ±d, or A( ±d, y) = const. This constant can be found 

considering the relationship between the voltage Vz and the surface value of the electric 

field:[39] 

(+d ) 
_ Vz iw LeJ 

ez - ,y --,-+?·-,- (30) 

where Le is the external inductance depending only on the geometry of the film. Comparing 

Eqs. (30) and (IS) the last boundary condition is obtained: 

+ - L • . A(_d,y)- 1. 
le 

(31) 

Now we are in position to make the main assumption concerning the wave processes 

in the layered thin film considered here, namely, that the wave processes in the sandwich film 

involve the single modes in each layer.[24] These modes can be considered as surface ones. 

The dispersion equation, wrote for each layer, defines the spectrum of "long-living" 

propagating modes inside the layer. The number of modes is always limited and depends on 

the layer thickness, its material parameters and environment.[ 42] (This paper is enclosed in 

Appendix C of Chapter 5) With the infinite increase of the layer thickness this discrete 

spectrum becomes everywhere dense in a certain interval. On the contrary, with the decrease 

of the thickness the spectrum degenerates in a single mode. If the transverse boundary 

conditions (in the y-direction) have a dumping character and hence do not give rise to the 

wave re-scattering, they will not increase the number of modes existing in the bounded layer. 

Therefore, the assumption about the single mode regime is quite reasonable for a thin film 

structure. Also it is supported by the averaged boundary conditions (28),(29) at the film ends 

in the y-direction. 

For the single mode approximation the general solutions of Eq. (18) accounting for 

Eq. (24) can be written as: 

- - - - - - 4tr -
A= C1 cosl x·coshp y+C2 sinl x·sinhP y+Cs coshikox-~J. 

ck0 

(32) 
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General solutions ofEq. (19) in the single mode state accounting for the independence of y 

at x = ±d can be wrote separately for x > 0 and for x < 0 without the accounting Eq. (24). 

For x > 0 it obeys: 

A =sinA(d -x)·(D2sinhP y+D4 coshp y)+ 
(33) 

The dependence on y of the vector potential A implies the existence of normal 

magnetic flux in the inner layer: the ac flux associated with the magnetic layers leaks across 

the inner spacer, shown in Fig. 3.28.) 

On account of the symmetry all equations can be considered only for x > 0 .To comply 

with the boundary conditions (25)-(27) for any y, the wave numbers p and p in Eqs. 

(32),(33) are to be equal: p = p. In other words, a strong coupling between the single modes 

in the layers takes place. This strong correlation results in the common wave number for all 

wave processes in they-direction. The wave numbers X, A, corresponding to the x-direction, 

are found from the coupling dispersion equation: 

- L2 2 L2 ;;-z -z ;;-zL2 \._ -
2q2AAtanAd2 +~,772 A -1,17a(A -k0 )+A Jl3II Ad2 Jllln2Ad1 =0 (34) 

2 2 (;;-z -2) A 112 = ko + .1 - ko 111 

Calculating the current distribution in the film, the impedance Z can be found from 

equation (I). Neglecting the part associated with the external inductance, Z is written in the 

form 

Z-R Ji(x,,x2)(vx1+x2) 
- de x 2 {jj (xl>x2)-l)g(b) + Jz(xl>x2)' 

where Rdc =I I 2b(a1d1 + a 1d1) is the de resistance, 

f 1 {x1 ,x2 )= coshx1 coshx2 + vsinhx1 sinhx2, 

fz (x1, x2) = cosh x1 sinh x2 + v sinh x1 cosh x2, 
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Equation (34) is solved numerically by a standard iteration procedure. Analysing equations 

(35)-(38), it is seen that the effect of the film width is described by the function g(b) . For 

ftb /2 >> 1, it tends to be zero and Eq. (35) reduces to that known for an infinite in the y­

direction film.[4] It means that the parameter b* = 21 fJ plays the role of a critical width: for 

b < b * all the film dimensions b , d 1 , d2 influence the value of the impedance. Figure 3.29 

shows the parameter b * I d as a function of frequency for d = 0.5 Jllrl and d = 0.1 J.1lrl 

( d1 = d2 ). With increasing frequency, b * decreases stronger for a thicker film. In the low 

frequency Limit (x1,x2 << 1), b* = Jd1d2 / 112 . This result can be obtained by linearising Eq. 

(34) with the additional condition that the transverse permeability is sufficiently large 

(tli,rJ2 ,17a << 1), which corresponds to the results of Ref. 23 obtained in a similar 

approximation. 

20 

H =H 
ex K 

16 

12 --2d=0.2 !llTl 
"0 .- ··········· 2d=1 ~m 
.Q 

8 

4 
······ 

-- ············-·· 

0 
0 300 600 900 

f. MHz 

Fig. 3.29 Critical parameter b *Id as a function of frequency. The calculation uses 

the following parameters: 41tM 0 = 6000 G, H K = 9 Oe, y = 2.0 ·10 7 (radls)/Oe, -r = 0.2. 

To avoid the divergence of it at Hex = H K, OJ = 0 a small an isotropy deviation of 5° 
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Typical parameters for structures of interest are d1 ~ d2 ~ 0.1-0.5 J.1ll1, b = 10-50 J.1ll1 , 

11 7]2 ~ 103 , for which b* ~ 3 -15 J.1ll1 and is comparable to the half-width, which means that 

the size effects can not be neglected. 

Figure 3.30 shows the plots of tJ. I Z versus frequency with the film width b as a 

parameter for d = 0.5 J.1ll1 and d = 0.1 J.1ll1 ( d1 = d2 ). The impedance change ratio is defined 

as tJ. I Z = IZ(H K) - Z(O)IIIZ(O)I·lOO%. 
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Fig. 3.30 Plots of the M! ratio vs. frequency with the film width as a parameter 

for different film thicknesses. The parameters are the same as those used in Fig. 3.29. 
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The function IZCH ex )I has a maximum at Hex ~ H K, associated with that for the 

parameter 11 .,2 . Therefore, the MI ratio introduced gives the maximum impedance change. 

For a wide film ( b >I 00 JD1l for d = 0.5 JD1l and b > 10 JD1l for d = 0.1 JD1l) the results are 

very close to those obtained for an infinite in-plane film. With decreasing h , the MI ratio 

decreases substantially: for example, at 150 MHz for 100 JlTn-wide films ~I Z reaches 

more than 300% at a frequency of, whereas its value is only about 70% for b = 10 JD1l at this 

• frequency. The decrease in MI is stronger at lower frequencies where the critical width b is 

larger. In the example above, ~I Z recovers up to 200% at a frequency of 900 MHz. As a 

result, the impedance plots do not show flat regions for small values of b . 

Summarising, we can conclude that the 2-D analysis of Ml in magnetic/metallic 

multilayers becomes important when the film width b is smaller than a certain critical value 

depending on the permeability, layer thickness and frequency. Physically, the effect of the in­

plane dimensions corresponds to the variable flux leakage across the inner conductor, 

resulting in a decrease in the transverse flux in the magnetic layers, and eventually, a decrease 

in the MI ratio. 
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4.0 General requirements for magnetic sensors 

Recent developments in the fields of computer periphemls, information apparatus, 

mechatronics such as: automobiles and industrial robots, power electronics, medical 

electronics, and industrial measurements require new high performance micro magnetic 

sensors to detect localised weak magnetic flux. General requisite conditions for the 

commercial sensors are as follows:[I] 

I) Miniature size of less than I mm is needed to detect localized weak magnetic flux 

such as the surface flux of magnetic recorded media and rotary encoder ring magnets. 

2) Sensitivity or resolution of flux detection should be 10-7
- 10-10 T to allow precise non­

contact sensing. 

3) A quick response with signal frequencies from zero to 10 MHz is needed to detect 

surface flux change of a high density hard disk memory. 

4) High temperature stability and maximum operating temperature in the range from -50 

to + 180 °C are needed for use in the commercial devices. 

5) Small power consumption of less than 10 mW, which makes it possible to produce 

portable microsensors working with a self-contained power supply. 

In this Section we shall consider several types of the MI sensors, which based on different 

principles. A great many of the physical effects display dependence on the external factors, 

such, for example, as electromagnetic fields. Thus, a special type of a sensor can be 

considered as a certain projection using one or several physical principles. Conventional 

sensors such as: search-coil magnetometer (inductive coil), Hall's sensor, magneto-resistive 

(MR) and giant magneto-resistive (GMR) sensors, spin-tunnelling sensor, and flux-gate 

sensor can not satisfy at once all conditions I)-5) cited above. Therefore, the choice of a 

physical principle is determined by a specific target. We would like to discuss the main 

factors, which allow the classification of the sensors of the various types. Such an inputted 

"coordinate system" shall clarify many aspects of MI sensors and their position in respect to 

the other sensors. We shall demonstrate that the MI sensor presents a complicated variety of 

these factors, combining attributes of other sensors. This complicated behaviour gives an 

extremely rich palette of the effects, making it attractive and versatile for sensor applications. 

The field sensitivity (0/o/Oe) has to be calculated as the averaged field sensitivity at the 

operation point of the sensor, where it has the maximum sensitivity with a linear output. As 

has been shown in Chapters 2 and 3, in the MI sensors the operation point is located between 

zero and an isotropy fields. 
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4.1 SDUID and maximal field resolution 

The detectable field is one of the mrun sensor parruneters. The superconducting 

quantum interference device (SQUID) occupies the leading position with the field resolution 

of about 10-15 -10-14 T.[2] The great sensitivity of the SQUID devices is associated with 

measuring changes in magnetic field associated with one flux quantum, as shown in Fig. 4.1. 

If a constant biasing current is maintained in the SQUID device, the measured voltage 

oscillates with the changes in phase at the two junctions, which depends upon the change in 

the magnetic flux. Counting the oscillations allows you to evaluate the flux change which has 

occurred. 

Magnetic field 

Fig. 4.1 SDUID sensing element with two Josephson functions (after J. Clarke [2]). 

The device may be configured as a magnetometer to detect incredibly small magnetic 

field- small enough to measure the magnetic fields in living organisms. For example, the 

heart and brain magnetic fields are of about w -to T and 10-13 T, respectively. SQUID' s have 

been used to measure the magnetic fields in mouse brains to test whether there might be 

enough magnetism to attribute their navigational ability to an internal compass. However, 

SQUID needs a very low operating temperature that makes it difficult to use for a wide range 

of commercial applications. 
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Some exotic sensors, for example, the optically pumped or nuclear precesswn 

magnetometers are quite complicated in realisation and can be used only for specific targets. 

So, we shall concentrate on the main row of the sensors most frequently discussed in the 

literature. In spite of accessibility, these sensors may demonstrate excellent qualities at low 

cost such as: a wide range of the detectable fields, high stability in a large temperature range, 

rather small dimensions and low power consumption. Sensitivity most often con:fljcts with 

other parameters. Then, the achievement of consensus between all the requirements becomes 

the main problem of the overall sensor design. 

4.2 Inductive coil sensor 

One of the simplest magnetic sensors is a search-coil magnetometer (inductive coil 

sensor), shown in Fig. 4.2. 

Fig. 4.2 Search-coil magnetometer based on Faraday's law of induction. 

The space inside the coil is occupied by a material with a high permeability to concentrate the 

surrounding magnetic field and increase the flux density, and hence, to improve the overall 

sensitivity. The voltage Vc measured in the coil is defined by Faraday' s law of induction (in 

the CGS system ofuruts): 

vc =-~J( ~s)a~;x, (1) 

where 11 is the relative permeability of core, N is the number of turns, S is the core cross­

section, Hex is the sensed magnetic field, and c is the velocity oflight. 
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As it immediately follows from Eq. (1), the method allows the detection of only an ac external 

magnetic field H exCt) . The voltage response Vc is directly proportional to the frequency of 

Hex and the number of the coil turns. This principle strictly limits the response speed and 

possibility to miniaturise. Nevertheless, the sensor can be made very sensitive, and hence, 

successfully used if the size and response speed are not critical parameters. For example, a 

sensor made of a multiple-turn coil on a ferromagnetic ring has been employed by PBT LTD 

(Power Break Technology LTD, UK) for a remote control of a current leakage in the 

household electrical devices, where it detects the current deference (caused by a leakage) of 

the order of a few mA. Some commercial search-coil magnetometers provide the field 

resolution of about 10-9 T. 

4.3 Hall's sensors 

The Hall sensor ("Hall ' s cross") is shown in Fig. 4.3 . When a magnetic field Hex IS 

applied to a conducting material carrying an electrical current, there is a transverse force 

(known as the Lorentz force) on the charge carrier.[3) The Lorentz force, which is 

perpendicular to both the electric current direction and the direction of the applied magnetic 

field, deflects the path of the electric current passing through a sample of the material. This 

perpendicular motion of the current carriers results in the cross voltage Vuau · 

/ / 
/ / 

// l --------~~r~------ -
,~~~------------------~~~-

/ / 

Vn 

Fig. 4.3 Hall 's sensor. The Hall voltage V Hall as a f unction of the applied magnetic field 

Hex is measured for current ( I D (Hex) = cons!) or voltage (VD (Hex ) = cons!) drive_ 
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The relationship between the Hall effect (the potential difference V Hall) and the 

passing distance b of charge carrier is to be given by (in the CGS system of units): 

V -w/DHex 
Hall- b , (2) 

where ID is the de current passing along the sheet, 9l =AI cnsq is the Hall constant, q is the 

charge (electron or hole), ns is the concentration of current carrier, A is a dimensionless 

factor of the order of unity depending on the statistic character of the velocity distribution of 

the current carriers, and c is the velocity of light. The sign of 9l coincides with that for the 

current carriers. If the two types of the current carriers are observed in a semiconductor 

(electrons and holes) then the total type of conductivity can be determined from the sign of 

9l. 

The Hall effect is very small in metallic conductors, but some semiconductors give a 

much larger effect.[4-6] Then, in work [6] a low-noise scanning Hall probe microscope 

having unprecedented magnetic field has been developed for studying flux profiles at 

surfaces. A submicron Hall probe manufactured in a GaAs/AIGaAs two-dimensional electron 

gas is scanned over the sample to measure the surface magnetic fields using conventional 

scanning tunneling microscopy positioning techniques. The magnetic field resolution of the 

Hall probe was 3.8x 10-6 T/ .fHz at 300 K and 2.9x w-s Tl .fHz at 77 K (including the 

amplifier noise). 

Another class of magnetic sensor based on an integrated combination of Hall element 

and ferro-magnetic structure has been proposed to increase the field resolution.[7,8] The idea 

of combining a sensor with ferromagnetic structures came to many researchers in the past.[9] 

In order to amplify the magnetic field "seen" by a sensor element, it is placed in the air gap 

between two long ferromagnetic specimens. In this way they considerably increased the 

effective sensitivity and the resolution of the sensor element. The operation of this device is 

based on the following well-known effect: if a ferromagnetic rod is placed in a magnetic field 

parallel with the long axes of the rod, the rod tends to collect the magnetic field lines in itself: 

it operates as a magnetic flux concentrator. The hybrid Hall sensor with the magnetic flux 

concentrator can measure quasistatic magnetic fields down to milli-gauss range (10-7 T) at 

room temperature. The idea of the hybrid sensor is still wailing its application in GM! 

sensors. 
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4.4 MR and GMR sensors 

The magneto-resistive effect (MR) was actually discovered way back in 1857 by 

British scientist Lord Kelvin. MR. material is typically a nickel-iron alloy that shows higher 

electrical resistance when the current flow is parallel to the magnetic orientation. The 

resistance drops back to the initial value when the magnetic field is removed. Typical MR. 

sensor element is shown in Fig. 4.4. 

Fig. 4.4 Schematic diagram of a thin-film magneto-resistor showing the principle directions. 

ID is the de current drive and H b is the de bias field. 

In the general case, the easy axis can be deflected from the longitudinal direction 

(current flow) on some angle a as it occurs in a ferromagnetic wire with a helical anisotropy 

considered in Chapter 2. The equilibrium angle () of the magnetisation M 0 is found from 

energy minimisation (see Eq. (2.47)). The relationship between the resistance change and the 

external magnetic field can be given by: 

R = R0 +M cos 2 
( ()) . (3) 

The MR. sensors have the usual advantages of a thin film sensor: miniature size, small 

power consumption, and metal-film technology. The resistance change can measure up 2%. 

However, to initiate this change a quite strong field is required (tens Oersted), and so the field 

sensitivity "%/Oe" remains small to detect very weak field. 

The giant magneto-resistive effect (GMR), discovered in 1988,[10,11] is not just a 

scaled version of MR. GMR is actually a quantum effect. The simplest GMR structure is 

shown in Fig. 4.5. The free ferromagnetic layer forms the sensing element and usually 

consists ofNiFe or NiFe/CoFe or NiFe/Co bilayer. 
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The pinned ferromagnetic layer is coupled by exchange to an antiferromagnetic layer (FeMn, 

NiO, Mnlr, MnNi, MnPt, MnRb, TbCo) or an antiferromagnetically coupled multilayer. Free 

and pinned layer easy axes can be either parallel or orthogonal (in Fig. 4.5 they are parallel). 

The GMR element is extremely thin, and the dimensions will become even smaller in the 

future. 

spacer 
Hb 

Fig. 4.5 Schematic drawing of GMR sensor element ("spin-valve"). M free is the free 

ferromagnetic layer with the longitudinal an isotropy, and M pinned is the pinned 

ferromagnetic layer with the transverse anisotropy. ID is the de current drive. 

Free and pinned layer easy axes are parallel. 

The GMR sensors utilise the quantum nature of electrons that have two spin states, up 

and down. The so-called "spin valve" head structure incorporates a design where one 

magnetic film is pinned (magnetic orientation is ftxed) and the second sensor film has a 

variable (free) orientation. These films are placed close together so that electrons of either 

spin direction can move back and forth. Changes in the external magnetic field orientation 

cause magnetic rotation of the sensor film 's orientation. This changing magnetic orientation 

alters the electrical resistance of the sensor array. Low resistance occurs when the sensor and 

pinned films are magnetically orientated in the same direction because electrons with parallel 

spin direction move freely in both films. Higher resistance occurs when magnetic orientations 

of the pinned and sensor films are opposite because the electron movement of either spin 

direction is hampered by one or the other films . This mechanism is demonstrated in Figs 

4.6(a,b). 
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Fig. 4.6 GMR basics in (a) and spin-valve resistance vs. external magnetic field in (b). 

The field sensitivity in (b) does not exceed 0. 05Yo/Oe. 

The resistance of the sensing layer is also changed by the MR effect, however the GMR effect 

is dominant. The field dependence of the spin-valve resistance is given by the following 

equation: 

R = R0 + M(l-cos(O 1-Op)), (4) 

where () f and () P are the angles of the magnetisation of the free and pinned layers with 

respect to the current flow. 

While older MR heads typically exhibit a resistance change when passing from one 

magnetic polarity to another of about 2%, for GMR heads this is anywhere from 5% to 8%. 
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4.5 Magneto-resistive spin tunnelling sensors 

The magneto-resistive spin-tunnelling (MRST) effect occurs in sandwiched thin film 

FMID/FM structures, where FM being ferromagnetic films (Fe, Co, Ni and their alloy) and D 

being dielectric layer (Ah03 or Si02).[12,13] As well as for a spin-valve structure, one of the 

ferromagnetic layers is the free layer, and the other is the pinned layer. The main difference 

between the spin valve and spin tunnelling lies in the de current drive: in the spin tunneling it 

is applied perpendicularly to the layers. This current transport depends on the spin 

polarization at the Fermi level, thus the mutual magnetisation directions of the two 

ferromagnetic layers. 

The MRST structures have many advantages over the spin valve MR. structures, 

namely: the enhanced sensitivity, thicker magnetic nanolayers that simplifies growth of films 

with different magnetic properties, the perpendicular current flow that provides high 

resistivity, low magnitudes of operating current and power consumption. The extreme 

sensitivity of this polarized tunnel current to the FMID interface allows one to study the 

magnetism at the monolayer level. In particular, FMID/FM tunnelling has shown a large 

MRST effect at room temperature reaching 15-20% in a field less than 20 mT. [ 12] This 

combined with the non-volatile memory effect seen in such a threelayer system is ideally 

suited as a magnetic random access memory (MRAM) element, and as read head sensors 

capable of achieving magnetic storage densities greater than 100 Gb/in2
. Magnetic tunnel 

junctions, down to fractions of a square micron in area, with good characteristics at ambient 

conditions have been successfully fabricated, showing their potential for nanotechnological 

storage applications. From the physics point of view, there are some unique properties for 

these junctions. For example, despite the density of states dependence of the tunnel current, 

intrinsically there is significant dependence of MRST on de bias. The bias dependence has 

only been partially understood, and has been attributed to magnetic excitations as seen in 

inelastic tunnelling measurements. 

Spin transport through a metal or semiconductor is another hotly investigated 

topic.[l5] For example, the spin tunnelling studies through an interfacial normal metal layer 

adjacent to the barrier has shown rapid decay as well as features attributable to quantum well 

states. The promising half-metal ferromagnetic materials, with their possible 100% spm 

polarized conduction electrons, are ideal candidates to achieve even bigger effects. 
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4.6 Fluxgate sensors 

In this Section we would like to consider in more detail the different types of fluxgate 

sensors [ 16-19] since their geometries coincide in many respects with the different 

measurement schemes of the impedance components described in Section 2.7.1. Nevertheless, 

the physical principles account for Ml and fluxgate sensors are completely different. 

The fluxgate principle is based on the detection of the higher harmonics from the non­

linear response in ferromagnetic materials with the non-linear B-H curve. The amplitude of 

the higher harmonics turns out to be proportional to the external magnetic field Hex . There 

are two types of the fluxgate sensors: parallel-gated and orthogonal-gated, as shown in Fig. 

4.7 and Fig. 4.8, respectively.[16] In the parallel fluxgate a ferromagnetic core (or cores) with 

the axial magnetisation is driven periodically into saturation by the low frequency 

longitudinal magnetic field H excit induced by the excitation coil. The pickup coil located on 

the same core measures the changes of the magnetic flux within the core. The sensor signal 

shows higher harmonics of the excitation frequency due to the non-linear behaviour of the 

ferromagnetic material. The even harmonics (2f, 4f ... ) especially depend on the magnetic 

field parallel to the axis of the core. When the parallel fluxgate contains two opposite 

magnetized cores (see Fig. 4. 7(b )), the output signal exists only in the presence of H ex . Such 

a balanced sensor is mostly used in practice including modem planar fluxgates.[17-l9] 

(a) Single core 

Pickup coil 

Excitation coil 

(b) Double core 

"Left-turn, 
excitation coil 

Vexcit "Right-turn" 
excitation coil 

Fig. 4.7 Parallel-gated jluxgates with single core in (a) and double core in (b). 
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In the orthogonal fluxgate a ferromagnetic core with the circumferential magnetisation is 

driven periodically into saturation by the low frequency excitation current J, which induces 

circular magnetic field. The signal is registered in the pickup coil located on the same core. 

Pickup coil 
magnetisation 

Fig. 4.8 Orthogonal-gated fluxgate. 

Here we shall consider only the parallel fluxgate with two cores, because it is most widely 

used in practice.[17-19] The two cores Cor l and Cor2 are exposed to the excitation 

longitudinal field H excu(t) and to the external field Hex. For Hex = 0 a common operating 

point P = H excil (t) describes the magnetic state of both cores, the induction in each of them 

being B and the net induction through a common pickup coil being zero, as B is opposed in 

the two cores. A small external longitudinal field Hex splits the operating point P into two 

points Pl = (Hexcit- Hex) and P2 = (Hexcit +Hex) representing cores Cor] and Cor2 

respectively. For a small Hex the resulting inductive field through the pickup coil can be 

given by the following equation: 

M3 = B(Pl)- B(P2) = 2H ex dB 
dH 

(5) 

The output signal in the pickup coil is defined by Faraday' s law, just as it has been done in 

Eq. (I) for the inductive coil sensor: 
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VC =-(NS)d(MJ) = 
c dt 

= _ 2Hex(NS)!!_( dB) = _ 2Hex(NS)8Hexcit (d2B J 
c dt dH H=H . c 8t d 2H 

e:rcll H = H excil 

, (6) 

where N is the number of turns in the pickup coil, S is the total cross-section area of both 

cores, H excit = H 0 sin( w t) is the periodical excitation magnetic field, and c is the velocity of 

light. ln the absence of a hysteresis the non-linear function B(H) can be decomposed in the 

following power series: 

(7) 

Substituting Eq. (7) into Eq. (6) and replacing H by Hexcil =H0 sin(wt) we obtain the 

following representation for the second harmonic We h :[16] 

[ 
2 4 n [ n - I ] 11-1 J . Wch = NSwHex 3a3H0 +5a5H0 + ... + ( J) a11 H0 sm(2wt). 

2 ll- (n-3)/2 
(8) 

The Eq. (8) is valid for pure sinusoidal excitation, perfect balance between the two cores and 

no hysteresis. By using a similar technique all these factors can be taken into account. 

The fluxgate sensors are most sensitive in the family of commercial sensors with the 

field resolution of about I 0"12 T. This provides for their wide use in the sensing of very weak 

magnetic field. The modern PCB-like and thin film technologies allow the sensor with rather 

small dimension.[20,21] However, the miniature dimensions and high speed response for 

fluxgate sensors lead to a substantial decrease in sensitivity. ln addition, they require a quite 

large power consumption due to the magnetisation reversal. 

4. 7 Position of MI sensor in the family of magnetic sensors 

Consideration of sensors of different types allowed us to bring to light the main 

physical principles used there. The quantities, which are exposed to the external magnetic 

field, are the drive magnetic field or flux, and current. By these features the sensors can be 

divided into two main groups: "inductive" and "resistive". In turn, the drive field and current 

can be alternating or constant. Along with this, the anisotropic properties of the magnetic 

medium and multilayer structures are widely used in magnetic sensors. The search-coil sensor 

is an ac inductive sensor, where the magnetic core may be isotropic or anisotropic. 
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The Hall sensor also should be attributed to a de inductive isotropic sensor, since the Hall 

voltage is induced by the de external magnetic field. The MR, GMR and MRST sensors are 

de anisotropic resistive sensors. 

The MI effect combines a number of features used in other sensors. The different 

components of the field dependent impedance matrix ~ exhibit the resistive or inductive 

effects. The longitudinal diagonal component ~zz defines the complex resistance of the 

ferromagnetic sample, when it is excited by a high frequency current. Therefore ~ zz exhibits a 

purely resistive effect. The circular diagonal component ~fi'IP (the transverse diagonal 

component ~ Y.Y in the case of MI film) can also be considered as the complex resistance but 

for the circular eddy currents induced in an MI sample by the ac longitudinal magnetic field. 

On the other hand, it is also an inductive coefficient, which relates the voltage induced in the 

secondary coil to the ac magnetic flux from the primary coil. Thus, it has a double nature. The 

diagonal components of the impedance matrix are present in magnetic and non-magnetic 

conductors. The off-diagonal components exhibit the inductive effect, when a certain 

polarisation of the excitation field is transformed into another one. These effects are absent in 

a non-magnetic sample but they can be present both in conducting and non-conducting 

magnetic samples. In our approach all resistive and inductive effects are unified in the total 

impedance matrix ~, which expresses the generalised Ohm's law, as has been explained in 

Chapters 2 and 3. The anisotropy plays a key role in forming the MI field dependences and 

their modifications by a de bias field. A combination of anisotropy, bias field, different ac 

excitation and measuring methods results in various MI field dependences. Such vast options 

make the MI effect very attractive for multifunctional applications. 

An MI thin film can have a multilayer structure, which looks like GMR or MRST 

structures. They coincide in the case of the magnetic anisotropy in the free layer (in MI 

multilayer structures all magnetic layers are "free"). However, the physical meaning and 

function of multilayer structures in MI and GMRJMRST are absolutely different. In the case 

of MI, the non-magnetic high conducting spacer is used to reduce the de resistance of the 

multilayer structure and thereby to increase the normalised MI effect with respect to the de 

level (zero frequency). Whereas in the case ofGMRJMRST, the conducting spacer defmes the 

quantum-tunnelling properties of the polarised electrons, and hence can be chosen extremely 

thin. 
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Now we would like to discuss the fundamental difference between MI and fluxgate 

sensors. In spite of the fact that the measurement schemes for parallel and orthogonal 

fluxgates are similar to those for measurements of t;~prp and t;rpz respectively (see Fig. 

2.16(b,d)), the physical mechanisms involved are completely different. In the case of the MI 

effect, a linear response is measured in an anisotropic magnetic system. A small ac excitation 

induces the magnetisation precession and domain wall displacements near the equilibrium 

state established by the magnetic anisotropy, de external magnetic field Hex and de bias field 

H b applied in the orthogonal way. The relationship between the induced ac magnetisation 

and the ac magnetic field can be expressed by a permeability matrix, which depends on the 

equilibrium state and determines the field dependence of the surface impedance matrix. 

Contrariwise, in the case of the fluxgate mechanism a quite large ac excitation (current 

or field) realises the magnetisation reversal process in a ferromagnetic material with the non­

linear B-H curve. The non-linear response is measured in the pickup coil, the amplitude of the 

higher harmonics turns out to be proportional to the external magnetic field Hex. The 

magnetisation reversal is due mainly to domain wall irreversible processes and requires 

relatively low frequencies (less then lO KHz). As a result, the sensitivity of fluxgate sensors 

rapidly degrades with increasing frequency. 

Primary investigations of some MI sensors have been carried out by Professor Mohri's 

research group in the University ofNagoya, Japan.[1,22-25] For practical use, an MI element 

is incorporated into self oscillation circuits. Typical examples are: Colpitts oscillator or C­

MOS IC multivibrator. The best performances of sensitive MI sensors show a field resolution 

of about w-6 Oe (1 o-10 T) for the full scale of± 1.5-2 Oe even with a sensor head length of 

about l mm. The cut-off frequency of the detected field is about 1/10 of the circuit oscillation 

frequency /o ( 100 kHz - l MHz for fo of 1-10 M.Hz, respectively). In the next Sections we 

will consider practical schemes of the MI sensors. Recently, Aichi Steel LTD (Japan) has 

started mass-production of portable earth's-field sensors based on the MI effect for cellar 

communication. 
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4.8 MI sensor with a Colpitts oscillator 

Figure 4.9 shows a typical MI sensor design, in which an Ml element (wire or thin 

film) is connected to a Colpitts oscillator - high frequency self-oscillation circuit. The MI 

element and two capacitors C1,2 constitute a resonant circuit whose oscillation is maintained 

by the transistor. The oscillation frequency fres depends on the de external magnetic field 

Hex and is of the fonn: 

(9) 

where L(Hex) is the inductance ofthe MI element (Z(Hex)=R(Hex)+i(t)L(Hex)). Thus, 

the amplitude of ac current flowing through the MI element will strongly depend on Hex 

because the osciJlations occur near the resonance. The amplitude-modulated voltage due to 

Hex is detected through a diode D and low frequency filter (R2-C3). Such a circuit can give 

a several times more sensitive output, than can the classical characteristics obtained at the 

condition of a constant current amplitude. However, the circuit does not have a high stability 

due to the resonance regime. 

Tr 

Rl 

v de MI element D 

R2 

C2 

~.J~ C3 I V out 

Low frequency 
filter 

Fig. 4.9 Principle Ml sensor design with a Colpitis oscillator. 

On the other hand, the stability can be improved with other circuits, namely, C-MOS 

transistor multivibrator producing sharp voltage pulses at the MI element. Such a sensor 

scheme is considered in the next Section. 
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4.9 MI sensor with a C-MOS IC multivibrator 

The circuit with a C-MOS IC multivibrator produces a sharp-pulsed current of 

duration 10-50 ns. Pulse excitation is preferred over sinusoidal excitation for several reasons, 

which include: simplicity of electronic design, low cost components, and high stability since 

the C-MOS multivibrator oscillation frequency almost does not depend on the impedance 

characteristics of the MI elements. Power consumption of this circuit is also small (lOmW). In 

addition, such pulsed current involves both high frequency (20-100 MHz) and low (quasi-de) 

harmonics. Therefore, it can be ideally used for the asymmetrical MI requiring de or ac bias. 

A circuit design shown in Fig. 4.10 was developed in the Centre for Research in 

Information Storage Technology (CRIST, University of Plymouth). The 74AC04 is a C-MOS 

TTL device used for its high-speed switching and low current capability. Ul:A and Ul:B are 

configured as a multi vibrator with capacitor Cl and resistor R2 forming the timing network to 

give an approximate 250KHz square wave pulse generator. The output of the multivibrator is 

fed to a differentiator circuit comprising RI and C2 that causes the leading edge of the square 

wave to become a positive going 50 ns pulse. This pulse is applied to Ul:C to improve its 

shape and applied directly to the MI element. The power consumption of the above circuit is 

minimal due to the drive for the MI element being a pulse of 50 ns at a pulse repetition rate of 

8.5 ns achieving a l/l65 of the maximum reduction in power. The impedance of the MI 

element (wire or thin film) is connected between points "I" and "3" of the J2 connector, and 

its impedance is changed by an external magnetic field Hex causing a change in the 

amplitude of the positive going pulse. The resistance R 12 is chosen much bigger then the 

absolute value of MI impedance (at any Hex) to keep excitation pulse-current constant. A 

Schottky high-speed detector D I removes the negative half cycle caused by ringing of the MI 

and charges up C3 via R3 (lOO Hz low pass filter) to give a DC voltage proportional to the 

applied magnetic field. Amplification of the DC is achieved by U3 (AD524) with a zero offset 

RVI, stabilised by D2, current set by RII and decoupled by C6 to set the DC level to zero. 

U3 (AD524) is used to prove the system and would not be used in a working concern. The 

final DC output signal is taken from the J3 connector. It is envisaged that the basic 

components of the system would be a pulse generator, rectifier, and filter. 

Often the MI field dependence has low sensitivity in the vicinity of zero field. Then, to 

achieve a maximum field sensitivity the operating point should be shifted from zero value by 

an additional de bias field along the sample. In this case the electronic scheme will include an 

additional bias coil. 
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Fig. 4.10 Principle Ml sensor electronics design with a C-MOS IC multivibrator. 

Ml element is connected between the points "1 " and "2 " of the J2 connector. 
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4.10 Sensors using the antisymmetrical and asymmetrical MI effects 

Typical MI sensors considered in Sections 4.8 and 4.9 are based on diagonal 

impedance ( t;zz) characteristics. In this case, a biasing technique is needed to set properly the 

operational region and realise linear sensing. In a number of recent works,[24,25] an output 

voltage is taken as a coil voltage, therefore, the off-diagonal impedance characteristics are 

used. In this case, the circuit design can be simplified and sensor parameters such as linearity 

and temperature stability are improved. 

The antisymmetrical off-diagonal impedance studied in Chapters 2 and 3 (for more 

details see Sections 2.7.2, 2.8 and 3.7) can be successfully employed for the creation of a 

sensitive linear magnetic sensor. Several electronic schemes using a MI sensor with off­

diagonal impedance in a wire have been proposed.[24] Here, we consider a circuit where the 

off-diagonal response ( r; ql z or r; yz ) is taken from the pick -up coil ( Vc) and a single M1 

element (wire or thin film) is used. The principle electronic circuit is shown in Fig. 4.11, and 

includes: C-MOS IC multivibrator with invertors (Q), differential circuit (C1-Rl), analogous 

synchronised switch, rectifier (R2-C2), differential amplifier, and negative feed-back. The C­

MOS IC multivibrator (with invertors Q) produces smoothed rectangular pulses at a 

frequency of a few hundred kilohertz. After the differential circuit (Cl-R1), the pulse IS 

sharpened and so high frequency harmonics exist in its spectrum. 

feed-back coil 
pick-up coil 

MI sample 

Fig. 4.11 Principle electronic scheme using the off-diagonal impedance for a linear sensor. 
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Pulse excitation is preferred over sinusoidal excitation for several reasons, these include: 

simplicity of electronic design, low cost components and high stability. In addition, the pulse 

spectrum contains a de offset (zero harmonic) that provides a de bias required for the 

existence of the off-diagonal response, as it has been discussed in Sections 2.72 and 3.7. Thus, 

the pulse circuit produces both the high-frequency excitation and de bias. The ac off-diagonal 

pulsed response Vc is taken from the pick-up coil using the analogous synchronised switch 

and converted by the rectifier (R2-C2). The synchronous rectification suppresses noise that 

appears during the rectification time and produces a quasi-de voltage of value, which is 

proportional to the original pulse amplitude. After this, the rectified voltage is amplified. This 

amplified signal is characterised by the amplitude and sign, both of which are sensitive to the 

de external magnetic field Hex since the off-diagonal response is used. Thus, a near-linear 

output voltage signal can be obtained without use of negative feed-back, which, however, can 

be added to further improve the linearity (feed-back coil is shown in Fig. 4.11 ). The circuit 

proposed in work [24] uses two Ml elements and two analogous switches to create a balanced 

circuit with very high temperature stability. 

Another method for obtaining a linear response is provided by so-called mixed 

excitation, the principle of which was considered in Sections 2.7.2 and 2.8 (see Fig. 2.21) for 

a wire with the circumferential anisotropy excited by both the ac longitudinal current j and 

the ac longitudinal magnetic field hex .[26,27] The same result is obtained for the film with 

transverse anisotropy and the coil round it (for example, planar microcoil described in Section 

3.6). The excitation can be pulsed or sinusoidal. For the sinusoidal excitation an additional de 

bias current is required to make off-diagonal response possible. The field hex can be induced 

by a coil mounted around the sample and connected in series. The output signal Vz is 

measured across the MI sample (see Fig. 2.21 ). The ac response is formed by the sum of the 

diagonal ~zz(Hex) and off-diagonal ~zy(Hex) (or ~ztp(Hex)) impedances with 

corresponding coefficients. Since ~zz(Hex) and ~zy(Hex) (or ~ztp(Hex)) are symmetrical 

and antisymmetrical, respectively, the field dependence of the output voltage module 

I Vz (Hex) I is asymmetrical. The principle scheme of a linear sensor is shown in Fig. 4.12. 
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~~RI 
~Cl 

MI sample 

microcoil 

VI 

D 

Fig. 4.12 Electronic scheme using the mixed excitation for a linear sensor. 

The signals Vl(Hex) and V2(HexL taken from the two MI sensors with reverse 

asymmetries, are detected in a differential sense to produce the total linear field response 

V dif(Hex) , as shown in Fig. 4.13.[27] Therefore, no additional bias field to produce a linear 

output response is required in this case as weJJ. Theoretical investigation of the mixed 

excitation in a sandwich film has been carried in work [28]. 

.... ·-------- -·-

Differential 
amplifier -20 -10 0 

H (Oe) 
10 20 

ex 

Fig. 4.13 Principle of obtaining near-linear field dependence in the differential scheme. 

The signals Vl(H ex) and V2(Hex ), taken from the two MI sensors with reverse asymmetries, 

are detected in a differential amplifier to produce a final linear field response V dij (H ex ). 
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Also, the asymmetrical signals Vl(H ex) and V2(H ex) can be obtained from the longitudinal 

impedance in wires with helical anisotropy (see Sections 2.6 and 2.7.3) or sandwich films 

with crossed anisotropy (see Section 3.5). For such sensors no additional coil (ac bias) is 

needed, but a de bias current must be applied to produce asymmetry in the field dependence 

of an individual element. 
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5.0 Field-dependent permittivity of composite containing the MI wire inclusions 

Up to the present, the GMI effect has been investigated for the use in highly sensitive 

magnetic sensors, however, the applications of this effect can be much wider.[ I] Typically, 

MI sensors are designed for MHz frequencies,[2] which is dictated by the related electronics. 

On the other hand, the field sensitivity of the surface impedance in wires with a 

circumferential anisotropy remains very high even at the GHz range. In this Chapter, a new 

type of the composite material is advanced, the effective microwave permittivity of which can 

be controlled by the static magnetic field Hex. [l] Short pieces of ferromagnetic microwires 

[3-5] are proposed as filling inclusions. They interact with the electromagnetic radiation 

similar to microantennas. Then, the wire length I and dielectric matrix permittivity & define 

the operating frequency range with the characteristic frequency related to the antenna 

resonance. In the vicinity of the antenna resonance, even small variations in the surface 

impedance result in a considerable change in the current density distribution at the wire and, 

consequently, in the induced dipole moment of the elementary wire-scatterer. Thus, the MI 

effect can be useful to design microwave composites with tuneable properties and tuneable 

band-gap structures. [ 6] 

Metal-dielectric composite materials have received much attention because of their 

importance in modern technology.[see, for example, [7] and references therein] Metallic 

inclusions, in particular metallic wires, can reinforce the dielectric and magnetic properties of 

ceramics and plastic materials. [7-14] Electromagnetic properties of the composite materials 

are analysed customarily in terms of the effective macroscopic parameters: dielectric 

permittivity &eff and magnetic permeability Jleff, which are calculated by averaging the 

responses from material constituents. [ 1] Composite materials containing elongated 

conducting inclusions- finite length wires [8-10] or arrays of infinitely long wires [11-14]­

present a considerable interest since their dielectric response can exhibit various dispersive 

behaviours. The composite can be prepared as a thin sheet or bulk sample. The 

microstructures of the thin composite samples are indicated in Figs. S.l(a),(b) for "short" and 

"long" wires embedded into a thin dielectric sheet (matrix). The typical length of the short 

wire inclusions is less than 1 cm. The sheet thickness h is made much less than the wire 

length I, and hence usually it is about a few millimetres or less. 
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The short wire inclusions have random orientations in the plane of the sample, whereas the 

long wires usually are oriented in a certain direction. The de magnetic field Hex is applied 

along the plane of the sample. 

h 

e~tromagnetic - ~ ;~~e 
dielectric sheet 

short wire in cl us ions 
embedded into dielectric matrix (a) 

h 

e~ 

long wire inclusions 
embedded into dielectric matrix (b) 

Fig. 5.1 The microstructures of the thin composite samples for "short" in (a) and "long" in 

(b) wires embedded into a thin dielectric sheet (matrix). The sheet thickness h is much less 

than the wire length I . The short wire inclusions have random oriental ions in the plane of 

the sample, whereas the long wires usually are oriented in a certain direction. 
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The bulk sample with long wires can be formed as a 3D "wire crystal", where a 

periodic structure is composed of wires arranged in a lattice. Figure 5.2 demonstrates a simple 

cubic cell of the wire crystal.[13] 

Fig. 5.2 A periodic structure is composed of wires arranged in a simple cubic lattice, 

which is a cell of the wire crystal. 

Finite-wire inclusions behave as electric dipole scatterers. In this case, the dispersion 

of the effective permittivity can range from a relaxation type to a resonance one, depending 

on the inclusion conductivity and dimension.[8-l0] The resonant spectrum of Eeff occurs near 

the antenna resonance for an individual wire-inclusion. The real part of Eeff can take negative 

values past the resonance, which is very important for a recent trend to create materials with a 

negative refraction index.[15,11-14] This characteristic behaviour of the effective permittivity 

was experimentally confirmed for diluted composites with carbon wires having a low 

conductivity (relaxation spectrum) and highly conductive aluminium-coated wires (resonant 

spectrurn).[9] In such composites, the concentration of the percolation threshold is 

proportional to the aspect ratio Pc e~;. 2all ,[10] where a is the wire radius and I is the wire 

length. In the limit 2a I I << 1, Pc is very small, however, the inclusion contribution to the 

effective dielectric constant becomes large already for very small concentrations p << Pc. In 

this Chapter we demonstrate that the physical quantity controlling the dispersion 

characteristics of Eeff in diluted wire-composites is the surface impedance, which involves 

both the conducttvity and permeability of inclusions. Therefore, in the case of ferromagnetic 

wires the effective permittivity may depend on a static magnetic field via the corresponding 

dependence of the ac permeability matrix. 
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The theory developed is based on solving the scattering problem for a wue with the 

impedance boundary conditions. A new integro-differential equation for the current density 

distribution in a wire is obtained, which is vat id for the surface impedance matrix of a general 

form. The electric polarisability of an inclusion is represented by the integral over the 

longitudinal current density and is proven to be very sensitive to the impedance changes near 

the antenna resonance. In Ref. 10, the current distribution at a conducting stick was 

determined from an approximate differential equation of a transmission line type. Our 

approach has a number of advantages. It gives a rigorous mathematical algorithm as an 

expansion in serious of 112ln(/ I a) valid for any frequency and the surface impedance of a 

general matrix form. There is no need to introduce the effective distributed parameters such as 

a specific capacitance and an inductance which have to be determined sepamtely. The most 

important is that the method accounts correctly for the radiation effects and can be genemlised 

to the case of interacting inclusions or inclusions interacting with boundaries and interfaces. 

Then, it can be useful to calculate the effective permittivity of composites containing 

periodically spaced wires, without invoking the effective medium theory. For thin composite 

sheets, the effective permittivity depends on the thickness due to the depolarisation effect 

from the boundaries. [16, 17] As a result, the dispersion region of Ee.ff is shifted to higher 

frequencies. 

The composite material made of an army of infinitely long conductive wires [13,14] 

has characteristic features of a metallic response to radiation, but in the GHz mnge. Contrary 

to the composite with short inclusions, the electromagnetic field is applied locally to a certain 

portion of the material excluding the ends of wires. In this case the current distribution in the 

wire can be neglected. The most interesting results are obtained for the wave polarisation 

where the electric field is along the wires. Such wire-mesh systems model the response of a 

diluted plasma,[7,13] giving a negative permittivity Ee.ff(ro) below the normalised plasma 

frequency & P = rop I~ somewhere in the gigahertz range: Ee.ff(ro) = E- ro~ I ro2, where E is 

the matrix permittivity and ro P is the "plasma frequency". In a general case, when the skin 

effect is not very strong, the plasma frequency depends on the wire impedance.[7] Therefore, 

the effective permittivity of wire-mesh materials can be also controlled by a magnetic field, as 

will be considered elsewhere. 
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5.1 General approach to tbe effective permittivity of wire-composites 

In this Section we consider general properties of the effective permittivity of 

composites with finite-wire inclusions. From the above discussion it follows that the 

dispersion of Eeff has different origins for "short" and "long" inclusions. In the first case, the 

composites demonstrate the Lorentz dipole dispersion,[ 18] whereas the second type of 

material is characterised by the Drude dispersion typical of free-electron gas. [7, 13, 14] 

The Lorentz model of dispersion is applicable to insulator materials. The composite 

with short inclusions is similar in many respects to an isolator since the wire-inclusions play a 

role of "atoms" (elementary dipole scatterers), which are polarised with an ac electric field. 

The local electrical field e1oc exp(-irot) induces the current with a linear density 

j(z)exp(-irot) distributed along the inclusion length (z is the coordinate along the 

conductor). The electric dipole moment D and the dielectric polarisability fP of the inclusion 

are calculated using the continuity equation a j( z) I az = iro p( z) and integrating by parts with 

boundary conditions j( ±1 I 2) = 0 ( p is the charge density per unit length): 

. //2 

D = .!__ J j(z)dz, 
(J) -//2 

(l) 

where V is the inclusion volume. As it will be shown later, the density j(z) of a linear 

current can be approximated by a linear differential equation of the second order with the 

boundary conditions j(±l I 2) = 0 and involving a certain damping caused by radiation and 

internal resistive and magnetic losses. Thus, as in the case of a Lorentz oscillator the 

polarisability fP has the following form:[I8] 

A 
fP = L 2 I~ . , 

n (Wres,n- W ) -lf11W 

(2) 

where the summation is carried out over all antenna resonance frequencies 

ffires 11 = 21tc /1-..res 11 in increasing order, Ares 11 = 21.Jr. 1(2n -1) [19] are the resonance , . . 
wavelengths, E is the matrix permittivity, A11 are the amplitude constants, f 11 are the 

dumping parameters. The first resonance n = 1 with the lowest frequency has a maximum 

amplitude A1 and gives the main contribution to the polarisability. 
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Each r, can be decomposed into two parts r~ad and r'::r (Her) related to the radiation and 

internal (magnetic and resistive) losses, respectively. The damping parameter r'J:r involving 

magnetic losses may depend on an external magnetic field Her . Thus, in the vicinity of the 

antenna resonance the polarisability 9 will depend on Her if the condition I r'J:r I >-I r~ad I 

is held. 

The bulk polarisation P of the composite is of the form: P =< eloc > p tJ = eoS~ff, 

where < e1oc > is the averaged local field, p is the volume concentration of the inclusions, 

e0 is the external electrical field, and 9e.ff is the effective bulk susceptibility. Although the 

wire length is compamble with the wavelength, it is still possible to introduce the 

susceptibility 9e.ff since the scattered electromagnetic field has a dipole chamcter at large 

distances from the composite. To relate the polarisability f.J to the effective bulk 

susceptibility 9e.ff , it is necessary to know the relation between the local field e1oc and the 

external field eo. For very low inclusion concentrations p << Pc, where Pc is the percolation 

threshold, it is possible to assume that < e1oc >"" eo, which leads to the simplest equation for 

the effective permittivity: 

Ee.ff "" E + 47t p < f.J >, (3) 

where < f.J > is the polarisability averaged over the inclusion orientations. In the limit of a 

small concentration, the difference between the local and mean fields can be taken into 

account using the Lorentz approach [18] and its generalisations.[20) A consistent effective 

medium theory for the considered composites valid for any concentration employs the 

concept of the scale-dependent local-field permittivity.[l0,9,17] This approach gives the 

percolation threshold Pc that is linearly proportional to the aspect ratio of the conducting 

inclusions (Pc oc 2a I/) in accordance with the experimental data. In this Chapter we restrict 

ourselves to the case of non-intemcting inclusions since this model provides all the essential 

features to describe the dispersion and field-dependent properties of Ee.ff in diluted composite 

materials ( p «Pc). 
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5.2 Antenna approximation and impedance boundary conditions 

Within the framework of a single particle approximation the scattering problem for a 

thin conductor has to be solved. Considering the electromagnetic response from a thin 

conductor, the induced current in it can be replaced with the effective linear current flowing 

along the axis and having only the axial distribution. This approach is known as the antenna 

approximation.[21] lt is important to re-examine the conditions when the antenna 

approximation is valid. 

Let us consider a thin conductor irradiated by an electromagnetic field. The 

wavelength A. and the conductor length I are assumed to be much larger than the conductor 

cross size 2a: 2a <<A. and 2a <<I. The incident electromagnetic wave is supposed to be of 

a plane type. In this case, the external electric field does not induce a circular current, and the 

external magnetic field does not give a contribution to a circular magnetic field on the 

conductor surface. First we consider that the incident wave has a longitudinal electric field 

ezo at the surface of a nonmagnetic conductor. In this case, the induced current is 

longitudinal, which determines the scattered electromagnetic field having longitudinal electric 

ez and circular magnetic ~ components on the conductor surface (cylindrical conductor is 

considered, cp is the azimuthal coordinate). The same polarisation (ez,hcp) can be induced by 

a linear current with the volume density j(z)os flowing along the axis, where z is a point on 

the axis and os is a two dimensional Dirac function. Further the function j(z) will be 

referred to as "linear density" or "density". Thus, the linear longitudinal current plays a role of 

an effective current producing the surface field of the required polarisation ( ez, ~) and 

intensity. If the incident electromagnetic field contains a longitudinal magnetic component 

hzo, a circular electric field ecp will be induced in the conductor. In this case, a longitudinal 

linear current does not provide the total polarisation of the scattered field. In a general case of 

a magnetic conductor the field hzo will induce ez and the field ezo will induce 7\p . 

However, the total scattered field can be decomposed into two basic waves with polarisations: 

(ez, ~) and (e'P )iz}, where (ez, ~) is determined by the linear current. The other 

polarisation (ecp, hz )can be calculated directly from the impedance boundary condition, which 

represents a linear relationship between e and h (see below). 
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The polarisation effects arising due to the radial electric and magnetic fields can be neglected 

in this case. Thus, the concept of the linear effective current describes correctly the scattered 

field at any polarisation of the incident wave. 

In the antenna approximation, the external scattering problem with the boundary 

conditions at the conductor surface completely determines the response from a thin inclusion 

irradiated by an external electromagnetic field. The most general form of such linear 

boundary relationship can be written with the use ofthe surface impedance matrix ~ :[22] 

(4) 

where n is the unit normal vector directed inside the conductor, E1 and H1 are the tangential 

vectors of the total electric and magnetic fields at the conductor surface, which include both 

the scattered and external electromagnetic fields, ~ is the second order matrix. In the case of 

an ideal conductor (conductivity cr = rxJ) boundary condition (4) reduces to a simple generally 

used form: E1 = 0. Boundary condition (4) is convenient to express in the local cylindrical 

coordinate system ( z, q>, r) related to the conductor: 

Ez = C,zzfi r.p -C,zr.pfj z 

Er.p = C,r.p ZH r.p - C,cpr.pfj z 
(5) 

The matrix ~ has been found in Sections 2.4 and 2.5 for a ferromagnetic wire with an 

arbitrary type of the magnetic anisotropy for the strong and weak skin-effect, respectively. In 

a nonmagnetic conductor this parameter has a diagonal form where C,ziJl = C,r.pz = 0 . 

As it follows from the antenna approximation conditions, the field HIJl(z) contains 

only the circular field hr.p(z) induced by a current with the linear density j(z). On the 

contrary, the longitudinal field Hz is entirely defined by the excitation field. The scattered 

field h;p(z) will be found together with the antenna equation in the next Section. Note that in 

a cylindrical conductor the impedance boundary condition (5) is valid for any frequency 

including a weak skin effect. 
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5.3 Antenna equation witb tbe impedance boundary condition 

Now we are in a position to obtain the basic integro-differential equation for the 

current density j(z) using impedance boundary condition (5). The time dependence is taken 

as exp( -irot), where ro = 2n I and I is the frequency of the electromagnetic field. Gaussian 

units are used throughout the Chapter. Let us introduce the vector A and scalar q> potentials: 

41t 
b =-rotA, 

c 

41t J.L a A 
e=-gradq>---, 

c2 at 
(6) 

where c is the velocity of light, E and J.l are the scalar dielectric and magnetic constants 

outside the conductor (complex in general). In Section 3.8, where the magnetic permeability 

was a matrix, we used another representation for the potentials (see Eqs. 3 .15 and 3.16 ). The 

Lorentz gauge is accepted for the potentials: Ea q>j at+ 4ndiv A = 0 . The electrical field e can 

be expressed through the vector potential in a frequency representation: 

41t iro J.l A 41t dd" A e= --gra IV . 
c2 iroE 

(7) 

For A we obtain the Helmholtz equation: 

M+k2A=j, (8) 

where k = (ro/ c),j&li. is the wave number, j is the vector of the current density j(z). 

The solution ofEq. (8) can be written in the form of the convolution of j(z) with the Green 

function G(r) of the Helmholtz operator: 

A(r0 ) = (G * j) = J j(z)G(r):iVz, 
V 

G(r)= exp(ikr), 
4Jrr 

(9) 

where the integration is carried out over the total volume V containing j. In Eq. (9) r0 is the 

coordinate of the point where A is calculated (observation point), z is the vector directed to 

the coordinate of the integration point, and r =I r0 - z I is the distance between the observation 

and integration points. 
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From Eqs. (6) and (9) we obtain the representation for the magnetic field induced by a 

linear current (operator" rot" in (6) is taken at r0 ): 

h( ) - l f(l-ikr)exp(ikr)(.() )dV. r0 - -
3 

J z x r z , 
CV r 

(10) 

where r = r0 - z is the vector directed to the observation point from the integration one. In the 

case of a linear current, when j is taken at the contour L, the field projection on the unit 

vector u reduces to a kind of a contour integral: 

h( ) = _!_ f (1- i k r) exp( i k r) ·c )J:( )d ro 
3 

1 s ., s,r s, 
cL r 

(ll) 

where j = j( s )-r s, T s is the tangential vector along L taken at the integration point s , 

~(s, r) = ((-rs x r) ·u) is the scalar multiplication designating the projection of (-rs x r) on the 

unit vector u. Considering a cylindrical symmetry, a circular magnetic field is equal to a 

projection of h( r0 ) on the direction ( T s x r) : 

Ji ( )=a 
1f12 

(1-ikr)exp(ikr) ·c )d ffJ z,a 3 1 s s, 
c _112 r 

(12) 

where r=~(z-s)2 +a2 . In (12) the equality l(-r5 xr)l=a was used. Contrary to the static 

case ( liJ = 0) where ~ = 21/ a c and I is the total current, Eq. ( 12) takes into account the 

retarding effects. Note that integral (12) has extremely fast convergence, therefore, the field 

~ appears to be almost local even for very high frequencies. 

The component Az of the vector potential A describes the scattered field from a 

straight piece of a thin conductor. Using Eqs. (7) and (9), the longitudinal scattered field 

ez(x,y,z) can be expressed in terms of an integro-differential operator, where the 

convolution is carried out along the longitudinal coordinate z : 

ez(x,y,z) =-
4

1t [ 
0 2

2 
(G* j)+k2 (G* j)]. 

/0)& az 
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//2 

Here (G* j)= jJ(s)G(r)ds and r=~(z-s)2 +i+x2 . On the conductor surface, it is 
-1/2 

necessary to put r = ~(z -s)2 +a2 . Using the impedance boundary condition (5) and Eq. 

( 13) we obtain the integro-differential equation for the current density j(z): 

(14) 

where £ z = ez + eoz is the total longitudinal electric field on the conductor surface, ez is the 

scattered electrical field on the conductor surface, eoz and hoz are the external electrical and 

magnetic fields on the conductor surface. The components c;zz and c;z<jl can also be functions 

of the variable z, but this case is not considered here. 

The surface field ~ is useful to be written in terms of convolution with j( z) : 

- 2 2 
112 

hqJ(z,a)=-(GqJ*j)=- J j(s)GqJ(r)ds, 
ac ac _

112 

(15) 

h G ( ) 
a 2(I-ikr)exp(ikr) 

w ere q> r = 
3 2r 

Finely, we obtain the basic integro-differential equation for j(z): 

~2 · · imgr 
_u_2 (G* j)+k2(G* j)= tmEeoz(z)-tmEc;zz (GqJ * j)+ -ozqJ hoz(z). 
oz 4n 2nac 4n 

(16) 

Equation (16) has to be completed imposing the boundary conditions at the ends of the 

conductor: 

j(-1 12) = j(/ /2) =0. (17) 

Equation (16) takes into account both the radiation losses and losses consumed inside the 

conductor (resistive and magnetic). The convolution (GqJ * j) and c;zz determine the internal 

losses, which are absent in usual antenna equations where the condition of the ideal 

conductivity ( cr = oo) is assumed. The imaginary part of (G * j) determines the radiation 

losses. 
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AJong with this, there is an additional term in the right part of Eq. (16), related with the off­

diagonal component c;z<p . Thus, the ferromagnetic conductor can be excited not only by a 

longitudinal electric field, but also by a longitudinal magnetic field.[23] 

As it follows from Eqs. ( 13) and (15), the real functions Re( G) and Re( G<!l), 

considered at the conductor surface, have a sharp peak at r =a. Thus, Re( G) and Re(G<P) 

gtve the mam contribution to Eq. (16): I (Im(G)* j) 1<<1 (Re( G)* j) 1 and 

I (Im(G<P)* j) I< <I (Re(Gq~)* j) 1. However, the convolutions with the imaginary parts are 

important in the vicinity of the resonance and can be taken into account by an iteration 

procedure, which is described in Appendix A. For the calculation of convolutions with 

functions Re( G) and Re(Gq~) it is possible to use an approximate method:[24, 16, 17] 

//2 

(Re( G)* j)"" j(z) f Re(G(r))ds = j(z)Q, 
-//2 

112 
I 

112 
ds 

Q = f Re(G(r))ds cc- f J 
2 2 

-//2 41!" -//2 s +a 

f/2 

In(/ la) 
21!" , 

(Re(Gq~)* j)"" j(z) f Re(G<P(r))d~ = j(z)Q<P, 
. -1/2 

(18) 

where r = ~(z-s)2 +a2
, Q and Q<!l are the positive form-factors. For the estimation of Q<p 

it was taken into account that a k <<I in the antenna approximation. 

From Eq. ( 16) and inequalities I(Im(G)* J)I«I(Re(G)* J)l and 

I (Im(G~p)* j) 1«1 (Re(G<P)* j) I we obtain differential equation for the zero approximation 

fo(z) where the radiation losses are neglected: 

822 fo(z)+((i))2 EJ.l(l+ ic <;zz Q<p)fo(z)"" i(I)E [eoz(z)+c;z<phoz(z)J. 
8z C 21ta(l)Jl Q 47tQ 

(19) 
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As it follows from Eq. (19), the implementation of the impedance boundary condition leads to 

the renormalisation of the wave number which becomes: 

k=roM(l+ icc;zz QQq>Jl/2 ocroc~(l+ icc;zz )1/2 
c 2 1t a ro J.l a ro J.lln(/ I a) 

(20) 

The effective wave number k defines the normalised resonance wavelength 

( kresf = 1t (2n -1) ):[19] 

'~ 2/ C ( i c c;zz QcpJI /2 21 C ( icc;zz )1 /2 
/\,res 11 = --v EJ.l Re 1 + ----'-=-- oc - - v EJ.l Re 1 + ------=-=---

' 2n -1 2naroJ.l Q 2n-I ac.oJ.lln(/1 a) (21) 

n = 1, 2, 3 ... 

Further we will consider only the first resonant frequency fres = c I 'Ares ,I at which the 

composite produces a maximal response. It is useful to investigate the forms of the current 

density distribution along the wire for different frequencies, as shown in Figs. 5.3 and 5.4. 
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Fig. 5.3 Typical current density distribution along a wire inclusion above ( f > fres in (a)) 

and below ( f <!res in (b)) the antenna resonance. The dashed and solid curves correspond 

to the zero (Eq. (19)) and first (Eq. (A9)) approximations, resp ectively. 
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Fig. 5.4 Current density distribution along a wire in the vicinity of the antenna resonance. 

The dashed and solid curves correspond to the zero (Eq. (19)) and 

first (Eq. (A9)) approximations, respectively. 

The current density distribution is calculated using formulae (19) and (A9) obtained in the 

zero approximation and using the first iteration, respectively. At f >!res and f <!res the 

distribution of the current density has a "bell-shape'' both for the real and imaginary parts. As 

it follows from Eq. ( 1 ), the real part of the wire dipole moment is proportional to the integral 

from the imaginary part of the current density. 
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Therefore, passing !res the distribution of the imaginary part has to change sign (say, from 

negative to positive towards high frequencies), as it is seen in Fig. 5.3. The real part of j(z) is 

always positive since it corresponds to the positive imaginary part of the dipole moment. It is 

seen in Fig. 5.4, that the imaginary part of j(z) is most sensitive to the radiation losses. 

Closer to the resonance, it undergoes rapid transformations and any small factors such as 

radiation may introduce essential changes. Outside the resonance, the zero and first 

approximations almost coincide and the radiation effects can be neglected. 

5.4 Field dependent impedance matrix 

The field dependence of the effective permittivity &elf of the composite is caused by 

the field dependence of the surface impedance matrix ~(Hex), which determines the losses 

inside the inclusions. These internal losses characterise the quality factor of the entire 

composite system and the type of dispersion of &elf. 

The impedance matrix ~ has been found in Chapter 2.0. We use simple model of a 

ferromagnetic wire where only the rotation of magnetisation is taken into account. This model 

gives all the important features of the field dependence of ~ . In general, the anisotropy axis 

nK has an angle a with the wire axis (z-axis), as shown in Fig. 2.7. The wire is assumed to 

be in a single domain state with the static magnetisation M 0 directed in a helical way having 

an angle 8 with the z-axis. The stable direction of M 0 is found by minimising the 

magnetostatic energy density U0 without bias field Hb (compare with Eq. (2.47), where 

Hb *0): 

oU0 1 oB=O, 

U0 =-Kcos2(a-B)-M0HexcosB. 
(22) 

Equation (22) describes the rotational magnetisation process demonstrated in Fig. 5.5, where the 

magnetisation plots are given for three types of an isotropy: longitudinal (a = 0 ), circumferential 

(a = 90°) and helical (a = 60° ). The domain processes may not be essential for the reversal of 

M 0 , since the magnetisation vector during its rotation is held parallel to the surface, without 

going through high-energy demagnetisation states. 
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Fig. 5.5 Typical rotational hysteresis curves M Oz (Hex) for the different types of anisotropy: 

longitudinal (a = 0 ) , circumferential (a = 90° ) , and helical (a = 60°). 

The impedance matrix ~ has been calculated in Chapter 2 in the following limits: 

(8m l a << I) and (a l o << l, al o111 ~ 1, o =cl~2ncrro) with the general susceptibility 

matrix. The intermediate case is obtained by the extrapolation. The details can be found in 

Chapter 2 (Eqs. (31) and ( 44 )~( 46)), and here only the final results are listed: 

a) strong magnetic skin-effect ( o111 I a << 1) 

-!f;.cos2 (9)+sin 2 (e) (..ffi - l)sin(e)cos(e) 
~ = (c;;zz c;;zcp) = c(l - i} 

c;;cpz c;;cpcp 4 1t cr 0 
( ..ffi - 1) sin (e) cos (e) cos 2 (e)+ ..ffi sin 2 (e) 

(23) 

where ~ = 1 + 4n x and X= x2 - 4n X~ 1(1 + 4n x1) are the effective penneability and 

susceptibility respectively. 

b) weak nonmagnetic skin-effect (a I o << I or a I o_ - 1, a I o111 - 1) 
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(24) 

where J 0,1 are the Bessel functions, .u1 =1+4ncos2 (0)i, .u2 =1+4nsin2 (0)i, 

1!3 =-47tsin(e)cos(9)X, k1:2 =J.lJ,z(47tirocr/c2), 

XI= roM(ro1- itro)/ A, 

x2 = roM (ro2 - i tro)/ A, 

Xa =roroM I A, 

A= (ro2 - i tro)(ro1 - itro)- ro2
, 

<01 =y[Hexcos(9)+HKcos2(a-9)], 

HK =2KIM0 

<Oz = y[Hex cos(9)+ H K cos2(a -9)}, 

roM =rMo. 

Equations (23),(24) demonstrate that the surface impedance matrix depends on both 

the ac susceptibility parameter x = (ii -I)/ 47t and the static magnetisation orientation angle 

e . At high frequencies the latter will give the main contribution to the field dependence of the 

impedance since x looses its the field sensitivity, as it has been discussed in Section 2.6. The 

components of ~ were obtained in the assumption of a uniform magnetisation. For the 

muJtidomain structure, the components of j should be understood as averaged over domains. 

The contribution to j due to domain wall displacements can be neglected at high frequencies 

due to a considerable damping effect. 

Usually ferromagnetic microwires have a circular (a = 90°) or longitudinal (a= 0) 

magnetisation in the outer shell. The central part of the wire always consists of a 

longitudinally magnetised inner core. A helical magnetisation ( 0 < a < 90° ) can be obtained 

as a result of a special treatment of a wire sample with a circular anisotropy, for example, by 

means of twisting or annealing under a torsion stress (see Section 2.7.3 and Ref. 2, 25-27) 

Wires with a circular anisotropy exhibit the most sensitive MI effect. 
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Here, we use the parameters of Co-rich glass-coated wires with a negative magnetostriction 

and low coercitivity.[5,27] A circular "bamboo-like" domain structure with opposite 

magnetisations in the adjacent domains [28] exists aJmost in the entire wire which exhibits 

nearly a non-hysteretic 8-H curve, as it is shown in Fig. 5.5 for a.= 90°. Due to such domain 

structure, the averaged off-diagonal components <;z<p and <;<pz are zero, as was proved 

theoretically [23] and experimentally [29] (see Chapter 2). Thus, the effects related to the off­

diagonal components (see Eq. (16)) are possible only in a wire with a helical magnetisation 

where such averaging does not occur. 

Figures 5.6 and 5.7 demonstrate the field dependence of <;zzCHex) for vanous 

frequencies. The wire has 10 J..lln diameter, conductivity cr = 7.6 x 1015 s-1
, an isotropy field 

H K = 2 Oe, saturation magnetisation M 0 = 500 G, and gyro magnetic constant r = 2 x 10 7 

(rad/s)/Oe. 
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Fig. 5.6 Typical field dependence of the longitudinal impedance in Co-based wire with 

a circumferential anisotropy in the megahertz range. 
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Fig. 5. 7 Typical "valve-like " field dependence of the longitudinal impedance in the gigahertz 

range, where <;zz (Hex) has approximately a constant value for Hex ~ H K reflecting 

the field dependence of cos2 (9) , since iJ.Ioses its field sensitivity. 

The calculations have been carried out in a low frequency limit (24) since the magnetic skin­

depth Bm is of the order of the wire radius. As it will be shown below, not very strong skin 

effect is the basic requirement for obtaining the field-dependent effective permittivity. For this 

reason the wire diameter is chosen to be sufficiently small. At the megahertz range the real 

part (see Fig. 5.6) and module of C,zz CHex) have two well-defined peaks at Hex r::::: ±H K. 

With Hex > HK the impedance decreases slowly reaching the level of <;zz (O) . With 

increasing a frequency the curve of <;zz (Hex) flattens at Hex > H K and even for large values 

of Hex > > H K does not reach the saturation. In the gigahertz range <;zz (Hex ) has 

approximately a constant value for Hex ~ H K, as it is shown in Fig. 5.7, reflecting the field 

dependence of cos2 (9) (see Eq. (24) and Fig. 5.5) since the permeability parameter il looses 

its field sensitivity, as it has been discussed in Section 2.6, Fig. (2.9). Such kind of the 

transformation of C,zz (Hex) is supported by a number of experiments where the magneto-

impedance spectra were measured in ferromagnetic wires in a wide frequency range from 1 

kHz up to 1.2 GHz.[30,31] 
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The field dependence C,zz(Hex) at very high frequencies may be of a considerable interest 

since it has two predetermined levels at Hex= 0 and Hex> H K, between which a smooth 

transition can be achieved by applying Hex. Thus, at very high frequencies the impedance 

C,zz(Hex)- cos2(9) exhibits a "valve-like" behaviour, switching from one stable level to the 

other, following the de magnetisation. 

5.5 Field dependent resonance effective permittivity 

It is quite natural to expect that the field dependence Eeff(H ex) becomes most 

sensitive in the vicinity of the antenna resonance where any small variations in the inclusion 

parameters cause a strong change of the current distribution and the inclusion dipole moment. 

This results in a remarkable transformation of the dispersion curve Ee.ff(ro) under the external 

magnetic field. The resonance frequency range is determined by the wire length I and the 

matrix permittivity E. Practically, it is not desirable to construct composite materials with 

inclusions having a length larger than I cm. In this case, the first resonance frequency in air 

fres = c I 21 would be in the range of tens gigahertz. However, for such high frequencies the 

magnetic properties of ferromagnetic wires under consideration tail off completely and jl 

tends to be unity. Without increasing the wire length, the operating frequencies can be 

lowered (in .Jr. times) by using a dielectric matrix with higher permittivity & »I. Some 

polymer or commercial epoxy (shipley photoepoxy with E = 3) can be used as a dielectric 

matrix. A fine-dispersion filler (powder) containing particles with a large polarisability can be 

used for further increasing E, for example, the powder ofBaTi03 ceramic microparticles with 

E = 17.8 .[32,33] The average radius of ceramic particles usually is smaller than l micron that 

is much smaller than the wire diameter. Another method of increasing E uses finely dispersed 

metal powder. [9, 16] Both methods allow the matrix permittivity E to be made very large but 

having a small loss tangent. In our calculations we use E = 16 and E = 64 . This results in 

lowering the antenna resonance frequency down to -3.75 GHz and -1.9 GHz, respectively, 

for the wire length of 1 cm. These characteristic frequencies are much greater than the 

frequency of the ferromagnetic resonance in wires, where the impedance behaviour is of a 

"valve-like" type shown in Fig. 5.7. 
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The condition of a moderate skin-effect (a I Om -1) is proving to be important to 

realise a high sensitivity of &eff(Hex). If the magnetic skin-depth is much smaller than the 

wire radius (om I a« 1 ), the normalised wave number k differs little from the wave number 

k of the free space. Substituting the high frequency impedance (23) into (20) gives: 

k- ro # 1 + _, -/Acos2 (e) 
( 

(l ") 8 )112 
c 2J..Lln(l I a) a 

(25) 

From Eq. (25) it immediately foiJows that if 8 I a « 1 the wave number becomes 

k "" ro# I c, whence it foiJows that an essential field dependence &eff (Hex) can be reached 

in the case when the nonmagnetic skin depth is of the order of wire radius. 

At a very low inclusion concentration p <<Pc oc 2a I I the effective permittivity 

&eff(ro) can be represented by Eq. (3) as the dipole sum with the polarisability < ffJ > 

averaged on the inclusion orientations. The polarisability ffJ has to be calculated from Eq. (I) 

using the first }1 (x} approximation for the current density distribution, which takes into 

account all losses in the system (see Eq. (A9) in Appendix A). In the case of a planar 

composite (see Fig. 5.1}, the averaging gives a coefficient l/2 (<ffJ>=ffJ/2}, and <ffJ> 

determines the effective permittivity in the plane of the sample. The total permittivity matrix 

of a planar composite is of the form: 

(26) 

Figures 5.8 and 5.9 demonstrate the dispersion of the polarisability 

ffJ(ro)=ffJ'(ro}+iffJ"(ro) in the gigahertz range as a function of Hex for two values of the 

matrix permittivity: & = 16 and & = 64. The dashed curves correspond to zero approximation 

(19) neglecting the radiation losses. When the dispersion region falls into lower frequencies 

due to larger matrix permittivity ( & = 64 ), the internal losses (both magnetic and resistive) 

become much greater than the radiation ones and the latter can be ignored, as it is seen in Fig. 

5.9. In general, when the skin effect becomes essential the radiation losses are dominant and 

determine the resonance peak value. As a result, the system becomes insensitive to the 

internal parameters. 
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The field-dependent effect shows up in changing the character of the dispersion 

curves. In the absence of Hex the dispersion curves are of a resonance type: at f = !res the 

imaginary part reaches a maximum and the real part equals zero. Applying a magnetic field 

Hex> H K, the impedance C,zz(Hex) is increased and, as a consequence, the internal losses in 

the inclusion, which results in the dispersion of a relaxation type. In the presence of Hex the 

resonance frequency also slightly shifts towards higher frequencies. 
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Fig. 5.8 Transformation of the polarisability dispersion from a resonance type to a relaxation 

one due to Hex in the vicinity of the antenna resonance. The matrix permittivity is & = 16. 

The dashed and solid curves correspond to the zero (Eq. (19)) and 

first (Eq. (A9)) approximations, respectively. 
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Fig. 5.9 Transformation of the polarisability dispersion from a resonance type to a relaxation 

one due to H ex in the vicinity of the antenna resonance. The matrix permittivity is E = 64. 

The dashed and solid curves correspond to the zero (Eq. (19)) and 

first (Eq. (A9)) approximations, resp ectively . 

Figures 5.10 and 5.11 demonstrate the dispersion curves of the effective permittivity 

Ee.ff(ro) at the gigabertz range as a function of the external magnetic field H ex for E = 16 and 

two volume concentrations p = 0.001% or p = 0.01%. Both concentrations are considerably 

smaller than the percolation threshold Pc ex: (2a I I) x 100% - 0.1% ( 2a = I 0 J..Vn and I = 1 cm ). 
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Fig. 5.10 Tran3fomzation of the dispersion of the effective permittivity from a resonance type 

to a relaxation one due to Hex in the vicinity of the antenna resonance. 

The inclusion concentration is p = 0.001% and matrix permittivity is E = 16 . 

The dispersion of £e.ff(ro) has completely the same features as those for the polarisability 

p( ro). In Ref. 10 the transformation of the dispersion £e.ff ( ro) from a resonant type to 

relaxation one was associated with a different wire conductivity cr, which defines the 

resistive loss. In our case it is provided through the field dependent impedance <;zz (Hex) 

instead of conductivity. 
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At a larger wire concentration (for example, p = 0.01%) the real part of Ee.ff(ro) becomes 

negative in the vicinity of the resonance. Applying Hex , it is possible to change gradually 

Re( Ee.ff ( ro)) from negative to positive values. 
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Fig. 5.11 Transformation of the dispersion ofthe effective permittivity from a resonance type 

to a relaxation one due to Hex in the vicinity of the antenna resonance. The inclusion 

concentration is p = 0.01% and matrix permittivity is E = 16. Applying H ex• the negative 

peak of Re( Ee.ff) continuously decreases as the dispersion tends 

to become of a relaxation type with Re(Eeff) >0. 

196 



Chapter 5 Tuneable composites 

The field-dependent permittivity matrix i(Hex) can be used in tuneable microwave 

covers. Figure 5.12 shows the dispersion curves of the reflection R(ro) and transmission 

T(ro) coefficients for a thin wire-composite slab in the case of normal incidence of the 

electromagnetic wave for two values of Hex. The energy absorption A= (1- R- T) in such 

kind of a composite is rather strong, therefore it has to be sufficiently thin to be used as a 

wave passage. 
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Fig. 5.12 Dispersion curves of the reflection R(ro) and transmission T(ro) coefficients for a 

thin wire-composite slab in the case of normal incidence of the electromagnetic wave as 

a function of Hex . The sample thickness is h == 300 J.Un . 

Another promising application is suggested to employ these composites as an internal 

cover in the partially filled waveguides or layered waveguides with a "dielectric/composite" 

structure. The waveguide with an internal composite cover is proving to operate similar to the 

wave guide containing absorption ferromagnetic layers,[34] for example, a thin-film 

"dielectric/Fe" structure considered in Ref. 35,36. The schematic representation of such a 

waveguide structure is given in Fig. 5.13. In both systems there is an anisotropic field­

dependent layer with resonance properties and large energy losses, but in our case the field­

dependent layer is made of a composite material with e( Hex ) . 
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The operating frequency range is determined by the antenna resonance. Such a waveguide 

system, by analogy to that already designed for the waveguides with ferromagnets, can be 

used for tuneable filters and phase shifters operating up to tens gigahertz. 

metal thin composite 
cover 

Fig. 5.13 Schematic representation (cross section) of a tuneable waveguide with 

the internal composite cover. 

5.6 Nanocomposites in the optical range 

In the last years, interest is being intensively focused on wires with more reduced 

dimensions, i.e. nanowires. There are two main techniques to prepare these nanowires, 

namely by lithography and electroplating. Interest of such novel materials lies in their 

technological connections to magnetic recording media, but also in studying fundamental 

aspects as magnetic interactions in arrays of magnetic nanowires and magnetic switching. 

However, nonmagnetic nanowires (for example, made of Ag or Au) also are of great interest 

for the creation of novel types of composite media having unusual properties in the optical 

range. In Ref. 37 a new type of metal-dielectric composite has been proposed that is 

characterised by a resonance-like behaviour of the effective permeability Jleff in the infrared 

and visible spectral ranges. This material can be referred to as optomagnetic medium. Here 

we would like to present the review of the basic results obtained in Ref. 37 (this paper is 

enclosed in Appendix B after Section 5.9). 
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The composite consists of conducting nonmagnetic inclusions in the shape of non­

closed contours or pairs of parallel sticks with length of 50-1 00 nm embedded in dielectric 

matrix. The composite structures based on ring-shaped inclusions (with a split large enough to 

neglect the edge capacitance) and pairs of parallel conducting sticks (connected vta 

displacement currents) are shown in Fig. 5.14(a) and Fig. 5. l4(b), respectively. 

Fig. 5.14 Composite medium with effective permeability at optical frequencies. A possible 

polarisation of the electromagnetic wave associated with induced magnetic properties is 

indicated in (a), a system of nanowires grown on a substrate is shown, in which two parallel 

wires form a constituent element. The spacing in the pair of wires is much smaller than 

the distance between the pairs. In (b), a nanoring-composite is shown. 

The analytical formalism used in Ref 37 is similar in many respects to what has been 

developed in this Chapter: the scattering problem is considered with an impedance boundary 

condition, which yields the current and charge distributions within the inclusions. It is known 

that the macroscopic magnetic properties originated by localised electrons in atoms have no 

physical meaning from optical frequencies onward. [22] In contrast, the effective permeability 

of the proposed composite is proven to be consistent with the macroscopic Maxwell equations 

even at optical frequencies, having values that can differ substantially from unity within a 

dispersion band. 
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The magnetic properties originated by induced currents are enhanced by localised plasmon 

modes, which make an inclusion resonate at a much lower frequency than that of the half­

wavelength requirement at microwaves. It implies that microstructure can be made on a scale 

much less than the wavelength and the effective permeability is a valid concept. Figure 5.15 

demonstrates an effective permeability Jleff and permittivity &eff of composite containing 

wire pairs versus frequency for the volume concentration of 3%.[37] In Figure 5.15 the 

following designations are used: I is the nanowire length, a is the nanowire radius, d is the 

distance between axes of two nanowires in a pair. 
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Fig. 5.15 Effecttve p ermeability Jleff = Jl' + iJl" and permittivity &elf = c' + ic" of composite 

containing wire pairs vs. frequency for the volume concentration of 3%. 

In optical and infrared spectral ranges, metal conductivity a can be approximated by 

Drude formula : 

a({i)) - o-o 
- l . t ' -IU) 

(27) 

2 where o-0 = {j)Pt I 47r , {j)P is the plasma frequency, t is the relaxation time (for silver, 

a0 =5.7 x l017 s-1 and t = 2.7 x l0- 14 s). In the high frequency range considered here 

( {j) - 1015 s-1
) losses in metal grains are relatively small, (ut >> l . 
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Therefore, the metal conductivity is characterised by the dominant imaginary part. This is 

very important for our analysis since the current can have a resonance for a considerably 

larger wavelength A.>> 2/. Physically, this is associated with the resonance of localised 

plasmon modes. 

The resonance region for &e.ff is shifted towards higher frequencies. In the area of 

magnetic resonance, Pe.ff - &e.ff with very small losses: e" << 1, p" << 1. The presence of the 

effective magnetic permeability and its resonant properties lead to novel optical effects and 

open new possible applications. In particular, the condition for Brewster's angle becomes 

different resulting in reflectionless normal incidence from air (vacuum) if the effective 

permeability and permittivity are the same ( Pe.IJ - &e.ff ). The resonant behaviour of the 

effective permeability of the proposed optomagnetic medium could be used for creation of 

optical polarizes, filters, phase shifters and selective lenses. 

5. 7 Conclusion 

A comprehensive analysis of a magnetic-field dependent dielectric response in diluted 

metal-dielectric composite materials containing ferromagnetic microwires is presented. We 

have developed a rigorous mathematical method of calculating the electric current density 

distribution at the wire-inclusion irradiated by an electromagnetic field, which determines the 

electric polarisability contributing to the effective permittivity. The wire polarisability is 

proven to be very sensitive to the surface impedance changes near the antenna resonance. 

Therefore, in the composites with ferromagnetic wires as filling inclusions the effective 

permittivity may depend on a static magnetic field via the corresponding dependence of the 

impedance. 

The field dependence of the impedance remains very sensitive even for gigahertz 

frequencies much higher than the characteristic frequency of the ferromagnetic resonance. In 

this case, the impedance reflects the field behaviour of the static magnetisation orientation 

showing a characteristic "valve-type" behaviour versus magnetic field. In the case of a eo­

based microwires, a moderate magnetic field of a few Oe changes the static magnetisation 

from the circular direction to the axial one. During this process, the dispersion characteristics 

of permittivity can be changed considerably, say, from a resonance to a relaxation type. 
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A nwnber of applications of this effect are proposed including microwave materials with the 

field-dependent reflection/transmission coefficients and tuneable waveguides where the 

composite material is used as an additional field-dependent cover. 

The theory can be generalised to the case of interacting wires and applied for the exact 

calculation of the effective response from composites containing periodically spaced wires 

(wire crystals). This presents a considerable interest for studying field-tuneable band-gap [6] 

and negative index materials,[ll-15] and is intended to be published elsewhere. 

The analytical formalism developed can be successfully used for the analysis of 

nanocomposites with the nanoinclusions of different shapes.[37] 

5.8 Appendix A 

The iteration procedure proposed here allows the analytical expression for the current 

density j(z) with the account of all the losses in the system to be obtained. Let us write once 

again the basic integro-differential equation (16): 

a22 (G* j)+(ro)2 &Jl[(G* j)+ icC,zz (Gcp * j)]= iro&[ etJz(z)+C,zcp~z(z)]. (AI) 
az c 2naOlJl 4n 

The general solution ofEq. {A 1) for the zero approximation (19) has the following form: 

. z 
Jo(z) = Asin(k z)+ Bcos(k z)+ zro&- J sin(k(z-s))(eoz(s)+C,zcp~z(s))d~. (A2) 

4nQk _
112 

For the zero approximation with e0z =eo = const and ~z = ~ = const we obtain: 

- - ; ro ~:(eo + C,zcpho) 
Jo(z) = Asin(k z) + Bcos(k z) + _

2 
. 

4nQk 
(A3) 

Zero approximation (A3), satisfying the boundary conditions Jo( -1/ 2) = Jo(/ I 2) = 0, is of 

the form: 

. () iroE(eQ+C,zcp~)(cos(k//2)-cos(kz)) 
Jo z = -

4nQ f2 cos( k 11 2) 
(A4) 

For the ideal conductor (a= oo) and lm(&) = lm(Jl) = 0 solution (A4) has singularities at the 

resonance wavelengths Ares defmed by Eq. (21 ). The account of a limited conductivity and 

radiation losses eliminates the singularities. 
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The iteration procedure determines the next approximations. Let us extract the real and 

imaginary parts of the convolutions in Eq. (AI). To calculate the convolutions with real parts 

the proposed method given by ( 1 8). As a result we obtain the following integro-differential 

equation: 

:z
2

2 [j(z)+ ~(Im(G)* j)]+P[J(z)+ ~(Im(G)* j)]= 

= iroE [eoz(z)+c;z<phOz(z)]+ i(f2 -k2) (Im(G)* j)+ ro&c;zz (Im(G<p)* j) 
47tQ Q 2 1tacQ 

(A5) 

Equation (A5) can be considered as a non-uniform differential equation with respect to 

the operator a2 I a z2 + f2 . Finding the inverse operator, we obtain the integral equation: 

. z 
j(z)=Asin(kz)+Bcos(kz)+ IWE_ J sin(k(z-s))(ifoz(s)+c;zq>~z(s))ds+ 

41tQk -//2 

·cf2 k2) z 
+ 

1 
-- J sin(k(z- s))(Im(G)* j))dH , (A6) 

Qk -1/2 

z . 
WEe; f . - I + zz_ sm(k(z-s))(Im(Gq>)* j)is--(lm(G)* j) 

21tacQk _
112 

Q 

where the constants A and B should be chosen to satisfy the boundary conditions 

j( -1 I 2) = j(l I 2) = 0. Equation (A6) is the Fredholm integral equation of the second kind, 

therefore it is well adapted to an iterative method. For the n-th estimation the following 

iteration procedure is used: 

-cf2 k2) z 
j 11 (z) = j 0(z)+ 

1 
-- J sin(k(z-s))(Im(G)* j 11 _ 1))ds+ 

Qk -1/2 
(A7) 

z . 

+ roEc;zz_ J sin(k(z-s))(Im(Gq>)* ln-J)dY-_!_(Im(G)* }11-J) 
21tacQk _

112 
Q 

Constants A and B are calculated at the final step of the iteration procedure n = N > I so 

that to satisfy the boundary conditions j N (-/I 2) = j N (/I 2) = 0. 
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Let us rewrite iteration representation (A 7) in the following compact form: 

//2 

j,(z)=io(z)+ I S(z,q)j11 _ 1(q)dq, 
-//2 

where 

S(z,q) = S1 (z,q)+ S2(z,q) + S3 (z,q), 

SI (z,q) = -~ Im(G(r)), r = ~(z- q)2 + a2 , 
Q 

"(f2 k2) z .----
S2(z,q)= 

1 
-- I sin(k(z-s))lm(G(r))ds, r =~(s-q)2 +a2 , 

Qk -112 

z 
S3(z,q) COE<;zz- I sin(k(z-s))Im(G<p(r))ds, r = ~(s-q)2 +a2 . 

2TtacQk _
112 

(AS) 

As it follows from Eq. (AS), the radiation losses consist of three parts. The first one, 

related to the local kernel S1, is responsible for a "pure radiation" in the free space as though 

the conductor had the ideal conductivity cr = oo. This part of the radiation is independent of 

conductor internal properties, therefore the kernel S1 is defined by the wave number k of the 

free space and is local. Second part, related to the non-local kernel S2 , is responsible for the 

radiation in the free space, which partly penetrates inside the conductor. Non-locality, defined 

by the convolution with sin(k(z- s)), is caused by the presence of an electric connection 

between spatial points through the conductor. The third part, related to the non-local kernel 

S3 , is caused by the infringement of the quasistatic approximation when calculating h<p(z,a) 

at the conductor surface. All the three parts contain a small parameter I I 41tQ - I I 2ln(/ I a), 

which leads to a fast convergence of the iteration procedure. 

Let us calculate the first iteration substituting (A3) as the zero approximation: 

( 
//2 l ( //2 l J1 (z) =A sin(k z) + I S(z,q)sin(k q)dq + B cos(k z) + I S(z,q)cos(k q)dq + 

-112 -112 (A9) 

ico&(e +r -;;_)( 112 l 
+ 0 ~~<p''U I+ I S(z,q)dq 

41tQk -//2 
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For the unknown constants A and B we obtain the following system of linear equations: 

( 
sin(k//2)+a11 cos(~//2)+a12 J®(A)=(c). 

-sin(k/ /2)+az1 cos(kl 12)+ a 22 B D 

where 

//2 

I S(/12,q)sin(kq)dq 
-//2 

//2 

I S(-1/ 2,q)sin(k q)dq 
-//2 

//2 

//2 

I S(l 12,q)cos(k q)dq 
-//2 

//2 

I S(-l/2,q)cos(kq)dq 
-//2 

ico&{e(j +c;zq>ho) 

4nQP 

I+ f S(/12,q)dq 
-//2 

//2 

1+ f S(-l/2,q)dq 
-//2 

From (A I 0) we obtain the final expressions for A and B: 

A (C-l~)+B(a22 -a12 ) 

2sin(k//2)+all-a21 

(AlO) 

(All) 

(Al2) 

B=(C+D+ (~-CXa11+a21) )/(cos(k// 2)+ (azz_-anXall+azt) +a,z+azz) 
2 4sin(k//2)+2(au-a21 ) 4sin(k/12)+2(au-a21 ) 2 

The denominator of the parameter B determines the resonant frequencies and magnitude of 

the resonant peaks. We shall extract real and imaginary parts of the denominator of B: 

Re= cos(Re(k)/ /2)ch(Im(k)/ /2) +Re( (azz_ -a,zXau +a21) + OJ2 + 0 22 )· (Al3) 
4 sin(k 11 2) + 2(all - azl) 2 

lm = -sin(Re(k)//2)sh(Im(k)/ /2) + rm( (azz_ -a,z)(au + azi) + 0 12 +azz). (A 14) 
4sin(k I I 2)+ 2(all -a21) 2 

The resonance frequencies are found out from the dispersion equation Re = 0 : 

cos(Re(k)//2)ch(Im(k)//2)+Re( (az~-a12Xau +azt) + OJz +azz)=o. (A IS) 
4sin(k//2)+2(all-a2I) 2 

Since the radiation losses are smaller than the internal ones, Eq. (21) can be used as a 

dispersion equation for the resonance frequency. 
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Chapter 6 Future work 

Future applications of the M/ effect cement the different subjects expounded in this 

work making the interdisciplinary dialog a powerfUl tool for the synthesis of new ideas. The 

impedance matrix approach forms the universal conceptual language that provides these 

interdisciplinary penetrations. 

By now, the basic physical principles of the M1 effect have been well understood. This 

is because the main work will spread in the applications of M1 for developing high sensitive 

magnetic sensors and, as ascertained in this work, for tuneable composite materials. Up to the 

present, MI magnetic sensors utilised the field dependence of the longitudinal (diagonal) 

impedance in accordance with its introduction in the first works.[l-3] Further analysis has 

revealed the different field behaviours of the longitudinal impedance in MI samples with 

different types of magnetic anisotropy: circumferential and helical in wires,[4-6] and 

transverse, longitudinal and crossed in films.[4, 7-12] Recently, the off-diagonal components 

of the impedance matrix [6,8,9,11] have founded their applications as the field sensitive 

characteristics with the antisymmetrical field behaviour.[13] The diagonal circumferential 

r;({Jrp and diagonal transverse r; Y.Y impedances (for wire and films, respectively) are still 

waiting for their applications as the field dependent characteristics. In general, each 

component of the impedance matrix has a unique field behaviour, which differs from those of 

the other components (at the same magnetic structure). Therefore, it becomes possible to 

obtain a wide set of the magnetic sensors by varying a magnetic structure in combination with 

different methods of excitation and detection. Another perspective research concerns the 

miniaturisation of the Ml sensors and creation of integrated circuit designs. Thin film M/ 

elements will play here the key role. In work [14], the M1 sandwich film with a planar 

microcoil has been prepared to allow the off-diagonal impedance to be measured. We believe 

that all the components of the impedance matrix will be used in future miniature M1 sensors. 

Of course, the usual problems of magnetic sensors related with the signal/to/noise ratio 

remain actual for the M1 sensors. The research in this direction only has just started and will 

increase. Also, new opportunities for the M/ sensor will appear with a widening of the 

frequency operating range. At the moment, the MHz range is widely used what is dictated by 

the electronic circuit components. However, the GHz range brings very unusual properties of 

MI. For the time being, only one high frequency property, the so-called Ml-valve, has been 

used in tuneable composites.[ 15 J Nevertheless, the Ml element operating in the GHz range 

may be used as a reading head.[l6] 
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A remarkable application of the M! effect is tuneable composite materials. This 

direction of investigation was opened by two recent publications [15] and {17]. In Ref.l7, 

long wires build the composite structure. Contrary to the composite with short inclusions, the 

electromagnetic field is applied locally to a certain portion of the material excluding the ends 

of wires. In this case the current distribution in the wire can be neglected. Such system has the 

response of a diluted plasma and it is characterised by the Drude dispersion typical of free­

electron gas. In a general case, when the skin effect is not very strong, the plasma frequency 

depends on the wire impedance.[l7-19] The composite with long wire inclusions is similar in 

many respects to usual thin metal ferromagnetic film, and so it does not demonstrate any new 

properties. On the contrary, the composite with short wire inclusions {I 5] exhibits the Lorentz 

model of dispersion since the wire-inclusions play a role of "atoms" (elementary dipole 

scatterers), which are polarised with an ac electric field. As compared with usual dielectrics 

we can drive the "atom polarisation" by the external magnetic field. In this work, only a 

simple case of normal incidence and random orientations of wires in the composite slab has 

been considered. For these conditions, the effective permittivity may demonstrate the 

resonance and tuneable properties in the vicinity of the antenna resonance. In general case of 

~zrp * 0 (which takes place in wires with a helical anisotropy), any wire inclusion can be 

excited not only by the ac longitudinal electrical field eoz but also by the longitudinal 

magnetic field hoz, as it follows from the basic integro-differential equation (see Eq. 16 in 

Chapter 5): 

az . 
(G • .) k2(G• .)_lroE_ ( ) --2 1 + 1 ---eoz z az 4n 

· iro&r 
I(I)Ec;zz (G • j)+ -,z(jl ~z(Z). 
2nac <P 4n 

(1) 

Here the impedance component ~up transfers the magnetic field hoz into the effective 

electromotive force (e.m.f.), which induces the current and dipole moment in the wire. The 

material relations in such kind of systems have very unusual form. The bulk electrical 

polarisation P of the planar composite becomes proportional to both the electrical e0 and 

magnetic b0 excitation fields (this is the so-called "chiral medium'~: 

(2) 

where 9 is the electrical susceptibility of the dielectric matrix, 9eff and Pelf are the 

effective bulk susceptibility due to the wire polarisation for the field projections eorr and bou 

in the plane of the composite slab. 
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For the electric intensity vector d inside the planar composite we obtain the following 

representation: 

d = e0 + 4n-P = (1 + 4n-9)e0 + 4n-9egeou + 4n- Pe.ffb 011 (3) 

or 

where & = 1 + 4n- 9 is the matrix pennittivity. If e0 and h 0 are polarised in the plane of the 

composite slab (e0=e011 and h0 = hou) we can write: 

dll = &ejjeo + 4n- PeJJho ' 

where &ejj = & + 4n- 9e.ff is the effective pennittivity of composite. 

(4) 

However, since r;zrp << I (and hence Pe.ff << l ), the electrical excitation will prevail 

over the magnetic one in the geometry and polarisation considered in Chapter 5. In this case, 

we can neglect Pe.ff in Eq. (4) with the result that dll ~ &ejj e0 , as it was excepted in Chapter 

5. Nevertheless, there are some polarisations of the electromagnetic wave and corresponding 

composite microstructures when the magnetic excitation becomes important. For example, the 

electrical excitation is absent at all for the electromagnetic wave propagating along the 

composite surface, while the electrical field is perpendicular to it, as shown in Fig. 6. 1. 

Fig. 6.1 Polarisation of the electromagnetic wave providing the magnetic excitation 

in the composite slab with the random oriental ions of the wire inclusions. 

In this case, Eq. (1) gets the following fonn: 

a2 . iroEc; 
- (G* j)+k2(G* j)= - zroEc;zz (G * j)+ z<p ~z(z). 
a z 2 21ta c <p 47t 
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The same magnetic excitation can be provided even for the normal incidence of the 

electromagnetic wave, when the wire inclusions are ordered in one direction and the electrical 

field is directed perpendicular to them, as shown in Fig. 6.2. 

hoz 

Fig. 6.2 Polarisation of the electromagnetic wave providing the magnetic excitation 

in the composite slab with the ordered wire inclusions. 

Since r;zrp << 1, in both cases shown in Figs. 6.1 and 6.2 the inclusion concentration has to be 

chosen quite large to observe a sufficient field effect on the effective response. In this case, 

the strong interaction between wires will take place, which may result in a shifting of the 

resonance frequency. To the contrary, for the composite structure and wave polarisation 

considered in Chapter 5 the inclusions concentration was very small because the electrical 

dipole polarisation is very large. The interaction can be most easily accounted for in a 

periodical lattice of unidirectional wires, where the current distribution in each wire is the 

same due to symmetry and geometry. In this case, the Green function G in Eq. (1) must be 
~ 

replaced with the so-called structural Green function G (in other words, "Greenian"),[20] 

which is the sum of the Green functions over the lattice: 

(6) 

A _ _ " exp(ik rq,t,m) 
G(z s, y,x) - .i...J . 

q,l,m 41t rq,l,m 
(7) 
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In Eq. (7) rq,J.m = ~(z- s- zq )2 + (y- y1 )
2 +(x- xm )2 

, the point (z,y,x) lies onto the wire 

surface, (q, 1, m) is the 3D integer index of a wire in the wire array, when the summation is 

carried over the lattice of unidirectional wires. The vector (zq,y1,xm) is directed to the wire 

centre. With q,l,m = 0, r0 = ~(z- s) 2 + a 2
, where a is the wire mdius (see Chapter 5). With 

/;eO and m;tO, rqJ,m""~(z-s-zq)2 +(y1i+(xmi since a is assumed to be much 

smaller, than the lattice constants. This "wire crystal" [19] is of its own interest because it 

can exhibit band-gap properties, which in our case will be field dependent. Such system has 

not been analysed yet in terms of the rigorous periodical solution. 

Another perspective research is related with the nanocomposite consisting of the 

nanowires and nanorings and considered in the optical range.[21] The succession of the 

analytical methods allows us to perfect the ideas, which have been developed in the 

microwave range. In particular, the effective tuneable properties may be realised in the 

nanocomposites since the conductivity of the nanoinclusions (or structured nanoinclusions) 

also may depend on the external fields. [21] Further more, such composites along with the 

effective permittivity can have the effective magnetic permeability for the non-magnetic 

inclusions. This artificial magnetism opens up extraordinary possibilities for the creation of 

new mediums with unusual optical properties. Recently, the idea of electromagnetic complex 

materials with both negative real permittivity and permeability has attracted a great deal of 

attention. This idea dates back to 1960's when Russian physicist Veselago [22] postulated 

theoretically the monochromatic electromagnetic plane wave propagation in a lossless 

medium with simultaneously negative real permittivity and permeability at a given frequency, 

and he theoretically showed that in such media the direction of Poynting vector is antiparal/el 

to the direction of phase velocity for a uniform monochromatic plane wave. Such kind of a 

material was named as the "left-handed materials" or "metamaterials". The recent resurgence 

of interest in this medium began when Smith, Schultz and She! by in their research group at 

University of California (San Diego),[23-26] after the work of Pendry of Imperial College 

(London),[27,28,19] constructed such a composite medium for the microwave regime. This 

composite medium is organised as the periodical system of the coupled rings and wires. Many 

researchers from all over the world have now been exploring various aspects of this class of 

complex media, and several potential future applications of these media have been 

speculated. [29-32] 
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In principle, the tuneable composites proposed in works [ 151 and [I 71 may be used 

for the creation of the field-controlled left-handed materials and band-gap structures.[33 1 
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A type of metal-dielectric composites has been proposed that is characterized by a resonancelike bchavior of 
the effective permeability JL,rr in the infmrcd and visible spectral mnges. This material can be referred to as an 
optomagnetic medium. [t consists of conducting inclusions in the shape of nonclosed contours or pairs of 
p8rdllel sticks with length of 50-100 nm embedded in a dielectric matrix. The analytical formalism developed 
is based on solving the scattering problem for considered inclusions with impedance boundary condition, 
which yields the current and charge distributions within the inclusions. The magnetic properties originated by 
induced currents are enhanced by localized plasmon modes, which make an inclusion resonate at a much lower 
frequency than that of the half-wavelength requirement at microwaves. It implies that microstructure can be 
made on a scale much less than the wavelength and the effective permeability is a valid concept. The presence 
of the effective magnetic permeability and its resonant properties lead to unusual optical effects and open 
interesting applications. In particular, the condition for Brewster's angle becomes different resulting in reftec· 
tionless normal incidence from air (vacuum) if the effective permeability and permittivity are the same. The 
resonant behavior of the effective permeability of the proposed optomagnetic medium could be used for 
creation of optical polarizes, filters, phase shifters, and selective lenses. 
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I. INTRODUCTION 

Metal-dielectric composites, in which small metal par­
ticles are embedded into dielectric host, present an exciting 
area of study. The overall electric, magnetic, and optical 
properties are not governed by the behavior of the raw ma­
terials. A vast amount of literature exists on this topic. In the 
limit of high metal concentration, the percolation across the 
connected clusters results in critical dielectric1 and magnetic2 

responses, strong local field ftuctuation,3 and enhancement of 
transport4•

5 and optical6
•
7 nonlinearities. In the limit of di­

luted composites, individual metal inclusions contribute to 
the effective electromagnetic properties; however, small me­
tallic scatters may show completely different behavior as 
compared with bulk metals. In both cases, the effective per­
mittivity "•tr and permeability JLelf can be tuned to values not 
easily possible in natuml materials. 

Recent advances in microfabrications make possible cre­
ation of composite materials with constituents of different 
forms and sizes down to nanoscales.8

·
9 This offers a way to 

engineer various dielectric and magnetic metamaterials, 
since the effective parameters "•If and /-Letr are determined by 
microstructure. Composites containing rings, helix on !l par­
ticles exhibit resonancelike behavior of both the permittivity 
and permeability in overlapping frequency bands, 10

•11 which 
is quite unusual in nature. In a medium of three-dimensional 
army of intersecting wires the propagation modes have a 
dispersion characteristic similar to that in a neutral plasma 
with negative Eetr below the plasma resonance somewhere in 
the gigahertz range.1Z.13 It was further shown that the com­
posites built of two-dimensional armys of split copper rings 14 

and wires have a range of frequencies over which both the 
permittivity and permeability are negative in microwavesY 

These materials have generated a considerable interest as 
they olfer a possibility to realize a negative index of refrac-

tion 11. Many surprising effects are possible in these so-called 
left handed materials theoretically predicted by Veselago, 16 

which would be of great importance for communications and 
electronics. These include reversed Doppler and Cherenkov 
effects and a reversed Snell's angle, which could result in 
lenses without limitations on the resolution by wavelength. 17 

So far, the concept of negative refraction has been predicted 
and proven at microwave frequencies. In the experiment on 
deflection of a beam of microwave radiation by a prism 
made of wire-and-ring material negative refraction angles 
were found,18 which correspond to the negative index 11 ap­
propriate to Snell's law. The transmission spectra measured 
in these materials also confirm the concept of negative 11.

15 

An immediate question is whether left-handed materials 
can be realized at optical frequencies. (We exclude from con­
sideration photonic crystals where it is difficult to assign an 
effective equivalent 11 and where the phenomenon of nega­
tive refraction has been recently predicted near negative 
group velocity bands. 1'1 On one hand, negative dielectric 
constant is natuml for metals below the plasma resonance 
that falls above visible frequencies. For example, silver 
would be a good choice for negative permittivity at optical 
frequencies since the resistive part is very small. On the 
other hand, quite rigid limitations exist with respect to the 
permeability at high frequencies. There is a widespread be­
lieve that the concept of permeability has no physical mean­
ing at optical frequencies and onward, as was proven for 
atomic magnetism (see, for example, Ref. 20). The aim of 
this paper is to elucidate the imp/icatio11s related to high­
frequellcy magnetic properties a11d to demoiiStrate that 
metal-dielectric composites with 11anoinclusions can have a 
considerable magnetic activity at optical frequencies. 

We consider two types of metal-dielectric composites 
with inclusions fonning different current contours: two-wire 
contour and a single ring with a gap (see Fig. 1). The math-
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FIG. I . Composite medium with effective permeabiJjty at opti­
cal frequencies. A possible polarization of the electromagnetic wave 
associated with induced magnetic properties is indicated. In (a), a 
system of nanowires grown on a substrate is shown, in which two 
paraUel wires form a constituent element. TI1e spacing in the pair of 
wires is much smaller than the distance between the pairs. In (b), a 
nanoring compos ite is shown. 

ematical formalism developed is based on a modified an­
tenna theory, which provides a bridge between the micro­
wave methods using distributed parameters and the optical 
description based on plane waves and surface plasmons. We 
show that the magnetic properties at optical frequencies can 
be generated by localized plasmon modes. The theory pre­
dicts resonancelike behavior of the effective permeability 
over certain frequency range in tl1e infrared and visible parts 
of spectrum in such composites. The negative values of f.J-eff 

are possible past tl!e resonance; however, high volume frac­
tions are needed to realize P-etr< O since the magnetic dipole 
interaction strongly reduces the resonance peaks. Neverthe­
less, oilier unusual optical effects can be realized in tlle pres­
ence of some f.J-eff noticeably different from unity (which do 
not require negative JJ-eff>· In particularly, the condition under 
which there is no reflected waves (Brewster's angle) 
changes. In the case P-ereeff a normal incidence from air 
(vacuum) gives no reflection. This effect known at micro­
waves could be useful for optical filters and isolators. 

The phenomenon of nontrivial permeability at optical fre­
quencies can be named optomagnetism (and the area of study 
is then referred to as optomagnetics) in order to distinguish it 
from the magnetic field influence on light propagation 
known as magnetooptics. The proposed optomagnetic me-
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dium is foreseen to find a variety of applications in optics 
and optoelectronics. The resonance properties of the effec­
tive permeability at optical frequencies can be exploited for 
the production of tuneable narrow bandwidth optical fi lters 
(either on reflection or on absorption). The presence of per­
meability may be used in optoelectronic interferometers to 
measure phase shifts induced by magnetic fields and is likely 
to result in a new generation of all optical sensors. The de­
pendence of permeability dispersion upon carrier concentra­
tion inside the inclusion and external parameters could be 
used for creation of tuneable optical elements. 

Natural ferromagnetic behavior tails off completely at gi­
gaherz frequencies. In the case of ferrite materials with few 
magnetic sublattices, there exists so-called exchange modes 
of magnetic excitations with eigenfrequencies in tlle infrared, 
but their intensity is very small. Then, only the electron 
movement under the Lorentz force would contribute to J.Leff 
at optical frequencies. In this case, there appears a problem 
of using a concept of permeability in the averaged macro­
scopic Maxwell equations. The situation is different for com­
posite materials containing nanosized metal inclusions. The 
effective permeability is obtained by averaging the magnetic 
moments of closed currents in metal inclusions and can have 
quite high values as a result of t11e resonance interaction of 
the incident electromagnetic wave with plasmons confi ned 
inside the inclusion (localized plasmon modes). The resonant 
frequency is lowered considerably allowing the resonance to 
occur at wavelength of the exciting light much larger than 
the inclusion size (at microwaves, there would be a half­
wavelength requirement for resonance) and the effective pa­
rameters are still a valid concept. Near resonance, the cur­
rents in the inclusions are enhanced and large magnetic 
moments are generated. That may eitller enhance (paramag­
netic effect) or oppose (diamagnetic effect) the incident fie ld 
and the effective permeability exhibits a resonant behavior. 
Considering a diluted system with a small volume concen­
tration p ~ I of the current contours and calculating f.J-eff by 
summation over independent magnetic moments give the 
dispersion of the effective permeability with P-etr> I below 
the resonance and JJ-err goes to negative values past the reso­
nance. However, tlle interaction bet\veen the inclusions 
(taken into account within the effective medium theoif1.12) 

decreases considerably the values of P-eff near the resonance 
and for realistic concentrations (p < 0.1) always J.Letr>O. The 
considered system has also the effective perrnittivity eeff· 

For ring-inclusions, the value of eelf is reduced due to geom­
etry. For two-wire contours, the permittivity is essential for 
tlle light polarization with the electric field along the wires 
[see Fig. I (a)]; however, the resonance frequency for e etr is 
shifted towards higher frequencies with respect to that for 
P-eff• which makes it possible to realize the condition J.Letr 
""Beff in both cases. 

The paper is organized as follows. Section 11 starts with 
tlle description of proposed optical effects due to existence of 
substantial P-eff . In Sec. Ill we discuss in more detail tlle 
limitations on the concept of permeability at high frequen­
cies. Section fV formulates bow to detennine the effective 
parameters in the considered composites. In Sec. V, the 
mathematical formalism for calculation of the current distri-
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FIG. 2. Geometry of reflection and refraction. 

bution in the inclusions is given. Section VI presents the 
obtained results on J.Lerr and 8etr and an overall discussion. 
There are also two mathematical appendixes. 

n. BREWSTER'S ANGLE IN THE PRESENCE 
OF PERMEABTLITY 

Introducing effective magnetic permeability at optical fre­
quencies may result in some unusual behavior of light propa­
gating in macroscopically heterogeneous composite media 
(with boundaries). Here we consider the reflection and re­
fraction of a polarized light at an interface between two di­
electric media with nontrivial magnetic properties. The re­
sults of this section are, in many respects, known (see, for 
example, Ref. 23), however, it is convenient to reexamine the 
conditions of reflection/refraction described by Fresnel 's 
equations, s ince they are customarily analyzed for nonmag­
netic materials. In particular, we show that the condition un­
der which there is no a reflected wave from a boundary 
(Brewster 's angle) becomes different in the presence of per­
meability. l11e light is incident from medium " I" with the 
material parameters e 1 , J.£1 towards medium "2" with 82. 
J.Lz. The quantities pertaining to the incident, reflected and 
transmitted waves are distinguished by the suffixes i, r, and t, 
respectively, as shown in Fig. 2. In the case of the electric 
field E perpendicular to the plane of incidence (s polariza­
t ion) the Fresnel 's relationship between the field in the inci­
dent wave and that in the reflected wave is23 

(11 1 I J.£1 )cos 8;- (11 2 I J.L2)cos 8, 
( 11 1 I J.L 1) cos 8; + ( n 2 I J.£2) cos (} · 

(I) 

Here (} . are the corresponding angles of incidence, reflec-
' 1, r , 1 . 

tion and refraction obeying usual Snell 's equation 

(2) 

with the index of refraction n = .J;;. 11w condition Er=O, 
or 

(3) 

gives Brewster's angle Ob. For nonmagnetic media J.£ 1 
= J.£2 = I Eq. (3) can hold only if 8 1 = 8 z (no optical inter­
face). Therefore, Brewster 's angle is not observed fors po­
larization in conventional optics. With tt1).i= I the absence 
of reflection and Brewster's angle can happen even for s 
polarization: 

PHYSICAL REVIEW B 66, 15541 I (2002) 

~e 1#i-Bzl-£11-£2 
tan fh= 

8 2#1 1-£2 - e 11-£1 

when ( 8 1 J.L~- 8zJ.L 1 J.L2)I( 821-£11-£2- e 1 J.Lf) ;;;.. Q. 

(4) 

Suppose that the optical properties are due only to the 
magnetic permeability (e 1 =e 2= l ,n 1 = .J;;,nz= ,f;;), 
then, the Brewster angle is given by 

(5) 

Equation (5) formally coincides with a usual equation known 
for p-polarized light (electrical field is in the plane of inci­
dence). For incidence from air (vacuum) ( e 1 = J.L1 = I ) , Eq. 
(4) becomes 

~ 
tan Ob = y "'j=')• 

2 

which can be satisfied either by J.L~;;;..n~> I CIJ.Lzl;;;..l82l and 

ln21> I) or by J.L ~ ..;;n~ < I CIJ.Lzl ..;; le2l and lnzl< 1). 
For the p-polarization case, the Brewster angle can be 

found from Eq. (4) by interchanging 8 and J.L. This is because 
the boundary conditions for the two cases are symmetrical 
with respect to E and H. Then, Eq. (4) becomes 

~J.Lie~ - f.L2Bie 2 
tan Ob= 

J.LzBie z- 1-£181 
(6) 

and Brewstcr's angle exists for p polarization when (J.£ 1 e ~ 
- J.L2e 1e 2)/ (J.L2e 1e2- p, 1 ei) ~ O . For J.£ 1 = 1-£2 = I Eq. (6) 
gives a standard form for the Brewster angle tan Ob=n21n1 
[compare with Eq. (5)]. In the case of incidence from air 
( e 1 = I and I-Ll = I) Eq. (6) reduces to 

(7) 

From Eq. (7) it is clear that Brewster's angle in this polar­
ization is realized either under the condition e~;;;.. n~> I 
(le 2I~ IJ.L2 1 and l11 2l> l ) or e i..;; ni< I CIE2I ..;; IJ.Lzl and 
ln 21 < I ) , which are opposite to those for s polarization. 

lt is worth mentioning that for both polarizations there is 
no reflection at nonnal incidence under the condition 
E 1 / I-Ll= e2 I J.£2 , as follows from Eqs. {4) and {6). This result 
is well known for microwaves, representing the condition of 
the impedance matching since the ratio e/ J.L is related to the 
wave impedance. 23 It also means that an arbitrary polarized 
light will not be reflected from the interface of air (vacuum) 
and a medium with optical constants le 2I= IJ.L21. Thus, there 
may be an optical analogy of the impedance matching. Jn 
view of these cond itions of reflection, optomagnetic materi­
als may demonstrate interesting phenomena at optical fre­
quencies, su itable for applications in optical filters, phase 
shifters, and isolators. 

m. LIM1TATlONS IMPOSED ON PERMEABJLJTY 
AT IDGH FREQUENCIES 

In this section we analyze the restriction conditions for 
introducing high frequency permeability to the Maxwell 
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equations. The magnetization M = (B- H)/ 47T appears in the 
Maxwell equations as a result of averaging the microscopic 
current density J mic : 

curiM = (J m;c). 
c 

(8) 

Here ( · · ·) stands for a mean value of a microscopic quantity 
c is the velocity of light (Gaussian units are used throughout 
the paper). The physical meaning of magnetization is the 
magnetic moment per unit volume. This comes from the pos­
sibility to rewrite the total magnetization of the body in the 
form 

I MdV= L I ( r X(Jmic))dV, (9) 

where the integration is carried out inside the body. Equation 
(8) is correct for a static magnetic field . When the macro­
scopic fields depend on time, the establishment of the rela­
tionship between the mean value (J m;c) and other ~uantit ies 
is not straightforward. A general form of Eq. (8) is 0 

(J mic) I d P 
curlM = --- --

c c dt' 
(10) 

where P is the polarization vector. However, Eq. ( 10) is not 
consistent with Eq. (9). Therefore, the physical meaning of 
M at high frequencies depends on the possib ility of neglect­
ing the second term in the right part of Eq. (I 0): 

d P 
ccurlM~ dl· (11) 

Let us suppose that the fi elds are induced by an electromag­
netic wave of frequency w. Estimating curiM- xH/1, 
dPidt - waE, where x is the magnetic susceptibili ty, a is 
the electric polarizability, I is the characteristic s ize of the 
system, and taking E- H for the electromagnetic wave, Eq. 
( 11) can be written as 

x~ a/I'A. , ( 12) 

where 'A. is the wavelength. It is generally considered that at 
optical frequencies (and onward) inequality (12) cannot be 
satisfied and the concept of the permeability is meaningless. 
This is correct if the magnetic moment is associated with 
electron motion in the atom. Indeed, the relaxation times for 
any paramagnetic or ferromagnetic processes are consider­
ably larger than optical periods. Then x is due to electron 
movements under the Loren.z force, and can be estimated as 
x - (vlc )2

, where "is the electron velocity in the atom. On 
the other hand, the optical frequencies are of the order of vi b 
where b is the atomic dimens ion. Then Eq. (12) reads I 
~b( vie ), which is not compatible with the requirement that 
the characteristic size of the system has to be much greater 
than the atomic dimension (I~ b). 

The situation may be completely different for metal­
dielectric composites. If the inclusion size is smaller than the 
wavelength (but larger than the atomic size) the effective 
magnetic and dielectric parameters can be introduced as a 
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result of local field averaging. For a composite with metal 
grains of a few nanometres, the effective parameters includ­
ing permeability become meaningful even for optical fre­
quencies. In this case, the effective permeability is obtained 
by averaging the magnetic moments of induced currents in 
metal inclusions. Our analysis demonstrates that inequality 
( 12) is satisfied in the composites considered over certa in 
frequencies in the optical range. 

IV. PROBLEM FORMULATION 

In metal-dielectric composites irradiated by high fre­
quency electromagnetic field the magnetic properties are pro­
duced by contour currents induced in metallic inclusions. If 
the spatial scale of the system is smaller than the incident 
wavelength, the magnetic moments of individual current 
loops (within a single inclusion or formed by a number of 
them) g ive rise to magnetization and the effective 
permeability. 2,2

2
,2

4 The interaction between induced currents 
can be considered within the effective medium approxima­
tion. Composite materials with inclusions of a complex form 
(split rings, chiral and omega particles) are known to have 
unusual magnetic properties including both giant paramag­
netic effect and negative P.eff .

10
-

12 These properties are re­
lated to resonance interaction of the electromagnetic wave 
with an inclusion and have been reported for microwave fre­
quencies. The complex form of the inclusion is needed to 
realize the resonant conditions at wavelengths much larger 
than the inclusion size. For example, in a unit with two co­
ax ial rings having oppositely oriented splits12 a large capaci­
tance is generated lowering the resonance frequency consid­
erably. When the inclus ion dimensions are reduced down to 
nanoscale, the wavelength can be proportionally decreased 
down to microns falling in the optical range. Then, the effec­
tive permeability of nanocomposites can be substantial at 
optical frequencies. However, it seems that the fabrication of 
nanoinclusions of a complex form may not be a realistic task. 
Fortunately, in the optical region the resonance frequency is 
lowered due to localized plasmon modes and fairly simple 
inclusions of a loop shape will create substantial magnetic 
moments even when the inclusion size is much smaller than 
the wavelength of the incident light. 

Within the effective medium theory, the problem is re­
duced to considering the scattering of electromagnetic wave 
by a metallic contour. ln general, this process can be very 
complicated. Here we consider two types of inclusions: ring­
shaped inclusions (having some gap large enough to neglect 
the edge capacitance) and pairs of parallel conducting sticks 
connected via displacement currents (see Fig. 1), which per­
mit a fairly simple analysis at certain approximations. For 
the chosen geometry, the resonance of localized plasmons 
confined within the inclusion is realized, which leads to the 
resonant current distributions and eventually, to large in­
duced magnetic moments. The latter is responsible for the 
effective permeability having a resonancelike dispersion law 
with the resonant frequency coinciding with that for the cur­
rent distribution. 

Let us formulate the basic assumptions under which the 
problem is treated. We consider the composite medium irra-
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FIG. 3. Geometry of metallic inclusions, principle directions, 
and quantities used. 

diated by a plane-polarized electromagnetic wave of a single 
frequency w, so that the time dependence is of the form 
exp(- iwt). The contour length (f) is much larger than the 
cross-section size (2a ). Then, when calculating fields in the 
surrounding space, the thickness of the contour can be ne­
glected and the induced currents can be replaced by the ef­
fective linear currents j. The current distribution inside the 
inclusion affects the scattered fields only via the boundary 
conditions imposed at the inclusion surface. The wavelength 
is also much larger than the cross section A;<> 2a , but there is 
no restrictions on I with respect to A. The magnetic moments 
in the composite are induced when the incident light has the 
magnetic field directed perpendicular to the plane of a me­
tallic contour as shown in Fig. 3. In the case of a circular 
contour [Fig. 3(a)], the field H induces a circumferential cur­
rent j 111 ( 8) depending on the azimuthal angle 8. Then, the 
magnetic moment m associated with this current is 

I J R~ ( Do 
m = 2c [rXJ111 (r)]dV= o,2c" Jo Jm(B)d8, (13) 

where Jm = j 111 ( 8) 0., , 0.5 is the two-dimensional Dirac delta­
function which peaks at the axis of the wire, R0 is the radius 
of the contour, (27T- 80 ) is the angle ofthe gap, and o, is the 
unit vector perpendicular to the contour plane. The currents 
due to the electric field give no contribution to m . In the case 
of a pair of conducting sticks [Fig. 3(b)] the current is dis­
tributed along their length and can form closed contours via 
the displacement currents. The metallic sticks as elements to 
produce the effective permeability were first proposed in 
Ref. 25. In this work, however, a random assembly of me­
tallic sticks was considered, for which the total magnetic 
moment vanishes due to symmetry. As a result, the effective 
permeability for such a system is unity, as was proven by 
experiments26 (in Ref. 26 the response from a stick compos­
ite is described adequately in terms of the effective permit­
tivity, indicating that the effective penneability is essentially 
unity). The magnetic properties may appear only in diluted 
composites containing pairs of parallel sticks as a single el­
ement, as shown in Fig. l (a). The magnetic moment is then 
found as [from symmetry, the contribution from the displace­
ments currents equals to that from current j m(x) ] : 
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d J/12 
m=oz- Jm(x)dx, 

c -112 
(14) 

where d is the distance between the sticks. The magnetic 
polarizability xo of a single inclusion associated with the 
induced moment can be found from m = x0 VH, where V is 
the volume of the metallic inclusion. The effective perme­
ability is calculated from a self-consistent equation of the 
type2,22,24 

JLerF I + 4 7Tp Xo(JLeti), (15) 

where p is the volume concentration. If the incident electro­
magnetic wave has the electric field E parallel to the wires 
[Fig. l(a)] a substantial electric dipole moment is generated 
contributing to the effective permittivity. The currents j . in­
duced by this field can be considered separately as shown in 
the following section. The electric dipole moment p and the 
dielectric polarizability a 0 of the inclusion are calculated for 
stick contour using the continuity equation aj e f ax= i wp and 
integrating by parts with boundary conditions j eC± 112) == 0 
(p is the charge density per unit length): 

i J/12 
p= ox- j , (x)dx , p=a0 VE. 

(1J - //2 
(16) 

The effective permittivity can be found from the self­
consistent equation similar to Eq. (15).25 

In our analysis it will be important to consider a reso­
nance distribution of the induced currents. From the micro­
wave antenna theory it is known that a nontrivial current 
distribution occurs when the wavelength is in the range of I. 
Then, the use of the effective dielectric and magnetic param­
eters is doubtful. However, in our case the situation is differ­
ent. In optical and infrared spectral ranges, metal conductiv­
ity u can be approximated by Drude formula 

uo 
u( w) = -1 -. - ' - twr 

(l7) 

where u0 = w;r/47T, wP is the plasma frequency, r is the 
relaxation time (for silver, u 0 = 5.7X 1017 s- 1 and r=2.7 
X 10- 14 s) . ln the high frequency range considered here ( w 
- 1015 s - 1) losses in metal grains are relatively small wr 
;<> I . Therefore, the metal conductivity is characterized by the 
dominant imaginary part. This is very important for our 
analysis since the current can have a resonance for a consid­
erably larger wavelength A;<> 21. Physically, this is associated 
with the resonance of localized plasmon modes. 

In Eq. (17) the relaxation time r has a meaning of the 
mean-free time between electron collisions. The metal inclu­
sions considered here have a length in the range of I 00 nm 
and a cross-section size of 10 nrn. The mean-free pass in 
noble metals such as silver is about 40 run. It implies that the 
parameter r used in Eq. (17) differs from that in bulk mate­
rials. However, in the frequency range w r ;<> I , electrons os­
cillate many times between collisions and the collisions are 
of little importance. The conductivity has a dominant imagi­
nary part independent of r: 
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2 2 
(J)p • (J)}J 

u(w)=~4 +1-
4
-. 

7T(J) 'T 7T(J) 

The resistive losses, which are determined by the real part, 
are typically smaller or in the range of the radiation losses 
and will only slightly change the values of currents at reso­
nance. However, the resonance frequency will shift consid­
erably towards higher frequencies if w r - I. This imposes 
limitations on the minimum cross section. 

V. MATHEMATICAL BACKGROUND 

A. Basic equations 

Let us consider the current distribution in a thin metallic 
conductor irradiated by an electromagnetic field. The ap­
proximations used are 2a~l. >.. ~ 2a . This is a standard 
problem of the antenna theory (see, for example, Refs. 27 
and 28), which can be treated in terms of retarded scalar rp 
and vector A potentials. The total electric field E, = e0 + e is 
represented by the sum of the external field e0 and the scat­
tered field e. In the Lorenz gauge B arpl at+ 4 7T divA= 0, the 
equation for e is written as 

47TiW/-L 47T 
e= --::z-A- -. - grad divA. 

C IWB 
(18) 

l11e vector potential A taken at arbitrary point r0 is obtained 
in the form of a convolution with the total current density 
J(r) : 

A(r0)=(G*J) = LJ(r')G(r)dV •• , 
exp(ikr) 

G(r)= 
4 

, 
7Tr 

(19) 

where r= r0 - r ', r = lrl. integration is taken over the vol­
ume containing current, k = ( w/ c) reJi is the wave number, 
G(r) is the Green function satisfying the Helmholtz equa­
tion. Customarily, Eq. (19) is solved under the zero boundary 
condition 

E,=O, (20) 

where E, is the tangential component of the total electric 
field taken at the surface of the conductor. Then, the current 
distribution is found from an integrodifferential equation. 
The condition (20) corresponds to the case of an ideal con­
ductor with infinite conductivity. Being used as an approxi­
mation, Eq. (20) works reasonably well when the radiation 
losses are considerably larger than the resistive ones or the 
system is out of resonance. However, in certain cases (in­
clurling ours), the current distribution may have a zero (or 
greatly reduced) dipole moment. This implies that the radia­
tion losses are comparable with the resistive ones and the 
condition (20) is no longer valid. The processes related to a 
finite conductivity may change the resonance condition for 
the current distribution: reduce the current amplitude and 
shift of the resonance wavelength. Here the problem is 
solved imposing impedance boundary conditions, which is 
valid at any frequency including the optical range 
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(21) 

where ~ is the surface impedance matrix, n is the unit vector 

normal to the surface and directed inside the conductor, ii, is 
the tangential component of the total magnetic field taken at 
the surface (hereafter, overbar is used to denote tangential 
fields at the inclusion surface). For the geometry considered 
here (see Figs. I and 3), the external magnetic field is normal 
to the contour plane and gives no contribution to Eq. (21). 
The scattered field h is determined as 

or 

47T 
h= -curl A 

c 

1 J ( 1-ikr)exp(ikr) 
h( r0 )=- 3 (J( r') X r]dv •.. (22) 

c v r 

When the skin effect is strong, Eq. {21) does not depend 
upon geometry and for a nonmagnetic conductor {permeabil­
ity of metal is always unity at optical frequencies) is repre­
sented by a scalar (normal skin effect) : 

c;=(1-i) /w. \Is;:;; (23) 

The case of a thin arbitrarily shaped conductor having a cir­
cular cross section allows the surface impedance to be deter­
mined for any frequencies. The electromagnetic field inside 
such a conductor can be taken to be the same as that inside a 
straight cylinder. Then, in the local cylindrical coordinate 
system (r,rp,x) with the axis x in the axial direction the 
impedance boundary conditions (21) become 

(24) 

koc lo(koa) 
c; =-----

.T.T 47TuJ1(k0a)' 
(25) 

where k~ = 4 7Ti uwl c 2 and J 0 , J 1 are the Bessel functions of 
the zero and first order, respectively. Equations (25) are valid 
for normal skin-effect. For the dimensions considered, the 
skin depth is in the range of the mean-free pass, and both 
these parameters are larger than a. Then, the skin effect is 
week, and using Eq. (25) is still reasonable. 

Since we are interested only in fields in the surrounding 
space, the current inside a thin conductor can be replaced by 
an effective linear one j(x) that flows along the axis of the 
wire: J(r) = j(x)b's. The volume integration in Eq. (19) is 
then replaced by the integration along the current contour. 
Thus, the current distribution in a thin conductor irradiated 
by the electromagnetic field is found from Eqs. (18), (19) 
with boundary condition (24) that binds scattered fields e 
(18) and h (22) taken on the surface of the conductor. 
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B. Current equation In a siTaigbt wire 
with clrcular cross section 

First, the current equation is obtained for a straight wire 
with a circular cross section placed in the electrical fi eld eo 
(of any origin) parallel to the wire axis x. The scattered field 
e is determined by the x component of the vector potential. 
The value of the longitudinal electric field ex(x) taken at the 
wire surface is represented in terms of the integrodifferential 
operator with respect to x, as it follows from Eqs. (18), (19): 

41T[rP ] e (x)= - -. - --:;-'I(G*j)+k2(G*J) • 
x IW6 BX 

fin 
(G*j)= j(s)G(r)ds, r = ~(x-s)2+a2. 

- In 
(26) 

For this geometry, the scattered magnetic field ii'P taken at 
the surface is circumferential. In Eq. (22). considering that 
the effective linear current j(x') is flowing along the wire 
axis and r0 points at the wire surface yields [J(x') XrJI 'P 
= j(x' )a . Then, the equation for ii 'P obta ins the form 

2 2 f '/2 
lirp(x) = -(G!J)=- j(s)G/r)ds, 

ac ac - 1!2 
(27) 

where G 'P(r)=a 2(1 - ikr )exp(ikr)/2r3 . 

Finally, subst ituting Eqs. (26) and (27) into boundary con­
dition (24) yields the integrodifferential equation for the lin­
ear current j(x): 

Equation (28) is solved imposing zero boundary conditions 
at the wire ends: j( - f/2) = j(l/2) = 0 (the end surfaces are 
assumed small and associated capacitance is neglected). 

ReaJ parts of the Green functions Re( G) and Re(Grp) have 
sharp peaks at s = x, which makes it possible to use the fol­
lowing approximations for calculating the convolutions30 

f
/!2 

(Re( G)*)}'" j(x) Re( G(r)]ds = j(x)Q, 
- lfl 

fm I f'n ds ln(l/a ) 
Q= Re[G(r)]dsoc -

4 
~--2-, - 112 1T - mys-+a- 1T 

f
/!2 

[Re( G 'P)* j] = j(x) Re[ G 'P(r) ]ds = j(x)Q 'P, 
- 1!2 

f tn 02fm ~ 
Q'P= Re[G'P(r)]dsoc -2 ( 2+ 2)Jn 

- lfl - 112 s a 

(29) 
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where Q and Q, are positive form factors. The logarithmic 
term in Q, is neglected since ak4, I in our case. 

The convolutions j(x) with Re( G) and Re(Gy) give the 
main contribution to Eq. (28): l[lm(G)*JJI4,1(Re(G)*J]I and 
j[Jm(G.p)*JJI4,1[Re(G'I')*J]I. On the other hand, convolutions 
j(x) with imaginary parts lm(G) and lm(G'I') are responsible 
for radiation losses and become important at resonance. They 
can be calculated by the iteration method given in Appendix 
A. Equation (28) is reduced to an ordinary differential equa­
tion for the zero approximation j 0(x) where the radiation 
losses are neglected: 

g=( I + 2~::/L ~'I') 112-( I + aw~cl:(xlla)) 1!2. 

Equation (31) shows that the impedance boundary condition 
renormalizes the wave number of the incident radiation. 
Considering the solution of Eq. {30) with j(- 1/2) = j(l/2) 
= 0, the resonance wavelengths are determined via this new 
wave number from the condition cosk1//2=0 or k1/ 

= 1T(2n - 1): 27,28 

2/ 
Arcs,n=-

2 
-

1 
Rc(g.j;J;,), n = 1,2,3,.... (32) 

n-

A similar renonnalization method for the wave number has 
been used to tackle boundary effects in the microwave scat­
tering from a conduct ing stick placed in a thin dielectric 
layer.31 

C. Current equation for two parallel wires 

With the help of Eq. (28), we can now consider the cur­
rent distribution in two parallel wires. The distance d be­
tween them has to be larger than the diameter (d> 2a) in 
order to use the approximation of thin conductors. The equa­
tions for currents are of the form 

iwe iwr.c;:rx 
= -4 -[eo~.r(x) +e2~x(x)]- -

2
--(G* iJl, 

1T 1TOC ~ 

iwe iwe<;= 
= -

4 
[eo2.T(x) +e12x(x)] - -

2
- - CG!.h). 

1T 1TOC 

(33) 

Here e12x and e21x are the longitudinal electric fields induced 
by each conductor at the surface of other, e01x and e02T are 
the external fields, j 1(x) and h(x) arc the linear currents 
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inside the conductors. The fields e12_. and ifnr are determined 
from Eq. (26) with r =rd= .,}(x- s) 2+d2. 

Equations (33) are reduced to two independent equations 
by introducing j e = U 1 + J 2)/2 and ) m= U 1 - J 2)/2: 

lt is easy to see that only electric field ed directed along the 
wires and magnetic field 11 perpendicular to the two-wire 
contour (xy plane) will excite currents inside the inclusion in 
the discussed geometry. The perpendicular magnetic field 
produces circulatory electric field e, = ( i w/2c) J.t/-11 d I (I 
+d) along the wire contour due to Faraday's law of induc­
tion. Therefore, the external electric fields arc of the fonn 
e01 .. =ed+e,. and e021 =e"- e,. . This implies that the cur­
rent j"' in the first equation is induced by the magnetic field 
and is responsible for the magnetic moment m. The current 
j. entering the second equation is created by the electric field 
and defines the electric dipole moment p. 

Ford sufficiently small (strong interaction), the convolu­
tion with the Green function G J(r d) can be estimated with 
the help of an approximate formula (29): 

(36) 

Similar to Eq. (30), the zero approximation for the current 
distribution reads 

(38) 

I+ .u ( 
i c<; ) 112 

awp. ln(d /a) ' 
(39) 
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I .rx 
( 

i c<; ) 112 
- + awp. ln(P!da) · 

(40) 

The general solution of Eqs. (37), (38) is of the form 

. . iweem,d 
lm,eo(x)=A sm(k,. ,eX ) +B cos(km,eX)+ 47T(Q+Qd)k;, e 

(41) 

In Eq. (41}, the first set of subscripts corresponds to the 
magnetic excitation for which sign " minus" in the last term 
is taken, and the second set corresponds to the electric exci­
tation with sign " plus." Imposing zero boundary condition 
Um .eo( - 112)=),.,eo(/12)=0] yields 

. i weem.d [ cos(k,.,e/12)- cos(k,,eX)] 
lm,eo(x)= 47T(Q+Qd)k~ e cos(k,.,e//2) 

(42) 

The resonance wavelengths X,, Xe for the two excitations 
are different and can be found from the condition k,. . 1 
= 7T(2n - l} :27.28 · 

21 
X, .= -

2 
-

1 
Re( ~g,. . ), 11 = 1,2,3,.... (43) . n- . 

The amp) itude of the current at resonance is restricted by 
losses related to conductivity and relaxation properties of the 
surrounding medium. However, solution (41) does not con­
tain such an important factor as radiation losses since the 
imaginary parts of convolutions were neglected. To find the 
effect of radiation, original Eq. (33} can be solved by itera­
tions. For this purpose, it is converted to an integral form in 
the Appendix A. The nth iteration can be represented as 

Jn(x)= Jo(x)+ J'n S(x,q)Jn - l(q)dq, 
- 112 

(44) 

where the zero iteration j 0 has to be taken in the form of Eq. 
(4 1) since the boundary condition is imposed for Jn and 
S(x ,q ) is the integral kernel. The iteration method is proven 
to converge very rapidly. The first iterationj 1 is sufficient to 
take account of the radiation effects. Its explicit form and the 
form of the kernel S(x ,q) are calculated in Appendix A. 

The scattering at a ring inclusion gives similar results for 
the current distribution and magnetic polarizability. This case 
is considered in Appendix B. 

VI. RESULTS AND DISCUSSION 

We arc now in a position to proceed with the analysis of 
the effective magnetic and electric properties associated with 
the currents induced in the metallic contours. The character­
istic size I is taken to be in the range of 100 nm and the 
cross-sectional size of 10 nm. These scales can be achieved 
in practice. The conductivity obeying the Drude equation 
(17) with parameters typical of such noble metals as silver 
and copper are used in all the calculations. The effect of a 
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smaller relaxation time (in comparison with that of a bulk 
metal) due to e lectron scattering at the inclusion surface re­
sults in shifting the dispersion region to higher frequencies. 

1\\>o-wire contour. First, we consider two-wire contour 
composites irradiated by light having the magnetic field J-1 
perpendicular to the contour plane and the electric field E 
perpendicular to the wires. For this polarization, the circula­
tory currents j"' are induced leading to the effective perme­
ability. The effective permittivity can be considered to be 
unity. The dimensions used are as follows: / = 100 nm, a 
= 6 nm, d = 30 nrn. Jt is useful to investigate the forms of the 
current distribution for different frequencies along with the 
dispersion law of the magnetic polarizability of the inclusion 
xo = x'+ix". Figure 4 shows plots ofj(x) = j'(x)+ ij"(x) 
as a function of a distance x along the wire for three frequen­
cies f<J~ • • [ - [,, , and .f>fres• where /,,=ci'A res is the 
resonance frequency. 1l1e current distribution is calculated 
us ing formulas (37) and (A7) obtained in the zero approxi­
mation and using first iteration, respectively. In this case, the 
resonance wavelength is found to be 'A , 5= 730 nm, which is 
several times larger than it could be expected from half­
wavelength resonance condition ('A re5 = 2 /) known for micro­
wave antcnnas.27

•
28 The skin effect is weak for the chosen 

wire radius and the contribution from the surface impedance 
causes this remarkable shift of the resonance wavelength 
since the conductivity is dominantly imaginary for these fre­
quencies. Physica lly, this result corresponds to localized 
p lasmon modes inside the wire. 

On the other hand, the current distribution exhibits all the 
features typical o f those in microwave antennas. The real 
part )' changes phase at/res· For frequencies below the reso­
nance [Fig. 4(a)]j' is positive and magnetic polarizability of 
the inclusion Xo exhibits a paramagnetic response, as it is 
seen in Fig. 5. For j> f res [Fig. 4(b)], j ' is negative and Xo is 
of a diamagnetic character, showing quite large negative val­
ues. Closer to the resonance, j' undergoes rapid transforma­
tions (Fig. 4(c)J. In this frequency range small factors such as 
radiat ion may introduce essential changes inj'(x) plots, but 
the integral parameter xo( w) does not change much showing 
only a small shift o f the resonance frequency and a sl ight 
decrease in the resonance peaks. For the considered geom­
etry, the dielectric dipole moment is zero and the radiation is 
strong ly reduced. 

Figure 6 shows the effective permeability J.Lerr= J.L 1 + iJ.L" 
calculated for the volume concentration of inclusions p 
= 6% by considering the current contours as independent 
magnetic moments (dipole sum) and within the effective me­
dium theory (EMT) [sec Eq. (1 5)]. In this case, the wire 
radius was chosen to be I 0 nm to demonstrate that the reso­
nance shifts to higher frequencies since the skin effect is 
stronger for a larger cross section. For noninteracting mo­
ments, the resonance peaks in permeability are large reach­
ing negative values past the resonance and the dispersion 
region is narrow, whereas the interaction broadens the per­
meability behavior and reduces the peaks of J.L 1 and J.L11 

greatly, so that the real part is always positive. An important 
characteristic is that J.L 1 peaks at lower frequency when J.L11 is 
very small. T hus, there exists a range of frequencies where 
the light propagation is affected by magnetic properties but 
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FLG. 4. Typical current distribution (including real}' and imagi­
nary j" parts) along the wire length for different fTequencies (a) f 
< fres, (b) />[,05 , and (c) and (d)f- fres· 

the light absorption is sti ll negligible. It may happen that 
EMT is a rather rough approximation for the considered sys­
tem. A periodic array of two-wire contours may exhibit a 
stronger magnetic activity as suggested by the dipole sum 
result, which does show negative J.L' . In any way, the actual 
behavior is somewhere in between the considered cases and 
the least range of J.L 1 variation is 1.5-0.5 for this concentra-

155411-9 



L. V. PANINA, A. N. GRJGORENKO, AND D. P. MAKHNOVSKIY 

..... 
>.( 

8~----------r--------------. 

6 

4 

0 

-2 

-4 

-6 

-8 
4.00 

5 

I= IOOnm 
a=6mn 

d =30 nm 

--·--·· zeco approximation 

with the ~ount 

of 111diation 

). - 730 nm» 21 .... 
4.05 4.10 4.20 4.25 4.30 

(Q-14 f (Hz) 

(b) 

4.00 4.05 4.10 4.15 4.20 4.25 4.30 
JQ-14 f (Hz) 

FIG. 5. Magnetic polarizability Xo = x' + i Xn of two-wire con­
tour vs frequency. The zero (dashed curve) and first (solid curve) 
approximations are given. 

tion, which is quite big. lt has to be noted that the magnetic 
properties in two-wire contour system cannot be enhanced 
by s imply increasing the concentration. If the distance be­
tween the pairs is in the range of d, then the induced mag­
netic properties disappear as it is clear from symmetry. The 
system of randomly placed wires has no magnetic properties 
(neglecting those due to circumferential currents inside the 
wires), as already discussed in Sec. IV. 

We now consider the polarization of the incident light for 
which H is still perpendicular to the contour plane but E is 
along the wires. For this case, both J.Leff and Beff are essenti al. 
The result for J.Lerr is the same as considered previously s ince 
the currents j m and j • due to H and E contribute indepen­
dently to the magnetic and electric polarisabilities, respec­
tively. The current j e , which determines the e lectric polariz­
ability of the inclusion a 0 , is calculated in zero 
approximation (38) and taking first iteration (A 7). In this 
case, the results for a 0 = a'+ia" differ greatly for the zero 
and fi rst approximations, as shown in Fig. 7, because of a 
substantial radiation effect. The polarizability has resonant 
dispersion behavior. The radiation losses make the resonance 
wider, shift the resonance frequency and reduce the resonant 
peaks. Comparing plots a 0( w) and xo( w) (Fig. 5) it is seen 
that the resonance frequency for a 0 is higher, s ince the reso­
nance for j e happens at higher frequency than for j "' . The 
effective permittivity e.rr= e' + ie" calculated for p = 3% 
within EMT [see Eq. (15)] shows a very broad dispersion 
region as seen in Fig. 8. In terms of Beff• the effect of radia­
tion is not pronounced since the interaction itself has a simi-
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FIG. 6. Effective permeability fLetr= fL' +if£" of composite con­
ta ining wire pairs vs frequency for the volume concentration of 6%, 
calculated for two cases: independent inclusions {dashed curve) and 
inclusions in effective medium (solid curve). 

lar effect of smoothing the resonance cha.racteristics. T he real 
part of the permittivity is negative near the high-frequency 
s ide of the resonance. Figure 9 compares the dispersion be­
havior for Bcff and J.Lerr (p = 3%) for the aforementioned po­
larization. The resonance region for e.rr is shifted towards 
higher frequencies. In the area of magnetic resonance, J.L err 

- e.ff with very small losses e" ~ I , J.L" ~ I. lt means that 
inequality ( 12) is satisfied s ince //X. ~ 1 and the concept of 
permeability is meaningful at optical frequencies. Therefore, 
this system can be useful for designing materials with effec­
tive parameters suitable for new optical effects described in 
Sec. Il. 

Ring contour 

A similar magnetic behavior is obtained for ring­
composite materials irrad iated by light having the magnetic 
field perpendicular to the plane of the ring (see Appendix B). 
The electric field of the incident light is in the plane of the 
ring and always induces some effective pennitt ivity. In this 
case, the magnetic and electric resonance frequencies coin­
cide. The value of e.rr is reduced in comparison with that of 
the two-wire case since the average exciting electric field for 
the electric dipole moment is smaller. Then, J.Lerr-~>err at reso­
nance in this system. 

Figure I 0 shows the dispersion bchavior of the magnetic 
polarizability of the ring inclusion. The calculations are 
made with R0 = 50 nm, a = 5 nm, and 00 = 320°. The gap in 
the ring is sufficiently large to avoid any effects from the 
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FIG. 7. Electric polarizability a 0 = a'+ i an of two-wire contour 
vs rrequency. The zero (dashed curve) and first (solid curve) ap­
proximations are given. 

edge capacitance, which could be difficult to control at 
nanoscales. For these dimensions, the resonance wavelength 
is about 2 J.Lm (infrared part of the spectrum). The radiation 
losses arc essential because of the existence of the electric 
dipole moment. They strongly reduce the resonance peaks. In 
order to move the dispersion region to the visible spectral 
range, the ring diameter has to be decreased. However, we do 
not have much flexibility since for our analysis the condition 
R0 't> a is important. Further decrease in a may be not realis­
tic and will bring about complex behavior of the conductivity 
in low-dimensional systems. Taken R0 = 30 nm, the reso­
nance wavelength decreases down to 1.30 J.Lffi, which is still 

3.0 

2 . .5 I= lOOnm 
a=6nm 

2.0 d = 30nm 

1.5 tl 

w 1.0 . o = 5.7xJ017 
0 
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I 2 3 4 5 6 7 8 9 10 
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FIG. 8. Effective permittivity of composite containing wire pairs 
vs fTequency for the volume concentration of 3%. The zero (dashed 
curve) and first (solid curve) approximations are given. 
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FIG. 9. Effective permeability and permittivity of composite 
containing wire pairs vs rrequency for the volume concentration of 
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in the infrared. Surprisingly, the magnetic polarizability of a 
ring for these higher frequencies is substantially decreased 
due to strong radiation losses, which will result in much 
smaller values of the effective permeability. It appears that 
the dispersion region of J.Lerr in ring composites is essentially 
limited by infrared spectral range. The effective permeability 
for R 0 = 30 nm and two concentrations p = 6% and p 
= 30% is presented in Fig. 11. Similar to the 1\vo-wire com­
posite, at frequencies where the real part has peaks, the 
imaginary part is small, which is important for possible ap­
plications. For ring composites, the concentration can be in­
creased, which allows the negative permeability to be real­
ized, as demonstrated in Fig. 11 (b). 
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FIG. I 0. Magnetic polarizability Xo = x' + i x" of open-ring con­
tour vs frequency. The zero (dashed curve) and first (solid curve) 
approximations are given. 
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IV. CONCLUSION 

We have shown that a meta l-dielectric composite having 
loop-shape nanoscale inclusions responds to opti cal radiation 
as if it has effective magnetic properties. Such material can 
be named as optomagnetic. It is known that the macroscopic 
magnetic properties orig inated by localized electrons in atom 
have no physical meaning from optical frequencies onward. 
In contrast, the effective permeability of the proposed com­
posite is proven to be consistent with tl1e macroscopic Max­
well equations even at optical frequencies, having values that 
can differ substantially from unity within a dispersion band. 
Optical effects are predicted which are related to specific 
conditions of reflection and refraction at interface with such 
a medium. They are likely to find applications in optical 
filters, sensors, polarizes, and other optoelectronics devices. 
An interesting example is the reflectionless normal incidence 
from vacuum when the permeability and permittivity are the 
same. This condition is an optical ru1alogy of the impedance 
matching known for microwaves and is quite realistic in the 
considered optomagnetic materials for a certain narrow fre­
quency range. In addition, the losses (imaginary parts of 
these parameters) can be small at those frequencies . 

The analytical approach developed is based on solving the 
scattering problem for metallic inclusions of two types : a 
ring with a relatively large gap and a pair of parallel wires. 
The method allows us to find tJ1e current and charge distri­
butions within the inclusion, which constitute the effective 
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permeability and permittivity. The localized plasmon modes 
are proven to play an important role as they make the micro­
structure to be resonant at frequencies much lower than those 
following from the half-wavelength requirement for micro­
wave antennas. For example, the effective permeability of 
composites having two-wire inclusions of I 00 nm long 
shows resonance behavior with a characteristic frequency of 
4 X 1014 Hz (750 nrn). The parameters determining the opti­
cal conductivity such as relaxation time (mean-free time be­
tween collisions) are also important to realize favorable reso­
nance conditions. The use of noble metals as Au, Ag, and Cu 
is preferable to increase the relaxation time. However, be­
cause the composite structure has nanodirnensions, the bulk 
parameters may need to be modified. This factor requires 
further investigation. 

For composite with volume fraction more than I% tlle 
interactions between inclusions become important. They are 
considered in a self-consistent manner using the effective 
medium theory. It turns out that the interactions broaden the 
dispersion region and strongly reduce the permeability peaks 
near the resonance, preventing it from having negative val­
ues. It may be that the effective medium theory for the con­
sidered system is a rough approximation. Then, the analysis 
of the effective permeability in a periodic army of loop­
shaped inclusions allowing an exact solution would be of a 
considerable interest. 

The analysis predicts that inherent metallic microstructure 
properties will limit magnetic activity of the type considered 
here by visible spectral range. More specifically, magnetic 
properties of the composites containing ring-shape inclusions 
will not be essential past the infrared as radiation effects 
become very strong. The radiation factor is reduced for a 
contour formed by two parallel wires. With this structural 
element the effective magnetism can exist in visible spectral 
range. 

Finally, the resonant properties of the proposed optomag­
netic med.ium strongly depend on conductivity. It is known 
that the conductivity of nanoinclusious can be changed con­
siderably by external parameters such as bias magnetic or 
electric fields.34 .35 This opens up a possibility to create adap­
tive optics: modulators, tuneable lenses, and filters having 
small energy losses. 

APPENDIX A 

Here we describe the iteration method of solving Eqs. 
(34) and (35). The convolutions of the current Jm .,(x) with 
the Green functions are considered separately for the real and 
imaginary parts. Approximates (29) and (36) are used for the 
real parts. Equations (34), (35) with j(x)=Jno .,(x) and 
e0(x) =e0 1x+ e02.T can be rewritten in the form ' 

[;; + P][j(x) + (Q: Qd) (Im(G + Gd)*j ] l 
iwe i( i? - k2 ) 

= S7T(Q+Qd)eo(x)+ (Q + Qd) [lm(G + Gd)*j] 

(AI) 

155411-1 2 



OPTOMAGNETIC COMPOSITE MEDfUM ... 

where 

The members of Eq. (A I) are grouped in a way to separate a 

renonnalizcd wave number k. Equation (AI ) can be treated 
as an inhomogeneous differential equation with respect to 

all ax2 + P.. 1l1e general solution of this equation is repre­
sented by 

iwe 
j(x)=A sin(kx)+B cos(kx)+ ----

8'1T(Q+Qd)k 

I:r i(P - k2) 
X sin[k(x -s)]e0(s)ds+ _ 

112 (Q+ Qd)k 

X Ix sin[ k(x - s) ][lm( G+ Gd)*j ]ds 
- 112 

WB':rz f :r _ + _ sin[k(x-s)] 
2'1Tac(Q+Qd)k - ll2 

j 

X [lm(G<P)*j]ds - [lm(G+ Gd)*j]. 
(Q+Qd) 

(A2) 

The parameters A and 8 are found from the boundary con­
dition 

j( - 112) = j(/12)=0. (A3) 

Equation (A2) is the Fredholm equation of the second kind, 
which a llows the iteration method to be successfully used 
with a rapid convergence. The zero iteration is constructed as 
fo llows: 

} 0 (.-c) = A sin(kx) + 8 cos(kx) 

iwe Ix _ + _ _ sin[k(x - s)]e0 (s)ds. 
87T(Q+QJ)k - 112 

(A4) 

The nth iteration can be written as 

;cP- e> I X _ 
ln(x) = Jo(x)+ _ sin[k(x - s)] 

(Q + Qd)k 112 
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{A5) 

The parameters A and 8 have to be calculated at the final 
stage of the iteration method. In the case of the zero approxi­
mation, Eq. (A4) together with Eq. (A3) yield expression 
(42) ofthe main text (em=const). W11en the next iteration is 
considered, the parameters A and 8 are needed to be calcu­
lated again to satisfy Eq. (A3). 

Introducing the integral kernel S for Eq. (A5) g ive 

I/12 
Jn(x)=Jo(x)+ S(x,q)Jn - t(q)dq. 

- m. 
(A6) 

Here 

_ _ iwee0 
j 0(x) = Asin(kx)+Bcos(kx)+ , 

8'7T(Q+Qd)P 

S(x,q)=S1(x,q) + S2(x,q) +S3(x,q), 

i(P - k
2

) I X -
S2(x,q)= sin[ k(x-s)] 

(Q + Qd)k - 112 

X I m[ G(r):;: GJCr d)] ds, 

WB'xx Ix _ 
S3(x ,q) = _ sin[k(x-s)] 

2'1Tac(Q+ Qd)k - 112 

X lm[ G <P( r)]ds, r = ~(s - q) 2+a2 . 

The kernel S is written as the sum of three terms that repre­
sent three different sources of radiation. S 1 is a local kernel 
depending only on the wave number k in free space. This 
contribution corresponds to that of the wire with infinite con­
ductiv ity. The next two terms are nonlocal. S 2 is responsible 
for the radiation into free space partly penetrating back to the 
wires. Points in space are electrically bound via the conduc­
tors, which is represented by the convolutions with function 

s in[k{.x - s)]. S3 accounts for retarding effects related to im­
pedance boundary condjtion. All three members of kernel S 
contain a small factor l/4'1T(Q+ Qd) resulting in a rapid con­
vergence of the iteration sequence. 

The first iteration gives 
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j 1(x)=A( sin(kx)+ r :nS(x,q)sin(kq)dq) 

+ n( cos(kx) + f~n S(x,q)cos(kq)dq) 

+ iweeo ( I+ J/12 S(x ,q )dq). 
81T(Q+ Qd)P - tl2 

(A7) 
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The parameters A and B are found by solving two linear 
equations U1(±//2)=0] 

( 

sin(k//2) +a 11 

-sin(k//2)+a 2 1 

where 

cos(://2)+at2) ®( A)= (c). 
cos(k//2)+a 22 

8 D 
(A8) 

( 
J

//2 

( ) 

S(l/2,q )sin(kq )dq 
all a12 - tn. 

a2t an Jtl2 -S 1 ( -//2,q )sin(kq )dq 

!112 

S(l/2,q)cos(kq)dq ) 
- tn. 

J
/12 ' 

S 1 ( - //2,q )cos(kq )dq 
- tn. 

(A9) 

- 112 

C iwee0 - tn 
( 

I+ S(ll2,q)dq 

( 
J

/12 

v) ~ - •~<Q+ Q,)P 1 + Jtn S
1
( -112,q)dq 

- tn 

) 
In Eq. (A9) the equality S 2,3( -112,q ) = 0 is used. Equation 
(A9) is represented as 

=( C+D) C-D. (AIO) 

From Eq. (A lO), A and Bare given by 

(C-D)+ B(a 22 - a12) A= , (A ll ) 
2 sin(k//2) +a 11 - a 2 1 

T he resonance wavelengths are calculated by putting to zero 
the real part of the denominator in the expression for B. The 
resonance peaks are determined by its imaginary part taken 
at the resonance wavelength. 

APPENDIX 8 

The current distribution in a thin conductor of arbitrary 
form was analyzed by Mei.32.33 The problem was solved us­
ing the Fredholm equation of the first kind, which does not 
contain the wave operator a21 ax2 + k2 explicitly. As a result, 

the iteration procedure cannot be applied to this equation and 
the overall analysis is very complicated. Fortunately, for a 
circular current loop the problem can be formu lated using the 
methods developed here for a straight conductor. 

We will use cylindrical coordinates (p, 8,z) with the ori­
g in in the center of the loop as shown in Fig. 12. The loop 
has a small gap of a segmental angle. The dihedral angle 0 is 
measured from the gap. The vector potential A taken at the 
point P(r0 ) is represented as a contour integral along the 
current loop 

A(r0)= JLj ( r_,)G(r)ds, (BI ) 

where r5 = (R0 , 85 ,0) is the vector pointing to the current 
element, r= lro- r,l, R0 is the radius of the current loop, and 
j(r, ) is the linear current . Because of symmetry, the scattered 
fields arc described by only one component A 6 of the vector 
potential 

A 8( r0)= J /(s)G(r)cos( 8,
0

- 8_,)ds, (B2) 

z 
(p,B,z) 

FIG. 12. Principal geometry, directions, and quantities used for 
the calculation of the current distribution along an open ring. 
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where the integration is with respect to s=R0 0, and j(s) 
= lj(s) 1. The electric field e 0 is equated as 

eo( ro) =- i::[;2:~Ao+~A o]. (B3) 

Equation (B3) taken at the loop [r0 = (R 0 ,0,0)] becomes 

47T[a
2 

] e0(v)= - -. - ~(G*j)+k2(G*j) , 
IW6 aV 

(B4} 

(G*j)= J:j(s)G(r)cos(O- O, )ds, (B5} 

r= JR~+(Ro+af-2Ro(Ro+a)cos( f)- Os)· 

Here v=R0 0, I= R 0 00 is the length of nonclosed loop (80 
< 27T). Formally, Eq. (84} is similar to Eq. (26) for ex in a 
straight wire. To use the impedance boundary conditions (24) 
we have to find the circumferential magnetic field ii.., [in 
local cylindrical coordinates (a, rp, v) with v along the loop 
axis]. A general form of the scattered magnetic field taken at 
the loop point v is 

I f ( 1- ikr)exp(ikr) 
h( v )=- [j(s )X r]ds , 

c L r 
(86) 

where r= JR~+(R0 +a)2 -2R0(R0+a)cos(O-(}_,). The in­
tegration in Eq. (86} is div ided into two parts, one for which 
r> !l and the other for which r < !l, where !l is a distance 
small compared with R0 but large compared with a. In the 

first integral, the contribution to ii ..,( v) averaged over the 
wire circumference is estimated to be of the order a/ R~. 
which is small and can be neglected [see expression (29) for 
Q..,]. For the integration where r < !l , we can take (j X r) 'l' 

= j (s) a and h 'P( v) is equated similar to that for a straight 
w1re 

_ afv2( 1-ikr)exp(ikr) 
h ..,( v) =- j(s)ds, 

C vi r 
{87) 

where !l =I v2- vI 1. Although the parameter !l is chosen 
arbitrarily, we assume that the integration is bounded in the 
segment R 0 1/f with angle f/!= 2-,/2a/ R0 , between the points 

vl and v2 as shown in Fig. 13. Then, ii.., is expressed in 
terms of the convolution 

(88) 

where 

a 2( l - ikr)exp(ikr) 
G.p(r) = 2r ' 

vl = max[ O,( v - -,/2aR0 )]. v2 = min[ 00R0 ,( v+ -,/2aR0 )]. 

(89} 
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FIG. 13. Principal integration path for Eq. (B7). 

Now we are able to formulate the integrodifferential equation 
for the current distribution in a circular loop. Substituting 
Eqs. (B4) and (B8) into boundary condjtion (24) yields 

a2 iwe iweCvv 
72a (G*J)+e(G*J)= -

4 
e 60(v) - -

2
--(G.., *J), 

" 7T ~c 
(810) 

j(O)= }(1)=0. 

Here the convolutions are defined by Eqs. (85} and (B8). 
The external electric field e 00( v) is considered to be circular, 
which is induced by the external magnetic field perpendicu­
lar to the loop plane. As in the case of two-wire contour, the 
external electric field in the plane of the ring does not affect 
the magnetic moment. The axial component of the surface 
impedance '> vv= '>rx is defined by Eq. (25). Equation (810) 
formally is s imilar to Eqs. (28), (33) and can be solved using 
the method developed. The convolutions are estimated as 

[Re( G)* j]= j(v) J: Re[ G(r}]cos( (} - 8 ,)ds = j( v)Q, 

J' l J' cos( 0012 - O, )ds 
Q = Re[G(r)]cos( O- O,)ds:x:-

4 
· 

o 7T o -,/(s-l/2)2+a2 

In(! la) 
<--

27T ' 

f
v2 

[Re( G..,)*} ]= j ( v) Re[ G ..,(r)]ds = j( v)Q rp, 
vi 

(Bll) 

The iteration method is formulated as folJows: 
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where 

_ _ iwee
00 

j 0 (v) = A sin(kv)+ B cos(kv)+ --, 
47TQP 

k=kg, g =( l + ice; •• Q,) l/2 
27TOWJl. Q . 

(8 12) 

Introducing a general kernel S gives Eq. (81 2) in the form 

(81 3) 

S( v, q ) = S 1 ( v,q) + S2( v,q) + S3( v,q), (81 4) 
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Appendix C Thin microwave composites with short wire inclusions 

The overwhelming majority of applications using composite materials require that a 

composite sample be prepared as a thin layer or as an additional surface cover. In this 

Appendix, the boundary effect of the effective parameters is studied in composite samples 

that are based on short wire inclusions embedded into a dielectric matrix. When the composite 

becomes thinner than a certain critical thickness, the depolarisation charges and surface waves 

induced on the sample surface can significantly change the effective permittivity. Since these 

effects are not related to wire conductivity, the problem of the boundary effect is dealt with 

under the assumption of infinite conductivity (ideal conductor). However, on applying the 

mean field theory for the calculation of the effective permittivity the wire conductivity was 

taken as finite. These two main factors (the boundary effect and conductivity) can be 

considered separately. Thus, a generalisation of the "scale mean field theory" has been carried 

out for a thin composite. 

Another issue, which was not clearly considered in this work, is the so-called 

Sommerfield conditions of radiation. The main method used in the Appendix is the solution of 

the heterogeneous Helmholtz equation I:J.u + k 2u = j(r) in the layered structure. To extract an 

unequal solution of this equation in an infinite region, which is the exterior of a finite region, 

it is needed to assume the additional limitations on the behaviour of the solution when 

approaching infinity. These additional limitations are the famous Sommerfield conditions: 

au(r) ± iku(r) = o(l/1 r I~ I r 1~ CXJ, 

al rl 
(1) 

where the signs "±" correspond to the outgoing and amvmg waves. Generally, these 

conditions are required only if the exterior region does not have any energy losses and both 

the outgoing and arriving waves decrease as 1/ I r I at infinity. Contrary, if the exterior region 

has the losses, then the amplitude of the outgoing wave (scattered) must decrease at 

approaching infinity, whereas for the arriving wave it must increase. 

However, it is a hardly known fact that the Sommerfield conditions must be 

generalised in the case of the layered media. Conditions ( 1) contain the roots ± k of the 

simplest dispersion equation p2 + k 2 = 0, which defines the poles of the Fourier transform of 

the Green function corresponding to the Helmholtz equation in free space. In a layered 

structure, this equation of poles will be very complicated. These are the dispersion equations 

of the surface waves I:J.1 = 0 and tJ. 2 = 0 considered in the Appendix. Thus, radiation 

conditions (l) must be formulated for each root of the dispersion equations. 

a 
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The poles avoidance procedure used in the Appendix, when small losses are introduced in the 

system, is another method to extract the unequal solution. This method is similar to the 

Sommerfiled conditions. 

It would be very interesting to establish the role of the surface waves in the forming of 

the effective response of a thin composite layer. The Fourier images of the Green functions 

used in the Appendix contain the poles, which are found from the dispersion equations 

~. = 0 and ~2 = 0. As it was mentioned above these poles relate to the spectrum of the 

surface waves, which lie between two wave numbers k1 (free space) and k2 (dielectric layer). 

With increasing layer thickness this spectrum tends to be everywhere dense covering the 

interval [ k1, k2 ], i.e. it becomes continuous. In this case, the dielectric layer demonstrates "the 

so-called soft dynamic properties", when it allows the propagation of the surface waves with 

any wave number between k1 and k2 . Thus, a thick dielectric layer can be priory 

characterised by some permittivity, which is obviously closed to the layer permittivity. 

However, with a decrease in the layer thickness, the spectrum of the allowed surface waves 

significantly converges. Jn this case, the effective properties of the layer can not be generally 

characterised by a single effective permittivity, since then this permittivity should require a 

certain wave number which may be out of the allowed spectrum. Any way, the system works! 

How? There is a compromise, when the wire oscillator "opened to the dialog" tries to agree 

with the layer about a possible surface wave, which can propagate. As a result of this 

compromise a certain wave number arises, with which the wave leaves the wire. It is obvious 

that this newborn wave number has to be found from a quite complicated "compromise 

dispersion equation". At first sight, the existence of such equation appears very doubtful since 

initially there are several allowed wave numbers in the dielectric layer. Nevertheless, we 

succeeded in finding this equation, which is the non-linear dispersion equation of the 

resonance wave lengths (see main text in the Appendix). By means of an approximate 

calculation we carried out, as it were, an averaging over all excitation spectrum of the 

dielectric layer. Though this comparison is not very clear but enough for intuitive 

understanding. 

Now we can formulate the basic principle which can be applied to a thin composite 

system: 

Effective response of a thin composite system is formed by the spectrum of elementary 

excitations allowed by the host layer containing the composite inclusions. 

b 
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Applying this principle to an opened system, it can be formulated as: 

The eigen frequencies (or resonance frequency) of an opened system are defined by the 

internal parameters (which include its geometry and internal material parameters) as well as 

by the spectrum of eigen wavenumbers of the ambient space. 

In our case the opened system is the wire inclusion, which exhibits an opened resonator 

radiating inside the dielectric layer. Repeat again: the spectrum of eigen wavenumbers of the 

ambient space defines the eigen frequencies of the system and not the material parameters of 

the ambient space. In the simplest case of free space, these conditions are equal, since there is 

an unequal wavenumber, which is unambiguously defined by the material parameters of the 

space (at a fixed frequency, of course) But in the case of a layered system, this statement is 

not true, as it was explained above. 

The principle formulated states that the wave number selected by "the compromise 

dispersion equation" sets the effective parameters (permittivity and permeability) which allow 

the propagation of this wave and not the reverse! The barred wave can not form the effective 

response. 

This point of view is very unusual for the quasi static insight, which has got into the 

habit of located parameters (capacitance, resistance and inductance). But we insist that the 

wave processes are determinative for thin composite systems. The concept language 

formulated in this introduction also may be of interest for future applications of 

nanocomposites, where the column (wire) structure may be embedded into the host or formed 

on the surface of a thin dielectric slab. 
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geometry considered, the effective magnetic permeability differs slightly from unity and corresponds to the 
renormalized matrix parameter. The magnetic effect is due entirely to the existence of the surface displacement 
currents. 
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I. INTRODUCTION 

Metal-dielectric composite materials have received much 
attention because of their importance in modem technology.1 

Metallic inclus ions, in particular metallic fibres, can rein­
force the dielectric and magnetic properties of ceramics and 
plastic materials. Electromagnetic properties of the compos­
ite materials are analyzed customarily in terms of the effec­
ti ve macroscop ic parameters: dielectric constant ecr and 
magnetic permeability J.Lcf • which are calculated by averag­
ing the responses from material constituents.2- 6 The 
effective-medium theory offers quick insight into linear 
problems, which are difficult to analyze by other means. 
However, it has disadvantages typical to all mean-field theo­
ries since it ignores the fluctuations in a system. It assumes 
that the local electric and magnetic fields arc the same in the 
volume occupied by each component of a composite. In 
some cases the local-field fluctuations by no means can be 
ignored, as in the case of a percolation composite in the 
frequency ranfc corresponding to the plasmon resonances in 
metal grains. Then, the application of effective-medium 
theory (EMT) is rather questionable and adequate modifica­
tions are needed. Another example is bounded composites or 
composites containing interfaces. The microscopic local 
fields near the surfaces (or interfaces) differ considerably 
from those in the internal regions, due to the existence of the 
scattering fields from boundaries. In the approach developed 
here a specific surface polarization is introduced into the 
EMT approach. The effect of the surface polarization can be 
strong in thin materials, the characterist ic size of which is 
smaller than the correlation length.8 For elongated inclusions 
in the form of a fibre, their length l~r0 , where r0 is the fibre 
radius, corresponds to the correlation length. For many engi-

neering materials I is of the order of few mm, whereas the 
composite layer thickness is in the range of fractions of mm. 
In this case, the boundary effects must be taken into account 
when considering the effective response from a thin system. 
This is the purpose of the present paper. 

A general approach to systems containing interfaces is 
solving the Maxwell equations in the regions, which are re­
garded as homogeneous and imposing the boundary condi­
tions at the interfaces. The system is then characterized by 
e er and J.Ler having a stepwise variation. However, since the 
microscopic fields near the boundaries are different, the ef­
fective parameters vary gradually within certain transition 
regions (known as transition layers) adjacent to the inter­
faces . They also depend on properties and geometry of the 
media near both sides of the interface. In certain cases, the 
transition layers can change the response from the entire sys­
tem even if the system is th ick.9•

1° For example, tJ1e concept 
of a transition layer is used to explain the ell iptical polariza­
tion of the light reflected from an isotropic medium. 11

•
12 In 

the present work we also discuss the effect of the transition 
layers on the dielectric response (calculating the reflection 
and absorption coefficients) from thick composite systems. 

The composite materials with elongated conducting inclu­
sions have a number of characteristics specific for this sys­
tem, which eventually result in strong boundary effects. Jn 
such composites, the concentration of the percolation thresh­
old is proportional to the aspect ratio Pcrx r0 / 1.6•

13
•
14 In the 

limit r0 I I~ I, pc is very small, however, the inclusion con­
tribution to the effective dielectric constant becomes large 
already for very small concentrations P~Pc . It implies that 
the interaction between the fibres is strong even for P~Pc 
and the assembly of conducting fibres is a system with a 
long-range strong interaction having a characteristic dimen-
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sionless correlation length of //2r0 . Then, the surface effects 
have to be essential at large distances comparable with the 
correlation length. On the other hand, the fibre currents in­
duce surface displacement currents resulting in the fibr~ ~e­
polarization, which weakens the interaction in the transitiOn 
layer, changing the basic property of the system. . . 

Another characteristic feature of composites contauung 
conducting fibres is the existence of a manifold resonance at 
microwave frequencies (A,-2/, where A, is the wave­
length in the dielectric matrix). This effect is respons.ible for 
the dispersion of the effective dielectric constant, whtch oth­
erwise at these frequencies appears only in the vicinity of 
Pc. 6 For p <.ipc , the frequency behavior of e.r is of the 
form 15 

where e is the dielectric constant of the matrix and wrcu are 
the resonance frequencies. The interaction with the boundary 
chang•es the resonance excitation condition and the system 

fi . 8 has a different sequence of the resonance requenctes. 
Therefore the result of interaction with boundaries is the 
modification of dispersion for e.r at microwave frequencies. 
In this analysis, the desperation characteristics are restricted 
to this frequency range (but Am lO> ro). 

The approach developed in this paper essentiaUy uses a 
single-particle model within which the boundary effec.ts are 
considered. First, the current distribution is analyzed m the 
antenna approximation (In 112r0~ I, >-m ~ r0) at the fibre 
placed in a dielectric layer of thickness h. This problem ~vas 
investigated in Ref. 8, however, we need a more detailed 
analytical analysis which is of great importance for the cal­
culation of ecr· The equation for current distribution in 
bounded layers can be transformed to the fonn valid for a.n 
infinite system using a renonnalization procedure. In thts 
sense, the boundaries can be eliminated, instead of them new 
renormalized matrix parameters (dielectric constant eh and 
magnetic permeability IJ.b) appear in the equation determin­
ing current at the fibre. This approach allows the further.use 
of EMT in its form developed for unbounded matenals. 
There are a number of approximations in the literature for 
obtaining the effective paran1eters of the composite materials 
with elongated inclusions. We use here the theory developed 
in Ref. 6 as the most complete and consistent with experi­
ment and not restricted to the quasistatic limit. An important 
feature of this theory is a spatial dependence of the effective 
dielectric constant near a fibre for scales smaller than the 
fibre length. The nonlocal property of e.r is even enhanced 
by the interaction with the boundary: the environment near 
the fibre is characterized by eh and !J.b which depend on the 
layer thickness and the fibre position. As a result, the effec­
tive dielectric constant exhibits a strong dependence on the 
layer thickness for thin materials (thinner than the transition 
layer). ln the case of thick materials, however, the role ofthe 
transition layers is not essential and boundaries effects can 
be neglected. 

For the geometry considered the magnetic permeability 
ll-h arising in the renorrnalization method constitutes the ef-
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FIG. I . Geometry of a single-particle problem: a dialectic layer 
with a conducting fibre. 

fective magnetic properties. lt is originated by the combina­
tion of the fibre current and surface displacement current 
which together form a circulatory current inducing a mag­
netic moment directed along the magnetic field (real part of 
ll-h is larger than unity). In the present case, (IJ.b- I) 41 1 and 
is not noticeable in the experiments. However, if the com­
posite layer is placed on the metal substratc it may be esse~­
tial to take account of the magnetic response. The expert­
mental observation of the magnetic response would be a 
direct confirmation of the boundary effects. 

11. SINGLE-PARTICLE MODEL 

This section concerns a single-panicle approximation8 for 
the response of thin dielectric layer with a conductive fibre 
excited by an external electric field. This problem allows the 
effective parameters of layered composite materials to be 
found taking the boundary effects. The construction of a cor­
rect EMT equation uses the differential equation for current 
density at the fibre, which involves the effect of boundari.es. 

A model depicted in Fig. I is considered. A conductmg 
fibre with a radius r 0 and a length I is placed in a dielectric 
layer of thickness h parallel to its surface at a depth h0[ro 
< ho< (h- r0)]. The layer is characterized by a dielectric 
constant e and magnetic permeability !J.. The fibre is as­
sumed to be an ideal conductor. This approximation is rea­
sonable when considering the boundary effects since the cur­
rent distribution inside a fine fibre does not alter the 
polarization at the surface. l11e system is subjected. to a.n ac 
uniform electrical field directed along the fibre ~T dtrect10n): 
Eo= (Eo .•• O,O)exp(iwt). The z direction is chosen along the 
normal to the layer, and the fibre is at z =- 110 , y = 0. l11e 

• • 16 problem is considered in so-called antenna approxtmatton 
(l~ r0 , >-m~r0 where >. ,=27TclwJi/i-) which allows the 
distribution of the current density at the fibre to be repre­
sented as j(x)8(y)o(z+h 0) where 8 is the Dirac function. 
The electric and magnetic fields E and H scattered by the 
fibre are convenient to write in terms of a vector potential A 
and scalar potential rp (Gaussean units arc used), 

47T 47T 47T 
E= - -:riw~J.A+ -. - grad div A, H = -rot A. (2) 

C IWe C 

In the present case, only two components of the vector 
potential Ax and A, are needed, which are represented in the 
form of convolutions with current density j(x) (see 
Appendix A), 
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A.r1,2,3(x,y,z) = [ G.rl.2,3(x ,y,z) * j(x) ] , 

A zl,2.J(X ,y ,z) = [ U 1.2,3(x ,y ,z) * j (x )]. (3) 

The convolution of two functions g(x) and .f(x) is deter­
mined as the following integral: 

f
/(2 

{g(x)*f(x)) = - mg(x - s)f(s)ds , 

where indexes I, 2, 3 designate areas z e [ O,oo +], z e 
r - h ,0]' and z E [ - 00 I-h]' respectively. Function G X 1.2..3 

satisfies the equation 

I:!.G • 1.2,3 + ~.a,JG x i.2.J = ,'} 1.2.3 

with the boundary conditions 

JLG xllz;O = G..,d z;Q • 

JLG .• zlz; - h= GxJlz;-h • 

aG .. 21 aGx1J 

Tz z; O =---a;- z;Q' 

(4) 
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Here k 1,3= rule and k2 =(w/c) ~are the wave numbers in 
free space and dielectric layer, respectively, ,'}1.3= 0, ,'}2 = 
- O(x)O(y) O(z + ho). and /). = a2/ilx2 + a2! ay2 + a2/ az2 is 
the Laplace operator. 
Functions U l.2,J satisfy the equation 

I:!.U,.2,3 + k~.z.J Ul ,2,J = 0 

with the boundary conditions 

(au,_ aul)J =(-I -I) ao .. ,J , 
az az z= O Bft ax z=O 

( 
nU3 _ nU2) I = (-1 _1) nG .. 31 . 

,Jz az z= - h BJL Bx z=- h 

(5) 

Equation (4) together with the boundary conditions is self­
sufficient, whereas the boundary conditions for Eq. (5) con­
tain functions G.r 1 and Gx3 entering the boundary condit ions 
for Eq. (4}. 

For furtl1cr analysis, only Gx2HaU2 /Jz are needed, 

_ exp(- ik2r) I f +<>' axz(k ,h ,h0 )exp(y2z)+bx2(k ,h ,h0 )exp( - y2z) 
Gx2(x,y,z) - 4 + -4 A (k I ) Jo(kp)kdk, 

7Tr 7T o u. 2 , 1 y 2 
(6) 

aU2(x,y ,z) \ a [ 1 J +"' [a,2(k,h,h0)exp(y2z) - b,2(k,h ,h0)exp( - y2z)](eJL - I) ] afJ 
az = ax 21T 6. (k h )!:!. (k h) 'YzJo(kp)kdk = ax ' 

8 7- Jl. 0 I • 2 • 

(7) 

where r= Jx2+ y 2+(z+ h0) 2, p = ~. y 1(k) 
= ~. y 1(k) = -/k2 - k~, and J0 is the Bessel function. 

In Eq. (7) a new function fJ2 is introduced. Integrals in Eqs. 
(6) and {7) use the following functions: 

a,2 = { y1 J-tSh[ y2(h - h0 )] + y 2ch[ 'Y2(h - h0}]}( 'Yz + 'Y1 e) 

X exp{ y2h )- [ 'Y1JLsh( y2ho) + 'Y2ch( y 2h0 )] 

X{y2- y 1e ), 

b,z = { 'Y1 JLSh[ 'Yz( h - ho)] + 'Yzch[ 'Y2(h - ho)]} 

X ( 'Y2- 'Y1 e )exp(- y 2h )- [ 'Y1 JLSh( yzho) 

+ y2ch( y2 11 0))( -y2 + y 1 e). 

A special method of calculating the integrals in Eqs. (6) and 
(7) is given in Appendix B. 

The tangential component ET of the total electric field at 
the fibre surface equals zero. In the approximation used the 
circulalory currents in the fibre are neglected, then this con­
dition is written in the form 

ET=( Eo .. +E .. )! n!-112)12) = 0, 
y2+(z+ h0 )2 = r~ 

(8} 

where E:r is the longitudinal component of the scattered field. 
Equations (2) and (8) give 
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411 [ 2 iPA:r2 a'-A,2 ] 
- Eo:r= Ex= iwe kzAxz+~+ axaz :re(- 112.Jnl . 

yl~ (z ~ lro)2 =r~ 

(9) 

Using Eqs. (7), (9) and the equality a2 A ,2 I ax az 
=a2(U2•j)/axaz=a2(U2•j )/ax 2 the basic integrodifferen­
tial equation is obtained: 

iwe 
= -Eox 471. (IO) 

For Eq. (I 0), the boundary conditions for current density at 
the fibre ends have to be imposed, j( - 1/2) = j(/12) = 0. 
Equation (I 0) is simplified calcu lating the convolutions ap­
proximately. Using Eqs. (6) and (7), the following approxi-

mations for the functions G .. 2 and fl2 are obtained in two 
limiting cases (/1 -. 0 and fr ->oo): 

. - (eJ.L - 1) e - ik , r 
lun U2 = -- lim V2 = 0 , 

h - O f-L 4 11r ' lr -+"" 

Because the fibre has very small diameter 2r0 , from Eq. (11) 
it follows that the real parts Re(G:r2) and Re(G.r2+U2) have 
sharp positive picks of the order of llr0 in the v icinity of x 
= 0 for any value of h. To the contrary, the imaginary parts 

Im(Gxz) and lm(Gxz +U2) are limited when both x and r 0 

approach zero. Integration of the real parts in the vicinity of 
the picks (more exactly, within the interval [ - v,v], Jir012 
~ ''~ //2) gives the main contribution to the integrals. In this 
case the convolutions are approximated as17 

[Re( G:r2 + U2}*)]= j(x) J : .:·Re( G xz + U2)dx = j (x) Q 1 , 

(12) 

f
+ v 

[Re(Gxz)*J] = j(x) - v Re( G,.z)dx = j(x)Qz, 

where the "form factors " Q 1 and Q2 are pos itive and repre­
sent the area under the corresponding narrow bell-shaped 
curves. 

Substituting approximations ( 12) into Eq. ( I 0) yields 

Q a2 
( ·c )+ .(lm(G,.2 +U2)•J]) 

la? ) X I Ql 

2 ( . _[ Im(G:r2)•)]) iwe 
+k2 Q 2 J (x)+ t Qz =- 471 Eox· 

(13) 

Since the parameters Q 1 and Q2 involve a large factor 
2 ln(//2r 0 ) (see Appendix C), Eq. (13) can be further simpli-

16 

14 

12 

~ 10 

~ 8 

e 6 .... 
4 

2 

0.0 

-0.2 
~ 
-~ 
> -0.4 ·c: 
~ 
"' -0.6 
0 - -0.8 
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t=6 

£ = 12 
t=32 

E= }()() 

(a) 
0.0 0.5 1.0 1.S 2.0 2.5 3.0 

h (nun) 

t = 6, 12, 32, 100 

(b) 

0.0 0.5 1.0 1.S 2.0 2.5 3.0 
h(rrun) 

FIG. 2. Resonance characteristics of a dielectric layer witl1 a 
conducting fibre . In (a), resonance frequency f res as a function of 
tlle layer thickness h for different dielectric matrixes, in (b) deriva­
tive of=' oh versus h, which defines tlle characteristic transition 
layer thickness h c . 

fied when the convolutions with the imaginary parts are ne­
glected in comparison with those with the real parts (see 
Appendix C), 

j( - l/2) = j(l/2) = 0. 

Equation ( 14) is a basic differential equation in terms of 
which the boundary effects are introduced in EMT with the 
aim to modify the effective parameters. 

Equation ( 14) describes the current distribution in the lay­
ered system and allows a generalized expression for the reso­
nance wavelengths Ares to be obtained. In an infinite medium, 
the value of >..res is given by18

•
19 

2/ ../s; 
Ares,n= -

2
--

1 
; n = 1,2,3 ... . 

n-

The effect of the boundaries results in a nonlinear d ispersion 
equation 

2/ .fiP, 
A = -­res.,n 211 - I 

Q2(Ares,n ,lr,lro) 

Q ( ' I I ); n = 1,2,3 .... ( 15) 
I 1\ rrs,n • I , I 0 

The dependencies on thickness lr of the main resonance 
frequency J ... ,=c!Arcs. l (n = I ) obtained from Eq. (15) for 
different E (!me= I m w =O) are given in Fig. 2(a). T he pa-
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mmeters used for all the calculations are 110 /h = 0.5, ro 
= 0.004 mm, I= 8 mm. The resonance frequency changes 
from the vacuum value of c/21 ( 18.75 GHz for I= 8 mm) at 
h---> 0 to the value of c/21 ,[e at h -><X> corresponding to that 
for an infinite medium with the die lectric constant e. The 
characteristic feature of all the curves is the existence of two 
regions defined by the parameter h c . For h < h c , the reso­
nance frequency rapidly drops with increasing lz, and for h 
> he it decreases slowly reaching the saturation limit. The 
meaning of the introduced parameter he can be understood 
from Fig. 2(b), where the derivatives 8/ res! 8h as functio ns of 
h arc given. For small h, this parameter has a constant large 
gradient, decreas ing linearly with h. The value of h e is de­
fined by continuing this line until it intersects zero derivative 
level (infinite medium). Then he is a characteristic th ickness 
when the system becomes sensitive to its outer boundaries as 
far as an electromagnetic response is conccmcd. For the case 
of Fig. 2, he= 0.2 mm. lt is shown that he is independent of 
the material parameter e, but it depends on geomet-ry of the 
inclusions being a function of the fibre length I and radius 
r0 . The numerical analysis shows that this dependence is of 
a logarithmic type: heoc ln(//2r0 ) , which can be associated 
with the energy stored in the fibre Lai 2/2 where L0 
== 2 ln(//2r0) is the inductance per a uni t length of a thin 
wire. The effect of the fibre posit ion inside the layer is not 
essential for thin layers (IJ < he). The change in parameters 
of thick materi als with respect to the fibre posit ion is about 
25%, as will be shown below. 

To demonstrate the consistency of the model, the results 
obta ined for the resonance frequency arc compared with the 

. . I d 8 Th . I h d20- 23 available expenmenta ata. e expenmcnta met o 
is based on measurements of the reflection coe fficient from a 
compos ite system placed near a metal substratc. As the dis­
tance between the sample and substratc is increased the re­
flection signal exhibits an interference minimum at a fre­
quency corresponding to the resonance frequency. The 
composite system consisted of a dielectric matrix containing 
aluminum-coated glass fibres with the volume concentration 
of about 0.02%. The metal coating is not a lways continuous 
and the effective concentration can be even smaller. This 
concentration is considerably smaller than the percolation 
threshold Pc - 0.1 % , allowing the single-particle approxima­
tion to be used for analysis. The dielectric matrix comprises 
a polymer with a metal powder, which makes it possible to 
reach large e with a small absorption ( Jm e~Rc e). Figure 3 
compares the theoretical plots with the experimental data 
(taken from Ref. 8) for the resonance frequency as a function 
of thickness h. For e = 52 {obtained for the dielectric matrix 
from independent measurement), the experimental data can 
be fitted well by calculations for small h, and there is a large 
difference between the two curves for h> hc , since the ex­
periment does not come down to the limit corresponding to 
infinite medium with e = 52. lt can be related to the fine 
dispersed structure of the composite matrix used in Ref. 8 
(polymer and metal powder) and the difficu lty of determin­
ing the effective dielectric constant e near the fibre in this 
case. Another reason of this discrepancy can be related to a 
layered structure of thick samples as they are obtained by 

7.2 

.-. 6.4 

.. ' 

. 
• \ i .. 
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FIG. 3. Plots off m versus h, comparison of theory (solid curve) 
and experiment (dashed curve). e=52, /=8 mm, ho= h/2. 

combining a number of 0. 1- 0.2-mrn layers. The gaps be­
tween very thin layers can apparently decrease the effective 
value of e resulting in an increasing resonant frequency I res 

= c/21 ,[6. Further experimental analysis is needed to clarify 
this case. However, it is more important for our purpose that 
there is a good agreement for thin layers h ~he which proves 
that the model describes functionally well the resonance 
properties of composites containing elongated inclusions in 
thin layers. 

A considerable boundary effect results in the existence of 
surface layers where the effective dielectric constant is d if­
fe rent from that in the inner region. Figure 4 shows the reso­
nance frequency as a funct ion of inclusion position h0 for a 
thin layer (h = 0.2 mm) and thick layer ( lr = 2 mm) . T here is 
a transition layer hs (hs< hc for h < hc and hs= hc for h 
> he) within which the value of f = decreases and ap­
proaches that for the case when the inclus ion is placed suf­
ficiently inside the sample. It is seen that the variat ion in f res 

due to the change in 11 0 is considerably smaller than that 
when h is altered. Thin layers (h < he) can be considered as 
resonantly uniform, in which !res is nearly a function of h 
only and the dependence on 110 can be neglected. In the case 
of h > he, this dependence is essential within the surface 
transition layers and the sample, generally speaking, can not 
be treated as uniform. However, as it wi ll be demonstrated 

: h : 
5.0 ~ 

.;:! ' ' 
0 4.5 i ' 

!! 4.0 .... : h 
: $ : 
:-----: 

' 
' 

0.2 

h=0.2 mm 

E= 52 

r < h < (h·r' 
0 0 'o' 

h=2mm 

0.8 .0 

FIG. 4. Resonance frequency f res as a function of the fibre po­
sition h0 /h for two layer thicknesses h = 0.2 mm(- hc) and h 
=2 mm( P hc). 
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later, the existence of the surface transition layers does not 
alter the resonance frequency in thick samples. This means 
that they are not important in determining the effective di­
electric constant. On the contrary, the effective-medium 
theory (EMT) in thin composite materials with elongated 
inclusions has to be essentially modified due to strong 
boundary effects. 

111. EMT FOR THIN COMPOSITE LAYERS BELOW THE 
PERCOLAT10N THRESHOLD (lr<hco p<pc) 

There are a number of methods developed in the literature 
to calculate the effective macroscopic parameters of compos­
ite materials with nonspherical, in particular, elongated inclu­
sions. However, they are entirely restricted to the case of 
unbounded materials. Our objective is to obtain an extension 
to the case of thin composite materials where the boundary 
effects cannot be ignored. If the layer thickness is compa­
rable with the size of inclusions embedded in it the concept 
of the dielectric constant seems to lose its direct meaning. 
Then, there is a question if such a layer can be characterized 
by the etlective parameter eer· In the case under consider­
ation, for lt < he, all the fibres are subjected to near-same 
boundary influence, as was demonstrated in Fig. 4. In this 
context, such a sample can be treated as a uniform layer 
characterized by effective parameters, yet these parameters 
will depend on thickness lt and, in general, on properties of 
the surrounding media. 

For our analysis, a modified EMT equation developed in 
Ref. 6 is used. This approach has been djstinguished from 
other theories since it has a number of advantages: it gives a 
correct value of the percolation threshold and can be ex­
panded to a nonquasistatic case when the boundary effects 
are most essential. Along with this, it enables technically to 
take into account the boundary polarization. For this pur­
pose, it is important that the method combines the Brugge­
man EMT (Refs. 2, 24, and 25) and Maxweii-Gamet 
theoci6.27 with its idea that the local medium near different 
inclusions may be different. Within this approach it is pos­
sible to introduce a renormalized parameters eb and J.th for 
the medium near fibres as the result of interaction with the 
boundaries. These parameters will then be involved in EMT 
equations for e 0 r and I-ter and the boundaries can be omitted. 

The single-particle approximation considered above can 
be used for calculating the renonnalizcd parameters. For this 
purpose, Eq. (14) describing the current distribution at the 
inclusion is transformed to a certain canonical form. In the 
antenna approximation (l~r0 , >..m~r0 ) the current density 
j(x) at the fibre in the unbounded medium with some mate-
rial constants e and J.L is determined by Eq. (I 0) with [h 
= 0, 

This equation can be further simplified in a way similar 
to that used for obtaining Eq. (14), which requires 
ln(l/2r0) ~ I, 
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z 
fibre 

FIG. 5. Structure of a thin layer when the effect of boundaries is 
replaced by a new medium around the fibre. 

a2j(x) 2 . iwe 
Q--::;-:r+kQJ(x) =- -

4 
Eo:.- (16) ax 7r 

Here k = ( w/ c) j;p, is the wave propagation parameter, the 
funct ion G(x,y,z) = exp(- ikr)/4'1Tr is related to the solution 
of Eq. (4) when h =oo, and Q= J ~ ;Re(G)dx. The fonn of 
Eq. (16) corresponding to the unbounded medium will be 
called a canonical form. Jn the case of bounded materials, 
Eq. (14) can be reduced to this canonical form by renormal­
izing material parameters as 

This procedure allows the boundaries to be eliminated when 
determining the current distribution at the inclusion. They 
are replaced by a "new" medium with eh, J.Lb, which ap­
pears near the inclusion at a characteristic distance he , as 
shown in Fig. 5. For h < hc the factors Q1 and Q2 depend 
weakly on h0, then eh and J.Lb may be considered to be 
functions of thickness h only. The appearance of the perme­
ability J.Lb> I owes its origin to the magnetic moment related 
to the current at the fibre and the induced djsplacement cur­
rent at the layer surface. 

Figure 6 shows the plots of the renormalized parameters 
eh and 1-th as funct ions of thickness h at the resonance wave­
length with e = 52, J.L = I . The value of eh equals I for small 
h-+ 0 and increases to its bulk value e when h tends to infi­
nite. The magnetic permeability J.Lb differs slightly from 1 
going through a maJtimum. This is related to the induced 
magnetic moment as a function of h: it tends to be zero in 
two limiting cases h = 0 and h = oo. Jn the experiment when 
the metal substrate is placed away from the sample the mag­
netic response is 110t noticeable. ln the case of the composite 
placed on the metal substrate the magnetic properties may 
become noticeable to be measured. 

After we have calculated the renonnalized parameters 
characterising the medium near fibres, the EMT equation can 
be constructed similar to the case of unbounded media. This 
equation uses the condition that the total polarization aver­
aged over all the inclusions has to be zero.6

·
23 For bounded 

materials, the surface polarization due to surface displace­
ment currents has to be included as well, which gives 
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FIG. 6. Renormalized matrix parameters e6 (in (a)] and x6 

= (J.Lb- l )/41T (in (b)] as a function of h. 

where p is the fibre concentration. The tenns in Eq. (18) 
correspond to averaged polarization of fibres, dielectric ma­
lrix, and surface, respectively. Using renormalization proce­
dure ( 17), the surface contribution can be taken into account 
by means of the parameters eh and J-1-h which are used as 
renormalized matrix constants to determine the fibre polar­
ization P fibre. In this approach P surface= 0, however, the re­
gions with parameters eh and J-1-h appear near fibres; their 
polarization is different from that of the matrix and has to be 
included in Eq. ( 18). 

The polarization ? fibre can be calculated from the current 
disrribution on a fibre given by Eq. (13). It involves the 
dielectric constant of the surrounding medium e . In the 
effective-medium approach, e has to be replaced by eer· 
However, the effective medium near elongated inclusions 
cannot be considered uniform on a characteristic scale of the 
order of inclusion size /, and the corresponding effective pa­
rameter E'er depends on scale s. Since the total electric field 
on the inclusion is near zero, the interaction between the 
inclusions has little effect on the dielectric properties of the 
medium in the vicinity of them. Therefore the value of eet(s) 
in this region equals eh which differs from e as the result of 
boundary effects. Far from the inclusions at distances larger 
than /, the effective medium can be considered as uniform 
having the dielectric constant eer= e.r of a bulk material. It 
means that Eq. ( 13) obtained for a fibre in a uniform medium 
has to be modified. At this stage, it is also imponant to con­
sider a fibre with a finite conductivity, which influences dis­
persion of the effective parameter via the skin effect. The 
equation for the current distribution accounting for the finite 
conductivity and scale-dependent e.,(s) was developed in 
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Ref. 6 for the case of infinite medium. It turns out that the 
calculation of fibre polarization involves scaling along the 
fibre only. Assuming a linear scaling results in 

s-.1( r - r') = e + 2( e.r- e )lr- r ' l/ /, (19) 

where the points r and r' are taken on the fibre surface. In 
the case of the bounded composite the matrix constant e 
must be replaced by the normalized effective constant eh. 

Considering that fibres are placed in the x direction, Eq. (19) 
becomes 

e.~x-x') = eh+ 2(e.r- eb)(x-x') / 1. (20) 

Using the scale dependence (20) the fibre polarization can be 
calculated6 

P fibre 

where ab is the normalized resonance frequency, Lh is the 
fibre inductance per unit length of fibre, and c, is the ca­
pacitance per unit length calculated after taking the account 
of the scale dependence (2 L). The normalized fibre conduc­
tivity ui =f(tl)u1 takes into account the skin effect in the 
conducting fibre where err is the fib re conductivity. The func­
tion f is obtained from a classical skin effect in a conducting 
cyl inder,28 

J( 6.) =( ( L - i)/ 6.)J1( I + i)6.]/J0[ L + i)l'l), 

where J 0 and J 1 are the Bessel functions, 6. 
=r0 J2 '1Tcr_rulc is the ratio of the fibre radius r0 to the skin 
depth 8=c/J2'1Tcr_ru. 

The matrix is represented as an assembly of fine spherical 
panicles of dielectric constant e which are embedded in the 
effective medium with dielectric constant eer · The polariza­
tion of the dielectric matrix is given by the standard quasi­
static equation28 

p matrix {22) 

where e is the initial constant of the matrix (not eh)· ln 
general, the polarization of the regions with eh near fibres 
has to be considered separately from P matrix. lt seems rea­
sonable to assume that they can be represented by ell ipsoids 
with short axes h j2. The concentration of such new inclu­
sions is enlarged by a factor of (11 j 2r0) 2 . With increasing p 
these areas may change the matrix properties entirely. Here 
we consider that p is sufficiently small to omit their contri­
bution. 

Substituting Eqs. (21) and (22) into Eq. (18) yields 
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p 47TirrjleerW 

2 1 + ( 47Ti rrj I ehw)( 4 r~//2) ln( 1 + le1,12r0e.r)cos Ob 

3(e - e r) 
+ ( I - ) • = 0. (23) 

p 2e.r+ e 

Here the factor ! in the first term results from averaging by 
directions in the plane. 

Equation (23) describes the effective response from a thin 
composite sample (h < he) below the percolation threshold 
(p<p e)-

IV. ANALYSIS OF TH.E EFFECTIVE RESPONSE NEAR 
RESONANCE FREQUENCY 

In this part the d ispersion of the effective response near 
the main resonance frequency is analyzed. The constant Ber is 
calculated from nonlinear Eq. (23) for two concentrations p 
= 2 X I 0- 4 and p = 2 X 1 o-5. These small values of p corre­
spond to the composite materials used for the experimental 
investigation of e.r in Ref. 8. Figure 7 shows the dispersion 
of the real (e.) and imaginary ( e 2) pans of e.r= e 1 + i e 2 for 
a very thin sample with h = 0.05 mm~he. The frequency 
behavior is of a resonance type with the resonance frequency 
corresponding to a maximum of imaginary part. In the case 
P~Pe , this frequency depends weakly on the inclusion con-
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FIG. 8. Effective dielectric constant e 0 r= e 1+ie2 as a function 
of frequency for different thickness h. e 1 is (a) and e 2 is in (b), p 
= 0.002%. 

centration [see Fig. ?(b)]. Figure 8 compares the dispersion 
characteristics of s.r for layers of different thickness h. The 
case of an infinite system is also given. The main resonance 
frequency /res= c/2/ Ji;, ( JLb"" I) is considerably shifted to 
the high-frequency region since the renonnalized effective 
constant eb is several times smaller than the matrix constant 
e = 52 for h < he. Besides, the next resonance which is 
clearly seen in the case of eh= 52 (infinite system) is not 
observed for thin layers. We can conclude that the boundary 
effects may change very strongly the dispersion characteris­
tics E 0lj) near the resonance frequencies. 

In the case of thin composite layers h < he, the renormal­
ized parameter e b used to constntct EMT is nearly unifonn 
having almost no dependence on the fibre position 11 0 . Con­
trary, for thicker materials there are transit ion layers where 
eb changes significantly, as shown in Fig. 9. Then, the effec­
tive dielectric constant is not unifotm either and the exis­
tence of the transition layers in thick composites seems as if 
it may affect the wave propagation changing such measured 
parameters as transmission, reflection, and absorption coeffi­
cients. Then, there is a question if this can be a cause in 
shifting the measured resonance frequency in thick layers, as 
discussed in Fig. 3. To answer this question, the response 
from a thick layer {lz"P he) is calculated, dividing it into a 
number of layers where eh is considered to be unifonn . The 
calculation is done by the matrix method (Abele's 
method 15.2~. Figure 10 compares the dispersion of the ab­
sorption coefficient for a single layer with the matrix con­
stant e =52 and for a layered system with e b distributed as 
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shown in F ig. 9. The internal part of the sample with eh 

= e is considerably larger than the surface trans ition layers 
when hc~h . T hen , the variat ion in eh in these layers is not 
sufficient to change the total response from the system. It 
means, that in thick materials with h i!> he the EMT approach 
has no need to be modified. 

V. CONCLUSION 

The effective-medium theory (EMT) applied to thin com­
posite layers with conducting sticks is developed taking into 
account the surface displacement currents. The boundary ef­
fects are treated within a single-part icle approximation, 
within which it is possible to transform the current distribu­
tion at the inclusion to the form similar to that for an infinite 
system. In this approach, t11e boundaries can be eliminated 
considering that the inclusion is embedded in a new matrix 
with a renormalizcd dielectric constant. The cross section o f 
this area is of the order of thickness of the transition layer. 
After th is step, the s tandard procedure to obtain EMT can be 
used. The dispersion of the effective dielectric constant in 
thin materia ls is a function of thickness being significantly 
different from that for " bulk" materials : the resonance fre­
quency is shifted to higher frequencies and the interval be­
tween two resonances is increased. 
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FIG. l 0. Effective dielectric response (coefficient of absorption) 
from a thick composite layer [h =2 mm(i!> hc)]. Solid curve: 
multilayer system. Dashed curve: uniform single layer. 
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APPENDIX A 

In this part, the differential equations completed with the 
boundary conditions for the vector potential A in the system 
shown in Fig. I are obtained. If a fibre is placed in an infinite 
medium, the field scattered by it is described by the vector 
potential having only Ax component. In the case when the 
surface effects are essential, using one component of the vec­
tor potential is in conflict with the condition of continuity of 
the fields E and H at the interface vacuum dielectric. As it 
follows from Eq. (2), two components Ax and A, are suffi­
cient to satisfy the cont inuity condition.30 The equat ions for 
the components A x and A, are written as 

~Axl ,2,J + kL.JAx l,2.J = - J 1.2.J . 

~A z 1,2,J + ki.2.JAz 1,2,3,"" 0. 

T he following boundary conditions are imposed: 

BA.r21 _ BAx ll 
---;;;-- z ~o----;;;-- z=O' 

aA"21 _ aAxJI ---;;;-- - ---;;;-- . 
z= - h z= - h 

~ (aAx2 + oA ,2 )I =(aA.d + a~zl)l . 
e Bx Bz z=O Bx iJz z ~ o 

~ (aA.r2 +aA,2 )1 =(aAx3 +aA,3 )1 . 
E ax Bz z ~ - h Bx Bz z=- h 

(A I) 

(A2) 

where indexes l, 2, 3 designates areas ze[O,oo + ] , 
ze [ - h ,O] , and ze [ -oo, -h], respectively, ) 1,3= 0, 
h=- j(x)8(y)8(z+ lz 0 ), k 1 = wlc, k2 >= (wlc)~. 

The solut ion of Eq. (A I) can be presented in the form of 
convolutions of Green's functions and currem dens ity j(x), 
as it is shown in Eq. (3). The coupled Eqs. (4) and (5) are 
solved us ing the double Fourier's transfonnation with re­
spect to variables x and y, which yields the differential equa­
tions with respect to z for the obtained Fourier's transfonna­
tioos. The integrals in Eqs. (6) and (7) are inverse Fourier's 
transformations written in the cylindrical coordinates with 
p = Jx2 + y 2 (known as Sommerfi.eld's integrals3~. 

APPENDIXB 

T he theory developed here requires two types of integrals 
to be calculated. They are [see Eqs. (6) and (7)] 

(+"' f(k,h ,h0 ,z) 
Jo tl2(k,h) Jo(kp)dk 

(Bl) 

where/and g are analytical functions with respect to variable 
k, p = R+?. functions ~ 1 , ~2 are determined in Eqs. (6) 
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and (7). The difficulty in calculating Eq. (81) occurs since in 
the absence of the dissipation in the medium (I me = I m f.£ 
;;:O) the functions il 1(k,h) and il 2(k,h) have real zeros, 
which are located symmetrically in the regions - k2~k~ 
-k1 and k1 ~k~k2 • 

The equations il 1 (k,h) = 0 and il2 (k,h) = 0 are called 
dispersion equations of the layered media, which determine 
the propagation numbers of those waves penetrating inside 
the medium at sufficient distance. The roots obey the follow­
ing properties (which are given here without proof): (i) they 
are positioned symmetrically about k= 0 (then, only positive 
k will be considered); (ii) in the absence of dissipation there 

are N=(2+[ v'k~-k~h/7T]) different roots in the region k 1 

~k~k2 , where the square brackets designate the integer 
part; (iii) for h~oo this number increases to infinite and the 
roots tend to occupy the region k 1 o;;,ko;;,k2 continuously; (iv) 

for h < 7T! v' k~ - ki there is the only root which at h ~ 0 ap­

proaches k 1 ; (v) for h = m,f v'ki - ki, where n ;;;o l is any 
integer number, one of the roots equals k 1 . 

To find real positive roots in the region k1 o;;, k o;;, k2 , it is 
convenient to represent the dispersion equations in the fonn 

which is equivalent to 

( y~ e 2 + :Y~)sin{:y2 h + arctg(2 y 1 ''he/ ( Yi e 2 - y~)]} = 0, 
(82) 

where 'h = v'k~-k2 , y 1(k) and y2(k) are real functions of 
variable k in the considered region. A similar fonn can be 
written for il2 = 0. From Eq. (8 2) the condition of root exis­
tence is obtained 

where m is integer number inc luding zero. For any m there is 
only one root and the maximum value of m equals N = (2 

+ [ Jk~- ki hi 7T]) as mentioned above. Equation (83) can be 
solved by a graphical method finding the intersection of 
lines: / 1 (k) =- -:;hh + mn and / 2(k) = arctg[ 2 y 1 y2e l ( Yie 2 

- ~)], which is easily realized numerically. 
In a standard method,30 the integrals containing functions 

w ith real poles are calculated by integrating along the verti­
cal cuts m ade from the poles. If the number of poles is large 
this method becomes impractical and is of no use. The inte­
gration of Eq. (8 I) can be made by introducing a small dis­
sipation in the system: a small imaginary part appears in e 
(and f.£). For example, if the medium has a small conductiv­
ity er, then I me = - icucr/47T [the sig11 "-" corresponds to time 
dependence of exp(+iwt)]. As a result the poles shift in the 
complex plane below the real axis and the integrals can be 
calculated in a usual way (as classical). The challenge now is 
to calculate the limit of the integrals when the dissipation 
approaches zero. For this purpose, the integrals of Cauchy 
type are considered,31 

I f 'V(k)dk 
F(q) = 21Ti c k - q ' (84) 

PHYSICAL REVTEW B 64 0942XX: 

where 'V(k) is a continuous complex function , C is an arbi­
trary path in the complex plain P, and q E P is a complex 
number. The limit of F( q) when the point q approaches a 
point k* on the path C can be found by means the Plemelj 
formulas (or, less often, the Sokhotski formulas), 

F + (k*) = F(k*) + i'l'(k*), 

F - (k*) = F(k*) - t~V(k*). (85) 

Here F +(k*) and F - (k*) are the " left" and "right" limits 
when the point q approaches the point k* from the "left" 
and "right" with respect to the integral path. The function 
F(k*) is defined by the following equation: 

l f 'V (k) - 'l'(k*) I 
F(k*) = -. k-k* dk+ -'l'(k*) 

27TI c 2 

'l'(k*) b - k* 
+--ln--

27Ti a-k*' 
(86) 

where ln[(b - k*)l(a - k*)]= Inj[(b- k*)l(a- k*)]j+ i arg((b 
-k*)l(a - k*)] is the principal value of a logarithm, and a.b 
are the ends of the path. In the absence of the dissipation 
when e is a real root of il 1(k,h) = O or il 2(k,h)=O, the 
integrals in Eq. (8 I ) can be rewritten in the fonn of the 
Cauchy integrals, 

f

b,f(k,h,h0 ,z) 
a, il z(k,h) lo(kp)dk 

_ fb;f( k,h,h0 ,z )(k-ki}l il2(k,h) 
- a; k - kj l o(kp)dk. 

(87) 

Here 'l'(k)=f(k,h,h 0 ,z)(k - kj)l il 2 (k,h) is a continuous 
function of the variable k, the parameter kj is the ith real 
root of the dispersion equation, and (a; ,b;) is the subinterval 
containing kj . The value of 'V(k*) is found via residue: 

'¥(kf} = res(f(k,h,h0 ,z )l il2(k ,h)]k=k• · The integrals in 
I 

Eq. (81) can be calculated by dividing the integration path 
into intervals: (O,k1) , ... ,(a; ,b;), .. . ,(k2 , + oo) where the in­
tegration in the intervals (a; ,b;) is carried out as explained 
above. In Eq. {85) the right limit F - (kj) has to be used 
since in the case of dissipation the roots shift below the real 
axis. 

APPENDIX C 

ln this appendiJt, the approximation used to obtain Eqs. 
(14) and (16) is discussed. Let us consider Eq. (13) for the 
current density, which is written as 
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where the following notations are used: G 1 = i Im(G .. 2+ Dv, 
G 2 = ilm(Gd , and the wave number k~ = k~Q2 /Q 1 • As it 
follows from Eq. (ll) the functions G 1 and G2 are propor­
tional to 

sin(kJ>X) 
G1,2- i r-r;--2· 

yx-+ro 
(C2) 

The order ofQ 1 and Q2 is estimated from Eqs. (11) and (1 2), 

f+ lf1. dx 
Q1,2oc rr-;--rr = 2 ln(ll2r0 ) . 

- 112 yx-+r, 
(C3) 

Equation (C I) can be represented as a differential equation 
with respect to the functionj(x)+(G 1*})/Q 1 , 

a2 ( (G1*})) ( (G1*})) a? j(x)+ ~ +k~ j (x)+ ~ 

_ iwe 2((01*}) (G2*})) (C4) - -
4
-Q Eox+kb _ Q ___ Q_ . 

W I I . 2 

The general solution of Eq. (C4) can be written in the form 
of an integral equation, 

iwe (G 1*}) 
j (x)=- Q k 2Eox +Asin(kbX)+Bcos(kJ>X)+ -Q-

4w I b 1 

+kbfx sin[kh(x - s)]F(s)ds, 
- //2 

(CS) 

where F(s) = [( G 1*})/Q 1- (G2*})/ Q2] , A and Bare con­
stants which are defined from the boundary conditions 
j( - 112) = j(l/2) = 0. The first three terms can be used to con­
struct the zero-order solution, 

(C6) 
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The next-order terms can be found from a standard iteration 
procedure, 

Jn(x)= Jo(x)+ J112 

F(x ,q)Jn- l(q)dq;n = I ,N, (C7) 
- 112 

where F(x ,q) is the kernel of the total linear integral opera­
tor, 

I IX F(x,q) = -Q G 1(x-q)+kb sin[kb(x-s)] 
I - //2 

(C8) 

The constants A and B are found from the boundary condi­
tions j n( -l/2) = j n(l/2) = 0 at the final stage of the iteration 
procedure for a fixed n = N?!; I . Since the integral operator is 
linear the equation for A and B form a linear system. The 
solution for } 0 (N= 0) has the form 

Equation (C9) gives singularity at the resonance frequency 
when cos(kb l/2) = 0, which can be eliminated using the next 

iterations. Since the kernel F(x,q) involves parameters 
1/Q 1 , 1/Q2 oc l/2 1n(l/2r0 ) , the last term in the Nth iteration 
series is of the order of [ l /2 1n(l/2r 0)]N+ 1. ln the present 
case, the iteration parameter is sufficiently small: taki ng //2 
= 0.4cm and r 0 = 4X I0- 4 cm g ives l /2 ln(//2r0)= 0. J5. 
Then, tlte higher-order iterations will introduce small 
changes in the effective parameter kb and the resonance fre­
quency (but can change the current at the resonance consid­
erably, which is not important in this case) and thus the form 
factors Q 1 and Q2 properly define the modified effect ive 
parameters. The zero-order iteration corresponds to neglect­
ing the imaginary parts in Eq. ( 13). 
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