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ABSTRACT

DIAGONAL AND OFF-DIAGONAL MAGNETO-IMPEDANCE
IN FERROMAGNETIC MICROWIRES AND THIN FILMS

The discovery of the giant magneto-impedance (GMI) effect in 1994 had a strong
impact on the development of micro magnetic sensors. In certain soft magnetic materials,
such as composites of amorphous thin wires, the magneto-impedance change (MI ratio) is in
the range of 50-100% in the MHz frequency band for external magnetic fields of few Oe.
Special thin-film structures have been proposed to provide the MI effect in miniature
elements.

In the present work, the concept of the magneto-impedance matrix has been
elaborated, which enables the explanation of variety of Ml field characteristics in wires and
[ilms from the common point of view. The fabrication technologies of the narrow thin film Ml
samples with different structures also were developed, including layered films and films
infegrated with a helical planar microcoil. The experimental technique employed in the work
allowed us to measure all components of the total magneto-impedance matrix that came as
the first verification of the matrix concep! of the magneto-impedance. Different methods of
getting the asymmetrical and antisymmetrical magneto-impedance behaviours were proposed
demonstrating a great success of the impedance matrix concept. In the case of a simple
transverse magnetic anisotropy, the diagonal components of the magneto-impedance matrix
are symmetric and the off-diagonal components are antisymmetrical with respect to the dc
longitudinal magnetic field. The asymmetry in Ml behaviour can be related to either a certain
asymmetric arrangement of the dc magnetic configuration or a contribution to the measured
voltage due to the ac cross-magnetisation process, represented by the off-diagonal component.
The first case is realised in the wire and film having the helical or crossed anisotropies
respectively, which are subjected to an ac current superposed with a dc bias current. In the
other approach, the asymmetric voltage response can be obtained by applying the ac current in
series through the MI element (wire or film) and the small coil surrounded it. No helical
anisotropy is required in this case. These kinds of asymmetrical MI are especially important
for developing auto-biased linear MI sensors. The thin film with the integrated planar
microcoil allowed us to measure the off-diagonal impedance in the sandwiched film. Results
obtained for MI in thin films open up the perspective directions for the integrated MI sensors.

The applications of the Ml effect are not limited only by magnetic sensor technology.
In this work, a new type of tuneable composite materials was proposed, the effective
microwave permittivity (dielectric constant) of which depends on the dc external magnetic
field applied to the composite as a whole. The composite consists of the short pieces of
ferromagnetic wires embedded into a dielectric matrix. The composite sample can be
fabricated in the form of thin slab with thickness less than 1 millimetre. The short wire
inclusions play the role of “the elementary scatterers”, when the electromagnetic wave
irradiates the composite and induces an electrical dipole moment in each inclusion. These
induced dipole moments form the dipole response of the composite, which can be
characterised by some effective permittivity. The field dependence of the effective
permittivity arises from a high field sensitivity of the ac surface impedance of a ferromagnetic
wire. In the vicinity of the antenna resonance (related with the short wire inclusions) any
variations in the magneto-impedance of wires result in large changes of the effective
permittivity. Therefore, this composite demonstrates both the tuneable and resonance
properties (selective absorption). Thus, we have demonstrated a possibility of using the MI
effect to design field-controlled composites and band-gap structures. A number of
applications can be proposed, including selective microwave coatings with the field-
dependent reflection/transmission coefficients and selective tuneable waveguides where the
composite material may be used as an additional field-dependent coating. In addition, in the
final chapter of future work we will take a quick look at tuneable composites with other
microstructures and methods of the excitation.
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Chapter 1 Introduction and background research

1.0 Actuality and eccentricity of the investigation

Since the discovery of the magneto-impedance effect (MI) in 1994,[1,2] it has
received much attention due to its importance for developing micro-magnetic sensors of high
performance.[3-10] The variety of MI materials has increased significantly. These materials
include thin metallic ferromagnetic wires (which can be coated by glass), ribbons and thin
films made of amorphous or nanocrystalline ferromagnetic alloys. In simple terms, the Ml
effect is understood as a change of the complex resistance (impedance) of a ferromagnetic
sample subjected to a high frequency current and a dc external magnetic field. Strong field
effect, which makes the MI effect attractive for sensor applications, became possible because
of discovery of new materials with specific magnetic structures, in the first place, amorphous
ferromagnetic wires with circumferential or helical antsotropy. At present, the MI effect is
considered wider as the generalisation of Ohm’s law, which includes the off-diagonal
components originating from the gyrotropic properties of ferromagnetic media. A
manifestation of the off-diagonal effect is generation of coil voltage by an ac longitudinal
current flowing in MI element.

The MI effect, which accumulates many peculiar physical principles used in other
sensors, provides a wide variety of the field characteristics along with simplicity of the sensor
circuit design. In turn, it requires the detailed analysis of many factors determining the MI
effect. However, most of the theoretical work is restricted to specific conditions not always
consistent with the experiment. In certain cases, conflicting experimental results on Ml in
matenals with similar magnetic structures have been reported. This may occur, for example,
when different types of excitation are used. In particular, this is related to the case of a
complicated magnetic configuration, as the case of a helical magnetisation in a ferromagnetic
wire. Therefore, rigorous theoretical and experimental research of the MI effect accounting
for specific magnetic structures and excitation methods remains to be of a considerable
interest and importance.

In the present work, the concept of the magneto-impedance matrix has been
elaborated, which enables the explanation of variety of Ml field characteristics in wires and
films from the common point of view.[11-14] The experimental technique employed in the
work allowed us to measure all components of the total magneto-impedance matrix that came

as the first verification of the matrix concept of the magneto-impedance.[12]
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The fabrication technologies of the narrow thin film MI samples with different structures also
were developed, including sandwiched films and films integrated with a helical planar
microcoil.[15] This opens up possibilities of creation of the integrated MI sensors.

The applications of the MI effect are not limited only by magnetic sensor technology.
In this work, a new type of tuneable composite materials was proposed, the effective
microwave permittivity (dielectric constant) of which depends on the dc external magnetic
field applied to the composite as a whole.[16] The composite consists of the short pieces of
ferromagnetic wires embedded into a dielectric matrix. It can be fabricated in the form of thin
slab with thickness less than 1 millimetre. The wire inclusions have random orientations in the
plane of the composite slab. The field dependence of the effective permittivity arises from a
high field sensitivity of the ac surface impedance of a ferromagnetic wire. A number of
applications can be proposed, including selective microwave coatings with the field-
dependent reflection/transmission coefficients and selective tuneable waveguides where the
composite material may be used as an additional field-dependent coating.

The work is organised as follows. In Chapter 1, we will consider general physical
principles of the Ml effect. The equation of motion of the magnetisation under the action of an
external magnetic field plays a key role in MI study. In spite of the fact that this equation is
excepted without any revisions, the MI structures required new electrodynamics problem
settings. Considering a weak alternating excitation in the microwave range, the equation of
motion of magnetisation allows us to calculate the ac permeability matrix of a linear local
response. This matrix is used to solve the Maxwell equations in the magneto-anisotropic
medium, where the solution has to satisfy specific boundary conditions. The measurable
quantity calculated is the surface impedance matrix, which is expressed through the
components of the permeability matrix. After the consideration of the essential aspects of
ferromagnetism in Section 1.1, we proceed to the main subject conceming the response of a
ferromagnetic system to an external magnetic field. In Section 1.2, we begin our analysis with
the equation of motion of an elementary magnetic moment. This equation prompts the general
form, which is used in Section 1.3 to obtain the equation of motion of the magnetisation in an
isotropic and unbounded ferromagnetic medium considered as a strongly correlated system of
elementary magnetic moments. In addition, in Section 1.3 we introduce a phenomenological
approach to the dissipative processes in the ferromagnetic system. The modifications of the

equation of motion for shaped and anisotropic samples are considered in Sections 1.4 and 1.5.
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In Sections 1.6 and 1.7 we introduce the magnetostatic model used in the present work and

discuss the role of the exchange effect on the ac response.

1.1 Essential aspects of ferromagnetism

This Section is undertaken as a comprehensive review of the physical principles of
ferromagnetism since this magnetic state constitutes the basis of any MI element. Three 3d-
metal crystals are ferromagnetic at room temperature: iron, nickel, and cobalt, as well as, their
alloys. The ferromagnetic state also can be established in some amorphous ferromagnetic
alloys, therefore it is not a specific crystalline property. Note that Co-based amorphous alloys
form the basis of the MI materials [4,7].

In general, there are five main magnetic states: (a) diamagnetism, (b) paramagnetism,
(c) ferromagnetism, (d) antiferromagnetism and (e) ferrimagnetism.[17] The first two
magnetic states (a) and (b) are not related with magnetic ordering in material, whereas the last
three (c)-(e) grow out of a certain magnetic ordering. The magnetic moment per unit volume
of a magnetic material is the magnetisation M . The relationship between Af and the external
magnetic field A can be expressed by M=M_ +yH,6 where M,_, is the residual
magnetisation (remanence), y(M) is the magnetic susceptibility. This general relationship
between M and H takes into account a possible hysteretic behaviour, when y(M) becomes
a two-valued function having different values for two branches of the hysteresis loop. The
observed value of susceptibility ranges from 1073 up fo 10° and higher. In some cases, it
takes a negative value. Sometimes the relationship between M and H is not linear, so y
depends on the intensity of H . All magnetic states can be characterised through the properties
of 7.

Diamagnetism is a weak magnetic effect in which the magnetisation is exhibited
opposite to the direction of the applied field. The susceptibility is negative and is usually

about 107>, The origin of this magnetism is an orbital rotation of electrons about the nuclei
induced electromagnetically by the application of an external field. The induced current
produces a magnetic flux, which is opposite to the external field. Paramagnetism is observed
in matenials possessing atomic magnetic moments. The application of a weak magnetic field

results in partial ordering, having a negligible effect on the value of elementary magnetic

moments. The order of ¥ is 1073 -1073.
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In most cases, paramagnetic materials contain magnetic atoms or ions whose spins are
isolated from their magnetic environment and can more or less freely change their directions.
Therefore, the small effect is caused by thermal agitation, which acts to oppose the ordering
influence of the applied magnetic field. The susceptibility in such paramagnetics is inversely
proportional to the absolute temperature (the Curie law). Conduction electrons, which form an
energy band in metallic crystals, also exhibit paramagnetism. In this case, most conduction
electrons have zero probability to align along the applied field since the energy states with
parallel states are occupied. Only a fraction of electrons near the Fermi level contribute to the
permeability, which is independent of temperature. (the so-called Pauli paramagnetism)

A ferromagnetic substance has a charactenistic property of the spontaneous parallel
orientation of elementary magnetic moments, which results in a larger magnetisation of the
whole sample even for a weak external field, if the temperature does not exceed the Curie

temperature 7. On the other hand, it is possible for the magnetisation of the same sample to

be zero in zero (or nearly zero) applied field. These two experimental facts define the essential
aspects of ferromagnetism.[17,18] Thus, the ferromagnetic sample is to be characterised as a
system of strongly ordered magnetic moments. As it was pointed out by Weiss,[19] the
thermal agitation could be largely circumvented if one postulated in ferromagnetic matenals
the existence of a strong internal effective field or the so-called “molecular” field H ) . The
effective field gives an approximate representation of the quantum-mechanical exchange
interaction, which is mutual electrostatic interactions between electrons.[17,18,20] The
electrostatic energy of electrons depends on the relative orientation of their spins: the
difference in energy defines the exchange energy. This interaction tends to line up the
magnetic moments parallel to one another. The required magnitude for the Weiss effective

field may be estimated as follows. At the Curie temperature 7, the thermal energy x7, of an
electron spin is of the same order of magnitude as the interaction energy ugH, of the

magnetic moment up of electron acted on by the effective field H , , so that:[18]

Hp=—>, (1)

where « is the Boltzmann constant and ug is the Bohr magneton. For typical ferromagnetic

materials as Fe 7, ~10° X', which gives the value of H of the order of 107 Qe.
(5
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At temperatures below 7, the effect of the effective field outweighs the thermal fluctuation

energy and substance becomes ferromagnetic.
The dipole magnetic moment interaction between electrons is much weaker to account
for the effective field. The dipole field is evaluated as:[18]

Hpy~EE 2)

where r is the atomic distance. Taking r o 1078 cm, H,, ~ 104 Oe, which is much smatler

than the Weiss field / . The magnetic moment interaction by itself would lead to the Curie

temperature of about of 0.1°%K. The exchange interaction will be dealt with later in Section
1.7.

However, the important property of a ferromagnetic substance, namely, that the
magnetisation may be much smaller than the saturation one, can not be explained in the

assumption of the existence of the effective field /5 only. This behaviour can be explained

by assuming that actual samples are composed of a number of small regions called domains,
within each of which the local magnetisation is saturated. The same effects are observed in
polycrystalline samples, for which the resultant magnetic moment becomes zero by virtue of a
random distribution of the local magnetic moments in different granules. The increase of the
resultant magnetic moment of the whole sample under the action of an applied magnetic field
arises from two mechanisms: (i) an increase in the volume of domains which are favourably
oriented with respect to the field at the expense of unfavourably oriented domains, and (ii)
rotation of the directions of magnetisations towards the direction of the field.[17,18] In weak
fields the resultant magnetisation changes mostly due to the domain wall motion, whereas in
strong fields it is by means of the rotation of magnetic moments.

Antiferromagnets assume a kind of the magnetic ordering in which the magnetic
moments completely compensate for each other and this causes zero spontaneous
magnetisation of the whole sample. In simplest case, this ordering may be realised in the so-
called “chessboard structure” in which each magnetic moment is surrounded by the moments
with opposite direction. Some more complicated orderings are also possible.
Antiferromagnetism exists within the limits of a certain temperature range until the Neel

temperature 7 . The origin of antiferromagnetism also lies in the negative exchange

interaction between electrons, in contrary to the positive one in the case of ferromagnetism,
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Since at low temperature the ordering of opposite moments becomes more pronounced, the
susceptibility decreases with a decrease in temperature, as opposed to the paramagnetic or
ferromagnetic behaviour. Above the Neel temperature the moment arrangement becomes
random, so that the susceptibility also decreases with an increase of temperature and the
antiferromagnet passes into the paramagnetic state.

In a ferrimagnet the magnetic moments with opposite directions occupy two (or more)
sublattices, the number of magnetic moments and their magnitude are different in each lattice
and that gives rise to a resultant spontaneous magnetisation of the whole sample. Therefore,

ferrimagnetism can be characterised as “uncompenseted” antiferromagnetism.

1.2 Equation of motion of an elementary magnetic moment

We begin our study of the basic theory with the classical description of the motion of
an elementary magnetic moment m in an external magnetic field H, assuming that H may
possibly vary with time.[17,21-23] H will produce a torque on the magnetic moment of

amount (mx H), where the multiplication symbol inside the brackets denotes the vector

multiplication. If the magnetic moment could turn, it would attempt to line up along H.
Under the conditions that H is constant in time and there are no losses related with m
(“frictionless” moment), m would actually oscillate about the equilibrium direction. If there
are some losses, the oscillations would die out until eventually m would be lined up along
H.

When the magnetic moment m also possesses angular momentum J, the situation is
modified, since it now acts like a gyroscope. In the absence of losses, m would remain at a
fixed angle with respect to H (providing H is constant in time), but would precess about it.
The conversion of energy back and forth between the potential and kinetic energies would not
occur. It would still be true, however, that if there are some losses, m would eventually
become parallel to a static field H. The losses correspond to the relaxation processes with a
characteristic time # associated with the approach to thermal equilibrium. # is called the “spin-
lattice relaxation time”. Phenomenological treatment of the losses in the system of magnetic
moments will be considered later in Section 1.3. Here, we would like to write the equation of
motion of the magnetic moment without losses, which is found by equating the torque with
the rate of change of angular moment, J:[17,21]

%=—(mxﬂ). 3)
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Since m=yJ, we may eliminate J, getting:

= —p(mxH), @)

where y is a scalar called the gyromagnetic ratio. This equation, which holds regardless of

whether or not H is time dependent, tells us that at any instant the changes in 2 are

perpendicular to both»» and H.
A simple classical picture will enable us to make a correct order-of-magnitude
estimate of y. Let us calculate the magnetic moment and angular moment of a particle of

mass m and charge e moving in a circular path of radius » with period 7. The angular

momentum is then:

27r?
J=m 5
T &)
while the magnetic moment (treating the system as a current loop) is:
2
enr
=== 6
c T ®)

Comparison of the expressions for m and ./ therefore gives us y =e/2mc. The important
result of this formula is that large masses have low y's. We expect about a factor of 1000

lower y for nuclei than for electrons.

In the quantum theory, m and J are treated as operators m and J , Tespectively. We
define a dimensionless angular moment operator, I, by the equation:[24,17]
j=nl, (7

where 12 has ei genvalues L(L +1), where L is either integer or half-integer. Any component

of 1 (for example, [ z) commutes with 12, so that we may specify simultaneously

eigenvalues of both i? and fz. The eigenvalues m of i , may be any of the 2L +1 values:

L,L-1,..,-L.
The application of a magnetic field H produces an interaction energy of amount

—(m-H), where the multiplication symbol denotes the scalar multiplication. We have,
therefore, a very simple Hamiltonian (Zeeman energy):

H=-mH. (8)
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Taking the field to be H( along the z-direction, we find:
H =-yhHof ;. ©)
The eigenvalues of this Hamiltonian are simple, being only multiplies (yiiHy) of the

eigenvalues of i - - Therefore the allowed energies are:

E=yhHym, m=L, L-1,..., -L. (10)
One should hope to be able to detect the presence of such a set of energy levels by

some form of spectral absorption. The coupling most commonly used to produce magnetic

resonances is an alternating magnetic field apphied perpendicular to the static field Hy. To

satisfy the conservation of energy, an angular frequency @ must be that;

hwo=AE=yhHgorw=yHy,. (11)

Note that Planck’s constant has disappeared from the resonance equation. This fact suggests

that the result is closely related to a classical picture. From Eq. (11) we can calculate the
frequency needed to observe a resonance: w,,; =y Hyp.

The close correspondence of the classical and quantum mechanical treatments is made

particularly clear by examination of a differential equation relating the time vanations of the

expectation values 7y, sy, and ;. The equation is based on a well-known formula whose

derivation we sketch.[21,24]
Suppose we have a pair of wave functions ¥(¢) and ®(¢), both of which are solutions

of the same Schrddinger equation with an Hermitian operator of energy H:

2 Mo (12)

Let us have some operator F that has no explicit ime dependence. Then:

d g *~ Pg #, ~a &

—|® F¥Wdx=—|® (HF-FH)¥dx, 13
| L ) (13)

(291 })

where x is the vector of the three rectangular coordinate and the symbol designates the

complex conjugation.

We define the operator “d F / dt” by the equation:

jq:‘d—Fquuijcb*ﬁwx. (14)
dt dt
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By using d P /d ¢ in this symbolic sense, we have:[24]

d;fc%[ﬁ 1, (15)

where [ﬁ ,f?] is the usual commutator H F—FH . We may use this formalism to calculate
the time derivative of the expectation values of sy, 2y, and 2, We shall wish to use the

commutation relations for the components of angular momentum, all of which may be

obtained by cyclic permutation from il x,f yl= i .- Then:

di, i_s - .
=—[H,I,]=yHol,.
d1 h[H xl=rHol,
i, LIELE =y Hl 16)
dr _proxds YHolys (
dl, _0
dt
These equations are the component equations of the vector operator equation:
di .
—=—y(IxH). 17
ry (IxH) (17)

Since m =th.f, using Eq. (14) we obtain the equation for the expectation value of

magnetisation m=<m >: dm/dt=-y(mxH), which is just the classical equation (4).

Therefore, the classical equation correctly describes the dynamics of the magnetisation.

1.3 Equation of motion of the magnetisation in isotropic ferromagnetic medium

The exchange interaction, which strongly ties together the elementary magnetic
moments in the magneto-ordered materials, allows a continual macroscopic approach [22] for
the description of the motion of magnetisation M. The same continual approach was used in
the Weiss theory of ferromagnetism,[17-19] where the exchange interaction (“molecular
field”’) was postulated. Since M is the magnetic moment per unit volume, using Eq. (4) we
can immediately write the equation of motion of M in an isotropic and unbounded
ferromagnetic medium:{17,21-24]

ﬂ=—;V(M>< H), (18)

dr
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1 . : . .
where M = —Zm and AV is a small macroscopic volume containing magnetic moments,
AV '

y=ge/2mc, and g is the Lande factor. Note that the g-factor is assumed, subject to

experimental verification, to be a constant independent of field orientation, sample shape, etc.
In the frame of this phenomenological approach, the losses in the magnetic system can
be taken into account by means of a small dissipative term R added in Eq. (18):[17, 21-25]

%:-y(MxHHR, (19)

where R describes a dissipation of energy due to the spin-lattice relaxation.

There are several different notations of the dissipative term in Eq. (19). The simplest
and natural assumption is that the magnetisation is exposed to an additional effective field (in
spite of H) proportionate to the velocity of the magnetisation change 6M /¢, in other words
“friction” proportionate to the velocity of change. This assumption is quite typical for many
dynamic systems, and not only for mechanical ones. Then, introducing the dimensionless

spin-relaxation (damping) parameter 7, we obtain the following equation:

M 7 (s OM
M MxE)+ L[ MO, 20
ar ~ M M( a:J (20)

which is known as the Gilbert equation.[26,27] This equation was first obtained in a slightly
different form by Landau and Lifshitz in 1935 and used for the study of domain wall

motion:[28]
dM o
g = 7MXE) - (M (MxH)), @0

where @)y is the characteristic damping frequency. Both Eqs. (20) and (21) are equal since
Eq. (21) can be transformed into the form (20) by means the replacements y — ¥ /(1 +r2) and

g >TyYM /(1+1'2). However, because of physical meaning of y, Eqgs. (20) and (21) are

similar only the limit of a small relaxation (7 <<1). For 7 ~1, Eq. (20) has to be used.
Equations (20) and (21) are charactenised by a single dissipative parameter and will be
collectively called the Landau-Lifshitz-Gilbert equation.

The main property of Egs. (20) and (21) is that the dissipative terms are perpendicular

to M, hence | M| is a constant: | M|/3¢=0. In some cases, the processes, which give rise

to a dissipation, do not provide the constancy of | M |.

10
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In the presence of these processes, Eqgs. (20) and (21) are not fully valid, but since damping is
usually found experimentally to be small, | M| still remains nearly time-independent.

Many attempts have been undertaken to write the equations of motion of M with a
great number of the dissipative parameters, which would provide a possibility to a change of
the magnetisation magnitude. In particular, the following so-called Bloch equation was

proposed, containing two dissipative parameters 7y 5:[22,23]

dM —y(MxH)+(MO—MZ)—(M—MZ), (22)

dt T (%)

where the z-axis is directed along the equilibrium magnetisation My and M, is the direct-
axis magnetisation. The dissipative parameters in Eq. (22) differ for the transverse (M -M )
and longitudinal (My —-M_,) magnetisations. This equation is used for the description of the

magnetic resonance in the magneto-disordered systems, such as: the nuclear magnetic
resonance and electronic paramagnetic resonance.[21]

The study of damped magnetisation dynamics remains important in modern research
due to its significance for the development of nanomagnetic devices and high-density
magnetic recording. As was recently shown by Smith and Arnett [29], thermally generated
magnetisation fluctuations in very thin (1-3 nm) soft magnetic sensing layers (CoFe and/or
NiFe) of thin-film magneto-resistive devices may be observed as broadband resistance-noise
using simple electrical measurements. Thermally induced magnetic noise at lower frequencies
< 1-2 GHz in particular has potentially serious practical implications, as it will serve as a
fundamental limit of the signal/noise ratio of these devices when used as sensors. For this
reason, the study of this phenomenon has received significant recent attention.[30,31]

The Landau-Lifshitz and Gilbert equations obtained above conserve the absolute
value of magnetisation (| M |= const ) in a single domain region due to the strong exchange
interaction approximation. The value of magnetisation depending on temperature remains
constant during any dynamical process, which is described by a special type of the relaxation
term. Recently a new theoretical approach was proposed by Safonov and Bertram to correct
the limitations of the Landau—Lifshitz—Gilbert (LLG) theory. This new theoretical approach
was developed in the series of papers [32-36]). The main idea consists of the representation of
the magnetisation dynamics as the motion of damped non-linear oscillators with random
forces of thermal fluctuations. Nonlinearity in the relaxation process appears with the increase

of magnetisation deviation from equilibrium.[35]

11
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Depending on the situation, the non-linear magnetisation damping either increases or
decreases the total relaxation rate. According to this approach, for a uniform magnetisation
motion the crystal symmetry should influence the form of the relaxation terms and therefore
the phenomenological damping term should contain a damping tensor with several damping
parameters (“*hierarchy of dissipative terms””) instead of one (isotropic) damping term.{33,36]
However, the general problem of magnetisation damping cannot be solved using just
symmetry considerations. The magnetisation relaxation process appears as a result of
microscopic interactions of spins with each other and with phonons, conduction electrons, and
so on. In other words, a direct connection with microscopic physics must be made to clarify
the nature of the damping terms.[35]

The approach proposed by Safonov and Bertram was criticised by Smith in [37].
Smith has shown that the fluctuation-dissipation theorem (FDT) can be used to quantitatively
describe the relation between the measured resistance-noise power and the dissipative
properties of the constituent magnetic films, the latter typically is characterised by a Gilbert
phenomenological damping term with a scalar parameter 7. The FDT was used to argue that
the phenomenological Gilbert approximation, implicitly assuming a spatially (and temporally)
local damping mechanism, provides a physically plausible model for damping in
ferromagnetic materials that is quite analogous to well understood resistive damping in simple
metallic conductors. The FDT does not prove that Gilbert damping is physically correct.
Rather, it simply argues that the Gilbert term is physically consistent with more basic
theoretical considerations of intrinsic physical damping mechanisms in real ferromagnetic
films and does not lead to physically nonsensical results under examination with the FDT in
the naturally general case of spatially nonuniform magnetisation fluctuations. Similarly, the
FDT analysis here does not disprove the possibility of some form of “‘nonlocal’
phenomenological damping model. Rather, it would more modestly argue that any nonlocal
components of such a model should have a physical basis that is related to an actual damping
mechanism in real ferromagnetic materials, such as discussed elsewhere recently rather than
rely on broad generalizations based on faulty physics/mathematics or on simple, heuristically
appealing but otherwise not physically justified, approximations.

There is no doubt that thermal fluctuations will restrict the signal/noise resolution in a
real MI sensor. Nevertheless, this factor does not change the general concept of the
investigation using the LLG theory and it can be taken into account by means of the FDT, as

it has been fairly noted by Smith.

12
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As it will be seen throughout this work, the LLG theory is a suitable model which
allows us to describe the main features of the Ml field behaviour for all components of the
impedance matrix. Also, it is important to note that MI elements never reach nanoscale
dimensions (see the discussion on the size effect in Section 3.8), when the thermal effects
become especially critical. Moreover, in the MI theory we always consider only a small
excitation magnetic field (the so-called “linear response theory”), which does not result in
magnetic reversal, and hence there is no need to consider possible non-linear relaxation

processes, which the Safonov-Bertram theory appeals to.

1.4 Equation of motion of the magnetisation in the shaped sample

Previous consideration in Section 1.3 assumed that M was exposed to the applied
field H. This assumption is no longer valid for a shaped sample, where the internal magnetic
field H; does not coincide with H by the direction and magnitude due to the demagnetising
field. Therefore, we have to modify Eqgs. (20) and (21) to take into account this effect. In
Section 1.5, the methods developed here will be generalised for the anisotropic sample.

The ac linear response from a small isotropic ferromagnetic ellipsoid was first
investigated by Kittel.[38] It was a significant advance after the work of Landau and
Lifshitz.[28]) The Kittel method of the demagnetising factors developed for an isotropic
ellipsoid was further generalised by MacDonald [39] for the anisotropic one.

We begin our study with the isotropic and nonconductive ferromagnetic ellipsoid. The
ellipsoid is subjected to an external magnetic field H, which consists of a larger constant field
(dc) H,, and small alternating field (ac) h: H=H_, +h. The ellipsoid dimension is
assumed to be much smaller than the wavelength inside the material, the so-called quasistatic

approximation. This allows us to use only magnetostatic equations to determine the internal
magnetic field H;, which also can be decomposed into the dc and ac fields: H; = H? +h;. As
it is well known from the magnetostatic theory,[40] the field H; inside the nonconductive
magnetic ellipsoid is homogeneous and can be represented through H and M by means of
the demagnetising matrix N:

H;=H-NM, (23)

where M may depend on H; . The field Hpy, = -NM is called the demagnetising field.

13
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At the quasistatic approximation, we can neglect the retarding effect inside the

ellipsoid so that the momentary value of H, H; and M are related by the same equations and

boundary conditions as the static ones. In this case, the relation (23) can be written separately
for the dc and ac fields:

H? =H, -NM,, (24)
h; =h—Nm, (25)
where M=My+m, Mg is the equilibrium magnetisation, and m is the ac (small)

magnetisation induced by h. The equilibrium direction of My is found from Eq. (24):

(Mo xH?)=(Myx(H,, —-NM,))=0, (26)
where | Mg | is considered to be field-independent.

The Kittel method of the effective demagnetising factors [38] lies in the fact that using
Eqgs. (24) and (25), the unknown internal field H; can be left out from the equation of motion.

Since we intend to study a linear response, the ac excitation has to be quite small to provide
the strong inequality | m |<<| M |. Because of this, the demagnetising matrix N is a function
of My only:
h; =h-N(Mg)m (27)
This is the main equation of the Kittel method.

Substituting H; instead of H in Eqs. (20) and (21), we obtain new equations with the

account of the demagnetising effects:

dm T dm

?_-y(MxH,-)Jr-A?(Mx?], (28)
dm g

— = rMxH)-—% (Mx(MxH,)), (29)

where the equality dM /8¢ =0 was used.

The linearisation method of solution consists in the representation of all quantities as

the sum of a larger dc constituent and small ac addition: M=My+m and H; =H? +h;,

where |m |<<| Mg | and | h; |<<] H? |.
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Using these inequalities and Eqs. (24), (27), (28), we obtain at the single-mode excitation

~exp(—iw t) the following linearised equation in the first approximation by the complex
amplitude m and h:

—iom+(oy —ir(o)(mxnzr)+rM0((ﬂm)xnzr) =yMp(thxn,), (30)

where N=N(M,), oy =yH,-0, H,O =/H,,~NMy|,’, and n, is the unit vector directed
along M.
If the ellipsoid is conductive, the relations (25) and (27) are no longer valid since the

ac magnetic field h; is not homogenous inside the sample due to the skin effect. In this case,

to calculate a linear response the equation of motion (20) or (21) has to be solved together
with the Maxwell equations. This task 1s extraordinanly difficult. Nevertheless, if the skin
depth is of the order of the characteristic size of the sample or larger, the relations (25) and
(27) are still true. Thus, for the weak skin effect the Kittel method may be employed for a
conductive sample. Another approach to solving electrodynamic problems in ferromagnetic
conductive sample is to find the so-called “internal” ac permeability parameter without
account of shape effects for alternating field and magnetisation, and then to solve the Maxwell
equations with local permeability tensor. In our work, we will use this approach. This is
possible, if the demagnetising effect is significantly reduced, when the sampie magnetic
structure and applied fields do not tolerate strong magnetic poles on its surface. This condition
would be provided, for example, by the closure domains in thin film and the dc in-plane

external field, or helical magnetisation in wire and the dc longitudinal external field.

1.5 General equation of motion of the magnetisation

In this Section, we would like to generalise the Kittel method of the effective
demagnetising factors (see Eq. (27)) for the ferromagnetic sample the state of which is
defined by the overall magnetic energy. To conduct this program, we need some additional
analysis of the internal field H; with relation to the energy accumulated in the sample.

As it can be noted from Eq. (23), the field H; in the isotropic ferromagnetic ellipsoid
can be calculated as the derivative —8/@M from a magnetic energy density U/ , which is the
sum of the Zeeman energy density Uy and the magnetic self-energy density /), associated

with the sample shape:

15



Chapter 1 /ntroduction and background research

H,=———=H-NM, 31

TV G31)

where

U=UH +UM,

Uy =-(M-H), (32)
1 R

UM=§(M'(NM))- (33)

The form of Eq. (31) prompts us that H; can be considered as an effective field

arising from an effective magnetic energy density U/ . In general, along with Uy and U,
there are other contributions to the total magnetic energy density, such as: Weiss exchange
energy U,, magnetocrystalline anisotropy energy U,, the magnetoelastic energy U,
connected with magnetostriction, and domain wall energy U,,. The sum all of these energy
densities is called the magnetic enthalpy density U, :
Up=Ug+Up+U,+Uz+U,, +U,. (34)
This energy density defines the state of the ferromagnetic sample at given H and zero
absolute temperature T = 0°K . For T>0°K the same role plays the so-called free energy
density U
Up=Uy+Upy+U,+Uys+Up,+U,, -ST, (35)
where S is the entropy density. The entropy term (—S7') in this equation becomes very
important at high temperatures. It is because of this term, at 7 > 7~ the magneto-disordered
state becomes more preferable than the ferromagnetic one due to its larger entropy. However,
for our aim of the study of the magneto-ordered system the entropy term can be omitted.

The free energy density Uy is a function of the variables M and 9M/dx . Hence, the
total energy H of the sample is given by the integral over its volume:

H = [Ug(M,0M/0x)dx. (36)
4
Applying the condition that the total energy H must be stationary with respect to small

variations of M, we obtain:[22,23,39]

9 3 8
5 J Up(M,0M/0x)dx =£[{ ;ﬁ -ga‘l (6(61\;]/1:9 x,-)J}"SM)dx’ (37)

1
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where

§ 8 =9 ?
5M_6M—i§ax,-[a(aM/ax,-)] (38)

is the variational derivative (see any description of the calculus of variations, for example,

Morse and Feshbach [40]). Since the magnitude of M has been assumed to be a constant (see
explanation in connection with Egs. (20) and (21)), the variation §M is not completely

arbitrary but must lie in the plane perpendicular to the equilibrium magnetisation M.

Because of this, the stationarity of the functional (37) will be provided if the following

condition holds true:

2+ am?|- 200 s oam0, (39)

where A is the Lagrange constant.
The magnetisation M inside the sample must be directed along an effective field
H,; . By analogy with H; in Eq. (31), we can define H,4 as the variational derivative from

Hy=-—L. (40)

Using Eq. (39), we make sure that the required complanarity condition between H,7 and M
holds true: (H,g xM)=0.
Substituting Heﬂ instead of H in Eqgs. (20) and (21), we obtain the most general

equations of motion:

%?:—y(]\lxﬂeﬂ)+ [ana—l:l] (41
fd'ﬂ =—y(M xHeﬂ)—-;j—(M «(MxH,;)), (42)

where the effective field H, 4 is given by Eq. (40).

MacDonald has shown in [39] that the effective field H,z =Hgﬂ- +h,y can be
represented in the same forms as the internal field H; in Eqgs. (23)-(25):

Hy=H-NjgM, (43)
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H; = Hey —Noy Mo, (44)

heff =h—ﬁeﬂ'm, (45)
where ﬁeﬁr = ﬁeﬂ(Mo) is the matrix of effective factors and h is the external ac magnetic

field. Equation (45) is the exact Kittel equation (27).
Using the linearisation method and Eqs. (41), (43)-(45), by analogy with Eq. (30) we

obtain the following equation for the complex amplitude m and h:

—iom+(wy —itw)mxn)+y Mo(Nggm)xn )=y M(hxn,), (46)
where Neﬁ- = Neﬂ My), oy =7(6UF/6M0)Z. is a scalar, which is understood as the value

at the z'-component of the gradient (6U 5[0 MO), and U is given by Eq. (35).

Let us indicate the general properties of the susceptibility matrix %, which is found
from Eqs. (30) or (46). These properties are more convenient to be formulated in the
coordinate system concerned with some preferential direction. So, in an isotropic
ferromagnetic medium there is only one preferential direction, which coincides with the
direction of the dc external field H,,. In this case, § must be invariant with respect to the

rotations around this axis that gives rise to the off-diagonal and non-symmetric matrix
form:[17,22,23]

X —iXa O
1=|lixa x 0|, (47)
0 0 Xz

where ¥, is equal to zero in the saturated state (without domains). In general case of a
shaped or an anisotropic ferromagnetic sample, the simplest form of § can be obtained in the
coordinate system, where the z'-axis is directed along the equilibrium magnetisation My at
the fixed H,,. Then, % has the off-diagonal form similar to Eq. (47), but the diagonal
components y;; and y¥,, are not equal. Absent a dissipation (7 =0) in the ferromagnetic
system, all components of ¥ are at resonance at a certain frequency called the ferromagnetic

resonance (FMR). A dissipation (7 #0) results in the resonance dispersion curves with a

limited amplitude and a finite width.
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1.6 Anisotropy energy density

In this and next Sections we would like to continue the discussion of the contributions
to the free energy density U, which may occur in the MI samples. The most important of
them is the anisotropy energy. It is necessary to distinguish between the magnetocrystalline
U, and magnetoelastic U,,, anisotropy densities. The latter defines the anisotropy with

respect to the directions of the internal or external elastic stresses. For example, in such
popular MI material as glass-covered CoFeSiB amorphous wire [42-44] the high quenching
rates involved in the fabrication process [45] along with the presence of the glass coating are
responsible for a large tension stress induced during fabrication. In turn, these tension stresses
and negative magnetostriction (typical for Co-based amorphous alloys) result in a
circumferential anisotropy, which play a principal role in the MI effect in wires. The same
result can be achieved in glassless CoFeSiB wires by means of a wire drawing of an as-
prepared sample.[4,46] A Co-based amorphous alloy is generally used as the material for MI
applications, although other materials with a crystalline and polycrystalline (nanocrystalline)
structure can be utilised as well.

In the MI thin film samples the required in-plane easy axis anisotropy (transverse,
crossed or longitudinal) can be established during the sputtering process in the presence of a
strong magnetic field or annealing of an as-prepared film in the presence of magnetic field.
But for all that the coupling stress between the final film and substrate may significantly
change the easy axis direction from the predetermined one by a strong magnetic field during
the sputtering process. In this case, even “a sparing thermal treatment™ may restress the whole
sample and restore the easy axis to the original direction along the operating field.

Above we took a quick look at main origins of the strain anisotropy encountered in the
MI samples. Akulov has shown [18] that regardless of the nature of an anisotropy the
anisotropy energy density can be expanded into the power series in the direction cosines of

the equilibrium magnetisation M. The coefficients at the terms of such series are the

phenomenological constants defining the magnetic anisotropy. Below we will designate the

anisotropy energy density as U, regardless its origin.
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In magnetic materials characterised by single magnetic axis (easy axis) the anisotropy energy
can be approximated by the following expression:[17,47]
U, =-Kcos’g, (48)
where K is the anisotropy constant, ¢ is the angle between the easy axis and M. When the
sample represents single domain, change of its magnetic state under the action of a dc external
magnetic field /H, can take place only by rotation of M. The character of the
magnetisation process Mo(H,, ) is defined by the total magnetostatic energy Uy, which is in
this case the sum of U, and the Zeeman energy Uy . In next Chapters it will be shown that a
wide variety of the MI field behaviours can be provided by a combination of the anisotropy
and crossed dc fields, which include the drive external field H,, and fixed bias field Hy
applied perpendicularly to H,,.. Using Eq. (32), the Zeeman energy in the presence of
crossed fields can be written in the following form:
Upg =—(Mg-(Hg+Hp))=—-MoH,y cos@ - MyHsin 8, (49)
where Hy L H,, and @ is the angle between M, and H,,. If « designates the angle
between the easy axis and H,,, then using Eq. (48) Uy =U, +Uy can be written as the
following:[14]
Up =—K cos?(a—8)- MyH ,, cos@ ~ MyHpsin6. (50)
The single domain magnetostatic model expressed by Eq. (50) is called the Stoner-
Wohlfarth model.[47] A real MI sample, if only it is not saturated, is usually in the
multidomain state. Nevertheless, for the model calculation we will use only the single domain
approximation. There are some reasons for such approach. Firstly, the MI materials are

magnetosoft and have sufficiently small coercivity, therefore applying a moderate bias field

H,; we can obtain single domain state, and hence Eq. (50) becomes quite true. Secondly,

considering mainly high frequency properties, a local ac response from the sample also can be
calculated in the single domain approximation since the domain walls do not have time to
follow the ac field and hence their motion is strongly damped. Nevertheless, the domain
structure of an unsaturated sample is essential for the magnetostatic properties and in principle
can be accounted in the modified joint magnetostatic model, where the magnetisation jumps
are defined by the domain coercivity and approaching to the saturation state is describe by

rotation of magnetisation.
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Furthermore, the ac response of the sample as a whole may differ completely from the local
ac response, as it takes place for the off-diagonal impedance in a wire with a circumferential
anisotropy and “bamboo-like” domain structure.[12,14] Thus, in the present work the local ac
response will be calculated in single domain approximation but the conclusion concerning the
total ac response will be always made on basis of averaging over the whole domain structure.

Along with the multidomain structure, dispersion of the magnetic anisotropy may take
place. This weak dispersion of the anisotropy is called magnetisation ripple. Up to now, this
effect has been studied only in thin films (see, for example, [48-51] and references herein)
since ferromagnetic wires (amorphous and polycrystalline) are quite new materials. Based on
micromagnetics, the ripple theory [52-56] relates the measurable magnetic properties of a
magnetic thin film to its real structural characteristics, such as grain size, stress, texture, etc.,
and explains the deviation from the ideal uniaxial properties described by the Stoner-
Wohlfarth theory. Even though weak, the magnetisation ripple may significantly change some
measured quantities, such as the ac permeability or impedance (in our case). For example, in
[49] the analytical calculation of the permeability frequency spectra using Landau-Lifshitz
theory was compared with the experimental results obtained in thin amorphous ferromagnetic
films in the vicinity of the ferromagnetic resonance (FMR). It was shown that the initial
disagreement between theory and experiment can be attributed to magnetic ripples in the film.
In our case, the influence of the anisotropy dispersion on the impedance components can be
taken into account by means of their averaging by the anisotropy angle around its direction. In
practical situations, it will be enough to introduce a small angle deviation from the perfect
direction, as we do in the case of the circumferential and transverse anisotropies.

Also it is necessary to take into account the following conditions. First, we believe
that the size effect in narrow Ml films, which has an electrodynamic nature and is discussed
in Chapter 3, will reduce the MI effect much more than any “micromagnetic causes” related
to the size decrease. Second, the MJ effect does not relate to FMR (ferromagnetic resonance),
where on account of the resonance behaviour any “irregularities” will change dramatically

the measured response. Therefore, the magnetisation ripple effect may not be significant for

practical Ml elements.
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1.7 Exchange energy density

In this Section we clarify the role of the exchange effect on the ac response in
ferromagnetic materials. As it has been mentioned in Section 1.1, the exchange interaction
gives rise to the internal exchange energy of magnetic moments subjected to the “effective
molecule field” H, (Weiss field). The field Hp is proportional to the magnetisation M. In
the most general case, the energy U, , related with H s, can be represented in the following
form:{22,23]

Ua =_%MAM, (s1)

where Hy = AM and A is the exchange matrix determined by the anisotropy properties of

the material. In many practical cases, relation (51) can be approximated by a simpler

functional dependence:

Ua =—%AM2, (52)

where A is a constant. However, the energy U, is insufficient for the full account of the

exchange interaction. The fact is that the exchange energy must increase when the adjacent
magnetic moments are unparallel that may take place at a rapid spatial changing of M. This

circumstance can be taken into account by the inhomogeneous exchange energy U, , which

can be represented in the general case as a quadratic form of the magnetisation
derivatives:[22,23]

e (oM oM
U,=— il — — 1, 53
i Z.quu[ax,- ox 53)
where the scalar multiplication is inside the brackets and g¢; is a matrix of the

inhomogeneous exchange interaction. A scalar approximation of this equation is of the form:

1 oM
U, =-—¢% | L2
9 2q§(ax,}

where g is the exchange constant. Therefore, the total exchange energy U, is expressed by

2
. (54)

the sum U, =Up +U,.
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The principal moment is to clear up a question how the exchange interaction
influences the dispersion behaviour of the susceptibility matrix % . Let us consider “the scalar
exchange” described by Eqgs. (52) and (54). In this case, the contribution from the exchange

effect to H,p has to be calculated by means of the vanational derivative (40) from U,

sU 3t M
HE =——¢ -AM+ §: . 55
& T sM qi:l dx? (55)

As it follows from Eqgs. (41) and (42), the contribution from Hé[f to the equations of motion

for m is defined by the vector multiplication (Mx Hgﬁ') . Therefore, the first term in Eq. (55)

has no effect on the dynamics of m. The second term may be important in conducting
ferromagnetic materials because of the skin effect, in particular, when the skin depth is

comparable with the characteristic exchange length. The equation of motion for m will

contain then the term 9> m / 61;2 and will have to be solved in conjunction with the Maxwell

equations. This is a lengthy complicated process. The results of such a solution, reported in
works of MacDonald,[39] Kittel and Herring,[56] indicated no appreciable resonance shift
AH /H , where H is the external dc field at which the ferromagnetic resonance takes place,
and A is the resonance shifting in the field scale with respect to the case when the exchange
is a negligible quantity. The resonance interval is most sensitive in the dispersion curve,
therefore the exchange effect outside of the resonance should be even smaller.

Nevertheless, as it was shown by Rado et al.,[57,58] under suitable conditions the
effect of the exchange interaction on the ferromagnetic resonance in metals can be observed
experimentally. The ideas underlying these experiments were the following. To increase
AH / H | the resonance field A should be made rather small and AH reasonably large, the
latter was accomplished by producing a fairly small skin depth. Because of the relatively low
frequency necessitated by the small 4, a small skin depth requires a very large effective
permeability at resonance. A resonance and large permeability were obtained despite the
small A in a polycrystal with a magnetocrystalline anisotropy, K, of about zero. The
calculations carried in works [57,58] under conditions of K ~0 and weak spin-lattice
relaxation predicted the resonance shifting AH /H of about 20-30% that had good agreement
with experimental data obtained for the specially prepared NigsFess rod with longitudinal
magnetisation.[57] In this case, the line width and shape are essentially determined by the

conductivity and exchange.
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It is important to make few general comments. Any small contributions in the vicimity of a
resonance (of an arbitrary nature) add small parameters in the resonance denominator.
Therefore, the resonance value is determined by the biggest parameter in the denominator,
such as anisotropy and field. Then, the requirement X =0 seems to be very important to
observe the exchange effect since in the presence of anisotropy the contribution from the
dispersion of the anisotropy direction should prevail over the contribution from the exchange
effect. In fact, this situation is applied to real MI samples, where the dispersion of anisotropy
always takes place. Furthermore, the MI effect is usually considered outside of the
ferromagnetic resonance, and therefore the exchange effect is of little importance.
Nevertheless, in some resent works [59-61] it was proposed that the exchange interaction may
significantly influence the MI field characteristics. However, the idealised models considered
in those works with perfectly established anisotropy in a single domain are never observed in
practice, whereas exactly this “model idealities” make possible “an exarticulation” of the
exchange effect. The early experiments by Rado and Weertman [57] clearly demonstrated that
for the observation of the exchange effect, very specific conditions and sample preparations
are required. Thus, the conditions required for the observation of the exchange effect in MI

are difficult-to-realise, therefore this effect will be neglected throughout the present work.
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Chapter 2 Magneto-impedance matrix in ferromagnetic wires

2.0 Generalised Ohm’s law
This Chapter concerns the theoretical and experimental investigations of the magneto-

impedance effect (MI) in amorphous wires in terms of the surface impedance matrix ¢.[1] In
certain cases [2,3], the MI effect can be understood as the field dependence of a high
frequency impedance Z(a/3§,,,6) (complex resistance) in ferromagnetic samples:
V:Hex)=Jj Z(al6y,0), )
where ¥, is the field-dependent voltage measured across the wire, H,,. is the dc external

magnetic field applied along the axis, ; is the ac excitation current with a constant

amplitude, 2a is the sample cross-section dimension, &, =c/\[27r0'a1,u,(H,,x) is the

magnetic skin-depth, o is the sample conductivity, x4 (H,.) is the ac effective

circumferential permeability with respect to the ac current flow (axial), ¢ is the velocity of
light, and @ is the circular frequency. Here the impedance Z{(a/d,,,0) is a function of the
ratio a/d,, and conductivity o . However, in a general case, the MI effect requires the
account of a specific matrix form of the ac permeability () and impedance (), then Z is
expressed using the components of impedance matrix ¢.[1] In this case, a simple form (1) of
Ohm’s law for the MI response is no longer valid. Numerous experimental results on Ml
require a more realistic theory taking into account a specific matrix form of the ac
permeability and impedance. Although the permeability of a wire always is a matrix-type
quantity, the off-diagonal terms have often been ignored due, in part, to the analytic
complexity of handling such expressions and the difficulty in measuring them. However,
many applications of magnetic materials require very accurate knowledge of the permeability
and impedance matrix, therefore the off-diagonal components can not always be ignored.
Various excitation and measurement methods are required to reveal the matrix forms. An ac
response can be measured not only across the sample ends, but also by means of an additional
pick-up coil surrounding the sample. This technique is similar to that, which is used for
measurements of the off-diagonal components of the permeability matrix.[4] If the
equilibrium direction of the magnetisation is deflected to some angle away from the circular

one, the ac current j induces both the longitudinal voltage ¥, and the coil voltage V., as

shown in Fig. 2.1(a). This is because the current flow gives rise to an ac antisymmetric
circulatory magnetisation and a non-zero total longitudinal magnetisation.
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The off-diagonal components should be formally interpreted as the off-diagonal

impedances in a generalised approach. Thus, the total surface impedance matrix ¢ represents
the generalised Ohms law (matrix form), where the voltage vector (V;,V,) is related through

the surface impedance matrix ¢ with the excitation current vector (J, /) (see Section 2.2):

( 2 Jz Sz ~Szp ®(A-J'J o[ S ©
Vei2raN) \$p: —Sep) \B-jp) Goz Sop)

Here / is the wire length, 27a N is the total length of turns in the pick-up coil, N is the
number of turns, the constants 4 and B relate the ac excitation currents with the

corresponding ac magnetic fields at the wire surface: s, =4-j and h, = B- jj .
@ z b

The magnetic structure-dependent impedance matrix ¢ will be calculated for any
frequency and external magnetic field, and is not restricted to the case when only the strong
skin-effect is present.[1] A general approach to solving the electrodynamic problems is based

on the expansion of Maxwell’s equations in asymptotic series. The characteristic parameter of
the asymptotic expansions can be chosen to be the ratio f=a/8 where S=c/ 270w is

the non-magnetic penetration depth. Constructing the asymptotic serious for two limiting
cases f#>>1 and f# << and matching them in the intermediate region, the solution for ac

field distribution becomes valid in the entire frequency (or dc magnetic field) range. For

obtaining the asymptotic series in the case £ >>1, a singular perturbation method is used,
which is needed to describe the field distribution in the surface layer. For # << 1, a standard

regular perturbation method can be employed. The ac magnetisation is assumed to be related
to the rotational process and is described by a matrix of a general form having 6 different
components. To demonstrate consistency between theory and expertment, measurements of
the impedance matrix in amorphous wires with both types of anisotropy have been made
under proper excitation conditions.

Before we proceed with the impedance analysis, the properties of the amorphous

magnetic wires have to be addressed.
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2.1 Typical materials

In the last two decades the level of interest in glass-forming metallic alloy, which
vitrify at relatively low cooling rates from the molten state (compared with conventional
rapidly quenched metallic glasses), has grown.[6] Owing to their resistance to crystallisation,
these easy glass-forming alloys can be cast in bulk shape with very small dimensions down to
microns. Magnetic glassy alloys can be classified into two groups: Fe- and Co-based bulk
alloys with soft magnetic properties, and Ln-Fe-based (Ln=Nd or Pr) bulk amorphous alloys
with hard ferromagnetism at room temperature. At present, the mechanisms determining soft
magnetic behaviour of Fe- and Co-based alloys, on one hand, large values of the coercive
field for Ln-based bulk amorphous alloys on the other hand, are not well understood. These
new ferromagnetic bulk amorphous alloys are very attractive for both fundamental science
and engineering applications.

Thin amorphous ferromagnetic wires having a negative magnetostriction can be
considered to be one of the best materials for the MI applications.{2,3] The general
composition of alloy is F,M, with Fe and/or Co as F and metalloid like Si and B as M.[7-11]
The content “x” ranges typically between 70 and 80%. The alloys may also contain small
amounts of other elements such as Cr, Mn, Al, Cu, and Nb in order to improve mechanical,
corrosion or magnetic properties. In particular, FeSiBCuNb microwires can even improve
their ultrasoft magnetic behaviour by suitable thermal treatments. Partial diversification may
result in a stable and homogeneous “nanocrystalline” structure with balanced
magnetocrystalline and magnetoelastic anisotropies. The magnetostriction plays the main role
to determine the magnetic behaviour (i.e. domain structure and hysteresis loop).[7,8,10] The
sign and value of the magnetostriction, A, are decisive. Positive and nepative
magnetostrictions result respectively in radial and circumferential easy axis in the shell,
whereas the inner core always has the longitudinal magnetisation (although it can be very
small). The domain models for A >0 and A <0 are shown in Fig. 2.2(a) and Fig. 2.2(b),
respectively.[7,8] The wire sample with circumferential anisotropy is divided into a
“bamboo” domain structure, where adjacent domains have opposite directions of

magnetisation, as shown in Fig. 2.2(b).
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An ac current j and/or an ac axial field A,, are used as a source of excitation. The time
dependence exp(— i (ot) and Gaussian units are chosen. The voltage is measured either across
the wire (V) or in the coil (¥,;) mounted on it. The value of ¥, is determined by considering

the energy consumption in the wire:

Ve == [lexmys, (3)
S

where the integration is performed along the wire surface, e and h are the ac electric and

magnetic fields, c is the velocity of light. The voltage V. is found by integrating e along the
coil turns:

Ve =fedl. (4)
As it follows from (3),(4), the induced voltage can be found by calculating the tangential
components of the ficlds €, h, at the wire surface. Since it is assumed that the wavelength is
larger than the sample size, the field distribution outside the sample corresponds to the static
case. Then, the excitation method imposes the boundary conditions for the magnetic field E,.
Using the cylindrical co-ordinates (», @,z ) with the axis z along the wire, as shown in Fig.
2.7, the boundary conditions can be written as:

hola)=hy=2j]ca, hy(a)=hex., (5)
where a is the wire radius. The electric field €, is related to the magnetic field h, via the
surface impedance matrix ¢ :[13]

e, =4(h, xn), (6)
where n is a unit radial vector directed inside the wire. Comparing (3)~(6) it is seen that the
impedance ¢ is the only characteristic describing the voltage response in the system excited
by the external magnetic field h (of any origin). In ferromagnetic conductors, ¢ is a two-

dimensional matrix even for the electrically isotropic case.
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Introducing the local permeability matrix j corresponds to neglecting the exchange

effects. This approximation is reasonable for not very high frequencies, such that the skin

depth is still larger than the exchange length. Further assumptions about |\ are needed.

The ac permeability depends on many factors, including the domain configuration,
anisotropy and stress distribution, and the mode of magnetisation (domain wall motion or
magnetisation rotation). These factors can be complex in real materials, making modelling
very difficuit. In this analysis, the domain structure is not considered, it can be eliminated by

a proper dc bias. It is assumed that M, is aligned in a helical direction having a constant

angle & with the wire axis. This assumption is true for the central part of a wire piece (i.e. not
very near the wire ends), the length of which is larger than 1-2 mm. Variation from a constant
helical direction will take place at the wire ends. Nevertheless, if the wire is long enough (a
few millimetres) the contribution to the impedance response from the central part, where the
anisotropy is well established, will prevail over the end effects and so we will not consider

them. In this case, ji is determined by the magnetic moment rotation and is independent of

the position. This is approximation even for an ideal material, since a circumferential
magnetisation near the wire centre results in an infinite exchange energy. Then, there is
always a radial distribution in permeability, which is stronger in the case of a helical
anisotropy due to a stress distribution. Because of this, a wire with circumferential or helical
anisotropy has always the inner core with the longitudinal magnetisation, as it shown in Fig.
2.2(b). Nevertheless, direct measurements of the longitudinal B-H loops show that the outer
shell (with circumferential or helical anisotropy) gives the main contribution to the measured
flux. It follows that the inner core diameter is strongly reduced. Since the magnetic paths are
always closed in the outer shell during the magnetisation process, there are no magnetic poles
on the wire surface and ends. Thus, in our case the demagnetising effect is absent if the wire
is long enough. When we consider the high frequency case, the permeability is predominantly
a surface permeability, and hence the influence of the inner core effect on the ac response can
be completely ignored. In the low frequency case, where the radial change in permeability
becomes important, the magneto-impedance effect is relatively small. In fact, an averaged
value of the permeability can be used for a low frequency approximation. Thus, in both cases
a permeability matrix can be introduced. The comparison between the theory and experiment
is good proving that this approach is reasonable and a radial distribution in permeability is not

significant for the MI effects.
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The matrix ji has a general form with: g, =—,4, Hy; =~z , Hp; = 7 due to
the magnetic symmetry. Considering that the time dependence is given by exp(-i@f) and

utilising the cylindrical symmetry (e =(egp,e;), b=(b5,5;)), the Maxwell equations can be

reduced to:

de, iw, 10lre,) iw

P _®, 2 =12 11
or c P r or c ? (1n

oh, 4nco la(fh.p)zhrcr

e: 2
or c ¥ r or c

(12)

where b = ji h is the vector of magnetic induction. Since b, =0 (which satisfies the boundary
conditions at the wire surface), the material equations are of the form:

bp = thyp + 1135,

. (13)
b, = .‘—‘3h¢ + pah,
The magnetic parameters are given by:
2 2
H =/-‘¢p(p+/”¢r/.“rra M2 = Mgz + lyy | Hyy H3 = Hyp; _(Jqur.urz)/lurr - (14)

Substituting (13) to (11), (12) and eliminating the electric field e gives the equations for the

magnetic field components 4, and A,

3*h, oh
- r—¢+(k12r2 - l)h‘;,J = —-k:%rzhz,
ﬁrz or
; (15)
rZ ahy +r—a£"’—+k22r2hz :—kj?‘rth,,
or? Ir

where k,f = Uy (4 wiw a/ c2) and n=1,2,3. Equations (15) are solved imposing boundary
conditions (5) at the wire surface. The boundary conditions at » =0 must exclude the infinite
solutions, requiring;
hy(r<a)<wo, h,(r<a)<wo. (16)
Then, the coupled equations (15) with conditions (5) and (16) are completely determined.

In the present analysis, asymptotic solutions of equations (15) are found in two

limiting cases: d <<a and & >>a, where 5=c/,/2 noo is the skin depth in a non-

magnetic material (fp = I), as power series in a corresponding small parameter (&/a or a/é§).
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On the other hand, no condition is imposed on the value of the magnetic skin depth
Oy = c/ J2mo oy, , where g, is a corresponding magnetic parameter defined by (14). The

series representation for the electric field e = (e;,e,) is then deduced from equations (12). If

the surface values €4, €; are written in the form linear with respect to the boundary values

E@ and h,,, the surface impedance matrix can be calculated from equations (7).

To simplify the further analysis, it is useful to write the matrix i in the co-ordinate
system with the axis z'||M0 where it has the simplest form. In the case of a uniform
precession of the total magnetisation vector M around Mg, the susceptibility matrix in the

prime co-ordinates (r,¢’,z’) related with the equilibrium magnetisation My (see Fig. 2.7) is

of the form:
Xl —iXa O

x=lixa x2 0l. (17)
0 0 0

This form can be easily obtained from the linearised Landau-Lifshitz equation. The

expressions for x,, ¥», ¥, depend on a given magnetic configuration and will be

determined later. The susceptibility matrix can be converted to the original co-ordinate

representation (r,@,z) by rotating the prime system by an angle & which determines the

direction of M with respect to the wire axis z:

Al —IXa COS(H) iXa sin(ﬁ)
1 =| igqcos(d) 22c0s2(8) - xpsin(B)cos(8)|. (18)
~iygsin(@) - yzysin(@)cos(d)  z,sin%(6)
Using (18) gives:
,u1=1+4ﬂcosz(0)f, ,u2=1+47zsin2(8)§, (19
4 ;,,vg

iy =—dmsin(@cos() 7, F=11- .
1+47 x5
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2.4 High frequency approximation

The singular perturbation method constructed with respect to a small parameter
J=6/a<<1 is used to obtain asymptotic solutions of equations (15) in the case of high
frequencies. Customarily, this case is treated by considering the plane geometry. However,
such an approach allows the zero-order terms only to be found. For the purpose of building a
general asymptotic solution valid in a wide frequency range, the higher-order terms in the

series expansion are aiso important.

Introducing a new variable x =r/a and multiplying equations (15) by ﬁ2 gives:

5%k oh
ﬂ2x2 ? ¢ ﬂzx a”.f + (ﬂ|2x2 —ﬂz)h¢ = —ﬂ_%xzhz

:;: ch 0
ﬂ2x2 ﬁxzz +B%x ﬁ_: +ﬁ§x2hz = —ﬂ3212h¢
The boundary conditions for equations (20) are:
ho()=hy, h(1)=hey, an

h¢(x)<oo, h,(x)<w, 0<x<l.

Here ﬂ,% = 2iy, . Equations (20) have a small parameter at the second-order derivative and

are related to so-called singular perturbed equations.[14-16] The solution of such an equation
can be represented as the sum of two (regular and singular) asymptotic series of powers of the
small parameter. The regular part approximates the solution within a certain internal area
whereas the singular series is related to the boundary layer (near x =1) where the solution
undergoes rapid changes. Such a layer is named as a frontier layer. In our case it corresponds
to the skin depth. In the internal area 0 < x < 1, the singular part decays exponentially and the
regular series has a smooth behaviour.

Following the singular perturbation method, the solution of (20) is written in the form:

ho(x.11)= Y. B " Ron(x)+ Y. B"Sp (). (22)
nz0 nz0

hz(x’ﬂ)‘: ZﬂnRz n(x)"' Zﬂnszn(ﬂ): (23)
nz0 nz0

where R, Ry, and Sp,, S;, represent regular and singular terms, respectively, and

77 =(x—1)/B is “the fast” variable.
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Equations (20),(21) written in terms of the fast variable 7 become:

2
(np+1)° Zn"“’+ﬁ(nﬁ+1 (B(nBH)Z -8 )h =-p5(mB+1)°h,

2
(nB+1)2‘;] +Blnp+1) 2z an’ + B3P+ 1Pk, =-B3(nB+ 1A, 24)
h(p(o)':’_’ s hz(0)=hex
hon)<w, h(n)<w, -1/Bp<n<0

Substituting the regular series into (20) and the singular series into (24), and grouping

together terms of the same power n of f, the asymptotic solution of degree # is constructed.
In the case of the regular series, the zero-order (n = 0) approximation gives:
B3 Ryo(x)=~Bi Ry olx)
ﬂ]zRqD olx)=-BFRy0(x)

Equations (25) are satisfied only if Rzo(x)z Rq,o(x): 0. Proceeding in a similar way, it can

(25)

be shown that all higher-order terms turn out to be zero as well. Therefore, in the present case
the solution does not have a regular part, which could be expected as a consequence of the
skin-effect. The existence of the regular solution would result in the deep “diffusion” of the
electromagnetic field instde the wire at high frequencies. According to the general property of
singular equations, the singular part decays exponentially as exp(— a(l —x)/é‘), therefore the
frontier layer corresponds to the skin depth o .

Considering the singular series, the zero-order terms are found by solving the
following equations:

2

7°Spo —
3 ‘; + ﬁle(oO = —ﬂ3ZSzO» S¢0(0)= h¢7
7 (26)
%S 2
zO +B28:0 = ")63 S¢0 S20 (0) = Ry
on’
To choose a physically reasonable solution, the following condition has to be imposed:
lim S{(x-1)/#)= lim S(7)=0. (27)
£—0 n—-o
x<l
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The solution of (26) is taken in the form Cyexp(fr]) where y is the intrinsic vector of

coupled equations, C is a constant, and & satisfies to:

£+ &2(g? + g2 )+ ot 82 - )0 (28)
Using ﬂ,% = 2iu, , where 4, are determined by (19), we obtain:

&=t(-1) & =+0-i\i 29)
H=1+4ny

In (29), only the sign “+” has to be taken to be consistent with condition (27) since in this

case the exponent exp(£7) is limited for any n < 0. Finally, the general solution of (26) is

represented as:

UZ) C(l)[y,(])] p((l Da(, )+C(2)[yl(2)J p((l_')aJ_( -I)J (30)

There are two decay lengths in Eq. (30): & and 6,, =6 /\/;:1 . The former & is related to a

non magnetic but electrically conducting case describing the distribution of the
electromagnetic field having the local polarisation with the magnetic field parallel to the dc

magnetisation M. The latter &, is a magnetic skin depth corresponding to the mode with h
perpendicular to M. In the case under consideration, the vector My, is directed along a

helical path, resulting in the existence of both polarisations and the solution involving the two

characteristic decay lengths.

Defining C (1.2) from boundary conditions in Eqs. (24), the zero-order estimate for the
magnetic field 4, , h, is completed. Substituting Eq. (30) into (12) yields the solution for the

electric field e. Then, from Egs. (7) the surface impedance matrix is deduced:

a‘(g’z gz¢]=-c(1_z) Jiicos(@)+sin® (@) ([~ 1hin(0)cos(e)

4rad ( 7 — l)sin(ﬂ)cos (6) cos?(8)+7isin®(g) |

The high-frequency limit equation (31) for the surface impedance matrix (or its certain

€1y

- Spz Spo

components) has been obtained in a number of papers,[17-20] regarding small regions at the
wire surface as flat surfaces, and imposing the boundary conditions similar to Eq. (5).

However, this method restricts to a zero-order approximation only.
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The higher-order terms can be important to determine more accurately the validity conditions.
For example, it has been considered that a strong skin-effect approximation yielding (31)
requires &/a <<1 which is much stronger than that involving the magnetic skin-depth

6, /a << 1. This opinion is based on the field distribution as in Eq. (30) depending on the

both decay parameters. For an amorphous wire (o = 10'6 s') of 30 pm diameter the non-
magnetic skin depth becomes of the order of a at GHz frequencies. On the other hand,
numerous experimental results on MI are concerned with frequencies of 1-100 MHz, and it
seems that the high frequency case has a very limited use. Within the proposed method, the
full asymptotic series can be found. Considering the first-order approximation is important in

context to prove that the condition &,, /a << is sufficient to justify the use of Eq. (31).

The first-order equations for S;; and S, are of the form:

2% a8
el p2S, =-piS, ——=2,  S,(0)=0
2 3 )
0.,”2 zl el an zl( )

%S, Gs
2 2 0
a"nf S ==F3S52 - a:;p’ Sp1(0)=0

(32)

Since the functions 23§, / on and 28 0 /0”?] are represented in the exponential form, the
particular solution of equation (32) is given by:

8,1 =(am+b)e¥\ +(ayn+by)e2, (33)
Eq;'l = (Clﬂ +dl )e'S"’ +(627]+d2)€£2]] s

where &), are determined by Eqs. (29). The general solution of coupled homogeneous

equations (32) is of the form of (30) where the constants C M and ¢ are found from the
zero boundary conditions in Eqgs. (32). The calculation process is straight forward but time
consuming and results in rather cumbersome expressions. However, substituting the values of

B, specific for the given problem, the result becomes as simple as:

A 11 ol 1, (34)
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Then, the first-order term for the impedance matrix is:

(a+9 0
gl=¢s(1—i)(_c[ 4 . (35)
daxoé\a) o _0+i)
4

Comparing (35) and (31), it is seen that the ratio of ¢;/¢q is of the order (J/a)/\/ﬁ or
O a . Therefore, the actual parameter in the expansion for the impedance is 8,,/a, proving
the validity of the high frequency results in a wider frequency region if u is sufficiently

large.

2.5 Low frequency approximation

Let us now construct the solution for the impedance in the opposite limit a/d <<1.
Having the high-frequency result (35), it can be expected that in this case the actual parameter
of the expansion involves the magnetic skin depth as well. Then, it may be difficult to join the
two asymptotes together. Therefore, we would like to build the low frequency asymptote such
that it could be expanded to the case a/&,, > 1. The solution of (15) is taken in the form:
hy=hy, “f] (a“ax)) ho(x), by =h, ‘30%3“)) iy (x), (36)

114 0\2a

where Jg are the Bessel functions of the first kind. In (36), the first terms give the exact

solutions for the homogeneous forms of equations (15). This representation for fields &, , &,

is proving to be adequate to get almost a monotonic transition from one asymptote to the

other, changing a frequency or an external magnetic field.

The functions 174, and i?z determining the extent of coupling of equations (5) are

found from:
5'2 ~ 2x2J X o
) (ﬁ! F2x ) _hexﬂa ﬁJ (ﬂo(g)zﬂ ) _ g2 g%
o\f2 37
2 2.2
290 Ohy 222 7 BEENBLY) 222
Py +XE+ﬂzﬂ x“hy =—hy Y - P B x%hy,
satisfying the conditions

hy(1)=0 h,(1)=0

E¢(x)< o hy(x)<w
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Here we use the same notation S =a/d for the small parameter though it is inverse to that

used in Section 2.4. The solution of equation (37) is represented in terms of the asymptotic

series of powers of [, using the regular perturbation method:

5¢(x)= Zﬂn;;;pn(x)’ Ez(x)= Zﬂ”;{z n(x),

nz0 nz0
J1(8,8x) ) 2 4
i-x*||+0lp?), (38)
H(BA) ( ) 60 )
Jo(BaBx) _ ﬂzzﬂz( )+0(H )
Jo(B2B) 4
Substituting series (38) into equation (37) and grouping together terms having the same

powers of #, the equations for the regular series EQ’ »(x) and I?z »(x) are obtained. It turns

out that the terms of the zero degree and of any (2n+1)-th degree are equal to zero. The

second-degree terms are found from:

2, Fhyy -
27 Tp2 P2 _7 2 2
x ﬁxz + x ax n2 = hex ﬁ:; X
h,  Oh _
P LW s (39)
é’xz ox

ho2(1)=0 Ay(1)=0
~¢,2(x) < E22(1)< Q0

Solving equations (39) gives:

Y il LA ﬂ%ﬁ"ﬁ) (40)

P2 3 > z2

The equations for the fourth-degree terms are:

3*h Fhyy - 2 g2 - -
204 Thpa A ﬂ24ﬂ3 xz(l_xz)_ xz(ﬂjz P h¢?2)

ax? Ix
%h Oh, _ g2 g2 - -
29 Niz4 z4 _ = PP sf 2)_ 2( p2 2
x Py +x ™ =-hg 3 x(l x“-x (ﬂz hyo + B34 h¢,2) (41)
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Substituting (40) into (41) gives:

~ = ﬂ34 2 ¥ 2 ﬂzzﬁf 2 <1
hyg = ~hy —| ————— ox ———— | —————— -
9{3 24 72 4 3 15 45
. (42)
,812/932 P A
—hey o 1< X
3 8 15 120

9 25 225] "7 9
ﬂ34 P 2 '

kB3|

309 16 144

Equations (36),(40) and (42) give the asymptotic series for the magnetic field, as far as the

P ﬂ12ﬂ32[x3 x> 16}_’—1 ﬂfﬂ%[xz x ZIJ

,6'4 -terms:
ho :H,DJTI(EL;L Boae)+ B a(), @3)

_, Jolkpax) o a0
z — Mex Jo(kza) +ﬂ hzZ(x)"'/B hz4( )

Calculating the electric field from Eqs. (12) and representing it in the form linear in I7¢, and

h., , the components of the surface impedance matrix are obtained:

4 2

_ ke Jolka) | ( J cH @4)

2z H
drno Jl(k]a) 54 roa
4

- kzc Jl(kza) [EJ Cﬂj?' (45)

9 4ro Jo(kza) 36 noa’
4

_ _;a@ al | iy M| ¢

gg,z—g‘w—lg}lg,—[gj |: 60 ¥ 30 :|7r0'a' (46)

The second terms in Eqs. (44)-(46) depend on the corresponding magnetic parameters pu,,,

demonstrating that the actual expansion parameter involves a sort of magnetic skin depth {but

not exactly J,,). For example, in equation (44) in the case of kja>>1 (but a/é <<1) the

ratio of the second term to the first becomes (1/ 54)(k3a)4 /kja . The values of k,, are of the

same order, as it follows from Eqs. (15),{19).
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Yet, the numerical analysis shows that the first terms in Eqs. (44)-(46) can give the main
contribution to the impedance even in the case of (4,/a)=1, which is illustrated by a small
numerical factor 1/54 in the above example. This helps joining the low frequency asymptote
with the high frequency one. In the next Section, the asymptotic behaviour will be discussed

in more detail for different magnetic configurations.

2.6 Analysis of the impedance behaviour for two types of anisotropy

Our approach can be applied to a wire having a circumferential or helical anisotropy.
In general, the anisotropy axis ng has an angle 45° <a £90° with the wire axis (z-axis), as
shown in Fig. 2.7. The wire i1s assumed to be in a single domain state with the static

magnetisation Mg directed in a helical way having an angle & with the z-axis. As it has been

discussed in Section 1.6, the local ac response will be calculated in single domain
approximation but the conclusion concerning the total ac response will be always made on
basis of averaging over the whole domain structure. The radial variation in @ is neglected as
it is explained in Section 2.3. The magnetic configuration changes under the application of
the external axial magnetic field H,, and the dc bias current [, inducing the circular
magnetic field Hj. The stable direction of Mg is found by minimising the magnetostatic
energy density Uy =Uy +U, (see Section 1.6):[21]

AUyl 50=0,

Uy =—Kcos2(a—9)—M0Hex cos8—-MyHysing, 4
where H is the de circular field induced by the dc bias current /. Equation (47) describes the

rotational magnetisation process demonstrated in Fig. 2.8, where the magnetisation plots for

two types of anisotropy and different values of the dc bias H, are given. The domain processes
may not be essential for the reversal of M, since the magnetisation vector during its rotation is

held parallel to the surface, without going through high-energy demagnetisation states. In the

case of a circumferential anisotropy (Fig. 2.8(a)), a dc bias current (inducing Hj larger than the

coercivity) eliminates the domain structure, without changing the magnetic symmetry.
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The permeability matrix =i+4ni is found from a linearised Landau-Lifshitz-Gilbert
equation for m =4 h written in the co-ordinate system (r,¢',z' ) with the axis z* parallel to

M, (see Section 1.5):

—iom+(wy —ira;)(mxnz')+7M0((l§Ieﬁr m)xn,)=yMy(hxn,). (48)
Here oy = ;'(aU F/0Mg )z., U is the free energy density, which coincides with U in our
case (see Sections 1.5 and 1.6), y is the gyromagnetic constant, 7 1s the spin-relaxation
parameter, ﬁeﬁ is the matrix of the effective factors in (r,¢’,z' )-system:

2

N, t=——cos“(#-a), N,,=———sn“(8-a),
zz MO ( ) Qo M& ( )

K
Nyg = Npiyr =M—gsm 20-a). (49)

Solving equation (48) determines the susceptibility matrix § which has the form of Eq. (17)
with:
2= 0p (@ —iT@) A, 2= oy (0 —iTo) A, Ja=0 @y 1,

A=(a)2—ira))(a)]—ifa;)—m2, (50)
@ =y [Hepcos8+Hysind@+ Hg cos2(a—-0)), Hyg =2K/M,

@y =y[H,.cos8+Hysinf@+Hg cosz(a—B)], apy =y My.

The impedance matrix is determined via the permeability parameters g, (low-frequency
case) or the parameter 1 (high-frequency case), all of them are determined by the apparent

susceptibility ¥ in Egs. (19). Substituting (50) into (19) gives:

anpg (@9 - ira))+4ﬂa)f,,

7= (51)

(0 —ito)w, +d7nwp, —itw)-@?
Figures 2.9(a-d) demonstrates the dispersion curves for the effective permeability parameter

ja=1+4x ¥ (see Egs. (19) and (29)), which enters the impedance matrix in combination

with the magnetisation angle 0. The following magnetic parameters have been chosen:

circumferential anisotropy (& =909 ), anisotropy field Hg =2 Oe, saturation magnetisation
My =500 G, gyromagnetic constant y = 2x107 (rad/s)/Oe. In calculations, a small

dispersion of the anisotropy angle a with respect to 90° should be introduced to model a

real sample and avoid zero ferromagnetic resonance frequency at H,, = Hg .
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The real part Re(zi(@)) approaches unity at the ferromagnetic resonance frequency

(2=90%) fam =1 Ho—Hg |47Mo 127: fram =365 MBz at H, =0 (see Fig
29@)) and fryp =725 MHz at H,, =10 Oe (see Fig. 2.9(b)). In the gigahertz range,
Re(#(w)) is negative being in magnitude in the range of 10-20, and Im(z(®)) is in the range
of 10-40. Both of them become insensitive to the external magnetic field, as shown in Fig.
2.9(c). In this case, the field dependence of the impedance is entirely due to that for the static
magnetisation orientation ©. Then, if 0 is a sensitive function of H,,, to insure high field
sensitivity of the impedance it is important only that the condition| (@) [>>1 is held. This
conclusion clearly demonstrates that the condition of the ferromagnetic resonance is not
required for the MI effect, contrary to the widely expressed belief.[22,23]

A large difference between frn and the frequency where the imaginary part reaches
a maximum value is caused by the specific form of the effective susceptibility ¥ containing
all the components of the susceptibility matrix 3. The dispersion curves, considered above,
look very similar to a relaxation spectrum typical of polycrystalline multidomain ferrites.
However, in our case, the “relaxation-like” dispersion is caused by a complicated form (18) of
the effective susceptibility. Such kind of the dispersion is always observed in experiments
with bulk ferromagnetic conductive samples, where the skin-effect is important and the

effective susceptibility is composed of the components of the internal matrix % . For example,

in Ref. 24 the dispersion of the initial hard-axis permeability, which corresponds to the

parameter g =1+4zxsin? ()7 in our designations (involving the same frequency-
dependent parameter 7 ), was measured in Co-rich and Fe-rich wires with 20 um diameter at
the megahertz and gigahertz ranges. The measured dispersion shown in Fig. 2.9(d) (solid line)
has a qualitative agreement to that shown in Fig. 2.9(a). In Ref. 25 the initial hard axis
permeability of NiFe and FeAIN films was investigated. For films with more than micron
thickness, the permeability had a relaxation-like dispersion curve where fryg did not
coincide with the frequency of the imaginary part peak. On the contrary, the dispersion curves
in ultrathin layers had the resonance-like dispersion where the peak in the imaginary part

corresponds to frag -
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For these parameters, the values of the permeability are fairly large and the transition from the

low-frequency case to the high-frequency one occurs at a/6=0.04-0.08. For ¢,4.60,
components, the two asymptotes have an intersection regions {(or even for a =90°, Sop

monotonically transits to the high frequency case), for ¢,, there is a certain gap, actually
rather small, but a sort of interpolation is needed. Considering the field dependences of the
impedance matrix, a practical rule to replace a low frequency asymptote by the high
frequency one may be the condition that the second term in expansions (44)-(46) has grown
up to 10% of the first one.

The field characteristics of the impedance matrix are determined by the combined

effect of ¥(H,,) and O(H,,), and are presented in Figs. 2.11-2.14 for the two types of

anisotropy. The case of the circumferential anisotropy (@ =90°) is given in Fig. 2.11. For this

case, H,, is a hard axis field, then both Ay, (He,) and 7(H,.) do not exhibit a hysteresis.

The positions of maximums for ¢,;, ¢pp, 624 (=6pz) are closely related to those for

cos2 @, sin’@, sin20, namely, Hex]=HK, 0, Hg /2, respectively. With increasing
frequency, the peaks for ¢,, and ¢, shift towards higher fields which is related to the
permeability spectra. The application of the circular bias H, makes the peaks smaller and

broader, but does not lead to a characteristically different behaviour. The diagonal

components ¢, and ¢, are symmetrical with respect to H,., whereas the off-diagonal
components ¢, OF ¢, are antisymmetrical that is demonstrated in Fig. 2.11(d) by plotting

the real and imaginary parts of ¢,,.
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2.7 Experimental results and comparison with the theory

An important next step 1s to compare the theoretical impedance characteristics with
those obtained experimentally. The experimental research on magneto-impedance in
amorphous wires, although rather wide is mainly restricted to measurements of the voltage

across the wire, which corresponds to measuring ¢,,. A number of results reported by
different groups on ¢,,(H.) seem to be in conflict. The field characteristics for same

frequencies, obtained for similar wire samples, can exhibit completely different behaviour.
This is a consequence of different ac excitations used, resulting in different magnetisation
mechanisms involved in each case. For example, in the case of a circular or a helical domain
structure, the ac current may cause the irreversible domain movement if its amplitude is
larger than that corresponding to the circular coercivity. Such irreversible domain processes
take place even at frequencies of few MHz. This process will mainly determine the field

behaviour of the impedance: ¢,,(H,.) has a maximum at H, =0 and decreases rapidly

with increasing the field.[3,28,29] This i1s due to the corresponding behaviour of the
differential domain permeability under the effect of a hard axis field. If the current amplitude
is small and irreversible domain displacements are not possible, the longitudinal impedance

has two symmetrical maximums at /. ~ f{ g, in agreement with that shown in Fig.

2.11.[1,30] Regarding the other components of the impedance matrix there are just few

experimental works on field characteristics of ¢, and ¢, for a wire with circumferential

anisotropy.[20,30]
For the sake of accurate quantitative comparison, we have carried out measurements

of the full surface impedance matrix as a function of H,, at conditions as close

corresponding to the theoretical model as possible. Care has been taken to realise a linear ac
excitation (the amplitudes of ac currents, magnetisation and fields are considerably smaller
than such dc parameters as the coercivity, anisotropy, dc magnetisation). Another model
restriction is considering a single domain state. In the experiment, the domain structure can be
eliminated by a dc current, however, in the case of a helical anisotropy, the field produced by
this current has to be larger than the anisotropy field (not coercivity). In the cases, where
domain structure is inevitable, the effect of domain wall dynamics on impedance behaviour is

less at higher frequencies due to damped wall motion.

61



Chapter 2 Magneto-impedance matrix in ferromagnetic wires

Two kinds of wires have been used: as-cast 120 xm diameter CoFeSiB wire having a

nearly zero magnetostrictive constant A <0 and a circumferential anisotropy (at least in the

outer region), and tension-annealed 30 xm diameter CoSiB wire (magnetostriction

1:—3-10“6) having a spontaneous helical anisotropy due to a residual stress

distribution.[31,32]

2.7.1 Experimental method

The impedance matrix is measured by means of the Hewlett-Packard 8753E Vector

Network Analyser configured in the two-ports measuring option for the S,;-parameter
(forward transmission): S,y =V, /V;,, where V;, is the excitation sinusoidal signal from
Port I and V,,,,, is the output signal measured in Port 1. The ac excitation current j and field
h,, in Eqs. 8,9 are determined by V},,, whereas V,,,, is equal to ¥/, or V. in accordance of
the excitation method. Thus, the S,;-parameter is directly proportional to the certain
impedance component. Note that the S,;-parameter includes both the normalised amplitude
| Vout ! Vi | and phase shifling Arg(V,,, /V;,) with respect 1o the excitation signal. The MI

effect is assumed to be linear, therefore the excitation signal has to be quite small to exclude
any non-linear effects. In this Chapter the linear MI effects are investigated using only a few
milliamps of excitation, however, large amplitude excitations (tens of milliamps) can be
useful for sensor applications where the improvement of the signal-to-noise is important. The

general view of the measuring system is shown in Fig. 2.15.
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The longitudinal diagonal component ¢, (Fig. 2.16(a)) is determined by the usual way,
measuring the wire voltage V, when it is excited by the ac wire current (4, =0). In this case, in
equation (8) /e =0, with the result that Sy =V,/Vj, =¢.(Hetp!/Viy). The
circumferential diagonal component ¢, (Fig. 2.16(b)) corresponds to the voltage V. in the
secondary coil mounted on the wire which is excited by the ac axial magnetic field induced in the
primary coil ( j = 0). In this case:

Vc=iam21hex7r(a%—azyc—Zﬂanzlhexgw,. (52)
Here ay is the radius of the secondary coil and n, is a number of its tums per unit length. In

equation (52), the first term represents the contribution from the flux (Faraday’s law) between

the wire and the secondary coil (the flux through the air gap), the second term corresponds to
the coil voltage defined by equation (9) with 714, =0. For wires having sufficiently large
diameter (few tens of microns) it is quite possible to wind the secondary coil directly on the

wire. In this case, the flux through the air gap is nearly zero and there is no large signal

insensitive to the dc external magnetic field. The off-diagonal components ¢, o and ¢, , (Fig.
2. 16(c,dj) can be determined by measuring the coil voltage ¥, when the wire is excited by the ac
current j, or measuring the wire voltage V, in the presence of the ac axial magnetic field #,,.

The latter is used here (Fig. 2.16(c), j =0). In this case, in equation (8) hgp =0 with the result

that Syy =V, [V, :_gzgp(Hex)(hex I/Vin)-

The coil length in all the experiments is about 3 mm and the wire length is about 6
mm. The secondary coil is mounted directly on the wire: a, = a. The primary coil is mounted
on a glass tube with a diameter of 1 mm. The number of tumns in both coils is 30. The
amplitudes of the ac excitation current (in the wire or in the coil} are chosen to be less then 1
mA, then, the non-linear ac magnetisation processes like irreversible domain displacements
are not possible. The experimental studies are made with the effect of the dc current which

effectively governs the static magnetic structure, as discussed above.
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2.7.2 Circumferential anisotropy

First we consider the impedance characteristics in a wire with a circumferential

anisotropy « =90° and a circular domain structure in the outer region. These results have

been reported in Refs. 1,30. The experimental field dependences for the ¢,, component and

the comparison with the model calculations are shown in Fig. 2.17. The normalised

impedance corresponds to the ratio ¥, /V;,. The real and imaginary parts of this ratio are
given in Fig. 2.17(a), showing two symmetrical peaks at H,, nearly equal to the anisotropy

field Hg =5 Oe (the value of the anisotropy field has been checked by measuring the dc
magnetisation loops). When the dc bias is applied, the impedance value at zero field becomes
considerably smaller. The dc current eliminates the domain structure, resulting in the

decrease in the overall permeability. For not very high 1, the values of the impedance at the

maximuma are almost constant since they are determined by the rotational processes only.

However, if 1 is further increased, the value of the impedance at the maximuma becomes

considerably smaller and the sensitivity drops, resulting from an increase in magnetic

hardness by /. Figs. 2.17(b),(c) give the comparison of the experimental and theoretical

results. The two curves are matched at positive (or negative) saturation, therefore the

theoretical values are given in S;-units. For /, =0, the main discrepancy between the
theory and experiment is for fields H,, smallier than the anisotropy field H g, which is due

to the contribution of the domain wall dynamics (which is essential even for frequency of 20
MHz) to the total permeability. The theoretical model considering a single-domain state

ignores the domain dynamics completely. Applying a sufficiently large current 7, =100 mA

eliminates the bamboo domains in the outer shell and significantly decreases the diameter of
the inner core magnetisation (see Fig. 2.2(b)). In this case, the theoretical curve becomes
closer to the experimental one. Figure 2.18 presents the longitudinal impedance for higher
frequency of 100 MHz, showing a much better agreement between the experiment and theory,
since the domain walls are stronger damped and give considerably smaller contribution to the

total permeability.
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Figures 2.19 are related to the analysis of the circumferential diagonal impedance

§ pp- Figure 2.19(a) presents the normalised voltage ¥, /V;, in the secondary coil mounted

directly on the wire which is excited by the ac axial magnetic field induced in the primary coil.
This ratio is proportional to ¢, which has a maximum at zero field and it decreases rapidly
near the anisotropy field Hx =5 Oe, whereas there is an insensitive wide region between
1 H g, which is more pronounced for 7, =0. It seems that this insensitive area is determined

by the demagnetising factor since the sample has a rather small length (6 mm) comparing to
the diameter (120 um). However, we could not see this behaviour considering the field plots

of ¢,,. More probably, it is related to the combined effect of the rotational permeability

(which has a maximum at zero field and is decreasing with the field) and the domain wall
permeability (which has a minimum at zero field and is increasing with the field). The
theoretical curve does not have this flat portion, as shown in Fig. 2.19(b). The application of a

relatively small current 7/, =557 mA increases the sensitivity of the impedance
characteristics, which may be due to a better defined circumferential magnetisation induced

by this current when @ is equal almost exactly to 90° without the anisotropy dispersion. The

insensitive region becomes smalier under the effect of a larger 7, as the domain contribution

is less essential, and this case is in a good agreement with the theoretical plot as demonstrated

in Fig, 2.19(c).
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Figure 2.20 is related to the off-diagonal component ¢ ,,, (=¢,, ). Figures 2.20(a),(b)

show the normalised voltage V, /V;,, measured across the wire ends when the wire is excited

by the external coil producing the ac longitudinal magnetic field (see Fig. 2.16(c)). Without the dc

current [, this characteristic is very small, but it increases substantially when the current is
enough to eliminate circular domains (compare the characteristics with /5 =0 and [ =100

mA ). An actual wire sample with circumferential anisotropy is divided into a “bamboo”
domain structure, where adjacent domains have opposite directions of magnetisation, as
shown in Fig. 2.2(b). For this structure, the total off-diagonal response from the whole sample
is formed by averaging over the domain structure, which will result in full annihilation, due to
the antisymmetrical response from the off-diagonal impedance components in the adjacent

domains: < Sz >=<Gpz >=0 because <sinfcos@ >=0. In reality, the system does not have
a perfect “bamboo” domain structure and, therefore, the averaging does not produce zero, but
the ac off diagonal response should be significantly decreased, as seen in Fig. 2.20 for 7, =0.
However, the situation will change in the presence of a bias field. At H, #0, domains with
the same direction of the magnetisation as Hj will grow, resulting in an uncompensated

averaging: <g¢,q >=<¢y, >#0. Finally, at a sufficient value of H, the sample will become

a single domain state (at least in the outer sheet). This results in the off-diagonal response
increasing significantly. Therefore, in the case of a circumferential anisotropy and a circular

domain structure, the presence of [ is the necessary condition for the existence of the off-

diagonal components of the impedance matrix. The off-diagonal component is antisymmetrical

with respect to the field H,,, which is demonstrated in Fig. 2.20(a) by presenting both the real

and imaginary parts. Such behaviour is an agreement with the theory (compare with Fig. 2.11(d)).

A considerable increase in [, results in a decrease in sensitivity (see Fig. 2.20(b), /, =500
mA). In this case, two opposite effects of /, are encountered: (i) the transition to a single-

domain structure (that increases the off-diagonal components and its field sensitivity), and (i1)
the increase in the magnetic hardness in the circular direction (that decreases the sensitivity).

Thus, the bias field effect and the field dependence ¢(#,,) provide a useful information

about the magnetic state of any given structure.
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The perpendicular component is a hard-axis field for the domain wall and the longitudinal
component is an easy-axis driving field. It is known [32] that the hard-axis field decreases the
domain wall energy and thus the coercivity. The hard axis field also causes the suppression of
the Barkhausen jumps, with the result that the parts of the hysteresis loop corresponding to
the rotation processes increase.[42,32] In the case of the helical anisotropy, the easy-axis field
results in the shifting of the hysteresis loop along the sweep field. The bias field gives the
contribution to both the hard and easy axis fields. By this means, the combined effect results
in the shifting and narrowness of the hysteresis loop along with the suppression of the
Barkhausen jumps.

As it has been demonstrated in Section 2.6, the asymmetry in the static magnetic
structure causes the asymmetrical field characteristics of the impedance matrix when high

frequency current is combined with the dc bias current /,. The modifications in the
impedance plots due to [ are of the same kind as those for the dc magnetisation loops. The

wire sample has a length of 5 mm and a dc resistance of about 1 Q. Coils have 25 turns and a
length of 3 mm. The diameter of the larger (primary) coil was 1 mm. The wire is subjected to

the axial dc magnetic field H,, and the dc bias current I,. The field dependences of
normalised ¢,, component are shown in Fig. 2.28 for a frequency of 20 MHz. The following

normalisation is used:

AV (He)| _ [IV(He) | —minlV(He)no  _
Ao |V(Hee)|  [max|V(H )| ~min|V(Hp) ]y

(53)
_llgHe) | -minjg(He) lpg  _ Alg(Her)]
[max|g(H )| -min|g(Hee)l]p Ao lg(Hex)|

If no bias is applied, the impedance plot versus ., shows a symmetrical hysteresis
(see Fig. 2.28(a)). Asymmetry in the field dependence appears in the presence of I, (see Fig.

2.28(b)). For one field direction (negative in Fig. 2.28) the amplitude of the maximum and
sensitivity increases, whereas for the opposite direction they both decrease. Moreover, a small
shift of hysteresis accompanied by shrinkage of the hysteresis area is observed for this matrix

component. Further increase in [, causes a drop in sensitivity (see Fig. 2.28(c)) which is due

to increasing the hardness in the hard-axis direction.
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In the case of ¢y, its maximum does not increase noticeably when /, is applied (see Fig.
2.29(a)), whereas the sensitivity is improved significantly. For larger bias currents, ¢ - plots
broaden with increasing /. As far as the off-diagonal component ¢, is concerned (see Fig.

2.30(b)), it appears to be most sensitive to current biasing: the field sensitivity increases more

than twice at [ =150 mA.

We can conclude that the theoretical model based on the single-domain magnetic
structure adequately describes the numerous experimental data for wires with different
anisotropy types. It was shown that the ac rotational magnetisation processes are responsible
in many respects for the impedance change. Comparing Figs. 2.12-2.14, Figs. 2.23-25 and
Figs. 2.28-30, we have to conclude that the better qualitative agreement between experiment
and theory is achieved for a wire with the helical anisotropy induced by annealing under

lorsion stress.

2.8 Asymmetrical giant magneto-impedance in wires with the circumferential anisotropy

This Section concerns the asymmetrical giant magneto-impedance (AGMI) in
amorphous ferromagnetic wires with a circumferential anisotropy.[33-35] This case is
different from that considered in Sections 2.6 and 2.7.3 since the dc magnetic structure does
not have asymmetry. As it has been shown in Fig. 2.22 (Section 2.7.2), the voliage measured

across the wire subjected to an ac current ; and an ac axial bias field A, (see Fig. 2.21)
exhibits a considerable asymmetry with respect to the axial dc magnetic field H,,. The

AGMI effect will be studied in terms of the surface impedance matrix, demonstrating that the

extent of asymmetry is determined by the ratio of the diagonal ¢,, and off-diagonal ¢,

components of this matrix. Strong effects on AGMI of the frequency of excitation and the dc

bias current /, applied to the wire are demonstrated. Both these factors effect on the linearity

and sensitivity of the voltage output in a sensor circuit based on the AGMI elements.
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AGMI characteristics are needed to realise linearisation. Generally, it can be done with
the use of a dc bias field, applying a dc current to the external coil (circumferential anisotropy)
or to the wire directly (helical anisotropy). In the case of magneto-impedance, the ac bias can
be used for this purpose. This method has the following advantages: (i) the ac bias is generated

by an ac bias current j, in the external coil, requiring no additional power consumption, (ii)

the helical anisotropy which can cause problems of stress stabilisation is not needed.

The effect of an ac bias field #,, on the voltage characteristics is related to the ac
cross-magnetisation process of inducing a circulatory magnetisation by h,,. It is convenient to
analyse this process in terms of the surface impedance matrix ¢. The induced voltages are
determined by Egs. 8,9. The diagonal components ¢,;, ¢y, are even functions of the field
(see Figs. 2.17-19) whereas the off-diagonal components ¢, =¢p, are odd functions (see

Figs. 2.20). Therefore, the way to produce an asymmetrical voltage response is to mix together
the components of the impedance matrix, as shown in Fig. 2.21. The wire is subjected to an ac

current j = jpexp(—iw t) and a variable axial magnetic bias field A, is induced by the same

current: h,, =47 nj/c. In this case, the voltage measured across the wire is (see Eq. 8 with
J=Jp):

_ 20
Ve =ez(a)1=51(§zz:|:2”na §z¢))- (54)
Here signs “+” correspond to a “left” or “right” coil. The extent of asymmetry depends on the
ratio ¢,,/¢,; . As it was shown in Section 2.7.2 for the circumferential anisotropy, the off-

diagonal component is essential only for a single domain state, since the value of sin@cosé
averaged along domains with the opposite magnetisation is zero. The circular “bamboo”

domain structure can be eliminated by the application of a dc circular field Hj produced by
the dc current /5 in the MI element. The field A} has to be larger than the coercivity, which

is still a small field comparing to the anisotropy field — a characteristic field of a major Ml

change.
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As functions of a frequency, ¢,, and ¢, have a maximum at /' =7-8 MHz The further

decrease should be related to the frequency behaviour of the effective permeability z (see Fig.
2.9). The application of a sufficient large /, causes a transition to a single domain state,
however, this also increases the magnetic hardness in the axial direction. In the case of ¢,
this results in a rapid drop in the nominal values at a given H,,, as seen in Fig. 2.32(a), where
H g is the saturation field. Contrarily, ¢,, would be zero for an ideal periodic circular domain
structure (“bamboo™), therefore, it increases substantially when the current is enough to
eliminate circular domains. Further increase in /, results in a decrease in Gzp because of the
same reasons as in the case of ¢, .

The comparative analysis of the components ¢,, and ¢, as functions of Hey, /, and

I is useful to determine the best parameter range for the ac biased AGMI. Figure 2.33(a)
shows the plots of the voltage magnitude |V, | versus H,, for two frequencies and /5 =100
mA. For a higher frequency of 10 MHz, the effect of 4,, results in a considerable asymmetry
in |¥,(H,,)|, which can be compared with the same characteristic measured without the ac
bias field A,, (no coil, dashed line). As the frequency is increased, the real part R (is
represented by the real part of V, /¥, ) of the total impedance Z becomes negative, as seen in
Fig. 2.33(b). The “negative resistance” is a consequence of two opposing e.m.f., as discussed
above. The voltage amplitude (or the absolute value of Z) never reaches zero, but in the
region of negative R there is a characteristic “hill”, as seen for the case of 10 MHz in Fig.
2.33(a).

AGMI characteristics can be used to obtain a near-linear voltage output in a differential
scheme, which connects two wires oppositely biased by means of coils mounted in “left” and
“right” sense. Figure 2.34 presents examples of a possible output in such a circuit. The best
linearity is obtained for frequency of 8 MHz, for which the maximum of the off-diagonal
component almost compares with that for ¢,,. The linear region is obtained in the field
interval 5 Qe, which is restricted by the value of the anisotropy field. On the other hand, the
value of the ac bias can be made very small, it has to be of the order of the circular field at the
wire surface, produced by the ac wire current. Application of AGMI for the magnetic sensors

will be concretised in Chapter 4.
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Considering a matrix nature of the impedance, the use of the off-diagonal components results
in asymmetrical MI in the presence of the ac bias, which is especially important for linear
magnetic sensing.

The theory is based on the asymptotic-series expansion of the Maxwell equations. The
method has no restriction to a specific geometry. It can be expanded to consider practically
important cases of 2-dimensional magnetic/metallic multilayers. The major limitation of the
theory is considering a uniform magnetisation ignoring completely a radial distribution of
permeability and the domain structure. Considering Ml effects, the variation in permeability
may not be important since the surface magnetisation gives predominant contribution.
Regarding domain wall dynamics, it can be taken into account by modifying the permeability
matrix on the basis of effective medium approximation for small field perturbations.[2,43] By
this, the eddy currents due to the local wall displacements are averaged on the domain scale.
Another restriction is the ignoring of the exchange effects. This is accurate if the exchange
length is smaller than the skin-depth. The theoretical model has been tested comparing the
results with the experimental data. For the sake of accurate comparison, a series of
experiments was carried out. The theory agrees well with the numerical experimental data as

far as the ac rotational magnetisation processes are responsible for the impedance change.
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3.0 Magneto-impedance effect in thin films

Since the discovery of the MI effect in amorphous ferromagnetic wires [1-3] the
variety of MI materials has increased significantly. These materials include glass-covered
wires, ribbons and thin films made of amorphous or nanocrystalline ferromagnetic alloys.
Although wires and ribbons provide very high MI field sensitivity (%/Oe), the need of
mintaturisation of actual devices, compatibility with integrated circuit technology, and
improvement of accuracy and reproducibility makes MI thin films attractive with their
compromise on sensitivity and miniaturisation. Further to this, MI thin film devices can
exhibit a much larger impedance change ratio and operate over a wider frequency range than
wires.[4-8]

It is common knowledge that the inductance of a conductor increases when a high
permeability material is placed nearby. Because of this, thin film structures containing
magnetic layers have been used extensively as high inductance elements, which operate up to
the GHz range.[9-11] Typically the inductor has two different types of structure: (i) planar
solenoid with a magnetic core or (ii} thin multilayered film having a highly conductive lead
sandwiched beiween two magnetic films. The latter structure is similar to the MI sandwich
films [4-8, 12-15] considered in this Chapter. However, the anisotropy for the thin film
inductors is typically chosen to be longitudinal.[11] Furthermore, the field dependence of the
inductor parameters is not of interest. In the case of Ml thin films, the transverse anisotropy
[4-8] and crossed anisotropy [12-14, 16] are preferable since they provide higher sensitivity to
H . the state of high inductance is set by applying the longitudinal field.

The importance of the anisotropy to the Ml effect has been understood from the onset
of MI research.[1-3] By analogy with the wires, where the circumferential anisotropy is
preferred, thin films with transverse anisotropy are typically chosen for MI applications as
most sensitive. A detailed experimental investigation of the MI characteristics in multilayers
with two types of anisotropy: transverse and longitudinal was reported in Ref. 17. For the case

of the transverse anisotropy, | Z(H,,)| has the expected behaviour with two maximums at
t Hyg , where H g is the anisotropy field. In contrast, for longitudinal anisotropy, | Z(H )|

has a single maximum at zero field and then monotonically decreases until the saturation
value. If the angle dispersion of the anisotropy is very small, the maximum becomes quite
sharp. Therefore, anisotropy and its dispersion appear to be the important parameters when

determining the MI characteristics.

94




Chapter 3 Magneto-impedance matrix in thin films

The samples used in Ref. 17 were fabricated from ultrathin multilayers [NiFe/Ag],, where the
number n of the NiFe/Ag bilayers could reach up to a hundred. Using such complicated
structures, the authors were guided by the knowledge that in multilayers the NiFe layers have
to be kept thin to preserve their soft magnetic properties. In this case no further thermal or
field annealing processes would be required. However, the same results can be easily obtained
for bilayer [8,16] or three layer [6] sandwich films made of a soft amorphous ferromagnetic
alloy of composition CoSiB, FeCoSiB, CoFeB or CoNbZr. A nanometre laminated Cr or Nb
layer between two magnetic layers has been successfully applied to form a perfect stripe
domain structure with transverse anisotropy.[8] Nevertheless, an annealing and thermal
treatments may play a significant role for improving the MI response in amorphous and
nanocrystalline thin films as shown in this Chapter and other works.[18-20] For sputtered
films it is widely known that annealing frequently helps to establish the required type of the
anisotropy and domain structure,[20] as the internal stresses and other defects caused by the
sputtering process may result in unexpected magnetic structures. In nanocrystalline materials
annealing or thermal treatments increase the amorphous phase and therefore improve the Ml
response.[19]

The multilayer MI structure consisting of a conductive inner lead and two outer
ferromagnetic layers has some advantages. Comparing to MI in a single layer film, this
structure can exhibit a considerably larger change in impedance at lower frequencies of a
passing current. It has been reported in Ref. 6 that the MI ratio in CoSiB/Cu/CoSiB
multilayers of several micrometer thick reaches up to 300% for a frequency of 10 MHz and a
magnetic field of about 10 Oe. On the other hand, for a single CoSiB magnetic layer of the
same thickness the M1 effect is very small (< 5%) at such conditions. For a sandwich film
with a smaller total thickness of the order of 0.1 um the MI effect decreases down to about
20%,[4] yet in the case of a similar single layer film the MI effect would not be noticeable.
Usually the studies on MI in multilayers are restricted to the case of a transverse in-plain
anisotropy induced in ferromagnetic layers. The analysis presented in this Chapter includes a
special type of amisotropy, which is crossed in one film with respect to the other. By
symmetry, this case is similar to a helical anisotropy in a wire and presents a considerable
interest. Choosing proper angles, the crossed anisotropy can be reduced to the transverse or
longitudinal ones. The NiFe/AwNiFe sandwich thin films with different anisotropies
(transverse, longitudinal and crossed) were fabricated to measure the field dependences of the

longitudinal impedance.
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Similar to the MI behaviour in wires with helical anisotropy, the MI field dependences in
films with crossed anisotropy can be changed by the effect of a dc antisymmetric transverse
magnetic field (or a dc current).[12-14, 16] With increasing the transverse field, the hysteresis
portion of impedance plots shrinks and shifts and finally disappears, resulting in highly
sensitive asymmetric MI characteristics, which are important to construct a linear auto-biased
field sensor. General representations of the impedance matrix ¢ for the bilayer
(ferromagnetic/ferromagnetic) and three layer (ferromagnetic/conductor/ferromagnetic) films
with various types of anisotropy have been given in Ref. 12 and Refs. 13,14, respectively. The
experimental results on the asymmetrical Ml in a bilayer CoFeB film with crossed anisotropy
were reported in Ref. 16.

As it has been discussed in Chapter 2, if the equilibrium direction of the magnetisation

is deflected by some angle away from the transverse, the ac current j induces both the
longitudinal voltage ¥, and the coil voltage V.. Also, if the MI sample is placed in an ac
longitudinal magnétic field A,,, the longitudinal and circulatory ac magnetisations contribute
to V, and ¥, respectively. Both cases can be described in terms of the surface impedance
matrix ¢ containing the off-diagonal components, so-called off-diagonal impedances. In this

Chapter the off-diagonal response is studied theoretically and experimentally in the Ml
sandwich structures with the different anisotropies. A narrow NiFe/AwNiFe sandwich thin
film with an integrated planar helical microcoil was fabricated to measure the off-diagonal
impedances in the high frequency range up to 100 MHz. For potential applications, the
attractive feature of the off-diagonal impedance is that the field dependence of its real and
imaginary parts are antisymmetrical with respect to the H, direction. However, we
demonstrate that off-diagonal response in a film with a stripe domain structure is only
possible in the presence of a dc longitudinal bias current 7,. It is shown that only a few
milliamperes of bias current is required to cause the off-diagonal response where an optimum
value was found within the range of a few tens of milliamperes. Without [, the off-diagonal
response is very poor and irregular. The features of the off-diagonal impedance mentioned
above have been theoretically predicted in thin films [15] and wires [21], and experimentally

demonstrated in a ferromagnetic wire [21,22], where similar effects take place for a

circumferential anisotropy and “bamboo-like” domain structure.
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As it has been noted above, in the multilayer MI structures a very large change in
impedance can occur at much lower frequencies when the inductance caused by the outer
magnetic layers becomes larger than the resistance determined mainly by the inner conductor.
Then, the impedance varies linearly with the frequency and the permeability. Due to this
advantage, MI in the sandwich films has a potential to be used in developing small sensitive
magnetic heads for high density magnetic recording. Considering a real head, the effect of a
sandwich width on MI has to be studied. In Section 3.8 the problem is approached by finding
the ac field distributions over the film width under the condition of a weak skin effect.{23,24]
If the edge effect is neglected (approximation of an infinite width), the magnetic flux
generated by the current flowing along the inner lead is confined within the outer magnetic
layers. In the sandwich of a finite width, the flux leaks across the inner conductor. This
process eventually results in a considerable drop in the MI ratio if the film width is smaller
than some critical value depending on the transverse permeability and the thickness of the
magnetic and conductive layers. This result is similar to that known as an inductive head
efficiency.[25,26]

3.1 Thin film fabrication

The radio frequency (rf) magnetron sputtering system used for depositing thin films
was a Nordiko NM 2000. A schematic diagram of the system is shown in Fig. 3.1.[27] The
chamber is firstly evacuated by the rotary pump. When an adequate base vacuum is achieved,
the diffusion pump is used to evacuate the chamber to the high vacuum required prior to
sputtering. The base pressure attained before sputtering was 2x107 bar, and the process gas
pressure (Ar) during the sputtering process was kept at 4.5x10” mbar. RF sputtering is more
widely used than dc sputtering, as it is more efficient and can be used to deposit insulators. If
a low frequency alternating voltage was applied to the electrodes in a chamber the ions would
be still mobile enough to complete the plasma discharge at each electrode on each half cycle,
requiring a source of secondary electrons at both electrodes to be sustained. With applied
voltages at frequencies above 50 KHz up to the MHz range the minimum pressure of the
process gas (Ar) at which the glow discharge will be sustained is reduced. At these
frequencies electrons oscillate in the glow space, acquiring enough energy from the rf field to
generate ionising collisions. In this respect the rf glow discharge is very different to the dc
glow discharge as the dependence on the secondary electrons is reduced and thus the

breakdown voltage is lower.
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Since there is no charge transferred through the capacitor (allowing only ac current to flow
and blocking any dc one) the voltage on the electrode “self biased” negatively. Consequently,
the target surface is subjected to high energy positive ion bombardment resulting in
sputtering. At frequency above 1 MHz appreciable rates are achievable. Below this, a positive
charge can be built at the target surface, thus reducing the ion bombardment energy. The
upper frequency of operation is himited to about 20 MHz. At frequencies above this, inter-
connection impedances cause problems. An L-C matching network is required in order to
optimise the ac coupling between the power supply and the chamber.

Magnetron sputtering is used to enhance sputtering rates. The basic idea is to trap
electrons near the target surface. The magnetic fields used in sputtering systems are typically
of the order of 100 Gauss, which only affects the electrons, as the ions are too massive. The
secondary electrons are constrained to follow a helical path due to the influence of the
magnetic field. Since their irajectories are not in a straight line on leaving the target surface
they travel further for a fixed mean free path, increasing the probability of ionising collisions
before they reach the anode.

The target substrate can be biased by rf or dc voltage during the sputtering
process.[27] This results in the preferential removal of film impurities in the growing film to
improve the final film purity. The level of substrate bias has been found to be very important
in determining how much of the process gas is incorporated into the growing film. There is
normally an optimum bias to achieve minimum gas ion implantation. In many cases a
negative bias is applied to the substrate to enhance ion bombardment of the growing film. A
positive bias at the substrate however, would make the substrate becomes a virtual anode, so
that a large electron current would flow to it, resulting in substrate heating and a non-uniform
current distribution. Positive bias can also cause contamination by sputtering the anode. The
most commonly used method of bias sputtering is to apply rf to both the target and the
substrate. This is achieved with a single power splitter. A rf matching network is required for

both the target and the substrate.
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3.2 Magneto-impedance matrix in the sandwich film

In this section we consider MI in a multilayer film having an inner conductive lead of

a thickness 24| and two identical magnetic layers of a thickness d,, as shown in Fig. 3.2(a)).
An ac current j = j, exp(-ia)t) is flowing along the conductive fead in the length direction

(z-axis). The anisotropy axes in the ferromagnetic layers are directed at an angle +a with
respect to the current flow, respectively for the upper (x> 0) and lower (x < 0) layers. Such
anisotropy can be induced by current annealing in the presence of a longitudinal field. The

application of a dc longitudinal field H, and an antisymmetric transverse field
Hp(x>0)=-Hp(x<0) results in the antisymmetric arrangement of the dc magnetisation
M, . The transverse bias field can be created by applying a dc current along the inner lead.
For such configuration, the ac current induces both the voltage (V, ) between the film
ends and the coil voltage (V,.), as shown in Fig. 3.2(b), since the current flow gives rise to an

antisymmetric transverse magnetisation (or circulatory magnetisation) and a non-zero total

longitudinal magnetisation. If the film is placed in a variable longitudinal field 4,,, not only
the longitudinal magnetisation, but also the circulatory magnetisation contributing to V, is
induced. The crossed magnetisation processes related to the voltages /. and ¥, (the inverse

Wiedemann and Matteucci effects [28]) are similar to those having place in wires with the
magnetisation deflected from the circular direction (see Chapter 2). For certain parameters,

the voltages V, and V¥, are very sensitive to the longitudinal field H,,. Applying the bias
field H, various kinds of sensitive MI behaviour can be obtained.

The induced voltages are described in terms of the surface impedance matrix ¢ which
relates the variable electric € and magnetic h, fields taken on the external surfaces x = +d
(d=d+d,y):

G =5ap(bexn), af=zy, (1)
where n is a unit vector directed inside the film, € and h, lay along the surface. The voltage
V, is determined by the surface value of the longitudinal electric field &,(d)=¢€,(-d) and is

related to the current j and the variable field A, via the components ¢,, and [
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The calculation of § is based on the solution of the Maxwell’s equations for the fields
e and h together with the equation of motion for the magnetisation vector M. In a linear
approximation over the vanable fields and magnetisation and assuming a local relationship
between m =M -M, and h: m =y h, the problem is reduced to finding the solutions of the
Maxwell’s equations with a given ac permeability matrix i =I+4zy:
rote=—23(jth)/dr, roth=4xj/c, j=oe (2)
satisfying the boundary conditions on the external surface:
hy(td)=+2r jlcb, hy(xd)=hyy, (3)
and the conditions of continuity across the boundaries and symmetry.

The permeability matrix fi is related to certain magnetisation processes. At high

frequencies the domain wall movement is strongly damped and contributes little to the ac

magnetisation. Then, fi can be determined by the magnetisation rotation only, depending on
the direction of M.
The dc magnetisation My in each layer is assumed to be independent of x, and

directed at an angle +8 to the z-axis for x>0 and x <0, respectively. Neglecting the

interaction between the layers, the stable direction of Mg is found by minimising the

magnetostatic energy density Uy of each layer:
5(_ K cos? (a-6)-MyH . cos@— MyHpsin 9)/59 —(0 (sece Sections 1.6 and 2.6). The

domain processes may not be essential even for the reversal of My. In films, the
magnetisation vector during its rotation is held parallel to the surface, without going through
high energy demagnetisation states. Besides, the critical field of the irreversible magnetisation
flip quickly drops as the transverse bias is increased. This process has been demonstrated in
Fig. 2.8(b) (see Section 2.6), where the magnetisation loops M,(H,,) are shown for
different values of dc bias /.

To solve Egs. (2), we introduce two auxiliary co-ordinate systems (x,y’,z') and
(x,y",z") in the upper and lower magnetic layers respectively, where z'-axis and z" -axis are
directed along the equilibrium position of the magnetisation M, in each layer, as shown in

Fig. 3.3.
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where 07 is the conductivity of the magnetic layers zZ=1+4zly; -4z gg /(1+47r X )) is
the effective permeability, which has been used in Chapter 2. The edge effect 1s neglected
considering that in-plane film dimensions are sufficiently large. (The size effect in the narrow
sandwich films will be studied later in Section 3.8) The solutions of Egs. (5) are represented
by two normal waves {ezr,hy' } {ey',hzr} corresponding to a scalar permeability 2z and a unit
permeability, respectively. The solution of Eqgs. (5) for the magnetic field is written in the

form;

h;. = A% sinh(ik,x )+ B;; cosh(ikyx),
(6)
hY = A5 sinh(ikgx)+ B cosh(ikgx),
where tndices “+ “ are related to the upper and lower magnetic layers, respectively, and
by =+ 8, ko =(1+i)/8g, & =c/J2n000,
S =00/ i, !7=1+4ﬂ(2’2 —4”13/(”47%’1))

Unknown constants A,f,,B,f,,Aa—r,Bg are to be found from the boundary condition discussed

below. Equations (6) can be re-written in the initial co-coordinate system (x,y,z):

+ _ g+ + o
hy _hy. coso9+hz.sm6’,

hy, =hy, cos@—hy sind, .
hy =h cosO- h;. sind,
hy =hyrcos@+h, sind.

The equations for the components of magnetic and electrical fields in the inner non-

magnetic layer (lead) |I|<d1 can be immediately written in the initial co-ordinate system

(x,y,2):
e, =0 hy=0
azgy 4z o010, 32;’} dnoy@y
S=Fain221%% =0, - L4t 210 —0, 8)
ox c Ox c
62'Ez+i4ﬂa'1a),é,z= 82h2+i47ra|w}~1-z=
\axz ? _axz c?
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where the symbol “~” designates the inner non-magnetic layer and & is its conductivity. The

solutions of Egs. (8) for the magnetic field satisfying the symmetry conditions are of the form:

—~

F, =C,sinh(ikyx) i, =C, coshlifx), 9)

ko =(1+0)/ 8y, 8y =cl fonoim.

The electric fields can be found from the first Maxwell equation (see Egs. (2)).
General solutions (6),(7) and (9) contain ten unknown constants, which can be determined
from the symmetry conditions and matching the tangential field components across the

boundaries x = +d; :

iy (dl)=-m, ) X [dh,ay + 2],

Iy ()= (), xel-dy,ai],

hy(x)=hy(~x), xe[-dj,d]

hy(t(d) +dy))=+27 j{(ch)=2th, (10)
h (£ (dy +da))= e,

hy(dy)=hy(d)),

hy (dy)=h(d)),

ey(d)=2,(d),

e; (d)=2,(d)).
Calculating the components of e and h on the external surface, the surface impedance

matrix can be determined as:

Ger =7 ikocD [\/;:[Q]R4 cos? @+0,Rysin* 6+
TOy
+(2kmEO/(GIO'2)+\/§Q3R2 + (R )Siﬂz 29/4],
ik : .~ = .
Sy =6yz = g;gzDs'“zg[(w/;Qlﬁ —Q2R3)°0529+(\/;Q3R2 —Q4R1)5"129* (an
~ ok c0s28 /(a1 )}
ikge = .
Syy = 4”;2 5 [Q2R3 cos* 9+\/-,L_1Q3R2 sin? 6+

+(\/§Q|R4 + Q4R - 2koky, /(010 ))Sinz 29/4]’
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where
ko =(1+i)6y, 6y=c/2n00m,
D=010,c05” 8+0;0,sin* @
O = ko sinh{ikod; Jinh(ikods /o + ko cosh{ifod, keosh(ikod, )/ors |
0 = ko coshlikod, inh(ikyd, ) o + ky, sinh(ikod, Joosh(ikd; ) oy |

= Ko cosh(iod; Jsinh(tkod )/ o, + ko sinh{iEod; Joosh(iked, Yoy |

= kg sinh(ikod, finh(ik,,d, ) o, + kyy cosh{ifed, Joosh(ikmds ) oy |

= &y cosh(ikod; Jeosh(ikod, )/ o + o sinh(iyd; Jsinh(ikod; )/ |
Ry = Ky sinh(ikod, Jeosh(ik,d, )/ + kyy cosh{igdy Sinh(ikydy ) o
Ry = kg sinh{ikod, Jcosh(ikyds )/ + ko coshlikod; Jsinh(ikgds )/ |
Ry = kg cosh(ikqd, keosh(ikyydy )/ + kyy sinh{ikgd; Jinh(ikydy Yoy
If d| tends to be zero, Eqs. (11) reduce to that obtained in Ref. 12 for a bilayer magnetic film
having a similar magnetic configuration.

For multilayers with a total thickness smaller than a few microns, the approximation

of a weak skin effect is reasonable, up to the gigahertz range. In this case the following
asymptotic formulas have been obtained in Refs. 13,14:

o —cdl- kjdido(old})  kjd3(sin® 0+ ficos )
# 3(0'|d]+0'2d2)0'2d2 3

q1 |,

k2d3(7i—1)sin@cosd
Gy =6y =—Go— L BF > q,, (12)

¢y =5olkdd d - ki d5(cos” 0+ fisin B)lgs,

3d120'l2 +3d]d20'10'2 +d220'22 _ 2d10'] +d20'2 _ d]O'l +d20'2
(01d)+ aydy ) 09dy ’

qQ= ) )

dzO’ 2 d20'2
where ¢y =c¢f/4n(0d) +0,d;) is the dc longitudinal impedance of the layered film per unit
length, g, ; 3 are the normalisation constants. Equations (12) show that the surface impedance

¢ in very thin films is a linear function of the permeability, thus, the dependence of

impedance on the magnetic properties has an inductive origin.
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The analytical representations (12) give the important conclusions concerning the role of the

sandwich structure and certain features of the field dependence §(H,, ). Firstly, it is important
to note that for djo>d,o, the normalisation coefficients ¢ ,3>1 amplify the field
sensitivity of §(H .}/ sp [13-15] in comparison with a bilayer structure,[12] where 4 =0.
Because of this, the inner lead should be chosen as a high-conductivity metal with oy >> o5,

for example, noble metals Cu, Ag or Au. Secondly, for the transverse anisotropy (a =90°)

the diagonal ¢,, W and off-diagonal Szy,yz COMponents have a different symmetry with

respect to H,,. direction.[12-15, 21,22]

3.3 Calculation of the field dependence of the impedance matrix

Here we are mostly interested in the field behaviour of ¢, and ¢, (=¢;)

components. Since the field dependences of the impedance matrix for wires and films are
similar in many respects, we will consider only the case of the crossed anisotropy, which
recently has been realised in the MI film sample.[16] Asymmetrical field dependences
predicted in the theoretical works [12-14] were verified for the first time in Ref 16 by
measurements of the longitudinal impedance ¢,,(fH,.) in the bilayer film with easy axes

crossed in the magnetic layers. Experimental results on ¢,,(H,,) in the NiFe/Au/NiFe

sandwich films with the different types of anisotropy (transverse, longitudinal and crossed)

will be presented in Section 3.5.
The calculations are made using exact formula (11), although for d < 1um weak
skin effect approximation (12) is applicable in a wide frequency range extending to the GHz

range. The following parameters were chosen for calculations: My =500 G, Hg =60e,
c,r]=1018 s', 0,=4510"% s, 2(d) +dy)=1um, spin-relaxation parameter z7=0.2, and
gyromagnetic constant y = 2.0-107 (rad/s)/Oe. For 2d=1 pm and 2d,=d, a large

impedance change occurs in a MHz frequency range. Figure 3.4 shows the plots of ¢,, (a)

and ¢, (b) versus H,, with the bias field //, as a parameter, for a frequency of 50 MHz.
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The application of Hj results in asymmetry in the Ml behaviour. When H,, is decreased
from the positive direction, ¢,, decreases slowly down to the value of ¢y while at some

negative field it jumps to a large value. The critical field of the impedance jump is associated
with the irreversible jump of the dc magnetisation, as seen in Fig. 2.8(b) (see Section 2.6).

Initially, the hysteresis area and the impedance jump slightly change with increasing Hy.
However, further increase in H, results in a sudden shift of the hysteresis to negative fields
with the simultaneous shrinkage of the hysteresis area. For Hj, > H g cosa the hysteresis

disappears, resulting in asymmetrical highly sensitive MI characteristics. The highest field

sensitivity is seen when H, is only slightly larger than A g cosa. The field behaviour of

Syz 1s essentially similar, but can be even more sensitive since it drops down to zero for such

H,, that brings M in the y— or z— direction. Similar field behaviours have been obtained

in Chapter 2 for a wire with the helical anisotropy.

Summarising, we conclude that the multilayer structures with crossed anisotropy allow
various kinds of MI behaviour to be realized including the asymmetrical MI characteristics
having a great importance for linear sensing.[3,29-33] The insertion of the inner conductive
lead makes it possible to reduce considerably the MI element size without a loss in the field

sensitivity.

3.4 Fabrication of the NiFe/Au/NiFe layered films with the different types of anisotropy
In this Section the fabrication technology developed in Ref 34, 35 for the
NiFe/Au/NiFe sandwich films with the different types of anisotropy is described. The
substrates used for the magnetron rf deposition of the MI films were 50x50 mm? CMS5 quality
glass microscope slides having a thickness of 0.8 mm. These inexpensive slides are produced
by a glass floating process. They have annealing and softening points of 535°C and 720°C
respectively. The base pressure attained before sputtering was 2x107 bar, and the Ar gas
pressure during the sputtering process was kept at 4.5x10° bar. Each of the NiFe/Au/NiFe
sandwich layers were sputtered consecutively to a thickness of 0.5 microns during the same
vacuum process, where the deposition rates for NiFe and Au were 2.35 A/s and 5.75 A/s
respectively. The magnetic-alloy layers were sputtered from an 81wt%-19wt% NiFe target of
15 cm diameter and an rf bias of -80 Volts was applied to the substrate to improve film

purity. The total sandwich thickness #=2d was 1.5 microns.
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A substrate holder with an in-plane magnetic field of 60 Oe was used to induce an
easy axis direction during film deposition. To induce the transverse anisotropy, the magnetic
field was applied in the transverse direction with respect to the stripe length. In this case, all
layers (NiFe and Au) can be sputtered at one sputtering cycle, because the field direction was

not to be changed. To induce the crossed anisotropy, the magnetic field was applied at crossed

directions: at +45° with respect to the stripe length for the lower and upper magnetic layers,
respectively. Therefore, the MI elements were removed from the vacuum chamber after
deposition of the non-magnetic layer (Au) to change the field direction for the upper layer.

After deposition the layers were patterned by conventional photolithography methods
using an in-contact mask aligner with an ultra-violet exposure source. The photo-masks
shown in Figs. 3.5(a) and 3.5(b) gave MI elements with widths » of 200, 100, 50, 20 and 10
microns and lengths / of 5 mm and 2 mm. Each MI element had a 2 mm by 1.5 mm
rectangular connection (bonding) pad at each end. Chemical etching was used for both the
NiFe and Au layers in the fabrication of the MI structures. Au was used rather than Cu for the
conduction layer in the M1 structures because it was found to be more reliable and produce
much better edge definition when chemically etched. It also provided the correct bonding
surface to connect the MI element to its measuring cell using an Au ribbon bounder. The first
photo-mask used (Fig. 3.5(a)) produced a positive photo-resist pattern of the complete Ml
structures with their connection pads on the surface of the sandwich layers. Both the upper
NiFe and the Au layers were then chemically etched to this pattern (Fig. 3.6(a)). After etching
the upper NiFe layer, the remaining NiFe pattern acted as a mask for etching the Au under-
layer. For the final etching process a second photo-mask was required (Fig. 3.5(b)). This mask
produced a positive photo-resist pattern that only covered the MI elements. During the final
chemical etching process the lower NiFe layer was etched to this shape and the upper NiFe
layer on top of the connection pads was removed (Fig. 3.6(b)).
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For the sensor applications the transverse and crossed anisotropies are most preferred,
since they demonstrate a largest field sensitivity.[3,21] In addition, the MI elements with the
crossed anisotropy own the riches of field dependences modified by the dc bias field.[14,21]
The type of anisotropy for the as-prepared sandwich films with 200 microns width was
unambiguously defined by the field direction within which the sputtering was carried out;
transverse, longitudinal or crossed. However, measurements of the longitudinal impedance of
the as-prepared samples with the widths less than 200 microns (10-100) shown that the
anisotropy is directed along its length in spite of the fact that sputtering was carried out in a
strong transverse or crossed magnetic field (60 Oe). This effect is most probably associated
with the resulting mutual stress between substrate and film layers during the sputtering
process. After thermal treatment of the finished samples, the transverse or crossed
anisotropies were established in the same directions as the strong magnetic field (60 Oe)
within which the sputtering was carried out. For the re-stress of the final samples only thermal
treatment was enough to get back the original anisotropy without any magnetic field during
this process. Nevertheless, to decrease the dispersion of the transverse anisotropy direction the
samples should be annealed in a strong transverse magnetic field (100 Oe). For obtaining a
better result in the case of the crossed anisotropy the rotating magnetic field (100 Oe) can be
applied to the MI samples during thermal treatment.

The annealing system has a small vacuum chamber within which the sample wafer or
individual sample can be fixed securely. The chamber was evacuated down to a base pressure
of 50 mTorr. The vacuum chamber is placed in an in-plane magnetic field (fixed or rotating)
with a field strength of 100 Oe at its centre. The chamber would take approximately 2 hours
to reach an annealing temperature of 450°C and a similar time to cool back down to room
temperature. The annealing and softening points of the microscope slide glass substrates used,
were 535°C and 720°C respectively. Once the heating was removed the vacuum was kept until
the chamber had cooled down to room temperature. After annealing, the wafer was diced
manually using a diamond scriber into individual samples. A sample was then glued in
position onto a rf cell. Here, the connection pads of the sample were bounded to the cell using

a gold ribbon bounder having ribbon dimensions of 200 microns by 25 microns.
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The magnetisation rotation in the sample plane does not result in large demagnetising fields.
Thereby, the rotation is an energy-favourable process and hence it can be in charge of the
small jumps seen in Fig, 3.9. On the contrary, the jumps in a wire with the longitudinal
anisotropy should be attributed to the domain wall jumps because the magnetisation rotation
is not energy-optimal due to the large demagnetising fields. To comply with the experimental
field dependences in Fig. 3.9 the anisotropy field A g in the calculated curves in Fig. 3.12 has

to be chosen much smaller than that for the sample with a transverse anisotropy in Fig. 3.10.
We used the experimental value of ~1 Oe, at which the jumps are observed. In this case, the
rotation model describes well all features of the experimental curve in Fig. 3.10. Thus, we
have to conclude that the thermal treatment produces a significant increase of the anisotropy

field along with establishing a transverse anisotropy (g ~9 Oe) from a longitudinal one in
as-cast state ( Hg ~1 Oe).

Another interesting effect for the longitudinal anisotropy relates to the bias field H.
In the presence of Hj # 0 the curve becomes similar to that for the crossed anisotropy with
Hp =0, as shown, for example, in Figs. 2.12 and 3.4. In other words, the bias field does not
change the symmetry of hysteretic curve. The fact is that + H, (the sign differs for the lower
and upper layers) deflects the equilibrium magnetisation My from the longitudinal direction,
therefore the sample becomes effectively cross-magnetised — the artificial cross anisotropy.
This effect is especially pronounced in samples with a small anisotropy field (see Fig. 3.12).
On the contrary, for a higher H g, the bias field Hp just constricts the hysteresis area, as
shown in Fig. 3.13, where the large jumps take place. For any Hg the jumps occur at
~1H g and their values strongly depend on H g .

As it has been proven in Chapter 2, the following three main factors determine the

field sensitivity of the MI effect: (i) value of the ac effective permeability z, (ii) skin-depth,
and (iii) rf matching between the rf cell and microwave tract. As long as # remains quite
large and the field-independent additions in the total impedance from the rf circuit do not
prevail over Z(H,.), the field sensitivity of Z(H,,) increases with the frequency due to

stronger skin effect, as shown in Figs. 3.9 and 3.10.
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Since the field-independent additions are mostly of imaginary character (inductive)

and the effective permeability # remains still large for frequencies up to several hundred
megahertz, the real part of Z(H,,) should demonstrate a larger field sensitivity than the
imaginary one. The field dependences of the real and imaginary parts for two anisotropies are
shown in Figs. 3.16 and 3.17. The “valve-like” behaviour of | Z(H,, )| in Fig. 3.15, when it
has two predetermined levels at H,,. =0 and H,. > Hy, is caused by the mutually inverse
field dependences of the real and imaginary parts, while H,, > H g : Re(Z(H,.)) decreases,
whereas Im(Z(H,,)) increases. This effect has been observed in wires [36] and is typical for
sufficiently high frequency range. In the GHz range we predict the constant dependences for
both real and imaginary parts: Z(H,, )=~ const , while H,. > Hg . As it has been explained in
Section 2.6, such kind of behaviour is caused by that the effective permeability z loses its

field sensitivity, as shown in Fig. 2.9(c) (Section 2.6). In this case, the field dependence

Z(Hgy) is entirely related with that for the static magnetisation orientation ©:

Z(H )~ cos? @ that results in the “valve-like” curve for the samples with the transverse or
circumferential anisotropy, as it follows from Fig. 2.8(a). Figure 3.17 demonstrates just a
beginning of this process because the frequency is not too high. Nevertheless, we can see a
flattening of the field curve for H,, > H g, where a full saturation is not reached in
comparison with the MHz range (see Figs. 3.10 and 3.11). In Chapter 5 the “valve-like”

behaviour of Z(H,,) in the GHz range will be used for the tuneable composites containing

the short pieces of wires. Also this bistable field dependence can be used as a switch sensor.

The field sensitivity of Z(H,,) for the samples with the longitudinal anisotropy
usually is much lower than that for the transverse one (in the operating point). However, these
samples may be of interest since in the vicinity of zero field they may have larger sensitivity
than the samples with the transverse anisotropy. The latter ones often require an additional
longitudinal bias field to shift the operating point to the most sensitive part of the field
dependence, approximately in the middle point between zero field and H g (see Figs. 3.10
and 3.11). Thus, if the larger sensitivity is not strongly required, the samples with the
longitudinal anisotropy can be successfully used for the sensing without an additional bias
field shifting.
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Also, there is another effect, which causes the size restriction. The decrease of width up to a
few microns may result to the so-called magnetic flux leakage through the inner lead, which
eventually reduces the MI field sensitivity. This effect seriously cuts down the use of the Ml

effect in the devices with dimensions of the order of few microns.[23,24]

3.6 Fabrication of the NiFe/Auw/NiFe layered film and helical microcoil

In this Section we describe the fabrication technology developed in Ref. 35 for a
narrow NiFe/Au/NiFe sandwich thin film with an integrated planar helical microcoil. The
sample was fabricated to measure the off-diagonal impedances in the high frequency range up
to 100 MHz. The MI sandwich film has a transverse anisotropy with respect to the long z-

axis. The sample can be excited by two different methods: ac longitudinal current j and ac
longitudinal magnetic field 4,,, where the latter is induced in the planar helical microcoil. A

plating-coil has been used before as a dc negative feed-back coil in a single layer NiFe MI

sensor,[38] where the field dependence of the longitudinal impedance Z(H,,) was measured.

In our case the microcoil structure can be used for either ac excitation or ac measurement. For
potential applications, the attractive feature of the off-diagonal impedance is that the field

dependence of its real and imaginary parts are antisymmetrical with respect to the .,

direction.

The sample was constructed from a NiFe/Au/NiFe layered film core, with a thin-film
microcoil wound helically around it along its length. Both the core and coil layers were
deposited by means of rf sputtering. All sputtering conditions were the same as for the
sandwich films with the transverse anisotropy, where a strong transverse magnetic field (60
Oe) was applied dunng the sputtering process. The final sample was annealed in the presence
of a strong transverse magnetic field (100 Oe) to establish a transverse anisotropy. Cured
photo-resist was used to isolate the lower and upper coil structures from the core layers. The

NiFe/AuwNiFe core layer was 2 or 5 mm long, 50 pm wide, and had a total thickness of 1.5
um. The helical microcoil was constructed from two Au thin-film structures to give 10 or 23
turns (for 2 and 5 mm, respectively) with a 50 pm turn width. The film thicknesses of the
lower and upper coil structures were 0.245 pm and 0.7 pm respectively.

Figures 3.21(a) to 3.21(f) show schematic cross-sections of the NiFe/AwNiFe element

and helical coil structures at key stages of fabrication (the layers are viewed along the length

of the sample, through the centre of its width).
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This Al,0O; “lift-off” process helped provide a more planer surface for the first isolation layer.
For the next layer, AZ 1813 photo-resist was spun and patterned on the substrate using photo-
mask in Fig. 3.22(b). The photo-resist was then hard-baked to form the lower isolation layer.
Once hard-baked the AZ 1813 photo-resist shrinks to an approximate thickness of 1 micron
and provides a planerising isolation layer over the first microcoil structure (Fig. 3.21(c)).
Gentle inclines are formed at the photo-resist edges that enable subsequent sputtered layers to
traverse them more readily, maintaining good mechanical and electrical continuity. This was
important for both the MI structure and the upper microcoil structure that were constructed
above and over the isolation layers.

The NiFe/Au/NiFe sandwich layers were next to be deposited, patterned and etched to
form the core. Using photo-mask in Fig. 3.22(c) a positive photo-resist pattern of the MI
element (with its connection pads) was produced on the surface of the sandwich layers. Both
the upper NiFe and the Au layers were then chemically etched to this pattern. The upper
etched NiFe layer behaved as a mask for Au under-layer. To etch the lower NiFe layer of the
sandwich film, a second photo-mask was required as shown in Fig. 3.22(d). This mask
produced a positive photo-resist pattern that only covered the Ml element. Whilst etching the
lower NiFe layer to form the MI element core, the upper NiFe layer that had remained on top
of the connection pads after the first etching process was removed, revealing the Au bonding
pads. The resulting structure is shown in Fig. 3.21(d). As chemical etching is isotropic, a
certain amount of undercutting (over-etching) and profile roughness was expected after each
etching stage. Any undercutting that had occurred to the upper NiFe layer of the MI element
during the first etching process was masked against further undercutting during the second
photo-lithographic process. Here, the second patterned photo-resist layer covered the undercut
edge of the upper NiFe layer. On completion of all the etching processes of the Ml element
the undercutting was found to be <2 microns and have an average profile roughness of <1
micron. Although not as accurate as the dry etching processes, chemical etching proved to be
fast and generally reliable. With the comparatively large size of the MI element core used in
this work the undercutting and profile roughness was considered to be acceptable.

Above the MI element a second isolation layer was required. Here, the photo-mask
and processing used was the same as for the lower isolation layer. Other than its bonding
pads, the MI element was then completely encapsulated between the upper and lower
isolation layers as shown in Fig. 3.21(e). Finally, the upper microcoil layers of Au and Cr

were deposited to a thickness of 500 nm and 200 nm respectively.
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These layers were then patterned and etched to produce the upper microcoil structure using
the photo-mask given in Fig. 3.22(e) to produce the cross-sectional pattern shown in Fig.
3.21(f). The end of each element of the upper microcoil structure connected to those of the
lower microcoil structure to form a helical microcoil around the sandwich core. In the case of
the lower microcoil layer, its thickness was kept small to maximise the effect of the
subsequent isolation and planarising layers. Whereas, for the upper microcoil layer, its
thickness was made large enough to ensure that good continuity was achieved at the edges
over which each of its elements traversed. For the upper microcoil structure a thick Cr
adhesion layer was used to cover and protect the exposed Au of the lower microcoil and MI
structures chemically etching the upper microcoil Au layer. The photographs of the finished
MI devices with 5 and 2 mm lengths are shown in Fig. 3.23(a) and 3.23(b), respectively. A

close-up section of the helical microcoil can be seen in the photograph in Fig. 3.23(c).

3.7 Antisymmetrical field dependence of the off-diagonal impedance

The off-diagonal impedance ¢,, (or ¢,) is measured by means of the Hewlett-

Packard 8753E Vector Network Analyser configured in the two-ports measuring option for
the S,-parameter (forward transmission). The same configuration has been used to measure
the off-diagonal impedance in wires (see Section 2.7.1). The electrical scheme of the cells for
Czy and Gy are shown in Fig. 2.16(c) and Fig. 2. 16(d), respectively (see Section 2.7.1).

The field dependences of the off-diagonal impedance have been measured up to
frequencies of a 100 MHz, which is the preferred range for practical sensor circuit design. The
sample investigated has the following parameters: 5 mm length, 50 um width, and 1.5 pm
total thickness. The helical microcoil has 23 turns with a 50 pm turn width, The sample
photograph is shown in Fig. 3.23(a). Since the field behaviour of ¢, (fl,,) and ¢, (H,y)

are the same, either excitation scheme, shown in Figs. 2.16(c),(d), can be chosen. Figures
3.24(a),(b) and 3.25(a),(b) show the real and imaginary parts of the field dependences for two
frequencies /=41 MHz and f =100 MHz, respectively. Without a bias current the off-

diagonal response is very poor and irregular due to the averaging over the stripe domain

structure. With /5 =30 mA the off-diagonal response significantly increases showing

antisymmetrical behaviour.[15]
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A similar antisymmetrical response has been investigated experimentally and
theoretically in Chapter 2 for a wire with the circumferential anisotropy, which is an analogue
of the transverse anisotropy in thin film. Figure 3.26 shows a typical field dependence
¢zy(fg) In the megahertz range with Hj as a parameter calculated for the following

-1

1 5,=4510 s

parameters: o =90°, My=500 G, Hg =90e, 01=10]8 s
2(d1 +d2)=1.5,um, =02, and y=2.0-107 (rad/s)/Oe. As it follows from Eq. (12), the
real and imaginary parts of the diagonal components ¢,, ~ ﬁcos?‘ 8 and ¢,y ~ jisin® @ are
symmetric when H,,. changes from negative to positive direction, whereas the off-diagonal
components ¢, =g, ~ psinfcosd are antisymmetrical (with respect to H,, ) following the

equilibrium magnetisation cos@. The dc bias field Hj; does not change the type of

impedance-field characteristics in a film with the transverse anisotropy, which is the
consequence of equilibrium magnetisation behaviour (see Fig. 2.8(a)). However, in real
samples having a domain structure, the off-diagonal impedances are made possible by H,
which has been proven experimentally for a ferromagnetic wire with a circumferential
anisotropy and “bamboo-like” domain structure.[21,22] In a film with the stripe domain
structure, as shown in Fig. 3.27, the response from the whole sample is formed by the domain
areas with opposite transverse magnetisation. Averaging over the domain structure nulls the
off-diagonal impedances: <¢,, >=<¢,, >=0, since they are antisymmetric with respect to
the equilibrium magnetisation. In reality, the system does not have a perfect stripe domain
structure and therefore the averaging does not result to zero, but the off-diagonal response is
significantly decreased. (In contrast to this, the averaging in a sample with a crossed
anisotropy (helical in the wire) does not eliminate the off-diagonal response even in the ideal
stripe domain structure.} The situation will change in the presence of a bias field. For

Hyp #0, domains with the same direction of the magnetisation as Hp will grow, resulting in
an uncompensated averaging: < Cay >=< Gy >* 0. In addition, at a sufficient value of Hj the
sample will become a single domain state. As a result, the effect of Hp increases significantly

the off-diagonal response. However, for larger values of Hj the field sensitivity decreases

due to the magnetostatic hardness increase, determined by the magnetostatic energy
MyHysing.
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In the case of a weak skin effect, this result corresponds to that obtained in Ref. 23 for a static
magnetic model.

The model under consideration is depicted in Fig. 3.2. The film length / is assumed to
be large, so that the film can be treated as infinite in the z-direction (variable fields are

functions of x and y only). It is assumed that the magnetic layers have a transverse

anisotropy (y-axis is an easy direction) and a corresponding stripe domain structure, as shown
in Fig. 3.27. The magnetisation forms nearly closed loops in the y-direction, causing no large
magnetostatic energy even in the case of very narrow films. If the voltage V, across the film

ends is fixed, the impedance Z of the structure is defined as:

x=d y=b/2
Z=V,1j, j= [  [pxy)drdy (14)
x=—d y=—b/2 i

where p(x,y) is the current density distribution and & = d| +d . It is convenient to express
the current density in terms of the vector potential A and the scalar potential ¢ from the

Maxwell equations for the electric (e ) and magnetic (h) fields:

j=oe, e=—gradgp———, 15
J gradg——— (15)

ih=rotA, roth=2%j. (16)
[

where ji is the permeability matrix for the magnetic layers, and it is equal to the unit in the

inner non-magnetic layer.
The variable magnetisation m is a linear function of the magnetic field h induced by

the current j: m=%h, where ¥ is the susceptibility matrix. For sufficiently high
frequencies, the main dynamic process is magnetisation rotation. In this case, the form of § is
determined by the solution of the linearised Landau-Lifshitz equation. After averaging over

all domains it becomes of a quasi-diagonal form. Then, the permeability matrix, fi = i +4ry,

is written as:
M —ipg 0

p=ligg m 0. (17
0 0
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Considering, that current flows in z-direction, and the permeability matrix i has

quasi-diagonal form (17), the vector potential A and gradg have only z-components. From

Eqgs. (15),(16) the following equation for A4, = A is obtained in the inner non-magnetic layer:

2% A27F N
G i WO L (18)
ox“ 0Oy 4
~ 1+i = c ~ op V.
ky=—, 8y =——m—, J=—01—=0y-1,
075 J2raao Yoz '
where the symbol “~” designates the inner non-magnetic layer, oy is its conductivity, and J

is the initial current density in the inner core. The designations for 1?0 and &, have been
introduced in Eq. (9): wave number and skin-depth in the inner layer, respectively. In the case

of the magnetic layers, 4, = 4 is found from:

%4 0%*4 Ar

O e L= k2a-L, 19
Rl PV (19)
1+ ¢ op 4
k =—, O = J=—0,"—-=0 _Z_,
0 (50 0 1/27[&)0’2 262 2!

where &, is the conductivity of magnetic layers, and J is the initial current density in the
magnetic layers. The designations for k; and &; have been introduced in Eq. (6): non-
magnetic wave number and skin-depth in the magnetic layers, respectively. The parameters

m and n, are the corresponding components of the inverse permeability matrix 1= ﬁ_l:

g g lug 0 g 0
f=|—ipgl g mlug 0 |=|-ns m 0], (20)
0 0 1/ 3 0 0 m

where 41§ = gt - 13
The solutions of the inhomogeneous Helmholtz equations (18),(19) will be found as a
sum of the general solution of the corresponding homogeneous equation and the particular

solution of inhomogeneous equation. The homogeneous equations can be solved by the

separation of variables, A(x, y)=®(x)¥(y) and A(x, y)=B(x)¥(y), which yields:
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25 [ a2
?-%)wﬁ?q::o nzguzq::o
ox ox
25, _ 2
%—fﬁ—wzwo, <m‘2—f—ﬂ2‘v=o | 1)
y y
~BAP =k |-mpPemAt=kg

The constants /12, 2% and ﬁz,ﬁ 2 were chosen with different signs reasoning from the

physical meaning that the solution is to be oscillating by x, whereas the width effect has to
decrease exponentially with & — oo. The assumption concerning the width effect has been
proven in Chapter 2, when the boundary and shape effects were taken into account by the
singular perturbation series. In this series all terms decrease exponentially with a distance
from the boundary. Moreover, the conclusion on the exponential character of boundary effects
is a general result for any system, as it is shown in the theory of singular perturbations.[40,41]

The general solutions of Eq. (21) can be constructed from the following linear

combinations:
G cos;fx-coshﬁy+C2 sin A x-sinh ﬁy+C3 cost-sinhﬁy+C4 sin;’:x-coshﬁy, (22)
DycosAx-cosh B y+ D,sindx-sinh fy+DycosAx-sinh fy+Dysindx-coshfy.

In general, the spectrum A%, A% and ﬁz,ﬁz can be discrete, continues or mixed, thus the

solution is presented as a sum or integral of the linear combinations over all spectrum values.
Since the width effect can be completely attributed to Eqgs. (22), the particular

solutions of Egs. (18),(19) can be constructed in the form independent on y:

Az

ck 02

Cs cosh ikgx +Cg sinh izox - 7, (23)

Ds cosh ikyx + Dy sinh ikqx — il J,
2
cky

where kg = kolﬁ.
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By virtue of the system geometry, the longitudinal electrical field e, must be
symmetrical with respect to the transformation (x) — (-x): e(x,y)=e(-x,y) forany y. On
the contrary, the transverse magnetic induction (y-component) must be antisymmetrical with
respect to the transformation (x,y)—»(—x,—y):(ﬁh)ylx'y =(ﬁh)J’|—x,—y' Physically this
condition mirrors the circulatory character of the ac induced magnetic field inside the film.
For the film with infinite width this condition has to be replaced by (x)—(-x). The

symmetry and antisymmetry conditions together with Eq. (15),(16) yield the following

requirements for A;:

e, ~symmelry: 4;(x,y)= 4;(-x.y), 24)
(ﬁv h)y —antisymmelry aAz () =_ aAz (=x,-») ‘
0x Ox

The conditions of continuity for the tangential components e,, A, and the normal

magnetic induction (jih), =94,/dy (x-component) imposed at the metallic/magnetic

interface (x = +d, ) yield:

o Y o4
hy, —continuity: ——(td\y)=n,——(tdy)+n,— (tdpy) (25)
O0x Oy dx
e, —continuity: Z(idl, y)=A(td,,y) (26)
(jh), —continuity %{idl,y) = %{id],y) 27

The boundary conditions at the external surfaces x=1d and y=154/2 require certain
approximations. In the analysis of the magnetic/metallic multilayers used for planar inductors
it is proven that the fringing ac magnetic flux at the edges is small and can be neglected.[26]

This implies that the y-component of the variable magnetic induction, b, = (jth), =84, /dx,

averaged over the half thickness tumns to zero at y=+b/2, viz.:

0 d
J‘by(x,ib/z)dx=jby(x,ib/z)dx_ (28)
-d 0

Boundary condition (28) does not contradict the existence of dc fringing flux due to
transverse stripe domain structure, since in a linear approximation the total magnetisation
partitions into static and variable parts as mentioned above and the static structure is not

altered by the ac field.
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In terms of the vector potential and taking account of symmetry, Eq. (28) becomes:

A(d +b12)= A(0,2b/2) (29)
The normal magnetic flux through the external surfaces x=+d is also considered to be
negligibly small, which is reasonable for d << #. This means that the x-component of the

mapgnetic induction 1s zero at x=z%d, or A(+d,y)=const. This constant can be found

considering the relationship between the voltage ¥, and the surface value of the electric

field:[39]

V, iw L,j
e,(td,y) =t 475 7
c

(30)

where L, is the external inductance depending only on the geometry of the film. Comparing

Eqgs. (30) and (15) the last boundary condition is obtained:

L, .
A(xd,y)=—"=;.
le

3D

Now we are in position to make the main assumption concerning the wave processes
in the layered thin film considered here, namely, that the wave processes in the sandwich film
involve the single modes in each layer.[24] These modes can be considered as surface ones.
The dispersion equation, wrote for each layer, defines the spectrum of “long-living”
propagating modes inside the layer. The number of modes is always limited and depends on
the layer thickness, its material parameters and environment.[42] (This paper is enclosed in
Appendix C of Chapter 5) With the infinite increase of the layer thickness this discrete
spectrum becomes everywhere dense in a certain interval. On the contrary, with the decrease
of the thickness the spectrum degenerates in a single mode. If the transverse boundary
conditions (in the y-direction) have a dumping character and hence do not give rise to the
wave re-scattering, they will not increase the number of modes existing in the bounded layer.
Therefore, the assumption about the single mode regime is quite reasonable for a thin film
structure. Also it is supported by the averaged boundary conditions (28),(29) at the film ends
in the y-direction.

For the single mode approximation the general solutions of Eq. (18) accounting for
Eq. (24) can be written as:
A4r

ck02

Z=Clcoszx-coshﬁy+C2sinjx-sinhﬁy+C5coshionr J. (32)
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General solutions of Eq. (19) in the single mode state accounting for the independence of y

at x=1d can be wrote separately for x>0 and for x <0 without the accounting Eq. (24).
For x>0 it obeys:

A=sin Ad - x)-(D, sinh By + D4 cosh B y)+

4z
ckd

(33)

+ D5 cosh il?ox + D6 sinh f’?ox - J,

The dependence on y of the vector potential A implies the existence of normal

magnetic flux in the inner layer: the ac flux associated with the magnetic layers leaks across
the inner spacer, shown in Fig. 3.28.)

On account of the symmetry all equations can be considered only for x > 0.To comply
with the boundary conditions (25)-(27) for any y, the wave numbers E and § in Egs.
(32),(33) are to be equal: ﬁ = /7. In other words, a strong coupling between the single modes
in the layers takes place. This strong correlation results in the common wave number for all

wave processes in the y-direction. The wave numbers A , A, corresponding to the x-direction,

are found from the coupling dispersion equation:

21,4 Atan Ad, +(q§-,12 _({,3 (A2 -1?02)+P}m2,1d2)m21d, =0 (34)
A2y =k§ +(22—Eoz)fh

Calculating the current distribution in the film, the impedance Z can be found from
equation (1). Neglecting the part associated with the external inductance, Z is written in the

form

Sl x v xy +x5)
Z=Ry , 35
. x2 (/i x0)-1)g(®) + f2(x1, x2) )

where Ry, =1/2b(cd, + o1, ) is the dc resistance,

fi(x1, %, )= cosh x| cosh x; +v sinh x; sinh x;, (36)
f>(x1, %7 ) = cosh x; sinh x, + vsinh x; cosh x,, (37)
g(b)=2tan(ﬂb/2) Uldl .Slll/‘[,d] +tan(/1d2/2)‘COS/l~dl , (38)
Bb oady  Ad Ad,
ﬂ2=12—E02, x1=fi€0dl, X9 =i];0d2, V= _.ko = ! -
ko, Voum
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The function |Z(H,,) has a maximum at H,. ~ H, associated with that for the

parameter 1/1,. Therefore, the MI ratio introduced gives the maximum impedance change.
For a wide film (b>100 gm for d=0.5 pm and 5>10 pm for d =0.1 gm) the results are

very close to those obtained for an infinite in-plane film. With decreasing 4, the MI ratio
decreases substantially: for example, at 150 MHz for 100 wm-wide films AZ/ Z reaches

more than 300% at a frequency of, whereas its value is only about 70% for 6 =10 wm at this

frequency. The decrease in MI is stronger at lower frequencies where the critical width b s
larger. In the example above, AZ/Z recovers up to 200% at a frequency of 900 MHz. As a
result, the impedance plots do not show flat regions for small values of 6.

Summarising, we can conclude that the 2-D analysis of Ml in magnetic/metallic
multilayers becomes important when the film width b is smaller than a certain critical value
depending on the permeability, layer thickness and frequency. Physically, the effect of the in-
plane dimensions corresponds to the variable flux leakage across the inner conducfor,
resulting in a decrease in the transverse flux in the magnetic layers, and eventually, a decrease

in the MI ratio.
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4.0 General requirements for magnetic sensors
Recent developments in the fields of computer peripherals, information apparatus,
mechatronics such as: automobiles and industrial robots, power electronics, medical
electronics, and industrial measurements require new high performance micro magnetic
sensors to detect localised weak magnetic flux. General requisite conditions for the
commercial sensors are as follows:[1]
1) Mintature size of less than 1 mm is needed to detect localized weak magnetic flux
such as the surface flux of magnetic recorded media and rotary encoder ring magnets.
2) Sensitivity or reselution of flux detection should be 107 — 107" T to allow precise non-
contact sensing.
3) A quick response with signal frequencies from zero to 10 MHz is needed to detect
surface flux change of a high density hard disk memory.
4) High temperature stability and maximum operating temperature in the range from —50
to +180 °C are needed for use in the commercial devices.
5) Small power consumption of less than 10 mW, which makes it possible to produce
portable microsensors working with a self-contained power supply.
In this Section we shall consider several types of the MI sensors, which based on different
principles. A great many of the physical effects display dependence on the external factors,
such, for example, as electromagnetic fields. Thus, a special type of a sensor can be
considered as a certain projection using one or several physical principles. Conventional
sensors such as: search-coil magnetometer (inductive coil), Hall’s sensor, magneto-resistive
(MR) and giant magneto-resistive (GMR) sensors, spin-tunnelling sensor, and flux-gate
sensor can not satisfy at once all conditions 1)}-5) cited above. Therefore, the choice of a
physical principle is determined by a specific target. We would like to discuss the main
factors, which allow the classification of the sensors of the various types. Such an inputted
“coordinate system" shall clarify many aspects of MI sensors and their position in respect to
the other sensors. We shall demonstrate that the MI sensor presents a complicated variety of
these factors, combining attributes of other sensors. This complicated behaviour gives an
extremely rich palette of the effects, making it attractive and versatile for sensor applications.
The field sensitivity (%/Oe) has to be calculated as the averaged field sensitivity at the
operation point of the sensor, where it has the maximum sensitivity with a linear output. As
has been shown in Chapters 2 and 3, in the MI sensors the operation point is located between

zero and anisotropy fields.
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The relationship between the Hall effect (the potential difference Vy,y) and the

passing distance b of charge carrier is to be given by (in the CGS system of units):

InH
Viai = B2 ; e, )

where [ is the dc current passing along the sheet, ‘R = 4/cngq is the Hall constant, ¢ is the
charge (electron or hole), ng is the concentration of current carrier, 4 is a dimensionless

factor of the order of unity depending on the statistic character of the velocity distribution of
the current carriers, and ¢ is the velocity of light. The sign of R coincides with that for the
current carriers. If the two types of the current carriers are observed in a semiconductor
(electrons and holes) then the total type of conductivity can be determined from the sign of
R.

The Hall effect is very small in metallic conductors, but some semiconductors give a
much larger effect.[4-6] Then, in work [6] a low-noise scanning Hall probe microscope
having unprecedented magnetic field has been developed for studying flux profiles at
surfaces. A submicron Hall probe manufactured in a GaAs/AlGaAs two-dimensional electron
gas 1s scanned over the sample to measure the surface magnetic fields using conventional

scanning tunneling microscopy positioning techniques. The magnetic field resolution of the

Hall probe was 3.8x10° T/Y/Hz at 300 K and 2.9x10® T/\Hz at 77 K (including the
amplifier noise).

Another class of magnetic sensor based on an integrated combination of Hall element
and ferro-magnetic structure has been proposed to increase the field resolution.[7,8] The idea
of combining a sensor with ferromagnetic structures came to many researchers in the past.[9]
In order to amplify the magnetic field “seen” by a sensor element, it is placed in the air gap
between two long ferromagnetic specimens. In this way they considerably increased the
effective sensitivity and the resolution of the sensor element. The operation of this device is
based on the following well-known effect: if a ferromagnetic rod is placed in a magnetic field
parallel with the long axes of the rod, the rod tends to collect the magnetic field lines in itself:
it operates as a magnetic flux concentrator. The hybrid Hall sensor with the magnetic flux
concentrator can measure quasistatic magnetic fields down to milli-gauss range (107 T) at
room temperature. The idea of the hybrid sensor is still waiting its application in GMI

SEnSors.
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4.5 Magneto-resistive spin tunnelling sensors

The magneto-resistive spin-tunnelling (MRST) effect occurs in sandwiched thin film
FM/D/FM structures, where FM being ferromagnetic films (Fe, Co, Ni and their alloy) and D
being dielectric layer (Al;,0; or SiO,).[12,13] As well as for a spin-valve structure, one of the
ferromagnetic layers is the free layer, and the other is the pinned layer. The main difference
between the spin valve and spin tunnelling lies in the dc current drive: in the spin tunneling it
is applied perpendicularly to the layers. This current transport depends on the spin
polarization at the Fermi level, thus the mutual magnetisation directions of the two
ferromagnetic layers.

The MRST structures have many advantages over the spin valve MR structures,
namely: the enhanced sensitivity, thicker magnetic nanolayers that simplifies growth of films
with different magnetic properties, the perpendicular current flow that provides high
resistivity, low magnitudes of operating current and power consumption. The extreme
sensitivity of this polarized tunnel current to the FM/D interface allows one to study the
magnetism at the monolayer level. In particular, FM/D/FM tunnelling has shown a large
MRST effect at room temperature reaching 15-20% in a field less than 20 mT.[12] This
combined with the non-volatile memory effect seen in such a threelayer system is ideally
suited as a magnetic random access memory (MRAM) element, and as read head sensors
capable of achieving magnetic storage densities greater than 100 Gb/in’. Magnetic tunnel
junctions, down to fractions of a square micron in area, with good characteristics at ambient
conditions have been successfully fabricated, showing their potential for nanotechnological
storage applications. From the physics point of view, there are some unique properties for
these junctions. For example, despite the density of states dependence of the tunnel current,
intrinsically there is significant dependence of MRST on dc bias. The bias dependence has
only been partially understood, and has been attributed to magnetic excitations as seen in
inelastic tunnelling measurements.

Spin transport through a metal or semiconductor is another hotly investigated
topic.[15] For example, the spin tunnelling studies through an interfacial normal metal layer
adjacent to the barrier has shown rapid decay as well as features attributable to quantum well
states. The promising half-metal ferromagnetic matenals, with their possible 100% spin

polarized conduction electrons, are ideal candidates to achieve even bigger effects.
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C dt
NS\ d ( dB NS\oH ,....[ dB
=_2Hex __J_ _] =_2Hex bt excit >
¢ Jd\dH Jy_p c) at |42H

where N is the number of turns in the pickup coil, S is the total cross-section area of both

o 15)0)

. (6)

H=H .

cores, H,,.;, = Hysin(@ 1) is the periodical excitation magnetic field, and ¢ is the velocity of
light. In the absence of a hysteresis the non-linear function B(H) can be decomposed in the

following power series:
B(H)=ag+ayH +a,H? +a3H* + .. (7
Substituting Eq. (7) into Eq. (6) and replacing A by H,..;, = Hgsin(w ) we obtain the

following representation for the second harmonic (¥, ), :[16]

V)2 = NSa)He{BasHoz +5asHg +...+2(’!—'1”[("'1;)]/2]0,,H6'—1]sin(Zwt) : (8)
The Eq. (8) is valid for pure sinusoidal excitation, perfect balance between the two cores and
no hysteresis. By using a similar technique all these factors can be taken into account.

The fluxgate sensors are most sensitive in the family of commercial sensors with the
field resolution of about 107 T. This provides for their wide use in the sensing of very weak
magnetic field. The modern PCB-like and thin film technologies allow the sensor with rather
small dimension.[20,21] However, the miniature dimensions and high speed response for

fluxgate sensors lead to a substantial decrease in sensitivity. In addition, they require a quite

large power consumption due to the magnetisation reversal.

4.7 Position of M1 sensor in the family of magnetic sensors

Consideration of sensors of different types allowed us to bring to light the main
physical principles used there. The quantities, which are exposed to the external magnetic
field, are the drive magnetic field or flux, and current. By these features the sensors can be
divided into two main groups: “inductive” and “resistive”, In turn, the dnive field and current
can be alternating or constant. Along with this, the anisotropic properties of the magnetic
medium and multilayer structures are widely used in magnetic sensors. The search-coil sensor

is an ac inductive sensor, where the magnetic core may be isotropic or anisotropic.
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The Hall sensor also should be attributed to a dc inductive isotropic sensor, since the Hall
voltage is induced by the dc external magnetic field. The MR, GMR and MRST sensors are
dc anisotropic resistive sensors.

The MI effect combines a number of features used in other sensors. The different

components of the field dependent impedance matrix ¢ exhibit the resistive or inductive
effects. The longitudinal diagonal component ¢, defines the complex resistance of the
ferromagnetic sample, when it is excited by a high frequency current. Therefore g,, exhibits a

purely resistive effect. The circular diagonal component ¢, (the transverse diagonal
component ¢, in the case of MI film) can also be considered as the complex resistance but

for the circular eddy currents induced in an MI sample by the ac longitudinal magnetic field.
On the other hand, it is also an inductive coefficient, which relates the voltage induced in the
secondary coil to the ac magnetic flux from the primary coil. Thus, it has a double nature. The
diagonal components of the impedance matnx are present in magnetic and non-magnetic
conductors, The off-diagonal components exhibit the inductive effect, when a certain
polarisation of the excitation field is transformed into another one. These effects are absent in
a non-magnetic sample but they can be present both in conducting and non-conducting
magnetic samples. In our approach all resistive and inductive effects are unified in the total

impedance matrix ¢, which expresses the generalised Ohm’s law, as has been explained in

Chapters 2 and 3. The anisotropy plays a key role in forming the MI field dependences and
their modifications by a dc bias field. A combination of anisotropy, bias field, different ac
excitation and measuring methods results in various MI field dependences. Such vast options
make the MI effect very attractive for multifunctional applications.

An MI thin film can have a multilayer structure, which looks like GMR or MRST
structures. They coincide in the case of the magnetic anisotropy in the free layer (in MI
multilayer structures all magnetic layers are “free””). However, the physical meaning and
function of multilayer structures in MI and GMR/MRST are absolutely different. In the case
of MI, the non-magnetic high conducting spacer is used to reduce the dc resistance of the
multilayer structure and thereby to increase the normalised M1 effect with respect to the dc
level (zero frequency). Whereas in the case of GMR/MRST, the conducting spacer defines the
quantum-tunnelling properties of the polarised electrons, and hence can be chosen extremely

thin,
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Now we would like to discuss the fundamental difference between MI and fluxgate

sensors. In spite of the fact that the measurement schemes for parallel and orthogonal

fluxgates are similar to those for measurements of Spp and Spz respectively (see Fig.

2.16(b,d)), the physical mechanisms involved are completely different. In the case of the Ml
effect, a linear response is measured in an anisotropic magnetic system, A small ac excitation
induces the magnetisation precession and domain wall displacements near the equilibrium

state established by the magnetic anisotropy, dc external magnetic field /., and dc bias field
H}p applied in the orthogonal way. The relationship between the induced ac magnetisation

and the ac magnetic field can be expressed by a permeability matrix, which depends on the
equilibrium state and determines the field dependence of the surface impedance matrix.
Contrariwise, in the case of the fluxgate mechanism a quite large ac excitation (current
or field) realises the magnetisation reversal process in a ferromagnetic material with the non-
linear B-H curve. The non-linear response is measured in the pickup coil, the amplitude of the

higher harmonics turns out to be proportional to the external magnetic field H,,. The

magnetisation reversal is due mainly to domain wall irreversible processes and requires
relatively low frequencies (less then 10 KHz). As a result, the sensitivity of fluxgate sensors
rapidly degrades with increasing frequency.

Primary investigations of some MI sensors have been carried out by Professor Mohri’s
research group in the University of Nagoya, Japan.[1,22-25] For practical use, an MI element
is incorporated into self oscillation circuits. Typical examples are; Colpitts oscillator or C-
MOS IC multivibrator. The best performances of sensitive MI sensors show a field resolution
of about 10-6 Oe (107'° T) for the full scale of + 1.5-2 Qg even with a sensor head length of
about 1 mm. The cut-off frequency of the detected field is about 1/10 of the circuit oscillation

frequency fy (100 kHz — 1 MHz for f; of 1-10 MHz, respectively). In the next Sections we

will consider practical schemes of the MI sensors. Recently, Aichi Steel LTD (Japan) has
started mass-production of portable earth’s-field sensors based on the MI effect for cellar

communication.
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4.9 M1 sensor with a C-MOS IC multivibrator

The circuit with a C-MOS IC multivibrator produces a sharp-pulsed current of
duration 10-50 ns. Pulse excitation is preferred over sinusoidal excitation for several reasons,
which include: simplicity of electronic design, low cost components, and high stability since
the C-MOS multivibrator oscillation frequency almost does not depend on the impedance
characteristics of the MI elements. Power consumption of this circuit is also small (10mW). In
addition, such pulsed current involves both high frequency (20-100 MHz) and low (quasi-dc)
harmonics. Therefore, it can be ideally used for the asymmetrical MI requiring dc or ac bias.

A circuit design shown in Fig. 4.10 was developed in the Centre for Research in
Information Storage Technology (CRIST, University of Plymouth). The 74AC04 is a C-MOS
TTL device used for its high-speed switching and low current capability. Ul:A and U1:B are
configured as a multivibrator with capacitor C1 and resistor R2 forming the timing network to
give an approximate 250 KHz square wave pulse generator. The output of the multivibrator is
fed to a differentiator circuit comprising R1 and C2 that causes the leading edge of the square
wave to become a positive going 50 ns pulse. This pulse 1s applied to U1:C to improve its
shape and applied directly to the MI element. The power consumption of the above circuit is
minimal due to the drive for the MI element being a pulse of 50 ns at a pulse repetition rate of
8.5 ns achieving a 1/165 of the maximum reduction in power. The impedance of the MI

“1,7

element (wire or thin film) is connected between points and “3” of the J2 connector, and

its impedance is changed by an external magnetic field /.. causing a change in the
amplitude of the positive going pulse. The resistance R12 is chosen much bigger then the

absolute value of Ml impedance (at any H,,) to keep excitation pulse-current constant. A

Schottky high-speed detector D1 removes the negative half cycle caused by ringing of the Ml
and charges up C3 via R3 (100 Hz low pass filter) to give a DC voltage proportional to the
applied magnetic field. Amplification of the DC is achieved by U3 (AD524) with a zero offset
RV1, stabilised by D2, current set by R11 and decoupled by C6 to set the DC level to zero.
U3 (ADS524) is used to prove the system and would not be used in a working concem. The
final DC output signal is taken from the J3 connector. It is envisaged that the basic
components of the system would be a pulse generator, rectifier, and filter.

Often the MI field dependence has low sensitivity in the vicinity of zero field. Then, to
achieve a maximum field sensitivity the operating point should be shifted from zero value by
an additional dc bias field along the sample. In this case the electronic scheme will include an

additional bias coil.
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Pulse excitation is preferred over sinusoidal excitation for several reasons, these include:
simplicity of electronic design, low cost components and high stability. In addition, the pulse
spectrum contains a dc offset (zero harmonic) that provides a dc bias required for the
existence of the off-diagonal response, as it has been discussed in Sections 2.72 and 3.7. Thus,
the pulse circuit produces both the high-frequency excitation and dc bias. The ac off-diagonal
pulsed response V. is taken from the pick-up coil using the analogous synchronised switch
and converted by the rectifier (R2-C2). The synchronous rectification suppresses noise that
appears during the rectification time and produces a quasi-dc voltage of value, which is
proportional to the original pulse amplitude. After this, the rectified voltage is amplified. This
amplified signal is characterised by the amplitude and sign, both of which are sensitive to the
dc external magnetic field /. since the off-diagonal response is used. Thus, a near-linear
output voltage signal can be obtained without use of negative feed-back, which, however, can
be added to further improve the linearity (feed-back coil is shown in Fig. 4.11). The circuit
proposed in work [24] uses two MI elements and two analogous switches to create a balanced
circuit with very high temperature stability.

Another method for obtaining a linear response is provided by so-called mixed
excitation, the principle of which was considered in Sections 2.7.2 and 2.8 (see Fig. 2.21) for

a wire with the circumferential anisotropy excited by both the ac longitudinal current ; and
the ac longitudinal magnetic field #4,,.[26,27] The same result is obtained for the film with
transverse anisotropy and the coil round it (for example, planar microcoil described in Section
3.6). The excitation can be pulsed or sinusoidal. For the sinusoidal excitation an additional dc
bias current is required to make off-diagonal response possible. The field A, can be induced
by a coil mounted around the sample and connected in series. The output signal V, is
measured across the MI sample (see Fig. 2.21). The ac response is formed by the sum of the
diagonal ¢, (H,) and off-diagonal ¢, (H,) (or ¢,p(H,)) impedances with
corresponding coefficients. Since ¢,,(H,,) and gzy(Hex) (or gw(Hex)) are symmetrical
and antisymmetrical, respectively, the field dependence of the output voltage module

|V, (H )| is asymmetrical. The principle scheme of a linear sensor is shown in Fig. 4.12.
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Also, the asymmetrical signals V1(H,,) and V2(H,,) can be obtained from the longitudinal

impedance in wires with helical anisotropy (see Sections 2.6 and 2.7.3) or sandwich films
with crossed anisotropy (see Section 3.5). For such sensors no additional coil (ac bias) is
needed, but a dc bias current must be applied to produce asymmetry in the field dependence

of an individual element.
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5.0 Field-dependent permittivity of composite containing the MI wire inclusions

Up to the present, the GMI effect has been investigated for the use in highly sensitive
magnetic sensors, however, the applications of this effect can be much wider.[1] Typically,
MI sensors are designed for MHz frequencies,[2] which is dictated by the related electronics.
On the other hand, the field sensitivity of the surface impedance in wires with a
circumferential anisotropy remains very high even at the GHz range. In this Chapter, a new
type of the composite material is advanced, the effective microwave permittivity of which can

be controlled by the static magnetic field H,, .[1] Short pieces of ferromagnetic microwires

[3-5] are proposed as filling inclusions. They interact with the electromagnetic radiation
similar to microantennas. Then, the wire length / and dielectric matrix permittivity &€ define
the operating frequency range with the characteristic frequency related to the antenna
resonance. In the vicinity of the antenna resonance, even small variations in the surface
impedance result in a considerable change in the current density distribution at the wire and,
consequently, in the induced dipole moment of the elementary wire-scatterer. Thus, the MI
effect can be useful to design microwave composites with tuneable properties and tuneable
band-gap structures.[6]

Metal-dielectric composite materials have received much attention because of their
importance in modern technology.[see, for example, [7] and references therein] Metallic
inclusions, in particular metallic wires, can reinforce the dielectric and magnetic properties of
ceramics and plastic materials. [7-14] Electromagnetic properties of the composite materials
are analysed customarily in terms of the effective macroscopic parameters: dielectric

permittivity Eeff and magnetic permeability Heyf » which are calculated by averaging the

responses from material constituents.[1] Composite matenals containing eclongated
conducting inclusions — finite length wires [8-10] or arrays of infinitely long wires [11-14] —
present a considerable interest since their dielectric response can exhibit various dispersive
behaviours. The composite can be prepared as a thin sheet or bulk sample. The
microstructures of the thin composite samples are indicated in Figs. 5.1(a),(b) for “short” and
“long” wires embedded into a thin dielectric sheet (matrix). The typical length of the short
wire inclusions is less than 1 cm. The sheet thickness /# is made much less than the wire

length 7, and hence usually it is about a few millimetres or less.
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The theory developed is based on solving the scattering problem for a wire with the
impedance boundary conditions. A new integro-differential equation for the current density
distribution in a wire is obtained, which is valid for the surface impedance matrix of a general
form. The electric polarisability of an inclusion is represented by the integral over the
longitudinal current density and is proven to be very sensitive to the impedance changes near
the antenna resonance. In Ref. 10, the current distribution at a conducting stick was
determined from an approximate differential equation of a transmission line type. Our
approach has a number of advantages. It gives a rigorous mathematical algorithm as an
expansion in serious of 1/2In(//a) valid for any frequency and the surface impedance of a
general matrix form. There is no need to introduce the effective distributed parameters such as
a specific capacitance and an inductance which have to be determined separately. The most
important is that the method accounts correctly for the radiation effects and can be generalised
to the case of interacting inclusions or inclusions interacting with boundaries and interfaces.
Then, it can be useful to calculate the effective permittivity of composites containing
periodically spaced wires, without invoking the effective medium theory. For thin composite
sheets, the effective permittivity depends on the thickness due to the depolarisation effect
from the boundaries.[16,17] As a result, the dispersion region of Ee 18 shifted to higher

frequencies.

The composite material made of an array of infinitely long conductive wires [13,14]
has characteristic features of a metallic response to radiation, but in the GHz range. Contrary
to the composite with short inclusions, the electromagnetic field is applied locally to a certain
portion of the material excluding the ends of wires. In this case the current distribution in the
wire can be neglected. The most interesting results are obtained for the wave polarisation
where the electric field is along the wires. Such wire-mesh systems model the response of a

diluted plasma,[7,13] giving a negative permittivity €.4(®) below the normalised plasma
frequency @, = w p! Je somewhere in the gigahertz range. e, (0)= a—(of, /o*, where € is
the matrix permittivity and @, is the “plasma frequency”. In a general case, when the skin

effect is not very strong, the plasma frequency depends on the wire impedance.[7] Therefore,
the effective permittivity of wire-mesh materials can be also controlled by a magnetic field, as

will be considered elsewhere.
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5.1 General approach to the effective permittivity of wire-composites
In this Section we consider general properties of the effective permittivity of
composites with finite-wire inclusions. From the above discussion it follows that the

dispersion of &,4 has different origins for “short” and “long” inclusions. In the first case, the
pe eff

composites demonstrate the Lorentz dipole dispersion,[18] whereas the second type of
material is characterised by the Drude dispersion typical of free-electron gas.[7,13,14]

The Lorentz model of dispersion is applicable to insulator materials. The composite
with short inclusions is similar in many respects to an isolator since the wire-inclusions play a
role of “atoms” (elementary dipole scatterers), which are polarised with an ac electric field.

The local electrical field e, exp(—i©¢) induces the current with a linear density
Jj(z)exp(—~iw¢} distributed along the inclusion length (z is the coordinate along the
conductor). The electric dipole moment D and the dielectric polanisability g of the inclusion
are calculated using the continuity equation 8 j(z)/dz = iw p(z) and integrating by parts with
boundary conditions j(1//2)=0 (p is the charge density per unit length):

112
! .

D== [ fa}z, @=DIVep), (0
—112

where V' is the inclusion volume. As it will be shown later, the density j(z) of a linear
current can be approximated by a linear differential equation of the second order with the
boundary conditions j(+//2)=0 and involving a certain damping caused by radiation and
internal resistive and magnetic losses. Thus, as in the case of a Lorentz oscillator the
polarisability g has the following form:[18]

) @

2 2 . ?
n (wres,n —0°)-il o

where the summation is carried out over all antenna resonance frequencies
Opesp = 2M¢/ Apgg p 1N increasing order, 1,357,,:21\/; /(2n—1) [19] are the resonance
wavelengths, € is the matrix permittivity, A, are the amplitude constants, I",, are the

dumping parameters. The first resonance n=1 with the lowest frequency has a maximum

amplitude 4; and gives the main contribution to the polarisability.
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Each T, can be decomposed into two parts I7% and T (H,,,) related to the radiation and

internal (magnetic and resistive) losses, respectively. The damping parameter I}’ involving
magnetic losses may depend on an external magnetic field H,,. Thus, in the vicinity of the
antenna resonance the polarisability 8 will depend on H,,, if the condition | ™ |>~| 7% |
is held.

The bulk polarisation P of the composite is of the form: P =<ey,, > pp=eyd.g.,
where <e¢,. > is the averaged local field, p is the volume concentration of the inclusions,
ey is the external electrical field, and J,5 is the effective bulk susceptibility. Although the
wire length is comparable with the wavelength, it is still possible to introduce the
susceptibility 9,5 since the scattered electromagnetic field has a dipole character at large

distances from the composite. To relate the polarisability @ to the effective bulk

susceptibility Jyz , it is necessary to know the relation between the local field ¢, and the

external field ¢y. For very low inclusion concentrations p << p., where p, is the percolation
threshold, it is possible to assume that < ey, >~ ¢;, which leads to the simplest equation for
the effective permittivity:

Eof FEHAN P <>, 3)
where < g > is the polarisability averaged over the inclusion orientations. In the limit of a

small concentration, the difference between the local and mean fields can be taken into
account using the Lorentz approach [18] and its generalisations.[20] A consistent effective
medium theory for the considered composites valid for any concentration employs the
concept of the scale-dependent local-field permittivity.[10,9,17] This approach gives the
percolation threshold p, that is linearly proportional to the aspect ratio of the conducting

inclusions { p. oc 2a/1) in accordance with the experimental data. In this Chapter we restrict

ourselves to the case of non-interacting inclusions since this model provides all the essential

features to describe the dispersion and field-dependent properties of Ee In diluted composite

materials (p << p,.).
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5.2 Antenna approximation and impedance boundary conditions

Within the framework of a single particle approximation the scattering problem for a
thin conductor has to be solved. Considering the electromagnetic response from a thin
conductor, the induced current in it can be replaced with the effective linear current flowing
along the axis and having only the axial distribution. This approach is known as the antenna
approximation.[21] It is important to re-examine the conditions when the antenna
approximation is valid.

Let us consider a thin conductor irradiated by an electromagnetic field. The
wavelength A and the conductor length / are assumed to be much larger than the conductor
cross size 2a: 2a << A and 2a << /. The incident electromagnetic wave is supposed to be of
a plane type. In this case, the external electric field does not induce a circular current, and the
external magnetic field does not give a contribution to- a circular magnetic field on the
conductor surface. First we consider that the incident wave has a longitudinal electric field

e,o at the surface of a nonmagnetic conductor. In this case, the induced current is
longitudinal, which determines the scattered electromagnetic field having longitudinal electric

e, and circular magnetic Ep components on the conductor surface {(cylindrical conductor is
considered, ¢ is the azimuthal coordinate). The same polarisation (Ez,ﬁq,) can be induced by
a linear current with the volume density j(z)d, flowing along the axis, where z is a point on
the axis and 3, is a two dimensional Dirac function. Further the function j(z) will be

referred to as “linear density” or “density”. Thus, the linear longitudinal current plays a role of

an effective current producing the surface field of the required polarisation (Ez,i_lq,) and

intensity. If the incident electromagnetic field contains a longitudinal magnetic component

h,p, a circular electric field e, will be induced in the conductor. In this case, a longitudinal

linear current does not provide the total polarisation of the scattered field. In a general case of

a magnetic conductor the field A,, will induce &, and the field €,, will induce Ep

However, the total scattered field can be decomposed into two basic waves with polarisations:

(Ezﬁp) and (2,,h,), where (Ez,iz_q,) is determined by the linear current. The other
polarisation (e, Fz)can be calculated directly from the impedance boundary condition, which

represents a linear relationship between € and & (see below).
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The polarisation effects arising due to the radial ¢lectric and magnetic fields can be neglected
in this case. Thus, the concept of the linear effective current describes correctly the scattered
field at any polarisation of the incident wave.

In the antenna approximation, the external scattering problem with the boundary
conditions at the conductor surface completely determines the response from a thin inclusion
irradiated by an external electromagnetic field. The most general form of such linear
boundary relationship can be written with the use of the surface impedance matrix ¢ :[22]
E,=¢(H,xn), @)
where n is the unit normal vector directed inside the conductor, E, and H, are the tangential
vectors of the total electric and magnetic fields at the conductor surface, which include both
the scattered and external electromagnetic fields, & is the second order matrix. In the case of
an ideal conductor (conductivity ¢ =) boundary condition (4) reduces to a simple generally
used form: E, =0. Boundary condition (4) is convenient to express in the local cylindrical
coordinate system (z,9,r) related to the conductor:

Eo=6p:fly~Copfl; ©
The matrix ¢ has been found in Sections 2.4 and 2.5 for a ferromagnetic wire with an
arbitrary type of the magnetic anisotropy for the strong and weak skin-effect, respectively. In

a nonmagrnetic conductor this parameter has a diagonal form where ¢, =G, =0.
As it follows from the antenna approximation conditions, the field ﬁ(p(z) contains
only the circular field I?q,(z) induced by a current with the linear density j(z). On the

contrary, the longitudinal field 7, is entirely defined by the excitation field. The scattered
field ;z-q,(z) will be found together with the antenna equation in the next Section. Note that in

a cylindrical conductor the impedance boundary condition (5) is valid for any frequency

including a weak skin effect.
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5.3 Antenna equation with the impedance boundary condition

Now we are in a position to obfain the basic integro-differential equation for the
current density j{z) using impedance boundary condition (5). The time dependence is taken
as exp(—iw¢), where w=2n f/ and f is the frequency of the electromagnetic field. Gaussian

units are used throughout the Chapter. Let us introduce the vector A and scalar ¢ potentials:

4
h=2"rotA e=—grad(p—i2Hg~A—, (6)
C C ot

where ¢ is the velocity of light, € and u are the scalar diclectric and magnetic constants

outside the conductor (complex in general). In Section 3.8, where the magnetic permeability
was a matrix, we used another representation for the potentials (see Eqgs. 3.15 and 3.16). The

Lorentz gauge is accepted for the potentials: €6¢/d¢+4ndivA =0. The electrical field e can

be expressed through the vector potential in a frequency representation:

e= 47”;1)HA_ 4n graddivA. @)
€

c o
For A we obtain the Helmholtz equation:
AA+k2A =, (8)
where & =(®/ c)\/a is the wave number, j is the vector of the current density j(z).
The solution of Eq. (8) can be written in the form of the convolution of j(z) with the Green

function G(r) of the Helmholtz operator:

A(ro)=(G* D= [ @Gy, G- ©)
v 4rr

where the integration is carried out over the total volume V' containing j. In Eq. (9) ry is the

coordinate of the point where A is calculated (observation point), z is the vector directed to

the coordinate of the integration point, and r =|r —z| is the distance between the observation

and integration points.
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From Eqgs. (6) and (9) we obtain the representation for the magnetic field induced by a

linear current (operator “rot ” in (6) is taken at rg):

1 p(1-ikr)exp(ikr) .
h(rp) = = [LIEDNSPEED) (0 vyas, (10)
c r
4
where 1 =1y —z is the vector directed to the observation point from the integration one. In the
case of a linear current, when j is taken at the contour L, the field projection on the unit

vector v reduces to a kind of a contour integral:

i) =[SOS jpeco,eras, (1)
L

where j= j(s)Try, T5 is the tangential vector along L taken at the integration point s,
&(s,r)=((7s xr)-v) is the scalar multiplication designating the projection of (T, xr) on the
unit vector v. Considering a cylindrical symmetry, a circular magnetic field is equal to a

projection of h(ry) on the direction (T, xr):

a ”IZ (1-ikryexp(ikr)
3

hy(z,a) = J(s)ds, (12)

-1/2 r
where r = \f(z—s)z +a* . In (12) the equality | (T;xr)|=a was used. Contrary to the static
case (@ =0) where Ep =2/fac and [ is the total current, Eq. (12) takes into account the

retarding effects. Note that integral (12) has extremely fast convergence, therefore, the field

hy, appears to be almost local even for very high frequencies.

The component A4, of the vector potential A describes the scattered field from a

straight piece of a thin conductor. Using Eqs. (7) and (9), the longitudinal scattered field

e,(x,y,z) can be expressed in terms of an integro-differential operator, where the

convolution is carried out along the longitudinal coordinate z :

2
ez(x,y,z)=—:D—"E[a%(c*j)wz(c*j)} (13)
V-4
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172
Here (G*))= I J(s)G(r)ds and r= J(Z—S‘) + y +x% . On the conductor surface, it is

—-1/2

necessary to put r = \/(z—s)z +a? Using the impedance boundary condition (5) and Eq.
(13) we obtain the integro-differential equation for the current density j(z):

B, =2t —a—z-(G*j)+k2(G*j) +89;(2) = 6 2 (2) G 0h0(2) (14)
e 62 0z zz zp 0z \4 />

where £, =2, +¢, is the total longitudinal electric field on the conductor surface, €, is the
scattered electrical field on the conductor surface, &, and %, are the external electrical and
magnetic fields on the conductor surface. The components ¢,, and Gz can also be functions
of the variable z , but this case is not considered here.

The surface field EP is useful to be written in terms of convolution with j(z):

2 1/2

— 2 . )
hq,(z,a)=Z(G(,,*1)=;_lj/21(s)6¢(r)ds, (15)

a2(1 —ikr)exp(ikr)

where G,(r)=
® 273

Finely, we obtain the basic integro-differential equation for j(z):

2
2 (G G )= (1)

* Z(P
272 an Ty (G J)+ hyz(2). (16)

Equation (16) has to be completed imposing the boundary conditions at the ends of the
conductor:

J(~112)=j(i/2)=0. (1
Equation (16) takes into account both the radiation losses and losses consumed inside the
conductor (resistive and magnetic). The convolution (G, * /) and ¢, determine the internal
losses, which are absent in usual antenna equations where the condition of the ideal
conductivity (o =o0) is assumed. The imaginary part of (G* j) determines the radiation

losses.
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Along with this, there is an additional term in the right part of Eq. (16), related with the off-

diagonal component ¢,,. Thus, the ferromagnetic conductor can be excited not only by a
zQ agr

longitudinal electric field, but also by a longitudinal magnetic field.[23]
As it follows from Egs. (13) and (15), the real functions Re(G) and Re(Gg),

considered at the conductor surface, have a sharp peak at » = a. Thus, Re(G) and Re(Gy)
give the main contribution to Eq (16): |(Im(G)*))|<<(Re(G)* /)| and
| (Im(Gy)* /) I<<{ (Re(Gy)* j)|. However, the convolutions with the imaginary parts are

important in the vicinity of the resonance and can be taken into account by an iteration
procedure, which is described in Appendix A. For the calculation of convolutions with

functions Re(G) and Re(Gy) it is possible to use an approximate method:[24,16,17]

1/2
(Re(G)* j)= j(2) | Re(G(r)ds=j(2)Q,
112

1/2 {12
ds  In(l/a)
0= | Re(G(r))dsoc— [ —

-2 AT _jaVs? +a

. (18)

12
(Re(Gyp)* /)= J(2) I Re(Gy(r))ds = j(2)Qy ,
112

i
12 2 112 ds 2k2 /2

a
Op= [ Re(Gy(r)ds = ] 372+ ]

12 2 gy (sP+d) i \,/.5'
where r = \I(z —s)2 +a® , 0 and O, are the positive form-factors. For the estimation of (),

it was taken into account that ak << 1 in the antenna approximation.

From Eq  (16) and inequalities [(Im(G)* )<< Re(G)* )| and

o« (1+ a2k In(l/a)) ~ 1,

| (Im(Gy )* /) i<<{ (Re(Gy)* /)| we obtain differential equation for the zero approximation

Jo(z) where the radiation losses are neglected:

82 o) icc, U iog
SR 4| = 14—3222 ~—¥ |y ~
o2 0% U 8”[ 2naon 0 )% g

@02 (2)+ G100, (2) ] (19)
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Therefore, passing f,,s the distribution of the imaginary part has to change sign (say, from
negative to positive towards high frequencies), as it is seen in Fig. 5.3. The real part of j(z) is

always positive since it corresponds to the positive imaginary part of the dipole moment. It is

seen in Fig. 5.4, that the imaginary part of j(z) is most sensitive to the radiation losses.

Closer to the resonance, it undergoes rapid transformations and any small factors such as
radiation may introduce essential changes. Outside the resonance, the zero and first

approximations almost coincide and the radiation effects can be neglected.

5.4 Field dependent impedance matrix

The field dependence of the effective permittivity €,4 of the composite is caused by
the field dependence of the surface impedance matrix §(H,, ), which determines the losses
inside the inclusions. These internal losses characterise the quality factor of the entire
composite systern and the type of dispersion of Eoff -

The impedance matrix ¢ has been found in Chapter 2.0. We use simple model of a

ferromagnetic wire where only the rotation of magnetisation is taken into account. This model

gives all the important features of the field dependence of §. In general, the anisotropy axis
ny has an angle a with the wire axis (z-axis), as shown in Fig. 2.7. The wire is assumed to
be in a single domain state with the static magnetisation My directed in a helical way having
an angle 0 with the z-axis. The stable direction of M, is found by minimising the
magnetostatic energy density /g without bias field Hj (compare with Eq. (2.47), where
H,#0):

AUyl 8=0,

2 (22)
Up =—Kcos“(a—8)-MyH ., cosb.

Equation (22) describes the rotational magnetisation process demonstrated in Fig. 5.5, where the
magnetisation plots are given for three types of anisotropy: longitudinal (o = 0), circumferential
(o =90°) and helical (a = 60°). The domain processes may not be essential for the reversal of

M,y since the magnetisation vector during its rotation is held parallel to the surface, without

going through high-energy demagnetisation states.
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. bﬁﬁﬁﬂ@(ﬁfﬁ (24)
" 4nc Jy(kya) 36\8) moa’

4

aw al i3 Hallz | ¢
= = J— —_ - + s
Spz =6z =15 M3 [5) [ 60 30 ]nca

where Jo, are the Bessel functions, s =1+4 7 cos*(8)7, pp=1+4 zsin’(8)7,

py =—4nsin(0)cos(9)X , kfz =2 (41::'0)0/02),

X1 = Opg (0 —iT@)/ A,
X2 = Op (02 i)/ A,
g =Wy /A,

A=(0,—ito)o, - itﬂ))—(u)z,

0 = Y[H,, c0s5(0) + H g cos 2(a. - 0)],

Hy =2K 1M,
@y =Y[H y cos(8) + H g cos” (.~ )],
Wpr =YMO.

Equations (23),(24) demonstrate that the surface impedance matrix depends on both

the ac susceptibility parameter % = (ji—1)/4n and the static magnetisation orientation angle

0. At high frequencies the latter will give the main contribution to the field dependence of the

impedance since % looses its the field sensitivity, as it has been discussed in Section 2.6. The
components of ¢ were obtained in the assumption of a uniform magnetisation. For the
multidomain structure, the components of ¢ should be understood as averaged over domains.
The contribution to y due to domain wall displacements can be neglected at high frequencies
due to a considerable damping effect.

Usually ferromagnetic microwires have a circular (o =900) or longitudinal (a=0)

magnetisation in the outer shell. The central part of the wire always consists of a

longitudinally magnetised inner core. A helical magnetisation (0 <a < 900) can be obtained
as a result of a special treatment of 2 wire sample with a circular anisotropy, for example, by
means of twisting or annealing under a torsion stress (see Section 2.7.3 and Ref. 2, 25-27)

Wires with a circular anisotropy exhibit the most sensitive Ml effect.
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The field dependence ¢,,(H,,) at very high frequencies may be of a considerable interest
since it has two predetermined levels at H,, =0 and H,, > Hg, between which a smooth

transition can be achieved by applying H,, . Thus, at very high frequencies the impedance

Crr(Hox) ~ cosz(e) exhibits a “valve-like” behaviour, switching from one stable level to the

other, following the dc magnetisation.

5.5 Field dependent resonance effective permittivity

It is quite natural to expect that the field dependenice €,4(H,,) becomes most

sensitive in the vicinity of the antenna resonance where any small variations in the inclusion
parameters cause a strong change of the current distribution and the inclusion dipole moment.

This results in a remarkable transformation of the dispersion curve g,4(®) under the external

magnetic field. The resonance frequency range is determined by the wire length / and the
matrix permittivity €. Practically, it is not desirable to construct composite materials with
inclusions having a length larger than 1 cm. In this case, the first resonance frequency in air
Jres = ¢/ 21 would be in the range of tens gigahertz. However, for such high frequencies the
magnetic properties of ferromagnetic wires under consideration tail off completely and [i
tends to be unity. Without increasing the wire length, the operating frequencies can be
lowered (in Je times) by using a dielectric matrix with higher permittivity € >>1. Some
polymer or commercial epoxy (shipley photoepoxy with £ =3) can be used as a dielectric
matrix, A fine-dispersion filler (powder) containing particles with a large polarisability can be
used for further increasing €, for example, the powder of BaTiO; ceramic microparticles with
£=17.8.[32,33] The average radius of ceramic particles usually is smaller than 1 micron that
is much smaller than the wire diameter. Another method of increasing € uses finely dispersed
metal powder.[9,16] Both methods allow the matrix permittivity € to be made very large but
having a small loss tangent. In our calculations we use €=16 and £=64. This results in
lowering the antenna resonance frequency down to ~3.75 GHz and ~1.9 GHz, respectively,
for the wire length of 1 cm. These characteristic frequencies are much greater than the
frequency of the ferromagnetic resonance in wires, where the impedance behaviour is of a

“valve-like” type shown in Fig. 5.7.
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The condition of a moderate skin-effect (a/8,, ~1) is proving to be important to

realise a high sensitivity of €, (H,,). If the magnetic skin-depth is much smaller than the

wire radius (8, /a <<1), the normalised wave number £ differs little from the wave number
k of the free space. Substituting the high frequency impedance (23) into (20) gives:

o 1-1) 1/2

k ~—c—‘/s—;l(l +— 2nind/a) afcos (9)) (25)
From Eq. (25) it immediately follows that if &/a<<1 the wave number becomes

= awJep/c, whence it follows that an essential field dependence ter(Hex) can be reached

in the case when the nonmagnetic skin depth is of the order of wire radius.

At a very low inclusion concentration p << p, o« 2a/! the effective permittivity
€. (®) can be represented by Eq. (3) as the dipole sum with the polarisability <g >

averaged on the inclusion onientations. The polarisability g has to be calculated from Eq. (1)

using the first j;(x) approximation for the current density distribution, which takes into

account all losses in the system (see Eq. (A9) in Appendix A). In the case of a planar

composite (see Fig. 5.1), the averaging gives a coefficient 1/2 (< p>=g/2), and <p>

determines the effective permittivity in the plane of the sample. The total permittivity matrix
of a planar composite is of the form:
Eoff (Hex) 0 0

E(Hoe) = 0 Eof (Hex) O (26)
0 0 £

Figures 5.8 and 59 demonstrate the dispersion of the polarisability

#(0) = p'(0)+igp"(0) in the gigahertz range as a function of H,, for two values of the

matrix permittivity: € =16 and £ =64 . The dashed curves correspond to zero approximation
(19) neglecting the radiation losses. When the dispersion region falls into lower frequencies
due to larger matnx permittivity (€ =64 ), the internal losses (both magnetic and resistive)
become much greater than the radiation ones and the latter can be ignored, as it is seen in Fig.
5.9. In general, when the skin effect becomes essential the radiation losses are dominant and
determine the resonance peak value. As a result, the system becomes insensitive to the

internal parameters.
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Therefore, the metal conductivity is characterised by the dominant imaginary part. This is
very important for our analysis since the current can have a resonance for a considerably
larger wavelength A >>2/. Physically, this is associated with the resonance of localised
plasmon modes.

The resonance region for £,4 is shifted towards higher frequencies. In the area of
magnetic Tesonance, f g ~ &, With very small losses: & <<1, 4" <<1. The presence of the

effective magnetic permeability and its resonant properties lead to novel optical effects and
open new possible applications. In particular, the condition for Brewster’s angle becomes
different resulting in reflectionless normal incidence from air (vacuum) if the effective

permeability and permittivity are the same (g ~ & ). The resonant behaviour of the

effective permeability of the proposed optomagnetic medium could be used for creation of

optical polarizes, filters, phase shifters and selective lenses.

5.7 Conclusion

A comprehensive analysis of a magnetic-field dependent dielectric response in diluted
metal-dielectric composite materials containing ferromagnetic microwires is presented. We
have developed a rigorous mathematical method of calculating the electric current density
distribution at the wire-inclusion irradiated by an electromagnetic field, which determines the
electric polarisability contributing to the effective permittivity. The wire polansability is
proven to be very sensitive to the surface impedance changes near the antenna resonance.
Therefore, in the composites with ferromagnetic wires as filling inclusions the effective
permittivity may depend on a static magnetic field via the corresponding dependence of the
impedance.

The field dependence of the impedance remains very sensitive even for gigahertz
frequencies much higher than the characteristic frequency of the ferromagnetic resonance. In
this case, the impedance reflects the field behaviour of the static magnetisation orientation
showing a characteristic “valve-type” behaviour versus magnetic field. In the case of a Co-
based microwires, a moderate magnetic field of a few Oe changes the static magnetisation
from the circular direction to the axial one. During this process, the dispersion characteristics

of permittivity can be changed considerably, say, from a resonance to a relaxation type.
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A number of applications of this effect are proposed including microwave materials with the
field-dependent reflection/transmission coefficients and tuneable waveguides where the
composite material is used as an additional field-dependent cover.

The theory can be generalised to the case of interacting wires and applied for the exact
calculation of the effective response from composites containing periodically spaced wires
(wire crystals). This presents a considerable interest for studying field-tuneable band-gap [6]
and negative index materials,[11-15] and is intended to be published elsewhere.

The analytical formalism developed can be successfully used for the analysis of

nanocomposttes with the nanoinclusions of different shapes.[37]

5.8 Appendix A
The iteration procedure proposed here allows the analytical expression for the cuirrent

density j(z) with the account of all the losses in the system to be obtained. Let us write once
again the basic integro-differential equation (16):

82 oY

;(G*;){;) eu[(G*1)+ rma Go*s )] " [B0:(2)+62000,(2)]. (AD)

The general solution of Eq. (A1) for the zero approximation (19) has the following form:

Jo(z) = Asin(k z)+ Bcos(k z) + e _ j sin(k(z — )X (5) + G o0, (5))ds . (A2)
anQk ;.

For the zero approximation with &y, = &, = const and k), = hy = const we obtain:

@2 +G40M)
4nQik*

Jjo(z) = Asin(k z)+ Bcos(k z) + ! (A3)

Zero approximation (A3), satisfying the boundary conditions jo(—//2)= jo(1/2)=0, is of
the form:

i0E(@ +Cz0M) (cos(k1/2) - cos(k 2))
anQ k* cos(k1/2) '

Jo(2)= (A4)

For the ideal conductor (o =c0) and Im(e) =Im(p) =0 solution (A4) has singularities at the
resonance wavelengths A,.; defined by Eq. (21). The account of a limited conductivity and

radiation losses eliminates the singularities.
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The iteration procedure determines the next approximations. Let us extract the real and
imaginary parts of the convolutions in Eq. (Al). To calculate the convolutions with real parts
the proposed method given by (18). As a result we obtain the following integro-differential
equation:

o[ i N ..
—| J(@+(m(G)* j)} [+£7) j(2)+—(Im(G)* /) |=
z Q Q
B (A3)
i(k?

- 2 3 -k ; 2z .
=%[eo:(zmmhm(z)]+~Q—)(Im(G)*J)+5%(Im(G¢)*1)

Equation (A5) can be considered as a non-uniform differential equation with respect to
the operator 5‘2/ az° +k%. Finding the inverse operator, we obtain the integral equation:
iOE

J(z)= Asin(k z)+ Beos(k z) + . j sin(k(z — )@ (5 + 6 2P0 (5))ds +
anQk /2

72 2, 2z
+_.__'("Q‘E" Y [ sin(k(z - )am(G)* s + . (46)
-1/2

Cemge b oo N
+2WQE_II/ 2sm(k(z NIM(Gy)* s~ (m(G)* )

where the constants 4 and B should be chosen to satisfy the boundary conditions
J(-11/2)= j(112)=0. Equation (A6) is the Fredholm integral equation of the second kind,

therefore it is well adapted to an iterative method. For the n-th estimation the following

iteration procedure is used:

G722y 2 )
fr:(z)=fo(2)+'(L;cf‘_) I sin(k(z — $)XIm(G)* ji,_|))ds +
, -1/2 | .
Tnacas | silkz- M= .
+2nacQ£—1J;2S]n(k(z XIACo) Jo-1} Q(Im(G)*Jn-l)

Constants 4 and B are calculated at the final step of the iteration procedure n=N>1 so

that to satisfy the boundary conditions jy(~//2)= jn(//2)=0.
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Let us rewrite iteration representation (A7) in the following compact form:

112
In@=Jo()+ | 8(z.9))u-1(9)de, (A8)
-112

where

8(z,9) = 81(2,9)+ 52(2,9) + 83(z2.9),

$1(2,9) = —élm(G(r)), r=y@-q) +a*,

12 2 z
Sz(z,q):ig"lzL [ sin(k(z - sNIM(G(r))ds, r=(s—q) +a?

-1/2
S3(z,9)= 986z I sin(E(z —sNIm(Gy(r))ds, r = \/(s —q)2 +a®.
2nach_”2

As it follows from Eq. (A8), the radiation losses consist of three parts. The first one,
related to the local kernel S, is responsible for a "pure radiation" in the free space as though
the conductor had the ideal conductivity o =c0. This part of the radiation is independent of
conductor internal properties, therefore the kernel S is defined by the wave number % of the
free space and is local. Second part, related to the non-local kernel S5, is responsible for the
radiation in the free space, which partly penetrates inside the conductor. Non-locality, defined
by the convolution with sin(l'c'(z—s)), 15 caused by the presence of an electric connection
between spatial points through the conductor. The third part, related to the non-local kernel

$3, 15 caused by the infringement of the quasistatic approximation when calculating Ep(z,a)

at the conductor surface. All the three parts contain a small parameter 1/4n0Q ~1/21In(i/ a),

which leads to a fast convergence of the iteration procedure.

Let us calculate the first iteration substituting (A3) as the zero approximation:

1/2 1/2
J1(z2)=4 sin(Ez)+ I S(z,q)sin(l;q)dq]+B(cos(/;z)+ J S(z,q)cos(l?q)dq}+
ill2 ) B - -1/2 (A9)
+1me(eo +§;¢ho)[]+ j- S(z,q)qu
4nQk _l12
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For the unknown constants 4 and B we obtain the following system of linear equations:

[ sin(il/2)+ay, cos(l/ 2)+alz]®(AJ: (C] (A10)

—sin(kl/2)+ay; cos(kl/2)+ay, ) \B) \D
where
(112 } 172 3 )
[ sUr2q)sintkqydg [ 50/2,q)c0s(kq)dg
-2 -i/2
(ﬂu ﬁ'lz)= , (ALT)
@1 922) | 12
I S(~112,q)sin(k q)dg j S(-112,9)cos(k q)dq
\~i/2 -112 /
(12 )

1+ J’ S(/12,9)dq

[CJ__I'OJG(EO +ompho)|
D) 4'.'1:Ql’;2

12
1+ | S(-1/2,9)dg
\ iz )

From (A 10) we obtain the final expressions for 4 and B:
A=(C—D~)+B(022—alz) (A12)
2sin(kl/2)+a, 1421

p=[C+D, (D-CXa+ay) cos(F1/2)+ Gz u)en+ay) | diptay
2 4sin(k!/2)+2(a) —azy) 4sin(k!/2)+2(ay —az) 2

The denominator of the parameter B determines the resonant frequencies and magnitude of

the resonant peaks. We shall extract real and imaginary parts of the denominator of B:

r - (ap—-appXay+ay) | ap+ay
Re= Re(k) /1 2)ch(Im(k) /2)+R = , Al3
e = cos(Re() /2)eh(lm(k)/ /2) e[4sin(kl/2)+2(a”—021)+ 2 (Al3)

N 3 - (g —app)ay +az1) | az+axn Al4
Im sm(Re(k)I/Z)sh(hn(k)l/Z)+hn(4sin(£!/2)+2(a]1_021)4. . ] (A14)

The resonance frequencies are found out from the dispersion equation Re =0

- - (a2~ a1 +ay1) | ap+ax
Y/ 2)eh(Im(k) /2)+ R s =0. AlS
cos(Re(k)/2)ch(lm(k) [2)+ c[4sin(kl/2)+2(a“—a2])+ 2 (A13)

Since the radiation losses are smaller than the internal ones, Eq. (21) can be used as a

dispersion equation for the resonance frequency.
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Future applications of the M effect cement the different subjects expounded in this
work making the interdisciplinary dialog a powerful tool for the synthesis of new ideas. The
impedance matrix approach forms the universal conceptual language that provides these
interdisciplinary penetrations.

By now, the basic physical principles of the M1 effect have been well understood. This
is because the main work will spread in the applications of Ml for developing high sensitive
magnetic sensors and, as ascertained in this work, for tuneable composite materials. Up to the
present, MI magnetic sensors utilised the field dependence of the longitudinal (diagonal)
impedance in accordance with its introduction in the first works.[1-3] Further analysis has
revealed the different field behaviours of the longitudinal impedance in MI samples with
different types of magnetic anisotropy: circumferential and helical in wires,[4-6] and
transverse, longitudinal and crossed in films.[4, 7-12] Recently, the off-diagonal components
of the impedance matrix [6,8,9,11] have founded their applications as the field sensitive
characteristics with the antisymmetrical field behaviour.[13] The diagonal circumferential

Spp and diagonal transverse ¢,, impedances (for wire and films, respectively) are still

waiting for their applications as the field dependent characteristics. /n general, each
component of the impedance matrix has a unique field behaviour, which differs from those of
the other components (af the same magnetic structure). Therefore, it becomes possible to
obtain a wide sel of the magnetic sensors by varying a magnetic structure in combination with
different methods of excitation and detection. Another perspective research concerns the
miniaturisation of the Ml sensors and creation of integrated circuit designs. Thin film Ml
elements will play here the key role. In work [14], the MI sandwich film with a planar
microcoil has been prepared to allow the off-diagonal impedance to be measured. We believe
that all the components of the impedance matrix will be used in future miniature MI sensors.
Of course, the usual problems of magnetic sensors related with the signal/to/noise ratio
remain actual for the Ml sensors. The research in this direction only has just started and will
increase. Also, new opportunities for the Ml sensor will appear with a widening of the
[frequency operating range. At the moment, the MHz range is widely used what is dictated by
the electronic circuit components. However, the GHz range brings very unusual properties of
ML. For the time being, only one high frequency property, the so-called Ml-valve, has been
used in tuneable composites.[15] Nevertheless, the MI element operating in the GHz range

may be used as a reading head.[16]
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A remarkable application of the MI effect is tuneable composite materials. This
direction of investigation was opened by two recent publications [15] and [I7]. In Ref. 17,
long wires build the composite structure. Contrary to the composite with short inclusions, the
electromagnetic field is applied locally to a certain portion of the material excluding the ends
of wires. In this case the current distribution in the wire can be neglected. Such system has the
response of a diluted plasma and it is characterised by the Drude dispersion typical of free-
electron gas. In a general case, when the skin effect is not very strong, the plasma frequency
depends on the wire impedance.[17-19] The composite with long wire inclusions is similar in
many respects to usual thin metal ferromagnetic film, and so it does not demonstrate any new
properties. On the contrary, the composite with short wire inclusions [15] exhibits the Lorentz
model of dispersion since the wire-inclusions play a role of “atoms” (elementary dipole
scatterers), which are polarised with an ac electric field. As compared with usual dielectrics
we can drive the “atom polarisation” by the external magnetic field. In this work, only a
simple case of normal incidence and random orientations of wires in the composite slab has
been considered. For these conditions, the effective permittivity may demonstrate the
resonance and tuneable properties in the vicinity of the antenna resonance. In general case of

Gzp #0 (which takes place in wires with a helical anisotropy), any wire inclusion can be
excited not only by the ac longitudinal electrical field ey, but also by the longitudinal

magnetic field Ay, , as it follows from the basic integro-differential equation (see Eq. 16 in

Chapter 5):
82 WE _ ' WEeC,
(G DG =" e )= Gy PR ), O

Here the impedance component ¢,, transfers the magnetic field ho, into the effective

electromotive force (e.m.f), which induces the current and dipole moment in the wire. The
matenial relations in such kind of systems have very unusual form. The bulk electrical

polarisation P of the planar composite becomes proportional (0 both the electrical eq and
magnetic hy excitation fields (this is the so-called “chiral medium®).

P =(8eg + Jppreq) )+ Begrho)» )
where & is the electrical susceptibility of the dielectric matrix, J,5 and f,; are the
effective bulk susceptibility due to the wire polarisation for the field projections eq and hg

in the plane of the composite slab.
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In Eq. (7) 7,y =\/(z—s—zq)2+(y—y,)2 +(x-x,)*, the point (z,y,x) lies onto the wire
surface, (g, /, m) is the 3D integer index of a wire in the wire array, when the summation is

carried over the lattice of unidirectional wires. The vector (zq, Vi,X,) 18 directed to the wire

centre. With ¢,/,m=0, r, = 1/(2 - $)* +a?, where a is the wire radius (see Chapter 5). With

[#0 and m=#0, rq’l,mNJ(Z—S—Zq)2+(y_,)2+(JCm)2 since a is assumed to be much

smaller, than the lattice constants. This “wire crystal” [19] is of its own interest because it
can exhibit band-gap properties, which in our case will be field dependent. Such system has
not been analysed yet in terms of the rigorous periodical solution.

Another perspective research is related with the nanocomposite consisting of the
nanowires and nanorings and considered in the optical range.f21] The succession of the
analytical methods allows us to perfect the ideas, which have been developed in the
microwave range. In particular, the effective tuneable properties may be realised in the
nanocomposites since the conductivity of the nanoinclusions (or structured nanoinclusions)
also may depend on the external fields.[21] Further more, such composites along with the
effective permittivity can have the effective magnetic permeability for the non-magnetic
inclusions. This artificial magnetism opens up extraordinary possibilities for the creation of
new mediums with unusual optical properties. Recently, the tdea of electromagnetic complex
materials with both negative real permittivity and permeability has attracted a great deal of
attention. This idea dates back to 1960's when Russian physicist Veselago [22] postulated
theoretically the monochromatic electromagnetic plane wave propagation in a lossless
medium with simultaneously negative real permittivity and permeability at a given frequency,
and he theoretically showed that in such media the direction of Poynting vector is antiparallel
to the direction of phase velocity for a uniform monochromatic plane wave. Such kind of a
material was named as the “left-handed materials” or “metamaterials”. The recent resurgence
of interest in this medium began when Smith, Schultz and Shelby in their research group at
University of California (San Diego),[23-26] after the work of Pendry of Imperial College
(London),[27,28,19] constructed such a composite medium for the microwave regime. This
composite medium is organised as the periodical system of the coupled rings and wires. Many
researchers from all over the world have now been exploring various aspects of this class of
complex media, and several potential future applications of these media have been
speculated.[29-32]
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In principle, the tuneable composites proposed in works [15] and [17] may be used
Jor the creation of the field-controlled lefi-handed materials and band-gap structures.{33]
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Optomagnetic composite medium with conducting nanoelements
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A type of metal-dielectric composites has been proposed that is characterized by a resonancelike behavior of
the effective permeability g in the infrared and visible spectral ranges. This material can be referred to as an
optomagnetic medium. It consists of conducting inclusions in the shape of nonclosed contours or pairs of
parallel sticks with length of 50— 100 nm embedded in a dielcctric matrix. The analytical formalism developed
is based on solving the scattering problem for considered inclusions with impedance boundary condition,
which yields the current and charge distributions within the inclusions. The magnetic properties originated by
induced currents are enhanced by localized plasmon modes, which make an inclusion resonate at a much lower
frequency than that of the half-wavelength requirement at microwaves. It implies that microstructure can be
made on a scale much less than the wavelength and the effective permeability is a valid concept. The presence
of the effective magnetic permeability and its resonant propertics lead to unusual optical effects and open
interesting applications. In particular, the condition for Brewster's angle becomes different resulting in reflec-
tionless normal incidence from air (vacuum) if the effective permeability and permittivity are the same. The
resonant behavior of the effective permeability of the proposed optomagnetic medium could be used for

creation of optical polarizes, fitters, phase shifters, and selective lenses.

DOI: 10.1103/PhysRevB.66.155411

I. INTRODUCTION

Metal-dielectric composites, in which small metal par-
ticles are embedded into dielectric host, present an exciting
area of study. The overall electric, magnetic, and optical
propenties are not governed by the behavior of the raw ma-
terials. A vast amount of literature exists on this topic. In the
limit of high metal concentration, the percolation across the
connected clusters results in critical dielectric' and magnetic?
responses, strong local field fluctuation,? and enhancement of
transport™® and optical®’ nonlincarities. In the limit of di-
luted composites, individual metal inclusions contribute to
the effective clectromagnetic properties; however, small me-
tallic scatters may show completely different behavior as
compared with bulk metals. In both cases, the effective per-
mittivity £.4 and permeability . can be tuned to values not
easily possible in natural maternials.

Recent advances in microfabrications make possible cre-
ation of composite materials with constituents of different
forms and sizes down to nanoscales.®® This offers a way to
engineer various dielectric and magnetic metamaterials,
since the effective parameters &g and f g are determined by
microstructure. Composites containing rings, helix on £} par-
ticles exhibit resonancelike behavior of both the permittivity
and permeability in overlapping frequency bands,’®'! which
is quite unusual in nature. In a medium of three-dimensional
array of intersecting wires the propagation modes have a
dispersion characteristic similar to that in a neutral plasma
with negative £.4 below the plasma resonance somewhere in
the gigahertz range.'>'? It was further shown that the com-
posites built of two-dimensional arrays of split copper rings'*
and wires have a range of frequencies over which both the
permittivity and permeability are negative in microwaves.!®

These materials have generated a considerable interest as
they offer a possibility to realize a negative index of refrac-
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PACS number(s): 78.67.—n, 75.75.+a, 41.20.—q, 42.70.—a

tion n. Many surprising effects are possible in these so-called
left handed materials theoretically predicted by Veselago,'®
which would be of great importance for communications and
electronics. These include reversed Doppler and Cherenkov
effecis and a reversed Snell’s angle, which could result in
lenses without limitations on the resolution by wavelength.!?
So far, the concept of negative refraction has been predicted
and proven at microwave frequencies. In the experiment on
deflection of a beam of microwave radiation by a prism
made of wire-and-ring material negative refraction angles
were found,'® which correspond to the negative index  ap-
propriate to Snell’s law. The transmission spectra measured
in these materials also confirm the concept of negative #."*

An immediate question is whether left-handed materials
can be realized at optical frequencies. (We exclude frem con-
sideration photonic crystals where it is difficult to assign an
cflective equivalent # and where the phenomenon of nega-
tive refraction has been recently predicted near negative
group velocity bands.'®) On one hand, negative diclectric
constant is natural for metals below the plasma resonance
that falls above visible frequencies. For example, silver
would be a good choice for negative permittivity at optical
frequencies since the resistive part is very small. On the
other hand, quite rigid limitations exist with respect to the
permeability at high frequencies. There is a widespread be-
lieve that the concept of permeability has no physical mean-
ing at optical frequencies and onward, as was proven for
atomic magretism (see, for example, Ref. 20). The aim of
this paper is to elucidate the implications related to high-
Jrequency magnetic properties and to demonstrate that
metai-dielectric composites with nanoinclusions can have a
considerable magnetic activity at optical frequencies.

We consider two types of metal-dielectric composites
with inclusions forming different current contours: two-wire
contour and a single ring with a gap (see Fig. 1). The math-
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Appendix C Thin microwave composites with short wire inclusions

The overwhelming majority of applications using composite materials require that a
composite sample be prepared as a thin layer or as an additional surface cover. In this
Appendix, the boundary effect of the effective parameters is studied in composite samples
that are based on short wire inclusions embedded into a dielectric matrix. When the composite
becomes thinner than a certain critical thickness, the depolarisation charges and surface waves
induced on the sample surface can significantly change the effective permittivity. Since these
effects are not related to wire conductivity, the problem of the boundary effect is dealt with
under the assumption of infinite conductivity (ideal conductor). However, on applying the
mean field theory for the calculation of the effective permittivity the wire conductivity was
taken as finite. These two main factors (the boundary effect and conductivity) can be
considered separately. Thus, a generalisation of the “scale mean field theory” has been carried
out for a thin composite.

Another issue, which was not clearly considered in this work, is the so-called

Sommerfield conditions of radiation. The main method used in the Appendix is the solution of

the heterogeneous Helmholtz equation Au+ k= J(r) in the layered structure. To extract an
unequal solution of this equation in an infinite region, which is the exterior of a finite region,
it is needed to assume the additional limitations on the behaviour of the solution when
approaching infinity. These additional limitations are the famous Sommerfield conditions:

Mi:‘/cu(.r)=o(1/|r|), |r|> o, (L
olr]

where the signs “t” correspond to the outgoing and arriving waves. Generally, these
conditions are required only if the exterior region does not have any energy losses and both
the outgoing and arriving waves decrease as 1/]r| at infimty. Contrary, if the exterior region
has the losses, then the amplitude of the outgoing wave (scattered) must decrease at
approaching infinity, whereas for the arriving wave it must increase.

However, it is a hardly known fact that the Sommerfield conditions must be

generalised in the case of the layered media. Conditions (1) contain the roots +4 of the

simplest dispersion equation p2 +k? =0, which defines the poles of the Fourier transform of

the Green function corresponding to the Helmholtz equation in free space. In a layered
structure, this equation of poles will be very complicated. These are the dispersion equations

of the surface waves A;=0 and A, =0 considered in the Appendix. Thus, radiation

conditions (1) must be formulated for each root of the dispersion equations.

a



Appendix C Thin microwave composites with short wire inclusions

The poles avoidance procedure used in the Appendix, when small losses are introduced in the
system, is another method to extract the unequal solution. This method is similar to the
Sommerfiled conditions.

It would be very interesting to establish the role of the surface waves in the forming of
the effective response of a thin composite layer. The Fourter images of the Green functions
used in the Appendix contain the poles, which are found from the dispersion equations

A, =0 and A, =0. As it was mentioned above these poles relate to the spectrum of the
surface waves, which lie between two wave numbers £, (free space) and 4, (dielectric layer).

With increasing layer thickness this spectrum tends to be everywhere dense covering the

interval [£,,4,], i.e. it becomes continuous. In this case, the dielectric layer demonstrates “the
so-called soft dynamic properties”, when it allows the propagation of the surface waves with

any wave number between k, and k,. Thus, a thick dielectric layer can be priory

characterised by some permittivity, which is obviously closed to the layer permittivity.
However, with a decrease in the layer thickness, the spectrum of the allowed surface waves
significantly converges. In this case, the effective properties of the layer can not be generally
characterised by a single effective permittivity, since then this permittivity should require a
certain wave number which may be out of the allowed spectrum. Any way, the system works!
How? There is a compromise, when the wire oscillator “opened to the dialog” tries to agree
with the layer about a possible surface wave, which can propagate. As a result of this
compromise a certain wave number arises, with which the wave leaves the wire. It is obvious
that this newborn wave number has to be found from a quite complicated “compromise
dispersion equation”. At first sight, the existence of such equation appears very doubtful since
initially there are several allowed wave numbers in the dielectric layer. Nevertheless, we
succeeded in finding this equation, which is the non-linear dispersion equation of the
resonance wave lengths (see main text in the Appendix). By means of an approximate
calculation we carried out, as it were, an averaging over all excitation spectrum of the
dielectric layer. Though this comparison is not very clear but enough for intuitive
understanding.

Now we can formulate the basic principle which can be applied to a thin composite

system:

Effective response of a thin composite system is formed by the spectrum of elementary

excitations allowed by the host layer containing the composite inclusions.




Appendix C Thin microwave composites with the short wire inclusions

Applying this principle to an opened system, it can be formulated as:

The eigen frequencies (or resonance frequency) of an opened system are defined by the
internal parabreters {which include its geometry and internal material parameters) as well as

by the spectrum of eigen wavenumbers of the ambient space.

In our case the opened system is the wire inclusion, which exhibits an opened resonator
radiating inside the dielectric layer. Repeat again: the spectrum of eigen wavenumbers of the
ambient space defines the eigen frequencies of the system and not the material parameters of
the ambient space. In the simplest case of free space, these conditions are equal, since there is
an unequal wavenumber, which is unambiguously defined by the material parameters of the
space (at a fixed frequency, of course) But in the case of a layered system, this statement is
not true, as it was explained above.

The principle formulated states that the wave number selected by “the compromise
dispersion equation” sets the effective parameters (permittivity and permeability) which allow
the propagation of this wave and not the reverse! The barred wave can not form the effective
response.

This point of view is very unusual for the quasistatic insight, which has got into the
habit of located parameters (capacitance, resistance and inductance). But we insist that the
wave processes are determinative for thin composite systems. The concept language
formulated in this introduction also may be of interest for future applications of
nanocomposites, where the column (wire) structure may be embedded into the host or formed

on the surface of a thin dielectric slab.








































