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ABSTRACT 

Genetic analysis of the microvascular complications of 
diabetes mellitus 

by 
Deborah Cross 

There is increasing evidence to suggest that genetic factors are involved in the pathogenesis of 
microvascular complications in diabetes mellitus. Recent studies have suggested that genetic 
variations in the aldose reductase (ALR2) gene may contribute to the genetic susceptibility to 
microvascular complications. Aldose reductase is the first and rate-limiting enzyme of the 
polyol pathway and is implicated in the pathogenesis of diabetic microvascular disease 
(nephropathy, retinopathy and neuropathy). It has recently been shown that the three 
polymorphisms of the ALR2 gene are associated with susceptibility to microvascular 
complications in both TIDM and T2DM. The aim of this study was to investigate the CA 
dinucleotide repeat polymorphism (5'ALR2) that is located -2100bp and the C-106T 
substitution in the promoter region of the ALR2 gene, and also the A+ 11842C within intron 8 
of the ALR2 gene itself. DNA from 285 Caucasoid patients with TIDM and well-defined 
microvascular disease and 120 normal healthy controls, as well as 60 Southern Indian patients 
with T2DM and 43 non diabetic controls were typed. The 5'ALR2 Z-2/X genotype was 
significantly increased in patients with nephropathy (n=92), retinopathy (n=160) and 
neuropathy (n=104) compared to those with no microvascular disease after 19 years duration 
of diabetes (uncomplicated, n=66) (46%, 41%, 42% vs. 24%, respectively). In contrast, the 
frequency of the Z+2/Y genotype (where Y is not Z-2) was significantly reduced in the 
patients with nephropathy, retinopathy and neuropathy compared to the uncomplicated (17%, 
23%, 23% vs. 52%, respectively). Similar observations were made in the •Southern Indian 
T2DM patients, however no significant differences were found. In the patients· with TIDM 
the C-106 allele was associated with the Z-2 5'ALR2 allele. The C/Z-2 haplotype was present 
in 32% of the nephropaths, 32% of the retioopaths and 35% of the neuropaths compared to 
11.5% of the uncomplicated. The A+ 11842 allele was also associated with the C-1 06 allele in 
TIDM patients with microvascular disease. The reported mitochondrial pqlymorphism 
(mt5178A/C) was not found in this. TIDM population, possibly due to differences in the 
background frequencies between ethnic groups. Family studies investigating the transmission 
of the 5'ALR2 and C-106T alleles from parents to offspring with diabetic nephropathy found 
preferential transmission of the Z-2 allele although this was not statistically significant. 
Functional studies of the activity of the ORE in TIDM patients with and without 
microvascular disease showed differences in the mean OREBP binding activity. ·oREB and 
OREC were found to have increased activity in resp"onse to hyperglycaemia in the 
complicated patients compared to the uncomplicated and normal controls. In conclusion, these 
results confirm the role of the aldose reductase gene in the genetic susceptibility to diabetic 
microvascular complications, and a possible role of the DI7S934 polymorphism in T2DM. 
These results also provide a novel insight into the role of the ORE of the ALR2 gene in the 
pathogenesis of diabetic microvascular complications. Further studies are now required to 
determine the molecular basis of these observations. Hopefully, in the future it will be 
possible to offer 'high risk' patients therapeutic intervention that will prevent the ravages of 
the long term complications of diabetes mellitus. 

- iii -



LIST OF CONTENTS 

Copyright statement 

Title Page 

Abstract 

Contents 

List of Tables 

List of Figures 

Authors Declaration 

Publications and Conferences 

Acknowledgements 

Abbreviations 

Chapter 1 Diabetes Mellitus and its Complications 

Preface 

The medical history of diabetes meUitus 

Diabetes today and its clinical implications 

Definition and classification of diabetes mellitus · 

Diabetes mellitus 

Type 1 diabetes mellitus (T1DM) 

Diagnostic criteria for autoimmune T1DM· 

Glycaemic control in TlDM 

Insulin therapy 

Pancreas and islet transplantation 

- iv-

PAGE 

if 

ill 

iv 

xvf 

:n:U 

.uv 

.uv 

.uvU 

xxix 

1 

2 

2 

6 

9 

13 

13 

14 

17 

17 

18 



Epidemiology of TIDM 18 

Incidence in UK population and worldwide 19 

Pathogenesis ofTlDM 20 

Anatomy and physiology of the non-diabetic a~d T1DM pancreata 20 

Aetiology of f3-cell destruction in TlDM 23 

Autoimmune markers 23 

Animal studies 24 

Genetic susceptibility to TIDM 25 

Susceptibility genes for TIDM 26 

Major Histocompatibility Complex {MHC) (IDDM1) 26 

Insulin gene (INS) (IDDM2) 28 

Other genes contributing to T1DM 29 

Non genetic risk factors of TlDM 30 

Virallnfection 31 

Environmentallnsult 31 

Prevention of T1DM 32 

Type 2 diabetes mellitus (T2DM) 34 

Diagnostic criteria for T2DM 34 

Treatment of T2DM 35 

Epidemiology of T2DM 36 

Pathogenesis ofT2DM 36 

Aetiology of T2DM 37 

Genetic susceptibiUty to T2DM 38 

Candidate genes for T2DM 39 

Non genetic risk factors ofT2DM 40 

-v-



I . 

Complications of diabetes meHitus 42 

Presentation of diabetic compUcations 42 

Microangiopathy of diabetes mellltus 43 

Diabetic Nephropathy 43 

Diabetic Retinopathy 48 

Diabetic Neuropathy 50 

Macroangiopathy of diabetes mellltus 53 

Inter-Unkage of diabetic complications 53 

Aetiology of diabetic complications 56 

Risk factors for diabetic microangiopathy 58 

Hyperglycaemia and mlcroangiopathy 58 

Hypertension and microangiopathy 61 

Hyperlipidemia and microvasculopathy 64 

Pathophysiological features of ceU damage 65 

Brief overview of cellular pathways implicated in diabetes induced complications 66 

Increase of glucose transporters 67 

Non-enzymatic glycation of proteins 67 

Increased flux through the polyol/sorbltol pathway 70 

Depletion of myoinositoi/Na+/myo-inositol eo transporter (SMIT) 

Increased formation of reactive oxygen species (ROS) 

Decreased nitric oxide synthase (NOS) activity 

Increase in cell adhesion molecules (CAM) 

Alterations of intracellular signalling pathways 

Increased de novo synthesis of diacylglycerol (DAG) and 
protein kinase C (PKC) 

Transcription factor nuclear factor kappa B (NFKB) 

-vi-

71 

71 

73 

75 

76 

76 

78 



T.ranscription factor activating protein-I (APl) 

Role of growth factors/cytokines in microvasculopathy 

Vascular Endothelial Growth Factor (VEGF) 

Transforming Growth Factor Beta (TGF-~) 

Other growth factors and chemokines 

Interactions between hyperglycaemia altered pathways 

Genetic susceptibility to diabetic complications 

Genetic epidemiology of nephropathy 

Genetic epidemiology of retinopathy 

Genetic epidemiology of neuropathy 

Genetic epidemiology of macrovascular disease 

The search for susceptibility genes 

Whole genome scanning for susceptibility loci 

Fine mapping of susceptibillty loci 

Candidate genes investigated in diabetic complications 

Human Leukocyte Antigen (HLA) gene polymorphisms 

Receptor for advanced glycation end products (RAGE) gene 
polymorphisms 

Renin-angiotensin system (RAS) gene polymorphisms 

Aldose Reductase (ALR2) gene polymorphisms 

. Glucose Transporter (GLUT) gene polymorphisms 

Apolipoprotein E (APOE) gene polymorphlsms 

Endothelial nitric oxide synthase (eNOS) gene polymorphisms 

Plasminogen Activator Inhibitor-I (PAI-l) gene polymorphisms 

Paraoxonase gene (PON) polymorphisms 

Nuclear transcription factor B (NFkB) polymorphisms 

~vu-

79 

80 

80 

81 

82 

82 

85 

85 

87 

88 

89 

89 

91 

92 

93 

93 

94 

94 

97 

97 

98 

98 

98 

99 

100 



Vascular endothelial growth factor (VEGF) polymorphisms 100 

Mitochondrial gene polymorphisms 100 

Other gene polymorphJsms 104 

Environmental influences 107 

Chapter 2; Aldose Reductase and the Polyol Pathway 109 

Hyperglysoua· and the polyol pathway 110 

Aldose Reductase (ALR2) 113 

The catalytic cycle and kinetics of ALR2 114 

Sorbitol dehydrogenase (SORD) 116 

The polyol pathway and diabeti~ complications 117 

Hyperglysolia induced increase in expression and action of ALR2 119 

Metabolic perturbations induced by increased flux through polyol pathway 121 

Aldose reductase inhJbitoi-s (ARI's) . 124 

ALR2 as a candidate gene for diabetic microvascular complications 130 

The ALR2 gene and its promoter region (AR; EC 1.1.1.21) 131 

Polymorphisms of the ALR2 gene and its promoter region 133 

5' ALR2 (CA)n nrlcrosatelllte 136 

5' ALR2 (CA)o nrlcrosateUite and microvascular disease in T1DM 136 

5' ALR2 (CA)n microsatelllte and microvascular disease in T2DM 140 

5' ALRl C(-106)T polymorphism 143 

ALR2 A(+11842)C intragenic polymorphism 144 

Family based studies 147 

ALR2 promoter regiQn polymorphisms and gene expression 147 

Cellular osmotic regulation and diabetic complications 149 

Signal pathways involved in the gene expression of osmolytes 151 

- Vlll -



Gene regulation of ALR2 under osmotic stress 155 

Osmotic Response Element (ORE) I Tonicity Enhancer Element (TonE) 156 

Transcription elements involved in osmotic regulation of ALR2 158 

Identification of transcription elements within 5'ALR2 region 160 

Polymorphisms within AR promoter region-OREs 162 

Glucose-specific regulation of aldose reductase 164 

Glucose specific ALR2 gene expression in T1DM subjects 165 

Aims of thesis 166 

Chapter 3; Subjects, materials and methods 167 

Ethical Approval 168 

Subjects 168 

British Caucasoid TU>M collection 168 

Classification .criteria ofT1DM subjects according to microvascular disease 169 

TlDM uncomplicated control subjects (n=66) 169 

TlDM retinopathy subjects (n=44) 169 

T1DM neuropathy subjects (n= 18) 170 

TlDM nephropathy and retinopathy subjects (n=JO) 170 

T1DM retinopathy and neuropathy subjects (n=24) 171 

TlDM full house complication subjects (n=62) 171 

Healthy adult control subjects (n=13) 171 

- ix-



Cord blood control subjects (n=120) 172 

Subjects excluded from study 172 

Clinical characteristics ofT1DM and normal control subjects 173 

British Caucasoid T1DM family trio collection 175 

Clinical characteristics offamily trio collection 176 

Southern Indian T2DM collection 177 

Classification criteria ofT2DM subjects according to microvascular disease 177 

TIDM uncomplicated controls (n= 28) 177 

TIDM nephropathy and retinopathy subjects (n= 32) 177 

Healthy adult control subjects (n=43) 178 

Clinical characteristics ofT2DM and normal control subjects 178 

Blood sampling 180 

Materials 181 

VVater 181 

Reagents 181 

General purpose, glass and plastic ware 183 

Specialist laboratory equipment 183 

Methods 184 

Autoclaving 184 

DNA extractioQ 184 

DNA extraction using Nucleon® BACC2 method 184 

DNA extraction using 'salting out' method 187 

Quantification ofDNA 188 

-X-



DNA clean-up process 188 

Polymorphism detection 189 

Amplification ofDNA using the Polymerase Chain Reaction (PCR) 189 

Amplimer design and production 189 

Standard reaction mixture 190 

PCR cycling strategies 190 

Determination ofPCR efficacy by agarose gel electrophoresis 191 

Dinucleotide repeat analysis 193 

Incorporation ofradio-labeUed amplimers into PCR 197 

S'End labelling of amplimers using T4 polynucleotide kinase (T4-PNK) 197 

Precipitation oflabeUed amplimer 197 

Assessment of efficacy of amplimer labelling 198 

Polyacrylamide Gel Electrophoresis (PAGE) 198 

Autoradiography of polyacrylamide gel 200 

Scoring of microsatellite aUeles 200 

Single Nucleotide Polymorphism (SNP) detection 201 

C(-106)T polymorphism detection by restriction enzyme digestion 201 

Direct Purification of PCR products 202 

Bfa1 restriction endonuclease digestion 203 

ALR2 A(+ll842)C polymorphism detection by restriction endonuclease digestion 207 

BamH1 restriction endonuclease digestion 207 

Mitochondrial A(5178)C polymorphism detection by restriction endonuclease 211 
digestion 

Alul restriction endonuclease digestion 211 

Electrophoretic mobility shift assay for 5' ALR2 ORE's 215 

- xi -



Established cell lines 215 

Jurkat E6.1 Human Leukaemic T cell lymphoblast- ECACC No. 88042803 215 

Extraction of Peripheral blood mononuclear cells (PBMC's) from whole blood 216 

Cryopreservation 216 

Establishment of stress conditions 217 

Extraction ofnticlear protein from whole cells 217 

Determination of protein concentration for nuclear fraction 218 

Oligonucleotide probe design and labelling 219 

Preparation of non-denaturing 4% acrylamide gel 221 

Control and competition assay 221 

Protein reaction for subject gel shift assay 223 

Approaches to the detection of susceptibility loci for diabetic compHcations 224 

Population based case-control association analysis 224 

Family based association analysis 225 

Statistical analysis of data 225 

Allele and genotype frequencies 225 

Hardy-Weinberg equilibrium 226 

Transmission Disequilibrium Test (TDT) 226 

Chapter Four Results 227 

Profile of T1DM Caucasoid patient groups 228 

Profile of TIDM Southern Indian population 229 

Aldose Reductase Gene Study 230 

Associations of polymorphism's within the ALR2 gene and promoter region 230 
and the microvascular complications of T1DM and T2DM 

Polymorphlsms within the ALR2 gene and its promoter region 231 

- xii-



5' ALR2-(CA)n microsatellite polymorphic marker 233 

5'ALR2- (CA)n microsatellite marker in British Caucasoid TIDM subjects 236 
and normal controls 

5' ALR2- (CA)n allelic frequencies in British Caucasoid TlDM and 237 
normal control subjects 

5' ALR2- (CA)n genotype frequencies in British Caucasoid TlDM and 243 
normal control subjects · 

5'ALR2- (CA)n microsatellite marker in Southern Indian T2DM subjects 253 
and non-diabetic controls 

5' ALR2 (CA)n allelic frequencies in Southern Indian T2DM and 254 
non-diabetic control subjects 

5' ALR2 (CA)n genotype. frequencies in Southern Indian T2DM and 257 
non-diabetic control subjects 

Association of 5'ALR2 and diabetic nephropathy in family based trio studies 262 

5' ALR2 microsatellite marker in British Caucasoid families where 263 
·proband has TlDM and diabetic nephropathy 

C(-106)T polymorphism marker . 267 

C(-106)T polymorphism in TlDM subjects and normal controls of 269 
British Caucasoid origin 

Allele and genotype frequencies of C(-106)T polymorphism in British 270 
Caucasoid TlDM subjects and normal control subjects 

C(-106)T polymorphism in a TIDM Caucasoid family study 276 

C(-106)T polymorphism in British Caucasoid families where proband 277 
has TlDM and diabetic nephropathy 

A(+l1842)C polymorphism marker 280 

A(+l1842)C polymorphism in British Caucasoid TlDM subjects and 282 
normal controls 

Allele and genotype frequencies.ofthe A(+l1842)C polymorphism in 283 
British Caucasoid TlDM subjects and normal controls 

Combined genotype analysis in patients with TlDM and normal 289 
controls of British Caucasoid origin 

Combined genotype analysis of the 5' ALR2/C(-106)T polymorphism's 290 
in TlDM subjects of British Caucasoid origin 

- Xlll-



Combined genotyp~ analysis of the 5' ALR2/A(+ 11842)C polymorphisms 

in TlDM subjects of British Caucasoid origin 
297 

Combined genotype analysis of the C(-106)T/A(+l1842)C polymorphism's 297 
in TlDM subjects of British Caucasoid origin 

Binding activity of OREBP to ALR2 promoter osmotic response elements 309 
by electrophoretic mobility shift assay in TlDM subjects and healthy adult controls 

Binding activity of OREBP to OREA,iJ and C of the ALR2 promoter region 310 

Binding activity of OREBP to OREA, B and C in T1DM subjects and normal 312 
controls of British Caucasoid origin 

D17S934 Hypertension-Linked Gene Study 318 

Associations of a polymorphism at D17S9341ocus situated 18cM proximal 318 
to the ACE gene and the microvascular complications of T1DM and T2DM 

Polymorphism at the Dl7S934 region 319 

Dl7S934 (CA)n microsatellite polymorphic marker 321 

Dl7S934 (CA)n microsatellite marker in British Caucasoid TlDM subjects 324 
·and normal controls 

D17S934 (CA)n allelic frequencies in British Caucasoid T1DM and 325 
normal control subjects 

Dl7S934- (CA)n genotype frequencies in British Caucasoid TlDM and 330 
normal control subjects 

Dl7S934- (CA)n microsatellite marker in Southern Indian T2DM subjects 339 
and non-diabetic controls 

D17S934 (CA)n allelic frequencies in Southern Indian UDM and non-diabetic 340 
control subjects 

D17S934 (CA)n genotype frequencies in Southern Indian T2DM and 343 
non-diabetic control subjects 

Mitochondrial genome study 346 

Associations of polymorphism's within the mitochondrial genome and the 346 
microvascular complications of TlDM 

Polymorphism at the A(Mt5178)C region 347 

- xiv-



A(Mt5178)C polymorphic marker in British Caucasoid T1DM subjects 
and normal controls 

Chapter 5 

Discussion and Conclusion 

References and Bibliography 

Bound in copies of abstracts and publications 

-XV-

350 

351 

351 



LIST OFT ABLES 

Table I. Classification of diabetes mellitus as outlined by WHO 1998. Adapted 12 
with slight modification from • World Health Organisation' recommendations 
1998 {Alberti and Zimmet 1998). 

Table 2. Values for diagnosis ofTIDM as recommended by WHO 1998 criteria 16 
for diagnosis of diabetes mellitus (adapted from Alberti and Zimmet 1998). 

Table 3. Definitions of nephropathy {adapted from recommendations ·by Bilous 1996). 47 

Table 4. Candidate genes investigated and implicated in the onset and progression 106 
of diabetic vasculilr complications. 

Table 5. Summary of published studies of the ALR2 polymorphisms within the 146 
ALR2 gene and its promoter region in TIDM and T2DM. 

Table 6. Demographic characteristics of British Caucasoid subjects With TIDM 174 
and normal healthy control·subjects, classified in accordance to onset 
of diabetic microvascular complications. 

Table 7. Demographic characteristics of Southern Indian subjects with T2DM 179 
and normal healthy control subgroups classified in accordance to onset 
of diabetic microvascular complications. 

Table 8. Specialist reagents listed in accordance to the manufacturer from which 182 
items were purchased. 

Table 9. Amplimer pair sequences designed to amplifY microsatellite 195 
polymorphisms at regions 5 'ALR2 and D 17S934. 

Table 10. Optimised PCR reaction mixture for 5' ALR2 and D 17S934 microsatellite 196 
regions. 

Table 11. Optimised PCR reaction times and tempemtures for 5' ALR2 196 
and D 17S934 micro satellite regions. 

Table 12. Amplimer pair sequences designed to amplifY the 5'ALR2 C(-106)T 204 
polymorphic region. 

Table 13. Bfai restriction enzyme allele fragment sizes for 5'ALR2 C{-106)T 204 
polymorphism. 

Table 14. Optimised PCR reaction mixture for 5 'ALR2 C( -I 06)T polymorphic region. 205 

Table 15. Optimised PCR reaction times for 5' ALR2 C(-l06)T polymorphic region. 205 

Table 16. Amplimer pair sequences designed to amplify the ALR2 A( +I l842)C 209 
polymorphic region. 

Table 17. Restriction enzyme allele fragment sizes for ALR2 A(+ IJ842)C 209 

- xvi-



polymorphism. 

Table 18. Optimised PCR reaction mixture for ALR2 A(+ ll842)C polymorphic 210 
region, detected u8ing BamH I restriction enzyme digestion. 

Table 19. Optimised PCR reaetion times for ALR2 A(+ll842)C polymorphic 210 
region. 

Table 20. Amplimer pair sequences designed to amplify the mitochondrial 213 
A(5178)C polymorphic region. 

Table 21. Restriction enzyme allele fragment sizes for mitochondrial A(5 I 78)C 213 
polymorphism. 

Table 22. Optimised PCR reaction mixture for mitochondrial A(5178)C polymorphic 214 
region, detected usingA/ul restriction enzyme digestion. 

Table 23. Optimised PCR reaction times for mitochondrial A(5178)C polymorphic 214 
region, detected usingA/u1 restriction enzyme digestion. 

Table 24. Oligonucleotide sequences designed to incorporate the osmotic response 220 
element of interest 

Table 25. Reaction conditions for control and competition experiments for ORE A, B 222 
and C, using AP-1 as the competitive probe, (Promega Gel Shift Assay 
Systems Technical Bulletin No.11 0. 

Table 26. Allele sizes in base pairs for the 12 different CA repeat polymorphisms 235 
identified. 

Table 27. Percentage frequency of the detected.5'ALR2 (CA)n microsatellite marker 239 
alleles in British Caucasoid Tl DM subjects compared to non-diabetic controls 

Table 28. Percentage frequency of the detected 5'ALR2 (CA)n microsatellite marker 240 
alleles in British Caucasoid T I DM subjects with diabetic nephropathy 
and/or retinopathy and/or neuropathy compared to TIDM of short duration, 
TIDM controls and non-diabetic controls. 

· Table 29. Percentage frequency of the detected 5'ALR2 (CA)n microsatellite marker 241 
alleles in British Caucasoid TIDM subjects categorised in acco~ce to the 
onset of diabetic complications and non-diabetic control subjects. 

Table 30. Percentage frequency of the detected 5' ALR2 (CA)n microsatellite marker 242 
alleles in British Caucasoid TIDM subjects categorised in accordance to 
onset of diabetic nephropathy, retinopathy or neuropathy. 

Table 31. Percentage frequency of the detected 5'ALR2 (CA)n microsatellite 246 
marker genotypes in British Caucasoid TIDM subjects compared to 
non-diabetic controls. · 

Table 32. Percentage frequency of the detected 5'ALR2 (CA)n microsatellite 247 

- xvii-



marker genotypes in British Caucasoid TIDM subjects with nephropathy 
and/or retinopathy and/or neuropathy compared to uncomplicated and 
non-diabetic controls 

Table 33. Percentage frequency of the detected 5'ALR2 ·(CA)n microsatellite 248 
marker genotypes in British Caucasoid TlDM subjects categorised in 
accordance to the onset of diabetic complications and normal controls. 

Table 34. Percentage frequency of the detected 5' ALR2 (CA)n microsatellite 250 
marker genotypes in British Caucasoid TlDM subjects categorised in 
accordance to OJ:JSet of diabetic nephropathy, retinopathy or neuropathy. 

Table 35. Frequency of the Z-2 and Z+2 5'ALR2 genotypes in patients with or 252 
without diabetic microvascular disease. 

Table 36. Percentage frequency of the detected 5' ALR2 (CA)n microsatellite marker 255 
alleles in Southern Indian T2DM subjects compared to non-diabetic controls. 

Table 37. Percentage frequency of the detected 5'ALR2 microsatellite marker 256 
alleles in Southern Indian T2DM subjects witl;l proteinuria compared to 
T2DM subjects with normoalbuminuria and non-diabetic control subjects. 

Table 38. Percentage frequency of the detected 5'ALR2 (CA)n microsatellite 258 
marker genotypes in Southern Indian T2DM subjects compared to 
non-diabetic control subjects 

Table 39. Percentage frequency of the detected (CA)n 5'ALR2 microsatellite 260 
marker genotypes in Southern Indian T2DM subjects classified and 
compared in accordance to presence of proteinuria or normoalbuminuria 
against non-diabetic controls. · 

Table 40. Frequency of Z-2 and Z+2 5'ALR2 genotypes in patients and controls of 261 
Indian origin. 

Table 41. Percentage frequency of the detected(CA)n 5'ALR2 microsatellite marker 264 
alleles in British Caucasoid TlDM subjects with diabetic nephropathy, taken 
from the 'DUK-Warren nephropathy collection'. 

Table 42. Percentage frequency of the detected (CA)n 5'ALR2 microsatellite 265 
marker genotypes in British Caucasoid TlDM subjects with diabetic 
nephropathy, taken from the 'DUK.-Warren nephropathy collection'. 

Table 43. Frequency of transmission of the 5'ALR2 Z, Z-2 and Z+2 alleles with 266 
respect to TIDM and diabetic nephropathy in affected proband family tri9s. 

Table 44. Percentage frequency of the detected C( -1 06)T alleles and genotypes 272 
in all British Caucasoid TlDM subjects studied, compared to normal control 
subjects. 

Table 45. Comparison between the expected and observed frequency% of 272 
C(-106)T polymorphism genotypes in British Caucasoid TIDM and normal 

- xvm-



subjects. 

Table 46. C( -1 06)T allele and genotype frequencies in normal controls and diabetic 273 
patients according to the presence of microvascular complications of diabetes. 

Table 47. C(-l06)T allele and genotype frequencies in normal controls and diabetic 274 
patients according to onset of diabetic complications. 

Table 48. C(-106)T allele and genotype frequencies in normal controls and TIDM 275 
patients according to onset of diabetic complications. 

Table 49. C(-106)T allele and genotype frequencies in Diabetes UK.- Warren 278 
· nephropathy probands. 

Table 50. Comparison between the expected and observed frequency% of 278 
C(-106)T polymorphism genotypes in DUK- Warren British Caucasoid 
TIDM subjects with diabetic nephropathy. 

Table 51. Frequency of transmission of the C(-106)T alleles from parents 279 
of affected offspring to affected offspring ·in family proband study. 

Table 52. Percentage frequency of the detected A(+ 11842)C alleles and genotypes 285 
in all British Caucasoid TIDM subjects studied, compared to normal control 
subjects. 

Table 53. Comparison between the expected and observed incidence of 285 
A(+li842)C polymorphism genotypes in British Caucasoid TIDM 
and normal subjects. 

Table 54. A(+ 11842)C allele and genotype frequencies in normal controls 286 
and diabetic patients according to the presence of microvascular 
complications of diabetes. 

Table 55. A(+ 11842)C allele and genotype frequencies in normal controls and 287 
diabetic subjects according to onset of diabetic complications. 

Table 56. A(+ll842)C allele and genotype frequencies in normal controls 288 
and TIDM patients classified according to onset of diabetic complications. 

Table 57. Frequency of 5' ALR2/ C( -106)T combmed genotypes in patients with 292 
TIDM of British Caucasoid origin. 

Table 58. Frequency of 5' ALR21 C(-106)T combined genotypes in patients with 293 
TIDM of British Caucasoid origin. 

Table 59. Frequency of5'ALR2/ C(-106)T combined genotypes in patients with 294 
TIDM of British Caucasoid origin. 

Table 60. Frequency of 5'ALR2/ C(-106)T combined genotypes in patients with 295 
TIDM of British Caucasoid origin. 

-XIX-



Table 61. Frequency of 5' ALR2/A(+ 11842)C combined genotypes in patients with 298 
TIDM of British Caucasoid origin. 

Table 62. Frequency of 5' ALR2/ A(+ 11842)C combined genotypes in patients with 299 
TIDM of British Caucasoid origin. 

Table 63. Frequency of5'ALR2/ A(+II842)C combined genotypes in patients with 300 
TIDM of British Caucasoid origin. 

Table 64. Frequency of 5' ALR2/ A(+l1842)C combined genotypes in patients with 302 
TlDMofBritish Caucasoid origin. 

Table 65. Frequency ofC(-106)T/ A(+11842)C combined genotypes in patients with 304 
TIDM of British Caucasoid origin. 

Table 66. Frequency ofC(-106)T/ A(+ll842)C combined genotypes in patients with 305 
TIDM of British Caucasoid origin. 

Table 67. Frequency of C( -106)T I A(+ 11842)C. combined genotypes in patients with 306 
TIDM ofBritish Caucasoid origin. 

Table 68. Frequency of C( -1 06)T/ A(+ 11842)C combined genotypes in patients with 307 
· TIDM of British Caucasoid origin. 

. Table 69. Overall mean levels ofOREBP binding activity to ALR2 OREA, OREB 314 
and OREC in T IDM subjects according to onset of microvascular disease, and 
normal adult controls. 

Table 70. Overall mean levels of OREBP binding activity to ALR2 OREA, · OREB 315 
and OREC in TIDM subjects according to onset of microvascular disease, and 
normal adult controls. 

Table 71. Allele sizes in base pairs for the 11 diffe~t CA repeat polymorphisms 323 
identified. 

Table 72. Percentage frequency of the detected D 178934 (CA)n marker alleles in 326 
British Caucasoid TIDM subjects compared to normal controls. 

Table 73. Percentage frequency of the detected DI78934 (CA)n microsatellite marker 327 
alleles in British Caucasoid TIDM subjects with diabetic nephropathy 
and/or retinopathy and/or neuropathy (DRJN/Nu) compared to TIDM 
of short duration (SD), Uncomplicated (DC) and normal controls (NC). 

Table 74. Percentage frequency of the detected Dl78934 (CA)n microsatellite marker 328 
alleles in British Caucasoid TIDM subjects categorised in accordance to the 
onset of diabetic complications and normal control subjects. 

Table 75. Percentage frequency of the detected DI 78934 (CA)n microsatellite 329 
alleles in Caucasoid TIDM subjects categorised in accordance to onset of 
diabetic nephropathy, retinopathy or neuropathy. 

-XX-



Table 76. Percentage frequency of the detected D 178934 (CA)n microsatellite 332 
marker genotypes in British Caucasoid TIDM subjects compared to normal 
controls. 

Table 77. Percentage frequency of the detected Dl7S934 (CA)n microsatellite 334 
marker genotypes in British Caucasoid TIDM subjects with nephropathy 
and/or retinopathy and/or neuropathy (DRIN/Nu) compared to TIDM of 
short duration, Uncomplicated (DC) and normal controls (NC). 

Table 78. Percentage frequency of the detected D 17S934 (CA)n microsatellite 336 
marker genotypes in British Caucasoid TIDM subjects categorised in accordance 
to the onset of diabetic complications and Uncomplicated (DC) and normal 
controls (NC). 

Table 79. Percentage frequency of the detected Dl7S934 (CA)n microsatellite 338 
marker genotypes in British Caucasoid TlDM subjects categorised in accordance 
to onset of diabetic nephropathy, retinopathy or neuropathy. 

Table 80. Percentage frequency of the detected Dl7S934 (CA)n microsatellite 341 
marker alleles in Southern Indian/Dravidian T2DM subjects compared to 
non-diabetic controls. 

Table 81. Percentage frequency of the detected D 17S934 microsatellite marker 342 
alleles in Southern lndian!Dravidian T2DM subjects with proteinuria compared 
to T2DM subjects with normoalbuminuria and non-diabetic control subjects. 

Table 82. Percentage frequency of the detected D 17S934 (CA)n microsatellite 344 
genotypes in T2DM subjects compared to non-diabetic control subjects of 
Southern IndiiUl!Dravidian origin. 

Table 83. Percentage frequency of the detected (CA)n D I 78934 microsatellite 345 
marker genotypes in Southern Indian T2DM subjects classified and compared 
in accordance to presence of proteinuria or normoalbuminuria against 
non-diabetic controls. 

- xxi-



List of Figures 

Figure I. Concordance between diabetic microvascular complications in the follow up 55 
study carried out by Pirart 1984. 

Figure 2. Factors affecting the onset and progression of diabetic microvascular 57 
and/or macrovascular complications (importantly, this is not a conclusive list). 

Figure 3. Diagrammatic representation of metabolic perturbations induced by increased 84 
flux through the polyol pathway as a result of hyperglycaemia (adapted from 
Cameron 1997). 

Figure 4. The sorbitol (polyol) pathway (adapted from; Tomlinson 1994), converts 112 
glucose into fructose using the enzyme aldose reductase and sorbitol 
dehydrogenase. 

Figure 5. Schematic of the 3-dimensional x-ray crystal structure of AR in complex 115 
with its cofactor NADPH (Purple). It consists of>2,500 atoms and folds in 
the beta/alpha barrel formation. 

Figure 6. The catalytic cycle of ALR2 adapted from Constantino et a/1999. The free 115 
enzyme binds to NADPH first and undergoes a conformational change. 

Figure 7. Diagrammatic representation of hyperglycaemia induced metabolic 123 
perturbations resulting from increased flux through the polyol pathway (adapted 

· with alterations from King and Brownlee 1996). 

Figure 8.lllustration of the effect ofpolyol pathway enzyme expression and the 130 
accumulation of sorbitol. 

Figure 9. A schematic organisation of the promoter elements in the 5 'ALR2 promoter 135 
region as described by Wang et all993 

Figure 10. Chromosome 7q35 illustrating the locatioQ. of the 5'ALR2 (CA)n 136 
microsatellite dinucleotide repeat polymorphism (Graham et a/1991; 
Ko et a/1995). 

Figure 11. Chromosome 7q35 illustrating the location of the 5'ALR2 143 
C(-106)T polymorphism (Graham et a/1991). 

Figure 12. Chromosome 7q35 illustrating the location of the ALR2 145 
A(+ll842)C polymorphism (Graham et a/1991). 

Figure 13. Nucleotide sequence of the 132-bp fragment containing three Ton-E 161 
like sequences. OreA, OreB and OreC are highlighted in red and are indicated 
by A, B and C respectively. OREA and OREB are in the same orientation as 
TonE, and OREB is in the opposite orientation. The region indicated by D is an 
Ap-1 consensus sequence (adapted from Ko et a/1997). 

Figure 14. Sequence of intracellular events following extracellular 163 
stress (hypertonicity!hyperosmotic) leading to OREBP/ORE binding in the 

- xxii-



5 'ALR2 promoter region and the resultant induction of ALR2 mRNA synthesis 
and polyol pathway activation. 

Figure 15. Flow Diagram of Nucleon DNA extraction using BACC2 extraction kit 186 
Scotlab. 

Figure 16. Nucleotide sequences for D17S934 and 5'ALR2 microsatellite regions 195 
under investigation, obtained through the GenBank Internet 
website- www.ncbi.nlm.nih.gov. 

Figure 17. Nucleotide sequence for 5' ALR2 C(-106)T polymorphic region under 204 
investigation, obtained through the GenBank Internet website- www.ncbi.nlm. 
nih.gov .. Bfa1 restriction sites are italicised and amplimer sequences are 
highlighted. 

Figure 18. illustration ofC(-106)T restriction site polymorphism (RSP's). This 206 
figUre illustrates the C(-106)T restriction site pol:Ymorphism where the 263bp 
PCR product is cut by the restriction enzyme Bfa I which detects and cuts 
at the C,.. TAG sequence .. 

Figure 19. Nucleotide sequence for ALR2 A(+ 11842)C polymorphic region within 209 
intron 8 of the aldose reductase gene, obtained through the GenBank Internet 
website- http://www .ncbi .nlm.nih.gov. 

Figure 20. Nucleotide sequence for Mt A(5178)C polymorphic region within 213 
the mitochondrial genome, obtained through the GenBank Internet 
website- http://www.ncbi.nlm.nih.gov. 

Figure 21. Nucleotide sequences for 5 'ALR2 promoter region containing osmotic 220 
response elements. Oligonucleotide sequences are highlighted in blue (OREA), 
green (ORE B), and yellow (ORE C). 

Figure 22. Nucleotide sequence of AP 1 consensus oligonucleotide used in 221 
competition experiments. 

Figure 23. Diagrammatic representation of the polymorphic region studied within the 232 
ALR2 gene and promoter region located on chromosome 7q35. 

Figure 24. (a) 5'ALR2 microsatellite autoradiograph, 234 

Figure 25. C(-l06)T polymorphism by Bfa 1 restriction digest and fragment separation 268 
on 2.5% agarose gel with ethidium bromide staining. 

Figure 26. A(+ 11842)C polymorphism by Barn HI restriction fragment separation on 281 
2.5% agarose/ethidium bromide gel 

Figure 27. EMSA analysis of binding activity to ORE of ALR2 promoter in Jurkat E6.1 311 
cells line. 

- xx.iii -



Figure 28. Box and whisker plots comparing the activation (fold) in the ORE A,B 3 I 6 
and C regions investigated according to onset of diabetic microvascular disease. 

Figure 29. Box and whisker plots comparing the OREBP/ORE binding activity 317 
detected between groups according to ORE binding site investigated. 

Figure 30. Diagrammatic representation of the polymorphic region studied within the 320 
. region proximal to the ACE gene located on chromosome I 7q 

Figure 31. DI7S934 microsatellite autoradiograph, and (b) quantification of bands 322 
using Fluor-s multi-imaging software. 

Figure 32. Diagrammatic representation of the polymorphic region studied within 348 
the mitochondrial genome at position 5 I 78. The C to A polymorphism altered 
the amino acid configuration by changing from Leu to Met. 

Figure 33. A(Mt5 I 78)C polymorphism by restriction enzyme digestion and 349 
fragment separation on 2.5% agarose gel with ethidium bromide staining. 

Figure 34. Summary of the possible influences of the genetic polymorphisms 4tt 
reported in this thesis, upon susceptibility to or protection from diabetic 
microvascular complications. 

- xxiv-



Authors declaration 

At no time during the registration for the degree of Doctor of Philosophy has the author been 
registered for any other award. · 

This study was financed with the aid of a studentship from 'Diabetes UK' and carried out at 
the Plymouth Postgraduate Medical School. 

Relevant scientific seminars and conferences were regularly attended at which work was often 
presented; external institutions were visited for consultation purposes and several papers 
prepared for publication. 

Presentations and Conferences Attended; 

The I7tb. Annual Meeting ofthe Anglo-Danish-Dutch Diabetes Group (ADDDG)- The 
Netherlands, May 1999 (Oral Presentation) 

The American Diabetes Association (ADA)- San-Diego, California, July I999. 
(Poster Presentation) 

Publications/ Abstracts: 

Cross DF, Heesom AE, Mill ward BA, Demalne A(;. Investigation of the Essential 
Hypertension LOcus Dl7S934 and the 5' ALR2 locus in patients with Type I Diabetes 
Mellitus and Microvascular Complications. Diabetes, May 1999, Vol. 48, Supplement 
l . 

Demaine AG, Heesom AE, Cross . DF, Millward . BA; Investigation of 
polymorphisms of the aldose reductase promoter region in patients with type I 
diabetes and diabetic microvascular complications. Diabetes, May 2000, Vol. 49, 
Supplement 1. 

Wortherspoon F, Yang B, Cross D, MiUward A, Demaine A: Endothelial nitric 
oxide synthase (eNOS) gene is not associated with nephropathy in type I diabetes 
mellitus. Diabetic Medicine 18 (2), 2001 

Zhao HX, Stenbouse E, Sanderson E, Soper C, Hughes P, Cross D, Demaine AG, 
Millward BA; Epidemiology of childhood Type I diabetes in Devon and Cornwall 
1975-2001. rf' South West Public Health Scientific Conference, Wednesday 15'h May 
2002, Weston-Super-Mare. 

Publications/ Papers: 

Demaine AG, Cross DF, Millward BA: Polymorphisms of the aldose reductase gene 
are associated with the susceptibility to diabetic retinopathy in patients with type I 
diabetes mellitus. Invest Opthalmol Vis Sci. Vo/41,2000. 

-XXV-



Hodgkinson AD, Sondergaard KL, Yang BM, Cross DF, Millward BA, Demaioe, 
AG; Aldose Reduc~e gene expreSsion is induced by hyperglycemia in diabetic 
nephropathy. Kidney International, 60, 211-218, 2001. 

Yang B, Cross DF, OUerenshaw M, MiUward BA, Demaine AG: Polymorphisms 
of the vascular endothelial growth factor and susceptibility to diabetic microvascular 
complications in patients with type 1 diabetes mellitus. J Diabetes Complications 
Accepted for publication. 

Demaine AG, Cross DF: Genetics of aldose reductase and susceptibility to diabetic 
retinopathy. In submission to Invest Genomics Proteinomics. 

Cross DF, Mill ward BA, Demaine AG; Association of diabetic complications with 
the 5'ALR2 microsatellite polymorphisms and an intragenic polymorphism of aldose 
reductase gene. Paper in preparation 

Cross DF, Millward BA, Demaine AG: Osmotic response elements in the onset of 
TIDM microvascular complications. Paper in preparation. 

Zhao HX, Stenhouse E, Sanderson E, Soper C, Hughes P, Cross D, Demaine AG, 
Millward BA; Continued rising trend of childhood Type I diabetes mellitus in Devon 
and Cornwall, England. Accepted for publication by Diabetic Medicine. 

- xxvi-



About the Author-

I read for my B.Sc. Degree in Molecular and Cellular Biology at the University of Plymouth. 

. . 
Following this, the Plymouth Postgraduate Medical School·offered me studentship for a Ph.D. 

to research into diabetic complications, which forms the basis of this thesis. Since completing 

my experimental work for the PhD I have also been involved in the recruitment of patients for 

the Diabetes UK Warren 3 Nephropathy Collection. I have also since been offered a place at 

Lucy Cavendish College, University of Cambridge to enter onto the graduate course in 

Medicine and Surgery, upon completion of my PhD . 

. .., 

- xxviii-



')!. 

11 
I'M 
p 
li 
y 

y32PdATP 
lin-1 
)(2 
I 
+1-
3' 
5' 

A 
AA 
ACE 
ACE-I 

ACR 
ADP 
ADA 
AER 
AGEs 
AGEis 

ALA2 
AR 
ARBs 
ARis 
ARMS 

ASA 
ASP 
ATP 

B 
BB 
BB/Wor 
bp 
BP 
BI>A 
bFGF 
bn 
BSA 

c 
Ca" 
CCK 
CD 
CHI> 
cM 
CML 
eo. 
CMP 
cpm 

[) 
[)AG 
[)C 

I> M 

List of Abbreviations 

percent 
micro 
micromolar 
beta 
delta 
gamma 
gamma 32P •.... 
standard deviation 
chi square 
per 
plus or minus 
three prime 
five prime 

amino acids 
angiotensin converting enzyme 
angiotensin converting enzyme 
inhibitors 
albumin:creatinine ratio 
adenosine di-phosphate 
american diabetic association 
albumin excretion rate 
advanced glycation end-products 
advanced glycatlon end-product 
inhibitors 
aldose reductase 
aldose reductase 

. angiotensin II recaptor blockers 
aldose reductase inhibitors 
amplification refractory mutation 
system 
allele specific amplimer 
affected sib pair 
adenosine triphosphate 

bio-breeding 
bio-breedi ng/Worcester 
base pair 
blood pressure 
british diabetic association 
basic fibroblast growth factor 
billion 
bovine serum albumin 

calcium 
cholecystokinin 
duster of differentiation 
coronary heart disease 
centi morgan 
carboxymethyl lysine 
carbon dioxide 
cows milk protein 
counts per minute 

diacylglycerol 
uncomplicated diabetic controls 
diabetes mellitus 

xxix 

I> MEM 
[)MSQ 

dNTPs 

ON 
DNA 
DNu 
OR 
DCCT 

E 
EASI> 

ECACC 

ecNOS 
EI>TA 
EUSA 

EMC 
EMSA 

ESRI> 
eta/ 

F 
FCS 
FFA 
FHP 
FP6 

G 
GAD 
GBM 
GDM 

H 
HzO 
HbAlc 
HCI 
HI>L 
HK 
HLA 
HMPS 
HWE 

I 
I-A2 

IAA 
ICA's 
II>DM 

IFG 
IGF 
I&T 
IMS 
INS 
IRS 
I.U. 

dulbecco's modified medium 
dimethyl sulfoxide 
2' deoxyribonucleotide 
5'triphosphate 
diabetic nephropathy 
deoxyribonucleic acid 
diabetic neuropathy 
diabetic retinopathy 
diabetes control and 
complications trial 

europeon association for the 
study of diabetes 
europeon collection of animal cell 
culture 
enhance nitric oxide synthesis 
ethylene diamine tetra acetic acid 
enzyme linked immunosorbent 
assay 
encephalomyocarditis 
electrophoretic mobility 
assay 
end stage renal disease 
and others 

foetal calf serum 
free fatty acids 
full house patient 
fasting plasma glucose 

shift 

glutamic acid decarboxylase 
glomerular basement membrane 
gestational diabetes mellitus 

water 
glycated heamoglobln 
hydrochloric acid 
high density lipoprotein 
hexokinase 
human leukocyte antigen 
hexose mono-phosphate shunt 
hardy weinberg equilibrium 

autoantibodies to protein tyrosine 
phosphatases 
insulin auto antibody 
islet cell antibodies 
insulin dependent diabetes 
mellitus 
impaired fasting glycaemia 
insulin-like growth factor 
impaired glucose tolerance 
industrial methylated spirit 
insulin gene 
insulin receptor substrote 
international units 



K 
KAV 

b 
L.t.d. 
LDL 
LDS 

M 
MAP 
MEM 
MHC 
MODY 

MRDM 

m!WA 

n 
NaCI 
NADPH 

NAD 
NAOH 
NC 
NDDG 
NHS 
NI DDM 

no. 
NOD 
NSF-D 

nt 

0 
ORE 
OD 

f 
PAGE 

PCR 
pg 
PBMCs 
PBS 
PICs 

PKC 
PNK 
pp 

B 
RAS 
RFLP 

·RNA 
RPA 
RPMI 
RSP 

kilhams rot virus 

limited 
low density lipoprotein 
lipids in diabetes study 

mitogen activated protein 
minimum essential medium 
rnqjor histocompatibility complex 
maturity onset type diabetes of 
the young 
malnutrition related diabetes 
mellitus 
messenger ribose· nucleic aci~ 

number of subjects 
sodium chloride 
nicotinamide adenine dinucleotide 
phosphate 
nicotinamide adenine dinucleotide 
sodium hydroxide 
normal controls 
national diabetes data group 
national heolth service 
non insulin dependent diabetes 
mellitus 
number 
non obese diabetic 
notional service framework for 
diabetes 
nucleotides 

osmotic response element 
optical density 

palyacrylornide gel 
electrophoresis 
polymerase chain reaction 
page 
peripheral blood mononuclear cells 
phosphate buffered soline 
polymorphism information 
contents 
protein kinase C 
polynucleotide kinase 
pancreatic polypeptide 

renin angiotensin system 
restriction fragment length 
polymorphism 
ribonucleic acid 
ribonuclease protection assay 
rasweil park memorial institute 
restriction site polymorphism 

XXX 

s 
SORD 
SD 
SDH 
SDS 
SI 
SSRis 
STZ 

T 
TlDM 
T2DM 
TBE 

TCR 
TDT 
TEMED 
TGF 
TH 
TNF 
Trls 

u 
U.K 
UJCPDS 

USA 
u.v. 

V 
VNTR 
Vs 

w 
WESDR 

WHO DiaMond 

WHO 

sorbitol dehydrogenase 
standard deviation 
sorbitol dehydrogenase 
sodium dodecyl sulphate 
international system of units 
serotonin reuptake inhibitors 
streptozotocin 

type 1 diabetes mellitus 
type 2 diabetes mellitus 
trislborate electrophoresis 
buffer 
T-ceil receptor 
transmission disequilibrium test 
N,N,N',N' tetramethylenediamine 
transforming growth factor 
tyrosine hydroxylase 
tumour necrosis factor · 
2 aniina-2-(hydroxymethyl)-1,3-
propanediol 

united kingdom 
united klngdom prospective 
diabetes study 
united states of america 
ultra violet 

variable number tandem repeat 
versus 

wisconsin epidemiologic study of 
diabetic retinopathy 
world health organization 
diabetes mondiale 
world health organization 



' .. . ~ -. ~- .. · ... _ ... -.. ; . - ·. •;· '·. •'• .--~ . 

Chapter 1: Diabetes mellitus and its complications 

Chapter 1 

Diabetes Mellitus and its Complications 

- 1 -



Chapter 1: Diabetes mellitus and its complications 

Preface 

Diabetes and its associated complications, which include retinopathy, nephropathy and 

neuropathy, is one of the leading causes of morbidity and mortality in both the developed 

western world, and also world-wide. The Department of Health's (DOH) 'National Service 

Framework for Diabetes (NSF-D)' was published early this year (2002), and 

implementation in England and Wales is also scheduled to start in 2002. The NSF-D which 

includes diabetic complications, is in the top four priority program's for the National 

Health Service (NHS), preceded only by mental health, coronary heart disease and older 

people (Keen 2001). In April of 1999 Frank Dobson (Secretary for Health) announced a 

new £10 million research and treatment fund for diabetes and related diseases, and 

announced "guaranteed national and local standards of care and treatment" for people with 

diabetes (NSF press release 1999; Saving Lives: Our Healthier Nation 1999). This degree 

of recognition pinpoints the disease as a priority target, indicating a real need for research 

into the molecular biology and genetics involved in the underlying aetiology of diabetes 

mellitus and its associated complications. It is imperative in the interest of future diabetic 

medicine that we aim to fully understand this disease in order to improve healthcare and 

medicine of tomorrow. This perspective is encapsulated by the 61 "1 American Diabetes 

Association (ADA) scientific session mission statement ' to prevent and cure diabetes and 

to improve the lives of all people affected by diabetes' (American Diabetes Association 

2001). 

The medical history of diabetes mellitus 

Diabetes was once a universally fatal disease, which led to a slow consuming death 

involving a gradual wasting away. Diabetic children bad a life expectancy of2-3 years and 

90% died from ketoacidosis. The symptoms of what we currently describe as 'diabetes' 

have been recorded since ancient times, but ideas about its causes have evolved over the 

centuries and still remain uncertain. The story of diabetes is an extensfve one, and 
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importantly an indeterminate one, to which a degree of ambiguity still remains within its 

field. 

Although clinical descriptions of diabetes were well recognised from as early as Egyptian 

times, and had been depicted in the Ebers papyrus, 1550 BC, it wasn't unti11ater that the 

disease was named. Various sources of information attribute the name 'diabetes' to various 

people. The earliest record, however, is ascribed to Demetrios of Apamaia in the second 

century BC who derived the name from the Greek word "diabeinein", meaning to go to 

excess. Later in the second century AD, Arataeus of Cappadocia in Asia Minor, lays claim 

to the term 'diabetes' which is Ionian Greek, likening its symptoms to the passing of water 

through a siphon. Arabic texts from the 9th to 11th centuries detail accurate descriptions of 

the clinical features of diabetes, and in particular mentions two specific com,Plications of 

the disease to be gangrene and the collapse of sexual function. 

More recent advancements began to take place in the 17th century when Thomas Willis 

(1621-1675) an Oxford physician to King Charles II noticed the sweet taste of urine in 

many diabetic patients. Later into the 18th century Matthew Dobson reported that the sweet 

taste of diabetic urine was due to an excess of sugar in the blood, suggesting that diabetes 

may be a systemic disease rather than a problem of the kidneys. John Rollo, the Surgeon 

General to the royal artillery, conducted early attempts at treatment in 1798. He observed 

that careful dietary control with carbohydrate restriction improved glucosuria and greatly 

improved the patients' prognosis. At a similar time Thomas Cawley 1788, observed 

pancreatic tissue damage in diabetic cadavers, in particular he observed diabetes occurring 

alongside 'calcific pancreatitis'. Pioneering work however, really only began to take place 

in the nineteenth century by Claude Bemard's experimental work on dogs which lead to· 

some important discoveries. He surmised that the liver stored glycogen and secreted a 
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sugary substance (glucose) into the blood. He also concluded that the secretory organs in 

particular the pancreas, were controlled by the sympathetic nervous system. Claude 

Bemard also demonstrated links between the central nervous system and diabetes where 

hyperglycaemia was caused by transfixing the medulla of conscious rabbits. 

In 1867 Paul Langerhans used microscopic techniques to identifY clusters of cells within 

sections of pancreas tissue, which were not connected to the ducts carrying digestive juices 

to the gut. These were later to be named the 'islets of Langerhans', and much later in the 

mid 20th century proved to become the anatomical site of insulin production. Joseph V on 

Mering and Oscar Minkowski quite unexpectedly made the link between diabetes and the 

pancreas in 1889 (Von Mering and Minkowski 1889). They succeeded in performing the 

first total pancreatectomy in dogs and in doing so produced severe and fatal diabetes, 

concluding that the anti-diabetic substance was to be found in the pancreas. These fmdings 

sparked 30 years of frantic research right across Europe and North America to isolate a 

pancreatic extract that could reverse the symptoms of diabetes. Georg Zuelzer working in 

Berlin and Nicholas Paulesco in Rumania separately isolated a crude pancreatic extract 

that improved patient's symptoms dramatically, but both showed toxic effects due to 

hypoglycaemia. 

In the summer of 1921 the breakthrough was finally made in Toronto, Canada and led to 

the award of a Nobel Prize. The discovery of insulin or 'iletin' as it was first called, by 

Frederick Banting and Charles Best was a significant milestone in the chronological 

history of the disease. By tying off the pancreatic duct and allowing the glandular part of 

the pancreas to atrophy, they were able to make an extract of the remaining gland (Banting 

and Best 1922 (a)). With assistance from a visiting biochemist named J.B. Collip they 

applied standard biochemical extraction techniques and produced an extract that could be 

tried on patients. The effects of administering this insulin extract to patients were dramatic. 
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In a paper published later that same year they describe a young male patient who had been 

slowly dying of diabetes, who, upon admission showed all signs of severe juvenile diabetes 

with ketosis. His condition became dramatically worse and the pancreatic extract was 

administered by daily injection. This resulted in immediate improvement, a loss of 

consuming thirst and he recovered his strength (Banting and Best 1922 (b)). Insulin 

provided a lifesaving remedy for many diabetic patients and led to a new era for diabetes. 

This once fatal disease could now be controlled, providing patients took their daily insulin 

injections normal life could be restored. 

It was however, soon recognised that not all diabetes sufferers responded to the insulin 

treatment in the same way. In 1936 Himsworth suggested that different forms of diabetes 

mellitus might exist. The first type involving a lack of insulin and an acute onset of 

symptoms, and a second type involving a lack of a sensitising factor where patients show 

. 
little or no clinical symptoms. Their experiments involved injecting insulin intravenously 

followed by an oral glucose drink. It was apparent that the diabetic patients under 

investigation could be divided into two types, those in whom the injected insulin produced 

an immediate suppression of hyperglycaemia and those in whom the insulin had little or no 

effect in suppressing the hyperglycaemia. They named the two forms 'insulin sensitive', 

and 'insulin insensitive' diabetes mellitus (Himsworth 1936). 

The advent of insulin has enabled diabetic patients to control their diabetes through 

stringent insulin administration. However, this has unmasked the devastating consequences 

'of persistent hyperglycaemia, namely the diabetic microvascular and macrovascular 

complications. Dr Elliot Joslin, one of the first clinicians to specialise in the treatment of 

diabetes mellitus, wrote in 1931, 'with the advent of insulin, we moved from the era of 

diabetic coma to the era of diabetic complications' (Lee et a/ 2000). Unfortunately these 

words remain true today as despite significant development in antihypertensive therapy 
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and glycaemic control we still do not understand the underlying causes of diabetic 

complications well enough to allow preventative treatment to be fully effective. The 

history of diabetes was comprehensively reviewed in a paper published by Allan I 972. 

Diabetes today and its clinical implications 

Since the discovery of insulin a great deal of interest has established itself world-wide for 

the clinical management of diabetes. Dr Elliot Joslin founded the first diabetic· clinic in 

Boston, USA in 1910, which has today become one of the worlds leading clinical and 

research establishments for diabetes. Many other research centres have since been 

established within hospitals and universities throughout the world, all striving for the 

improved management and treatment of diabetes. 

In 1938 the British Diabetic Association (BDA) was founded (now called 'Diabetes United 

Kingdom, DUK) primarily for patient education and a medical and scientific section was 

fonned in 1960. The 'American Diabetes Association' (ADA) was founded in 1942 for 

doctors and scientists, publishing the monthly journal 'Diabetes', and similarly the 

'European Association for the Study of Diabetes' (EASD) in 1965, which publishes 

'Diabetologia'. These organisations all hold annual research meetings, which attract both 

scientists and medical doctors from around the world. 

Today diabetes afflicts large numbers of people of all social conditions, ethnic and 

economic groups throughout the world and is one of the most common chronic childhood 

diseases in developed countries. According to demographic and epidemiology studies, the 

prevalence of diabetes is rapidly increasing on a world-wide scale, and in the absence of 

effective intervention will continue to proliferate extensively. A study carried out by the 

World Health Organisation (WHO) in 1985 (WHO 1985) estimated approximately 30 

million diabetics world-wide, and more recently in 1994 estimates for the year 2000 were 
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that more than 100 million people would be affected by diabetes (WHO 1994). In 1997 an 

estimated 124 million people world-wide had diabetes, and it is thought through projection 

analysis that this figure will potentially reach 221 million world-wide by the year 2010 

with 3 million in the UK alone (Amos et a/1997; Zimmet 1999; Dobson; 2000). 

Diabetes clearly imposes a vast public health problem in terms of the clinical implications 

of the disease. The proposals for a 'National Service Framework for Diabetes' (NSF-D) 

published in 200 I, state that diabetes is now one of the UK's governments top health 

priorities. On 12th January 1999 Frank Dobson (Secretary for Health) announced a new 

£10 million research and treatment fund for diabetes and related diseases (NSF press 

release 1999). He also stated that 'The new standards will be set out in a new 'National 

Service Framework' for diabetes, which will ensure that top quality standards of care and 

treatment for diabetes are available in all primary care, local hospitals, and specialist 

centres'. 

It is therefore apparent that it remains important to investigate the underlying 

environmental, molecular and genetic factors influencing the development of diabetes and 

its associated complications. This will pave the way for advancement in medical 

knowledge towards treatment and prevention of disease, improve medical care, and 

improve patient prognosis and quality of life. Considerable advances have been made in 

our understanding of diabetes and diabetic complications yet we do not sufficiently 

understand the underlying pathogenesis of these complications to allow for fully effective 

preventative measures. The fundamental biochemical mechanisms underlying the 

pathogenic processes of diabetic neuropathy, nephropathy and retinopathy remains 

unsolved. A wider approach is therefore now required, as we are still somewhat unable to 

explain satisfactorily the role of obesity, insulin resistance and genetic factors influencing 

diabetes and its complications. 

_7_ 



Chapter 1 : Diabetes mellitus and its complications 

A major scientific advancement in the study of diabetes has been the mapping of the 

human genome, enabling research into identifying people who are genetically susceptible 

to developing diabetes and diabetic complications. With further research, it should be 

possible to prevent the onset of complications or to control the damaging processes of the 

disease before they become irreversible. There is still a long way to go in terms of research 

in diabetic medicine and how new information might be used to prevent the disease. 
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Definition and classification of diabetes mellitus 

In any clinical research the first requirement is to have a clear uniform definition of the 

parameters of the disease. This is especially true for the study of diabetes where various 

forms and stages of the disease exist and need to be clearly classified. In the late 1970's the 

International Working Group for the National Diabetes Data Group (N.D.D.G) of the 

National Institute of Health, USA, and the World Health Organisation (W.H.O) Expert 

Committee on Diabetes published their criteria for classification and diagnosis of diabetes 

mellitus (NDDG 1979; WHO 1980). These criteria for a classification system were based 

largely on the pharmacological treatment of the disease, and recognised a distinction 

between insulin dependent (IDDM) and non-insulin dependent (NIDDM) types of diabetes 

mellitus. The World Health Organisation 1980, endorsed the NDDG proposed diagnostic 

criteria for diabetes mellitus, and revised and updated in 1985 (WHO Study Group on 

Diabetes Mellitus 1985). 

There has since been an explosive growth in the scientific and medical knowledge into the 

aetiology and pathogenesis of diabetes mellitus. The earlier classification system based 

largely upon the treatment of the disease, rather than its underlying pathogenic 

mechanisms has therefore led to a requirement for a revised classification criteria. In 1997 

and 1998 the American Diabetic Association (ADA) Expert Committee on the Diagnosis 

and Classification of Diabetes Mellitus published updated recommendations on the 

classification of diabetes (The Expert Committee on Diagnosis and Classification of 

Diabetes Mellitus 1997, 1998). The report came as a response to the need for revised 

nomenclature, diagnostic criteria and classification of the disease. The W.H.O. group also 

presented their conclusions for newer recommendations in 1998 in a report by Alberti and 

Zimmet 1998. The most recently updated classification is a review by the ADA 'Clinical 

Practice Recommendations 1999' (The Expert Committee on the Diagnosis and 

Classification of Diabetes Mellitus 1999; Unwin et a/ 1998). A report by Ravi Shankar 
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Chapter I : Diabetes mellitus and its complications 

presents an up-to-date review on the current diagnostic criteria for diabetes (Ravi-Shankar 

et a/2001). 

The general consensus of the key groups concerned is that diabetes mellitus is a group of 

metabolic diseases characterised by hyperglycaemia resulting from defects in insulin 

secretion, insulin action or both. The reports recognise that there are disturbances of 

carbohydrate, fat and protein metabolism, which can lead to chronic hyperglycaemia as 

well as microvascular, macrovascular, and neurological complications of this disorder. To 

date these main organisations have recognised that the vast majority of cases of diabetes 

mellitus fall into two main aetiopathogenic categories, both of which exist in the UK. The 

first group which is currently termed 'type I' or 'TIDM' is insulin dependent diabetes 

mellitus or juvenile onset diabetes, which includes the immune mediated beta cell 

dysfunction resulting in absolute deficiency of insulin secretion. There is also a subgroup 

ofTIDM where there is no evidence ofautoimmunity and this is termed 'type 1 idiopathic 

diabetes'. Approximately one-quarter of all diabetics suffer from the TlDM form and it 

will be this disorder that will be the main focus of interest during this thesis. Secondly, the 

more prevalent form of diabetes, which accounts for approximately three-quarters of 

patients, is termed 'type 2' or 'T2DM' and is 'non-insulin-dependent diabetes mellitus', 

which is characteristically onset during adulthood. Several subgroups of T2DM are also 

known to exist, an obese form and a non-obese form, as well as rare Maturity Onset 

Diabetes of the Young (MODY). The cause is a combination of resistance to insulin action 

and an inadequate compensatory insulin secretory response. 

Various lines of evidence also exist to classify further sub-groups of diabetes, which are 

numerically small in comparison to the TIDM and T2DM conditions, and are etiologically 

very heterogeneous. These include diabetes secondary to some other disorder such as 

pancreatic or endocrine diseases, gestational diabetes where the onset occurs in women 
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during pregnancy where glucose tolerance often returns to normal postpartum, and thirdly, 

all other types of diabetes mellitus associated with fibrocalcific pancreatitis and 

malnutrition related diabetes mellitus (MRDM). The up-to-date classification of diabetes 

subgroups proposed by the A.D.A. and adopted by the W.H.O is summarised in table l 

(Alberti and Zimmet 1998). 

During the development of this thesis a collection ofBritish Caucasoid TlDM subjects and 

Southern Indian T2DM subjects were studied. Therefore, both subgroups require a brief 

summation here. The classification criteria used throughout this thesis are based upon the 

recommendations of the 'aforementioned 'American Diabetes Association' clinical 

pmctice recommendations 1998/1999, along with World Health Organisation criteria 1998. 
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Type 

TlDM 

(Type 1) 

T2DM 

(Type 2) 
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Sub-groups 

(beta cell destruction, usually leading to absolute insulin 

deficiency) 

• Autoimmune . 

• Idiopathic 

• Predominantly insulin resistance with relative insulin 

deficiency. 

• Predominantly secretory defect with insulin resistance. 

Other specific • Genetic defects of ~-cell function. 

types • Genetic defects in insulin action. 

• Diseases of the exocrine pancreas 

• Endocrinopathies 

• Drug or chemical induced 

• Infections 

• Uncommon forms of immune-mediated diabetes 

• Other genetic syndromes associated with diabetes 

Gestational • Gestational impaired glucose tolerance 

diabetes (GDM) • Gestational diabetes 

Table 1. Classification of diabetes mellitus as outlined by WHO 1998. Adapted 
with slight modification from 'World Health Organisation' recommendations 1998 
(Aiberti and Zimmet 1998). 
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Diabetes mellitus 

In investigating any disease it is important to understand the fundamental underlying 

factors leading to the patients disease symptoms. This is particularly important in the case 

of diabetes, especially as two different forms of the disease are being studied within this 

thesis. This section will aim to define the two forms of diabetes under investigation 

'TlDM' and 'T2DM', which differ in their aetiological, pathogenic and epidemiological 

characteristics. 

Type 1 diabetes mellitus (TlDM) 

During the development of this thesis a collection of TlDM subjects of British Caucasoid 

origin were investigated as well as a family trio collection where the proband had TlDM. 

The TlDM subclass of diabetes is generally characterised by abrupt onset of severe 

symptoms, which indicate the presence of hyperglycaemia. Evidence suggests that there is 

a long pre-diabetic period where the initiation of pathogenesis may begin up to several 

years prior to the onset of diabetes (Gorsuch 1981). In some patients diabetes is brought to 

light by the onset of distinct physical symptoms which include polyuria, polydipsia, 

unexplained weight loss in spite of polyphagia and glucosuria. In extreme cases patients 

may also present with ketosis, acidosis and even coma. Other symptoms can include 

genital itching, impairment of visual acuity, repeated skin sepsis and unaccountable pain 

and paraesthesiae in the limbs. All patients are dependent upon exogenous insulin in order 

to sustain life and its omission results in life-threatening diabetic ketoacidosis caused by 

absolute insulin deficiency (insulinopenia). 

There are widespread biochemical abnormalities, but the fundamental defects to which 

most of the abnormalities can be traced are (I)-reduced entry of glucose into various 

peripheral tissues, and (2) increased liberation of glucose into the circulation from the 

liver. Only the TlDM form has an autoimmune aetiology with a genetic predisposition 
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linked to certain class 2 major histocompatibility (MHC) genes. There is also an idiopathic 

form of TlDM where the aetiology is unknown, there is no evidence of autoimmunity 

however patients are prone to insulinopenia and ketoacidosis. 

Diagnostic criteria for autoimmune TlDM 

The detection of glucose in the urine (glucosuria) is usually the first diagnostic indication 

of the diabetic state, and can be easily performed using the non-invasive 'Diastix' method. 

Although glucosuria is not a definitive marker of diabetes, it indicates a requirement for a 

blood-screening test. TlDM subjects also have an extra-cellular glucose excess and, in 

many cells, an intracellular glucose deficiency, a situation that has been described as 

starvation in the_ midst of plenty. The definitive clinical diagnosis of TIDM is therefore 

relatively straightforward and involves testing the patient's fasting blood glucose levels. In 

non-diabetic people under normal conditions of life, blood glucose concentration is 

regulated at values between about 3 mmolll (54 mg/dl) and 6 mmolll {108 mg/dl). In 

people with diabetes, both glycaemic setting levels and homeostatic corrective mechanisms 

are deranged in varying sometimes gross, degrees. Blood glucose values in untreated 

diabetes are often found to be in the range of 15-25 mmolll (270-450 mg/dl). 

In accordance to the new and updated 'ADA-expert committee' criteria guidelines for 

diagnosis, diabetes can be confirmed by one of three methods. These diagnostic figures 

vary slightly from earlier definitions reflecting the increase in knowledge with regard to 

the development of complications. The first indication of diabetes is the presentation of 

classic symptoms of diabetes such as polydipsia, polyuria and unexplained weight loss 

with a casuaVrandom plasma glucose concentration greater than or equal to 11.1 mmolll 

(200mgldl) (where casual is defined as anytime of the day irrespective of time since last 

meal). Secondly, diagnosis can be achieved by taking plasma glucose tests following 8 

hours of fasting (no calorific intake). This test requires repeat testing on a different day as 

- 14-



Chapter 1: Diabetes mellitus and its complications 

confirmation, and is set at 7.0 mmol/L (126 mg/dl) using the fasting plasma glucose (FPG) 

test. The third technique, which is not recommended for routine clinical use, involves 

using a glucose load containing 75-g anhydrous glucose dissolved in water and testing 

glucose levels 2 hours post load, where positive levels are greater than or equal to 

ll.lmmol/1 (200mg/dl). The ADA diagnostic criteria as proposed by 'The Expert 

Committee on the Diagnosis and Classification of Diabetes Mellitus' in 1997 are shown in 

table 2. 

Interest has also been shown in the use of glycated haemoglobin A1c (HbA1c) in 

conjunction with the FPG value as a tool for screening and identification of impaired 

glucose tolerance and diabetes (Peters et a/ 1996; Rohlfing et a/ 2000). The mean blood 

glucose level as a means of estimating glucose control can be measured by the HbA1c 

value, which is a component ofHbA1. It is known that glucose can attach to many proteins 

via a nonenzymatic, post-translational process through the formation of a Schiff base 

followed by an Amadori rearrangement to form an irreversible ketoarnine. Haemoglobin 

within newly formed red blood cells enters the circulation free from any glucose 

attachment. Red blood cells are freely permeable to glucose, and glucose becomes attached 

to haemoglobin at a rate that is dependent upon blood glucose concentration. Importantly, 

the turn over of red blood cells is relatively rapid and as a consequence of this, the average 

amount of glycated haemoglobin change reflects the mean blood glucose blood 

concentration over a 6-8 week period (Nathan et a/ 1984; Goldstein et al 1984). 

Suggestions have been made that diabetes should not be diagnosed in subjects with a FPG 

less than 7.8 mmol/1 (140mg/dl) unless accompanied with a high HbA1c value (Davidson et 

al 1999). However, due to problems in the standardisation of HbA1c assays this is not a 

technique routinely used in the diagnosis of diabetes mellitus. 
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Diabetes Mellitus 

Fasting 
or 
2-h post glucose load 
or both 

Impaired Glucose 
Tolerance (IGT}: 

Fasting concentration 
and 
2-h post glucose load 

Impaired Fasting 
Glycaemia (IFG): 

Fasting 

2-h 
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Glucose concentration (mmol 1-1 (mg dl-1
} 

Whole blood a Plasma 
Venous 

;:.: 6.1 (;:.: 110) 

;:.: 10.0 ( ;:.: 180) 

<6.1 (<110) 

;:.: 6.7 (;:>: 120) 
and 

< 10.0 (<180) 

;:.: 5.6 (;:>: 100) 
and 

< 6.1 (< 110) 

< 6.7 (< 120) 

Ca~illa~ 

;:.: 6.1 ( ;:.: 110) 

;:.: 11.1 ( ;:.: 200) 

<6.1 (<110) 

;:.: 7.8 (;:>: 140) 
and 

< 11.1 ( <200) 

;:.: 5.6 (;:>: 100) 
and 

< 6.1 (< 110) 

< 7.8 (< 140) 

Venous 

;:.: 7.0 (?; 126) 

;:.: 11.1 ( ;:.: 200) 

<7.0 (<126) 

;:.: 7.8 (;:>: 140) 
and 

< 11.1 (<200) 

;:.: 6.1 (;:>: 100) 
and 

< 7.0 (< 126) 

< 7.8 (< 140) 

Ca~illa~ 

;:.: 7.0 ( ;:.: 126) 

;:.: 12.2 ( ;:.: 220) 

<7.0 (<126) 

;:.: 8.9 (;:>: 160) 
and 

< 12.2 (<220) 

;:.: 6.1 (;:.: 110) 
and 

< 7.0 (< 126) 

< 8.9 (< 160) 

Table 2. Values for diagnosis of TlDM as recommended by WHO 1998 criteria 
for diagnosis of diabetes mellitus (adapted from Alberti and Zimmet 1998). 
a Corresponding values for capillary plasma are: for Diabetes Mellitus, fasting ;:>:7.0 
(;:.:126), 2-h ;:.:12.2 (;:>:220); for Impaired Glucose Tolerance, fasting< 7.0 (< 126) and 2-
h ;:>:8.9 (;:.:160) and <12.2 (<220); and for Impaired Fasting Glycaemia ;:.:6.1 (;:>:110) and 
<7.0 (<126) and if measured, 2-h <8.9 (<160). 
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Glycaemic control in TlDM 

As a consequence of the immune mediated genetically programmed destruction of the islet 

~-cells, TlDM patients have much reduced or complete loss in the production of insulin. 

In some rare patients where there are still some remaining 13-cells adequate glycaemic 

control can be achieved by weight reduction, exercise and/or the use of oral agents to 

stimulate insulin production. These patients do not require insulin providing they follow a 

strict dietary control of carbohydrate and fat intake. Other diabetic subjects require insulin 

in order to maintain adequate glycaemic control, but its absence is not life threatening. 

Most TIDM cases however, fit into the category where survival of the patient is only made 

possible by the administration of insulin. 

Insulin therapy 

Administration of insulin has become the primary treatment for TIDM. Firstly in the form 

of animal insulin's such as bovine or porcine, and later with genetically engineered semi

synthetic human insulin (Fletcher 1990). Almost all insulin now used in the United States 

is synthetic recombinant human insulin. Today insulin still requires injecting 

subcutaneously and there is no form of administering orally, however pulmonary and rectal 

routes are currently under investigation (Laube et al 1998), as well as a surgically 

implanted programmable insulin pump (Dunn et at 1997). The primary aim of insulin 

injection therapy is to restore the plasma concentration of insulin to a normal level that 

would have been maintained by the islet ~-cells, and consequently achieve long-term 

glycaemic normalisation. Several different insulin regimens can effectively control 

hyperglycaemia in subjects through multiple daily injection of regular, intermediate-acting 

and long acting insulin's or continuous subcutaneous insulin infusion with a pump. 

Therapeutic problems do however exist such that ~-cell secretion of insulin is stringently 

controlled to a more accurate degree than can be achieved by injection regimes, and also 
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that there is a physiological difference in the ratio of portal to peripheral insulin 

concentration to normal. 

Pancreas and islet transplantation 

Pancreatic transplantation and immunosuppressive regimes using cyclosporin and anti-T

cell antibodies have been successful in the treatment of diabetic patients with renal failure 

where success results in independence from exogenous insulin therapy and a normalisation 

of blood glucose concentrations and HbA1c values. Recently a great deal of research has 

been employed to establish techniques for a far less invasive procedure of islet cell 

transplantation. This involves 500,000 or more islets from cadaveric pancreases injected 

into the portal vein of the recipient. Current success in diabetic patients is however very 

low and improvement in immunosuppressive drugs and islet harvesting techniques are 

required. This has begun to be seen in one study carried out in Edmonton, Canada, where 

seven TlDM subjects were transplanted with -800,000 islet cells and maintained on 

sirolirnus, tacrolimus and daclizumab. All subjects showed normal HbAlc values without 

exogenous insulin one year after transplantation (Shapiro et a/ 2000; Shapiro et a/ 2001 ). 

Improvements in experimental harvesting techniques have also been seen in studies that 

have so far only been carried out in animals to generate islet cells from islet-producing 

stem cells (Ramiya et a/ 2000; Halban et a/ 2001). 

Epidemiology of TlDM 

The onset of TlDM is rare in the first few months of life but rises gradually throughout 

early childhood and peaks during the pubertal years in both males and females. Following 

this, there is a sharp fall in incidence with approximately 30% of cases being diagnosed 

after the age of 20 (Lounamaa 1996). Although the incidence is highest in schoolchildren 

and adolescents it is also now clear that TlDM may develop at any age and there are 

indications that the age-at-onset pattern of the disease is changing (Tuomilehto 1992; 
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Melbak and Marner 1994). The presentation of diabetes is similar in both children and 

adults, and the same diagnostic criterion applies to both (Pinkey 1994). There is little 

difference in the incidence of TIDM between males and females, but the EURODIAB 

ACE study showed a slightly higher incidence in males compared to females but without 

statistical significance (Green 1992). A family history of diabetes has been shown to be a 

contributing factor to the onset of diabetes where approximately 5% of frrst degree 

relatives of a diabetic proband also have the disease. Twin studies have also shown a 50% 

concordance rate for the disease (Barnett 1981 [b ]). The majority of diabetic patients 

however do not have a first degree relative with the disease. Other influences affecting the 

incidence of T1DM also appear to exist and are thought to include temporal trends where 

most North European countries show a steady increase in incidence, and also seasonal 

variations where a decline in incidence is often seen during the summer months (Karvonen 

1993; Karvonen 1996; Karvonen 1998). 

Incidence in UK population and worldwide 

TIDM has an annual incidence of 15.6 cases per 100,000 of the population under 21 years 

in the U.K. There is a weak North-South gradient in incidence with Scotland and Northern 

Ireland having overall higher rates in incidence than England (Amos et al 1997; Zimmet 

1999; Dobson. 2000). The incidence of TIDM is currently being monitored by the WHO 

Diabetes Mondiale (DiaMond) study project, consisting of diabetes monitoring registries 

throughout the world (WHO 1991). On a world-wide scale diabetes currently affects 135 

million people of which 13 million have the TIDM subgroup. The incidence of TlDM 

accounts for 10-15% of all diabetic cases in European populations. The incidence is 

highest in Finland/Scandinavia, affecting more than 45 cases/year/100,000 inhabitants 

(Tuomilehto et al 1999), and Sardinia affecting 30/100,000 per year (Muntoni and Songini 

1992). It is of medium incidence in Europe and the USA (approximately 10-15 

cases/year/1 00,000). The incidence decreases dramatically towards the Mediterranean area 
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affecting 8/100,000 inhabitants per year, and is lowest in oriental groups (0.5 

cases/year/100,000) and populations living in the tropics (Green et al 1992; Yang et al 

1998). 

Karvonen et al 1993 reported a steady temporal increase in the incidence of diabetes in 

North America, Northern Europe, Japan and New Zealand between 1960 and 1989. The 

same group also published a later report, which further substantiated this, as well as 

highlighting a significant global variation in the incidence of T1DM (Karvonen et al 

2000). Gardner reported data from Finland and the UK showing that the main increase in 

the incidence of diabetes is occurring in children under 5 years (Gardner et a/1991). The 

world-wide prevalence of diabetes was predicted to more than double between 1994 and 

2010, to 239 million people (McCarty and Zimrnet 1994). 

Pathogenesis of TlDM 

The exact processes initiating the onset of Tl DM are not yet completely understood, 

although several environmental and genetic influences have been found to be strongly 

associated to the disease. The pathogenesis of TIDM is known to be associated with an 

organ specific autoimmune reaction against the pancreatic islet ~-cells for which the 

pathognomic sign is a nearly complete loss of the pancreatic ~-cells at the time of clinical 

diagnosis. 

Anatomy and physiology of the non-diabetic and TlDM pancreata 

The pancreas is a composite and lobulated gland, which lies immediately behind the 

peritoneum of the posterior abdominal wall. It consists of a head, neck, body and tail and 

normally weighs between 60g and 160g with a length of about 15cm. The pancreas is 

composed of two types of secretory cells. Approximately 98% of the pancreatic cells are 

exocrine 'serous acini', which are under the influence of secretin and cholecystokinin 
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(CCK) produced by enteroendocrine cells of the small intestine. These cells discharge 

various digestive enzymatic secretions such as trypsin, lipase and bicarbonate into the 

duodenum to assist in digestion. The remaining 2-3% are pale staining metabolic endocrine 

cells, which cluster together in a cellular aggregate known as the islets of Langerhans, and 

are involved in hormone secretion into the portal vein. The normal adult human 'islets' are 

ovoid, with an average diameter of 76 x 175J.Lm, and consist of a compact mass of 

epithelial cells permeated by a dense network of capillaries. These collections of cells are 

scattered throughout the pancreas, although they are more plentiful in the tail than in the 

body and head (Lazarus and Yolk 1962). There is a wide variation in the number of' islets' 

in the human pancreas, however there are approximately 1 05 
- 106 scattered throughout the 

exocrine parenchyma of the pancreas. Each aggregate contains approximately 1000 

endocrine cells, of which four cell types can be distinguished on the basis of their staining 

properties, and morphology using electron microscopy. Approximately 80% are the insulin 

producing 'beta' (fl) cells, and about 15% are glucagon secreting 'alpha' (a.) cells. The 

remaining 5% are composed of 'delta' (o) cells that produce somatostatin, and 'pancreatic 

polypeptide'-containing (PP) cells. The beta cells are generally located in the centre of 

each islet, and tend to be surrounded by the alpha cells (Goldstein et a/1968; Deconinck et 

a/1971). 

Insulin is synthesised in the beta cells firstly as preproinsulin in the ribosomes of the rough 

endoplasmic reticulum (ER) which is then cleaved to form proinsulin and transported to 

the golgi apparatus where it is packed into secretory granules located close to the cell 

membrane. Insulin secretion is regulated primarily by extracellular glucose concentration 

whereby glucose is taken up into the beta cells via glucose transporters (GLUT2 and 

GLUTl) and is consequently metabolised to glucose-6-phosphate. This results in an 

intracellular increase in ATP concentration closing potassium dependent ATP (KA TP) 

channels in the beta-cell membrane causing membrane depolarisation and an influx of 
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calciwn. This increase in intracellular free calcium promotes margination of the secretory 

granules, their fusion with the cell membrane and the release of their contents into the 

extracellular space. The secretion of insulin in normal subjects is pulsatile with a 

periodicity of9-14 minutes, and loss ofthis is an early sign ofp-cell dysfunction. 

Pancreata from patients with recent onset TIDM are normal in appearance, size and 

weight, however, patients with chronic TIDM display a considerable reduction in weight 

and volwne of the pancreas. This volwne reduction, results from severe, pathognomonic 

changes which mainly involves the reduction of P-cells by pancreatic endocrine cell 

atrophy (Gepts 1965; Gepts and Lecompte 1981). Quantitative evaluation using 

immunohistochemistry and inununoflourescence techniques on islet tissue from newly 

diagnosed diabetic pancreatic biopsy specimens has revealed a marked decrease in the total 

P-cell insulin containing cells to about one-third to one-seventh of that of non-diabetics. 

These studies have also shown that the diabetic pancreas exhibits preservation of glucagon 

containing cells, as well as evidence of some immunological changes (Stefan et a/ 1982; 

' Rahier et al 1983; Hanafusa et al 1990). The P-cells do not always disappear completely, 

but are still present in most patients with diabetes of less than 10 years duration, and in 

40% of patients with disease duration between 11 and 40 years. Severe acinar cell atrophy 

is seen in the surrounding cells of insulin deficient islets, and the peri-lobular spaces are 

enlarged and contain loosely arranged connective tissue, but acinar tissue around insulin-

containing islets is normal (Foulis and Stewart 1984). The large arteries are often affected 

by arteriosclerosis, while the small arterial vessels show diabetic microangiopathy. The 

islet cell organisation is also distorted with many endocrine cells scattered as single cells in 

the exocrine tissue (Gepts and Lecompte 1981; Cossel et a/ 1983; Kawanishi et a! 1966; 

Kloppel 1985). 
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Aetiology of J3-cell destruction in TlDM 

The precise aetiology of autoimmune ~-cell destruction of TlDM is still not completely 

clear and strong evidence indicates a multifactoral basis, determined by both genetic and 

non-genetic (environmental) factors (Tisch and McDevitt 1996; Haverkos 1997). Several 

groups have written comprehensive reviews with respect to the pathogenesis of TlDM 

(Atkinson and MacLaren 1994; Mandrup-Poulsen 1998; Chowdhury et a/ 1999 [c]). 

Evidence suggests that TlDM results from a cellular-mediated autoimmune destruction of 

the P-cells of the pancreas, determined by defects in immune regulatory genes, which is 

often initiated several years prior to the onset of diabetes. However, twin studies have 

shown that there is also considerable evidence for the involvement of environmental 

factors in the pathogenesis of ~-cell destruction. It has been hypothesised that telomeres 

might play a role in the pathophysiology of TlDM, where altered cell turnover and 

different rates of attrition in the length of the telomeres leads to premature replicative 

senescence of the cell (Jeanclos et a/ 1998). It has also, recently been suggested (Pipeleers 

et a/ 2001) that the ~-cell itself may actively participate in its own destruction, rather than 

being a passive victim of a cytotoxic process. They suggested that the surrounding non-P

cells also influence the process of P-cell death by making the islets internal milieu more 

protective or toxic. Evidence for the immunologically mediated destruction of insulin 

secreting P-cells comes from several lines which will be discussed here: 

Autoimmune markers 

One indication of diabetes is the presence of insulitis, where the 'islets of Langerhans' of 

recently diagnosed diabetic patients are infiltrated by mononuclear cells. This islet· 

infiltrate consists primarily ofT lymphocytes, from both of the two major subtypes 'cluster 

of differentiation'- 4 and 8 (CD4 and CD8) with a predominance of CD8+ cells together 

with macrophages (Foulis et a/ 1986). The presence of markers of the autoimmune 
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processes, which lead to the destruction of the P-cells of the pancreas, is also a factor. 'Islet 

cell auto-antibodies' {ICA's) are a feature of newly diagnosed diabetes and comprise 

autoantibodies to a number of antigens (Wilkin 1990; Bonifacio et al 1990; Genovese et at 

1992). Such antibodies include autoantibodies to insulin (IAA's), autoantibodies to 

glutamic acid decarboxylase (anti-GAD6s), and autoantibodies to protein tyrosine 

phosphatases (I-A2) which can be detectedin up to 90% of patients (Atkinson et a/1986; 

Christie et a/1992; Baekkeskov et a/1990; Leslie et a/1999 [a]; Lernmark 1987; Hawa et 

a/1997). Approximately 10% of new cases of TlDM occur in first degree relatives of a 

diabetic proband. Amongst these, positivity for ICA's and at least one other autoantibody 

gives an 88% risk of developing TlDM, and identifies 75% of those who are actually 

progressing to disease. It is important to note that none of the autoantigens described to 

date have been found to be the defmitive diabetes autoantigen. 

Metabolic markers also provide a prediction tool for the onset of TlDM where the acute 

insulin response to several secretagogues such as glucose, arginine, glucagon and 

isoproterenol decrease progressively during the preclinical period. The most widely 

performed test is the acute insulin response to glucose (AIR-g) test where the serum insulin 

increase after an intravenous glucose challenge is measured, the result of which correlates 

with functioning beta cell mass (McCulloch et a/1993). 

Animal studies 

Animal studies into immune-related P-cell destruction using BioBreeding (BB) rats and 

Non Obese Diabetic (NOD) mice have served as models for human TlDM. Studies carried 

out by Like et a/1982, using 'BB' rats have shown evidence for cell mediated autoimmune 

pathogenesis of diabetes by administering antiserum to rat lymphocytes which prevented 

the onset of diabetes. Further studies using the BioBreeding/Worcester (BB/Wor) rat, 

showed that pancreatic islet insulitis occurs in the presence of enhanced class I antigen 
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expression (Weringer and Like 1988). Studies using transplantation methods on the NOD 

mouse were carried out by Stein et al 1992, which showed that destructive insulitis can be 

transferred to non-diabetes prone mice. 

Genetic susceptibility to TlDM 

The genetics of TlDM have been comprehensively reviewed by Cavan et a/ 1992; Julier et 

a/1996; and Todd 1997. These articles have discussed the various lines of evidence for the 

involvement of several key genetic components in the aetiology of TlDM, and it is these 

points that will also be discussed here. The involvement of a genetic component in the 

underlying aetiology of TlDM has been confirmed, based upon findings from twin studies 

and also from family studies, suggesting that susceptibility to developing TlDM may be in 

part due to a genetic component. Monozygotic and dizygotic twin studies have argued a 

strong case for a genetic involvement in the genesis of TlDM. Twin study's where the 

'index' twin has developed TlDM has been carried out on large patient collections from 

several populations. These include studies carried out by O!mos et a/ 1988; Barnett et a/ 

1981 (b); Kaprio et a/ 1992 on a population of Finnish twins, by Kumar et a/ 1993 on 

North-American twins, Kyvik et a/1995 on young Danish twins, and recently by Redondo 

et a/1999 and 2001 on monozygotic twins in Great Britain and the United States. These 

studies have collectively shown a higher disease concordance rates for TlDM in identical 

monozygotic twin pairs (45% to 96%), compared to non-identical twins (3% to 37%). 

These C<?ncordance rates are however below unity, implying that there is also an 

environmental component involved in the aetiology. These studies have also concluded 

that the twins that progressed to heterogeneity of diabetes (25%), did so if the patients 

were diagnosed at a younger age, and also that the rates of developing diabetes in the eo

twins declines sharply in the years after diagnosis of the index twin. 
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A positive family history is also a risk determinant, with familial clustering occurring 

among first-degree relatives. In siblings of diabetic probands the risk of developing the 

disease is about 5% (WHO 1994), and there is evidence of preferential transmission where 

the risk is higher if the child's father (5-6%) rather than the mother (2-3%) has TlDM. 

Between 80-90% of all newly diagnosed diabetics have no family history of the disease, 

however the remaining 20% of patients show familial aggregation (Warram 1984; The 

EURODIAB ACE Study Group 1998). Genome wide searches of families with two or 

more affected sib pairs have been carried out using fluorescence based technology and 

linkage analysis. These searches have identified more than 30 genomic susceptibility 

intervals and potential candidate genes for TIDM situated on different chromosomes, with 

varying degrees of evidence for linkage (Easton 1989; Davies et a/ 1994; Todd 1997; 

Friday et a/ 1999). In addition to the argument for a genetic involvement, epidemiological 

data suggests that disease incidence rate is increasing at a rate which is faster than can be 

explained by changes in the gene pool alone (Karvonen et a/ 1993). 

Susceptibility genes for TlDM 

Two main chromosomal influences have been found to be associated with TIDM. Firstly, 

and the most influential is the IDDMI in the Major Histocompatibility Complex (MHC) on 

chromosome 6p21, and the second is the IDDM2 in the insulin gene region (INS) on 

chromosome 11 p 15 and these will be briefly discussed below. 

Major Histocompatibility Complex (MHC) (IDDMl) 

The Major Histocompatability Complex (MHC) is situated in the region associated with 

the genes for the immune system recognition molecules known as the Human Leucocyte 

Antigen (HLA). The MHC is situated on chromosome 6p21, consists of around 3500 Kb of 

DNA which code for more than 200 genes and has been shown to be a principle region 

associated with the genetic predisposition to TIDM. Most of these genes are known to be 
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involved in the antigen presentation and processing events of the immune response. The 

MHC is composed of three major regions, namely class I, class II and class Ill, which are 

described by Campbell and Trowsdale 1993 and Trowsdale and Camp bell 1997. The class 

I region (covering HLA-A, -B, -C, -E, -F, -G and -H) encodes the single polypeptide beta

chain peptide which forms part of the trans-membrane molecules expressed on the surface 

of nucleated cells to activate CD8+ cytotoxic T -lymphocytes. The class II region contains 

genes, which code for the alpha and beta chains of the HLA-DR, DQ and DP molecules, 

which are involved in activating CD4+ T-helper (Th) cells. The class Ill region encodes a 

·large number of genes related and unrelated to the immune response. Such genes include 

complement factors, tumour necrosis factors (TNF) ex. and J3, heat shock proteins and many 

others. 

The pathological processes that take place during J3-cell death are thought to begin with the 

expression of interferon-alpha by the beta cell. Secretion of this cytokine is associated with 

hyperexpression of class I MHC by all endocrine cells within the islet and the presence of 

aberrant class II MHC molecule expression by B-cells (Foulis 1996). Early studies for 

genetic markers of TlDM in the MHC 'class I' region showed a positive association 

between HLA-BlS, B8 and B18. The strongest associations came from B8 where positive 

associations were found in both Caucasoid and Negroid populations with a neutral 

association in Asians (Cudworth and Woodrow 1975, 1976.; Nerup et al1974; Singal and 

Blajchman 1973). A number of other studies have also shown evidence that the 'class I' 

region contains genes that play an important role in the susceptibility to TlDM (Demaine 

et all995; Fujisawa et all995). Also, studies carried out by Hodgkinson et all999 have 

found an association between the HLA-E locus and age at onset and susceptibility to 

TlDM in British Caucasoids. It is within the 'class II' and 'class ill' regions of the MHC 

however, that several stronger associations have since been made for candidate genes for 

TIDM. The pathology involving autoimmune destruction of pancreatic islets in TIDM has 
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been found to have a strong association with possession of Human Leukocyte Antigen 

(HLA) -DR3 and/or -DR4 antigens (Platz et a/ 1981; Ratter et a/ 1983; Wolf et a/1983). 

In the British Caucasoid population, approximately 90-95% of patients with TIDM has the 

DR3 and/or DR4 HLA antigens, compared with 45-54% of the general population (Jenkins 

et a/1990; Cavan et a/1997). Approximately 50% ofTIDM patients are heterozygous for 

HLA-DR3/DR4 whereas this is only seen in 5% of the normal population (Gottlieb and 

Eisenbarth 1996). It has been suggested that the HLA association with diabetes relates to 

the affinity of the MHC molecules for different diabetogenic peptides (Nepom and 

Robinson 1990). 

In conclusion, the combination of these regions within 'class I, I1 and ill' of the MHC 

represents the genetic susceptibility associated to the MHC (Lie et a/1999). However it is 

important to note that this does not completely confer susceptibility and that other genes 

within and outside of the MHC are also important in the susceptibility or protection from 

the onset ofTlDM. 

Insulin gene (INS) (IDDMl) 

The insulin gene region located on chromosome 11p15 has also been found to show 

association with, and linkage to TlDM. This 20-kb chromosome region is known to 

contain genes encoding tyrosine hydroxylase (TH), insulin (INS) and insulin like growth 

factor II (IGF-II). The human insulin gene and its flanking regions are known to exhibit 

conserved and highly variable sequences, which have previously been sequenced, 

originally by Bell et a/1982, and showed DNA sequence polymorphisms. It is known that 

there is a highly polymorphic region flanking the 5' end of the insulin gene (Ullrich et a/ 

1982; Owerbach and Aagaard 1984). A TlDM susceptibility region has been found to be 

present in the 5' region of chromosome llp15.5, in a case control study (Bell et a/1984). 

Owerbach and Gabbay 1993 reported finding that suggest the localisation of the TIDM 
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susceptibility locus on chromosome llp15.5 is in the 5' variable number tandem repeat 

(VNTR) region of the insulin gene. Also Lucassen et al 1993 reported susceptibility to 

T lDM to be mapped to a 4.1-kb region including the insulin gene and VNTR, but 

excluding TH and IGF2. By cross-match haplotype analysis and linkage disequilibrium 

mapping, Bennett et at 1995 and 1997 mapped the mutation to within the VNTR itself. 

They have shown that IDDM2 expression is influenced by parent-of-origin effects, and 

that allelic variation of the VNTR may correlate with the level of INS- ribonucleic acid 

{RNA). 

A transracial study carried out by Undlien and colleagues looked at TlDM patients from 

three different ethnic groups, namely Tanzanian blacks, Norwegian Caucasoids and 

Japanese Orientals. They concluded that polymorphisrns in the insulin gene only conferred 

significant susceptibility to TlDM in Caucasoids (Undlien et a/1994). Mijovic et a/1997 

reported further studies on INS region genotypes in Japanese, Hong Kong Chinese, North 

Indian Asians and Afro-Caribbean's finding no INS polymorphism across all races. 

It would therefore appear that the additional risk ofTlDM conferred by the insulin gene is 

small in comparison to the contribution of particular HLA-DQ alleles. However, it is clear 

that it plays an important role as an additional marker and the contribution from other INS 

gene region polymorphisms cannot be excluded and warrants further investigation. 

Other genes contributing to TlDM 

Theoretical calculations suggest that the combined effects of IDDMl and IDDM2 do not 

count entirely for the genetic component of susceptibility to the disease. The respective 

contributions of the genes to the susceptibility to TlDM is approximately 42% for IDDM1 

and 10% for IDDM 2, indicating that other genes must also be involved (Davies et at 

1994). Several other genes have been proposed to be associated with susceptibility to 
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TIDM. Such genes include a locus on chromosome 15q26 (IDDM3) (Field et a/ 1994), 

11q13 (IDDM4) (Hashimoto et a/1994; Nakagawa et a/1998), 6q (IDDM5) (Davies et al 

1996), and 2q (IDDM7) (Copeman et a/ 1995). Also several investigators have found an 

association between the T -cell receptor (TCR) constant beta chain polymorphism located 

on chromosome 7q35 and TIDM (Hibberd et a/ 1992; Robinson et a/ 1993; Zhao et a/ 

1994). Analysis of a large collection of 356 United Kingdom affected sib pair (ASP) 

families (Warren 1) also found the IDDM1/MHC to be the major locus associated to 

T1 DM, and only four other regions outside of the MHC were not excluded. Two of these 

regions on chromosome 10pl3-p11chromosome 16q22-16q24 showed evidence oflinkage, 

along with two possible susceptibility genes located at chromosome 14p12-q21 and 

chromosome 19p13-ql3 (Bain et al 1990; Mein et a/1998). It is therefore likely that the 

genetic aspect of the autoimmune pathogenesis of TIDM outside of the established MHC 

region, is an amalgamation of several different contributory genes (Friday et a/ 1999). 

Non genetic risk factors of TlDM 

There are strong arguments for the involvement of an environmental influence in the 

pathogenesis of TIDM (Cooper et at 1999). These primarily include a low rate of 

concordance in monozygotic twins, where more than 70% of monozygotic twin pairs have 

been found to be discordant for the disease (Bamett et at 1981 [a and b). The incidence of 

diabetes also varies significantly according to geographical location. Large differences in 

frequency between different countries has been shown (Diabetes Epidemiology Research 

International Group 1988), and also migrants from areas of low risk to areas of high risk 

have been seen to acquire an increased risk of disease (Bodansky et at 1992). The clinical 

manifestation of the disease also shows a seasonal pattern with fewer cases diagnosed in 

the summer months and a peak in the autumn months (LaPorte and Cruickshanks 1984). 

Karvonen et at 1993 reported that in some countries of the world the rise in incidence of 

TIDM is occurring at a rate that cannot be explained by changes in the gene pool. Whilst it 
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has been proven to be difficult to elucidate a direct putative environmental agent involved 

in the onset of TlDM, research has shown several candidate factors to have a modulating 

or disease-triggering effect, and these are briefly outlined below; 

Viral Infection 

A role for an infectious agent has been indicated by the occurrence of epidemics, non

familial clustering and seasonality in the incidence of disease (Leslie and Elliot 1994). A 

viral infection can initiate the autoimmune destruction of the islet cells of the pancreas 

through autoreactive lymphocytes by molecular mimicry mechanisms. This process occurs 

through an immune response against a viral protein that shares an amino acid sequence 

with a beta-cell protein resulting in the appearance of antiviral cytotoxic CD8 lymphocytes 

that react with self protein on the beta cells. Among the most strongly suspected 

environmental agents are certain viruses, enteroviruses and Coxsackie B viruses in 

particular and exposure early in life, possibly in utero may contribute to the aetiology of 

TlDM (Lounamaa 1996). Diabetes has been seen to occur in subjects with congenital 

rubella (Forrest et al 1971), Coxsackie B, cytomegalovirus, hepatitis C and other viruses 

which have been implicated in inducing the disease (King et al 1983; Karjalainen et a/ 

1988; Pak et al 1988). Several studies in animals have demonstrated that seveml viruses 

trigger the onset of diabetes and these include encephalomyocarditis (EMC) virus, 

Coxsackie B4 virus, Kilhams rat virus (KRV) and rubella virus. These viruses trigger 

diabetes either by directly infecting and destroying the insulin producing pancreatic beta 

cells, or by initiating an autoimmune response against the beta cells. 

Environmental Insult 

A second process could be an environmental insult which may generate cytokines and 

other inflammatory mediators that induce the expression of adhesion molecules in the 

vascular endothelium of the pancreatic islets, resulting in extravasation of circulating 
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leukocytes and the presentation of beta cell antigens (Atkinson et a/1994). Environmental 

insult may be in the form of exposure to certain food proteins or certain toxins and drugs. 

Early studies into the effects of poor nutrition during infanthood and the incidence of 

TlDM came from research carried out on a Scandinavian population (Borch-Johnson et a/ 

1984; Borch-Johnson et a/1984). The studies show some evidence to suggest that reduced 

breast-feeding during infancy is associated with the development of islet cell 

autoirnmunity. The association is suggested to be due to early exposure to cows milk 

protein (CMP) triggering an immune destruction of the ~-cells (Martin et a/1991; Virtanen 

et a/ 1994; Akerblom and Knip 1998). Amino acid homologies between the cows milk 

protein bovine serum albumin (BSA) and .the islet cell autoantigen ICA69 may explain the 

onset in some patients, in particular the CMP variants ~-casein A I variant and ~-casein 

(AI +B). Many drugs are also known to impair insulin secretion or insulin action, such as 

nicotinic acid and g1ucocorticoids (Pandit et a/ 1993; O'Byrne et a/ 1990), and toxins such 

as Vacor (rat poison) and pentamidine can permanently destroy pancreatic beta cells 

(Gallanosa et a/1981; Assan et a/1995). 

Prevention of TlDM 

Effort has been made to find effective preventative therapy for subjects at high risk for 

TlDM that can be identified using a combination of immune, genetic and metabolic 

markers. Recent data from prospective studies in humans suggests that it will soon be 

possible· to predict with reasonable certainty from genetic and autoantibody screening 

people who are likely to develop TlDM. Immunotherapy using a combination of drugs 

including azathioprine, cyclosporine, nicotinamide and insulin to reduce the immune 

mediated destruction of beta-cells has been investigated in pilot studies (Skyler and Marks 

1993). Success in these uncontrolled pilot trials has led to larger controlled trials such as 

the European Nicotinamide Diabetes Intervention Trial (ENDIT) and the Diabetes 

Prevention Trial for type I diabetes (DPT-1), the outcome of which are still to be 
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determined. Other approaches are looking at the expression of intercellular adhesion 

molecules (ICAM) such as ICAM-1 that is involved in accelerating beta cell destruction by 

cytotoxic T cells (Yagi et al 1995). Animal studies have also indicated that vaccination 

with insulin or its peptides looks very promising as a prevention method. Results from 

pilot trials in humans are also encouraging for the prospect of using insulin for primary 

prevention (Graves and Eisenbarth 1999). 
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Type 2 diabetes mellitus (T2DM) 

· During the development of this thesis a collection of Dravidian T2DM subjects from the 

Southern Indian region of Madras were also investigated. It is therefore necessary to 

differentiate between the T2DM subjects and TlDM subjects that are also included in the 

study. T2DM is often asymptomatic for many years and frequently remains undiagnosed 

because the level of hyperglycaemia is often not severe enough to provoke noticeable 

symptoms of diabetes. Patients may present either as a result of complications of diabetes 

as such patients are at increased risk of developing macrovascular and microvascular 

complications, or incidentally with an abnormal blood or urine test (Harris et al 1992). 

Subjects have relative insulin deficiency and do not normally require insulin treatment to 

survive. T2DM is characterised by hyperglycaemia caused by impaired insulin secretion, 

impaired insulin resistance in muscle, and elevated hepatic glucose production. Due to its 

clinical heterogeneity T2DM can be divided into obese and non-obese forms and also into 

early and late onset forms. The early onset form includes the formerly named 'maturity 

onset diabetes of the young' (MODY), which is a genetically heterogeneous monogenic 

form of T2DM characterised by an early onset <25 years of age, and autosomal dominant 

inheritance. The majority of T2DM subjects are obese or have characteristically increased 

percentage of body fat distributed predominantly in the abdominal region (Kissebah 1982). 

It occurs more frequently in women with prior gestational diabetes, and individuals with 

hypertension or dyslipidaemia. Ketoacidosis is seen rarely in T2DM and when it does it is 

usually in association with illness or infection. 

Diagnostic criteria for T2DM 

The diagnostic criteria for T2DM are the same as for TlDM where the fasting plasma 

glucose test is used. Insulin resistance may improve with weight reduction and/or 

pharmacological treatment of hyperglycaemia. Patients with T2DM are not dependent on 

insulin for prevention of ketonuria and are not prone to ketosis. However they may require 
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insulin for correction of symptomatic or persistent fasting hyperglycaemia if unable to 

correct using diet controls or oral hypoglycaemic agents (sulphonylureas/biguanidines). 

T2DM is often also accompanied by hypertension, high serum low-density-lipoprotein 

(LDL) cholesterol concentrations and low serum high-density-lipoprotein (HDL) 

cholesterol concentrations that can increase ~ardiovascular risk. 

Treatment of T2DM 

As with TIDM it is necessary to control the blood glucose levels in T2DM subjects, which 

can be achieved through both non-pharmacological treatment and pharmacological 

therapy. The United Kingdom Prospective Diabetes Study (UKPDS) suggested that as with 

TIDM maintaining as near normal blood glucose concentration in T2DM subjects by oral 

hypoglycaemic drugs or insulin markedly reduces the risk of microvascular complications 

(UKPDS 33). Non-pharmacological intervention in T2DM can improve many aspects of 

the disease including hypertension, obesity and insulin releaSe and effect. Weight reduction 

and calorific control are known to greatly improve glycaemic control and insulin 

sensitivity in T2DM subjects (Henry et a/1985). However, although diet, weight reduction 

and exercise are known to improve glucose metabolism compliance with these 

interventions is not sustained in many patients (Uusitupa et a/ 1993). As a consequence, 

drug or insulin therapeutic intervention is usually required for which there are currently 

four options, which can be applied independently or through polypharmacy. An increase in 

insulin release can be achieved with sulfonylureas (glipizide or glyburide) or meglitinides 

(Repaglinide). Increased insulin responsiveness can be achieved with a biguanide 

(metformin) or a thiazolidinedione (rosiglitazone- Avandia or pioglitazone- Actos). The 

intestinal absorption of carbohydrate can be modified with an alpha-glucosidase inhibitor 

(acarbose and miglitol), and a lipase inhibitor (Orlistat- Xenical) can be used to modify the 

absorption of fat. The administration of exogenous insulin can also be applied in subjects 

who have persistent hyperglycaemia despite other intervention. 
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Epidemiology of T2DM 

T2DM is the most common form of diabetes, accounting for 80-90% of all cases in 

developed countries, and the majority of cases in developing countries. The prevalence of 

T2DM varies enormously from population to population and between countries throughout 

the world. The highest prevalence has been recorded in Pima Indians and the Micronesian 

population in the Central Pacific where up to 25% of each population is affected (Trevisan 

1998). In most industrially advanced societies, the incidence of T2DM rises throughout 

adult life and is usually highest in old age. It has been noted that while the incidence of 

new cases of T2DM seems fairly stable, the prevalence in the general population may be 

rising. A study carried out in Canada showed that the prevalence of T2DM rose from 4.5 to 

7 percent between 1986 and 1991 (Blanchard 1996). Several reviews have highlighted 

differences in the clinical profiles of diabetes between the developed countries of the 

temperate region and tropical countries (Mohan 1986).. The T2DM subjects included in this 

study were collected from the Southern Indian region of Madras, a mainly Dravidian sub

population region where T2DM is the most common form of diabetes seen. Previous 

studies carried out in the Southern Indian toWn of Kudremukh have shown that the overall 

prevalence of diabetes was as high as 5%, and in those older than 40 years it rose to 21% 

(Ramachandran 1988 [a and b)). In the region of Madras studies have shown a higher 

prevalence of diabetes in the urban population (8.2%) compared to the rural areas (2.4%) 

(Ramachandran et a/1992). Ramachandran et a/1988 [a] also demonstrated that there is a 

very high risk of diabetes in Southern Indian families with one diabetic parent. 

Pathogenesis of T2DM 

In the pathogenesis of T2DM there are at least two pathological defects either of which 

may be the predominant feature and it is uncertain whether one causes the other or whether 

both are necessary to cause T2DM (Beck-Nielsen and Groop 1994; Kahn 1994). One is 

insulin resistance where there is a decreased ability of insulin to act on peripheral tissue 
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(muscle and liver) to stimulate glucose metabolism or inhibit hepatic glucose output. A 

second defect is due to insulin deficiency where the endocrine pancreas is unable to 

compensate for insulin resistance due to a defect in the glucose stimulated insulin secretion 

and glucose desensitisation of the pancreatic f3-cell. This impairment has been associated 

to a beta cell dysfunction in the processing of proinsulin to insulin, where the proportion of 

immunoreactive proinsulin is greater in T2DM subjects (40%) compared to normal 

subjects (10%) (Kahn 1997). 

Following the stimulation of insulin secretion, insulin action can be divided into three 

stages. The first stage involves the binding of the hormone insulin to the insulin receptor 

(tyrosine kinase enzyme) on the plasma membrane of the cell. This binding leads to a 

conformational change in the receptor and stimulation of kinase activity. The second stage 

is the cascade of serine ·phosphorylation and dephosphorylation by mitogen-activated 

protein kinase (MAP), and thirdly the biological effectors of the insulin cascade involving 

translocation of the glucose transport molecules to the plasma membrane (Kahn 1994). 

Several cell mechanism defects are thought to be associated with increased insulin 

resistance including decreased activation of enzymes (glucokinase, glycogen synthase), 

reduced levels of cell-membrane glucose transporters and increased levels of circulating 

fatty acids. The cause of B-cell failure is still undetermined, however f3-cell mass is only 

modestly reduced by 20-40%. It is likely that the defect in insulin secretion is due to 

glucose toxicity in beta cells by which chronic sustained hyperglycaemia leads to impaired 

insulin secretion possibly by decreasing insulin gene expression (DeFronzo 1992; Moran 

1997). 

Aetiology of T2DM 

It is recognised that defects of insulin secretion and insulin sensitivity in the pathogenesis 

ofT2DM are multifactoral in nature influenced by both genetic and environmental factors. 
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Animal and human studies have indicated that insulin resistance alone is insufficient to 

cause diabetes in humans and that multiple abnormalities are required in the expression 

and interaction of genes controlling insulin secretion and action. Primary diabetogenes are 

involved in the initiation of diabetes, and secondary changes involve altered gene 

expression. In certain populations where there is evidence of a major genetic component, a 

'thrifty genotype' has been implicated where a metabolic efficiency is advantageous when 

food is scarce, but becomes disadvantageous when food is plentiful (Dowse 1993; 

McCance 1994; Hales et al 1992). Also, environmental factors such as diet, activity and 

environmental toxins such as use of steroids and antihypertensive agents may act as 

initiating or progression factors. 

Genetic susceptibility to T2DM 

It is becoming more and more apparent that the aetiology of T2DM is genetically and 

clinically very heterogeneous in nature and that several genes may be involved in its 

aetiology (Rotter et al 1981). Studies in unaffected eo-twins of T2DM parents, different 

prevalence between ethnic groups, familial clustering and the high concordance rate for 

T2DM monozygotic twins all suggest a predominantly inherited aetiology for T2DM 

(Newman et a/1987; Turner et a/1995; Carter 1996). Thirty nine percent of patients with 

T2DM have at least one parent with the disease (Klein et a/ 1996), and among 

monozygotic twin pairs with one affected twin, 60 to 90 percent of unaffected twins 

eventually develop the disease (Barnett et a/ 1981 [b ]). The importance of genetic factors 

in T2DM is also highlighted by the observations that lean, normoglycaemic offspring of 

parents with T2DM have reduced non-oxidative glucose metabolism associated with 

reduced muscle glycogen synthesis (Eriksson et a/1989; Rothman 1995). Several attempts 

have been carried out to identify T2DM genes by linkage studies which has led to 

conflicting results, indicating that distinct genes are probably involved in different 
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populations. It is likely that different genes may be involved in different families within the 

same ethnic group. 

Candidate genes for T2DM 

The search for possible candidate genes has focused on genes coding for proteins that 

might be involved in insulin secretion or action. For early onset T2DM (MODY) linkage 

studies have identified genes that are mutated in different MODY pedigrees. The MODYl 

locus is found on chromosome 20 (hepatocyte nuclear factor-4a gene), MODY2 locus is 

on chromosome 7 (glucokinase gene), the MODY3 locus is on chromosome 12 

(hepatocyte nuclear factor-la). A fourth form formerly referred to as MODY4 associated 

to T2DM and as a rare cause ofMODY has also been described which appears to be linked 

to insulin promoter factor-1 (IPF-1). Mutations in the IPF-1 gene result in reduced binding 

of the protein to the insulin gene promoter and decreased insulin gene transcription in 

response to hyperglycaemia (Staffers et al 1997; Macfarlane et a/ 1999). All of these 

mutations present as specific descriptions of genetic defects of beta cell function which are 

associated with abnormal patterns of glucose stimulated insulin secretion (Froguel et a/ 

1992; Hattersley et a/1992; Horikawa et a/1997). 

A genome wide search in affected sibling pairs has identified a locus encoding the cysteine 

protease calpain-10 on chromosome 2 (NIDDM1) that appeared to confer major 

susceptibility to T2DM in Mexican-Americans (Hanis et a/1996). Two genes associated to 

late onset T2DM have been reported both of which have been mapped to the long arm of 

chromosome 12. Firstly, NIDDM2, and secondly a locus between markers D12S1693 and 

D12S326. The identity of this NIDDM2 gene located on the long arm of chromosome 12 is 

unknown. However, the region on chromosome 12q has been linked to T2DM subjects 

from the Botnia region of western Finland, and also in a single pedigree from Australia 

(Mahtani et al 1996; Shaw et al 1998). Genome scans in other populations, including 
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Finland and an autosomal dominant T2DM U.S. population failed to detect linkage (Bektas 

et a/1999). A possible T2DM locus has also been reported to exist 50cM centromeric to 

NIDDM2 on chromosome 12ql5 between markers D12Sl693 and D12S326 (Bektas et a/ 

1999; Bektas et a/ 2001 ). 

The association of T2DM with deafness in families where inheritance occurred through the 

mother identified a point mutation in position 3243 of the mitochondrial gene encoding 

tRNA Leu, but this has been found to be <1% prevalence in diabetics (van den Ouweland 

1994; Kobayashi et a/1991; Tawata et a/ 1998). Polymorphisrns have. been identified in 

the insulin receptor substrate 1 (IRS-1) gene and these are a common substrate for insulin 

receptor tyrosine kinases, but suggestions are that they are not pathogenic mutations 

(Almind et a/ 1993; Withers et a/ 1998). Initial observations in humans has suggested that 

a mutation in the gene for the f33-adrenergic receptor which is involved in regulating 

lipolysis in visceral fat may be associated with obesity and the onset ofT2DM (Walston et 

a[ 1995; Widen et al 1995). These findings support the hypothesis that multiple 

abnormalities in genes controlling insulin action or secretion explain the non-mendelian 

inheritance and the variable penetrance ofT2DM. 

Non genetic risk factors of T2DM 

The development of T2DM is also known to be influenced by exposure to different 

environmental factors, evidence of which has come from studies where the frequency of 

the disease in migrants is compared with the frequency in individuals remaining in the 

original environment (Kawate et a/ 1979). Observations have been made that the 

prevalence of impaired glucose tolerance and T2DM has increased dramatically in several 

ethnic groups whose lifestyle has become 'westernised' in the last few decades (Collins et 

a/1994). A study carried out by Ramachandran et a/1988 [b) looked at a population living 
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in Southern India and found that 5% tested positively for diabetes, when compared to the 

prevalence in Indians living in London and Fiji, this rose to 10%. 

Reduced physical activity and central obesity has been found to be a major detenninant of 

T2DM, prospective studies have shown that physical activity is associated with a reduced 

risk ofT2DM. Obesity is known to decrease the sensitivity of the ~-cells to glucose (Henry 

et al 1985) which is largely reversible by weight loss. The mechanisms by which obesity 

induces insulin resistance is poorly understood however several factors are thought to be 

important and these include; free fatty acids (FF A), tumour necrosis factor (TNF)-alpha, 

the pattern of fat distribution and the genetic abnormality in the ~3-adrenergic receptor. An 

inverse relationship has· also been detennined between low birth weight and diabetes 

mellitus (Phillips et a/1994) where the relative risk of T2DM decreases with greater birth 

weight (Rich-Edwards et a/1999). 
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Complications of diabetes mellitus 

The introduction of insulin in 1922 was of paramount importance in modem 20th century 

diabetic medicine. It provid~d a lifesaving treatment for many patients, but in doing so .also 

unmasked the second consequence of diabetes which is the onset of late diabetic 

complications. Historically the complications of diabetes have been recorded for a long 

time, in as early as 1798 Rollo described pain and parasthesia in the legs of diabetic 

patients and was .also the first to note eye changes which associated diabetes to the 

development of cataracts (Grenfell 1989; Mandrup-Poulsen 1998). Although most of the 

recognised features of diabetic complications had been described well before the 

introduction of insulin, it was not until patients survived for longer periods that the full 

extent and often-fatal nature of the complications were revealed. Diabetic patients live 

today controlled by insulin but still suffering the unremitting pain, amputation, blindness, 

dialysis and death from the long-term microvascular and macrovascular complications of 

their diabetes. Although TlDM and T2DM have different underlying pathogenic 

mechanisms, the chronic long-term microvascular and macrovascular complications affect 

both groups and are the major cause of morbidity and mortality in diabetes mellitus. 

Presentation of diabetic complications 

Although a great deal of research into diabetes has centred on susceptibility to diabetes, the 

major cause of morbidity and mortality result from the long-term microvascular, 

neurologic and macrovascular complications associated with the disease. In fact it is well 

recognised that a high proportion of patients with diabetes will develop one or more 

rnicroangiopathic complications during the course of their disease. The complications of 

diabetes mellitus affect many types of tissue including nerves, skin, retina, kidney, heart 

and brain. In all of these tissues, the major cause of tissue damage is vascular disease 

affecting both the microvasculature and macrovasculature. 
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Microangiopathy of diabetes mellltus 

The common microvascular complications of diabetes occur in the diabetic retina, the 

kidney, and the nerves, and lead to retinopathy, nephropathy and neuropathy respectively, 

each of which will be discussed here; 

Diabetic nephropathy 

The kidneys are one of the key organs to be affected by diabetes and diabetic nephropathy, 

which was first described by K.immelstiel and Wilson in 1936, remains to be the most 

serious, life threatening, long-term complication of TlDM. The internal structure of the 

kidney consists of a cortex and a medulla which are enclosed within a capsule. The 

medulla contains pyramids, which drain into the pelvis collecting system. The histological 

and functional unit of the kidney is the nephron, and there are about 1 million in each 

kidney. Each nephron consists of a glomerulus and a tubule system. The glomerulus is a 

tuft of capillaries surrounded by very thin epithelial cells forming a rounded Bowmans 

Capsule. The thin walled tubule region of the nephron, namely the Loop of Henle consists 

of a proximal and a distal convoluting tubule, a collecting tubule and a collecting duct. 

Urine is the glomerular filtrate, which passes into the space of the Bowmans Capsule and 

so into the tubule system where it is modified by selective absorption and secretion. It is 

this precise mechanism which is greatly affected by diabetes and can lead to a range of 

complications categorised under the title of nephropathy. 

The incidence of renal complications in TlDM patients has been reported to be 25-40% 

after 25 years duration of diabetes, a further 15-28% of patients are reported to have 

microalbuminuria (Andersen 1983). Borch-Johnsen and colleagues reported that 

proteinuria is strongly associated with death from uraemia and cardiovascular disease 

(Borch-Johnsen 1985). In Caucasoid subjects with T2DM the prevalence of progressive 

renal disease has generally been thought to be lower than in TlDM subjects (Cowie et al 
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1989). Recent evidence however, has suggested that the renal risk is equivalent in the two 

types of diabetes where the time to proteinuria from the onset of diabetes, and the time to 

end-stage renal disease from the onset of proteinuria were similar (Ritz and Orth 1999; 

Ritz and Stefanski 1996). Large epidemiological studies carried out to follow the 

progression of diabetic nephropathy in TIDM have shown that typically there is a lag 

phase from the time of diagnosis of diabetes to the incidence of development of 

nephropathy. Following this there is a rapid rise in incidence, which peaks after 15-20 

years duration, and declines to I% per year thereafter. Therefore the likelihood of 

developing nephropathy after 20 years duration of diabetes is very small (Krolewski 1985; 

Christensen 1985). The clinical progression and manifestation of nephropathy in T2DM 

subjects is less well defmed, as subjects usually have a long duration of diabetes before 

clinical manifestation of the disease. However, it would appear to follow a similar course 

to that in TIDM subjects as described below (Nelson 1993; 1996). It has been suggested 

that T2DM subjects with normoalbuminuria or microalbuminuria may have impaired renal 

function and that cardiovascular risk factors are closely related to renal damage. As a result 

diabetic nephropathy is probably the most common indication for haemodialysis treatment 

and renal transplantation in the USA and the western world, and consequently it imposes a 

very high social and economic burden on the individual and society. 

The clinical course of diabetic nephropathy can be divided into 5 key stages, which are 

comprehensively reported and reviewed by Mogensen 1984, 1985, 1996 [a], 1997; and 

Tuttle 1990. There are considerable patient-to-patient differences in the rate of progression 

of diabetic nephropathy, however certain stages such as the progression of renal failure are 

predictable (Jones 1979). Stage 1 of nephropathy occurs shortly after the onset of diabetes 

and is first manifested as an increase in glomerular filtration where the kidney shows 

hyperfiltration and kidney hypertrophy. Early structural glomerular changes in morphology 

include thickening of the glomerular basement membrane and accumulation of 
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extracellular matrix components (Ziyadeh 1993). Stage 11, which may last for between 7 

and 15 years is a 'silent stage', where albumin is maintained in the circulatory system and 

is not excreted. However, it is during this stage that the early structural glomerular changes 

such as the expansion of the mesangial matrix and renal tubular damage take place 

(Fletcher et a/1986; Yaqoob et a/1994). Stage ill begins when microalbuminuria becomes 

evident, when urinary albumin excretion rate is greater than 20J.Lg/min and less or equal to 

200J.Lg/min (table 3). Incipient diabetic nephropathy is suspected when microalbuminuria is 

found in 2 out of 3 urine samples collected consecutively. This is the point of established 

renal injury. Once constant microalbuminuria is established, and unless there is clinical 

intervention, progression to nephropathy is inevitable. Studies have shown that 

approximately 80% of patients with microalbuminuria progress to overt nephropathy in I 0 

years. Stage IV is established when overt diabetic nephropathy is suspected, when the 

urinary albumin excretion mte is greater than 200J.Lg/min for at least 2 out of 3 urine 

samples collected within maximal 6 months. Almost all diabetic patients at this stage of 

nephropathy will also exhibit diabetic retinopathy. Once overt nephropathy is established, 

a relentless decline in renal function is seen, associated with an elevation· in arterial 

pressure. At this stage anti-hypertensive treatment, particularly with angiotensin converting 

enzyme (ACE) inhibitors may be beneficial in reducing the rate of progression to renal 

failure (Raskin 1996; Bilous 1996; Mogensen 1996 [b]). Finally, stage V, otherwise known 

as end-stage renal disease is defined clinically by an increase in the excretion of larger 

plasma protein, ~-2-microglobulin, with an albumin excretion rate of approximately 1000 

J.Lg/min, with a generalised glomerular closure leading to uraemia requiring dialysis or 

kidney transplantation. 

It has been postulated that diabetic nephropathy occurs as a result of the interplay of 

metabolic and haemodynamic factors in the renal microcirculation. Pivotal studies, 

including the DCCT (DCCT 1993 [a], 1995 [a], 1998) have demonstrated the effects of 
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intensive blood glucose control and antihypertensive therapy on the progression of urinary 

albumin excretion. This implicates poor glycaemic control and hypertension in the 

progression from normoalbwninuria to microalbwninuria. It has been suggested that once 

urinary albumin concentration exceeds the normal range ( 4 ± I mg/1) the risk of developing 

diabetic nephropathy is increased. A large prospective clinic-based study of 1200 TlDM 

subjects which were followed for 4 years suggested that a urinary albumin concentration of 

7.4 mg/1 implicates a significantly increased risk for the development of nephropathy 

(Royal College of Physicians of Edinburgh Diabetes Register Group 2000; Walker et a/ 

1999). Significant improvements have been made in the treatment of diabetic subjects and 

population based studies have shown a delay in the onset of renal disease probably due to 

improved glycaemic control and clinical intervention (Bojestig et a/ 1994; Krolewski 

1996; Walker 2001; Hovind et a/2001 [b]). Studies have also suggested that unlike TIDM, 

where strict glycaemic control is the main preventative factor of diabetic nephropathy, in 

T2DM the control of hypertension, hyperlipidernia, obesity and hyperuricemia may have 

priority (Molnar et a/ 2000). The accumulation of advanced glycation end products 

(AGEs), the activation of isoforms of protein kinase C (PKC) and the acceleration of the 

polyol pathway may provide explanations of the effects of hyperglycaemia and 

nephropathy in TlDM and T2DM. Management strategies designed to modify progression 

from normoalbuminuria to microalbwninuria and early identification of patients at such 

risk should therefore be targeted. 
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Clinical nephropathy 

Urinary albumin concentration (UAC). > 300mg/l (30mg/dl) 

Urinary albumin excretion rate > 300mg/24h 
(UAER). 
Urinary protein excretion. 

Microalbuminuria 

UAC 

UAER 

Albumin:Creatinine (ACR) 

> 500mg/24h 

20-30 mg/1 

20-200J.Lg/min (timed overnight 
collection) 
30-300mg/24h (24 hour 
collection) 

2.5-25mg/mmol- male 
30-300mg/ g- male 
3.5-25mg/mmol- female 
40-300mg/ g- female 

Table 3. Definitions of nephropathy (adapted from recommendations by Bilous 
1996). 

• The diagnosis of clinical nephropathy is generally carried out using dipstick urinalysis for 
proteinuria. These tests detect albumin at a concentration of >300 mg/1, and a positive 
result on three or more consecutive occasions spread out over several months is the 
conventionally accepted definition of clinical nephropathy. 

• The accuracy of the detection of microalbuminuria is improved by relating albumin and 
creatinine concentrations in an albumin:creatinine ratio (ACR). 

• False positive results with concentrated urine, biological variation, posture/diurnal 
variation, exercise, urinary infection, other renal disease, and cardiac failure. False 
negative results with dilute urine or diuresis. 
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Diabetic retinopathy 

Another key system to be affected by diabetes is the retina and there are several causes of 

blindness in diabetic patients including retinopathy, cataract and glaucoma, this study 

however focuses specifically on retinopathy. Retinopathy is a highly specific vascular 

complication that is debilitating in that it can lead to diminished visual acuity and blindness 

in both TIDM and T2DM patients. Early studies such as the 'Bedford Survey' indicated 

that impaired glucose tolerance carries minimal risk of eye disease, however, the risk 

increased dramatically upon diagnosis of diabetes (McCartney 1983 ). Retinopathy shows a 

clear pattern of progression, with incidence rising continually with increasing duration of 

diabetes. The incidence of retinopathy is relatively low in subjects with impaired glucose 

tolerance or newly diagnosed diabetes (Klein 1991). However, after a lag period of several 

years from the diagnosis of diabetes, the presence of diabetic retinopathy increases 

unremittingly, affecting approximately 90% of TIDM patients and >60% T2DM patients 

after 15-20 years duration of diabetes (Klein 1992). The 'Wisconsin Epidemiologic Study 

of Diabetic Retinopathy' (WESDR) evaluated the prevalence and incidence of retinopathy 

in a defined population in an 11 county region of Southern Wisconsin, USA (Klein et at 

1984 [a and b]). Results from this study showed that one third to 86% of blindness in 

diabetic subjects was attributable to diabetic retinopathy (K.lein 1998). Progression of 

retinopathy to the proliferative stage occurs in about 30% ofTIDM subjects after 10 years 

of the disease, and in 60% after 40 years. 

Retinopathy is primarily a vascular disorder, probably beginning with capillary dilation in 

the retinal capillary bed and promoted by chronic hyperglycaemia. Retinopathy involves 

both morphological and functional changes in the retinal capillaries, including basement 

membrane thickening, loss of pericytes, increased permeability and vascular dysfunction. 

Diabetic patients are routinely screened for retinopathy in the absence of any visual 

symptoms by pupilary dilation performed by an ophthalmologist. The progression of 
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retinopathy is orderly, advancing from mild non-proliferative abnormalities, characterised 

by increased vascular permeability and the formation of rnicroaneurysms, to moderate and 

severe non-proliferative diabetic retinopathy, characterised by vascular closure. From this, 

pre-proliferative stage, retinopathy advances through to proliferative diabetic retinopathy 

which is characterised by the growth of new blood vessels on the retina and posterior 

surface of the vitreous (American Diabetes Association 1998; Aiello 1998). Vision loss 

due to diabetic retinopathy results from macular oedema or capillary nonperfusion, 

distortion or detachment of the retina, or through bleeding of new blood vessels. 

Factors that have been associated with the development and progression of diabetic 

retinopathy include gender, HLA type, age at onset, duration of disease, degree of 

metabolic control, presence of pubertal development, growth hormone secretion and 

presence of proteinuria (D'Angio et a/2001). A follow up study carried out by Annunzio 

1997, on patients with retinopathy who were treated with conventional therapy, suggested 

that poor metabolic control, age, and degree of pubertal development at diagnosis were the 

most important risk factors. Similarly, Kalter-Leibovici 1997 supported this view, 

reporting that poor glycaemic control was significantly and independently associated with 

an· early progression to proliferative retinopathy. Cohen 1999 found that the levels of 

hyperglycaemia and diastolic blood pressure predicted progression of retinopathy in 

TlDM. The development of proliferative retinopathy has also been shown to be closely 

related to the development of proteinuria. This has been shown in a study by Pirart 1984, 

where 80% of patients with persistent proteinuria developed proliferative retinopathy. 

Intensive treatment of diabetes aimed at maintaining as near normoglycaernia as possible 

has been shown to significantly reduce the risk for the development and progression of 

diabetic retinopathy. Laser photocoagulation surgery has proved to be beneficial in 

reducing the risk of further visual loss, but not seen to be able to reverse already 

diminished acuity (Chantelau 2001). In the Diabetic Retinopathy Study (DRS) and the 
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Early Treatment of Diabetic Retinopathy Study (ETDRS) photocoagulation by argon laser 

or xeno~ arc light prevented new visual loss in patients with proliferative retinopathy and 

macular oedema and improved vision in some patients (ETRDS 1985; DRS 1978). 

Vitrectomy is beneficial in patients where visual loss is caused by proliferative retinopathy 

with vitreous haemorrhage, scarring, and retinal detachment. In the Diabetic Retinopathy 

Vitrectomy Study (DRVS), early vitrectomy improved the chance of good vision (DRVS 

1985). Therefore, there are clear benefits in screening patients for the often-asymptomatic 

early stages of retinopathy such as clinically detectable capillary dilation and retinal 

capillary basement membrane thickening (RCBMT) (Glover et a/ 2000; Janghorbani et a/ 

2001; Keen et al 2001 [a and b). It is recommended that dilated eye examination and 

retinal photography should be included in the routine management of TlDM during the 

first 5 years to identify subjects at risk of developing vision-threatening problems (Malone 

et a/2001). 

Diabetic Neuropathy 

Peripheral and autonomic nerves are also significantly affected by the altered metabolism 

of diabetes mellitus, resulting in pathological change, functional disturbance and clinical 

morbidity. Approximately half of patients who have had diabetes for 20 years will have 

some evidence of neuropathic involvement. In diabetic subjects with end stage renal 

disease, the incidence of neuropathy varies from 60-90% (Parving 1988). The cumulative 

prevalence of neuropathy increases with duration of diabetes and neuropathy represents a 

concomitant or consequence of the diabetic state. 

Diabetic neuropathy is a clinical state of nerve damage in which a patient complains of 

symptoms (pain, paraesthesiae) or is shown to have neurological deficit likely to lead to 

problems. Diabetic neuropathy is notably heterogeneous in its clinical presentation, 

encompassing several distinct syndromes that differ with respect to anatomical distribution 
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of neurological deficit and clinical course. Multiple aspects of neural function are currently 

being studied to enable accurate diagnosis of diabetic neuropathies, as early and accurate 

identification of this complication is essential for effective clinical intervention (Arezzo 

1999; Hirai 2000). Sub-clinical neuropathy refers to the presence of evidence of impaired 

nerve function in the absence of clinical signs or symptoms of diabetic neuropathy. The 

most common form of clinical neuropathy associated with diabetes is distal symmetrical 

polyneuropathy with predominant sensory and autonomic involvement, and slow 

progressive loss of distal sensory, autonomic and motor fibres. Polyneuropathy is 

characterised by a loss of peripheral nerve function, which can cause sensory disturbances, 

motor weakness and autonomic dysfunction. Other forms of neuropathy are the 

asymmetric neuropathies involving one or more discrete cranial or peripheral nerves, 

which constitute roughly 15% of all diabetic neuropathies and are generally, restricted to 

older diabetic patients. The onset is usually acute and painful and the median, ulnar, deep 

peroneal radial, femoral and sciatic nerves are the most frequently affected. 

Mononeuropathy may involve single or multiple cranial nerves especially those 

innervating the extraocular muscles and the facial nerve. Diabetic neuropathy also 

underlies the development of diabetic foot ulcers, which can lead to lower limb 

amputations. Erectile impotence in male diabetic patients is also largely attributable to this 

disorder. 

It is thought that diabetic neuropathy is conditioned by insulin deficiency and/or 

hyperglycaemia, although the specific pathogenic mechanisms that underlie this 

conditioning effect are not fully understood. It has been suggested that TlDM patients with 

autonomic neuropathy may have a degree of protection against the development of diabetic 

ketoacidosis as plasma fatty acids and ketone body concentration rises less rapidly in these 

patients following withdrawal of insulin (Krentz et al 1994). There is evidence based on 

animal work that there is a link with hyperglycaemia, through sorbitol accumulation, myo-
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inositol depletion and Na+-K+-ATPase activity, with nerve dysfunction and damage 

(Greene 1984). Observations reported from experiments in rats and also in patients, 

looking at nerve blood flow suggest that hyperglycaemia induced blood flow reductions in 

sural nerve and resultant endoneuria! hypoxia are important factors underlying nerve 

conduction deficits early in the development of diabetic neuropathy (Dyck 1989; Cameron 

1991; 1994; Tesfaye 1994). An increase in platelet aggregation has also been observed in 

otherwise uncomplicated patients with neuropathy, which may have pathogenic 

implications (Jennings et a/ 1986). The EURODIAB IDDM complications study 1996 

identified further associations with neuropathy which included elevated diastolic blood 

pressure, the presence of severe ketoacidosis, an increase in the levels of fasting 

triglyceride, and the presence of microalbuminuria. Further trials have also associated 

• significant roles for height, cigarette smoking and female gender as risk factors for 

progression of distal symmetric polyneuropathy (Christen 1999). 

Vasodilatory treatment aimed at improving blood flow, adrenoceptor blockade, aldose 

reductase inhibition and calcium channel antagonist treatment have all shown positive 

results, however as several metabolic abnormalities combine to produce deleterious 

changes in nerve perfusion multi-action therapy is important (Cameron 1997; Fedele 1997; 

Parry 1999). The mainstay treatment of the symptoms of painful neuropathies currently 

incorporates the use of tricyclic antidepressants (desipramine), or serotonin reuptake 

inhibitors (SSRis), although the later has not proven to be as successful as the former. 

Gabapentin (neurontin) can also reduce the pain associated with polyneuropathy. However 

the only strategy shown to be consistently beneficial to the treatment of diabetic 

neuropathy is meticulous control of blood glucose by multiple injections or continuous 

subcutaneous infusion of insulin. It is imperative therefore that therapy is directed at early 

diagnosis, exclusion of other neuropathic disorders, prudent glucose control, and avoidance 

of secondary complications of neuropathy such as foot ulceration by aggressive foot care, 
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hygiene and patient education (Greene 1990; DCCT Research Group 1998). Physical 

therapy evaluation is important in patients followed with use of ankle-foot orthoses, 

splints, and walking assistance devices. 

Macroangiopathy of diabetes mellitus 

Macrovascular diseases occur in the large peripheral arteries of the lower limbs, in cerebral 

vessels and in coronary arteries, and are due to atherosclerosis of blood vessels, which 

result in reduced blood flow to tissues. Macrovascular complications of diabetes include 

coronary, cerebral and peripheral vascular disease such as angina, heart attacks, strokes, 

and amputations (Foley et al 1997). Diabetes and abnormal glucose tolerance is a major 

risk factor and is known to enhance the development of atherosclerosis and coronary heart 

disease (CHD) (Stamler et a/1993). Evidence has shown a significant relationship between 

long-term hyperglycaemia and diabetic macrovascular disease in T2DM (Kuusisto 1994). 

Results published in the DCCT 1993 [a and b] indicate that the risk of a cardiovascular 

event occurring in diabetic subjects was reduced by 41% by strict glycaemic control, albeit 

not a significant correlation. Atherosclerotic macrovascular disease accounts for more than 

80% of all mortality in the diabetic population, with increased risk if diagnosed over 40 

years of age or over 30 years duration of diabetes (Foley and Parfrey 1998; Morrish et al 

2001). The risk for fatal and nonfatal CHD events in subjects with T2DM has been 

reported to be two to four times higher than in non-diabetic subjects. It is thought that 

dyslipidemia, hyperglycaemia, hypertension and obesity may account for the risk of 

developing atherosclerosis 

Inter-linkage of diabetic complications 

It can be seen that the common chronic complications of diabetes encompass multiple 

organ systems, and includes macrovascular diseases such as cardiovascular disease and 

atherosclerosis, and microvascular diseases such as retinopathy, neuropathy and 
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nephropathy (Rich 1997). Borch-Johnsen et a/ 1985 reported evidence for an association 

between microvascular and macrovascular diabetic complications where a large number of 

patient deaths due to macrovascular disease also presented with proteinuria. It has been 

suggested that microvascular complications are also interrelated with each other, for 

example, 90% of patients with nephropathy also have retinopathy. Studies by Florkowski 

1988 and Parving 1988 and more recently by Aroca et al 2000 found that 

microalburninuria was significantly associated with retinopathy, an association was also 

suggested between microalbuminuria and neuropathy in the absence of retinopathy. 

Jennings 1990 [a and b] reported an association between retinopathy and severity of 

neuropathy. However, non-concordance for the onset of the microvascular complications 

was reported in a follow up study carried out by Pirart 1977, which is illustrated in figure 

l. A study carried out by Fong 1995 to determine prospectively whether cardiovascular 

autonomic neuropathy is a risk factor for proliferative diabetic retinopathy, showed 

evidence that there was an association. Some insight into the correlation between 

nephropathy and retinopathy came from a study carried out by Schwartz et a/ 1998 using 

T2DM subjects who underwent renal biopsy. This study indicated that severe retinopathy 

was more closely associated with K.immelstiel-Wilson nodules than with mesangial 

sclerosis (p=0.0043), the reasons for which are not yet known. The relationship between 

diabetic nephropathy and retinopathy is less predictable in T2DM. For example studies of 

T2DM subjects found that subjects with marked proteinuria and retinopathy most likely 

have diabetic nephropathy, while those without retinopathy have a high incidence of non

diabetic glomerular disease (Parving et al 1992; Christensen et al 2000). It has been 

speculated that there is a common underlying cellular mechanism behind the diabetic 

complications, which leads to widespread microvascular disease and causes organ damage. 
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Retinopathy 

89% 

Neuropathy Nephropathy 

26% 

Figure 1. Concordance between diabetic microvascular complications in the follow up 
study carried out by Pirart 1984. For each new case of one given complication, the 
probability to display another complication is indicated by the percentage attached to the 
arrow directed to this complication (adapted with minor alterations from Pirart eta/1984). 
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Aetiology of diabetic complications 

The development of diabetic complications in subjects with TlDM and T2DM is not by 

any means straightforward, and cannot as yet be confidently predicted. Some patients with 

diabetes are fortunate in that they can live through the duration of their diabetes without 

developing any sign of microvascular or macrovascular disease. Other patients on the other 

hand develop a whole handful of complications, which are both debilitating and 

significantly reduce the quality of life of the patient. A significant amount of research is 

currently underway to try to elucidate the mechanisms by which these complications take 

effec::t and to attempt to predict their onset in order to design appropriate preventative and 

treatment regimes to improve prognosis of the patient. To date several key components in 

the underlying aetiology of diabetic complications have been identified. These include 

various risk factors such as duration of diabetes, hyperglycaemia, hypertension and 

hyperlipidemia, as well as certain pathological features such as capillary basement 

membrane thickening and haemostatic abnormalities. Alterations in certain biochemical 

pathways as a result of the diabetic state have also been identified such as the increase in 

the synthesis of diacyglycerol (DAG), non-enzymatic glycation of proteins and an increase 

in the flux through the polyoVsorbitol pathway. An increase in the formation of reactive 

oxygen species (ROS), and Nitric Oxide (NO) has also been extensively examined. 

Alterations in the cell signal transduction pathways have also I?een investigated and 

implicate protein kinase C and mitogen activated protein kinases (MAPKs). Also gene 

expression promoters such as Transforming Growth Factors {TGF), Vascular Endothelial 

Growth Factors (VEGF) and Nucleotide Factor KB (NFKB) have attracted a great deal of 

interest. Numerous inter-related genetic and environmental factors have also been 

examined. These components (illustrated in figure 2) are reviewed here. 
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Diabetes Mellitus 

Diabetic 
Complications 

Risk factors; 
Hyperglycaemia 
Hypertension 
Hyperlipidemia 

Biochemical pathway disturbances; 
Polyol pathway 
Formation of AGEs 
Superoxide production 
Nitric oxide production 

Cell signalling pathway disturbances; 
PKC 

Growth factors; 
NFKB 
TGF-B 
PDGF 
VEGF 

Genetic predisposition; 
Enzymes affecting glucose 
metabolism 
Enzymes affecting vascular risk 

Environmental influences; 
Cigarette smoking 
In utero stress 

Figure 2. Factors affecting the onset and progression of diabetic 
microvascular and/or macrovascular complications (importantly, this is not a 
conclusive list). 
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Risk factors for diabetic microangiopathy 

Various risk factors are thought to be involved in diabetic microvascular and 

macrovascular disease, and appear to include the duration of the disease, hypertension, 

hyperlipidemia and the quality of glycaemic control. Better metabolic control through anti

hypertensive therapy, and improved glycaemic control has been shown to be effective in 

decreasing the incidence of diabetic complications (K.ofoed-Enevoldsen 1987; Hostetter 

1994; Rossing 1998). Hyperlipidemia has also been associated with the development of 

microvascular complications although conclusive evidence from clinical trials is yet to be 

attained. 

Hyperglycaemia and microangiopathy 

Epidemiological, animal, and biochemical studies have strongly suggested that there is a 

relationship between hyperglycaemia and development and progression of diabetic 

microvascular complications involving the retina, glomeruli, and neuronal tissues. Early 

studies carried out by Jarret 1976, and also by Jean Pirart 1978 showed that poor control of 

glycaemia in TIDM subjects predisposes to chronic complications. Retrospective 

epidemiological studies have shown that nephropathy and retinopathy are more likely to 

occur in those patients with poorer glycaemic control (K.rolewski 1988; Rosenstock and 

Raskin 1988; Molitch 1993; Dahl-Jorgensen; Barzilay 1992). Other studies, including the 

Wisconsin Epidemiological Study of Diabetic Retinopathy (WESDR) and the Oslo Study 

of Diabetic Retinopathy have also demonstrated a strong consistent relationship between 

hyperglycaemia and the incidence and progression of microvascular and macrovascular 

complications in TIDM and T2DM populations (Brinchmann-Hansen et a/ 1992; Klein 

1995; Leslie 1999 [b]). The United Kingdom Prospective Diabetes Study (UKPDS [b]) 

carried out a study of over 4000 patients with prolonged follow up, and suggested that 

strict glycaemic control results in a reduced risk of microvascular disease in patients with 

T2DM (UKPDS 1998 [b]). The DCCT research group provided conclusive evidence that 
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strict glycaemic control can both delay the onset of microvascular complications and slow 

the rate of progression of already established complications. They demonstrated in a multi

centre, randomised, prospective controlled clinical study that there was a 76% reduction in 

the development of retinopathy, a 54% lower incidence of nephropathy and 60% reduction 

of neuropathy with intensive therapy aimed at achieving glycaemic control as close to the 

non-diabetic range as possible. In the DCCT report intensive insulin therapy consisted of 

multiple daily injections or by continuous insulin administration through the use of an 

insulin pump. The DCCT also suggested that the total lifetime exposure to glycaemia was 

the principle determinant to the risk of developing retinopathy and other complications of 

diabetes, and that there was a continuous non-linear relationship between this risk and the 

mean level of HbAlc (DCCT Research Group 1993 [a], 1993 [b], 1995 [b]). A separate 

report by the DCCT looked at the development of diabetic nephropathy under intensive 

insulin therapy and found that there was a beneficial effect, where the onset of nephropathy 

was possibly prevented or at least delayed in its progression (DCCT Research Group 1995 

[a]). The DCCT also found that there was no glycaemic threshold below which the risk of 

developing retinopathy was reduced (DCCT Research Group 1996). However, other 

authors have suggested a glycaemic threshold for microalbuminuria and for retinopathy 

exists, below which the risk of patients progression from microalburninuria to overt 

proteinuria is reduced. The DCCT did show that the risk of development of 

microalburninuria increases substantially when HbAlc increases beyond 8.8%. This is 

similar to findings from the Joslin Clinic (Krolewski 1995 [a]) and the Stockholm Study 

(Reichard 1995), both of which indicated that albumin excretion increases substantially 

when long term HbAlc is more than 8.8-9.0%. No cases of serious retinopathy were 

observed in patients over the period of observation when long-term HbAlc was less than 

7.0%. To be reasonably sure that a patient will not develop any microvascular 

complications, the treatment goal should therefore be glycated haemoglobin within the 

normal range. Improved glycaemic control and maintaining an HbA1c level of below 8.5% 
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has therefore been shown to improve the prognosis of serious microangiopathy (Krolewski 

1995 [a]; Hanssen 1995; Warram 2000). 

A relationship between levels of chronic hyperglycaemia and diabetic microvascular and 

macrovascular disease in patients with T2DM has also been found in several studies 

(Ohkubo et a/ 1995; Kuusisto et a/ 1994; Colwell et a/ 1994; Kaiser et a/ 1993). As with 

TlDM patients, retrospective studies show a strong association between indexes of 

hyperglycaemia and the prevalence of diabetic retinopathy, nephropathy and neuropathy in 

T2DM (Klein 1995). A 6-year Japanese trial carried out to compare intensified and 

standard insulin treatment in T2DM and the progression of diabetic microangiopathy found 

a considerable risk reduction with intensive therapy, which was comparable to the DCCT 

study (Ohkubo et a/ 1995). In the DCCT, cardiovascular events were also reduced albeit 

not significantly by 41% in the intensively treated group. Several other studies have also 

shown a correlation between glycated haemoglobin and the development of cardiovascular 

disease (Andersson et a/1995; Abraira et a/1995). 

Extracellular hyperglycaemia has therefore been conclusively related to the development 

of diabetic complications. Studies have looked at the cells that are damaged by 

hyperglycaemia, namely the vascular endothelial cells, and found that there is a reduction 

in the ability to down regulate glucose transport into the intracellular environment 

(Giardino et a/ 1996). Therefore it would appear that intracellular hyperglycaemia is the 

major determinant of diabetic tissue damage. Intracellular hyperglycaemia is thought to 

cause tissue damage by repeated acute changes in cellular metabolism and through 

cumulative changes in long lived macromolecules. 
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Hypertension and microangiopathy 

A second risk factor, which has been implicated in the progression of diabetic 

complications in particular nephropathy, retinopathy and CHD, is hypertension (Baba 

1997; Williams 1997; Mogensen 1999). Hypertension is a very common abnormality in 

diabetics, and in approximately 90% of patients with elevated blood pressure the cause is 

unknown. Among those with TlDM the incidence of hypertension rises from 5% at 10 

years, to 33% at 20 years, and 70% at 40 years duration of diabetes (Epstein 1992). In the 

'World Health Organisation Multinational Study of Vascular Disease in Diabetes' (WHO 

MSVDD), among TlDM subjects, hypertension (BP ~ 140/90 mmHg or use of 

antihypertensive drugs) was associated with a relative risk for cardiovascular mortality of 

1.7 in men and 2.7 in women at 12 years of follow up (Fuller et al 1996; Lee et al 2001 

[b ]). Hypertension has also been highly associated and inter-linked with microvascular 

complications, for example hypertension is thought to be a risk factor for development of 

retinopathy, and an aggravating factor of retinopathy in TlDM subjects with nephropathy 

(Klein et al 1989; Jnaka et al 1989; Norgaard 1991). An association has also been made 

between raised arterial pressure and the development and progression of diabetic 

nephropathy, which has indicated that local intrarenal alteration in haemodynamics or high 

glomerular capillary pressure may influence diabetic glomerular structural damage (Selby 

et al 1990; Burbury 1998; Agardh and Torffvit 1999). The association of blood pressure 

levels with progression of renal disease has been investigated in several observational 

studies. The Multiple Risk Factor Intervention Trial 1982 followed 332,544 men for 16 

years and found a strong and independent association between both systolic and diastolic 

blood pressure and erid stage renal disease, with an increased risk with higher blood 

pressure (Klag et a/ 1996). This was further supported by studies carried out by Perry et a/ 

1995 through the Veterans Affairs Hypertension Screening and Treatment Program, and 

also Shulman et al 1989 through the Hypertension Detection and Follow-up Program. 

Raised blood pressure in patients with diabetic nephropathy was initially considered to be a 
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consequence of renal failure, however Viberti et a/1987 described elevated arterial blood 

pressure in parents of TlDM patients with proteinuria, which led to the hypothesis that 

susceptibility to diabetic nephropathy is linked to genetic predisposition to hypertension. 

Therefore high blood pressure in non-diabetic parents may also be a marker of 

susceptibility to clinical nephropathy in their TlDM offspring. Fagerudd et al 1998 also 

reported findings that familial predisposition to essential hypertension increases the risk of 

diabetic nephropathy and may also contribute to the development of systemic hypertension 

in patients with TlDM and diabetic nephropathy. Fogarty et al 2000 carried out a study to 

estimate heritibility of urinary albumin excretion (UAE) and blood pressure using a large 

family T2DM collection. The study showed a significant correlation between UAE and 

blood pressure in the presence of diabetes. These findings cumulatively indicate that high 

blood pressure and diabetic complications share a common genetic determinant. 

Early identification and treatment of hypertension is therefore imperative in diabetic 

patients to prevent cardiovascular disease and to minimise progression of renal disease and 

diabetic retinopathy. There is clinical trial evidence in non-diabetic subjects that treating 

blood pressure decreases the risk of cerebral infarction (Collins 1990) and CHD events in 

older people (Thijs et al 1992; Beard et al 1992). Early treatment of hypertensive diabetic 

subjects should include nonpharmacologic methods, such as weight reduction, exercise, 

sodium restriction, and avoidance of smoking and excess alcohol ingestion. Several expert 

groups have made specific recommendations on the management of hypertension in 

diabetic patients. In accordance to recommendations published in the St Vincent 

Declaration (Krans et al 1995) the threshold for defining hypertension and the point at 

which clinical intervention using antihypertensive therapy should start is with a blood 

pressure at or above 140/90 mmHg. Other groups which include the 'American Diabetes 

Association Consensus Panel' 1993, 'The Joint National Committee on Prevention, 

Detection, Evaluation and Treatment of High Blood Pressure-IV', and 'The National High 
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Blood Pressure Education Working Group' 1994 have also published similar 

recommendations. Intensive drug therapy has been shown to be unequivocally protective in 

all diabetics (Gall et a/ 1997; Gaede et a/ 1999; UKPDS Group 1998 [a]; Hansson et al 

1998; Parving 1999; Collado-Mesa et a/ 1999). Parving 1996 [a]; 1999 reported results 

from a randomised, double blind parallel study, which revealed that the major 

cardiovascular disease rate was lowered by 34% for antihypertensive treatment compared 

with placebo. The study also showed that effective blood pressure reduction with ACE 

inhibitors and/or non-ACE inhibitors reduced albuminuria, delays the progression of 

nephropathy, postpones end-stage renal failure, and improves survival in diabetic 

nephropathy. Similar evidence has· also recently been shown in the Heart Outcomes 

Preventative Evaluation (HOPE) study, where the incidence of cardiovascular events in 

diabetic subjects was reduced when treated with ramipril (Jones et al 2001; Pate! et al 

2001). Angiotensin converting enzyme inhibitors (ACE-I) such as ramipril (Pate! et a/ 

2001) and possibly angiotensin 11-receptor blockers (ARBs) (losartan) can be used to lower 

blood pressure and lower the plasma glucose concentration by increasing responsiveness to 

insulin. ACE-I protect against the development of progressive diabetic nephropathy by 

lowering intraglomerular pressure, and appear to lower the incidence of adverse 

cardiovascular disease. Dietary salt restriction and diuretics are also likely to be effective 

in hypertensive diabetic patients for prevention of complications. Nondihydropyridine and 

dihydropyridine calcium channel blocker's such as diltiazem and verapamil, alpha

adrenergic antagonists and beta-blocker's are also commonly used therapeutic treatments 

for hypertension in diabetics, but the thiazide diuretics and beta-blockers have metabolic 

side effects which make them less appropriate as first line agents (Bamett 1994). Hovind 

et al 2001 [a] examined whether remission and regression of diabetic nephropathy are 

possible in TIDM subjects from a prospective observational cohort study, and found that 

aggressive anti-hypertensive treatment can induce remission and regression in a sizeable 

fraction of patients with diabetic nephropathy. 
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Hyperlipidemia and microvasculopathy 

It has been suggested that an average or a below average cholesterol level may have an 

impact on coronary heart disease, and patients with diabetes mellitus are reported to be at 

an increased risk for cardiovascular disease (Haffner et a/1998; Colhoun et a/200 1 ). Lipid 

abnormalities are common in patients with diabetes, and are thought to contribute to the 

increased risk of cardiovascular disease. In TlDM subjects the DCCT found that poor 

glycaemic control was associated with hypertriglyceridemia, high serum low-density

lipoprotein (LDL) cholesterol and low high-density-lipoprotein (HDL) cholesterol 

concentrations (DCCT Research Group 1992; Perez et a/2000). In T2DM subjects, insulin 

resistance, relative insulin deficiency, and obesity are associated with 

hypertriglyceridemia, low serum HDL cholesterol concentrations, and occasionally high 

serum LDL cholesterol and lipoprotein values (O'Brien et al 1998). The UK Prospective 

Diabetes Study (UKPDS [a]) showed that high LDL cholesterol and low HDL cholesterol 

levels were two of several potentially modifiable risk factors of diabetic cardiovascular risk 

in subjects with T2DM (Davis et a/200 I). 

Cholesterol-lowering intervention through the use of lovastatin which was first introduced 

in 1987, and other lipid lowering drugs such as simvastatin and atorvastatin which have 

since become available have been used primarily in the US and Europe in the treatment of 

hypercholesterolaemia (Pedersen and Tobert 1996; Stein et a/ 1997). Attention has since 

turned to the advantages of lipid lowering drugs in the treatment of some diabetic patients 

at risk of diabetic complications (Gall et al 1997). Studies have shown that lipid-lowering 

intervention in non-diabetic subjects decreased the risk of a cardiovascular event in both 

primary and secondary prevention studies. One such study was 'The Scandinavian 

Simvastatin Study' ( 4S) which consisted of 4444 patients with coronary disease and 

hyperlipidemia. In a subset group consisting of 202 patients with diabetes (mostly T2DM) 

those who were treated with simvastatin had a lower incidence of major cardiovascular 
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events (PyorSIS et at 1997). Evidence therefore suggests that lipid-lowering therapy is 

worthwhile for secondary prevention in diabetics although no trials have yet been 

successfully completed specifically in these patients. One such study which is currently in 

process is 'The Lipids in Diabetes Study' (LDS), which is a five year, randomised, multi

centre, prospective primary intervention trial. Four thousand T2DM subjects were recruited 

nation-wide, randornised, and allocated to double-blind therapy with a fixed dose of 3-

hydroxy-3-methylglutarly-CoA (HMG-CoA) reductase inhibitor (cerivastatin), and/or 

. fibrate (fenofibrate). The aim of the study is to determine whether statin and fibrate lipid-

lowering therapies are effective in preventing cardiovascular disease in people with 

diabetes. Following the rapid withdraw I of cerivastatin from the market by Baycol (Beyer) 

as a result of the serious adverse effect (SAE) involving an unacceptably high rate of 

rhabdomyolysis this has now been replaced with fluvastatin as pravastatin and fluvastatin 

are least likely to provoke muscle cell damage (Sica and Gehr 2002). The outcome of this 

study is yet to be determined. However, a recent study carried out over 2 years, as a 

randornised, double blinded placebo controlled pilot trial of simvastatin/diet vs. diet alone 

in TIDM subjects with overt diabetic nephropathy suggested that treatment with 

simvastatin may have beneficial effects on early nephropathy and diabetic neuropathy 

(Fried et a/2001). 

Pathophysiological features of cell damage 

It has been postulated that diabetic complications occur as a result of the interplay of 

metabolic and hemodynarnic factors in the renal microcirculation (Cooper et a/ 1998; 

Cooper 200 l ). Several pathophysiological cellular and extracellular features of diabetic 

complications exist. This includes capillary basement membrane thickening and associated 

hemostatic abnormalities. The structural hallmark of diabetic microangiopathy is 

thickening of the capillary basement membrane in all tissues, including the glomerular 

basement membrane, resulting in increased capillary permeability, blood flow and 
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viscosity and disturbed platelet function (Mogensen 1979). The increase in basement 

membrane is found in the protein components (type IV collagen, fibronectin) and the 

carbohydrate content. High glucose has been found to up-regulate in a co-ordinated fashion 

the transcription of genes coding for basement membrane components through effects 

exerted intra-cellularly or at the cell matrix boundary (Cagliero 1991). Basement 

membrane thickening could cause vascular dysfunction by several mechanisms. First a 

decrease of negative charges could change the filtration properties of renal glomerular 

capillaries. Second, alterations in basement membrane components could affect vascular 

cell metabolism. Thirdly, non-enzymatic glycation of extracellular protein and its by

products have been reported to affect vascular cell metabolism. Vasodilation and increased 

blood flow are early characteristic vascular responses to acute hyperglycaemia and tissue 

hypoxia. In hyperglycaemic tissues these vascular changes are also linked to increased 

ratio of NADH/NAD+, and mediated by a branching cascade of imbalances in lipid 

metabolism, increased production of superoxide anion and possibly increased nitric oxide 

formation (Williarnson et a/1993). 

Brief overview of cellular pathways implicated in diabetes induced complications 

Although we now know that the degree of hyperglycaemia is directly correlated to the 

extent of diabetic complications, we are still trying to elucidate the exact underlying 

mechanisms by which glucose disrupts cellular metabolism causing hyperpermeability and 

hemodynarnic changes leading to vascular and neural dysfunction. However, it is likely 

that multiple pathways are involved because the metabolites of glucose can affect many 

metabolic pathways. It is also indicated from the vast array of literature, that metabolic 

anomalies contributing to the development of diabetic complications must in some way 

overlap with each other (Tomlinson 1999). Hyperglycaemia is causally related to a number 

of ultrastructural, biochemical and ·haemostatic processes, which culminate in tissue 

ischemia (reviewed by Barnett 1991, 1993; Ruderman 1992; King 1994; King 1996). The 
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mechanism by which a lack of glycaemic control predisposes to vascular disease is 

incompletely understood, however several contributing factors have been proposed 

(Larkins et al 1992). Considerable advancements have been made in our understanding of 

diabetic complications yet we still do not sufficiently understand the underlying 

pathogenesis of these complications to allow for effective preventive measures. The reason 

why only some patients with diabetes develop microvascular complications and not others 

is unclear, however they are generally thought to result from the interaction of multiple 

metabolic factors, which are briefly discussed here: 

Increase of glucose transporters 

High extracellular glucose concentration is known to lead to increased glucose uptake into 

the mesangial cell. The process by which glucose enters the cell involves facilitative 

integral membrane glycoprotein glucose transporters, of which several family members 

have been identified in renal mesangial cells (RMC). Glucose transporters have a low-Km, 

and a high affinity for glucose, and at physiological glucose concentration would be at or 

near saturation. It has been shown that increased glucose concentration (20mM) increases 

the glucose transporter 1 (GLUT1) expression [Heilig et a/ 1997(a); Heilig et a/1997(b)]. 

Experiments carried out by Henry et a/ 1999 reported that increased GLUT1 expression 

leads to a positive feedback of greater GLUTI expression, increased AR expression and 

active PKCa protein levels, which leads to detrimental stimulation of matrix protein 

synthesis by diabetic mesangial cells. 

Non-enzymatic glycation of proteins 

Work carried out by Michael Brownlee and eo-workers at the Joslin Diabetes Centre as 

well as other groups, have suggested that accelerated nonenzyme modification of serum 

and tissue protein macromolecules by glucose and other sugars plays a central role in the 

pathogenesis of diabetic complications (Brownlee 1991; Brownlee 1994; Vlassara 1996; 

-67-



Chapter I: Diabetes mellitus and its complications 

Hamada 1996; Hammes et a/1998). Initially, under hyperglycaemic conditions, reversible 

early glycosylation products are formed by non-enzymatic attachment of glucose to amino 

groups, a well-recognised example of which is the glycated haemoglobin, HbAlc. This 

attachment result in the formation of covalently bound Amadori products known as early 

glycation products, which are reversible, if normal glucose levels are restored. However, if 

hyperglycaemia persists these Amadori products are converted to irreversible advanced 

glycosylation end products (AGE's) via an Amadori rearrangement. The formation of 

irreversible AGE's originate from the glycohaemoglobin modification, the l-arnino-1-

deoxyketose product, forming at a rate directly proportional to the glucose concentration. 

The glycohaemoglobin products go on to generate a variety of fragmentation products, 

particularly highly reactive carbonyl compounds such as 3-deoxyglucosone. It has been 

shown that the 3-deoxyglucosone reacts either oxidatively or non-oxidatively with 

different free amino groups to form a heterogeneous group of AGEs, for example the N

(carboxymethyl) lysine (CML) is formed oxidatively, and the imidazolone-type AGE (AG-

1) is non-oxidatively formed. It is not yet known how many types of AGE's there are, 

however AGE localisation in complications varies according to AGE structure (Horie 

1997). For example Hammes 1999 [a] reported that there appeared to be differential 

accumulation of AGE's in the course of diabetic retinopathy, indicating that oxidatively 

formed N-(carboxymethyl) lysine (CML) increases in diabetic neuroglial and vascular 

components and imidazolone-type AGE are restricted to microvessels and spread over the 

entire retina during the later stages of retinopathy. 

Evidence for the accumulation of AGE's comes from enzyme linked immunosorbent assay 

(ELISA) techniques using AGE-specific antibodies which have shown that diabetic renal 

cortex samples have 10 to 45 times more AGE's than non-diabetic samples after 5 to 20 

weeks of diabetes (Mitsuhashi 1993). Publications by Brownlee et a/1984, 1992 and 1994 

comprehensively reported that three principle mechanisms are involved in accelerated 
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AGE production and diabetic complications. Firstly, AGE's alter signal transduction 

pathways by changing the structure and function of the extracellular matrix components 

such as collagen, vitronectin and laminin. AGE formation on intact matrix also effects 

biological functions important to normal vascular tissue integrity. Secondly, AGEs alter 

the levels of soluble signals such as cytok:ines, hormones and free radicals through 

interaction with AGE-specific cellular receptors i.e. the receptor for advanced glycation 

end products (RAGE). It is suggested that interaction of AGE's with their cellular 

receptors induces procoagulatory changes such as preventing the activation of protein 

k:inase-C pathway, and also induces the increased production of the vasoconstrictor peptide 

endothelin-1, which together result in focal thrombosis and excessive vasoconstriction. 

Signal transduction by the AGE receptor also appears to involve generation of oxygen free 

radicals and leads to oxidant stress that results in potentially damaging changes in gene 

expression. For example, Galectin-3 (Gal-3) is a multifunctional AGE-binding protein that 

is associated with other AGE-binding receptor components and it is thought that up

regulation of Gal-3 is associated with diabetic nephropathy. Thirdly, intracellular glycation 

by glucose, fructose, and metabolic pathway intermediates occurs at a much faster rate 

than glucose derived extracellular AGE formation, and can directly alter protein function 

in target tissues, or have deleterious effects on gene expression. Basic fibroblast growth 

factor (bFGF) is the major AGE modified protein in endothelial cells, and its mitogenic 

activity is reduced 70% by AGE formation. 

Enzymes such as glyozalase I detoxifY AGE precursors and prevent AGE formation in 

endothelial cells and the ability to enzymatically detoxifY AGE-intermediates may be 

genetically determined. Pharmacologic agents that specifically inhibit AGE formation such 

as aminoguanidine have been used in diabetic animal models, and studies found a 

considerable reduction of diabetic acellular capillaries (Hammes 1991 [b ]; Brownlee 1991, 

1986, 1995), and AGE accumulation in the renal glomerulus was also prevented (Soulis-
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Liparota 1995). The decrease in peripheral nerve conduction velocities in diabetic rats was 

also prevented by treatment with aminoguanidine (Cameron 1992 [b ]). Over the past 

decade, a great deal of research has gone into studying the efficacy of aminoguanidine in 

blocking or slowing the progression of diabetes related organ damage. It has been proposed 

that aminoguanidine acts as a glucose competitor for the same protein bond that becomes 

the link for formation of AGE's, and also in improving action of nitric oxide (Corbett et al 

1992). Primary prevention with aminoguanidine has been successfully employed to 

prevent diabetic retinopathy in the rat (Hammes et al 1995). A number of multi-centre 

clinical trials into the effects of using aminoguanidine in TlDM and T2DM diabetic 

subjects are in progress (Friedman 1999). Other studies have also looked at the effects of a 

novel inhibitor of AGE formation; NNC39-0028 (2,3-diaminophenazine), and a breaker of 

already formed AGE cross links, N-phenacylthiazolium bromide {PTB) in STZ-diabetic 

female Wistar rats. This study demonstrated that a pharmacological inhibition of collagen 

solubility alterations in diabetic rats without affecting diabetes-induced pathophysiology 

such as the increase in UAE or albumin clearance, and also that treatment with PTB had no 

effect (Oturai et al 2000). The prevention of diabetic retinopathy, nephropathy and 

neuropathy by pharmacological inhibition of AGE formation in animal models suggests 

that aminoguanidine and other AGE inhibitors have a potential therapeutic role in the 

treatment of diabetic complication in patients. 

Increased flux through the polyol/sorbitol pathway 

One of the theories of the proposed effect of hyperglycaemia and microvascular 

complications involves an increased flux of glucose through the polyol pathway. This 

pathway is an accessory pathway in glucose metabolism, and was first recognised over 30 

years ago (Gabbay et al 1966). At elevated glucose levels, glucose metabolism via the 

polyol pathway accounts for 33% of glucose consumption by the lens and 10% by human 

erythrocytes (Cheng and Gonzalez 1986; Travis et al 1971). This increased flux through 
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the polyol pathway has been reported to be associated with a decrease in myoinositol 

uptake, decreased sodium/potassium adenosine triphosphatase activity (NaK.-ATP), and 

increased production of vasodilatory prostaglandins in some target tissues. It is also 

associated with an alteration of the NADHINAD+ ratio. It is this pathway that is the main 

focus of this thesis, therefore its mechanisms have been comprehensively reviewed in 

chapter 2. 

Depletion of myoinositol!Na+/myo-inositol cotransporter (SMIT) 

Myo-inositol has been identified as one of the major osmolytes in various tissues and types 

of cells (Nakanishi et a/ 1988). Animal studies have previously shown that myo-inositol is 

the only osmolyte found in substantial amounts in the cortex and the outer medulla of the 

kidney (Wirthensohn et a/ 1989). Under hypertonic stress Madin-Darby canine kidney 

(MDCK) cells have been shown to accumulate myo-inositol through Na+/myo-inositol 

cotransporter (SMIT), the transcription of which is also increased in response to 

hypertonicity (Yamauchi et a/ 1993). A study by Kitamura et a/ 1998 reported that an 

inhibitor of myo-inositol, 2-0,C-methylene-myo-inositol (MMI) led to extensive injury of 

the tubular cells of the outer medulla and also in the renal cortex. Further to this 

administration of myo-inositol was seen to prevent acute renal failure in the rat suggesting 

that myo-inositol plays a crucial role in osmoregulation of the cell under hyperglycaemic 

conditions. A depletion of not only myo-inositol but also taurine and other amino acids 

was observed in the sciatic nerve of a galactosemic rat. Treatment of the galactosemic rats 

with sorbinil, an AR inhibitor was also found to protect against the loss of myo-inositol, 

taurine and other amino acids (Nishimura et a/ 1987). 

Increased formation of reactive oxygen species (ROS) 

Hyperglycaemia increases intracellular reactive oxygen species (ROS), lipid peroxidation 

and attenuates anti-oxidative mechanisms. Oxidative stress is defined as a tissue injury 
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induced by increase in ROS such as hydrogen peroxide (H202), superoxide anion (02··), 

and hydroxyl radical (·OH) (Baynes and Thorpe 1999). ROS causes strand breaks in DNA, 

which has been shown to be increased in diabetic subjects and might contribute to the 

pathogenesis of diabetic complications (Ha et a/ 1994, 1995; Dandona et a/ 1996). Hinokio 

et a/ 1999 reported increased oxidative DNA damage in diabetic subjects compared to 

control subjects. The major source of oxidative species in the diabetic state is thought to be 

from the increase in glucose autoxidation and non-enzymatic glycation (Wolff and Dean 

1987; Sakarai and Tsuchiya 1988; Hunt et a/1990; Williamson et a/1993). It has however, 

also been demonstrated by Lee and Chung 1999 that the flux of glucose through the polyol 

pathway is also a major source of diabetes associated oxidative stress in the ocular lens. It 

has been shown that in cells affected by diabetic complications such as aortic endothelial 

cells, 30 rnrnol!L glucose increases ROS formation by 250% within 24 hours, and resultant 

lipid peroxidation by 330% by 168 hours (Nishikawa et al2000 [a]). This increase in ROS 

has been shown to be prevented by an inhibitor of the electron transport chain complex II 

by an uncoupler of oxidative phosphorylation, by uncoupling protein-! and by manganese 

superoxide dismutase. A consequent reduction of glucose-induced activation of protein 

kinase C, formation of advanced glycation end-products, sorbitol accumulation and NF 

kappa B and AP-1 transcription factor activation were all seen with each of the above 

agents (Nishikawa et a/ 2000 [b]). Data has shown that exposure to high glucose 

concentrations induces an antioxidant defence in skin fibroblasts from nonnal subjects, in 

TlDM subjects with nephropathy however, this defensive mechanism is defective. On the 

other hand it has been shown that TIDM subjects without complications or non-diabetic 

nephropathic patients have an intact antioxidant response to glucose-induced oxidative 

stress (Ceriello et a/2000). A pathogenic role ofROS in diabetes is also strongly supported 

by the observations that antioxidants suppress high glucose-induced extracellular matrix 

protein synthesis in mesangial cells (Trachtrnan et at 1993; Trachtrnan et at 1994; Ha et at 

1997). Mitochondria is also a target of oxidative stress consuming approximately 90% of 
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oxygen, where superoxide anions are produced from electron transport system and are 

scavenged by an intramitochondrial enzyme manganese superoxide dismutase (MnSOD). 

The major biochemical pathways of hyperglycaemic vascular damage and hyperglycaemia 

induced activation of NFkB have recently been shown to result from a single common 

mechanism; hyperglycaemia-induced overproduction of superoxide by mitochondria 

(Nishikawa et al2000 [a]; Du et a/2000). The formation of reactive oxygen species (ROS) 

has been proposed to be the single unifying mechanism for the development of diabetic 

complications. In fact it has been demonstrated that the increased production of ROS 

serves as a causal link between elevated glucose levels and each of the three major 

pathways responsible for diabetic tissue damage; activated polyol pathway, PKC and AGE 

formation (Nishikawa et a/ 2000 [b]). It is suggested that ROS may be an integral 

component of membrane receptor signalling in mammalian cells. The production of ROS 

has been detected in various cells stimulated by cytokines, growth factors and 

transmembrane receptor agonists (Ha and Lee 2000). It has been reported by Hammes et al 

1999 [a] that monitoring of intracellular concentrations of ROS causes increased oxidative 

stress in long-lived CD45RA + lymphocytes by markers such as Nepsilon

( carboxymethyl)lysine possibly identifies a subgroup of patients of high risk for 

microvascular complications. 

Decreased nitric oxide synthase (NOS) activity 

Nitric oxide (NO) is a signalling molecule in blood vessels which maintains vasodilation 

and blood flow and acts as a potent inhibitor of platelet aggregation and adhesion to the 

vascular wall. Endothelial nitric oxide controls the expression of proteins involved in 

atherogenesis, decreasing expression of chemoattractant protein (MCP-1) and of surface 

adhesion molecules such as CD11/CD18, p-selectin, VCAM-1 and ICAM-1. It is also 

known to have a role in immune defence where activated macrophages synthesise large 

amounts of NO to destroy microorganisms and cancerous cells. NO is formed by the 

- 73-



Chapter I : Diabetes mellitus and its complications 

oxidation of arginine by nitric oxide synthase (NOS) in endothelial cells ( ecNOS), 

macrophage/inducible (iNOS) or neuronal cells (ncNOS). eNOS is activated by the 

phosphorylation of serine 1177 by the protein kinase Akt/PKB (Fulton et a/ 1999; 

Dimmeler et a/ 1999). NO is a highly reactive molecule that can interact with a variety of 

cellular components. It has been demonstrated that NO can cause damage to the nuclear 

DNA of beta-cells (Fehsel et a/1993). Wilson et a/1997 also demonstrated that mtDNA is 

vulnerable in NO-induced damage. Endothelium dependent vasodilation is impaired in 

both microcirculation and macrocirculation during acute hyperglycaemia in normal and 

diabetic subjects (Luscher et a! 1993; Makimalti et a/ 1996), suggesting that NOS activity 

may be impaired in diabetic subjects. Decreased Nitric Oxide (NO) production has been 

associated with the development and progression of diabetic nephropathy in diabetic 

spontaneously hypertensive rats (Wessels et a/ 1997). It is a distinct possibility that 

diabetic microangiopathy in humans may be, in part, due to defective endothelial NO 

production (Anggard et a/1994; Snyder and Bredt 1992; Kolb and Kolb-Bachofen 1992). 

Du et at 2001 reported that hyperglycaemia inhibits eN OS activity in cultured bovine 

aortic endothelial cells (BAECs) by activating the hexosamine pathway via mitochondrial 

over-production of superoxide, which increases eNOS modification by GlcNAc and 

decreases eN OS serine phosphorylation. Earle et a! 2001 investigated T2DM patients of 

African-Asian and White origin with microalbuminuria under euglycaemic conditions. The 

study measured glomerular filtration, renal plasma flow and clearance of the stable 

metabolites of nitric oxide, and found significant differences whereby the percentage 

clearance of nitrate was higher in the white compared with the African-Asian groups. The 

differences in the incidence of end~stage renal failure would therefore appear to involve 

defective nitric oxide production or indeed its bioavailability. Another similar study by 

Hiragushi et a/ 2001 looked at the relationship between diabetic glomerular hyperfiltration 

and the NO system in Japanese T2DM patients. Creatinine clearance and urinary NO 

excretion was measured in T2DM subjects and non-diabetic controls, and found 
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significantly higher levels of urinary NO in the T2DM subjects. These results suggested 

that NO might contribute to the pathogenesis of glomerular hyperfiltration in Japanese 

T2DM patients. Studies using pharmacologic modulators of nitric oxide in proteinuric rats 

have also yielded interesting findings. Rangan et a! 200 I investigated in rats, the effect of 

continuous oral administration of an NO donor (molsidomine),.NO precursor (L-arginine), 

or selective inhibitors of inducible NO synthase (iNOS; aminoguanidine, L-NIL) on the 

progression of tubulointerstitial inflammation. The study found endogenous NO to have a 

protective role against tubulointerstitial injury. Ido et al 2001 designed experiments using 

skin chambers mounted on the backs of Sprague-Dawley rats, and exposed an inhibitor of 

NOS to the granulation tissue. Albumin permeation and blood flow were significantly 

attenuated implicating nitric oxide in mediating permeability and blood flow changes in the· 

diabetic milieu. Reduced levels of NO may therefore play a key role in the development 

and progression of microvascular disease in diabetic subjects. 

Increase in ceU adhesion molecules (CAM) 

Increasing evidence indicates that hyperglycaemia increases the formation of free radicals 

by glucose auto-oxidation, which stimulate cytokine release and consequently induce 

expression of adhesion molecules (AM) on the endothelial cell surface (Pigott et a/ 1992). 

AM's are thought to be involved in chemotaxis of circulating monocytes and binding of 

leukocytes and platelets to endothelium. Raised concentrations of circulating AM's have 

been shown to exist in a variety of disorders including TIDM. They reflect endothelial 

activation and stimulation of leukocytes in diabetes and have a potential involvement in 

diabetes associated micro- and macrovascular disease. A study by Fasching et a! 1996 

showed that higher concentrations of vascular cell adhesion molecule-1 (cVCAM-1) was 

observed in TlDM subjects with retinopathy (+18%, P<0.05), and micro- and 

macroalbuminuria (+26%, P<0.05) than in those without. Similar fmdings were seen in 

TIDM patients with nephropathy (Schrnidt et a/1996 [b]), and also neuropathy (Jude et a! 
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1998). Other studies have indicated an increase in expression ofVCAM-1 and intracellular 

adhesion molecule-1 (clCAM-1) on retinal and choroidal tissue of diabetic patients with 

retinopathy (Tang et a/ 1994; McLeod et al 1995). It is therefore possible that elevated 

concentrations of c VCAM -1 as an indicator of widespread endothelial damage may serve 

as a risk marker for the presence and progression of diabetic microangiopathy in TlDM. A 

study by Park et al 2000 measured the effect of high glucose on the expression of 

intercellular adhesion molecule-1 and vascular adhesion molecule -1 in mesangial cells 

and found that high glucose can up-regulate ICAM-1 but not VCAM-1 through osmotic 

effect. Hyperglycaemia increased activation of cell adhesion molecules may therefore be 

an important factor in the development of diabetic microvascular disease. 

Alterations of intraceUular signalling pathways 

It is likely that glucose and its metabolites mediate their adverse effects by altering the 

various signal transduction pathways, which are used by vascular cells. Several mitogen

activated protein (MAP) kinase signal transduction pathways have so far been 

characterised. These pathways are activated by multi-step phosphorylation cascades after 

ligand-cell surface receptor binding, and transmit signals to cytosolic and nuclear targets. 

The MAP kinases are activated through Ras-dependent signal transduction pathway by 

hormones and growth factors, leading to cellular proliferation and differentiation by 

stimulating transcription factors that induce the expression of growth responsive genes 

(lgarashi et al 1999). Intracellular signalling pathways are therefore an important target for 

studying the diabetic cellular milieu leading to damage. Intracellular signalling pathways 

are discussed in more detail in chapter 2. 

Increased de novo synthesis of diacylglycerol (DAG) and protein kinase C (PKC) 

Hyperglycaemia increases the synthesis of diacylglycerol (DAG) by enhancing the 

metabolism of glucose to DAG precursors through glycolysis. DAG is an important 
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cellular metabolic regulator in vascular cells, involved in the activation of the protein 

kinase C (PKC) signal transduction pathway. This elevation of DAG is the presumed 

mechanism for the elevated protein kinase C activity observed in several tissues obtained 

from diabetic animals, or exposed in vitro to high glucose concentrations (Lee et a/ 1989; 

Koya and King 1998). Hyperglycaemic activation of the PKC pathway has been shown to 

alter several parameters in vascular metabolism and function. Such fmdings include a 

decrease in the sodium potassium A TPase activity in peripheral nerves and vasculature 

through increased phospholipase A2 (cPLA) activity, altered regulation of gene expression 

of many proteins including those involved in vascular contractility and those found in the 

basement membrane (Craven et a/1990). 

Protein kinase C (PKC) is a family of serine-threonine kinases that influence a range of 

functions including cellular proliferation, blood flow and vascular permeability. A novel 

pathway for glucose transport has also been suggested involving PKC-:V~ 

(Bandyopadhyay et a/ 2001 ). Early suggestions of a role for PKC in the pathogenesis of . 

diabetic complications have been made from the results of animal studies in diabetic rats. 

Studies have found that PKC is activated in glomeruli isolated from diabetic rats (Craven 

et a/ 1989), and activation of PKC by exposure to a PKC agonist is seen to reproduce the 

vascular abnormalities induced by diabetes and high glucose levels (Shiba et a/1993; Wolf 

et a/1991). Mesangial cells cultured in high concentrations of glucose (27.8 mmol/L) for 

five days have increased PKC and mitogen activated protein kinase activity (Haneda et a/ 

1995), and it is thought that activation of the PKC system is an important pathway 

involved in diabetic glomerulopathy (DeRubertis and Craven 1994). PKC also increases 

levels of mRNA encoding matrix components in glomeruli isolated from streptozotocin

induced (STZ) diabetic rats (Ziyadeh et a/ 1995). Activation ofPKC has also been found to 

further activate intracellular signal transduction systems such as extracellular regulated 

kinase (ERK) forming a DAG-PKC-ERK chain. It is thought that therapies aimed at 
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lowering the PKC levels may be beneficial and· diabetic rats treated with d-alpha

tocopherol, which inhibits PKC activation has been seen to prevent glomerular 

hyperfiltration and minimise the development of proteinuria (Koya et a/ 1997; Way et a/ 

2001). Haneda et a/ 2001 examined the DAG-PKC-ERK pathway and found that 

thiazolidinedione compounds could inhibit PKC activation by activating DAG kinase. 

Glucose altered content, cellular distribution and activity of diacylglycerol-sensitive PKC

alpha, -beta, -delta, and -epsilon isoforms has also shown to be dependent on polyol 

pathway (Kapor-Drezgic et a/ 1999), and could be prevented using aldose reductase 

inhibitors tolrestat and ARI-509. Insulin treatment also normalises membrane PKC 

isoforms content (Babazono et a/ 1998). Such findings highlight the importance of the 

DAG-PKC-ERK. pathway in the development of glomerular dysfunction in diabetes. Early 

trials of PKC inhibition indicate the potential benefits of treatment against end-stage renal 

disease with PKC inhibitors. 

Transcription factor nuclear factor kappa B (NFKB) 

Nuclear factor kappa B (NFKB) is a member of the Rei family proteins and is a eukaryotic 

transcription factor that is involved in mediating the immune response (LeBeauet et a/ 

1992; Baeuerle 1998; Brand et a/ 1996). Studies using glomerular mesangial cells have 

shown that NFKB activation occurs as a response to hypoxia, cytokines, angiotensin IT and 

AGE proteins (Khachigan et a/1995). Animal studies have shown higher renal expression 

of the NFKB system in diabetic animals compared with healthy control animals (Bierhaus 

et a/ 1997 [a and b). It has also been shown that increased activity of NFKB is present in 

the peripheral mononuclear cells isolated from TlDM and T2DM patients with diabetic 

nephropathy (Mohamed et a/ 1999; Hoffman et a/ 1999). Romeo et al 1999 found that 

increased activation of NFKB is the first molecular abnormality detected in situ in retinal 

pericytes of diabetic donors. Characterisation of the biosynthetic program driven by NFKB 

in vivo, and its inhibition, will clarify the role of the transcription factor in diabetic 
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complications. Studies carried out using porcine vascular smooth muscle cells have shown 

that hyperglycaemia activates NFKB (Yemeni et a/!999). This has been shown to be true 

in ex-vivo isolated peripheral blood mononuclear cells (PBMC's) ofTIDM patients, where 

poor. glycaemic control induces the activation of NFKB (Hoffman et a/ I 998). Kumar et a/ 

1999 demonstrated that hyperglycaemia-induced activation of NFKB in vascular smooth 

muscle cells was inhibited by a protein kinase C inhibitor, calphostin. Studies by Hoffman 

et a/ 1999; Du et a/ 1999 and Bierhaus et a/ I 997 [a] demonstrated that NFKB activation is 

in part dependent on oxidative stress as a-Lipoic acid was seen to reduce NFKB binding 

activity (Muller et a/ 1997). It has therefore been suggested that hyperglycaemia induced 

activation of NFKB may be involved in the susceptibility to diabetic microvascular 

complications and be a key mechanism for accelerated vascular disease observed in 

diabetics. 

Transcription factor activating protein-I (APl) 

Activating protein-! (APl) is a sequence specific transcription factor involved in 

regulating the expression of several genes including those involved in mediating growth, 

inflammation and differentiation. API is reported to be regulated in response to 

hyperglycaemic conditions and resultant intracellular redox imbalances (Sen and Packer 

1996; Nishio et a/1998; Natarajan et a/1999). Wilmer et a/ 1998 demonstrated increased 

binding of APl to in human mesangial cells (HMC) cultured in high glucose environment 

(30mM d-glucose). APl may therefore be activated in the diabetic state and involved in the 

development of microvascular disease. Weigert et al 2000 have reported evidence that 

APl proteins mediate hyperglycaemia induced activation of the human TGF-BI promoter 

in mesangial cells. 
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Role of growth factors/cytokines in microvasculopathy 

High glucose and its various metabolites such as nonenzymatic glycation products and 

hemodynamic changes can all stimulate the synthesis and release of a host of factors which 

stimulate proliferation of hypertrophy of cells and the production of extracellular proteins 

(Wolf and Ziyadeh 1999), some of which are discussed here; 

Vascular Endothelial Growth Factor (VEGF) 

Vascular endothelial growth factor (VEGF) is a heparin-binding homodimeric protein of 

46-kDa, and at least five different molecular species with varying amino acid number have 

been shown to exist (Tisher et a/ 1991). So far four VEGF family members have been 

identified, VEGF-A, VEGF-B (Olofsson et a/1996), VEGF-C (Joukov et a/1996) and an 

endocrine derived ED-VEGF (LeCoute et a/ 2001). VEGF has been shown to be an 

angiogenesis and vasopermeability-inducing molecule and its expression has been shown 

to be increased in many hyperproliferative disorders. VEGF is a principle mediator in 

diabetic retinopathy and also appears to play a central role in diabetic vasculopathy in 

many other organs, although its precise involvement is not understood. VEGF expression 

is increased in mesangial cells cultured in high glucose media, and glomerular VEGF 

levels and urinary VEGF are increased in patients with diabetes (Aiello and Wong 2000). 

VEGF mediates its action through transmembrane autophosphorylating tyrosine kinase 

proteins of high VEGF binding affinity. These receptors are expressed predominantly in 

endothelial cells although they have been identified in renal mesangial cells, monocytes, 

hematopoietic cells and the retina. Evidence suggests that nitric oxide mediates some of 

VEGF's mitogenic effects on coronary endothelial cells and that VEGF mRNA expression 

is dramatically regulated by oxygen tension, with markedly increased VEGF gene 

expression under hypoxic conditions (Shweiki et a/ 1992). It is suggested that VEGF might 

regulate neovascularisation in hypoxia induced diabetic retinopathy leading to increased 
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retinal vascular permeability and new retinal vessel growth. In animal models specific 

inhibition of VEGF by soluble VEGF receptor chimeric proteins, reduced 

neovascularisation in 95% to 100% of animals tested (Aiello et a/ 1995). Clinical studies 

have also confmned that there is elevated VEGF concentrations in vitreous and aqueous 

samples of eyes in patients with proliferative retinopathy (Aiello et a/ 1994). Tilton et al 

1999 showed that intravenous infusion of VEGF can acutely impair endothelial cell barrier 

functional integrity and relax resistance arterioles in ocular tissues and brain. Inhibition of . 

VEGF action might therefore provide novel therapeutic approaches to diabetic 

vasculopathy. 

Transforming Growth Factor Beta (TGF-f3) 

Cellular signalling pathways involved in Transforming Growth Factor Beta (TGF-13) 

induced renal injury are being extensively investigated. TGF-13 is activated by the 

extracellular signal-regulated kinase (ERK) pathway and also p38 mitogen activated 

protein kinase (MAPK) system. TGF-13 has been shown to have antiapoptotic effects in 

macrophages, and is implicated in type 1 collagen synthesis in mesangial cells, and induces 

fibronectin and plasminogen activator inhibitor (PAl-l) expression in mesangial cells. 

TGF-13 also down regulates inositol 1,4,5-triphosphate (IP3) receptors which may also · 

mediate vascular dysfunction in diabetes. Down regulation of ECM degradation is thought 

to be through a TGF-13 dependent mechanism through glucose induced down regulation of 

matrix metalloproteinases (MMP) which may contribute to the pathogenesis of diabetic 

glomerulosclerosis. Lovastatin, the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) 

reductase inhibitor has been shown to suppress glomerular TGF-13 expression and 

ameliorate diabetic nephropathy in STZ induced diabetes in rats (Del Prete et a/ 1998; Lee 

et a/2000). 
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Other growth factors and chemokines 

A whole variety of growth factors, cytokines, chemokines and vasoactive agents which 

have not already been mentioned have also been investigated and implicated in the 

pathogenesis of diabetic microvasculopathy. Such agents inClude; the cytokines- platelet 

derived growth factor-B (PDGF-B) (Kasuya et al 1999 [a]), insulin-like growth factor-! 

(IGF-1), hepatocyte growth factor (HGF); the chemokines- interleukin-8 (TI-8) and 

monocyte chemotactic peptide-! (MCP-1); and the vasoactive substances, angiotensin II 

(Angll), andothelin-1 (ET-1) and the prostanoides such as thromboxane (Flyvberg et al 

1998; Abboud 1997). These factors will however not be discussed in detail as they are 

beyond the scope of this thesis. 

Interactions between hyperglycaemia altered pathways 

Many lines of evidence indicate that there is a multifactoral pathogenesis of diabetic 

complications, and that several pathways are affected by diabetes, which lead to the onset 

and progression of microvascular disease. These pathways are thought to be interconnected 

and overlap with each other as illustrated in figure 3. It has been shown that increased 

sorbitol pathway metabolism and non-enzymatic glycation products are involved in the 

pathogenesis of vascular and neural dysfunction associated with diabetes. A study carried 

out by Ido 1996 using animal models looked at the vascular dysfunction induced by 

elevated glucose levels, and found that increased blood flow and increased albumin 

permeation was reduced by inhibitors of the sorbitol pathway, nitric oxide synthesis and of 

prostaglandin synthesis respectively. These fmdings suggest that the vascular dysfunction 

induced by increased sorbitol pathway metabolism and by products of non-enzymatic 

glycation are mediated by a common final pathway. Increased superoxide production is 

important in mediating vascular dysfunction and it is likely that increased flux of glucose 

via the sorbitol pathway increases superoxide production as a consequence of hypoxia like 

reductive stress resulting from reduction of NAD+ to NADH coupled to oxidation of 
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sorbitol to fructose. The final common pathway between the various biochemical 

abnormalities would therefore appear to involve the increase in oxidative stress (Cappiello 

2000). 
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Genetic susceptibility to diabetic complications 

There is substantial evidence to support the involvement of genetic factors in the 

development and progression of certain diabetic microvascular complications. This 

evidence comes from genetic epidemiological studies of diabetic complications (Rich et a/ 

1997). Molecular characterisation of genetic susceptibility is imperatively important and 

would not only increase our understanding of the pathogenesis of diabetic complications 

but would also provide diagnostic tools for identifying susceptible patients so that they 

could be targeted for intensive control of hyperglycaemia. Such information would also 

assist in the development of new preventative and therapeutic programs. Possible genetic 

models for the interaction between the diabetic milieu and susceptibility to complications 

have been proposed where genes may have a major or minor effect. These include, an 

additive genetic model where the genetic influence serves to regulate the progression of the 

disease, an interactive model where genes in conjunction with poor glycaemic control lead 

to the development of disease, and a mixed model where some genes influence 

development whereas other genes influence progression of disease (Krolewski et at I 992; 

Krolewski 1999). The suggestion that there is an interaction between genes could also help 

towards explaining why some patients with well-controlled diabetes still develop 

complications, whereas there are others with poorly controlled diabetes who 'escape' any 

complications. This may also suggest that it will be possible to predict the beneficial effect 

of different targeted therapeutic intervention (Cooper 1998). However despite promising 

fmdings that suggest a role for various genetic factors in the pathogenesis of complications, 

genetic screening cannot yet be considered appropriate as part of routine clinical practice 

in diabetic patients. 

Genetic epidemiology of nephropathy 

Transracial studies (Cowie et al 1989; Burden et at 1992), family studies (Seaquist 1989; 

Pettitt et a/1990; Borch-Johnsen 1992; Quinn et a/1996; DCCT 1997; Fioretto et a/1999) 
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and large epidemiological studies (Anderson et a/ 1983) have all shown marked 

differences in the incidence of diabetic nephropathy. These studies collectively indicate 

that only a subgroup of diabetic subjects (33%) are susceptible to diabetic nephropathy, 

that there is familial aggregation for renal disease, and that there are marked inter-racial 

differences in the disease prevalence, all indicating a genetic basis for nephropathy. 

A large epidemiological study consisting of 1475 TIDM subjects diagnosed before 1953 

and before the age of 31 years was conducted, all patients were diagnosed with diabetes at 

the Steno Memorial Hospital, Denmark (Anderson et a/ 1983). Patients were followed 

until 25 years duration of diabetes or until death. The study found that 41% of patients 

developed nephropathy, 3% had proteinuria due to other causes and 57% did not develop 

persistent proteinuria. Variation has been shown to exist in the prevalence of diabetic 

nephropathy in different racial groups. Asian, Hispanic, Native American or Afro 

Caribbean ethnic origin have iricreased rates of diabetic renal disease as compared to 

matched groups ofCaucasoid patients (Pugh 1988; Cowie 1989; Collins 1989; Pettitt 1990; 

Reddan et a/2000; Bennett et a/ 2001). A trans-racial study that looked at the incidence of 

end-stage renal disease in diabetic subjects found an increased incidence in African

Americans compared to Caucasoids (Brancati et a/ 1992). The family study carried out by 

Seaquist et a/ 1989 demonstrated an increase in the incidence of diabetic nephropathy in 

siblings of TIDM probands with nephropathy compared to siblings of normoalbuminuric 

TIDM subjects, concluding that nephropathy occurs in familial clusters. Similar findings 

were also reported from a study carried out by Borcb-Johnsen 1992 who found a 

significant increase in renal complications in TlDM siblings ofprobands with nephropathy 

than in TlDM diabetic siblings of probands without nephropathy. Studies in Pima Indians 

with T2DM showed that there was familial aggregation for proteinuria among diabetic 

siblings and that nephropathy was observed in 46% of diabetic offspring if both patients 

were proteinuric, 23% if one parent had proteinuria and 14% if neither parents bad 
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proteinuria (Pettit et a/ 1990). Further evidence for familial aggregation of nephropathy 

was found in a study of siblings with TlDM. This study found that for probands and 

siblings combined the cumulative incidence of advanced diabetic nephropathy after 30 

years duration of diabetes was 35%, however if the proband had persistent proteinuria the 

risk to the sibling rose to 71.5% (Quinn et a/ 1996). In 1997 the DCCT research group 

published the results of a large study investigating familial clustering of diabetic 

microvascular complications. The study aimed to determine familial associations and 

clustering of the severity of complications. The data with respect to nephropathy suggested 

that there was an increased risk of nephropathy in relatives of nephropathy positive versus 

nephropathy negative subjects and suggested that possible genetic factors influenced the 

development of diabetic nephropathy (DCCT 1997). A study by Fioretto et a/ 1999 

examined the lesions of diabetic nephropathy among TlDM siblings and determined that 

there was strong concordance for the severity and patterns of glomerular lesions among the 

sibling pairs, suggesting familial concordance in the risk for nephropathy. Complex 

segregation analysis has been performed in diabetic members of Pima Indian families to 

determine whether familial aggregation of nephropathy reflects the action of a single major 

gene. Analysis of prevalent cases in this study supported evidence for the existence of a 

gene with a major role in the susceptibility to diabetic nephropathy in Pima Indians. This 

was shown where-by the hypotheses of no major effect and of no transmission of a major 

gene effect were rejected (P=O.OOOOI; P= 0.003) (lmperatore et a/ 2000). These 

observations suggest that one or more hereditary causes may be involved in the 

pathogenesis of this complication, and that the proposed difference in risk suggests a major 

gene effect. 

Genetic epidemiology of retinopathy 

The DCCT 1997 report investigating familial clustering of diabetic microvascular 

complications indicated that the risk of severe retinopathy in the relatives of retinopathy 
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positive versus negative subjects was statistically significant. Correlation's for the severity 

of retinopathy which were computed from log-adjusted retinopathy scores were 0.187 (all 

family members), 0.327 (parent-offspring), 0.249 (father-child), 0.391 (mother-child), and 

0.060 (sib-sib) and all were statistically significant (P<0.05). The WHO Multinational 

Study of Vascular Disease in Diabetes (WHO MSVDD) designed a study to compare the 

vascular complications of diabetes in different ethnic groups which included an estimate of 

visual function (Diabetes Drafting Group 1985; Miki et a/ 2001). This provided the 

opportunity to ascertain incidences and progression of visual impairment and its risk 

factors, which were found to include baseline systolic pressure and cholesterol levels. In 

the United States and the UK approximately 12% of all new blindness was attributable to 

diabetic retinopathy (Kiein 1995). The prevalence rate in the WHO MSVDD study showed 

significant variation of visual impairment prevalence rates among centres with high total 

rates, American Indian Oklahoma (33.4%) and Pima (26.3), contrasting with lower 

European rates. These data provide evidence that the severity of diabetic retinopathy is 

influenced by familial (possibly genetic) factors (DCCT 1997), and to some degree 

ethnicity. 

Genetic epidemiology of neuropathy 

Diabetic neuropathy is the most common form of peripheral neuropathy in the western 

world and is a common complication in both TIDM and T2DM subjects. Much of the data 

on prevalence and incidence of neuropathy comes from the Rochester Diabetic Neuropathy 

study which was a population based longitudinal study of participants from Rochester, 

Minnesota (Dyck et a/1991). This study revealed that the prevalence of neuropathy did not 

differ greatly between TIDM (66%) and T2DM (59%) subjects or by clinical subtype. 

Another study, the San Louis Valley Study found a much lower prevalence of neuropathy 

(28%) in T2DM subjects of Anglo and Mexican/American heritage, although there were 

no indications of ethnic difference in incidence (Franklin et a/1990). The failure of studies 
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such as the San Louis Valley study to observe ethnic differences indicated that genetic 

effects do not play a major role in the aetiology of neuropathy as ethnic differences in 

disease are often a hallmark of genetic effects. Therefore, the observed factors such as 

duration of diabetes, hyperglycaemia and hypertension are suggested to may play a major 

role in neuropathy risk (DCCT 1993 [a and b ]). 

Genetic epidemiology of macrovascular disease 

Epidemiological data indicate that diabetes and a familial predisposition are independent 

risk factors for cardiovascular disease. Research has identified evidence of familial 

aggregatiol} of early coronary heart disease (Hopkins et a/ 1988), and a familial correlation 

for CHD risk factors (Glueck et a/ 1974). Excess mortality from stroke among diabetic 

patients is at least two~fold compared with the non-diabetic population (Garcia 1974). In 

the Honolulu Heart Program, the rate of thromboembolic stroke for diabetic men was 

62.3/1,000 vs. 32.711,000 for non-diabetic men (Abbott et a/ 1987). In the Framingham 

Study the risk of stroke for T2DM subjects was 2.6 fold greater for men and 3.8 fold 

greater for women than for non-diabetic individuals (Stokes et a/1987). Tarnow et a/2000 

has shown that cardiovascular morbidity and early mortality clusters in parents of TIDM 

subjects with nephropathy. 

Tbe searcb for susceptibility genes 

The positional cloning of multifactoral disease genes is a major challenge in human 

genetics. Several forms of genetic mutations are known to exist and are identifiable using 

various molecular genetic techniques. Genetic variations include single nucleotide 

polyrnorphisms (SNPs), dinucleotide repeats and microsatellites. · Several of the 

polymorphisms are located in the promoter region of the gene and affect transcription or 

translation, and not infrequently determine the level of expression of the protein product. 

Single nucleotide polyrnorphisms involve the substitution of one nucleo~de for another, 
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and some can be identified using restriction endonuclease digestion. As a consequence of 

the Human Genome Project effort is underway to develop a dense set of biallelic markers 

(SNP's) throughout the human genome (Collins et a/1998). Technology to detect SNP's 

includes the use of a gene chip, a glass wafer, to which is bound high-density arrays of pre

pooled primers for multiplex PCR assays. It is anticipated that up to 100,000 SNP's 

scattered throughout the genome will become available (Wang 1998). The finishing of 

human genome sequence determination, improvements in inforrnatics and large-scale 

identification of SNP's will undoubtedly increase the feasibility of identifying 

polymorphisms that predispose to diabetic complications (Johnson and Todd 2000). 

Dinucleotide repeats consist of continuous repeating units of a dinucleotide sequence, for 

example (CA)n, and similarly Variable Number Tandem Repeats (VNTR) consist of 

repeating units of more than two base pairs. Microsatellites are tandernly repeated arrays of 

one to six nucleotides and these sequences are both ubiquitous and highly polymorphic. 

Microsatellites are repeated 10-60 times and they are dispersed throughout the genome on 

average every 105 bp (Weber and May 1989; Love 1990). When they are mutated they are 

also an important cause of human disorders. Microsatellite markers possess high levels of 

allelic variation so that parental chromosomes often bear different alleles enabling 

chromosomes to be tracked from parents to affected offspring. Studies in a wide variety of 

systems have shown that replication slippage is the predominant means by which the 

number of repeats in a rnicrosatellite array changes, and that alterations most commonly 

consist of insertion or deletion of one or two repeat units (Schlotterer and Tautz 1992). 

Microsatellite mutation rates are increased in cells deficient for mismatch repair (Strand et 

a! 1993). It is suggested that alteration in repeat number occurs in distinct classes (rare, 

large changes and common, single or two step ones) (Freimer and Slatkin 1996). It is also 

possible that there is a constraint on the mutation process that would cause allele size to 

remain within a certain limit. Valdes et a! 1993 showed that there was no obvious 

relationship between the variance in repeat number, which should be proportional to the 
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mutation rate, and the average allele size. Microsatellites are flanked by unique sequences 

to which PCR primers can be designed to allow amplification of the microsatellite region. 

Variations in the length of flanking sequences could affect the overall size of the PCR 

product lengths and obscure a relationship between the mean and the variance in allele 

size. A number of lines of evidence indicate that the total length of the microsatellite may 

have less of an effect on the mutation rate than the length of uninterrupted or perfect 

repeats. Direct sequencing data through semi-automated mapping has now become a 

widely used technique in analysing microsatellite polymorphisms (Reed et a/1994 ). 

Whole genome scanning for susceptibility loci 

A whole genome scan is the analysis of about I 00 evenly spaced markers in mouse 

pedigrees, or about 300 markers in human families in which there are affected and non

affected progeny. The aim is to identifY chromosome regions that are inherited by affected 

progeny more often than expected from Mendelian random segregation. Using large data 

sets, a map with dense markers, and multipoint programs, which make the map even more 

informative, can reduce false positive linkage results. One approach to detect linkage of 

genes has been based on the squared sib pair trait difference that is regressed on the 

estimated proportion of marker alleles shared by descent. The test for linkage is then based 

on the significance of a negative slope. For all pairs of affected concordant, unaffected 

concordant and discordant sib-pairs, the mean proportion of marker alleles shared can be 

estimated. The power of the sib-pair method depends on the proportion of the phenotypic 

variance due to segregation at the major locus and the sample ascertainment (Risch et al 

1995). This strategy of whole genome scanning has been applied to screening for 

determinants of microvascular disease related to diabetes. For example Imperatore et al 

1998 [a and b] used sib-pair linkage analyses to identifY loci influencing susceptibility to 

microvascular complications in Pirna Iitdians with T2DM. The study suggested that a 

genetic element on chromosomes 7 and 20 may influence susceptibility to nephropathy and 
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a genetic element on chromosomes 3 and 9 may determine susceptibility to both 

nephropathy and retinopathy. In this study chromosome 7 showed the strongest evidence 

for linkage, and contains the candidate gene aldose reductase (ALR2). A further study 

using TIDM sib-pairs discordant for diabetic nephropathy found a susceptibility locus on 

chromosome 3q which contains the candidate genes involved in angiotensin II sub-type I 

receptor (A TlR) (Moczulski et a/ 1998). 

Fine mapping of susceptibility loci 

A disease mutation will be flanked by microsatellite markers with certain alleles which can 

be typed and provide a recognisable signature to the chromosome region containing the 

disease mutation. If a marker is very close, within 1 centimorgan (cM) (Jorde 1995) to a 

disease mutation, then despite opportunities for recombination during meiosis between the 

marker and the disease mutation, there will still be a strong chance that the marker and the 

mutation will be in linkage disequilibrium. In regions of the genome that show some 

evidence of linkage to disease detected in the genome scan testing markers every 

centimorgan should yield a marker that shows linkage disequilibrium with disease. A study 

carried out by Herr et al 2000 empirically tested the utility of the available polymorphic 

microsatellite map to locate the already identified TIDM locus IDDMI. Allelic association 

of each of 13 evenly spaced polymorphic rnicrosatellites markers was carried out using 385 

affected sib-pair families. The study demonstrated that fine mapping of a multifactoral 

disease gene is possible with high accuracy even in a region with high linkage 

disequilibrium. By characterising new markers in the lcM region flanking the disease 

associated marker, the disease mutation can be located to regions smaller than I cM (Vyse 

and Todd 1996). The candidate gene approach in detecting disease mutation has to some 

extent dominated the genetic analysis of diabetic complications. However, candidate genes 

are numerous and have in many cases been reported but not confirmed. 
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Candidate genes investigated in diabetic compUcations 

The candidate gene approach in detecting susceptibility genes for diabetic complications 

has also proved to be fiuitful. This strategy has so far focused on target tissues that are 

susceptible to diabetic complications and biochemical pathways affected by altered glucose 

metabolism. The search for candidate genes has so far involved searching gene 

polymorphisms of the enzymes that drive glucose metabolism and also gene 

polymorphisms affecting background vascular risk (Marre 1999). Studies have looked at 

polyrnorphisms within candidate genes involved in the pathogenesis of complications and 

have found certain genotypes to have a progression promoter effect (table 4). Such studies 

include human leukocyte antigen (HLA) loci, genes of the renin-angiotensin system, 

polyoVsorbitol pathway, lipid metabolism and glucose transporter genes (Chowdhury et al 

1995; Doria et a/ 1995; Doria et a/ 1998; Krolewski and Warram 1995 [b]; Chowdhury et 

a/1999 [a and b]; Marre et a/2000). It is thought to be worthwhile testing polyrnorphisms 

within each component of these various regulatory systems to determine their possible role 

in the development of diabetic complications in the event that gene polymorphisms are 

associated with variable levels of expression of the concerned protein. 

Human Leukocyte Antigen (HLA) gene polymorphisms 

Several groups, with somewhat conflicting results have extensively examined the human 

leukocyte antigen (HLA) locus and the insulin gene locus. Both positive and negative 

associations have been made for HLA A2, B8, DR4 and DR3/4 and diabetic nephropathy 

and retinopathy (Barbosa and Saner 1984; Stewart et a/ 1993). Previous examination of 

HLA identical non-diabetic siblings of T IDM pro bands showed basement membrane 

expansion, which was not observed in HLA non-identical siblings, which suggested that 

even in the absence of diabetes microangiopathy may occur due to HLA-related factors 

(Barbosa et a/1980). However, other association studies of HLA and insulin gene loci in 

large cohorts ofTIDM subjects with and without nephropathy found no such associations. 
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It has therefore been suggested that the HLA and insulin gene loci are unlikely to have a 

major role in the susceptibility to nephropathy in Caucasoid TlDM subjects (Chowdhury 

et a/1998; Chowdhury et a! 1999 [b ]). 

Receptor for advanced glycation end products (RAGE) gene polymorphisms 

AGE's can bind to several binding sites including receptor of advanced glycation end

products (RAGE). Kankova et a! 2001 investigated polymorphisms in the RAGE gene 

(G82S, 1704G/T, 2184A/G and 2245G/A) in T2DM subjects and found statistically 

significant differences in allelic frequencies between T2DM subjects and non-diabetic 

controls. Hudson et a! 2001 [a] carried out a study of the -429 t/c and -374 t/a RAGE 

promoter polymorphisms in diabetic and non-diabetic subjects with macrovascular disease. 

The study evaluated the effects on transcriptional activity of functional polymorphisms and 

suggested that polymorphisms involved in differences in RAGE gene regulation may 

influence the pathogenesis of diabetic vascular complications. 

Renin-angiotensin system (RAS) gene polymorphisms 

Studies have demonstrated that a family history of hypertension or cardiovascular disease 

in association with poor glycaemic control greatly increases the risk of nephropathy in both 

TlDM and T2DM patients (Earle et a! 1992; Barzilay et a! 1992; Takeda et a/ 1992). 

Genes of the renin-angiotensin system (RAS) have therefore also been targeted as potential 

candidate genes for nephropathy. Prorenin, renin, angiotensin converting enzyme (ACE) 

and angiotensin II levels have all been reported to be elevated in diabetic nephropathy, and 

are thought to be genetic determinants for hypertension and cardiovascular disease 

(Parving et a/1996 [b ]; ~allab et a/1992). The angiotensinogen gene (AGT) has also been 

reported to contribute to susceptibility to complications in some affected sib-pair studies 

(Jeunemaitre et a/ 1992; Caulfield et a/1994), and family based studies (Rogus et a! 1998). 

Studies of the Insertion/Deletion polymorphism within intron 16 of the angiotensin 1-
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converting enzyme gene (ACE/ID) have found conflicting results. One positive study 

carried out by Doi et al 1996 found a significant correlation between the ACE gene 

polymorphism and nephropathy, but not retinopathy in Japanese patients with T2DM. On 

the other hand Utsugi et al 1999 found that the ACE polymorphism could be a risk factor 

for both nephropathy and retinopathy in Japanese patients with T2DM. This study 

suggested that patients with the D allele were at a higher risk of severe retinopathy than 

subjects without. Tarnow et al 2000 carried out a study using TIDM subjects from 

Denmark and found evidence for a protective effect of the homozygous 11 genotype and 

myocardial infarction. However studies have cumulatively shown the association of the 

ACE/ID polymorphism with nephropathy to be small, and consequently it is not thought to 

be a useful marker of nephropathy (Doria et a/1994; Marre et a/2000). The EURODIAB 

study has however shown that the ACE gene polymorphism can predict the beneficial 

effect of ACE inhibition (Penno et a/1998), where renoprotective therapy has been seen to 

be differentially effective according to ACE genotype (van Essen et al 1996). A further 

polymorphism of the angiotensin gene (M235T) has also initiated interest and has been 

shown to be in linkage with essential hypertension (Caulfield et al 1994). However, 

conflicting results have been seen in association with diabetic nephropathy (Fogarty et al 

1996; Chowdhury et a[ 1996; Schmidt et a/ 1996 [a]; lttersurn et al 2000) and it was 

reported by Doria et al 1996 that the angiotensinogen polymorphism M235T might 

influence susceptibility to nephropathy in TlDM subjects, but its effect, if any, is small 

and independent of hypertension. A polymorphism of the angiotensin 11 type 1 receptor 

gene (Al166C) has also been linked to essential hypertension (Bonnardeaux et al 1994), 

and microalbuminuria (Doria et a/ 1997), although two large studies into diabetic 

nephropathy have suggested no association (Chowdhury et a/1997; Tarnow et a/1996). 

Genetic studies of hereditary hypertension in the rat, and genome-wide scans have 

identified several loci involved in blood pressure regulation (Hilbert et a/1991; Jacob et a/ 
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1991; Dubay et a/ 1993; Pravenec et a/1995; Schork et a/1995; Brown et a/1996). Brown 

et a/ 1996 studied crosses involving the fawn-hooded rat, an animal model of hypertension 

that develops chronic renal failure to determine if there are susceptibility genes involved. 

They reported the localization of two genes, Rf-1 and Rf-2 responsible for about half the 

genetic variation of renal impairment. They found that Rf-1 strongly affects the risk of 

renal impairment, but has no significant effect on blood pressure. Their results suggested 

that susceptibility to a complication of hypertension is under at least partially, independent 

genetic control from susceptibility to hypertension itself. One of the principle loci 

identified in spontaneously hypertensive stroke-prone (SHR/SP) and Dahl salt-sensitive 

hypertensive rats has been localised near the angiotensin 1 converting enzyme (ACE) on 

rat chromosome 10 (Nara et a/ 1991; Deng and Rapp 1992). Based on comparative 

mapping data, the human homologues of the corresponding gene should reside within 

human chromosome 17, which contains the ACE gene. Julier et al 1997 carried out a study 

using affected sib-pair human hypertensive families to explore the whole homology region 

for a putative susceptibility locus for hypertension. Using microsatellite markers the study 

found nominal evidence of linkage to hypertension, from which the strongest markers were 

D 17S 183 and D 17S934, that map l8cM proximal to the ACE locus. Baima et a! 1999 used 

stroke-prone spontaneously hypertensive rat models to investigate linkage to blood 

pressure regulatory genes, and found evidence for an association with rat chromosomes 2, 

lO and X, whereby rat chromosome lO is syntenic to human chromosome 17. The study 

investigated five microsatellite markers spanning the chromosome 17 blood pressure 

quantitative trait loci (QTL), spanning a 12cM region and found significant evidence for 

linkage in a 5-cM interval between D 17S946 and Dl7S932. Levy et a! 2000 used a 

genome wide scan approach and found strong evidence for a blood pressure (BP) 

quantitative trait locus on chromosome 17. These results indicated that chromosome l7q 

could contain a susceptibility locus for human hypertension (Dominiczak et a/ 2000). 
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Aldose Reductase (ALR2) gene polymorpbisms 

The enzyme aldose reductase has been implicated in a number of microangiopathic 

complications of diabetes. Using the strategy to search for gene polymorphisms of the 

enzymes that drive glucose metabolism, a dinucleotide repeat polymorphism was found at 

the 5' end of the aldose reductase gene. Certain studies have found the polymorphism to be 

associated with early onset of retinopathy and also nephropathy (Heesom et a/ 1997; 

Demaine et a/ 2000) in diabetics. Other polymorphisms have also been identified and 

include a C to T polymorphism -1 06bp upstream of the aldose reductase start site, and an 

A to C polymorphism within intron 8 of the ALR2 gene itself. It is possible that aldose 

reductase, an enzyme able to affect glucose metabolism within target tissues of diabetic 

microangiopathy may effect microvascular prognosis for TIDM patients as a result of 

effects on variable, genetically determined levels of its activity. Polymorphisms and altered 

genetic expression of the aldose reductase gene form the main thread of this thesis and are 

therefore discussed in more detail in chapter 2. 

Glucose Transporter (GLUT) gene polymorphisms 

A recent study carried out by Hodgkinson et a/ 200l[a] reported that a polymorphism 

within the glucose transporter I (GLUT!) gene was significantly associated with 

susceptibility to diabetic nephropathy in Caucasoid TIDM subjects, this was also found to 

be in association with the 5 'ALR2 polymorphism. The glucose transporters mediate the 

facilitative uptake of glucose into cells and within the glomeruli of the kidney the GLUT I 

is known to be the most important (Heilig et a/ 1995; Heilig et at 1997 [b ]). The results of 

this study suggest that those individuals with the 1.1 kb GLUT! allele and the Z-2 5' ALR2 

allele would be at a much higher risk of developing nephropathy than those without. 
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Apollpoprotein E (APOE) gene polymorpbisms 

Studies into the genes affecting lipid metabolism have shown a positive association of the 

E2 allele of the apolipoprotein E gene polymorphism, this is a particularly significant 

finding as physiological studies have implicated lipid abnormalities in the pathogenesis of 

diabetic nephropathy (Arald et al 1998; Chowdhury et al 1998). It has been suggested that 

TlDM subjects with the E2 allele have a reduced creatinine clearance and elevated 

albumin excretion rate compared to subjects without the E2 allele (Werle et a/1998). 

Endothelial nitric oxide synthase (eNOS) gene polymorpbisms 

Polymorphisms in the endothelial nitric oxide synthase (eNOS) gene may be implicated in 

the development of nephropathy in patients with TIDM. A study by Zanchi et a/ 2000 

looked at four eNOS polymorphisms and found that two were associated with diabetic 

nephropathy in a case-control comparison . and also a family based transmission 

disequilibrium test (TDD. These were a T to C substitution in the promoter at position -

786 and the a-deletionlb-insertion in intron 4. Their findings demonstrate that sequence 

differences in eNOS influence the risk of advanced nephropathy in TIDM. Asakimori et a/ 

2001 also investigated the intron 4 polymorphism of the ecNOS gene and found a higher 

frequency of the a-allele of intron 4 in both non-diabetic and diabetic hemodialysis 

patients, although this was not supported in a study using T2DM subjects (Taniwaki et a/ 

2001). 

Plasminogen Activator Inhibitor-I (PAI-l) gene polymorphisms 

Plasminogen activator inhibitor type I (PAI-l), is an inhibitor of fibrolysis and an 

important and independent cardiovascular risk factor which has been shown to be elevated 

in obesity and T2DM (Mertens et al 2001). The 40/50 polymorphism in the promoter 

region of the PAI-l gene has been related to plasma levels of PAI-l, the main inhibitor of 

fibrinolysis. P AI -1 is higher in TlDM subjects with microalbuminuria. Pucci et a/ 1999 

-98-



Chapter 1: Diabetes mellitus and its complications 

investigated this polymorphism in 375 Caucasoid TlDM subjects and found that the 

presence of the 4G/4G genotype to be associated with a higher risk of proliferative 

retinopathy, but not with a higher risk of raised AER. 

Paraoxonase gene (PON) polymorphisms 

There is increasing evidence to suggest that paraoxonase (PON) protects tissues from 

oxidative stress. PON is an enzyme, which is exclusively bound to high-density lipoprotein 

(HDL), and it has been shown by in vitro studies that it protects low-density lipoprotein 

from oxidative stress. It has been shown that the serum activity and concentration of PON 

is lower in subjects with cardiovascular disease than those without (Heinecke et al 1998; 

Sanghera et a/1998). Two separate studies by Araki et a/2000 in TlDM subjects and by 

lkedo et al 1998 in T2DM subjects looked at three common polymorphisms of PON-gene-

1. These polymorphisms, namely T(-107)C in the promoter, Leu 54Met and Gln192Arg 

have previously been associated to cardiovascular disease (Ruiz et a/ 1995; Garin et a/ 

1997). The studies did not find any significant relationship between any of these three 

polymorphisms and the development of nephropathy in either Tl or T2DM patients. 

Another study however, did find an association between diabetic nephropathy and the 

Glnl91Arg polymorphism (Jenkins et a/ 2000). The human genome contains two other 

similar genes to PONJ (PON2 and PON3), located on chromosome 7 and it is 

hypothesised that these should also be considered as candidate genes for the susceptibility 

to diabetic nephropathy. Pinizzotto et a/ 2001 has reported an association between diabetic 

nephropathy in T2DM subjects and two polymorphisms in PON2 that cause amino-acid 

substitutions (Alal48Gly and Ser311Cys). This correlation was however, not supported in 

a further study carried out by Canani et al 2001 using TlDM subjects. Thus concluding 

that the PON2 polymorphisms are associated with diabetic nephropathy exclusively in 

subjects with T2DM, or that the results are spurious and require further studies in different 

populations. 
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Nuclear transcription factor B (NFkB) polymorphisms 

The gene coding for NFkB located on. chromosome 4q24 has been shown to be up 

regulated under hyperglycaemic conditions in porcine vascular smooth muscle cells and 

PBMC's from diabetic subjects with nephropathy. A polymorphic dinucleotide (CA) 

repeat has been identified close to the human NFkB gene (Ota et a/ 1999). A recent study 

by Hegazy et a/ 2001 reported that the AlO allele may contribute to susceptibility to 

TIDM, however no association was found with the NFkB allele or genotypes with either 

presence or absence of diabetic microvascular complications in TIDM subjects. It is still 

possible that there may be a minor gene effect with NFkB and diabetic complications, and 

further studies in different populations are required. 

Vascular endotbeUal growth factor (VEGF) polymorphisms 

It has been suggested that the cytokine vascular endothelial growth factor (VEGF) may 

play a role in the pathogenesis of diabetic complications. Studies have identified 

polymorphisms in the promoter region of the VEGF gene. A study carried out by Yang et 

a/ 2001 looked at an insertion polymorphism at position -2578 in the promoter region of 

the VEGF gene in TIDM subjects with and without diabetic complications. The study 

found that there was a significant increase in the frequency of the CC genotype in patients 

with microvascular disease compared to those without. This increase was particularly 

pertinent in the nephropathy subjects compared to the diabetic controls. The C allele was 

also significantly increased in the nephropathy subjects compared to the controls. The 

results of this study suggest that polymorphisrns in the promoter region of the VEGF gene 

may be associated with the pathogenesis of microvascular disease. 

Mitochondrial gene polymorphisms 

Mitochondria are cytoplasmic organelles found in all Eukaryotic cells. They contain the 

enzymes of the Krebs cycle, carry out oxidative phosphorylation, and participate in fatty 
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acid biosynthesis. Mitochondria posses their own genome and ribosomes, both of which 

are distinctive from their counterparts in the nucleus and cytoplasm of the cell. Cells 

depending on their energy demand posses hundreds to thousands of mitochondria, each 

containing 2-10 mitochondrial DNA molecules. Mutations of mitochondrial DNA 

(mtDNA) are a well-described genetic cause of diabetes mellitus, and have also been found 

to be involved in the pathogenesis of diabetic microvascular diseases. Both mtDNA point 

mutations and rearrangements have been identified in families with diabetes (Van Den 

Ouweland 1994). Mitochondrial DNA has a number of interesting properties including 

exclusive maternal transmission, the ability to replicate in post mitotic cells, a high 

mutation rate and an extremely compact molecular architecture with no introns and no 

large non-coding sequences. Unlike the nuclear DNA, which is linear, the human 

mitochondrial genome consists of a closed double stranded, circular DNA molecule, and 

consists of 16569 bp of DNA, which have been fully sequenced (Anderson et a/1981). 

Although the mtDNA encodes highly conserved proteins it exhibits a very high mutation 

rate which is 10-20 times more susceptible than the nuclear genome. Reasons for this are 

that the mt genome evolves 5-l 0 times faster than single copy nuclear DNA genes. Its half

life is between 6-10 days compared to nuclear DNA, which has a half-life of about 100 

days. The mutability may reflect the relatively high insertion error-rate of the 

mitochondrial DNA polymerase-y of about 1/7000 bases, resulting in 2-3 mismatched 

nucleotides per round of replication of the 16.6 kilobases (kb) mt genome. A change in 

phenotype however, only becomes apparent when the proportion of mutant DNA exceeds a 

threshold level, which varies for each organ. A critical threshold level of mutant mtDNA 

must be exceeded before the genetic defect is expressed. This threshold effect is a direct 

consequence of the maintenance of wild-type copy numbers by relaxed replication of 

mtDNA (Wallace 2001). The high mutation rate also derives from the fact that mtDNA is 

more exposed to chemical attack than the nuclear DNA. The mt genome is vulnerable 
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because. it is not protected by histones, absence of DNA repair mechanisms, its highly 

compact structure, and the production of highly energetic oxygen radicals· from the 

electron transport chain. Continuous hyperglycemia induces to generate several oxygen 

radical species and consequently result in developing diabetic microvascular 

complications. Oxidative damage is of particular relevance to mtDNA, since a large 

fraction of reactive oxygen species (ROS) in cells is thought to originate by leakage of 

electrons from the electron transport system. The proximity of mtDNA to the ROS 

generator suggests that there may be a high rate of endogenous oxidative damage to 

mtDNA. 

Early observations of mtDNA were that pyrimidine dimers introduced into mtDNA were 

not repaired (Clayton et a/1974), suggesting that mammalian mitochondria were incapable 

of repairing their DNA. Despite the importance of each mitochondrial gene, mitochondria 

are relatively deficient in DNA repair mechanisms (Lightowlers et a/ 1997). However we 

know that mtDNA mutations occur too frequently for them to go completely un-repaired. 

The emerging pattern is that mitochondria in higher organisms are reasonably well 

equipped to conduct base excision repair (BER) but appear to be deficient in nucleotide

excision repair (NER) and mismatch repair (MMR) (Bogenhagen 1999). In a healthy cell, 

the number of mtDNA moleculas is tightly regulated (Lightowlers 1997). By contrast, 

mtDNA proliferation is one of the hallmarks ofheteroplasmic mtDNA mutations involving 

tRNA genes, There are increasing numbers of publications showing that certain deletions, 

insertions or point mutations of the mtDNA may occur and are associated with distinct 

diseases (Gerbitz et a/ 1996). Individuals with pathogenic mtDNA defects (deletions and 

point mutations usually harbor a mixture of mutant and wild type mtDNA within each cell 

(Clayton). The percentage level of heteroplasmy varies between different organs and also 

between adjacent cells in the same organ. There is increasing evidence that the level of 

mutant mtDNA in non-dividing tissues may change during a human lifetime (Chinnery et 
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at 1999). A number of age related neuromuscular degenerative diseases have been 

associated with mutations in mitochondrial DNA (mtDNA), and progressive accumulation 

of oxidative damage in mtDNA from neuronal tissues over time has been shown. Recently 

distinct point mutations of the mitochondrial DNA mutations have been implicated in a 

wider range of clinical disorders including alzheimers, diabetes and nerve deafness (Lien et 

a/2001). 

Recently it was reported in a Japanese population by Gong et a/1998 that a polymorphism 

(mt5l78A at nucleotide 5178 within the NADH dehydrogenase subunit 2 gene is 

associated with longevity. The study identified mitochondrial genotypes associated with 

longevity, being an C- to- A transversion at nucleotide position (np) 5178 within the ND2 

gene causing a Leu to Met replacement; aC-to -T transition at np 8414 within the ATP8 

gene, causing a Leu to Phe replacement; and a G- to A transition at np 3010 within the 16S 

rRNA gene. These, being more frequently observed in the centenarians than in the 

controls. They focused their study on mt5178 A/C transversion and found the frequency of 

Mt5178A to be significantly higher in the centenarians (62%) than in the blood donors 

(45%). Further to this they evaluated the effect ofMtDNA variations on the occurrence of 

disease by analyzing the frequency of Mt5178A and Mt5178C in 33 8 randomly selected 

patients. They found the ratio of Mt5178 A/C to be significantly lower in old patients than 

in both the centenarians and the healthy controls. This suggests that to carry a MtDNA 

genotype predisposing resistance to adult onset disease is one of the genetic factors for 

longevity. Therefore the longevity genotype Mt5178A would appear to be more resistant 

than Mt5178C genotype against oxygen radicals, and those individuals with Mt5178C 

genotype are more susceptible to adult onset chronic disease than those with Mt5178A. 

Miura et al 1999 furthered this line of research and examined whether or not this 

polymorphism influences development of diabetic complications, in particular diabetic 
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nephropathy. They selected a random population oflong standing Japanese TIDM patients 

with diabetic duration of more than 20 years and carried out PCR-RFLP after Alul 

digestion to distinguish Mt5I78A and Mt5178C. Their findings suggested that TIDM 

patients with Mt5178C are more predisposed to diabetic nephropathy than those with 

Mt5178A. Uchigata et al carried out further studies on Japanese patients, to examine 

whether or not this polymorphism influences development of TIDM or T2DM and its 

complications. They analyzed the frequencies of Mt5I78NC by PCR-RFLP with Alu I in 

TIDM and T2DM patients. They found the frequency of Mt5I78C to be significantly 

higher in the TIDM patients than in the healthy controls. They also found that in the 

Tl DM patients with diabetic duration of more than 20 years, the Mt5178C frequency in 

nephropathy group was statistically higher than in the no nephropathy group. There was 

however no significant difference in the Mt5178NC between T2DM patients and healthy 

controls. These results suggest that Mt5I78C genotype predisposes to T I DM and diabetic 

nephropathy significantly more than those with Mt5178A genotype. 

Other gene polymorphisms 

Other studies have looked at inherited differences in the ability to enzymatically detoxify 

AGE intermediates such as 3-deoxyglucosone which may be one important genetic factor 

responsible for determining the impact of a given level of hyperglycaemia on diabetic 

complications. Other studies suggest that differences in the response of glomerular 

filtration rate in response to hyperglycaemia may be involved. This is thought to implicate 

enhanced nitric oxide synthesis by nitric oxide synthase (ecNOS) in afferent arterioles and 

glomerular endothelial cells and increased expression of insulin-like growth factor (IGF-1) 

receptor and cause glomerular hyperfiltration (Rudberg 1992; Makino 1999). These 

findings, along with observations that nephropathy susceptibility groups having large 

glomeruli, which may be a marker of nephropathy (Striker 1993) suggest multiple genetic 

components to be involved in the aetiology of diabetic complications. After hypertonic 
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stress transcriptional activation of heat shock proteins as well as several other genes 

occurs. This facilitates the accumulation of non-toxic intracellular osmoles. The induction 

of these genes by hypertonicity involves the activation of members of the MAP kinase 

family, including c-Jun NH2-terminal kinase (JUNK) and p38 MAP kinase (Wojtaszec et 

al 1998: Sprague 1998). Prostaglandin forming cycloxygenases (COXs) may represent an 

additional class of genes that promote medullary interstitial cell viability. A search for 

polymorphisms of COX-I and COX2 genes may be important in the search for 

susceptibility genes to microvascular disease (Hao et a/ 2000). 
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Candidate Gene Locus Site Pol~mor~hism Reference 
Human Leukocyte Antigen-A HLA-1 6p21 DQA1 and DQB1 Chowdhury eta/1998. 

Chowdhury et a/ 1999 [b] 

Aldose Reductase ALDR1 7q35 (CA)n Heesom et a/ 1997 
Moczulski et a/ 1999 
Demaine et a/ 2000 

Receptor for Advanced Glycation RAGE 6p21.3 G82S, 1704A/G, Kankova et a/2001 
End products 2184A/G, Hudson et a/ 2001 [b] 

2245G/A 
Tumor Necrosis Factor (a. and p) TNF 6p21.3 G(-308)A Hawrami eta/1996 

Angiotensin AGT lq42-q43 M235T Caulfield et a/ 1994 
Doria eta/1996 

Angiotensin II Type 1 Receptor AGTRl 3q2l-q25 A1166C Bonnardeaux et a/ 1994 
Doria eta/1997 

Tarnow eta/1996 
Angiotensin Converting Enzyme ACE l7q23 I/D Marre eta/1994 

Chowdhury et a/ 1996 
Doi eta/1996 

Tarnow eta/2000 
AGT-M235T Ittersum et a/ 2000 

Apolipoprotein E ApoE 19q13.2 Exon4 Araki et a/ 2000 
Chowdhury et a/ 1998 

Werle eta/1998 
Endothelial Nitric Oxide eNOS 7q36 T(786)C Zanchi et a/ 2000 

Synthase a(Intron 4 )b Asakimori et a/ 2001 
Plasminogen Activator Inhibitor PAI-l 1p31-p22 4G/5G Pucci eta/1999 

Paraoxonase PONl 7q21.3 T(-107)C Araki eta/2000 
Leu54Met Sanghera et a/ 1998 
Gln192Arg Jenkins eta/2000 

PON2 7q21.3 Alu148Giy Pinizzotto et a/ 2001 
Ser311Cys Canani eta/2001 

Glucose Transporter-! GLUTl 1p31.3- G/T Hodgkinson et a/ 2001 [a] 
p35 

Nuclear Factor Kappa Beta NFkB 4q24 (CA)n Hegazy et a/ 2001 
Ota eta/1999 

Vascular Endothelial Growth VEGF 6p12 (-2578)C Yang eta/2001 
Factor 

Hypertension-linked HYT-11 17q (CA)n Julier et a/ 1997 
D175934 

Table 4. Candidate genes so far investigated and implicated in the onset and progression 
of diabetic vascular complications. 
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Environmental influences 

Cigarette smoking has been identified as an important factor in the development and 

progression of diabetic renal complications in both TlDM and T2DM subjects 

(Biesenbach et al 1997; Reddy et a/ 1996; Orth et al 1997). Also compared to normal 

subjects the prevalence of smoking in diabetics has been seen to be significantly higher (27 

vs.· 33%, p<O.OOOl) (Dierkx et al 1996). The overall incidence of microvascular 

complications in particular retinopathy and increased urine albumin excretion, have been 

shown to be more common and more severe in TlDM subjects who smoked and more so 

in heavy smokers (Sinha et a/ 1997). Smoking has been shown to increase the risk of 

microalbuminuria and progression of proteinuria in both TlDM and T2DM subjects where 

the prevalence of increased albumin excretion rates was 2.8 times higher in smokers than 

non-smokers. Albuminuria has been seen to improve significantly when diabetic subjects 

ceased smoking indicating that it is an independent risk factor of early diabetic renal 

damage (Chase et a/1991). The link between smoking and diabetic renal microangiopathy 

is thought to be through mechanisms such as increased platelet aggregation, accentuated 

tissue hypoxia and haemodynamic or metabolic effects of repeated noradrenaline release 

(Norden and Nyberg 1984). 

Low birth weight is a reflection of adverse effects on development in utero and it therefore 

thought to be partly environmentally influenced. Many studies have also shown that low 

birth weight (LBW) is strongly associated with hypertension, stroke and myocardial 

infarction. It has been shown that retarded intrauterine growth is associated with a 

significant reduction in nephron number, and that there are strong correlations between 

glomerular number and size with LBW. It has hence been postulated that decreased 

nephron numbers may be a risk factor for hypertension and the progression of renal disease 

as it is more vulnerable to damage from a range of pathological processes (Manalich et al 

2000; Lackland et a/ 2000). Correlation's have also been made between low maternal 
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education and smoking during pregnancy and the risk of developing incipient nephropathy 

in offspring with TIDM (Rudberg 2000). Recently studies have also shown a significant 

association between end-stage renal disease and low birth weight in both African 

Americans and Caucasoids (Lackland et a/2001). Similar studies have been carried out to 

examine the relationship between LBW and early onset of diabetic retinopathy, however 

no significant correlation has been found. These results indicate that foetal growth is not a 

factor of major importance for the development of diabetic retinopathy (Agardh et a/ 

2000). 
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Chapter 2: Aldose reductase and the polyol pathway 

Hyperglysolia and the polyol pathway 

It has been observed that tissues susceptible to developing diabetes-linked abnormalities 

are in general not dependent upon circulating insulin for the uptake of glucose (Nathan 

1996). Therefore, under extracellular hyperglycaemic conditions these tissues also exhibit 

hyperglysolia (elevated intracellular glucose levels) (van den Enden 1995). This 

observation suggests that in selected tissues an increase in glucose concentration of the 

cellular cytosol may perturbate intracellular metabolic patterns. One of the principle 

intracellular biochemical mechanisms that has been implicated in the pathogenesis of 

diabetic microvascular complications is the increased flux of glucose through the polyol 

pathway under diabetic hyperglycaemic conditions. Under euglycaemic conditions glucose 

is metabolised by three key pathways, primarily by a hexokinase dependent 

phosphorylating pathway to form glucose 6-phosphate, which then enters the glycolytic 

pathway to form lactate, or the hexose monophosphate shunt to form pentose-phosphate. 

Secondly, glucose may be oxidised to gluconic acid via an NAD+-dependent glucose 

dehydrogenase. Thirdly, non-phosphorylated glucose may enter an accessory pathway of 

glucose metabolism known as the polyol pathway, which is comprised of a series of 

enzyme dependent reactions, namely aldose reductase (ALR2 or AKRJBJ) (alditol: 

NADP+ oxidoreductase [EC 1.1.1.21]) and sorbitol dehydrogenase (SORD) (L-iditol: 

NAD+2-oxidoreductase [EC 1.1.1.14]), metabolising glucose to sorbitol and fructose 

respectively. Throughout this thesis aldose reductase will be referred to as ALR2, however 

the most recent abbreviation is AKRJBJ. The polyol pathway is an alternative route of 

glucose metabolism, which is illustrated in figure 4. Under physiological conditions, this 

polyol pathway plays a minor role in glucose metabolism, except in the kidney where 

ALR2 may regulate osmolytes (Bagnasco et a/1988). 

The polyol pathway was first identified in the seminal vesicle of the sheep by Hers 1956 in 

a report demonstrating the conversion of blood glucose into fructose, an energy source of 
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sperm cells. As already mentioned, the metabolism of glucose by the polyol pathway 

involves two reactions resulting in the conversion of D-glucose into sorbitol and D

fructose, catalysed by two rate-limiting enzymes, namely aldose reductase (ALR2) and 

sorbitol dehydrogenase (SORD). In the first rate-limiting reaction of the polyol pathway 

ALR2 sequentially catalyses the NADPH-mediated reduction of glucose to the organic 

osmolyte sorbitol. This NADPH dependent enzyme reduces a carbonyl oxygen to a 

hydroxyl ion in an ordered 'bi-bi' mechanism, in which NADPH is bound frrst and NADP+ 

released last after the catalytic conversion of the aldehyde to the alcohol (Kubieski et a/ 

1992; Grimshaw et a/ 1990). This reduction is stereospecific with respect to the coenzyme 

(Boghosian et al 1981; Grirnshaw et a/ 1995). In the second step of the polyol pathway 

SORD oxidises sorbitol to fructose using NAD+ as the co-factor. 

The catalytic efficiency of aldose reductase for D-glucose is relatively low with a 

Michaelis-Menton Constant (Km) of~ l 00 mM, a '20-fold higher concentration to normal 

glycaemic levels of ~s mM (Bohren 1989). Under normoglycemic conditions the majority 

of the glucose is therefore phosphorylated to glucose 6-phosphate by hexokinase and the 

flux through the polyol pathway is minimal (Boel et a! 1995). Under hyperglycaemic 

conditions however, the hexokinase pathway becomes saturated with ambient glucose and 

the increased glucose level in the tissues activates the polyol pathway. In hyperglycaemic 

states, metabolism of glucose by the polyol pathway has been reported to account for up to 

33% of total glucose utilisation in the rabbit lens and 11% in human red blood cells 

(Kinoshita et a/1988; Morrison et a/1970). 
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D-Sorbitol 

Xylose Isomerase 
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Figure 4 . The sorbitol (polyol) pathway (adapted from; Tomlinson 1994), converts 
glucose into fructose using the enzyme aldose reductase and sorbitol dehydrogenase. 
Aldose reductase catalyses the conversion of D-Giucose into sorbitol in an NADPH 
dependent reaction and sorbitol dehydrogenase oxidises sorbitol to D-Fructose using 
NAD+ as a cofactor. There is also an interdependence of ALR2 and the hexose 
monophosphate shunt (HMPS). 
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Aldose Reductase (ALR2) 

Aldose reductase is a member of the aldo-keto reductases, which constitute a superfamily 

of monomeric oxidoreductases. There are three main enzymes within this group namely, 

aldehyde reductase (ALRI), aldose reductase (ALIU) and carbonyl reductase (ALR3). 

ALRI is involved in the detoxification of a variety of different aldehydes, and reduces 

isocorticosteroids during steroid catabolism. The primary physiological role of ALRI is the 

reduction of D-glucoronate to L-gluconate. ALR3 is also an oxidoreductase mainly for 

ketones but has broad substrate specificity. ALR2 is the rate-limiting enzyme of the polyol 

pathway and is believed to be of primary importance in the development of severe 

degenerative complications of diabetes mellitus, through its ability to reduce excess D

glucose to D-sorbitol in non-insulin dependent tissues. Importantly, ALR2 has also been 

shown to efficiently reduce by-products of glucose and cellular metabolism such as 

methyglyoxal, 4-hydroxynonenal and 3-deoxyglucosone suggesting that it may be 

responsible for detoxification of these harmful metabolites (Vander Jagt et all992; 1995). 

Another postulated function of ALR2 is osmoprotection in the kidney as sorbitol is an inert 

compound and reaches levels in certain tissues great enough to affect osmotic pressure 

(Bagnasco et all987). 

ALR2 is a small monomeric NADPH-dependent oxidoreductase composed of 315 amino 

acid residues (Mr 35,900) (Petrash et al 1994). The sequence is well conserved from one 

tissue to another and also between species, for examples the ALR2 gene sequence from the 

rabbit kidney has 84% homology with ALR2 gene sequence from bovine lens and 89% 

homology with rat lens (Garcia-Perez et al 1989). Several biochemically-modified forms 

of ALR2 have been identified, however tissue specific isozymes have not yet been 

confirmed in humans (Yabe-Nishimura 1988; Grimshaw and Lai 1996), however Yang et 

al 2000 identified a renal-specific oxido-reductase (RSOR) in newborn diabetic mice. 

Structural studies by crystallographic analysis have been performed on ALR2 which have 
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revealed that AR folds as a (~-a.)8 barrel and that its catalytic sites lie at the bottom of a 

deep hydrophobic cleft (figure 5). ALR2 catalyses the reduction of a wide variety of 

carbonyl compounds to the corresponding alcohol's. Interestingly, glucose is not the 

preferred substrate for ALR2, in fact it is more efficient in reducing various aromatic and 

aliphatic aldehydes such as glyceraldehyde (Inazu et a/1994). 

The catalytic cycle and kinetics of ALR2 

The catalytic cycle of ALR2 follows an ordered reaction mechanism whereby binding of 

NADPH induces a first conformational change in the enzyme that occurs before substrate 

binding {figure 6). NADPH binds at the carboxy-terminus of the enzyme in an extended 

conformation. Then ALR2 stereospecifically transfers the 4-pro-R hydrogen from the C4 

of the nicotinamide ring to the re face of the carbonyl carbon of the substrate. The 

substrate active site contains Tyr 48 as the proton donor during aldehyde reduction. After 

aldehyde reduction, the enzyme undergoes a second conformational change, which is 

associated with the dissociation of the enzyme-oxidised NADP+ complex (Constantino et 

a/1999; Varnai et a/1999). It has been suggested that the enzyme conformational change 

is the limiting factor of the overall reaction. Findings have shown that ALR2 from diabetic 

tissue displays linear kinetics with a V max two or three times higher than normoglycemic 

tissue (Srivastava et a/ 1985). Grimshaw et al 1995 reported transient kinetic data to 

estimate the rate constants for the ALR2 catalysed reaction: E•NADPH +-+ E•NADPH +-+ 

*E•NADPH•RCHO +-+ *E•NADP+ •RCH20H +-+ *E•NADP+ +-+ E•NADP+ +-+ E .. The 

proposed kinetic mechanism for ALR2 suggests that the isomerisation of E•NADPH 

complexes may be the rate-limiting step of the reaction. It has hence been proposed that 

under certain conditions, such as ionic stress or non-enzymatic glycosylation of the 

enzyme, ALR2 is able to assume an active conformation. 
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Aldose R eductase (EC 1.1.1.2 1 ) 

Figure 5. Schematic of the 3-dimensional x-ray crystal structure of AR in complex with 
its cofactor NADPH (Purple). It consists of >2,500 atoms and folds in the beta/alpha 
barrel formation. htto:/ /www.biochem.szote.u-szeaed.hu/astro ian/oroteinl.htm 

ALR2 

Figure 6. The catalytic cycle of ALR2 adapted from Constantino et a/1999. The free 
enzyme binds to NADPH first and undergoes a conformational change. Next the 
aldehyde substrate binds which reacts to form the alcohol product and NADP+. The 
alcohol product is released and the enzyme undergoes another conformational change 
releasing NADP+. 
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Sorbitol dehydrogenase (SORD) 

Sorbitol dehydrogenase (SORD) is a zinc-containing enzyme and is the second enzyme of 

the polyol pathway. SORD is involved in the conversion of sorbitol to fructose by 

oxidation using NAD+ as a cofactor. Little is known about the physiological function of 

the enzyme SORD, however, its activity has been found in a number of tissues, for 

example, kidney, liver, lens, testis, prostate, placenta, erythrocytes, brain, spinal cord and 

peripheral nerves (Gabbay and O'Sullivan 1968; King et al 1996). SORD displays 

moderately broad substrate specificity, catalysing the conversion of xylitol to D-xylulose, 

ribitol to D-ribulose, and iditol to L-sorbose, as well as sorbitol to D-fructose. The Km for 

sorbitol of SORD is -6 mM. Elevated levels of A TP, lactate, and high NADHINAD+ 

ratios that accompany hyperglycaemia are known to inhibit the action of SORD. The 

human SORD protein was reported to be 355 amino acids long and to have a Mw of 

38,067 daltons (Karlsson et al 1989). SORD is a member of the long chain alcohol 

dehydrogenase gene superfamily which interconvert alcohol's to the corresponding ketone 

or aldehyde. Lee et al 1994 first cloned the human SORD gene and used fluorescence in 

situ hybridisation to determine its chromosomal location. Carr et al 1995 and Iwata et al 

1995 also reported the position, structure and expression of the human SORD gene, and 

described a range of polymorphic variants. By in situ hybridisation the SORD gene was 

found to be located on chromosome 15q21.1, with two transcription sites. A SORD-related 

pseudogene was also found to exist which shows a high degree of similarity with the 

SORD1 gene (Carr et a/1991). A deficiency in SORD activity has been previously linked 

to cataract formation in non-diabetics (Vaca et al 1982; Shin et al 1984). Studies to 

investigate the role of SORD have been carried out using SORD inhibitors (SDHI) 

(Geissen et a/1994; Tilton et a/ 1995; Cameron et a/ 1997; Oates et a/1998). However, 

there have been contradictory fmdings, whereby some studies have shown that SDHis 

reduce nerve conduction deficit induced by diabetes in rats (Tilton et al 1995). Other 

studies using diabetic rats treated with SliD I or SORD deficient diabetic mice, however 
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have not found this to be the case (Cameron et a/ 1997; Ng et a/ 1998). Obrosova et a/ 

1999 investigated the use ofSORDI upon diabetic neuropathy using STZ-diabetic rats, the 

findings of which were that inhibition of SORD resulted in adverse neural dysfunction 

effects. The activity of SORD by mRNA expression has been shown to be modestly 

increased in diabetic subjects with diabetic complications (Hodgkinson et a/2001 [b]). 

The polyol pathway and diabetic complications 

When hyperglysolia occurs the hexokinase pathway for glucose metabolism becomes 

saturated due to undefined regulatory mechanisms and the relatively high affinity of 

hexokinase for glucose. Hyperglycaemia has hence been shown to activate the polyol 

pathway in tissues that are insulin independent and freely permeable to glucose such as the 

peripheral nerves, renal cortex and lens tissue (Dvornik 1987; Greene 1988 [a and b]; 

Pugliese 1991; Larkins 1992). An excessive flux through the polyol pathway has long been 

thought to be involved in the pathogenesis of diabetic microangiopathy (Ido 1996). There 

have been no findings so far of a metabolite feedback mechanism for lowering the activity 

of aldose reductase in reducing glucose to sorbitol although citrate and nitric oxide have 

been shown to inhibit ALR2 in vitro (Harrison et a/ 1994; Chandra et a/ 1997). Gabbay 

1966 recognised that there was a potential link between the formation of sorbitol from 

glucose via the polyol pathway involving aldose reductase, and the onset of diabetic 

complications (Gabbay 1966; 1972 [a and b]; 1973). Under hyperglycaemic conditions 

there is an intracellular increase in sorbitol production and as sorbitol is not rapidly 

removed from the cell and the conversion to fructose is slow there is a significant 

intracellular accumulation of sorbitol (Sharma 1997). This is particularly true in tissues 

such as the renal cortex, peripheral nerve, lens and retina that exhibit polyol pathway 

activity and do not require insulin to facilitate the uptake of glucose and are therefore 

freely permeable to glucose. It is these insulin independent tissues that are greatly affected 
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by the microvascular complications of diabetes, indicating that the polyol pathway is an 

important mediating factor (Sato 1992; Dorin 1995). 

Ruth V on Heyningen 1959 made early descriptions of an excess of sorbitol in the lens of 

diabetic rats. Similar cataracts have been found to develop even more rapidly. in animals 

fed a diet containing a high percentage of galactose (30-50% by weight). The explanation 

for this being galactitol, the sugar alcohol galactose, cannot be reduced by sorbitol 

dehydrogenase, the second enzyme in the pathway, and therefore accumulates to much 

higher levels in susceptible tissues than sorbitol (Kinoshita 1965). Sorbitol has also been 

found to accumulate in the peripheral nerves of diabetic animals (Gabbay 1966) as does 

galactitol in the nerves of rats fed excess of galactose. The motor nerve conduction 

velocity in these animals is substantially slowed (Gabbay 1972 [b]) and studies have 

shown similar results in humans (Gregersen 1968). Aldose reductase has been shown to be 

present in the inner medulla, the loop of Henle, collecting tubules and glomerular 

podocytes of the rat kidney and also in the human glomeruli. The enzymatic activities of 

the human diabetic glomeruli have shown diminished hexokinase, elevated ALR2 activity 

and decreased SORD activity. Lee et a/ 1995 demonstrated that sorbitol accumulation was 

implicated in the development of diabetic cataract using transgenic mice expressing the 

ALR2 gene in the lens. In this study, when the SORD deficient mutation was also present 

there was a further increase in sorbitol accumulation and further acceleration of the 

diabetic cataract. The second half of the polyol pathway is therefore also thought to be 

important in facilitating the development of microvascular disease. Schmidt et al 1998 

reported that the use of a sorbitol dehydrogenase inhibitor (SDI) CP-166,572, which 

interrupts the conyersion of sorbitol to fructose resulted in markedly increased levels of 

sorbitol in the peripheral nerve in the diabetic rat model. Ho et al 2000 developed mice 

deficient in ALR2 gene and found that they exhibited a phenotype similar to that of 

nephrogenic diabetes insipidus. These factors cumulatively suggest that the polyol pathway 
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may be a contributing factor in the pathogenesis of human diabetic retinopathy, 

glomerulosclerosis and neuroaxonal dystrophy via the accumulation of intracellular 

sorbitol. 

Hyperglysolia induced increase in expression and action of ALR2 

An increase in glucose levels has been associated with high ALR2 containing cells. In the 

case of diabetic patients with and without microvascular complications many studies have 

been carried out to determine differences in the ALR2 levels between these groups. 

Increased amounts of ALR2 mRNA were found in rabbit inner renal medullary cells under 

hyperosmotic stress (Garcia-Perez et a/1989; Uchida et a/1989). The increased expression 

of aldose reductase under hyperosmotic stress has also been reported in a variety of cells of 

non-renal origin such as Chinese hamster ovary cells (Kaneko et a/ 1990). Other studies 

also showed similar findings in glomerular endothelial cells and cultured rat mesangial 

cells (Hohrnan et a/ 1991; .Kikkawa et a/ 1992). A 132% increase in white cell ALR2 

mRNA levels was reported in both TlDM and T2DM subjects compared to normal healthy 

controls (Kicic and Palmer 1996). Ratliff et a/ 1996 found that levels of ALR2 protein in 

mononuclear blood cells were twice as high in T1DM subjects with neuropathy than in 

T1 DM patients without. Ito et a/ 1997; Ohnishi et a/ 1996; Nishimura et a/1994, 1997 and 

Takahashi et a/ 1998 also reported similar patterns in T2DM subjects with respect to 

neuropathy and also retinopathy, where the higher levels of erythrocyte ALR2 protein was 

significantly associated with microvascular disease. A significant report, which was 

published by Shah et a/1997, showed that the expression of the ALR2 gene is significantly 

increased in the lymphocytes of patients with diabetic nephropathy. The study measured 

ALR2 mRNA from peripheral blood monocytes and found a significant increase in TlDM 

patients with renal disease compared to TlDM subjects without or normal controls. 

Hamada et al 1998 used the two-site ELISA technique to determine the enzyme protein 

content of human ALR2 in erythrocytes from patients with T2DM and normal controls. 
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The study found a strong correlation between enzyme activity and an increase in enzyme 

content and also an increase in sorbitol and fructose as well as an elevated lactate-to

pyruvate ratio. They suggested that inter-individual variability of ALR2 content might 

contribute to the polyol pathway flux in diabetic patients. Recently, Hasegawa et al 1999 

also measured ALR2 protein in peripheral mononuclear cells (PMCs) from patients with 

T2DM using two site ELISA using anti-human AR monoclonal antibody. The study found 

no differences between ALR2 levels and the presence or absence of diabetes. However a 

significant increase in ALR2 levels was found in diabetic subjects with microvascular 

disease than in those without. 

Srivastava et al 1986 suggested that the properties of ALR2 were changed by 

hyperglycaemia. They showed that the activation of the enzyme in human erythrocytes 

incubated with glucose was also accompanied by changes in enzyme kinetics. They 

suggested that the ALR2 enzyme is activated by non-enzymatic g1ycosylation (Srivastava 

et a/ 1986; Srivastava et a/ 1985; Das and Srivastava 1985; Srivastava 1989). Ghahary et a/ 

1989 reported the STZ-diabetic rats showed increased renal ALR2 activity. It has since 

also been shown that ALR2 protein and the activity of the enzyme is significantly 

increased in the erythrocytes and neutrophils of patients with both TlDM and T2DM and 

microvascular disease compared to those with no complications (Hamada et a/1991[a and 

b]; Nishimura et a/1994, 1997). Dent et a/ 1991 reported an increase in neutrophil ALR2 

activity in T2DM subjects with complications compared to those without. Importantly, 

there were no significant difference found between patients without complications and 

normal controls. Hamada et al 1993 reported that there was an association between 

erythrocyte ALR2 activity and diabetic complications in TlDM subjects. In the TIDM 

population investigated the study found that patients with greater ALR2 activity were four 

times more likely to develop diabetic complications than those patients whose enzyme 

activity was close to that of non-diabetic individuals. These observations suggest that the 
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variability of ALR2 activity may be the cause of differences in susceptibility to diabetic 

complications. It has also been proposed that ALR2 is induced in human microvascular 

endothelial cells by advanced glycation end products. This is supported by a recent study 

carried out by Nakamura et at 2000 who investigated the effects of advanced glycation end 

products on the levels on ALR2 mRNA, protein and activity in human microvascular 

endothelial cells. Their results suggested that accelerated formation of AGEs in vivo might 

elicit activation of the polyol pathway, possibly via oxidative stress, to enhance endothelial 

cell damage leading to microvascular dysfunction. In conclusion there is strong evidence 

for an increase in ALR2 activity, protein levels and mRNA in diabetics with complications 

suggesting that its regulation through gene expression and altered conformation may be 

important factors in modulating the risk of developing microvascular disease. 

Metabolic perturbations induced by increased flux through polyol pathway 

The accelemtion of the polyol pathway elicits various metabolic · imbalances in those 

tissues that undergo insulin independent uptake of glucose for which there are several 

metabolic consequences. These include alterations of the intmcellular redox state by 

decreased availability ofNADPH and increased NAD+/NADH ratio (pseudohypoxia). Also 

implicated is osmotic stress resulting from lowered myo-inositol concentrations and 

sorbitol accumulation, protein kinase C activation, impaired phosphatidylinositol 

metabolism, glutathione and antioxidant depletion, reduced NO production and increased 

glycosylation (Williamson 1993; King and Brownlee 1996; Oates 1997). Additionally 

Morrisey et al 1999 reported that polyol pathway activation was also associated with 

fibronectin generation in the proximal tubule cells of the kidney, enhancing thickening of 

the tubular basement membrane. An increased flux through the polyol pathway would also 

implicate an increase in the production of fructose, which has been reported to be a 1 0-fold 

better substrate than glucose for glycosylation and formation of AGEs (Brownlee 1992). 

Such metabolic perturbations provoke the early tissue damage in the target organs of 
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diabetic complications, such as ocular lens, retina, peripheral nerves and renal glomerulus 

(Kinoshita 1988; Pugliese 1991) (figure 7). 

The overflow of the products of the polyol pathway is associated with depletion in reduced 

nicotinamide adenine dinucleotide phosphate (NADPH) and the oxidised form of 

nicotinamide adenine dinucleotide (NADl the cofactors used in the pathway (Williamson 

1993). This metabolic imbalance is thought to be related to abnormalities such as altered 

vascular permeability and increased synthesis of diacylglycerol (DAG) precursors through 

glycolysis and consequent PKC activity (Ishii and Isogai 1998). DAG is a rate-limiting co

factor for Ca2+-dependent protein kinase C that is involved in the signal transduction 

pathway. This subsequently effects the gene expression of many proteins involved in cell 

growth and proliferation, vascular contractility and the synthesis of basement membrane 

proteins. The increased use of NADPH by the over-activity or ALR2 could also alter the 

pentose phosphate pathway by depleting the inhibiting factor (NADPH) and enabling 

constant passage of glucose to pentose phosphate pathway intermediates. 

Intracellular sorbitol accumulation has also been associated with a decrease in the levels of 

myo-inositol in tissues including lens, nerve, retinal pericytes and the kidney glomeruli by 

competitively inhibiting its uptake into the cell (Greene 1987; 1988 [b ]). This fall in myo

inositol may result from an osmoregulatory compensation for elevated sorbitol, by acting 

as a compatible osmolyte where abnormal accumulation of one osmolyte results in 

reciprocal depletion of others (Finegold et a/1983; Stevens 1993). Tissue myo-inositol is a 

precursor of phosphatidylinositol (PI) which activates sodium/potassium adenosine 

triphosphatase (Na+/K + A TPase ), a component of the sodium pump. This perturbation 

undermines the cells osmotic regulation by effecting cell permeability. Protein kinase C 

stimulation also becomes impaired by diacylglycerol and a reduction of Na+-K +-A TPase 

activity. 
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Figure 7. Diagrammatic representation of hyperglycaemia induced metabolic 
perturbations resulting from increased flux through the polyol pathway (adapted 
with alterations from King and Brownlee 1996 ). 
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Aldose reductase inhibitors (ARI's) 

Reports from experimental studies carried out in the US and Europe on diabetic study 

populations, have associated ALR2 to elevated diabetic microvascular disease risk. Based 

upon these described observations, it is thought that inhibiting aldose reductase activity 

should reduce diabetic microvascular complications by minimising tissue injury without 

requiring the often difficult to attain euglycaemia (Dvomik 1996; Oates 1997; Oates et al 

1999). The potential value of blocking ALR2 came from a Brazilian natural medicine for 

diabetes which is made from Myricia multi flora which contained myrciaitrin 1 and 

myrciaphenone B which are potent inhibitors of aldose reductase (Y oshikawa et al 1998). 

As previously mentioned structural studies carried out on ALR2 have determined the 

catalytic sites of the enzyme are at the bottom of a deep hydrophobic cleft. Various 

structurally diverse compounds have been observed to inhibit this enzyme site. Aldose 

reductase inhibitors such as sorbinil, ponalrestat, epalrestat, tolrestat, zopolrestat as well as 

other synthetic inhibitors have since been developed based upon these observations, as 

possible therapeutic agents for diabetic complications. However, the clinical efficacy of 

these inhibitors in diabetic patients has not been fully proved. These compounds have been 

grouped into four main classes according to their structure, firstly flavonoids (quercetin), 

secondly carboxylic acids (epalrestat, FK-366, AD-5467, tolrestat, TAT,- NZ-314, 

zopolrestat), thirdly hydantoins (SNK-860), and fourthly other compounds (Dvornik et al 

1987; Hotta 1997). Studies into specificity pockets and binding of inhibitors have shown 

that the ALR2 active site adapts itself to bind tightly to different inhibitors, indicating 

flexibility and explains the large variety of substrates (Urzhumtsev et al 1997; Lee et a/ 

1998; Rogniaux et al 1999; Calderone et al 2000). El-Kabbani et al 1999 also found that 

certain structural features are responsible for differences in coenzyme and inhibitor 

specificity's of ALR2, whereby differences in structural changes required for the binding 

of ARis are responsible for differences in the potency of ALR2 inhibition. 

- 124-



Chapter 2: Aldose reductase and the polyol pathway 

Many animal studies of aldose reductase inhibition have been carried out using 

streptozotocin (STZ) or alloxan-induced diabetic rats (Robinson et a/1990; Ido et a/1996). 

From the results obtained from animal studies of diabetic complications, ARis have been 

shown to have a beneficial inhibitory effect on the development of neuropathy, 

retinopathy, nephropathy, keratopathy, cataract formation, infection and atherosclerosis. 

Additionally, Keegan et a/2000, have shown a protective effect of the ARI WAYI21509 

in the corpus cavernosum and mesenteric vessels in diabetic rats. 

Kinoshita et al 1979 studied the effect of an ALR2 inhibitor CP-45,634 on the corneal 

epithelium of a diabetic rat, and found that the ARI treated epithelium showed faster 

regeneration than the untreated eye. Animal studies of ARis have shown that they are 

capable of normalising some of the polyol-pathway linked biochemical imbalances in the 

renal cortex in rats. For example, Robinson et at 1990 showed that the aldose reductase 

inhibitor, sorbinil, minimises albuminuria and glomerular basement membrane thickening 

in STZ diabetic rats treated for 5 months. Ido et a/ 1996 using animal models of diabetes 

observed reduced vascular dysfunction by inhibition of the sorbitol pathway. It has also 
' 

been reported that daily administration of epalrestat to STZ diabetic rats prevented gastric 

erosion and ulceration and normalised mucosal blood flow, suggesting that aldose 

reductase inhibitors act in part by blocking the action of induced nitric oxide (Suzuki et a/ 

1999). Many animal studies have focused on the effects of ARI's on neuropathy, for 

example, Cameron and Cotter 1992 [a] conducted a study to examine the effects of two 

different doses of the ARI, ponalrestat on the peripheral nerve in diabetic rats. The study 

found that the administration of 8 mg/kg-1 day-1 and 1 OOmg/kg-1/day-1 both resulted in a 

reduction in sciatic nerve sorbitol content, however the flux through the polyol pathway 

still remained substantially elevated in the lower dose rats. Only the higher dose treated 

rats showed complete restoration in sciatic motor branches and sensory saphenous nerve. 

During the course of a 5-year study, nerve conduction velocity progressively decreased in 
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untreated diabetic dogs, and this decrease was prevented by treatment with an aldose 

reductase inhibitor (sorbinil) (Engerman et a/1994). The same study however showed no 

beneficial effects on renal structure or albuminuria (Kern and Engerman 1999). Several 

studies of ALR2 inhibition and vasodilator treatment have shown to improve nerve 

conduction velocities in STZ rats, and prevent the formation of diabetic cataracts 

(Nishimura et al 1994; Stevens et a/ 1994; Kador et al 1985). A comparative study by 

Mizuno et al 1999 investigated the effects of three ARis, fidarestat, epalrestat and 

zenarestat on the slowing of sensory (SNCV) and motor (MNCV) nerve conduction 

velocities in STZ induced diabetic rats. The study found that fidarestat showed significant 

effects in lowering sorbitol content continuously up to 24 hours after administration, and 

improved slowing of SNCV, indicating that continuous inhibition of polyol pathway flux 

can improve diabetic neuropathy. Positive results have also been attained in the use of 

epalrestat in reducing morphological and biochemical deficits in galactose fed dogs where 

galactose is known to stimulate the polyol pathway and result in diabetic like 

microangiopathic defects (K.asuya et al 1999 [b ]). Experimental studies in diabetic rats 

have also indicated a cardioprotective effect of ARI's (zopolrestat), where it has been 

shown that attenuation in the rise in Na and Ca during ischemia provides protection 

(Ramasamy et a/ 1999). It is important to add that there have been negative results 

obtained in certain animal studies, where aldose reductase inhibitors have not been seen to 

prevent or improve retinopathy, or reduce capillary basement membrane thickening in the 

retina, renal glomerulus or leg muscle in alloxan-induced diabetic dogs (Kern et a/ I 991; 

Engerman et a/1993). 

Clinical trials carried out over the last decade have attempted to assess the efficacy of 

aldose reductase inhibitors in humans in the treatment of diabetic microvascular 

complications. Although clinical, experimental and pharmacological data indicate. that 

there is an involvement of ARI's in slowing the progression of diabetic complications past 
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clinical trials have been disappointing. Importantly, sorbinil has been withdrawn from 

further use because of its severe and frequent toxicity, and tolrestat has shown elevated 

hepatic enzymes which return to normal when administration is discontinued (Foppiano 

and Lombardo 1997). Positive and negative findings have been made in the use of ARI's in 

the treatment of retinopathy. The use of epalrestat treatment of retinopathy over a three

year period has been shown to generate improvements in retinal structure and 

electroretinogram (Hotta et a/ 1990; Hotta et a/ 1990). Cunha-Vaz et a/ 1986 also showed 

positive findings for the use of sorbinil over a six-month period, finding a reduction in 

blood-retinal barrier alterations and a reduced incidence of microaneurysms of the retina. 

Negative findings have however also been made in the case of retinopathy. For example 

the Sorbinil Retinopathy Trial Research Group 1990 showed no significant differences 

between sorbinil treatment and placebo groups, and the same conclusions appeared to be 

true in similar studies using ponalrestat (Sorbinil Retinopathy Trial 1990; Tromp et a/ 

1991 ). Although these studies appear to have conflicting findings there is still some degree 

of evidence for a positive role for ARI's in the treatment of diabetic retinopathy, indicating 

a strong requirement for further studies into the role of ARI's and retinopathy. 

Aldose reductase inhibitors may improve diabetic nephropathy, which has been shown by 

its lowering of the glomerular filtration rate and an alteration in the course of 

microalbuminuria (Passariello 1993; Oates 1994). Studies have shown that ARis have only 

a partial effect in ameliorating renal microvascular complications. For example, a six

month trial of ARI administration had an effect on hyperfiltration in the presence of 

normoalbuminuria (Pedersen et a/ 1991). However, many other studies of ARis and 

nephropathy have also proven negative findings (Ranganathan et a/1993; McAuliffe et a/ 

1998). 
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Many clinical trials of ARis have also focused on diabetic neuropathy (Pfeifer et a/ 1997; 

Oates 1997). Sima et a/ 1988 carried out a double blind study in patients with diabetic 

neuropathy, and found exciting evidence for the efficacy of sorbinil against degeneration in 

surial nerve biopsies, which was also accompanied by a decrease in the nerve sorbitol-level 

and an increase in the nerve conduction velocity. A study by Nicolucci et a/ I 996 found 

that treatment of diabetic neuropathy with tolrestat showed a reduced risk for developing 

nerve function loss compared with placebo treated patients. Robust inhibition of aldose 

reductase in human nerve has been shown to have a dose dependent effect on nerve 

structure and function and continuous inhibition of increased polyol pathway flux can 

improve diabetic neuropathy. However, several groups have suggested that in the case of 

neuropathy the use of ARI's such as tolrestat and epalrestat in it management act mainly to 

slow the progression of neuropathy rather than to reverse it (Gerven 1993; Goto et a/ 1993; 

Pfeifer et a/ 1997). Greene et al 1999 carried out a study to determine whether the ARI 

zenarestat improves nerve conduction velocity (NCV) and nerve morphology in diabetic 

peripheral polyneuropathy. This randomised, placebo-controlled, double-blinded, multiple

dose clinical trial found an improvement in NCV slowing and a reduction in small 

myelinated nerve fiber loss, but indicated the >80% suppression of nerve sorbitol content is 

required. In controversy to these previous studies Airey et a/ 2000 investigated the 

efficacy of ARI's in the prevention, reversal or delay in the progression of diabetic 

peripheral neuropathy. They used nerve conduction velocities as the trial end points to 

evaluate treatment with 4 different ARI's. They found a small reduction in the decline of 

median and peroneal motor nerve conduction velocities, but no clear benefit was seen in 

terms of median and sural sensory nerves. 

In summary, enzyme inhibition as a direct pharmacokinetic approach to the prevention of 

diabetic complications resulting from the hyPerglycaemia of diabetes has not been fully 

effective because of non-specificity of the inhibitors and some appreciable side effects. 
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Such negative findings may be partly due to the multiple cell types involved in diabetic 

complications, potential differences in ALR2 expression, the long time course for the 

development of complications and the relatively short length of human trials, and the 

variability in potency and penetration of ARI's (Dunlop 2000). Improvement has however 

been seen in human diabetic subjects who receive ARI's as compared to those on a placebo 

mainly in terms of motor, sensory and autonomic neuropathy. It has been suggested that 

promising therapy may come from the administration of two or more synergistic metabolic 

blockers, for example using aldose reductase inhibitors in combination with 

aminoguanidines (Boel et a/ 1995). Interestingly vitamin E and other antioxidants have 

been reported to delay or prevent cataract in diabetic animals (Creighton and Trevithick 

1979). Furthermore, in vitro studies have indicated that ascorbic acid (vitamin C) is able to 

reduce sorbitol levels in humans by inhibiting ALR2 activity (Cunningham et a/ 1994; 

Lindsay et a/ 1998). It has also been suggested that the synthesis of new phthalazinyl 

derivatives may provide compounds to inhibit both ALR2 and SORD (Fourmaintraux et a/ 

1999). 
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ALR2 as a candidate gene for diabetic microvascular complications 

There is strong evidence for an involvement of a major genetic susceptibility component in 

the aetiology of diabetic complications. It is possible that variation within the genes coding 

for the enzymes of the polyol pathway explain why only some patients with diabetes are 

affected by diabetic complications. Variations in the gene encoding the enzymes of the 

polyol pathway may result in either the increased expression or increased action of the 

respective enzymes. Conversely variation may result in the under expression of the sorbitol 

dehydrogenase gene however both result in an accumulation of sorbitol in cells (Lee et a! 

1995) (figure 8). 

tAR activity .J..soRD activity 

t t 
tGiucose _ __...,. tsorbitol --•..,. Fructose 

Figure 8. Illustration of the effect of polyol pathway enzyme expression and the 
accumulation of sorbitol. 

The presumption that the involvement of the polyol pathway in diabetic complications, 

along with the presumption that genetic factors play an important role in the pathogenesis 

of diabetic microvascular disease has stimulated the search for candidate genes. The 

cloning of genes coding for aldose reductase (Graham 1991 [a]) and sorbitol 

dehydrogenase (Lee 1994) now enables the role of the polyol pathway to be studied at a 

molecular level. The sib-pair linkage analysis carried· out in T2DM Pima Indians showed 

evidence that the strongest linkage with diabetic nephropathy was on chromosome 7 

(Imperatore et al 1998 [a]). This has also been confirmed in a Caucasoid T2DM study 

population (Fogarty et al 1999). Interestingly this chromosomal location is in the region 

corresponding to the ALR2 region 7q35. Patients with TIDM and microvascular 

complications have been shown to have raised enzymatic activity of ALR2 and also 
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increased amounts of the ALR2 protein itself. It is a possibility that high ALR2 levels are 

genetically provided reflecting either heterogeneity of gene expression or the presence of a 

significant polymorphism of the structural ALR2 gene. These genetic alterations may 

modulate the risk of rnicroangiopathy in association with various other metabolic, genetic 

and environmental factors. 

The ALR2 gene and its promoter region (AR; EC 1.1.1.21) 

The gene for ALR2 has been isolated, cloned and sequenced from a number of tissues in 

man (Petrash and Favello 1989; Bohren et a/ 1989; Chung et a/ 1989; Nishimura et a/ 

1990). Graham and colleagues 1991[a and c], mapped the putative functional human ALR2 

gene to chromosome 7 in the q35 region adjacent to the TCRJ3 loci, using somatic cell 

hybrids and in situ hybridisation. It has previously been shown that the ALR2 and adjacent 

TCRI3 loci on chromosome 7q35 are strongly associated with diabetic nephropathy 

{Hibberd et a/1992; Pate! et a/1993, 1996). The ALR2 gene has hence been proposed as a 

candidate gene for the development of late diabetic complications. Bateman et a/ 1993 

used a complementary DNA clone encoding human ALR2 to further map the gene 

sequence to human chromosomes 1,3,7,9,11,13,14 and 18. They also used in situ 

hybridisation analysis to localise sequences to human chromosomes lq35-q42, 3p 12, 7q31-

q35, 9q22, 11 p 14-p 15, and 13q 14-q21 which may represent other active genes, non-aldose 

reductase homologous sequences or pseudogenes. Cao et a/ 1998 identified a novel human 

protein that is highly homologous to ALR2 namely ARL-1, which shows 71% sequence 

homology to human ALR2, and 81% and 83% homology with mouse vas deferens protein 

and fibroblast growth factor-regulated protein. This protein was found to have similar 

enzymatic activities and to act on a similar spectrum of substrates, although there was a 

difference in the site of expression of the genes. Importantly, this study determined by 

Northern blot analysis that ARL-1 is not expressed in tissues prone to diabetic lesions. A 

study carried out by Ho et a/ 1999 investigated the genomic structures and chromosomal 

- 131 -



Chapter 2: Aldose reductase and the polyol pathway 

locations of the mouse ALR2 gene and ALR2-Iike genes. Using a comparative approach 

they determined that the area of the mouse chromosome in which ALR2 (Aldorl) is 

mapped, corresponds to the q33-34 region of chromosome 7 of the human genome. The 

study also found that the mouse Aldorl gene is highly homologous to the fibroblast growth 

factor regulated protein gene (Fgfrp) and the androgen regulated vas deferens protein gene 

(Avdp). The importance of which is that there is a possibility that these closely related 

genes may have similar physiological function and may be implicated in the aetiology of 

diabetic complications. 

The human ALR2 gene located on chromosome 7q35 extends over approximately 18 

kilobases and consists of 10 exons which give rise to a 1,384 nucleotide mRNA (excluding 

the poly A tail). The ATG codon at nucleotide 37 encodes the first amino acid methionine, 

and the codon 985 signifies translation termination (Chung and LaMendola 1989). The 

human aldose reductase gene codes for a 316 amino-acid protein with a molecular mass of 

35,858 Dalton's (Graham 1991 [a and b]). The size range of the exon's is 82 to 168 base 

pairs, whilst the size range for intron's is 325 to approximately 7,160 base pairs. Four Alu 

elements have also been found in the aldose reductase gene: two were found in intron I 

and one each in in ton 4 and intron 9. An Sp I sequence has also been shown to lie in the 5' 

untranslated region of exon 1. A major site for transcription initiation in hl.Jman liver has 

been mapped to an A residue 31 nucleotides upstream from the A of the ATG initiation 

codon. The promoter region of the ALR2 gene has also been well characterised, firstly in 

the rat by Graham et a/1991 [a] and also in the human by Wang et a/1993. The promoter 

region of the ALR2 gene has been found to contain a regulatory TAT A (TA TT A) box and 

a CCAAT box which are located 37 and 104 nucleotides upstream, respectively, from the 

transcription initiation site (Graham et al 1991 [a]; Wang et a/ 1993). Wang et al 1993 

characterised the human ALR2 gene promoter region and demonstrated that the basal 

promoter activity of the human aldose reductase gene is located between -192 and + 31 
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upstream of the mRNA cap site. Several common cis-elements were isolated and point 

mutations in certain sequences such as the TATTTA sequence reduced promoter activity to 

35% of the wild type DNA. This finding suggests that the TATA box is very important to 

the promoter activity of the ALR2 gene. The basal promoter region has also been found to 

contain a consensus sequence of an androgen response element (Wang et a/ 1993), three 

osmotic response element (ORE) sequences, a sequence homologous to a consensus Ap-1 

site, and a microsatellite dinucleotide repeat sequence. A report by Ferraris et al 1994 

investigated the rabbit ALR2 gene and found that a 235bp fragment within the promoter 

region of the ALR2 gene was able to drive the downstream reporter gene in transfected 

PAP-HT25 cells under isoosmotic conditions. Hyperosmotic stress induced a 40-fold 

increase in luciferase expression indicating an important role for osmotic response 

elements in diabetic complications. A number of genes have been localised to the 5 'ALR2 

region, these include endothelial nitric oxide synthase ( eNOS), XRCC2 DNA repair, long 

QT2 interval {LQT2), skeletal muscle chloride channel and thromboxane synthase genes. 

Polymorphisms of the ALR2 gene and its promoter region 

Pate! et a/ 1993 and K.icic et a/ 1993 investigated restriction fragment length 

polymorphisms at the human ALR2 gene locus. Pate! et a/1993 used amplified regions of 

the ALR2 gene as probes to screen for restriction fragment length polymorphisrns (RFLPs) 

in subjects with TIDM. Using 7 different restriction endonucleases (Bamlll, Sstl, Hindlll, 

Taql, Mspl, EcoRI, and Pstl) the study identified two polymorphisms. Firstly, a 

3 'ALR2/BamHI polymorphism within the ALR2 gene was found, however there was a 

complex hybridisation pattern as the probe detected both the functional and pseudo- ALR2 

genes. Secondly, a Pstl polymorphic site was found at the 5' end of the ALR2 gene in the 

non-coding region. No significant differences were found between any of the genotypes or 

alleles for 5'ALR2/Pstl with either TIDM or microvascular complications. However, the 

3'ALR2/BamHI polymorphism showed a statistically significant increase in frequency in 
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TlDM subjects with retinopathy compared to uncomplicated subjects (66.7% vs. 32.0% 

p<0.007), and nephropathy groups (66.7% vs. 34:9% p<0.006). This was also shown to be 

true when analysed in association with the previously identified TCRB polymorphism 

(Pate! et a/ 1996). 

To date there have been three reported biologically significant polymorphisms within the 

ALR2 gene and its promoter region. Firstly, a polymorphism which has provoked a great 

deal of interest has been the discovery of the (AC)n microsatellite dinucleotide repeat 

sequence polymorphism in the 5' region of the ALR2 gene. This CA dinucleotide repeat 

polymorphism designated 5'ALR2 is located approximately 2.lkb upstream of the 

initiation site of ALR2 close to the ORE sequences. Secondly, a C-l 06T polymorphism 

situated in the basal promoter region of the ALR2 gene has also been well investigated. 

Thirdly, and less well investigated, an A(+ll842)C polymorphism within intron 8 of the 

ALR2 gene itself (figure 9). A fourth polymorphism has also been recently reported, this 

being a C(-l2)G polymorphism reported in a Chinese population (Li et a/2002), although 

this has not been well investigated to date. 
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Figure 9. A schematic organisation of the promoter elements in the 5' ALR2 promoter 
region as described by Wang et a/ 1993 
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5' ALR2 (CA)n microsatellite 

Ko et a! 1995 studied the ALR2 gene promoter region and identified a highly polymorphic 

dinucleotide repeat marker (microsatellite) located 2.1 kilobases upstream of the 

transcriptional initiation site of the ALR2 gene as illustrated in figure 10. 

GAATCTTAACATGCTCTGAACCAGTAATCTCCCACTATGG 
5' GAATTTTTCCTAAGGAAATAATTTAAAAGGAAAACACACAC 

ACACACACACACACACACACACACACACACACACACACAC 
TAGGTATAGGGCTGGGC 

Figure 10. Chromosome 7q35 illustrating the location of the 5' ALR2 (CA)n 
microsatellite dinucleotide repeat polymorphism (Graham et a/ 1991 [c); Ko et a/ 
1995). 

Many studies in various countries using population groups of varying ethnicity have 

investigated the 5' ALR2 polymorphism (table 5). From the published investigations 

between 7 and 12 alleles have been detected at the polymorphic site. The most common 

allele is the (AC)24 repeat (138bp), designated as 'Z' allele. In some studies the (AC)23 

repeat (13xbp)has been associated with a high risk for diabetic complication, designated 

'Z-2', and (AC)2s repeat (13xbp) has been associated with a protective role, designated 

'Z + 2'. Discrepancies have however been reported to exist between studies, in particular 

between different ethnic groups and the different types of diabetes mellitus. The following 

section attempts to review the work that has been carried out to investigate this exciting 

polymorphism. 

5' ALR2 (CA)n microsatellite and microvascular disease in TlDM 

Investigations have been carried out to determine the relationship between the (CA)n 

polymorphism and microvascular disease in TlDM subjects. Diabetic retinopathy, 

nephropathy and neuropathy have been extensively investigated. Kao et a/ 1999 reported 
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that in a cohort of TIDM subjects of Caucasoid (Australian) origin which included 97 

retinopathy subjects and 67 non retinopathy subjects the frequency of the Z-2 allele was 

significantly higher in those patients with retinopathy than those without retinopathy 

(P<0.0005). Negative findings have however also been made with regard to the onset of 

retinopathy in TlDM subjects. Chistyakov et a/1997 reported no associations of the ALR2 

(CA)n polymorphism in TIDM subjects of Caucasoid (Moscow, Russia) origin and 

diabetic retinopathy. Yamamoto et a/ 1999 reported no association with retinopathy in 

TIDM subjects of Japanese (Oaska, Japan) origin. Iserman et al 2000 also looked at the 

(CA)n polymorphism in TIDM Caucasoid (Heidelberg, Germany) subjects with and 

without diabetic retinopathy. No significant differences were found in this study, however 

the Z+2 allele tended to be less frequent (11.5%) in subjects with retinopathy compared 

with TIDM subjects with no complications (17.8%), although this did not reach statistical 

significance. 

Several studies have also investigated the (CA)n polymorphism in association with diabetic 

nephropathy in TIDM subjects and have found a statistically significant relationship. 

Importantly, a study carried out in our own laboratory using a collection of Caucasoid 

(Plymouth, UK) subjects with TIDM demonstrated a highly significant decrease in the 

frequency of the Z+2 allele in TIDM patients with nephropathy (Heesom et a/ 1997). The 

Z+2 5'ALR2 allele was significantly increased in subjects with no complications after 20 

years duration of diabetes (uncomplicated) compared to those with nephropathy. This was 

accompanied by a significant increase in the Z-2 allele in the nephropathy group compared 

to those without. At least one copy of the Z+2 allele was found in 65% of the 

uncomplicated group to only 21.3% of the patients with nephropathy (odds ratio 7.1). 

These results indicate that the dinucleotide repeat polymorphism at 5' flanking region of 

the ALR2 gene might play a role in the regulation of the constitutive expression of ALR2 

in TIDM and thus provide a useful genetic marker for diabetic microangiopathy. Another 
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groundbreaking study by Shah et a/ 1998 also found significant associations with this 

polymorphism in two different study cohorts. Firstly, in a Caucasoid (USA) cohort the 

prevalence of the Z-2 allele among TlDM subjects was increased in those with diabetic 

nephropathy where 60% of subjects with nephropathy v. 22% TIDM subjects without 

nephropathy were homozygous for Z-2. The second cohort of subjects with TIDM of 

Caucasoid!Hispanic origin (Milan, Italy) origin also showed the same trend. In this cohort 

the prevalence of the Z-2 allele was higher in the subjects with diabetic nephropathy than 

in the diabetics without nephropathy, where 81% of subjects with diabetic nephropathy had 

one or more copies of the Z-2 allele. This study did not find any association with the Z+2 

allele and subjects without nephropathy. Moczulski et a/ 2000 also furthered this line of 

evidence by investigating the (CA)n polymorphism in Caucasoid (Boston, USA) Tl DM 

subjects with and without diabetic nephropathy. The study showed that the Z-2 allele was 

significantly more frequent in cases than controls (38% vs. 28.8%, P = 0.005), and carriers 

of the Z-2 allele had a higher risk of diabetic nephropathy than non-carriers. Yamamoto et 

a/ 1999 also looked at this polymorphism in TIDM subjects of Japanese (Osaka, Japan) 

origin. Conversely this study found that there was a higher increase in the frequency of 

nephropathy in subjects with the Z+2 allele, and also that homozygosity for the Z+2 allele 

was significantly associated. This therefore leads to some discrepancy between positive 

association results. 

Several other studies however, do not agree with the (CA)n results seen in the previously 

mentioned studies into diabetic nephropathy. Chistyakov et a/ 1997 also investigated the 

(CA)n polymorphism in a smaller cohort of Caucasoid (Moscow, Russia) TlDM subjects 

(29 no nephropathy vs. 20 diabetic nephropathy), and found no significant associations 

with diabetic nephropathy. Dyer et a/ 1999 also investigated whether the 5'ALR2 (CA)n 

microsatellite marker could be used as a genetic marker for susceptibility to diabetic 

nephropathy by analysing 442 British Caucasoids with TIDM. PCR was used to amplify 
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the DNA followed by size fractionation with a sequencer and genotyped. They detected 

nine alleles, and found no significant difference in allele frequencies between patient 

groups. Specifically they also found no significant difference in the frequency of the 

reported associated allele Z-2, and the protective allele Z+2. Isserman et at 2000 also 

looked at TLDM subjects of Caucasoid (Germany) origin with and without diabetic 

nephropathy and also found no significant increase in incidence of Z-2 (CA)23 allele 

between groups. The study did show a tendency that the Z and Z+2 alleles were slightly 

lower in the group with nephropathy compared to the group with no complications but no 

statistical significance was achieved. Furthermore, the Caucasoid cohorts (North of 

England and Belfast) TIDM subjects included in the study carried out by Neamat-Allah et 

a! 200 l also showed no evidence of an association between the microsatellite marker 

(CA)n alleles and diabetic nephropathy. Additionally, stratification of the Belfast cohort in 

this study according to HbA1c also revealed no evidence of altered risk of diabetic 

nephropathy in Z-2 carriers vs. non Z-2 carriers. Ng et a! 2001 carried out the same studies 

using Caucasoid (Australia) TLDM subjects and found no associations with diabetic 

nephropathy. Reporting that despite the study being relatively small with regard to the size 

of the cohort, the 5'ALR2 (CA)n polymorphism is not useful as a genetic marker for 

susceptibility to nephropathy in Caucasoid TIDM subjects. 

A positive association has also been shown in Caucasoid (Plymouth, UK) TlDM subjects 

with diabetic neuropathy (Heesom et a! 1998). The study again carried out by our 

laboratory found that there was a highly significant decrease in the frequency of the Z+2 

allele in those patients with overt neuropathy compared to those with no neuropathy after 

20 years duration of diabetes. The neuropathy group also had a significant decrease in the 

frequency of the Z/Z+2 genotype compared to subjects without diabetic neuropathy. This 

finding was not supported in the Caucasoid (Australia) neuropathy TLDM subjects 

investigated by Ng et a/ 2001. 
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5' ALR2 (CA)0 microsatellite and microvascular disease in T2DM 

There have been several studies reported which have found positive associations between 

the (CA)n polymorphic region and certain diabetic microvascular complications in T2DM 

subjects of varying ethnicity. Studies into the (CA)n polymorphism in T2DM and diabetic 

retinopathy have however lead to conflicting reports being published. Firstly, the 

pioneering study carried out by Ko et a/ 1995 suggest that the gene encoding aldose 

reductase (ALR2) may be involved in the early onset of diabetic retinopathy in T2DM 

patients. The study. showed that the (AC)0 dinucleotide repeat polymorphism 2.1kb 

upstream of the promoter region of the ALR2 gene is associated with early onset diabetic 

retinopathy in 44 unrelated Chinese (Hong Kong) patients with T2DM and nearly identical 

HbA I c values. They found seven alleles at this locus and observed a strong association 

between the (AC)23 (also called 'Z-2') allele and early onset diabetic retinopathy in 

patients with T2DM (59%), compared with the group with no complications (9%). The 

results strongly suggest that the (AC)23 allele was related to early appearance of retinal 

microangiopathy. This report therefore suggests that aldose reductase or a gene in the close 

vicinity might be involved in the pathogenesis of this diabetic complication in T2DM 

subjects of Chinese origin. Secondly, Fulisawa et a/ 1999 carried out a study of the 

5 'ALR2 microsatellite in T2DM subjects of Japanese origin. Eleven different alleles were 

observed in this study and it was reported that the length of the alleles was significantly 

different between the two groups. It was suggested that the frequency of the shorter alleles 

(equal to or shorter than Z-4) were more associated with retinopathy than the longer alleles 

(greater than Z-4). The molecular mechanism associating the length polymorphism is ill 

understood, although it has been suggested that the dinucleotide repeat length may directly 

effect ALR2 gene expression through enhancer/promoter interaction. Alternatively, the 

allelic variation may be in linkage disequilibrium with an unknown aetiological mutation, 

which may affect the expression or function of aldose reductase. The line of thought which 

is suggested is that the shorter form of the dinucleotide repeat is associated with disease 
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phenotype. Thirdly, a small study of27 Spanish T2DM subjects was carried out by Olmos 

et a/1999 reporting that the absence of the (AC)24 allele of the (AC)0 polymorphic marker 

was associated to a five fold reduction of retinopathy appearance rate. A later report by the 

same group (Olmos et al 2000) also tested the hypothesis that the (ACb allele of the 

ALR2 gene is related to an enhanced rate of progression of retinopathy in Chilean 

Caucasoid T2DM subjects. The longitudinal-retrospective study showed that the subjects 

with the (AC)23 allele had a retinopathy progression rate that was 8.9 times higher than that 

of the diabetics having other alleles. A fourth study carried out by Ikegishi et a! 1999 also 

investigated the (CA)n polymorphism in 27 T2DM subjects with retinopathy and 34 T2DM 

subjects without retinopathy and 96 controls of Japanese origin. The study identified 10 

alleles and found a significant difference in the frequency of the Z-4 and Z-2 alleles. The 

frequency of the Z-4 allele was seen to be significantly greater in subjects with 

proliferative retinopathy, whereas the Z+2 allele was significantly greater in subjects 

without retinopathy. The study also found, using transfection experiments, that the Z-4 

allele showed significantly higher transcription of the reporter gene. A fifth study by 

Ichikawa et a/ 1999 carried out an investigation using microsatellite PCR and direct 

sequencing methods, to assess the association of the 5'ALR2 (CA)n locus and diabetic 

microvascular complications in Japanese patients with T2DM. They were able to identify 

six alleles, and found no significant difference in allele distribution between diabetic 

patients and controls. The Z-2 allele frequency was however, significantly higher in 

subjects with diabetic retinopathy than those without retinopathy, suggesting that aldose 

reductase is involved in the development of diabetic retinopathy. In contrast however the 

microsatellite marker was not associated with diabetic nephropathy, peripheral or 

autonomic neuropathy. But they concluded that the discrepancy might be partly 

attributable to the low frequency of Z+2 allele in the Japanese subjects. 
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Contradictory to these findings however, several groups investigating the (AC)n 

polymorphic region in T2DM subjects with retinopathy have found no significant 

associations. Maeda et a/1999 studied a population of Japanese T2DM subjects and found 

no association between any of the alleles and diabetic retinopathy. Groves et a/ 1999 

investigated 250 British Caucasoid T2DM subjects with retinopathy which were carefully 

matched with controls, and found no association with the (CA)n polymorphism. Lee et a/ 

2001 [a] investigated 384 late onset T2DM subjects of Hong Kong Chinese origin and 

identified 10 alleles at the (CA)n polymorphic region. The study found no significant 

differences in allelic distributions of the Z+2/ Z/ Z-2 allelic variants between subjects with 

and without diabetic retinopathy. However, the study did report an increased presentation 

of the Z-4 allele in T2DM subjects with retinopathy compared to those without (9% vs. 

4%, p < 0.05). 

Studies into T2DM and diabetic nephropathy have so far also produced positive and 

negative correlation's. Maeda et a/ 1999 studied a population of Japanese T2DM subjects 

and found no association between any of the alleles and nephropathy, although ALR2 

protein content was increased in subjects with nephropathy. The T2DM subjects of British 

Caucasoid or Pima Indian origin investigated by Neamat-Ailah et a/ 2001 showed no 

significant associations of either the Z-2 or Z+2 alleles with diabetic nephropathy. The 

study also carried out a meta-analysis of all the published data for the (CA)n 

polymorphism and revealed no evidence for an effect of the rnicrosatellite marker in 

T2DM subjects with nephropathy. The Olmos et a/ 2000 study investigated the 

nephropathy progression rate in T2DM Caucasoid subjects with and without the (AC)23 

allele. Although the mean nephropathy progression rate was higher in the (AC)23 group no 

statistically significant differences were found. Moculski et a/ 1999 examined the 

association between the 5 'ALR2 (CA)n polymorphism and diabetic nephropathy in a large 

group of Caucasoid patients with T2DM which consisted of 179 normoalburninuria 
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subjects, 225 microalbuminuria subjects and 70 proteinuria subjects. They also found no 

association between the Z-2 allele and nephropathy in Caucasoid T2DM subjects. Park et 

al 2002 investigated the relationship between the aldose reductase gene polymorphisms 

and microvascular complications in Korean patients with T2DM, and found no 

associations with the frequencies of the Z-2 and Z+2 alleles between subjects with and 

without diabetic nephropathy and retinopathy. A recent study however, carried out by Liu 

et al 2002 has found an association between the 5 'ALR2 (CA)n polymorphism in the 

development of diabetic nephropathy in Southern Chinese with T2DM. In this study the 

normoalbuminuric subjects had the lowest Z-2!X genotype frequency 18.8% vs. 36.5% in 

rnicroalbuminuric (p<O.OOl), and 38.5% in albuminuric patients (p=<0.02). 

S' ALR2 C(-106)T polymorphism 

A bi-alleleic polymorphism situated close to the osmoregulatory element (ORE) has also 

been identified and located to position - 106. It has been found to be aCto T substitution 

(C-106T) at this position in the 5' flanking region ofthe ALR2 gene (figure l I). 

cctttctgcc acgcggggc gcgggcgagc gttgggggcg 

5' 
gaaagaatcc gctgccacta ggaccaggcg gaagaag.cat 
ccccgccgac ccttggggaa ggccgccgcg gcacccc£ag 
cgcaaccaat cagaaggctc cttcgcgcag cggcgcgcca 
accgcaggcg ccctttctgc cgacctcacg ggctatttaa 
aggtacgcgc cgcggccaag gccgcaccgt actgggcggg 
ggtctgggga gcgcagcagc c 

Figure 11. Chromosome 7q35 illustrating the location of the 5' ALR2 C(-106)T 
polymorphism (Graham et a/ 1991 [a and c]). 

In a study by Kao et a/ 1999, young adolescent Caucasoid (Australia) TlDM subjects with 

and without diabetic retinopathy were investigated. This study suggested that the C(-106) 

allele was associated with the Z-2 allele in subjects with retinopathy, and conversely that 

both the C and the T alleles were associated with the Z+2 allele in the uncomplicated 

group. However, Moczulski et al 2000 showed, in a Caucasoid (North American) 

population of T1DM subjects with diabetic nephropathy, that the T(-106) allele was 
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associated with the Z-2 allele. The Z-2ff haplotype was also shown to have a higher 

incidence in the TlDM subjects with nephropathy than in TlDM subjects without 

nephropathy. A more recent study by Neamat-Ailah et a/ 2001 reported a significant 

association between the T allele of the ALR2 -106 marker and diabetic nephropathy in 

both TlDM and T2DM subjects of Caucasoid (UK) origin. The Pima Indian cohort also 

investigated did not however show any statistical correlations. They also found that the Z-2 

allele was positively associated with the T allele, and the Z allele was positively associated 

with the C allele in TlDM and T2DM subjects. Also the carriage of the combination of 

both Z-2 and -1 06T was increased in subjects with diabetic nephropathy compared to 

subjects without diabetic nephropathy, although not to statistical significance. Li et a/ 2002 

have also carried out a study into the C( -1 06)T polymorphism using a population of 

Chinese subjects and controls. This study found that there was an association with the C(-

106)T polymorphism and diabetic retinopathy in the Chinese population. 

ALR2 A(+ll842)C intragenic polymorphism 

A single base substitution A(+ 11842)C has been previously described within intron 8 of 

the ALR2 gene (Kicic et a/ 1993; Pate) et a/ 1996; Pate) et a/ 1993). The A(+ll842)C 

polymorphism is a silent substitution that creates a new Barn Hl restriction endonuclease 

site (figure 12). Kicic et a/ 1993 found an association between the (+ll842)C allele and 

proliferative retinopathy patients with TlDM. Kao et a/ 1999 also examined DNA from 

164 adolescents with TlDM for the A to C substitution at the 95th nucleotide of intron 8 of 

the ALR2 gene. The authors named the alleles as 'B' where the restriction enzyme cut and 

'b' where it did not. Kao et a/ 1999 reported that this polymorphism was strongly 

associated with diabetic retinopathy in adolescent TlDM subjects of Caucasoid (Australia) 

origin. 
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tcttgg9t99 tcagg~ctg§ ,cc;:ct,cct.cca tgg~g gatgggggag 
gcctctcatc ctgtctctgg agtgtcatct gtgarr.c caccatcctc 
tcttctgagg ccagggagct gtggcgagca agccaagact gagactgaca 
cctcaccagt ggagccgtgt gccaggggca ggccttgggt ccagggccgt 
gctgtggcaa tacacctaca cctttgctca ggcccttcag cacaccgaga 
ggt 

Figure 12. Chromosome 7q35 illustrating the location of the ALR2 A(+11842)C 
polymorphism (Graham et a/1991 [a and c]). 

Previous studies by Pate! et al 1993/1996 using restriction fragment length polymorphism 

analysis had studied this BarnH1 site and found an association with microvascular 

complications. It is clearly important to understand the relationship and strength of the 

association of the A(+ 11842)C site to the 5 'ALR2 locus and relevance to the susceptibility 

to diabetic complications. 
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Author Population Diabetes Complication Polymorph Isms Association 
studied 

T1DM 
Isermann et a/2000 Caucasaid (Heidelberg, TlDM Retinopathy (CA)n -ive 

Germany) Nephropathy (CA)n -ive 
CHD (CA)n +ive 

Ng eta/2001 Caucasoid (Australian) TlDM Nephropathy (CA)n -ive 
Neuropathy (CA)n -ive 

Kao eta/1999a Caucasoid (Australian) T1DM Retinopathy (CA)n +ive 
C(-106)T +ive 

Kao etal1999b Caucasoid (Australian) TlDM Retinopathy (CA)n +ive 
A(+11842)C +ive 

Heesom eta/1997 Caucasoid (Plymouth, UK) TlDM Nephropathy (CA)n +ive 
Heesom et a/1998 Caucasoid (Plymouth, UK) TlDM Neuropathy (CA)n +ive 
Dyer eta/1999 Caucasoid (Birmingham, UK) T1DM Nephropathy (CA)n -ive 
Neamat-AIIah eta/2001 Caucasoid (Belfast, UK) TlDM Nephropathy (CA)n -ive 

C(-106)T +ive 
Caucasoid (N of E. UK) TlDM Nephropathy (CA)n -ive 

C(-106)T +ive 
Shah eta/1998 Caucasoid/Hispanic (USA) TlDM Nephropathy (CA)n +ive 

Caucasoid (Milan, Italy) TlDM Nephropathy (CA)n +ive 
Chistyakov et a/1997 Caucasoid (Moscow, Russia) TlDM Retinopathy (CA)n -ive 

Nephropathy (CA)n -ive 
Yamamoto eta/1999 Japanese (Osaka, Japan) TlDM Nephropathy (CA)n +ive 

Retinopathy (CA)n -ive 
Moczulski et a/2000 Caucasoid (Boston, USA) TlDM Nephropathy (CA)n +ive 

C(-106)T +ive 
T2DM 
Groves eta/1999 Caucasoid T2DM Retinopathy (CA)n -ive 
Neamat-AIIah eta/2001 Caucasoid (N of E, UK) T2DM Nephropathy (CA)n -ive 

C(-106)T +ive 
Pima Indian (Arizona, USA) T2DM Nephropathy (CA)n -ive 

C(-106)T -ive 
Moczulski et a/1999 Caucasoid (Boston, USA) T2DM Nephropathy (CA)n -ive 
Olmos et a/1999 Caucasoid (Madrid, Spain) T2DM Retinopathy (CA)n +ive 
Olmos et a/2000 Caucasoid (Madrid, Spain) T2DM Retinopathy (CA)n +ive 
Ko eta/1995 Chinese (Hong Kong, China) T2DM Retinopathy (CA)n +ive 
Lee et a/2001 [a] Chinese (Hong Kong, China) T2DM Retinopathy (CA)n -ive 
Li eta/2002 Chinese (Changsha, China) TlDM Retinopathy C(-106)T +ive 

C(-12)G 
Liu et a/2002 Chinese (Hong Kong, China) T2DM Nephropathy (CA)n +ive 
Qingjie etal 2002 Chinese (Xiangya, China) T2DM Retinopathy C(-106)T +ive 

C(-12)G +ive 
Fujisawa et a/1999 Japanese (Osaka, Japan) T2DM Retinopathy (CA)n +ive 
Ichikawa et a/1999 Japanese (Kurume, Japan) T2DM Retinopathy (CA)n +ive 

Nephropathy (CA)n -ive 

Neuropathy (CA)n -ive 

Ikegishi et a/1999 Japanese (Yamanashi, Japan) T2DM Retinopathy (CA)n +ive 

Maeda et a/1999 Japanese (Shiga, Japan) T2DM Nephropathy (CA)n -ive 
Park eta/2002 Korean (Seoul, South Korea) T2DM Retinopathy (CA)n -ive 

Nephropathy (CA)n -ive 

Table 5. Summary of published studies of the ALR2 polymorphisms within 
the ALR2 gene and its promoter region in TlDM and T2DM. 

- 146-



Chapter 2: Aldose reductase and the polyol pathway 

Family based studies 

Moczulslci et a/ 2000 was the first to report the investigation of the ALR2 promoter region 

polymorphisms in a family based study using the transmission disequilibrium test (TDT). 

Families used in this study had TlDM with or without persistent proteinuria or diabetic 

nephropathy, and were of Caucasoid (USA) origin. The study found that transmission of 

the Z-2 allele was 54% in case trios and 45% in control trios, which although show 

consistency with previous case control studies, did not reach statistical significance. Also 

the transmission of the T allele for the C(-106)T polymorphism was 54% in case trios and 

37% in control trios, again not reaching statistical significance. The Z-2/T haplotype was 

transmitted froJ:ll heterozygous parents 57% in the nephropathy trios and 47% in control 

trios. In should be noted however, that due to the small numbers involved in this study the 

power to detect any linkage was somewhat reduced and may have little efficacy in this 

study. 

ALR2 promoter region polymorphisms and gene expression 

Shah et a/ 1997 previously reported that aldose reductase mRNA levels in PBMC's were 

3-fold higher in TIDM patients with diabetic nephropathy than in those without 

nephropathy, and also that mRNA levels were not elevated in non-diabetics with renal 

disease. Shah et a/1998 continued this investigation by exploring the possibility of a link 

between the 5' ALR2 microsatellite polymorphism Z-2, and increased levels of ALR2 

expression in diabetic nephropathy. Their studies found that in both Caucasoid!Hispanic 

(USA) and Caucasoid (Milan, Italy) TIDM subjects, those with one or more copy of the Z-

2 allele also had higher ALR2 mRNA levels than did diabetics without the Z-2 allele. In 

contrast, among non-diabetics the ALR2 mRNA levels were similar in subjects with and 

without one or more copy of the Z-2 allele. 
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These findings are extremely exciting because firstly, the 5' ALR2 marker is associated 

with diabetic nephropathy in those patients with TlDM and is linked to this region in 

T2DM. This demonstrates that the genetic lesion is independent of the cause of diabetes. 

Secondly, it occurs across ethnic groups, which is further evidence that ALR2 plays a 

critical role in the susceptibility to, and pathogenesis of diabetic nephropathy. Thirdly, the 

Z-2 allele is associated with up-regulation of ALR2 gene expression in patients with 

diabetic nephropathy. The mechanism in which these polyrnorphisms regulate aldose 

reductase gene expression is not known. However it was suggested that because the 

5 'ALR2 microsatellite is located in the 5' region of the gene, different populations might 

be associated with differential binding of transcription factors. It may also be that the 

expression of other genes near this locus may be altered and may also modulate the risk for 

diabetic complications. Several other sequence variants have also now been reported but 

have not been so extensively investigated (Moczulski et al 2000; Kao et a/ 1999). It is 

clear from this review of the literature regarding the polyrnorphisms within the ALR2 gene 

and its promoter region that more work is now required to confirm these results in family 

based studies, and in addition to establish whether the ALR2 polyrnorphisms has a 

functional role in diabetic complications. 
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CeUular osmotic regulation and diabetic complications 

Changes in extracellular osmolality such as the effect of hyperglycaemia results in osmotic 

stress. due to unequal rates of movement of water and solutes across the cell membrane. 

The osmotic balance between intracellular and extracellular compartments is critical for 

the maintenance of cellular homeostasis. Cells respond to osmotic stress by osmoregulation 

compensatory mechanisms such as changes in cell volume, water content, and intracellular 

solute concentration. An increase in extracellular glucose levels leads to increase in the 

flux through polyol pathway, and probably an increase in activity of aldose reductase 

leading to an intracellular accumulation of sorbitol. The pathway is driven by increased 

intracellular glucose availability leading to sorbitol accumulation (Gabbay et al 1973). 

Abnormally high levels of osmolytes can be deleterious to cells, for example an 

accumulation of sorbitol has been reported to be a cause of cataract formation (Lee 1995). 

In target tissues of diabetes such as kidney, nerve, and eye, sorbitol accumulation is 

thought to exert a hyperosmotic effect that contributes to some complications of diabetes 

(Bhatnagar and Srivastava 1992). Several studies have shown that sorbitol accumulates in 

renal medulla cells and other cell types when cultured in vitro under hypertonic conditions, 

this response reaction therefore extends and increases the sorbitol accumulation and adds 

to the risk of developing complications. Osmoregulatory mechanisms occur throughout the 

human body but are known to be predominantly located in the renal medulla, this is 

because renal medullary cells are routinely exposed to a greatly hyperosmotic milieu. 

Because of the urinary concentrating mechanisms, cells in the inner mammalian renal 

medulla are constantly exposed to steep osmotic gradients by varying concentrations of salt 

and urea that may reach molar level. Similar pathways have been observed in other non

renal cells in the body, suggesting that these are a common response to hyperosmotic 

stress. The epithelial cells lining the inner renal medulla of the kidney are protected from 

the osmotic effect of concentrated sodium ion and urea in the interstitium by several 

regulatory mechanisms described below: -
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(a) Cell volume and ionic electrolye concentration regulation 

Cells in the kidney can volume regulate in response to hypertonic challenge. Some are able 

to respond immediately by RVI, other cells require stimulation prior to exposure to 

hyperosmolarity to demonstrate RVI. An increase of intracellular osmolytes during RVI 

usually occurs by an increase ofNaCl influx either via the activation of parallel Na(+)-H+ 

and Cl(-)-HC03- exchangers, or Na(+)-K(+)-2Cl- eo-transporters. In response to 

hypotonic challenge a RVD response occurs in kidney cells. The efflux of solute during 

RVD is usually via K + loss by activation of conductance pathways. Stretch-activated K + 

channels and Ca2(+) -activated -K+ channels have been shown to be stimulated in cells 

exposed in hyposmotic solutions (Montrose-Rafizadeh et a/1990). 

(b) Regulation of urea concentration 

The deleterious effect of urea on enzymatic activities has been demonstrated in vitro on 

several enzymes including aldose reductase (Burg et a/ 1999). A high level of expression 

of the urea transporters (UT -A) is normally observed in the renal medulla and is further 

expressed by water depravation (Bagnasco et a/ 2000), similar to the genes involved in the 

osmoregulation of inner medullary cells. This suggests that the same regulatory pathways 

contribute to maintain a steady level of expression of several genes in inner medulla under 

physiological conditions (Bagnasco 2000). 

(c) Accumulation of compatible organic osmolytes 

Exposure to anisotonic media initiates a response that counteracts volume perturbations by 

complex mechanisms involving changes in the intracellular concentrations of active 

organic solutes (osmolytes). Medullary and papillary cells use these organic solutes to 

increase the intracellular concentration. These cells are protected from the osmotic effect 

of concentrated sodium ion and urea in the interstitium by accumulating compatible 

osmolytes. This process enables normal cell volume to be maintained without a deleterious 

- 150-



Chapter 2: Aldose reductase and the po1yo1 pathway 

increase in intracellular inorganic ion (electrolyte) concentration and enables the cell 

volume and osmolality to be preserved without perturbing macromolecular protein 

structure and function over a wide range of concentrations (Yancey et a/ 1982). The 

accumulation of such osmolytes is primarily dependent on changes in gene expression of 

enzymes involved in the synthesis of osmolytes or transporters that uptake them into the 

cell. Hyperosmotic stress has been shown to induce the transcription of a number of 

proteins, which include aldose reductase and the betaine, myo-inositol, and taurine 

transporters (Garcia-Perez and Burg 1991; Burg et a/ 1995). The organic osmolytes that 

rabbit and rat kidney cortex and medulla cells accumulate include sorbitol, glycine betaine, 

inositol, taurine, and glycerophosphocholine (GPC) and were identified by proton nuclear 

magnetic resonance, mass spectrometry, and chemical assays (Bagnasco et a/ 1986). By 

accumulating these osmolytes the renal medullary cells maintain both their volume and 

their intracellular medium unperturbed under hyperosmotic stress (Somero 1986; Martin et 

al 1989; Garcia-Perez and Burg 1991). Sorbitol is produced within the cell via the 

reduction of glucose by aldose reductase, betaine, myoinositol, and taurine are transported 

into the cells by betaine/y-aminobutyric acid transporter (BGTl), Na+-dependent 

myoinositol transporter (SMIT) and taurine transporter respectively (Burg 1995). 

Signal pathways involved in the gene expression of osmolytes 

Regulation of gene expression in response to hyperosmolality has been well investigated in 

the prokaryotic organism's Escherichia coli and Salmonella typhimurium. Prokaryotes 

exhibit a variety of mechanisms responsible for osmosensory signal transduction. The 

prominent response to hyperosmotic stress is uptake of K+ and compatible osmolytes. 

These organisms have three transport systems for the uptake of K+, namely Trk, Kup, and 

Kdp, and two transporters with overlapping specificity's for proline and glycine betaine 

namely ProP and ProU (Csonka et all996). In response to hyperosmotic stress, there is an 

increase in the expression of the Pro-U operon, which encodes a high affmity betaine 
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transporter (Caimey et a! 1985), resulting in an increase in the activity of the A TP

consuming betaine transporter and accumulation of betaine (Lucht et a! 1994). The DNA 

binding protein (H-NS) acts as a transcriptional repressor of the Pro-U operon under 

isosmotic conditions. The inhibitory effect of H-NS is relieved by extracellular 

hyperosmolality resulting in transcription of the operon (Ueguchi and Mizuno 1993 ). 

The mechanism of osmoregulation of gene expression in response to hyperosmolality is 

also better understood in yeast (Saccharomyces cerevisiae) which involves a two

component signalling transducer system as an osmolality sensor (Maeda et a/1994, 1995; 

Posas et a/ 1996; Kultz et at 1997). The yeast responds to osmotic stress by enhanced 

production and intracellular accumulation of glycerol as a compatible solute. When 

exposed to hyperosmotic medium the stress signal is transduced through the MAP (HOG 1) 

kinase cascade to induce the synthesis of glycerol-3-phosphate dehydrogenase (GPD) 

(Albertyn et at 1994). Exposure of yeast to high extracellular osmolarity induces Sin lp

Ypdlp-Ssklp two component osmosensorto activate the mitogen activated protein (MAP) 

kinase cascade composed of the Ssk2p and Ssk22p MAP kinase kinase kinases 

(MAPKKK's), the Pbs2p MAPKK, and the Hog1p MAPK. A second osmosensor, Sho 1p, 

also activated Pbs2p and Hog 1p, but does so through the Ste lip MAPKKK (Posas and 

Saito 1997). 

In mammals, extracellular hyperosmolality also tightly regulates the expression of several 

genes. Hypertonicity is known to induce the expression of a group of genes that are 

responsible for the intracellular accumulation of protective organic osmolytes (Burg et a! 

1997). Expression and accumulation of osmolytes within the cell is due to up-regulated 

expression of the betaine (BGT -I) gene and myo-inositol transporters (SMIT), and aldose 

reductase (ALR2) which occurs in response to extracellular NaCI and non-permeable 

osmotically active solutes (Bagnasco et a! 1987). Hyperosmolality is known to increase the 
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transcription of these genes, leading to increased mRNA abundance, enzyme levels and 

accumulation of compatible osmolytes (Burg 1997). How the initial signal of external 

hyperosmolality is relayed to the nucleus to induce the expression of genes responsible to 

increase cellular osmolytes is still not completely clear. However some degree of progress 

has been made in the venture to elucidate this and will be discussed here. Signal 

transduction pathways relate signals from the cell membrane across the cytoplasm to the 

nucleus in order to initiate an appropriate transcriptional response. The osmotic stress of 

hyperglycaemia is the extracellular stimuli, which initiates the stress response pathways. 

Osmotic shock induces marked activation of mitogen activated protein kinase (MAPK's) 

in fibroblastic cells (Matsuda et a/ 1995). Activation of transcription response to 

hyperosmolarity has been described for three MAPK pathways; (1) mitogenic extra

cellular regulated kinase (ERK. l/2) cascade, and the less well understood pathways ERK3· 

and ERK5 cascades, (2) stress activated protein kinase (SAPK2) c-Jun N-terminal kinase 

{JNK), (3) p38 kinases. These MAPK cascade pathways function as signal transducers 

from the cell surface to the nucleus, and play an important role in transducting 

environmental stimuli to the transcriptional machinery in the nucleus. The MAP kinase 

cascade is highly conserved in all eukaryotes and is involved in numerous cellular 

responses (Wilson et a/ 199; Karin 1998). Activation of the MAPK cascade plays essential 

roles in many signal transduction pathways. Investigations by Reiser et a/ 1999 revealed 

that at least three events contribute to signal induced nuclear localisation of the MAP 

kinases; activation by phosphorylation, regulated nuclear import and export, and nuclear 

retention. Hypertonicity-induced activation and binding of transcription factors to the ORE 

are regulated by the p38 kinase and MEK-1 signalling pathways (Nadkarni et a/ 1999). 

MAPK has been demonstrated to phosphorylate and regulate numerous cellular proteins, 

including growth factor receptor, transcription factors, cytoskeletal proteins, phospholipase 

and other protein kinases. Evidence also suggests that acute activation of the MAPK 
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cascade promote G I progression/S phase entry and that chronic activation of the MAPK 

cascade inhibits this process (Tombes et a/1998). 

The growth factor signalling kinases include the ERK's. The mitogen-activated protein 

(MAP) kinases ERK-ll ERK-2 are proline directed kinases that are themselves activated 

through concomitant phosphorylation of tyrosine and threonine residues (Han et a/ 1994). 

ERK activity was not found to be essential for transcriptional regulation of betaine and 

inositol transporters (Kwon et a/ 1995). The stress activated protein kinase (SAPKI) 

pathway transmitting cellular insult to the nucleus to influence gene expression consists of 

four levels of protein kinases. Unlike the structurally related MAPK pathway, the stress

induced kinases are not required for mitogenesis and instead induce growth arrest 

(Woodgett et a/ 1.996). JNK's respond to several forms of cellular stress including 

inflammatory cytokines such as Interleukin-1 (Il-l) and tumour necrosis factor-alpha 

(TNF-alpha), beat and chemical shock, bacterial endotoxin and ischaemia/cellular ATP 

depletion (Wilson et a/ 1997). The signal transduction pathway c-Jun N-terminal kinase 

(JNK) cascade is known to be a cellular stress response to stimulation by UV light, 

oxidative stress and inflammation, and involves phospholipase C, Raf-1 kinase, mitogen 

activated protein kinase kinase and mitogen activated protein kinase (Guan 1994; Kyriakis 

et a/ 1994). JNK has three subforms coded I, 2 and 3, and each subform has multiple 

isoforms; four for JNK1, four for JNK2 and two for JNK3 (lp and Davis 1998). P54 is the 

principle JNK that is activated by cellular stress and tumour necrosis factor (TNF)-alpba 

(Itoh et a/ 1994). P38 is tyrosine phosphorylated after extracellular changes in osmolarity 

(Han et a/1994). Four subtypes have been cloned for p38; cx,~,y,8 (Wang et a/1997). P38 

kinase mediates the activation and/or binding of the transcription factors to the ORE 

(Nadkami et a/ 1999). Nadkarni et al 1999 showed that the hypertonicity induced ALR2 

mRNA increase in HepG2 cells is attenuated by the p38 kinase and MEK1 inhibitors. 

Transfection studies also showed that the specific locus of action of the inhibitors used is 
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the activation of the ORE in response to hypertonicity. They also demonstrated the 

involvement of p38 kinase in the binding of trans-acting elements to the ORE. Their 

studies therefore indicate that the hypertonic induction of ALR2 rnRNA in HepG2 cells is 

regulated by p38 kinase and MEK1 and is mediated by the ORE. 

Gene regulation of ALR2 under osmotic stress 

Animal studies investigating the regulation of ALR2 gene expression by hypertonicity are 

numerous. Cowley et a/1990 carried out a study using Brattleboro rats and showed that an 

alteration in extra-cellular sodium, but not urea leads to a rapid change in aldose reductase 

mRNA. Russell 1990 studied a lens epithelial cell line from a transgenic mouse and 

Kaneko et al 1990 studied Chinese hamster ovary cells and both studies found similar 

results. Smardo et a/ 1992 investigated into osmotic regulation using a line of rabbit inner 

medullary cells (P AP-HT25) that accumulate large amounts of sorbitol under hyperosmotic 

conditions. They demonstrated that extracellular hyperosmolarity induces transcription of 

the ALR2 gene resulting in an increase in ALR2 mRNA followed by increased ALR2 

protein synthesis rate and subsequent rise in sorbitol levels (Garcia-Perez et al 1989; 

Uchida et a/1989). Hypertonicity in PAP-HT25 cells has been shown to increase synthesis 

of ALR2 rnRNA 15-fold in 24 hours without a detectable change in the rate of degradation 

of the ALR2 protein (Moriyama et a/ 1989). Grunewald et a/ 1998 studied the inner 

medullary collecting duct (IRMC) cells from the rat using an RT-PCR-based strategy, and 

found that increasing the extracellular osmolarity from 600 to 900 mosm/1 resulted in a 

more than 4-fold increase in mRNA for ALR2 within 24 h. Recently, important findings 

were made by Meakawa et a/2001 who investigated ALR2 mRNA levels in rat Schwann 

cells cultured under hyperglycaemic or hyperosmotic conditions. This study showed that 

the expression of ALR2 mRNA was unaltered by hyperglycaemia (30mM), but that 

osmotic stress elicited significant increases in ALR2 mRNA. 
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An osmoregulatory role of ALR2 has also been suggested by studies in cell lines derived 

from human renal inner medulla showing that increases in the osmolality of the medium is 

associated with increases in cellular sorbitol levels, ALR2 activity and ALR2 gene 

expression. Bedford et a/1987 identified aldose reductase to be an osmoregulatory protein, 

which was induced, in the renal medullary cells by high extracellular NaCI. Similarly, 

Bagnasco et al 1987 reported on a line of renal medullary cells in which aldose reductase 

activity and intracellular sorbitol was greatly increased under high NaCl conditions. 

Conversely Cowley et al 1990 reported that ALR2 mRNA and sorbitol content increase 

during dehydration or antidiuresis and that acute decreases in extracellular sodium 

increases leakage of sorbitol from the renal medulla cells into the extracellular 

environment. Several other studies carried out by several different groups also reported 

similar findings. Kaneko et al 1990 using Kidney mesangial cells, Hohman et al 1990 

using glomerular endothelial cells, Bekhor et al 1989 using lens epithelial cells and 

Ferraretto et al 1993 using human embryonic epithelial cells and Petrash et a/1992 studied 

human renal proximal tubule cells. 

Osmotic Response Element (ORE) I Tonicity Enhancer Element (TonE) 

Hyperosmolarity responsive expression of the genes involved occurs by stimulation of 

transcription requiring formation of a DNA-protein complex between a tonicity-responsive 

enhancer (TonE/ORE) and the respective binding proteins, TonE binding protein 

(TonEBP) or nuclear factor of activated T cells 5 (NFAT5). Osmotic response element 

binding protein (OREBP), the tonicity enhancer element binding protein (TonEBP) and 

nuclear factor of activated T cells 5 (NF AT5) mRNA are ubiquitously expressed and are 

detectable in the kidney, brain, liver, spleen, gonads and skeletal muscle (Lopez-Rodriguez 

et a/1999). The tonicity responsive enhancer (TonE) has the putative consensus sequence 

TGGAAANN(C/T)N(C/T) (Rim et al 1998) which has been found to regulate genes for 

SMIT (Rim et al 1998), BGTl (Miyakawa 1998), and aldose reductase (Ferraris et al 
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1996; Ko et a/1997). Miyakawa et a/1999 reported the cloning and characterisation of the 

first animal transcription factor responsible for regulating osmolyte transporter genes 

during osmotic stress. They named this transcription factor TonE binding protein 

{TonEBP) because it specifically binds to, and activates the tonicity-responsive enhancer 

element of osmoprotective genes. The TonE mediates increased transcription of genes 

involved in the accumulation of compatible osmolytes by renal cells in response to 

hypertonicity. They described a consensus sequence for TonE and the trans-activating 

factor for the TonE cis-element as well as the TonEBP. The TonE/TonEBP pathway is 

known to mediate the tonicity responsive regulation of UT-A expression (Nakayama et al 

2000; Rim et al 1998), the glycine betaine transporter (BGTI), and the myo-inositol 

transporter (SMIT). Glycine betaine (betaine) is taken up via a specialised transporter 

(BGTl), hypertonicity raises the number of transporters by increasing their transcription. 

Yamauchi et al 1992 reported the cloning of a Na(+)- and Cl(-)-dependent betaine 

transporter that is regulated by hypertonicity. The sequence of a putative osmotic response 

element of the canine betaine transporter gene (TonE) was reported by Takenaka et a/ 

1994. The 5' region of the betaine gene contains an ORE that increases its transcription in 

response to hypertonicity. The sodium/myo-inosito1 cotransporter (SMIT)1 is a plasma 

membrane protein catalysing concentrative uptake of myo-inositol (MI) using the 

electrochemical gradient of sodium across the cell membrane (Kwon et al 1992). When 

cells in the kidney and brain are exposed to hyperosmolar salt concentrations 

(hypertonicity) they survive by raising the cellular concentration of myo-inositol. 

Transcription of the Sodium/myo-inositol cotransporter gene is markedly stimulated in 

response to hypertonicity leading to an increase in the activity of the cotransporter, which 

in turn drives the osmoprotective accumulation of myo-inositol. Rim et al 1998 identified 

five tonicity responsive enhancers in a 50 kilo base region upstream of the gene, TonEA, 

TonEB2, TonEC1, TonEC2 and Ton Ep. These five TonEs are reported to provide enough 

additive enhancer activity to account for greater than tO-fold stimulation of transcription in 
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response to hypertonicity. Sorbitol is produced via the reduction of D-glucose by the 

enzyme aldose reductase. Of the organic osmolytes, sorbitol has received special attention 

since it is one of the principle organic osmolyte accumulated in kidney renal medulla cells 

in response to hyperosmotic stress (Bagnasco et a/ 1986; Gullans et a/ 1988). Sorbitol 

therefore plays a beneficial role during anti-diuresis however it also appears to be 

detrimental in diabetes through its involvement in diabetic microvascular complications 

(Lee et a! 1995; Kador et a/1985; Greene et al 1985). Aldose reductase can therefore be 

considered as an osmoregulatory protein through its involvement in sorbitol production 

under hyperosmotic stress. ALR2 is present in a variety of tissues including kidney, liver, 

ocular lens and retina and in erythrocytes. The induction of ALR2 or ALR2 mRNA by 

hyperosmolality has been demonstrated in a variety of cells, which include cell lines 

derived from animal and humans. 

Tr!lnscrlption elements involved in osmotic regulation of ALR2 

Studies investigating the molecular mechanisms involved in the osmotic regulation of the 

ALR2 gene have involved cloning of the rabbit AR gene (rAR) and the promoter region 

and characterising its structure. These studies have demonstrated that the 5' regions' 

flanking the aldose reductase gene ( -3429 to base pair -192) contains osmotic response 

elements that increase transcription in response to hypertonicity (Ferraris et a/ 1994). The 

osmotic induction ratio is reduced from 9.4 to 2.0 when the sequence is reduced from 3221 

to 11 bp, suggesting that there are other cis-elements that may potentate the osmotic 

response. Daoudal et a/ 1996 cloned the AR cDNA from mouse kidney and reported the 

isolation of the mouse AR gene promoter. They identified a sequence within the promoter 

region that is required for enhanced activity in hypertonic conditions. The sequence is 

similar to the tonicity responsive element. A later report by the same group (Daoudal et a/ 

1997) reported the isolation of the mouse AR promoter. Using chloramphenicol 

acetyl transferase reporter constructs containing various 5' flanking regions of the mouse 
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AR gene in CVl cells, they identified a sequence spanillng base pairs -1053 to -1040, 

required for an enhancer activity in hypertonic compared with isotonic cell culture 

conditions. Ferraris et al 1996 reported an 11 bp osmotic response element essential for 

osmoregulation of the rabbit AR gene located 1105bp upstream of the transcription start 

site. This element shares sequence homology with TonE of the canine betaine transporter 

gene. Aida et a/1999 isolated the rat aldose reductase gene and examined the 5' flanking 

sequence for the presence of transcription regulatory element responsive to 

hyperosmolarity. Deletion of the promoter region of the aldose reductase gene up to -

1047bp abolished the transcriptional activation in response to osmotic stimuli in transient 

transfection experiments. In this study glucose was shown to be more effective than NaCl 

in induction of aldose reductase indicating the possibility of a glucose specific response 

mechanism. Studies have found the ORE sequence to be in the regulatory region of the 

vasopressin gene and in the 5'flanking sequences of cyclooxygenase-2 gene (COX-2) 

indicating that OREBP is the key protein responsible for activating genes involved in 

protecting cells from hyperosmotic stress. 

Ko et a! 2000 reported the purification and cloning of an osmotic response element binding 

protein. The protein contains a Rel-like DNA-binding domain and a glutamine rich 

transactivation domain, suggesting that it is a transcription factor. They demonstrated that 

OREBP interacts with the ORE and mediates the hyperosmotic expression of aldose 

reductase in vivo. Two positively charged arginine residues in the DNA binding domain of 

the OREBP interacting with guanine contact points may also be involved. Possibly two 

protein species interact with ORE's. Ko et a/1997 demonstrated that when the glutamine 

rich carboxyl end was deleted the hyperosmotic induction of the aldose reductase gene is 

suppressed, indicating that this portion of the protein is involved in the hyperosmotic 

transcriptional activation of ALR2 gene. Further confirmation that OREBP is the 

hyperosmotic transcription factor came from the translocation of cloned OREBP in 
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transfected cells from the cytoplasm to the nucleus upon hyperosmotic induction. This 

translocation occurs within 1 hour indicating that the signal of hyperosmolality is quickly 

relayed to the transcription factor. However, the induction of the ALR2 gene does not 

occur until 8-12 hours (Ko et a/2000). This is a considemble lag time between the arrival 

of the transcription factor into the nucleus and gene induction. There is an increase in 

OREBP mRNA after hyperosmotic challenge therefore it is possible that an increase in the 

amount of OREBP is required through transcription and translation before hyperosmotic 

gene induction can be mediated. A signal transduction study has also shown that the p38 

and the c-Jun N-terminal kinase (SAPK/JNK) are not necessary for the transcriptional 

regulation of the ALR2 promoter through ORE (Kultz et a/ 1997). 

Identification of transcription elements within 5' ALR2 region 

Several groups have identified the osmotic response elements (OREs) of ALR2 and its 

promoter region (Daoudal et a/ 1997; Ferraris et a/ 1996; Ko et a/ 1997; Ferraris et a/ 

1994). AR transcription is regulated by a promoter that contains diverse regulatory 

elements. Recent reports describe the involvement of two ALR2 promoter cis-elements, 

the osmotic response element (ORE) (Iwata et al 1996; Ferraris et a/1996; Daoudal et a/ 

1997; Ko et a/ 1997), and the aldose reductase enhancer element (AEE) in regulating 

osmotic response (lwata et a/ 1997). The ORE and TonE share a putative consensus 

sequence NGGAAA WDHMC(N) and are responsible for mediating expression of these 

genes (Ferraris et a/ 1999). Ruepp et a/ 1996 reported the identification of a putative 

functional ORE located 3. 7kb upstream of the transcription start site of the human aldose 

reductase gene. Specifically, they reported two putative osmotic response elements, pseudo 

OREd present at position -3834 to -3819 and OREp present at position -3669 to -3654. 

However, the same group later confirmed that the results came from a cloning artefact and 

the site could not be confirmed (Ko et a/ 1997). It was also reported that an osmotic 

response region of the human ALR2 gene mediates its induction during hypertonic stress 
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(Ko et a/1997; Wang et a/1997). This was found this to be within a 132bp region located 

1325 bp upstream of the transcription start site of the human ALR2 gene. They have shown 

that hyperosmotic induction of human AR gene is mediated by three sequences 

homologous to TonE of the canine betaine transporter gene and to the ORE of the rabbit 

AR gene. These osmotic response elements located within this 132 bp region situated in 

the 5' flanking sequence of the gene were named;- OreA, OreB and OreC, (figure 13). The 

132bp region was found to contain three sequences that resemble part of TonE 

(TGGAAAAGTCCA) of the canine betaine transporter gene (Takenaka et al 1994) and 

the ORE (CGGAAAATCAC) of the rabbit AR gene (Ferraris et a/1996). ORE-A (-1230 

to -1220) and ORE-C (-1157 to -1148) are in the same orientation as TonE, ORE B (-1188 

to - 1198) is in the opposite direction. 

ORE-A ORE-B 
TTACATGGAA AAATATCTGG GCTAGTCTGT TCTGTATAAA TTTTTCCAGG 

ORE- C 
AGGGAGCACT TTTAAAGAAA GCACCAAATG GAAAATCACC GGCATGGAGT 

APl - D 
TTAGAGAGAC CTGGTGCTTG AGTCACTACC AG 

TonE 
ORE 
ORE-A (-1230 to - 1220) 
ORE- B (-1188 to - 1198) 
ORE-C (-11!57 to -1148) 
APt (-1111 to -t un 

(TGGAAAAGTCCA) 
(CGGAAAATCAC) 
(TGGAAAAAT AT) 
(TGGAAAAA TTT) 
(TGGAAAATCA) 
(TGAGTCA) 

Figure 13. Nucleotide sequence of the·l32-bp fragment containing three Ton-E like 
sequences. OreA, OreS and OreC are highlighted in red and are indicated by A, B 
and C respectively. OREA and OREC are in the same orientation as TonE, and OREB is 
in the opposite orientation. The region indicated by D is an Ap-1 consensus sequence 
(adapted from Ko et a/ 1997). 

The ALR2 ORE is most similar to TonE and to the rabbit AR ORE and it contributes most 

to the osmotic induction of transcription. The TonE element is functional in both 

orientations. These ORE's interact with a putative transcription factor under hyperosmotic 

induction and osmotic response function is reduced when any one of these three sequences 
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is mutated, suggesting that these sequences have to work in concert to provide maximum 

transcription induction. The ORE sequence differs from the NFKB binding sequence by 

one base pair. Iwata et a/1999 reported a significant induction of ALR2 by TNF-a, which 

is mediated by NFKB binding to ORE. Deletion or mutation of this element showed a 

significant effect on the response of the ALR2 promoter to TNF-a and hyperosmotic 

stress. 

Polymorphisms within AR promoter region-OREs 

To date no polyrnorphisms have been identified within the ORE gene sequences located in 

the 5'ALR2 promoter region near to the aldose reductase (CA)n microsatellite repeat 

region. A study carried out by Heesom et a/ 1997 was designed to determine whether 

polymorphisms within the ORE's may play a role in the development of diabetic 

complications. A total of 12 patients with T1DM were selected and the ORE's region was 

sequenced for each patient. No polyrnorphisms were found in any of the patients studied 

indicating that the genetic lesion lies within the coding region of the ALR2 gene. 

- 162-



Chapter 2: Aldose reductase and the polyol pathway 

Extracellular stress 
hyperosmotic/hypertonic 

Cytosol 
Transcription 

factors 

Others 
/ ~ 

ORE BP 

5' 
cis

element 

MEKl __.. 

Nucleus 

toREBP 

~k" 

Transcription and 
translation 

p38 kinase 

Enhancer 
element ORE A, B. C 

tAR mRNA 

• 
tALR2 protein 

t Polyol pathway 

tsorbitol 

1235bp ~ 

ALR2 ~ 
expression 

Figure 14. Sequence of intracellular events following extracellular 
stress (hypertonicity/hyperosmotic) leading to OREBP/ORE binding in 
the 5'ALR2 promoter region and the resultant induction of ALR2 mRNA 
synthesis and polyol pathway activation. 
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Glucose-specific regulation of aldose reductase 

Pathophysiological pathways resulting from hyperglycaemia include the activation of the 

polyol pathway, non-enzymatic glycation of proteins and oxidative stress which probably 

synergise through their ability to activate the MAPK cascade leading to phosphorylation of 

transcription factors. This glucose induced transduction pathways lead to alterations of 

gene expression resulting in altered cellular phenotype, cell division, or increased 

production of extracellular material (Tomlinson 1999). Henry et al 1993 demonstrated 

human retinal pigment epithelial cells having accelerated and exaggerated production of 

sorbitol and depletion of myo-inositol upon exposure to 20mM glucose. Aida et at 1999 

suggested the presence of a glucose specific mechanism of induction in addition to that by 

NaCl. They showed that glucose was more effective than NaCl in induction of aldose 

reductase. Portois et a/1999 identified a glucose response element in the promoter region 

of the rat glucagon receptor gene, which contained two 'E-boxes' CACGTG AND 

CAGCTG. This domain exhibited threshold like activity, with low activity below 5 mM 

glucose and maximal activation as of 10 mM glucose. More recently, Henry et al 2000 

tested the hypothesis that pathophysiological levels of glucose regulate aldose reductase 

(ALR2) gene expression, protein production and activity in human retinal pigment 

epithelial (RPE) cells in vitro. They detennined that elevations in ambient glucose result in 

greater metabolism of glucose through glycolysis and polyol metabolism. Hyperosmolar 

stress itself was not a necessary determinant of ALR2 mRNA, ALR2 protein, or ALR2 

protein activity in cells that fonn the outer blood-retinal barrier. They note that increased 

facilitative glucose transport or increased glucose metabolism is required for glucose 

specific and nonosmotic regulation of ALR2 in the RPE cell in vitro. To date however, no 

such specific glucose response element has been found in the region near to the ALR2 

gene. 
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Glucose specific ALR2 gene expression in TlDM subjects 

Elevated levels of ALR2 protein have been shown to occur in neutrophils (Dent et a/ 

1994), erythrocytes (Hamada et a/l99I[a and b]; Nishimura et a/1994), and mononuclear 

cells (Ratliff et a/ 1996) isolated from patients with diabetic complications. Studies have 

shown that the mRNA levels of ALR2 in peripheral blood mononuclear cells (PBMC's) 

were increased in patients with TIDM and diabetic kidney disease than in TIDM patients 

without nephropathy, indicating that the degree of ALR2 gene expression modulates the 

risk of developing nephropathy (Shah et al I 997). Patients with diabetic microvascular 

complications have also been shown to have increased enzyrnatic activity of ALR2 as well 

as increased amounts of the protein compared with TIDM subjects with no complications 

(Hamada et a/ 1993; Maeda et a/ 1999). Hamada et a/ 1993 reported that diabetics who 

developed severe complications in less than 20 years had the highest red blood cell (RBC) 

ALR2 activity. In contrast, long standing diabetics, with no complications, had the lowest 

RBC ALR2 activity. It has also been demonstrated that ALR2 mRNA levels are induced 

under hyperglycaemia and hypertonicity. Hodgkinson et a/ 200 I reported the quantitation 

of ALR2 and SORD mRNA in cultured neutrophils from TlDM patients and normal 

controls using the ribonuclease protection assay (RP A). The study found significantly 

increased levels of ALR2 mRNA with increasing D-glucose concentrations in TlDM 

subjects with nephropathy compared to TIDM patients without nephropathy and normal 

controls. The mRNA expression of SORD was also significantly increased in TlDM 

nephropathy patients exposed to hyperglycaemic levels of D-glucose compared to 

uncomplicated TIDM patients and controls. Hamaoka et a/1999 used AR-transfected HIT 

(hamster derived B-cell line) cells, which showed enhanced metabolic activity in the 

polyol pathway. In this study when ALR2 was over-expressed these cells exhibited typical 

features of apoptosis, including a decrease in intracellular NADPH and defective activation 

ofNFkB. 

- 165-



Chapter 2: Aldose reductase and the polyol pathway 

Aims of thesis 

To investigate the genetic susceptibility to microvascular disease in subjects with DM. 

This will be achieved by studying polymorphisms (genetic variants) in candidate genes in 

discrete sporadic population of TlDM patients (n-300) with or without microvascular 

complications, as well as United Kingdom family trios (Diabetes UK- Warren 3 

collection), and a collection ofT2DM subjects of Southern Indian origin. 

• In the frrst instance, polymorphisms in the aldose reductase (ALR2) gene and the 5' 

flanking regions will be studied in these populations. This will include an intragenic 

polymorphism at Intron 8 A(+ll842)C of the ALR2 gene, a C(-106)T polymorphism 

in the promoter region of the aldose reductase gene, and the 5'ALR2 (CA)n 

microsatellite polymorphism. The Transmission disequilibrium test (TDT) will be used 

to measure the transmission of the 5' ALR2 microsatellite from parents to affected 

probands with diabetic nephropathy. 

• Genetic markers for hypertension at position D17S934 proximal to the ACE gene will 

be studied to determine any association with diabetic nephropathy, retinopathy or 

neuropathy. 

• A study of the mitochondrial polymorphism Mt5178A/C will also be carried out in the 

British Caucasoid population. 

• The study also aims to test the hypothesis that pathophysiological levels of glucose 

specifically regulate the osmotic response elements situated in the 5 'upstream region of 

the ALR2 gene in TlDM patients with microvascular complications compared to 

TlDM controls and normal healthy controls. 

This investigation aims to be the first comprehensive study of the polymorphisms in the 

ALR2 gene and its promoter region in case-control, transracial and family studies. It also 

aims to apply functional protein studies of ORE to determine any associations with 

diabetic microvascular disease. 

- 166-



Chapter 3: Subjects. materials and methods 

Chapter 3 

Subjects, materials and methods 
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Ethical Approval 

For the study of TlDM subjects of British Caucasoid ongm, local research ethics 

committee approval had been obtained from the South and West Devon Health Authority, 

Devon, U.K. Written informed consent was also obtained from all subjects at the time of 

blood collection prior to inclusion into the study. Ethical approval for research studies 

using the T2DM subjects of Southern Indian origin was carried out independently by Dr 

Vijay Viswanathan, Madras, India. The British Diabetic Association (BDA) Warren 

repository has previously obtained ethical approval from all participating centre's and was 

also reviewed by a multi-centre Research Ethics Committee .. 

Subjects 

During the course of this thesis several subject groups were investigated, the profiles of 

which are reviewed here. A large collection ofTlDM subjects of British Caucasoid origin, 

a family trio collection where the affected proband had TlDM and diabetic nephropathy, 

and a collection of T2DM subjects of Southern IndiaruDravidian origin are included. 

British Caucasoid TlDM coUection 

DNA samples were collected from over 600 unrelated British Caucasoid patients with 

grandparents born in the UK, diagnosed as having TlDM as defined by the National 

Diabetes Data Group 1979, who had attended the diabetic clinic of Consultant 

Diabetologist; Dr B. A. Millward. Venous blood samples were collected from the Diabetic 

Clinic's at Derriford Hospital in Plymouth, Kings College Hospital and Guys University 

College in London and the Renal Unit at Dulwich Hospital, London. Basic patient 

information such as date of biqh and ethnic origin was obtained from patients' medical 

notes and by patients answering a short questionnaire. The progress of patients with regard 

to their development of diabetic complications was monitored during the progression of 

their disease. Patients were monitored when they arrived to clinics by Dr Millward and 
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diabetic research nurses, Caroline Dunster and Karen Holdsworth-Cannon (see 

acknowledgements) who updated the patient proforma's accordingly. At the diabetes clinic 

both physical and biochemical parameters were stringently recorded, enabling patients to 

be classified confidently in accordance to their progression of diabetic complications. 

Fundoscopy was performed by both a diabetologist and ophthalmologist. This was carried 

out routinely and according to the criteria defmed by the National Diabetes Data Group 

1979). 

Classification criteria of TIDM subjects according to microvascular disease 

Dr Mill ward also carried out the classification of patients for this study according to their 

diabetic microvascular complications. The patients were classified at the time of blood 

sampling in accordance to their onset and progression of microvascular complications as 

follows: 

TIDM uncomplicated control subjects (n=66) 

Patients were diagnosed as having TIDM before the age ot 40 years and a sufficient 

duration of disease of at least 20 years. Patients remain free of retinopathy (fewer than 5 

dots or blots per fundus), and had normal levels of albumin excretion rate (AER) defined 

as <20j.Lg/min in an overnight sample on at least two consecutive assessments or urine 

Albustix® (Bayer, West Haven, CT) negative on three consecutive occasions over 12 

months. Patients also showed no signs of overt or autonomic neuropathy. There were 66 

uncomplicated diabetic controls included in this study and basic demographic 

characteristics of this patient group are shown in table 6. 

TIDM retinopathy subjects (n=44) 

Patients with TIDM and have retinopathy defmed as more than 5 dots or blots per fundus, 

hard or soft exudates, new vessels or flourescein angiographic evidence of maculopathy or 
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previous laser treatment for preproliferative retinopathy, and maculopathy or vitreous 

haemorrhage. Fundoscopy was performed by both a diabetologist and ophthalmologist, 

and the tests for presence of neuropathy was also performed and patients showed no signs 

of neuropathy. None of these patients had proteinuria (urine Albustix® negative on 3 

consecutive occasions over 12 months). A total of 44 subjects with diabetic retinopathy 

were included in this study for which basic demographic characteristics are shown in table 

6. 

TlDM neuropathy subjects (n= 18) 

Patients with TIDM and classified as having neuropathy ifthere was any clinical evidence 

of overt peripheral or autonomic neuropathy. Symptoms of peripheral neuropathy included 

the following features; a) symptoms of pain, numbness or parasthesia in the feet and/or 

hand, b) sensory signs such as loss of vibmtion sense (assessed using a tuning fork), light 

touch or pin-prick, and temperature (using warm and cold stimuli), c) loss of flexes in the 

legs, d) evidence of past or present neuropathic foot ulceration. Autonomic neuropathy was 

defined if there was evidence of postural hypotension, gustatory sweating, a previously 

documented Charcot joint, or loss of beat to beat variation on an electrocardiogram (ECG). 

None of these patients had other causes for neuropathy. A total of 18 subjects with diabetic 

neuropathy were included in this study for which basic demogmphic characteristics are 

shown in table 6. 

TlDM nephropathy and retinopathy subjects (n=30) 

Patients have had TIDM for at least 10 years and have persistent proteinuria (urine 

Albustix® positive on at least three consecutive occasions over 12 months or three 

successive total urinary protein excretion rates >0.5g/24hrs) in the absence of haematuria 

or infection. In all cases diabetic nephropathy was associated with diabetic retinopathy. A 
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total of 30 diabetic subjects with nephropathy and retinopathy were included in this study 

and basic demographic characteristics are shown in table 6. 

TlDM retinopathy and neuropathy subjects (n=24) 

Patients with TlDM and have retinopathy defmed as more than 5 dots or blots per fundus, 

hard or soft exudates, new vessels or flourescein angiographic evidence of maculopathy or 

previous laser treatment for preproliferative retinopathy, and maculopathy or vitreous 

haemorrhage. Patients also showed a positive result for presence of neuropathy (see under 

neuropathy subgroup). A total of 44 subjects with diabetic retinopathy and diabetic 

neuropathy were included in this study, basic demographic characteristics are shown in 

table 6. 

TlDM full house complication subjects (n=62) 

Patients with TlDM and persistent proteinuria (urine Albustix® positive on at least three 

consecutive occasions over 12 months or three successive total urinary protein excretion 

rates >0.5g/24hrs) in the absence of haematuria or infection. In association patients have 

retinopathy as defined as more than 5 dots or blots per fundus, hard or soft exudates, new 

vessels or fluorescein angiographic evidence of maculopathy or previous laser treatment 

for preproliferative retinopathy, and maculopathy or vitreous haemorrhage. Patients also 

have overt peripheral or autonomic neuropathy (see neuropathy subgroup). A total of 62 

TlDM subjects with full house complications were included in this study and basic 

demographic characteristics are shown in table 6. 

Healthy adult control subjects (n=13) 

This control group consisted of fresh venous blood taken from normal healthy adult British 

Caucasoid subjects, with no history of TlDM or T2DM or other autoimmune or renal 

diseases. This control group was used only for the protein experiments requiring fresh 
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whole blood samples. A total of 13 healthy adult subjects were included in this study and 

basic demographic characteristics are shown in table 6. 

Cord blood control subjects (n=l20) 

The normal control group for the genetic studies were taken at random from a bank of cord 

bloods collected at the time of normal healthy obstetric delivery from the labour ward, 

Derriford Hospital, Plymouth. A total of 120 cord blood controls were used, and as the 

only data available at the time was the subjects gender, limited distribution demographics 

could be established as shown in table 6. 

Subjects excluded from study 

From the large collection of over 600 TlDM subjects collected, 244 fitted the criteria for 

the study with confidence and were included in the investigation. Many subjects had to be 

excluded from the study for reasons as described here. Patients who were diagnosed as 

having TlDM but pre-insulin treatment were not included in this study, as well as patients 

who have had diabetes for less than 20 years and showed no signs of complications. This 

was because there is a possibility that some will develop complications, but as yet we do 

not know which. Patients were also excluded from the study if they did not completely 

satisfy the stringent criteria for patient groups or if insufficient data was available or 

inadequate to confidently classify them. Subjects were excluded from the study if urinary 

tract infection, cardiac failure or renal vasculitis were present. Subjects were also excluded 

from the study if they were receiving anti-hypertensive treatment. If DNA quality after 

extraction was poor, an attempt was made to re-bleed patients, however in some cases 

patients bad to be excluded as re-bleeding was not possible. 

- 172-



Chapter 3: Subjects, materials and methods 

Clinical characteristics ofTlDM and normal control subjects 

Comparison of sex distribution using Chi-squared test showed no significant difference in 

sex distribution between cord blood controls and TIDM subject groups, or healthy adult 

controls and TIDM subject groups. The Chi-squared test was also applied to compare 

whether there is a statistically significant difference in the distribution of sex between 

study groups, there were no significant differences found. 
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Subject groups n M:F Age at time Age at Duration of 
of study diabetes onset diabetes 

(years) (years) 

T1 DM subjects 244 115:129 NA NA 

• Uncomplicated 66 26:40 46.33 ,!15.59 16.94 ± 10.03 31.35 ± 9.04 
(20-79) (1-42) (20-55) 

• Retinopathy 44 20:24 48.16 ,!14.16 20.07 .:!: 10,01 30.0.:!: 11.1 
(24-78) (1-45) (13-57) 

• Neuropathy 18 10:8 50.89 ,!13.79 25.4 ± 11.79 27.3 ± 9.96 
(24-68) (1-48) (10-44) 

• Nephropathy and 30 13:17 46.57 ,!17.38 16.5 ± 11.8 32.03 ± 
Retinopathy (19-87) (1-56) 12.92 

(13-61) 

• Retinopathy and 24 15:9 51.63 ,!13.26 22.0 ± 10.6 31.63 ± 8.84 
Neuropathy (29-79) (5-38) (19-53) 

• Full House 62 31:31 49.18 ,!13.59 18.24 ± 10.8 31.92 ± 9.91 
(19-77) (1-54) (7-52) 

Non-diabetics 

• Healthy adult 13 7:6 NA NA NA 

• Cord bloods 120 53:67 NA NA1 NA1 

Table 6. Demographic characteristics of British Caucasoid subjects with TlDM and 
normal healthy control subjects, classified in accordance to onset of diabetic 
microvascular complications. The results are expressed as mean values +/- standard 
deviation together with the range in parentheses. All diabetic subjects had TlDM as defined 
by the National Diabetes Data Group 1997 as previously described. 

1 Not applicable to controls as taken from a collection of cord blood samples. 

+1- Plus or minus standard deviation. 
M:F Male to female ratio. 
NA Not applicable. 
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British Caucasoid TlDM family trio coUection 

A United Kingdom resource of DNA was established by the British Diabetic Association 

(BDA), (now Diabetes U.K.), in order to facilitate the investigation of the genetic 

susceptibility to diabetic nephropathy in T ID M. The project involved the participation of 

seven research establishments throughout the United Kingdom. Participating 

establishments included Belfast, Edinburgh, Newcastle, Manchester, London, Plymouth 

and Birmingham. 

This study used blood collected from 172 British Caucasoids with T1DM and diabetic 

nephropathy. Blood was also collected from the parents of these individuals creating a trio 

pedigree of two parents and an affected proband. Where both parents were not available, 

blood was collected from siblings of the proband so as to facilitate the generation of 

parental haplotypes. In total 516 subjects ( 172 pro bands and 344 non-diabetic first-degree 

relatives) were included in this diabetic nephropathy family trio collection. 

The subject's included into the study were British Caucasoid with grandparents born in the 

UK, having TlDM diagnosed under the age of 31 years and requiring insulin from 

diagnosis. Subjects showed no history of recurrent urinary tract infection, cardiac failure or 

renal vasculitis. Patients in whom renal imaging (ultrasonography or intravenous 

urography) showed any abnormality were excluded from the study. The diagnosis of 

diabetic nephropathy was made at the time of venesection, on the following basis; 

• Development of persistent" proteinuria~ 10 years after diagnosis of diabetes. 

• Presence ofhypertensionc at or after the onset of persistent proteinuria. 

• Presence of diabetic retinopath/ at the time of persistent proteinuria. 

• Persistent proteinuria is defined as proteinuria present continuously for >6 months. 
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b Proteinuria can be defined in various ways including: >0.5g protein/24 hours; >300mg 

albumin I 24 hours; >200 micrograms albumin I min on timed overnight collection; urinary 

Albumin/ Creatinine Ratio >35mg/ml; dipstick positive clinic urine testing. 

c Hypertension is defmed as blood pressure >135185 (JNC VI guidelines) and/or treatment 

with antihypertensive agents. 

d Presence of diabetic retinopathy includes any degree of disease (background, pre

proliferative & proliferative) on routine clinical examination. 

Clinical characteristics of family trio coUection 

Subject information was not available and consequently subject demographic 

characteristics cannot be calculated for the Diabetes UK-Warren repository TIDM family 

trio collection. 
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Southern Indian T2DM collection 

Blood samples were collected from a population of 62 Indian patients with T2DM (non

insulin dependent diabetes mellitus). The blood was collected and the DNA extracted by 

Dr Vijay Viswanathan and eo-workers at the Diabetes Research Centre, Chennai, India. 

The samples were then delivered on dry ice in 1.5ml Eppendorf tubes to our laboratory 

along with comprehensive clinical data. The recorded clinical data included age, sex, 

evidence of family history of diabetes and subjects diabetic complications, which are 

summarised in table 7. 

Classification criteria of T2DM subjects according to microvascular disease 

Dr Vijay Viswanathan carried out classification of patients for this study according to their 

diabetic microvascular complications. The patients were classified according to their 

microvascular complications at the time of blood sampling as follows: 

T2DM uncomplicated controls (n= 28) 

Patients were diagnosed as having T2DM and were normoalbuminuric without 

retinopathy. Out of the 28 subjects included in this group 17 had a positive family history 

of diabetes and 10 had no family history of diabetes and I subject did not know. A total of 

28 uncomplicated diabetic subjects were included in this study and basic demographic 

characteristics are shown in table 7. 

T2DM nephropathy and retinopathy subjects (n= 32) 

Patients were diagnosed as having T2DM and subjects tested positive for proteinuria and 

fundoscopy also revealed retinopathy. Out of the 32 subjects included in this group 18 had 

a positive family history of diabetes and 16 had no family history of diabetes. A total of 32 

nephropathy and retinopathy diabetic subjects were included in this study and basic 

demographic characteristics are shown in table 7. 
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Healthy adult control subjects (n=43) 

This control group consisted of normal healthy adult Southern Indian subjects of whom 9 

had a positive family history of diabetes and 34 had no known family history of diabetes. 

A total of 43 healthy adult subjects were included in this study but no record had been 

taken of subject gender, therefore no subject demographic analysis could be made. A total 

of 43 healthy adult control subjects were included in this study. 

Clinical characteristics of T2DM and normal control subjects 

Comparison of sex distribution using chi-squared test showed no significant difference in 

sex distribution between T2DM subject groups (x.2 = 0.2, p= 0.65). As there was no record 

of control subjects gender comparisons could not be made between this group and T2DM 

subjects. 
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T2DM subjects Non-diabetics 
Uncomplicated Nephropathy and Healthy adult 

retinopathy 

n 28 32 43 

M:F 15:13 19:13 1DNA 

Age at time of 55 :!;10.11 53.8 :!;8.94 38 +6.3 

study (27-76) (37-68) (30-58) 

Age at diabetes 42.07 :!: 11.26 42.34:!: 8.46 2NA 
onset (years) (15-60) (26-57) 

Duration of 13.11:!: 7.45 11.81:!: 5.38 2NA 
diabetes (years) (2-29) (3-25) 

Table 7. Demographic characteristics of Southern Indian subjects with T2DM 
and normal healthy control subgroups classified in accordance to onset of 
diabetic microvascular complications. The results are expressed as mean values+/
standard deviation together with the range in brackets. All patients had T2DM as 
defined by the National Diabetes Data Group 1997 as previously described. 

+1- Plus or minus standard deviation. 
M:F Male to female ratio. 
NA Not applicable. 
DNA Data not available 

1 Data regarding subjects gender was not recorded. 
2 Not applicable to controls as taken from a collection of healthy adults. 
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Blood sampling 

Trained phlebotomists and research nurses (see acknowledgements) carried out all blood 

sample collection. Venupuncture was performed using a BD-Vacutainer™ blood collection 

system (Becton Dickinson Vacutainer Systems, Oxford, U.K.). For DNA extraction 5-10 

ml of peripheral venous blood was collected into 6.0-ml BD Vacutainer Plus™ whole 

blood tubes containing potassium ethylene diarnine tetra-acetic acid (K2EDTA, spray dry, 

I 0.8mg). The blood was subsequently transferred to BD Falcon™ sterile polypropylene 50-

ml conical centrifuge tubes (Becton Dickinson, Plymouth, UK) and stored at -20°C, prior 

to subsequent DNA extraction. For cell culture 20-rnl of peripheral venous blood was 

collected into 6.0-ml BD yacutainer Plus™ Sodium Heparin whole blood tubes. These 

samples were then directly transferred to sterile 50-ml BD Falconn.4 tubes and processed 

immediately. Cord blood samples were collected into heparin syringes and transferred to 

sterile 50-ml BD Falcon ™ tubes and stored at -20°C, prior to DNA extraction. 

- 180-



Materials 

Water 

Chapter 3: Subjects. materials and methods 

Purified tap water was obtained usmg an Elix Water Purification System unit and 

Polyethylene Reservoir (Millipore Ltd, Watford, UK) and was used to make up all stock, 

general purpose and specialist solutions. Sterile water (Baxter Healthcare, Thetford, UK) 

was used to make amplimer dilutions, restriction digest reactions, and used for PCR 

applications. 

Reagents 

All general-purpose reagents used were analytical grade or equivalent and were obtained 

either directly from the manufacturers or through a local supplier listed in table 8. Super 

Taq polymerase and 10 x PCR buffer was purchased from HT Biotechnology Ltd 

(Cambridge, UK). Ultrapure dNTP set 2-Deoxynucleoside 5'-triphosphates (dNTP's), 

radioactivity (r2
P ATP), and Ready-To-Go™ T4 Polynucleotide kinase were purchased 

from Amersham Pharmacia Biotech L TD (Buckinghamshire, UK). Quik-Precip™ was 

purchased from Edge BioSystems Inc. (Oxon., UK). Nucleon® BACC2 DNA extraction 

kits for whole blood were purchased from Nucleon Biosciences (Lanarkshire, Scotland, 

UK), and Wizard® PCR Preps DNA Purification System was purchased from Promega 

(Southampton, UK). Restriction endonucleases and incubation buffers were purchased 

from New England BioLabs Inc. (Herts, UK), and Roche Diagnostics LTD (East Sussex, 

UK) respectively. Perbio Science LTD (Chester, UK) supplied Coomassie® Plus Protein 

Assay Reagent Kit. Reagents used for the Electrophoretic Mobility Shift Assay which 

include T4 polynucleotide kinase lOX buffer and T4 polynucleotide kinase were supplied 

by Promega (Southampton, UK). Custom oligonucleotide synthesis was carried out by 

MWG-Biotech UK Ltd (Milton Keynes, UK). 
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Reagents/ chemical/ solution Supplier 

Redivue™ [Gamma 32P]-ATP (3000Ci/mmol), Amersham Pharmacia Biotech UK Limited, 
Stop solution, l.25ml. Buckinghamshire, UK. 

Kodak X-Omot™ Scientific Imoging Film, X-roy Anochem L TD, Beds, UK. 
developer, Rapid fixer 

Sterile water Boxter Heolthcore, Thetford, UK. 

2'¥o Bisocrylomide, 40'¥o Acrylomide Bio-Rod Laboratories, Hemel Hempstead, UK. 

Acetic acid, ethylenediamine tetra-acetic acid BDH Lob Supplies, Merck Limited, Poole, UK. 
(EDTA), Glycerol, Hydrochloric acid, 
Magnesium Chloride, Maleic acid, Orthoboric 
acid, Sodium Chloride, Sodium citrote, Sodium 
dodecyl sulphate, Sodium Hydroxide, Sucrose, 
Tris (hydroxymethyl) ominomethone 

Orange G Fisher Scientific, Loughborough, UK 

LymphoprepTM, Fetal Calf Serum (FCS), Life Technologies Ltd, Paisley, UK. 
Dulbecco's Modified Eagles Medium (DMEM), L-
glutamine, Penicillin/Streptomycin, Phosphate 
Buffered Saline (PBS), Roswell Park Memorial 
Institute 1640 (RPMI) 

Sequogel concentrate, Sequogel diluent and Notional Diagnostics, Flowgen Instruments, 
Sequogel buffer Staffordshire, UK. 

Chloroform, Ethanol, Methanol, Industrial Rothburns Limited, Walkerburn, UK. 
Methylated Spirit 

DNA molecular weight marker XIV (lOObp Roche Diagnostics Ltd. East Sussex, UK 
ladder), Agorose MP (multi purpose agarose) 

Nucleon® DNA extraction kits Scotlob, Lanarkshire, Scotland, U.K. 

Ammonium persulphote (APS),TEMED, Sigmo Chemicals, Poole, UK. 
Formamide, 3'¥o Acetic Acid stop both, Trypan 
blue, Xylene cyonol, Ethidium bromide 

Table 8. Specialist reagents listed in accordance to the manufacturer from 
which items were purchased. 
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General purpose, glass and plastic ware 

Soda-glass test tubes, Falcon TM 250-ml polystyrene tissue culture flasks, Falcon TM 

polystyrene round bottom tubes, Falcon™ 50-ml polypropylene conical tubes and 

serological pipettes were all supplied by Becton-Dickinson (Oxford, UK). Disposable 

polystyrene cuvettes were purchased from Sigma Chemical LID (Poole, UK), and filter 

paper used for polyacrylamide gel support and drying was purchased from Heto 

Laboratory Equipment (Surrey, UK). Gilson liquid handling pipettes and tips were 

purchased from Anachem (Beds. U.K). 

Specialist laboratory equipment 

This study employed the use of a range of specialist laboratory apparatus which included 

the MJ Research PTC-200 DNA Engine (MJ Research, Massachusetts, USA), Fluor-S 

multi-imaging systems and Image analysis software (Bio-Rad, UK), Ultra-Violet 

transilluminator and UVP-LabWorks™ Image acquisition and analysis software (Ultra

Violet Products, Cambridge, UK), and y scintillation counter 5010 Cobra 10 (Packard 

Biosciences, UK). Also employed were a range of general-purpose laboratory apparatus 

which included a CK40-F Olympus Inverted Microscope (Jencons Scientific LID, 

Bedfordshire, UK), Priorclave PSILAC/EVIOO (PriorClave LID, London, UK), UVllOI 

Biotech Photometer (Cecil, UK), Cecil 5500 spectrophotometer (Cecil, UK) and a Heraeus 

Sepatech Biofuge 15/15 I 13/13 (Heraeus Instruments GmbH, Germany). For tissue culture 

work a Microflow Biological Safety Cabinet (Steriliser and Airflow Service Care, 

Hampshire, UK) and a Nuaire™ Water-Jacketed TS autoflow C02/02 incubator (Indis 

Scientific, Glasgow, UK) were used. For protein mobility shift assays the Sequigen® GT 

Nucleic Acid Electrophoresis Cell (Bio-Rad, UK), and Protean® II XI Cell (Bio-Rad, UK) 

were used with a PowerPac 3000 (Bio-Rad, UK). 
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All solutions, and all glassware and plasticware used in the techniques of DNA and protein 

analysis were autoclaved at a temperature of 121 °C, and pressure of 15 p.s.i for 30 minutes 

in a steam autoclave (PriorClave Ltd, London, UK). 

DNA extraction 

Extraction of high molecular weight genomic and mitochondrial DNA from peripheral 

blood leukocytes, was carried out employing the Nucleon® DNA extraction method and 

also a salting out method as described below. 

DNA extraction using Nucleon® BACC2 method 

The principle method utilised for DNA extraction employed the Nucleon® BACC2 (whole 

blood and cell culture) genomic DNA extraction kit (Scotlab Ltd, Lanarkshire, UK) 

according to manufacturers protocol (figure 15). The kit extracted both genomic and 

mitochondrial DNA in the same process. The kit provided 'Nucleon® Reagent B' (400mM 

Tris-HCL pH 8.0, 60mM EDT A, l50mM NaCI, 1% SDS), sodium percblorate and 

Nucleon® silica resin. In addition a 'Nucleon® Reagent A' (lOmM Tris-HCL, 320mM 

sucrose, 5mM MgCh, 1% Triton X-100,- adjusted to pH 8.0 using 40% NaOH and 

autoclaved) stock solution was used which was made up in house. 

Stored frozen peripheral venous blood samples were thawed at room temperature, and an 

aliquot of 7.5 ml was transferred to a 50-ml Falcon® tube (Becton Dickinson, Oxford, 

UK). To the sample a four-times volume of 'Nucleon® Reagent A' was added and mixed 

either by band or on a Luckbam RIOO/TW Rotatest shaker for 4 minutes. The 

blood/'Nucleon® Reagent A' solution was then centrifuged at 1300 x rpm for 4 minutes 
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using a MSE Mistral 1000 centrifuge and the supematant containing lysed red cells was 

separated from the pellet and discarded. The PBMC pellet was then re-suspended in 2ml of 

'Nucleon® Reagent B' (400mM Tris-HCL pH 8.0, 60mM EDTA 150mM NaCI, 1% SDS) 

as supplied, and incubated at 37°C for 10-15 minutes, enabling membrane disruption to 

occur. The suspension then was transferred to a 15ml Falcon® tube and 5001J.l of sodium 

perchlorate was added and mixed by gentle inversion. To extract the DNA, 2ml of ice cold 

chloroform (-20°C) was added and mixed to emulsify the two phases, which were then 

separated by centrifugation at 1300 x rpm for 3 minutes. After centrifugation, 3001J.I of 

Nucleon® silica suspension was added to the interface of the two layers by careful 

pipetting prior to a further centrifugation at 1300 x rpm for 3 minutes. The upper aqueous 

phase containing the DNA was then carefully transferred to a fresh tube, ensuring the 

interphase with silica resin and the underlying organic phase were not disturbed. 

Precipitation of DNA then carried out by inverting gently with 2-x volume of I 00% ice

cold (-20°C) ethanol (Rathburns Ltd, U.K.). A sterilised glass pipette with a sealed tip was 

used to hook out the precipitated DNA and transfer it to a sterile Eppendorf tube. The 

DNA was then washed in 70% ethanol prior to dilution in 5001J.I ofTE buffer (lOmM Tris 

pH 7 .6, 0.1 mM EDT A pH 8.0) over 24 hours. 
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Add 2mls ice cold Chloroform 
& shake for 10 min. 

Centrifuge at 1300 x rpm for 1 min. 

Aqueous phase 

Orqanic phase 

Add 300J.ll Nucleon Silica Suspension. 

Centrifuge at 1300 x rpm for 3 min. 

DNA containing 
upper phase. 

Nucleon Silica 
Stratum 

Orqanic phase 

Remove upper layer and 
transfer to fresh tube. 

Precipitate the DNA using lOO':'o ice 
cold dhanol, wash in 70% ethanol 

and re-suspend in TE Buffer 

Figure 15. Flow Diagram of Nucleon DNA extraction using BACC2 extraction kit 
Scotlab. Adapted with modification from Scotlab Nucleon II protocol II(a) flow 
diagram (Scotlab, UK). 
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DNA extraction using 'salting out' method 

A second method employed to extract genomic DNA from peripheral blood leukocytes 

was the salting out method as described by Miller et al 1988. Frozen whole blood samples 

were taken from the freezer and thawed at room temperature, 5-l Oml was then transferred 

to a sterile 50-ml Falcon® tube. Next, 25ml of 'Red Cell Lysis Buffer' (RCLB; 0.144 M 

N&CI, 0.00 I M NaHC03) was added and incubated at room temperature for 10 minutes. 

The sample was then centrifuged for 10 minutes at 1300 x rpm and the haemolysate 

removed and discarded. This step was repeated to ensure the removal of all residual red 

blood cells. The white cell pellet was re-suspended in 3ml 'Nuclei Lysis Buffer' (NLB: 

10mM Tris-HCL pH 8.0, 400mM NaCI and 2mM Na2/EDTA), 300j.tll0% SDS and 600j.tl 

Proteinase K (2mg/rnl) (Sigma Chemicals UK). This was incubated overnight in a 37°C 

water-bath. The following day lml of saturated sodium chloride solution (6M) was added, 

shaken vigorously for 15 seconds to precipitate proteins, and centrifuged at room 

temperature for 15 minutes at 1300 x rpm. The supernatant was transferred to 2 x volume 

of 100% ice cold ( -20°C) absolute ethanol and gently inverted to precipitate the DNA. The 

DNA was hooked out using a sterile glass Pasteur pipette and dissolved in 500j.tl of TE 

buffer pH 8 at 4°C for 72 hours and then stored at -20°C. 
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Quantification of DNA 

To ensure a homogeneous solution, the DNA samples were stored at 4°C for at least three 

days before taking optical density readings. Next, lJ.il of stock DNA was combined with 

99J.il ofTE buffer in a 1.5-ml micro-centrifuge tube. Optical density readings were taken at 

260nm and 280nm and compared with a TE buffer reference sample using optically 

matched quartz cuvettes employing a Cecil 5500 spectrophotometer (Cecil, UK). The 

concentration {Jlg/J.Il) of the DNA in the stock solution was determined by multiplying the 

absorbency reading at 260nm by a factor of l 00, and based upon a reading of 1-optical 

density (OD) being equivalent to 50mg/m1 of double stranded DNA. The purity of DNA 

was assessed using the ratio of A.260nm/A.280nm which should be between 1.7-2.0. 

Suitable DNA yields ranged from between 200J.ig and 250J.ig per lO ml of blood. The DNA 

samples were then stored at -20°C prior to use. Dilutions of stock DNA samples were 

made for every day use, either in sterile water (Baxter, UK) or TE buffer to give a working 

concentration of 50ng/J.il for use in PCR amplifications. These dilutions were stored at 4°C 

to minimise the number of degradative freeze-thaw processes. 

DNA clean-up process 

DNA samples which did not respond well to PCR, were 'cleaned-up' by re-precipitating 

the DNA and re-suspending in sterile water to remove any salts or inhibitors. This was 

achieved by adding 1/10 volume 5M NaCl and 2-x volume of absolute ethanol to the 

diluted DNA. This was then mixed and 'snap frozen' in liquid nitrogen for 2 minutes, and 

~entrifuged at 15110 x rpm for 15 minutes. The supernatant was removed and samples 

were allowed to air dry, then the pellet was re-suspended in double distilled water. 
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Polymorphism detection 

All assays used for the detection of polymorphisms at gene loci were PCR based. Specific 

assays for the different polymorphism's studied will be described in the following sections. 

Amplification of DNA using the Polymerase Chain Reaction (PCR) 

The technique of Polymerase Chain Reaction (PCR) was first introduced by Saiki et al 

1985; and Mullis and Faloona 1987 and has since become a fundamental tool in molecular 

biology. The principle technique of PCR involves combining a DNA sample with 

oligonucleotides (amplimers) complementary to sequences on either side of the sequence 

targeted for amplification, deoxynucleotide triphosphates and the thermostable Taq DNA 

polymerase and a suitable buffer. The mixture is then repeatedly heated and cooled to 

enable the specific amplification of the region of interest. New DNA synthesis is limited to 

the region of DNA bounded by the two amplimers. By repeating this cycle, a single copy 

of target DNA can be exponentially amplified. 

Amplimer design and production 

Pairs of amplimers were designed from sequences known to flank the specific locus of 

interest. These amplimers permit PCR amplification of the DNA region of interest, which 

may contain a known polymorphism. Design was enabled by reference to sequences 

deposited in the publicly available Internet website 'Genbank' 

(www.ncbi.nlm.nih.gov.genebank). For all sequences of interest amplimers were designed 

complementary to the 5 '-3' strand (sense) and complimentary to the 3 '-5' strand 

(antisense) either side of the sequence of interest. All amplimers were designed to be 

between 18-30 bases in length with a random base distribution, and an approximate 

guanosine and cytidine (G+C) ratio of approximately 50% or similar to that of the 

fragment being amplified. Sequences were checked on DNA Star Software (Lasergene, 

USA) to check the amplimers against each other for complementarity to prevent the 
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possibility of creating 'primer dimers' or 'hairpin loops', where the amplimers bind to each 

other and may result in the formation of anomalies or artefacts. Amplimers containing 

stretches of polypurines, polypyrimidines or other unusual sequences were avoided. All 

amplimers were commercially synthesised on an oligonucleotide synthesiser, 'Pharmacia 

Gene Assembler' (MWG Biotech, Milton Keynes, UK) at a scale of0.05-0.2 J.lmoles, and 

diluted for use to concentrations of -I Opmol J.ll"1
• 

Standard reaction mixture 

The PCR conditions required achieving optimum efficacy of DNA amplification varied 

depending upon the application for which it was applied. All PCR mixtures were prepared 

on ice in 0.2ml thin walled PCR strips (Advanced Biotechnology, Epsom, UK). Most 

reaction mixtures required a 50J.ll volume containing; I 00-500ng of genomic DNA, 5J.ll of 

I 0 x PCR buffer (250mM KCL, 50 mM Tris.HCL pH 8.4 at room temperature, I% Triton 

X-100, 0.1% gelatin), 1.5-2.5 mM MgCh, 10-20 pmoles of forward and reverse primers, 

200 J.lM of each deoxynucleotide triphosphate (dATP, dCTP, dGTP, and dTTP), and 2.5 

units of Taq DNA polymerase. Sterile water was added to a total volume of 50f.ll and a few 

drops of mineral oil were added to each reaction to seal it and prevent evaporation and 

condensation. The samples were then briefly centrifuged and the PCR reaction carried out 

automatically using a PTC-200 'Thermal Cycler' {MJ Research, Essex, U.K.) or a 

'Cyclogene Thermocycler' {Techne, Cambridge, UK). 

PCR cycling strategies 

Amplification was performed by incubating the samples at three temperatures 

corresponding to the three steps in a cycle of amplification-denaturation, annealing and 

extension. Typically the double stranded DNA is denatured by briefly heating the samples 

to 90-95°C, and then cooled to 40-60°C to allow the primers to anneal to their 
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complementary sequences. This was followed by heating the reaction to 70-75°C for 

approximately !-minute per kilobase of sequence, to extend the annealed primers with the 

Taq DNA polymerase. Calculation and optimisation of the required annealing temperature 

was derived from the melting temperature (Tm) values of the primer-template pairs, where 

Tm = 4(G+C) + 2(A+T). This annealing temperature was determined by applying the 

following formula; 

Annealing temp. (0 C) = Tm Primer 1 + Tm Primer 2 - 3 
2 

Modifications to the standard PCR protocol were made for each of the PCR amplifications 

carried out in order to enhance specificity of PCR products. These strategies involved 

carrying out a MgCh titration ( 1.5-6.5mM) to determine the optimal concentration 

required, increasing or decreasing the annealing temperature, decrease in primer 

concentration and decreasing the dNTP concentration. These strategies were applied when 

PCR products showed spurious bands upon agarose gel electrophoresis alongside a 

molecular weight marker (Sambrook, Fritsch and Maniatis 1989). 

Determination of PCR efficacy by agarose gel electrophoresis 

Amplification efficacy and the product size was checked by running out an aliquot of the 

PCR product on a 1-3.5% multi-purpose agarose gel containing 0.01% ethidiurn bromide. 

A I% agarose/ethidiurn bromide gel was prepared by heating lg of ultra-pure multi-

purpose agarose (Roche Diagnostics Ltd, Sussex, U.K.) and lOOml of 0.5 Tris Borate 

EDTA (TBE) buffer. This was carried out using a 400ml-heat-proof glass bottle in a 

microwave on low power for 3 minutes or until all the agarose had dissolved. The agarose 

solution was then allowed to cool at room temperature to approximately 65°C. Next, lOJ.ll 

ofethidium bromide solution {lOmg/ml) (Sigma-Aldrich, Dorset, U.K) was added to create 
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a 0.01 w/v concentration, and gently mixed. The agarose/ethidium bromide mixture was 

carefully poured into a 20x24 cm ultraviolet light transparent Perspex casting tray (Gibco 

BRL, UK), that was sealed at both ends with masking tape. Two 28 tooth vinyl combs 

were inserted into the gel to generate the sample loading wells. The gel was allowed to set 

at room temperature and was placed at 4°C to harden. The masking tape was then removed 

from the gel tray and the gel was placed into 0.5% TBE buffer in a 'Fiowgen Submarine 

Electrophoresis Tank' (Flowgen, UK) and the combs were carefully removed. 

A 10~1 aliquot of the PCR product was mixed with 1.5~1 of xylene cyanol track dye (15% 

Ficoll-type 400, 0.25% w/v Xylene Cyanol FF, 0.25% Bromophenol Blue, in I 0 X TBE), 

or Orange G loading buffer (0.25% orange G, I 0% v/v glycerol in I 0 X TBE). The PCR 

product/loading buffer mixture was than loaded into the wells of the gel guided by a Gilson 

pipette tip. A IOObp molecular weight marker (Life Technologies, Paisley, U.K) was also 

loaded into an adjacent well, along with appropriate positive and negative controls. The 

gels were electrophoresed for 30-45 minutes at a constant voltage of 100-150V (constant 

voltage) using a BioRad 3000 power pack, (BioRad, Herts, U.K.). Gels were then viewed 

and photographed under UV illumination using an Ultra-Violet transilluminator linked to 

UVP-LabWorks™ Image acquisition and analysis software (Ultra-Violet Products, 

Cambridge, UK), and DPII + Dpsoft digital camera and software. 
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Dinucleotide repeat analysis 

Short tandem repeat polymorphisms (STRP's) otherwise termed microsatellite 

polymorphisms, are polymorphic genetic markers consisting of short nucleotide sequences 

which are sequentially repeated. Typically the repeated sequences are l-4bp in length and 

are tandemly repeated 10 to 60 times. They provide highly informative markers for human 

genetic linkage studies. Microsatellite sequences are randomly distributed in the genome, 

and occur on average every 6 kilobases (kb) (Weber and May 1989). Dinucleotide repeat 

polymorphisms were typed using the PCR (as previously described) but incorporated the 

use of Redivue [y32P] dATP radiolabelled amplimers designed to flank the region of 

interest. High-resolution acrylarnide electrophoresis was carried out to resolve the allelic 

fragments that differ in length by as little as 2 nucleotides. 

Two microsatellite markers were studied within this thesis, firstly the (CA)n dinucleotide 

repeat marker of the hypertension-linked region on chromosome 17q (D 17S934), residing 

I8cM to the ACE locus, and the second a (CA)n dinucleotide repeat marker on 

chromosome 7q35, situated 2.lkb upstream of the aldose reductase (ALR2) start site. For 

the D 17S934 locus associated to hypertension, amplimers were designed from sequences 

known to flank the (CA)n repeat region to create a 185bp fragment illustrated in figure 16. 

Each amplimer was composed of 14 (G+C) and 11 (A+T) bases, the sequences of which 

are outlined in table 9. The amplimers were chosen to share the optimum annealing 

temperature of ~68°C. Template sequences for H. sapiens D 17S934, accession number 

Z23831, were obtained from the GenBank Internet website- www.ncbi.nlm.nih.gov (Gyapay et 

a/1994). For the 5'ALR2 locus pairs ofamplimers were designed from sequences known 

to flank the (CA)n repeat sequence region to create a 138bp fragment illustrated in figure 

16 (Heesom et at 1994, Shah et at 1998). The sense amplimer was composed of 9 (G+C) 

and 13 (A+T) bases, and the antisense primer was composed of 12 (G+C) and 7 (A+T) 

bases the sequences of which are also outlined in table 9. As before amplimers were 
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chosen to share the optimum annealing temperature of o::68°C. Template sequences for H. 

sapiens, aldose reductase gene promoter region; accession number U72619 were also 

obtained from GenBank: Internet website- www.ncbi.nlm.nih.gov (K.o and Chung 1997). 

The amplification optirnisation procedure as previously described in this section was 

carried out for both rnicrosatellite regions studied in order to achieve maximum efficacy of 

the reaction. Final PCR reaction mixture and cycling conditions for both markers are 

outlined in table I 0 and table 11 respectively. All PCR products were checked against a 

molecular weight marker for size using agarose gel electrophoresis as described. 
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D17S934 (H.saplens, accession number Z23831): 

agctctgaat ggcccttggt ccatgcctct ctccctctct cctccctctt cctccacttcc 
tgacttcagg acctgttccc tcctgctccc tacaagcatg catacacaca catacacaca 
cacacacaca cacacacaca cacacacaca Qgcactcata ccccacctca gataggaaac 
gggQfttgcc ctcccaggac ctatattaag acctatgggg agtggctggg atctgggccc 
ccagtgggtc tgtgagcatg aggtggtgag tgtgcaaaag tgtgagccta tgagagtgag 

5'ALR2 (H.sapiens, accession number U72619): 

cctcatttgt cttaccttgg tcccagccca gccctatacc tagtgtgtgt gtgtgtgtgt 
gtgtgtgtgt gtgtgtgtgt gtgtgtgtg tttcctttta aattatttcc ttaggaaaaa 
ttcccatgat gggagattac tggttcagag catgttaaga ttccaattac tagagtgttt 

Figure 16. Nucleotide sequences for D17S934 and 5'ALR2 microsatellite regions 
under investigation, obtained through the GenBank Internet website
www.ncbi.nlm.nih.gov. Dinucleotide repeat regions are italicised, and amplimer 
sequences are highlighted. 

Microsatellite Direction Sequence 

D17S934 Sense 5' -AGCTCTGAA TGGCCCTTGGTCCA TG-3' 
Anti sense 5' -G TCCTGTTTCCT A TCTGAGGTGGGG-3' 

5'ALR Sense 5'-GAATCTT AACATGCTCTGAACC-3' 
Anti sense 5'-GCCCCAGCCCT ATACCTAG-3' 

Table 9 . Amplimer pair sequences designed to amplify microsatellite polymorph isms 
at regions 5'ALR2 and D17S934. 

- 195-



Chapter 3: Subjects, materials and methods 

Master Mix 5'ALR2 [)175934 

DNA 300ng 300ng 
10 x PCR buffer 5~1 5~1 

Sense primer 15pmol lOp mol 
Antisense primer lOp mol lOp mol 

MgCiz 1.5mM 1.5mM 
dNTP mix 0.2mM 0.2mM 

Taq DNA Polymerase 0.5 units 0.5 units 
Sterile HzO make up to 50~1 make up to 50~1 

Table 10. Optimised PCR reaction mixture for 5'ALR2 and D17S934 microsatellite 
regions. 

Cycle 

Denaturation 
then 30 cycles of: 

Denaturation 
Annealing 
Extension 

Samples were cooled at 
4°C unti l further use. 

D17S934 5'ALR 

94°C for 3 minutes 94°C for 1 minute 

94° C for 30 seconds 94°C for 30 seconds 
56°C for 2 minutes 61°C for 2 minutes 
72°C for 2 minutes 72°C for 2 minutes 

Table 11 . Optimised PCR reaction times and temperatures for 5'ALR2 and D17S934 
microsatellite regions. 
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Incorporation of radio-labelled amplimers into PCR 

Once the PCR conditions were optimised for the microsatellites studied, radiolabelling of 

the 5' flanking amplimer with Redivue [y32P] dA TP was carried out. This radio labelled 

amplimer was then incorporated into a new PCR reaction. 

S'End labelUng of amplimers using T4 polynucleotide kinase (T4-PNK) 

To facilitate detection a radioactive nucleotide precursor was incorporated into the PCR 

reaction mix. Amplirners were labelled with Redivue [y32P] dA TP (Amersham U.K) using 

Ready-to-Go™ T4-polynucleotide kinase (T4-PNK) (Pharmacia Biotech). The lyophilised 

T4-PNK was re-suspended in 25J.1l of sterile water and incubated at room temperature for 

2-5 minutes. The solution was then mixed by gently pipetting up and down using a Gilson 

pipette tip. 5-10 pmoles of sense amplimer was added along with sufficient water to bring 

the reaction volume up to 49J.1l. lJ.!I of [y32P ATP (10mCilrnl} radioactive isotope 

(Amersham U.K), was added and briefly centrifuged for 30 seconds at 1300 x rpm 

(Biofuge 13 microcentrifuge, Heraeus Sepatech, Germany). Samples were then incubated 

at 37°C in a water-bath for 30 minutes. 

Precipitation of labelled ampUmer 

A 5.5J.1l volume of 5M NaCl, and 2j.d QuickPrecip® (Edge Biosystems, Oxon, UK) was 

added along with approximately three volumes of ice-cold 100% ethanol ( -20°C} to the 

reaction tube to precipitate the DNA. After vortexing, the samples were centrifuged for 3 

minutes. Each sample was then briefly vortexed and re-centrifuged for 30 sec's. All the 

supematant fluid was decanted off and discarded and the precipitate was rinsed in both 

100% and 70% ethanol. 50J.1l of sterile water was used to resuspend the precipitated DNA. 

Incorporation of y32P was then measured using a Beckman scintillation counter (Packard 

Biosciences, UK). 
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Assessment of efficacy of amplimer labelling 

lJ . .li of the labelled amplimer was counted for radioactivity using a Beckman scintillation 

counter. This gave a count per minute (cpm) reading. Determination of the cpm for l).Ll of 

the sample allowed calculation of the volume of labelled amplimer required for each 

reaction when the desired amount of radioactivity for the PCR is 25,000cpm. 

PCR was carried out as previously described, on average 25000cpm of the labelled 

amplimer was added to the reaction mixture. All PCR products were checked by running a 

10-15).!1 aliquot of the sample and 1-1.5).!1 of loading buffer against a IOObp molecular 

weight marker on a I% agarose/ethidiurn bromide gel as previously described. The gel was 

visualised under UV light and a photograph was taken. If the PCR was successful the PCR 

products were then electrophoresed on a vertical polyacrylamide gel. 

Polyacrylamide Gel Electrophoresis (PAGE) 

For microsatellite analysis the PCR products were then size fractionated by electrophoresis 

on a vertical polyacrylamide gel. A BioRad Sequi-Gen GT electrophoresis cell (30 x 

50cm) (BioRad Laboratories, Hemel Hempstead, UK), was used with a 49 well vinyl 

sharks-tooth comb and 0.4 mm spacers. All components of the gel rig were thoroughly 

cleaned in warm water, followed by 70% Industrial Methylated Spirit (IMS) solution 

(Rathburns) and allowed to air dry. The inner surfaces of the gel plates were then 

siliconised with a thin layer of Repelcote® (BDH, UK) to prevent the gel from adhering to 

the glass plates. A small amount of petroleum jelly was run down the edges of the base 

plate to grip the vinyl 0.4-mm gel spacers that were positioned at the edges. The glass top 

plate was then positioned onto the base plate and sandwiched together using two arm 

clamps. The casting tray was then attached to the assembled plate and levelled horizontally 

using a spirit level. 
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A 5% polyacrylamide (formamide/urea) gel was prepared using a series of solutions 

(National Diagnostics U.S). 30mls Sequagel concentrate (237.5g acrylamide, 12.5g 

methylene bisacrylamide and 500g urea), 15 ml Sequagel buffer (50% 8.3M urea in IM 

Tris-Borate-20mM EDTA buffer pH 8.3), 99ml Sequagel diluent (500g 8.3M urea), 12ml 

formamide (Sigma chemicals) were mixed together in a 250 ml conical flask. 70j .. d 

TEMED and 15001J.l 10% ammonium persulphate (APS) were used to polymerise the gel 

(Sigma, UK). 

The gel solution was cast into the horizontally positioned cell using a 200 ml syringe with 

a delivery tube, according to the manufacturer instructions. The flat edge of the sharks

tooth comb was inserted into the gel in an inverted position at the top or" the gel plates, and 

the gel was allowed to polymerise over 2 hours at room temperature. The gel rig was then 

assembled vertically into the base and equilibrated overnight in 1 x TBE buffer. The 

system was connected to a power-pack (BioRad PC3000) and pre-warmed at 1800V for 30 

minutes or until the temperature indicator read 40°C. The sharks-tooth comb was then 

removed and reinserted in the correct orientation to form the sample wells. 

PCR amplification products (61J.l) were mixed with 31J.l of 10 x formamide stop solution 

(Gibco BRL, UK) and loaded into the wells on the gel using a lOiJ.I Drummond® 

sequencing pipette (Drummond Laboratories, USA). The electrophoresis was carried out 

for 2.5 to 3 hours at 1500-2000V or maintained at a constant temperature of 50°C. The 

marker dye indicated how far the PCR products had migrated down the gel, this acted as an 

indicator to detect when the separation of bands was reached. The gel was removed from 

the plate and fixed in 10% Methanol/ Acetic acid, transferred from the cell plate to filter 

paper and dried on a vacuum/heated gel drying system (Heto, UK) at 80°C for 

approximately 1-2 hours. 
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Autoradiography of polyacrylamide gel 

The gel was then exposed to Kodak X-OMA T films between Cronex intensifying screens 

for 8 hours at -80°C. The film was developed in Kodak developing and fixing agents 

(according to manufacturer's instructions). Alternatively gels were exposed onto plates 

using a BioRad Fluor S analyser, and printed onto photographic paper (BioRad 

Phosphoimager ). 

Scoring of microsatellite alleles 

Allele scoring was carried out by two independent observers. Description of how alleles 

were assigned for each rnicrosatellite is given in the result's section. Analysis of bands was 

carried out either by eye or using BioRad analysis software. 
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Single Nucleotide Polymorphism (SNP) detection 

Three single base polymorphisms were studied by restriction site enzyme digestion, firstly 

aCto T (Bfal forming) polymorphism situated -106bp upstream of the aldose reductase 

start site, secondly an A to C polymorphism situated at nucleotide +11842 of intron 8 

within the aldose reductase gene itself, and thirdly an A to C polymorphism at nucleotide 

position 5178 within the mitochondrial genome. 

Restriction site polymorphisms 

Restriction site polymorphisms are single base polymorphic sites, which result in the 

formation or alteration of a restriction enzyme cut site. Restriction enzyme digestion of a 

PCR product containing the known polymorphic site enables the genotype to be 

determined. Amplimers can be designed to flank the known polymorphic region such that 

restriction enzyme cutting results in the production of different sized fragments, which can 

be determined by agarose gel electrophoresis. 

C(-106)T polymorphism detection by restriction enzyme digestion. 

The amplimers for the basal promoter region of the ALR2 gene were used to amplify the 

263 base pair fragment that included the novel C(-106)T polymorphic site. The amplimer 

sequences were previously ·designed by Heesom et a/ 1994 and Pate! et a/ 1996 from gene 

sequences obtained through the GenBank Internet website- www.ncbi.nlm.nih.gov (figure 

I 7). The upstream amplimer consists of 24 nucleotides spanning the -222 to -199 region, 

and the downstream amplimer consists of 21 nucleotides which extended from nucleotide 

+21 to the translation start ATG start codon (table 12). The polymorphism creates a new 

Bfa 1 restriction site and digestion produced fragments detectable by size fractionation 

(table 13). DNA was amplified by PCR as previously described using a reaction mixture 

outlined in table 14, and cycling strategy as outlined in table 15. PCR products were 

checked for efficacy on an agarose/ethidium bromide gel as previously described. It proved 
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to be very difficult to genotype all of the samples for the C-l 06T polymorphism as many 

failed to respond to the restriction enzyme digestion stage of the assay. Failure primarily 

lay with poor or incomplete restriction enzyme digestion. This probably resulted from an 

inhibiting factor preventing the enzyme from working. Despite stringent purification 

protocols being applied some samples still failed to respond. This may have been due to 

different batches of DNA used and differences in the DNA extraction protocols applied. 

Direct Purification of PCR products 

The restriction enzyme Bfa I is an isoschizomer of Mae I and Rma 1, and according to the 

manufacturers protocol Bfa I has shown minimal cleavage of unpurified PCR products. 

Therefore, PCR products required purification before Bfa I digestion. PCR products were 

purified using the Wizard® PCR PrepDNA purification system (Promega, Madison, USA) 

and a Vac-Man® laboratory vacuum manifold. PCR products were transferred to a sterile 

microcentrifuge tube and lOOJ.Ll of direct purification buffer (KCI 50mM, lOmM Tris-HCI 

(pH 8.8 at 25°C), 1.5mM MgCh and 0.1% Triton :x®-100) was added. After vortexing, 

lrnl of Wizard® PCR prep DNA purification resin was added and the mixture was briefly 

vortexed 3 times over a 1-minute period. 

For each PCR product one Wizard® mini-column was prepared by attaching a syringe 

barrel to the Luer-Lok® extension of the mini-column according to manufacturers 

instructions. This mini-column/syringe barrel assembly was inserted into the vacuum 

manifold (Promega). The resin/DNA mix was pipetted into the syringe barrel and a 

vacuum was applied to draw the mixture through the mini-column. The mini-column was 

washed with 2 m! of 80% isopropanol (Sigma chemicals). The resin was dried by 

centrifuging the mini-column at 800 x rpm in a micro-centrifuge for 2 minutes. The mini

column was transferred to a new micro-centrifuge tube and 50J.Ll of sterile water was added 
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for l minute. The mini-column was re-centrifuged for 20 seconds at 800 x rpm to elute the 

DNA fragment, which was collected in a sterile l.5ml microcentrifuge tube. 

Bfal restriction endonuclease digestion 

The C( -1 06)T substitution polymorphism creates a new Bfa 1 restriction endonuclease site. 

To detect the C(-106)T polymorphism 20 ).11 of purified amplification product was 

digested using 8 units of Bfa1 (New England Biolabs, UK) and incubated in l x NE buffer 

4 (50mM potassium acetate, 20mM tris acetate, lOmM magnesium acetate, lmM 

dithiolthreitol, pH 7.9) (New England Biolabs, UK) at 37°C for 3 Y2 hours. The allelic 

variant C enabled cleavage at one site only producing two fragments 206bp and 57bp in 

size. The allelic variant T enabled Bfal cleavage at two sites, producing 147bp, 59bp and 

57bp fragments. A heterozygous CT genotype therefore produced restriction fragments 

206bp, 146bp, 59bp and 57bp (table 13). Digestion fragments were separated using 3.5% 

agarose/ethidium bromide gel electrophoresis against a lOObp molecular weight marker (as 

previously described). Timed digestion was checked by running a 3).11 aliquot with 1.5).11 of 

loading buffer and if digestion was incomplete a further 5-10 units of restriction enzyme 

was added ·in 3).11 of lO x buffer and incubated for a further hour. The enzyme 

concentration in solution was kept below 10% to minimise non-specific cleavage of DNA 

due to the presence of glycerol. Digestion fragments were viewed using a UV 

transilluminator and genotyping was carried out by eye as illustrated in figure 25. 
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5'ALR2 (H. sapiens, accession number U72619): 
-273 

tattttcgct aaagcattcg ctttcccacc agatacagca gctgaggaac tcctttctgc 

cacgcggggc gcgggcgagc gttgggggcg gaaagaatcc gctgccacta ggaccaggcg 

gaagaagcat ccccgccgac ccttggggaa ggccgccgcg gcacccccag cgcaaccaat 

cagaaggctc cttcgcgcag cggcgcgcca accgcaggcg ccctttctgc cgacctcacg 

ggctatttaa aggtacgcgc cgcggccaag gccgcaccgt tactgggcgggggtctgggga 

gcgcagcagc catggcaagc cgtctcctgc tcaacaacgg cgccaagatg cccatcctgg 
+ 

Figure 17. Nucleotide sequence for 5'ALR2 C(-106)T polymorphic region under 
investigation, obtained through the GenBank Internet website- www.ncbi.nlm.nih.gov. 
Bfa1 restriction sites are italicised and amplimer sequences are highlighted. 

Polymorphism 
C(-106)T 

Direction 
Sense 

Anti sense 

Sequence 
5' CCT TTC TGC CAC GCG GGG CGC GGG 3' 

5' CAT GGC TGC TGC GCT CCC CAG 3' 

Table 12. Amplimer pair sequences designed to amplify the 5'ALR2 C(-106)T 
polymorphic region. 

C(-106)T Restriction endonuclease Allele fragment sizes 

Bfai C: 57bp,206bp 
5' ... C• T AG ... 3' T: 57bp, 59bp, 147bp. 
3' ... G A • TC ... 5' 

Table 13. Bfa1 restriction enzyme allele fragment sizes for 5' ALR2 C( -106 )T 
polymorphism. 
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Master Mix 

DNA 
10 x PCR buffer 

Sense primer 
Antisense primer 

MgClz 
dNTP mix 

Taq DNA Polymerase 
Sterile HzO 

Chapter 3: Subjects. materials and methods 

C(-106)T 

300ng 

5Jll 
lOp mol 
lOpmol 
1.5mM 
0.2mM 

1.0 units 

make up to 50Jll 

Table 14. Optimised PCR reaction mixture for 5'ALR2 C(-106)T polymorphic region. 

Cycle 

Denaturation 
then 32 cycles of: 

Denaturation 
Annealing 
Extension 

Samples were cooled at 
4°C until further use. 

C(-106)T 

96°C for 3 minutes 

94° C for 30 seconds 
70°C for 2 minutes 
72°C for 1 minutes 

Table 15. Optimised PCR reaction times for 5'ALR2 C(-106)T polymorphic region. 
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(a) Allelic variant C 
Bfa 1 cut no cut 

C(-106)T-Forward amplimer ~ ~ C(- 106)T-Reverse amplimer 
ctttctgccacgcggggc gcggg~ etag ~ ccag ~ctggggagcgcagcagccatg 

gate ggtc 

57bp fragment 206bp fragment 

(b) Allelic variant T 
Bfa 1 cut Bfa 1 cut 

~ ~ 
ctttctgccacgcggggc gcggg~ ctag ~ ctag ~ tggggagcgcagcagccatg 

gate gate 

/ 
57bp fragment 59bp fragment 

Genotype TT cc CT Control 

14 7bp fragment 

~ !57/59 bp 

:= 147 bp 
206 bp 

~ 263 bp 

Figure 18. Illustration of C( - 106)T restriction site polymorphism (RSP's). This 
figure illustrates the C(-106)T restriction site polymorphism where the 263bp PCR 
product is cut by the restriction enzyme Bfa I which detects and cuts at the 
c• TAG sequence. Alleleic variant C is cut into two restriction fragments 57 bp and 
206bp, and an allele which contains the C toT polymorphism is further cut into three 
fragments 57bp, 59bp and 147bp. Subjects heterozygous for C(-106)T polymorphism 
showed restriction fragments 57bp, 59bp, 147bp and 206bp in size. A control was 
always included where no restriction enzyme was added, producing a 263 bp uncut 
band. Alternative primer design would have resolved the 57bp and 59bp fragments. 
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ALR2 A(+11842)C polymorphism detection by restriction endonuclease digestion 

Amplimers previously designed by Kao et a! 1999 for the aldose reductase intragenic region 

containing the novel A(+ll842)C polymorphism were used to amplify the 252bp fragment of 

interest. The amplimer sequences were checked from gene sequences obtained through 

GenBank Internet website- http://www.nlm.nih.gov (figure 19). The upstream amplimer 

consists of 21 nucleotides spanning the + 11763 to + 11783 region, and the downstream 

amplimer consists of 21 nucleotides which span from + 11993 to + 12012 nucleotides upstream 

of the aldose reductase start site (table 16). The polymorphism abolishes a BamH1 restriction 

enzyme site and digestion produced fragments detectable by size fractionation (table 17). 

DNA was amplified by PCR as previously described using a reaction mixture outlined in table 

18, and cycling strategy as outlined in table 19. 

BamH1 restriction endonuclease digestion 

The A(+ 11842)C substitution polymorphism abolishes a BamH I restriction endonuclease site. 

To detect the A(+ 11842)C polymorphism 5 )ll of amplification product was then digested 

using lO units of BamH1 (New England Biolabs, UK) and incubated at 37°C for 45 minutes. 

The allelic variant C showed no cleavage by BamHI digestion and the 252bp PCR product 

remained intact. The allelic variant A enabled BamH1 cleavage at one site, producing two 

restriction fragments, 174bp and 78bp in length, detectable by agarose gel electrophoresis. A 

heterozygous AC genotype therefore produced all three fragments, 252bp, 174bp, and 78bp. 

To ensure completed restriction enzyme digestion an internal control was always incorporated 

alongside. The internal control consisted of patient DNA for which the correct genotype had 

previously been confirmed by direct sequencing methods (MWG). Digestion fragments were 

separated using 2.5% agarose/ethidium bromide gel electrophoresis alongside a 1 OObp 

molecular weight marker (as previously described). Timed digestion was checked by running 
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a 3J.1l aliquot of digestion mixture with l.5J.1l ofloading buffer and if digestion was incomplete 

a further 5-10 units of restriction enzyme was added and incubated for a further 30 minutes. 

Digestion fragments were viewed using a UV transilluminator and genotyping was carried out 

by eye. 
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ALR2 (H. sapiens, accession number AF032455): 

tcttggctgg tcaggcctgg ccctcctcca tggagtgggg gatgggggag gcctctcatc 
ctgtctctgg agtgtcatct gtgggatccc caccatcctc tcttctgagg ccagggagct 
gtggcgagca agccaagact gagactgaca cctcaccagt ggagccgtgt gccaggggca 
ggccttgggt ccagggccgt gctgtggcaa tacacctaca cctttgctca ggcccttcag 
cacaccgaga ggttacccgg ggagaatctc gctcttgagc ttcactgcct ggacctgccc 

Figure 19. Nucleotide sequence for ALR2 A(+11842)C polymorphic region within intron 8 
of the aldose reductase gene, obtained through the GenBank Internet website
http:/ / www.ncbi.nlm.nih.gov. BamHI restriction site containing the A(+11842)C 
polymorphism is italicised and amplimer sequences are highlighted. 

Polymorphism Direction Sequence 
A(+ 11842)C Sense 

Anti sense 
5' CTG GTC AGG CCT GGC CCT CCT 3' 
5' GT A ACC TCT CGG TGT GCT GAA 3' 

Table 16. Amplimer pair sequences designed to amplify the ALR2 A(+11842)C 
polymorphic region. 

A(+ 11842)C Restriction endonuclease Allele fragment sizes 
BamH1 C: 252bp 

5' ... G ... GATC C ... 3' A: 174bp, 78bp 
3' ... C CTAG•G ... 5' 

Table 17. Restriction enzyme allele fragment s izes for ALR2 A(+11842)C polymorphism. 
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Master Mix 

DNA 
10 x PCR buffer 

Sense primer 
Antisense primer 

MgCiz 
dNTP mix 

Taq DNA Polymerase 
Sterile HzO 
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A(+11842)C 

300ng 

51ll 
lOp mol 
lOp mol 
1.5mM 
0.2mM 

1.0 units 

make up to 50J.LI 

Table 18. Optimised PCR reaction mixture for ALR2 A(+11842)C polymorphic region, 
detected using BamH1 restriction enzyme digestion. 

Cycle 

Denaturation 
then 32 cycles of: 

Denaturation 
Annealing 
Extension 

Samples were cooled at 
4°C until further use. 

A(+11842)C 

94°C for 2 minutes 

95° C for 1 minute 
66°C for 1 minute 

72°C for 1 minutes 

Table 19. Optimised PCR reaction times for ALR2 A(+11842)C polymorphic region. 
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Mitochondrial C(5178)A polymorphism detection by restriction endonuclease digestion 

Amplimers previously designed by Gong et a/ 1998 for the mitochondrial gene C(5178)A 

polymorphism were used to amplify the 417bp fragment of interest. The amplimer sequences 

were checked from gene sequences obtained through GenBank Internet website

htto://www.nlrn.nih.gov (figure 20). The upstream amplimer consists of24 nucleotides spanning 

the Mt4949 to Mt4972 region, and the downstream amplimer consists of 24 nucleotides which 

span from Mt5342 to Mt5365 (table 20). The polymorphism abolishes a Alul restriction 

enzyme site and digestion produced fragments detectable by size fractionation (table 21 ). 

DNA was amplified by PCR as previously described using a restriction mixture outlined in 

table 22, and cycling strategy as outlined in table 23. 

Alul restriction endonuclease digestion 

The C(5178)A substitution polymorphism abolishes a BamHl restriction endonuclease site. 

To detect the C(5178)A polymorphism 1 OJ.!l of amplification product was then digested using 

10 units of Alul (New England Biolabs, UK) with NE buffer 2 (50 mM NaCl,10 mM Tris

HCL, 10 mM MgCl, 1 mM dithiothreitol) and incubated at 37°C for 4 hours. The allelic 

variant A showed Alu1 cleavage at one site, producing two digestion fragments, 43bp and 

374bp. The allelic variant C enabled Alu1 cleavage at two sites, producing three restriction 

fragments 43bp, 188bp and 186bp in size. To ensure completed restriction enzyme digestion 

an internal control was always incorporated alongside. The internal control consisted of 

patients DNA for which the genotype had previously been confirmed by direct sequencing. 

Digestion fragments were separated using a 3% agarose/ethidium bromide gel electrophoresis 

alongside a lOObp molecular weight marker (as previously described). Timed digestion was 

checked by running a 3J.!I aliquot of digestion mixture with l.5J.!l of loading buffer and if 

digestion was incomplete a further 5-l 0 units of restriction enzyme was added and incubated 
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for a further 30 minutes. Digestion fragments were viewed using a UV tranilluminator and 

genotyping was carried out by eye. 
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(H. sapiens, accession number;NC_001807): 

tcacatgaca aaaactagcc cccatctcaa tcatatacca aatctctccc tcactaaacg 
taagccttct cctcactctc LvUC:HvLLA 

accaaaccca gctacgcaaa atcttagcat actcctcaat tacccacata ggatgaataa 
tagcagttct accgtacaac cctaacataa ccattcttaa tttaactatt tatattatcc 
taactactac cgcattccta ctactcaact taaactccag caccacgacc ctactactat 
ctcgcacctg aaacaagcta acatgactaa cacccttaat tccatccacc ctcctctccc 
taggaggcct gcccccgcta accggctttt tgcccaaatg ggccattatc gaagaattca 

La~'""'.''a•"' atccccacca tcatagccac catcaccctc cttaacctc 
aluoclltccr caatcacact actccccata tctaacaacg 

taaaaataaa atgacagttt gaacatacaa aacccacccc attcctcccc acactcatc 

Figure 20. Nucleotide sequence for Mt C(5178)A polymorphic region within the 
mitochondrial genome, obtained through the GenBank Internet website
http:/ /www.ncbi .nlm.nih.gov. The Alu1 restriction site containing the C(5178)A 
polymorphism is italicised and amplimer sequences are highlighted. 

Polymorphism Direction Sequence 
Mt C(5178}A Sense 

Anti sense 
5' ATC CAT CAT AGC AGG CAG TIG AGG 3' 
5' GAG TAG ATI AGG CGT AGG TAG AAG 3' 

Table 20. Amplimer pair sequences designed to amplify the mitochondrial C(5178)A 
polymorphic region. 

Mt C(5178)A Restriction endonuclease Allele fragment sizes 
Alul A: 43 bp, 374bp 

5' ... AG• CT. .. 3' C: 43bp,188bp, 186bp 
3' ... TC• GA ... 5' 

Table 21. Restriction enzyme allele fragment sizes for mitochondrial C(5178)A 
polymorphism. 
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Master Mix 

DNA 
10 x PCR buffer 

Sense primer 
Antisense primer 

MgCiz 
dNTP mix 

Taq DNA Polymerase 
Sterile HzO 
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Mt C(5178)A 

300ng 

51ll 
lOp mol 
lOpmol 
1.5mM 
0.2mM 

1.0 units 
make up to 501ll 

Table 22. Optimised PCR reaction mixture for mitochondrial C(5178)A polymorphic 
region, detected using Alul restriction enzyme digestion. 

Cycle 

Denaturation 
then 32 cycles of: 

Denaturation 
Annealing 
Extension 

Samples were cooled at 
4°C until further use. 

Mt C(5178)A 

94°C for 4 minutes 

94° C for 30 seconds 
49°C for 2 minutes 
72°C for 2 minutes 

Table 23. Optimised PCR reaction times for mitochondrial C(5178)A polymorphic region, 
detected using Alul restriction enzyme digestion. 
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Electrophoretic mobility shift assay for 5' ALR2 ORE's 

The electrophoretic mobility shift assay (EMSA) was used to quantitatively detect the 

interaction between the sequence specific osmotic response element (ORE) binding proteins 

and the ORE gene sequences in the 5' promoter region of the aldose reductase gene (ALR2). 

The assay was performed by incubating a known quantity of purified nuclear protein extracts 

with a 32P end-labelled DNA fragments containing the putative protein binding sites, which in 

this study were the ORE's of 5'ALR2. The assay incorporates the use of a non-denaturing 

polyacrylamide gel to separate protein!DNA complexes from free DNA, which can then be 

analysed quantitatively. This study was carried out using a Gel Shift Assay System (Promega 

Life Sciences, Southampton, UK; http://www.promega.com). The study used the established cell 

lines Jurkat E6.1 as well as PBMC's extracted from fresh whole blood samples. 

Established cell lines 

Jurkat E6.1 Human Leukaemic T cell lymphoblast- ECACC No. 88042803 

This cell line was obtained from the European Collection of Animal Cell Cultures (ECACC, 

Porton Down, UK), and are an IL-2 producing cell line derived by incubating the cells at 41 oc 

for 48h followed by limited dilution cloning over macrophages. Morphologically these cells 

grew as a suspension. Cells were initially decanted into a centrifuge tube and centrifuged at 

70-1 OOg for 5 minutes. Cells were cultured in Roswell Park Memorial Institute (RPMI) 1640 + 

2mM Glutamine + 10% Foetal Bovine Serum (FBS) at 37°C in a 5% C02 incubator. Cells 

were grown and were sub-cultured during their log phase of growth 2-3 days following 

seeding determined by haemocytometer counting. Cells were maintained at between 3-9 x 

100,000 cells/ml. 
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Extraction of Peripheral blood mononuclear cells (PBMC's) from whole blood 

Peripheral blood mononuclear cells (PBMC's) were extracted from 20 ml fresh whole blood/ 

Heparin samples. Briefly the blood was diluted in equal volume of Dulbecco's Phosphate 

Buffered Saline (PBS) (Life Technologies, Paisley, UK) pre-warmed to 37°C in a water-bath 

(Grant, UK). 7 ml ofLymphoprep™ (Nycomed Pharma AS, Oslo, Norway) was added to each 

of 6 x 15 ml Falcon® centrifuge tubes and 7 ml of the blood/PBS solution was carefully added 

using a sterile Pasteur pipette without disturbing the LymphoprepTM surface. Lymphoprep™ 

has a density of 1.077 ± 0.001 g/ml, and osmolality of 280 + 15 mosm to facilitate the 

isolation ofPBMC's by density gradient centrifugation. The samples were centrifuged at 1600 

x rpm with no break setting for 30 min at room temperature. The lymphocytes at the interface 

layer were then removed using a sterile Pasteur pipette and transferred into a clean 15-ml 

Falcon® centrifuge tube. Cells were washed twice, using 4 x volume RPMI 1640 and 

centrifuging at 1400 x rpm for lO minutes in a bench centrifuge. Cells were then re-suspended 

at a concentration of 0.5 x 106 /ml in RPMI 1640 ( 11 mM D-glucose) supplemented with 5% 

L-Glutamine, 10% Foetal calf serum (FCS) and 5% Penicillin/Streptomycin. The cell 

suspension was divided into two 250 ml cell culture flasks (Becton-Dickinson). The cells 

were stimulated by the addition of the mitogen stimulant phytohaemagglutinin (PHA) 

(IJ.ig/ml) and incubated in a Nuaire Flow incubator (Indis Scientific, Glasgow, UK) at 37°C 

with 5% col until cell replication was achieved. 

Cryopreservation 

For future work cultured cells were stored by cryopreservation. Actively growing cells, free 

from contamination were suspended in the cryoprotectant dimethylsulphoxide (DMSO) 

complete medium 10% (v/v) and FBS to give l x 106-1 x 107 cells/ml in medium. Cell number 

was counted using trypan blue solution (Sigma Chemicals, Poole, UK) and a Neubauer 
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haemocytometer. Cells were cooled at -1 °C/min and frozen at a continuous rate to -196°C and 

transferred to gaseous phase liquid nitrogen. When required the ampoules of frozen cell lines 

were resuscitated by removing from liquid nitrogen pod, and held at room temperature for 

approximately l minute and then transferred to a 37°C water bath for 1-2 minutes until fully 

thawed. To reduce risk of contamination, ampoules were wiped with tissue soaked in 70% 

alcohol prior to opening. The contents of the ampoule were then pi petted directly into a flask 

of media pre-warmed to 37°C. 

Establishment of stress conditions 

For the purposes of studying ORE binding protein activity, cells were incubated under 

hyperosmotic and hypertonic conditions to simulate the diabetic hyperglycaemic state. 

PBMC's from TlDM patients and normal controls, as well as the cell lines were incubated at 

37°C for 24 hours before the addition of the stress factor. For the hyperglycaemia experiments 

cells were cultured in either normoglycaemic conditions (11 mmol/1 D-glucose) or 

supplemented with 17 mmol/1 D-glucose to create a 28mM/1 environment (hyperglycaemia). 

Optimal glucose dosage was obtained by carrying out the assay using 14 mmol and 28 mmol 

D-glucose. The best results were obtained from the 28 mmol assay, and this was therefore 

used for the experiments. Cells were then incubated for 5 days at 37°C in a Nuaire flow 

incubator. Cells remained viable for 5 days and this was confirmed by examination under the 

microscope and by Trypan Blue staining techniques. 

Extraction of nuclear protein from whole cells 

Nuclear protein extracts were prepared using methods previously described by Dignam et a/ 

1983 [a and b]. Non-adherent cells were re-suspended in the culture flask by gently pipetting 

the culture medium up and down using a Pasteur pipette, and transferred to a Falcon® 
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centrifuge tube. Adherent cells were detached from the cell culture flask using trypsin!EDT A 

solution and also transferred to Falcon® centrifuge tubes. Cells were then pelleted by 

centrifugation at 800 x rpm for 4 minutes. The supematant was removed and cells were 

washed twice with PBS pre-warrned to 37°C in a water-bath and centrifuged at 600 x rpm for 

30 sec's. The supernatant was discarded and the pelleted cells were re-suspended in lOOJ.!l of 

buffer A (10mM HEPES, pH 7.9, 1.5 mM MgCh, 10mM KC!, 0.5mM DTT, 0.2% NP-40, 

100mM AEBSF, 18.4mg/ml sodium orthovanadate, 42mg/ml sodium flouride and 2.2mg/ml 

aprotonin) and held on ice for 15 minutes. The resulting cell lysate was then centrifuged at 

1300 x rpm for 1 0 minutes. The supematant containing cytoplasmic proteins was removed and 

the nuclear pellet was re-suspended in 50J.1l of buffer C (20mM HEPES pH 7.9, 25% glycerol, 

0.42 M NaCl, 1.5mM MgCh, 0.5mM DTT, 0.2 EDTA, 100 mM AEBSF, 18.4 mg/rnl sodium 

orthovanadate, 42 mg/ml sodium fluoride, 2.2 mg/rnl aprotonin), and incubated on ice for 10 

minutes. After centrifugation at 1300 x rpm for I 0 minutes the supematant containing the 

nuclear protein was extracted and stored in a fresh tube at -70°C until use. 

Determination of protein concentration for nuclear fraction 

The concentration of protein in the samples was determined using a Coomassie® Plus Protein 

Assay reagent kit (Peribo Science Ltd., Chester, UK). Serial dilutions of a 2.0mg/rnl bovine 

serum albumin (BSA) protein standard were made, ranging from 0 to 2.0 mg/rnl (0, 0.2, 0.4, 

0.8, 1.6, 2.0) in clean dry glass test tubes. 1 rn1 of Coomassie® Plus Protein dye reagent was 

added to 50J.1l of each protein dilution, gently vortexed and left to stand for 5min-l hour. The 

OD595 versus reagent blank was measured using a WPA UV1101 Biotech Photometer 

(Biotech, UK), and a standard curve was plotted. Sample protein concentrations were 

established by reading from the standard curve, and accounting for appropriate dilution 

factors. 
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OUgonucleotide probe design and labelling 

Oligonucleotide sequences were designed with the aid of sequences downloaded from 

GenBank database (www.ncbi.nlm.nih.gov). Three oligonucleotides were designed, each to 

incorporate one ORE sequence within the promoter region of the ALR2 gene (figure 21, table 

24). All oligonucleotides were commercially synthesised by MWG Biotech (Milton Keynes, 

UK) at a scale of 0.2J..lmol. Oligonucleotide probes were re-suspended in sterile water to create 

a working dilution of 1.75 pmoles/ul. Phosphorylation was carried out by incubating 1.75 

pmol of oligonucleotide for 10 minutes at 37°C in a reaction mixture containing; T4 

polynucleotide kiriase 10 X buffer [100mM Tris-HCI (pH 7.6), 100 mM MgCh, 50mM DTT], 

1J..ll J.}2P-ATP, nuclease free water and 5-10 units T4 polynucleotide kinase (Promega Life 

Sciences, Southampton, UK). The reaction was stopped by adding 1J..ll of 0.5M EDTA and 

diluted in 89J..ll ofTE buffer (10mM Tris-HCI pH 8.0, 1 mM EDTA). 
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5'ALR2 (H. sapiens, accession number U72619): 

tacaaaag 
cacttt 

taaagaaagc accaaatgga aaatcaccqq catggagttt agagagacct ggtgcttgag 

Figure 21. Nucleotide sequences for 5'ALR2 promoter region containing osmotic 
response elements. Oligonucleotide sequences are highlighted in blue (OREA), green 
(ORE B), and yellow (ORE C). 

ORE 
ORE A sequence 
• ORE A probe 

ORE B sequence 
• ORE B probe 

ORE C sequence 
• ORE C probe 

Sequence 
5' TGG AAA AAT AT 3' 
5' TTA CAT GGA AAA ATA TCT GGG 

5' AAA TTT TTC CA 3' 
5' CTG TAT AAA TTT TTC CAG GAG GG 3' 

5' GAA AAT CA 3' 
5' ACC AAA TGG AAA ATC ACC GGC ATG G 3' 

Table 24. Oligonucleotide sequences designed to incorporate the osmotic response 
element of interest. 
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Preparation of non-denaturing 4% acrylamide gel 

Gel plates were wiped clean using 70% IMS solution and rinsed using warm purified water to 

remove any ionic contaminants. The glass plates were assembled using 0.75mm spacers and 

held together using clamps and a casting tray. The rig was loaded with distilled water to 

ensure a good seal and no signs of leakage. The water was poured away and well combs were 

inserted between the glass plates. The gel solution was prepared by mixing 5 ml 10 X TBE, 

2.5 ml 2% bisacrylarnide (BioRad), 10 rnl 40% acrylarnide, 3.1 ml 80% glycerol, 79.5ml 

sterile water glass wide necked conical flask. To polymerise the gel 70fll of TEMED and 

750fll of 10%APS. The gel solution was drawn up into a syringe and the gel was poured into 

the gel casting system, care being taken not to form air bubbles, and left for 30 minutes to 

polymerise. Prior to running the samples the gel was positioned in a vertical position in a 

running tank and equilibrated in a 0.5% TBE running buffer at 100V for 30 minutes. The well 

comb was removed and the wells were washed out with 0.5 TBE using a 21-gauge needle and 

synnge. 

Control and competition assay 

The specificity of the DNA binding protein for the putative binding sites was established by 

competition experiments using an AP1 consensus oligonucleotide as a probe which contains 

other unrelated DNA sequences (figure 22). 

SP-1 5' GAT CGA ACT GAC CGC CCG CGG CCC GT 3' 

AP-1 3' A TT CGA TCG GGG CGG GGC GAG C 5' 

Figure 22. Nucleotide sequence of SP-1 and APl consensus oligonucleotides used in 
competition experiments. 
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The AP 1 ( 1. 7 5 pmol) was labelled using [ y-32P] A TP using a phosphorylation reaction as 

previously described. Four reaction conditions were set up; a negative control, a positive 

control and two competition assays to demonstrate binding specificity. The reactions were set 

up in sterile microcentrifuge tubes in accordance to table 25. These were incubated for 10 

minutes at room temperature and then lJ..ll of [y_32P] ATP labelled ORE oligonucleotide was 

added to each reaction. Th.is was then incubated at room temperature for a further 20 minutes, 

following which lJ.ll of gel loading 10 x buffer (250mM Tris-HCl, 0.2% bromophenol blue, 

40% glycerol) was added to each reaction. The samples were then loaded into the wells of the 

4% acrylamide gel and electrophoresed at lOOV for 3-4 hours. The gel was then transferred to 

Wbatman 3M paper (Wbatman, Maidstone, UK) and overlaid with Saran Wrap™. The gel was 

then exposed to X-Omat photographic film (Kodak, UK) between intensifying screen for 48 

hours at -80°C. The film was then developed using developer and fixing solutions (Kodak, 

UK). The bands were analysed and quantified using a phosphoimager (BioRad) with multi 

analyst software. 

Negative control 
71-ll Nuclease free water 
21-ll Gel shift binding 5X buffer 
OJ.ll Nuclear extract 
Specific competitor 
41-ll Nuclease free water 
21-ll Gel shift binding 5X buffer 
21-ll Nuclear extract 
lJ.ll Unlabelled competitor oligo (SPl) 

Positive control 
5J..1.l Nuclease free water 

2J..ll Gel shift binding 5X buffer 
2J..1.l Nuclear extract 

Non-specific competitor 
4).11 Nuclease free water 
2).11 Gel shift binding 5X buffer 
2).11 Nuclear extract 
1).11 Unlabelled noncompetitor oligo (APl) 

Table 25. Reaction conditions for control and competition experiments for ORE A, 
B and C, using SP-1 as the competitive probe, (Promega Gel Shift Assay Systems 

Technical Bulletin No.llO. 
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Protein reaction for subject gel shift assay 

The labelled ORE probe along with a gel shift binding 5 x buffer (20% glycerol, 5mM 

MgC12, 2.5mM EDTA, 2.5mM DTT, 250mM NaCl, 50mM Tris-HCl, 0.25 mg/ml poly (dl

dc)• poly (dl-dc)) was incubated with 5-IOJ.lg of nuclear protein (determined by the protein 

assay described previously) at room temperature for 20 minutes. 5J.1l of gel loading dye (40% 

glycerol, 0.2% bromophenol blue, 250mM tris-HCl) was added and samples were loaded into 

the wells of the gel and electrophoresed as before. 

-223-



Chapter 3. Subjects. materials and methods 

Approaches to the detection of susceptibility loci for diabetic complications 

There are two strategies that may be applied to identify susceptibility genes for diabetic 

complications, namely linkage analysis using affected pedigrees, and population association 

case-control studies (Chowdhury et at 1999). Linkage studies involve using affected sib pairs 

or discordant sib pairs and require a large number of families with two or more affected 

offspring. It is recognised that due to the complex inheritance of TIDM and T2DM large 

affected pedigrees of this sort are rare and somewhat difficult to collect. Association studies, 

which involve comparing allele and genotype frequencies of candidate genes, in individuals 

with microvascular disease and control subjects, are therefore an alternative strategy. There 

are two main approaches to performing association based studies which include case-control 

analysis and transmission disequilibrium analysis. Since there is no superior approach to 

identifying genetic determinants of diabetic microvascular complications more than one 

approach is needed for candidate gene analysis. The candidate gene approach has the 

advantage that the availability of a polymorphism close to the gene makes it possible to report 

clear positive or negative results because recombinants between the marker and the gene are 

unlikely. However, most of the methods have limited power in assessing minor rather than 

major gene effects. The approaches that were employed in this study were as follows; 

Population based case-control association analysis 

Population association studies require the use of large numbers (at least 200/group), of similar 

age distributions obtained from the same geographical population to try to exclude ethnic 

admixture. Confirmation of a positive or negative result is also required in a separate 

population, through multi-centre collections. However, despite stringent controls to match 

cases and controls, there still remains the possibility that significant associations are due to 

bidden population stratification and are therefore spurious. A population of British Caucasoid 

diabetic subjects with microvascular disease, diabetic subjects with no evidence of 
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microvascular disease and non-diabetic controls were studied, as well as a population of 

Southern Indian Dravidian diabetic subjects and controls in the course of this thesis. 

Family based association analysis 

Family based association analysis using a collection of trios has been regarded as the gold 

standard test for genetic association studies. Trios can be used to confirm and ultimately fme 

map linkages from linkage studies, facilitate candidate gene studies and to examine genetic 

associations. The transmission/disequilibrium test {IDT) is used in the study and involves the 

analysis of the frequency of transmission of designated alleles from heterozygous parents to 

affected offspring. A large collection of British Caucasoid nephropathy trios was collected 

through a multi-centre research programme from seven locations nation-wide and used in this 

thesis. Significant variance from the expected Mendelian transmission of 50:50 would indicate 

that the allele has a role in ·the susceptibility to microvascular complications of diabetes. 

Statistical analysis of data 

All the data collected was entered into a Microsoft Excel spreadsheet (Microsoft, UK) and 

statistical analysis was performed through this program, and also by the use of Epi-Info 6, 

(Centres for Disease Control and Prevention, Atlanta, Georgia, USA) program. 

Allele and genotype frequencies 

The number of alleles detected was obtained using gene counting. Allele frequencies were 

expressed as decimals and calculated from the number of copies of an allele divided by the 

total number of chromosomes tested in the population. A homozygous genotype was counted 

as two copies of the allele. Genotype frequencies were determined as the percentage of 

subjects positive for each genotype. The frequency of the alleles and genotypes between the 

patient subgroups and normal control groups were compared using Chi-squared distribution 
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test and 2 x 2 contingency tables to test significance by degrees of freedom (df). This was 

performed on the 'Stat-Calc' program (Epi Info 6). The P values were corrected for the 

number of comparisons made (p= 0.05/n, where n is the number of independent associations 

detected), and Pc-values of <0.05 were considered to be significant (Bland 1995). Where the 

observed number in each category is <5 Fishers exact test was applied. 

Hardy-Weinberg equilibrium 

The Hardy-Weinberg principle was used in order to determine whether a hi-allelic 

polymorphism is conforming to normal distribution within a population. The underlying 

assumption is that the frequency of alleles remains constant from generation to generation. 

The expected gene frequencies are calculated by the formula; I = p2 + 2pq + q2 where p and q 

are the frequencies of the two alleles within the population under investigation. The observed 

gene frequencies were then compared with the expected frequencies using 2 x n tables and the 

Chi-squared test. Hardy-Weinberg was established if the expected frequency did not differ 

significantly(<= 0.05) from the observed (Strachan and Read 1996). 

Transmission Disequilibrium Test (TDT) 

The TDT was used in the analysis of the family data (Spielman et a/1993; Todd 1996; Schaid 

and Sommer 1994). The test evaluates the frequency with which a suspected susceptibility 

allele is transmitted from heterozygous parents to the affected offspring. TDT assesses 

deviation from 50% transmission. The association of an allele is determined by the use of the 

·i test and 2x2 contingency tables. A Pc value of <0.05 was considered to be significant. In 

order to obtain an unbiased multihaplotype TDT analysis all transmissions were counted and a 

significance level was estimated empirically (Dudbridge et a/2000). 
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Results 

Prome of TlDM Caucasoid patient groups 

Table 6 shows the clinical features of the patient sub-groups with the mean, standard 

deviation and the range for subjects of British Caucasoid origin with TlDM. The total 

number ofTlDM subjects studied was 244 consisting of 155 males and 129 females. The 

TlDM subjects were subdivided according to their diabetic complication phenotype. These 

groups include uncomplicated diabetes (n=66), diabetic retinopathy (n=44), diabetic 

neuropathy (n=18), diabetic nephropathy with diabetic retinopathy (n=30), diabetic 

retinopathy with neuropathy (n=24), and full house patients (n=62). The mean average age 

at the time of the study in all of the groups was between 46.3 (±15.6) and 51.6 (±13.3). The 

distribution of the mean average age at onset of diabetes in all groups was between 16.5 (± 

11.8) and 25.4 (± 11.8) years of age and the range was similar in all of the groups. The 

mean average duration of diabetes in all groups was between 27.3 (±9.9) and 32.0 (± 12.9). 

The range of this variable was also similar in all of the groups. There is a general elevation 

in the onset of diabetes between the ages of ll and 13, and a sharp increase in incidence in 

the early twenties. Following this the incidence drops around mid twenties with a relatively 

low incidence from the late thirties and older. 

There is no clinical data for the normal control population as they were taken from the cord 

blood. 
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Profile of T2DM Southern Indian population 

Table 7 shows the clinical features of the patient sub-groups with the mean, standard 

deviation and the range for subjects of Southern Indian/Dravidian origin diagnosed with 

T2DM. The total number of T2DM subjects was 60, consisting of 34 males and 26 

females. The T2DM subjects were sub-divided according to their diabetic complication 

phenotype. These consisted of two groups which were uncomplicated/normoalbuminuric 

diabetics (n=28), and diabetics with proteinuria (n=32). The mean average age at the time 

of the study in both groups was 55 (±10.1) and 53.8 (±8.9) respectively, and the range was 

similar in both groups. The mean average age at onset of diabetes in both groups was 42.1 

(±11.3) and 42.3 (±8.5) respectively, and the range was similar in both groups. The mean 

average duration of diabetes in both groups was between 13.1 (±7.5) and 11.8 (±5.4) and 

the range of this variable in both groups was also similar. It is important to note that the 

T2DM normoalbuminuria patient subgroup bad a duration of diabetes ranging from 2-29 

years (mean 13.11 ± 7.5). It is possible that some of these subjects will develop 

microvascular disease later during the course of their disease. The peak age at onset of 

diabetes was between 40 and 50 years of age with a relatively low incidence before and 

after this age group. 

The normal control population had a mean age of 38 ±6.3 with a range from 30 to 58, 

which was a slightly larger age range than the diabetic subjects included in the study. 
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Aldose Reductase Gene Study 

Associations of polymorphism's within the ALR2 gene and promoter region and the 
microvascular complications of TlDM and T2DM 
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Polymorphisms within the ALR2 gene and its promoter region 

Polymorphisms within the ALR2 gene and its promoter region were investigated. The 

study incorporated three subject groups of which two were case control studies and one 

was a family trio based study. The study used a population of TlDM and normal control 

subjects of British Caucasoid origin, a population of T2DM and normal control subjects of 

Southern Indian origin, and the 'Diabetes UK- Warren nephropathy family trio' collection 

of TlDM diabetic subjects of British Caucasoid origin where the proband had diabetic 

nephropathy. 

Three polymorphisms of the ALR2 gene region were studied, a (CA)n repeat microsatellite 

polymorphic marker located 2.lkb upstream of the aldose reductase gene start site, a C to 

T single base substitution polymorphism located -l 06bp upstream of the ALR2 start site, 

and an A to C polymorphism located within intron 8 (+11842) of the ALR2 gene itself 

(figure 23). The results of these studies are presented in tabular form in the following 

section. 

For the case-control studies the data was analysed for allelic and genotypic frequencies 

between subjects with diabetes and subjects without diabetes, and then with regard to 

subjects onset of diabetic microvascular disease. For the family based study the TDT was 

applied to determine transmission frequency of alleles from parents to affected offspring. 

Not all of the populations studied were investigated for all of the polymorphisms, but 

where possible the whole population of each group was analysed for the polymorphism 

studied for ease of comparability. 
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5' ALRl-(CA)n microsatellite polymorphic marker 

The (CA)n dinucleotide repeat microsatellite situated 2.lkb upstream of the aldose 

reductase transcription start sequence was investigated. Polymerase Chain Reaction was 

carried out to amplify the region upstream of the aldose reductase gene containing the 

(CA)n repeat microsatellite as described in chapter 3. Amplification products (61-11) mixed 

with stop solution (Amersham, UK) were separated on a 6% polyacrylamide gel at 1900V 

for 3 hours, and alleles were revealed by autoradiography [figure 24) and typed using the 

Fluor-s multi-imaging system (BioRad). The size of the bands was checked by running a 

[32P] ATP radiolabeled molecular weight marker alongside the subjects. The (CA)n 

microsatellite was investigated in TlDM subjects and nonnal controls of British Caucasoid 

origin, T2DM subjects and non-diabetic adult controls-of Southern Indian/Dravidian origin 

and the 'Diabetes UK- Warren family trios' collection of British Caucasoid origin, where 

the proband had diabetic nephropathy. In these studies we were able to find 12 alleles 

which differed by the number of integral repeats. Subjects were assigned their allele and 

genotype according to the number of CA repeats which were identified (table 26), where Z 

is the most common allele and consists of 24 CA repeats. Allele and genotypes were 

assigned by eye and where stutter bands were present the PCR conditions were altered by 

increasing the annealing temperature and re-running the gel. 
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Figure 24. 5' ALR2 microsatellite autoradiograph. Bands were assigned by eye, and 
compared alongside alleles of known genotypes. Assignment was carried out by two 
independent observers. Where stutter peaks were observed, the PCR was a ltered 
and optimised in order to remove the shadow bands. 

5' ALR2 microsatellite autoradiograph. Seven alleles are identified in this 
autoradiograph and allocated genotypes for each of the subjects shown in lanes 1-8 
are as follows: 
Lane 1: Z/Z+2 
Lane 2: Z/Z+2 
Lane 3:Z+2/Z-2 
Lane 4: Z/Z-2 
Lane 5: Z/Z+2 
Lane 6: Z/Z +4 
Lane 7: Z+2/Z+4 
Lane 8: Z/Z 
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Allele PCR product size (bp) CA repeats 

Z+10 148 29 

Z+8 146 28 

Z+6 144 27 

Z+4 142 26 

Z+2 140 25 

z 138 24 

Z-2 136 23 

Z-4 134 22 

Z-6 132 21 

Z-8 130 20 

Z-10 128 19 

Z-16 122 16 

Table 26. Allele sizes in base pairs for the 12 different CA repeat 
polymorphisms identified. This table shows the size of the PCR amplified region 
corresponding to each allele, along with the number of dinucleotide (CA)n repeats. 
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5'ALR2- (CA)n microsatellite marker in British Caucasoid TlDM subjects and 
normal controls 

The (CA)n microsatellite marker in the 5' region of the ALR2 gene was investigated using 

244 subjects with TlDM of British Caucasoid origin as well as a collection of 120 British 

Caucasoid normal controls (clinical demographics shown in table 6). Within the TIDM 

subject population -studied, there were 66 diabetic controls, 62 full house patients, 18 with 

diabetic neuropathy, 24 with diabetic retinopathy and neuropathy, 30 with diabetic 

nephropathy and retinopathy and 44 with diabetic retinopathy alone. 

The frequency of the (CA)n alleles in both TlDM and normal control populations is shown 

in table 27. There were 9 (CA)n alleles detected at the 5'ALR2 locus in the British 

Caucasoid TlDM and control population; Z+8, Z+6, Z+4, Z+2, Z, Z-2, Z-4, Z-6 and Z-16 

where Z is the most common allele and consists of 24 CA repeats. Nine alleles gave rise to 

54 possible genotypes, of which 23 were identified here. In the analysis of allelic 

frequencies homozygotes were counted as 2 alleles, and alleles and genotypes that are not 

detected are not shown. Tables show the percentage frequency of detected alleles and 

genotypes with actual numbers detected shown in parenthesis. Possible associations were 

investigated with respect to allelic frequency and genotype and comparisons were made 

between groups using the r! test and 2x2 contingency tables. Where the observed 

frequencies were <5 a two tailed Fishers exact test was applied. 

This data set includes and extends results previously obtained and published by Angela 

Heesom (refer to acknowledgements), all of which have been re-analysed here as 

confirmation of the earlier findings. The tables include a further 76 TlDM subjects and a 

further 18 control subjects, that have been genotyped since earlier publications (Heesom et 

a/1997). 
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5' ALR2- (CA)n allelic frequencies in British Caucasoid TlDM and normal control 
subjects 

The frequency of the 5'ALR2 alleles in TIDM Caucasoid subjects is shown in tables 27 to 

33. Table 27 shows the percentage frequency of the detected 5 'ALR2 (CA)n alleles in the 

total TIDM population studied compared to the nonnal control population studied. With 

the exception of the Z+6 allele there were no significant differences found in the allelic 

frequencies between the two groups. In the case of the Z+6 allele the incidence was 

significantly higher in the nonnal controls compared to the TIDM population (2.9 vs. 

0.6%, r} = 6.3, p= 0.01 (ldf), Fishers exact correction; 0.02), this however, involved small 

numbers. 

The TIDM subjects with diabetes of more than 20 years duration of diabetes with insulin 

dependence, who had not progressed to complications, were then separated. This group of 

patients has a lower risk of developing complications after this time and therefore serve as 

an important diabetic control population. The allelic frequencies for these groups are 

shown in table 28. When comparing the TIDM subjects with one or more microvascular 

complications to the TIDM control subjects significant differences in the frequency of 

detected alleles were found. The Z-2 allele was higher in the complicated group compared 

to the uncomplicated controls (28.1 vs. 15.9%, "l = 7.7, p= 0.006 (ldf), Pc= 0.05). The 

Z+2 allele was significantly higher in the TIDM control population compared to TIDM 

subjects with one or more microvascular complication (16.9 vs. 34.9%, 'X! = 18.3, p= 

0.00002 (ldt), Pc = 0.0002). Of interest, the Z-4 allele was also increased in the TIDM 

subjects with one or more microvascular complications compared to the uncomplicated, 

and the Z+4 allele was slightly increased in the uncomplicated versus the complicated 

group. Comparison of the TIDM control allelic frequencies with the nonnal control allelic 

frequencies showed no significant difference between the frequencies of the Z-2 allele 

(15.9 vs. 21.3%, although there was a slight reduction in percentage frequency in the 
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diabetic controls. A difference was also found in the frequency of the Z+2 allele (34.9 vs. 

21.7%, ·l = 7.6, p= 0.006 (ldf), Pc= 0.05). 

Table 29 shows the allelic. frequencies for TlDM subjects according to the precise 

phenotype of the TlDM subject's microvascular complications. The frequency of the Z 

allele remains constant between all groups. All five TlDM complication subgroups show 

an increase in the percentage frequency of the Z-2 allele compared to both the 

uncomplicated and normal controls. Conversely, the Z+2 allele percentage frequency is 

decreased in all five TlDM complication subgroups compared to the uncomplicated 

diabetic controls. The groups for which these trends reach statistical significance for Z+2 

are the diabetic nephropathy and retinopathy subgroup (9.9 vs. 34.9%, x2 = 12.9, p= 

0.0003 (ldf), Pc= 0.003), and the full house patients subgroup (14.5 vs. 34.9%, x2 = 14.1, 

p= 0.0002 (ldf), Pc= 0.002). 

Table 30 shows the percentage frequency of the 5'ALR2 alleles in the amalgamated 

subgroups according to specific microvascular complications. The frequency of the Z allele 

remains consistent in all groups. All three of the complication subgroups show decreased 

frequency of the Z+2 allele compared to the uncomplicated. Firstly, the diabetic 

nephropathy subgroup (13.04 vs. 34.9%, x2 = 21.2, p= 0.0000004 (ldf), Pc= 0.000004). 

Secondly, the diabetic retinopathy subgroup (16.9 vs. 34.9%, x2 = 17.5, p= 0.00003 (ldf), 

Pc = 0.0003). Thirdly, the diabetic neuropathy subgroup (16.4 vs. 34.9%, x2 = 15.4, p= 

0.00009 (ldf), Pc = 0.0008). The Z-2 allele was increased in all three of the complicated 

sub-groups. In the case of diabetic nephropathy, (29.9 vs. 15.9%, x2 = 8.2, p= 0.004 (ldf), 

Pc= 0.04). For diabetic retinopathy, (28.4 vs. 15.9%, x2 = 7.9, p= 0.005 (1df), Pc= 0.05). 

Finally, in the case of diabetic neuropathy, (29.3 vs. 15.9%, x2 = 7.9, p= 0.005 (ldf), Pc= 

0.05). 
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Alleles TIDM subjeels Normal 
Controls 

D 488 240 
(244) (120) 

Z-16 0.2 
(I) (0) 

Z-6 1.0 1.3 
(5) (3) 

Z-4 4.9 4.2 
(24) (10) 

Z-2 24.8 21.3 
(121) (51) 

z 41.6 45.3 
(203) (110) 

Z+2 21.7 21.7 
(106) (52) 

Z+4 4.5 2.9 
(22) (7) 

Z+6 0.6 2.9 
(3) (7) 

Z+S 0.6 
(3) (0) 

Table 27. Percentage frequency of the detected 5' ALR2 (CA)n microsatellite marker 
alleles in British Caucasoid TlDM subjects compared to normal controls 

This table shows the frequency of detected alleles for TlDM subjects and normal control 
subjects. Frequencies are expressed as the percentage incidence out of the total number of 
alleles detected. Comparisons were made between the allelic frequencies for control and 
Tl DM subjects using the ·l test and 2 x 2 contingency tables. For comparisons of less than 
5 samples Fishers exact test was applied. 

n = number of alleles detected, number of subjects studied is shown in parentheses. 

TlDM vs.NC; 

Z+6; ·'l = 6.3, p= 0.01 (ldf), Fishers Exact= 0.02 

No other significant differences were found in the allelic frequencies between Tl DM 
patients and the normal control groups. 
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TIDM Nephropathy Unoompll<ated Normal Controls 
and/or Retinopathy (DC) (NC) 
and/or Neuropathy 

(DR/N/Nu) 

n 356 132 240 
(178) (66) (120) 

Z-16 0.3 
(I) (0) (0) 

Z-6 1.4 1.3 
(5) (0) (3) 

Z-4 5.9 2.3 4.2 
(21) (3) (10) 

Z-2 28.1 15.9 21.3 
(lOO) (21) (SI) 

z 42.4 39.4 45.8 
(IS I) (52) (110) 

Z+2 16.9 34.9 21.7 
(60) (46) (52) 

Z+4 4.2 5.3 2.9 
(IS) (7) (7) 

Z+6 0.3 1.5 2.9 
(I) (2) (7) 

Z+8 0.6 0.8 
(2) (I) (0) 

Table 28. Percentage frequency of the detected 5' ALR2 (CA)n microsatellite marker 
aUeles in British Caucasoid TlDM subjects with diabetic nephropathy and/or 
retinopathy and/or neuropathy (DRJN/Nu) compared to TlDM of short duration 
(SD), uncomplicated (DC) and normal controls (NC). 

This table shows the percentage frequency of detected alleles for TIDM subjects with 
microvascular disease (nephropathy, retinopathy, neuropathy) compared to the 
uncomplicated and normal controls. The percentage frequency is shown and the actual 
number of each of the alleles detected for each group is shown in parenthesis. n = number 
of alleles detected, the number of subjects is shown in parenthesis. Only significant 
differences by '"!} and correction by multiplying by the number of observed alleles, are 
shown. 

DRJN/Nu vs. Uncomplicated diabetic controls; 
;Z-2 ;x.2 = 7.7, p= 0.006 (ldf), Pc= 0.05 
;Z+2; ·/ = 18.3, p= 0.00002 (ldf), Pc= 0.0002 

NC vs. Uncomplicated diabetic controls; 
;Z+2; "/ = 7.6, p= 0.006 (ldf), Pc= 0.05 
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I 2 :J ~ ! 
Diabetic Diabetic Diabetic Diabetic Full House Uncomplicated Normal 

Retinopathy Nepbropatby Retinopathy Neuropathy Patients 
(DC) Controls (NC) 

and and 
Retinopathy Neuropathy 

n 88 60 48 36 124 132 240 
(44) (30) (24) (18) (62) (66) (120) 

Z-16 0.8 
(O) (0) (0) (0) (I) (O) (0) 

Z-6 2.3 1.7 1.6 1.3 
(2) (I) (0) (0) (2) (0) (3) 

Z-4 3.4 6.7 4.2 5.6 8.1 2.3 4.2 
(3) (4) (2) (2) (10) (3) (10) 

Z-2 22.7 31.7 33.3 24.9 29.0 15.9 21.3 
(20) (19) (16) (9) (36) (21) (51) 

z 38.6 46.7 35.4 47.2 44.4 39.4 45.8 
(34) (28) (17) ( 17) (55) (52) (IIO) 

Z+2 22.7 9.9 20.8 16.7 14.5 34.9 21.7 
(20) (6) (10) (6) (18) (46) (52) 

Z+4 9.1 1.7 6.3 2.8 1.6 5.3 2.9 
(8) (I) (3) (I) (2) (7) (7) 

Z+6 1.7 1.5 2.9 
(0) (I) (0) (0) (0) (2) (7) 

Z+8 1.1 2.8 0.8 
(I) (0) (0) (I) (0) (I) (0) 

Table 29. Percentage frequency of the detected 5'ALR2 (CA)n microsatellite marker 
aUeles in British Caucasoid TlDM subjects categorised in accordance to the onset of 
diabetic complications and normal control subjects. 

This table shows the percentage frequency of detected alleles for TlDM subjects with 
retinopathy (DR), nephropathy and retinopathy (DN/DR), retinopathy and neuropathy 
(DRIDNu), neuropathy (DNu), full house complications patients (FHC) and uncomplicated 
diabetics controls (DC). Also shown here is the allelic frequency of normal healthy 
controls. n = number of alleles detected, the number of subjects is shown in parenthesis. 

1 vs. Uncomplicated-diabetic controls; Z+2; X2 = 3.7, p= ns 

1 vs. Uncomplicated diabetic controls; Z-2; y} = 6.2, p= 0.01 (1df), Pc= ns 
Z+2; x2 = 12.9, p= 0.0003 (ldf), Pc= 0.003 

3 vs. UncompUcated diabetic controls; Z-2; x2 = 6.5, p= 0.01 (1df), Pc= ns 

4 vs. Uncomplicated diabetic controls; Z+2; x2 = 4.4, p= 0.04 (ldt), Pc= ns 

5 vs. Uncomplicated diabetic controls; Z-2; X2 = 6.4, p= 0.01 (1dt), Pc= ns 
Z+2; x2 = 14.1, p= 0.0002 (ldt), Pc= 0.002 
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I 1 3 Uncomplicated Normal Diabetic Diabetic Diabetic 
Nephropathy Retinopathy Neuropathy 

(DC) Controls 

(DN) (DR) (DNu) (NC) 

n 184 320 208 132 240 
(92) (160) (104) (66) (120) 

Z-4 7.6 5.9 6.7 2.3 4.2 
(14) (19) (14) (3) (10) 

Z-2 29.9 28.4 29.3 15.9 21.3 
(55) (91) (61) (21) (51) 

z 45.1 41.9 42.8 39.4 45.8 
(83) (134) (89) (52) (110) 

Z+2 13.0 16.9 16.4 34.9 21.7 
(24) (54) (34) (46) (52) 

Z+4 1.6 4.4 2.9 5.3 2.9 
(3) (14) (6) (7) (7) 

Table 30. Percentage frequency of the detected 5' ALR2 (CA)n microsatelllte aUeles in 
Caucasoid TlDM subjects categorised in accordance to onset of diabetic 
nephropathy, retinopathy or neuropathy. 

This table presents the allelic frequency of the (CA)n microsatellite in TlDM subjects of 
British Caucasoid origin. Subjects are classified in accordance to onset of retinopathy, 
nephropathy or neuropathy. The nephropathy group (n=92) is an amalgamation of the 
nephropathy and retinopathy (n=30) and full house subjects (n=62) groups previously 
identified. The retinopathy group (n=l60) is an amalgamation of the retinopathy (n=44), 
nephropathy with retinopathy (n=30), retinopathy and neuropathy (n=24) and full house 
patients (n=62) groups previously identified. The neuropathy group (n=l04) consists of 
subjects diagnosed as having neuropathy in the absence of any other microvascular 
complication (n=l8), the diabetic retinopathy with neuropathy (n=24) and full house 
patients (n=62) groups. Also presented is the allelic frequency in the uncomplicated and 
normal controls. Only the Z-2, Z+2, Z, Z-4 and Z+4 alleles are shown. n = number of 
alleles detected, the number of subjects is shown in parenthesis. 

1 vs. Uncomplicated diabetic controls; 
Z-2; 12 = 8.2, p= 0.004 (ldf), Pc= 0.04 
Z+2; 12 = 21.2, p= 0.0000004 (ldf), Pc= 0.000004 

2 vs. Uncomplicated diabetic controls; 
Z-2; 12 = 7.9, p= 0.005 (ldf), Pc= 0.05 
Z+2; 12 = 17.5, p= 0.00003 (ldf), Pc= 0.0003 

3 vs. Uncomplicated diabetic controls; 
Z-2; 12 = 7.9, p= 0.005 (ldf), Pc= 0.05 
Z+2; 12 = 15.4, p= 0.00009 (ldf), Pc= 0.0008 
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5' ALR2- (CA)n genotype frequencies in British Caucasoid TlDM and normal control 
subjects 

The frequencies of the 5'ALR2 genotypes in Caucasoid TlDM subjects and normal 

controls are shown in tables 31 to 35. Table 31 shows the detected frequency of the 

5'ALR2 genotypes in all TlDM subjects studies compared to the normal controls. No 

differences were detected between the two groups. Table 32 shows the frequency of the 

detected genotypes in the sub-groups of the TlDM population studied, diabetic 

complications, uncomplicated diabetic controls and normal controls subgroups. The low 

frequencies of many of the genotypes detected resulted in no significant differences being 

identified. However, the genotypes, which occurred more frequently in the population, 

were analysed for differences in percentage frequency. There was a significant decrease in 

the frequency of the Z/Z+2 genotype in those with complications (nephropathy, 

retinopathy, neuropathy) compared with the uncomplicated sub-group (15.7 vs. 37.9%, x} 

= 13.9, p= 0.0002 (I df), Pc = 0.009). There was an increase in the frequency of the Z/Z-2 

genotype in the diabetic complication group compared with the uncomplicated group (31.5 

vs. 12.1 %, x} = 9.3, p= 0.002 ( ldf), Pc = 0.05). The Z-2/Z-2 genotype however did not 

show a significant increase between the two groups. 

Table 33 shows the frequency of each of the genotypes detected in all of the patient 

subgroups according to the precise phenotype of the diabetic microvascular complications. 

Comparisons were made between each of the complication subgroups and the diabetic 

uncomplicated controls. With regard to the diabetic retinopathy subgroup there was an 

increase in the Z/Z-2 genotype compared to the diabetic controls, (29.6 vs. 12.1%, x} = 

5.2, p= 0.02 (ldf), Pc= ns). The Z/Z+2 genotype was decreased in the diabetic retinopathy 

group compared to the uncomplicated group, (15.9 vs. 37.9%, ·l = 6.01, p= 0.01 (ldf), Pc 

= ns). The Z/Z-2 genotype was increased in the nephropathy and retinopathy group 

compared to diabetic controls (36.7 vs. 12.1%, x.2 = 4.0, p= 0.05 (ldf), Pc= ns). The 
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ZIZ + 2 genotype was decreased in the nephropathy and retinopathy group compared to the 

diabetic controls (9.9 vs. 37.9%, "'! = 7.8, p= 0.005 (ldf), Pc = 0.1). The diabetic 

retinopathy with neuropathy, and the diabetic neuropathy only, subgroups followed a 

similar trend whereby the Z/Z-2 genotype was increased and the Z/Z+2 genotype was 

decreased in the complicated groups compared to the uncomplicated controls. The 

strongest evidence for a correlation came from the full house patient subgroup compared to 

the diabetic controls. The Z/Z-2 genotype was increased in the full house patient group 

compared to the diabetic control group (32.3 vs. 12.1 %, "'! = 7.6, p= 0.006 ( ldf), Pc = ns). 

The Z/Z+2 genotype was decreased in the full house patient groups compared to 

uncomplicated controls (14.5 vs. 37.9%, x_2 = 8.9, p= 0.003 (ldf), Pc = 0.07). No other 

differences were found in the frequency of any of the other genotypes detected. 

Table 34 shows the frequency of the detected genotypes in the TlDM patient groups 

amalgamated according to particular complication present. The diabetic nephropathy group 

showed significant correlation's whereby a reduction in the Z/Z+2 genotype and an 

increase in the Z/Z-2 genotype were both significant by the x_2 test (Z/Z-2; 33.7% vs. 

12.1%, x_2 = 9.6, p= 0.002 (tdf), Pc = 0.04, Z/Z+2; 13.04% vs. 37.9%, x2 = 13.2, p= 

0.0003 (ldf), Pc= 0.007. The diabetic retinopathy group also showed significance with the 

ZIZ+2 allele whereby there was a reduction compared to the uncomplicated group, (17.7 

vs. 37.9%, ·l = 14.4, p= 0.0002 (ldf), Pc = 0.005). The Z/Z-2 genotype was increased in 

the retinopathy group compared to the uncomplicated (31.3 vs. 12.1%, x_2 = 8.9, p= 0.003 

(ldf), Pc = 0.07). In the case of the diabetic neuropathy group the Z/Z-2 genotype was 

increased in the neuropathy group compared to the uncomplicated (30.8 vs. 12.1 %, x_2 = 

7.8, p= 0.005 (ldf), Pc = ns). In the case of Z/Z+2, there was a significant increase in the 

uncomplicated compared to the neuropaths (17.3 vs. 37.9%, x_2 = 9.04, p= 0.003 (ldf), Pc 

= 0.07). 
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Of the 92 patients with nephropathy, 45.7% had the Z-2/X genotype (where X is not Z+2), 

compared with only 24.2% in the uncomplicated diabetes group t'l = 7.6, p= 0.006 (Idf), 

Pc= 0.02). In contrast, the Z+2N genotype (where Y is not Z-2) was found in only 17.4% 

of the patients with nephropathy compared to 51.5% in the uncomplicated (X2 = 20.7, p= 

0.000005 (ldf), Pc = 0.00002) (table 35). Similarly, in the case of the 160 patients with 

retinopathy, 41.25% had the Z-2/X genotype compared with only 24.2% in the 

uncomplicated (X2 = 5.9, p= 0.02 (ldf), Pc = ns). In contrast, the Z+2N genotype was 

found in only 23.1% of patients with retinopathy, compared to 51.5% in the uncomplicated 

(X2 = 17.5, p= 0.00003 (ldf), Pc= 0.0001). Also, in the case of the 104 patients with 

neuropathy, 42.3% had the Z-2/X genotype compared with only 24.2% in the 

uncomplicated (x2 = 5.8, p= 0.02 (ldf), Pc = 0.08). In contrast, the Z+2N genotype was 

found in only 23.08% of patients with neuropathy, compared to 51.5% in the 

uncomplicated ('x.2 = 14.5, p= 0.001 (ldf), Pc= 0.0004). 
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Genotype TlDM subjects Normal Controls 
(NC) 

n 244 120 
'IJZ 12.3 20.8 

(30) (25) 
Z/Z-2 26.3 21.7 

(64) (26) 
llZ-4 4.9 2.5 

(12) (3) 
'IJZ-6 1.2 0.8 

(3) (I) 
llZ-16 0.4 

(I) (0) 
Z/Z+2 21.7 20.8 

(53) (25) 
.7JZ+4 3.3 2.5 

(8) (3) 
.7JZ+6 0.4 1.7 

(I) (2) 
.7JZ+8 0.4 

(I) (0) 
Z-2/Z-2 6.9 6.7 

(17) (8) 
Z-21Z-4 2.5 3.3 

(6) (4) 
Z-21Z+2 6.1 4.2 

(15) (5) 
Z-2/Z+4 1.2 

(3) (0) 
Z-4/Z-4 0.4 

(I) (0) 
Z-4/Z-6 0.8 1.7 

(2) (2) 
Z-41Z+2 0.4 0.8 

(I) (I) 
Z-4/Z+8 0.4 

(I) (0) 
Z+L'Z+2 4.9 8.3 

(12) (10) 
Z+2/Z+4 4.1 

(10) (0) 
Z+2/Z+6 0.8 

(0) (I) 
Z+21Z+8 0.4 

(l) (0) 
Z+4/Z+4 0.4 1.7 

(I) (2) 
Z+61Z+6 0.4 1.7 

(I) (2) 

Table 31. Percentage frequency of the detected 5'ALR2 (CA)n microsatellite marker 
genotypes in British Caucasoid TlDM subjects compared to normal controls 
This table shows the frequency of detected genotypes for TIDM subjects and normal 
control subjects. Frequencies are expressed as the percentage incidence out of the total 
nwnber of genotypes detected. n = number of genotypes detected. Comparisons were made 
between the allelic frequencies for normal controls and TIDM subjects using the Chi
squared test and 2 x 2 contingency tables. No significant differences were found in the 
genotype frequencies between Tl DM patients and the normal control groups. 

TlDM vs. NC; ZJZ; x2 = 5.9, p= 0.02 (ldt), Pc= ns 

246 



Cha~ter 4. Results 

Genotypes Tl DM Nephropathy Uneompllcated Normal Controls 
and/or Retinopathy (DC) (NC) 
and/or Neuropathy 

(DRIN/Nu) 

n 178 66 120 
Z/Z 12.4 12.1 20.8 

(22) (8) (25) 
Z/Z.2 31.5 12.1 21.7 

(56) (8) (26) 
Z/Z.4 6.2 1.5 2.5 

(ll) (I) (3) 
Z/Z.6 1.7 0.8 

(3) (0) (I) 
Z/Z-16 0.6 

(I) (0) (0) 
Z/Z+2 15.7 37.9 20.8 

(28) (25) (25) 
Z/Z+4 3.9 1.5 2.5 

(7) (1) (3) 
Z/Z+6 0.6 1.7 

(I) (0) (2) 
Z/Z+8 1.5 

(0) (I) (0) 
Z.2/Z.2 7.9 4.6 6.7 

(14) (3) (8) 
Z-2/Z-4 2.3 3.03 3.3 

(4) (2) (4) 
Z.2/Z+2 6.7 4.6 4.2 

(12) (3) (5) 
Z.2/Z+4 4.6 

(0) (3) (0) 
Z-4/Z-4 0.6 

(I) (0) (0) 
Z.4/Z.6 1.1 1.7 

(2) (0) (2) 
Z-4/Z+2 0.6 0.8 

(I) (0) (I) 
Z-4/Z+S 0.6 

(I) (0) (0) 
Z+2/Z+2 2.8 10.6 8.3 

(5) (7) (10) 
Z+2/Z+4 4.5 3.03 

(8) (2) (0) 
Z+2/Z+6 0.8 

(0) (0) (I) 
Z+2/Z+8 0.6 

(I) (0) (0) 
Z+4/Z+4 1.5 1.7 

(0) (I) (2) 
Z+61Z+6 1.5 1.7 

(0) (I) (2) 

Table 32. Percentage frequency of the detected 5'ALR2 (CA)n microsatellite marker 
genotypes in British Caucasoid TIDM subjects with nephropathy and/or retinopathy and/or 
neuropathy (DRIN/Nu) compared to TlDM uncomplicated (DC) and normal controls (NC). 
This table shows the percentage freque.ncy of detected genotypes for TIDM subjects with 
microvascular disease (nephropathy, retinopathy, neuropathy) compared to the uncomplicated and 
normal controls. The percentage frequency is shown and the actual number of genotypes detected 
for each group is shown in parenthesis. n = number of genotypes detected. 

DNIR/Nu vs. uncomplicated diabetic controls; 
Z/Z-2; l = 9.3, p= 0.002 (ldf), Pc= 0.05 
Z/Z+2; y} = 13.9, p= 0.0002 (ldf), Pc= 0.005 
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Genotypes 1 2 3 4 5 Uncomplicated Normal Diabetic DlabeHc Diabetic DlabeHc Full House 
Retinopathy Nephropathy Retinopathy Neuropathy Patients 

(DQ Controls 

and and 
(Nq 

Retinopathy Neuropathy 

D 44 30 24 18 62 66 120 

ZIZ 11.4 13.3 4.2 16.7 14.5 12.1 20.8 
(5) (4) (I) (3) (9) (8) (25) 

Z/Z-2 29.6 36.7 24.9 33.3 32.3 12.1 21.7 
(13) (11) (6) (6) (20) (8) (26) 

Z/Z-4 2.3 9.9 8.3 5.6 6.5 1.5 2.5 
(I) (3) (2) (I) (4) (I) (3) 

Z/Z-6 2.3 3.3 0 1.6 0.8 
(I) (I) (0) (0) (I) (0) (I) 

Z/Z-16 1.6 
(0) (0) (0) (0) (I) (0) (0) 

Z/Z+2 15.9 9.9 20.8 22.2 14.5 37.9 20.8 
(7) (3) (5) (4) (9) (25) (25) 

ZIZ+4 4.6 3.3 8.3 3.2 1.5 2.5 
(2) (I) (2) (0) (2) (I) (3) 

Z/Z+6 3.3 1.7 
(0) (I) (0) (0) (0) (O) (2) 

ZIZ+8 1.5 
(0) (0) (0) (0) (0) (I) (0) 

Z-2/Z-2 4.6 9.9 12.5 5.6 8.1 4.6 6.7 
(2) (3) (3) (1) (5) (3) (8) 

Z-2/Z-4 3.3 5.6 3.2 3.0 3.3 
(0) (1) (0) (I) (2) (2) (4) 

Z-2/Z+2 6.8 3.3 16.7 6.5 4.6 4.2 
(3) (1) (4) (0) (4) (3) (5) 

Z-2/Z+4 4.6 
(0) (0) (0) (0) (0) (3) (0) 

Z-4/Z-4 1.6 
(0) (0) (0) (0) (I) (0) (0) 

Z-4/Z-6 2.3 1.6 1.7 
(1) (0) (0) (0) (I) (0) (2) 

Z-4/Z+2 1.6 0.8 
(0) (0) (0) (0) (1) (0) (1) 

Z-4/Z+S 2.3 
(I) (0) (0) (0) (0) (0) . (0) 

Z+2/Z+2 4.6 3.3 3.2 10.6 8.3 
(2) (I) (0) (0) (2) (7) (10) 

Z+2/Z+4 13.6 4.2 5.6 3.03 
{6) {0) {1) (I) {0) (2) (0) 

Z+2/Z+6 0.8 
(0) (0) (0) (0) (0) (0) (I) 

Z+2/Z+8 5.6 
(0) (0) (0) (I) (0) (0) (0) 

Z+4/Z+4 1.5 1.7 
(0) (0) (0) (0) (0) (I) (2) 

Z+6/Z+6 1.5 1.7 
(0) (0) (0) (0) (0) (I) (2) 

Table 33. Percentage frequency of the detected 5'ALR2 (CA)n microsatellite marker 
genotypes in British Caucasoid TlDM subjects categorised in accordance to the onset 
of diabetic complications and uncomplicated (DC) and normal controls (NC) 

This table shows the percentage frequency of detected genotypes for TIDM subjects with 
respect to onset of microvascular complications, and normal control subjects. The 
percentage frequency is shown and the actual number of genotypes detected for each group 
is shown in parenthesis. n = number of subjects studied and genotypes detected. 
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1 vs. uncomplicated diabetic controls; 
Z/Z-2; ·/ = 5.2, p= 0.02 (ldf), Pc= ns 
Z/Z+2; x2 = 6.01, p= 0.01 (ldf), Pc= ns 

2 vs. uncomplicated diabetic controls; 
Z/Z-2; x2 = 4.0, p= 0.05 (ldf), Pc= ns 
Z/Z+2; X2 = 7.8, p= 0.005 (ldf), Pc= ns 

4 vs. Uncomplicated diabetic controls; 
Z/Z-2; x2 = 4.6, p= 0.03(1df), Pc= ns 

5 vs. Uncomplicated diabetic controls; 
Z/Z-2; x2 = 7.6, p= 0.006 (ldf), Pc= ns 
Z/Z+2; X2 = 8.9, p= 0.003 (Idf), Pc= ns 
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Genotypes I z j Uncompli<aled Normal conlrols Dlnbelic Dlnbellc DlabeUo 
Nel!hrol!alhl Relinoea•hr Neuroea•hr 

(DC) (NC) 

n 92 160 104 66 120 

'ZJZ 16.3 11.9 12.5 12.1 20.8 
(15) (19) (13) (8) (25) 

'ZJZ-2 33.7 31.3 30.8 12.1 21.7 
(31) (50) (32) (8) (26) 

'ZJZ-4 7.6 6.3 6.7 1.5 2.5 
(7) (10) (7) (I) (3) 

'ZJZ+2 13.0 15.0 17.3 37.9 20.8 
(12) (24) (18) (25) (25) 

'ZJZ+4 3.3 4.4 3.9 1.5 2.5 
(3) (7) (4) (I) (3) 

Z-2/Z-2 8.7 8.1 8.7 4.6 6.7 
(8) (13) (9) (3) (8) 

Z-2/Z-4 3.3 1.9 2.9 3.0 3.3 
(3) (3) (3) (2) (4) 

Z-2/Z+2 5.4 7.5 7.7 4.6 4.2 
(5) (12) (8) (3) (5) 

Z-2/Z+4 4.6 
(0) (0) (0) (3) (0) 

Z-4/Z-4 1.1 0.6 0.9 
(I) (I) (I) (0) (0) 

Z-4/Z+2 1.1 0.6 0.9 0.8 
(I) (I) (I) (0) (I) 

Z+2/Z+2 3.3 3.1 1.9 10.7 8.3 
(3) (5) (2) (7) (10) 

Z+2/Z+4 4.4 1.9 3.0 
(0) (7) (2) (2) (0) 

Z+4/Z+4 1.5 1.7 
(0) (0) (0) (I) (2) 

Table 34. Percentage frequency of the detected 5' ALR2 (CA)n microsatellite marker 
genotypes in British Caucasoid TlDM subjects categorised in accordance to onset of 
diabetic nephropathy, retinopathy or neuropathy 

This table presents the genotype frequency of the (CA)n microsatellite in TIDM subjects 
of British Caucasoid origin. Subjects are classified in accordance to onset of retinopathy, 
nephropathy or neuropathy. The nephropathy group (n=92) is an amalgamation of the 
nephropathy and retinopathy (n=30) and full house subjects (n=62) groups previously 
identified. The retinopathy group (n=I60) is an amalgamation of the retinopathy (n=44), 
nephropathy with retinopathy (n=30), retinopathy and neuropathy (n=24) and full house 
patients (n=62) groups previously identified. The neuropathy group (n=l04) consists of 
subjects diagnosed as having neuropathy in the absence of any other microvascular 
complication (n=l8), the diabetic retinopathy with neuropathy (n=24) and full house 
patients (n=62) groups. Also presented is the genotype frequency in uncomplicated and 
normal controls. Only the Z-2, Z+2, Z, Z-4 and Z+4 genotypes are shown. n = number of 
subjects analysed and genotypes detected. The percentage frequency is shown and the 
actual number of each genotype detected for each subjects group is shown in parenthesis. 

1 vs. uncomplicated diabetic controls; 
Z/Z-2; ·l = 9.6, p= 0.002 (ldt), Pc= 0.0 
ZJZ+2; r! = 13.2, p= 0.0003 (Idt), Pc= 0.007 
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2 vs. uncomplicated diabetic controls; 
Z/Z-2; ·l = 8.9, p= 0.003 (ldf), Pc= 0.07 
Z/Z+2; ·l = 14.4, p= 0.0002 (ldf), Pc= 0.005 
Z+2/Z+2; ·l = 5.2, p= 0.02 (ldf), Pc= ns 

3 vs. uncomplicated diabetic controls; 

Z/Z-2; ·l = 7.8, p= 0.005 (ldf), Pc= ns 
Z/Z+2; ·l = 9.04, p= 0.003 (ldf), Pc= 0.07 
Z+2/Z+2; J! = 6.07, p= 0.01 (1df), Pc= ns 
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I Diabetic 2 j U ncompllcated Normal Diabetic Diabetic 
Nephropathy 

Rellnoeathr Neuroealhr 
(DC) Controls (NC) 

D 92 160 104 66 120 

~2/X 45.7 41.3 42.3 24.2 31.7 
(42) (66) (44) (16) (38) 

Z+2/Y 17.4 23.1 23.08 51.5 30.8 
(16) (37) (24) (34) (37) 

~2/Z+2 5.4 7.5 7.7 4.5 4.2 
(5) (12) (8) (3) (5) 

XIY 31.5 28.1 26.9 19.7 34.2 
(29) (45~ (28) (13) (41) 

Table 35. Frequency of the ~2 and Z+2 5'ALR2 genotypes in patients with or 
without diabetic microvascular disease. Figures in parenthesis indicate the number of 
subjects. X allele is any allele other than Z+2 and Y is any allele other than Z-2. P-values 
have been corrected by multiplying by the number of comparisons made. 

1frequency vs. Uncomplicated diabetic controls; 
Z-2/X; x.2 = 7.6, p= 0.006 (Idt), Pc= 0.02 
Z+2/Y; X2 = 20.7, p= 0.000005 (ldt), Pc= 0.00002 

2 frequency vs. Uncomplicated diabetic controls; 
Z-2/X; "C = 5.9, p= 0.02 (ldt), Pc= ns 
Z+2/Y; x.2 = 17.5, p= 0.00003 (ldt), Pc= 0.0001 

3 frequency vs. Uncomplicated diabetic controls; 
Z-2/X; x2 = 5.8, p= 0.02 (Jdt), Pc= 0.03 
Z+2/Y; x.2 = 14.5, p= 0.0001 (Idt), Pc= 0.0004 
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5'ALR2- (CA)n microsatellite marker in Southern Indian T2DM subjects and non
diabetic controls 

The (CA)n microsatellite marker in the 5' region of the ALR2 gene was investigated using 

60 subjects with T2DM of Southern lndian/Dravidian origin as well as a collection of 43 

Southern Indian/Dravidian non-diabetic controls (clinical demographics shown in table 7). 

Within the T2DM subject population studied, there were 28 subjects that were 

normoalbuminuric without retinopathy and 32 subjects with proteinuria. The frequency of 

the (CA)n alleles in both patient and control populations is shown in table 36. There were 

10 (CA)n alleles detected at the 5'ALR2 locus in the Southern Indian T2DM and non-

diabetic control population; Z+ 10, Z+8, Z+6, Z+4, Z+2, Z, Z-2, Z-4, Z-6 and Z-10 where Z 

is the most common allele and consists of 24 CA repeats. Ten alleles gave rise to 65 

possible genotypes, of which 27 were identified here. In the analysis of allelic frequencies 

homozygotes were counted as 2 alleles, and alleles and genotypes that were not detected 

are not shown. Tables show the percentage frequency of detected alleles and genotypes, 

with actual numbers detected shown in parenthesis. Possible associations were investigated 

with respect to allelic frequency and genotype and comparisons were made between groups 

using the x2 test and 2x2 contingency tables. Where comparisons of<5 samples were made 

the Fishers exact test was applied. All of the data obtained from the 5'ALR2 study of the 

Southern Indian population is presented in the following tables. Possible associations with 

the 5'ALR2 (CA)n allelic frequencies and genotypes and the onset of proteinuria were 

investigated. 
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5' ALR2 (CA)n aUele frequencies in Southern Indian T2DM and non-diabetic subjects 

Table 36 presents the frequency of the detected alleles in the T2DM Southern Indian 

subjects investigated. All T2DM subjects are compared with the non-diabetic control 

subjects. No significant differences were found in the frequency of the alleles between the 

two groups suggesting that there is no involvement of these alleles with the onset of 

T2DM. The T2DM group was then separated into the two groups representative of their 

clinical diabetic complication phenotype, T2DM with proteinuria and T2DM with 

normoalbuminuria, which is shown in table 37. There were no significant difference in the 

frequencies of the respective alleles identified between these two groups, although upon 

observation there was a small increase in the Z-2 allele in subjects with proteinuria 

compared to those without (15.6% vs. 10.7%). Conversely, there was also a decrease in the 

frequency of the Z+2 allele in the subjects with proteinuria compared to the subjects 

without (12.5 vs. 23.2%). The lack of any significant correlation may be due to the small 

number of patients studied. It is important to note that the normoalbuminuria patients had a 

diabetes duration of between 2 and 29 years. It is possible that some of these patients may 

progress to developing proteinuria later on in the course of their disease. This may be 

masking possible associations. 
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Table 36. Percentage frequency of the detected 5' ALR2 (CA)n microsateUite marker 
alleles in Southern Indian!Dravidian T2DM subjects compared to non-diabetic 
controls. 

This table shows the frequency of detected alleles for T2DM subjects and non-diabetic 
control subjects. Frequencies are expressed as the percentage incidence out of the total 
number of alleles detected. Actual numbers of alleles detected is shown in parenthesis. 
n = number of alleles detected, number of subjects studied is shown in parentheses. Fishers 
exact test was also applied where values <5 were used. 

No significant differences were found between these groups. 
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1 TlDM with Proteinuria TlDMwlth Non-dlaheUc Controls (NDC} 
Normoalhumlnurla 

n 64 56 86 
(32) (28) (43) 

Z-10 1.2 
(0) (0) (I) 

Z-6 3.6 
(0) (2) (0) 

Z-4 3.1 3.6 2.3 
(2) (2) (2) 

Z-2 15.6 10.7 15.1 
(10) {6) (13) 

z 29.7 24.9 44.2 
(19) (14) (38) 

Z+2 12.5 23.2 19.8 
(8) (13) (17) 

Z+4 17.2 12.5 10.5 
(11) {7) (9) 

Z+6 9.4 10.7 5.8 
(6) {6) (5) 

Z+8 10.9 8.9 1.2 
(7) (5) (I) 

Z+IO 1.6 1.8 
(1) {I) (0) 

Table 37. Percentage frequency of the detected 5' ALR2 microsatellite marker alleles 
in Southern Indian/Dravidian T2DM subjects with proteinuria compared to T2DM 
subjects with normoalbuminuria and non-diabetic control subjects. 

This table shows the percentage frequency of the detected alleles for T2DM subjects with 
nonnoalbuminuria and T2DM subjects with proteinuria as well as non-diabetic controls. 
The actual number of alleles within each group is shown in parentheses. n = number of 
alleles detected, number of subjects studied is shown in parentheses. 

1 frequency compared with T2DM normoalbuminuria; 
No significant differences in the frequencies of the alleles were found. 
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5' ALR2 (CA)n genotype frequencies ln Southern Indian T2DM and non-diabetic 
control subjects 

Table 38 presents the frequency of the genotypes in the T2DM Southern Indian subjects 

against the non-diabetic controls, all genotypes detected are presented in the tables. 

Differences in frequencies of the detected genotypes were found for the Z/Z genotype. 

There was a higher incidence of the Z/Z genotype in the non-diabetic control population 

compared to the T2DM subjects (3.3 vs. 18.6%, ·l = 6.7, p= 0.01 (ldf), Fishers exact= 

0.01). Table 39 presents the genotypes detected for the T2DM subjects according to the 

onset of proteinuria or normoalbuminuria. There were no significant difference found in 

the frequencies of the detected genotypes in these groups. Through general observation, 

however, there was an increase in the Z/Z-2 genotype in the T2DM with proteinuria group 

compared to the normoalbuminuria group (15.6% vs. 7.1%). There was also a decrease in 

the frequency of the Z/Z+2 genotype in the T2DM proteinuria group compared to the 

T2DM normalbuminuria group (12.5 vs. 25.00%). Genotypes detected were then scored 

according to the presence of a Z+2 or Z-2 allele as shown in table 40. There were no other 

significant differences found. 
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Genotypes 1nnM Non-diabetic 

subjects Controls (NDC) 

n 60 43 
ZIZ 3.3 18.6 

(2) (8) 
Z/Z-2 11.7 18.6 

(7) (8) 
Z/Z-4 2.3 

(0) (I) 
Z/Z-10 2.3 

(0) (1) 
Z/Z+2 18.3 16.3 

( 11) (7) 
'ZJZ+4 8.3 9.3 

(5) (4) 
Z/Z+6 1.7 2.3 

(1) (1) 
'ZJZ+8 6.7 

(4) (0) 
Z/Z+lO 1.7 

(1) (0) 
Z-2/Z-2 2.3 

(0) (1) 
Z-2/Z-4 5.0 2.3 

(3) (I) 
Z-2/Z-6 1.7 

(1) (0) 
Z-2/Z+2 1.7 2.3 

(I) (1) 
Z-2/Z+4 3.3 2.3 

(2) (I) 
Z-2/Z+6 1.7 

(I) (0) 
Z-2/Z+S 1.7 

(1) (0) 
Z-4/Z+2 1.7 

(1) (0) 
Z+2/Z-6 1.7 

(I) (0) 
Z+2/Z+2 7.00 

(0) (3) 
Z+2/Z+4 3.3 

(2) (0) 
Z+2/Z+6 1.7 7.00 

(I) (3) 
Z+2/Z+8 6.7 

(4) (0) 
Z+4/Z+4 2.3 

(0) (I) 
Z+4/Z+6 11.7 2.3 

(7) (I) 
Z+4/Z+8 3.3 2.3 

(2) (I) 
Z+6/Z+8 1.7 

(1) (0) 
Z+6/Z+l0 1.7 

(1) (0) 

Table 38. Percentage frequency of the detected S'ALR2 (CA)n microsatellite 
genotypes in T2DM subjects compared to non-diabetic control subjects of Southern 
Indian/Dravidian origin. This table shows the percentage frequency of detected 
genotypes for T2DM subjects with respect to onset of diabetes, and non-diabetic control 
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subjects. n = number of genotypes detected. Only significant differences by ·l and 
correction are shown. Fishers exact test was also applied where values of <5 were used. 

1 vs. non-diabetic controls; 

Z/Z; r} = 6.7, p= 0.01 (1df), Fishers Exact= 0.01 
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Genotype 1T2DM Proteinuria T2DM Non-diabetic 
Nonnoalbuminuria Controls (NDC) 

n 32 28 43 
Z/Z 3.1 3.6 18.6 

(I) (I) (8) 
Z/Z-2 15.6 7.1 18.6 

(5) (2) (8) 
Z/Z-4 2.3 

(0) (0) (I) 
Z/Z-10 2.3 

(0) (0) {I) 
Z/Z+2 12.5 25.0 16.3 

(4) (7) (7) 
Z/Z+4 12.5 3.6 9.3 

(4) (I) (4) 
Z/Z+6 3.1 2.3 

(I) (0) (I) 
Z/Z+8 6.3 7.1 

(2) (2) (0) 
Z/Z+lO 3.1 

(I) (0) (0) 
Z-2/Z-2 2.3 

(0) (0) (I) 
Z-2/Z-4 6.3 3.6 2.3 

(2) (I) (I) 
Z-2/Z-6 3.6 

(0) (I) (0) 
Z-2/Z+2 3.6 2.3 

(0) (I) (I) 
Z-2/Z+4 6.3 2.3 

(2) (0) (I) 
Z-2/Z+6 3.6 

(0) (I) (0) 
Z-2/Z+S 3.1 

(I) (0) (0) 
Z-4/Z+2 3.6 

(0) (I) (0) 
Z+2/Z-6 3.6 

(0) (I) (0) 
Z+2/Z+2 6.98 

(0) (0) (3) 
Z+2/Z+4 3.1 3.6 

(I) (I) (0) 
Z+2/Z+6 3.1 6.98 

(I) (0) (3) 
Z+2/Z+8 6.3 7.1 

(2) (2) (0) 
Z+4/Z+4 2.3 

(0) (0) (I) 
Z+4/Z+6 9.4 14.3 2.3 

(3) (4) (I) 
Z+4/Z+8 3.1 3.6 2.3 

(I) (I) (I) 
Z+6/Z+8 3.1 

(I) (0) (0) 
Z+6/Z+10 3.6 

!Ol !I~ !02 
Table 39. Percentage frequency of the detected (CA)n 5'ALR2 microsateiUte marker 
genotypes in Southern Indian T2DM subjects classified and compared in accordance 
to presence of proteinuria or normoalbuminuria against non-diabetic controls. This 
table shows the percentage frequency of detected genotypes for T2DM subjects with 
respect to onset of proteinuria, and non-diabetic control subjects. n = number of genotypes 
detected. No significant differences by ·l and correction were found. 
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i TlDMwltb Non-diabetic Controls TlDM wltb Proteinuria 
Normoalbumlourla 

n 32 28 43 

Z-2/X. 34.4 17.9 25.6 
(11) (5) (11) 

Z+2/Y 25.0 42.9 30.2 
(8) (12) (13) 

Z-2/Z+2 3.6 2.3 
(0) (I) (I) 

XIY 43.8 35.7 41.9 
(14) (10) (18) 

Table 40. Frequency of Z-2 and Z+2 S'ALR2 genotypes in T2DM patients with and 
without proteinuria and non-diabetic controls of Southern Indian origin. Figures in 
parenthesis indicate the number of subjects. X allele is any allele other than Z+2 and Y is 
any allele other than Z-2. No significant differences by x2 and correction were found. 
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Association of5'ALR2 and diabetic nephropathy in family based trio studies 

The 'Diabetes UK- Warren nephropathy family trio' collection was used in this study of 

the 5' ALR2 microsatellite polymorphism. The aim of which was to allow the 

determination of the transmission of alleles from parents to proband to be made, and to 

identify any alleles showing preferential transmission. There were 9 alleles identified at the 

5'ALR2 locus in the family study, which gave rise to 18 genotypes. A total of 172 family 

trios were analysed for the 5'ALR2 microsatellite polymorphism. Possible associations 

with the 5'ALR2 genotypes and alleles were investigated. Out of the 172 families 

genotyped for the 5'ALR2 microsatellite 10 showed non-paternity (5.8%), 2 trios were not 

fully genotyped due to degradation of DNA, and a further 45 trios were non-informative. 

This was due to several reasons, firstly if both of the parents within a family trio were 

heterozygous for the allele marker, transmission could not be determined, and secondly 

where parental genotype could not be accurately determined from incomplete trios where 

sibling genotypes were used. This resulted in a considerable reduction in the number of 

families that could be used to determine any significant associations. The informative 115 

family trios were analysed using the transmission disequilibrium test (TDT). The 160 

successfully genotyped nephropathy probands were also analysed (where 12 subjects were 

excluded due to non-paternity family trios and poor genotyping). In addition there were 11 

fully informative trios analysed, where there was also a sibling to the proband included and 

these were also successfully genotyped. 
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5' ALR2 microsatellite marker in British Cau~asoid families where proband has 
TlDM and diabetic nephropathy 

A total of 160 TIDM subjects with diabetic nephropathy were genotyped for the 5'ALR2 

polymorphism as part of the Diabetes UK. -Warren Nephropathy studies. The frequencies 

of alleles and genotypes are presented in tables 41 and 42 respectively. The percentage 

frequency of the Z-2 allele was 25.9% (n=83) and the percentage frequency of the Z+2 

allele was 21.3% (n=68). The percentage frequency of the Z/Z-2 genotype was 31.3% 

(n=50), and the percentage frequency of the Z/Z+2 genotype was 34.4 (n=55). 

In table 43 the frequency of transmission of the 5'ALR2 alleles from parents who were 

heterozygous for the allele to affected offspring is shown. Under the hypothesis that there 

is no linkage the expected number of transmitted versus non-transmitted alleles should be 

equal. The difference therefore between the expected number of transmissions and 

observed transmission of alleles was calculated. The 115 informative family trios 

investigated showed no significant association for the transmission of the Z+2/Z/Z-2 

alle1es from parents to proband with TIDM and nephropathy. Table 43 presents the 

frequency of transmission of the 5'ALR2 Z+2/Z/Z-2 alleles from parents to the proband 

with TIDM and nephropathy. The Z allele was transmitted 51.5% (n=88) vs. not 

transmitted 48.5% (n= 83), (X2 = 0.07, p= 0.8 (ldf), Pc = ns). The Z+2 allele was 

transmitted 45.4% (n=39) vs. not transmitted 54.7% (n=47), (x2 = 0.4, p= 0.5 (ldf), Pc = 

ns). The Z-2 allele was transmitted 56.8% (n=71) vs. not transmitted 43.2% (n=54), ("C = 

1.2, p= 0.3 (1df), Pc = ns). Therefore, there were no significant differences between the 

expected and observed number of transmissions of alleles from parents to proband. 

Although, upon observation there was a slight preference for the transmission of the Z-2 

allele and a slightly reduced preference for the transmission of the Z+2 allele from the 

expected 50:50 ratio. 
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TlDM Nephropathy 
D 320 

(160) 

z-s 0.3 
(I) 

z-6 0.3 
(I) 

z-4 3.8 
(12) 

z-2 25.9 
(83) 

z 41.3 
(132) 

Z+2 21.3 
(68) 

Z+4 5.6 
(18) 

Z+6 1.3 
(4) 

Z+lO 0.3 
(I) 

Table 41. Percentage frequency of the detected (CA)n 5'ALR2 microsatellite marker 
aUeles in British Caucasold TlDM subjects with diabetic nephropathy, taken from 
the 'DUK-Warren nephropathy coUection'. This table shows the percentage frequency 
of detected alleles for TIDM subjects with nephropathy, actual number of alleles detected 
in the population is shown in brackets. n = number of alleles detected, number of subjects 
is shown in parenthesis. 
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TIDM Nephropathy 
n 160 

(320) 

Z/Z 4.4 
(7) 

Z/Z+2 34.4 
(55) 

Z/Z+4 5.0 
(8) 

Z/Z+6 1.3 
(2) 

Z/'L-2 31.3 
(50) 

Z/'L-4 1.3 
(2) 

ZI'L-8 0.6 
(I) 

Z+2/Z+10 0.6 
(I) 

Z+21Z+2 0.6 
(I) 

Z+2/Z+4 2.5 
(4) 

Z+2/Z+6 0.6 
(I) 

Z+ZI'L-2 3.1 
(5) 

Z+4/Z+6 0.6 
(I) 

'L-2/Z+4 3.1 
(5) 

'L-2/'L-2 4.4 
(7) 

'L-2/'L-4 5.0 
(8) 

'L-2/'L-6 0.6 
(I) 

'L-4/'L-4 0.6 
(I) 

Table 42. Percentage frequency of the detected (CA)n 5' ALR2 microsateUite marker 
genotypes in British Caucasoid TlDM subjects with diabetic nephropathy, taken 
from the 'DUK-Warren nephropathy collection'. This table shows the percentage 
frequency of detected genotypes for TlDM subjects with nephropathy, actual number of 
genotypes detected in population is shown in brackets. n = number of genotypes detected, 
number of alleles is shown in parenthesis. 
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Transmitted Non-transmitted Total ·i p-value Pc 

z Observed 51.5 48.5 
(88) (83) (171) 0.07 ns ns 

Expected 50 50.0 
(85.5) (85.5) (171) 

Z+2 Observed 45.4 54.7 
(39) (47) (86) 0.4 ns ns 

Expected 50.0 50.0 
(43) (43) (86) 

Z-2 Observed 56.8 43.2 
(71) (54) (125) 1.2 ns ns 

Expected 50.0 50.0 
(62.5) (62.5) (125) 

Table 43. Frequency of transmission of the S'ALR2 Z, Z-2 and Z+2 aUeles with 
respect to TlDM and diabetic nephropathy In affected proband family trios. 

This table shows the frequency of transmission of the Z, Z-2 and Z+2 alleles from parents 
to affected offspring with respect to diabetic nephropathy. The frequency of transmission 
of the alleles from parents who were heterozygous for the 5'ALR2 allele, to affected 
offspring was determined in a total of 115 families. The number in the transmitted column 
in the observed row is the actual number of copies of the allele that was transmitted from 
parents to affected offspring. The non-transmitted value in the observed column is the 
actual number of times that the allele was not transmitted from parent to affected offspring. 
The expected number of Z, Z-2 and Z+2 alleles to be transmitted and not transmitted is 
50% of the total number of alleles. The deviation from 50% transmission or non
transmission of the alleles from parents to affected offspring was determined using the r! 
test and 2 x 2 contingency tables. There was no significant association found for the 
transmission of the Z+2/Z/Z-2 alleles from parents to proband with TIDM and 
nephropathy in the British Caucasoid family trios studied. 
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C(-106)T polymorphism marker 

The cytosine to thymine single base polymorphism situated -I 06bp upstream of the ALR2 

gene ATG transcription start sequence was investigated. Polymerase Chain Reaction was 

carried out to amplifY the 263bp region upstream of the ALR2 gene containing the C(-

1 06)T polymorphism which creates a new Bfa 1 restriction site as described in chapter 3. 

Purified amplification products were cut using Bfa I restriction enzyme digestion, and 

separated on a 2.5% agarose/ethidium bromide gel at I OOV for I hour. The fragment sizes 

were checked by running a 1 OObp molecular weight marker alongside. Bands were 

revealed by UV (320nm) transillumination (figure 25) and subjects were assigned 

genotypes according to restriction fragments identified. A PCR control band was also 

included. After Bfal restriction enzyme digestion the homozygote genotype CC produced 

206bp and 57bp fragments, while the homozygote genotype TT produced 174bp, 59bp and 

57bp fragments. The heterozygte CT genotype produced aU three fragments (174bp, 57bp, 

59bp and 206bp). The C(-106)T polymorphism was investigated in TIDM subjects and 

normal controls of British Caucasoid origin and the 'DUK-Warren diabetic nephropathy 

family trios' of British Caucasoid origin. The assay however, failed to work using the 

T2DM Southern fudian subjects and consequently these have not been included here. A 

possible reason for the assay failing to work in the T2DM population could be that the 

DNA stock solutions contained an inhibiting factor preventing the Bfal enzyme from 

cutting the PCR product. Failure primarily lay with poor or incomplete restriction enzyme 

digestion. ·It is likely that despite the stringent purification protocols applied some 

inhibiting factors remained in the samples. 
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6 

.- 57159 bp 

.- 174 bp 

.- 206bp 

Figure 25. C( -106)T polymorphism by Bfa 1 restriction digest and fragment 
separation on 2.5% agarose gel with ethidium bromide staining. Three genotypes 
were identified; homozygous Tr, homozygous CC and heterozygous CT. Allocated 
genotypes for each of the subjects shown in this figure (lanes 1-6) are as follows: 

Lane 1; CT 
Lane 2; CT 
Lane 3: TT 

Lane 4; CT 
Lane 5; CT 
Lane 6: CC 
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C(-106)T polymorphism in TlDM subjects and normal controls of British Caucasoid 
origin 

The C(-106)T polymorphism located in the 5' promoter region of the ALR2 gene, -106bp 

upstream of the ATG start sequence was successfully investigated using 155 TIDM 

subjects and 120 normal controls of British Caucasoid origin (clinical demographics shown 

in table 6). The remainder of the available 285 patients failed to respond to the assay and 

allele and genotypes could not be obtained with confidence. This was primarily due to poor 

or incomplete restriction enzyme digestion probably due to an inhibiting factor. Within the 

TIDM subject population studied there were 39 uncomplicated, 39 full house patients, 12 

diabetic neuropathy, 16 retinopathy and neuropathy, 26 nephropathy and retinopathy and 

23 retinopathy. The frequency of the C(-l06)T alleles in the total TIDM population versus 

the normal populations is shown in table 44. In this study we were able to find subjects 

who were homozygous CC, homozygous TT and heterozygous CT. In the analysis of 

allelic frequencies homozygotes were counted as 2 alleles, and alleles and genotypes that 

are not detected are not shown. Tables show the percentage frequency of detected alleles 

and genotypes with actual numbers detected shown in parenthesis. Possible associations 

were investigated with respect to allelic and genotype frequency and comparisons were 

made between groups using the x_2 test and 2 x 2 contingency tables. All of the data 

obtained from this study is presented in the following tables. Possible associations were 

investigated with respect to allelic and genotypic frequencies and the onset of diabetic 

complications. 

The expected frequencies for C( -1 06)T genotypes were calculated using 2 x n analysis to 

determine whether frequencies of heterozygotes and homozygotes in control groups were 

in Hardy-Weinberg equilibrium (table 45). 

269 



Chapter 4. Kesults 

AUele and genotype frequencies of C(-106)T polymorphism in British Caucasoid 
TlDM subjects and normal control subjects 

The C(-106)T polymorphism was investigated in 155 TIDM subjects and 120 normal 

controls of British Caucasoid origin. Table 44 presents the percentage frequency of the 

detected C(-106)T alleles and genotypes for all TIDM subjects studied compared to the 

normal controls. There was a small increase in the CC (-l06)-ALR2 genotype in the 

TIDM subjects compared to the normal controls (NC), (40.0% vs. 28.3%, ·/ = 4.05, p= 

0.04 (ldf), Pc= os). There is consequently also a significant increase in the frequency of 

the C allele and a subsequent decrease in the T allele in TIDM subjects compared to the 

NC group (x2 = 6.8, p= 0.009 (ldf), Pc = 0.03). The Hardy Weinberg equilibrium 

principle was applied to the TIDM group and the NC group respectively. In both groups 

there were no significant differences between the expected and the observed frequencies 

according to the x2 test for significance, implying compliance with Hardy Weinberg 

equilibrium (table 45). 

Table 46 presents the alleles and genotypes for the Tl DM subjects according to the 

presence or absence of diabetic microvascular disease, where TIDM subjects with 

DN/DRIDNu are compared with DC and NC groups. A non-significant increase in the CC 

genotype was seen in the DRIDN/DNu group compared to the DC group (45.7 vs. 23.1%, 

r! = 6.2, p= 0.01 (ldf), Pc= ns). There was also a non-significant difference observed in 

the frequency of the TT genotype. The frequency was higher in the DC group compared to 

the DRIDN/DNu (12.8 vs. 3.5%, ·/ = 4.7, p= 0.03 (ldf), Pc= os). There was a significant 

increase in the frequency of the C ( -1 06) ALR2 allele in the DN/DRIDNu group compared 

to the uncomplicated DC group (71.1 vs. 55.1%, x2 = 6.8, p= 0.009 (ldf), Pc= 0.02). 

Table 47 presents the frequency of the ALR2 C(-106)T alleles and genotypes where the 

TIDM group has been subgrouped according to the precise diabetic complications 

observed. In the case of the FHP vs. uncomplicated DC group the frequency of the CC 
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genotype was 51.3% vs. 23.1% (x.2 = 6.6, p= 0.01 (Id f), Pc= 0.03), and the C allele was 

74.4% vs. 55.1%, x.2 = 6.3, p= 0.01 {ldt), Pc= ns), where significance was lost by 

correction. No other significant differences were found. 

Table 48 presents the C(-l06)T ALR2 alleles and genotypes detected in TIDM subjects 

according to the presence of retinopathy, or nephropathy or neuropathy. In all three groups 

the frequency of the CC genotype and the C allele was increased in the complications 

groups compared to the DC group. In the case of the DR vs. uncomplicated DC group the 

frequency of the CC genotype was 48.1% vs. 23.1% (X.2 = 7 .3, p= 0.007 (I dt), Pc = 0.02), 

and the C allele was 72.6% vs. 55.1%, x_2 = 7.9, p= 0.005 (ldt), Pc= 0.01). In the case of 

the DN vs. uncomplicated DC group the frequency of the CC genotype was 50.8% vs. 

23.1% (x.2 = 7.8, p= 0.005 {ldt), Pc= 0.02), and the C allele was 73.9% vs. 55.1%, ·l = 

7.7, p= 0.006 (ldt), Pc= 0.02). In the case of the DNu vs. DC group the frequency of the 

CC genotype was 46.3% vs. 23.1% (x.2 = 5.7, p= 0.02 (ldt), Pc= ns), and the C allele was 

71.6% vs. 55.1%, x.2 = 5.95, p= 0.01 (ldt), Pc= 0.04). Therefore, with respect to the CC 

genotype statistical significance was not attained in the DNu vs. DC group. 
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TlDM Normal Controls xz p-value Pc 
Subjects (Nq 

C(-l06)T n=l55 n=l20 
Genotype 

cc 40.0 28.3 4.05 0.04 os 
(62) (34) 

CT 54.2 55.8 0.07 ns ns 
(84) (67) 

TT 5.8 15.8 7.4 0.006 0.02 
(9) (19) 

C(-l06)T n=JIO n=240 
Alleles 

c 67.1 56.3 6.8 0.009 0.03 
(208) (135) 

T 32.9 43.8 6.8 0.009 0.03 
(102) (105) 

Table 44. Percentage frequency of the detected C(-106)T alleles and genotypes in all 
British Caucasoid TlDM subjects studied, compared to normal control subjects. This 
table displays C(-I06)T allele and genotype frequencies in TlDM subjects and normal 
control subjects. 

Predicted Observed l p-value Pc-value 

Normal (n=l20) (n=l20} 
Controls (NC) 

cc 38 34 0.3 ns ns 
CT 59 67 1.1 ns ns 
TT 23 19 0.5 ns ns 

TIDM Patients (n=155) (n=ISS) 

cc 70 62 0.84 ns ns 
CT 68 84 3.3 ns ns 
TT 17 9 2.7 ns ns 

Table 45~ Comparison between the expected and observed frequency % of C(-106)T 
polymorphism genotypes in British Caucasoid TlDM and normal subjects. 

This table shows the expected and observed frequencies of C( -I 06)T genotypes in TlDM 
subjects and normal control subjects. This demonstrated that the distribution in the normal 
controls (NC) conforms to Hardy-Weinberg equilibrium principal (p2 +2pq+q2=1). There 
were no significant differences between the expected and observed frequencies in the 
normal controls according to the Chi-squared test for significance. There was also no 
difference between the expected and observed frequencies in the TIDM population. This 
indicates that the TIDM population is in Hardy-Weinberg equilibrium for the C-106T 
polymorphism. 
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Genotype 

cc 

CT 

TT 

C(-106)T 
Alleles 

c 

T 

TIDM Nephropathy 
and/or retinopathy 
and/or neuropathy 

116 

45.7 
(53) 
50.9 
(59) 
3.5 
·(4) 

232 

7l.l 
(165) 
28.9 
(67) 
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Uncomplicated Nonnal Controls 
(DC) (NC) 

39 120 

23.1 28.3 
(9) (34) 

64.1 55.8 
(25) (67) 
12.8 15.8 
(5) (19) 

78 240 

55.1 56.3 
(43) (135) 
44.9 43.8 
(35) (105) 

Table 46. C(-106)T aUele and genotype frequencies in normal controls and diabetic 
patients according to the presence of microvascular complications of diabetes. This 
table displays C(-106}T allele frequencies in normal controls (NC), uncomplicated (DC) 
and TIDM Nephropathy/Retinopathy/Neuropathy. For each allele the percentage 
frequency and the actual number of alleles (in parenthesis) is given. n represents the 
number of subjects in each group. Comparisons were made for each allele and genotype 
between patient and control groups using 2 x 2 contingency tables and the ·l test. P values 
were corrected for the number of comparisons made. Only significant differences by x.2 

and correction by multiplying by the number of comparisons made, are shown. 

DR/N/Nu vs. Uncomplicated diabetic controls; 
CC; x.2 = 6.2, p= 0.01 (ldf), Pc= 0.03 
TT; x.2 = 4. 7, p= 0.03 (I df), Pc= ns 

CIT; x.2 = 6.8, p= 0.009 (ldf), Pc= 0.02 
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1
oiabellc 

2
mabetic 

1
Diabetic 

4 s Uncomplicated Normal Diabetic Full House 
Retinopathy Nephropathy Retinopathy Neuropathy Patients (DC) Controls (NC) 

and and 
Retinopathy Neuropathy 

C(-106)T 23 26 16 12 39 39 120 
Genotype 

cc 39.1 50.0 50.0 25.0 51.3 23.1 28.3 
(9) (13) (8) (3) (20) (9) (34) 

CT 56.5 46.2 50.0 66.7 46.2 64.1 55.8 
(13) (12) (8) (8) (18) (25) (67) 

IT 4.4 3.9 8.3 2.6 12.8 15.8 
(I) (I) (0) (I) (1) (5) (19) 

C(-106)T 46 52 32 24 78 78 240 
Alleles 

c 
T 

67.4 73.1 75.0 58.3 74.4 55.1 56.3 
(31) (38) (24) (14) (58) (43) (135) 
32.6 26.9 25.0 41.7 25.6 44.9 43.8 
(15) (14) (8) (10) (20) (35) (105) 

Table 47. C(-106)T aUele and genotype freq11encies in normal controls and diabetic 
patients according to onset of diabetic complications. This table displays C(-106)T 
allele and genotype frequencies in control and patient subjects according to their diabetic 
complication phenotype. Subjects were classified according to the onset of microvascular 
complications, diabetic retinopathy, diabetic nephropathy and retinopathy, diabetic 
retinopathy and neuropathy, diabetic neuropathy, full house patients and uncomplicated. 
For each allele the% frequency and the actual number of alleles (in parenthesis) is given. n 
represents the number of subjects in each group. Comparisons were made for each allele 
and genotype between patient and control groups using 2 x 2 contingency tables and the ·l 
test. P values were corrected for the number of comparisons made. 

1 vs. Uncomplicated diabetic controls; 
CC; -l = 5.1, p= 0.03 (ldf), Pc= ns 
Cor T; ·l = 4.3, p= 0.04 (ldf), Pc= ns 

3 vs. Uncomplicated diabetic controls; 
Cor T; ·l = 3.8, p= 0.05 (ldf), Pc= ns 

5 vs. Uncomplicated diabetic controls; 
CC; ·l = 6.6, p= 0.01 (ldf), Pc= 0.03 
Cor T; ·l = 6.3, p= 0.01 (ldf), Pc= ns 
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I 
Dlabellc 

2
Diabelle 

3 
Dlabellc Uncomplicated Normal Controls 

Rellnopathy Nephropathy Neuropathy (Dq (Nq 

(DR) (DN) (Dnu) 

C(-106)T 104 65 67 39 120 
Genotype 

cc 48.1 50.8 46.3 23.1 28.3 
(50) (33) (31) (9) (34) 

CT 49.0 46.2 50.8 64.1 55.8 
(51) (30) (34) (25) (67) 

Tf 2.9 3.1 2.99 12.8 15.8 
(3) (2) (2) (5) (19) 

C(-106)T 208 130 134 78 240 
Alleles 

c 72.6 73.9 . 71.6 55.1 56.3 
(151) (96) (96) (43) (135) 

T 27.4 26.2 28.4 44.9 43.8 
(57) (34) (38) (35) (105) 

Table 48. C(-106)T aUele and genotype frequencies in normal controls and TlDM 
patients according to onset of diabetic complications. This table displays C( -106)T 
allele frequencies in control and patient subjects. TIDM subjects are grouped according to 
the presence of diabetic nephropathy, retinopathy or neuropathy. The retinopathy (n= I 04) 
group is an amalgamation of the retinopathy (n=23), nephropathy and retinopathy (n=26), 
retinopathy and neuropathy (n=16) and full house patients (n=39) groups previously 
identified. The nephropathy group (n=65) is an amalgamation of the nephropathy and 
retinopathy (n=26), and full house patients' (n=39) subgroups previously identified. The 
neuropathy group (n=67) is an amalgamation ofthe retinopathy and neuropathy (n=I6), the 
neuropathy (n=l2) and the full house patients' (n=39) groups also previously identified. 
For each allele the% frequency and the actual number of alleles (in parenthesis) are given. 
n represents the number of subjects in each group. Comparisons were made for each allele 
and genotype between patient and control groups using 2 x 2 contingency tables and the ·l 
test. P values were corrected for the number of comparisons made. 

1 vs. Uncomplicated diabetic controls; 
CC; x.2 = 7.3, p= 0.007 {ldf), Pc= 0.02 
IT; x.2 

= 5.3, p= 0.02 ( ldt), Pc= ns 
cor T; x2 = 7.9, p= 0.005 (ldf), Pc= 0.02 

2 vs. Uncomplicated diabetic controls; 
CC; X2 = 7.8, p= 0.005 (ldf), Pc= O:o2 
Cor T; x2 = 7.7, p= 0.006 (ldt), Pc= 0.02 

3 vs. Uncomplicated diabetic controls; 
CC; x.2 = 5.7, p= 0.02 {ldt), Pc= ns 
IT; X2 = 3.9, p= 0.05 (ldf), Pc= ns 
Cor T; x2 = 5.95, p= 0.01 (ldf), Pc= 0.02 
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C(-106)T polymorphism in a TlDM Caucasoid family study 

In order to study the transmission of the C( -I 06)T alleles of the aldose reductase promoter 

region the 'Diabetes UK Warren 3 nephropathy family trios' were investigated for the 

polymmphism. A total of I 09 family trios that had been previously typed for the 5 'ALR2 

microsatellite polymorphism were genotyped for the C( -106)T polymorphism. The allele 

and genotype frequencies detected in the proband are shown in table 49, a total of 90 

probands were successfully genotyped in this study. Out of the available 172 family trios 

only 90 trios were successfully genotyped due to several reasons. Firstly, some of the DNA 

stock had been used up in the previous 5 'ALR2 assay, therefore preventing the completion 

of the family trio for the C-1 06T assay. Secondly the assay had a very high failure rate and 

reliable data was only obtained in a fraction of the subjects investigated, for reasons 

previously explained. The results of which are not included in the analysis. From the 109 

family trios genotyped for the C(-106)T polymorphism 77 trios were non-informative. 

Trios were classified as non-informative when both parents in the trio were heterozygous 

for the allele marker and transmission could not be determined, or if the parents genotype 

could not be confidently predicted from incomplete family sets. The informative 32 family 

trios were analysed using the transmission disequilibrium test. Table 49 shows the 

frequency of transmission of the C(-106)T alleles from parents who were heterozygous for 

the allele to affected offspring. If there is no linkage, the expected number of transmitted 

versus non-transmitted alleles should be equal. The difference therefore between the 

expected number of transmissions and observed transmission of alleles was calculated. 
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C(-106)T polymorphism in British Caucasoid families where proband has TIDM and 
diabetic nephropathy 

Table 49 presents the frequency of the C( -1 06)T allele and genotypes detected in the 90 

diabetic nephropathy probands of the DUK-Warren nephropathy collection. The CC 

genotype occurred in 30% of the subjects studied, the CT genotype occurred in 53.3% of 

the subjects studied and the TI genotype in 16.7% of the subjects studied. The C allele 

occurred in 56.7% of the subjects and the C allele in 43.3% of the subjects. The frequency 

of the CC, CT and TI genotypes conformed to the Hardy Weinberg equilibrium (table 50). 

Table 51 presents the frequency of the transmission of the C(-106)T alleles from parents to 

proband in the DUK-Warren Nephropathy Collection. There was no significant deviation 

from the expected 50% transmission of the alleles from parents to proband. 
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C(-106)T Genotype 

cc 

TT 

CT 

C(-106)T Alleles 

c 

T 

TIDM Nephropathy 

n=90 

30.0 
(27) 
16.7 
(15) 
53.3 
(48) 

n=l80 

56.1 
(102) 
43.3 
(78) 

Chapter 4. Results 

Table 49. C(-106)T allele and genotype frequencies in Diabetes UK- Warren 
nephropathy probands. This table displays C(-106)T allele and genotype frequencies in 
nephropathy proband subjects. For each allele and genotype detected the % frequency and 
the actual number of alleles and genotypes (in parenthesis) are given. n represents the 
number of subjects in each group. 

Predicted 
DUKWarren 

TIDM (n=90) 
Nephropathy 

cc 29 
CT 44 
TT 17 

Observed 

(n=90) 

27 
48 
15 

0.1 
0.4 
0.2 

p-value 

0.7 
0.6 
0.7 

Pc-value 

ns 
os 
ns 

Table 50. Comparison between the expected and observed frequency% of C(-106)T 
polymorphism genotypes in DUK- Warren British Caucasoid TIDM subjects with 
diabetic nephropathy. 

This table shows the expected and observed frequencies ofC(-!06)T genotypes in TIDM 
subjects with diabetic nephropathy obtained from the DUK Warren Nephropathy 
collection. This demonstrated that the distribution in the TIDM nephropathy subjects 
confonns· to Hardy-Weinberg equilibrium principal (P2+2pq+q2=1). There were no 
significant differences between the expected and observed frequencies according to the ·/ 
test for significance. 
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Transmitted Non-transmitted Total 2 p-value Pc X. 

c Observed 50 50 
(34) (34) (68) 0.0 1.0 ns 

Expected 50 50 
(34) (34) (68) 

T Observed 50 50 
(34) (34) (68) 0.0 1.0 os 

Expected 50 50 
(34) (34) (68) 

Table 51. Frequency of transmission of the C(-l06)T aUeles from parents of affected 
offspring to affected offspring in family proband study. 

This table shows the frequency of transmission of the C and T alleles from parents to 
affected offspring with respect to diabetic nephropathy. The frequency of transmission of 
the alleles from parents who were heterozygous for the C(-106)T allele, to affected 
offspring was determined in a total of 32 families. The number in the transmitted column 
in the observed row is the actual number of copies of the allele that was transmitted from 
parents to offspring. The non-transmitted value in the observed column is the actual 
number of times that the allele was not transmitted from parent to affected offspring. The 
expected number of C and T alleles to be transmitted and not-transmitted is 50% of the 
total number of alleles. The deviation from 50% transmission or non-transmission of the 
alleles from parents to affected offspring was determined using the X: test and 2x2 
contingency tables. 
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A(+l1842)C polymorphism marker 

An adenine to cytosine single base polymorphism situated + II842 base pairs downstream 

of the ALR2 gene ATG transcription start sequence was investigated. Polymerase chain 

reaction was carried out to amplify the 252bp region of intron 8 of ALR2 gene containing 

the A(+ II842)C polymorphism creating a Barn HI restriction site as described in chapter 3. 

Amplification products were cut by Barn HI restriction enzyme digestion, and separated on 

a 2.5% agarose/ethidiurn bromide gel at I OOV for I hour. The fragment sizes were checked 

by running a I OObp molecular weight marker alongside. Bands were detected by UV 

transillumination (320nm) (figure 26) and subjects were assigned a genotype according to 

restriction fragments identified. A PCR control band was also present. After Barn HI 

digestion, the homozygote genotype CC produced a 252 bp fragment, while the 

homozygote genotype AA produced 174 bp and 78 bp fragments. The heterozygote AC 

genotype produced all three fragments. The A(+II842)C polymorphism was investigated 

in the T I DM subjects and normal controls of British Caucasoid origin. 

280 



._ 
0 
Cl 
0 ·--(.1 
Q) .... 
~ 

Lane: Marker 1 2 3 

Chapter 4. Kesults 

4 

.._ 78bp 

.._ l 74bp 

.._ 252bp 

figure 26. A(+11842)C polymorphism by Bam HI restriction fragment separation 
on 2 . 5% agarose/ ethidium bromide gel 

Polymerase Chain Reaction was carried out to amplify a 252 bp region of the aldose 
reductase gene. The region included an intragenic polymorphic site, a single base 
substitution of A to C at 95th nucleotide of Intron 8. The polymorphism abolishes a 
Bam HI restriction site. 

Five microlitres of the PCR product was digested for 4 hours at 37°C with 10 units 
Bam HI (Promega). The genotypes were identified by 2.5io agarose gel 
electrophoresis alongside a lOObp molecular weight marker and ethidium bromide 
staining. 

After Bam HI digestion, the homozygote CC produced a 252 bp fragment, while the 
homozygote AA produced 174 bp and 78 bp fragments. The heterozygote AC 
produced all three fragments. All samples were analysed in duplicate to reduce the 
risk of erroneous resu lts. 

Three genotypes were identified, homozygous AA, homozygous CC and heterozygous 
AC. Allocated genotypes for each of the subjects shown in this figure (lanes 1-4) are 
as follows: 

Lane 1: CC 
Lane 2: AA 
Lane 3: AA 
Lane 4: CA 
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A(+l1842)C polymorphism in British Caucasoid TlDM subjects and normal controls 

The A(+ll842)C polymorphism located within the ALR2 gene itself, +11842bp 

downstream of the ATG start sequence was investigated using 244 TlDM subjects and 120 

normal controls of British Caucasoid origin (clinical demographics shown in table 6). 

Within the TlDM subject population studied there were 66 uncomplicated, 62 full house 

patients, 18 neuropathy, 24 retinopathy and neuropathy, 30 nephropathy and retinopathy, 

and 44 retinopathy patients. 

The frequency of the A(+ll842)C alleles in both TlDM and normal populations is shown 

in table 52. In this study we were able to find subjects who were homozygous CC, 

homozygous AA and heterozygous CA. In the analysis of allelic frequencies homozygotes 

were counted as 2 alleles. Tables show the percentage frequency of detected alleles and 

genotypes with actual numbers detected shown in parenthesis. Possible associations were 

investigated with respect to allelic frequency and genotype and comparisons were made 

between groups using the 1! test and 2 x 2 contingency tables. P-values were corrected for 

the number of comparisons made, and where the observed frequencies were <5 Fishers 

exact test was applied. 

All of the data obtained from this study is presented in the following tables. Possible 

associations were investigated with respect to allelic and genotypic frequencies and the 

onset of diabetic complications. The expected frequencies for A(+ 11842)C genotypes were 

calculated using 2xn analysis to determine whether frequencies of heterozygotes and 

homozygotes in control groups were in Hardy Weinberg equilibrium (table 53). 
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Allele and genotype frequencies of the A(+l1842)C polymorphism in British 
Caucasoid TlDM subjects and normal controls 

The A(+ll842)C polymorphism was investigated in 244 TIDM subjects and 120 normal 

controls of British Caucasoid origin. Table 52 presents the percentage frequency of the 

detected A(+ 11842)C alleles and genotypes for all TIDM subjects studied compared to the 

normal controls. There is a significant increase in the frequency of the AA (+11842)-

ALR2 genotype in the TIDM subjects compared to the normal controls (NC), (41.8 vs. 

6. 7%, ·l = 47 .I, p=<O.OOO I, Pc=<O.OOO I). Consequently, there is also a significant 

increase in the frequency of the A (+11842) allele in the TIDM subjects compared to the 

NC group (62.3 vs. 30.0%, x2 = 67.2, p=<O.OOOI, Pc=<O.OOOI). Both the normal and 

control groups complied with the Hardy Weinberg equilibrium (table 53). Table 54 

presents the alleles and genotypes for the Tl OM subjects according to the presence or 

absence of diabetic microvascular disease, where Tl OM subjects with DN/DR/DNu are 

compared with the uncomplicated DC and NC groups. A significant increase in the AA 

(+ 11842)-ALR2 genotype was seen in the DN/DR/DNu group compared to the 

uncomplicated DC group (52.3 vs. 13.7%, X2 = 29.5, p=<O.OOOl, Pc=<O.OOOI). There was 

a significant decrease in the frequency of the CC genotype, whereby the frequency was 

higher in the DC group compared to the TIDM DN/DR/DNu (40.9 vs. 8.4%, x2 = 35.7, 

p=<0.0001, Pc=<O.OOOI). There was alsQ a significant increase in the A (+11842)-ALR2 

allele in the TIDM DN/DR/DNU group compared to the uncomplicated DC group (71.9 

vs. 36.4%, x2 = 51.8, p=<O.OOOI, Pc=<O.OOOI). Table 55 presents the frequency of the 

ALR2 A(+li842)C alleles and genotypes where the TIDM group has been subdivided 

according to the precise diabetic complications observed. A significant increase in the AA 

(+11842) genotype was observed in all T1DM complication groups compared to the DC 

group. This was accompanied by an unequivocal increase in the A ( + 11842) allele in the 

TIDM complication subgroups compared to the DC group. Table 56 presents the 

A(+ 11842)C ALR2 alleles and genotypes detected in TIDM subjects according to the 

presence of retinopathy, or nephropathy or neuropathy. In all three groups the frequency of 
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the AA genotype and the A allele was significantly increased in the complications groups 

compared to the uncomplicated DC group. In the case of the DR vs. uncomplicated DC 

group the frequency of the AA genotype was 51.3 vs. 13.6%, x2 = 27.5, p=<O.OOOl, 

Pc=<O.OOl, and the A allele was 70.9 vs. 36.4%, x2 = 46.9, p=<O.OOOl, Pc=<O.OOI. In the 

case of the DN vs. uncomplicated DC group the frequency of the AA genotype was 45.7 

vs. 13.6%, x2 = 18.0, p=<O.OOOl, Pc=<O.OOl, and the A allele was 68.5 vs. 36.4%, x2 = 

32.0, p=<O.OOOl, Pc=<O.OOl). In the case of the DNU vs. uncomplicated DC group the 

frequency of the AA genotype was 54.8 vs. 13.6%, x2 = 28.8, p=<O.OOOl, Pc=<O.OOl, and 

the A allele was 73.6 vs. 36.4%, x2 = 46.2, p=<O.OOOI, Pc=<O.OOI. In all three groups the 

frequency of the CC genotype and the C allele was significantly decreased in the 

complications groups compared to the uncomplicated DC group. 
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TIDM Normal ··l p-value Pc-value 
Subjects Controls 

A(+ll842)C 
Genotype n=244 n=l20 

AA 41.8 6.7 47.09 <0.0001 <0.0001 
(102) (8) 

AC 41.0 46.7 1.06 ns ns 
(100) (56) 

cc 17.2 46.7 35.5 <0.0001 <0.0001 
(42) (56) 

Allele n=488 n=240 

A 62.3 30.0 67.2 <0.0001 <0.0001 
(304) (72) 

c 37.7 70.0 
(184) (168) 

Table 52. Percentage frequency of the detected A(+l1842)C alleles and genotypes in 
all British Caucasoid TlDM subjects studied, compared to normal control subjects. 
This table displays A(+ll842)C allele and genotype frequencies in TIDM subjects and 
normal control subjects. 

Predicted Observed "J! p-value Pc-value 

Normal (n=l20) (n=l20) 
Controls (NC) 

AA 11 8 0.5 0.5 ns 
AC 50 56 0.6 0.4 ns 
cc 59 . 56 0.2 0.7 ns 

TIDM Patients (n=244) (n=244) 

AA 95 • 102 0.4 0.5 ns 
AC 115 100 1.9 0.2 ns 
cc 34 42 1.0 0.3 ns 

Table 53. Comparison between the expected and observed incidence of A(+lt'842)C 
polymorphism genotypes in British Caucasoid TlDM and normal subjects. 

This table shows the expected and observed frequencies of A(+ll842)C genotypes in 
TlDM subjects and normal control subjects. This demonstrates that the distribution in the 
normal controls (NC) conforms to Hardy-Weinberg equilibrium principal (P2+2pq+q2=1). 
There were no significant differences between the expected and observed frequencies in 
the normal controls and TIDM subjects according to the Chi-squared test for significance. 
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TIDI\1 Nephropathy Uncomplioated Normal Controls 
and/or retinopathy (DC) (NC) 
and/or neuropathy 

A(+l1842)C 
Genotype n=178 n=66 n=l20 

AA 52.3 13.6 6.7 
(93) (9) (8) 

AC 39.3 45.5 46.7 
(70} (30) (56) 

cc 8.4 40.9 46.7 
(15) (27) (56) 

A(+l1842)C 
Alleles n=356 n=l32 n=240 

A 71.9 36.4 30.0 
(256) (48) (72) 

c 28.1 63.6 70.0 
(lOO} (84) (168) 

Table 54. A(+11842)C aUele and genotype frequencies in normal controls and diabetic 
patients according to the presence of microvascular complications of diabetes. This 
table displays A(+ll842)C allele frequencies in nonnal controls (NC), uncomplicated 
(DC) and TIDM Nephropathy/Retinopathy/Neuropathy. For each allele the percentage 
frequency and the actual number of alleles (in parenthesis) is given. n represents the 
number of subjects in each group. Comparisons were made for each allele and genotype 
between patient and control groups using 2 x 2 contingency tables and the ·l test. P values 
were corrected for the number of comparisons made. Only significant differences by ·t! 
and correction are shown. · Where observed numbers were <5 Fishers exact test was 
applied. 

TlDM DRIN/Nu vs. Uncomplicated diabetic controls; 

AA;·/} = 29.5, p= <0.0001 (1df), Pc= <0.0001 
CC;·/ = 35.7, p= <0.000.1 (1df), Pc= <0.0001 
A or C; r! = 51.8, p= <0.0001 (ldf), Pc= <0.0001 
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I 1 3
rnabetic 

4
Diabetlc 

5 Uncomplicated Normal 
Diabetic Diabetic Full House 

(DC) Controls 
Retinopathy Nephropathy Retinopathy Neuropathy Patients 

and and 
(NC) 

Retinopathy Neuropathy 

A(+ll84l)C 
n=44 n=JO n=24 n=I8 n=62 n=66 n=l20 Genotype 

AA 52.3 43.3 70.8 61.1 46.8 13.6 6.7 
(23) (13) (17) (11) (29) (9) (8) 

AC 36.4 50.0 20.8 38.9 43.6 45.5 46.7 
(16) ( 15) (5) (7) (27) (30) (56) 

cc 11.4 6.7 8.3 9.7 40.9 46.7 
(5) (2) (2) (0) (6) (27) (56) 

A(+ll84l)C 
n=88 n=60 n=48 n=36 n=l24 n=l32 n=240 Allele 

A 

c 

70.5 68.3 81.3 80.6 68.6 36.4 30.0 
(62) (41) (39) (29) (85) (48) (72) 
29.6 31.7 18.8 19.4 31.5 63.6 70.0 
(26) (19) (9) (7) (39) (84) (168) 

Table 55. A(+11842)C aUele and genotype frequencies in normal controls and diabetic 
subjects according to onset of diabetic complications. This table displays A(+II842)C 
allele and genotype frequencies in control and patient subjects according to their diabetic 
complication phenotype. Subjects were classified according to the onset of microvascular 
complications, diabetic retinopathy, diabetic nephropathy and retinopathy, diabetic 
retinopathy and neuropathy, diabetic neuropathy, full house patients and uncomplicated. 
For each allele the% frequency and the actual number of alleles (in parenthesis) is given. n 
represents the number of subjects in each group. Comparisons were made for each allele 
and genotype between patient and control groups using 2 x 2 contingency tables and the y} 
test. P values were corrected for the number of comparisons made. Only significant 
differences by x.2 and correction by multiplying by the number of comparisons made are 
shown. Where observed numbers were <5, Fishers exact test was applied. 

I vs. UDC; 

2 vs. UDC; 

3 vs. UDC; 

4 vs. UDC; 

5 vs. UDC; 

AA; ·l = 19.1, p=<O.OOOI (ldf), Pc=<O.OOI 
CC; X2 = 11.17, p= 0.0008 (ldf), Pc= 0.002 
A or C; x2 = 24.0, p= <0.0001 (ldf), Pc= <0.001 

ll 
AA; X2 = I 0.3, p= 0.00 I (Id f), Pc= 0.003 
CC; X2 = 16.2, p= <0.0001 (ldf), Pc= <0.001 
A or C; l = 16.95, p= <0.000 I (I df), Pc= <0.00 I 

AA; X2 = 28.0, p= <0.0001 (ldf), Pc= <0.001 
AC; x2 = 4.5, p= 0.03 (ldf), Pc= ns 
CC; x2 = 8.6, p= 0.004 (ldf), Pc= 0.01 
A or C; ·l = 28.4, p= <0.0001 (ldf), Pc= <0.001 

AA; X2 = 17:6, p= <0.0001 (ldf), Pc= 0.001 
CC; x2 = 10.9, p= 0.0009 (ldf), Pc= 0.003 
A or C; x2 = 22.3, p= <0.0001 (ldf), Pc= <0.0001 

AA; x2 = 16.8, p= <0.0001 (ldf), Pc= <0.0001 
CC; X2 = 16.3, p= <0.0001 (ldf), Pc= 0.0001 
A or C; X2 = 26.5, p= <0.0001 (ldf), Pc= <0.0001 

287 



Chapter 4. Results 

I J . 
Diabetic Diabetic 

3
Diabetic Uncomplicated Normal Controls 

Retinopathy Nephropathy Neuropathy (DC) (NC) 

(DR) (DN) (DNu) 

A(+ll842)C n=l60 n=92 n=l04 n=66 n=120 
Genotype 

AA 51.3 45.1 54.8 13.6 6.7 
(82) (42) (57) (9) (8) 

AC 39.4 45.1 37.5 45.5 46.7 
(63) (42) (39) (30) (56) 

cc 9.4 8.7 7.7 40.9 46.7 
(15) (8) (8) (27) (56) 

Allele n=320 n=184 n=208 n=132 n=240 

A 70.9 68.5 73.6 36.4 30.0 
(227) (126) (153) (48) (72) 

c 29.1 31.5 26.4 63.6 70.0 
(93) (58) (55) (84) (168) 

Table 56. A(+l1842)C aUele and genotype frequencies in normal controls and TIDM 
patients classified according to onset of diabetic complications. This table displays 
A(+ll842)T allele and genotype frequencies in control and patient subjects. TIDM 
subjects are grouped according to the presence of diabetic nephropathy, retinopathy or 
neuropathy. The retinopathy group is an amalgamation of the retinopathy, nephropathy and 
retinopathy, retinopathy and neuropathy and full house patients groups previously 
identified. The nephropathy group is an amalgamation of the nephropathy and retinopathy, 
and full house patients' subgroups previously identified. The neuropathy group is an 
amalgamation of the retinopathy and neuropathy, the neuropathy and the full house 
patients' groups also previously identified. For each allele the % frequency and the actual 
nwnber of alleles (in parenthesis) are given. n represents the number of subjects in each 
group. Comparisons were made for each allele and genotype between patient and control 
groups using 2 x 2 contingency tables and the x2 test. P values were corrected for the 
nwnber of comparisons made. Only significant differences by x2 and correction are shown . 

•• 
1 vs. Uncomplicated diabetic controls; 

AA; ·l = 27.5, p= <0.000 1 ( 1 df), Pc = <0.00 1 
CC; ·l = 30.7, p= <0.0001 (ldf), Pc= <0.001 
A or C; l = 46.9, p= <0.0001 (ldf), Pc= <0.001 

2 vs. Uncomplicated diabetic controls; 
AA; l = 18.0, p= <0.0001 (1df), Pc= <0.001 
CC; x.2 = 23.1, p= <0.0001 (ldf), Pc= <0.001 
A or C; x.2 = 32.0, p= <0.000 l (1 df), Pc = <0.00 I 

3 vs. Uncomplicated diabetic controls; 
AA; l = 28.8, p= <0.000 1 (I df), Pc= <0.00 I 
CC; l = 27.3, p= <0.0001 (ldf), Pc= <0.001 
A or C; l = 46.2, p= <0.0001 (ldf), Pc= <0.001 
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Combined genotype analysis of ALR2 polymorphisms investigated. 
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Combined genotype analysis in patients with TlDM and normal controls of British 
Caucasoid origin 

The frequency of the combined genotypes for the 5'ALR2, C(-l06)T and A(+ll842)C 

polymorphism's were investigated in the TIDM subjects of British Caucasoid origin. 

Firstly, the 5'ALR2/C(-l06)T combined genotypes were counted and analysed. Secondly, 

the 5'ALR2/A(+l1842)C and thirdly C(-l06)T/A(+ll842)C combined genotypes were 

counted and analysed. The three polymorphism's were however not investigated together 

in a combined genotype analysis (5'ALR2/C(-106)T/A(+ll842)C) as the number of 

subjects in each group with a particular genotype was very small and a significant 

difference in the percentage frequency between groups would be difficult to find. 

Comparisons were made between the frequencies of detected combined genotypes using 

the X2 test and 2x2 contingency tables. Combined genotype frequencies were investigated 

with respect to the onset of 4iabetic microvascular complications. 
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Combined genotype analysis of the 5'ALR2/C(-106)T polymorphism's in TlDM 
subjects of British Caucasoid origin 

Tables 57-60 present the combined genotype frequencies for the 5' ALR2/C(-106)T 

genotype in TIDM subjects and normal controls of British Caucasoid origin. Table 57 

presents the TIDM subjects vs. normal controls. Following the application of the Fishers 

exact test for small numbers the Z-2/X.T/T combined genotype was significantly higher in 

the normal controls vs. the TIDM subjects. Table 58 compares DRIDN/DNU and the 

uncomplicated DC group. A significant association was observed between the 

DRIDN/DNU and uncomplicated DC group with respect to the Z-2/X.C/C genotype 

whereby it was increased in the complicated group (20.7% vs. 2.6%, x.2=7.1, p=0.008, 

Pc=0.02). This however involved small numbers and more data would be required in order 

to confirm an association. Table 59 compares the 5'ALR2/C(-106)T genotype in TIDM 

subjects according to the precise onset of complications. After correction the Z-2/X.C/C 

genotype was significantly increased in the diabetic nephropathy with retinopathy and the 

full house patients groups compared to the uncomplicated diabetic controls. In the case of 

the DN/DR vs. uncomplicated DC groups (34.6% vs. 2.6%, x.2=12.3, p=0.0005, Pc=0.002, 

Fishers exact = 0.0007), and the FHP vs. uncomplicated DC groups (20.5% vs. 2.6%, 

x.2=6.2, p=O.OI, Pc=0.03, Fishers exact= 0.01). Table 60 presents the 5'ALR2/C(-106)T 

genotype in TIDM subjects according to the onset of nephropathy or retinopathy or 
11 

neuropathy. In the case of the DNu patients vs. DC patients there was a significant 

association between the Z-2/X.C/C and the X/X.C/C combined genotypes and the onset of 

diabetic neuropathy according to the Fishers exact test for small numbers. Larger numbers 

will be required to confirm this association. 
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S'ALR2/C(-106)T TIDM Subjects Nonnal Controls 
genotype (NC) 

n 155 120 

Z-2/X.Cff 10.9 10.8 
(17) (13) 

Z-2/X.C/C 16.1 7.5 
(23) (9) 

Z-2/X.Tff 6.7 
(-) (8) 

Z+21X.Cff 14.2 13.3 
(22) (16) 

Z+21X.C/C 7.1 6.7 
(11) (8) 

Z+21X.Tff 1.3 1.7 
(2) (2) 

Z-21Z+2.Cff 5.8 2.5 
(9) (3) 

Z-2/Z+2.C/C 3.2 1.7 
(5) (2) 

Z-2/Z+2.Tff 
(-) (-) 

X/X.CT 17.4 17.5 
(27) (21) 

X/X.C/C 6.5 10.0 
(10) (12) 

XIX.Trr 1.9 6.7 
(3) (8) 

Other 15.5 15.0 
(24) (18) 

Table 57. Frequency of 5'ALR2/ C(-106)T combined genotypes in patients with 
TIDM of British Caucasoid origin. The combined genotype frequencies were obtained 
by using the gene counting method. This table presents the combined genotypes detected in 
the TlDM and normal control (NC) subjects. Frequencies are expressed as the percentage 
incidence out of the total number of genotypes detected. Comparisons were made between 
the genotype frequencies detected for TlDM and NC subjects using the x2 test and 2x2 
contingency tables. n= nwnber of genot~es detected, nwnber of subjects studied is shown 
in parenthesis. X= patient has neither Z-2 nor Z+2 5'ALR2 alleles. Where observed 
nwnbers were <5, Fishers exact test for small numbers was applied. 

TlDMvs.NC; 
Z-2/X.C/C; x2= 4.7, p= 0.03, Pc= ns 
Z-2/X.T/T; x2= 10.6, p= 0.001, Pc= 0.01, Fishers exact= 0.001. 
XIX.. TIT; x2= 3.9, p= 0.05, Pc= ns, Fishers exact= 0.05 
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S'ALR21C(-106)T Tl DM Nephropathy Uoromplloated Normal Control• 
genotype and/or Retinopathy (DC) (NC) 

and/or Neuropathy 
(DRIDNffiNu) 

D 116 39 120 

Z-2fX.Cff 11.2 10.3 10.8 
(13) (4) (13) 

Z-21X.C/C 20.7 2.6 7.5 
(24) (I) (9) 

Z-2/X.Trr 6.7 
(-) (-) (8) 

Z+2fXCff 11.2 23.1 13.3 
(13) (9) (16) 

Z+2tx.C/C 5.2 12.8 6.7 
(6) (5) (8) 

Z+21X.Tff 5.1 1.7 
(-) (2) (2) 

Z-2/Z+2.Cff 5.2 7.7 2.5 
(6) (3) (3) 

Z-2/Z+2.C/C 4.3 1.7 
(S) (-) (2) 

Z-2/Z+2.Tff 
(-) (-) (-) 

XIX.CT 18.1 15.4 17.5 
(21) (6) (21) 

XIX.C/C 8.6 10.0 
(10) (-) (12) 

XIX.Trr 2.6 6.7 
(3) ( -) (8) 

Other 12.9 23.1 15.0 
(IS) (9) (18) 

Table 58. Frequency of 5'ALR2/ C(-106)T combined genotypes in patients with 
TlDM of British Caucasoid origin. The combined genotype frequencies were obtained 
by using the gene counting method. This table presents the combined genotypes detected in 
the TIDM subjects with microvascular..disease (nephropathy, retinopathy, neuropathy) 
compared to normal control (NC) subjects. Frequencies are expressed as the percentage 
incidence out of the total number of genotypes detected. Comparisons were made between 
the genotypes detected for TIDM and NC subjects using the ·l test and 2x2 contingency 
tables. n= number of genotypes detected, number of subjects studied is shown in 
parenthesis. X= patient has neither Z-2 nor Z+2 5'ALR2 alleles. Only significant 
differences by ·l and correction are shown. Where observed numbers were <5, Fishers 
exact test for small numbers was applied. 

DRIDNIDNU vs. Uncomplicated diabetic controls; 
Z-2/X.C/C; x2= 7.1, p= 0.008, Pc= 0.02 
Z+2/X.T/T; x2= 6.03, p= 0.01, Pc= ns, Fishers= 0.06 

293 



Chapter 4. Results 

5'ALR2/ Diabetic Diabetic Diabetic Diabetic:: Full House Uncomplicated NormBI 
C(-106)T Retinopathy Nephropathy Retinopathy Neuropathy Patienb (DC) Controls 
genotype and and (NC) 

Retinopathy Neuropathy 

0 23 26 16 12 39 39 120 

z..2rx.crr 17.4 7.7 6.3 33.3 5.1 10.3 10.8 
(4) (2) (I) (4) (2) (4) (13) 

Z-2fX.C/C 17.4 34.6 6.3 16.7 20.5 2.6 7.5 
(4) (9) (I) (2) (8) (I) (9) 

z..2rx.Trr 6.7 
(-) (-) (-) (-) (-) (-) (8) 

Z+21X.Crf 8.7 7.7 12.5 16.7 12.8 23.1 13.3 
(2) (2) (2) (2) (5) (9) (16) 

Z+2fX.C/C 13.0 6.3 5.1 12.8 6.7 
(3) (-) (I) (-) (2) (5) (8) 

Z+2fX.Trf 5.1 1.7 
(-) (-) (-) (-) (-) (2) (2) 

Z- 8.7 3.9 6.3 5.1 7.7 2.5 
2/Z+2.Crf (2) (I) (I) (-) (2) (3) (3) 

Z- 4.4 12.5 5.1 1.7 
2/Z+2.C/C (I) (-) (2) (-) (2) (-) (2) 

Z-
2/Z+l.Trf (-) (-) (-) (-) (-) (-) (-) 

XIX.CT 17.4 19.2 25 8.3 17.95 15.4 17.5 
(4) (5) (4) (I) (7) (6) (21) 

XIX.C/C 4.4 7.7 6.3 8.3 12.8 10.0 
(I) (2) (I) (I) (5) (-) (12) 

XIX.Trr 3.9 8.3 2.6 6.7 
(-) (I) (-) (I) (I) (-) (8) 

Other 8.7 15.4 18.8 8.3 12.8 23.1 15.0 
(2) (4) (3) (I) (5) (9) (18) 

Table 59. Frequency of 5' ALR2/ C(-106)T combined genotypes in patients with 
TlDM of British Caucasoid origin. The combined frequencies were obtained by using 
the gene counting method. This table presents the genotypes detected in the TIDM 
subjects with retinopathy (DR), nephropathy and retinopathy (DN/DR), retinopathy and 
neuropathy (DN/DNu), full house complications (FHC). Also shown are the Tl DM 
uncomplicated diabetic controls (DC) a:ld normal control (NC) subjects. Frequencies are 
expressed as the percentage incidence out of the total number of genotypes detected. 
Comparisons were made between the genotypes detected for TlDM complication groups 
and the uncomplicated DC subjects using the x.2 test and 2x2 contingency tables. n= 
number of genotypes detected, number of subjects studied is shown in parenthesis. X= 
patient has neither Z-2 nor Z+2 5' ALR2 alleles. Where observed numbers were <5, Fishers 
exact test for small numbers was applied. 

DR vs. DC; Z-2/X.C/C; x.2= 4.3, p= 0.04, Pc= ns, Fishers= 0.06. 

DNillRvs.DC; Z-2/X.C/C; x.2= I2.3, p= 0.0005, Pc= 0.002, Fishers= 0.0007. 

DRill NU vs. DC; Z-2/Z+2.C/C; x.2= 5.I, p= 0.02, Pc= ns, Fishers= 0.08. 

FHPvs.DC; Z-2/X.C/C; x.2= 6.2, p= 0.0 I, Pc= 0.03, Fishers = 0.0 I. 
XIX.CIC; x2= 5.3, p= 0.02, Pc= ns, Fishers = 0.03 
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5'ALR2/C(-106)T Diabedc Dlobellc Diabetic Un<omplicaled Normal Conlrols 
genolype Rellnopalhy Nephropalhy Neuropathy (DC) (NC) 

Q!R) (DN) (DNu) 

n 104 65 67 39 120 

L-2rx.crr 8.7 6.2 10.5 10.3 10.8 
(9) (4) (7) (4) (13) 

L-21X.CIC 21.2 26.2 16.4 2.6 7.5 
(22) ( 17) (11) (1) (9) 

L-21X.Trr 6.7 
(·) (·) (·) (·) (8) 

Z+2!X.Crf 10.6 10.8 13.4 23.1 13.3 
(11) (7) (9) (9) (16) 

Z+21X.C/C 5.8 3.1 4.5 12.8 6.7 
(6) (2) (3) (5) (8) 

Z+21X.Tff 5.1 1.7 
(·) (·) (·) (2) (2) 

L-2/Z+2.Crf 5.8 4.6 4.5 7.7 2.5 
(6) (3) (3) (3) (3) 

L-2/Z+2.C/C 4.8 3.1 5.97 1.7 
(5) (2) (4) (-) (2) 

L-2/Z+2.Trf 
(-) (·) (·) (-) (·) 

XJX.CT 19.2 18.5 17.9 15.4 17.5 
(20) (12) (12) (6) (21) 

XIX.C/C 8.7 10.8 10.5 10.0 
(9) (7) (7) (-) (12) 

XIX.Trr 1.9 3.1 2.99 6.7 
(2) (2) (2) (-) (8) 

Other 13.5 13.9 13.4 23.1 15.0 
(14) (9) (9) (9! (18) 

Table 60. Frequency of 5' ALR2/ C(-106)T combined genotypes in patients with 
TlDM of British Caucasoid origin. The combined genotype frequencies were obtained 
by using the gene counting method with those subjects who were homozygous for ·either 
the 5'ALR2 or the C(-l06)T locus or both. X= neither Z-2 nor Z+2 allele. This table 

. presents the haplotypes detected in the TlDM normal control (NC) subjects. Subjects with 
microvascular disease are classified in aw;ordance to onset of retinopathy, nephropathy or 
neuropathy. The nephropathy group (n=65) is an amalgamation of the nephropathy and 
retinopathy (n=26) and full house subjects (n=39) groups previously identified. The 
retinopathy group (n=l04) is an amalgamation of the retinopathy (n=23), nephropathy with 
retinopathy (n=26), retinopathy and neuropathy (n=l6) and full house patients (n=39) 
groups previously identified. The neuropathy group (n=67) consists of subjects diagnosed 
as having neuropathy in the absence of any other microvascular complication (n=l2), the 
diabetic retinopathy with neuropathy (n=l6) and full house patients (n=39) groups. Also 
presented is the allelic frequency in uncomplicated and normal controls. Frequencies are 
expressed as the percentage incidence out of the total number of haplotypes detected. 
Comparisons were made between the haplotypes detected for TIDM subjects with 
complications and the uncomplicated subjects using the x2 test and 2x2 contingency tables. 
n= number of genotypes detected, number of subjects studied is shown in parenthesis. 
Only significant differences by x2 and correction are shown. Where observed numbers 
were <5, Fishers exact test for small numbers was applied. 
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DR vs. Uncomplicated diabetic controls; 
Z-2/X.C/C; ·/= 7.3, p= 0.007, Pc= ns. 
Z+21X..Tff; x2= 5.4, p= 0.02, Pc= 0.07. 

DN vs. Uncomplicated diabetic controls; 
Z-2/X.C/C; x2= 9.5, p= 0.002, Pc= ns. 

DNU vs. Uncomplicated diabetic controls; 
Z-2/X.C/C; x2= 4. 7, p= 0.03, Pc= ns, Fishers = 0.03. 
XIX..C/C; x2

= 4.4, p= 0.04, Pc= ns, Fishers = 0.04. 
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Combined genotype analysis of the 5'ALR2/A(+ll842)C polymorphisms in TlDM 
subjects of British Caucasoid origin 

Tables 61-64 present the frequencies of the 5 'ALR2/ A( +ll842)C genotypes in TIDM 

subjects and normal controls of British Caucasoid origin. Table 61 presents the frequencies 

in the T I DM vs. the normal controls, and no significant correlation's were found between 

the two groups by the y} test, or Fishers exact test for small numbers. Table 62 presents the 

5'ALR2/A(+I 1842)C genotypes in TIDM subjects with DN/DR/DNU vs. uncomplicated 

DC group. The Z+2/X.C/A genotype was found to be significantly increased in the TIDM 

control group (6.7% vs. 22.7%, x.2=12.5, p=0.0004, Pc= 0.005). Table 63 presents the 

5'ALR2/A(+l1842)C genotypes in TIDM subjects according to the precise onset of 

diabetic complications. No significant differences were found by the Chi squared test , 

however, Fishers exact test found an increased frequency of the Z+2/X.C/A and Z-

2/Z+2.A/A combined genotypes in DC vs. DRIDNu. Table 64 presents the 

5'ALR2/A{+II842)C genotypes in TIDM subjects according to the onset of nephropathy 

or retinopathy or neuropathy. In the case of the DR vs. uncomplicated DC groups the 

Z+2/X.C/A genotype was lower in the DR group (5.6% vs. 22.7%, x.2=14.4, p= 0.0002, 

Pc= 0.003). In the case of the DN vs. uncomplicated DC groups the Z+2/X.C/A genotype 

was lower in the DN group (4.4% vs. 22.7%, x.2=12.3, p=0.0005, Pc=0.007). In the case of 

the DNU vs. uncomplicated DC groups the Z+2/X.C/A genotype was lower in the DNU 
ft 

group (6.7% vs. 22.7%, x.2=9.2, p=0.003, Pc=0.04). 
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S'ALRliA(+II842)C TIDM Subjects Normal Controls 
genotype <N9 

n 244 120 

Z-2/X.C/A 13.5 10.0 
(33) (12) 

Z-2/X.C/C 4.5 1.7 
(11) (2) 

Z-2fX..A/A 11.5 13.3 
(28) (16) 

Z+2fX..C/A 11.1 13.3 
(27) (16) 

Z+2fX..C/C 2.1 0.8 
(5) (I) 

Z+2fX..A/A 13.5 8.3 
(33) (10) 

Z-2/Z+2.C/A 1.6 3.3 
(4) (4) 

Z-2/Z+2.C/C 0.4 
(l) (-) 

Z-2/Z+2.A/A 4.1 0.8 
(10) (!) 

XIX.. CA 10.2 14.2 
(25) (17) 

XIX.C/C 2.9 3.3 
(7) (4) 

XIX.A/A 12.3 15.8 
(30) (19) 

Other 12.3 15.0 
(30) (18) 

Table 61. Frequency of 5'ALR2/A(+11842)C combined genotypes in patients with 
TlDM of British Caucasoid origin. The combined genotype frequencies were obtained 
by using the gene counting method. This table presents the combined genotypes detected in 
the TlDM and normal control (NC) subjects. Frequencies are expressed as the percentage 
incidence out of the total number of genotypes detected. Comparisons were made between 
the genotype frequencies detected for TlDM and NC subjects using the x2 test and 2x2 
contingency tables. n= number of genotypes detected, number of subjects studied is shown 
in parenthesis. 

No significant differences were detected between the TlDM and the normal control 
populations with respect to the 5 'ALR2/ A(+ 11842)C combined genotype. 
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S'ALR2/A(+II84l)C, TIDM Nephropathy Uncomplirated Normal Controls 
genotype and/or Retinopathy (DC) (NC) 

ond/or Neuropathy 
~DRIDNIDNu) 

n 178 66 120 

Z-2/X.C/A 15.2 9.1 10.0 
(27) (6) (12) 

Z-2/X.C/C 5.1 3.0 1.7 
(9) (2) (2) 

Z-2/X.A/A 13.5 6.1 13.3 
(24) (4) (16) 

Z+2/X.C/A 6.7 22.7 13.3 
(12) (15) (16) 

Z+21X.C/C 1.1 4.6 0.83 
(2) (3) (I) 

Z+21X.A/A 13.5 13.6 8.3 
(24) (9) (10) 

Z-2/Z+2.C/A 1.7 1.5 3.3 
(3) (I) (4) 

Z-2/Z+l.C/C 0.6 
(I) (-) 

Z-2/Z+2.A/A 4.5 3.0 0.8 
(8) (2) (I) 

XIX. CA 11.8 6.1 14.2 
(21) (4) (17) 

XIX.C/C 1.7 6.1 3.3 
(3) (4) (4) 

XIX.A/A 14.0 7.6 15.8 
(25) (5) (19) 

Other 10.7 16.7 15.0 
(19) (11) (18) 

Table 62. Frequency of 5' ALR2/ A(+ 11842)C combined genotypes in patients with 
TlDM of British Caucasoid origin. The combined genotype frequencies were obtained 
by using the gene counting method. This table presents the combined genotypes detected in 
the TlDM subjects with microvascul~ disease (nephropathy, retinopathy, neuropathy) 
compared to uncomplicated and normal control (NC) subjects. Frequencies are expressed 
as the percentage incidence out of the total number of genotypes detected. Comparisons 
were made between the genotypes detected for TlDM and DC subjects using the x.2 test 
and 2x2 contingency tables. n= number of genotypes detected, number of subjects studied 
is shown in parenthesis. Only significant differences by x.2 and correction are shown. 
Where observed numbers were <5, Fishers exact test for small numbers was applied. 

DRIDNffiNU vs. Uncomplicated diabetic controls; 
Z+2/X.C/A; x.2= 12.5, p= 0.0004, Pc= 0.005*. 
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S'ALR2/ 
A(+li842)C 

genotype 

n 

~2/X.C/A 

~2/X.C/C 

~2/X.A/A 

Z+2/X.C/A 

Z+2/X.C/C 

Z+21X.A/A 

~ 

2/Z+2.C/A 
~ 

2/Z+2.C/C 
~ 

2/Z+2.A/A 

XIX. CA 

XIX.C/C 

XIX.A/A 

Other 

iDiobetlc 1Diabetlc 
Retinopathy Nephropathy 

and 
Retinopathy 

44 30 

13.6 23.3 
(6) (7) 
2.3 6.7 
(I) (2) 
13.6 10.0 
(6) (3) 

9.1 3.3 
(4) (I) 
2.3 
(I) (-) 
18.2 6.7 
(8) (2) 

3.3 
(-) (I) 
2.3 
(I) (-) 
4.6 
(2) (-) 

11.4 16.7 
(5) (5) 
4.6 
(2) (-) 
9.1 16.7 
(4) (5) 

9.1 13.3 
(4) (4) 

'mobetlc 
Retinopathy 

and 
Neuropathy 

24 

4.2 
(I) 
8.3 
(2) 
12.5 
(3) 

4.2 
(I) 

(-) 
20.8 
(5) 

(-) 

(-) 
16.7 
(4) 

8.3 
(2) 

(-) 
12.5 
(3) 

12.5 
(3) 

'Diabetic 
Neuropathy 

18 

16.7 
(3) 

(-) 
22.2 
(4) 

16.7 
(3) 

(-) 
16.7 
(3) 

(-) 

(-) 

(-) 

5.6 
(I) 

(-) 
16.7 
(3) 

5.6 
(I) 

1Full House Uncomplicated 
Patients (DC) 

62 66 

16.1 9.1 
(10) (6) 
6.5 3.0 
(4) (2) 
12.9 6.1 
(8) (4) 

4.8 22.7 
(3) (15) 
1.6 4.6 
(I) (3) 
9.7 13.6 
(6) (9) 

3.2 1.5 
(2) (1) 

(-) (-) 
3.2 3.0 
(2) (2) 

12.9 6.1 
(8) (4) 
1.6 6.1 
(I) (4) 
16.1 7.6 
(10) (5) 

11.3 16.7 
(7) (11) 

Normal 
Controls 

(NC) 

120 

10.0 
(12) 
1.7 
(2) 
13.3 
(16) 

13.3 
(16) 
0.8 
(I) 
8.3 
(10) 

3.3 
(4) 

(-) 
0.83 
(I) 

14.2 
(17) 
3.3 
(4) 
15.8 
(19) 

15.0 
(18) 

Table 63. Frequency of 5' ALR2/ A(+ 11842)C combined genotypes in patients with 
TlDM of British Caucasoid origin. The combined frequencies were obtained by using 
the gene counting method. This table presents the genotypes detected in the TIDM 
subjects with retinopathy (DR), nephronr-thy and retinopathy (DN/DR), retinopathy and 
neuropathy (DN/DNu), full house complications (FHC). Also shown are the TIDM 
diabetic controls (DC) and normal control (NC) subjects. Frequencies are expressed as the 
percentage incidence out of the total number of genotypes detected. Comparisons were 
made between the genotypes detected for TIDM complication groups and the 
uncomplicated DC subjects using the ·l test and 2x2 contingency tables. n= number of 
genotypes detected, number of subjects studied is shown in parenthesis. Only significant 
differences by x2 and correction are shown. Where observed numbers were <5, Fishers 
exact test for small numbers was applied. 

2 vs. Uncomplicated diabetic controls; 
Z+2/X.C/A; x2=5.59, p=0.02, Pc=ns. 

3 vs. Uncomplicated diabetic controls; 
Z+2/X.C/A; x2=4.15, p=0.04, Pc=ns, Fishers=0.03. 
Z-2/Z+l.A/A; x2=5.26, p=0.02, Pc=ns, Fishers= 0.04. 
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4 
vs. Uncomplicated diabetic controls; 

Z-2/X.A/A; x2=4.29, p=0.04, Pc=ns, 0.06. 

5 
vs. Uncomplicated diabetic controls; 

Z+2/X.C/A; x2=8.47, p=0.004, Pc=ns. 
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S'ALR2/A(+Il842)C Diabetic DiabeHc Diabetic Unrompflcaled Normal Coolrols 
genolype Relinopalhy Nephropalhy Neuropalhy (DC) (NC) 

(DR! . (DN) ~Nu~ 
n 160 92 104 66 120 

Z-2fX.CIA 15.0 18.5 13.5 9.1 10.0 
(24) (17) (14) (6) (12) 

Z-2fX.CIC 5.6 6.5 5.8 3.0 1.7 
(9) (6) (6) (2) (2) 

Z-21X.A/A 12.5 11.96 14.4 6.1 13.3 
(20) (11) (15) (4) (16) 

Z+2fX.CIA 5.6 4.4 6.7 22.7. 13.3 
(9) (4) (7) (15) (16) 

Z+21X.CIC 1.3 1.1 0.96 4.6 0.8 
(2) (I) (I) (3) (I) 

Z+21X.AIA 13.1 8.7 13.5 13.6 8.3 
(21) (8) (14) (9) (10) 

Z-21Z+2.CIA 1.9 3.3 1.9 1.5 3.3 
(3) (3) (2) (I) (4) 

Z-21Z+2.CIC 0.6 
(I) (-) (-) (-) (·) 

Z-21Z+2.AJA 5.0 2.2 5.8 3.0 0.8 
(8) (2) (6) (2) (I) 

X/X.CA 12.5 14.1 10.6 6.1 14.2 
(20) (13) (11) (4) (17) 

XIX.CIC 1.9 1.1 0.96 6.1 3.3 
(3) (I) (I) (4) (4) 

XIX.AIA 13.8 16.3 15.4 7.6 15.8 
(22) (15) (16) (5) (19) 

Other 11.3 11.96 10.6 16.7 15.0 
(18) ( 11) (11) (11) (18) 

Table 64. Frequency of 5'ALR2/ A(+11842)C combined genotypes in patients with 
TlDM of British Caucasoid origin. The combined genotype frequencies were obtained 
by using the gene counting method. X= neither Z-2 nor Z+2 allele. Subjects with 
microvascular disease are classified in accordance to onset of retinopathy, nephropathy or 
neuropathy. The nephropathy group (n=92) is an amalgamation of the nephropathy and 
retinopathy (n=30) and full house subjects (n=62) groups previously identified. The 
retinopathy group (n=l60) is ail amalgamation of the retinopathy (n=44), nephropathy with 
retinopathy (n=30), retinopathy and neuropathy (n=24) and full house patients (n=62) 
groups previously identified. The neuropathy group (n= I 04) consists of subjects diagnosed 
as having neuropathy in the absence of any other microvascular complication (n= 18), the 
diabetic retinopathy with neuropathy (n=24) and full house patients (n=62) groups. Also 
presented is the allelic frequency in uncomplicated and normal controls. Frequencies are 
expressed as the percentage incidence out of the total number of genotypes detected. 
Comparisons were made between the genotypes detected for TIDM subjects with 
complications and uncomplicated subjects using the x2 test and 2x2 contingency tables. n= 
number of alleles detected, number of subjects studied is shown in parenthesis. Only 
significant differences by x2 and correction are shown. Where observed numbers were <5, 
Fishers exact test for small numbers was applied. 

DR vs. DC; Z+21X..C/A; x2= 14.4, p= 0.0002, Pc= 0.003. 
DN vs. DC; Z+21X..C/A; x2= 12.3, p= 0.0005, Pc= 0.007. 
DNU vs. DC; Z+2/X.C/A; x2= 9.2, p= 0.003, Pc= 0.04. 
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Combined genotype analysis of the C(-106)T/A(+l1842)C polymorphism's in TlDM 
subjects of British Caucasoid origin 

Tables 65-68 present the C(-l06)T/A(+ll842)C combined genotypes observed in the 

TlDM subjects and normal controls of British Caucasoid origin. Table 65 compares the 

TIDM subjects with the normal control subjects frequencies. There was a significant 

increase in the T/T.A/C combined genotype in the normal controls compared to the TIDM 

subjects (7.5% vs. 0.6%, x.2=9.07, p=0.003, Pc=0.03). Table 66 compares the TIDM 

DRIDN/DNU subjects and the diabetic controls. Following correction no significant 

associations were found. Table 67 compares the uncomplicated DC group with the TIDM 

subjects according to the precise onset of complications. Following correction no 

significant associations were found. Table 68 compares the TIDM subjects with the 

uncomplicated DC subjects according to the onset on nephropathy or retinopathy or 

neuropathy. Following correction no significant differences were found, however in all 

groups the C/C.A/ A was borderline of significance where there was a higher frequency in 

the complication groups compared to the uncomplicated DC group. 
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C(-106)T/A(+II842)C TIDIII Subjects Nonnal Controls 
genollj!< {NC) 

n 155 120 
C/C-A/C 21.3 10.8 

(33) (13) 
CIC-AlA 16.1 11.7 

(25) (14) 
C/C-C/C 2.6 5.0 

(4) (6) 

Tff-A/C 0.6 7.5 
(I) (9) 

Tff-A/A "4.5 7.5 
(7) (9) 

Tff-C/C 
(-) (-) 

Cff-AIC 25.2 27.5 
(39) (33) 

Cff-A/A 26.5 28.3 
(41) (34) 

Cff-C/C 3.2 1.7 
(5) (2) 

C(·l06)T 
C aUele present(%) 75.5 85.0 

(117) (102) 
T allele present (%) 60.0 72.5 

(93) (87) 

A(+ll842)C 
C aUele present(%) 52.9 52.5 

(82) (63) 
A allele present (%) 94.2 93.3 

(146) (112) 

Table 65. Frequency of C(-106)T/ A(+ll842)C combined genotypes in patients with 
TlDM of British Caucasoid origin. The combined genotype frequencies were obtained 
by using the gene counting method. This table presents the combined genotypes detected in 
the TIDM and normal control (NC) subjects. Frequencies are expressed as the percentage 
incidence out of the total number of genotypes detected. Comparisons were made between 
the genotype frequencies detected for TlDM and NC subjects using the·/ test and 2x2 
contingency tables. n= number of genotypes detected, number of subjects studied is shown 
in parenthesis. Only significant differences by x2 and correction are shown. Where 
observed numbers were <5, Fishers exact test for small numbers was applied. 

TlDMvs. NC; 
2 C/C.A/C; X = 5.3, p= 0.02, Pc= ns. 
2 TIT.A/C; X = 9.07, p= 0.003, Pc= 0.03. 
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C(·I06)T/A(+li842)C genotype TIDM Nephropathy Uncomplicated Normal Controls 
and/or Retinopathy (DC) (NC) 
and/or Neuropathy 

(DRIDN/DNu) 

n 116 39 120 
C/C-A/C 23.3 15.4 10.8 

(27) (6) (13) 
CIC-AlA 19.8 5.1 11.7 

(23) (2) (14) 
C/C-C/C 2.6 2.6 5.0 

(3) (I) (6) 

Tff-AJC 2.6 7.5 
(-) (I) (9) 

Tff-AJA 3.5 7.7 7.5 
(4) (3) (9) 

Tff-C/C 
(-) (-) (-) 

Cff-A/C 21.6 35.9 27.5 
(25) (14) (33) 

Cff-A/A 26.7 25.6 28.3 
(31) (10) (34) 

Cff-C/C 2.6 5.1 1.7 
(3) (2) (2) 

C(·106)T 
C allele present(%) 96.6 89.7 85.0 

(112) (35) (102) 
T aUele present{%) 54.3 76.9 72.5 

(63) (30) (87) 

A(+11842)C 
C allele present(%) 50.0 61.5 52.5 

(58) (24) (63) 
A aUele present{%) 94.8 92.3 93.3 

(110) (36) (I 12) 

Table 66. Frequency of C(-106)T/ A(+l1842)C combined genotypes in patients with 
TlDM of British Caucasoid origin. The combined genotype frequencies were obtained 
by using the gene counting method. This table presents the combined genotypes detected in 
the TIDM subjects with microvascular disease (nephropathy, retinopathy, neuropathy) 
compared to TIDM uncomplicated and normal control (NC) subjects. Frequencies are 
expressed as the percentage incidence out of the total number of genotypes detected. 
Comparisons were made between the genotypes detected for TIDM and NC subjects using 
the r} test and 2x2· contingency tables. n= number of genotypes detected, number of 
subjects studied is shown in parenthesis. Only significant differences by x2 and correction 
are shown. 

DRIDN/DNU vs. Uncomplicated diabetic controls; 
· C/C.A/A; x2= 4.7, p= 0.03, Pc= ns. 
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C(-106)T/ Diabetic Diabetic Diabetic Diabetic Full House Uncomplicated Normal 
A(+II842)C Retinopathy Nephropathy Retinopathy Neuropathy PaUents (DC} Controls (NC) 

genotype and and 
Rellno~ath;r Neurol!ath;r 

n 23 26 16 12 39 39 120 
C/C-AIC 21.7 26.9 18.8 8.3 28.2 15.4 10.8 

(5) (7) (3) (I) ( 11) (6} (13) 
CIC-AlA 17.4 19.2 25.0 16.7 20.5 5.1 11.7 

(4) (5) (4) (2) (8) (2) (14) 
C/C-C/C 3.9 6.3 2.6 2.6 5.0 

(-) (I) (I) (-) (I) (I) (6) 

TIT-AIC 2.6 7.5 
(-) (-) (-) (-) (-) (I) (9) 

TIT-A/A 4.4 3.9 8.3 2.6 7.7 7.5 
(I) (I) (-) (I) (I) (3) (9) 

TIT-C/C 
(-) (-) (-) (-) (-) (-) (-) 

CIT-AIC 17.4 23.1 12.5 41.7 20.5 35.9 27.5 
(4) (6) (2) (5) (8) (14) (33) 

C/T-A/A 30.4 19.2 37.5 25.0 25.6 25.6 28.3 
(7) (5) (6) (3) (10) ( 10) (34) 

CIT-CIC 8.7 3.9 5.1 1.7 
(2) (I) (-) (-) (-) (2) (2) 

C(-106)T 
C aUele . 95.7 96.2 100.0 91.7 97.4 89.7 85.0 

present(%) (22) (25) (16) (11) (38) (35) (102) 
T allele 60.9 50.0 50.0 75.0 48.7 76.9 72.5 

present(%) (14) (13) (8) (9) (19) (30) (87) 

A(+ll84l)C 
C aUele 47.8 57.7 37.5 50.0 51.3 61.5 52.5 

present(%) (11) (IS) (6) (6) (20) (24) (63) 
A aUele 91.3 92.3 93.8 100.0 97.4 92.3 93.3 

present(%) (21) (24) (15) (12) (38) (36) (112) 

Table 67. Frequency of C(-106)T/ A(+11842)C combined genotypes in patients with 
TlDM of British Caucasoid origin. The combined frequencies were obtained by using 
the gene counting method. This table 'f,resents the genotypes detected in the TIDM 
subjects with retinopathy (DR), nephropathy and retinopathy (DN/DR), retinopathy and 
neuropathy (DN/DNu), full house complications (FHC). Also shown are the TIDM 
uncomplicated diabetic controls (DC) and normal control (NC) subjects. Frequencies are 
expressed as the percentage incidence out of the total number of genotypes detected. 
Comparisons were made between the genotypes detected for TIDM complication groups 
and the DC subjects using the x2 test and 2x2 contingency tables. n= number of genotypes 
detected, number of subjects studied is shown in parenthesis. Only significant differences 
by "/ and correction are shown. Where observed numbers were <5, Fishers exact test for 
small numbers was applied. 

DNIDR vs. Uncomplicated diabetic controls; 
C/C.A/A; x2= 4.6, p= 0.03, Pc= ns. 

No other significant differences were detected. 

306 



Chapter 4. Results 

C(-106)T/A(+I184Z)C Diabetic Dlabellc Diabetic Uncomplicated Normal Controls 
genotype Retinopathy Nephropathy Neuropathy (DC) (NC) 

(DR) (DN) (DNu) 

n 104 77 67 39 120 
C/C-A/C 25.0 24.7 22.4 15.4 10.8 

(26) (19) (15) (6) (13) 
C/C-A/A 20.2 19.5 20.9 5.1 11.7 

(21) (15) (14) (2) ( 14) 
C/C-C/C 2.9 2.6 2.9 2.6 5.0 

(3) (2) (2) (I) (6) 

Tff-A/C 2.6 7.5 
(-) (-) (-) (I) (9) 

Tff-A/A 2.9 3.9 2.9 7.7 7.5 
(3) (3) (2) (3) (9) 

Tff-C/C 
(-) (-) (-) (-) (-) 

Cff-A/C 19.2 24.7 22.4 35.9 27.5 
(20) (19) (15) (14) (33) 

Cff-AIA 26.9 23.4 28.4 25.6 28.3 
(28) (18) (19) (10) (34) 

C/T-C/C 2.9 1.3 5.1 1.7 
(3) (I) (-) (2) {2) 

C(-106)T 
C allele present 97.1 96.1 97.0 89.7 85.0 

(%) (101) {74) {65) (35) (102) 
T allele present 51.9 53.3 53.7 76.9 72.5 

(%) (54) (41) (36) (30) (87) 

A(+11842)C 
C allele present 50.0 53.3 47.8 61.5 52.5 

(%) (52) {41) {32) (24) (63) 
A allele present 50.0 96.1 97.0 92.3 93.3 

(%) {52) {74) {65) (36) (112) 

Table 68. Frequency of C(-106)T/ A(+11842)C combined genotypes in patients with 
TlDM of British Caucasoid origin. The combined genotype frequencies were obtained 
by using the gene counting method X= neither Z-2 nor Z+2 allele. Subjects with 
microvascular disease are classified in a~cordance to onset of retinopathy, nephropathy or 
neuropathy. The nephropathy group (n=77) is an amalgamation of the nephropathy and 
retinopathy (n=26) and full house subjects (n=39) groups previously identified. The 
retinopathy group (n= l 04) is an amalgamation of the retinopathy (n=23), nephropathy with 
retinopathy (n=26), retinopathy and neuropathy (n=l6) and full house patients (n=39) 
groups previously identified. The neuropathy group (n=67) consists of subjects diagnosed 
as having neuropathy in the absence of any other microvascular complication (n=I2), the 
diabetic retinopathy with neuropathy (n=l6) and full house patients (n=39) groups. Also 
presented is the allelic frequency in uncomplicated and normal controls. Frequencies are 
expressed as the percentage incidence out of the total number of genotypes detected. 
Comparisons were made between the genotypes detected for TIDM and NC subjects using 
the x2 test and 2x2 contingency tables. n= number of alleles detected, number of subjects 
studied is shown in parenthesis. Only significant differences by x2 and correction are 
shown. Where observed numbers were <5, Fishers exact test for small numbers was 
applied. 
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DR vs. Uncomplicated diabetic controls; 
C/C.AJA; x2= 4.8, p= 0.03, Pc= ns. 
C/T.AJC; x2= 4.4, p= 0.04, Pc= ns. 

DN vs. Uncomplicated diabetic controls; 
C/C.AJA; x2= 4.3, p= 0.04, Pc= ns. 

DNU vs. Uncomplicated diabetic controls; 
CIC.AJA; x2= 4.8, p= 0.03, Pc= ns . 

• 
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Chapter 4. KesuJts 

Aldose Reductase Gene Study 

Binding activity of OREBP to ALR2 promoter osmotic response elements by 
electrophoretic mobility shift assay in TlDM subjects and healthy adult controls. 
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Binding activity of OREBP to OREA,B and C ofthe ALR2 promoter region 

Analysis of the binding activity of OREBP to the ORE sites within the aldose reductase 

gene promoter was performed by Electrophoretic Mobility Shift Assay (EMSA). Nuclear 

extracts were prepared from peripheral blood mononuclear cells from whole blood donated 

from TIDM subjects and normal control subjects cultured under normoglycemic 

(llmMIL) and hyperglycemic (28mMIL) conditions. Within the TIDM subject group 

studied 6 were diagnosed as having diabetic nephropathy and retinopathy, 6 were full 

· house patients and 3 were uncomplicated diabetic controls. Results were also obtained 

from 13 normal control subjects. 

Nuclear extracts containing 5J.1g protein (determined by Coomassie protein assay) were 

incubated with a radio-labelled probe for 20 minutes at room temperature in appropriate 

buffer. Samples were then loaded onto a 4% bis-acrylamide urea gel and electrophoresed at 

lOOV for 3-4 hours (refer to materials and methods). The gel was exposed to X-Omat 

photographic paper and bands were analysed and quantified using a phosphoimager 

(BioRad) with multi-analyst software (figure 27). The activation of OREBP binding was 

determined as a fold increase between the llmM and 28mM glucose exposed samples, 

therefore above the level obtained under normal conditions. 

Results are expressed a means ± SE. Statistical significance of comparisons were made 

between groups using the ANOV A test to detect variance and a P-value of the F-test, 

greater or equal to 0.05 was considered significant. The Student t test was also applied 

between groups. 
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Figure 27. Electrophoretic Mobility Shift Assay analysis of binding activity to 
ORE of ALR2 promoter. 

A. Competition experiments to demonstrate the specificity of the ORE band in 
Jurkat cells, the OREB and OREC competition experiments are shown here. 

B This autoradiograph shows the expression of OREBPC in 4 patients with diabetic 
nephropathy. The level of ORE BP binding was increased in samples stimulated with 
28mM D-glucose and the increase is expressed as fold increases. 
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Binding activity of OREBP to OREA, B and C in TlDM subjects and normal controls 
of British Caucasoid origin 

Figure 27 shows the EMSA analysis of the binding activity to Osmotic Response Elements 

of the aldose reductase promoter region. The fold increases of the ORE binding protein 

activity for OREA, B and C with respect to the onset of diabetic complications are shown 

in tables 69 and 70. No data was available for the diabetic control subjects for the OREA 

region. The results are expressed as fold increases in ORE/OREBP above the level 

obtained under normal conditions. In the TIDM subjects with microvascular complications 

the mean fold increase for OREA is 1.38 (± 0.43), for OREB is 2.23 (±1.98), and for 

OREC is 2.23 (±3.12). In contrast to this, the uncomplicated diabetic controls show a slight 

reduction in ORE/OREBP compared to the level obtained under normal conditions, for 

OREB 0. 78 (±0.22), and for OREC 0.89 (±0.22). The normal control subjects also show an 

increase in the ORE/OREBP above the level obtained under normal conditions for OREA 

and OREB. With respect to OREA the mean increase was 1.4 (±0.47), OREB the mean 

increase was 1.10 (±0.41), and for OREC the level was decreased 0.93 (±0.93). The 

differences in response of ORE/OREBP between TIDM with complications and the 

diabetic controls showed statistical significance following the ANOV A test and the P value 

of the F-test. With respect to the OREB the mean averages were 2.2 vs. 0.8 (P=0.02), and 

OREC the mean averages were 2.2 vs. 0.9 (P=0.01). The differences in response of 

ORE/OREBP between TIDM with complications and normal controls were also 

determined. With respect to OREA no significant difference was detected (1.4 vs. 1.4, 

P=0.9). With respect to OREB and OREC however there were significant differences 

detected, OREB 2.2 vs. 1.1, P=<0.001, OREC 2.2 vs. 0.9, P=<O.OOL 

Table 70 presents the fold increases in the· ORE/OREBP levels above the level achieved 

under normal conditions with respect to the exact complications of diabetes. Two groups 

were studied, firstly, those with diabetic nephropathy and retinopathy, and secondly those 

with full house complications. In the case of the DN/DR group vs. uncomplicated DC 
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group the OREC showed a significant fold increase (1.4 vs. 0.9, P=<0.0001). For the full 

house patients the OREB fold increase was higher in the FHP group than the diabetic 

controls (3.0 vs. 0.8, P=O.Ol5), and the normal controls (3.08 vs. 1.1, P= <0.0001). For the 

Full house patients the OREC fold increase is also higher in the FHP group than the 

uncomplicated DC (2.9 vs. 0.9, P=0.006), and the normal controls (2.9 vs. 0.9, 

P=<O.OOOI). 

The data is also presented in box and whisker plots in figures 28 and 29. It is apparent from 

the box and whisker plots, however, that there is a large standard error with respect to the 

variation in binding activities between subjects within each of the groups studied. 

Although the mean averages are significantly different, there is significant overlap between 

the subject groups. It is therefore difficult to draw confident conclusions from this data, 

and a larger group now needs to be analysed in order to reduce the standard errors found 

here. 
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Tl DM with microvascular Uncomplicated Diabetic Normal controls 
complications Controls 

Glucose OREA ORES OREC OREA ORES OREC OREA ORES OREC 
concentration n=9 n=12 n=ll n=O n=3 n=3 n=13 n=13 n=12 

Q b c 

Hyperglycae 1.38 2.23 2.23 0.78 0.89 1.40 1.10 0.93 
m la !,0.43 !,1.98 !. 3.12 !. 0.22 !,0.22 !,0.47 !. '0.41 !. 0.19 

28mM 

Table 69. Overall mean levels of OREBP binding activity to ALR2 OREA, OREB and OREC in TlDM subjects according to o~set of microvascular 
disease, and normal adult controls. The results are expressed as a fold increases in ORE/OREBP activity above the level obtained under normal conditions 
(IlmM). The results are expressed as mean values± standard error. 

a vs. uncomplicated, P = no data available, and vs. normal controls, P = 0.85 
b vs. uncomplicated, P = 0.02*, and vs. normal controls, P = 0.000004* 
c vs. uncomplicated, p = 0.01 *, and vs. normal controls, p = <0.00001 * 



Jurkats Diabetic nephropathy Diabetic Full House Uncomplicated Normal controls 
and retinoeath~ Patients Diabetic Controls 

Glucose OREA ORES OREC OREA ORES OREC OREA OREB OREC OREA ORES OREC OREA ORES OREC 
concentration n=4 n=4 n=4 n=5 n=6 n=5 n=4 n=6 n=6 n=O n=3 n=3 n=13 n=13 n=12 

Q b c d e f 
Hyper- 0.61 1.62 1.21 1.48 1.38 1.43 1.26 3.08 2.99 0.78 0.89 1.40 1.10 0.93 

glycaemia :!:,0.28 :!:,0.98 :!:,0.56 :!:,0.52 :!:,0.77 :!:,0.89 :!:. 0.33 :!:. 2.52 :!:. 4.19 :!:. 0.22 :!:,0.22 :!:,0.47 :!:. 0.41 :!:. 0.19 
28mM 

Table 70. Overall mean levels of OREBP binding activity to ALR2 OREA, OREB and OREC in Jurkat cells and TlDM subjects according to onset 
of microvascular disease, and normal adult controls. The results are expressed as a fold increases in ORE/OREBP activity above the level obtained under 
normal conditions ( llmM). The results are expressed as mean values± standard error. 

a vs. uncomplicated, P =no data available, and vs. normal controls, P = 0.7 
b vs. uncomplicated, P = 0.17, and vs. normal controls, P = 0.096 
c vs. uncomplicated, P = 0.12, and vs. normal controls, P = 0.00009* 
d vs. uncomplicated, P = no data available, and vs. normal controls, P = 0.62 
e vs. uncomplicated, P = 0.015*, and vs. normal controls, P = 0.000001 * 
f vs. uncomplicated, P = 0.006*, and vs. normal controls, P = < 0.00001 * 
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Figure 28.Box and whisker plots comparing the activation (fold) in the ORE A,B 
and C regions investigated according to onset of diabetic microvascular disease. 

a) normal controls 
b) uncomplicated diabetic controls 
c) diabetic nephropathy with retinopathy 
d) full house patients 
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Figure 29. Box and whisker plots comparing the OREBP/ORE binding activity 
detected between groups according to ORE binding site investigated. 

(a) Activation (fold) at ORE A 
(b) Activation (fold) at ORE B 
(c) Activation (fold) at ORE C 

0 
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D17S934 Hypertension-Linked Gene Study 

Associations of a polymorphism at D17S934 locus situated 18cM proximal to the ACE 
gene and the microvascular complications ofTtDM and T2DM 
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Polymorphism at the Dl7S934 region 

A microsatellite polymorphism located l8cM proximal to the ACE gene on chromosome 

I 7q was investigated. The study incorporated two subject groups for which the case control 

study utilised a population of TIDM and normal control subjects of British Caucasoid 

origin, and a population of T2DM and normal control subjects of Southern 

Indian/Dravidian origin. A single microsatellite polymorphism was studied, a (CA)n repeat 

microsatellite polymorphic marker located l8cM proximal to the ACE gene. The results of 
this study are presented in tabular form in the following section. For the case-control 

studies the data was initially analysed for allelic and genotypic frequencies between 

subjects with diabetes and subjects without diabetes, and then with regard to subjects onset 

of diabetic microvascular disease. The data was then amalgamated and subject haplotype 

· analysis was carried out with respect to diabetic complications. All subjects previously 

genotyped for the 5 'ALR2 polymorphism were genotyped for the D 178934 polymorphism 

for ease of comparability. 
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Figure 30. Diagrammatic representation of the polymorphic region studied within the region proximal to the ACE 
gene located on chromosome 17 q 
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DI7S934 (CA)n microsatellite polymorphic marker 

The (CA)n dinucleotide repeat microsatellite situated l8cM proximal to the ACE gene was 

investigated. Polymerase chain reaction was carried out to amplify the region upstream of 

the ACE gene containing the (CA)n repeat microsatellite as described in chapter 3. 

Amplification products (6Jll) mixed with stop solution (Amersham, UK) were separated on 

a 6% polyacrylamide gel at 1900V for 3 hours, and alleles were revealed by 

autoradiography (figure 31 ), and typed using the Fluor-s multi-imaging system (BioRad}. 

The size of the bands was checked by running a [32P] A TP radio-labelled molecular 

weight marker alongside the subjects. The (CA)n microsatellite was investigated in TIDM 

subjects and nonnal controls of British Caucasoid origin and T2DM subjects and non

diabetic controls of Southern Indian/Dravidian origin. In these studies we were able to find 

11 alleles which differed by the number of integral repeats. Subjects were assigned their 

allele and genotype according to the number of CA repeats which were identified (table 

71). 
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(a) 

.._ 9 .._ 8 .._ 7 
Direction of .._ 6 

migration .._ 5 .._ 4 .._ 3 .._ 
2 .._ 
1 

Lane; 1 2 3 4 5 6 7 8 

(b) 

Allele 6 

Allele 1 

'"" 

Figure 31. D17S934 microsatellite autoradiograpn, and (b) quantification of 
bands using Fluor-s multi-imaging software. 

(a) D17S934 microsatellite autoradiograpn. Nine alleles are identified in this 
autoradiograph and allocated genotypes for each of the subjects shown in lanes 1-8 
are as follows: 

Lane 1: 5.5 
Lane 2: 1.6 
Lane 3: 2.2 
Lane 4: 3 .6 
Lane 5: 2.8 
Lane 6: 1.8 
Lane 7: 2.7 
Lane 8: 2.2 

(b) Image analysis quantification output for sample 2 in autoradiograph 
shown above. The bands appear as peaks in the graph which correspond to 
D17S934 al le les, shadow bands were a lso detected. 
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Allele PCR product size CA repeats 
(b) 

1 181 16 
2 183 17 
3 185 18 
4 187 19 
5 189 20 
6 191 21 
7 193 22 
8 195 23 
9 197 24 
10 199 25 
12 201 26 

Table 71. Allele sizes In base pairs for the 11 different CA repeat 
polymorphisms identified. This table shows the size of the PCR amplified region 
corresponding to each allele, along with the number of dinucleotide (CA)n repeats. 
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Dl7S934 (CA)n microsatellite marker in British Caucasoid TlDM subjects and 
normal controls 

The (CA)n microsatellite marker in the proximal region of the ACE gene was investigated 

using 244 subjects with TlDM of British Caucasoid origin as well as a collection of 120 

British Caucasoid normal controls (clinical demographics shown in table 6). Within the 

TlDM population studies there were 66 uncomplicated diabetic controls, 62 full house 

patients, 18 with diabetic neuropathy, 24 with diabetic retinopathy and neuropathy, 30 with 

diabetic nephropathy and retinopathy and 44 with diabetic retinopathy. 

The frequency of the (CA)n alleles in both TIDM and normal control populations is shown 

in table 72. There were 11 (CA)n alleles detected at the 5' ALR2 locus in the British 

Caucasoid TIDM and control population; 1,2,3,4,5,6,7,8,9,10 and 12. Eleven alleles gave 

rise to 66 possible genotypes of which 38 were detected in this study population. In the 

analysis of allelic frequencies homozygotes were counted as two alleles, and alleles and 

genotypes that were not detected are not shown. Tables show the percentage frequency of 

detected alleles and genotypes with actual numbers detected shown in parenthesis. Possible 

associations were investigated with respect to allelic frequency and genotype and 

comparisons were made between groups using the r! test and 2x2 contingency tables. 
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D17S934 (CA)n aUelic frequencies in British Caucasoid TlDM and normal control 
subjects 

The frequency of the DI7S934 alleles in TIDM British Caucasoid subjects is shown in 

tables 72 to 75. Table 72 shows the percentage frequency of the detected D 17S934 (CA)n 

alleles in the total TIDM population studied compared to the normal control population 

studied. No significant differences were found in the frequencies of alleles between these 

two groups. In the case of allele I there was a higher frequency in the TIDM subjects 

compared to the normal controls (12.5% vs. 7.5%, ·l = 4.2, p= 0.04, Pc= ns). In the case of 

allele 2 there was also a higher frequency in the TIDM subjects compared to the NC 

(28.7% vs. 19.9%, x2 = 6.34, p= 0.01, Pc= ns). In the case of allele 6 there was a lower 

frequency in the TIDM subjects compared to the NC (7.90/o vs. 13.3%, l = 5.2, p= 0.02, 

Pc= ns). In the case of allele 8 there was a lower incidence in the TIDM group compared 

to the NC ( 1.6% vs. 4.6%, x2 = 6.3, p= 0.02, Pc= ns). 

Table 73 compares the percentage frequencies of alleles detected in the TIDM subjects 

with DN/DRJDNU and the uncomplicated DC group. No significant differences were 

found. Table 74. presents the frequency of the detected D 17S934 microsatellite marker 

alleles according to the precise complications detected. Upon application of the Chi-

squared test for significance and Fishers ~xact test for numbers <5, no associations were 

found with respect to the onset of microvascular complications of TIDM. Table 75 

presents the frequency of the detected D 17S934 (CA)n microsatellite alleles in subjects 

according to the onset of diabetic nephropathy, retinopathy or neuropathy. There were no 

significant associations detected with respect to the onset of the microvascular 

complications ofTIDM. 
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Alleles TIDM subjects Normal Controls 
(NC) 

n 488 240 

I 12.5 7.5 
(61) (18) 

2 28.7 19.9 
(140) (48) 

3 17.8 23.3 
(87) (56) 

4 15.9 18.8 
(78) (45) 

5 12.5 8.8 
(61) (21) 

6 7.9 13.3 
(39) (32) 

7 2.5 2.9 
(12) (7) 

8 1.6 4.6 
(8) (I I) 

9 0.008 
(0) (2) 

10 0.2 
(I) (-) 

12 0.2 
(I) (-) 

Table 72. Percentage frequency of the detected 0178934 (CA)n marker aUeles in 
British Caucasoid TlDM subjects compared to normal controls. 

This table shows the frequency of detected alleles for TlDM subjects and normal control 
subjects. Frequencies are expressed as the percentage incidence out of the total number of 
alleles detected. Comparisons were made between the allelic frequencies for control and 
TIDM subjects using the x} test and 2x2 contingency tables. n = number of alleles 
detected, number of subjects studied is shown in parenthesis. Only significant differences 
by ·l and correction are shown. Where observed numbers were <5, Fishers exact test for 
small numbers was applied. 

TlDMvs.NC; 
• 

1; r} = 4.16, p= 0.04 (ldf), Pc= ns 
2; r! = 6.34, p= 0.01 (ldf), Pc= ns 
6;-/ = 5.22, p= 0.02 (ldf), Pc= ns 
8; ·l = 5.49, p= 0.02 (ldf), Pc= ns 

The remaining allele frequencies were not analysed as only a small number were detected and 
significant correlation's would be difficult to determine. 
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TIDM Nephropathy Uncompll<ated Normal Controls (Nq 
and/or Retinopathy (Dq 
and/or Neuropathy 

(DRIN/Nu) 

D 356 132 240 
{178) (66) {120) 

1 12.9 11.4 7.5 
(46) (15) (18) 

2 29.8 25.8 19.9 
(106) (34) (48) 

3 16.9 20.5 23.3 
(60) (27) (56) 

4 16.3 15.2 18.8 
(58) (20) (45) 

5 12.9 11.4 8.8 
(46) (15) (21) 

6 7.9 8.3 13.3 
(28) (11) (32) 

7 1.4 5.3 2.9 
(S) (7) (7) 

8 1.4 2.3 4.6 
(S) (3) (11) 

9 0.008 
(-) (-) (2) 

10 0.3 
{I) (-) (-) 

12 0.3 
{I (-) (-) 

Table 73. Percentage frequency of the detected D17S934 (CA)n microsateUite marker aUeles 
in British Caucasoid TlDM subjects with diabetic nephropathy and/or retinopathy and/or 
neuropathy (DRIN/Nu) compared to uncompllcated (DC) and normal controls (NC). 

This table shows the percentage frequency of detected DI7S934 aUeles for TIDM subjects with 
microvascular disease (nephropathy, retinopathy, neuropathy) compared to uncomplicated and 
normal controls. The percentage frequency is shown and the actual number of each of the aUeles 
detected for each group is shown in parenthesis. n = number of alleles detected, the number of 
subjects is shown in parenthesis. Only significant differences by ·i and correction are shown. 

DRIDN/DNU vs. Uncompllcated diabetic controls; 
7; ·i = 6.1, p= 0.01 (ld.f), Pc= ns 

The remaining allele frequencies were not analysed as only a small number were detected and 
significant correlation's would be difficult to determine. 
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I 2 3 4 5 Uooomplloated Normal Diabetic Diabetic Diabetic Diabetic Full House 
(Dq Controls 

Retinopathy Nephropathy Retln~pathy Neuropathy Patients (Nq 
and and 

Retinopathy Neuropathy 
0 88 60 48 36 124 132 240 

(44) (30) (24) (18) (62) (76) (120) 

I 7.95 11.7 22.9 16.7 12.1 11.4 7.5 
(7) (7) (11) (6) (15) (15) (18) 

2 34.1 28.3 33.3 30.6 25.8 25.8 19.9 
(30) (17) (16) (I I) (32) (34) (48) 

3 18.2 14.99 12.5 11.1 20.2 20.5 23.3 
(16) (9) (6) (4) (25) (27) (56) 

4 17.1 19.99 12.5 19.4 14.5 15.2 18.8 
(15) (12) (6) (7) (18) (20) (45) 

5 10.2 9.99 8.3 13.9 17.7 11.4 8.8 
(9) (6) (4) (5) (22) (15) (21) 

6 6.8 4.99 10.4 8.3 8.9 8.3 13.3 . 
(6) (3) (5) (3) (11) (11) (32) 

7 3.4 1.7 0.81 5.3 2.9 
(3) (I) (-) (-) (I) (7) (7) 

8 2.3 4.99 2.3 4.6 
(2) (3) (-) ( -) (-) (3) (I I) 

9 1.7 0.008 
(-) (-) (-) (-) (-) (-) (2) 

10 1.7 
(-) (I) (-) (-) (-) (-) (-) 

12 1.7 
(-) (I) (-) (-) (-) (-) (-) 

Table 74. Percentage frequency of the detected Dl7S934 (CA)n microsatellite marker 
aUeles in British Caucasoid TlDM subjects categorised in accordance to the onset of 
diabetic complications and normal control subjects. 

This table shows the percentage frequency of detected alleles for TIDM subjects with 
retinopathy (DR), nephropathy and retinopathy (DN/DR), retinopathy and neuropathy 
(DRIDNu), neuropathy (DNu), full house complications patients (FHC) and uncomplicated 
diabetics controls (DC). Also shown here is the allelic frequency of normal healthy 
controls. 

n = number of alleles detected, the number of subjects is shown in parenthesis. 

Upon application of the Chi squared test for significance and Fishers exact test for numbers 
<5, no associations were found between the frequencies of each of the alleles detected and 
onset of microvascular complications ofTlDM. 
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I z j UnrompUcated Normal 
Diabetic Diabetic Diabetic 

(DC) Controls 
Nephropathy Retinopathy Neuropathy (NC) 

(DN) (DR) (DNu) 

n 184 320 208 132 240 
(92) (160) (104) (76) (120) 

I 11.96 12.5 15.4 11.4 7.5 
(22) (40) (32) "(15) (18) 

2 26.6 29.7 28.4 25.8 19.9 
(49) (95) (59) {34) (48) 

3 18.0 17.5 16.8 20.5 23.3 
(34) (56) (35) {27) {56) 

4 16.3 15.9 14.9 15.2 18.8 
(30) {51) {31) {20) (45) 

5 15.2 12.8 14.9 11.4 8.8 
(28) (41) (31) (15) (21) 

6 7.6 7.8 9.1 8.3 13.3 
(14) {25) {19) (11) {32) 

7 1.09 1.6 0.5 5.3 2.9 
(2) {5) {1) {7) (7) 

8 1.6 1.6 2.3 4.6 
(3) (5) (-) (3) (11) 

9 0.008 
(-) (-) (-) (-) (2) 

10 0.5 0.3 
(I) (I) (-) (-) (-) 

12 0.5 0.3 
{-) (-) (-) (-) {-) 

Table 75. Percentage frequency of ~e detected D17S934 (CA)n microsatellite aUeles 
in Caucasoid TlDM subjects categorised in accordance to onset of diabetic 
nephropathy, retinopathy or neuropathy. 

This table presents the allelic frequency of the D 17S934 (CA)n microsatellite in TIDM 
subjects of British Caucasoid origin. Subjects are classified in accordance to onset of 
retinopathy, nephropathy or neuropathy. The nephropathy group (n=92) is an 
amalgamation of the nephropathy and retinopathy (n=30) and full house subjects (n=62) 
groups previously identified. The retinopathy group (n=l60) is an amalgamation of the 
retinopathy (n=44), nephropathy with retinopathy (n=30), retinopathy and neuropathy 
(n=24) and full house patients (n=62) groups previously identified. The neuropathy group 
(n=I04) consists of subjects diagnosed as having neuropathy in the absence of any other 
microvascular complication (n=l8), the diabetic retinopathy with neuropathy (n=24) and 
full house patients (n=62) groups. Also presented is the allelic frequency in uncomplicated 
and normal controls. n = number of alleles detected, the number of subjects is shown in 
parenthesis. 

Upon application of the Chi squared test for significance and Fishers exact test where 
numbers were <5, no associations were found between the frequencies of each of the 
alleles detected and onset of microvascular complications ofTIDM. 
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D17S934- (CA)n genotype frequencies in British Caucasoid TlDM and normal 
control subjects 

The frequencies of the D 178934 genotype frequencies· in British Caucasoid Tl DM and 

normal controls are shown in tables 76-79. Table 76 shows the detected frequency of the 

DI7S934 genotypes in all TIDM subjects studied compared to the normal controls. There 

were no significant differences in the frequencies of the detected genotypes between the 

two groups. Table 77 shows the frequency of the detected genotypes in the subgroups of 

the subjects studied; T1 DM diabetic microvascular disease, uncomplicated diabetic 

controls and normal controls. There were no significant differences found when the Chi-

squared test was applied. Table 78 shows the frequency of each of the genotypes detected 

in all of the patient subgroups according to the precise phenotype of diabetic microvascular 

complications. Comparisons were made between each of the complication subgroups and 

the TIDM uncomplicated controls. There were no significant differences detected between 

the frequencies of any of the genotypes detected between these groups. Equally, in table 

79, whereby the patient subgroups were amalgamated according to the presence of 

nephropathy or retinopathy or neuropathy no significant differences were found indicating 

that this polymorphism is not associated with the onset of microvascular complications of 

diabetes in the population studied here. 
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Genotype TIDM subjects Nonnal Controls (NC) 
n 244 120 

1.1 2.0 1.7 
(5) (2) 

1.2 6.6 1.7 
(16) (2) 

1.3 4.5 3.3 
(11) (4) 

1.4 4.1 3.3 
(10) (4) 

1.5 2.9 2.5 
(7) (3) 

1.6 2.0 
(5) (-) 

1.7 0.4 0.8 
(I) (I) 

1.8 0.4 
(I) (-) 

2.2 10.2 8.3 
(25) (10) 

2.3 9.0 4.99 
(22) (6) 

2.4 9.0 7.5 
(22) (9) 

2.5 6.9 2.5 
(I7) (3) 

2.6 3.3 4.2 
(8) (5) 

2.7 1.2 0.8 
(3) (I) 

2.8 0.8 0.8 
(2) (I) 

2.9 0.8 
(-) (I) 

3.3 2.9 7.5 
(7) (9) 

3.4 6.I I2.5 
(I5) (15) 

3.5 5.3 4.2 
(I3) (5) 

3.6 3.3 5.8 
(8) (7) 

3.7 1.2 
(3) (-) 

3.8 0.4 0.8 
(I) (I) 

4.4 1.6 3.3 
(4) (4) 

4.5 5.7 2.5 
(I4) (3) 

4.6 2.5 4.2 
(6) (5) 

4.7 0.4 0.8 
(I) (I) 

4.8 0.8 
(2) (-) 

5.5 0.4 2.5 
(I) (3) 

5.6 2.5 
(6) (-) 

5.7 0.8 
(2) (-) 

5.8 0.8 
(-) (I) 
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6.6 0.8 4.99 
(2) (6) 

6.7 1.7 
(-) (2) 

6.8 0.8 0.8 
(2) (1) 

7.7 0.4 0.8 
(I) (I) 

8.8 2.5 
(-) (3) 

8.9 0.8 
(0) (!) 

10.12 0.4 
(I) -) 

Table 76. Percentage frequency of the detected D17S934 (CA}n microsatellite marker 
genotypes in British Caucasoid TlDM subjects compared to normal controls. 
This table shows the frequency of detected genotypes for TIDM subjects and normal 
control subjects. Frequencies are expressed as the percentage incidence out of the total 
number of genotypes detected. n = number of genotypes detected. Comparisons were made 
between the genotype frequencies for normal controls and Tl DM subjects using the x2 test 
and 2 x 2 contingency tables. P-values were corrected for the number of comparisons 
made. Where observed values were <5 Fishers exact test was used. No significant 
differences were found. 
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Genotype TI DM Nephropathy and/or Uncomplicated Normal Controls 
Rellnopathy and/or (DC) (NC) 

Neuropathy 
RIN/Nu 

n 178 66 120 
1.1 2.3 1.52 1.7 

(4) (1) (2) 
1.2 7.3 4.6 1.7 

(l3) (3) (2) 
1.3 5.6 1.5 3.3 

(10) (I) (4) 
1.4 3.9 4.6 3.3 

(7) (3) (4) 
1.5 2.8 3.0 2.5 

(5) (2) (3) 
1.6 l.l 4.6 

(2) (3) (-) 
1.7 1.5 0.8 

(-) (1) (I) 
1.8 0.6 

(l) (-) (-) 
2.2 10.7 9.1 8.3 

(19) (6) (10) 
2.3 8.99 9.1 4.99 

(16) (6) (6) 
2.4 10.1 6.1 7.5 

(18) (4) (9) 
2.5 6.2 9.1 2.5 

(ll) (6) (3) 
2.6 3.4 3.0 4.2 

(6) (2) (5) 
2.7 l.l 1.5 0.8 

(2) (I) (I) 
2.8 l.l 0.8 

(2) (-) (I) 
2.9 0.8 

(-) (-) (I) 
3.3 1.7 6.1 7.5 

(3) (4) (9) 
3.4 6.2 6.1 12.5 

(11) (4) (15) 
3.5 6.2 3.0 4.2 

(11) (2) (5) 
3.6 3.4 3.0 5.8 

(6) (2) (7) 
3.7 4.6 

(-) (3) (-) 
3.8 1.5 0.8 

(-) (I) (I) 
4.4 1.7 1.5 3.3 

(3) (I) (4) 
4.5 6.7 3.0 2.5 

(12) (2) (3) 
4.6 2.3 3.0 4.2 

(4) (2) (5) 
4.7 1.5 0.8 

(-) (I) (I) 
4.8 3.0 

(-) (2) (-) 
5.5 0.6 2.5 

(1) (-) (3) 
5.6 2.3 3.0 

(4) (2) (-) 
5.7 0.6 1.5 

(I) (I) (-) 
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5.8 0.8 
(-) (-) (1) 

6.6 J.l 4.99 
(2) (-) (6) 

6.7 1.7 
(-) (-) (2) 

6.8 J.l 0.8 
(2) (-) (l) 

7.7 0.6 0.8 
(1) (-) (l) 

7.9 
(-) (-) (-) 

8.8 2.5 
(-) (-) (3) 

8.9 0.8 
(-) (-) (l) 

10.12 0.6 
(l) (-) (-) 

Table 77. Percentage frequency of the detected Dl7S934 (CA)n microsatellite marker 
genotypes in British Caucasoid TlDM subjects with nephropathy and/or retinopathy 
and/or neuropathy (DR/N/Nu) compared to uncomplicated (DC) and normal controls 
(NC). This table shows the percentage frequency of detected genotypes for TIDM subjects 
with microvascular disease (nephropathy, retinopathy, neuropathy) compared to 
uncomplicated and normal controls. The percentage frequency is shown and the actual 
number of genotypes detected for each group is shown in parenthesis. n = number of 
genotypes detected. 
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1Diabetic 5oiabedc 1Diabetic 4DJabetic 5Full House Uncomplicated Normal 
Genolyp Retinopathy Nephropathy Retinopathy Neuropathy Patients (DC) Controls 

e and and (NC) 
Retinopathy Neuropathy 

n 44 30 24 18 62 66 120 
1.1 12.5 1.6 1.5 1.7 

(-) (-) (3) (-) (I) (I) (2) 
1.2 4.6 6.7 16.7 5.6 6.5 4.6 1.7 

(2) (2) (4) (I) (4) (3) (2) 
1.3 4.6 9.99 4.2 5.6 4.8 1.5 3.3 

(2) (3) (I) (I) (3) (I) (4) 
1.4 22.2 4.8 4.6 3.3 

(-) (-) (-) (4) (3) (3) (4) 
1.5 6.8 3.3 1.6 3.0 2.5 

(3) (I) (-) (-) (I) (2) (3) 
1.6 3.2 4.6 

(-) (-) (-) (-) (2) (3) (-) 
1.7 1.5 0.8 

(-) (-) (-) (-) (-) (I) (I) 
1.8 3.3 

(-) (I) (-) (-) (-) (-) (-) 
2.2 15.9 6.7 12.5 16.7 6.5 9.1 8.3 

(7) (2) (3) (3) (4) (6) (10) 
2.3 4.6 6.7 4.2 5.6 16.1 9.1 4.99 

(2) (2) (I) (I) (10) (6) (6) 
2.4 13.6 16.7 12.5 6.5 6.1 7.5 

(6) (5) (3) (-) (4) (4) (9) 
2.5 9.1 6.7 4.2 11.1 3.2 9.1 2.5 

.(4) (2) (I) (2) (2) (6) (3) 
2.6 2.3 4.2 5.6 4.8 3.0 4.2 

(I) (-) (I) (1) (3) (2) (5) 
2.7 3.3 1.6 1.5 0.8 

(-) (I) (-) (-) (I) (I) (I) 
2.8 2.3 3.3 0.8 

(I) (1) (-) (-) (-) (-) (I) 
2.9 0.8 

(-) (-) (-) (-) (-) (-) (I) 
3.3 4.6 1.6 6.1 7.5 

(2) (-) (-) (-) (I) (4) (9) 
3.4 11.4 6.7 4.2 4.8 6.1 12.5 

(5) (2) (I) (-) (3) (4) (15) 
3.5 3.3 8.3 5.6 11.3 3.0 4.2 

(-) (I) (2) (1) (7) (2) (5) 
3.6 6.8 3.3 4.2 5.6 3.0 5.8 

(3) (I) (I) (I) (-) (2) (7) 
3.7 4.6 

(-) (-) (-) (-) (-) (3) (-) 
3.8 1.5 0.8 

(-) (-) (-) (-) (-) (I) (I) 
4.4 2.3 3.3 1.6 1.5 3.3 

(I) (I) (-) (-) (1) (I) (4) 
4.5 2.3 6.7 4.2 11.1 9.7 3.0 2.5 

(I) (2) (I) (2) (6) (2) (3) 
4.6 2.3 3.3 4.2 5.6 3.0 4.2 

(I) (I) (I) (I) (-) (2) (5) 
4.7 1.5 0.8 

(-) (-) (-) (-) (-) (I) (I) 
4.8 3.0 

(-) (-) (-) (-) (-) (2) (-) 
5.5 1.6 2.5 

(-) (-) (-) (-) (I) (-) (3) 
5.6 6.5 3.0 

(-) (-) (-) (-) (4) (2) (-) 
5.7 2.3 1.5 

(I) (-) (-) (-) (-) (I) (-) 
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5.8 0.8 
(-) (-) (-) (-) (-) (-) (I) 

6.6 4.2 1.6 4.99 
(-) (-) (I) (-) (I) (-) (6) 

6.7 1.1 
(-) (-) (-) (-) (-) (-) (2) 

6.8 2.3 3.3 0.8 
(I) (I) (-) (-) (-) (-) (I) 

7.7 2.3 0.8 
(I) (-) (-) (-) (-) (-) (I) 

7.9 
(-) (-) (-) (-) (-) (-) (-) 

8.8 2.5 
(-) (-) (-) (-) (-) (-) (3) 

8.9 0.8 
(-) (-) (-) (-) (-) (-) (I) 

1Q.12 3.3 
(-) (I) (-) (-) (-) (-) (-) 

Table 78. Percentage frequency of the detected D17S934 (CA)n microsatellite marker 
genotypes in British Caucasoid TlDM subjects categorised in accordance to the onset 
of diabetic complications and uncomplicated (DC) and normal controls (NC). 

This table shows the percentage frequency of detected genotypes for TIDM subjects with 
respect to onset of microvascular complications, and normal control subjects. The 
percentage frequency is shown and the actual number of genotypes detected for each group 
is shown in parenthesis. n = number of subjects studied and genotypes detected. 
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I 2 j Unrompllcated Normal Diabetic Diabetic Diabetic 
Genotype Nephropathy Retinopathy Neuropothy 

(DC) Controls 

(D~ (DR! (DNu! 
(NC) 

n 92 160 104 66 120 
1.1 l.l 2.5 3.9 1.5 1.7 

(I) (4) (4) (I) (2) 
1.2 6.5 7.5 8.7 4.6 1.7 

(6) (12) (9) (3) (2) 
1.3 6.5 5.6 4.8 1.5 3.3 

(6) (9) (5) (I) (4) 
1.4 3.3 1.9 6.7 4.6 3.3 

(3) (3) (7) (3) (4) 
1.5 2.2 3.1 0.9 3.0 2.5 

(2) (5) (I) (2) (3)' 
1.6 2.2 1.3 1.9 4.6 

(2) (2) (2) (3) (-) 
1.7 1.5 0.8 

(-) (-) (-) (I) (I) 
1.8 l.l 0.6 

(I) (I) (-) (-) (-) 
2.2 6.5 10.0 9.6 9.1 8.3 

(6) (I6) (10) (6) (10) 
2.3 13.0 9.4 Il.5 9.I 4.99 

(I2) (I5) (12) (6) (6) 
2.4 9.8 11.3 6.7 6.1 7.5 

(9) (I8) (7) (4) (9) 
2.5 4.4 5.6 4.8 9.1 2.5 

(4) (9) (5) (6) (3) 
2.6 3.3 3.1 4.8 3.0 4.2 

(3) (5) (5) (2) (5) 
2.7 2.2 1.3 0.96 1.5 0.8 

(2) (2) (I) . (I) (I) 
2.8 1.1 1.3 0.8 

(I) (2) (-) (-) (I) 
2.9 0.8 

(-) (-) (-) (-) (I) 
3.3 1.1 1.9 0.96 6.1 7.5 

(I) (3) (I) (4) (9) 
3.4 5.4 6.9 3.8 6.1 I2.5 

(5) (IJ) (4) (4) (15) 
3.5 8.7 6.3 9.6 3.0 4.2 

(8) (IO) (10) (2) (5) 
3.6 1.1· 3.1 1.9 3.0 5.8 

(I) (5) (2) (2) (7) 
3.7 4.6 

(-) (-) (-) . (3) (-) 
3.8 1.5 0.8 

(-) (-) (-) (I) (I) 
4.4 2.2 1.9 0.96 1.5 3.3 

(2) (3) (I) (I) (4) 
4.5 8.7 6.3 8.7 3.0 2.5 

(8) (10) (9) (2) (3) 
4.6 1.1 1.9 1.9 3.0 4.2 

(I) (3) (2) (2) (5) 
4.7 1.5 0.8 

(-) (-) (-) (I) (I) 
4.8 3.0 

(-) (-) (-) (2) (-) 
5.5 l.l 0.6 0.96 2.5 

(I) (I) (I) (-) (3) 
5.6 4.4 2.5 3.9 3.0 

(4) (4) (4) (2) (-) 
5.7 0.6 1.5 

(-) (I) (-) (I) (-) 
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5.8 0.8 
(-) (-) (-) (-) (I) 

6.6 1.1 1.3 1.9 4.99 
(I) (2) (2) (-) (6) 

6.7 1.7 
(-) (-) (-) (-) (2) 

6.8 1.1 1.3 0.8 
(I) (2) (-) (-) (I) 

7.7 0.6 0.8 
(-) (1) (-) (-) (I) 

8.8 2.5 
(-) (-) (-) (-) (3) 

8.9 0.8 
(-) (-) (-) (-) (1) 

IO.IZ 1.1 0.6 
(I) (1) (-) (-) (-) 

Table 79. Percentage frequency of the detected D17S934 (CA)n microsatellite marker 
genotypes in British Caucasoid TlDM subjects categorised in accordance to onset of 
diabetic nephropathy, retinopathy or neuropathy. 

This table presents the genotype frequency of the 0178934 (CA)n microsatellite in TIDM 
subjects of British Caucasoid origin. Subjects are classified in accordance to onset of 
retinopathy, nephropathy or neuropathy. The nephropathy group (n=92) is an 
amalgamation of the nephropathy and retinopathy (n=30) and full house subjects (n=62) 
groups previously identified. The retinopathy group (n=I60) is an amalgamation of the 
retinopathy (n=44), nephropathy with retinopathy (n=30), retinopathy and neuropathy 
(n=24) and full house patients (n=62) groups previously identified. The neuropathy group 
(n=I04) consists of subjects diagnosed as having neuropathy in the absence of any other 
microvascular complication (n= 18), the diabetic retinopathy with neuropathy (n=24) and 
full house patients (n=62) groups. Also presented is the genotype frequency in 
uncomplicated and normal controls. n = number of subjects analysed and genotypes 
detected. The percentage frequency is shown and the actual number of each genotype 
detected for each subjects group is shown in parenthesis. 
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DI7S934- (CA)n microsatellite marker in Southern Indian T2DM subjects and non
diabetic controls 

The (CA)n microsatellite marker at D 17S934 in the proximal region of the ACE gene was 

investigated using 60 subjects with T2DM of Southern Indian origin as well as a collection 

of 42 Southern lndian/Dravidian non-diabetic controls (clinical demographics shown in 

table 7). Within the T2DM subject population studied, there. were 28 subjects that were 

. 
normoalbuminuric without retinopathy and 32 subjects with proteinuria. The frequency of 

the (CA)n alleles in both patient and control populations is shown in tables 80 to 81. There 

were 9 (CA)n alleles detected at the Dl7S934 locus in the Southern Indian T2DM and 

non-diabetic control population; 1,2,3,4,5,6,7,8 from which 29 genotypes were also 

identified. Tables show the percentage frequency of detected alleles and genotypes, with 

actual numbers detected shown in parenthesis. Possible associations were investigated with 

respect to allelic frequency and genotype and comparisons were made between groups 

using the Chi-squared test and 2x2 contingency tables. All of the data obtained from the 

D 178934 study of the Southern Indian population is presented in the following tables. 

Possible associations with the D 178934 (CA)n allelic frequencies and genotypes and the 

onset of proteinuria were investigated. 
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Dl7S934 (CA)n allelic frequencies in Southern Indian T2DM and non-diabetic 
control subjects 

The frequency of the D l7S934 alleles in T2DM Southern Indian/Dravidian subjects is 

shown in tables 80 to 81. Table 80 shows the percentage frequency of the Dl7S934 (CA)n 

alleles in the total T2DM population studied compared to the non-diabetic control 

population studied. Several significant differences were found in the frequencies of the 

detected alleles between the two groups. Significant differences were found between the 

two groups with respect to alleles 3,6 and 7. Table 81 compares the percentage frequencies 

of alleles detected in the T2DM population with proteinuria and with normoalbuminuria 

There were no significant differences found in the frequencies of the detected alleles 

between the two groups. 
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AUel .. T2DM subjects Noo-dlabetlc Controls 

n 120 84 
(60) . (42) 

1 9.2 1.2 
(ll) (I) 

2 4.99 15.5 
(6) (13) 

3 4.2 20.2 
(5) (17) 

4 21.7 30.95 
(26) (26) 

s 17.5 27.4 
(21) (23) 

6 18.3 3.6 
(22) (3) 

7 13.3 
(16) (-) 

8 6.7 1.2 
(8) (I) 

9 4.2 
(5) (-

Table 80. Percentage frequency of the detected Dl7S934 (CA)n microsatellite marker 
alleles in Southern Indian/Dravid.ian T2DM subjects compared to non-diabetic 
controls. 

This table shows the frequency of detected Dl7S934 alleles for T2DM subjects and non
diabetic control subjects. Frequencies are expressed as the percentage incidence out of the 
total number of alleles detected. Actual numbers of alleles detected is shown in 
parenthesis. 

n = total number of alleles detected, number of subjects studied is shown in parentheses. 
Only significant differences by ·l and correction are shown. 

T2DM vs. NDC; I;x2 =5.7,p=0.02(1df),Pc=ns 
2; ·l = 6.4, p= 0.01 (1df), Pc= ns 
3; x2 = 13.3, p= 0.0003 (1df), Pc= 0.003 * 
6; x2 = 10.01, p= 0.002 (ldf), Pc= 0.02 * 
7; x2 = 12.2, p= 0.0005 (ldf), Pc= 0.005 * 
8; x2 = 3.98, p= 0.05 (ldf), Pc= ns 
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TlDM wltb Proteinuria TlDMwlth Non..<flabetlc Controls (NDC) 
Normoalbumlnurla 

n 56 64 84 
(28) (32) (42) 

1 7.1 10.9 1.2 
(4) (7) (I) 

2 1.8 7.8 15.5 
(1) (5) (13) 

3 3.6 4.7 20.2 
(2) (3) (17) 

4 19.6 23.4 30.95 
(11) (15) (26) 

5 14.3 20.3 27.4 
(8) (13) (23) 

6 17.9 18.8 3.6 
(10) (12) (3) 

7 19.6 7.8 
(11) (5) (-) 

8 7.1 6.3 1.2 
(4) (4) (I) 

9 8.9 
(5) (-) (-) 

Table 81. Percentage frequency of the detected D17S934 microsatellite marker alleles 
in Southern Indian/Dravidian T2DM subjects with proteinuria compared to T2DM 
subjects with normoalbuminuria and non-diabetic control subjects. This table shows 
the percentage frequency of the detected alleles for T2DM subjects with nonnoalbuminuria 
and T2DM subjects with proteinuria as well as non-diabetic controls. The actual number of 
alleles within each group is shown in parentheses. 

n = number of alleles detected, number of subjects studied is shown in parentheses. 

No significant correlations were found. 
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D17S934 (CA)n genotype frequencies in Southern Indian T2DM and non-diabetic 
control subjects 

Table 82 presents the frequency of the detected genotn'es in the T2DM Southern Indian 

subjects compared with the non-diabetic controls, all genotypes detected are presented in 

the tables. Due to the low frequencies of each of the genotypes detected, no significant 

correlations could be n:tade between the T2DM and non-diabetic control groups. Table 83. 

presents the genotypes detected for the T2DM subjects according to the onset of 

proteinuria and normoalbuminuria. There were no significant differences found in the 

frequencies of the detected genotypes in these groups. There. was a low frequency of each 

of the genotypes detected and consequently no significant correlations could be made 

between the T2DM normoalbuminuria and proteinuria groups and the non-diabetic 

controls. 
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Genotype TlDM subject& Non-diabetic 
Controls (ND9 

D 60 42 
1.1 1.7 

(I) (-) 
1.2 1.7 

(I) (-) 
1.3 3.3 

(2) (-) 
1.4 3.3 

(2) (-) 
l.S 4.99 2.4 

(3) (I) 
1.6 1.7 

(I) (-) 
2.2 2.4 

(-) (I) 
2.4 3.3 19.1 

(2) (8) 
2.5 7.1 

(-) (3) 
2.6 3.3 

(2) (-) 
2.9 1.7 

(I) (-) 
3.3 4.8 

(-) (2) 
3.4 14.3 

(-) (6) 
3.S 14.3 

(-) (6) 
3.6 3.3 

(2) (-) 
3.8 1.7 2.4 

(I) (I) 
4.4 6.7 9.5 

(4) (4) 
4.S 9.99 4.8 

(6) (2) 
4.6 4.99 4.8 

(3) (2) 
4.7 6.7 

(4) (-) 
4.9 1.7 

(I) (-) 
s.s 3.3 11.9 

(2) (5) 
S.6 9.99 2.4 

(6) (I) 
S.8 3.3 

(2) (-) 
6.6 1.7 

(I) (-) 
6.7 9.99 

(6) (-) 
7.8 6.7 

(4) (-) 
7.9 3.3 

(2) (-) 
8.9 1.7 

(I (-) 

Table 82. Percentage frequency of the detected D17S934 (CA)n microsatellite 
genotypes in T2DM subjects compared to non-diabetic control subjects of Southern 
lndian!Dravidian origin. This table shows the percentage frequency of detected 
genotypes for T2DM subjects with respect to onset of diabetes, and non-diabetic control 
subjects. n = number of genotypes detected. Due to the low frequencies of each of the 
genotypes detected no significant correlation's could be made between the T2DM group 
and the non-diabetic controls. 
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Genotype T2DM Proteinuria T2DM Non-dlabetlr Controls 

Normoalbuminuria (NDC) 

D 28 32 42 
1.1 3.6 

{I) (·) (-) 
1.2 3.1 

{·) (I) (·) 
1.3 3.6 3.1 

(I) (I) (-) 
1.4 3.6 3.1 

(I) (I) (-) 
1.5 9.4 2.4 

(-) (3) (I) 
1.6 3.1 

(·) (I) (-) 
2.2 2.4 

(·) (·) (I) 
2.4 6.3 19.1 

(·) (2) (8) 
2.5 7.1 

(-) (·) (3) 
2.6 6.3 

(-) (2) (-) 
2.9 3.6 

(I) (·) (-) 
3.3 4.8 

(-) (·) (2) 
3.4 14.3 

(-) (·) (6) 
3.5. 14.3 

(-) (·) (6) 
3.6 3.6 3.1 

(I) (I) (·) 
3.8 3.1 2.4 

(-) (I) (I) 
4.4 7.1 6.3 9.5 

(2) (2) (4) 
4.5 10.7 9.4 4.8 

(3) (3) (2) 
4.6 9.4 4.8 

(·) (3) (2) 
4.7 7.1 6.3 

(2) (2) (·) 
4.9 3.6 

(I) (-) (·) 
5.5 6.3 11.9 

(-) (2) (5) 
5.6 17.9 3.1 2.4 

(5) (I) (I) 
5.8 6.3 

(·) (2) (·) 
6.6 3.1 

(-) (I) (-) 
6.7 14.3 6.3 

(4) (2) (·) 
7.8 10.7 3.1 

(3) (I) (·) 
7.9 7.1 

(2) (-) (·) 
8.9 3.6 

(I (· (-) 

Table 83. Percentage frequency of the detected (CA)n DI7S934 microsatelllte marker 
genotypes in Southern Indian TlDM subjects classified and compared in accordance to 
presence of proteinuria or normoalbuminuria against non-diabetic controls. 
This table shows the percentage frequency of detected genotypes for T2DM subjects with respect 
to onset of proteinuria, and non-diabetic control subjects. n =number of genotypes detected. Due to 
the low frequencies of each of the genotypes detected no significant.correlation's could be made 
between the T2DM normoalbuminuria and proteinuria groups and the non-diabetic controls. 
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Chapter 4. Kesults 

Mitochondrial genome study 

Associations of polymorphism's within the mitochondrial genome and the 
microvascular complications of TlDM 
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Chapter 4. Results 

Polymorphism at the C(Mt5178)A region 

The Mt5178A/C polymorphism situated at position 5178 of the mitochondrial genome was 

investigated. Polymerase Chain Reaction (PCR) was carried out to amplify the region 

within the NADH dehydrogenase (ND2) region containing the polymorphism as described 

in chapter 3 (figure 32). Amplification products were digested overnight at 37°C with Alul 

restriction enzyme, and separated on a 2.5% agarose/ethidium gel at 1 OOV for 1 hour. The 

fragment sizes were checked by running a 1 OObp molecular weight marker alongside. 

Bands were revealed by UV transillumination (320nm) (figure 33) and subjects were 

assigned a genotype according to the restriction fragments identified. A PCR control band 

was also present. 

The Mt5178A/C polymorphism located within NADH dehydrogenase (ND2) region of the 

mitochondrial genome was investigated using 126 TlDM subjects and 91 normal controls 

of British Caucasoid origin (clinical demographics shown in table 6). Within the TlDM 

subject population studied there were 32 uncomplicated, 30 full house patients, 0 

neuropathy patients, 19 retinopathy and neuropathy patients, 13 nephropathy and 

retinopathy and 29 retinopathy. In this study we were only able to identify subject who 

were homozygous CC. The A polymorphism was not detected in any of the subjects 

investigated. It was not felt necessary to analyse further patients or controls for this 

polymorphism because the A polymorphism had not been detected in a single subject. 

Therefore felt to be unlikely to be a significant polymorphism in the subjects investigated. 

No association could therefore be made with respect to the mitochondrial gene region and 

diabetic microvascular complications. 
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Homo sapiens mitochondrion, complete genome; total bases 16571, 
accession number NC_001807 
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Figure 32. Diagrammatic representation of the polymorphic region studied within 
the mitochondrial genome at position 5178. The C to A polymorphism altered the 
amino acid configuration by changing from l.eu to Met. 
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~ 43hn 

~ 186/ 
188bp 

Figure 33. C(Mt5178)A polymorphism by restriction enzyme digestion and 
fragment separation on 2. 5% agarose gel with ethidium bromide staining. Only 
one genotype was identified; homozygous CC. All subjects analysed in this figure have 
the CC genotype. 

PCR was carried out to amptify the 417bp region of the mitochondrial genome. The 
region included a polymorphic site, a single base substitution of C to A and resultant 
amino acid exchange from Leu to Met. Five microlitres of the PCR product was 
digested overnight at 37°C with 10 units of Alul restriction enzyme (Promega, UK). 
The genotypes were identified by 2.5'Yo agarose gel electrophoresis alongside a lOObp 
molecular weight marker and ethidium bromide staining. After Alul digestion the 
homozygous CC produced 43bp, 188bp and 186bp fragments. All samples were 
analysed in duplicated to reduce the risk of error. 



Chapter 4 . .Kesults 

C(Mt5178)A polymorphic marker in British Caucasoid TlDM subjects and normal 
controls 

The polymorphism was not detected in the British Caucasoid TlDM or nonnal control 

populations studied here. No analysis could therefore be made with regard to the onset of 

diabetic microvascular disease with respect to this polymorphism. 
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