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ABSTRACT 

Physiological facton; regulating appetite in the lesse•· spotted dogfish shruk, Scyliorllinus 
canic1da (L.) 

David Willirun Sims 

Some aspects of digestive and systemic function were investigated in relation to their role 
in the peripheral regulation of appetite in juvenile and adult, S. canicula. This study 
represents the first evaluation of the physiological factors that contribute to the control of 
shark appetite. Daily food intake trials on both juvenile and adult dogfish showed 
repeatable, self-regulated feeding rhythms indicating the existence of an endogenous 
component to food intake control. After dogfish consumed satiation meals of 7% wet body 
weight (wbw) the appetite return increased at constant rates as deprivation time increased. 
The relative rate of food processing was 50% faster in juveniles than adults. The pattern 
of gastric emptying of squid diet was exponential and dependent on the degree of stomach 
fullness, with meals of different size being emptied at different relative rates. It was also 
shown that dogfish were capable of shunting undigested food into the intestine soon after 
consumption of large meals. There was inverse proportionality between rate of gastric 
evacuation and appetite return rate indicating the importance of the physiological 
perception of relative stomach emptiness in the establishment of appetite. Gastric 
emptying rates were not influenced by changes in the digestible energy level of the diet, 
which suggests this shark exhibits a predominantly bulk dependent feeding pattern. 
Increases in post-prandial metabolism or specific dynamic action (SDA) did not seemingly 
alter the rate of appetite return in dogfish, though SDA and appetite return were shown 
to be closely linked metabolic processes. The SDA process in dogfish may have a 
saturation level determined by cellular metabolism rather than by the respiratory system. 
The levels of plasmJl sptmme remained uniform after food consumption. The 
concentrations of triglycerides and protein in plasma were closely controlled post­
prandially, suggesting a possible role for these metabolites as systemic signals of 
metabolic satiety. The results of this investigation are discussed with regard to the 
multifactorial control of appetite in sharks and the possible use of physiological studies 
of appetite in the further understanding of fish feeding strategies. 
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CHAPTER ONE 

GENERAL INTRODUCTION TO PHYSIOLOGICAL 

REGULATION OF APPETITE 

"The impm1ance of intake of materials and digestion for maintenance of living 
organization needs no emphasis. Yet it is interesting to recall how lilt le we understand 
about the system that controls the rate at which food is taken and hence growth and 
replacement proceed, although these processes limit the size and many other aspects of 
the organism'' J.Z. Young {1975). 

1.l INTRODUCTION 

Regular selection of food and the quantity of the food ingested will be of the utmost 

importance in the life of animals and will be the result of decisions that ultimately serve 

to determine the health and survival of the species {Thomas, 1987). An animal's capability 

for selection of nutritionally adequate food and the physiological processes involved in 

digestion will be controlled ultimately by hereditary instructions, though many aspects of 

food-gathering behaviour will be acquired during the individual's lifetime and influence 

inherited processes through the higher cerebral centres (Young, 1975). Animals must be 

able to consume enough food of the type necessary to satisfy the energy demands of 

metabolism, such as basic bodily functions, activity and food processing, and still partition 

energy for somatic and gonadal growth. Those individuals that are unable to obtain 

sufficient nutrients due to inadequate food selection and digestion processes, will not grow 

or survive. The feeding strategies that different species employ (based upon inherited and 

learned processes) will depend to a large extent on the manner in which the physiological 

mechanisms of digestion and metabolism determine the rate of food processing and thus, 
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the times when more food can be consumed. 

Food must be available before it can be consumed and it is well documented that 

food items will not always occur in equal abundance in the environment throughout an 

annual cycle (A dams et a/, 1982). Accordingly, constant levels of food consumption will 

not be maintained during the course of the year, but rather feeding rates will change 

concomitantly with the availability of food items (Thorpe, 1977; A dams et a/, 1982; Lyle, 

1983; Kean-Howie et a/, 1988). However, opportunistic feeding in the environment will 

not be the only manner in which food intake is controlled. If an animal is recognised to 

be adapted to its environment then logically it must also be assumed that it has undergone 

adaptation of its life cycle to the normal cycles of food availability (Peter, 1979). 

Therefore, daily food consumption is a process by which animals maintain levels of 

energy intake in the short term, from one day to the next, but in proportion to and within 

the bounds of long term natural oscillations in the presence of those food items. 

A possible basis for regulated acquisition of food by an animal is demonstrated by 

their ability to compensate for food deprivation by subsequent increases in food 

consumption. This hypothesis has been well understood in mammals for some 

considerable time (Hoebel and Teitebeim, 1966; Hoebel, 1971 ), although it has not been 

widely applied in studies on lower vertebrates (Peter, 1979; Fletcher, 1984). In studies on 

mammals, stabilisation of food consumption (and hence body weight) between certain 

levels depends on the amount and quality of food consumed. If the caloric intake is 

increased by force feeding and the animal becomes obese, when the normal feeding 

regime returns the animal will feed hypophagically and a decrease in body weight will be 

induced. Similarly if the animal is starved and a net reduction in body weight occurs, 

maintenance of the normal feeding regime will result in hyperphagy followed by a rapid 

increase in body weight up to the level that occurred before starvation (Peter, 1979). 
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Clearly compensatory responses of this type indicate that mammals are capable of a short 

term regulation of food intake. There is some evidence that certain species of fish can 

regulate daily food consumption (e.g. Rozin and Mayer, 1961, 1964}, but the 

investigations are few. The more established view for fish is that the minimum and 

maximum levels between which body weight may fluctuate at any given period in the 

annual cycle, will be controlled by a combination of physiological and non-physiological 

factors (Brett and Groves, 1979; Fletcher, 1984). 

The process of feeding not only incorporates what we understand as feeding 

behaviour, that is, obtaining, handling and ingesting food {McFarland, 1987), but also the 

physiological events associated with digestion, absorption and assimilation of the dietary 

items. The relationship between the different facets of feeding and their importance in its 

control are poorly understood. This can be partly attributed to the biological complexity 

and interaction of the processes that can influence the behaviour of an animal and will 

encompass not just physiological, but also ecological and environmental factors. All these 

factors act on the animal and in some way initiate, modify and inhibit feeding. Separation 

of the individual components of the feeding process that are likely to influence when 

further feeding bouts occur, would enable the various factors to be evaluated. 

Investigations of this type are rare in fish (Fietcher, 1984 ). Indeed, the quote from Elliott 

( 1975) seems appropriate testimony to the problems facing investigators interested in 

finding out what factors are important in regulating food intake. 

" ... food consumption of a brown trout, Salmo tmtta L., is affected by a large 
number of factors which include the size of the fish. the amount of food eaten in a meal, 
the number of meals in a day, the rate of gastric evacuation, water temperature. activity 
of the fish, the type of food eaten and the availability of the food organisms. As there is 
also interaction between some of these factors. it is not SIIIJJrising that few workers have 
studied this complex su~ject." 
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1.1.1 Non-Physiological Factoi'S Regulating Food Consumption 

Certain non-physiological factors help determine the rate of food consumption and they 

can be principally divided into two broad categories, those that are ecological and those 

that alter the immediate environment surrounding the animal. 

The ecological factors primarily constitute the effects of prey, conspecifics and 

predators (Wootton, 1990). As already stated, one of the most important ecological factors 

governing food consumption is the abundance and density of food items. Numerous 

studies on teleost fish have elucidated various feeding behaviours in relation to prey 

density and have frequently shown that the fish adopt a feeding strategy that usually 

maximises gross energy intake when the availability of prey is high (e.g. Kean-Howie et 

a/, 1988; Batty et a/, 1990). In addition much research has been undertaken to investigate 

the effects of prey size and prey type on the energetic costs of capture, handling and 

ingestion, and this has resulted in hypotheses being formed regarding the adaptive capacity 

of fish feeding behaviour (for general review see Dill, 1983; for review on sharks see 

Bres, 1993; Mookerj i and Rao, 1994 ). Opportunism partly determines feeding behaviour 

in animals including fish and it is generally regarded that through opportunistic feeding 

animals learn what type of food to consume, and when and where food is likely to be 

found (McFarland, 1987). Behavioural mechanisms of this kind enable animals to feed 

most profitably with the minimum of energy wastage as their feeding effort becomes more 

concentrated (McFarland, 1987). 

lntraspecific and interspecific effects are also likely to play a major role in food 

intake regulation. Some species of fish form large aggregations (i.e. shoals, social 

assembly; schools, synchronised swimming movements; Pitcher and Parrish, 1993) partly 

in order to gain protection from other individuals. It has been shown that this behaviour 

allows more time to be spent attending to various feeding related activities (Pitcher and 
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Parrish, 1993). Additionally, there is evidence that shoaling fish can locate food much 

faster in the group than when solitary (Pitcher et a/, 1982). The advantages of grouping 

to individual animals remains quite clear (though for a critical review see Pitcher and 

Parrish, 1993), however the very effect of grouping, which on the positive side affords 

protection and presumably other behavioural advantages, may also confer limitations on 

certain individuals within the group. The existence of social hierarchies, where the animal 

group may be dominated by a number of individuals, could lead to limitations in food 

consumption by the subordinate or least competitive members of the group (Braddock, 

1945). Hierarchical behaviours of this nature have been reported in studies on captive fish 

fed a fixed amount of food and where a small number of dominant individuals (that are 

usually larger) out compete the other fish for this resource (Christiansen et a/, 1991; 

Christiansen et a/, 1992; D.W. Sims, unpublished observations). 

The role of predators in helping to regulate the food intake of the prey species is 

also well established (Wootton, 1990). Not only might the presence of a predator decrease 

the foraging time of prey individuals (e.g. Nordeide and Svasand, 1990), but the predator 

may also reduce the activity space within which the prey species could possibly forage 

(e.g. Metcalfe et a/, 1987). Both effects may alter the feeding behaviour of fish prey to 

the extent that food consumption rates become reduced. Many species of fish only forage 

at discrete periods during each day (for review see Helfman, 1993), and so any 

perturbations to the feeding periodicity as a result of predator presence may have far 

reaching consequences in the efficiency of food acquisition and day-to-day survival of the 

prey species. 

Environmental factors can determine the rate of food consumption in addition to 

ecological interactions. Temperature governs the rate of metabolic reactions and is the 

overriding controlling factor of the plane of metabolism in ectothermic fish (Brett and 
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Groves, 1979). It has been demonstrated frequently that greater rates of food intake occur 

at higher water temperatures (e.g. Elliott, 1982; Hidalgo et a/, 1987). At lower 

temperatures the fish may not feed, but as the temperature increases so the rate of food 

consumption also increases up to an optimum, before it declines at the highest 

temperatures (EIIiott, 1975; Wootton, 1990). Length of photoperiod as well as light 

intensity have been shown to influence the nature of foraging periods in many different 

species of fish (e.g. Batty et a/, 1990; Helfman, 1993). Daily light cycles affect endocrine 

activity and so may indirectly cause changes in level of food consumption by altering the 

physiological status of the animal (Brett and Groves, 1979). Water quality parameters have 

also been shown to affect feeding as they impose a metabolic load on internal regulation. 

The effects of abnormal pH and salinity levels on fresh and saltwater fish have usually 

been manifested in lower food intake and poor growth rates (e.g. Planichemy et a/, 1985; 

Li and Yamada, 1992). 

Clearly both ecological and environmental factors contribute to the regulation of 

food consumption, however the time scale over which these biotic and abiotic parameters 

exert their control can be considered to be more long term. The water temperature 

experienced by fish for example, will change quite slowly throughout the annual cycle in 

contrast to the rapid fluctuations in air temperature that are characteristic of the terrestrial 

environment. Similarly, the adaptive flexibility in feeding behaviours (Dill, 1983) will 

probably occur gradually over the time course of a fish's life (Magurran, 1993) and from 

one generation to another (Rose, 1993), rather than abruptly switch on any particular day 

to a completely new repertoire of behaviours. Ecological and environmental factors affect 

food consumption by evolutionary entrainment of the physiological processes associated 

with feeding regulation. On a daily basis however, the physiological and biochemical 

parameters associated with nutritional status of the animal are more likely to regulate the 
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occurrence of feeding bouts. By the establishment of a physiologically driven motivational 

state (which is in dynamic flux), feeding can become a high-priority activity, if indeed 

imbalances occur in the levels of nutrients within the animal's internal environment. 

1.1.2 Physiological Factol's Regulating Appetite 

The motivation for feeding behaviour is partly based on the homeostatic principle, inherent 

in the competent functioning of all biological systems (McFarland, 1987). Peter ( 1979) 

stated that food intake in fish was just perhaps another example of regulated homeostasis. 

From research on higher vertebrates, most notably the laboratory rat (Fietcher, 1984), it 

is clear that food intake may indeed be closely controlled in a homeostatic manner. The 

basis for an extension of this hypothesis to lower vertebrates is not aided by the lack of 

information on physiological control of appetite in fish. 

The clear understanding of how an animal's desire for food, or feeding potential, 

is controlled in the short-term requires an outline of each operating component that defines 

the "feeding" state. It should then be possible to obtain an objective approach describing 

the contribution such physiological factors may have in changing or modifying the 

motivational feeding state and the short-term pattern of subsequent feeding events. 

The ability or degree to which any animal consumes food depends on a number 

of ecological and environmental factors (Fietcher, 1984) in addition to the interaction of 

physiological processes. Together these factors produce an internally driven motivational 

"feeding" state (Colgan, 1973; Novin & VanderWeele, 1977; Booth, 1979; Colgan, 1993). 

The physiological factors play the central role in establishing the motivational state 

because as the animal uses up energy and nutrients, various imbalances occur in the 

animal's physiological status and these are registered by the brain (McFarland, 1987). 
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Deprivation of food results in a state known as hunger. The motivational state leading to 

feeding behaviour was described as hunger in Colgan's interpretation, but this component 

of feeding is clearly not the same as appetite itself. Rather, the appetite of an animal is 

determined by the physiological mechanisms relating to satiety and its control, entrained 

by the environment, and functionally released through a behavioural response known as 

hunger. It is the ecological factors pertaining to food consumption that modify the efficacy 

of the behavioural response (Pitcher & Hart, 1982). The aim of the response behaviour 

must therefore be towards food acquisition, and the propensity to consume food is the 

subjective estimation used to describe the level of hunger experienced by the animal. 

Appetite is therefore pivotal to the very efficiency of feeding, characteristically selective 

and arguably the physiological protagonist to hunger (Brett, 1971) (or alternatively 

described as the congenial companion of hunger by Thomas, 1987). A clear definition is 

provided by Wootton ( 1990), who generally described that hunger was the tendency or 

inclination of an animal to feed, whereas appetite was analogous to the quantity of food 

consumed until cessation of the active event, e.g. voluntary food consumption. Therefore 

we might say that hunger can be characterized as a sequence of physiological changes and 

cognitive events which are an inevitable consequence of prolonged fasting, whereas 

appetite will refer to those physiological changes and cognitive events that are evoked by 

the stimulus properties of foods (Thomas, 1987). Feeding is clearly a broad term given 

to include not just the motivational state of hunger and its associated behaviours, but the 

actual magnitude of the animal's appetite at any one time. Very little information exists 

on control of voluntary food consumption from food stimuli in fish, especially from a 

physiological standpoint (Peter, 1979; Grove et al, 1983; Fletcher, 1984; Colgan, 1993). 

In the context of this study it is the appetite of fish, within the broadly described feeding 

event that will be studied in order to determine the effect of physiological factors on the 
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short-term control of actual food intake (energy acquisition) in fish and any resultant 

patterns in feeding. 

Godin (1981) and Russell and Wootton (1993) both noted that fish will reach 

maximum food intake (satiation) more rapidly with greater appetite. A fish's return to 

maximum appetite (or close to it), in order to make maximal use of the available food, 

would thus appear to be a vital process for its day-to-day survival. Of prime interest 

therefore, is the identification of the physiological events integral to the establishment of 

the degree of appetitive status, and secondly the pathways by which appetite might then 

be regulated. 

1.1.2.1 Neuml and ho1monal conhul of food intake 

The basis for neural control of food intake has been well studied, mostly from 

investigations using the laboratory rat (Andersson, 1972). The early mammalian research 

concentrated on establishing which specific brain regions were involved in feeding 

behaviour. These studies usually lesioned certain parts of the brain and the alterations in 

feeding behaviours that were observed resulted in those areas of the brain being described 

as either a 'feeding' or 'satiety' centre (Peter, 1979). This dual centre theory was first 

proposed by Stellar ( 1954), though in more recent times it is regarded as somewhat 

simplistic due to emergmg evidence that certain areas of the brain, such as the 

telencephalon can play an integrative role associating input with output programs (Roberts, 

1988). The earlier studies have shown that the ventromedial hypothalamus (VMH) and 

lateral hypothalamus (LH) were involved in feeding control. lt was suggested that the LH 

can be involved in the organization and activation of feeding behaviour and food intake 

regulation, whilst the VMH has involvement in food intake regulation in relation to 

satiation. lt is now generally accepted that the hypothalamus, in particular the VMH and 
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LH are the regions of the brain that are focal to the control of the ingestive behaviours 

and the vegetative function (Peter, 1979). However, it is not entirely clear how well 

integrated these regions are, or indeed what other functions might be carried out by these 

areas of the brain. More recently, Roberts (1988) noted that in mammals the hypothalamus 

was central to the homeostatic control of bodily functions and regulated behaviour such 

as feeding, escape, attack, aggression and sex. From the few studies that exist for fish it 

would appear that the LH has some function as a feeding centre in a manner similar to 

that of mammals (Peter, 1979; Fletcher, 1984). Although these regions of the brain may 

be involved in the regulation of food intake in fish (Savage and Roberts, 1975), it is clear 

they might not solely be responsible for the mediation of feeding behaviours (Fietcher, 

1984). It has been suggested that the telencephalon may play a role in feeding behaviour, 

however there is some doubt as to whether it is important in the overall balance of food 

intake regulation. 

The autonomic nervous system and the action of hormones are important 

components in mediating the physiological control of feeding in fish (Matty and Lone, 

1985). Many hormones are secreted in direct response to the ingestion of food, e.g. insulin 

(Mu rat et a/, 1981) and the gastric peptide, cholecystokinin (CCK) (McCaleb and Myers, 

1980), indicating their close involvement with digestive function. The role of these 

hormones in the control of food intake in fish is incompletely known, but it has been 

demonstrated that CCK is secreted by the duodenal receptors, stimulates gall bladder 

contraction and pancreatic enzyme secretion leading to a reduction in the flow of chyme 

into the duodenum (for review see Jobling, 1986). More recent studies on the action of 

CCK on the visceral organs of fish by Aidman ( 1994 ), strongly indicates that one or 

several CCK-Iike substances may be involved in gallbladder and gastric emptying control. 

Hence, hormones may be substantially involved in regulating gut motility, in addition 
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perhaps to mediating the effect of other physiological factors important in appetite control 

in fish. 

Even though neural and hormonal actions are central components in the 

instantaneous modifications that must occur to 'update' the motivational feeding state, 

appetite will not be regulated by these processes alone. Early research on higher 

vertebrates concentrated mainly on either the 'centralis!' or 'peripheralist' theories 

governing food consumption (Fletcher, 1984 ). Centralists maintained that food intake was 

principally controlled by specific neural areas of the central nervous system, while 

peripheralists contended that the animal's physiological status resulted in the control of 

appetite. It is now generally accepted that appetite is not regulated by any single process, 

rather that appetitive status is achieved through integration of both central and visceral 

nervous systems with the physiological processes of food consumption, digestion, 

absorption and assimilation (Novin and VanderWeele, 1977). 

1.1.2.2 Chemosens01y control of appetite in fish 

The senses of olfaction and gustation are integral parts of the general appetitive 

behaviour of fish and are concerned with the initial detection and subsequent localisation 

of food. The ability of fish to detect food is present from very early times. For example, 

a study has shown that planktonic yolk-sac larvae of red-sea bream, Pagms major were 

capable of detecting food using nostril receptors with radially arranged cilia (Tanaka et 

a/, 1991 ). The study also suggested that the larvae were capable of detecting and 

remaining within the food layers even before the onset of feeding. Much work has been 

undertaken to elucidate the processes involved in fish chemoreception (for reviews see 

Hara, 1993). Recent work has also centred on the effect of food attractants as appetite 

stimulants with the aim of increasing food consumption rates in order to enhance survival 
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rates and shorten production intervals in fish for aquaculture (Ward, 1991 ). In particular, 

L-amino acids have been shown to have positive effects on the feeding behaviour of fish 

and it is without doubt these chemical cues can influence rates of food intake (Ward, 

1991; Heinsbroek and Kruger, 1992). 

In addition to teleost fish, a considerable number of studies exist with regard to 

the anatomy and physiology of chemosensory structures in elasmobranchs (for review see 

Montgomery, 1988). The majority of the early investigations on sharks had the objective 

of assessing the behavioural responses of sharks to olfactory stimuli (usually produced by 

offering dead fish), e.g. the work of Hobson (1963) and Tester (1963). However, more 

recent studies have attempted to quantify the feeding behaviour in response to exposure 

to different concentrations of different chemicals, e.g. in Sphyma tihuro (Johnsen and 

Teeter, 1985). Clearly the fact that chemical cues will elicit pronounced feeding responses 

in sharks (Roberts, 1988) indicates their importance as factors regulating appetite. After 

all, as stated previously appetite can be considered the eventuality of physiological 

changes and cognitive events that are evoked by the stimulus properties of foods. Clearly, 

the necessary stimuli can arise from the properties of food both from within the animal 

and from the environment surrounding the individual. The effect of chemosensory stimuli 

on shark feeding behaviour has received some considerable attention in comparison to 

other physiological factors and further research on this topic remains outside the scope of 

the present investigation. 

1.1.2.3 Physiological factors of digestive and systemic function 

Those physiological factors involved in digestive processes and systemic control 

of appetite have not been widely studied in fish, despite the fact that various authors have 

stated their undoubted importance (Brett, 1971; Colgan, 1973, 1993). Few studies have 
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attempted to find the role of the stomach in appetite control, or the effect of diet quality, 

post-prandial metabolism or plasma metabolite concentrations on food intake. Specific 

investigations with the aforementioned objectives have not been applied to any of the 700 

or so species of elasmobranchs. The last comprehensive investigation of physiological 

control of appetite in fish was undertaken by Fletcher ( 1982) on the teleost, Limanda 

limanda. 

There is no information currently available on the role of physiological factors 

(other than chemosensory stimuli) in the appetite regulation of sharks. This is surprising 

considering the scientific interest that has surrounded studies that have identified what 

different shark species actually feed on in the wild (for review see Wetherbee et a/, 1990). 

Investigations of that type point to the different feeding strategies that may be operating 

to determine the feeding habits of that particular species of shark (for review see Bres, 

1993 ), but seemingly do so without reference to the basic biological characteristics of the 

animal. Until researchers begin to address the physiological basis for the establishment of 

those feeding strategies it will not be possible to fully appreciate the trophic interactions 

of the shark with other species in the aquatic environment. Therefore, the assessment of 

some physiological factors regulating appetite will provide information regarding the 

mechanisms operating to control bouts of feeding in sharks. 

Some authors have appraised anecdotal information from the field and suggested 

that sharks always have a high propensity to feed (e.g. Springer, 1967). From the studies 

that exist on hunger and appetite in teleosts it is open to speculation whether such claims 

can be substantiated. It is not known how the processes of appetite regulation might differ 

in sharks, so it is not appropriate to suggest how potential differences could be manifested 

as alternative feeding strategies. The comprehensive field sampling of lesser spotted 

dogfish, Scyliorhinus canicula (Linnaeus, 1758) (plate I), shark stomachs suggest 
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Plate l. "fhe lesser spotted dogfish shark, Scyliot11inus canicu/a (Linnaeus, 175.8) pictured 

iri its natural habitat off .the Mewstorie Ledges, Plymouth. (Photo courtesy of. D, Hurton) 
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interesting connotations for the study of appetite in this particular species. Lyle's (1983) 

investigation showed that only I% of over two thousand S. canicula stomachs were empty 

of food items, whereas the mean value from 15 other shark species showed over 40% of 

sampled stomachs were empty (Wetherbee et a/, 1990). This evidence could indicate that 

S. canicula may have evolved appetite control mechanisms that enable the maintenance 

of high levels of food consumption. On the basis of such field observations, knowledge 

of the physiological factors involved in appetite regulation in S. canicula would be of 

interest. In addition, much supportive literature is available regarding the mam 

physiological systems of S. canicula (Shuttleworth, 1988), which is probably as a 

consequence of its relative abundance in the shallow waters of the northeast Atlantic, 

small size and its ability to adapt favourably to captivity (Wheeler, 1978; Compagno, 

1984b). Additionally, S. canicula belongs to the shark family (Scyliorhinidae) within the 

order (Carcharhiniformes), each of which contains the most member species compared 

with the other families and seven other orders of shark respectively (Compagno, 1984). 

These characteristics make it a useful model for general concepts in elasmobranch 

physiology, and so information on the regulation of appetite in this species could be 

applicable to some other sharks. 

1.1.2.4 Objectives and aims of the pn!sent study 

The pnmary objective of the current study was to provide information on the 

physiological factors that contribute to appetite regulation in the lesser spotted dogfish 

shark, S. canicula over the size range 2g-l kg. 

The specific aim of the research was to evaluate the effect of the physiological 

processes associated with digestive and systemic function on the food intake patterns and 
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appetite revival of S. canicula. 

The specific objectives of the study were: 

I. To investigate the existence of daily food intake patterns m dogfish that may 

suggest a basis for the endogenous regulation of appetite. 

2. To quantify the rates of appetite return in juvenile and adult S. canicula. 

3. To examine the importance of gastrointestinal emptying on the revival of appetite. 

4. To assess what effect diet quality may have on gastric evacuation and food intake 

patterns. 

5. To evaluate the influence of post-prandial metabolism on subsequent food 

consumption at varying levels of food intake. 

6. And finally, a preliminary study into the role of plasma metabolites as possible 

systemic signals of metabolic satiety. 
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1.2 GENERAL MATERIALS AND METHODS 

1.2.1 Expeaimental Fish 

The group of juvenile dogfish, Scyliorhinus canicula (Linnaeus, 1758) used in the 

experiments of chapter 11 were purchased from Weymouth Sea Life Centre, Lodmoor 

Country Park, Dorset. The fish had hatched from eggs laid in the Centre's aquaria by 

captive females and were kept at a seawater temperature of approximately I5°C. The 

dogfish were transferred to a JOOL seawater tank (90cm diam. x 55cm deep) at the 

University of Plymouth which received cooled, recirculated water of 34°/
00 

and 15.0 ± 

0.5°C. This tank was one of two of JOOL capacity for holding fish in a purpose-built 

1200L seawater aquarium, devoted entirely to dogfish feeding and metabolism 

experiments. On arrival at the University of Plymouth facilities the mean weight of the 

juvenile dogfish group was 9.38g ± 0.63 S.E. (n= 13, approximately 4 months post­

hatching). Throughout the studies the dogfish were all weighed in vessels containing 

seawater on a top-pan balance, the juveniles on a Mettler BB2440 balance and the adults 

on a Precisa 6000D. 

The aquaria were maintained on a 12 h light (L): 12 h dark (D) regime, the light 

phase illumination at the water surface being 480 lux. Daily measurements of salinity and 

temperature, and weekly measurements of seawater nitrite concentration were also taken 

when experimental fish were in the University of Plymouth facilities. When nitrite levels 

increased a seawater change was facilitated to restore normal levels, however imbalances 

in water quality of this type were not a common feature of the aquaria. 

The seven hatch ling S. canicula of weight range 2. 76-10.61 g (the largest was no 

more than a few months post-hatching) used in chapter V experiments hatched 

asynchronously from eggs laid in the aquarium of the laboratory of the Marine Biological 
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Association (MBA), Plymouth. The water temperature at the MBA aquaria was above the 

set experimental temperature of I5°C, so for eight weeks prior to the commencement of 

the investigations the dogfish were acclimated in a JOOL tank of the 1200L aquarium at 

the University. The light regime at the MBA laboratory was approximately 12h L: 12h D 

and this was continued at the experimental facilities. 

All adult dogfish used in this study were caught in short hauls of an otter trawl 

from the MBA ship, RV Sepia over grounds in the approaches to Plymouth Sound. The 

dogfish, usually between 500-1 OOOg were recovered in large outside tanks at the MBA 

laboratory. The dogfish were left in these outside tanks for at least one month before 

being moved to the experimental tanks. 

The adult dogfish utilised for chapter !I and in part chapter IV investigations, were 

re-located from the outside tanks of the MBA to two indoor tanks at the laboratory, each 

of approximately JOOL capacity. The seawater flowing through the tanks was recirculated 

via a large underground reservoir, the temperature of which was relatively stable at 14-

160(. The fish were also maintained on a 12h L: 12h D light cycle. 

After transfer from the MBA laboratory, adult dogfish used in chapter Ill, IV, V, 

VI studies were kept in two tanks (I x 1.5 x I m) of a 12,000L recirculating water 

aquarium in the basement at the University of Plymouth. The fish were used in 

experiments when the four week acclimation and quarantine period was at an end. The 

seawater in this system was maintained at 14°( throughout the year with weekly checks 

on salinity, pH, ammonia, nitrite and nitrate. From this University-based stock of adult 

dogfish several individuals were periodically relocated in one of the tanks of the 

aforementioned 1200L recirculating system. After one month of acclimation these S. 

canicula were used in the experiments of chapter V. 
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1.2.2 Maintenance mtions and satiation feeding 

During acclimation to the surroundings of the experimental aquaria at the University and 

MBA laboratories, and when between actual experiments, the dogfish were fed on 

maintenance rations. The meals consisted of chopped gadoid fillets and Loligo spp. 

(Cephalopoda: Loliginidae) muscle and tentacle tissue mixed together for adult dogfish, 

but solely chopped squid was given to the juvenile fish. The squid flesh was obtained 

from the Barbican Fish market, Plymouth and subsequently cut into approximately equal 

sized pieces according to the minimum mouth gape of each of the two size groups of 

dogfish. The squid was stored frozen at -25°C and thawed for feeding under cold running 

tapwater. A manufactured pellet (Ewos Ltd., Scotland) was given to juvenile dogfish along 

with the normal ration of squid for a period of a few days, but the practice was abandoned 

when observation indicated that consumption of the pellet was suboptimal. All fish were 

usually fed between 0.5 and 1.0% of their wet body weight (wbw) every second day 

(juvenile fish), and every third day (adult fish). In the week directly preceding the 

starvation periods of the experiments both adult and juvenile dogfish were fed to satiation 

every second (juv.) or third (adult) day. In the large outdoor tanks of the MBA laboratory 

adult dogfish were fed solely on chopped gadoid fish to satiation. 

For experimental purposes it was necessary for dogfish to consume a maximum 

amount of food at any particular discrete time. This type of feeding was termed satiation 

feeding and was achieved for all fish, whether singular or in groups for all experiments 

of this study in the following manner. The experimental fish were fed preweighed 

amounts of chopped squid or manufactured moist pellet (cf chapter Ill) liberally until the 

dogfish's activity was observed to slow down. Close observation was always made during 

the feeding period to ensure the food was actually ingested by the fish or available to the 

fish and not tail-flicked into the tank's wastepipe. When the feeding activity stopped the 
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remaining· fqod. was removed and weighed~ andJresh squid of 1known weight was again 

. pre~ented ,to the dogfish. When there h!!d .been1 no further ·actiVity. for ri'S minutes _the:foo~ 

was removed I and the ,fish· assumed to: be saiiaied. This point :of ·satiation time was 

regarded as the feeding ,time zero and all further measurements over the ,time course ,of 

lllli experim~nt" Were grl!dllat~q from ,this· ref~r~nce point, For some iirl\iestigati(lns re" 
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feeding to satiation was ,undertaken lbyfeeding.dogfish, in the same way ,'though Jonly .after 

the predetermined! time had elapsed. 
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CHAPTER TWO 

DAILY FEEDING LEVEL AND APPETITE RETURN 

2.1 INTRODUCfiON 

The daily level of feeding in sharks has not been well studied (Wetherbee et al., 1990). 

Many investigations throughout the world have catalogued the stomach contents of various 

species of wild caught sharks, as well as their dietary preferences during the changing 

seasons and through their development from juvenile to adult (Squalus acanthias, 

Scyliorhinus canicula, Scyliorhinus stellaris, Mu steins vulgaris, Galeus canis, Ford, 1921; 

Scy/iorhinus canicula, Eales, 1949; Heterodontus ponusjacksoni, M•Laughlin and 

O'Gower, 1971; Prionace glauca, Stevens, 1976; Squalus acanthias, Jones and Geen, 1977; 

Scy/iorhinus canicula, Lyle, 1983; Carcharhinus leucas, Snelson et al., 1984; Carcharhinus 

plumbeus, Medved et al., 1985; Negaprion brevimstris, Schmidt, 1986; Sphyma /ewini, 

Sphyma zygaena, Mustelus lunulatus, Galvan-Magana et al., 1989; N. brevirostris, Cartes 

and Gruber, 1990). Few studies however, have addressed the physiological implications 

of feeding with a view to attempt to quantify the daily ration of sharks. A dichotomy in 

purpose of the investigations that have been completed is apparent. The majority of the 

work has centred on the need to estimate the diel food consumption of sharks in order to 

assess the extent of predation on commercial stocks of teleost fish, their role in the 

ecosystem or for comparative studies with other fish groups (S. acanthias, Jones and Geen, 

1977; S. acanthias, Brett and Blackburn, 1978; /sums oxyrinchus, Stillwell and Kohler, 

1982; C. plumbeus, Medved et al., 1988; N. hrevirostris, Cartes and Gruber, 1990). Most 

of the more accurate methods used to calculate ration size require controlled laboratory 

conditions in order to obtain measurements of some of the parameters (Eiliott and Persson, 
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1978). Information on the rate of gastric digestion and subsequent evacuation, the level 

of routine and active metabolic rate as well as the stomach contents of wild caught sharks 

at various times during the 24 hour cycle are all necessary for accurate daily ration 

estimates. Due to the large size of most sharks that are thought to be of greatest 

importance with regard to commercial fish consumption, it is not surprising that there is 

a paucity of comprehensive feeding studies in this area. Clearly, calculating the amount 

of food that a predator ingests in the wild is useful in an ecological context, for the 

production of fishery management models to predict energy flow between different trophic 

levels. But investigations of this type are of limited use when trying to ascertain the role 

of the shark's physiological status in regulating appetite, and thus further feeding bouts. 

Indeed, because of an abundance of field studies on feeding and not enough basal 

laboratory studies considering appetite and feeding, appetite was not thought to play a role 

in the control of feeding in sharks (Springer, 1967). Since then, other scientists working 

with sharks have acknowledged the probable existence of appetitive feeding regulation 

mechanisms (Wetherbee et al., 1990) because of the work that has been completed on 

tel eostean fish. 

However, laboratory measurements of daily food intake level can give evidence 

of the existence of feeding regulation mechanisms (Rozin and Mayer, 1961 ). In two 

separate, controlled studies on lemon sharks, N. brevirnstris, cyclical patterns in food 

intake over longer periods (about 3 months) were evident from the day-to-day levels of 

food consumption (Graeber, 1974; Longval et al., 1982). Some factor (or factors) 

controlling appetite was postulated to account for the feeding patterns in these studies 

other than temperature, light:dark cycle or effect of fish size (Graeber, 1974). The 

differences in daily food intake that lead to the variations in consumption observed in the 

latter investigations suggest different magnitudes of appetite at the same times each day. 
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Therefore, when contemplating the control of appetite in relation to the fish's physiological 

processes, it does not suffice to measure the quantity of food consumed without reference 

to the time of last feeding. Many investigations regarding teleost fish have documented 

that appetite increases with increased food deprivation time (e.g. Gwyther and Grove, 

1981; Russell and Wootton, 1992, 1993). It has also been shown that in addition to 

appetite increasing after progressive periods of starvation, the actual rate of feeding is also 

increased (God in, 1981 ). In teleost fish studies the greatest increase in appetite and rate 

of feeding has been shown to coincide with the fish's natural feeding periodicity (Elliott, 

1975; Grove cl a/, 1978; Kadri cl a/, 1991 ). Therefore the temporal aspect of feeding 

relating to an instantaneous magnitude of fish appetite, that is, what can be described as 

the appetite revival or return, may be synchronised with physiological processes concerned 

with food digestion and processing and may ultimately control short-term feeding. 

The artificial culture of teleost fish has accelerated the need to understand the 

physiological energetics of appetite, digestion and growth in captive situations (Jobling, 

1993). This industry has fuelled studies on the importance of appetite revival in successful 

feeding regimes for promoting optimal growth in producing marketable fish. Consequently, 

the role of physiological parameters in controlling appetite have also been examined in 

this context (Vahl, 1979; Grove cl al., 1985). By quantitative estimates of appetite return 

under controlled conditions it is possible to assess the role that certain physiological 

factors may have in regulating further feeding by evaluating their change in relation to 

appetite return. There are no previous studies that have attempted to quantify the appetite 

return of elasmobranch fish in order to investigate appetite regulation, with a view to 

explain any possible feeding strategies operating in sharks. Some early investigations with 

teleost fish showed the effect of fish size on the level of feeding and appetite return 

(Grove cl al., 1978; Jacob and Balakrishnan, 1981 ), though no efforts in this area have 
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been directed towards elasmobranchs. The purpose of this chapter is therefore to 

characterize the nature of maximum daily food consumption that may imply feeding 

regulation, and to determine the rates of appetite return for both juvenile and adult 

dogfish, Scyliorhinus canicula implicit to the process of feeding. The aim of this section 

in the wider context of the work as a whole is to use the appetite measurements to 

facilitate comparisons with post-prandial physiological processes that will be examined in 

detail in subsequent chapters of this thesis. When the influence of such processes on 

appetite revival are evaluated, then possible mechanisms of regulation of appetite and 

thus further feeding bouts can be suggested. 

34 



2.2 MATERIALS AND METHODS 

2.2.1 Daily Food Consumption 

A group of thirteen juvenile dogfish (trial period mean weight 12.18 g ± 0.53 S.E.) and 

two groups of four adult S. canicula (mean weight 883.3 g ± 62.2 S.E.) were each kept 

and fed together for a period of 4 weeks prior to the commencement of the experiments. 

All the experimental fish were starved before the feeding trials were initiated, juveniles 

for 7 days and adult S. canicula for 14 days, so that any residual food from previous 

meals could be fully evacuated. 

On the first day of the feeding trial and at the same time each day thereafter, all 

fish were fed to satiation on chopped squid. The daily feeding level of juvenile dogfish 

was monitored for 6 days in three trials and for 8 days in two further trials. The between 

trial interval was 7 days and the experiments with the juvenile fish were completed over 

a period of 93 days. The dogfish were individually weighed at the start of the experiment 

and every second week during the experimental period. The two groups of adult dogfish 

were fed chopped squid over a period of IS days. Satiation feeding took place every day 

except days four, five and twelve to observe initially if the subsequent level of food 

consumption was increased. The IS day feeding trials on each adult group were carried 

out simultaneously. 

2.2.2 Statistical Analysis of Feeding Level 

Two-tailed Student's t-tests were used to determine any significant diel variations in the 

feeding level of juvenile dogfish by comparison of the grouped daily observations of food 

consumption from each trial. One group of food intake observations was compared for 

significant differences with the group from the preceding day. 
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The cumulative mean food consumption for juvenile and adultS. canicula over the 

entire feeding trials were calculated and linear models were fitted to these data. 

2.2.3 Rates of Appetite Retum (AR): Groups 

The group of juvenile dogfish (mean wt. 12.92 g ± 0.95 S.E.) and the two groups of adult 

dogfish (mean wt. 876.79 g ± 34.23 S.E.) were deprived of food for the same period as 

before and at the start of the experiment were fed chopped squid to satiation. The fish 

were then not fed until a predetermined time had elapsed. The re-feeding times were 

selected to occur at intervals of 6-12 hours in order to provide a wide time spread of food 

intake determinations. At these intervals the fish were re-fed to satiation on chopped 

squid. When a re-feeding satiation level was recorded the groups of fish were 

subsequently starved for the usual period in readiness for the next appetite return (AR) 

determination. 

The rate of AR for juvenile dogfish was determined over a period of two months, 

spaced between the trial periods of the daily food consumption measurements. The dogfish 

were routinely weighed every two weeks during the trial period. All feeding trials were 

conducted at I SoC. 

2.2.4 Measurements of AR: Individuals 

Individual juvenile and adult dogfish previously fed to satiation in the groups stated above 

were randomly selected from the feeding groups and were isolated in seawater aquaria. 

They were then deprived of food for 168 h (juveniles) and 240 h (adults) before being re­

fed to satiation. Each estimate of appetite was carried out three times at each dogfish size 

with different fish being used for each determination. 
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2.2.5 Statistical Analysis and Modelling of Appetite Return 

Both linear and sigmoidal models were fitted to the AR observations for juvenile and 

adult dogfish. A logistic (sigmoidal) function of the form: 

Y = 1/ (a + b e · b ) 

was used for modelling the AR data where a, b and k are constants. This type of equation 

describes a curve with an initial lag phase, a period of maximum rate and a phase where 

the curve approaches a limit or asymptote equivalent toY= 1/a. When t=O then Y=l/a+b 

(Gilbert, 1989). The rate differences of the standard linear models of juvenile and adult 

AR were compared by analysis of covariance (ANCOV A) from multiple linear 

regressions. Sigmoidal models for both dogfish sizes were fitted from the observed data 

and statistically compared by nonlinear regression analysis of covariance using the 

Marquardt algorithm (Marquardt, 1963) of StatGraphics Version 6.0 and validated with 

the Newtonian algorithm of Maximum Likelihood Program (MLP). 
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2.3 RESULTS 

2.3.1 Daily Food Consumption 

The results clearly show that after a satiation meal (juveniles 7.44 ± 0.76% wbw; adults 

6.39 % wbw) subsequent diel food consumption was reduced but maintained at a 

relatively constant lower level. Figures I and 2 show the variations in the individual 

dogfish food consumption rate over the study periods. The voluntary food intake of 

juvenile dogfish (figure I) decreased from 7.44% wbw to approximately 4.5% wbw after 

24 hours (P<O.OS), and remained at about this level until day 5 of the investigation. After 

96 hours, consumption decreased further to about 3 % wbw (P<O.OS) before rising back 

to the 4.5 % wbw level on days 7 and 8. The measurements on these days were however, 

the product of two determinations and not five as was the case for the estimations on the 

previous six days of the trial. Figure 2 indicates that adult dogfish showed similar trends 

to the juveniles in food intake pattern after a satiation meal. The consumption of the two 

groups of adults decreased rapidly after the first day and then oscillated at about I % wbw 

for a further IS days. The magnitude and direction of the feeding oscillations was 

generally similar for both groups of adult S. canicula. The difference in food intake 

between adult and juvenile dogfish was evident from the results in table I. The absolute 

amount of food consumed by adult dogfish each day was approximately 16.5 times that 

of the juveniles (even though the adults were 73 times larger). In relative terms however, 

the juvenile fish consumed over four times as much per day as the adult fish (table I). The 

variability in food intake over the study period was more marked in juvenile dogfish than 

in the adults (table I), although this was probably due to their small size leading to 

proportionately larger relative discrepancies in the actual meal size consumed. The 

cumulative mean food intake of adult and juvenile dogfish over the whole study periods 
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Figun~ 1. Daily food consumption of 13 juvenileS. canicu/a in five trials lasting 7 days. 

Bars represent± i S.E, (n=S), Asterisks above bars indicate significant difference ·in level 

of food •Consumption from the previous day (P<O.OS). Arrowheads·on the abscissa denote 

the days .where the mean is derived from only two· group .consumption determinations. 
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Figure 2. Daily food consumption of two groups of four adultS. catiicu/a over a period 

of 15 days. Bar on the abscissa denotes the starvation time before re-satiation. 
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Table 1. Comparative rates of food consumption of juvenile and adult S. canicula over 

the periods of the daily feeding trials. 

Juveniles 

Adults 

Mean Individual 
Food Consumption 
(g.fish.day-1

) 

0.47 ± 0.03 

7.76±1.15 

"calculated from (standard deviation! mean) x 100 
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Coefficient of 
Variation of Diel 
Food Consumption' 
(%of mean wt.) 

1.437 

0.602 

Relative 
Consumption Rate 
(g. lOg wet 
fish.day· 1

) 

0.38 ± 0.03 

0.09 ± 0.01 



(figure 3) shows the very strong linear relationship for the total amount of food consumed. 

The regression coefficient (r2
) was 0.97 for adults and 1.00 for juvenile dogfish. 

Additionally, figure 2 demonstrates that a starvation period of 144 hours after day I 5 of 

the investigation increased the food consumption of the two groups of adult dogfish from 

about I % wbw preceding starvation to about 5.5 % and 7.5 % wbw, values close to the 

initial satiation meal taken by the fish at the beginning of the investigation. 

2.3.2 Appetite Rettnn Measmements 

In order to quantify and compare the rates of AR, a best fitting model of the observed 

appetite revival was needed. Figures 4 and 5 show rates of AR fitted by linear and 

nonlinear logistic (sigmoidal) models for juvenile and adult dogfish respectively. Both 

models were shown to be good representations of the data with regression coefficients (r2
) 

above 0.83 (figures 4 and 5) for both sizes of fish. Statistical comparison of the sigmoid 

models of adult and juvenile dogfish AR by ANCOV A was not possible however. Use 

of the Marquardt algorithm, which fits the estimated and calculated linear and non-linear 

coefficients of the sigmoid model (a, b and k) simultaneously, showed large inaccuracies 

in the determination of the actual equation coefficients. In order to compare the shapes 

of the juvenile and adult dogfish sigmoid models an AN COY A was attempted in which 

a six parameter (coefficients) additive model (one for juvenile data, one for adult data) 

was fitted to the grouped AR data. This model works in six dimensional space to calculate 

a mathematical relationship for the juvenile and adult food intake data points in the group. 

Even though there were 22 AR determinations for juvenile dogfish and 24 for the adults, 

the second set of three fitted model coefficients (a, b and k) was not accurate. The 

calculated coefficients of the six parameter sigmoid model for adult and juvenile dogfish 

did not correlate with the individual sigmoid model coefficients already calculated from 
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Figme 3. The cumulative mean percentage food intake of juvenile (11) and adult (D) S. 

canicu/a over the trial periods. Regression equations; juvenile,% wbw = 4.21 + 3.81d, r2 

=LOO; adult,% wbw = 7.12. + 0.7Sd, r2 = 0.97. 
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Figun~ 4. Appetite return of a group of 13 juvenile S. canicu/a fitted with linear (solid 

line) and sigmoid (dotted line) models. Fitted regression equations; linear, AR = 12.08 + 

0.93t, r2 = 0.83; sigmoid, AR = 1/ (0.009 + 0.072 e "0048
' ), r2 = 0.85. 
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Figunl 5. Appetite return of two groups of four adultS. canicu/a fitted with linear (solid 

line) and sigmoid (dotted line) models. Fitted regression equations; linear, AR = -0.53 + 

0.61 t, r2 = 0.87; sigmoid, AR = 1/ (0.009 + 0.105 e '0028
' ), r2 = 0.87, where t = time in 

hours. 
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the individually fitted models (figures 4 and 5). This indicates that the data set was not 

adequate for statistical comparison of fitted sigmoid models. Replication of the ANCOVA 

test but using the more accurate Newtonian algorithm, capable of fitting linear and non­

linear components independently was not successful. These results indicate that although 

it was possible to fit sigmoid curves to the data, the comparison of shape of curve by 

AN COY A was not possible due to the spacing and number of the return food intake 

determinations. 

Table 2 shows the rate of AR in juvenile fish was 1.52 (linear) and 1.67 (sigmoid) 

times greater than the adult AR. In addition, the time taken for a return meal of 

comparable size to the initial meal to be consumed again was quite long, approximately 

165 hours in the adult dogfish compared to 95 hours in the juveniles. Absence of a delay 

in appetite return after meal consumption was noted and suggested that iniation of appetite 

recovery occurred quite rapidly after meal ingestion. The predicted AR values calculated 

for the actual time period over which AR measurements were taken in the current study, 

suggests that both sizes of fish will consume more food than that taken in the initial meal 

after 96 hours (juveniles) and 168 hours (adults) (table 3). Finally, figure 6 demonstrates 

that with the precise food consumption measurements obtained from individual dogfish 

shown against the predicted linear AR's obtained from grouped dogfish AR 

determinations, it is clear that the linear model may explain the AR of dogfish with some 

accuracy and indicate the level of a limit to AR. 
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Table 2. Instantaneous rates of AR from the fitted linear and sigmoid models and the 
predicted times for 100% initial meal consumption for juvenile and adult S. canicula. 

Slope/Shape of Fitted Predicted Time for I 00% 
Model (h-1

) Initial Meal to be 
Consumed (h) 

Linear Sigmoid Linear Sigmoid 

Juvenile 0.93" -0.05b 94.54 96.71 

Adult 0.6 1 a -0 . 03~ 164.80 157.50 

a Sign({icant difference betwee11 juvenile and adult !IR, P <O.OOJ 

b Ana~vsis of covariance inconclusive clue to the scattered data points 

Table 3. Predicted AR using the linear model for both juvenile and adult S. canicula at 
daily intervals. 

Time (h) Predicted Appeti te Return using 
Linear Models" 
(% initial meal) 

Juveniles Adults 

13.0 1 0.08 

24 34.40 14.11 

48 56.72 28.75 

72 79.04 43 .39 

96 I 01.36 58.03 

120 123.68 72.67 

144 * 87.31 

168 * I 0 1.95 

192 * 11 6.59 

'Juvenile dogfish, A R =l2.08 +0.93t, ,; =0.83; Adults, :IR =-0.53+0.6 1t, ,;=0.87 
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Figm-e 6. Return of appetite estimations for grouped juvenile (uppermost line) and adult 

(lower line) S. canicula as represented by the linear models and extrapolated (-----) to 

include the individual dogfish AR determinations (juvenile •; adult D) to an estimated 

limit. 
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2.4 DISCUSSION 

The internal drive or motivational feeding state known as hunger (Colgan, 1973; 

Tinbergen, 1989), ultimately brought about by the physiological mechanisms relating to 

appetite and feeding control (Brett, 1971), has been stated as being absent in sharks 

(Springer, 1967). The results of the investigations of this chapter immediately bring 

Springer's (1967) ad hoc suggestions in question. Generally, the present studies have 

demonstrated that the daily level of food consumption of dogfish oscillates about a 

relatively constant amount. In addition, the appetite of these scyliorhinid elasmobranchs 

recovers very rapidly within the first 24 h after meal ingestion with no observed delay in 

appetite initiation. The asymptote or limit to this consumption was variable (though 

consistent with their daily intake pattern) and perhaps therefore difficult to establish. 

These findings would therefore firstly suggest that appetite regulation is in operation in 

both juvenile and adult S. canicula. Secondly, that increasing deprivation time raises the 

level of food intake, and that the profile of appeti le return might not be of the type usually 

associated with elasmobranch feeding strategy, that is, of a slow recovery of appetite after 

a large meal. 

After a satiation meal the juvenile dogfishs' level of food consumption was 

relatively constant when offered food items at 23 hour intervals. Likewise, the food intake 

of adults oscillated, though remained fairly constant at a much lower level than the initial 

satiation meal. The daily ration of adult dogfish ( 1.1% wbw) is similar to that estimated 

from wild shark studies in water temperatures similar to that experienced by S. canicula, 

e.g. 1.3% wbw for S. acanthias (Jones and Geen, 1977) and 1.1% wbw for C. plum be us 

(Medved et al., 1988). Oscillations in food consumption about a relatively constant level 

have been demonstrated in sharks in both laboratory and field situations. In a careful study 
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on two groups of juvenile lemon sharks, N. brevirostris under controlled conditions, 

Graeber (1974) showed quite wide food intake oscillations for sharks over a three month 

period and postulated cyclical patterns in food intake. Similarly, another study of N. 

brevirostris noted variable levels in food ingestion (Longval et al., 1982). The patterns in 

consumption of the latter investigation implied that these sharks may have four day cycles 

in food intake resulting, presumably, from variable daily feeding rates. Whilst the aim of 

the present study was not to elucidate any specific cycles in food intake, the variability 

about a constant level observed in daily food consumption of juvenile and adult dogfish 

does suggest some regulatory mechanisms controlling feeding level. Some field 

investigations on sharks have also shown little variability in stomach contents over a 24 

hour period. Cortes ( 1987, cited in Wetherbee et al., 1990) working on N. brevirostris 

found little diel variation in the mean ratio of dry weight of stomach contents to wet body 

weight of shark. Analysis of the sandbar shark, C. plumbeus stomach contents from the 

wild also gave no significant differences in gross stomach content over 24 hours (Medved 

et al., 1985). The relatively constant stomach content of these sharks however, does not 

necessarily corroborate the laboratory observations in daily food consumption made during 

the present study. The stomach contents of sharks in the previous wild studies showed 

prey in various states of digestion and may indicate that these sharks feed asynchronously 

and not necessarily on a daily basis or in a manner similar to sharks under controlled 

conditions. Clearly though the S. canicula of the present study, when fed daily under 

controlled conditions were able to maintain their food consumption within quite narrow 

bounds. Smagula and A del man ( 1982) suggested a self-regulated day-to-day food 

consumption for the teleost, Microptems sa/moides even though the intake levels were 

quite variable. Rozin and May er ( 1961, 1964) working on the goldfish, Carassius aumtus 

showed that individual fish were able to maintain their intake about a certain level with 
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single daily feeds and proposed this was some evidence towards the notion that short-term 

food intake was regulated in some manner. The pink salmon, Oncorhynchus gorbuscha 

is not agastric as is C. aumtus, but was able to maintain relatively constant feeding levels 

for 11 hours after the initial high feeding rates (to satiation) (Godin, 1981 ). This author 

thus suggested that after the salmon initially filled their stomachs, the stomach was kept 

full by the constant feeding rate balancing the rate of gastric evacuation. 

The existence of short-term regulation of appetite from daily feeding level 

experiments can further be postulated for dogfish by comparison with the lemon shark 

studies of Graeber (1974). As well as monitoring daily food consumption these studies 

used duplicate tanks of lemon sharks which were fed simultaneously. Both groups of N. 

brevirostris exhibited similar patterns of food intake over the three month period of the 

trial. Graeber ( 1974) suggested that because of these similar, (though independent) 

oscillations in group food consumption, some common factors must be controlling 

appetitive behaviour in a similar way for all the sharks. The two groups of adult dogfish 

used in the present study also showed these simultaneous increases and decreases in food 

consumption, thus supporting the findings of the N. brevimslris study. The cumulative 

food intake responses of S. canicula in this study also suggest the existence of feeding 

regulation determined by the level (magnitude) of appetite as the rates of consumption 

were highly linear for the periods over which the measurements were taken. This indicates 

that a seemingly repeatable, self-regulated daily feeding level occurs for dogfish fed to 

satiation under controlled conditions, and it is therefore quite evident that some appetite 

regulation factors are operating in dogfish. 

From the initial daily feeding studies with S. canicula it was clear that food 

deprivation time was important in determining the level of subsequent food consumption. 

Several other shark studies have shown that the level of voluntary food intake (appetite) 
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is dependent on deprivation time (Graeber, 1974; Longval et al., 1982; Casey et al., 1985). 

Casey e/ a/ noted for captive C. plumbeus that their peak in food consumption occurred 

after a few days of deprivation. From the subsequent timed re-feedings with progressive 

deprivation time accounting for the appetite return curve of the dogfish in this study, the 

rate of appetite revival after a known meal size was quite predictable. The appetite return 

was equally possible to model with both linear and sigmoid mathematical relationships. 

The sigmoid model however, did not withstand comparative statistical analysis and so 

cannot be considered or relied upon as a strong model to best represent the return of 

appetite of dogfish. Some teleost investigations have been able to successfully model 

appetite return using sigmoidal relationships. Appetite increased sigmoidally with 

deprivation time in the silurid catfish, Hetempneustes fossilis (Singh and Srivastava, 

1985). These authors stated that the sigmoidal rate of appetite return, incorporating a lag 

phase soon after the satiation meal and an asymptotic phase as food consumption reaches 

a maximum, was regulated by gastric emptying. They maintained that food intake was 

solely dependent on the available space in the stomach and generally increased with time 

and the gastric evacuation process. Sigmoidal models of appetite return were also found 

to explain the appetitive processes operating after a satiation meal in the minnow, 

Phoxim1s phoxinus (Russell and Wootton, 1993). Again the decline in gut contents after 

a meal was highly correlated with the return of minnow appetite. For the dogfish appetite 

return it seems most appropriate to use linear models as there was no obvious (or evident) 

initial lag or final asymptotic phase to appetite revival. The lag phase in the return of 

appetite is generally thought to represent the time for liquefaction of the meal in the 

stomach before the commencement of gastric emptying (Grove et al., 1978), whilst the 

asymptote of the sigmoid curve is equal to the amount of food that produces maximum 

stomach fullness (I. 73% wbw for H. jossilis, Singh and Srivastava, 1985; approx. I 0% 
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wbw for the mako shark, /. oxyrinchus, Stillwell and Kohler, 1985). Linear models, 

however are logically inadequate for representing appetite return because the model 

implies that there is no limit to stomach (or foregut) capacity. This cannot be true for any 

fish and so the linear model must be regarded with some reserve in this respect. 

The rates of appetite return shown for dogfish in this study indicates that they 

rapidly recover appetitive status after a satiation meal by having a minimal lag period in 

appetite return. Minimisation of this Jag period may perhaps be achieved by moving 

undigested food rapidly from the stomach into the anterior intestine. Such 

intragastrointestinal movements may be a strategy of opportunistic predators, such as the 

dogfish (Lyle, 1983) and has been shown to be the maximal appetite return strategy of the 

sand dab, Limanda limanda, whose lag phase of appetite return is short due to transferance 

of undigested food from the stomach straight to the intestine (Grove et al., 1985). This 

mechanism presumably facilitates faster initial stomach clearance of food and leads to a 

greater appetite much sooner after a satiation meal than might necessarily be expected. 

Similarly, dogfish may use this mechanism to rapidly recover appetite after a large meal, 

as would be strategically useful in times when prey was relatively abundant. 

The absence of an asymptote in the appetite return of both juvenile and adult 

dogfish in this study may indicate that the size of a satiation meal shows extreme 

variability after any period of food deprivation, and perhaps especially so when predicting 

appetite revival from groups of fish. Elliott ( 1975) and Grove et a/ ( 1978) used individual 

brown trout, Salmo tntlla and rainbow trout, Salmo gairdneri (Oncorhynchus mykiss) 

respectively, for studies on rates of appetite return and were able to accurately measure 

the maximum meal that could be ingested after varying deprivation times. Incorporation 

of appetite determinations from individual dogfish indicated higher levels of food 

consumption than for grouped dogfish and so might more clearly represent a true 
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asymptote to meal ingestion. Grouped adult dogfish that initially took a 7% wbw meal (to 

satiation) were then individually re-fed after 240 hours and consumed a 12% wbw meal. 

It is clear that interactions within the groups of S. canicula may indeed have been 

responsible for a lower level of satiation food consumption at the start of the experiments. 

Approximately 7% wbw was the satiation ration for both grouped juvenile and adult fish. 

The maximum individual food intake was about 11-14% wbw for both juvenile and adult 

dogfish compared to an estimated maximum ration (stomach capacity) of 10% wbw in 

l.oxyrinchus (Still well and Kohler, 1985). Fange and Grove ( 1979) in their review of 

digestion processes in fishes stated that L. limanda has a stomach volume equivalent to 

I 0% wbw, C. auratus up to 21% wbw whereas sculpins generally (Scorpaenidae and 

Cottidae: Scorpaeniformes) have been noted to ingest 30-50% wbw at a single feeding. 

In the present investigation 11-14% wbw was the highest ration size recorded when 

dogfish were individually fed to satiation and may represent an appetite return limit for 

dogfish in captivity. 

For the determination of dogfish AR, linear models were considered the most 

appropriate and have been used before to best represent a correlate of appetite revival 

against time. Elliott (1975) used a linear model to best represent the relationship between 

cumulative weight of food consumed by S. tnllla (a function of appetite) over time, even 

though there was some evidence of a sigmoidal correlation. Food consumption in the latter 

study commenced rapidly with little lag in the return of appetite and stopped abruptly at 

satiation within each feeding period. Therefore Elliott ( 1975) concluded that this 

relationship was sigmoidal but with very short "tails" at the beginning and end of the 

feeding period. According to Elliott (1975) the linear model was thus " a good 

compromise" to explain the consumption of food when the use of a sigmoidal curve was 

not entirely appropriate. For the present study on dogfish, the linear model can be 
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considered quite accurately as representing the appetite return of both juvenile and adult 

S. canicula if the level of maximum individual fish realimentation is regarded as a 

possible asymptote of appetite return. With variable levels of food intake it is clear that 

an asymptote would be difficult to establish and even then, not be entirely accurate. 

Obviously, the purpose of these first investigations of daily feeding and appetite 

return was to establish if any regulatory mechanisms may be in evidence in dogfish and 

to quantify the appetite return of dogfish with a view to investigating the effect of certain 

physiological processes on the recovery of appetite. What can be said of dogfish appetite 

at this stage is that revival is rapid after satiation compared to the traces obtained from 

experiments on teleosts, even if the overall appetite return time is quite prolonged 

compared to other fish. It appears for dogfish that their appetite returns at a constant rate 

as the deprivation time increases. In addition it is clear that the general forms of daily 

feeding and appetite return are similar for both juvenile and adult S. canicu/a. This 

similarity in appetitive strategy points to common factors influencing appetite for both 

adults and juveniles. The juvenile dogfish consume more food relatively after a satiation 

meal than the adults, indicating faster rates of food processing rather than suggesting that 

appetite might be regulated through development in some quite different manner. 

As some evidence for appetite regulation can be postulated for dogfish it is now 

necessary to ask what factors might be pivotal in controlling the ability of a fish to feed. 

Working on S. gairdneri (D. mykiss), Grove et a/ ( 1978) showed that appetite was related 

to stomach fullness and that the fishes feeding rhythms closely paralleled gastric 

emptying. Gwyther and Grove ( 1981) demonstrated for L. limanda that stomach fullness 

was the major factor in the control of appetite. In later studies on the turbot, Scophthalmus 

maxim us, Grove et a/ (1985) noted that the return of appetite was dependent on the degree 

of stomach emptiness in this species. Other studies on teleostean fish appetite that have 

61 



already been mentioned (Brett, 1971; Colgan, 1973; Fletcher, 1982, 1984}, suggested that 

other factors such as post-prandial metabolic rate, energy content of the diet and systemic 

factors all play a part in appetite regulation as well as stomach emptying. The appetite 

return of dogfish in this study was interesting in two distinct ways and provide avenues 

for further investigation. Firstly, the shark's lack of any appreciable lag phase in appetite 

return may be brought about by newly ingested food moving undigested into the intestine 

soon after the meal is ingested, thus facilitating the rapid initial revival rates observed in 

both juvenile and adult dogfish. This suggests that the stomach may be of prime 

importance in the short-term regulation of appetite. In addition, although the initial 

recovery of appetite is quite rapid (i.e. no observable lag phase), the time of appetite 

return as a whole is long in comparison to the teleost studies. It has been well documented 

in the literature that elasmobranch gastric evacuation is quite slow compared to teleostean 

fish (Jones and Geen, 1977; Medved, 1985; Wetherbee et al .. 1990), so the overall period 

of appetite return might be closely linked with the long emptying time observed for the 

elasmobranch stomach. Thus, studies of dogfish gastric evacuation patterns may elucidate 

the importance of the stomach in the appetite regulation of elasmobranch fish. 
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CHAPTER THREE 

GASTROINTESTINAL EVACUATION AND APPETITE 

3.1 INTRODUCfiON 

The role of the stomach as a prime regulator of appetite has been the subject of a number 

of recent studies on a wide range of teleostean fish species (Brett, 1971; Grove et al., 

1978; Flowerdew and Grove, 1979; Grove and Crawford, 1980; Gwyther and Grove, 

1981; Fletcher, 1982; Grove et al., 1985; Singh and Srivastava, 1985; Russell and 

Wootton, 1992, 1993). Generally these investigations have all demonstrated that the return 

of fish appetite was dependent on the rate and time of decrease in stomach or foregut 

contents. In the stomach, ingested food is degraded by the combination of enzymatic 

action in an acidic environment and rhythmic contractions of smooth muscle in the 

stomach wall (Grove, 1986; Bromley, 1994 ). Digesta then passes from the stomach 

through the pyloric sphincter into the intestine where nutrient absorption takes place. The 

rate at which the digesta leaves the stomach constitutes a gastric emptying pattern. The 

physiological mechanisms of food emptying and how they might influence gastric 

emptying patterns are central to the understanding of how appetite may be physiologically 

regulated in fish (Jobling, 1986). 

Stomach emptying rate and voluntary feeding level (appetite) have been termed as 

being analogous to input rate=output rate (Bromley, 1994 ). Gastric evacuation rate as a 

physiological factor governing appetite revival and regulation is only valid however, if the 

variables that may influence the rate are also considered. The time required and the rate 

at which fish empty their stomachs has been shown to depend on water temperature and 

the type of food consumed, which will in turn be affected by the size of the meal and the 
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size of fish that consumed the meal. In addition, the actual stomach emptying phase will 

be dependent on the degree of distension of the sac-like stomach, the secretory surface 

area of the stomach and the surface area of the meal (Grove, 1986). These parameters all 

serve to affect the nature in which the stomach undertakes two important functions; 

optimization of the ratio of nutrients: digestive juices entering the intestine; and the 

grinding of food into small particles ready for absorption and selectively retaining larger 

particles until sufficiently reduced (dos Santos, 1990). Variables such as these will affect 

the gastric emptying pattern. Investigations on stomachless fish however, have indicated 

that satiation and appetite were controlled even without the fish's possession of a true 

stomach (Grove and Crawford, 1980). Other studies that closely relate appetite return with 

gastric evacuation demonstrated that the stomachs of experimental teleost fish were nearly 

empty before voluntary feeding resumed (Steigenberger and Larkin, 1974; Grove et al., 

1978). Therefore, the assumption that the level of stomach fullness may solely regulate 

appetite should not be considered in isolation from the physiological influences of the 

post-absorptive factors resultant from entire gastrointestinal evacuation. 

That stomach fullness is fundamental in modifying the potential for food intake in 

fish has been widely established (for reviews see Fiinge and Grove, 1979; Fletcher, 1984), 

though to what extent the actual dynamics of gastric evacuation may influence appetite 

control, in conjunction with subsequent passage and absorption of food through other 

regions of the gut is not well understood. Gastrointestinal evacuation is mediated by 

autonomic neural (Andrews and Young, 1993) and hormonal control (Matty and Lone, 

1985), including certain feedback mechanisms that have generally been inferred for fish 

from mammalian studies (Jobling, 1986; dos Santos, 1990). The basis for appetite 

regulation in fish may ultimately depend on the physiological mechanisms involved with 

food processing and subsequent physiological status (Grove, 1986). These will therefore 
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be dependent to a large degree on the factors that influence the rate of gastrointestinal 

evacuation (Bromley, 1987). The rate at which food leaves the stomach and passes 

through the gastrointestinal tract of fishes will ultimately determine the degree of 

absorption of nutrients by the gut (Bromley, 1994). The consequences of these post­

absorptive metabolic processes have been postulated in some studies to play a major role 

in controlling subsequent food consumption (Brett, 1971; Beamish, 1972; Fletcher, 1982; 

Wetherbee et al., 1987). 

Notwithstanding the central role of the alimentary tract in the regulation of appetite 

revival, post-absorptive factors such as plasma metabolite level have been considered to 

be of variable importance (Brett, 1971; Fletcher, 1982). This is mainly due to whether the 

fish species were capable of adjusting food intake according to the nutrient density of the 

meal (Fiowerdew and Grove, 1979; Gwyther and Grove, 1981; Grove et al., 1985). The 

involvement in appetite control of various systemic factors, e.g. changes in levels of 

circulating glucose, fatty acid, glycerol or amino acids (Smith, 1989) has indicated that 

the gastrointestinal tract itself may be controlled from certain receptors, whether associated 

with the gut (Leek, 1972; Jobling, 1986; P.LR. Andrews, pers. comm.) or other visceral 

organs (Smith, 1989), and thus be sensitive to changes in physiological nutritional status. 

The rate of appetite return therefore, may be modified or controlled by chemical factors 

relating to the rate of food processing and physiological status of the fish, which by direct 

or indirect action influences the neural and hormonal mediation implicit to the mechanical 

functioning of gut evacuation. 

The actual factors controlling the physiological mechanisms of food emptying are 

incompletely known for fish (Jobling, 1986). Few studies have attempted to 

experimentally unite observations of the dynamics of stomach emptying with that of 

intestinal evacuation with a view to investigating the appetitive control processes that may 
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influence short-term feeding regulation. Recently, a number of authors have provided 

possible explanations regarding the involvement of the intestinal region of the gut in food 

intake control of fish, by drawing on the mammalian literature for comparison (Grove, 

1986; Jobling, 1986; Bromley, 1987; dos Santos, 1990). Therefore, for studies on 

physiological control of appetite it is an oversight not to investigate some aspects of the 

function of the whole gut in relation to food consumption and appetite. 

Smith (1989) noted in his review that the subject of gastric evacuation in fishes 

was discussed in more papers than any other single digestive function. Experiments that 

have profiled the decrease in stomach contents of fish over time have been primarily 

undertaken in order to attempt to quantify feeding rates of natural fish populations 

(Bromley, 1994). The purpose of assessing natural feeding rates of fish is to estimate their 

predation and feeding interactions. Food consumption models have been constructed from 

gastric evacuation studies in conjunction with quantitative observations on the feeding 

behaviour of fish in the wild (e.g. Thorpe, 1977; Elliott and Persson, 1978; Jobling, 

1981 b; Bromley, 1987). The driving force of such investigations has enabled the 

construction of trophic webs with an ultimate v1ew to enhancement of fish stock 

management (Bromley, 1994). It has been within this general context that studies of 

gastric evacuation in elasmobranch fishes have been completed. 

Gastric evacuation has been investigated in several species of elasmobranch 

(dogfish, presumed S. acanthias, Van Slyke and White, 1911; S. acanthias, Jones & Geen, 

1977; /. oxyrinchus, Stillwell and Kohler, 1982; C. plumheus, Medved, 1985; N. 

hrevirostris, Cortes, 1987 cited in Wetherbee e/ al., 1990; Wetherbee et al., 1987; 

Schurdak and Gruber, 1989; S. canicula, Macpherson et al., 1989; N. brevirostris, 

Wetherbee and Gruber, 1990; Mustelus cal!fomicus, San Filippo, 1993). All of these 

authors, except Van Slyke and White (1911) fitted an empirical mathematical model to 
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their observed gastric emptying data. Bromley (1994) reviewed the mathematical 

relationships that have been used to model gastric evacuation. Linear, exponential, surface 

dependent and growth models (namely Gompertz growth function, Winsor, 1932) have all 

been used to describe the gastric evacuation rate of different elasmobranch species 

(Medved, 1985; Cortes, 1987 cited in Wetherbee, 1990; Macpherson et al., 1989; San 

Filippo, 1993 ). None of these studies however, have evaluated the role of gastric emptying 

patterns as a component part of metabolism integral to the physiological control of 

appetite. 

Gastrointestinal evacuation rates have not been well researched in elasmobranch 

fish. Van Slyke and White (1911) working on dogfish, Wetherbee et a/ (1987) and 

Wetherbee and Gruber ( 1990) on N. hrevimstris are the only investigations that have 

investigated the evacuation of food through the gut of sharks. Some unpublished studies 

have also investigated the gastrointestinal emptying rates of elasmobranch fish (S. 

canicula, D.J. Grove and eo-workers, pers. comm.; Rqja clavata, de Souza cited in 

Flowerdew and Grove, 1979). The purpose of the former authors' work was to improve 

the overall understanding of shark digestive physiology, with a view to probing the 

relationships between rate of food consumption, rate of digestion and rate of growth. 

Clearly, these aspects of elasmobranch physiology are of prime importance to our 

understanding of how appetite might be regulated, but these investigations were not 

designed to be sufficiently wide ranging to represent a synthesis of the possible gut related 

mechanisms influencing appetite control. Therefore, the objective of this part of the 

present study was to evaluate the role of gastrointestinal evacuation in the physiological 

regulation of appetite in the elasmobranch, S. canicula. In previous studies the rate of gut 

evacuation was found to change predictably with fish size (Fiowerdew and Grove, 1979; 

Grove, 1986), so only adult and not juvenile dogfish were used for these sets of 
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experiments. 

Discrete sampling of alimentary tract content has been the only method used in 

gastrointestinal evacuation rate trials, as continuous direct observation is not practicable 

(Bromley, 1994). However, continuous measurements of gastrointestinal evacuation rates 

in Oncorhynchus mykiss have recently been made using gamma scintigraphy (Aidman, 

1994). X-radiography has been utilised for studying gut evacuation rates of fish since the 

early work of Molmir and Tolg ( 1962) and Edwards ( 1971 ). Before the early 1980's 

barium sulphate (BaS04) was used as a contrast medium for following the passage of food 

through the gut of fish (Edwards, 1973; Jobling et al., 1977; Grove et al., 1978; Ross and 

Jauncey, 1981). During the early 1980's Talbot and Higgins (1983) developed a 

quantitative X-radiographic method that tracked the progress of small, indigestible iron 

particles through the gut of fish. Although juvenile individuals of a single shark species 

have been X-radiographed in a previous study (N. brevirostris, Wetherbee et al., 1987), 

a quantitative X-radiographic method for use in gastrointestinal evacuation experiments 

on elasmobranchs has not previously been described. 

The specific aims of this part of the synthesis of physiological control of appetite 

m sharks were to quantify the gut evacuation rates of adult S. canicula using X­

radiography and to validate the applicability of the method by serial samples of dogfish 

gastrointestinal tracts. Rigorous validation of the technique has been previously shown to 

be necessary as some species of fish show a tendency for selective retention of the marker 

particles (Grove, 1986; Jorgensen and Jobling, 1988; Jobling et al., 1993). By 

quantification of the rates and times of gut evacuation in conjunction with simultaneous 

measurements of absorption efficiency and level of crude protein in the digesta, it was 

hoped to ascertain the relative importance of the gut emptying patterns in appetite return. 

This would then suggest how appetite might in part be regulated and indicate the existence 
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3.2 MATERIALS AND METHODS 

3.2.1 F01mulation of a Moist Pellet 

A diet was formulated to incorporate indigestible dietary markers enabling X-radiographic 

measurement of gastric evacuation in fish. It was important that the components of this 

manufactured diet were kept as close to the energy profile of squid muscle as possible 

(chapter IV), because squid muscle was utilised in other investigations of this study and 

diet homogeniety was essential. A moist diet promoting palatability was of prime 

consideration to the diet formulation as the S. canicula of this study had already 

demonstrated they would not consume dry pellets (Ewos Ltd., Scotland) to satiation 

(chapter 11). In addition it was important that the pellet sank as the dogfish fed almost 

entirely on the bottom of aquaria, presumably a persistence of their wild feeding 

behaviour. A ratio of 60% wet squid to 40% dry diet component was fixed upon. This 

formulation was based on 50% protein for the dry mass equivalent of the final diet. The 

dry component of the diet consisted of a white fishmeal (Provimi 66), vitamin premix, 

binder (Protanal) and cornstarch (Sigma Chemicals Ltd.) (Table 4). 

Wet squid Overall proportion Proportion of dry Type of ingredient 
(%) of dry ingredients ingredients (%) 

(%) 

60 40 

28.4 71.0 Fishmeal 

2.4 6.0 Vitamin premix 

1.2 3.0 Binder 

8.0 20.0 Corn starch 

Table 4. Diet formulation for the moist dogfish pellets used in the gastric 
evacuation studies. 
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The cornstarch was included in the dry component of the diet so that the energy profile 

of the diet could be altered if necessary, by I 00% substitution of corn starch with a pure 

marine oil source (cod liver oil). 

3.2.2 Manufactu.-e of the Moist Pellet 

Fresh squid (Loligo vulgaris; Loliginidae) were obtained from the Barbican Fish Market, 

Plymouth during winter months and gutted, cleaned and chopped and then frozen down 

into hand-sized blocks. Each block of squid that was needed was further grated into small 

thin slivers using a standard cheese grater and these slivers were collected, weighed and 

left to stand whilst the dry ingredients were weighed out. The amount of each dry 

ingredient weighed was in proportion (3 :2) to the amount of squid grated. The dry 

components were placed in the bowl of the food processor (Hobart A 120) and mixed for 

approximately 30 minutes. The indigestible dietary markers, glass beads of diameter 0.40-

0.S2mm (Ballotini beads, Jencons, U.K.) were incorporated into the mixed dry ingredients 

at this stage. The beads were scattered uniformly over the surface of the dry dietary 

components and were then mixed into them for a further 30 minutes. 

The defrosted squid puree was added to the uniform dry portion of the diet very 

slowly to avoid premature coagulation of the diet and this was blended on the slowest 

speed setting. When half of the grated squid had been added, approximately 20ml of water 

was added to the remaining squid and turned over with a hand spatula. This wet portion 

of squid was then slowly added to the rest of the coagulating diet. With further mixing 

the diet coagulated into a single, large moist ball. The ball of diet containing the glass 

beads was removed from the mixer and pressed flat with a stiff board until approximately 

I.Scm in thickness. The flat block of moist squid diet was then frozen to -25°C until 

required. 
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The diet was calibrated by X-radiography (section 3.2.3) to ensure that the glass 

beads were evenly distributed throughout the diet preparation. Uniform bead distribution 

was signified by a linear relationship between the number of beads and the weight of 

food. It was necessary to produce a regression equation for the number of beads in 

relation to a given weight of diet so that in further investigations the weight of food 

present in the stomach of S. canicula could be estimated from the serial X-radiographs. 

Figure 7 shows the highly linear relationship obtained for the number of glass beads 

against weight of diet. Therefore the diet manufacturing method described above was 

sufficient to ensure uniform distribution of markers within the diet and this protocol was 

strictly adhered to whenever the experimental diet was made. 

3.2.3 General X-Radiogm1,hy Technique 

All X-radiographs were taken using a portable Philips Practix variable power output (kV) 

X-ray unit with light beam diaphragm attachment. This unit was situated in a basement 

cellar of the University in close proximity to the aquaria facilities. All X-radiographs were 

taken by the author whilst wearing a thermo-luminescent detector (TLD) badge which 

monitored the cumulative X-ray dose obtained when exposing the S. canicula to X-rays. 

The TLD insert was supplied and monitored by the National Radiological Protection 

Board (NRPB, Didcot, Oxon.). Cumulative dose readings were supplied every 13 weeks 

by NRPB and by the end of the period over which X-radiographs had been taken, the dose 

acquired by the author was equivalent to OmSv (milliSieverts). 

Blue sensitive film (RPl, 24 x 30cm, AGFA-Gevaert N.V., Belgium) was used for 

all X-radiographs and when an X-radiograph was to be taken a sheet of film was placed 

in a rigid plastic cassette (AGFA Blue R4, Curix screens, 24 x 30cm). The X-ray film was 

sensitive to light and so the X-ray cassette not only protected the sheet of film from 
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Figun~ 7. The uniform relationship between the number of indigestible glass marker beads 

(Nm) and the wet weight (WW) of the diet. Regression equation, WW = 0.27 + 0.11 Nm 

r2 = 0.98, n = 17. 
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incident light, but also allowed an accurate X-ray image to be recorded on the film. 

Within the cassette were two AGF A Curix rare earth screens and the sheet of film was 

held tight against, and firmly between these two screens. When struck by X-rays (that 

passed through the subject) the screens fluoresce in proportion to the number of actual X­

rays and strength of the incident X-radiation. The film was sensitive to the intensity of the 

screens fluorescence and thus produced an image of the subject on the film. 

The dogfish or excised alimentary tracts to be X-radiographed were placed directly 

on a plastic bag covering a loaded cassette. The X-ray cassette was put on a Jmm lead 

sheet (80 x 80cm) situated on the ground, with the X-ray generator head exactly I m above 

the subject. The light beam diaphragm unit enabled the subject(s) to be "framed" so that 

the area in which X-rays would strike the subjects, cassette and lead sheet, was exactly 

known. At no time during any of the X-radiographs was the path of the X-rays allowed 

to overlap the edge of the lead safety sheet. An exposure time of 0.1 or 0.2 seconds at an 

X-ray penetrating power of 40-SOkV (fixed 0.2mA) depending on the size of the subject 

was selected on the control panel of the X-ray unit. The control panel was about 2m 

distant from the X-ray generator head and the subject, and separated from this exposure 

area by a 30cm thick concrete wall. When the X-ray generator head had preheated, the 

area of exposure was set and the exposure time and power of the X-ray beam was 

selected, the X-ray unit was activated via a remote button by the author at a further 

distance of Jm from the control panel. When exposure of the subject to X-radiation was 

completed and no further X-radiographs were needed, the X-ray unit was switched off and 

isolated from the mains power supply. 

The film sheets were manually developed under brown light (Kodak filter #67) in 

the photographic darkroom of the Department of Biological Sciences, University of 

Plymouth by the author. The sheets of film were removed from the cassettes and clipped 
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into metal frames which were immersed in developer (GI50, AGFA-Gevaert N.V., 

Belgium) for 3 minutes. After exactly 3 minutes the framed film was removed from the 

developer and dipped through fresh tapwater before being submerged in a tank of fixative 

agent (G350, AGFA-Gevaert N.V., Belgium) for approximately 3 further minutes. When 

fixed, the films were rinsed under running tapwater and dried in a cabinet at 70°F for a 

couple of hours. The dried films were analysed. 

3.2.4 Validation of the X-mdiogn1phic Technique fot• Estimating Gashic Evacuation 

3.2.4. 1 Setial samples of dogfish 

A group of 20 adult S. canicula (mean weight 697.5 ± 23.1 g S.E.) were fed a 

satiation meal over a period of one hour such that each fish was assumed to have received 

a meal of the experimental diet equivalent to 7.84% wbw. They were fed with known 

weights of thawed diet containing glass beads that had been cut into small cubes whilst 

still frozen (approx. I x I x 1.5cm dimension). The experimental diet for this particular 

investigation also contained 1.25% chromic oxide (Cr20 3) by weight of the dry component 

of the diet, substituted at the expense of cornstarch. The group of adult dogfish were 

accustomed to the moist experimental pellets as they had been presented light rations of 

diet twice in the two weeks preceding the experimental period. The fish exhibited normal 

feeding behaviour and consumed a satiation meal of similar magnitude to that achieved 

when chopped squid was fed to groups of adult dogfish (chapter H). 

When the dogfish had reached satiation, three of them were randomly chosen and 

each killed with a blow to the head. The fish were weighed intact, before the 

gastrointestinal (GI) tract of each dogfish was carefully dissected out so that the number 

of beads in each region of the gut could be accurately determined. The GI tracts were 

removed from the dogfish in the following manner. An initial incision was made into the 
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ventral surface of the fish just anterior to the ischiopubic bar of the pelvic girdle and the 

skin and muscle surrounding the viscera was cut into. This cut was continued anteriorly 

until the pectoral girdle was reached. In order to extract the entire gastrointestinal tract, 

the pectoral girdle was cut through, to expose the pericardial cavity so that full access to 

the oesophagus was possible. The large liver of the dogfish was removed and four 

ligatures (thin braided cord) were tied tightly around the gut wall to separate the three 

portions of the gut, namely (i) cardiac stomach, (ii) pyloric stomach and (iii) the intestine 

region (duodenum, ileum and rectal regions). The role of the ligatures was to stop any 

migration of the gut contents between the main regions of the gut whilst X-radiography 

was undertaken. The anterior ligation was tied as close to the beginning of the 

oesophagus, while the posterior ligature was tied below the rectal gland, where the rectum 

opens into the dogfish's cloaca. The second ligature was tied around the narrow region of 

the alimentary canal where the cardiac stomach joins the pyloric stomach. The third 

ligature was tied close to the pyloric sphincter which was easily located from a visual 

inspection of the surface of the gut. When the gut of each of the dogfish had been 

extracted from the visceral cavity the gut lengths were X-radiographed. 

Four more adult dogfish from the experimental group were sampled at 24 h, and 

another four at 72 h. Three more of the group were serially sacrificed at 120 h and 

another three at 192 h, whilst the three remaining fish were caught and killed at 288 h in 

the same way as the first fish. All dead dogfish were weighed, their GI tracts dissected 

out and subsequently X-radiographed. 

3.2.4.2 Analysis of actual gut contents 

After the Gl tracts were X-radiographed the contents of each ligatured section of 

the gut (cardiac, pyloric, intestine) were emptied into preweighed aluminium foil dishes. 

77 



The contents of the intestine (duodenum, ileum and rectal regions) usually also contained 

some faecal material. It was possible to extract the faeces from the posterior end of this 

gut length (i.e. from the very short large intestine) as there was clear definition between 

faecal material, usually in the form of a pellet, and the thick liquid chyme of the ileum 

region. The faeces from each dogfish gut were emptied into a separate foil dish. The 

contents in each of the four foil dishes for each fish was weighed and then the digesta 

samples were placed in a preheated oven at IIOoC for 24h or until constant dry weight 

of sample was achieved. The dried digesta samples from each gut region for each fish 

were again weighed. 

The moisture content of digesta in each region of each dogfish gut was calculated 

using the relationship: 

Moisture content(%)= wet wt. digesta- dry wt. digesta x 100 
wet wt. digesta 

3.2.4.3 Analysis of X-mdiogmphs 

The X-radiographs of dogfish Gl tracts were viewed on a standard light table (PLH 

Scientific Ltd.). The radiopaque glass beads were clearly visible in the gut of the 

individual dogfish (plate 2, p. 91 ). Standard acetate sheets for use on an overhead 

projector were laid over the X-radiographs and the outline of the gut and the number of 

beads in each region of the gut were counted. The ligatures marked the boundaries of each 

region of the gut so it was very clear how many beads were in, for example the intestine 

as opposed to the pyloric stomach as the outline of the soft tissue of the gut was visible. 

Counting the beads was done by marking the position of the bead on the acetate sheet 

with a permanent ink pen. The number of beads in each region of the gut was counted. 

The beads in the cardiac stomach were always well separated and every bead could be 
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counted without error or discrepancy. The beads that clumped together in other sections 

of the gut were counted twice and if the two determinations were not in agreement, then 

a third determination was undertaken. If the number counts of beads were still at odds but 

within 1-5 beads of the other counts, then a mean was taken of the total bead counts. 

The number of beads in each portion of the dogfish gut was converted to the 

estimated dry weight of food present in the tract using the following relationship: 

Est. dl)' weight = number of beads x 0.111 - 0.266 x (I 00 - digcsta moisture content) 
100 

where N 0.111 - 0.266 = estimated wet weight of food (section 3.2.2) and digesta 

moisture content was calculated as given in section 3.2.4.2. The purpose of the conversion 

was so the estimated stomach contents determined by X-radiography could be compared 

to the actual stomach contents of the experimental fish. 

3.2.5 Deteamination of Food and Cmde Pmtein Absorption Efficiency by Dogfish 

3.2.5.1 Chmmic oxide method foa· absoaption efficiency estimations 

The experimental test diet containing inert chromic oxide (Cr20 3) and the digesta 

collected as part of the investigations of section 3.2.4.1 were all assayed for chromium. 

This was achieved by flame atomic absorption spectroscopy of the experimental diet and 

the digesta samples after an initial wet acid digestion phase first described by Furukawa 

and Tsukahara (1966). The acid digestion procedure was necessary because of the inert 

nature of chromic oxide. 

Dried digesta samples obtained from dogfish Gl tracts taken over 288 h (section 

3.2.4.2) and dried diet samples were weighed (SOmg) into warm, dry 250ml borosilicate 
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digestion tubes. Concentrated nitric acid (Analar grade) was added (5ml) to each tube and 

all tubes were placed in a preheated digestion block (Gerhardt-Kjeldatherm KT-20) and 

heated to 120°C for approximately 1 hour. Fumes from this stage of the acid digestion 

were bubbled through 15% sodium hydroxide (Gerhardt Turbosog). The liquid samples 

were clear of organic matter after 1.5 hours although varying amounts of a green 

precipitate was present in all the tubes. When the tubes were cool, Jml of concentrated 

sulphuric acid and 2ml of perchloric acid were added to each of the tubes. The digestion 

block was preheated to 240"C and the tubes were heated for a further 1.5 hours. A dull 

yellow solution in the tubes was obtained on completion of the digestion phase and when 

cool, SOml of deionised water was added to each tube. Each sample was poured into a 

separate volumetric flask and made up to I OOml with deionised water. A subsample of 

these final volumes were stored in small plastic bottles in the dark at -2°C until they were 

analysed for chromium. 

The analysis for chromium was undertaken using a Varian AA-975 series Flame 

Atomic Absorption Spectrophotometer fitted with a chromium lamp of wavelength 

357.9nm. The lamp current was set at 7mA and the spectral band pass setting was 0.2nm. 

The apparent dry matter digestibility of the experimental diet was calculated using 

the following formula: 

Apparent Absorption Efficiency (%) = I 00 - ( I 00 x % Cr,_Q3 in food ) 
% Cr,03 in digesta 

3.2.5.2 Kjeldahl method for estimation of nitmgen ( cmde pmtein) 

For both dietary and digesta protein content determination, SOOmg samples of dried 

digesta (obtained from serially slaughtered dogfish (section 3.2.4.2)) and dried 

experimental diet were each carefully weighed into separate 250ml borosilicate digestion 
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tubes. Two "Kjeltabs tct" catalyst tablets were added to each tube prior to 20 ml of 

concentrated sulphuric acid. The tubes were then heated at 200"C on a preheated digestion 

block for approximately 45 minutes before being heated at 380"C for a further 45 minutes. 

When the liquid samples in the tubes were a translucent emerald green colour with no 

precipitate they were allowed to cool before the distillation phase of the procedure. Three 

tubes containing no organic matter were run through the same procedure and treated as 

blank controls. 

Each digestion tube in turn was placed into the distillation unit (Gerhardt Vapodest 

3S Automatic) where 40% sodium hydroxide and hot distilled water was added to the acid 

digested sample. Individual conical flasks each containing 25ml saturated boric acid and 

I 5 drops of BDH "4.5" Indicator was positioned in the distillation unit to collect the 

ammonia distillate from each acid digested sample tube. 

The ammonium borate solution and indicator in each flask for each original sample 

tube was titrated against 0.25M hydrochloric acid. The endpoint of the dynamic flux of 

alkaline ammonium borate solution to boric acid and ammonium sulphate salts was 

characterised by the colour change from a blue solution through clear to pale pink. The 

amount of 0.25M HCI delivered was recorded for each sample. 

The amount of% crude protein (CP) in each sample was calculated as follows: 

% CP = LY.,- V,) X 14 X 6.25 X lOO X 0.25M 
w 

where V2 was the volume of 0.25M HCI delivered to each of the samples, V, was the 

volume of acid delivered to the blank tubes and W was the weight of the organic sample 

in milligrams. 

Combination of the latter equation with that used to obtain estimates of food 

absorption efficiency (AE) in section 3 .2.5.1 gives the relationship: 
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Apparent CP AE (%) = 100- (100 x % Cr,O, in food x 
% Cr 10 1 in digcsta 

% nutrient in digcsta) 
% nutrient in food 

and was used to calculate the apparent nutrient AE of the experimental diet from the 

digesta samples taken from serially slaughtered dogfish. 

Crude protein coefficients were calculated in the following way: 

CP Coefficient = dry wt. CP in total digesta (g) 
dry wt. of total digesta (g) 

3.2.6 Se~ial X-Radiogmphy of Dogfish to Detem1ine Rates of Gasnic Evacuation 

3.2.6.1 Numbe•· tagging of expedmental fish 

A group of 25 adult dogfish S. canicula (mean wt. 742.5 ± 16.4 g S.E.) were 

individually caught, weighed and marked with a numbered tag. All the tags of dimension 

14 x 5mm were of one colour and were each threaded onto a separate length of nylon line 

which was pushed through the base of the leading edge of the first dorsal fin of each 

dogfish. The line was tied off in a generous loop so that the buoyant plastic tags could 

float free and above the body of the fish, thereby preventing any skin irritation. The 

needle and the fin area that was to be penetrated were cleaned with 60% ethanol before 

the fish was actually tagged. The dogfish were left to equilibrate after the tagging 

procedure for two weeks. During the two weeks the dogfish did not exhibit any unusual 

behaviour and continued to feed quite normally. The dogfish were tagged so that they 

could be identified for serial X-radiography, to avoid the same individual fish being 

consecutively X-radiographed. 
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3.2.6.2 Gash;c evacuation studies 

The group of number tagged adult dogfish were fed a 7% wbw meal of the 

experimental diet (exact formulation given in 3.2.1) to correspond with the satiation level 

that was obtained for dogfish in the return of appetite investigations (chapter 11). This 

known weight of thawed experimental diet containing glass beads was given to the 

dogfish over a period of I hour. The end of the feeding period was noted as time zero and 

from this point, anaesthetised dogfish were serially X-radiographed. Anaesthetised fish 

were used because the unanaesthetised dogfish exhibited active swimming movements 

when out of water that were shown to persist for some considerable time. Immobile 

dogfish were needed so that the X-radiograph image was not distorted by any sudden 

movements. 

The anaesthesia used was ethyl p-Amino benzoate (benzocaine) (Sigma Chemical 

Co. Ltd., Poole, Dorset) and was prepared by dissolving I g of the white powder in I OOml 

of 70% ethanol. A I OL sea water anaesthetic bath was made up by adding 5ml of 

benzocaine in alcohol for each litre of seawater. Immediately after feeding (t=O) two 

random dogfish were removed from the holding tank by hand and transferred to the 

anaesthetic bath. Initially, the dogfish thrashed their bodies quite violently to escape the 

bath but after a few seconds slumped back into the anaesthetic. The dogfish were 

immobilised quite quickly due to their raised ventilation rate from being active, and with 

a tight cover on the anaesthetic bath were taken to the X-ray unit whilst still becoming 

anaesthetised. Long forearm rubber gloves were used to remove each dogfish from the 

anaesthetic bath and they were each placed in turn, ventral surface down on the plastic 

bag surrounding the X-ray film cassette. From the dorso-ventral aspect the entire dogfish 

gut was observable in a single plane. The dogfish were then X-radiographed as detailed 

in section 3.2.4.2. The completion time of the X-ray procedure, from the start of 
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anaesthetisation to the point of recovery initiation was not longer than 10 minutes. 

The two dogfish were taken back to the holding facilities in the anaesthetic bath 

and recovered by holding them, one in each hand, just below the surface of the water in 

a current of aerated seawater. Each fish was assumed to have recovered fully when they 

exhibited swimming movements and they were then allowed to descend freely to the 

bottom of the aquaria. After recovery, the dogfish were observed for another 15 minutes 

to ascertain whether they were able to ventilate their gills and swim properly. During the 

X-radiographic studies all dogfish that were anaesthetised were recovered successfully. 

In the 7% wbw study, two different dogfish were anaesthetised and X-radiographed 

every 24 hours until the X-radiographs showed the stomach to be empty. At the end of 

the trial the dogfish were all weighed and allowed to equilibrate for another two to three 

days. After this time the dogfish group were fed a meal assumed to be equivalent to 3.5% 

wbw per fish. As before, two dogfish were anaesthetised and X-radiographed every 24 h 

until the stomachs of the fish were observed to be empty. 

The investigations were repeated at both ration levels with weighings of the 

dogfish at the end of each trial followed by at least three days of equilibration. For all the 

trials each dogfish was X-radiographed not more than once in any seven day period so 

that they were not adversely affected by more frequent anaesthetisation. At no time during 

the gastric evacuation trial period were there any mortalities of the fish due to the 

anaesthetisation or X-radiograph regime. 

The live dogfish X-radiographs were analysed in the same way as those of the 

dogfish GI tracts. At least three counts were made of the number of beads in each region 

of the gut and with further experience in observing the gut and in the quality of the X­

radiographs, the accuracy of bead counts for each gut region was increased. The 

estimated dry weight of food remaining in each dogfish stomach was calculated as given 
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m section 3.2.4.3 and the values were then re-expressed in terms of percentage food 

remaining in the stomach. The percentage of food remaining was used as the measure of 

gastric evacuation so accurate comparisons in GER could be made to take into account 

small variations in the meal size originally given. 

3.2.7 CanJiac Stomach Dimensions 

The cardiac stomach dimensions (length and diameter) were measured to the nearest 

0.1 mm in 34 adult dogfish fed different quantities of the experimental diet containing 

glass beads. The dimensions were measured by direct determination from dead fish (n= 11) 

and by separate (from previous studies) X-radiographs of living dogfish (n=23). The 

length and diameter of the cardiac stomach of X-radiographed dogfish was estimated by 

measuring the greatest distance between the glass beads on the film, both 

anteriorly/posteriorly (to give length of stomach) and laterally (to g1ve diameter of 

stomach). Three of the dogfish had not been fed any experimental diet before they were 

killed with a blow to the head, and their stomachs served as controls for the measurements 

from other dogfish. 

3.2.8 Modelling Gasu;c Evacuation Rnte (GER) and Statistical Analysis 

The decrease in cardiac stomach contents of adult S. canicufa was modelled usmg 

exponential and square root functions. The exponential model used was the generalized 

relationship given in Bromley ( 1994), such that, 

S =S e·Bt 
I 0 

where S0 represents the meal size consumed and S, the stomach contents at the given time 

I, with I being the time in hours and B denoting the instantaneous rate of gastric 

evacuation. The square root model used was the one given in Jobling (1981), such that, 
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s o.s = s o.s - k t 
I 0 

where k is a constant and S0= cl- where a is the intercept to they axis. A variation on 

Jobling's (1981) square root model from 8romley's ( 1994) review was also fitted to the 

experimental data, with a function of the form, 

S, = S0 - 2 ..J S0 8 t + (8 t)2 

The three equations were modelled by nonlinear regressiOn to obtain least squares 

estimates of the parameters in the model. The Marquardt search algorithm (Marquardt, 

1963) of Statgraphics Version 6.0 determined the estimates to minimise the residual sum 

of squares of the user defined functions (the equations). The exponential curve shapes 

fitted by the algorithm at each ration level (3.5% and 7% wbw) were statistically 

compared by analysis of covariance (ANCOV A). 

The changes in cardiac stomach dimensions with mcrease m food intake were 

modelled using the generalized power function for length change of the form, 

L = L W 8 
w 0 

where L0 was the length of the stomach when no food was present, Lw the length of the 

stomach containing W dry weight grams of food and W represents the dry weight grams 

of food present in the cardiac stomach. 
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3.3 RESULTS 

3.3.1 Gasu;c Evacuation 

The experimental diet fed to the adult dogfish throughout the investigations was uniform 

in glass bead marker content. The number of glass beads increased in direct proportion 

to the wet weight of diet and was best represented by a linear regression (regression 

coefficient , r2=0.98; figure 7, p. 77). 

Twenty adult S. canicula were each fed a 7% wbw meal of the experimental diet 

and the gut contents of individual fish were serially sampled by direct weight 

measurement and by X-radiographic analysis. Figure 8 shows the correlation between the 

actual stomach contents of dogfish and the predicted stomach contents estimated from X­

radiographic analysis of the number of beads actually present from stomachs sampled from 

0-72 h. The linear relationship between actual and estimated stomach contents on a dry 

weight basis remained close to the equilateral line (where actual contents=estimated 

contents), though deviation from this line was more marked at the higher levels of actual 

stomach content. This indicates that the X-radiographic method of stomach content 

prediction may have marginally underestimated the actual stomach contents when 

digestion of the larger meals was taking place. Generally though, the good agreement 

found between the actual weight measurements of cardiac stomach contents and that from 

X-radiographic estimations of the stomach content was sufficient validation, and thus the 

basis for utilising X-radiography in further gastric evacuation studies. 

In further gastric evacuation studies 25 adult dogfish were fed the experimental 

diet and serially X-radiographed. Plates 2-8 illustrate the passage of a 7% wbw meal 

through the gut of different pairs of experimental fish. After only 1.5 h some beads had 

already left the cardiac stomach, which suggests that initiation of gastric evacuation began 
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Figure s~ Estimated dry weight stomach contents as determined by X-radiographic 

measurements from 10 serially sampled dogfish guts correlated with actual dry weight 

stomach contents of the same fish. Regression equation, Actual DW = -0.41 + 1.07Est. 

DW, r2 = 0.95; n = 10. 

88 



40 

~ 
Cl 

Cl) 30 

<.0 
~ 

c:l 
4) 

c:l 
0 
() 20 
A 
() 

"' El 
0 .... 
<.0 

10 

"' ;:I .... 
() 

< • 
0 

0 

7 

y 
7 

• 

"/ 
"/ 

y 

10 

/ 
/ 

/ 
/ 

/ 

/ .... 

/ 

Ill / 11 
Ill // 

/ 
/ 

/ 

~//1j 
/ . // 

/ 
/ 

/ 
/ 

20 30 

Est im ated s t omach content s (g DW) 

89 

/ 

/ 
/ 

/ 

40 



Plate 2. X-radiograph of the stomach contents of two adult S. canicula 1.5 hours after 

being fed 7% wbw meals of squid pellets marked with radiopaque glass microspheres 

(0.40-0.52mm diameter). The small white dots represent the glass beads. The X-radiograph 

was taken with the dogfish lying dorso-ventral and at right-angles to the x-ray beam. 

Heads of the dogfish point towards the top of the page. Vertical scale bar represents Jcm. 

Key to abbreviations: c, claspers; cs, cardiac stomach; gc, pectoral girdle; gv, pelvic 

girdle; i, intestine; v, vertebrae; p, pyloric stomach; re, rectum. 

Plate 3. X-radiograph of two adult S. canicula 24 hours after consumption of 7% wbw 

meals of marked squid diet. Key to abbreviations: cl, cloaca; i, intestine; p, pyloric 

stomach. 
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Plate 4. X-radiograph of two adult S. callicula 48 hours after consumption of 7% wbw 

meals of marked squid diet. Key to abbreviations: j, faecal pellet; p, pyloric stomach; s, 

spiral valve. 

Plate 5. X-radiograph of two adult S. caJlicula 120 hours after being fed marked diets. 

Key to abbreviations: r, bead retention in pyloric stomach. 
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Plate 6. X-radiograph of two adultS. canicula 144 hours after consumption of a 7% wbw 

meal of marked squid diet. 

Plate 7. X-radiograph of two adultS. canicula 192 hours after consumption of a 7% wbw 

meal of marked squid diet. Key to abbreviation: s, spiral valve. 
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soon after meal ingestion (plate 2). Plate 2 also illustrates that the glass beads can be 

clearly seen within the individually visible experimental diet pellets. After 24 h (plate 3) 

some digesta had moved from the cardiac stomach and was present in the pyloric region 

in some quantity. At the end of 48 h individual pellets in the stomach were still present 

though it was obvious that they were more diffuse and were being broken down, as they 

appeared quite pitted on the X-radiograph (plate 4). The experimental diet pellets were 

fully digested between 120-144 h (plates 5 and 6) and the flow of beads from the stomach 

was quite uniform even though clumping of some beads occurred in the pyloric region of 

the gut during this time. Few beads, thus little food remained in the cardiac stomach after 

192 h (plate 7) and they were completely evacuated after 288 h (plate 8). The decline in 

the contents of the cardiac stomach was estimated on a dry weight basis in the same way 

as in the validation study. Figures 9a and b show the gastric evacuation profiles from both 

the validation study and from an X-radiographic study. Exponential models were fitted to 

these experimental data and from table 5 it is clear that the curve shapes, or slopes 

representing gastric evacuation of the 7% wbw meals determined by X-radiography and 

actual stomach contents weighings were not significantly different (P>0.25). The 

regression coefficients (r2
) for the gastric evacuation of 7% wbw meals were both above 

0.95 and the y intercept parameters, representing the amount of food present in the 

stomach at time zero (t=O) were both close to the expected I 00%. The close agreement 

of these two fitted models to the actual and estimated gastric emptying data suggests that 

X-radiographic methods utilising the rate of disappearance of glass beads was accurate in 

representing actual stomach evacuation of adult dogfish. Table 6 however, indicates the 

slight underestimation of the X-radiographic prediction of gastric evacuation at the 7% 

feeding level compared with the model predictions from actual stomach content weight. 

For example, the time required for 75% gastric evacuation was 61 h from the X-
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Figul"e 9. Stomach emptying rates of adultS. canicula determined by (a) actual weighings 

of stomach contents and (b) X-radiography after an initial meal of 7% wbw. The ordinate 

expressed as the percentage of food remaining (S,) on a dry matter basis. The fitted curve 

to the upper panel is exponential and the fitted curves to the lower panel are exponential 

(solid line) and square root (dashed line). Non linear regression equations; (a) S, = I 05.5 

e·0·
009

' , where t is time in hours, r2 = 0.95, each data point represents the mean of either 

3 or 4 determinations; (b) S, = 102.2 e·0
·
010

', r2 = 0.96, each data point represents the 

mean of 4 determinations (solid line); S, = (9.80- (0.03 t))2
, r2 = 0.97 (dotted line). Bars 

denote ± I standard error of the mean. 
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Table 5. Statistical analysis summary of the fitted exponential functions at each meal size. 

Meal size 
(% wbw) 

3.5 

7 

7' 

a 

97.4 

102.2 

105.5 

Regression 1 

b 

-0.024 

-0.010 

-0 009 

ANCOVA 2 

Curve shape (slope) 

F d. f. p 

0.97 

11.59 1:20 <0.005 

0.96 

0.51 I: 15 >0.250 

0.95 

1 Coefficients obtained from the fitted exponential f11nction y =ae .. ', wlwm y r·epresents the percentage food 
remaining in the cardiac stomach and x signifies the time co11rse. 

2 Significant differences in cr"''e shape shown by analysis of cm•ariance and significance ass11med at 
P<0.05. 

Table 6. Comparison of gastric evacuation times determined from the fitted exponential 
models of each ration level and of the validation study. 

Predicted times (h) for gastric evacuation (%) 

Meal size 3% 25% SO% 75% 97% 99% 
(%wbw) 

3.5 0.07 4.73 12.07 24.61 62.98 82.86 

7 2.27 13.44 31.05 61.15 I 53.23 200.95 

7v 4.05 16.47 36.03 69.48 171.79 224.81 

vFrom filled exponential model of act11al cardiac stomach content d<'Ciine 
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radiographic prediction compared to 70 h from the actual weight estimates. Clearly, the 

X-radiographic model for gastric evacuation of adult dogfish was very similar to that 

produced from actual serial stomach weights, but underestimated food presence at the 

higher levels of feeding. 

Figure 9b shows the Jobling (1981) square root model fitted to the 7% wbw X­

radiographic determinations of stomach emptying in addition to the fitted exponential 

function. At the higher ration level the .-2 of the square root model was similar to that of 

the exponential model, 0.97 and 0.96 respectively, which indicated little difference in the 

prediction accuracy of dogfish gastric evacuation between either model. However, the 

residual mean sum of squares (RMS) was higher in the exponential model (44.5) than in 

the Jobling square root model (32.6), which indicated the square root model was a 

marginally better fit. The fitted Bromley (1994) square root model of the form, 

S, = 90.7- 2 ..J 90.7 X 0.097 t + (0.097 t)2 

was not a good explanation of the stomach emptying data as the RMS was quite high 

(77.4) and the estimation of a (the ordinate intercept) was not as accurate as the 

exponential or Jobling square root models. From figure I 0 however, it is clear the length 

and diameter of the cardiac stomach of adult dogfish increased in a nonlinear manner with 

a concomitant increase in the amount of food present in the stomach. The assumption of 

square root models in general, maintains that the rate of evacuation is proportional to the 

square root of the weight (volume) of stomach contents, if the length of the stomach 

remains constant. Thus, the efficacy of applying the square root model to accurately 

predict the gastric evacuation rate of adult dogfish was not appropriate in view of the 

change in the length of the dogfish stomach (best described by a power function) with 

an increased level of feeding. 

The effect of meal size on the gastric evacuation rate of adult S. canicu/a was also 
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Figme 10. The change in length (11) and diameter (D) of the cardiac stomach of adult S. 

canicula at varying levels of food intake. Nonlinear regression equations {power 

functions); length L = 4.39 DW 0
·
12 

, r~ = 0.85, n = 34; diameter D = 3.29 DW 0
·
13 

, r2 = 

0.59, n = 34. 
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investigated. Figure 11 demonstrates that an exponential function best represented not only 

GE at the 7% wbw feeding level, but also the GE of a 3.5% wbw meal (regression 

coefficients of 0.96 and 0.97 respectively). The 3.5% wbw meal was evacuated at over 

twice the rate of the larger meal (table 5) and the analysis of covariance of the fitted 

model curve shapes indicated significant differences in instantaneous rate of gastric 

evacuation between the two meal sizes (P<O.OOS; tableS). The predicted times for 

percentage gastric evacuation in table 6 indicate that 99% gastric evacuation of a 3.5% 

wbw meal was evacuated after 83 h compared to 20 I h for the 99% gastric evacuation 

time of a 7% wbw meal. 

From figure 12 it was evident there was inverse proportionality between gastric 

evacuation (percentage food remaining) and the return of appetite of adult S. canicula 

(chapter H) after a 7% wbw meal. The rate of appetite return increased rapidly as the rate 

of gastric emptying was maximally decreasing, which continued until 250 h when the 

stomach was relatively empty and the rate of appetite return was assumed to have reached 

an upper limit. 

3.3.2 Gashuintestinal Evacuation 

The passage of food through the gastrointestinal tract was followed from X-radiographs 

of anaesthetised dogfish, but uniform bead flow past the pyloric sphincter was not 

observed and so quantitative estimates of gastrointestinal evacuation from X-radiography 

was not feasible. From the X-radiographs however (plates 2-8), the actual presence of 

digesta was apparent and so the X-radiographs were useful for estimates of intestinal 

fullness and faecal pellet production rate. Some of the experimental diet appeared in the 

intestine after only 1.5 h (plate 2). After 24 h, digesta was clearly visible in the intestine 

along with clumped patches of glass beads (plate 3). The first evidence of faecal pellet 
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Figun~ ll. Exponential· stomach emptying rates of adult S. canicula fed 3.5% wbw (D) 

and 7% wbw (ll):ofan experimental diet Nonlinear regression equations; for a 3.5% wbw 

meal, S, = 97:'4 e "0·
024 

' , r2 = 0:97, each data point represents the mean of 4 

determinations; caption' of figure 9 for 7% wbw ·meal. Bars represent ± I standard error 

of the mean. 
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formation occurred at 48 h post feeding (plate 4) and continued throughout the period of 

48-288 h (plates 4-8), during which time the spiral intestine was always full of digesta. 

The gut moisture contents were monitored of the twenty adultS. canicu/a serially 

killed over the time course of gastric evacuation. The gradual increase in the liquefaction 

of the meal in the cardiac stomach of the dogfish is shown in figure 13a. The cardiac 

stomach contained approximately 58% moisture at t=O, which rose gradually to about 90% 

after 200 h. In contrast, the profile of pyloric stomach moisture content was generally 

downward from 90% at t=O to the plateau of 70% after 125 h, before it rose again at the 

end of the period from 125-192 h to 85% (fig. 13b). The increase in moisture content of 

the cardiac stomach digesta was clearly due to the liquefaction of the meal as digestion 

proceeded, whilst the lowering of pyloric stomach moisture contents was the direct result 

of a higher proportion of dry matter entering the pyloric region. The moisture contents of 

the intestine digesta remained at a constant level ( -76%) as did the moisture content of the 

faecal material in the rectum (-70%) (figs. 13 c and d). 

Figures 14a-d illustrate the changes in quantity of dry matter digesta in each of the 

four regions of the dogfish gut over time. Also shown on each of the figures is the 

proportion of the total digesta content that was attributable to crude protein on a dry 

matter basis (determined by Kjeldahl analysis). The decrease in total dry matter contents 

of the cardiac stomach (fig.l4a) was the same as that shown in figure 9 and so decreased 

exponentially. The proportion of crude protein present in the digesta decreased but not as 

rapidly as the total quantity of digesta. This implies that the amount of digesta crude 

protein increased in relation to total amount of digesta present in the cardiac stomach as 

time progressed. This trend is shown graphically in figure 15, where the crude protein 

(CP) coefficient (g dry wt. CP/ g dry wt. total) for the cardiac stomach rose steadily from 

about 0.53 at t=O to 0.63 after 120 h. Figures 14 b-d all show similar traces of increases 
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Figure 13. Moisture contents of adult S. canicula from digesta recovered at known time 

intervals from (a) cardiac stomach (b) pyloric stomach (c) intestine and (d) rectal regions 

of the gastrointestinal tract 

I I I 





Figure 14. Variation in total dry weight gut contents (11) with dry weight crude protein 

content (D) of adultS. canicula after a 7% wbw meal for the (a) cardiac, (b) pyloric, (c) 

intestine and (d) rectal regions of the gastrointestinal tract. Bars denote± I standard error 

of the mean. 
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in gut content. The trends were signified by a rapid rise in quantity of digesta entering the 

specific region of the gut, up to a maximum level between I 00-125 h, followed by a 

gradual relative decrease in the amount of digesta flowing into each portion of the gut. 

The CP coefficient remained relatively constant for the faecal material recovered from the 

rectal region of the dogfish, however the CP coefficient in the pyloric region of the gut 

slowly decreased over the time course. The CP coefficient of the intestinal region showed 

a decrease soon after feeding and fell approximately 1.5 times the initial value after 75-

125 h, before rising to the original level after complete gastric evacuation (fig. 15c). This 

result suggests that the crude protein component of the total digesta that was present in 

the intestine was progressively lowered throughout the period of gastrointestinal 

evacuation. A maximum difference occurred during the time directly following the period 

of greatest absolute stomach digesta emptying. In addition, it can be seen from figures 12 

and 14c that the stomach content empties exponentially, as the amount of digesta entering 

the intestine increased in an exponential manner. These results suggest that the rates of 

digesta emptying from either portion of the gut may be interdependent. 

From the chromic oxide analysis of food and faecal matter (extracted from the 

rectum between 72 and 120 h after feeding) the mean absorption efficiency (AE) was 

calculated at 42.4% ± 6.3 S.E. In addition, the apparent crude protein AE was estimated 

to be 99.7% between 72 and 120 h post-feeding. 
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3.4 DISCUSSION 

Analysis of the stomach contents of over two thousand S. canicula during an 18 month 

period in a study by Lyle (1983), showed that only 1% of the stomachs were devoid of 

food items. This population percentage of stomachs containing food represents an 

extremely high value in comparison to the many other stomachs sampled from various 

shark species (for review see Wetherbee et al. 1990). The observed maintenance in 

dogfish stomach volume from the former study may indicate slow rates of digestion, but 

equally may also suggest that dogfish have evolved useful strategies relating to appetite 

control and subsequent food consumption. From this section of the present study on 

dogfish, it is clear that the pattern of gastrointestinal tract emptying is fundamental to the 

regulation of appetite in this shark species, and may provide evidence of appetite control 

strategies that might facilitate dogfish to consume food on a relatively continual basis. 

Generally the results indicate that gastric evacuation in dogfish is a lengthy process, 

though inception of these processes occurs comparatively rapidly after food consumption. 

Greater instantaneous gastric evacuation rates occurred after consumption of smaller 

meals, indicating that the pattern of emptying was dependent on the degree of stomach 

fullness. Over the time period there was inverse proportionality between gastric evacuation 

rate and rate of appetite return, as well as with the rate of increase in intestinal fullness. 

These overall observations along with the methods used to obtain the information will 

now be discussed in more detail. 

The quantitative X-ray method has had variable success in accurately determining 

rates and times of stomach and intestinal emptying. The first study to use countable 

dietary markers showed uniform passage of indigestible iron particles through the 

digestive tract of Atlantic salmon, Sa/mo salar. For this species of fish the technique was 
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considered a precise, non-invasive way of estimating food consumption and subsequent 

evacuation rates (Talbot and Higgins, 1983). These authors validated their observations 

by extensive serial samples of fish gut contents and showed that particles were not 

selectively retained in any part of the gut, and that digesta flow was aptly estimated by 

profiling bead flow. Similarly, the use of polystyrene spheroids incorporated into the food 

given to Limanda limanda enabled accurate estimates of gut evacuation to be made as 

selective retention of beads was not demonstrated from serial X-radiography (Grove, 

1986). However, Grove (1986) also showed that juvenile Scophthalllll/S marimus did 

selectively retain particles within their gut, meaning that the X-ray method was not 

directly applicable to this species. In a similar vein, Jorgensen and Jobling ( 1988) 

published " .... a cautionary note" concerning the applicability of using radiopaque particles 

to quantify stomach contents for gastric evacuation experiments. Using Arctic charr, 

Salvelinus alpinus, these workers experienced problems in estimation of stomach contents 

as particles remained in the fish's stomach long after the bulk of the digesta had been 

evacuated. 

For adult dogfish in this study, gastric evacuation rates could be quite accurately 

estimated from serial X-radiographs as there was no difference in digesta content of actual 

stomachs obtained from serially killed fish and the estimated contents from X-radiograph 

bead counts. Validity of estimating stomach emptying using X-radiography was also 

shown from there being no difference between the modelled evacuation rates calculated 

from actual stomach content weights and from X-ray marker estimations. The increase in 

relative evacuation rate with halving of meal size as was demonstrated in this study, 

further suggests that bead movement from the stomach was dependent on digesta flow 

rather than being due to other factors, such as selective or preferential retention of beads 

in the stomach. The X-ray method did however, lead to some underestimation of the 
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actual stomach contents at the higher levels of food consumption. These more marked 

differences obtained at greater meal sizes were not significant and so did not lead to 

discrepencies between the two modelled gastric evacuation rates. 

Although the gastric emptying pattern was accurately monitored by bead counts 

from serial X-radiographs, gastrointestinal evacuation rates could not be estimated from 

these same X-radiographs. The glass beads did not flow uniformly past the pyloric 

sphincter and aggregations of beads occurred in the pyloric portion of the stomach. The 

beads were initially evacuated in conjunction with digesta flow, but most of the 

indigestible markers were retained until the digesta had fully passed into the intestine of 

the dogfish. Similar observations were made by Grove ( 1986) and Jergensen and Jobling 

{1988) in that the food in the alimentary tracts of Scophthalmu.~ maxim us and Salvelinus 

alpinus were fully evacuated before the radiopaque markers moved through the gut. 

Clearly there is no scope to use measurements of differential bead flow through the 

intestinal region as an accurate representation of the rates of gastrointestinal evacuation. 

The pattern of gastric emptying has been postulated to be of prime importance for 

the control of appetite in fishes (Grove et a/, 1978; Grove and Crawford, 1980; Gwyther 

and Grove, 1981; Grove et a/, 1985; Singh and Srivastava, 1985; Russell and Wootton, 

1993). Hence, the model used to describe the gastric evacuation patterns is also important 

for interpretation of such rates with respect to appetite regulation and further food 

consumption. An exponential decline in stomach contents best represented the gastric 

evacuation of adult dogfish in the present study. The selection of a suitable model to 

accurately predict rates of gastric evacuation is a prime consideration towards our 

understanding of physiological mechanisms governing appetite regulation. Grove {1986) 

in his lucid discussion of gastrointestinal physiology indicated that two distinct models, 

both theoretically volume dependent, may result in a differing conjecture relating to the 
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physiological bases of appetite regulation. The current part of the present study appraised 

two volume dependent models (exponential and Hopkins (1966) square root) and it was 

evident that the allometric assumptions inherent to the square root model could not be 

applied to S. canicula. Persson (1986) demonstrated the inadequacies of Jobling's ( 1981) 

reworking of Hopkins' original model by measuring the stomach dimensions of individual 

perch, Perca fluviatilis after they had been fed different amounts of food. For the 

application of the square root model, the length of the stomach is assumed to remain 

constant so that the rate of evacuation is solely proportional to the square root of the 

volume of a radially distending cylinder with constant length. In both this study on 

dogfish and the Persson study on perch, the length of stomachs varied with the weight of 

food consumed according to a power relationship. Thus, the square root model was not 

applicable to describe gastric evacuation for dogfish in the present study as the assumption 

of the model was unjustifiable. 

Three previous investigations on elasmobranchs have also applied exponential 

relationships to model gastric emptying. Schurdak and Gruber (1989) showed that N. 

brevirostris exhibited exponential gastric evacuation when fed on white fish fillets of blue 

runner, Caranx chrysos. lt has been noted that exponential declines in stomach content are 

more likely to occur when easily digestible, small prey items are ingested (Jobling, 1986). 

Linear or curvilinear relationships (usually incorporating a Jag phase) (dos Santos and 

Jobling, 1992) have mostly been shown to best represent the emptying rate of 

proportionately larger prey items that might be more difficult to digest. This viewpoint has 

been put forward and used to substantiate the linear gastric evacuation models applied to 

the lemon shark study of Cartes ( 1987, cited in Wetherbee et a/, 1990). Cartes explained 

(E. Cartes, pers. comm.), that the particle sizes used in his experiments were larger than 

in the study of Schurdak and Gruber (1989), thus the evacuation rate was more likely to 
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be linear. However, it becomes apparent that the Cortes data was rather scant towards the 

end of the sharks' stomach emptying period and so a number of pertinent models could 

have been adequately fitted, including an exponential decay pattern. San Filippo (1993) 

also demonstrated that gray smoothhound sharks, M. califomicus evacuated ingested crabs 

from their stomachs in an exponential manner. In a study that appraised the validity of 

several volume and surface dependent models to best describe the evacuation rate of sub­

adult S. canicula, Macpherson et a/ ( 1989) showed the exponential model was adequate 

to describe the evacuation characteristics of small easily digested prey items (as originally 

stated by Jobling, 1986). These researchers added, however, that the surface dependent 

model was more appropriate for this species when two or three larger items, more 

impervious to digestion occurred in the stomach. Therefore, application of an exponential 

model to predict dogfish gastric evacuation when fed a squid based diet is supported by 

previous studies. 

The total times for gastric evacuation in the dogfish at the higher ration levels were 

very long in comparison to other elasmobranchs, but are important to consider in 

conjunction with appetite return times, because they may indicate whether the period of 

gastric evacuation is common with that of appetite return and therefore perhaps suggest 

some regulatory interdependence. Temperature influences gastric evacuation rate and time 

to a high degree e.g. Jobling and Davies ( 1979) and Ross and Jauncey ( 1981 ), so only 

investigations undertaken at an experimental temperature similar to this study (15°C), will 

be considered further. The spurdog, S. acanthia~ when force fed herring took 124 h to 

reduce the food to a fluid state at 10°C (Jones and Geen, 1977). In an earlier investigation 

on the stomach emptying rates of S. acanthias Van Slyke and White ( 1911) noted that the 

time for I 00% stomach evacuation was greater than 48 h when the fish were fed chopped 

beef at I5°C. Smoothhound sharks, M. ca/ifomicus held at 15°C cleared their stomachs 
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of blue crabs after approximately 60-70 h and the guts of the sharks were observed to be 

completely empty after 95 h (San Filippo, 1993). The adult sharks in the present study 

took 83 and 201 h to clear their stomachs of the squid based diet at ration levels of 3.5 

and 7% wbw respectively. From investigations listed in table 11 of Fange and Grove 

(1979), the mean gastric evacuation time for 18 different species of teleost fish fed 

variable meal sizes was only 28 h at I 5°C. Clearly then, the time for complete stomach 

emptying was much greater in the elasmobranchs compared to the teleosts, but dogfish 

values were quite lengthy in comparison to other studies on sharks carried out at a similar 

temperature. 

The total gastric evacuation time of dogfish given 7% wbw meals correlated well 

with the cessation period of appetite return after a similar sized meal. Thus, the appetite 

of the dogfish was judged to be greatest when the stomach was nearly empty. Other 

studies using teleost fish have showed that appetite was greatest when the stomach was 

nearly empty (Grove et al, 1978; Grove et a/, 1985), and emphasised the importance that 

the stomach evacuation pattern itself may have on the regulation of appetite. Dogfish 

appetite return may be governed primarily by the emptiness of the stomach (to whatever 

degree), and evidence for this is obtained from total gastric emptying times coinciding 

with the levels of greatest appetite return (food intake). Although determination of 

evacuation times is important to elucidate correlation with appetite return measurements, 

it is the pal/em of gastric and gastrointestinal emptying that might be most significant for 

investigating the role of gut emptying in appetite control. 

The form of the gastric emptying curves obtained for adult dogfish suggest certain 

physiological mechanisms that may be operating in this shark to regulate appetite in such 

a way as to maximise the potential for future food consumption. A previous study 

demonstrated time lags preceding the start of gastric evacuation in juvenile sandbar 
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sharks, C. plumbeus (Medved, 1985). Other studies on various teleost species have also 

shown the existence of such time delays to stomach emptying, e.g. Stizostedion vitreum 

vitreum (Swenson and Smith, 1973), S. maximus (Grove et at, 1985) and Coregonus 

lavaretus (Rosch, 1987). Medved (1985) stated that the Jag phase to gastric evacuation 

represented the time needed for the digestive juices to attack and begin to break down the 

resistent integument of the prey. In addition it was conjectured that enzyme reactions were 

exponential in nature and might therefore be expected to start slowly. The latter 

supposition may not be entirely accurate in the majority of instances, as most gastric 

evacuation studies on fish have not observed long Jag periods preluding stomach 

emptying, so curvilinear models of evacuation have usually been fitted that do not 

incorporate a gastric delay period, e.g. Mcrlangius merlangus (Bromley, 1988), Salmo 

tmtta (EIIiott, 1991 ). In fact, Jobling ( 1986) suggests that these Jag phases have only 

generally been shown to occur when extremely large meal sizes have been administered 

to experimental fish. 

In adult dogfish, food was seen to enter the intestine after as little time as 1.5 h 

when fed at the higher ration level of 7% wbw. In the Medved (1985) study on sandbar 

sharks, the Jag phase was seen to last for approximately one tenth of the overall 

evacuation time compared to under one hundredth of the total time for dogfish stomach 

emptying in this study. In addition, S. canicula of the present study (which were similar 

in size to the sandbar sharks) were fed meals seven times larger than the sharks in 

Medved's study. These differences in initial gastric evacuation time illustrate that the 

dogfish are able to mobilize the stomach contents relatively quickly. The rate of initial 

appetite return at high levels of feeding is very rapid in the dogfish. This rapid appetite 

recovery may be achieved by shunting (presumably) undigested food into the intestine 

quite soon after initial food consumption so that some appetitive response returns. The 
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absence of a Jag phase was observed in the rate of appetite return in the dogfish (chapter 

Ill) and no concomitant Jag phase was observed in the rate of gastric evacuation at higher 

ration levels. These results suggest that dogfish recover appetite by rapid commencement 

of gastric emptying when the stomachs were quite full of food. Similar observations, of 

shunting undigested food into the intestine without prior disintegration in the stomach 

were noted for L. limanda (Gwyther and Grove, 1981; Grove et a/, 1985). I suggest that 

this shunting may occur in dogfish as a physiological response to high levels of food 

intake, leading to appetite recovery so that more food could be rapidly consumed. 

Shunting undigested food into the intestine soon after consumption may be more likely 

to occur as a direct stimulus of food bulk. Greater distension of the stomach wall may 

initiate stimulation of gastric stretch receptors resulting in greater muscle contraction 

amplitude (Jobling, 1986). With ingestion of large meals it might therefore be likely that 

shunting would occur, but possibly not at smaller meal volumes where the stomach is 

distended to a lesser degree. In the present study, no shunting of undigested food appeared 

to occur when dogfish consumed meals of 3.5% wbw. This implies that the faster 

emptying response that results in a rapid appetite recovery, is a weight dependent 

response, and so the regulatory stimulus may originate from greater stomach distension 

and the influence of gastric mechanoreceptors (Leek, 1972). 

The overall form of the dogfish gastric emptying curve is exponential, with the 

greatest relative rates of evacuation occurring in the first half of the evacuation period (0-

1 00 h at 7% wbw), followed by a slowing of digesta output in the latter half of the 

evacuation period. Bromley ( 1994) states that for an exponential decay pattern the 

instantaneous evacuation rate is proportional to the amount remaining in the stomach. 

Therefore, the exponential rates of dogfish gastric emptying combined with the increase 

in relative evacuation rate of smaller meals indicates that dogfish have a weight dependent 
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gastric emptying pattern related to the degree of stomach fullness. The results of this study 

showed an inverse proportionality between the rate of gastric evacuation and the rate of 

appetite return. As the stomach of the dogfish emptied the appetite returned concomitantly. 

Similar findings to those of the present study have been obtained for some teleost species, 

namely S. tntlla (EIIiott, 1975), S. gairdneri (0. mykiss) (Grove el a/, 1978), S. maxim us 

(Grove el a/, 1985), H. fossi/is (Singh and Srivastava, 1985) and P. phoxinus (Russell and 

Wootton, 1993). These authors all showed that appetite return was proportional to the 

degree of stomach emptiness. From these investigations and for dogfish in the current 

study, it is suggested that the amount of food in the stomach itself controls the pattern of 

emptying, thereby directly affecting appetite and further food consumption. The main 

physiological basis leading to these processes of appetite recovery may be the action of 

gastric stretch receptors (Leek, 1972; Jobling, 1986). The importance of gastric emptying 

patterns to the feeding regulation of an opportunist predator, such as the dogfish (Lyle, 

1983), which maintains a high level of stomach fullness, might be expected. The present 

study represents the first proposal however, that such patterns in gastric emptying may 

itself influence the regulation of appetite in an elasmobranch species. 

It has been shown for the teleost C. lavaretus, that as the ration size given to the 

fish was increased the food utilization efficiency decreased (Rosch, 1987). This implies 

that the greater absolute evacuation rates (g h- 1
), that occur when larger meals are emptied 

from fish stomachs may lower the efficiency with which the nutrients can be digested and 

absorbed. The intestine region of the gut enables the absorption of nutrients and so 

therefore may possibly be eo-factorial in regulating the rate at which the stomach is 

emptied. Such an interplay between different portions of the gut has been postulated as 

occurring via feedback loops (Vahl, 1979; Jobling, 1986). As a consequence of this, the 

intestine could be considered integral to the functioning and possible regulation of gastric 
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emptying, and thus by causation, in the processes leading to appetite control. 

The transit of digesta from the cardiac stomach of dogfish was exponential m 

nature and showed inverse proportionality with the magnitude of appetite return. During 

the first half of the total gastric evacuation period, when the relative rate of stomach 

contents emptying was greatest, the increase in intestinal fullness was also exponential. 

The profile of intestinal filling increased exponentially however, and in direct proportion 

to the manner of decrease in dogfish stomach contents. When the rate of gastric 

evacuation slowed, an expected decrease in the amount of digesta entering the intestine 

was observed. It may be possible to postulate that just as the rate of appetite return can 

be linked to stomach emptying, so might the influence of intestinal fullness in part 

regulate appetite by a reflex inhibition of gastric emptying (Daniel and Wiebe, 1966). The 

intestine may also be important to food intake control by regulating the movement of 

digesta from the stomach. Jobling ( 1986) was able to confirm the effect of gastric 

distension on the amplitude of gastric musculature contractions of Pleuronectes platessa. 

This author demonstrated that the contraction amplitude increased in relation to stomach 

volume in this species. Jobling suggested that for fish, the pattern of gastric emptying 

would be affected to a great extent by gastrointestinal receptors that might be responsible 

for the feedback control of gastrointestinal emptying, and thus the regulation of feeding 

itself. In the present study on dogfish, the suggestion that the mechanical characteristics 

of both the stomach and the intestine regulate appetite and further feeding bouts, accords 

with earlier work on mammal gut mechanoreceptors. 

In mammals, it is known that gastric emptying IS regulated by feedback 

mechanisms dependent to a varying degree on (I) smooth musculature contractions of the 

stomach wall and (2) contractions of the pyloric and intestinal musculature (Jobling, 

1986). Daniel and Wiebe ( 1966) used anaesthetised dogs to investigate the transmission 
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of reflexes across the gastroduodenal junction. They demonstrated that gastric distension 

had a reflex inhibitory effect on the electrical and mechanical activity of the duodenum. 

Further to this they showed that duodenal distension caused a decrease in tone and 

peristaltic activity of the stomach, including the pyloric antrum and sphincter (Daniel and 

Wiebe, 1966). The responses were abolished by chemical sympathectomy and bilateral 

vagotomy, causing Leek (1972) to describe the stomach-intestine inhibitory reflex as an 

extrinsic one. Studies of this kind on mammals provided strong evidence for the 

involvement of in series tension receptors in the control of gastrointestinal emptying (Iggo, 

1957; Leek, 1972), even though the precise mechanisms by which these effects were 

mediated were little understood (Jobling, 1986). Both hormonal and extrinsic nerve 

pathways have also been implicated as possible effectors (Jobling, 1986). 

Inhibitory reflexes may constitute the mechanical feedback loops necessary for 

gastrointestinal emptying regulation in dogfish. Control of gastric emptying leading to 

regulation of appetite and further food consumption may be brought about by a gastric­

intestine distension antagonism as has previously been demonstrated for mammals. 

Although inhibitory reflexes occur in mammals, and despite the organization of the gut 

of S. canicula having certain similarities to that of carnivorous mammals (Andrews and 

Young, 1993), the same mechanisms governing gastro-intestinal interplay cannot be 

assumed for dogfish. The gastric motility patterns of adultS. canicula were studied in situ 

by Andrews and Young ( 1993). They observed very little spontaneous activity of the gut 

and noted (somewhat to their surprise) that no peristaltic contractions passed over the 

stomach and continued to the spiral intestine. Similar observations were made for M. canis 

by Alvarez ( 1927). It is possible that the sphincter located between the stomach and the 

spiral intestine is paramount to the regulation of gastric emptying and its function may be 

influenced by tension mechanoreceptors located in the spiral intestine. 

128 



From the results of this chapter I have proposed that appetite is regulated by the 

stomach emptying of digesta in a weight dependent manner, possibly by the action of 

gastric tension mechanoreceptors. The exponential decrease in stomach contents of dogfish 

was mirrored by a consequential exponential increase in intestinal contents, so it may 

equally be possible that the gastric emptying pattern of dogfish is affected by the weight 

dependent rate of intestinal filling. Although interactions of this kind may not represent 

a strict inhibitory reflex pattern and certainly no such claims have been reported for S. 

canicula (Andrews and Young, 1993), the spiral intestine may influence the motor activity 

patterns of the stomach through regu:ation of the smooth muscle constriction known as 

the pylorus. Further research on the motor activity patterns of the spiral intestine in 

conjunction with gastric motility studies might explain how appetite may, in part be 

regulated. 

The absorption efficiency of dogfish (on a dry matter basis) was low in comparison 

to values obtained from studies on the lemon shark, N. brcvimstris. Wetherbee and Gruber 

( 1993) noted that lemon sharks were as efficient as teleosts in absorbing nutrients from 

the food, with values ranging from 76 to 87% on a dry matter basis. The absorption 

efficiency of dogfish was approximately half the upper value obtained for lemon sharks. 

An explanation for this may be afforded by Cortes and Gruber ( 1994), who suggest that 

at high levels of feeding the absorption efficiency of the lemon shark will decrease. It is 

likely that the feeding level in the present study (7% wbw) was high enough and gastric 

evacuation relatively too rapid for efficient absorption of nutrients from the digesta. 

However, it is also likely that the absorption efficiency of a weight dependent feeder (as 

proposed here) would in fact be low in comparison to shark species that are known to 

feed intermittently (Wetherbee et a/, 1990). Some teleost fish species, e.g. S. maximus 

have been shown to adjust their level of intake according to the energy density of the food 
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(Flowerdew and Grove, 1979; Grove et al, 1985). The current study provides some 

evidence that more easily digested components of the diet were digested first, because the 

crude protein coefficient was seen to increase in the stomach throughout the period of 

gastric emptying. Therefore, does this indicate that the regulation of dogfish appetite may 

be influenced by the energy density of the food rather than solely by its physical 

presence? Adjustment of food intake according to energy value of the food would perhaps, 

not be expected in a weight dependent feeding strategy, as I have so far suggested for 

dogfish appetite regulation. If the dogfish was able to elevate or decrease food 

consumption depending on the quality of the meal consumed, then the physiological 

mechanisms relating to this energostatic response may have important connotations in 

assessment of the physiological factors regulating appetite. 
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CHAPTER FOUR 

DIETARY DIGESTIBLE ENERGY AND APPETITE 

4.1 INTRODUCTION 

A large number of biotic and abiotic factors interact to alter the rate at which food is 

processed by animals. As well as the main controlling factors such as body size and 

temperature affecting gastric emptying rate in fishes (Brett and Groves, 1979; Fiinge and 

Grove, 1979), the physical and chemical characteristics of the ingested meal also affect 

alimentary tract emptying rates (Jobling, 1987). The overall meal size, number of 

individual items, quantity of food and the interaction of multiple meals are important 

factors that may modify food consumption regulation (Fletcher et a/, 1984; Jobling, 1987). 

The effects of meal size and number of individual food items consumed by fish have 

received the most attention from the literature in this context. The capacity for meal 

quality to modify gastric evacuation was first suggested for fish by Hess and Rainwater 

( 1939), and more recently its role in determining food consumption rates of a variety of 

species has been the subject of more detailed research, e.g. Samtherodon mossambicus 

(Oreochmmis mossambicus) (De Silva and Owoyemi, 1983), Salvelinus alpinus (Jobling 

and Wandsvik, 1983) and Sebastes melanops (Brodeur, 1984 ). 

In mammals, infusion of specific nutrients, for example glucose, into the stomach 

have been associated with subsequent reductions in food intake by an equicalorific amount 

(Fletcher, 1984). Additionally, the energy density of meals given to mammals have been 

directly linked to the degree of slowing of the gastric evacuation process (Hunt, 1980). 

Nutrient dense meals have been demonstrated to take longer to evacuate from the 

gastrointestinal tract of mammals, as high energy value components of the meal take 
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longer to digest and absorb than meals containing non-nutrient bulk (Jobling, 1986). Many 

fish studies exist that have investigated dietary formulations for the optimal balance of 

specific nutrients, e.g. macronutrients (for reviews see Wilson, 1989; Sargent et a/, 1989; 

Cowey and Walton, 1989) and micronutrients (for reviews see Halver, 1989; Lall, 1989), 

with a view to improving fish growth for aquaculture. Investigations of this kind have 

indirectly given evidence of food intake control by occasionally stating that food 

consumption was increased when fish were given diets with varying ratios of specific 

nutrients. Few studies have been completed on fish however, where the aims were to 

investigate directly the role of total dietary energy on the regulation of food intake. 

From the investigations on teleosts that have been undertaken, most studies used 

food mixed with non-nutrient diluents (e.g. kaolin) and noted that in some species the 

level of food intake increased when food of lower total nutrient energy content was 

consumed (Rozin and Mayer, 1961; Grove et a/, 1978). In contrast, another study 

indicated that dietary energy dilution did not change the level of food consumption 

(Gwyther and Grove, 1981 ). These authors interpreted the food intake adjustments as 

being due to whether the fish species under examination were able to compensate their 

consumption rates according to the total energy content of the meal. The main criticisms 

levelled at these interpretations have been that the actual ratio of dietary nutrients remains 

unchanged by dilution, so in addition to the effect of total dietary energy on food intake, 

other factors important in food intake control may have been operating (Jobling and 

Wandsvik, 1983). The digestibilities of protein, lipid and carbohydrate are known to 

change depending on level of feeding and inclusion in the diet (Windell et a/, 1978; El lis 

and Smith, 1984). Therefore the importance of total available dietary energy in appetite 

regulation has been questioned (Jobling and Wandsvik, 1983). It has been postulated that 

physiological detection of the digested components of the meal is a more likely pathway 
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for possible regulation of appetite. This is logical if the systems that may enable such 

reception are considered. Mammalian research in this area has led to the hypotheses that 

digestion products are detected by receptors located in the upper intestine (Hunt, 1980). 

Several authors have proposed that similar systems of food intake regulation may operate 

in fish (Jobling and Wandsvik, 1983; Bromley, 1987). In these cases the digestible energy, 

that portion of ingested energy actually digested and absorbed by the fish, may therefore 

be more likely to influence gastrointestinal evacuation if actual levels of digestion 

products were detectable. 

The importance of digestible energy on food intake has been indirectly investigated 

in teleosts by aquaculturists who wished to assess the digestibility of various components 

of the diet in order to achieve better growth performances (Tabachek, 1986; Hem re et a/, 

1990). The effect of varying digestible energy levels on the food consumption 

characteristics of an elasmobranch have not previously been examined. Therefore, the 

purpose of these investigations was to evaluate how different dietary levels of digestible 

energy may affect the rate of gastric emptying and how possible changes in 

gastrointestinal physiology may manifest as overall adjustments in the amount of food 

consumed. It was hoped that by investigating the effect of digestible energy on food intake 

and gastric emptying, other possible pathways for appetite regulation in sharks may 

become evident. 
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4.2 MATERIALS AND METHODS 

4.2.1 Manufacture of High Ene1-gy Diet (HE) 

The formulation of the HE diet was the same as that described in section 3.2.1 and 3.2.2, 

except that 20% of the dry component made up from cornstarch (8% of the total 

composition), was directly substituted with marine oil (cod liver oil). The diet containing 

8% comstarch was termed "low energy" (LE) and the diet with 8% oil was referred to as 

"high energy" (HE). The comparison in composition of the two diets is given in the first 

part of table 7 (p. 144 ). 

4.2.2 Gasn;c Evacuation St11dies 

The group of number tagged adult dogfish used to determine the gastrointestinal emptying 

patterns of the LE diet (details given in section 3.2.6) were also given the HE diet in 

subsequent trials at 3.5 and 7% wbw ration levels. The procedure of anaesthetisation and 

X-radiography used previously when these fish were fed meals of the LE diet, was 

followed for the trials with HE diet. Two trials were conducted at each ration level, giving 

four determinations at each 24 h time interval. 

The percentage of food remaining in the stomach of each dogfish was calculated 

in the same way as described previously, and statistical interpretation was similar for the 

investigation outlined in section 3.2.8. 

4.2.3 Feeding T1;als 

The groups of thirteen juvenile and eight adult dogfish used in the daily food intake 

investigations of chapter 11 (described in section 2.2.1) were used for two further feeding 

trials. A few days after the dogfish had last been fed on chopped squid they were fed 
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moist pellets of the LE diet to satiation every second day for approximately 30 days. After 

3-4 further days the dogfish were given the HE diet to satiation every second day, again 

for a period of about 30 days. Both size groups of S. canicula were each fed at the same 

time of day throughout the feeding trials and the fish were routinely weighed during the 

non-feeding days between each trial. The moist pellets of the two experimental diets were 

chopped and thawed in the usual way and soaked in squid juice before being presented 

to the dogfish. Some faecal pellets were collected from the bottom of the tanks during 

each trial. The faecal samples were dried to constant weight in an oven at 11 ooc and 

subsequently ground to a fine powder with a pestle and mortar. The faecal powder 

samples were stored in glass vials within a dessicator prior to chemical analysis. 

4.2.4 Analysis of Diets and Faeces 

4.2.4.1 Estimation of dieta1y nitmgen and cmde pmtein (CP) 

The percentage nitrogen (N) or crude protein (N x 6.25) present m the HE 

experimental diet was determined by the classical Kjeldahl method according to the 

procedure used previously in section 3.2.5.2 to estimate the nitrogen present in the LE 

diet. 

4.2.4.2 Cal01;meny of diet rutd faecal samples 

The energetic value of dried samples of the LE and HE diet as well as dogfish 

faecal samples from both dietary treatments were estimated by adiabatic bomb calorimetry. 

A Gallenkamp automatic adiabatic bomb calorimeter was used for all the energy 

estimations and benzoic acid was used as the standard. Approximately lg of diet powder 

was pressed into a pellet and suspended by gun cotton from a platinum wire connecting 

the anode and cathode inside the bomb. Absorption of the combustion gases was achieved 
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by inclusion of I ml of water in the bottom of the bomb. The bomb was then charged with 

pure oxygen to 30 bar pressure and immersed in a water jacket of known temperature. The 

bomb was fired and the maximum temperature reached by the water jacket was recorded. 

The energetic value of the benzoic acid standard and the diet and faecal samples 

was calculated using the following formula, 

Es = At S I At,8B x E8 

w 

where Es represents the energy value of the sample in kJ g·•, t.,S is the temperature change 

in oc due to combustion of the sample, b.u
8
B denotes the temperature change due to the 

combustion of I g of benzoic acid while E8 is the energy value of I g of benzoic acid 

standard in kJ g·•. W is the weight of the sample. 

Dried faecal samples were not large enough for a suitable pellet (-I g) to be made 

for combustion. In these instances benzoic acid was added to the powdered faecal material 

and a composite pellet was pressed. Thus, the energetic value of the faecal material was 

obtained by difference between the temperature rise due to the proportion of benzoic acid 

combusted and the overall temperature rise observed. The difference was attributable to 

the combustion of the faecal material present in the composite pellet. 

Five sample replicates of each diet type and two faecal samples from each dietary 

treatment at the 7% wbw feeding level were completed. 

4.2.5 Ene•-gy Calculations 

4.2.5.1 Digestible ene•-gy, D•: 

The energy actually absorbed by the dogfish, termed the digestible energy DE, was 

calculated from the relationship, 

where lE is the gross ingested energy and FE the energy content of the faeces produced. 
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The amount of faecal material produced was established from section 3.3 (figure 14d) for 

a 7% wbw meal of the LE diet. Thus, the value for the dry weight of faeces produced was 

taken from the previous chapter (2.l3g dry wt.) and by multiplication by the energetic 

value for I g dry weight of the faeces, DE was established. The assumption was made that 

the amount of faeces produced by the adult dogfish was the same for a 7% wbw meal of 

both LE and HE diets. 

4.2.5.2 Empit;cal det;vation of D~ 

In addition to the calculation of DE from actual energy values of dry weight 

samples of diet and faeces, DE was also calculated from stated values of the digestibility 

of the macronutrients (protein, lipid and carbohydrate). The calculation of DE by this 

method for dogfish that consumed 7% wbw meals of LE and HE diets is given in 

appendix I. 

4.2.6 Statistical Analysis 

The levels of food intake of the two diet types by adult and juvenile dogfish were 

compared within each size group by Student's Hest. 
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4.3 RESULTS 

4.3.1 Diet Composition and Utilisation 

The percentage moisture and crude protein components of the LE and HE diets were very 

similar (table 7). However, due to I 00% substitution of corn starch with marine oil the 

energy content of the HE diet was 1.92 kJ g·' dry weight higher than the LE diet (table 

7). Table 7 also shows the utilisation characteristics of the two diets and it is clear that 

the level of gross ingested energy was approximately 20 kJ fish·' higher in the dogfish fed 

the HE compared to the LE diet. The calculated values for the total energy ingested for 

fish on each diet type (appendix I) were in close agreement with the actual energy 

contents determined by calorimetry (table 7). The amount of energy theoretically available 

in the non-protein portion of the HE diet was approximately twice the level in the LE diet. 

From bomb calorimetry of faecal samples, the digestible energy of the LE diet was 64%, 

whereas 91% of the energy in the consumed HE meal was apparently digested by the 

dogfish. Empirical calculation of the digestible energy of the LE and HE diets from stated 

macronutrient digestibility values (from other fish species), gave DE values in the same 

order of magnitude as those calculated from diet and faecal samples (table 7). However, 

probably not all the faecal pellets were collected in the serial slaughter study of chapter 

Ill, therefore these apparent levels of digested energy may be higher than actually 

occurred. Even so, the relative difference in DE between the diets was essential, and the 

DE levels were clearly substantially different. 

4.3.2 Gastt;c Emptying Pattems 

The exponential rates of decline in stomach contents of adult dogfish when fed LE and 

HE pellets (in separate trials) (figures 16 and 17) were not significantly different at either 

138 



Table 7. Composition and utilisation characteristics of low and high energy diets given 
to adult dogfish during the food intake trials. 

Moisture (%) 

Crude protein (%) 

Marine oil inclusion (%) 

Cornstarch inclusion (%) 

Energy (kJ g·' dry wt.) 

Total ingested energy 

Total ingested energy 
(by empirical derivation) 

Gross ingested energy: non­
protein (by empirical 
derivation) 

Digestible energy, DE 

DE (by empirical derivation) 

Composition of experimental diets 

Low energy (LE) 

52.0 

55.5 

8.0 

21.54 

High energy (HE) 

52.1 

55.2 

8.0 

23.46 

Utilization of energy (kJ fish. 1
) * 

527.95 

499.82 

88.49 

33R.51 

398.65 

547.56 

551.14 

164.87 

499.38 

464.15 

"Represents the utili.wlion characteristics after a 7% wbw meal. 
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Figure 16. Gastric evacuation rate of adult dogfish fed a 7% wbw meal of low (upper 

panel, LE) and high energy (lower panel, HE) diets. Regression equation: LE, 

S,=l02.2e·0
·
0101

, r2=0.96; HE, S,=I02.2e·0
·
0091

, r2=0.95. Number of determinations for each 

point, 4. Bars represent ± 1 S.E.M. 
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Figm-e 17. Gastric evacuation rate of adult dogfish fed a 3.5% wbw meal of low (upper 

panel, LE) and high energy (lower panel, HE) diets. Regression equations: LE, 

S,=97.4e·0
·
024

', r2=0.97; HE, S,=98.6e-o.o26
', r2=0.99. Number of determinations for each 

point, 4. Bars represent ± 1 S.E.M. 
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3.5 and 7% wbw ration levels (table 8). The instantaneous relative rate of gastric 

evacuation increased with a decrease in the meal size of the HE diet given. These results 

were the same as ~emilterelisedh'O'iliEadili:t:(elmplia' IHI)nillhl: sixprofutltfaHIHatletsgli'Rtud The 

to both diet treatments at 3.5% wbw ration level, slightly underestimated a, the intercept 

on they axis, whilst the models fitted to the higher ration levels, slightly overestimated 

the intercept (table 8). The overall times for gastric emptying were similar for both LE 

and HE treatments at both ration levels (figures 16 and 17). From the X-radiographs, there 

was no observable difference in the total gastrointestinal evacuation time of dogfish fed 

the LE and HE diets. 

4.3.3 Food Intake Pattems 

The level of food intake of juvenile dogfish on a wet matter basis decreased by about 

1.5% wbw when the diet of the fish was changed from chopped squid to moist LE pellets 

(figure 18). The food intake patterns of juvenile dogfish fed LE pellets, and subsequently 

HE pellets were similar in that they fluctuated quite widely about a common level (figure 

18). The mean food intake level for LE and HE diets given to juveniles was 2.4 and 2.3% 

wbw respectively. These levels of feeding were not significantly different (P>0.2, table 

9). From figure 18, the lowest levels of food intake usually followed the highest levels of 

food intake and this pattern was similar for juveniles fed squid, LE and HE diets. 

Although the levels of juvenile dogfish food consumption were different between squid 

and LE/HE diets on a wet matter basis, the dry matter daily food intakes for all three diets 

were not different (P>0.5, table 9) and ranged from 0.06-0.07 g food dry wt. I Og wet fish· 

W (table 9). 

Food consumption of adult dogfish was maintained at a relatively constant level 

when the food was changed from squid to LE to HE pellets (figure 19). Wide fluctuations 
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Table 8. Fitted exponential model parameters for adult dogfish gastric evacuation when 
fed low and high energy diets at two ration levels. 

Meal size: 3.5% wbw 

LE HE 

y intercept 97.4 98.6 

Instantaneous rate of -0.024. -0.026• 
gastric evacuation 

Regression coefficient 0.97 0.99 
(r2) 

RMS 30.6 16.0 

•denotes 1•alues not significant~v diffemnl (ANCOVA), P>0.75 

t denotes ••alues not significantly different (A NCO VA ), P>0.50 
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7% wbw 

LE HE 

102.2 102.2 

-O.OIOt -0.009t 

0.96 0.95 

44.5 66.5 
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Table 9. Summary of the food intake characteristics of adult and juvenile S. canicula 
when fed on three diets (LE: lower energy pellet, HE: higher energy pellet, SQ: fresh 
squid) in trials lasting one to four weeks. 

Food intake 
(%wbw) 

Food intake 
(g dw.IOg wet fish-'d- 1

) 

Gross ingested 
energy (k.T g dw·' lOg 
wet fish" 1d" 1

) 

Diet 

LE 

HE 

LE 

HE 

SQ 

LE 

HE 

SQ 

"'No significant difference (l-Ies I), P>0.2 

tt§No significant differ·ence (t-test), ?>0.5 

Juvenile Adult 

2.417 ± 0.291"' 1.069 ± 0.135t 

2.280 ± 0.243"' 1.018 ± 0.142t 

0.060 ± 0.010 0.027 ± 0.005§ 

0.057 ± 0.090t 0.026 ± 0.005 

0.069 ± 0.005t 0.022 ± 0.008§ 

1.292 ± 0.217 0.583 ± 0.102 

1.326 ± 0.197 0.613 ± 0.118 

1.681 ± 0.122 0.526 ± 0.191 
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in food intake about a common level were observed for adult dogfish (figure 19) and 

showed similar traits to the food intake patterns already observed for juvenile dogfish. As 

in the juveniles, the lowest levels of food intake exhibited by adult fish were usually 

followed by the highest peaks. The mean food consumption levels of adult dogfish fed on 

LE and HE pellets were not significantly different (P>0.5, table 9) and were 1.07 and 

1.02% wbw respectively (table 9). 
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4.4 DISCUSSION 

From the results it is clear that a change in dietary energy content and in the amount of 

energy digested and absorbed does not affect the rates of gastric evacuation or the 

consequent levels of food consumption in dogfish. The study showed that digestible 

energy values were 1.5 times greater for dogfish fed high energy meals than when fed low 

energy meals, but these changes were not manifested in noticeable compensations in food 

intake and digestion rate. The rate of gastric emptying and the level of food consumption 

were not different between dogfish fed LE and subsequently HE diets, despite the energy 

digestibility being much higher in the HE diet. These results suggest that dietary digestible 

energy level was not a factor in the regulation of gastrointestinal evacuation and food 

consumption of dogfish. 

Some investigations on teleosts have demonstrated that adjustment in food 

consumption to maintain energy intake does occur when nutrient-rich and nutrient­

deficient meals were given. The present study maintained juvenile and adult dogfish firstly 

on chopped squid for approximately 1-2 weeks, then on the LE diet for 30 days followed 

by the HE diet for 30 days. Similar diet switching procedure, but on four day cycles 

between normal and kaolin-diluted normal food was used by Rozin and May er ( 1961) to 

investigate food intake regulation of Carassius aura/us. The goldfish learned to press levers 

for food pellets and readily accepted pellets of normal and kaolin-diluted normal food. In 

trials undertaken by these authors, food consumption of goldfish was elevated by a factor 

of nearly two each time the kaolin-diluted food was substituted with the normal food. 

Clearly, C. aura/us elevated food intake to maintain a relatively constant total energy 

consumption. Although Rozin and May er ( 1961) did not investigate the effect of digestible 

energy on the regulation of appetite and food consumption of C. aura/us, their findings 
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indicate that goldfish compensate for nutrient deficiency by increasing food consumption, 

presumably by an increase in the rate of food evacuation. These results were not similar 

to the observations made for dogfish of the present study. 

The levels of food intake of Salmo gairdneri (Oncorhynchus mykiss) (Grove et a/, 

1978), Scophthalmus maximus (Fiowerdew and Grove, 1979; Grove et a/, 1985) and 

Pleuronectes plates sa (Jobling, 1981 c) have also been shown to increase in response to 

consumption of nutrient-deficient meals. Compensatory adjustments of these kinds have 

been interpreted generally as indicating that the total dietary energy level is of prime 

importance in regulating food intake. Usually, consumption of high energy meals is 

thought to lead to decreases in gastrointestinal evacuation rates, presumably in response 

to longer digestion times of high enerb'Y nutrients. These delays in digestion time lower 

food consumption rates (Grove, 1986; Job I ing, 1986). From the present study on dogfish 

it is clear that the importance of dietary energy level (whether the ingested or digested 

amount) in the control of appetite, suggested by previous investigators may not be equal 

for all species. Gwyther and Grove (1981) demonstrated Limanda limanda were not able 

to elevate their plane of food consumption when fed diets of low energy density. 

However, in another study L. limanda were found to respond very rapidly to changes in 

dietary energy value (Fletcher, 1984). Other investigations also provide contradictory 

evidence for an energetic basis for physiological control of appetite. Increase in the dietary 

lipid content did not influence the gastric evacuation time of Sarolherodon mossambicus 

(Oreochromis mossambicus), in fact it was observed that the diet higher in lipid was 

evacuated more quickly (De Silva and Owoyemi, 1983). In contrast, a study of two 

populations of 0. nilolicus showed that the population consuming most carbohydrate in 

their diet had greater growth rates and better condition than the population that generally 

consumed more lipid (Getachew, 1987). The digestibility of lipid is higher than that of 
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carbohydrate (Bergot and Breque, 1983; Ellis and Smith, 1984) and the energy content of 

a gram of lipid is about twice that of carbohydrate (Jobling, 1983). The results of 

Getachew's study may therefore indicate that gastric evacuation in 0. niloticus consuming 

lipid may have been prolonged and the food consumption times less frequent. 

Consequently, it was suggested that more food was consumed and processed with greater 

efficiency into somatic growth by the 0. niloticus consuming mostly carbohydrate. 

Despite the contradictory studies, the few remaining investigations undertaken to 

elucidate the role of dietary energy on appetite regulation generally show that total dietary 

energy content does influence gastric evacuation and food consumption rates. The dogfish 

showed dietary insensitivity with respect to appetite regulation when compared to the 

species already mentioned, in that the role of digestible energy on appetite and food 

consumption appears to be of little importance. As aforementioned, the sand dab, L. 

limanda has sometimes been shown to regulate food intake according to dietary energy 

level (Fletcher, 1982, 1984), but has also been shown not to (Gwyther and Grove, 1981 ). 

Although Fletcher (1982, 1984) found evidence of an energostatic basis for food intake 

control in L. limanda, it has been stated that L. limanda was much less sensitive to dietary 

food quality than S .gairdneri (0. mykiss) (Fietcher et a/, 1984). The latter author suggests 

that such dietary insensitivity may result from a wide variety of prey being taken by L. 

limanda in nature. Indeed, Gwyther and Grove ( 1981) also suggested that the reason L. 

limanda may not regulate their daily energy intake was due to their widely varying diet. 

Wild dogfish also consume a very wide range of organisms of very different energetic 

value, from crabs and small fish to the foot of the whelk, Buccinum rmdatum (Lyle, 

1983). A catholic feeding strategy such as this may help explain why the stomach 

emptying and food intake patterns of dogfish originally wild-caught for this study, were 

not sensitive to differences in dietary digestible energy. 
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Food intake in dogfish fluctuated quite widely about a relatively constant level, 

indicating that appetite was closely related to the degree of stomach emptiness. As 

previously noted for LE diets in chapter Ill, the instantaneous relative rate of gastric 

emptying increased with a decrease in HE meal size. The pattern of gastric evacuation was 

suggested in chapter Ill to be regulated in a weight dependent manner. Therefore, the 

same emptying pattern was in operation when HE diets were also fed to dogfish. The food 

intake rates of dogfish fed squid, LE and HE diets can be considered to be as a 

consequence of the control of the gastric emptying patterns. Thus, what is of interest in 

this section of the present study is that dogfish appear to maintain a constant rate of dry 

matter food intake, irrespective of whether squid (80% moisture), LE or HE diets (SO% 

moisture) were consumed. This suggests a mechanism whereby dogfish can 

physiologically "perceive" the amount of dry matter ingested and maintain food intake 

with respect to this information. It is not known how fish could perceive such dietary 

parameters, whether based on the quality of the diet or the quantity. It has been 

hypothesised that functional duodenal receptors in fish could respond to variations in pH, 

osmotic pressure, fatty acid anions and certain amino acids (Jobling, 1986). Or the 

stomach may release, via nervous or hormonal feedback mechanisms, varying volumes and 

concentrations of digesta such that the intestine receives a constant mass of nutrient, dry 

weight or energy (Grove, 1986). It must be open to speculation, but from past studies it 

would appear that some fish species are capable of assessing the amount of energy in 

chyme, whether total energy (Grove et a/, 1985; Bromley, 1987) or the portion known as 

digestible energy (Jobling and Wandsvik, 1983). Certainly from this study, the dogfish 

cannot be considered to be one of these "energy monitoring" species. 

If dogfish do not monitor ingested or digested energy, then how could different 

amounts of nutrient energy be digested in the same time period without slowing of 
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gastrointestinal evacuation, as exemplified by the present study? Differences in food 

consumption rates would not be expected if the diets g1ven to the fish were not 

sufficiently different m composition. Brodeur ( 1984) gave chopped squid and fish 

(Thaleichthys pacificus) to the black rock-fish, Sebastes me/anops and found very similar 

exponential gastric evacuation rates for both food types expressed as dry weight. The 

author reasoned that the two food types were not substantially different in proximate 

composition, and so no differences in emptying rate could be expected. The present study 

has shown that the energy digested and absorbed by the dogfish was higher for HE 

compared to LE diet, which was the objective of my original formulations. It could be 

postulated however, that such levels may not actually be significantly different to elicit 

a physiological adjustment in gastric evacuation and food consumption rates. Jobling and 

Wandsvik ( 1983) showed that the digestibility of dietary energy was lower in diets of low 

protein content fed to Arctic charr, Salvelinus alpinus, and it was this feature of the diets 

that influenced food intake. The digestibility of energy in the diets of this study were 

higher for the HE diet than for the LE diet because of the high level of lipid inclusion 

rather than protein, as protein level was held constant for LE and HE diets. With 

consideration to the findings of other studies already described, one might have expected 

a slowing in gastric evacuation and food intake rates when dogfish were fed the HE diet. 

However, this did not occur for dogfish, suggesting the efficiency of digestion and 

absorption of nutrient energy from the HE diet was maintained, despite the presence of 

more high energy components that would be more difficult to digest. In support of the 

observations for dogfish, the utilisation efficiency and energy retained by S. alpinus was 

shown to be greater with higher dietary lipid inclusion (Tabachek, 1986). Bromley (1987) 

postulated from gastric evacuation models of Scophthalmus mari1111ts, that the high degree 

of control over the processes of digestion and evacuation stabilised chyme flow into the 
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intestine. This author also stated that such a fine control mechanism may maintain 

digestion and nutrient absorption at an optimum. High lipid levels inhibited gastric 

emptying in S. maxim us, but the same level of gastrointestinal control in dogfish, though 

on a weight dependent basis could explain why high energy meals can be digested and 

retained seemingly without alteration in gastric emptying pattern. The turbot has a 

constant rate of gastric evacuation, independent of meal size (Bromley, 1987) and 

therefore a slowing in emptying may be expected with an increase in dietary lipid. In 

contrast, dogfish have comparatively long gastric emptying times with the rate dependent 

on the degree of stomach fullness and influenced by (though to what extent is not known) 

intestinal fullness, perhaps via a feedback loop (chapter III). The overall time and weight 

dependent nature of dogfish gastrointestinal evacuation may suggest that diets of 

potentially different digestible energy contents could be processed without any increase 

or reduction in gastric emptying and food consumption patterns, and with no overall 

slowing effect on the recovery of appetite. 

There are no previous studies that have examined the effects of diet quality on the 

regulation of appetite in sharks. The appetite of dogfish does not appear to be regulated 

by the level of energy in the food, which queries whether this benthic elasmobranch 

possesses the receptors that could bring about such food intake control on the basis of 

digested energy. Or indeed, whether reductions in feeding rates are necessary at all when 

characteristically long evacuation times, perhaps allowing maximal digestion and 

absorption of different food types are controlled in a weight dependent, rather than an 

energy dependent manner. Investigations of teleost fish have demonstrated elevations and 

reductions in food intake according to dietary energy level and have indicated that certain 

receptors located in the upper intestine may monitor the total, digested or metabolizable 

energy level. From this information, it has been postulated, that fish can regulate food 
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consumption according to diet quality (Jobling and Wandsvik, 1983). As dogfish are 

unable to adjust intake with respect to energy density (perhaps because they have never 

needed to benefit from such a feeding strategy), then other regulatory pathways may 

operate to modify gastric emptying patterns after absorption of the digestible components 

of the food. 

The evacuation of food from the stomach and gastrointestinal tract is not likely to 

be a smooth process, but rather a pulsed pattern of emptying (Jobling, 1986; Jobling, 

1987). Clearly then, the pulsed emptying model will change according to the feedback 

signals modifying the general pattern of gastrointestinal evacuation. What is not known 

is how the bulk dependent evacuation process of dogfish may be modified by post­

prandial factors other than the level of dietary digestible energy. Appetite regulation in 

dogfish does not appear to be influenced by diet quality, but is certainly affected by the 

quantity of food consumed. Hence, if the basis of appetite regulation is dependent on the 

bulk of food, a post-prandial increase in metabolism related to the amount of food 

consumed and processed may affect appetite, perhaps through limiting the energy available 

for other processes, e.g. gastric motility or locomotor activity. Soofiani and Hawk ins 

(1985) stated that the high energy demand following feeding may leave little capacity 

within the metabolic scope for performing any other activity. Therefore, post-prandial and 

post-absorptive metabolic factors could potentially affect appetite regulation to a greater 

degree than perhaps the physiological factors already considered. 
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CHAPTER FIVE 

APPETITE RETURN AND POST-PRANDIAL METABOLISM 

5.1 INTRODUCfiON 

Specific dynamic action (SDA) represents the rise in metabolic rate (energy expenditure) 

associated with the consumption and processing of a meal (Jobling, 1981 a). This post­

prandial elevation in metabolic rate and the accompanying exothermic heat loss was first 

demonstrated by Laplace and Lavoisier (cited in Jobling, 1981a) with homeothermic 

animals and was first termed the "specific dynamic effect" by Rubner ( 1902, cited in 

Jobling, 1981 a). The effect has been subsequently termed heat increment (Brett and 

Groves, 1979), calorigenic effect (Nelson et a/, 1977), the thermic effect of food, specific 

dynamic action (SDA) and also apparent specific dynamic action (Beamish and Trippel, 

1990). 

Since those early experiments, many phyla have been investigated with regard to 

the existence of an SDA response. The effect is known to occur in asteroid echinoderms 

(Vahl, 1984), brachyuran crustaceans (Wallace, 1973), isopods (Carefoot, 1990 a,b,c), 

terrestrial (Kreiger, 1966; Ashworth, 1969; Kreiger, 1978) and marine mammals (Costa 

and Kooyman, 1984; McConnell et a/, 1992) and in fish. The first experimental 

determinations of this kind on fish were reported by Warren and Davis ( 1967) from 

previously unpublished work. Since then SDA investigations have been undertaken on a 

variety of species, for example Gadus morhua (Saunders, 1963), Microptems salmoides 

(Beamish, 1974), Blennius pho/is (Vahl and Davenport, 1979), Pleuronectes platessa 

(Jobling and Davies, 1980), Limanda limanda (Fietcher, 1982), Clupea harengus (Kiorboe 

et a/, 1987), Ctenophmyngodon idella (Carter and Brafield, 1992) and Brachydanio rerio 
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(Lucas and Priede, 1992). In the majority of SDA studies conducted with fish the 

elevation in post-prandial metabolism following a meal has been measured by indirect 

calorimetry (eg. Beamish, 1974; Jobling & Davies, 1980; Lucas & Priede, 1992), where 

the oxygen consumption of the fish increases after food intake. However, direct 

calorimetry of fish has been attempted (Smith et a/, 1978) and more recently, heart rates 

of captive and wild fish have been monitored by telemetry and enabled field estimates of 

SDA (Lucas and Armstrong, 1991; Lucas et a/, 1991 ). 

Fish energy budgets place SDA as a net loss of digestible energy (that portion of 

energy that is not metabolized) (e.g. Solomon and Brafield, 1972; Flowerdew and Grove, 

1980; Kerr, 1984; Diana, 1987), though it is not known exactly which of the processes 

involved in food consumption and digestion constitute the major part of this post-feeding 

energy loss. Possible causes of the effect have been postulated by several authors. From 

earlier studies the heat loss following feeding was thought to occur as a consequence of 

A TP formation arising from the oxidative catabolism of amino acids and not from 

carbohydrate or fatty acids in the TCA cycle (Krebs, 1964 ). This author stated that the 

increase in metabolic rate was due to the work of digesting the protein meal and also the 

result of the inefficient thermochemical oxidation of protein to urea. However, the post­

prandial metabolic rate and the hepatic synthesis of urea are not closely linked and 

therefore may not adequately explain the existence of SDA (Garrow and Hawes, 1972). 

Restriction of the heat loss to the specific process of deamination is no longer regarded 

valid as energy losses, even though smaller, still accompany the catabolism of lipid and 

carbohydrate (Brett and Groves, 1979). Grasping, chewing and swallowing in addition to 

the demands of gastrointestinal musculature are not thought to constitute a major part of 

SDA because no significant increases in metabolic rate of fish have been demonstrated 

after feeding inert meals of kaolin (Jobling, 1981 ). However, Tandler and Beam ish {1979) 
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estimated that gastrointestinal work accounted for approximately I 0-30% of the total SDA, 

though other investigations have shown the mechanical portion of SDA to be much lower, 

between 1 and 5% (Jobling, 1981; Cho et a/, 1982). 

The hypothesis that SDA represents the "energy costs of growth" has been 

proposed by a number of researchers. In young humans recovering from malnutrition it 

has been shown that the greatest SDA was during catch-up growth, a period of rapid 

growth rate following prolonged nutritional deprivation (Kreiger, 1966; Kreiger, 1968; 

Ashworth, 1969). Similarly it has been demonstrated for fish that a strong correlation 

exists between SDA and growth (Carter and Brafield, 1992). Houlihan (1991) stated that 

the rate of protein synthesis can be paralleled by the rate of oxygen consumption, which 

suggests the post-prandial increases constituting SDA may largely result from the 

production of new proteins. Clearly SDA cannot be attributed to or explained by a single 

process, and the components of SDA are now thought primarily to be: gastrointestinal 

muscular motility, digestive enzyme formation and release, costs associated with digestion 

and absorption and the assimilation of the digestive products (Carter & Brafield, 1992). 

Recent studies on fish and reviews of mammalian literature suggest that although SDA 

is the product of these physiological components, it could largely be considered to be the 

eventuality of the costs of biosynthesis and tissue protein turnover (Jobling, 1981 a; 

Jobling, 1983; Beamish and Trippel, 1990). 

Despite many studies on possible physiological 'causes' of SDA and the existence 

of various explanations in the literature (Jobling, 1983; Beamish & Trippel, 1990), little 

has been reported on the role of SDA in food intake control of fish. Fletcher ( 1984) stated 

that the elevated oxygen consumption following a meal did not prevent further food intake 

but some authors have however, indicated that SDA may be of importance in appetite 

regulation (Beukema, 1968; Muir & Niimi, 1972; Vahl & Davenport, 1979). Little 
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information referring to SDA as contributing to the processes of appetite regulation in fish 

exists in the literature and the studies that have been completed are often contradictory. 

Some fish have eaten little following high levels of feeding which has led investigators 

to conclude that appetite may return as a consequence of lowered SDA (Beukema, 1968; 

Muir and Niimi, 1972). Other studies have shown that fish would consume more food 

before the level of SDA had decreased from the maximum level (Schalles and Wissing, 

1976; Fletcher, 1982). The conflicting findings of these investigations do not enable a 

clear understanding of the role that SDA may have in the regulation of appetite. 

Fletcher (1984) also stated that SDA, although not directly controlling food 

consumption may influence the amount of energy available for other processes, such as 

activity. Increases in post-prandial metabolic rate attributable to SDA in some fish species 

have been demonstrated to equal or actually exceed the level of active metabolism 

measured during maximum sustained swimming (Soofiani and Priede, 1985). Hence SDA 

can occupy much of the available scope for activity, which could influence appetite 

regulation through modifications to the plane of metabolism. The cardiorespiratory system 

of fish such as these has been stated as having evolved to supply the greater oxygen 

demand following feeding, rather than the metabolic demands of swimming (Butler, 1986). 

Such evidence suggests that SDA may therefore limit not only the energy that could be 

partitioned to locomotor activity, but also the amount of energy available for 

gastrointestinal motility. Thus SDA may impose a significant metabolic cost to the fish 

by occupying much of the metabolic scope at higher ration levels and this may in turn 

affect appetite regulation (Niimi & Beam ish, 1974; Jobling, 1981 a; Lucas & Priede, 1992). 

There are no previous studies exploring the role of SDA on appetite regulation of 

elasmobranchs. The aims of the present investigation were therefore to quantify the SDA 

effect at different levels of feeding and evaluate the influence of SDA on the return of 
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5.2 MATERIALS AND METI-IODS 

5.2.1 Oxygen Consumption and Activity MeasUJtlments 

5.2.1.1 Respimmeby of juvenile dogfish 

A 5.8 I closed respirometer with a single polarographic oxygen electrode (WTW 

E096) was used to obtain the oxygen consumption measurements (figure 20). The 

metabolic rate (MR) changes of the fish were evaluated using indirect calorimetry, a 

measurement of the rate of oxygen consumption, V02. 

The Perspex respirometer ( 48 x 11 x 11 cm) was fitted with one detachable end 

enabling the fish to be placed inside. One-way valves on each end-plate of the 

respirometer, including the detachable plate, were connected to the inlet and outlet hoses 

of a small pump (Eheim 1250, 16 L min- 1
) which enabled flushing. A Perspex baffleboard 

at the inlet end of the respirometer kept the oxygen probe and magnetic stirring 'flea' 

separate from the experimental fish, whilst a second baffle at the outlet prevented the fish 

escaping when the chamber was flushed. Two holes in the top of the respirometer allowed 

insertion of the oxygen electrode and temperature probe. A rubber bung around each probe 

ensured a tight seal without leakage of the respirometer water to that in the surrounding 

bath. 

The oxygen electrode was connected to an oxygen meter (WTW OXI96) and 

measurements of dissolved oxygen in the chamber were sampled every I 0 minutes from 

the meter by a data logger (Grant Instruments, Cambridge). The electrode was re­

calibrated in water-saturated air every time the respirometer was flushed. The temperature 

probe was connected to the data logger and concurrent readings were taken with those of 

oxygen consumption. 
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Figure 20. Operational diagram of the closed system respirometer for juvenile dogfish. 

Arrowheads represent the direction of water flow. Dotted lines from the pump denotes that 

this end-plate of the respirometer was detachable in order for the chamber to be flushed 

with aerated water from the water reservoir. 
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5.2.1.2 Respimmehy of adult dogfish 

The metabolic rate of the adult fish was also measured by indirect calorimetry, but 

in a larger closed respirometer (72 x 52 x 30cm, 112L) (figure 21 ). The adult dogfish 

could be observed within the respirometry chamber through the Perspex sheet which 

constituted the removable top plate of the respirometer. An airtight seal was made between 

the perspex sheet and the rubber edge of the chamber. After the dogfish had been 

introduced to the respirometer, trapped air was displaced by flooding the chamber with 

water from an overhead reservoir. Water in this reservoir was continually aerated and 

pumped from the water bath containing the respirometer through a biological filter (Eheim 

2015, 540 L h" 1
). The influx of water from the reservoir to the respirometer was controlled 

by means of a one-way tap on the Perspex sheet. Measurements of oxygen saturation were 

taken every 30 minutes using a polarographic oxygen electrode (WTW E096) and oxygen 

meter (WTW OXI96). A sample of respirometer water was taken by allowing water to 

flow via a second one-way tap to a 250ml conical flask which held the oxygen probe. 

Water was allowed to flow through the flask and into the bath surrounding the 

respirometry chamber for approximately 30 seconds thereby ensuring that water remaining 

from previous samplings was completely flushed from the sample flask. A rubber bung 

around the probe provided an airtight seal at the top of the flask and the water flow over 

the electrode membrane was maintained using a magnetic follower and stirrer. The 

temperature of the water inside the flask was recorded concurrently with that of oxygen 

saturation and was maintained for all the trials at l sac. 

5.2.1.3 Calculation of oxygen consumption 

The oxygen consumption of the juvenile dogfish was calculated usmg the 

generalized equation stated in Parsons ( 1990): 
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Figutl! 21'. Operational diagram of the closed system respirometer used for adult dogfish. 

Arrowheads denote direction of water flow. 
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where V02 is the rate of oxygen consumption in mg 0 2 kg"1 h-1
, b is the rate of change 

of partial pressure of oxygen during the test period, s is the solubility of oxygen calculated 

at the experimental temperature and pressure, v is the volume of the respirometer, and w 

is the live weight of the fish. Each of the test periods for juvenile and adult dogfish were 

of three hours duration as the dissolved oxygen decline over two hours, in the case of 

juvenile dogfish was too slight to provide a representative rate of loss of oxygen for use 

in calculations. When oxygen consumption measurements were made over long periods, 

the three hour test periods were not adjacent, but spaced at approximately 6-12 hour 

intervals. Extensive control trials with each respirometer were completed before 

introduction of fish and no changes in oxygen content of the respirometers occurred over 

the test period. 

5.2.1.4 Activity measun~ments 

The activity level (A~.) of single juvenile dogfish in the respirometer was recorded 

by a video camera (Sony CCD-FJSSE) positioned in front of the respirometer, inclined 

forwards at an angle of 30° to the horizontal to give maximum coverage of the fish in the 

chamber against the white background. Video observation of adult dogfish took place 

using a mirror positioned above the respirometer inclined at an angle of 45° to the 

horizontal. The reflected image gave full coverage of the area inside the respirometer. The 

video observation unit was separated from the respiratory area by a black sheet, so that 

frequent changes of the video cassette did not disturb the fish. Activity was also 

periodically observed in real-time from a remote camera positioned above either of the 

respirometers and connected to a television monitor. 
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The A L of the dogfish was quantified by determining from the videotapes the 

number of minutes in each hour that the fish spent in various degrees of activity. The 

activity was classified into three types: movements of the head, trunk and tail region but 

with no body re-positioning; re-positioning of the body, and active swimming. Using the 

clock on the video screen and the frame-by-frame analysis the activity time per hour and 

the frequency of motion were determined accurately for each of the experimental trials. 

5.2.2 Diet Rhythms in Metabolism and Activity 

5.2.2.1 Juvenile dogfish 

Three dogfish were used m five 72 hour experimental trials during which the 

metabolic rate and activity level of the fish were monitored. The oxygen consumption 

measurements were made as in section 5.2.1.1. A single dogfish was starved for 48 hours 

prior to placing in the respirometer, where it remained for a further 18 hours in order to 

equilibrate. Throughout the trial the dogfish could move freely within the respirometer. 

The dissolved oxygen concentration in the respirometer was never allowed to fall below 

SO% air saturation. Before this level was reached the chamber was flushed through with 

fully aerated water from the surrounding bath. The respirometer was flushed by displacing 

the outlet end-plate from the sealed position and turning the valves and the pump on for 

about three minutes in each case and this was adequate to totally replace all the water in 

the chamber. Flushing did not affect adversely the activity or oxygen consumption of the 

fish thereby keeping interruptions to the fish's natural rhythm to a minimum. Each trial 

was started on day one and finished on day four of the experiment. 

5.2.2.2 Adult dogfish 

Each of three dogfish were used in a 24 hour study. Oxygen consumption was first 
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measured at 14.00h on Day I and readings were terminated at IS.OOh the following day. 

The adult dogfish were starved for 72 hours before the trial was initiated with a further 

18 hours allowed for acclimation to the study environment. As with the juvenile fish, the 

oxygen saturation of the respirometer was not allowed to fall below SO%. When this level 

was approached, clean seawater was flowed through the respirometer until the oxygen 

saturation was closer to I 00%. 

5.2.2.3 Activity measun~ments 

The activity patterns of the juvenile dogfish in the chamber were recorded 

continuously for four hours, from OS.00-09.00h, 11.00-1 S.OOh, 17.00-21.00h and 23.00-

03.00h throughout 72 hours. The activity of the adult dogfish was continuously measured 

throughout the 24 hour period in each of the trials both by video and real-time 

observation. The main illumination for the experimental environment (260 lux) came on 

at 07.00h and went off at 19.00h. A low level of light (30 lux) was maintained throughout 

the night time hours so that dogfish activity could be recorded. 

5.2.2.4 Statistical analysis 

All the means stated are ± the standard error of the mean. One-way analysis of 

variance was used to test the significance of differences between the means of the V0 2 

and A L for the juvenile fish over the 12 hours of light compared to the 12 hours of 

darkness. The same was completed for the V01 and A L of adult fish and finally the levels 

of activity of juvenile and adult fish during the dark period were compared. 

5.2.3 Standanl Metabolic Rate 

Individual starved fish from five weight classes (2.86-4.30g; I 0.41-16.30g; 56.2Sg (single 
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fish); 170-220g; 600-1 OOOg) were weighed before being placed in either the small or large 

respirometer. This was done 18 hours before any determinations of oxygen consumption 

took place. During this period of adjustment to the chamber environment, the small 

respirometer for juveniles was left open to the surrounding water bath, while the large 

respirometer had a continuous flow of water through it, thereby keeping the important 

seawater parameters constant (l5°C, 35°/
00

). After the 18 hour settlement period (ending 

at -I O.OOh), the respirometers were sealed from the surrounding water and initial 

measurements of seawater oxygen saturation inside the respirometers were made. All the 

measurements were obtained in the I 0.00 - 18.00h period as this time has been previously 

shown to be when dogfish exhibit their lowest rates of metabolism (cf results section 

5.3.1 ). Video and real-time observation of dogfish activity meant that only when dogfish 

were totally inactive for long enough periods could measurements of oxygen consumption 

be considered to be representative of standard metabolic rate. Hence, only measurements 

of MR made during inactive periods were included in the results. 

5.2.4 SDA Measu.-ements 

5.2.4.1 Juveniles and adults 

Juvenile (I 0.90-16.30g) and adult dogfish (588.8-802.2g) were deprived of food 

for 7 and I 0 days respectively, before a trial commenced. Single fish were placed into the 

respirometers and allowed to settle down for approximately 18h. After this time the 

respirometers were closed and for the next 24h the metabolic rate of each fish was 

measured. When steady resting metabolic rates had been obtained the fish were hand fed 

squid mantle in sill/ over a period of one hour. The juvenile and adult dogfish were fed 

squid meals of either approximately I and 49g respectively (approx. 7 % wbw, the 

satiation level of group feeding dogfish) or a meal of approximately 12.5% wbw, before 
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the respirometers were closed and the oxygen concentration of the water recorded. The 

oxygen consumption of the fish was monitored until it returned to (and stabilised at) the 

baseline level obtained pre-feeding. Four trials of each fish size were completed at the 7% 

wbw feeding level and three at the 12.5% wbw level. Peak levels in oxygen consumption 

and duration of the SDA effect were recorded and the SDA magnitude, the oxygen 

consumed above that of the resting metabolism was calculated (with a BASIC computer 

program) for each trial. The energetic value of the squid was calculated in order to 

estimate the amount of gross ingested energy (lE) lost as SDA. 

5.2.4.2 Calculation of ingested enet-gy (lE) losses 

The amount of energy in dried squid was determined by bomb calorimetry (cf 

section 4.2.4.2). The total energy from the squid meal given to the dogfish (ingested 

eneq,>y, lE) was calculated by multiplication of the amount of energy in one gram of dried 

squid by the dry weight of the consumed meal. 

The amount of lE expended as SDA was calculated from the value of the SDA 

magnitude in g 0 2 multiplied by the oxycalorific coefficient of 13.55 kJ g· 1 0 2 (Brett & 

Groves, 1979) and expressed as a percentage of the total lE. 

5.2.4.3 Statistical analysis 

Two-tailed Student's t-tests were used to compare the means of meal size, peak 

level in oxygen consumption, SDA duration, SDA magnitude and the ingested energy 

losses due to SDA, both between and within fish sizes. 
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5.3 RESULTS 

5.3.1 Diel Rhythms in Metabolism and Activity 

The vo2 and A L of the juvenile dogfish fluctuated during each die I cycle in a well defined 

manner (fig. 22) with predictable, repeated diel rhythms over the three day period. Levels 

of V02 and A L were relatively high but varied at night. The same general trend was 

evident for the adult dogfish over 24 hours, with elevations in activity and metabolic rate 

after the onset of darkness, but returning to baseline levels before the light phase (fig. 23}. 

The main peak in activity and metabolic rate for juvenile and adult dogfish was from 

approximately 00.00 to 03.00h, though the juvenile fish were active earlier in the dark 

period also, from about 19.00 to OO.OOh. 

Both the mean V02 and A L of the juvenile fish were found to be significantly 

different in the hours of darkness compared to the rates in daylight hours (F-values 30.73 

and 71.68 respectively, P<O.OOOI) (table 10). The mean V0 2 increased by 37.9% from 

62.0 (S.E. 2.9) mg 0 2 kg· 1 h"1 in light to 85.5 (S.E. 3.1) mg 0 2 kg· 1 h" 1 during the dark. 

Similarly, the mean A L of juvenileS. canicula rose from a daytime level of 0.6 (S.E. 0.2) 

min h" 1 to 14.5 (S.E. 1.6) m in h" 1 in the dark. The daytime vo2 and A L of the adult fish 

was significantly different to the night-time levels (F-values 17.14 and 5.57 respectively, 

P<0.029) with the mean V01 increasing by 166.8% from 32.5 (SE 4.3) mg 0 2 kg·1 h.1 in 

daylight to 86.7 (SE 8.7) mg 0 1 kg· 1 h" 1 at night (table I 0). The mature dogfish were not 

observed to be active by day (mean 0 min h" 1
), but in darkness the activity elevated to 5.3 

(SE 1.4) min h· 1
• Mean night activity of the adult fish were individually compared with 

each of the three dark period activity levels of juvenile fish, and found to be significantly 

different on the second and third nights of the juvenile study (P<0.05 and 0.02 

respectively), though not on the first (P>0.60}. (When juvenile activity was approximately 

175 



Figm-e 22. Rhythms in activity level (A L) (upper panel) and rate of oxygen consumption 

(V02) (lower panel) for five trials on single juvenile dogfish over 72 hours. The variegated 

bar on upper panel represents the light:dark regime. Bars represent ± I S.D. Dotted lines 

on upper panel denote periods that the dogfish were not video-observed. Small arrows on 

lower panel indicate the times when the respirometer was flushed. 
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Figme 23. Rhythms in mean activity level (A,L) (upper panel) and rate of oxygen 

consumption (V02) for three trials on single adult dogfish over 24 hours. Variegated bar 

on upper panel represents the light:dark regime. Bars denote ± I S.D. 
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Table 10. The mean rates of oxygen consumption and activity during light and dark 
periods for three juvenile dogfish in five 72 hour trials and three adults in three 24 hour 
trials. 

Light Dark 
(07.00-19.00h) ( 19.00-07.00h) 

Oxygen consumption Adult 32.5 ± 4.3 86.7 ± 8.7 
(V02) (mg 0 2 kg" 1h" 1

) 
Juvenile 62.0 ± 2.9 85.5 ± 3.1 

Activity (A L) Adult 0 5.3 ± 1.4 
(min h"1

) 
Juvenile 0.6 ± 0.2 14.5 ± 1.6 
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5 mm h-1 higher than that of the adults). Generally, the small dogfish were active for 

longer during the dark period than adult fish and also at two distinct periods compared to 

the single activity phase of the adult fish. 

5.3.2 Standal"d Metabolic Rate (Rs) 

The oxygen consumption of dogfish increased exponentially with an increase in body 

weight (fig. 24) and the relationship was represented by the equation, 

Rs = 0.104 W0
·
855 

where Rs was the amount of oxygen consumed by the fish and W represents the live 

weight of the fish. 

5.3.3 Post-prandial Metabolism and Appetite 

5.3.3.1 Fish size and mtion level 

In general the results show that the oxygen consumption of juvenile and adult 

dogfish increased to maximum levels (2. 7 ± 0.1 x resting rate) 4-10 hours post-feeding, 

before gradually returning to the pre-feeding levels. Figures 25 and 26 show the traces in 

oxygen consumption following feeding of 7% and 12.5% wbw meals to both juvenile and 

adult dogfish. Oscillations in the metabolic rates of the juveniles and adults at either ration 

level may be attributable to spontaneous activity, even though oxygen consumption 

determinations were only made when the fish were apparently at rest. These increases 

therefore, probably represent periods of time when oxygen consumption was measured 

following continuous activity. Table 11 shows the SDA responses to the 6.52 ± 0. 73-11.65 

± 0.15 % wbw and 7.25 ± 0.23-13.02 ± 0.53 % wbw meals given to adult and juvenile 

dogfish respectively. The four parameters used for comparison were peak level in oxygen 

consumption, duration, magnitude of the SDA effect and percentage of ingested energy 
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Figunl 24. The relationship between standar~ metabolic rate (R5) and weight for dogfish 

of weight 3-1 OOOg at I5°C. Regression equation, R5= 0.104 W0855
, r2=0.98. Number of fish 

used, 40, 

182 



2 .0 

1.5 

.c I 
!=: 
I) 

bO 
>. 1.0 
>< 
0 

bO 

E 

!=: • 0 - 0 .5 p.. 

e 
p 
Cll 
1:: 
0 
0 

1:: 
u 
bO 
>. 0.0 
>< 
0 

bO 
0 

...I 

• • -0.5 

-1.0 

0 .0 0.5 1.0 1.5 2. 0 2.5 3 .0 

Log fish weight (g) 

183 



Figure 25. The mean oxygen consumption of juvenile dogfish after being fed meals of 

3.5% wbw (11) and 7% wbw (0). Bars represent ± I S.E. Number of determinations for 

each point: upper panel, 4; lower panel, J: 
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Figure 26, The mean oxygen consumption of adult dogfish after being fed meals of 3.5% 

wl:!w (11) and 7% wbw (0). Bars represent± I S.E. Number of determinations for each 

point: upper panel, 4; lower panel, 3. 
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Table 11. The effect of single meals on the post prandial oxygen consumption 
of juvenile and adult S. canicu/a (means ± I standard error of the mean). 

Meal size 
(% wbw) 

No. of 
determination 

Peak level (% 
above resting) 

SDA duration 
(h) 

SDA 
magnitude 
(mg 0,) 

Juveniles 

7.25 ± 0.23 13.02 ± 0.53 

4 3 

159.52 ± 19.85 109.18 ± 13.32 

45.67 ± 8.78 133.50 ± 9.82 

20.08 ± 4.43 25.89 ± I J2 

188 

Adults 

6.52 ± 0.73 11.65 ± 0.15 

4 3 

198.34 ± 24.37 171.05 ± 22.42 

83.83 ± 7.03 143.47 ± 16.42 

2177.28 ± 624.59 4247.06 ± 971.16 



lost as SDA. The peak levels in metabolic rate occurred within 4-1 Oh for fish in each size 

class when fed either ration level (table 11 ). The maximum levels were similar between 

the two meal sizes for juvenile (P>0.05) and adult dogfish (P>0.25), and were not 

different between juveniles and adults at the 7% wbw ration level (P>0.1 ). Although the 

peak levels in SDA were not significantly different for both juvenile and adult dogfish at 

either ration level, the peak levels of SDA were consistently lowered at the higher meal 

size compared to the smaller ration. The duration of the SDA effect, that is the time taken 

for pre-feeding resting rates of metabolism to resume was nearly twice as long for adult 

dogfish than for juveniles fed 7% wbw (P<O.O I). The duration of the SDA effects 

associated with consumption of the larger meals were longer than the SDA duration of 

smaller meals in both juveniles and adults (P<0.0005, table 11 ). The magnitude of SDA 

was not different (P>O.OS) when the meal given to the juvenile dogfish was approximately 

doubled (table 11 ). However, the SDA magnitude of adult dogfish doubled with a 

concomitant doubling in meal size (1'<0.0005). Figure 27 indicates that the percentage of 

ingested energy lost as SDA was not different between meal sizes for either juvenile 

(P>0.25) or adult dogfish (P>0.25), but the percentage IE lost by the adults was 

approximately three times greater than the amount lost by the juveniles (P>0.5). 

5.3.3.2 SDA and HJlpetite ll!tum 

Figure 28 shows the rates of appetite return for juvenile and adult dogfish, when 

fed similar sized meals to those given to the fish used in the SDA determinations (juvenile 

7.58 ± 1.99 o/obw; adult 7.68 ± 1.24 o/obw) (cf chapter 11). It is clear that dogfish were 

willing to consume more food before the SDA effect had fully ended. The SDA peak 

occurred approximately 4-6 h after feeding, and food consumption of the adult fish was 

about 1.5% of the initial meal (IM) at this time. In contrast juveniles were able to 
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Figme 27. The amount of ingested energy (lE) lost as SDA by juvenile (dark shading) 

and adult (light shading) dogfish fed meals of approximately 7 and 12.5% wbw. Bars 

denote ± I S.E. Asterisks denote significant difference between SDA losses of juvenile 

and adult dogfish, P<0.02. The same significant difference (P<0.02) between SDA losses 

of juvenile and adult dogfish was also found at the higher ration level. The SDA losses 

of each size of dogfish between ration levels were not significantly different at the 5% 

level. 
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Figul'e 28. The oxygen consumption(~ and rate of appetite return (D) of juvenile (upper 

panel) and adult (lower panel) dogfish after being fed meals of 7% wbw. Bars on the solid 

squares represent ± I S.E., number of replicates for each oxygen consumption trace, 4. 

Appetite return regression equations; upper panel, AR=12.08+0.93t, r2=0.83, number of 

determinations, 22; lower panel, AR=-0.53+0.61 t, r2=0.87, number of determinations, 24. 

Note the difference in x axes scale of the two panels. 

192 



170 120 
~ 

A 160 110 -.. 
" .... - 150 100 9 d ... .. 140 90 .... .. 

" 0 130 80 d .. 
a 120 70 ~ 

d 110 60 d 0 

-::: 0 
c>. 100 so -a "" :::0 

90 a .. 40 " d .. 
0 d 
u 80 30 0 

u 
d 
u 70 20 ..., .. 0 .... 0 

" 60 
0 10 '"' 

50 0 

0 24 48 72 96 120 

Time (h) 

170 140 
A 160 -.. 

120 .. .... 150 - " d e ... .. 140 .... 
100 .~ " 0 130 ·-.. d 

a 120 80 ~ 
d 110 
0 d 

.,;. 100 60 
0 -e "" " 90 a .. ::0 a 

40 .. 
0 

" u 80 0 
u 

" 70 u "0 .. 20 0 .... 0 

" 60 ll. 
0 

50 0 

0 24 48 72 96 120 144 168 192 2 16 
Time (h) 

193 



consume over 17% IM. When the SDA effect had subsided (after 45 h juven.; 84 h adults) 

the juveniles were able to consume 58% IM and the adults were consuming about 56% 

IM. The rates of appetite return were significantly different (P<O.OOI; table 12}, with 

juvenile fish consuming relatively more food at all times compared to adult dogfish. The 

time taken for juveniles to consume I 00% of the initial meal again was 94h compared to 

163h in adults, however the duration coefficients of SDA and AR (table 12) were very 

similar for both adult and juvenile fish. 

Figure 29 illustrates that the maximum peak in SDA after consumption of a 7% 

wbw meal coincides with the fastest rates of gastric evacuation and intestinal filling. 

When the SDA effect had ended (after about I OOh) the gastric evacuation rate was 

slowing and consequently, the quantity of digesta arriving in the intestine was also 

decreasing. 
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Table 12. The rates of appetite return and duration coefficient of specific dynamic 
action/return of appetite in juvenile and adult S. canicula when fed single meals (means 
± I standard error of the mean). 

Meal size No. of 
(% wbw) determination 

Juveniles 7.58 ± 1.99* 22 

Adults 7.68 ± 1.24"' 24 

• No significant difference between juveniles and adults, P>0.05 

tSigmficant difference hetween jrn•eniles and adults, P<O.OO/ 

195 

Rate Duration 
coefficient 
(DsoA/DAR) 

0.932t 0.488 

0.614t 0.516 



Figure 29. The SDA response of adult dogfish (11) compared with rates of gastric 

evacuation (0. upper panel) and intestinal filling (11, lower panel) following a meal of 7% 

wbw. Bars denote ± I STM. 
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5.4 DISCUSSION 

5.4.1 Activity Pattems and Standanl Oxygen Consumption 

The metabolic rate and activity of juvenile and adult dogfish increased significantly at 

night. During daylight hours the dogfish were mostly inactive and the metabolic rates 

usually decreased steadily over this period, from high night-time levels to low daytime 

resting rates. Nocturnal activity followed by daytime resting has been demonstrated for 

adult dogfish in a previous study (Metcalfe and Butler, 1984), as well as for two other 

species ofbottom-dwelling sharks, HeterodontusjiWicisci and Cephaloscyl/ium ventriosum 

(Nelson and Johnson, 1970). Phased bouts of activity over the die! cycle, leading to wide 

fluctuations in metabolic rate (from near basal to active) characterize the sluggish nature 

of the bottom-dwelling sharks such asS canicula and do not allow the effects of feeding 

on metabolism to be easily studied. From the traces in activity and metabolism of juvenile 

and adult dogfish over 72 and 24 hours respectively, it is clear that prolonged activity 

occurred during only the dark phase of the die) cycle (up to a maximum of about 50 min 

h" 1 in juveniles at night). These large variations in metabolic rate could lead to 

inaccuracies in quantifying the actual metabolic increment attributable to SDA by 

erroneous summation of active metabolism and SDA. To avoid these errors post-prandial 

measurements of oxygen consumption were limited to when the dogfish were inactive. 

However, oscillations in metabolic rate of S. canicula were observed and were probably 

a result of measurements that followed periods of continuous activity. In an investigation 

of SDA in plaice, Pleuronectes plates.~·a, oxygen consumption measurements were also 

limited to the times after feeding when the plaice were not active in order to minimise the 

inclusion of active metabolism with SDA (Jobling and Davies, 1980). 

Analysis of diel rhythms in metabolic rates and activity levels of juvenile and adult 
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dogfish showed that the lowest metabolic rates occurred in daylight between 10.00 and 

18.00 h. The lowest resting metabolic rates of fish have been termed standard metabolism 

(Brett and Groves, 1979). The relationship between standard metabolic rate and fish size 

was calculated for dogfish in the present study during periods of daytime inactivity and 

were similar to rates found in previous metabolism studies of benthic elasmobranchs. The 

standard metabolic rate of a lkg dogfish at l5°C was 38.2 mg 0 2kg"1h-1 in this study, 

whilst the relative rate increased to 74.5 mg 0 2kg.1h.1 for a lOg juvenile. The standard 

metabolic rate of S. canicu/a was determined by Hughes and Umezawa ( 1968} as lying 

between 28.6-78.7 mg 0 2kg. 1h" 1 for fish of I SO to 600g in size. Brett and Blackburn 

(1978) found that the resting rate of Squalus acanthia~ was 32.4 mg 0 2kg. 1h" 1 for a 2kg 

individual at I 0°C, although they noted that the true standard may really lie between 20 

and 30 mg 0 2kg. 1h. 1
• Resting metabolic rates in S. acanthias five times higher than Brett 

and Blackburn's values were recorded by Pritchard et a/ (1958) in fish between 100 and 

900g. However, these researchers stated that minimal resting metabolic rates were 

probably not measured in their study. lt is likely that Pritchard et at's level of 'resting' 

metabolism was excessively high due to the spurdogs being restrained within narrow 

cylindrical respirometers. The lowest reported standard metabolic rate for an elasmobranch 

is that of 20.1 mg 0 2kg. 1lf 1 for little skates, Raia erinacea weighing O.Skg and kept at 

10°C (Hove, 1993). When standardized to I S"C (using a Q 10 of 2.3, Brett and Groves, 

1979) this value becomes 23.1 mg 0 2kg. 1lf 1
, which is still low in comparison to the 

standard metabolism of similar sized S. cm1icu/a from this study. Mean oxygen 

consumption rates between 20 and 30 mg 0 2kg. 1h" 1 were recorded for three adult fish in 

the 24 hour study of this investigation, however the reductions in metabolic rate of these 

particular individuals may have been brought about by the period of food deprivation the 

animals underwent before being placed in the respirometers. lt is known that the metabolic 
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rate of fish will generally decrease as the period of food deprivation increases and the 

lowest rates observed in these dogfish may be due to such reductions (Jobling, 1982). 

The log-log plot of standard metabolic rate against dogfish weight gave a 

relationship where the power exponent of weight was 0.86. Brett and Groves ( 1979) 

showed that this exponent was approximately 0.67 for a wide range of warm-blooded 

animals and represented the surface area to volume ratio of the animal. These authors 

found that the mean value for a range of teleost species was also 0.86. In addition Parsons 

(1990) calculated the weight exponent to be 0.86 when the standard metabolic rate of five 

species of sharks (Sphyma tibum, Negaprion brevirostris, Squalus acanthias, Scyliorhinus 

canicula and Scy/iorhinus catalus) and a range of teleosts at I soc were plotted against 

their weight. 

The metabolic rate determinations for juvenile and adult dogfish in this study, 

during trials over 72 and 24 hours as well as those restricted to periods of inactivity to 

elucidate standard metabolism, can be considered to be in line with results obtained from 

other studies on sharks and teleosts. These initial studies have identified that the metabolic 

rate profiles of sluggish fish, such as dogfish over several days and the accurate 

determination of standard metabolic rates are necessary studies if estimations of SDA are 

to be precisely determined. 

5.4.2 lmpol'tant Pammetel's of the SDA Effect 

In general the SDA studies showed the metabolic rate of dogfish increased following 

consumption of a meal, and from an initial peak decreased quite steadily to pre-feeding 

levels. It was also evident that the rate of decrease in metabolic rate after meal 

consumption was generally dependent on the size of the meal. The magnitude of SDA and 

hence the metabolic load on the animal was dependent on the peak level and duration of 
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the effect. These two parameters were of prime importance to understanding the role of 

SDA in appetite regulation and therefore each is discussed here in more detail. 

The peak level in oxygen consumption for both juvenile and adult dogfish at both 

meal sizes occurred 4 to I 0 hours after ingestion of a meal and is comparable with other 

fish studies. The SDA peak of juvenile thick-lipped mullet, Crenimugillabrosus (Che/on 

labrosus) occurred after 1-4 hours (Fiowerdew and Grove, 1980), whereas the peak in 

oxygen consumption for the benthic P. p/atessa occurred between 5 and 7 hours post­

feeding (Jobling and Davies, 1980). Hamada and Ida (1973) showed two peaks in the 

post-prandial metabolic rate of Cyprinus ca111io and Carassius aura/us, the first after 3-4 

hours and the second between 5 and 8 hours. Indeed, Flowerdew and Grove (1980) 

recorded a second peak in the oxygen consumption of C. labmsus 6-11 hours after 

feeding. A second peak in SDA was not observed in the present study on dogfish, but the 

timing of the initial increase in metabolism following feeding was quite uniform when 

dogfish are compared to the aforementioned teleosts. This suggests that the initial peak 

in metabolism could arise from a physiological process common to all these species. 

However, the degree to which the metabolic rate increased above standard or resting rates 

following feeding is not the same in all species, and may serve to illustrate the differences 

in aerobic capacity of the species concerned, as well as perhaps elucidate the metabolic 

strategies of these species. The peaks in initial SDA did not differ with dogfish size and 

were 2.7 times the lowest resting rates. The peak rate in oxygen consumption was 1.8 

times resting metabolism in Lipophrys pho/is (Vahl and Davenport, 1979), 2.0 in P. 

platessa (Jobling and Davies, 1980), 2.6 for Kuhlia sandvicensis (Muir and Niimi, 1972) 

and 1.6 for Lepomis macmchims (Schalles and Wissing, 1976) and Gadus morhua 

(Saunders, 1963). The peak levels of dogfish SDA above resting metabolic rates were 

slightly greater than most teleosts listed here and implies that SDA in dogfish may occupy 

201 



much of the available metabolic scope. 

Post-prandial peaks in oxygen consumption attributable to SDA and oxygen uptake 

due to night-time peaks in dogfish activity were little different. Soofiani and Priede (1985) 

showed that oxygen consumption of G. morhua following meal intake was greater than 

that of active metabolism. These observations led the authors to state that the 

cardiorespiratory system had evolved to supply the demands of feeding rather than 

activity, and that SDA occupied much of the metabolic scope of these fish after feeding. 

The same could be postulated for dogfish from evidence in the present investigation, as 

the peak metabolic rates due to SDA matched the rates obtained after continuous night­

time swimming. However, from measurements of oxygen consumption made on an adult 

dogfish agitated to swim faster for a short time within the respirometer, it is possible that 

maximum metabolic rates recorded during night activity may not represent the maximum 

sustainable power output of the dogfish within its aerobic metabolic scope (Priede, 1985). 

The metabolic rates recorded after the forced swimming were approximately I 00 mg O~kg· 

1h" 1 higher than the peak SDA level following feeding, although it may be equally possible 

that this higher rate of oxygen consumption was partly due to repayment of the oxygen 

debt following anaerobic metabolism. It is not known, and must not therefore be assumed 

that the initial peaks in dogfish SDA were elevated to the likely limit of the animal's 

metabolic scope for aerobic activity between 4-10 hours after feeding. It can be said 

though, that the SDA incurred after feeding in dogfish occupied a major portion of the 

scope for energy available for aerobic metabolism. 

When the meal size consumed by dogfish was doubled there were no differences 

in SDA peak level for either juveniles or adults. Jobling and Davies ( 1980) demonstrated 

that the SDA peak rates were similar above a threshold level when increasing meal sizes 

were given to P. platen·a. Over a range of meal sizes the peak rates of oxygen 
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consumption were not different, which led the latter authors to suggest the SDA process 

may have a saturation level determined by cellular metabolism rather than by the 

respiratory system. This theory could equally be applicable to the SDA peaks observed 

for dogfish since the peak metabolic rate of SDA did not vary with increasing meal size 

and the peak may not necessarily equal the metabolic rate obtained by maximum sustained 

swimming. Therefore, the SDA effect on dogfish metabolism may depend to a large 

degree on the rate at which food breakdown products can be metabolised as well as to the 

extent SDA occupies the metabolic scope of dogfish. 

The duration of SDA increased with consumption of greater meal sizes in both 

juvenile and adult dogfish. In previous studies the SDA durations of teleost fish have been 

shown to be highly dependent on meal size (for reviews see Jobling, 1981 a, 1983). The 

duration of SDA in juveniles was generally shorter at each meal size when compared with 

the SDA duration of adult S. canicula. This may result from the higher relative rates of 

food consumption and processing rates of the younger dogfish compared to the mature 

individuals (cf chapter 11). Although the peaks in SDA did not vary between dogfish sizes 

or because larger meals were consumed, the increase in SDA duration with meal size 

means that the magnitude of the SDA effect generally increased with meal size in dogfish. 

SDA duration of adultS canicula doubled with a concomitant doubling in the amount of 

food consumed, which led to a twofold increase in SDA magnitude. Other investigations 

on teleosts have reported similar findings. The magnitude of SDA was also shown to be 

proportional to the increase in meal size in P. p/atessa (Jobling and Davies, 1980), 

Microptems salmoides (Beamish, 1974) and Lepomis macrochims (Pierce and Wissing, 

1974). However the SDA magnitude of juvenile dogfish did not increase appreciably when 

larger amounts of food were consumed. The SDA duration from consumption of a 13% 

wbw meal by juvenile dogfish was approximately three times that of the 7% wbw meal, 
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but the SDA magnitude was only marginally higher and found not to be significantly 

different. At the higher meal size the juvenile SDA rapidly lowered after the initial peaks 

which did not occur in the SDA of adult fish. The rapid lowering in oxygen consumption 

rate was responsible for the reduced SDA magnitude in juveniles and may represent a 

physiological strategy that limits the loss of post-prandial energy. 

The ingested energy lost as SDA was three times greater in adults when given 

either ration size compared to the juveniles. Some workers have demonstrated 

relationships between SDA and growth in mammals, fish and some invertebrates (Kreiger, 

1966, 1978; Ashworth, 1969; Jobling, 1983; Vahl, 1984) and have postulated that SDA 

is primarily the direct metabolic eventuality of the costs of protein synthesis, protein tissue 

turnover and growth (for review see Jobling, 1983; Houlihan et al., 1990; Carter & 

Brafield, 1992). The juvenile fish in the present study had higher levels of food 

consumption coupled with lower SDA costs when compared to adults, but this may 

represent efficient conservation of post-prandial metabolic energy rather than implying 

lower rates of biosynthesis and growth. Juvenile fish have a high potential for fast growth 

rates resulting from high rates of food turnover (Kiorboe et al., 1987), so the differences 

in food intake between adult and juvenile fish of this investigation may be primarily a 

developmental strategy rather than principally a consequence of the SDA effect. The 

energy lost as SDA in adult dogfish was similar to the levels found for L. macrochims 

(Schalles and Wissing, 1976) and Micmptents salmoides (Beamish, 1974). The cost of 

growth is known to increase and the efficiency of the process decreases as fish become 

larger (Kiorboe et a/, 1987), so the lower ingested energy losses due to SDA in juvenile 

dogfish may represent a significant strategy for maximising growth whilst keeping the 

energetic costs of meal processing to a minimum. 
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5.4.3 SDA and the Regulation of Appetite 

Apart from the differences in relative food consumption and processing rates between 

young and mature dogfish (possibly manifested as different ingested energy losses) it is 

evident that SDA is closely associated in the processes leading to appetite return. The 

most important findings of the present study pertaining to SDA and appetite control were 

that the relationships between SDA and appetite return (AR) were similar for both sizes 

of S. canicula, and that food consumption continued throughout the period of SDA with 

maximum post-feeding metabolism not completely eliminating further food consumption. 

Similar results to those of the present study have been demonstrated for different size 

groups of Limanda limanda (Fietcher, 1982), Lepom is macmchi111s (Schalles & Wissing, 

1976) and Kuh/ia sandvicensis (Muir & Niimi, 1972) and for single size Blennius pholis 

(Vahl & Davenport, 1979). The coefficients of SDA and AR duration were very similar 

in juvenile and adult dogfish, indicating a close involvement of SDA in the revival of 

food consumption for both sizes of fish. The relationship however, may not necessarily 

be one of strict regulation since the amount of food consumed by adult and juvenile 

dogfish after the SDA effect had subsided, was only 50-60% of a satiation meal. Clearly 

whilst the SDA effect and AR are closely linked (Jobling, 1981 a), it is also evident that 

SDA is not the regulator of further food intake in either juvenile or adult S. canicula, 

since the existence of any such regulation would be expected to be manifested as greater 

relative rates of food intake as SDA diminished and a more marked suppression of food 

consumption due to the SDA effect. Since these influences were not observed in the 

current investigation the likely role of SDA in food intake control may be that of a 

component mediator of the plane of metabolism, which in turn influences other 

physiological processes. 

Direct evidence for influence of post-prandial metabolism on food intake is lacking 
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but it has been suggested that SDA may affect appetite return in the short-term by limiting 

the rate at which a meal can be processed and so slow the overall clearance of the 

gastrointestinal tract (Jobling, 1981 a; Fletcher, 1984 ). These conclusions may help explain 

the findings for adult dogfish, which were that as SDA magnitude increased with 

increasing meal size (from greater demand for oxygen by metabolic pathways involved 

in food processing) the instantaneous rate of gastric evacuation decreased resulting in 

greater overall gut emptying times (cf chapter Ill). However, this investigation also 

showed that the gastric evacuation and intestinal filling rates were greatest when the SDA 

effect was maximally deviated from the pre-feeding levels. If SDA in dogfish was acting 

to limit the energy available for gastrointestinal activity, thereby altering appetite return 

directly, then greater rates of gastric evacuation and intestinal filling might be expected 

in the latter stages of the SDA effect when metabolic rates were decreasing. Such 

influences were clearly not observed in the present study. This evidence indicates that 

appetite return may be only indirectly affected by SDA, which could act by limitation of 

metabolic energy available for the physiological and biochemical processes important in 

determining the rate of food digestion and assimilation. 

Fletcher ( 1982) stated that Limanda limanda was limited by the level to which it 

could elevate its oxygen uptake after a meal. The Atlantic cod, G. morhua was also 

limited in post-prandial oxygen uptake as their rates of oxygen consumption actually 

exceeded (for a time) the level of active metabolism (Soofiani and Priede, 1985). 

Although the SDA of both P. p/atessa (Jobling, 1981 a) and K. sandvicensis (Muir and 

Niimi, 1972) occupied approximately 50% of the scope for activity, the oxygen uptake 

was still also limited because the peak level in SDA did not increase with meal size. 

Therefore, the limitations to post-feeding oxygen uptake in fish seem to be of two types. 

Those species whose uptake is limited because much of the available metabolic scope is 
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occupied by SDA (e.g. G. morhua), and those where the level of SDA does not increase 

above a certain level, though that level may not necessarily be equal or close to the active 

metabolic rate (e.g. P. platessa, K. sandvicensis). On the basis of this study, dogfish may 

be more similar in physiological strategy to G. morhua. In addition Vahl and Davenport 

(1979) demonstrated for Blennius pholis (Lipophrys pholis) that the difference between 

routine and active metabolism was of the same magnitude as maximum SDA and that this 

would influence food intake. In a similar manner, I suggest that the SDA of dogfish could 

limit further food intake, though only by perhaps indirect means, when the fish have other 

physiological demands in addition to SDA. 

For adult dogfish the SDA magnitude increased as the meal size consumed also 

increased. In addition, the peak levels of SDA were of the same magnitude as the peak 

metabolic rates resulting from continuous swimming activity. Thus, the rate of food 

processing (digestion, absorption and assimilation) might become limited by the available 

oxygen that was not required for activity or basal metabolism. If the dogfish were active 

during the processing of a meal (as could be likely in the wild), then the oxygen demand 

from locomotor muscles and SDA could potentially exceed the uppermost level of aerobic 

metabolism. Jobling ( 1981 a) suggested a possible way in which this situation could result 

in a lowering in food processing rates. If digestion and absorption of nutrients from the 

high ration levels proceeds unchanged at high levels of activity without further processing, 

the blood would accumulate metabolites, such as free amino acids perhaps above the 

maximum carrying capacity and a toxic effect may result. The latter author postulated that 

to avoid the "toxic" effect, the rate of food processing would be slowed by shunting blood 

away from the gut. In support of this, reductions in gastric evacuation rate have been 

observed at high levels of activity (Tyler, 1977). Contrastingly, the gastrointestinal 

motility of humans has to be shown to actually increase during moderate exercise 
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(Christiansen, 1991 citing Keeling et a/, 1990). 

Additional locomotor activity could lead to reductions in the rate of food 

processing as the magnitude of feeding metabolism matches active metabolism. It is 

interesting to note that in dogfish the rhythmicity of activity during the night followed by 

inactivity during daylight hours was maintained when they had been deprived of food for 

some days. Reductions in bouts of activity during the night might therefore be expected 

after large or multiple meals as the oxygen available for activity becomes more limiting. 

It was noted for dogfish that activity was often depressed compared to normal rates during 

the 24 hours following the consumption of the largest meals. Similarly, the scope for 

activity of B. pholis (L. pholis) was seen to become greatly reduced (by as much as 60%) 

following feeding. In the wild a similar strategy may occur in dogfish. Cumulative SDA 

from multiple meals (Fietcher, 1984) and the low incidence of empty stomachs of wild 

dogfish (Lyle, 1983) indicates that activity might be reduced so the processing rate of 

meals could be maintained at an optimum. Recent work on lemon sharks, N. brevirostris 

showed that these sharks were as efficient at absorbing nutrients from ingested meals as 

teleosts (Wetherbee and Gruber, 1993), so short-term reductions in dogfish activity after 

feeding may occur in order to maintain rather more rapid (and ideally, just as efficient) 

meal processing rates. However, the SDA of juvenile dogfish at high ration levels ( 13% 

wbw) was no greater than at lower feeding levels. This low SDA magnitude could 

represent a physiological strategy whereby scope for aerobic activity is maintained without 

lowering the rate of meal processing at the higher meal intake. Information of gastric 

evacuation rates of juvenile dogfish would be useful to provide a physiological basis for 

this possible strategy. 

In dogfish, I suggest that SDA could affect short-term appetite regulation if dogfish 

were active after meal consumption and this high oxygen demand could cause the rates 
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of food processing to become prolonged. If rates of absorption and assimilation were 

slowed then the rate of intestinal evacuation may also be reduced. From previous chapters 

of this thesis (cf chapters 11, III and IV) it has been proposed that appetite regulation is 

maintained in a direct fashion by food bulk dependent mechanisms controlling the pattern 

of gastric emptying, with possible feedback signals (from mechanoreceptors?) perhaps 

modifying that pattern by detection of intestinal fullness. The SDA effect may influence 

the gastric emptying pattern and therefore appetite, albeit indirectly, by further modifying 

rates of meal processing when the animal's metabolic demands exceed the scope for 

activity. The mechanisms by which meal processing rates could be monitored are not 

known in fish, but certain receptors capable of detecting the presence and concentration 

of nutrient metabolites in the blood could perhaps modify the degree of motility of the gut 

by efferent nervous and hormonal stimulation of the gut musculature. The physiological 

regulation of appetite in dogfish would therefore appear to be a multifactorial process with 

feedback loops connecting the rates of metabolism, gastric and intestinal fullness and food 

consumption. 

209 



CHAPTER SIX 

PLASMA METABOLITES AND APPETITE CONTROL: 

A PRELIMINARY STUDY 

6.1 INTRODUCTION 

The role of plasma metabolites in the regulation of appetite has been well studied in 

higher vertebrates, but little research has been directed towards fish. In mammals, plasma 

metabolites (also termed plasma nutrients) such as glucose, free fatty acids, glycerol and 

amino acids have all been shown to play some role in modifying food intake (Fietcher, 

1984). The degree to which they influence appetite has been shown to be largely 

dependent on the post-prandial concentration of those nutrients in the plasma. Whilst the 

biochemical conceptualization of the effects of plasma nutrients in food intake regulation 

remain vague, it is generally supposed that levels of plasma nutrients are in some way 

recognised, quantified and continually monitored in organs such as the brain or liver 

(Booth, 1979). It is clear that an animal must obtain a physiological perception of the 

levels of circulating metabolites in order for compensatory physiological changes to occur 

in the rates of food absorption and in the mobilization of existing energy stores. The 

existence of such systems of post-absorptive control of satiety can be appreciated in higher 

vertebrates from the evidence that they can closely regulate the carrying capacity of 

metabolites in the blood by hormonal action (Stryer, 1988; Mathews and Van Holde, 

1990). 

Much of the higher vertebrate research on plasma metabolites and appetite control 

has centred on carbohydrate metabolism and the dynamics of glucose utilisation in 

response to infusion of polypeptide hormones such as insulin (Anika et a/, 1980; Morley 
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and Flood, 1991) and neuropeptides (Inui et a/, 1991; Kalra et a/, 1991). Infusions of 

plasma metabolites into the bodies of animals have elucidated the possible effects some 

nutrients may have on feeding behaviour when they were in excess in the blood (Booth, 

1979). Administration of carbohydrate and food-derived glucose by oral, intragastric, 

duodenal, portal and jugular methods have all induced satiety in mammals (Fletcher, 

1984), and thereby the plasma concentration of these nutrients have been regarded as of 

prime importance in feeding control in omnivorous higher vertebrates. The mammalian 

investigations reviewed by Fletcher suggests the animal can detect the level of circulating 

plasma glucose and that maximally deviated concentrations can lead to the induction of 

satiety. 

Equal importance of glucose in the systemic regulation of food intake in 

carnivorous animals (including fish) may perhaps be unlikely however, considering the 

difference in natural diets of the two animal groups. The metabolism of omnivores is 

dominated by the utilization of carbohydrate, as their natural diet probably contains 

sufficient amounts to satisfy the needs of the whole animal (Cowey et a/, 1977a). In 

contrast, the diet of carnivores will contain little carbohydrate and it has been widely 

demonstrated that cultured fish require high protein diets for optimal growth (Cowey et 

a/, 1977a), with complex carbohydrates being poorly assimilated by fish (Cowey and 

Walton, 1989). 

The wild diet of fish will contain little carbohydrate and so teleologically these fish 

might not be expected to have evolved efficient mechanisms to deal with dietary 

carbohydrates (Hilton and Atkinson, 1982). Indeed some investigations on fish have 

demonstrated that glucose is respired much less rapidly than in rats or mice (Cowey et a/, 

1975), that fish have a limited ability to efficiently adapt to increases in dietary 

carbohydrate (Hilton and Atkinson, 1982) and that fish exert fine metabolic control of 
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gluconeogenesis in contrast with their inability to regulate blood glucose level (Cowey et 

al, 1977b). In addition, fish do not demonstrate any adaptive capacity to regulate post­

prandial glycemia levels when fed for long periods on carbohydrate rich diets (Kaushik 

et a/, 1989). Hence, poor metabolic control of blood glucose in fish resulting in low 

glucose tolerance (Patent, 1970) questions the extent to which plasma glucose level 

contributes to appetite regulation in fish. 

Notwithstanding the teleologic approach to understanding the possible role of 

plasma nutrients in food intake control in fish, various studies have measured plasma 

glucose before and after feeding. However the investigations are often contradictory giving 

evidence that post-prandial fluctuations in plasma glucose may or may not influence 

further food consumption (Bellamy, 1968; Gwyther, 1978 cited in Fletcher, 1984; Peter, 

1979; Fletcher, 1982). The motive for undertaking these investigations perhaps comes 

from research on higher vertebrates, where close control of glucose metabolism has been 

shown by rapid secretion of insulin and glucagon by the pancreatic P-cells and a-cells 

respectively, to counter imbalances in blood glucose concentration. The importance of 

glucose in appetite regulation of higher vertebrates has been clearly demonstrated (Peter, 

1979; Stryer, 1988). The purpose of other studies on plasma metabolites in teleost and 

elasmobranch fish have been more fundamental in their approach, in that they have been 

undertaken to further understand the biochemistry of intermediary metabolism (Zammit 

and Newsholme, 1979) in relation to nutrition and enhancement of fish growth (Cowey 

et a/, 1975; Cowey et a/, 1977a,b; Hilton and Atkinson, 1982). Plasma glucose acting as 

a possible satiety factor has not been studied in elasmobranchs directly, though some 

indirect (and contradictory) measurements have been made recently pertaining to seasonal 

variation in glucose levels (Gutierrez et a/, 1988; DeRoos, 1994). 

The preferential use of protein over carbohydrate as a dietary energy source in the 
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metabolism of fish has meant the role of amino acids as possible satiety factors have also 

been investigated (Fietcher, 1984 ). The post-prandial profile of amino acids in circulating 

blood have been shown to reflect the dietary levels and in addition serial deletion of each 

of the ten essential amino acids from diets has been reported to lead to loss of appetite 

(Fietcher, 1984) and growth (Tacon and Cowey, 1985). Despite these observations the role 

of amino acids in appetite regulation in fish remains unclear. 

The liver of higher vertebrates itself is known to be able to respond to high levels 

of plasma glucose by increasing phosphorylation and glycogenesis, which provides 

evidence that the liver can detect the 'fed' state (Mathews and Van Holde, 1990). As has 

already been stated, the importance of plasma glucose in the food intake control of fish 

is unclear, hence further research in fish should perhaps centre on the post-prandial level 

of metabolites derived from lipids and proteins. These macronutrients are present in large 

quantities in the natural diet of fish and so may potentially exert greater metabolic effect 

on appetitive status than carbohydrate derived metabolites. 

The liver is an important organ for regulating circulating plasma nutrients as most 

breakdown products from digestion are taken up by the liver for processing and it is in 

the liver that fuel components are synthesised for utilization by other organs (Mathews 

and Van Holde, 1990). Clearly the liver is important for the storage and mobilization of 

fuel molecules and its role in the regulation of plasma metabolites, together with the 

relative importance of the stored lipid fractions arising from dietary sources can be 

appreciated from studies of starvation in fish. In recent studies the metabolic response of 

elasmobranch fish to starvation has been generally to maintain the supply of glucose to 

the tissues that are absolutely dependent on this fuel and preserve protein by shifting the 

metabolic fuel from glucose to fatty acids and ketone bodies (Zammit and Newsholme, 

1979; DeRoos et al, 1985; DeRoos, 1994). In addition, the stored lipid in elasmobranchs 
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is concentrated in a single organ, the liver and can account for up to 70% of the wet liver 

weight in some species (Patent, 1970). Clearly the hepatic source of lipid is of major 

physiological importance to the animal. Thus, the role of metabolites derived from lipid 

could be central to the animal's physiological perception of its biochemical nutritional 

status by the metabolites functioning as systemic satiety signals. It is not known exactly 

which plasma metabolites influence appetite (if not all of them) as few studies have been 

undertaken which attempt to measure the concentrations of plasma nutrients before and 

after a meal. 

The purpose of the preliminary investigation was to measure four plasma 

metabolites before and after feeding and during the period of appetite return. From any 

observed post-prandial changes in metabolite level it was hoped to assess what 

contribution these systemic factors may have in appetite regulation in sharks. 
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6.2 MATERIALS AND METHODS 

6.2.1 Blood Sampling 

Twenty adult dogfish (mean weight 697.5 ± 23.0g) were kept in aquaria for six months 

before any blood samples were taken. During this time the animals were used in other 

experiments concerned with gastrointestinal evacuation. When these investigations were 

not in progress the dogfish were fed maintenance rations. Before blood sampling the 

dogfish were deprived of food for 14 days to make sure the gastrointestinal tract was 

empty of food from previous meals. Three days before the fish were fed, blood was taken 

from three of the tagged fish. After the 14 days starvation, pellets of high energy diet 

(formulation given in section 3.2.1) were given to the dogfish such that each fish was 

assumed to have eaten 7% wbw. Immediately following the cessation of feeding, blood 

samples were taken from three of the dogfish. After 24 hours post-feeding blood was 

removed from another four fish. This was repeated with four other fish at 72 hours, and 

again blood was serially removed from three different individuals each at 120, 192 and 

288 h. No individual dogfish was sampled more than once during the entire trial. 

Samples of blood from each dogfish were taken while the unanaesthetised fish 

were held firmly down with their ventral surface uppermost. Some 5 ml syringes fitted 

with sterile hypodermic needles (21 gauge) were used to extract the blood from each fish 

and were pre-heparinised according to Rowley ( 1990) (heparin in phosphate buffered 

saline, I 0-20 units ml· 1
, Si gm a Chemical Co. Ltd., Poole, Dorset, U.K.). For each dogfish 

the needle was pushed into the musculature, in the mid ventral line immediately caudad 

to the anal fin as far as the vertebral column. When the needle reached the vertebrae it 

was retracted slightly and a steady vacuum in the syringe was maintained by carefully 

pulling out the syringe plunger until blood entered. This constant pressure was maintained 
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until the 5 ml syringe was full. The blood from each fish sampled was decanted into 3 

Eppendorf tubes and centrifuged for 5 minutes at 6400 rpm to obtain the plasma. The 

clear supematant was carefully pipetted from each tube into a clean, labelled tube and 

kept frozen at -25"C for 2 days until the plasma was analyzed. 

6.2.2 Measun~menls of Plasma Metabolites 

6.2.2.1 Glucose 

Glucose reagents (Sigma Diagnostics, Sigma Chemical Co. Ltd., Poole, Dorset, 

U.K.) were used for the quantitative enzymatic determination of glucose in plasma. The 

procedure used is given in Si gm a Diagnostics pamphlet No. 5 I 0. 

The frozen plasma samples from each dogfish at each time interval were thawed 

at room temperature. Stoppered 5 ml plastic tubes were labelled and 1.8 ml of deionised 

water was added to each. Into five of these tubes 0.2 ml of deionised water was added 

(blanks) whilst 0.2 ml of a glucose standard (27. 78 m mol 1·1 P-glucose in benzoic acid 

solution) was added to each of twelve replicate tubes. Dogfish plasma (0.2 ml) was added 

to the remaining labelled tubes, there being 5 tube replicates per fish. All stoppered tubes 

were mixed by gentle swirling. 

The plasma in each test sample was de-proteinised with a combination of sodium 

hydroxide and zinc sulphate solution. All the tubes were well mixed by shaking and 

subsequently centrifuged for 5 minutes at 6400 rpm. The clear supernatant from each tube 

(0.5 ml) was removed carefully and transferred to a set of clean labelled tubes. 

A solution of o-dianisidine dihydrochloride (colour reagent) was mixed with a 

preparation of glucose oxidase and peroxidase (horseradish) in buffer salts and 5 ml of 

this combined enzyme-colour reagent was added to each tube. All tubes were incubated 

at 37oC for 30 minutes in a covered water bath to avoid exposure of the tubes to direct 
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sunlight. 

The absorbances (A) of the solutions from each tube were read at 442 nm with the 

blank as reference, on a Cecil Instruments Series 5000 double-beam spectrophotometer. 

The wavelength of 442 nm was selected by scanning in the range 400-500 nm for the 

absorbance peak (A..,.,.) of the glucose standard solutions. All readings were completed 

within 30 minutes. 

The concentration of glucose was calculated in the following way, 

Plasma glucose (mmol 1' 1) = A.est-x 27.78 mmol 1'1 

Aslandard 

6.2.2.2 Pymvate 

Pyruvate reagents (Sigma Diagnostics as before) were used in the quantitative 

enzymatic determination of pyruvate in plasma at 340 nm. The procedure utilised lactate 

dehydrogenase catalysis of the conversion of pyruvate to lactate with the oxidation of 

nicotinamide adenine dinucleotide H (NADH) to NAD. The reduction of absorbance at 

340 nm due to the oxidation becomes a measure of the amount of pyruvate originally 

present. 

Individual samples of dogfish plasma at each time interval were deproteinised with 

cold 8% perchloric acid and decanted into centrifuge tubes and vortex mixed for 

approximately 30 seconds. As before, there were five replicate tubes per fish plasma 

sample. These samples were centrifuged at 1500g for 30 mins. Aliquots of the clear 

supematant were pipetted into 2 ml cuvettes and equal volumes of Trizma base solution 

(Sigma Chemicals) and NADH solution were added to each cuvette. The contents were 

mixed by inversion. The initial absorbance of each sample was taken at 340 nm versus 

water as reference. Then 0.05 ml of lactate dehydrogenase was quickly added to each 

cuvette and were then mixed by inversion several times. After 5 minutes the final 
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absorbances were read and the concentration of pyruvate in plasma was calculated thus, 

Pyruvate (mmol 1"1
) = (Initial Absorbance- Final Absorbance) x 0.723 mmol 1" 1* 

*conversion factor from the Sigma pamphlet no. 726-UV. 

6.2.2.3 T•;glyce,;des 

Triglyceride reagent (INT) was used in the quantitative enzymatic determination 

of triglycerides in plasma at 500 nm. The active constituents of the triglyceride reagent 

are given in Sigma Diagnostics pamphlet No. 336. 

Triglyceride reagent (I ml) was added to five replicate stoppered tubes for each 

dogfish sampled at each time interval. Deionised water and triglyceride calibrator (0.01 

ml) were added to tubes marked blank and standard respectively, whilst 0.01 ml of plasma 

was pi petted into each of the sample tubes. The contents of the tubes were well mixed by 

gentle inversions and then incubated in a 30°C water bath for 15 minutes. The absorbance 

of each solution was read at 500 nm against water as the reference. The concentrations 

of triglycerides were calculated in the following manner, 

Triglycerides (mmol 1" 1
) = A..st---=---A~Ionk- X 2.83 mmol 1'1t 

Acalibralor - Ablank 

tconversion factor from Sigma pamphlet no. 336 

6.2.2.4 Total Plasma Protein 

Sigma Diagnostics Total Protein Reagent (TPR) was used for the quantitative 

colourimetric determination of total protein concentration in plasma at 540 nm. The active 

ingredients of TPR are given in the pamphlet No. 541. 

Into stoppered tubes labelled blank, standard and test samples was added I ml of 

TPR followed by 0.02 ml aliquots of deionised water, serial dilutions of bovine serum 

albumin (BSA) stock solution and dogfish plasma respectively. The tubes were incubated 
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for I 0 minutes at ambient temperature and the absorbances of the solution were read at 

540 nm versus the reagent blank as reference. 

The procedure was calibrated against absorbances of serial dilutions of a BSA 

stock solution and a linear regression with a coefficient (r2
} of 0.98 was obtained. From 

this relationship the concentration of total plasma protein in dogfish was calculated thus, 

Total plasma protein (mg ml. 1
) = 1.4 + 190.3 x A540 

6.2.3 Statistical Analysis 

The post-prandial variations in plasma metabolites were analyzed by one-way analysis of 

variance (ANOV A) and the within and between group variability compared by means of 

Duncan's multiple range test (Duncan, 1955). 
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6.3 RESULTS 

6.3.1 Glucose and Pymvate 

Figure 30 shows the traces in plasma glucose and pyruvate before and after a meal of 7% 

wbw. The concentration of glucose in dogfish plasma showed a sharp decline during the 

first 24 hours following the meal, before slowly increasing until 120 h, followed by a 

subsequent decrease from then to 288 h post-feeding. The range of these fluctuations was 

about 0.1 mmol 1· 1 which represented a 30% reduction in glucose concentration from the 

highest levels. Although these trends in glucose concentration were evident, none of the 

levels of plasma glucose were statistically of significant difference (P<O.OS). The error 

bars representing the standard error of the mean were quite large for each plasma glucose 

determination at each time interval, indicating some variability in plasma glucose 

concentration between individual fish. Thus we can conclude that despite fluctuations in 

plasma glucose concentration after food consumption the level generally remained constant 

for the post-prandial duration. 

The plasma pyruvate concentration remained constant preceding food consumption, 

but decreased significantly after feeding to about half the prefeeding level. From 24 to 72 

hours the pyruvate concentration stayed the same before decreasing further to about 25% 

of the initial prefeeding concentrations where it remained. In contrast to the standard error 

bars of the plasma glucose determinations, there were small variations in pyruvate levels 

between individual dogfish within each time interval. 

6.3.2 T•;glyce•;des and Total Pmtein 

The plasma concentration of triglycerides and total protein fluctuated in a very similar 

manner (figure 31 ). The level of triglycerides was constant during the 72 hours preceding 
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Figul'e 30. The concentration in adult S. canicula blood plasma of glucose (11) and 

pyruvate (D) before and after consumption of a 7% wbw meal. The dogfish were fed at 

time zero (t=O). The bars represent ± I standard error of the mean. Numbers denote the 

significant difference between groups at the 5% level. Group means that share the same 

number are not significantly different. 
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FigUJ-e 31. Changes in adult dogfish blood plasma triglycerides (upper panel) and total 

protein (lower panel) concentrations before and after a meal of 7% wbw. Remainder of 

caption same as that of figure 30. 
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food consumption, but after feeding the plasma triglycerides increased over the next 72 

hours to approximately double the levels after 12 days starvation. From 72 to 120 h the 

concentration of plasma triglycerides decreased to normal prefeeding levels where they 

remained, though there was a general decrease from then until 288 h but this trend was 

not statistically significant. 

Total protein concentration in dogfish plasma was higher immediately after feeding 

(P<O.OOO 1) than the levels measured 72 hours previously (figure 31) and continued to 

increase during the first 24 h after food consumption. The highest concentrations in total 

plasma protein were maintained from 24 to 72 hours and were approximately a third 

greater than the levels obtained 72 h preceding feeding. From 72 to 192 h post-feeding 

the protein concentrations decreased to the levels that had been measured three days 

before the dogfish were fed. 
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6.4 DISCUSSION 

The results of this preliminary study demonstrated that following consumption of a 7% 

wbw meal of HE diet the plasma glucose concentration of adult dogfish did not change 

appreciably and remained fairly constant at the pre-feeding levels. Additionally, the 

plasma pyruvate concentration gradually decreased after feeding in contrast to the plasma 

levels of triglycerides and total protein which rose to a maximum before returning to 

prefeeding levels. 

The plasma glucose level of dogfish in this study fluctuated within narrow bounds 

(0.19-0.30 mmol 1"1
) over a IS day period. In an earlier study Gutierrez et a/ (1988) 

determined plasma glucose concentrations of adultS. canicu/a on ten occasions throughout 

the year. The glucose levels they measured were somewhat higher than those of this 

investigation, ranging from 0.4-1.0 mmoiJ·'. All the experiments in the current work were 

undertaken on dogfish kept in seawater at or just below IS"C, whereas in their study the 

seawater was not maintained at a constant temperature and oscillated between IS and 

21.5"C depending on season. The plasma glucose level in little skates, Raja erinacea had 

been shown to increase by ISO% when the water temperature was raised from 13.5 to 

25"C (Grant and Simon, 1965). Therefore the glucose concentrations obtained in the study 

of Gutierrez et a/ ( 1988) may have been elevated above those found in the present work 

due to the dogfish being held in seawater that was generally at a higher temperature and 

was also variable. However, considerably higher glucose levels were measured in a group 

of spurdogs, Squalus acanthias (from 1.8-2.5 mmol 1" 1
) over a period of nine days in 

seawater kept at 12-14"C (DeRoos et a/, 1985). Although the spurdogs were kept at lower 

temperatures than our dogfish, the elevations in plasma glucos~ level could be due to 

greater metabolic activity in S. acalllhias compared to S. canicula as previous studies have 
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shown that glycaemia can be dependent to some degree on the activity of the animals in 

question (Biasco et a/, 1992). The spurdog is generally described as an active species 

which swims constantly at a steady pace and is able to capture fast-swimming fish prey, 

e.g. Clupea harengus (Jones and Geen, 1977; Compagno, 1984a). In contrast, the dogfish 

is a bottom dwelling shark that will remain quiescent for long periods (this study; 

Compagno, 1984b). Greater muscle activity, characteristic of a more active species might 

result in greater metabolic demand for glucose and possibly greater turnover of lactate, 

which is a substrate for the recycling of glucose in a glucose synthesis pathway 

(gluconeogenesis). Thus, it might be expected that the concentration of plasma glucose 

may be higher at any one time in the systemic circulation of an individual spurdog than 

those measured in the more sluggish dogfish. By comparison to recent studies it would 

appear that the range of plasma glucose concentrations in dogfish in this study is narrower 

and fixed at a lower level. Despite this, the glucose levels of dogfish here, may be lower 

compared to other studies due to generally lower seawater temperature which did not 

fluctuate, combined with the characteristically inactive nature of the species. 

The level of plasma glucose in adult dogfish was not significantly different before 

or after being fed a 7% wbw meal. Although the concentrations fluctuated they remained 

at a significantly steady level throughout the I 5 day trial. Other studies on fish have noted 

that the plasma glucose level increased immediately after feeding (Rooseve/tiella naffereri, 

Bell amy, 1968; Squalus acanthias, Patent, 1970; Salmo gairdneri (Oncorhynchus mykiss), 

Cowey et a/, 1977b ), though in two of the investigations this was due to intra-arterial 

injection of glucose and being fed diets high in carbohydrates. Most studies of 

elasmobranch blood glucose levels have shown that the concentration remains relatively 

constant after feeding and also during starvation. Grant et a/ (1969) did not record any 

significant changes in plasma glucose in three species of ray (R. erinacea, Raja oscillata 
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and Raja /aevis) after feeding or during the subsequent 40 days of starvation. Relatively 

uniform levels of plasma glucose were recorded inS. acanthias after 3 to 8, 9 and 20, and 

29 days of starvation (DeRoos et a/, 1985; DeRoos, 1994). In plaice, Pleuronecles 

platessa, Cowey et a/ (1975) showed there were no marked effects on plasma glucose 

level, even when glucose and dextrin were in the food given to the fish. The HE diet 

consumed by the dogfish in the current study did not contain any carbohydrate, so perhaps 

no post-prandial increases in plasma glucose would be expected. Despite this, the fact the 

plasma glucose concentration of the dogfish remained unchanged for 12 days following 

feeding suggests the dogfish were able to maintain plasma glucose levels over this period. 

These observations are in agreement with the other studies that have measured plasma 

glucose concentrations in sharks and rays both after feeding and during the course of 

starvation. 

Even though the plasma glucose levels in dogfish were not statistically significant 

there was an indication of a slight decrease soon after feeding and again towards the end 

of the sampling period. Slight decreases in glucose were also noted soon after feeding in 

R. erinacea, but as in the case of dogfish, were not of statistical significance (Grant et a/, 

1969). In addition, downward trends in plasma glucose level were measured in Sa/mo 

tntllajario after eight days starvation, when during the initial eight days the glucose level 

had been maintained (Navarro et a/, 1992). Similar measurements were made by Blasco 

et a/ (1992) working on Cyprinus cat]Jio after 67 days starvation. It was suggested by 

these authors that the fish had a greater dependence on the process of gluconeogenesis to 

provide glucose for essential metabolism rather than utilize stored glycogen in the latter 

stages of starvation. They reasoned that rapid utilisation of glucose produced from the 

gluconeogenic pathway and exceeding the rate of turnover, could lead to slight decreases 

in plasma glucose levels. It is possible that progressive necessity for activation of 
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gluconeogenesis was in operation in dogfish and a significant decrease may have occurred 

if measurements of plasma glucose could have been taken after 288 hours. 

The constant plasma glucose concentrations measured before and after feeding in 

dogfish suggest that plasma glucose may not be of prime importance in the short-term 

regulation of appetite. The consistent levels of plasma glucose during feeding and over 

the time of digestion, absorption and meal assimilation indicated the fish were 

manufacturing glucose via gluconeogenesis or mobilizing stored glucose by 

glycogenolysis. During starvation the glycogen in the liver of C. cw·pio actually increased, 

while the blood glucose levels fluctuated quite widely (3.2-6.6 mmoll- 1
) (Nagai and Ikeda, 

1971, cited in Cowey e1 a/, 1977b ). From this it was concluded that glycogen was not 

serving as an immediate glucose source, that there was a very low flux between glycogen 

and glucose and gluconeogenesis was operating to meet demand. Other studies on teleost 

fish have shown that liver glycogen stores are protected by an increase in gluconeogenesis 

(Cowey et a!, 1977b; Blasco et a/, 1992; Navarro et a!, 1992). Indeed, Cowey et a/ 

(1977b) noted the inability of trout to control blood glucose concentration was partly due 

to lack of glucose phosphorylating capacity. They also demonstrated that regulatory 

control over gluconeogenesis was important in trout because the rate and extent of release 

of glucose from the liver by glycogenolysis was very slow. 

The concentration of plasma pyruvate was uniform before feeding, but rapidly 

decreased soon after food consumption where it stabilised at a lower level. The reduction 

in plasma pyruvate concentration could indicate progressive activation of the 

gluconeogenic pathway in dogfish of this study. Glucose and pyruvate are inextricably 

linked in the biochemical processes of glycolysis and gluconeogenesis, glucose being 

catabolised in the cytosol of cells whilst pyruvate is converted to glucose (from substrates 

such as serine and alanine) in the liver. (It should be noted that amino acids contribute the 
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majority of carbon to glucose in fish (Moon et a/, 1985).) Although the two pathways are 

recipricolly regulated, one pathway is not a simple biochemical reversal of the other 

(Stryer, 1988). Therefore, in the context of the present investigation, a lowering in plasma 

pyruvate levels, together with maintenance of plasma glucose may indicate that pyruvate 

was being rapidly utilized and there was biochemical predominance in the gluconeogenic 

pathway. Another study on an elasmobranch (R. erinacea) suggested overall decreases in 

metabolite level could be explained partly by increased utilization rates exceeding rates 

of production (Grant et a/, 1969). It is not possible to conclude which biochemical 

pathways for plasma glucose maintenance were predominating in dogfish without 

measurements of liver glycogen levels, in addition to gluconeogenic and glycogenolytic 

enzyme activity during the process of appetite return. 

With regard to the literature available on glucose metabolism and regulation m 

teleosts, it is clear that blood glucose levels are not well controlled. The enzyme 

glucokinase, which provides glucose-6-phosphate to promote the storage of glucose as 

glycogen has been shown to be absent in rainbow trout, thus reducing the phosphorylating 

capacity of the animal (Cowey et a/, 1975). The present investigation showed that plasma 

glucose concentration remained quite uniform during the appetite return. The maintenance 

in plasma glucose level may have been brought about by the gluconeogenic pathway, 

which in contrast to glycogenesis is quite finely controlled in fish (Cowey et a/, 1975; 

Cowey et a/, 1977a; Cowey et a/, 1977b ). If gluconeogenesis were not operating in 

dogfish to maintain the level of plasma glucose (as no carbohydrate was available from 

the diet), then the fluctuations in glucose concentration would have been expected to be 

much greater than actually were observed. For plasma glucose to act as a satiety factor, 

the level would be expected to change as the time after initial feeding increased, and 

therefore have the potential to act as an instantaneously changing biochemical signal to 
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bring about the return to appetite. The constant glucose levels observed after feeding and 

during the appetite return in dogfish indicate that glucose concentration in plasma may not 

act directly as a satiety factor. It is not easy to understand how a constant background 

concentration of plasma glucose, that is produced to satisfy the animal's direct metabolic 

needs and seemingly unrelated to food consumption, could induce the changes in feeding 

behaviour brought about by satiety and consequently return of appetite. 

The appetite of grouped piranhas, R. natlereri was greatest when the plasma 

glucose concentrations were decreasing to their minimum (Bellamy, 1968). That author 

stated that blood glucose was a sensitive indicator of food intake and postulated that the 

fish's metabolic processes were related to feeding periodicity. Clearly, metabolic processes 

are quite likely to be related to the return of appetite and Bellamy's statement is not to be 

doubted, but other studies on teleosts do not support the latter authors conclusions that 

blood glucose concentration could indicate appetitive status. In agreement with the present 

dogfish investigation, Gwyther ( 1978, cited in Fletcher, 1984) showed for Limanda 

limanda that plasma glucose did not fluctuate post-prandially and was not therefore 

relevant in the control of food intake. Additionally Fletcher ( 1982) demonstrated that L. 

limanda would still consume food even when plasma glucose was maximally deviated 

from pre-feeding levels. Taking into account the constant post-feeding amounts of glucose 

in plasma of dogfish and the agreement of these observations with other studies on 

teleosts and elasmobranchs, it is not easy to contemplate the role of plasma glucose in the 

systemic control of appetite being anything but of minor importance. After all, the natural 

prey of dogfish is unlikely to contain much carbohydrate (at least probably not enough to 

satisfy the animals needs) and so teleologically these fish would not rely on plasma 

glucose to exert an important metabolic contribution to appetite regulation. Thus, it is my 

suggestion that plasma glucose is of little importance as a systemic satiety signal in the 
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multifactorial control of food intake. 

In contrast to plasma glucose, the plasma concentrations of triglycerides and 

protein changed during the period of appetite return in a manner that could suggest close 

involvement with the post-prandial metabolic processes of food intake control. The profile 

of each metabolite after feeding was similar in that there was an initial increase (within 

72 h) before concentrations returned to prefeeding levels. These results suggest that levels 

of both dietary lipid derived metabolites and protein in the plasma must be quite finely 

controlled and thus perhaps of some importance in post-prandial metabolism. 

Plasma total protein showed similar trends in concentration profile to triglycerides. 

It was not possible to distinguish from the crude estimations in the current work what 

proportion of the protein measured resulted from de mll'o protein synthesis in the plasma 

from absorbed dietary amino acids or from liver secreted albumin whose function would 

be to solubilize non-esterified fatty acids. It is likely that both sources were measured, 

hence it is difficult to speculate the importance of protein in appetite return. Fletcher 

( 1984) stated that appetite regulation based upon plasma levels of amino acids would 

entail complicated biochemical mechanisms of recognition. The importance of amino acids 

in appetite control could however be based upon their deamination and transamination into 

a-keto acids, the carbon skeletons that emerge in major intermediary metabolic pathways. 

The carbon skeletons of twenty amino acids are termed either ketogenic, if they give rise 

to ketone bodies (via acetyl Co A) or glucogenic, if they give rise to intermediates 

involved in glucose pathways (Stryer, 1988). Thus, the fate of the ketogenic amino acid 

carbon skeletons in elasmobranch metabolism may play significant roles as biochemical 

satiety signals in fish that preferentially metabolize protein and lipids over carbohydrate. 

Triglycerides or triacylglycerols are uncharged esters of glycerol and the mode of 

storage for fatty acid fuel molecules (Stryer, 1988). The pre-feeding levels oftriglycerides 
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(after 14 days starvation) in S. canicula were maintained at around 0.8 mmol 1·• plasma 

whilst the maximum level after feeding was approximately 1.5 mmol 1·'. Zammit and 

Newsholme (1979) (who also worked in Plymouth) found the mean concentration of 

plasma triglycerides to be 0.85 mmol J·' (range 0.6-1.0 mmol 1"1
) in S. canicula, but 

somewhat lower (0.39 mmol 1"1
) in Squa/us acanthias. The value they obtained for S. 

canicula is in good agreement with the pre-feeding triglyceride concentrations found in 

the current work. The latter authors measured the plasma triglycerides and protein 

concentration in some teleosts (Dicentrachus lahmr, Mu/Ius sum111letus and Scomber 

scombms) and it appears these levels were about two to three times lower in 

elasmobranchs by comparison. 

The post-prandial increases in plasma triglycerides and protein were clearly the 

product of digestion and absorption of the HE diet, which consisted of approximately SO% 

protein and 8% marine oil on a dry matter basis. Therefore the marked increases in these 

metabolites after feeding would be expected, but what was of most interest was the way 

in which the post-prandial increase and subsequent decrease to normal concentrations took 

place within the time period of gastrointestinal evacuation of the meal and the 

accompanying appetite return (i.e. within about 288 h). Therefore it would appear that the 

plasma concentrations of protein and triglycerides are quite closely regulated during the 

period of appetite return of dogfish. 

In their reviews of the chemical influences on feeding behaviour, Booth (1979) and 

Fletcher (1984) both note that plasma fatty acids (PF A) have very little direct effect on 

appetite, though they each stated that unlike PFA, plasma glycerol was proportional to the 

rate of triglyceride hydrolysis. These authors suggest that it is by means of the rate of 

triglyceride hydrolysis that the quantity of energy reserves of a normal (neither an obese 

or starved) animal could be monitored. The liver plays a central role in lipid based 
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metabolism and can itself respond to changes in plasma metabolites to maintain a balance 

by either mobilization of reserves or storage of nutrients (Mathews and Van Holde, 1990). 

Therefore the post-prandial pattern in plasma triglyceride concentration could act as an 

important indicator of physiological nutritional status. If the nutrient reserves are 

monitored in some way by detection of plasma triglyceride concentration, then the profile 

measured in dogfish in this study may provide useful evidence of a lipid derived basis to 

systemic regulation of appetite. However it is also evident that appetite return in dogfish 

was increasing even when the plasma triglyceride level was at its maximum. Hence, it 

may be equally likely that the concentration of lipid derived metabolites were not an 

altogether dominating factor in the multifactorial control of dogfish appetite. 

Recent investigations on sharks have emphasized the importance of lipid derived 

metabolites in the metabolic processes operating during starvation (Zammit and 

Newsholme, 1979; DeRoos et a/, 1985; DeRoos, 1990). The findings of these studies 

support the hypothesis that has been suggested here, that close control of lipid derived 

metabolites could be of prime importance in elasmobranchs' physiological perception of 

satiety and appetite (released as the behavioural response termed hunger). Zammit and 

Newsholme ( 1979) demonstrated that ketone bodies (13-hydroxybutyrate and acetoacetate) 

were the most important fat fuels in S. canicula regardless of whether the animals were 

starving or not. Ketone bodies are produced in the liver from acetyl Co A when fat 

breakdown predominates, are known to be normal fuels of respiration and are 

quantitatively important as sources of energy (Stryer, 1988). In comparison to 

elasmobranchs, ketone bodies may not be of equal importance as a fuel molecule in teleost 

metabolism during starvation (Zammit and Newsholme, 1979). Accordingly, DeRoos et 

a/ (1985) showed that ketone bodies were primary fuel molecules in the metabolism of 

Squalus acanthias. The level of plasma ketone bodies has been shown to increase with 
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increased food deprivation time (Zammit and Newsholme, 1979; DeRoos, 1994) and so 

may operate in some way as signals of the 'fed' state. Although ketone bodies were not 

measured in dogfish in the current study, one can speculate that lipid derived metabolites 

such as triglycerides and ketone bodies could be important as possible biochemical 

markers that signal the animal's physiological nutritional state. 

From this section of the present investigation it can be suggested that plasma 

glucose is unlikely to play a major role in the regulation of appetite in S. canicula as 

uniform levels were measured throughout the period of digestion and appetite return. In 

contrast plasma triglycerides and protein are likely to have much more important functions 

as systemic signals in appetite regulatory processes. Further work on the involvement of 

plasma metabolites in food intake control should centre on how the concentrations of 

ketone bodies and ketogenic amino acids change after food consumption and with the 

return of appetite. 
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CHAPTER SEVEN 

GENERAL DISCUSSION AND CONCLUSIONS 

Some aspects of digestive and systemic function were investigated in relation to the 

peripheral regulation of appetite (voluntary food intake) in juvenile and adult lesser 

spotted dogfish sharks, Scyliorhinus canicula. The results of the study generally showed 

that the rate of appetite return was probably dependent, to varying degrees, on a number 

of factors associated with gastrointestinal and metabolic processes. The peripheral 

mechanisms of gastrointestinal physiology and systemic metabolism have not been 

suggested previously as possible operating devices in the multifactorial control of appetite 

in an elasmobranch species. This study therefore represents the first attempt to identify 

the important factors in the regulation of shark appetite. 

The peripheral control of appetite in mammals has been known for some time to 

operate multifactorially (Novin and VanderWeele, 1977; Blundell and Latham, 1979; 

Booth, 1979). Some of the more comprehensive studies on appetite in teleosts have also 

indicated that a number of factors concerned with digestive and systemic function 

contribute to the overall short-term regulation of food intake (Oncorhynchus nerka, Brett, 

1971; Lepomis gibbosus, Colgan, 1973; Limanda limanda, Fletcher, 1982). However, few 

fish studies have produced a simplified model as a synthesis for defining the important 

elements in the regulation of appetite in a particular species. The models that have been 

constructed for teleosts have usually incorporated information from more than one species 

and from a variety of articles in the literature. In the tentative model proposed by Colgan 

(1973) to help explain the basis for motivational drive in fish, information on appetite 

regulation (N.B. Colgan defined this as hunger) was from his own studies on Lepomis 

gibbosus and to a large extent from the studies on Gasterosteus acu/eatus by Beukema 
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(1968) and Tugendhat (1963, cited in Colgan, 1973). In another generalized model on the 

control of food intake, Vahl (1979) put forward a hypothesis based upon the observations 

reported for Oncorhynchus kisulch (Averett, 1969, cited in Vahl, 1979), Kuhlia 

sandvicensis (Muir and Niimi, 1972), Salmo lnllla (EIIiott, 1972) and Oncorhynchus nerka 

(Brett, 1971). In Vahl's model a simplified flow-diagram was used to show the interaction 

of some of the factors that were explained in the text in mathematical form. Hence, I have 

used the general framework ofVahl's flowchart to illustrate and summarize the interaction 

of the different digestive and systemic processes that have been suggested in prevtous 

chapters of this thesis to influence the regulation of appetite in dogfish. 

Figure 32 illustrates an hypothesis for the regulatory pathways that contribute to 

the establishment of appetitive status in the shark, S. canicula. From the results presented 

in chapter 11, it was evident that appetite was indeed regulated to some degree by dogfish 

and that there was no appreciable lag phase in the rate of appetite return after food 

consumption. Even though the period over which appetite returned was quite prolonged 

(presumably as a consequence of lower rates of food processing and metabolism compared 

to more active fish species, chapter V), the return of appetite increased at a constant rate 

as deprivation time increased. Clearly, sharks do not always have the same level of 

appetite, this level being dependent on the time since consumption of the last meal. The 

appetite response of this shark appears to be under close control by a number of peripheral 

physiological factors. From the model (figure 32) it is suggested that relative stomach 

emptiness and the level of plasma triglycerides were the two main physiological factors 

directly involved in the manifestation of appetite in dogfish, whereas the other factors 

investigated in this thesis can be considered to act more indirectly. 

As in all fish, if appetite exists food can be ingested, whereupon the stomach will 

become distended. The degree of distension will depend on the amount of food consumed 
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Figme 32. An hypothesis for the control of appetite in the lesser spotted dogfish shark, 

Scyliorhinus canicula involving digestive and systemic function. (General format of 

diagram taken from Vahl (1979) but modified with additions to incorporate the findings 

of this study on S. canicula.) 
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and this investigation has shown that it is the regulation of stomach fullness that will 

directly affect the level of appetite in dogfish. The findings from chapter III indicate the 

pattern of digesta emptying from the stomach was dependent on the degree of stomach 

fullness. By means of in series stretch receptors in the stomach wall of dogfish the degree 

of stomach fullness could be closely monitored and relayed to the higher centres by the 

sympathetic portion of the autonomic nervous system. The physiological perception of the 

relative emptiness of the stomach would be possible with such mechanoreceptors and 

could play a direct role in the establishment of appetite by providing a constant stream 

of information on the quantity of food that could possibly be consumed at any particular 

time. 

Figure 32 indicates the action of a feedback loop between the stomach and 

intestine and vice versa. There were two mam reasons why these possible regulatory 

pathways have been postulated as having a role in the gut emptying process. Firstly, the 

relative rate of gastric emptying actually decreased when larger meals were consumed by 

the dogfish. For example, it was evident that when a 7% wbw meal in the stomach was 

emptied so that the equivalent of a 3.5% wbw meal remained, this amount was not 

emptied at the same relative rate as a distinct 3.5% wbw meal. Elliott (1991) 

acknowledged that some investigations found constant rates of gastric evacuation 

irrespective of volume ingested (e.g. in Pleuronectes platessa, Jobling and Davies, 1979), 

whereas some investigations showed decreases in evacuation rate with increasing meal 

size. The decrease in relative gastric evacuation rate with increasing meal size indicated 

that the stomach emptying rate of dogfish was perhaps influenced by the amount of 

digesta that had already been emptied into the intestine. This physiological process was 

suggested in chapter IIl and it is possible that when the contents of the spiral intestine 

reached a threshold level after gradual filling, then feedback inhibition of gastric motility 
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would occur, logically perhaps, to avoid material being pushed through the intestine too 

quickly leading to inefficient absorption of nutrients. 

In addition to the action of the feedback loop, possibly antagonistically connecting 

gastric and intestine motility, it is also suggested on figure 32 the mode of mediation of 

the inhibitory pathways based upon the observations of chapter IV. Previous authors have 

proposed that control of food intake could be mediated partly by chemoreceptors 

influencing gastric contractions via feedback loops (Grove, 1986; Jobling, 1986). The 

current investigation showed that the gastric emptying pattern of dogfish was independent 

of the level of digestible energy. Hence, a possible regulatory pathway for the control of 

gastric emptying (already established as of direct importance to the level of appetite) could 

be via reflex inhibition of motility, possibly mediated by extrinsic afferent nerves from 

mechanoreceptors located within the smooth musculature of the gut wall. Although such 

reflex inhibitory mechanisms have not been demonstrated in elasmobranchs it has been 

shown that vagal stimulation may cause inhibition of a spontaneously active stomach 

(Nilsson and Holmgren, 1988 and references therein). In contrast, stimulation of the 

splanchnic nerve has produced excitatory responses in the elasmobranch gut, though at 

lower stimulation frequencies (<4Hz) the responses have been shown to be inhibitory 

(Young, 1980, 1983 ). However, the possible existence of inhibitory innervation between 

the stomach and intestine and vice versa has yet to be investigated in elasmobranchs. 

Reflex inhibition across the gastroduodenal junction has been variously shown to occur 

in mammalian systems and was demonstrated to be mediated extrinsically (Daniel and 

Wiebe, 1966; Leek, 1972). Therefore, it would be interesting in further studies to examine 

the true nature of the autonomic nerve fibres innervating the elasmobranch gut. Indeed, 

inhibitory control of motility could come from extrinsic nerve modulation of the ganglion 

cells within the enteric nerve plexuses (intrinsic) that send axons to all regions of the gut 
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and will inhibit myogenic activity to produce a normal resting state prior to modulation. 

Hence, characterising the role of afferent nerve pathways from the spiral intestine and 

their influence on gastric motility would provide more information on the autonomic 

regulation of digestive processes. The role of gastric peptides (peptidergic innervation) 

could also be investigated in this context as the recent work of Aidman (1994) on rainbow 

trout, Oncorhynchus mykiss implicates the action of these hormones with the control of 

gastric and gallbladder motility. Information on the interaction of neural and hormonal 

pathways in the regulation of gastric evacuation would therefore be of great help in our 

understanding of the physiological processes involved in feeding control. 

The flow of digesta from the stomach to the intestine and the associated rates of 

emptying, however controlled and integrated will all be of importance in the dogfish's 

physiological perception of stomach emptiness. As well as gastric volume directly 

regulating further food intake, figure 32 shows the probable importance of post-absorptive 

factors in appetite control. 

Nutrients absorbed across the intestine will be assimilated in the liver and it is by 

monitoring the level of certain plasma metabolites that the liver could also monitor the 

'fed' state in dogfish. The concentration of plasma triglycerides and protein were closely 

controlled post-prandially whilst the plasma levels of glucose remained constant. This 

suggests that lipid and protein derived metabolites (physiologically detected by the liver?) 

could be central to the systemic control of appetite in sharks (chapter VI). Whilst it is 

proposed that triglycerides and protein were perhaps important factors in the perception 

of metabolic satiety, the current study did not conclusively evaluate their role. Further 

investigations using different nutrient dense foods and their effect on the rate of appetite 

return could give information on their relative effect as indicators of metabolic satiety. The 

function of ketone bodies and the three ketogenic amino acids in appetite control was not 
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examined in the present study. The role of ketone bodies in the starvation metabolism of 

sharks is well documented (Zammit and Newsholme, 1979; DeRoos et a/, 1985; DeRoos, 

1994). Due to the undoubted importance of ketone bodies as primary fuel molecules in 

elasmobranch metabolism, it is likely that their relative presence in the plasma may be of 

substantial significance in the perception of metabolic satiety. Further investigations of 

their utilization and mobilization during appetite revival could suggest other ways in 

which the dogfish could perceive biochemical nutritional status. 

The hypothesis of dogfish appetite control (figure 32) also indicates the possible 

effects of SDA. If dogfish were active after consuming large meals, then the rate of 

nutrient absorption (e.g. amino acids) across the intestine could become slowed to avoid 

a 'toxic' level of amino acids in the blood, as alanine is also produced as a waste product 

of skeletal muscle metabolism (chapter V). Such a mechanism could occur by blood being 

shunted away from the tissues of the gut associated with nutrient absorption during 

locomotor activity. Blood flow through the capillary beds of the different tissues 

constituting the gut wall is controlled by innervation of the vascular bed and the tissue 

functions will be affected by a regulation of their blood supply (Nilsson and Holmgren, 

1988). Hence, high levels of activity and SDA will represent a substantial metabolic load 

and may therefore operate indirectly in regulating appetite by reducing the rate of nutrient 

absorption across the intestine. 

Another avenue for further research relating to appetite control has been suggested 

by the current investigation. Generally the appetitive response and daily food intake levels 

of juvenile dogfish were similar to those of the adults, reinforcing the known fact that 

physiological processes emanate from hereditary instructions and are not necessarily linked 

to the stage of development. The rate of food processing was greater in juveniles and this 

led to faster rates of appetite return, however this could be predicted considering that rapid 
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growth is of prime importance in juvenile fish. The most interesting difference between 

the physiologies of juvenile and adult dogfish was that the metabolic losses due to food 

processing (SDA) were relatively much lower in juveniles at all ration levels than those 

of the adults. This physiological characteristic of juveniles could represent a strategy for 

conservation of metabolic energy and perhaps will result in maximum utilisation of 

ingested energy being channelled into the processes leading to somatic growth. A 

bioenergetic study of the post-prandial metabolism of juvenile dogfish would be most 

interesting in conclusively demonstrating the existence of such a strategy. 

The appetite control hypothesis for dogfish attributes the degree of stomach 

fullness (or relative emptiness) and the level of plasma triglycerides and protein as direct 

physiological factors in appetite regulation. The role of intestinal fullness, post-prandial 

metabolism and possibly the energy density of the food after actual absorption can be 

considered as secondary factors that probably modify the function of the direct 

physiological processes. Of the few investigations on appetite control that exist in fish, 

the general findings of the present investigation are supported. Brei! ( 1971) and Colgan 

( 1973) both found that gastric fullness and plasma metabolites were of prime importance. 

Other authors, who did not examine the role of systemic function on appetite, found that 

the degree of gastric fullness influenced the level of food intake to a great extent (e.g. 

Grove et a/, 1985; Singh and Srivastava, 1985; Russell and Wootton, 1993). It would 

appear that the general physiological bases of appetite regulation in the shark, S. canicu/a 

were similar to those of teleosts. Monitoring the degree of stomach fullness and the level 

of certain plasma metabolites (literally, how much room is left in the stomach and what 

are the current levels of energy reserves), appears to be how fish generally have solved 

the problem of physiologically regulating their rate of food intake within the ecological 

and environmental pressures that through the process of evolution have done the same. 
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The value of investigating the processes involved in the short-term regulation of 

appetite in fish is to provide a further dimension in our understanding of the feeding 

strategies that have evolved in certain fish. The same general physiological pathways of 

appetite regulation may have been selected for in different groups of animals through 

evolution, but the 'design' details of the systems influencing appetite will be different 

depending on the feeding habits of the fish species in question. For example, the low 

incidence of empty stomachs in a population of dogfish from the Irish Sea (Lyle, 1983) 

together with the general findings of the current work can help explain, in more accurate 

terms the feeding strategy employed by sharks such as dogfish. From the present study 

it is clear that dogfish can ingest extremely large amounts offood (up to 14% wbw in this 

study) within about 30 minutes, with the stomach becoming greatly extended. Food will 

be evacuated from the dogfish stomach in a weight dependent manner, seemingly 

irrespective of the level of digestible energy of the food items. Indeed, dogfish consume 

a wide range of prey in the wild (Lyle, 1983) so it is clear that a feeding strategy based 

upon energy maximisation would be largely redundant compared to maximisation of the 

actual number of food items. Gastric evacuation of some digesta will occur quite rapidly 

after consumption, though the stomach will not be completely empty for about 12 days 

(after a meal of 7% wbw). There is no lengthy lag period to appetite revival after food 

consumption and the rate of appetite return remains constant during the first 8-10 days. 

Some salmonids have been shown to empty their stomachs fully before voluntary feeding 

was resumed (Steigenberger and Lark in, 1974; Grove et a/, 1974 ). This strategy may be 

linked to the salmonids' feeding periodicity, but dogfish will consume more food before 

complete evacuation of the initial meal. Hence, if food is readily available in the wild it 

is easy to understand why a high incidence of food items occur in the stomachs of 

dogfish. Dogfish are nocturnally active so their strategy will be to 'top-up' their stomachs 

245 



with food during the night (though this might not occur every night) and remain inactive 

during the day to digest the meal. In so doing, the detrimental metabolic effects of activity 

and SDA (which is greatest 4-10 hours after feeding) will be minimised and consequently 

the level of some plasma metabolites (which are monitored) can be maintained below their 

'toxic' carrying capacity. Clearly, the physiological balance of relative stomach emptiness 

with the level of certain plasma metabolites will be implicit to the occurrence of further 

feeding bouts. 

Certain life-history characteristics of the spec1es might be reflected in the 

mechanisms relating to appetite control, so in this respect physiological studies of appetite 

are of interest. Integration of the physiological processes involved in the peripheral control 

of appetite together with ecological and environmental observations pertaining to feeding, 

will allow a more comprehensive perspective of the feeding strategies employed by sharks 

such as dogfish. It is not until all factors known to influence the appetite of a shark have 

been carefully examined by physiologists and ecologists, that a synthesis will emerge 

enabling our greater understanding of the trophic relationships of these ancient, predatory 

fish with the other species of animals that inhabit the earth's oceans. 
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APPENDIX ONE 

Calculation of digestible energy (DE) 

For dogfish fed 7% wbw of low energy diet (LE) 

(1) Amount of diet consumed per fish, 

squid 
dry component 

28.26 gWW 5.07 gDW 
18.84 gDW 

(2) Energy contributed by diet (ingested energy, I.E.), 

squid 79.27 % protein* 4.02 
5.18 % lipid* 0.26 

15.54% carbohy* 0.79 

dry component 71.0% protein 13.38 
20.0% carbohy. 3.77 

(3) Total ingested energy (kJ), 

protein lipid 

411.33 10.28 

Digestibility values (%) 84.40t 86.30t 

Energy not digested (kJ) 64.17 1.41 

499.92- 101.17 398.65 kJ (- 76.76% I.E.) 

For dogfish fed 7% wbw of high energy diet (HE) 

( 1) Amount of diet consumed per fish, 

squid 
dry component 

26.91 gWW 4.92 gDW 
17.94 gDW 
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95.03 
10.28 
13.55 

316.30 
64.66 

499.82 

carbohydrate 

78.21 

54.50§ 

35.59 



{2} Energy contributed by diet (ingested energy, I.E.), 

gDW 

squid 79.27 % protein• 3.60 
5.18 % lipid* 0.25 

I 5.54 % carbohy* 0.76 

dry component 71.0% protein 12.74 
20.0 % carbohy. 3.77 

(3) Total ingested energy (kJ}, 

protein lipid 

386.27 I 51.84 

Digestibility values (%) 84.40t 86.30t 

Energy not digested (kJ) 60.26 20.80 

551.14 - 86.99 464.15 kJ (- 84.22 % I.E.) 

• From Sidwcll et a/ (1974) on a dry matter basis 
t From Spyridakis et a/ ( 1989) for Dicentraclru.1 labrax 
t From Ell is and Smith ( 1980) for Salmo gainlneri (Oncorlrynclrus my kiss) 
§ From Bcrgol and Brcque ( 1983) for Salmo gairdneri 
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kJ 

85.10 
9.89 

13.03 

301.17 
141.95 
551.14 

carbohydrate 

13.03 

54.50§ 

5.93 
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