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Abstract 

Author: DANIEL GERHARDUS HA TTINGH 

Title: THE FATIGUE PROPERTIES OF SPRING STEEL 

The nature and scope of this thesis can be divided into three categories, namely stress 

distribution modelling in coil springs; fatigue and failure analysis, an investigation into 

measurement of residual stresses and the relation to fatigue life. 

The operation of springs is directly concerned with the theories of torsion and bending which 

makes the better understanding of these theories essential. The first part of the thesis is 

involved with a mathematical evaluation of these theories and a case study of an isolated loop 

of a coil spring. The mathematical modelling is verified by measuring the strain levels in a coil 

spring with the aid of strain gauges located at different positions in the coil spring This 

evaluation gave a better understanding of the operational stress distribution for input into the 

two methods currently used by industry for the fatigue testing, namely isolated loop and 

complete coil spring samples. 

The remaining part of the thesis revolves around the understanding of the relationship between 

fatigue life, process effects and residual stresses. The relationship between fatigue failures and 

process effects was investigated to reveal the mechanism responsible for component fatigue 

failure in a 5 5Cr3 automotive suspension spring steel. This was done by subjecting coil springs, 

withdrawn from different stages of the manufacturing process, to fatigue tests, ensuring that 

all possible sources of fatigue initiation in this material batch have been identified, including 

those not dominant in the finished component. Failures prior to shot peen process was mainly 

surface relate as where those withdrawn after this process were subsurface (inclusions) related. 

Fractographic analysis, using an XL30 scanning electron microscope, has revealed a number 

of sources of initiation, which are largely related to mechanical damage and inherent material 

defects. 
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The results indicate that decreasing defect levels in the material would represent a valid method 

for enhancing the fatigue response, specifically levels of nonmetallic inclusions and surface 

mechanical damage, but also that certain manufacturing process stages (cold scragg) are 

responsible for drop in fatigue life. 

With a model of spring life from process effects and fatigue failures of spring steel, the 

influence of residual stresses had to be revealed. This measurement was done by means of 

centre hole drilling using an air abrasive powder system and residual strain rosettes as sensors. 

The results reveal the nature and magnitude of the stresses induced into the manufactured 

component by each manufacturing process individually and the relation these induced stresses 

have to the fatigue properties of the component. In the final analysis this research reveals a 

model showing the relation and impact of manufacturing processes of 5 5Cr3 spring steel on 

the residual stresses present and fatigue properties of the material. 
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Glossary of terms 

A 

age hardening. Hardening by ageing, usually after rapid cooling or cold working. 

alignment. A mechanical or electrical adjustment of the components of an optical device 

so that the path of the radiating beam coincides with the optical axis or other predetermined 

path in the system. 

alloying element. An element added to and remaining in a metal that changes structure and 

properties. 

analyser. An optical device capable of producing plane-polarised light. It is used for 

detecting the effect of the object on plane-polarised light produced by the polariser. 

angstrom unit (A). A unit of linear measure equal to I 0"10 m, or 0. I nm. Although not an 

accepted unit, it is occasionally used for small distances, such as interatomic distances and 

some wavelengths. 

annealing. Heating to and holding at a suitable temperature followed by cooling at a 

suitable rate. 

anneal to temper. A final partial anneal that softens a cold-worked nonferrous alloy to a 

specified level of hardness or tensile strength. 

austempering. Cooling (quenching) an austenitised steel at a rate high enough to suppress 

formation of high-temperature transformation products, then holding the steel at a 

temperature below that for pearlite formation and above that for martensite formation until 

transformation to an essentially bainitic structure is complete. Generally, a solid solution of 

one or more alloying elements in a face-centred cubic polymorph of iron. 

austenitic grain size. The size attained by the grains in steel when heated to the austenitic 

reg1on. 

austenitising. Forming austenite by heating a ferrous alloy into the transformation range or 

XXI 



above the transformation range. 

B 

back scatter reflection. The diffraction ofx-rays at a Bragg angle approaching 90°C. 

bainite. A eutectoid transformation product of ferrite and a fine dispersion of carbide 

generally formed below 450 to 500°C. 

bending stress. If a beam is subjected to a bending moment the fibres in the upper part are 

extended and these in the lower part are compressed. Tensile and compressive stresses are 

thereby induced which vary from zero at the neutral axis of the beam to a maximum at the 

outer fibres. These stresses are called bending stresses. 

Bragg angle. The angle between the incident beam and the lattice planes considered. 

brittle fracture. Rapid fracture preceded by little or no plastic deformation. 

brittleness. The tendency of a material to fracture without first undergoing significant 

plastic deformation. 

c 

carbide. A compound of carbon with one or more metallic elements. 

carburising. A case-hardening process in which an austenitised ferrous material contacts a 

carbonaceous atmosphere having sufficient carbon potential to cause absorption of carbon 

at the surface and, by diffusion, to create a concentration gradient. 

chemical polishing. A process that produces a polished surface by the action of a chemical 

etching solution. 

cleavage. Fracture of a crystal by crack propagation across a crystallographic plane oflow 

index. 

cleavage fracture. A fracture, usually of a polycrystalline metal, in which most of the 

grains have failed by cleavage, resulting in bright reflecting facets. 

cleavage plane. A characteristic crystallographic plane or set of planes in a crystal on 

XXII 



which cleavage fracture occurs easily. 

coil spring. A compression or tension spring made of bar stock or wire coiled into a helical 

form on which the load is applied along the helix axis. 

cold scragging. See scragging. 

D 

decarburisation. Loss of carbon from the surface of a ferrous alloy as a result ofheating in 

a medium that reacts with carbon. 

deflection. In coil springs deflection refers to change in axial length due to axial loading. If 

at any section of an unloaded beam the neutral surface is displaced by the application of 

lateral loads then this displacement is called the deflection of the beam at that section. 

depth of field. The depth in the subject over which features can be seen to be acceptably in 

focus in the final image produced by a microscope. 

dislocation. A linear imperfection in a crystalline array of atoms. 

E 

electrolytic polishing. An electrochemical polishing process in which the metal to be 

polished is made the anode in an electrolytic cell where preferential dissolution at high 

points in the surface topography produces a specularly reflective surface. 

electron beam. A stream of electrons in an electron-optical system. 

electron diffraction. The phenomenon, or the technique of producing diffraction patterns 

through the incidence of electrons upon matter. 

electron microscopy. The study of materials by means of an electron microscope. 

etchant. A chemical solution used to etch a metal to reveal structural details. 

etching. Subjecting the surface of a metal to preferential chemical or electrolytic attack to 

reveal structural details for metallographic examination. 

F 
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ferrite. Generally, a solid solution of one or more elements in body-centred cubic iron. In 

plain carbon steels, the interstitial solid solution of carbon in a-iron. 

final polishing. A polishing process in which the primary objective is to produce a final 

surface suitable for microscopic examination. 

G 

grain. An individual crystal in a polycrystalline metal or alloy, including twinned regions or 

sub grains if present. 

grain boundary. An interface separating two grains at which the orientation of the lattice 

changes from that of one grain to that of the other. When the orientation change is very 

small the boundary is sometimes referred to as a sub-boundary structure. 

grain growth. An increase in the grain size of a metal usually as a result of heating at an 

elevated temperature. 

grain size. A measure of the areas or volumes of grains in a polycrystalline metal or alloy, 

usually expressed as an average when the individual sizes are fairly uniform. Grain size is 

reported in terms of number of grains per unit area or volume, average diameter, or as a 

number derived from area measurements. 

granular fracture. An irregular surface produced when metal fractures. This fracture is 

characterised by a rough, grain like appearance. It can be sub-classified into trans-granular 

and intergranular forms. 

graphite. The polymorph of carbon with a hexagonal crystal structure. 

grinding. Removing material from a workpiece using a grinding wheel or abrasive belt. 

H 

hardenability. The relative ability of a ferrous alloy to form martensite when quenched 

from a temperature above the upper critical temperature. 

hardening. Increasing hardness by suitable treatment, usually involving heating and 

cooling. 
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hot quenching. An imprecise term for various quenching procedures in which a quenching 

medium is maintained at a prescribed temperature above 70°C. 

hot scragging. See scragging. 

hot working. Deformation under conditions that result in re-crystallisation. 

I 

impurities. Undesirable elements or compounds in a material. 

inclusion count. Determination of the number, kind, size and distribution of nonmetallic 

inclusions. 

inclusions. Particles offoreign material in a metallic matrix. 

interference. The effect of a combination of wave trains of various phases and amplitudes. 

intergranular. Within or across crystals or grains. Same as transcrystalline and trans­

granular. 

Isolated loop. Any one complete helical coil of360° which has been removed from a whole 

helical spring. 

L 

lamination. An abnormal structure resulting in a separation or weakness aligned generally 

parallel to the worked surface of the metal. 

longitudinal direction. That direction parallel to the direction of maximum elongation in a 

worked material. See also normal direction and transverse direction. 

M 

macrograph. A graphic reproduction of a prepared surface of a specimen at a 

magnification not exceeding 25x. 

macrostructure. The structure of metals as revealed by macroscopic examination of the 

etched surface of a polished specimen. 
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magnification. The ratio of the length of a line in the image plane. 

martensite. A generic term for microstructures formed by diffusion less phase 

transformation in which the parent and product phases have a specific crystallographic 

relationship. 

martensitic. A platelike constituent having an appearance and a mechanism of formation 

similar to that of martensite. 

maximum shear strain. A stress of this nature is said to exist on a section of a body if on 

opposite faces of the section equal and opposite parallel forces exist. 

maximum bending Strain. A cylindrical shaft is said to be subject to pure torsion when the 

torsion is caused by a couple, applied so that the axis of the couple coincides with the axis 

ofthe shaft. The state of stress, at any point in the cross-section ofthe rod, is one of pure 

shear, and the strain is such that one cross-section of the shaft moves relative to another. 

microcrack. A crack of microscopic proportions. 

micrograph. A graphic reproduction of the prepared surface of a specimen at a 

magnification greater than 25x. 

Micro structure. The structure of a prepared surface of a metal as revealed by a 

microscope at a magnification exceeding 25x. 

N 

nitriding. A case-hardening process that introduces nitrogen into the surface layer of a 

ferrous material by holding it at a suitable temperature in a nitrogenous atmosphere. 

nodular graphite. Rounded clusters of tempered carbon. 

nodular pearlite. Pearlite that has grown as a colony with an approximately spherical 

morphology. 

0 

orientation (crystal). Arrangements in space ofthe axes ofthe lattice of a crystal with 

respect to a chosen reference or coordinate system. 
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p 

pearlite. A metastable eutectoid-transformation product consisting of alternating lamellae 

of ferrite and cementite resulting from the transformation of austenite at temperatures above 

the bainite range. 

pearlitic structure. A Micro structure resembling that of the pearlite constituent in steel. 

phase. A physically homogeneous and distinct portion of a material system. 

plastic deformation. Deformation that remains or will remain permanent after release of 

the stress that caused it. 

plasticity. The capacity of a metal to deform nonelastically without rupturing. 

polished surface. A surface that reflects a large proportion of the incident light in a 

specular manner. 

principal strains. The maximum and minimum direct strains in a material, subjected to 

complex stress are called Principal Strains. These strains act in the directions of the 

principal stresses. 

principal stresses. At any point within a stressed material it will be found that there exist 

three mutually perpendicular planes on each of which the resultant stress is a normal stress 

(i.e. no shear stresses occur on these planes). These mutually perpendicular planes are 

called principal planes, and the resultant normal stresses are called Principal Stresses. 

Q 

quench hardening. In ferrous alloys, hardening by austenitising, then cooling at a rate so 

that a substantial amount of austenite transforms to martensite. 

quenching crack. Cracks formed as a result of thermal stresses produced by rapid cooling 

from a high temperature. 

R 

re-crystallisation. A change from one crystal structure to another, such as that occurring 

upon heating or cooling through a critical temperature. 
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s 

sagging. Loss of height or ability to resist given level of stress after a number of stress 

reversals or cycling. 

scanning electron microscope. An electron microscope in which the image is formed by a 

beam operating in synchronism with an electron probe scanning the object. 

scragging. A operation used to obtain higher elastic limits and hence greater load capacity 

without set for helical compression springs. It consist of compressing the spring beyond the 

elastic limit either at an elevated temperature (hot scragging) or at room temperature (cold 

scragging). 

shear bands. Bands in which deformation has been concentrated in homogeneously in 

sheets that extend across regional groups of grains. 

single coiL Any one complete helical coil of 360° which has been removed from a whole 

helical spring. 

slip. Plastic deformation by the irreversible shear displacement of one part of a crystal 

relative to another in a definite crystallographic direction and usually on a specific 

crystallographic plane. 

slip band. A group of parallel slip lines so closely spaced as to appear as a single line when 

observed under an optical microscope. 

strain. Strain is a measure of the deformation of a body acted upon by external forces and 

can be expressed as a change in dimension per unit of original dimension or in the case of 

shear as a change in angle between two initially perpendicular planes. 

strain amplifier. The ratio of the voltage supplied to the voltage delivered by the 

Wheatstone Bridge as a result of the unbalance caused by a change of strain gauge 

resistance is equivalent to the strain and is amplified into a suitable voltage or current which 

can be fed into an analogue or digital indicator or graphic recorder. 

strain rosettes. A combination of three strain gauges set with there axis at 45° (or 60°) 
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with each other - used to determine strain at a point on a surface when the strain directions 

are unknown. 

stress. Load applied to a piece of material tends to cause deformation which is resisted 

by internal forces set up within the material which are referred to as stresses. The intensity 

of the stress is estimated as the force acting on unit area of the cross-section, namely as 

Newtons per square metre or Pascals. 

stress relieving. Heating to a suitable temperature, holding long enough to reduce residual 

stresses, then cooling slowly enough to minimise the development of new residual stresses. 

stringer. A microstructural configuration of alloy constituents or foreign nonmetallic 

material lined up in the direction of working. 

sulfide-type inclusions. In steels, nonmetallic inclusions composed essentially of 

manganese iron sulfide solid solutions. 

T 

tempered martensite. The decomposition products that result from heating martensite 

below the ferrite-austenite transformation temperature. 

tempering. In heat treatment, reheating hardened steel to some temperature below the 

eutectoid temperature to decrease hardness and/or increase toughness. 

transmission electron microscope. A microscope in which the image-forming rays pass 

through the specimen being observed. 

twin bands. Bands across a crystal grain, observed on a polished and etched section, 

where crystallographic orientations have a mirror-image relationship to the orientation of 

the matrix grain across a composition plane that is usually parallel to the sides of the band. 

z 

zone. Any group of crystal planes that are all parallel to one line, which is called the zone 

axiS. 

(Note: For other definitions and nomenclature see text. ) 
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INTRODUCTION 

CHAPTER I 

INTRODUCTION 

The aim of this thesis is to contribute to the development of an enhanced automotive coil spring 

by evaluating existing manufacturing processes and relating this to fatigue properties and 

residual stresses in the components. 

The development of a coil spring that is 15% lighter and which can operate at 20% higher 

stresses, will bring about a major revolution in the manufacturing of automotive suspensions. 

This could result not only in a lighter vehicle but also a reduction in space required by 

suspensions, which could open the way for new, less drag resistant front body panels. 

1.1 GENERAL OBJECTIVES 

The author of this thesis aimed at satisfying the following objectives. 

o In-depth study into the uses of strain gauges to evaluate stress levels in coil springs and 

isolated loops of coil springs with the aim of understanding their relation to forces 

present in coil spring fatigue samples subjected to axial loading. 

o Investigation into the influence each manufacturing process has on the fatigue life of 

spring steel to enable ideal optimization of manufacturing processes and development 

of a model for better understanding of the fatigue mechanism by evaluating fracture 

surfaces. 

o To identify a feasible method for measuring residual stress in components withdrawn 

· from different stages of manufacture and to physically apply this method to reveal the 

magnitude and nature of residual stress in the component after each stage of 

manufacture. 
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• To determine the residual stress induced into the component by each manufacturing 

process. 

• To relate residual stress induced to microstructural and fatigue properties of spring 

steel. 

• To investigate the distribution of dislocations and the form of electron diffraction 

patterns by means of transmission electron microscopy in an attempt to produce a 

better understanding for relation of residual stresses to manufacturing process .. 

The work done in this thesis is a contribution towards a better understanding of fatigue 

properties of spring steel and the relation to manufacturing processes. The hypothesis of the 

author is that eventually all research done by different researchers will lead to the development 

of coil springs with increased performance and a reduction in weight, although not all of it was 

done on the same material. 

1.2 PROBLEM STATEMENTS 

The aim of the researcher will be to contribute to the development of an automotive coil spring 

with an increase in performance and a reduction in weight by evaluating the influences of 

manufacturing processes on 55Cr3 spring steel. 

1.2.1 The first subproblem 

Investigate the behaviour of a coil spring subjected to an axial load by means of mathematical 

modelling and strain gauges. This would resolve the nature of forces and stresses set up in the 

material and reveal the relation between strain and stress, strain and deflection and strain and 

load to assist with the interpretation of fatigue information. 

1.2.2 The second subproblem 
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Investigate the fatigue properties of spring steel to establish the influence of the different 

manufacturing processes on the properties of spring steel. 

1.2.3 The third subproblem 

Measuring of residual stresses in spring steel to reveal the influence of the different stages of 

the manufacturing process on the magnitude and nature of these stresses. To set up a model 

for the relation between residual stresses and fatigue properties of 55Cr3 spring steel. 

1.3 HYPOTHESIS 

That the research done by all different parties will lead to the development of a coil spring with 

an increased performance and decrease in weight. 

1.4 DELIMITATIONS 

That the study be based on a specific part number of coil spring as manufactured by National 

Springs SA of the material 55Cr3 (SiMn+V) spring steel for the Volkswagen Golf range for 

Volkswagen South Africa. 

1.5 ASSUMPTION 

That a new coil spring can be developed with increased performance from 55Cr3 spring steel 

by refinement of manufacturing parameters. That the above will be possible with no or very 

little increase in manufacturing cost. 

1.6 THE SIGNIFICANCE OF THE RESEARCH 

The development of high strength steel coil springs is receiving a great deal of attention and 

research by spring makers world-wide, particularly by Japanese spring makers. The aim is to 
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raise working stresses by 20% with a weight reduction of 15%. This weight-saving is very 

attractive to car designers as part of a· development programme to reduce vehicle weight 

stemming from environmental pressures. 

1. 7 INDUSTRIAL SUPPORT 

A number of motor manufacturers were approached for support and involvement Two 

companies responded, namely Volkswagen SA, based in Uitenhage, ± 60 km from Port 

Elizabeth, and the other one was Mercedes Benz SA, ± 300 km from Port Elizabeth. Both 

these companies were supplied with coil springs from the same company in Johannesburg. 

Their main support was in the form of technical assistance, material and free utilisation of 

laboratories and testing equipment. Both companies also gave letters of strong support for the 

project and research to be done. 

Once this vital link was set up with the motor manufacturing comparues, the spring 

manufacturers, who supplied these companies with the components, were approached. The 

research project was met with an overwhelming response from National Spring who 

immediately agreed to supply and process all research materials. The Foundation of Research 

and Development and Port Elizabeth Technikon agreed to assist with financing the project. 

1.8 REVIEW OF RELATED LITERATURE 

A number of fields had to be reviewed in preparation for researching the above problems. This 

will be reviewed very briefly in this section as it will appear in more detail in the appropriate 

sections of the thesis. 

1.8.1 The applications of strain gauges 
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The field of strain measurement is a very complex and diverse field. It requires a working 

. knowledge of the following engineering subjects Mechanics of Machines, Metrology, 

Engineering Design, Materials and Electronic Circuits. By studying strain gauges and their 

application, each user develops his own unique perspective and application expertise. The most 

important measuring method in the experimental stress analysis is the strain gauge technique. 

This technique makes it possible to assess the stressing of a structural part within wide limits, 

without damaging or destroying the part. Here follows some of the topics, which were 

investigated relating to strain measuring: 

• Selection of adhesives 

Function 

Characteristics 

Types 

• Fixing of strain gauges 

Preparation of specimen and gauge 

Method of application 

Bonding process 

Connection of cables 

Protection 

• Wheatstone bridge 

Application of circuit 

Measurement of tensile, bending, torque 

Stress compensation 

Temperature compensation 

• Consideration for Accuracy 
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The researcher's aim with this study was to expand his knowledge on the application and use 

of strain· gauges as the application of strain gauges formed an integral part of the research. 

1.8.2 Forces in a helical coiled spring 

Springs design inherently involves the theories of torsion, bending and strain energy. This 

study was done to enable the researcher to understand the effects of torsion and other forces 

set up in a coiled spring by investigating the forces set up in a coil spring under axial loading. 

Both cases of a closed and open coil spring were considered. Detailed mathematical modelling 

for both cases was performed to determine equations for bending stresses, shear stresses and 

the beha\~our of internal energy. The relation between stress and strain was also carefully 

investigated to assist the researcher to form a better picture of the beha~our of all the variables 

in a coiled spring. This was followed by a study into the prediction of the stress variation in 

coil springs. 

1.8.3 Fatigue testing of process springs 

The researcher ~sited the spring manufacturer, National Springs, and familiarised himself with 

the different processes needed for the manufacture of springs. The objective was to see at 

which stage processed material could be withdrawn for fatigue and mechanical testing. 

Production schedules were also looked at before selecting a specific spring, to ensure that the 

specific spring would still be in production for a few months to come. Incoming material is 

drawn to an area reduction after which it is cut to length and then centre-less ground to reduce 

the decarburised zone. The ground bar is then austinitised and hot coiled before being 

quenched in oiL The quenched components are tempered and hot sgragged before being shot 

peened. After this the component is coated by means of phosphate and black paint before 

being cold scragged and load rated. Processed springs were withdrawn at the following stages: 
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After hot coil and quenching, tempering, hot scrag, shot peening, painting and after load 

testing. Review of related literature was done on all the above processes. This was followed 

by an in-depth study into the field of fracture analysis. 

1.8.4 Residual stresses 

One of the major challenges for the researcher was understanding of the role played by residual 

stresses in high tensile spring material. Residual stress is a phenomenon that still raises many 

questions in the mind of the materials specialist, as well as in that of the engineer. Residual 

stresses are locked into a component due to manufacturing processes and it is independent of 

any external loading'. Increased attention has been given to residual stresses lately for the 

purpose of reducing material cost, extended lifetime of existing structures and to satisfy 

demands for increased reliability of components. A comprehensive literature study was done 

on this subject, and a number of months were spent studying the effects of residual stresses 

in general. The literature currently available on residual stresses is limited and scattered over 

a large number of references. Specific attention was given primarily to investigate the reasons 

and effects for the presence of residual stresses, and to evaluate different methods available for 

measuring residual stresses. The following topics were addressed: 

• Introduction into the significance of residual stresses. 

• Calculation of residual stresses in an elastic-perfectly plastic material. Bending, as well 

as the effect of torsion is considered. 

• Influence of residual stresses on bending and torsional strengths. 

• Reasons for residual stresses. The first part of this section looks at the effect of 

mechanical processes e.g. shot peening, cold rolling, etc. Secondly, the effects of 

chemical treatments are also considered e.g. carburising, nitriding, etc. The last part 
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ofthis section looks at the effects of heat treatments on residual stresses. 

o The part on residual stresses and failure explains the role that these stresses play m 

structural failures. It firstly looks at the concept of fading of residual stresses and 

secondly at the influence of residual stresses on the fracture plane. 

o Measurement of residual stresses. 

A large part of the review is devoted to describing measuring techniques. Residual 

stresses are difficult to measure since they are independent from external loading and 

are imposed by manufacturing processes and treatments. A wide range of measuring 

techniques have been used with limited success in the past. The methods are discussed 

in detail later in the thesis. 

o An investigation into preparation of transmission electron microscopy samples for 

evaluating the relation of diffraction patterns and dislocations to the presence of 

residual stresses. 

1.9 SUMMARY 

This study and compiling of a short information document, gave the researcher the insight and 

background to enter the field with a lot more confidence. It allowed him to consider all 

available methods for measuring residual stresses and fatigue tests, and to select the most 

appropriate method for his application, after the evaluation of all available methods. 

The study enabled the researcher to make a well-defined conclusion on the effect which the 

manufacturing process of coil springs had on residual stresses and the relation to fatigue. 
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CHAPTER2 

FORCES IN A HELICAL COILED SPRING 

INTRODUCTION 

Springs are directly concerned with the 'theories of torsion, bending and strain energy. Many 

machines and not only automotive suspensions, incorporate springs to assist in their operation. 

The principal function of a spring can be summarised by saying that it is to absorb energy, store 

it for a long period or a short period, and then return the energy to the surrounding material. 

To explain the above in a practical sense, one can consider the example of two extremes of 

operations found in the operations of a watch and an internal combustion engine's valve spring. 

In the watch, energy is stored for a long period and in the valve spring the process is very rapid. 

The objective of this chapter is to study the effects of torsion and the forces set up in a coiled 

spring under axial-loading. This will give the researcher a clearer picture of the operating 

conditions of a coil spring under axial loading. The last part of this chapter will involve a 

mathematical analysis to determine the stress distribution inside an isolated loop of a coil spring 

followed by studying the stresses in a coil spring and isolated loop with the aid of strain gauges. 

2.1 FORCES IN A AUTOMOTIVE COIL SPRING UNDER AXIAL LOADING 1•
2 

A helical spring is usually loaded by an axial force. For this study we will assume a circular 

cross section for the spring wire and we will ignore small end effects, as when ends are unbent, 

or ground flat to provide a bearing plane. We will assume throughout this section that the wire 

diameter is considerably smaller than the helix radius (R) so that curved-beam considerations 

may be neglected. 
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2.1.1 Forces in an open coiled helical spring2.3 

Standard spring design theory suggest the following: 

Figure 2.1: Open coiled helical spring. 

Length of wire 1 = rr.Dn 
cos a 

Consider the following: 

X 
T 

. / 
sma 

(Where n =number of coils) 

Figure 2.2: Schematic representation of forces in a coil 
spnng. 

OX = Polar axis (axis of twisting at any normal cross section). It is inclined at La to the 
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horizontal OH. 

OY =Bending axis and is inclined at La to the vertical OV. Allthe axes OX; OY; OV and OH 

are in the vertical plane which is tangential to the helix at 0. 

If an axial load W is applied to the spring, it can be solved as follows: 

Resolving the effect ofW about OX & OY. 

:. Twisting couple about 

Bending couple about 

WD OX=-- COSIX 
2 

OY = WD sina 
2 

:. Combine bending and twisting couple = WD WD . 
-- CO SIX+ - Sin !X 

2 2 

Strain energy u = Y2 Wx or u = Y2 TE> where X= Total deflection and e axial angle of rotation. 

:. External work = resilience in torsion and bending. 

WD 
YlWx = Yl[- cosa]E> 

2 

Where E> = Angle of rotation on cross-section (OX) 

<I>= Angle of rotation about longitudinal axis (OY) 

Therefor x = D [(cosa)E> + (sina)<J>] 
2 

But from equation 4 Appendix A: 

e = TL 
JG 

Adapting this formula for open coil springs we have to consider the helix angle: 

and 

T = w D COSIX 
2 

E> = W(D/2)L cosa 
JG 
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To detennine the angle of rotation <I> about longitudinal axis let us first consider the strain 

energy in pure bending for a beam. 

The total strain energy= External work done in straining a bar. 

U = (stress)
2 

per unit volume (E =modulus of rigidity) 
2E 

:. Strain energy in a small piece oflength dx under area dA 

but MY 0--
I 

(direct stress) 

where Y = distance from neutral axis 

M = load x distance 

But l:dAY2 =I 

L M2 h f · · U = f 
0 

- dx w ere L = span o beam 
2El 

12 
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M 2L · .. U = -- = Resilience 
21E 

Now if<!> is the angle of rotation about the longitudinal axis of one end relative to the other, 

the work done is Vili-1<!> 

V:M<fl = M2L 
2£1 

ML 
.. <!>=-

lE 

But for a spring 

W(D)L 

D 
(M= W -) 

2 

M W
D. 

= -sma 
2 

,h 2 . 
'+' = --=--sma 

lE 

From x = Vill[(cos a)El +(sin a)<!>] 

W(D)L cosct 
El= --=2 __ _ 

JG 

W(D)L sina 
2 

<!> = ---­
lE 

W(D)L W(D)L 

x = D [(cosa)2 2 
+(sina)2 2 

] 

now 

2 JG lE 

L = IIDn 
CO SIX 

D 2 • 2 
x = W(-)2L[cos a +sm a] 

2 JG lE 

IIDn D 2 cos2a sin2ct 
X =-- W-[--+--] 

cosa 4 JG lE 
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now for a circular rod: 

:. X = 

X = 

X = 

I = IJd4 
64 

J = IJd4 
32 

Y4W IID3n [ cos2a sin2a 
] + 

cos a ( Ild4 )G ( IJd4)E 
32 64 

WIJD3n .-1- .[32cos
2
a 64sin2a] + 

4cosa ITd 4 G E 

8WD 3n [ cos2a sin2a] +--
d 4cosa G E 

2.2 MEASUREMENT OF STRESSES IN COIL SPRINGS 

Currently two methods are used for the fatigue testing of coil springs. The first and more 

acceptable method is the cycling of a complete coil spring through predetermined stress levels. 

The second method is to remove a single loop from a coil spring and subject it to cycling by 

applying point loads at the free ends (see method for testing is~lated loop). Currently this is 

· done at half the load capacity of a complete coil spring. 

This case study will involve a mathematical analysis of the stresses in an isolated loop, followed 

by evaluating actual strain levels in both a complete coil spring and isolated loop by applying 

strain gauges to predetermined points. From the above a comparison can be made of stresses 

induced in an isolated loop versus a complete spring when the isolated loop is loaded at the 

end points with half the load of that of the complete spring. 

2.2.1 Mathematical analysis of isolated coil 

The aim of this study is to investigate and locate the points of maximum shear stress and 

bending stress mathematically on an isolated loop of a coil spring. 

14 



p 
I 

p 

Figure 2.3: Illustration of test set-up for isolated loop. 

For the purpose of this study we will investigate an isolated loop of a coil spring subjected to 

a vertical point load at the free ends. For the following study the effect of the helix angle will 

be neglected. 

Where: e = angular displacement 

M8 = bending moment 

MT = moment due to torsion 

o8 = bending stress 

-r = shear stress 

P = point load 

R = radius of coil 

d = coil wire diameter 

D = coil diameter 

At position 8 

M =Ph B [h = R sin8] 

[k = R(l - cos8)] 
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Therefore: 

M8 =PR sinE> 

o
8 

= PRsin8_E_ = 
16PD sin8 ..................... (!) 

Ild3 Ild3 

and 

16 8PD -c = PR(I-cos8)- = -(1 -cos8) ...... (2) 
Ild3 Ild3 

From (I) o8 is maximum at 8 = 90° 

From (2) -c is maximum at 8 = 180° 

= Y2 ( I6PD)2 . 28 ( !6PD[I 8])2 -- sm + -- -cos 
IIJl IIJl 

= llz 

!6PD V. = -- sm28 + (J-cos8f 
2IIJl 

sF2PD J[!-cos8] 
IIJl 
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Therefore at e= 180 o 

I6PD 
t = --

MAX IldJ 

o +o ,--------=--
o = .....:.___x_ ± Y2 l[(o -o )2 +4r2 1 max 2 Vxy XJ' 

For this consideration of the isolated loop <\ = 0 and o8 =o. 

o + o = o
8 

= PRsine ..E._ = I 6PD (sine) ................ (!) 
" Y lid 3 IIJl 

16 &PD 
-rxy = PR(l-cose)- = --(I-cose) ............... (2) 

Ild 3 IIJl 

omax = I 6PD sine ± &jiPD J(l-cose) 
2Ild3 IIJl 

o = &PD [sine ± fiv(l-cos8)] 
ma.x Ild3 

Position of the max of omax : where 

o = +case ± fisin8 

2{{1-cos 

doma.x = 0 de 

(Solve for 8 to find position for o max) 

Let us find the angle on the isolated loop where omax will occur by plotting a graph of angle of 

rotation 8 versus XI and X2. (Where XI and X2 will indicate points of maximum bending) 

Where: XI =sine+ J2J( 1- cos8) [8 is in radians] 

X2 =sine - J2J( I- cose) [8 is in radians] 

From the graph in Figure 2.4 it can be concluded that the maximum bending stress will occur 

at I20° for equation XI and at 240° for equation X2. 

I7 



STRESS VARIATION 
Isolated Loop 

Figure 2. 4: Position of maximum stress on a isolated loop of a coil 
spnng. 

2.2.2 Stress determination by means of strain gauges 

To compare the strains/stresses imposed on a coil of a spring by means of strain gauges when 

it is loaded as follows: 

When a single c~il is part of a complete spring which is loaded until the specific coil has 

a certain deflection 

When the single coil is removed from complete spring and loaded at the free ends until 

the isolated coil has a deflection that is the same as that of the complete spring. 

This will reveal important data about stress comparisons between a full spring and isolated loop 

for the validation of a single coil fatigue specimen as substitute for full coil spring in mechanical 

testing. 

2.2.2.1 Test sample 

Automotive coil spring material : 55Cr3 

Number of coils between end contacts: 5 

Diameter of coil: 140 mm 

Wire diameter: 12.5 mm 
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2.2.2.2 Test method 

The first step was to apply strain rosettes at specific points on the complete coil spring. The 

gauges used were type FRA-2-11 45° rosettes, with a gauge length of 2 mm and 120 Q 

resistance. These gauges were applied with the centre gauge along the axis of the coil wire, 

as illustrated in Figure 2. 5. 

, 45° 

NIA -tr---- f:------=d- -
··, ··-. ...... . 

45° 

Figure 2.5: Orientation of strain 
gauge rosettes. 

The selection of placement of gauges was based on the mathematical modelling done, which 

/ 

I 
\ . 

./ · - /\·-· 

I 
1 Position 

2~() o of strain 
gauges 

ffilill~ Outside ~-:-:• 

fjiv Inside 

Position for 
deflection 
measurement 
& Application 
of point loads 

\ 

Figure 2.6: Placements of strain gauges with respect to top 
view of coil spring. 

reveals that in the case of an isolated loop maximum shear would occur at 180 o, and maximum 
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bending at 120 o and 240 o. In total seven gauges were applied. Figure 2. 6 illustrates the 

position of gauges with respect to the top view of the coil. 

The gauges were used in a quarter bridge configuration with temperature compensation. This 

resulted in each grid having three leads and, therefore, nine leads per gauge. Considering the 

small size of the gauges, this became a major task. Figure 2. 7 illustrates the strain gauged coil 

spring as installed in the compression test machine, ready for testing. The extent of the wiring 

is quite clear and in the bottom left hand corner, the temperature compensation gauge assembly 

is visible. All strain measurements were done by means of an HBM-UBM40 strain amplifier 

with 20 channels. 

Before carrying out the test, the spring was pre-loaded to 500 N, all gauges were zeroed and 

the system was balanced. The measurement procedure was as follows: 

Data Recorded: 1. 

Figure 2. 7: Set up of a full spring in test 
jig. 

Deflection 
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2. Load 

3. Strain values for all gauges (e1, ~. e3) 

This was done for deflection increments of 2 mm up and to a total deflection of 20 mm. The 

deflection was recorded at the rear side of the spring, directly opposite gauge (3)as illustrated 

by Figure 2.6. The whole process was then reversed from the total deflection of 20 mm to 0 

mm to confirm that all strain readings are still the same. 

Threaded pin for 
attachment to test 

r--..... _ __.. ..... "" equipment 

Locating pin shell 

---- End of isolated loop 
------- coil spring 

Figure 2.8: Locating pin assembly use for fatigue testing of 
isolated coils. 

On completion of the complete spring test, the loop on which the strain gauges were installed, 

was carefully sectioned from the full spring for testing. The section removed was then prepared 

for loading. Indentations were made into the free ends of the coil at 0 ° position to 

accommodate purpose-made pins for the load application. Figure 2. 8 illustrates the detail of 

the locating pins and the seating into the isolated loop, whereas Figure 2. 9 shows the final 

installation. 
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Figure 2.9: Final installation of isolated loop 
in test equipment. 

The same loading procedures as for the full spring were followed in this case, except that the 

pre-load was adjusted to 250 N to produce the same moment as for the complete spring. 

2.2.2.3 Results 

Dl FULL SPRING Ill ISOLATED COIL I Gauge 1 Gauge 1 

LJ Load Strain Strain Strain Load Stl'ain Strain Sfrain 
.•. 

N cl e2 e3 N el e2 e3 

2 750 264.041 76.000 -222.581 350 135.625 44.000 -121.000 

4 1000 510.101 146.000 -384.186 480 293.486 89.000 -260.571 

6 1260 776.753 227.000 -465.448 620 454.667 139.000 -396.800 

8 1525 941.403 304.000 -514.332 750 613.462 181.000 -536.897 

10 1780 1150.000 385.000 -689.75 870 768.262 223.000 -678.802 

12 2050 1523.000 475.000 -803.405 990 915.750 265.000 -809.262 

14 2315 1797.000 559.000 -986.818 1125 1090.000 305.000 -960.811 

16 2600 1997.000 645.000 -1214 1250 1252.000 346.000 -1100.00( 

18 2925 1877.000 740.000 -1407 1380 1405.000 385.000 -1246.00( 

20 3230 2267.000 830.000 -1553 1520 1590.000 422.000 -1398.00( 
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FULL SPRING 
5 

Table 2.1: Results of strain measurements. 

ISOLATED COIL 

Table 2.1 contains the results of both the complete spring and the isolated loop. This first set 
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of tables reveals the recorded data for both the full coil spring and the isolated loop for each 

strain gauge rosette separately 

2.2.2.4 Calculations 

From the data in Table 2.1, the principal strain, stresses and maximum shear stress and strain 

were calculated by using the following equations: 

Where: 

Principal stresses: 

Maximum shear stress: 

2.2.2.5 Possible errors 

E =e y 3 

amax 

The accuracy of strain readings could have been influenced by a number of possible sourses. 

The influence of some factors can be quantified where again other are more difficult to 

quantify. Although errors and uncertainties are always present to varying degree in all 

measurements of physical variables great care was taken to limit their influence to a minimum. 
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The following area of concern for errors had been identified. 

• Behaviour of coil spring during compression. Great care had to be taken to ensure that 

movement at the ends of the coil spring was eliminated as far as possible as any 

movement during the experiment could influence strain readings. 

• It was important not to restrict the free end of the isolated loop. 

• Drilling of the locating holes for the hardened steel balls for the isolated loop required 

a large degree of accuracy. Any mis-alignment of these holes would cause a extra twist 

couple which could influence strain readings. 

• The measurement of the deflection had to be done to a high degree of accuracy as this 

was the only variable that was kept constant between the isolated loop and the full 

spnng. 

• Another possible error and most likely one to influence results was the misalignment 

of the strain rosettes. Considering the size of the grid length (2 mm) it is all most 

impossible to align these gauges 100%. Making use of the Mohr's strain or stress circle 

these errors were calculated and the average mis-alignment error was found to be± 4 o. 

Although every effort was made to limit the effects and influence of errors on results it must 

be realised that these phenomena will always have an influence on the results. However it is 

important to note that in this study the comparison of characteristics play a more important role 

than the actual magnitude of values. 

2.3 DISCUSSION OF FINDINGS 

Comparison between full coil springs and isolated loop stress results are shown in the set of 

graphs attached as Appendix B. The first set of graphs shows the relation between the load and 

strain measured on each individual grid of the rosettes. The second set shows the relation 

between principal stresses and the deflection for each gauge position of the full spring and the 
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isolated loop. The graph in Figure 2.11 gives an indication of the relationship between load and 

deflection. 

From the first set of curves, that of strain versus load, the following can be concluded: 

In general it can be observed that for both the isolated loop and full spring, the strain values for 

e1 and e3 compared favourably, while those of ~ were considerably lower for both test 

Figure 2.10: FEA plot indicating the 
area of high stress in a coil spring. 

conditions and gauge position. Considering the gauge orientations with the grid measuring e1 

and e3 at 45 o to the neutral axis of the coil and the grid measuring e2 along the neutral axis, it 

becomes clear that the most prominent player is torsion, with bending effect considerably 

smaller as the strain recorded by the gauges at 45 o to the neutral axis measuring torsional strain 

were considerable higher than the gauge on the neutral axis measuring bending(See Appendix 

B). The difference in magnitude of e1 and e3 on the graph is due to slight misalignment of strain 

gauges. Theoretically these values should be the same, but of opposite sign as the strain grids 

are both orientated with 45 o to the neutral axis. 

The highest strain value in the full spring was recorded by gauge 6 which was located on the 

inside of the coil at 180 o away from the position where the deflection was measured. Second 

highest strain was recorded by gauge 7, also situated on the inside but only 120° away from 

the position where the deflection was measured. In the isolated loop, the highest strain was 
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again recorded by gauges 6 and 7, but their difference was of a smaller magnitude. This 

underlines the fact that the high stress in coil springs always occurs on the inside of the spring. 

Figure 2.I 0 shows the results from a finite element analysis, which clearly shows that the 

highest stress occurs on the inside as indicated by the red area. 

The strain induced at gauge 3 was ± the same in both the isolated loop and full spring, but at 

. all other gauge positions, the strain measurement on the full spring was slightly higher than 

those measured on the isolated loop. If the load induced is considered, it can be seen that the 

same strain levels in the isolated coil and the full spring were not induced by exactly doubling 

or halving the load as revealed by the graph in Figure 2.II. It must always be borne in mind 

that during these tests the only variable kept constant in both set-ups was the deflection, which 

was measured between the strain gauged coils at a position I80 o opposite to that of gauges 3 

and 6 as shown in Figure 2.6. 

2.3.1 Principal stress and deflection (For graphs see Appendix B figure 2) 

In comparing the results of the full spring and the isolated loop, the principal stresses compared 

with in I 0% to each other except for positions I and 6 where this was 40%. At both these 

positions the principal stresses present in the isolated loop were lower than that in the full 

spring at 20mmdeflection. The magnitude of the principal stress varied between gauge 

positions with the maximum value (-620 MPa)calculated at gauge 6 and the second highest(-

580 MP a) at gauge 7. The minimum principal stresses were calculated at gauge I ( -2I 0 MP a). 

The magnitude of the principal stresses at position 6 and 7 (which is on the inside of the coil) 

at any given deflection, indicates a considerable increase of the principal stresses at the same 

position just on the outside, e.g. at 20 mm deflection maximum stresses at 6 and 7 are 620 MP a 

and 580 MPa, and 420 MPa at gauge 3 and I respectively. These are for the full spring. For 

more comparisons consult Table 2.I. Again it is important to read these results in conjunction 

with the load deflecting ratios from the graph in Figure 2.II. The load deflection ratio can be 
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better expressed by means of a "k-factor". This k-factor reflects the relation between the load 

applied to the complete spring to that applied to the isolated loop for obtaining the same 

deflection. This is clearly illustrated in section 2.3 .2. 

2.3.2 Load versus deflection 

Deflection was the common variable to both the isolated loop and the full spring test. If the 

Load vs Deflection 
All gauge positions 

3500 Ii~§~§i~~~i~§~ 3000 
~ 2500 
~ 2000 

-g 1500~~~§~1® .3 1000 
500 

0 
2 4 6 8 1 0 12 14 16 18 20 

Deflection (mm) 

-- Load for Isolated Coil -e- Load for Full Spring 

Figure 2.11: Load versus deflection graph. 

average loads are used for the full spring and the isolated loop and plotted against deflection, 

it reveals a few interesting factors. Both the load deflection graphs display linear 

characteristics. On closer examination of the results a comparison between the load applied 

to the isolated loop and to the full spring for achieving the same deflection yielded the 

following. 

Deflection 2 4 6 8 10 12 14 16 

k-factor 2.0 2.011 2.054 2.066 2.06 2.059 2.055 2.046 

Where: k-factor is calculated from load ratio for producing same deflection: 

Load complete spring 
k-jactor = -----=------'=---=-

Load isolated loop 

18 20 

2.066 2.1 

The percentage variation that exists between the load used for the full spring and twice the 

load on the isolated loops is illustrated in the graph in Figure 2.12. This relation is not linear 

but varies, as the deflection was increased the percentage error increased as well. This could 
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have resulted as the ends ofthe isolated loop were unrestricted and pin loaded. 

K-factor 

'!(.error 

Deflection vs Load Properties 
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Figure 2.12: Overall comparison ofresult.(Full spring vs Loop) 

2.4 SUMMARY 

This study yielded some interesting results around stresses and their distribution in a full spring 

and an isolated coil. It confirmed that the maximum stress occurs on the top inside of the coil, 

but that the stress is not uniform throughout. The bending component in the spring material 

was 70% smaller than the torsional effect, but should never be disregarded. The higher stresses 

on the inside can be attributed to the short fibre length at the inside of the coil2
. One can 

conclude from this that the fatigue failure should usually originate from the inside of the coil. 

As far as load ratio goes, it appears that the loads used on an isolated loop of a coil, applied 

at the free ends, should be about half of the axially applied load on a complete spring to induce 

the same stress levels keeping in mind that this is only applicable to a limited deflecting range. 

Also interesting was the fact that the same deflection range as was applied to both the isolated 

loop and full spring induced the same stress levels. This implies that for the above cases the 

same deflection is achieved by halving the load. From all data presented, it is clear that there 

exists some correlation within limits of the stress conditions between the isolated loop and the 

complete spring. It, however, should be realised that percentage error in load versus deflection 

increases as the deflection gets larger as the isolated loop have more freedom for movement 

than the complete coil spring during testing. The isolated loop can be used as a replacement 

fatigue test method and should yield reasonable results within acceptable limits. 
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CHAPTER3 

THE INFLUENCE OF MANUFACTURING PROCESS ON FATIGUE 
PROPERTIES OF 55Cr3 SPRING STEEL 

INTRODUCTION 

This chapter is to reveal the relationships between fatigue failures and process effects in 55Cr3 

spring steel. This mechanism was investigated by fatigue testing coil springs withdrawn from 

different stages of manufacture and then determining the causes of failure by fracture analysis. 

The main objective is to identify and highlight failures that occur due to process parameters and 

to identify any possible change to the manufacturing process that could lead to an increase in 

the fatigue life of the material .. All fatigue samples were manufactured from 5 5Cr3 spring 

material by National Spring, Johannesburg, South Africa. 

3.1 MANUFACTURING SPECIFICATIONS OF 55Cr3 COIL SPRING MATERIAL 

3.1.1 Material specifications 

Type: 55Cr3 Comparison: SAE 5160 

DIN 55Cr3 -Germany 

NBN 55Cr3 -Belgium 

BS 525 H60 - Great Britain 

AFNOR55Cr3 -France 

UNI 55Cr3 -Italy 

JIS SUP9(A) -Japan 

ss 2253 -Sweden 

3.1.2 Chemical analysis 

c 0,52-0,59 

Si 0,25-0,50 
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Mn 0,70-1,00 

Cr 0,7 - 1.00 

p 0,03 TRACE ELEMENT 

s 0,03 TRACE ELEMENT 

3.1.3 Mechanical properties 

Tensile Strength 1520 :MPa 

Yield Strength 1175:MPa 

% Elongation 6% 

Hardness (Normalised) 310HB 

(Soft annealed) 248HB 

Young's Modulus (E) 206 GPa 

Poison's Ratio (v) 0.28 - 0.3 

3.2 MANUFACTURING PROCESS (Summary) 

Incoming material is drawn to an area reduction of 10 to 20% . The drawn steel is cut to length 

and then goes through a process of centre-less grinding to reduce the diameter by 3%. This 

is done to reduce the decarburised zone as shown in Plate 3 .1. 

w t 
Plate 3 .1: Reduction of decarburised zone due to grinding 

process. Ground material is shown on right. 
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The ground bar is austinitised at 868°C to 880°C and hot coiled. After coiling it is quenched 

in oil of which the temperature can vary between 35°C and 70°C but under normal production 

runs at 60°C. After quenching the components are tempered at 375°C for 90 minutes to assure 

a grain size of 5 x 8 ASTM. 

After tempering the components are allowed to cool down to between 180°C and 200°C and 

are then hot scragged three times to solid length at this temperature. This process will induce 

a torsional stress which will resist sagging. The hot scragging is done at 200°C as the material 

yield point is lower at this increased temperature and thus the applied stress exceeds this during 

scragging which will result in a hysteresis effect inducing increased torsional residual stresses 

into the steel. 

The component is now checked for any surface defects and cracks using a dye penetrant test. 

After this quality assurance procedure the component will be shot peened to induce 

compressive residual stresses in the surface to offset any applied tensile stress effectively and 

increase the fatigue life. This mechanism of shot peening will later be explained in detail. The 

shot peened component is now coated by means of phosphate arid black paint and then oven 

dried. Before the component is despatched to the motor manufacturer it is cold scragged and 

rated according to its load rate. Consult Table 3.1 for identification of where samples for 

fatigue test have been withdrawn. 

Batch Drawn Bot- Quench Tempered Bot- Shot- Painted Load 
DO Grind Coil Scrae Peened Tested 

I t/ t/ t/ 

2 t/ t/ t/ t/ 

3 t/ t/ t/ t/ t/ 

4 t/ t/ t/ t/ t/ t/ 

5 t/ t/ t/ t/ t/ t/ t/ 

6 t/ t/ t/ t/ t/ t/ t/ t/ 
. . 

Table 3.1: Process conditiOns of fat1gue samples . 
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3.3 PRINCIPLES OF HEAT AND SURFACE TREATMENTS OF 55Cr3 SPRING 
STEEL 

3.3.1 Heat treatments 

It is the purpose of this section to explain in detail the material changes due to the heat 

treatment of 55Cr3 steel bar. This will be done with reference to microstructural changes and 

other properties. 

3.3.1.1 Austenitise and quench 

The first heat treatment of the spring manufacturing process is austenising of the drawn and 

ground steel bars. This is done at a temperature range of 868°C to 880°C which is well into 

the austenitic temperature range for the steel. In the austenitic state the crystal structure will 

be a face centred cubic iron with carbon in a solid solution4
•
5
•
6

. The coiling is performed at this 

elevated temperature as it will allow coiling to take place with limited distortion of grains which 

could influence the hardness. If structural steel is air· cooled from the austenitic range it will 

produce ferrite-pearlite microstructures, but for the development of high tensile strengths steel 

it requires the generation of lower temperature transformation products such as martensite. 

This is achieved by quenching the austenitic coil into oil which is maintained at a temperature 

of35°C to 70°C. It must be clearly understood that fast cooling rates such as in oil quenching, 

promote the formation of martensite but are not the only role player in this effect as the 

presence of alloying elements will assist in resisting the formation of ferrite and pearlite, 

allowing martensite to be formed at the relatively slow cooling _rate4
. The austenitised coil 

which is quenched will then produce an untempered martensite structure as shown in Plate 3.2 

(This picture was taken on a Phillips XL30 SEM x 3 000 magnification). The above heat 

treatment will increase the hardness and strength levels of the material, but the hardenability 

of the material is to a large extent determined by the alloying elements'. For influence on 

mechanical properties and fatigue life see Table 3 .2. If compared to the hardness of the drawn 
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material the heat treatment results in 40% increase in hardness at full depth. (See Table 3.3 for 

hardness values). 

Plate 3 .2: Untempered martensite in oil quenched 
55Cr3 spring steel (870°C). 

3.3.1.2 Tempering 

The second heat treatment involves the tempering of the quenched coils and this involves 

heating the coils to 375°C and keeping it at this elevated temperature for 90 minutes. In the 

manufacturing of spring steel the tempering process is critical and must be accurately 

controlled. The mechanism of tempering of ?5Cr3 spring steel produces a physical size change 

of the coil that was quenched hardened. The structural change causes a contraction4
. Compare 

Plate 3.3: Tempered martensite oftempered coil at 
375°C for 90 min. 
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the two microstructures in Plate 3.2 and 3.3, where the one is untempered martensite from a 

quenched coil and on the other that of tempered martensite of a tempered coil. The effect of 

the tempering operation on the strength of the spring is very slight (see Table 3.4.) but it will 

result in a grain size of 5 x 8 ASTM. The full depth hardness of the tempered coil will be 

reduced by 33% (see Table 3.3) in comparison to that ofthe quenched coil. 

The mechanism of tempering observed in 55Cr3 spring steel involves the diffusion of carbon 

atoms from the martensite to form carbide precipitates. Very little austenite was retained and 

no evidence of the presence offerrite was found. The influence of the heat treatments on the 

fatigue life of the coil springs will be explained later in this chapter. 

3.3.1.3 Hot scragging 

The main purpose of the hot-scragging process in the manufacture of 55Cr3 spring steel is to 

improve the sag resistance of the springl-7
. The mechanism of sag resistance correlates well 

with the Bauschinger effect. During the hot scragging of55Cr3 spring steel micro-residual back 

stresses are introduced that will reduce the effect of applied stresses. This is done by 

controlling the cooling of the coils after the tempering process. When the coil reaches a 

temperature of200°C it is scragged (x3) to its solid length. Atthis higher temperature the yield 

stress of the material is lowered allowing it to be exceeded by the stress induced by scragging. 

The spring steel is subjected to plastic strain which will cause some dislocations to pile up at 

the grain boundaries7
•
8
•
9

. This will allow some dislocations to tangle with each other which 

produces micro-residual back stresses. Plate 3.4 shows the dislocations present in a hot 

scragged component of 55Cr3 spring steel at 1.5 mm below the surface. 

When the spring is settled, the residual stresses reduce the actual magnitude of the applied 

stresses as they are in an opposing direction. It was also noted that the hot scragging process 
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contributed to a reduction in the overall length of the spring compared to the coils withdrawn 

after quenching and tempering, this overall length reduction is in the order of 12,6%. 

Plate 3.4: Dislocations in hot scragged 55Cr3 spring steel 
(x25000 - TEM Micrograph). 

The hot scragging process has little effect on the microstructure of the material as illustrated 

by Plate 3. 5. The micrograph reveals a compact tempered martensite structure which is similar 

to that of the tempered sample. 

Plate 3.5: Martensite structure of a coil withdrawn 
after hot scragging at 200°C. 

The effect of manufacturing process on other properties ofthe steel can be seen in Table 3.4. 
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There are a number of other factors that play a role in sag resistance of 55Cr3 spring steel. 

The presence ofsilicon7 is known to increase sag resistance of spring steel as well as reducing 

the grain size8
. The relative sag resistance can be evaluated by the magnitude of the hysteresis 

Torque 
Hysteresis Loop 

Area 

Torsion Angle 

Figure 3.1: Hysteresis loop. 

loop area, shown in Figure 3 .1. The larger the loop area the better the sag resistance as this 

implies an improvement in work hardening which will result in a increase in the ultimate tensile 

stress of the material because of this increase in hardness. Figure 3 .2, shows that the finer the 

grain size the larger the hysteresis loop will be, resulting in better sag resistance of the material7. 

Grain Size vs Loop Area 

"'300 -k-----------------
E 
~2~~---=--=-----------­ca e cc 250 ~---------..3ooo..--------

g. 
.s 225 -+--------------..3ooo...,---

200-+---.---.,---.---.--.----, 
10 R5 9 ~5 8 ~5 7 

Austenite Grain Size (ASTM No) 

Figure 3.2: Effect of austenite grain size on hysteresis loop 
area. 
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3.3.1.4 Shot peening 

It is a well known fact that shot peening can greatly improve the fatigue strength of spring steel 

but it is not always done at the correct stage of manufacture. A large number of spring 

manufacturers still apply the shot peening before the preset (scrag) process which is not the 

most effective. In the manufacture of 5 5Cr3 spring steel it is done after the presetting process. 

S-N Curve Preset vs Peened 

400 4-----------------------------
'i' 
~360 1---~~~------------------

=320 4-----~~~--~~~----------
ob 
~280 4---------------------~~----
QI 
.c: 
~240 ~----------------------------

3x10E4 10E4.5 10E5.0 10E5.5 10E6.0 10E6.5 10E7.0 
Cycles to failure 

Shot peened after preset 

.............. Preset after shot peened 

Figure 3.3: Effects of shot peening on fatigue life of 
0. 9% C steel when done before and after 
preset. (12 mm diameter) 

The effect of this can be seen in the graph of Figure 3. 3. Shot peening after presetting 

definitely produces better fatigue properties6
. The mechanism of fatigue improvement by the 

shot peening process in 55Cr3 spring steel will be discussed in detail in the chapter relating to 

process effects and residual stresses. 

The shot peen process will induce compressive residual stresses at the surface which improves 

the fatigue life considerably, this can be seen in Table 3 .2. These compressive surface stresses 

will improve the ability of the material to resist the propagation of fatigue cracks in the surface4
. 

Another important observation is that the shot peen process will notably reduce the scatter of 
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fatigue data as illustrated in Figure 3.4. From the fatigue tests done on 55Cr3 spring steel 

during this research the variation in fatigue data after the quench process was 86% and after 

shot peening only 25% as this process reduced the notch sensitivity of the material. 

100 

:! 80 Cl 
Q 

·:· CD = a 60 ;::; 
Cl ::: 
u. ;~; 

.5 40 
j~i ... ~~i 

! 
Cl 
(,) 

tn 20 ;~ 

~ ::~ 0 
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:·: 

0 1!~ 
Quench QTemper Scragg ShotPeened 

Mnf. Processes 

Figure 3. 4: Relation between scatter in fatigue data and 
the manufacturing processes. 

On the statistical side shot peening will contribute by significantly decreasing the standard 

Probabili 
of 
failure 

Improvement in mean 
~ 
I 
I I 

Stress Level 

Figure 3. 5: Improvement of fatigue properties by 
reduction in scatter through shot-peening. 

deviation of data distribution by the induction of a compressive layer in the surface of the 

spring6
. Figure 3.5 shows that the minimum fatigue strength may be greatly improved even if 
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the mean improvement is small as the reduction of not sensitivity of the material allows for 

- more reliable fatigue data. The practical importance of this observation underlines the necessity 

for shot peening in critical regions of highly stressed fatigue sensitive components. Shot 

peening is a surface treatment and has no influence on the overall microstructure or full depth 

hardness of the material. 

3.3.1.5 Painting process 

The painting process involves two stages. The first is the application of a phosphate and E coat 

black paint to the shot peened component. It is then hooked onto a conveyer line which moves 

through a drying oven at I80°C, after which it is allowed to cool naturally. 

It would seem that the only objectives of this process is to protect the material from corrosion 

and to improve the appearance of the product. An important observation made after this 

process was that it had a minor influence on the fatigue properties. This process had no effect 

on microstructure or hardness of the material. 

3.3.1.6 Cold scrag /Load test 

This is the final manufacturing process of the coil spring and is done to verify the load rate of 

the final component. Again some important observations were made, although the 

microstructure, hardness and other mechanical properties stayed mostly unchanged, the fatigue 

life of the coil was influenced considerably (see Table 3.2 for comparison of results). The 

principle of cold scragging is very closely related to that ofthe hot scragging process whereby 

a dislocation pile-up is created2 and residual stresses are induced to improve sag resistance of 

the coil. The influence ofthis process on the fatigue life of the coil spring will be elaborated 

on later in this chapter. 
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l :~tt~~~~:'·.::::.:J::J:.:, 

-~ Left edge 

OfT centre 

Centre 

OfT centre 

Right edge 

Process stage Cycles offailure (Avg) 

Quench 737 

Quench tempered 1 792 

Hot scragged 2 315 

Shot peen 2912710 

Painted (Before LT) 3034650 

Load tested 725480 

Table 3.2: Fatigue data of processed samples (55Cr3). 
(For test conditions- see section 3.4.2) 

Quench Quench Hot Shot Painted 
Tempered Scragged peened 

782 525 530 548 560 

782 525 525 530 560 

792 530 536 530 542 

782 525 519 530 554 

782 530 525 542 554 

Table 3.3: Cross sectional hardness values of fatigue samples.(HvlO) 

Raw Drawn Quench Quench Hot Shot Painted 
Tempered Scrag peened 

Tensile 756.0 962.9 2847 1633 1633 1760* 1820* 
(UTS)Mpa * 

% 17.2 6.6% 0% 4.8% 
Elongation % 

Torsional 
Shear 591.6 772.6 932.5 982.5 
MP a 

% Ref. 
Increase 0% 0% 15% 36% 47% 56% 42% 

* 
NOTE: * Tensile values as converted from Hv30 hardness values. 

Load tested 
(Cold scrag) 

554 

554 

566 

548 

554 

Load 
tested 
Cold 

1760* 

37% 

**% Increase of impact strength are reflected w.r.t raw material as non standard specimens 
were used. Impact specimens where machined from complete coil spring. 

Table 3.4 : Mechanical properties of processed fatigue samples. 
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3.4 FATIGUE TESTS 

3.4.1 Manufacture of fatigue samples 

A number of methods exist for preparing fatigue samples of which the most popular is the 

rotating bending type test specimen5
. This method was considered but it was felt that a test 

specimen, more representative of the final production component, should be used. The first 

step was to study the manufacturing process to identify stages at which coils could be 

withdrawn successfully. After a number of attempts, it was decided to withdraw samples after 

the following stages of manufacture: 

1. After hot coil and quenching 

2. After tempering 

3. After hot scrag 

4. After shot peening 

5. After painting (before load test) 

6. After load test (cold scrag) 

Plate 3 .6: Processed fatigue samples: From left, quenched, tempered, hot scragged, shot 
peened, painted, load tested. 

Plate 3.6 shows the processed sample ready for fatigue testing. The samples were withdrawn 
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on a random basis from the production line of one specific part number. These were coil 

springs manufactured for the suspension ofthe Volkswagen Golf motor car. A total of30 

samples were withdrawn, twenty four for fatigue test purposes( four samples per manufacturing 

process) and six for the measurement of residual stresses (one samples per manufacturing 

process). 

3.4.2 Fatigue test method 

The fatigue tests were performed on a "Coil Spring Fatigue Tester" type Pl37/1340/l-29 

supplied by RohlotfGermany as illustrated in Figure 3.6. The machine stands± 4 m high and 

is approximately 2 m in diameter. 

The equipment makes use of an eccentric principle to cycle the coil spring and must be loaded 

with four coil springs at a11 times. The coil spring is installed and then compressed by tightening 

it to achieve the desired minimum stress levels before tests commence. The operating speed 

is 4 Hz. The line of operation of the equipment is vertical and fixtures are designed in such a 

way that minimum interference occurs and very little stresses are induced. It is very important 

to ensure that no failures are equipment related. End fixtures are manufactured to a high degree 

Figure 3.6: Coil spring fatigue tester- type 
Pl37/1340/l-29 (Quality Assurance 
Laboratory, Volkswagen SA) 
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of accuracy with minimum interference of specimen under test. Loading through end fixtures 

is perfectly axial. Once a failure occurs the machine automatically stops and a replacement 

sample must be installed to continue the test. Table 3. 5 shows the installation test specifications 

for samples withdrawn from different stages of the manufacturing process, while Figure 3. 7 

reveals the relation for the stresses induced at different deflections. The overall lengths of the 

coil springs withdrawn after quenching and tempering were 50 mm longer than samples 

withdrawn after the hot scrag stage. It was therefore necessary to adjust the test set-up for 

these samples in order to ensure that the induced stresses were the same for all samples. 

The samples were subjected to a comprehensive stress range from 85,7 MP a (minimum) to 951 

MPa (maximum), calculated using standard theorf as follows: 
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Figure 3. 7: The fatigue test stress deflection relation 
for 55Cr3 coil springs samples. 

All tests were performed at the Quality Assurance Laboratory of Volkswagen of SA, at their 
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Uitenhage assembly plant. 

Process Stage *Overall **Installed ***Compressed 

Length (mm) Length (mm) Length (mm) 

Quench 
Temper 
Hot Scrag 
Shot Peen 
Before load test 
(painted) 
Load test 

* Overall length 
** Installed length 
**" Compressed length = 

396,5 376 176 
396,5 376 176 
346,5 326 126 
346,5 326 126 
346,5 326 126 

346,5 326 126 
Total length of cool spring as withdrawn from manufacturing process 
Length to which spring is compressed before fatigue test is commenced 
Length to which spring is compressed during each fatigue cycle 

Table 3. 5: Fatigue test installation specifications. 

3.5 ANALYSIS OF FATIGUE FAILURES AND FRACTURE SURFACES 

The objective of this section can be summarised by K J Miller's question posed in his paper, 

Metal Fatigue- A New Perspective: 10 

"Under what condition will a metal, component or structure survive indefinitely when 

subjected to cyclic forces, and what changes occur that introduce the possibility of 

failure?" 

The failure analysis was done by considering what the influence of the different processes was 

on the mechanism offailure. During the analysis the following topics were considered: Position 

offailure, Macroscopic observations, Microscopic analysis and Fatigue life. 

3.5.1 Quench 

3.5.1.1 Position of fracture 

All the quenched fatigue samples failed within the first turn of the coil spring as illustrated in 

Plate 3. 7. The fracture initiating from the inside of the coil wire and from the photo it can 

clearly be seen that initial fracture results in a series of secondary fracture surfaces as the coil 
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shattered into a number of pieces. 

Plate 3. 7: Position and type of fracture common 
to quenched fatigue samples. 

3.5.1.2 Macroscopic observations 

The characteristic macroscopic fracture observed in the quenched components is as illustrated' 

by the following macrographs of fracture surfaces ofthe quenched fatigue samples. 

Plate 3.8: Typical fracture surfaces present in the 
fatigue samples. 

In this state the material is relatively hard and notch sensitive, resulting in a very brittle fracture. 

There appears to be very little evidence of torsional and more a resemblance to bending type 

fractures . 
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3.5.1.3 Microscopic observations 

Mechanical damage/surface indentation was the dominant cause of failure-in the quenched 

samples. As illustrated in Plate 3. 9 it can be observed that all fractures initiated from the 

surface of the material. 

Plate 3.9: (a) Shows a fracture initiated from a stamp mark 
(b) Magnification of(a) 
(c) Initiation from mechanical damage 
(d) Enlargement of (c). 

There was a definite transition in the appearance of the microstructure from point of fracture 

initiation (slow fracture surface) to the fast fracture surface. This is clearly illustrated by the 

microstructures shown in Plate 3.10. Plate 3.10 (a) shows the transition phase from the slow 

fracture surface to the fast fracture surface. From (b) which represents a high magnification 

of the propagation area it is clearly illustrated that the fracture propagation is mainly along 

grain boundary, whereas in (c) it is clear that the fast fracture surface now mainly includes 

fractured grain surfaces (inter granular). 
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Plate 3.10: (a) Transition stage 
(b) Slow fracture surface (close to point of initiation) 
(c) Fast fracture surface. 

3.5.1.4 Fatigue life 

Due to the fact that the quenched samples are relatively notch sensitive, it has resulted in a 

large scatter band offatigue results as shown in Figure 3.8. 

The sample that failed at 160 cycles, failed at the stamp mark as illustrated in Plate 3.10(a). 
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Figure 3.8: Scatter in fatigue results of quenched 
samples. 
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3.5.2 Quenched tempered samples 

3.5.2.1 Position offracture 

As illustrated in Plate 3.11 all the fractures in the Quenched Tempered samples have occurred 

within the first turn as was the phenomenon present in the quenched samples. One noticeable 

difference is that the degree of shattering of the material has been reduced to a large extent. 

Coil number 6, as illustrated in Plate 3.11 (b) has actually not fractured but failed due to 

buckling. 

Plate 3.11: 
(a) Shows the position and type of fracture in 

tempered samples. 
(b) Tempered fatigue sample failed due to 

buckling after 2450 cycles. 

3.5.2.2 Macroscopic observation in fracture quenched tempered samples 

Most of the initiations of fractures occurred or started at either the top or bottom of the coil 

wire. The fracture surfaces reveal a helical brittle appearance as illustrated in the macro graphs 

in Plate 3 .12. If compared to the quenched sample it can be observed that the type of fracture 

has more resemblance of a bending type failure (Plate 3 .8) in the case of the quenched samples 

to a more torsional type failure (Plate 3.12) in the quenched tempered samples. 
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Plate 3 .12: Helical type fracture from different 
tempered fatigue samples. 

3.5.2.3 Microscopic observation in quenched tempered samples 

The microscopic analysis of quenched tempered fracture surfaces revealed a number of possible 

causes of failure which varied from inclusions, surface damage due to manufacturing process 

and surface damage incurred during fatigue testing. 

The first sample investigated showed initiation close to the outside surface as illustrated in Plate 

3 .13 (a). Once the area ofinitiation was analysed with an SEM, it revealed the presence of an 

inclusion as shown by (b), ± 2 mm in from the surface of the material. Although this inclusion 

was present in the initiation area, it was obviously not the primary cause ofinitiation. On further 

investigation of the other side of the fracture it became clear that the fracture initiated from 

damage on the surface as shown in (c). 

Another interesting observation was the presence of secondary cracks and intergranular failure 

in the edge of fast fracture surface as illustrated by (d) and (e). 

Plate 3.14 (a) and (b) illustrated the difference in appearance of slow and fast fracture surface. 

Note the presence of micro cracks in the fast fracture surface compared to that of the slow 

fracture surface. Again as in the case of the quenched sample, there is evidence of trans 
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granular and inter granular appearance of the fracture surface structure. 

Plate 3.13: (a) Area of initiation (b) Inclusion present in initiation area 
(c) Cause of fracture (mechanical damage) 
(d) SEM image of secondary cracks (e) Back scatter image of(d) 

Plate 3.14: (a) Fatigue area. (b) Fast fracture surface. 

Plate 3.15 (a) and (b) show detail of another quenched tempered fatigue sample fracture. From 
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(a) it is clear that some external damage to the surface was responsible for the fracture. This 

damage runs along the top of the coil wire and can be attributed to coil clashing during the 

fatigue test. Interesting to note in (b) is that the initiation was to the right hand side ofthe clash 

mark at a stress raiser. 

Plate 3.15: (a) Mechanical damage due to coil interference. (clash) 
(b) Initiation area of failure. 

3.5.2.4 Fatigue life 

Compared to the quenched samples, the quenched tempered sample showed a slight increase 

in fatigue life, as well as considerable reduction in scatter of fatigue results. With the quenched 

sample a scatter of 86% was recorded, whereas in the quenched tempered sample it was• 

reduced to 51%. 

The temper process is partially responsible for reducing the notch sensitivity of the material and 

for creating a more repeatable component4
• The increase in fatigue life due to the temper 

process was 58% on the comparison of the average fatigue life of the two types of samples. 

3.5.3 Hot scragged samples 

3.5.3.1 Position of fracture 

With no exception, all hot scragged samples failed in the first turn of the coil spring as 

illustrated in Plate 3 .16. The fracture shows one fracture plane with no shattering. 
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Plate 3 .16: Position and type offracture in 
fatigue sample withdrawn after hot 
scraggmg. 

3.5.3.2 Macroscopic observations 

Three out of four failure analyses showed a helical initiation with some axial growth but with 

the fast fracture mainly of a helical nature. Plate 3.17 (a) shows the helical type fracture while 

(b) illustrates clearly a small amount of axial growth at the edges of the slow fracture surface 

before it followed a helical path for the fast fracture part. 

Plate 3.17: (a) Dominant fracture type of hot scragged fatigue samples. 
(b) Reveals some axial growth at edges of slow fracture 

surface. 

One failure of hot scragged samples revealed a torsional axial type failure as illustrated by Plate 

3.18 (a). The appearance of the fracture is that of a torsional overload, perpendicular to the 

wire axis of the coil spring while (b) reveals a "fish eye" type appearance on the fracture surface, 
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also visible in (a). This will be discussed in detail under microscopic observations. 

Plate 3.18: (a) Axial type fracture of a hot scragged 
fatigue sample. 

(b) "Fish eye" appearance on fracture 
surface of hot scragged sample. 

3.5.3.3 Microscopic observations 

Two scragged samples were analysed microscopically as the other failure showed the same type 

of failure as the first sample. The first sample revealed a transverse failure origin, as shown in 

Plate 3 .19(a). The origin is close to the outside surface of the wire but due to mechanical 

damage caused by the violent way in which the sample broke, it is difficult to pinpoint the exact 

cause. A similar failure as in (a) is also shown in the Metals Handbook, vol. 10, page 554, and 

the cause of that failure was attributed to the presence of transverse marks remnant of a grinding 

operationu. If considering that these fatigue samples were also subjected to a grinding process 

during manufacture, it could be concluded that this failure originated from surface damage 

induced by the manufacturing process. The micrographs (b) and (c) illustrates the difference 

between the appearance of the structure of the initiation area (a) and the fast helical fracture 

surface (b) at the same magnification. 

The second failure analysed microscopically was the one that revealed evidence of a "fish eye" 

type failure. These types of failures are an indication of hydrogen embrittlement12
. On closer 
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examination, no evidence of an inclusion could be found in the "fish eye" area as illustrated by 

the micrographs ofPlate 3.20 (a) and (b). 

Plate 3.19: (a) Failure origin in a hot scragged fatigue sample. 
(b) Microstructure of fracture surface at origin. 
(c) Microstructure of fast fracture surface. 

The hydrogen embrittlement is the result of hydrogen absorbed throughout the metal at the 

molten stage, which would then be released around inclusions, precipitates and other 

Plate 3.20: (a)"Fish eye" in hot scragged 55Cr3 fatigue sample. 
(b) Enlargement of(a). 
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discontinuities. In this failure no evidence of an inclusion could be found, although the opposite 

fracture surface was not in a suitable condition for analysis. 

3.5.3.4 Fatigue life 

Again there was a marginal improvement of the fatigue life due to the hot scrag process, 

compared to the quenched tempered samples. The scatter in the fatigue data was very similar 

to that of the quenched tempered samples. From this it can be concluded that the hot scragging 

process has very little influence on the fatigue life of the components, although the process is 

responsible for inducing a certain amount of residual stresses and plastic deformation into the 

sample to improve it's sag properties. The predominant cause of failure was surface defects or 

damage, which indicates that there is still a certain amount of notch sensitivity in the component. 

3.5.4 Shot peening samples 

3.5.4.1 Position of fracture 

An interesting observation is that in all the previous processes the sample fracture occurred 

within the first turn of the coil springs, but as illustrated in Plate 3.21 the position of the fracture 

occurred more to the centre of the spring. This was the case in all of the shot peened fatigue 

samples. 

Plate 3.21: Typical fracture position for shot 
peened samples. 
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3.5.4.2 Macroscopic observations 

Two different types of fractures have been observed as illustrated by Plate 3.22 (a) and (b). The 

helical fracture illustrated in (a) was the dominant type of fracture with only one fracture failing 

with a shear type failure perpendicular to the wire axis, as illustrated in (b). 

Plate 3.22: (a) Helical type fracture of a shot 
peened fatigue sample. 

(b) Shear type failure of a shot peened 
fatigue sample. 

The failure origin in the fracture illustrated in (a) was below the surface as clearly illustrated by 

the macro graph in Plate 3.23 (a), whilst that of(b) was again close to the surface as illustrated 

by Plate 3.23 (b). Plate 3.23 (c) illustrates the damage on the side of the shot peened sample, 

close to the origin of the sample illustrated in (b). The nature of this damage would imply that 

a 

Plate 3.23 : (a) Origin offatigue 
3.22 (a). 

(b) Origin offailure of shot peen sample shown in 3.22 (b). 
(c) Surface damage in side responsible for failure in (b). 
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it was caused by the shot peening process itself. A possible scenario is that a "shot" actually 

penetrated the surface of the material or dislodged an inclusion in the surface of the material. 

The diameter of the indentation is ± l . 5 mm. 

3.5.4.3 Microscopic observations 

Let us first consider the fracture of the shot peened sample originating below or sub surface, as 

was illustrated by Plate 3.22 (a). On closer examination, using SEM, it almost appeared to be 

another "fish eye" type failure, but by enlarging the centre portion, it became evident that the 

cause of failure was an inclusion of 60 11m just below the surface of the material as illustrated 

by Plate 3.24 (b) and (c). On performing anEDAX x-ray analysis, the following elements were 

identified: AI, Mg, Ca and 0 , ie a standard alumina-type inclusion in steel. 

Plate 3.24: (a) Fracture origin of shot peen sample shown in Plate 3.22(a). 
(b) SEM image of inclusion in (a). 
(c) Back scatter SEM image of(b). 

Another interesting observation of this fracture surface was the appearance of the 

microstructure of the surface close to the origin and that of the fast fracture surface. This is 
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illustrated by Plate 3.25 (a) and (b), where (a) is the surface close to the origin with very litt le 

topography, and (b) the fast fracture surface revealing a large amount oftrans granular fracture 

structure. 

Plate 3.25 :(a) Slow fracture surface of shot peen sample close to the initiation 
area. 

(b) Fast fracture surface of same sample. 

The second failure analysed showed an interesting phenomena and that is a shot peened sample, 

c 
Plate 3.26:(a) Origin of a failure close to the surface of a shot peened 

component. 
(b) Indentation caused by a shot close to origin. 
(c) Indication of failure. 
(d) Enlargement of (b) reveals possible remains of an inclusion. 

60 



failing due to a surface defect. It must be stressed that only one of the shot peened samples 

failed in this manner. Plate 3.26 (a) shows an SEM picture ofthe origin area ofthe 

failure, while (b) shows the position of the indent on the side with respect to the origin area. 

If (b) is enlarged, an interesting feature appears close to the centre of the origin as illustrated 

by (c). If this is enlarged further as illustrated by (d), it strengthens the theory that a shot was 

responsible for dislocating a part of an inclusion in the surface, leaving a stress raiser from 

where the fatigue failure originates. 

3.5.4.4 Fatigue life 

The shot peened fatigue samples showed a major increase in fatigue cycles resisted. Where the 

fatigue results for all the previously processed samples were expressed in a couple of hundreds 

of cycles, the shot peened sample were resisting more than 2 700 000 cycles on average. This 

represents an increase of 100 000 fold in fatigue life of the component compared to that of the 

previous samples. The reasons for this will be explained in detail in the chapter concerned with 

residual stresses. The scatter in fatigue data was high and more samples will have to be tested 

for a clearer picture of this. The scattershowed a 25% improvement compared to that in the 

previous processes. 

3.5.5 Painted samples 

3.5.5.1 Position of fracture 

The painted samples showed a bit of variation as far as the position of the fracture was 

concerned. One sample fractured in the middle, as illustrated by Plate 3.27 (a). Another two 

failed in the second/third turn from the bottom as illustrated in (b). In the last samples tested 

the test was discontinued after more than 6 000 000 cycles were completed without failure. 
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Plate 3.27: Position offracture of painted fatigue 
samples. 

3.5.5.2 Macroscopic observations 

All the fracture surfaces reveal the same type of helical brittle appearance as illustrated by Plate 

3.28 (a), while (b) illustrates the origin of the fracture surface which appeared to be close to the 

Plate 3.28: (a) Helical failure of a p 
(b) Origin offailure in (a). 
(c) Mechanical damage on surface close to origin of failure. 
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outside surface and on the inside of the coil which is a high stress area2 as was illustrated by the 

FEA model in (chapter 2 (Red= High Stress)). It would appear that the failure was due to 

surface damage as shown in (c). 

3.5.5.3 Microscopic observations 

During the microscopic observation of the failure, it was very difficult to pinpoint the exact 

cause offailure. There are two possible causes namely, that the surface damage occurred post-

fracture, therefore inclusions present in the fatigue origin area were responsible for initiating the 

fracture and secondly that the surface damage occurred before testing. As illustrated by Plate 

3.29 (a) and (b), it is clear that inclusions are present in the area of origin but also if the edge 

of the sample is considered, it is clear that the surface damage has resulted in high spots close 

to the fatigue initiation. 

If(a) is studied carefully, the origin appears to be at the arrow as indicated and was most likely 

initiated by an inclusion located on the surface of the material. The irregularity of the surface 

at this spot can largely be attributed to the shot peening process and not to mechanical or 

surface damage. 

Plate 3.29: (a) SEM picture of the area of origin. 
(b) Back scatter image of (a). 

Plate 3.30 (a) and (b) illustrate the difference between the fracture surface close to the origin 

and the fast fracture surface. The slow fracture surface appears a lot smoother than that of the 
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fast fracture surface. 

Plate 3.30: (a) Fracture surface close to origin of a painted fatigue sample. 
(b) Fast fracture surface of same failure. 

3.5.5.4 Fatigue life 

There was a marginal increase in the fatigue life of the painted samples compared to the shot 

peened samples. The increase in the fatigue life will have to be investigated further to establish 

the exact reasons. The influence of residual stress on the fatigue life will be discussed later in 

this thesis and might shed more light on this phenomena. The painted fatigue samples showed 

very little scatter in fatigue data, the scatter was in the order of30%, a major improveme~t but 

will have to be confirmed by testing a larger number of samples. 

3.5.6 Load tested samples (Final Component) 

3.5.6.1 Position of fracture 

As was the case with the painted samples, the load tested samples also showed some variation 

in position of fracture. Two of the samples fractured towards the middle, while another 

fractured three turns up from the bottom and the last one failed in the first turn of the sample. 
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Plate 3.31 : Fracture positions as it appeared in 
load tested samples. 

3.5.6.2 Macroscopic observations 

For the macroscopic observations three fracture surface were analysed as illustrated in Plate 

3.32 (a), (b) and Plate 3.34. 

Plate 3.32: The fracture appearances of load tested 
samples where in (a) a large amount of 
axial growth is visible and (b) reveals a 
torsional shear type failure. 

From (a) it is visible that there was a helical initiation ofthe fracture which started Giose to the 

surface as is illustrated by Plate 3.33 . This was followed by a large amount of axial growth and 
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finally the fast fracture surface was in a helical format again. 

Plate 3.33 : Initiation of failure in 
first load tested fatigue sample. 

The optical m.icroscopy showed no definite cause of the failure in the first sample. The second 

sample as shown in (b) revealed a torsional type failure. It appears very plastic and the 

indication of an off-centre torsional pivot indicates failure due to combined bending and torsion. 

A third failure revealed a helical initiation with "fish eye" appearance in the centre, it grew some 

way axially and some perpendicular to the wire axis. The fast fracture surface was mainly 

helical. Plate 3.34 shows a clear picture ofthe "fish eye" type initiation a few millimetre away 

from the surface of the sample. 

Plate 3.34: 
"Fisheye"type initiation m a 
load tested sample. 

There is a clear indication of the presence of an inclusion (see microscopic analysis of sample). 
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3.5.6.3 Microscopic analysis 

Let us consider the sample shown in Plate 3.32 (a). Plate 3.35 (a), (b) and (c) illustrate SEM 

micrographs of this sample where (a) clearly shows the origin ofthe fracture close to the surface 

of the material whilst (b) is at a higher magnification and reveals some indication of the presence 

of a small seam to the bottom side ofthe origin. No surface damage could be observed and the 

failure most likely was caused by a small inclusion close to the surface of the material. If the 

surface is analysed by using the back scatter image the presence of an inclusion can be seen 

close to the origin as illustrated by (c). 

Plate 3 . 3 5: SEM micrographs of a load tested fatigue sample 
(a) Fatigue origin. 
(b) Higher magnification of (a). 
(c) Back scatter image revealing a inclusion. 

Other interesting observations in the fracture surface are illustrated by SEM micrographs 

illustrated in plate 3.36 (a), (b) and (c). The first reveals the presence of sulfide stringer on the 

axial fracture surface as shown in (a). The length ofthese stringers varied with some as long 

as 50 11m. The micrographs in (b) are the structure close to the origin ofthe fracture, whilst (c) 
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shows the structure of the fast fracture surface of this failure. As was the case with the painted 

sample, the structure close to the origin appears very smooth, while that at the fast fracture 

appears relatively topographical and cross granular. Note the sulfide stringer on the fast 

fracture surface. 

Plate 3.36: (a) Sulfide stringer marks in a load test sample. 
(b) Fracture surface close to origin. 
(c) Fast fracture surface. 

The second fracture analysed was the fracture with the "fish eye" appearance. It revealed the 

presence of a large inclusion. Plate 3.37 (a) and (b) illustrate photo's taken with a SEM ofthe 

fracture surface. Although the sample was in a bad state with some corrosion on the surface, 

it was not beyond analysis. The micrograph in (a) shows the origin with the inclusion visible, 

while (b) and (c) show the inclusion at different magnifications. The inclusion had a cross 

section of± 50 J..lm and showed signs of breaking up as illustrated by (c). There can be no doubt 

that this failure was inclusion related. On (c) the origin can clearly be traced back to the 

inclusion. 
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Plate 3.37:(a) SEM picture of fatigue origin. 
(b) Back scatter image of fatigue origin. 
(c)) Back scatter image of inclusion itself 

The last fatigue fracture as was illustrated in Plate 3.32 (c) was damaged to such an extent that 

SEM analysis was impossible. A large amount of rubbing occurred on the surface before 

fracture. 

3.5.6.4 Fatigue life 

A very interesting feature of the fatigue cycle life was a substantial drop in the fatigue resistance 

of the load tested samples, compared to the shot peened and painted samples. On average this 

represented a 7 5% drop in the number of cycles resisted. In the final analysis the cycles resisted 

by these samples, were still well above the specified limit. The change caused by this process 

will be investigated further by looking at the residual stress later in this thesis, but definitely 

holds a key to improve spring material performance and should be researched further. It would 

seem that a large amount of plastic deformation is set into the material during load testini. 
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3.6 SUMMARY 

3.6.1 General 

All samples were analysed visually, optically and using a Phillips XL 30 SEM. Some elemental 

analysis of particles was performed using a energy dispersive x-ray (EDAX) technique. Some 

samples were damaged post-fracture and beyond analysis. This can be attributed to the violent 

way in which the fatigue sample will leave the machine after fracture. 

The location of the fatigue fractures was very process specific. This is illustrated by the 

following schematic diagram (Figure 3.9). 

From the graph it is clear that the majority of the sample broke within the first three turns of the 

coil. There is a definite move towards the centre of the sample after the shot peened process 
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Figure 3.9: Position of fracture of different processed samples. The y-axis indicate the coil 
number. (1= Bottom; 3.5=Centre & 7= Top) 

and the processes after this follows the same trend. The stress state in the first turn of the 

samples is complicated as the design of the coil is such that a reduction in pitch has to be 

incorporated to give the component parallel ends. This could also be an indication that some 
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interference occurs with the fatigue test equipment end fixing fixtures. After a thorough 

investigation into this possibility no evidence could be found to support this theory. The end 

fixtures on the test jig are well designed and the spring is only restricted in one direction by 

them. The load application is also perfectly axial introducing no external stress factors. 

Three characteristic macroscopic fracture types were observed in all samples tested. The most 

common type was the helical type which occurred in samples withdrawn from all the processes. 

The next type was an axial/helical type fracture mainly present in samples withdrawn after the 

shot peened process, while the torsional slow type fracture occurred in only three samples but 

was not process specific. The three types of macroscopic fractures are illustrated in Figure 

3.10. 

(a) (b) (c) 

Figure.3 .1 0: Dominant macroscopic features of 55Cr3 
fatigue samples withdrawn at different manufacturing 
stages.(a) Helical fracture (b) Axial/helical fracture (c) 
Torsional shear. 

As far as buckling is concerned, only one sample failed in this manner, no sample after the hot 

scragging process failed by buckling. The microscopic analysis revealed three general causes 

of fatigue initiations, namely surface damage, non-metallic inclusions and an isolated case of 

hydrogen embrittlement. 

Several coils failed from damage due to coil clash between the first coil and the coil end. This 

was a dominant failure of samples withdrawn before the shot peening process. The influence 

of coil clash on failure initiation seems to disappear after the shot peened process. As illustrated 
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by Plate 3 .38, this confirms that the clashing still takes place but is not responsible for fatigue 

initiations. It can be observed that the damage is severe but it seems that the shot peened 

process is effective in neutralising surface damage to a large extent. 

Plate 3.38: Mechanical damage due to coil clash- sample 
withdrawn after painting. 

3.6.2 Effect of process upon fatigue response 

Several sources of fatigue crack initiation have been identified in this experiment and, although 

not all are dominant in the finished component, some interesting trends have emerged. The 

sample size for each stage was four and this should therefore be considered before analysing the 

average fatigue performance figures presented in Table 3.2. 

In as quenched and quenched tempered coils, the cause of failure was found solely to be 

mechanical damage to the material surface. Despite a reduction in hardness during the 

tempering process, average fatigue life of tempered coils was slightly increased as expected. 

After subsequent processes the variation in measured hardness values proved insignificant. 

The hot scrag operation is applied at the tempering temperature to coil springs manufactured 

from chromium steels in order to impart a degree of relaxation resistance to the finished 

component2. However, it is evident that the operation also has an effect in terms of fatigue 
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performance, resulting in an average increase in fatigue life of approximately 28% over the 

quenched tempered coils. In addition it was observed that subsurface fatigue initiation begins 

to occur only after this process. 

The most significant process in terms of promotion of high fatigue life was that of shot peening, 

producing a massive increase in excess of hundred thousand-fold. Coils withdrawn from after 

shot peening, or later stages, were found to fail predominantly from defects other than surface 

or mechanical damage. A further increase in the fatigue performance was noted from the 

painted spring samples, although the increase was so small that it can be regarded as 

insignificant. 

The most surprising change in fatigue performance was observed for the final product, after load 

testing, resulting in a four-fold reduction in fatigue life. This stage consists of compressing each 

spring to solid height three times at room temperature and is essential in order to ensure 

constant length of the finished components and for grading of final components in bands of 

equal stiffuess. It is evident that a serious detrimental mechanism is introduced during this 

stage. 

As discussed the stresses in a helical coil spring can be calculated using standard theory. For 

design purposes spring characteristics can be determined via standard formulaeJ These 

formulae include a correction factor to accommodate the complex nature of stress in the helix 

which results in a higher stress on the inside of the coil, reducing towards the outside surface. 

There are two reasons for this. 

1. The torque moment results in a steeper twist angle for the short fibres at the inside of 

the coil than for the long ones at the outside and thus produces a higher shear stress at 
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the inside. 

2. The axial load causes a direct shear stress which adds to the shear stress at the inside of 

the coil but is subtracted from the outside. 

Considering this, it would be expected that most coil failures should occur at the inside of the 

coil, whereas it was found that approximately 70% of failures occurred at the top or bottom of 

the wire. Three reasons are suggested for this: 

I. The bending element in this spring design is more significant than the design formulae 

suggest, thus creating a peak combined stress at the top/bottom of the wire. 

2. The standard design theory assumes that no bending element are present. Although 

springs were loaded axially it would seem that bending was not completely eliminated. 

3. Some damage to these (top and bottom) wire areas occurs during the scragging 

processes or cycling when fatigue tested. 

In addition it was noted that of the five failures from inside the coil, four occurred in shot 

peened coils. This would indicate that the shot peened coverage is reduced in the inward 

surfaces of the component due to shielding ofthese areas. 

The current work has highlighted some interesting relationships between fatigue failure and 

critical defect presence in automotive coil spring components. In addition it has been illustrated 

how the surface condition of the material, specifically with regard to the process effects, alters 

the source of fatigue failure and the order of importance of defects with respect of fatigue 
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performance. It has been shown that for components manufactured from the current material, 

the critical defects in finished components are subsurface non-metallic inclusions and hydrogen 

damage. 

Finally, it has become evident that the last stage in the manufacturing process, the cold scrag 

operation, actually leads to a reduction in the fatigue performance of the finished product. It 

is, therefore, clear that further work is required in this area in order to determine that nature of 

the process by which this detrimental effect occurs. 
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CHAPTER4 

RESIDUAL STRESSES 

INTRODUCTION 

Residual stresses, also referred to as internal, bulk, forming, fabrication, building or in situ 

stresses, have only been considered seriously in engineering design recently1
. The preferred 

term of those mentioned above is residual stresses. All engineering components produced by 

processes like welding, forging, heat treating, rolling, grinding, machining, etc. will contain 

residual stresses. It is probably true to state that all engineering components contain residual 

stresses of variable magnitude (unless specifically stress relieved) and sign (tensile or 

compressive) before being used in service conditions owing to the manufacturing history of 

such a component. It is very important to realise that residual stresses are "locked into" the 

component because of the manufacturing process and that in the absence of external loading 

-Aplied Stress -­Resultant Stress 

---Residual Stress 

~ 

!tl 
a.. 
:2 
~ 

t/) 
t/) 

~ 
U5 

10 

8 ............. 
.......... 

6 

4 

2 

0 

-2 -
-4 

0 

............ --.......... 
,.. .......... -......., -

- -r-

0.1 0.2 0.3 0.4 0.5 
Distance from surface (mm) 

Figure 4.1 : Effects of residual stresses on surface layer of a component. 

this will represent a datum stress. When the component is put into service, the applied stress 

is subsequently superimposed over the residual stresses as illustrated by Figure 4.1 . Although 

most residual stresses are caused by plastic deformation of the metal through severe 

temperature gradients or mechanical forces, they can also be induced to a lesser extent by 
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pennanent expansion or contraction of the metallic lattice in processes such as carburising, 

nitriding, or heat treatment, which cause phase transfonnatioiJ.. There are a number of reasons 

why residual stresses are receiving increased attention from design engineers. Primarily their 

presence may reduce the cost of material used, extend the useful lifetime of existing structures, 

and satisfy the demand for greater reliability of components if of opposite nature to the applied 

load .. 

Residual stress is nothing new to the engineering world of today, and substantial efforts have 

been made to investigate their magnitudes and distributions with depth in components and their 

influences on service life. The problem of residual stresses has largely been overcome in the 

past by incorporating sufficiently larger safety factors to mask their effect. However, with the 

current pressure on the manufacturing world to produce cheaper, more reliable and 

environmental friendly products, design procedures have become far more stringent and 

residual stresses can no longer be ignored. 

In this chapter the reasons for and effects of the presence of residual stresses in coil springs, 

manufactured from 55Cr3 spring steel by National Springs in Johannesburg for Volkswagen 

South Afiica are investigated. The second objective is to find a suitable method for the 

measuring of residual stresses in 55Cr3 spring steel and relating it to the manufacturing 

processes and fatigue life of the different samples tested. 

4.1 RESIDUAL STRESSES 

4.1.1 Definition of residual stresses 

Residual stresses are those stresses which exist in the component, without, and prior to the 

application of any service or other external loads. 
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4.1.2 Calculation of residual stresses 

From information given in the introduction, it can be seen that residual stresses can be 

compressive or tensile: If by fortune or design, the stress caused by the applied load is of 

opposite sign (positive or negative) to that of the residual stress, then part of the applied load 

goes to counter or to reduce the residual stress as is illustrated in Figure 4. I. This brings about 

that part of the load is overcome by the residual stresses before the combined stress can rise 

again. Such residual stresses are thus extremely beneficial to the strength of the component and 

significantly higher fatigue strength can result. If, however, both service and residual stresses 

are of the same sign, e.g. both compressive or tensile, then a smaller service load is required 

to produce failure than in the case where the stresses are of opposite signs. Thus, one can 

conclude by saying that both sign and magnitudes of the residual stresses are important to 

fatigue life considerations. It is very risky if a designer assumes that stresses are zero at zero 

load, since it is not the case in most instances in practice. The designer must always fully 

estimate the levels of residual stresses present, as well as their influence or effect on the 

strength of the design, or the manufacturing processes must be changed to reduce residual 

stresses to a minimum. If fatigue life of a component is critical, compressive residual stresses 

will be preferred and are often deliberately introduced into the surface of components (e.g. shot 

peening) to enhance the fatigue life. However, in buckling, compressive residual stresses on 

the surface can lead to premature buckling failure if service loads are also compressive13
•
14

. 

Let us consider the residual stress in a beam of an elastic, perfectly plastic material subject to 

bending after yielding. If a material is loaded past the yield point, permanent deformation 

appears. This means that part of the beam section will stay elastic while the remaining fibres 

yield. The permanent deformation associated with the yielded areas prevents the parts of the 

material which are elastically stressed from returning to their original state, when the load is 

removed. This will produce residual stresses in the beam. For us to determine the magnitude 
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of the residual stresses, we have to work from the assumption that the unloading is completely 

elastic from either a partially plastic or fully plastic state. Consider the tensile test graph in 

Figure 4.2. 

Stress 
0 

fl-·--k~crg 
Yie 7 / (Plastic) 

I¥~ 

/ /Aastic unloading 
/; 

~~/,~;.~---------------

Permanent 
Set Strain e 

Figure 4.2: Tensile test curve. 

From A to B the loading is elastic (NO permanent deformation). At point B the material starts 

to yield which will cause permanent deformation. So, if the load is removed at C, it will not 

return to A, but to F, because of the deformation (permanent set) that has taken place1
. The 

unloading is still considered to be an elastic unloading. The same applies if the specimen is 

reloaded to point C and then unloaded to return to G. If the specimen is now removed from 

the tensile machine, it will look the same as what was originally the case, but now it possesses 

a certain amount of extra built-in stresses which will definitely influence the material's service 

performance. 

From the graph it is clear that the unloading stress distribution is linear and can be subtracted 

graphically from the stress distribution in the plastic or partially plastic state to obtain the 

residual stresses. To explain this consider calculation shown in Appendix C for a beam loaded 

to a fully plastic state. 
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Considenng the operating conditimi of a helical coil spring in a car, one will find -that it is 

mainly subjected to torsion. Let us now consider a shaft subjected to torsion beyond the elastic 

limit (plastic torsion). We can assume that for shaft material the stress/strain curve is very 

similar to that shown in Figure 4.2, and thatthe stress is proportional to the strain up to the 

elastic limit and constant after that. Consider the shear stress distribution in the cross-section 

of the shaft shown in Figure 4.3, keeping in mind that the assumption is that the plane cross-

section remains plane and that any radial line across the section remains straight. 

Sllaft tro~s SI re ss Dis 1 rib ut ion 
set lion 

z; r, 

··8£ • 
MaJimum elastio:1ly Partially ptast•( Fully plasl.c 

(a) (b) (c) 

Figure 4.3: Stress distribution of a fully plastic shaft. 

From (a) it can be seen that if the shaft stays elastic, the stress distribution remains linear and 

as the torque increases, the shear stress in the outer fibres increases and will eventually reach 

the yield stress t"Y" This is the maximum torque the shaft can withstand without permanent 

deformation. 

From torsion theoryL 
T t" 
- = - .......... (1) 
J r 

Therefore the maximum elastic torque(T E): 

80 



T = ty J = 
E R 

ty 1tR3 = 
R 2 

TIR3 
- t ........ (2) 

2 y 

In (b) the torque has been increased past the maximum allowable elastic torque causing partially 

plastic deformation. As the torque is increased, more of the material will yield and take up the 

yield stress. Consider the case in (b) where the material has yielded to a radius R1. 

. . The partial plastic Torque (Tpp) = Elastic Torque in core+ Plastic Torque on outsides. 

From equation 2 Elastic Torque in core 
3 

1tRI 
= - t ................ (3) 

2 y 

with R1 replacing R in equation 2. 

For the plastic torque let us consider an elementary ring of radius rand thickness dr. The stress 

carried by this portion is ty because all fibres in the plastic zone have reached the yield stress. 

Force on element 

Torque on element 

Total torque 

= ty x 21trdr . 

=Force x radius 

= 

= 

= 

= 

= 

(ty x 21trdr) x r 

ty 27tr 2 dr 

JRt 21tr 2dr 
RI y 

r3 R 
t 21t(-)R/ 

y 3 

21t ty 3 3 
[R - RI] .......... (4) 

3 
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Therefore the partial plastic torque: 

From equation 5 the torque for (c) can be expressed as follows: 

In Figure 4.3 (c) R1 = 0 

.. TFP = 2
1t t R 3 .......... (6) 
3 y 

From this it can be concluded that a considerable torque capacity exists beyond that required 

to produce initial yield. 

Ratio of fully plastic to maximum torque is: 

4 
= 

3 

The fully plastic torque for a solid shaft is 33% greater than the maximum elastic torque. This 

larger margin can either be incorporated in design procedures to increase the allowable torque, 

or it can be used as an additional factor of safety. Important to remember is that as soon as 

a shaft is stressed beyond the yield point of the material, permanent deformation will occur. 

As soon as there is permanent deformation, residual stress has been set up. This residual stress 

will affect the overall service performance of the component15
, so it is important for a design 

engineer to be able to determine their magnitude. We start off by assuming that the removal 

of the torque is a completely elastic process, so that the stress distribution caused by the 

unloading is linear. 
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The residual stresses are obtained from subtracting the elastic unloading stress distribution from 

that of the partially plastic stress distribution. From equation 5 the partially plastic torque is 

equal toT PP and, therefore, the torque to be applied during unloading must equal TPP as well. 

This torque will induce a stress 't' at the outer fibres of the shaft and if assumed that it is an 

elastic material, this stress will be given by the torsion theory of 

T -. 
= 

J R 
.. •' = TPP R 

J 

Let us consider the shaft in Figure 4.4 (a) loaded into partial plastic state. 

Partial ptasti( 
solid shaft 

(a) 

Partially Unload•ng 
loading stress sires!. 
distnbution distribution 

(b) (c) 

loading &. 

unloading Residual 
superimpo~ed srresse:s 

(d) (e) 

Figure 4.4: Stress distribution of partially plastic shaft. 

The torque needed for stress distribution in (b) is therefore: 

from equation (5) 

To determine the residual stress after unloading, the unloading (c) is assumed completely 

elastic. Therefore an equivalent moment to T PP' but in opposite sense must be applied for the 

unloading moment. The effective stress introduced at the outer fibres by this process, is thus 
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given by the torsion theory 

T ' - = 
J R 

TR 
= •' at point (g) .. ' = -

J 

The magnitude of the residual stress at the outer surface is therefore equal to -(•'- •y). 

Now the unloading stress distribution is linear from zero at the centre of the bar to-.' at the 

outside. If •' is subtracted from the partially loading stress distribution in (b), it will produce 

the residual stress distribution as shown in (e). 

Any manufacturing process or service application causing yielding in a material will produce 

residual stresses which can be favourable to future overloads if acted in the same direction, 

and/or unfavourable to future overloads acting in the opposite direction. If residual stresses 

represent a favourable stress distribution to a specific service condition, this stress distribution 

has first to be overcome before any adverse stress can be introduced into the component. A 

typical example of this is where spring manufacturers intentionally yield springs in the direction 

of anticipated service loads to improve service life and performance with the aid of residual 

stresses. 

4.2 MEASUREMENT OF RESIDUAL STRESSES 

4.2.1 The need for measurement of residual stresses16 

The question is: why bother to measure residual stresses if it is such a complex uncertain 

procedure? Well, it can be shortly answered as follows: The safe and durable operation of 

structures and components depend on the relationship between stresses in the component and 

the limiting stress levels in the material. The existing stresses in a component is superimposed 

or added to the external stresses induced on the component. This could have major influence 

on the final design of a component. The applied external stresses can be determined accurately 
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with existing methods of stress analysis, but the residual component of the stresses are a bit 

more complicated to detennine and are therefore sometimes ignored. If residual stresses can 

be determined accurately and in a straight forward manner it will allow for incorporating them 

into design calculations, assisting to produce safer and more reliable components. 

Another advantage to an easy reliable method of measuring residual stresses is the optimising 

of manufacturing processes. It is common knowledge that minor changes to process 

procedures, e.g. heat treatment, machinery rates, welding profiles, etc. can introduce residual 

stresses in relatively stress free components. 

The need for world class manufacturing which involve the production of enhanced and more 

reliable components while at the .same time considering energy conservation principles 

emphasise the need to be able to measure residual stresses induced during manufacturing 

processes. Over-design and the waste associated with it is no longer acceptable and the 

engineering world will have to start considering the beneficial and detrimental effects of residual 

stresses in design. 

4.2.2 Different methods for the measurement of residual stresses 17
•
18

•
19

•
20

•
21

·22.
23 

Residual stresses are difficult to measure since they are independent of the applied external load 

and are imposed during the manufacturing or heat treatment processes. A wide range of 

methods are available to measure residual stresses, with each method having its own set of 

advantages and disadvantages for different applications. Below are some of the methods that 

have been used successfully in the past: 

• Chemical etch 

• Hardness studies 

• Hole drilling 
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• Layer removal 

• Magnetic method 

• Modified layer removal 

• Neutron diffraction 

• Photo-elasticity 

• Progressive turning 

• Stress out brittle lacquer drilling 

• Ultrasonic 

• X-ray 

The most frequently used techniques for the measurement of residual stresses are the hole­

drilling and X-ray measurement procedures. One of the biggest drawbacks of most of the 

methods mentioned is that they use destructive measuring techniques and mobile equipment 

to do on-site measurements of residual stresses is not always available. 

After a study into methods used successfully in the past, three of the above list seemed to be 

the more common procedures for the measurement of residual stresses namely photo elasticity, 

X-ray analysis and the centre hole drilling technique. Taking the following factors like the 

material characteristics, the position of measurement, cost and availability of equipment into 

account, it was decided to make use of the centre hole drilling method, not using a drilling 

device, but rather an air abrasive system. The next part of this chapter will do a detailed analysis 

of the hole drilling technique to determine residual stresses. For detailed analysis of other 

methods see Appendix E. 

4.2.3 Measurement of residual stresses by centre hole drilling17
•
21

•
24

•
25

•
26

•
27

•
28

•
29

·
30

•
31

•
32.33 

Residual stresses are difficult to measure with strain gauges since the load is imposed on the 

component before the gauges can be fitted. To sense the presence of residual stresses with 
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strain gauges, it is necessary to relieve the residual stresses by removing material after the 

gauge is mounted. On small components this can mean that it is a destructive way of measuring 

residual stresses. On the other hand if it was done on a large structure the drilled hole can, 

without difficulty, be carefully ground away. 

There are several methods that can be used to relieve or remove material by the hole drilling 

technique. They are by drilling, milling and air abrasive methods. The principle of all these 

methods is the same. 

The measurement procedure is relatively simple and has been standardised in ASTM standard 

test method E837-94a. Special expertise is needed for this method and is done by using 

commercially available equipment and gauges. The method is very versatile and can be 

performed on a wide range of components in either a laboratory or in service (field) 

applications. The hole drilling method mainly lends itselffor application in which the residual 

stresses are uniform throughout the drilling depth. 

4.2.3.1 High-speed drilling or millinlf1
•
32.34

•
35 

This method utilises a small drilll.S to 3 mm in diameter or an end mill of0.8 mm to 6 mm in 

diameter. The drill or mill can be accurately located over the gauge centre, using a removable 

eye-piece. After the fixture is accurately located the eye-piece is removed and replaced by the 

drilling or milling head. The main difference between the drill bit and the milling cutter is that 

the drill bit does not produce flat bottomed holes because of its shape, while the end mill is flat. 

This makes the end mill more suitable since flat-bottomed holes are assumed in the derivation 

of the theoretical expressions. 

A problem is that the drilling operation itself introduces machining stresses into the component 
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that cannot be separated from the original stresses present. The hole drilling process must be 

very carefully controlled to prevent errors in the strain values. This can be minimised by 

sensitive operation of all the equipment involved. 

4.2.3.2 Air-abrasive machining23 

In this process the drilling head is replaced by a device that directs a stream of air containing 

abrasive particles onto the surface. This bombardment of the selected surface inside the strain 

rosette will erode the material forming a hole. This is considered to be a stress-free machining 

technique. Two types of holes can be produced by this method, as illustrated by Figure 4.5 a 

and b. The hole produced does not have rectangular axial sections but can be trepanned to 

produce asymmetric, parallel-sided holes. It has been shown that square sided holes aid, as far 

as repeatability of results go. 

Hole drtlltd UU'I!I I 
~latson•rr nonlt 
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roi•I .. 911DUII 

Figure 4.5: Hole shapes as produced by air abrasive drilling. 

The depth of the hole must be determined and must be at least lmm deep. This is the 

minimum size necessary to produce full stress relaxation in most applications31
. The optimal 

hole size is believed to be between 2 and 2.2 mm. 

4.2.3.3 Measurement procedures 

e Determine the point where residual stress must be measured and install the 

strain gauge rosette on the test part. 
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e Connect the wires of the strain rosette to a static strain indicator through a 

-switch-and-balance unit. 

e Attach and line up the drill guide assembly to the test piece. 

e Zero balance the strain gauge circuit and drill a shallow hole through the centre 

of the rosette. 

e Record the readings of the relaxed strains. 

e Calculate the principal residual stresses and their orientation. 

4.2.3.4 Theory of hole drilling strain gauge rosette as per ASTM E837-94a33 

The drilling of a hole into an area of a component with residual stresses will relax the stresses 

at that point. This happens because the hole surface becomes a free surface and every 

perpendicular line to this surface becomes a principal axis on which the shear and normal 

stresses are zero. Removing these stresses by drilling the hole changes the stresses in the 

immediate surroundings of the gauges, causing the. surface strains to change correspondingly. 

In practice the drilled hole is mainly blind with its depth about equal to its diameter. The hole 

is also considered small compared to the thickness of the test component. The blind hole 

theory is relatively complex in that no close-form solution is available from the theory of 

elasticity for direct calculation of the residual stresses from the measured strips. 

However, a solution can be obtained for the through drilled hole in a thin plate with relatively 

uniformed distributed residual stresses. This document will first look at this simpler theory for 

the through drilled hole and then extend it to the blind hole. 

Calculations of residual stresses by through hole analysis as per ASTM E837-94a31 

If a thin plate is subjected to an internal load which causes a uniform residual stress o, in the 

x direction the stress distribution can be determined as follows: 
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Figure 4.6: Flat plate subjected to a uniform stress. 
(Illustration cotiiUsyofthe Micro Measurements division of Measurements Group Inc., Raleigh, 
NC USA.) 

Let us consider Figure 4.6: 

The initial stress state at point P at radius Rand angle a can be expressed as follows: 

Stress at P(R,cx) is now oYY = txy = 0 

or sin2cx 
a 

.......... (1)3i a, = a, = X (1 + cos2cx) .. -
2 

orcos2cx 
0 

oa = .. a a = 2(1 - cos2cx) .......... (2) 
2 

tre orsincx coscx + tRa 
-or 

sin2cx .......... (3) = = 
2 

If the same area is used and a small hole of diameter Ro is drilled through the plate, the stresses 

PIP.-1 

~---·-·····- ------ ----! . 
' : "'=:. ... -L ______________ ; 

Figure 4. 7: Thin flat plate with hole drilled in 

the centre subjected to a uniform stress. 
(IDustrndon courtesy of the Micro Measurements division of 
Measurements Group Inc., Raleigh, NC USA.) 
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in the vicinity of the hole will be different. Consider the schematic in Figure 4. 7, 

where a thin plate is subjected to a uniform stress with small hole drilled through centre of the 

plate with a radius of Ro. 

. a R 2 -3R 2 

.. a, = ~ [(! - ~) . (I + (--
0 

+ I) cos2a)] .......... (4) 
2 R2 R2 

~ R 2 
3R

4 

.. a6 = - [(1 + -
0

) - (1 + -
0

) cos2a] .......... (5) 
2 R2 R4 

-a 3R R 2 R 2 

're = -
2

"' [(1 + -
0

) (1 - - 0 
)(1 - -

0
) sin2a] .......... (6) 

R2 R2 R2 

R 
Let r = - for R 2o Ro 

Ro 

From equation (4): 

. a 1 3 
.. a, = ~ [(1 - -) . [1 - (- - 1) cos2a] 

2 r2 r2 

Simplify: 

a; = ar [(1 - -1 ) + ( _2_ + 1 + 2_ - -1 ) cos2a] 
2 r2 r2 r4 r2 

a 1 3 4 
= ~ [(1 - -) + (1 + - - -) cos2a] 

2 r2 r4 r2 

· a 1 3 4 :. a, = ~ [(1 - -) + (1 + - - -) cos2a] .......... (7) 
2 r2 r4 r2 

From equation (5) 

. a 1 3 
a6 = ~ [(1 + -) - (1 + -) cos2a] ..................... (8) 

2 r2 r4 

From equation (6) 
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a 1 J ~) sin2cx] •re = ~ [(1 - + 
2 ,2 ,2 r4 

-a 2 ~] = _r [1 +- - sin2cx .......... (9) 
2 ,2 r4 

Subtracting the original stresses from the new stresses obtained after drilling the hole will reveal 

the stress relaxation at point P {R,cx) due to drilling a hole. 

.. !!..ar = ar - ar 

!!.a a = a a - a a 

!!.•re = •re - •re 

From subtracting equation (1) from (7): 

ar 
.. a = 

ar ar . Ja 
+ - cos2cx + __ r cos2cx 

4ar ar 
cos2cx -

r 2 2r 2 2r 2 2r 4 

ar Ja 4a 
= + _r cos2cx - _r cos2cx 

2r 2 2r 4 2r 2 

J - cos2cx 
r4 

4 - cos2cx) ,2 

= 
J 4 - cos2cx + - cos2cx] .......... (10) 
r4 r2 

From subtracting equation: (2) from equation (8) 

a ar ar cos2cx Jar ar 
a a = r + - cos2 

2 2r 2 2 2r 4 2 

ar Jar 
= - cos2cx 

2r 2 2r 4 

ar [-1 J .......... (11) .. a a = - cos2cx] 
2 ,2 r4 
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Subtracting equation (3) from (9): 

a 2a 3a a 
't,.a = - -2. sin2a -" sin2a + -" sin2a + 2 sin2a 

2 2r 2 2r 4 2 

3 a,. . 
2 

2a,. . 
= - - sm a - - s1n2a 

2 r 2 2r 2 

a,. 3 2 = - (- - -) sin2a .......... (12) 
2 '4 '2 

Equation 10, 11 and 12 yield the full expressions for the relaxed stresses due to the drilling of 

the hole. 

If the material used was homogeneous and isotropic in its mechanical properties, and linear-

elastic in its stress-strain relation, the above equations can be substituted into the biaxial 

Hooke's Law to solve the relieved normal strains at point "P". 

The resulting expressions for strain are as follows: 

a,. (1 + v) 1 
E, = - 2£ [~ 

3 4 
- cos2a + ---- cos2a] ......... (13) ,4 ,2 {1 + v) 

3 
+ - cos2a 

'4 
4v 

---- cos2a] .......... {14) 
r 2 (1 + v) 

Equation 13 and 14 can be simplified to show that the relieved tangential strains along a circle 

with any radius R when R ~ Ro (Hole Radius) will vary in a sinusoidal manner. 

e.g.: E, = a,. (A + B cos2a) .......... (15) 

Ee = a,. (-A + C cos2a) .......... (16) 
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Where the coefficient A, B, and C can be defined as follows: 

A = 1 + V 1 
(-) .......... (17) 

2E r2 

B = 1+v[( 4 )1 
2E 1 + v r2 

3 -] .......... (18) 
r4 

c = 
1 + v 4v 1 3 -=----- [- ( ) -+ -] .......... (19) 

2E 1 + v r2 r4 

The relieved strains will vary in a complex way with distance from the hole surface as illustrated 

by· Figure 4.8. It shows this variation where strains are plotted along the principal axes at o: = 

0 o and o: = 90 o. From this figure it can be observed that the strain decreases as it moves away 

from the hole edge. This phenomenon makes it desirable to measure the strains close to the 

edge of the hole. It must not be forgotten that stresses due to the drilling processes are most 

likely to be a maximum at the hole edges which necessitates a compromise in selecting an 
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Figure 4. 8: Variation of relieved radial and tangential strains with 
distance (along principal axes) from the centre of the drilled hole 
- uniaxial residual stress. 
(!Uustratlon courtesy of the Micro Measurements division of Measurements Group Inc., 
Ralelgh, NC USA.) 
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optimum radius for location of the strain gauges. According to ASTM E837-94a the ratio of 

- the R/Ro (where R =radius to longitudinal centre o(gauge and R6 = hole radius) should fall 

in the range from 2.5 to 3.4. 

Commercial strain gauge rosettes for residual stress analysis are designed with radially oriented 

grids to measure the relieved radial strain E,. From Figure 4.8 it is evident that the relieved 

radial strain along the major principal axis is opposite in sign to the initial residual stress. This 

occurs because the coefficient A and Bin equation 15 are always negative and (foro:= 0°) 

cos2o: =+I. 

The above calculation and reasoning were based on a uniaxial residual stress, but in practice 

residual stresses are mainly biaxial, with two non-zero principal stresses. This can be 

incorporated by using the superposition principle applicable to linear -elastic material behaviour. 

Originally in Figure 4.3 the uniaxial residual stress was along the X-axis. Had it been along the 

Y-axis, equation I and 2 would still apply except that cos 2o: would be replaced by cos2(o: + 

90°) or by -cos2o:. Therefore the relieved radial strains along theY -axis at point P (R,o:) can 

be written as: 

e; = oyCA - B cos2o:) .......... (20) 

. . also e; = ox (A + B cos2o:} .......... (21) 

If the residual stress in a component includes both a. and aY' the principle of superposition 

permits addition of equations (20} and (21 ). The new equations for the relieved radial strain 

due to the biaxial residual stresses are: 

E, = ox (A + B cos2o:} + oyCA - B cos2o:) .......... (22) 

or can also be written as: 
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E, = A (a., + a) + B (ox - a) cos2a .......... (23) 

These equations underline the basic relationship of the hole drilling method for residual stress 

analysis. 

Determining of principal stresses31 

A three-gauge strain rosette is mounted on the component with the radially oriented strain 

gauge placed with the centres at a radius R from the hole site as shown in Figure 4.9. The 

angular spacing of the gauges can be arbitrary but must be known, in most commercial gauges 

these angles are in increments of 45°. The reason for using 45° increments of angular spacing 

of gauges is because it leads to the simplest analytical expression for solving the principal 

stresses. 

a, 

Figure 4.9: Strain gauge rosette 
arrangement. 

(Illustration courtesyofthe Micro Measurements 
division of Measurements Group lnc:., Ralelgh, NC 
USA.) 

Angle a 1, is always the acute angle from the nearest principal axis to gauge {I), while 

a
2 

= a
1 

+ 45 c and a 3 = a 1 + 90c. The angle a is measured as a positive angle in the 

direction of gauge numbering. In Figure 4. 9 it might seem wrong at first but although gauge 
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2 is physically at position 2a it is effectively at position 2b for gauge numbering purposes. The 

reason for placing it at 2a is to assure strain sampling over as wide an area as possible around 

the hole. When space is very limited, the gauge can be placed at position 2b to ensure the hole 

is placed closest to the area of interest. 

With the aid of equation 23 we can now .write an equation for strain for each of the gauges in 

the rosette. 

e 1 = A(a" + a) + B(a" - a) cos2a ........................ (24) 

E2 = A(a" + a) + B(a" - a) cos2(a + 45°) .......... (25) 

E3 = A(a" + a) + B(a, - a) cos2(a + 90°) .......... (26) 

The principal stresses can now be .calculated by substituting the above three equations 

successively into equation 22 or 23 and then solving them simultaneously. The result can be 

expressed as: 

Where: 

tan2a = 

and a is the angle between the neatest principal axis and gauge I. To find a in a more 

convenient manner, we can rearrange the previous formula to define the angle from gauge I 

to the nearest principal axis by: 
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The following rules can be used to detennine which principal stress is referred to gauge number 

1: 

If E3 >El: a refers to oi!LlX 

E3 <El: a refers to omin 

E3 = E1: a =±45° 

Ez <El: oll\3X at +45 o 

Ez >El: a= at-45° 

Great care must be taken in detennining the values for coefficients A and B. They only apply 

in conditions met by Kirsch solutions. (Thin plate, through hole, stress at (r.a), uniform stress 

in plate). Taking into account that the strain grids have a finite element and that the grids are 

usually parallel to the radial lines, which make them sensitive for tangential and radial strains, 

more accurate values for the coefficients can be calculated by integrating equations 13 and 

14 over the respective gauge grid areas. The coefficient calculated in this way are designated 

by A and 8 . An alternate method of detennining . A and 8 is to measure them by 

experimental calibration as published in the ASTM specifications. 

Most machine parts are not flat and not subjected to uniform stresses which makes the through 

drill method unsuitable for them. In these cases a shallow blind hole is drilled into the surface. 

The drilling of a blind hole into fields of plane stresses produces very complex local stress 

states. No exact solution is available from the theory of elasticity for this, however, the blind 

hole analysis reveals stress distributions closely parallel to the through hole analysis21
. It can 

therefore be assumed that the relieved strains due to the drilling of the blind hole still vary 

sinusoidally along a circle concentric with the hole. From this it can be accepted that equation 

(22) and (23), as well as equations {27) and (28), are equally applicable to the blind hole 
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analysis as is the case with through hole analysis as long as the appropriate blind hole 

coefficients A and B are employed. The coefficient A and B must be determined 

by experimental calibration or by numerical procedures such as finite element analysis. 

In the blind hole analysis an additional dimension less variable appears, namely hole depth 

z 
defined by - . (Where Z = hole depth and D0 = hole diameter). 

Do 

In general it can be said that the coefficients A and B are functions of: 

A =fA (E, v, r, z 
-) .......... {30) 
Do 

B = f 8 (E, v, r, _l_) .......... (31) 
Do 

In general it is considered that for a hole drilled the relieved strains will increase at a decreased 

rate as the hole depth increases up and to the point where the depth is equal to the hole 

diameter. For maximising strain signals ASTM E837-94a specifies that Z/D0 = 1.2. This 
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Figure 4.10: Relieved strain versus Z/D. (strains normalized to 
100% at Z/D0 = 1) 

(Measurements Group TN -503-4) (IUustration courtesy of the Micro Measurements dMsion 

of Measurements Group Inc., Raleigh, NC USA.) 
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variation of relieved strain is illustrated in Figure 4.1 0. A similar plot to this is also available 

in the· ASTM specifications as a criterion for verifying the required uniformity of stress 

distribution with depth in a specimen. 

When strains are relieved, normalised and plotted as shown in Figure 4.1 0, they should fall 

within or close to the specified scatter band. 

It is very important to realise that it has been demonstrated by Rendler and Vigness040 that for 

any given set of material properties, E, v and coefficient A and B are simple geometrical 

functions and then constant for all similar geometrical cases. This allows for the scaling(+ or 

-)·of particular sizes with no change to the coefficients. The hole diameter and depth can be 

scaled in a similar fashion for the same material. 

Schajer050 has developed two new coefficients a and b , which removed the dependence 

of A and B on the materials, leaving only geometric dependence. 

They can be defined as follows: 

2EA 
a = .......... (32) 

1 + V 

b = 2E l3 .......... (33) 

Determining coefficients A and B31 

The coefficients A and B must be known before any stress from the relieved strains can 

be calculated. The coefficients can be determined by experimental calibration which is a very 

popular method. It automatically accounts for mechanical properties oftest material, strain 

rosette geometry, hole depth and diameter. This is by far the most accurate method to 

determine the coefficient A and B if done with the necessary sensitivity to detail. The 

main disadvantage of the method is that it must be repeated each time for a different set of 

geometric parameters. 
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Calibration for A and B is accomplished in the following manner: 

• Install a residual strain rosette on a uniaxially stressed tensile specimen under test. The 

grid of number I gauge on the rosette must be aligned parallel to the loading direction, 

placing grid number 3 along the transverse axis of the specimen. Assure that bending 

stresses are eliminated as far as possible and that the tensile stress is uniformly 

distributed across the whole section of the specimen. Specimen width is to be xI 0 the 

hole diameter and the distance between machine grips, at least xS the width. For blind 

hole applications the thickness must be at least xS the hole diameter to be drilled. 

e Zero balance the strain gauge rosette circuit. 

e Apply a load P to the specimen that does not exceed half of the proportional limit stress 

for the test material. 'This will develop the desired calibration stress, a in the specimen. 

At no instant must the applied stress plus the residual stress cause local yielding. It is 

suggested that the specimen be loaded incrementally and making readings of strain at 

each increment. 

e Record the strain E 1 and e3 at each increment. This permits plotting of ac·versus E 1' 

and e3' to construct best five straight lines. Only strains in grid (I) and (3) need to be 

recorded, since these grids are known to be aligned with the principal axes. 

e Unload the specimen and remove it from tensile machine. 

e . The above procedure is done before drilling and is needed to eliminate the effects of 

strain relief that may occur due to relaxation of initial residual stresses in the specimen. 

e Drill a hole in the specimen according to the specified manner. Adhere to previous 

specification about hole size and depth. 

e Replace the specimen in tensile machine and re-zero the strain rosette circuit. 

e Re-apply load "P" exactly onto specimen in same manner as described previously and 

measure e 1" and E/ on drilled specimen. 

The calibration strain ec corresponding to load P and stress ac are then: 
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Since the calibration is perfonned with one non-zero principal stress only, equations ( 15) and 

( 16) can be used for determining the values of A and lJ . 

For No 1 grid ex= 0° 

For No 2 grid ex= 90° 

cos 0° = 

= aJ4 + B] 

and cos 90° = -1 

= aJA - lJ] 

Solving for A and lJ 

A = (Pa -I) .......... (34) 

(Note: E can be negative and positive) 

From the above infonnation the coefficients a. and b can be calculated from equations 

(32) and (33) if the elastic modules and Poisson's ratio is known. 

It is important to note that the coefficients A and lJ are only applicable to conditions that 

match the calibration conditions. 
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• Material with same elastic properties 

• Same rosette geometry 

• Same hole size 

• Same hole form (through or blind) 

• Uniform stress with depth 

Possible errors 

Residual stress .determined according to this method could exhibit a bias not exceeding± 1 0%17 

This is after ensuring that no additional stresses are induced due to the hole drilling process. 

If a significant non-uniform stress distribution goes unrecognised, the error may be more than 

10%17 and will usually be in the direction ofunder estimating the maximum stress. 

During a round robin test managed by ASTM on AISI 1018 carbon steel it was found that the 

standard deviation was 14MPa. This was calculated from 26 measurements done by eight 

different laboratories on eight nominally identically specimens. 

For a complete case study on the application of the above calculation procedure on a steel bar, 

see Appendix D. 

4.3 SUMMARY 

Finite element analysis has shown that change in strain produced by drillin!f6
, is caused partially 

by residual stress in a specific increment of drilling and the remaining change by residual 

stresses in preceding increments. The reason for this is that the stress distribution changes as 

the hole deepens. From the study it is apparent that the stress decreases rapidly with distance 

from the surface. This is a clear indication that the main influence on relieving the stress lies 

in the layers close to the surface of the material. It is generally accepted that the greatest 
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influence lies in the upper half of the hole depth; up to 80% of strain relief normally occurs in 

this part of the hole drilling process31
. 

The ideal application of the hole drilling method is for material with stresses uniform to depth. 

Error and uncertainty are always present, their scale just depends on sensitivity of the user 

towards all variables present. As was discussed earlier in this chapter the margin of error for 

the air abrasive hole drilling method is approximately 14 MPa. 

All measurements can be made by static strain instrumentation. The strain magnitudes are, 

however, a great deal smaller for residual stresses than for conventional stresses. Residual 

stresses can be very useful in engineering applications when considered carefully, but if ignored 

can have disastrous effects on the performance of components. 

Although the measurement of residual stresses still has a long way to go, a number of 

internationally accepted methods are available. The biggest drawback of most methods is the 

mobility of measuring equipment, destructive measuring procedures and the ability to penetrate 

large, thick specimens. 

Neutron diffraction offers the capability for the measurement of entire residual stress field but 

this is at very high cost due to the safety implication when working with neutrons. Another 

method showing promise for the future is ultrasonic techniques. Their principle is well 

understood but major improvements in the gain 6f sensing and measuring signals are needed. 

Features that introduce uncertainties in interruption of residual measurements, must be 

identified and the processing influences clarified. 
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To conclude, a great need exists to increase productivity, to conserve energy and to improve 

reliability of materials with enhanced quality assurance in manufactured components. All of this 

calls for reliable and powerful methods of evaluating residual stresses. Work done on 

measurement of residual stresses in coil springs withdrawn from different manufacturing 

processes has proved that the air abrasive centre hole drilling methods is very reliable and 

flexible. This method of residual stress measurement and calculation was used extensively 

during this research as described in Chapter 5 with excellent results. 
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CHAPTERS 

PROCESS EFFECTS OF 55Cr3 SPRING STEEL ON RESIDUAL 
STRESSES 

INTRODUCTION 

The understanding of the relationship between fatigue life, process effects and residual stresses 

needs to be evaluated carefully before the manufacturing process can be optimised for enhanced 

quality and product characteristics. Residual stresses in manufactured components are those 

stresses that exist without prior application of service or external loads. Virtually all 

manufacturing and surface treatments will introduce residual stresses into a component which 

may either be beneficial or detrimental to the fatigue properties37 

This chapter investigates the relationship that exists between fatigue properties and residual 

stresses and its relation to process effects in samples withdrawn from different stages of the 

manufacturing processes of 55Cr3 spring steel. In order to measure the residual stresses 

present, the locked-in stresses must be relieved by removing material to enable a sensor to 

register the change in strain. These measurements were done by means of centre hole drilling 

using an air abrasive powder system and residual strain rosettes as sensors. 

Residual stresses are receiving increased attention as it is recognised that many opportunities 

for optimisation of design and manufacture leading to reduction of costs, are locked-up inside 

the correct understanding of residual stresses. There is therefore an urgent need for determining 

residual stresses induced into manufactured components, together with the need for reliable 

non-destructive techniques for determining these stresses accurately. What makes the 

measuring techniques so important is the fact that it is generally very difficult to determine 

residual stresses by analytical and computational methods. 
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Care should be exercised in selecting the technique to be used for measuring residual stresses 

for a specific application. The test samples under consideration in this chapter are 55Cr3 spring 

steel withdrawn at different stages of the manufacturing process. An important characteristic 

to consider when selecting a measuring technique is the hardness of the material. Due to this 

factor, most of the conventional methods for removing material were found to be unsuitable 

for the steel. The air abrasive centre hole drilling method (ACH) was selected to measure the 

residual stresses in the 55Cr3 spring steel samples specifically because of its ability to penetrate 

hard materials38
. It is believed that this method will induce negligible machinery stresses during 

the drilling process as the inertia of the aluminium oxide powder used is very low and cooling 

is effective as air is used as a transport medium from the abrasive powder. 

The ACH method is a proven measuring technique which yields accurate and reliahle results39
. 

The above concept of the hole drilling method using strain gauges, was approved by ASTM 

and published in 1982 ASTM Book of Standards. Specimens were withdrawn from the spring 

manufacturing process line for 55Cr3 coil springs after the following stages: Hot coil and 

quench, tempering, hot scrag, shot peen, before load test (painted) and cold scrag. These 

samples were of the same batch used for the fatigue testing. 

5.1 DESCRIPTION OF EQUIPMENT AND DRD..LING PROCEDURE 

5.1.1 Air abrasive centre hole drilling 

In order to measure residual stresses in 55Cr3 spring steel, the locked-in stress must be relieved 

by means of the destructive removal of successive layers of material. The method utilised as 

described in this chapter is the air abrasive centre hole drilling strain gauge method of stress 

relaxation, illustrated in the photograph in Figure 5.1: 
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Figure 5.1: Set-up of the air abrasive drilling apparatus. 

On the far lefthand side of the above photograph is the drilling device, while on the right side 

is the aluminium oxide pressure vessel control system. The thin red line is the air supply line 

for the turbine, the blue line is the line through which the aluminium oxide moves and the large 

green pipe on the left is a vacuum line for removing excess aluminium oxide from the drilling 

jig. 

5.1.2 Measurement procedure 

5.1.2.1 Alignment of sapphire nozzle 

This operation is illustrated in the photograph of Figure 5.2. The drilling device and the optical 

unit is strapped on to a jig. A set of small lights arranged in a circle on the front edge is 

switched on and by looking through the eye piece the eccentricity of the nozzle can be set by 

a series of grub screws on the periphery of the front part of the drilling device. 

Because this is a rotating nozzle system, the eccentricity will determine the size of the hole 

drilled. For the purpose of these spring samples, the optimal hole was in the vicinity of0,8 to 

1 mm. This adjustment is done by trial and error and is very time-consuming especially when 

drilling such small holes. It is a question of re-setting and drilling pilot holes until the correct 

size hole is achieved. 
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Figure 5.2: Alignment of nozzle for drilling operation. 

5.1.2.2 Selection and application of residual strain rosette gauges 

The selection of the strain gauge is very important as a wide variety are available for different 

Figure 5.3: 
Set-up drilling guide for drilling with the aid of the 
optical instrument. Same set-up is also used to 
determine hole size and depth. 

applications and environment from manufactures like HBM Germany and Micro Measurements 

from the USA18
•
40

. Taking into account that the wire diameter of the coil springs under 

investigation was only llmm, immediately narrows the field down considerably. To do these 
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measurements as accurately as possible, a very small gauge is required. After intense research 

and consultation with the companies, it was decided to use EA-06-031RE-120 residual strain 

gauges from Micro Measurements. This is one of the smallest gauges available and although 

it had to be specially imported to South Africa it still was relatively affordable. The gauge 

dimensions are shown in Table 5.1. 

Gauge Grid centre Typical hole diameter Matrix 
Length line diam. 

Minimum Maximum Length Width 

0.79 2.56 0.8 1.0 7.4 7.4 
Note: All dimensions in mm. 
Table 5.1: EA-06-031RE-120 residual stress gauge specifications. 

The three element strain rosette is now installed at the point where stresses are to be measured. 

The three gauge grids are wired and connected to a static strain indicator using a full bridge six 

wire system. The spring with the gauge attached is now setup for drilling. It is very important 

that the sample is secured properly in such a manner that no external stresses are induced into 

it. As indicated in Figure 5.5 the spring was secured in a bench vice that was not tightened 

against the sample but against a plate at the bottom. The sample was then fixed to this plate 

by means of a soft putty to ensure it will not move during the drilling process. 

5.1.2.3 Alignment of drilling guide and driUing device 

A precision drilling guide is attached to the test component and accurately centred over a 

drilling target on the rosette by using the optical measuring equipment as illustrated by Figure 

5.3. This same set-up will be used for the measurement of drilled hole size and depth. This is 

a critical process as the margin for error on such a small gauge is very small. It is very 

important not to cause any movement of the guide or the sample, as this will cause 

misalignment and might result in the damaging of a gauge as shown in Figure 5.4. 
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Figure 5.4: Damage to gauge due to slight miss­
alignment of drilling jig. 

Figure 5.5: Set-up of the drilling apparatus over 
sample to be drilled. 
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At this point the optical device is removed and replaced by the drill as illustrated in Figure 5.5, 

the zero balancing is performed on the gauge and a small hole is drilled through the centre of 

the rosette. The relieved strains are measured at different depths with the final depth being as 

close as possible to I mm in this case. This is a time-consuming operation as there is no real 

control over depth, rate or diameter. Every now and then the process must be stopped, strain 

values recorded, drilling device removed and replaced by the optical device to record the depth 

and diameter. This is done until the required depth is reached. The foregoing procedure has 

more or less been standardised in the ASTM Standard Test Method E837. 

5.1.2.4 Drilling procedure 

Introduction of the small hole into the test specimen is one of the most critical operations in the 

procedure. The hole should be concentric with the drilling target on the special strain gauge 

rosette. It should also have the prescribed shape in terms of cylindricality, flat bottom and 

sharp corner at the surface3
\ as illustrated in the photograph in Figure 5.6. It is clear that all 

the mentioned criteria was adhered to accept for the flat bottom of the hole. This characteristic 

is typical for small holes. An average depth was measured and used in the calculation; this 

could result in small variations of stress readings. As an abrasive material is used to drill the 

hole, it is very important to protect the measuring grids of the gauges properly. This was done 

by using a special high temperature tape manufactured by HBM. Any air under this tape will 

allow the abrasive powder to wear the tape, causing exposure of the grids which in turn is then 

damaged resulting in an open circuit and the loss of a gauge. An example of this scenario is 

illustrated by the photograph in Figure 5. 7. 
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Figure 5.6: Cross section of drilled 
hole. 

Figure 5.7: 
Damaged gauge due to tmproper 
protection against air abrasive 
powder. 

Figure 5.8: Top view of drilled hole . 
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5.2 MEASURED STRAIN DATA 

5.2.1 Results 

The table below contains all the recorded data as recorded during the drilling of the holes in the 

processed samples. It also reflects the hole depth and diameter at each increment. 

Manufacturing Quench Tempered HotScrag Shot Peen Painted LoadTest 
Process 

I Sam~le ID I I I 2 I 3 I 4 I 5 I 6 I 
Residual A -331 -21.5 -25 611 549 466 
Strain 
Data B -360 -39.5 -13 665 570 538 

(xiO-') c -344.5 -36.5 -36 647 551 493 

Dept 0.609 .495 0.533 0.533 0.546 0.508 
h(mm) 

Diam 1.168 1.066 1.041 1.023 1.041 1.054 
.(mm) 

A -286 -27 -35 580 539 684 

B -397 -44 -16 704 507 766 

c -346 -43 -32 507 474 940 

Dept 0.965 0.83 0.91 0.787 0.81 0.787 
h(mm} 

Diam 1.155 1.066 1.041 0.99 1.041 1.016 
,(mm) 

A -330 -42 - 679 786 565 

B -350 -49 - 796 825 649 

c -343 -47 - 676 851 627 

Dept 1.016 1.016 - 0.914 0.939 0.939 
h(mm} 

Diam 1.155 1.149 1.016 1.066 1.079 
.(mm) 

A - - 755 

B - - 846 

c - - 1014 

Dept 1.016 - 1.066 
h(mm} 

Diam 1.079 
.(mmj 

Table 5.2: Measured stram data for processed samples at vanous depths. 
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Figure 5.9: Graphical representation of measured strain values for 55Cr3 
processed samples. 

5.2.2 Sources of error in hole drilling 

Possible sources of error when applying the hole drilling method for the determination of the 

depth distribution of residual stresses can be attributed to a number of sources. These possible 

sources can be divided into three main categories namely errors due to the drilling technique, 

boundary conditions and stress state. 

• Drilling technique 

Introducing of residual stresses during the drilling process. Deviation from the ideal 

blind hole shape. Hole eccentricity and errors with hole depth and diameter 

measurement. 

• Boundary conditions 

This is influenced by the location of the measuring grid and distance between adjacent 

measuring points. The shape of the components can also influence the magnitude of 

errors. 

• Stress state 
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The presence of multi-axial stress states and stress gradients play a role in possible 

occumng errors. This also influences strain gauge orientation with regard to principal 

axes of stress. 

Considering all of the above as possible contributions to error in measurement it become very 

difficult to quantify the magnitude of errors that occur during this research. Errors due to the 

hole drilling technique have been well researched by ASTM17 and are documented to be in the 

range of± 14 MP a. Considering the stress state and boundary conditions of the spring steel 

sample as well as that the measurable depth range correspond to approximately half the hole 

diameter the accuracy of these measurements are estimated to be in the range of ±20 MP a to 

±30 MPa. 

5.3 CALCULATION OF RESIDUAL STRESSES MEASURED FROM STRAIN DATA 

Let Do = hole diameter 

D = gauge circle diameter 

z = depth of hole 

E = Youngs' modulus 

a, b = data reduction coefficients 

A,B = geometric constants 

a = angle from first principle strain from first strain gauge 

E1,e2, E3 = relieved strains 

om.ax. omin =maximum/minimum principal stresses 

The following formulae were used31
: 

All calculations were done according to the method set out in Chapter 4. The constants a and 

b were determined according to ASTM E837-94a. All measured strains are tabulated in Table 

5.3 with the calculated stresses. 
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A 
l +v = .a 
2£ 

B 
l 

b = -
2£ 

0 maximin = 
!:1 + !:3 

± Jce3 - !:1 )2 + (e3 + !:1 - 2e2)2 

4A 4B 
!:1 - 2e + !:3 

tan 2a = 2 

!:3 - !:1 

Manufacturing process :Quench 

Dla (mm) Depth Measured Strain p€ Unifonn Stress 
(110e6) 

I ·IYE.i : •-• I k~.···· "' I ciF .. .. .. 
:·:~~::~L Djl> .iiDY et £2 

t········ i / 
:.::: :~L-·· ·1:.:: ••• ..... .... 

1.168 0.456 0.609 0.238 -331 -360 -344.5 -36.6 228 211 

1.155 0.451 0.965 0.377 -286 -397 -346 -34.84 246 182 

1.155 0.451 1.016 0.397 -330 -350 -343 -32.14 233 222 

Manufacturing process : Before hot scrag (tempered) 

1.066 0.416 0.495 0.193 -21.5 -39.5 -36.5 -27.23 27.5 17.0 

1.066 0.416 0.83 0.324 -27 -44 -43 -24.18 31.8 21.9 

1.149 0.449 1.016 0.397 -42 -49 -47 -30.47 32.0 28.2 

Manufacturing process : After hot scrag 

1.041 0.407 0.533 0.208 -25 -13 -36 -36.27 32.3 16.7 

1.041 0.407 0.91 0.356 -35 -16 -32 -42.55 34.4 19.4 

Manufacturing process :Shot peen 

1.023 0.340 0.533 0.208 611 665 647 -31.71 -511 -546 

0.99 0.387 0.787 0.307 580 704 507 -38.59 -401 -553 

1.02 0.397 0.914 0.357 679 796 676 -44.63 -517 -622 

Manufacturing process : Before load test 

1.04 0.407 0.546 0.213 549 570 551 -43.56 -433 -450 

1.04 0.407 0.81 0.316 539 507 474 -44.07 -393 -420 

1.07 0.416 0.939 0.367 786 825 851 -5 .07 -615 -642 

Manufacturing process :After load test 

1.054 0.412 0.508 0.198 466 538 493 -38.50 -359 -410 

1.016 0.397 0.787 0.307 684 766 940 9.88 -622 -743 

1.079 0.422 0.939 0.367 565 649 627 -29.84 -432 -483 

1.079 0.422 1.066 0.416 660 747 820 -2.50 -535 -601 

{1+,·) I (2E) E(GPa) V D(mm) 

3.13e-12 206 0.29 2.56 

Table 5.3: Strarn and stress results for 55Cr 3 processed samples. 
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Figure 5.10: Process effects on principal residual stresses at 
different hole depth as indicated in Table 5.3. 

5.4 RELATION BETWEEN PROCESS EFFECTS AND RESIDUAL STRESSES 

5.4.1 Quench 
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Magnitude and nature of the residual stress distribution 
in a quenched sample of 55Cr3 steel. 
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Consider the residual stress measurement shown graphically in Figure 5.11 of a quenched 

sample. From the graph it is clear that the surface residual stress in the quenched samples are 

of a tensile nature. The hot coiled sample is quenched in an oil bath with a temperature of 

approximately 60° C; this will result in a temperature gradient as the surface is cooled more 

rapidly then the inside as well as a phase transformation due to the austenite changing to 

martensite. 

The process by which tensile surface residual stresses are produced in the quenched sample can 

be explained as follows: The two major factors inducing tensile residual stresses are, the 

temperature gradient that exist during cooling and the transformation from austenite (f.c.c.), 

a more dense structure to martensite (b.c.c.), a less dense structure. It is well known that the 

expansion occurring during martensite formation could cause a volume increase of± 4,6% 4 

in steels. The cooling of the quenched spring can be divided into three stages namely, first the 

surface cools rapidly to the martensite start temperature, while the centre cools very little. 

During the second stage the surface will cool from the martensite start temperature through to 

the martensite finish temperature to reach the cooling medium temperature. At the same time 

the centre will now start entering the martensite start temperature. The last stage of the cooling 

primarily takes place in the core material as this will now cool down past the martensite finish 

temperature to reach cooling medium temperature. 

Sincethe core cooling rate exceeds the critical cooling rate of the material, the part will be fully 

martensite. The first mechanism of inducing residual stress occurs due to the rapid cooling of 

the surface which will cause a temperature gradient to exist between surface and core. The 

surface wanting to cool faster than the inside but because the surface and inside are attached 

to each other the core will prevent the surface from contracting as much as it should, placing 

the surface in tension and the core in compression. This is clearly illustrated in Figure 5.12 as 

well as the sharp drop in stress at the junction of inside and outside layers. The second 
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mechanism for introducing residual stress occurs when the surface reaches the martensite start 

temperature. The atistenite now transfers to martensite which causes an expansion in the 

surface. However, the core material is still undergoing normal contraction due to the cooling .. 

The contraction of the core will prevent the surface from expanding as much as it should under 

martensite transformation, causing the surface now to be in compression, while the centre is 

in tension. The last mechanism that will have an influence on the nature of the residual stress 

takes place during the third stage of cooling. The surface will reach a hard, brittle martensite 

structure at room temperature, while the core starts undergoing martensite transformation. 

This expansion will transfer to the hard surface placing it in tension while the surface again will 

restrict the expansion of the core placing it in compression. 

-
+ve 

Stress - - - - - - - - +- -

-ve 

Cross section 

Figure 5.12: 
Schematic of ideal residual stress 
distribution due to temperature 
gradient. 

The presence of high residual stresses close to the surface can therefore be attributed to, firstly 

the temperature gradient where the surface is prevented from contracting as much as it should 

and secondly to the fact that the outer surface has reached a hard brittle state while the core 

is still expanding4 under martensite transformation. It will be shown later in Figure 5.20 how 

the hardness for each manufacturing process varies with depth. 

5.4.2 Tempering 

From Figure 5.13 it is evident that the surface residual stresses have been reduced considerably 

by the tempering process. This is in line with the heat treatment rule that parts should be 
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tempered immediately a~er hardening to mmnruze stresses which could lead to crack 

formations4
•
6

. The tempering process will give the surface martensite a degree of ductility 

before the centre transforms, reducing the stress gradient, therefore reducing the surface 

residual stresses. 
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Figure 5.13: 
Magnitude and nature of the residual stress distribution 
in a tempered sample of 55Cr3 steel. 

If the residual stresses of the tempered sample in Figure 5.13 are compared to that of the 

quenched sample, it is clear that this was the result. This drop in residual stresses or increase 

in ductility is also highlighted in Figure 5.20 as a decrease in the micro hardness values. The 

tempering process will produce a tempered martensite structure; this martensite will be formed 

at nearly the same time throughout the piece. Tempering minimizes surface residual stresses 

and greatly reduces the danger of distortion and cracking4
. The heat treatment is completed 

by tempering of the martensite to the desired grain size and hardness which will leave a very 

uniformed and stable material structure. 

5.4.3 Hot scragging 

Figure 5.14 shows the results of residual stresses after the hot scragging process. There is a 

slight reduction of the surface residual stresses compared to that of the tempered sample. 

When the residual stresses of the load tested operation, which could be considered as a cold 
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Magnitude and nature of the residual stress distribution 
in a hot scragged sample of 55Cr3 steel. 

process, are compared to the shot peen process, it can be seen that the change in surface 

residual stresses, due to that procedure, is also very low; almost of negligible change. The 

scragging process is used to obtain a higher elastic limit and hence a greater load capacity for 

55Cr3 helical coil springs as was indicated in Chapter 3. The sample before the preset process 

was of greater length than the desired free length; this allowed for the compressing of the spring 

beyond its elastic limit during scragginlf. It is clear that residual stresses are induced during 

this process but from the results it is obvious that these stresses are not induced in or close to 

the surface. The effect of residual stresses during presetting can be better explained by 

considering the diagrams in Figure 5.15. Figure 5.15(a) shows the plastic deformation that 

.& lastic limit 

~'Plastic range 

(a) During scrag (b) Residual stresses (c) Loaded after scrag 

Figure 5.15: Schematic representation of residual stresses induced during scragging and the 
effect on re-loading after scragging. 
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takes place during presetting. The broken line indicates the elastic limit, while the solid line 

shows the maximum load stress distribution during preset loading. Iri (b) the residual stress 

pattern is revealed after the preset load has been removed. On reloading the spring to its 

normal working load the residual stresses will counteract load and the result is a more 

uniformed distributed field. This allows for the use of higher design stresses during loading. 

In the case of the cold scrag process it was evident that it had a major detrimental influence on 

the fatigue life of the component as was discussed in Chapter 3. 

5.4.4 Shot peening 

The fatigue strengthening effects of shot peening are well known and docurnented16
•
41

•
42 This 

was first discovered by General Motor Corporations, Buick Motor Division in 1929 when it 

was noted that the fatigue properties of valve springs greatly improved after being grit blasted 

to remove scale. 

To obtain the full benefit of shot peening, several variables must be properly selected and 

controlled. This includes shot size, shape, velocity and duration of peening. The process itself 

is whereby small particles or steel shot are bombarded at a component surface at high velocity 

from a nozzle or wheel. It is a very versatile process being applicable to virtually all metals and 

shapes. Shot peening produces a lightly hammered surface which tends to reduce the diameter 

slightly at the same time increases the area of exposed skin due to the dimples. 

Consider the results in Figure 5.16 of the residual stress distribution with depth for a shot 

peened surface of a 55Cr3 coil spring. Typical residual stresses from the shot peening process 

could be of the order of half the material yield strength, in the case of the 55Cr3 sample tested 

it varied from 34% to 53%. The maximum residual stresses due to shot peening always occur 

slightly sub-surface16
. 

123 



0 

-100 

"ii-200 
0.. 

SHOT PEEN 

\ 
\. 

' ::!!: -300 
~ 

' :: -400 
CD 
.::. 
Cl) -500 

-600 

-700 

0 

\t, 
\:' 

I 

0.533 

o:&~>,.'I/Oo ... ' «o..""' ... ~ 

~~~-· ~·~~ 

I 

0.787 
Hole Depth (mm) 

•······ ·········· M in Stress Max Stress 

Figure 5.16: 

-~. 

-
0.914 

Magnitude and nature of the residual stress distribution 
in a shot peened sample of 55Cr3 steel. 

For material with a tensile strength between 25 MP a and 650 Mpa the maximum residual stress 

that can be induced due to shot peening can be estimated by the following equation: 16 

(Jm = 500 + (0.2 X tensile Strength). 

For lower strength steels and alloys am will initially reach the yield stress or 0, I% proof stress 

but will fade under cyclic loading. 

The penetration of shot into the surface of material usually varies between hundreds of 

thousandths and a few thousandths of a millimetre. The smaller shot sizes are used to reach 

small. radii, while the larger shot is used to produce relatively deep penetration of the residual 

compressive stress nature. It is important to realise that further fatigue strengthening can be 

obtained by removing just enough surface material to leave a smoother surface. One can also 

make use of"strain peening" which is the bombardment of the surface while applying external 

tensile loads. This will result in residual stresses approaching the full yield strength of the 

material and not only half as was the case earlier. Strain peening is advised only for 

124 



unidirectional loading, as the high residual stress is destroyed by relatively low applied 

compression stresses. 

Shot peening is widely used in the manufacturing of springs, gears, shafts, structured tubing, 

connecting rods, etc. Machined parts made of very high strength of above 650 ~a or 400 

Bhn ( 42 Rockwell C) stand to benefit the most from shot peening4
•
41

. With shot peening, 

endurance strength increases with hardness. See Figure 5.20 for relation of micro-hardness 

values. 

5.4.5 Painted 

The painted samples revealed a compressive surface residual stress of similar magnitude as that 

of the shot peened sample as illustrated in Figure 5. 17. The increase in fatigue life was of a 

very small magnitude and could be considered as a negligible. 

There is no influence of this process on the surface residual stresses and are mainly done for 

protecting the shot peened component from corrosion. Corrosion can have major effects on 
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Figure 5.17: 
Magnitude and nature of the residual stress distribution in 
a painted sample of 55Cr3 steel. 
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the fatigue performance of springs, it is well known that unprotected coil springs will only 

endure 10 to 25 per cent ofthe endurance limit of a corrosion protected spring2
. On analysing 

and comparing the residual stresses in the painted sample to that of the shot peened sample, it 

reveals a slight increase. It was thought that this could be due to the painting process whereby 

the sample are baked at a temperature of 180°C and then moved in to the open air, which could 

be as low as 6 o C, as these sample were manufactured during winter. This will cause a type 

of surface heat treatment effect with gradient which is known for inducing compressive 

residual stresses. After closer investigation it was decided that the change in residual stress was 

too small to substantiate the above theory and that it was very unlikely to take place with such 

a small temperature gradient. 

5.4.6 Load tested 

The load test procedure can be considered as a cold scrag process. These samples reveal on 
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Figure 5.18: 
Magnitude and nature of the residual stress distribution 
in a load tested sample of 55Cr3 steel. · 

average a very slight decrease in compressive residual stress but a substantial drop in fatigue 

resistance. This drop in fatigue resistance cannot be explained by the slight drop in residual 

stresses, but it is thought that the cold scrag set in a certain amount of plastic deformation 
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which adversely affects the fatigue life of the test sample. This is a phenomenon which needs 

further investigation. The same principle as in the case of the hot scragged samples is 

applicable to the load tested samples. 

5.5 FADING OF RESIDUAL STRESSES IN 55Cr3 SPRING STEEL 

Consider the following example which illustrates the existence of residual stresses in a 

component as long as heat or external loading does not remove them by yielding. This was 

cited by Almon and Black and published in their book "Residual Stress and Fatigue in Metals", 

1963 11
. 

The Liberty Bell which was cast in 1753 had tensile residual stresses in the outer surface, the 

reason being that the casting must have cooled most rapidly from the inside surface. After 75 

years in service the bell cracked, probably as a result of fatigue from the superimposed 

vibratory stresses present when the bell was rung; corrosion could also have played a roll. 

Interesting is the fact that the width of the original crack has subsequently increased further 

although the bell has not been in service. Alman and Black concluded11
: 

"The extension of the crack since its mutilation and without vibration is proof that residual 

stresses are still present in the bell. " 

The reduction of residual stresses in a component as a result of repeated stressing is known as 

fading of residual stresses1
•
11

. This phenomenon can cause failure which then relates the failure 

directly to residual stresses. It can be said that a stressed grain of a metal has no way of 

distinguishing between loadings from its neighbouring grains due to residual stresses and/or 

due to external loads. Figure 5.19 shows a graph which compares the residual strain in 55Cr3 

spring steel samples from before and after fatigue testing. 
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Figure 5.19: 
Fading of residual strains at full depth( I mm) in 55Cr3 
processed samples due to fatigue cycling. 

This reveals that in hard steels (e.g. 55Cr3) the residual stresses do not fade easily because of 

repeated cyclic loading. The reason for this must be because of their relatively high yield 

strength compared to their ultimate fatigue strengths. Very little influence is exercised by the 

fading of residual stresses in 55Cr3 spring steel on fatigue life or failures as the fading is 

negligible. 

5.6 INFLUENCE OF RESIDUAL STRESSES ON FRACTURE PLANE OF 55Cr3 

PROCESSED SAMPLES 

The biaxial state of surface residual stresses, superimposed on stresses due to the external loads 

can alter the plane of fatigue fracture. With zero residual stresses the fracture plane will be 

more perpendicular to the specimen length, while in the presence of large tensile biaxial 

residual stress system, it will exhibit a more diagonal fracture when a bending load is applied1
•
43

. 

This torsional type of fracture which was present in most of the quenched and tempered 

samples, can therefore, be attributed to a certain extent to surface-tangential residual stress in 

the samples. 
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A large number of failures is caused by residual stresses of which the following are the more 

common ones: 

e Stress corrosion cracking can be directly related to residual stresses. This occurs in 

metals which are subjected to corrosive environments while stressed. The crack will 

initiate and appear in the surface layers. 

e Residual stresses due to assembly is a source of potential failure where residual stresses 

in systems are induced by the assembly of components with an initial lack of fit. These 

failures could be caused by specifYing shrinking or force fit of compound cylinders by 

the design without considering the influence of induced residual stresses on the 

assembly. 

e In contact loading in gears and bearings, consideration should be given to the 

relationship between the distribution of residual stress with depth and the depth at 

which the peak alternate shear stress occurs under the contact load. If this is 

overlooked, the possibility of the peak residual stress overlapping with the peak shear 

stress exists which could cause crack initiation below the surface which will lead to the 

failure of the component. · 

However, when failure consists of ductile yielding, several questions may arise like: 

• How much permanent distortion is associated with a given overload? 

• How much yielding can a part experience before it is unsuitable for its intended service 

loads? 

• If the part can still be used, what residual stresses are present? 

• What will be the effect of influences of the residual stresses on the service performance 

of the part? 

• What loads are needed to restore the part to its original shape? 

o After the part has been restored, what residual stresses will remain, and what influence 
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will they have on the service performance of the part? 

5.7 SUMMARY 

As was explained in early chapters, we could see that in some cases residual stresses can be 

used to the advantage of the fatigue life of components. Process methods have major 

influences on the properties of 55Cr3 spring steel including the residual stresses and micro 

hardness values as illustrated in Figure 5.20. However no trend or pattern exists between 

residual stresses in the surface of the different samples and the micro hardness values. It would 

seem that very high hardness values associate themselves with high tensile surface residual 

stresses. Although the micro hardness and residual stress values for the shot peened, painted 
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Figure 5.20: 
Relation between micro hardness values and process effects on 55Cr3 
spring steel. 
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and load tested sample were closely related, not much can be concluded as the hardness of the 

tempered and hot scragged samples were also in this range but their residual stresses were 

much smaller and of a different nature (tensile). 

A very interesting relation was that of the residual stress and strain magnitudes as illustrated 

in Figure 5.21. Not important is the change of nature from a tensile strain to a compressive 
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Figure 5.21 : 
The relation between residual stress and strain magnitudes for 
5 5Cr3 spring steel samples withdrawn at different process 
stages. 

stress and vice versa but the fact that the magnitudes were almost following a trend, the one 

just measured in micro strain and the other in mega pascal. On analysing this stress-strain 

trend it is discovered that in the first three processes a scale factor of -0.56 would produce the 

equivalent stress values from the strain data within a 12% error band which is well acceptable 

for residual values. The last three processes had a scale factor of 0. 7 with an error band of 

13%. This could lead to the conclusion that the residual stresses will be a mirror image of the 

strains values. 

The air abrasive hole drilling method has proved to be an accurate method for determining 

surface residual stresses. The process has proved to be very effective on the very hard samples 
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for example the quench sample, which had a hardness of 61 Rockwell C Typical problems 

encountered can be described as follows: 

Gauges had to be protected by a covering strip, as the abrasive nature of the over spray 

of aluminium oxide powder, could cause deterioration of the gauge which will influence 

strain reading. 

Alignment ofthe drilling device is critical and time consuming with the drilling of such 

small holes (0.9 mm to 1 mm in diameter). 

The strain amplifier must be well grounded or disconnected during drilling as a large 

build-up of static electricity can be experienced which could damage the amplifier cards 

during drilling. This-build up of static electricity is believed to be caused by the 

aluminium oxide moving with a high velocity. 

Errors and uncertainties are always present to varying degrees in all measurement of physical 

variables. As a rule, their magnitudes are strongly dependent on the quality of the experimental 

techniques, as well as the equipment used. As was explained earlier in this chapter it is believed 

that the accuracy of residual stress values obtained during this research were in the range of 

±20 MPa to ±30 MPa. 
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CHAPTER6 

PROCESS EFFECTS ON 55Cr3 SPRING STEEL 
TRANSFORMATIONS 

INTRODUCTION 

Micro structural analysis of metal can be divided into three categories, namely (i) crystal 

structure and distribution of phases, (ii) lattice defects and (iii) the relation between micro 

structural features and variation in chemical composition. The urge to understand the micro 

structure of metals and the structure sensitive properties has resulted in the development of 

more sophisticated metallographic techniques such as transmission microscopy. 

Electron microscopes operate under high vacuum conditions. Preparation of samples for 

transmission electron microscope work requires extensive preparation to ensure a high image 

quality44
. Imaging depends on a specimen that is thin enough for an electron beam to pass 

through as well as correct operation of specific image and magnifying lenses. Electron 

microscopy can be defined as the science and technology of using an electron beam to form 

magnified images of specimens. The principal advantage in using electrons is that they provide 

as much as a thousand fold increase in resolving power (detail to± 0,2nm) compared optical 

microscopy. For this study it was attempted to examine interfaces, dislocations and diffraction 

patterns from the processed sample at a depth of 1 mm below the surface. 

6.1 INVESTIGATION INTO MICRO STRUCTURAL TRANSFORMATION OF 

55Cr3 SPRING STEEL 

6.1.1 Equipment (Transmission electron microscope) 

The basic transmission electron microscope consists of an electron source and assembly of 

magnetic lenses arranged in a vertical column which is evacuated. The microscopist can control 
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a number of variables on the instrument to optimize the quality of the final image. At the top 

of the column is the electron source which consists of a filament assembly connected to a high 

voltage supply which range from 20 000 volts to 100 000 volts. The electron source produces 

a coherent parallel beam of e~ectrons, which can be varied in diameter from about 1 mm to 50 

mm at the specimen surface. This is done by means of the double condenser lens system. 

The condenser lens system is used to control electron illumination on the specimen and viewing 

screen for such functions as viewing, focussing, and photography. The setting relation between 

the two condenser lenses affects the amount of illumination and image quality. The first 

condenser lens is a high power lens which can condense the 50 mm electron beam to as small 

as 1 mm, while the second condenser lens is a weaker variable lens controlling the beam size 

from 1 mm to 10 mm. 

6.1.2 Sample preparation 

6.1.2.1 Removal of specimen from bulk material 

All samples for transmission electron microscopy require preparation of a high standard before 

analysis as the preparation can introduce microscopy features which can cause incorrect 

interpretations of the microstructure45
. The first to consider is the final diameter and thickness 

of the sample that can be viewed. The standard support disk for a specimen is 3 mm in diameter 

and can take a specimen with thickness of approximately 0.2 mm. 

The removal of the samples from the bulk material was done by using ECMIEDM (Spark 

Erosion) to machine a cylinder of 3 mm in diameter from a spring section as shown in Figure 

6.1. 
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Figure 6.1: Removal of sample from bulk 
material. 

The removed cylindrical sample is then sectioned perpendicular to its longitudinal axis into thin 

disks of3 mm in diameter and ±0.5 mm thick. The parted-off disk can be thinned to the above 

requirement by grinding it on abrasive paper. The final finishing must be done on 1 000 grain 

paper. The parting off of the disks must be done carefully and they must not be too thin as the 

parting off could inflict damage on the specimen. If a diamond cutter is used, use the following 

suggested procedure: 

1. Clamp a stop block 0.4 mm from the side of cut-offwheel. 

2. Push the plain face of cylindrical sample against a stop block and clamp. 

3. The metal between the stop block and disk can now be parted as a disk with a thickness 

of approximately 0.4 mm. The stop block also assists with the cooling of the disk and 

assures that the cut-off wheel is not bent. 

4. The parted-off disk can now be ground down on abrasive paper to the desired thickness 

(<I mm) and to a 1 000 grain size finish. 

5. The specimen must be protected against oxidation or any fouling as it may cause the 

specimen not to be satisfactorily polished. The disk is now ready for final thinning and 

polishing. 
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6.1.2.2 Final thinning 

This was done using a Tenupol-3 electrolytic thinning apparatus. The apparatus consists of a 

base plate with a polishing cell, a built-in infra-red detector system, a cooling coil and a pump 

system, all placed on top of a PVC reservoir for the electrolyte. The electrical parts are 

connected to a separate control and power supply unit through a single cable. It is used for 

electrolytic thinning of specimens for transmission electron rnicroscopy and other methods of 

examination where the thickness of the specimen must correspond to or be smaller than the 

grain size of the material examined. Specimen of± 0.3 mm thick was placed between two 

immersed jets. A pump system then pumps the electrolyte through the jets against the 

specimens. A direct current supply will establish an electric circuit through a cathode placed 

in the electrolyte and an anode connected to the specimen. When the circuit is closed, material 

is removed electrolytically from the specimen surface. This will result in forming a small hole 

in the centre part of the specimen of which the edge of the hole will have a v-shaped cross 

section. The hole is detected by an infra-red detector system, which automatically cuts off the 

process. By varying the photosensitivity the hole size can be changed. 

As soon as the polishing is completed the sample holder is removed and opened in a small bath 

of ethanol. This batch must be kept ready as it has to be done immediately to neutralise the 

acid. It is not advisable to store specimens for long periods but this can be done under vacuum 

in a desiccator with silica gel. 

If a sufficiently high quality polish is not obtained in electrolytic polishing, it will be necessary 

to alter the polishing conditions. There are four independent parameters, type of electrolyte, 

flow rate of electrolyte, temperature and electrical conditions. The type of electrolyte is highly 

important for the quality of the polishing. An unsuitable electrolyte will cause oxidized or 
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etched surfaces, pitting or one side polishing while the other side is black and oxidized. The 

proper flow rate to use is very difficult to determine as each material and electrolyte is different. 

If a current versus voltage curve is drawn the best polishing conditions will be found where the 

current is approximately constant with in a range of voltage. 

For 55Cr3 spring steel, the following sample preparing variables were arrived at with acceptable 

final polishing results. This was done by trial and error changing variables selectively until the 

best results were achieved. 

Electrolytic 5% Perchloric Acid 

17% Glycerol 

70% Ethanol 

8% Butanol 

Infrared setting Just below maximum sensitivity. On the Tenupol-3 a setting of 

8 was used. 

Electrical supply This was determined by plotting a graph of volts versus 

milliamps. Where the graph shows a flatter characteristic, it 

indicates the ideal electrical settings for achieving the best 

polishing of the specimen. For 55Cr3 samples, it showed that 
' 

the best range was between 5 and 1 0 volts and 160 milliamps. 

Flow rate A low flow rate (2 on scale of 1-1 0) was used to try and prevent 

the jets from blowing a thin area off before cut off This was 

arrived at after a number of specimens were finely polished but 

there was a Jack of thin areas remaining to be looked at. 

Time The time from start to switch off varied but an average time for 

a small hole was approximately 18 seconds. 
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The above produced acceptable samples but is still a long way from ideal. More research will 

have to be done on the preparation ofmartensite samples to achieve the ideal polish parameters. 

6.1.3 Image formation 

Image formation using a magnetic material proved to be quite challenging. It seemed that the 

material was magnetised which caused the electron beam to be unstable and would move around 

causing fading or even in some cases total loss of the image. The image formation can shortly 

be described as follows: 

The specimen fits in a holder that fits into the objective lens and enables the specimen to be 

· tilted. The objective lens is the first magnified lens which makes it the most important and 

complex lens as any imperfections in this lens will be magnified further by the other lenses. The 

specimen is inserted into object plane of objective lens by means of a specimen rod through an 

air lock to preserve the high vacuum in the column. This operation can introduce contaminants 

from both specimen and specimen holder side which is reduced by allowing a copper braid to 

extend through the column to an external container of liquid nitrogen which keeps the metal 

cold to attract and hold contaminants. 

Electrons pass through the thin specimen and interact with the specimen forming a number of 

signals which will generate the final image46
. Various interactions occur between the primary 

electron beam and the atoms of the specimen to form the TEM image. The first image is from 

the electrons from the primary beam which pass through the specimen without any change. The 

second type is where these electrons interact with the nuclei of the atoms of the specimen and 

are elastically scattered. The third is where primary electrons interact with electrons from the 

atoms of the specimen and are inelastically scattered. 
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Electrons may also be absorbed into thick portions of the specimen or into areas of atoms with 

high atomic numbers. Very few electrons are prevented from passing through the specimen. 

Where too many electrons are absorbed into a small area it can result in distortion or even 

destruction of the sample due to heating47
• Elastically scattered electrons contribute to both 

amplitude and diffraction contrast in an image whereas inelastic scattered electrons are more 

important in imaging of samples with low atomic numbers. They contribute to chromatic 

aberration because of energy loss and phase contrast. 

The extent of electron scatter and interactions depend on mass thickness, the thickness, 

variation of thickness as well as the atomic number of various atoms making up the specimen47
. 

This differential scattering between the transmitted and scattered electrons from a specific area 

of the sample results in the contrast necessary to form an image on the viewing screen. All these 

electrons are focussed in the back focal plane of the objective lens which acts as an 

electromagnetic converging lens which will form. the diffraction patterns in this plane. An 

inverted image is formed in the first image plane then passed through the diffraction -, 

intermediate and projector lens which is responsible for either magnification of the image or 

diffraction pattern. If the diffraction lens is focussed on the back focal plane of the objective 

lens a diffraction pattern is magnified and displayed, whereas if the first image is imaged by the 

diffraction lens then a magnified image of the specimen is produced. Magnifications of 102 to 

106 times can be produced. 

6.1.4 Transformations in 55Cr3 spring steel 

Martensitic transformation due to process effects in the surface 55Cr3 coil springs was done in 

an attempt to confirm the influence of the manufacturing processes on the deformation of the 

material and to relate this to the fatigue properties and the residual stresses in the material. All 

the samples were removed in an area of 1mm below the surface of the material. Only samples 
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from the quench, tempered, hot scrag and shot peened processes have been considered. 

A microstructure transformation involves the changing of a crystalline structure for example 

from a face centre cubic structure to a body centre cubic structure48
. It has been observed that 

ordered phases will transform into other ordered phases martensitically with a change in 

structure but with no evidence that diffusion had occurred in the martensitic transformations. 

The transformation in 55Cr3 steel, due to the process effect can also be viewed from a surface 

dislocation or slip approach. From the Burgers vectors of the dislocations, it can be determined 

whether the transformations in homogeneity is twinning48
. The movement of dislocations due 

to process effects can result in simple shear deformations. This can account for the various 

habit planes and other crystallography features in the 55Cr3 processed samples. Consider the 

micrographs in Plates 6.1 to 6.4 for the influence of some of the manufacturing processes of 

55Cr3 coil springs. Interpretation of these plates is very difficult and needs to be researched 

thoroughly. There is a definite change in the appearance of the diffraction patterns and 

microstructure of the different samples. In the quenched sample the structure appears to be a 

spread out mass With some indication of twinning or martensite lathes. The tempered samples 

reveal a change to more evenly distributed features. This is also evident in the hot scrag and 

shot peened sample with the exception that the structure appears more densely packed. 

Each plate shows the diffraction pattern obtained using the selected area technique from a very 

thin portion of the 55Cr3 samples under consideration. The diffraction pattern consist of a 

series of well defined maxima where the most intense beam is the directly transmitted beam46
. 

The other maxima are defining the direction in which strong diffracted rays left the crystal 

structure. It can be assumed that the planes giving rise to strong maxima are approximately 

parallel to the electron beam direction. Ultimately the appearance of the diffraction pattern 

depends on the crystal structure and the grain orientation to the electron beam. The diffraction 
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pattern can change from grain to grain. 

Electron beam 
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Figure 6.2: Diffraction pattern of a perfect crystal. 

If the diffraction patterns are studied carefully it is clear that from the quench tempered samples 

more asterism is visible than in the quenched samples. This could be due to more lattice 

distortion. Considering a perfect undamaged crystal the electron beam will pass through forming 
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Figure 6.3: Diffraction pattern of damage crystal. 
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a more orderly pattern as shown in Figure 6.2. 

If the crystal structure contains a certain amount of similar dislocations the lattice planes will 

be bent over to reverse automatic spacing. If an electron beam now passes through the crystal 

the spots are now smeared into streaks, as shown in Figure 6.3 . 

The amount of bending in the lattice planes are proportional to angle 8 . Therefore this is an 

indication of the amount of internal stress and it could be said that the dislocation density is 

representative of these internal stresses. 

Plate 6.1: 
Transmission electron micro graphs illustrating crystalline features and the diffraction patterr 

quenched sample of 55Cr3 spring steel. (x25000-lmm below surface) 
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Plate 6.2: 
Transmission electron micro graphs illustrating crystalline features and the diffraction patter 

quenched tempered sample of55Cr3 spring steel. (x25000-lmm below surface) 

Plate 6.3 : 
Transmission electron micro graphs illustrating crystalline features and the diffraction pattern of ~ 

scragged sample of55Cr3 spring steel. (x25000-lmm below surface) 
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Plate 6.4: 
Transmission electron micro graphs illustrating crystalline features and the diffraction pattern of 2 

peened sample of55Cr3 spring steel. (x25000-lrnm below surface) 

6.2 SUMMARY 

This attempt at explaining the influence of the manufacturing process on the crystalline 

transformation in 55Cr3 spring steel cannot be considered successful. Valuable experience has 

been gained on the ability and possible scope for transmission electron microscopy work on 

materials This is a tool that can reveal the detailed microstructure within the grains of metals, 

such as dislocation density and distribution, twinning, martensitic shears, etc. The future for 

development of super material lies locked up in the crystalline structure of metals and will only 

really be solved when this can be interpreted and related to fatigue and other preparation of 

manufactured components. This study has definitely contributed to the better understanding of 

the preparation of and investigation of magnetic material samples used in transmission electron 

rrucroscopy. 
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CHAPTER7 

FATIGUE ANALYSIS OF SPRING STEEL 
(DISCUSSION) 

INTRODUCTION 

World-wide trends in legislation and environmental considerations are demanding increasingly 

higher fuel economy from road vehicles. The manufacturing world is responding to this 

legislation through an overall reduction in component weight, thus requiring more efficient 

components that can operate under increased working stress. 

The production of a suspension spring working at high stress levels yields a benefit in fuel 

economy since the component is not only lighter but can be more compact, thus aiding the 

reduction of vehicle frontal area and drag. There are two major properties of spring materials 

which govern the useful life of the spring component and which must be carefully assessed in 

the development of any new design or manufacturing process, these being sag (or relaxation) 

resistance and resistance to fatigue and their relation to residual stresses which play an 

important role in spring components. 

The understanding of the relationship between fatigue life, residual stresses and process effects 

in spring steel components are of cardinal importance before the manufacturing process can be 

optimised to produce coil springs for enhanced performance operating at increased stress 

levels. 

These mechanisms were investigated in 55Cr3 automotive suspension springs by subjecting 

coil springs withdrawn from different stages of the manufacturing process to a series of tests. 

In this manner it has been ensured that all possible sources offatigue initiation in this material 
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batch have been identified, including those not dominant in the finished component. The resuhs 

are indicative that decreasing defect levels in the material and better utilisation of beneficial 

residual stresses would represent a valid method for enhancing the filtigue response. 

7.1 POSITION AND REASON FOR FAILURE 

The location ofthe filtigue fractures was very process-specific as indicated by Table 7.1. 

Manufacturing Position of fracture Fracture initiation 
Process Cause of failure 

Bottom Middle Surface Sub-surface 

Queneb 1/t/t/t/ tl Mechanical damage 

Temper t/t/t/1/ t/ Mechanical damage 

Hot scrag t/t/t/ fil Mechanical damage 

Shot peen 1/t/t/t/ t/ Inclusions related 

Painted t/ t/t/ t/ Inclusions related 

Load tested tl t/t/t/ t/ Inclusions related 
.. 

Table 7.1: Effects of manufucturing processes on positton and cause offililure. 

From the Table 7.1 it is clear that the majority of the samples broke within the first three turns 

of the spring. There is a definite move towards the centre of the sample after the shot peened 

process and the processes after this follow the same trend. This is also clearly illustrated by the 

graph in Figure 7.1. From the same graph it can be concluded the shot peened process is the 

turning point as far as position offuilure and mechanical damage is concerned. The stress state 

in the first turn of coil spring design is complicated as the reduction in pitch has to be 

incorporated to give the component parallel ends. It would seem that this is only true for the 

first three manufitcturing processes as the position of failure after the shot peened process is 

towards the middle part in the area of a more even helical pitch. 

The most common type offuilure was the helical type which occurred in all samples. The next 
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type was an axiaVhelical type fracture mainly present in samples withdrawn after the shot 

peened process, while the torsional slow type fracture occurred in only samples from the last 

three processes but was not process specific. Only one sample withdrawn from the hot 

scragging process failed by buckling. The microscopic analysis revealed three general causes 

of fatigue initiations, namely surface damage, non-metallic inclusions and an isolated case of 

hydrogen embrittlement which is also inclusion-related. 
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Figure 7.1 : Influence of manufacturing processes of55Cr3 spring steel on fracture position 
and initiation area. 

The dominant failure of samples withdrawn before the shot peening process related to damage 

due to coil clash between the first turn and the coil end. The influence of coil clash on failure 

initiation seems to disappear after the shot peened process as was illustrated by Plate 3.37 in 

Chapter 3. This confirms that the shot peening process is largely responsible for reducing or 

eliminating the influence of surface damage responsible for fatigue initiations. 
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7.2 THE RELATION BE1WEEN MECHANICAL AND FATIGUE PROPERTIES OF 

PROCESSED SAMPLES 

+ 
'" _ .... _ _. _ __,. ,. __ .._. 

-- -- Hardness - - - Tensile strength 

- - - o/o Elongation - · - ·- Fatigue life 

- - -- Torsional shear - · · -+- • · - Impact resistance 

Figure 7.2: Relation between manufacturing processes and mechanical properties and 
fatigue. 

From the graph in Figure 7.2 the following deductions could be made with relation to the 

mechanical properties and fatigue life of the samples. The tensile strength curve and that of full 

depth hardness values revealed very similar characteristics for the different process effects but 

yet no relation of this could be made with the trend in the fatigue life characteristic. The 

torsional shear resistance showed an increase until the tempered process, after which it stayed 

constant. This characteristic was very similar to that of the hardness properties except that the 

substantial increase in hardness due to the quench processes were not reflected by an increase 

in torsional shear resistance. 

The only mechanical property that nearly reflected the trend in the fatigue life of spring steel 

was the impact resistance. Due to the use of non-standard size impact specimens the curve in 

Figure 7.2 reflects the percentage increase in impact resistance due to each process with 
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reference to the drawn and raw material. The only processes in which the impact resistance 

did not reflect this characteristic were in the tempering and hot scrag samples. 

7.3 EFFECT OF PROCESS ON RESIDUAL STRESSES AND FATIGUE RESPONSE 

Several sources of fatigue initiation have been identified in this thesis although not all dominant 

in the finished component, some interesting trends have emerged. Samples prior to the shot 

peening process failed mainly due to surface initiations and fracture occurred towards the end 

of the coil, while samples withdrawn from the shot peening process onwards mainly failed due 

to subsurface inclusions and fracture more to the middle of the coil. Despite a reduction in 

hardness during the tempering process, average fatigue life of tempered coils did slightly 

increase as expected. After subsequent processes the variation in measured hardness values 

proved insignificant. The hot scrag operation also affected the fatigue performance, resulting 

in an average increase in fatigue life of approximately 28% over the quenched tempered coils 

but this can be considered negligible compared to the ultimate fatigue life of the final 

components. 
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Tempered Shotpeened Load tested 
Quench Hot Scragg Painted 

Figure 7.3: Fatigue life of processed samples. 

The most significant process in terms of promotion ofhigh fatigue life was that of shot peening, 
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producing a substantial increase of hundred thousand-fold compared to that of the previous 

process. A further increase in the fatigue performance was noted from the painted spring 

samples, although the increase was so small that it cannot be regarded as significant. The most 

interesting change in fatigue performance was observed in the final product(load tested), which 

resulted in a four-fold reduction in fatigue life. Considering the design formula for coil springs 

it would be expected that most coil failures should occur at the inside of the coil at the area of 

high stress, but instead it was found that approximately 70% of failures occurred at the top or 

bottom of the wire. The reasons for this could be that the bending element in this spring design 

is more significant than the design formulae suggest, thus creating a peak combined stress at 

the top/bottom of the wire or that the standard design theory assumes the ideal situation where 

the coil is loaded perfectly axially whereas in reality this is never achieved, resulting in the 

introduction of a bending element. The last possibility is that some damage to the top and 

bottom wire areas occurs during the manufacturing processes and that this is not well covered 

by the shot peening because the coverage is reduced in the inward surfaces of the component 

due to shielding of these areas. 

Tempered Shotpeened 
Quench Hot Scragg Painted 

Legend (MPa) 

Fatigue. life x 1000 

Residual Stresses(MPa) 

Figure 7.4: The relation between residual stresses and fatigue life. 
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Comparing fatigue results to the residual stress measurements clearly explains why variations 

in fatigue performances occur and, in particular, why coils from a given manufacturing stage 

are sensitive to specific defects. Figure 7.4 shows the results of the variation of the residual 

stress profile after each process and the relation to the corresponding fatigue life. 

For quenched components it can be seen that a tensile residual stress was present which 

promoted fatigue initiation near the surface, thus making the material more notch sensitive and 

vulnerable to mechanical defects than non-metallic inclusions. The tempering operation leads 

to a reduction ofthe tensile quench stresses but the resultant is stiU of a tensile nature and the 

dominant failure mechanism remains to be mechanical damage. 

The hot scragging process causes plastic deformation in the coil surface, thus creating a 

compressive residual stress to offset the existing tensile residual stress field. The resultant 

surface residual stresses after this operation are still of a tensile nature. 

Further compressive residual stress, of significantly greater magnitude, is added by the shot 

peening process and is large enough to ensure that a wholly compressive residual stress state 

exists at the component surface. This significantly reduced effective peak stress area along with 

an altered stress profile in the surface which ensures that the surface is no longer the critical 

area in terms of defects, as was verified by the significant shift of failures to sub-surface defects. 

From Figure 7.4 it is clear that the introduction of compressive surface residual stresses have 

resulted in a substantial increase in fatigue life. 

As was explained in early chapters, we could see that in some cases residual stresses can be 

used to the advantage of the fatigue life of components. Process methods have major 
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influences on the properties of 55Cr3 spring steel including the residual stresses and micro 

hardness values as illustrated in Chapter 5. However there does not exist a trend or pattern 

between residual stresses in the surface of the different samples and the micro hardness values. 

It would seem that very high hardness values associate themselves with high tensile surface 

residual stresses. Although the micro hardness and residual stress values for the shot peened, 

painted and load tested samples were closely related, not much can be concluded as the 

hardness of the tempered and hot scragged samples were also in this range but their residual 

stresses were much smaller and of a different nature (tensile). 

7.4 SUMMARY 

This chapter made a contribution towards the better understanding of the relationship between 

fatigue life, process effects and residual stresses. The manufacturing process which must be 

optimised for enhanced quality and product characteristics has been highlighted with the cold 

scragging process holding the most promise for contributing to this aim. Residual stresses in 

these samples due to the manufacturing processes proved to be either beneficial or detrimental 

to the fatigue properties. As soon as surface compressive residual stresses were introduced, it 

caused a substantial increase in the fatigue life of the samples although there was no change in 

the mechanical properties or microstructure structure of the material. This is clearly illustrated 

by the graph in Figure 7. 5 which compare the characteristics of the different process influence 

on the material properties. It is felt that further investigation on a crystalline transformation 

level must be conducted into the mechanism that exists between fatigue properties and residual 

stresses and its relation to process. 

The results revealed the nature and magnitude of the stresses induced, fatigue life and 

mechanical properties of each component from the different manufacturing process. This in 

the final analysis reveals the relation and impact of the manufacturing processes on fatigue 
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properties of 55Cr3 spring steel. 

This research has attempted to make a contribution to solve the ubiquitous phenomenon of 

residual stresses and their relation to manufacturing processes of spring steel and to identify 

a model for this relation. Many opportunities for optimisation of design and manufacture 

leading to reduction of costs, are locked up inside the correct understanding of residual 

stresses. 
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Figure 7.5: Model for the relation of process effects to 55Cr3 spring steel properties. 
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CONCLUSION 

The stress state of coil springs during operation is considerably more complicated than what 

is suggested in most references. Current design formulae ignore the presence of any bending 

stresses as they revolves around the ideal conditions ofloading the coil spring perfectly axially. 

The work done in Chapter 2 proved that this is not the reality and that although the bending 

component is quite a bit smaller than the torsional stresses it never should be disregarded. It 

was also verified that an isolated loop could be used as a replacement sample for fatigue tests. 

However great care should be taken as the load ratio could vary and that it is only valid with 

in a certain range of deflections. 

The location of fatigue fractures were very process specific with the majority of samples 

fractured in the first three coils. The shot peening process proved to be the most significant as 

this resulted in a substantial increase in fatigue life and also resulted in failures to originate sub­

surface and sample to fracture more toward the centre. However, failure analysis has revealed 

that more failures occurred at the top or bottom of the wire. This could be attributed to a 

number of reason eg. Bending element in coil springs are more significant than design formulae 

suggest or that some process damage to the top and bottom wire areas occurs during scragging 

or fatigue cycling. The work done has highlighted the relationship between fatigue failure and 

critical defect presence in automotive coil spring components. 

The magnitude, presence and the nature of residual stress has been thoroughly investigated. 

The work revealed the relation between manufacturing processes and the residual stresses they 

induce and subsequently the influence of residual stresses on the fatigue life of spring steeL The 

most prominent manufacturing process in inducing residual stresses was shot peening which 

induced a large component of compressive residual stress into the surface which was very 
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advantageous to the fatigue life and caused a shift from surface fatigue initiations to sub-surface 

initiations. 

This research has contributed towards the better understanding of the fatigue properties of 

spring steel. It revealed an important model around the relation of current manufacturing 

processes and the influence on fatigue behaviour of coil springs. All of this in turn was related 

to the presence of residual stresses and the relation to fatigue life of coil springs. 
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FUTURE RESEARCH 

There is a number of possible areas that needs to be research more intensely to understand the 

operating conditions and manufacturing processes of automotive coil spring entirely. 

Future research should concentrate on the following topics: 

1. Investigation into the bending element present in automotive coil spring during normal 

operation. This must be done with the objective of developing new design formulas 

around combined twisting and bending. 

2. The investigation of the mechanism of the cold scrag process. Better understand is 

needed of the mechanism causing the major decrease in fatigue life due to this process. 

This could be done by investigating crystalline transformations in the material due to 

the process. 

3. The most significant research can be done in the field of the crystalline structure of 

spring steel. The research should concentrated on the presence of dislocation, twining, 

etc. and their relation to the manufacturing processes. This intum can be relate to 

mechanical properties and the presence of residual stresses. 

4. Some general research can be done on the measurement of residual stresses in spring 

steel by using another method like x-ray diffraction. It is always advice able to use 

different methods for measurement of residual stresses as it is such and abstract field. 

This could also be extended to different manufacturing procedures and materials. 
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APPENDIX-A 

Calculation of forces in a closed coil spring. 

167 



FORCES IN A CLOSED COIL SPRING UNDER AXIAL LOADING 1·2.49 

A helical spring is usually loaded by an axial force. For this study we will assume a circular 

cross section for the spring wire and the helix angle is very small. We will ignore small end 

effects, as when ends are unbent, or ground flat to provide a bearing plane. We will assume 

throughout this section that the wire diameter is considerably smaller than the helix radius 

(R) so that curved-beam considerations may be neglected. 

1. Closed coiled spring 

WHERE: 

W = Axial load 

D = Mean coil diameter 

d = wire diameter 

n = number of coils 

R = Helix radius 

Figure 1: Closed coiled helical 
spring. 

• 

If we work from the assumption that the angle of the helix is very small, the action on any 

cross section is approximately a pure torque (T = W.D/2 ). 

168 



L 

Figure 2: Schematic of torsion effect in a coil spring. 

One can also assume that this pure torque is actively about the polar axis of the coil wire, 

therefore shear stresses (t) will be set up in a direction perpendicular to the radius on all 

transverse sections. Consider the elementary strip with a thickness= dr in Figure 2. From 

the above we can see that a definite distortion of the filaments in the longitudinal planes was 

caused by the shear stress in this plane. Based on the assumption that points A and B are 

on the same radius after the wire had been twisted through an angle E> over the length L. 

. This justified by the correlation of symmetry of the cross-section before and after twisting. 

On the left it shows the shear strain <I> of the elements at a distance (r) from the axis, so that 

the line OA twists to OB, and < ACB = E> (right hand sketch). <( ACB is therefore the 

relative angle of twist of cross sections at a distance L apart. Also we can deduce from this 

that the shear strain is constant for constant torque. 

Arc AB = rE> = L<l> approx. . .............. 1 

where (E> =small angle) 

But also the modulus of Rigidity (G) is the ratio of shear stress: shear strain 

"t 
G =­

cp 

By substitution and re-arranging equation 1. 
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t re= L­e 

t ce - =- ...................... (2) 
r L 

The total torque (T) will be the sum of the moments of the tangential stresses on the 

elements which has a cross-section area of2m dr. 

1e. T = f t(2nrdr)r 

Let us check this by dimensional analysis: 

Nlm = f N/m2 (m2
) m 

:. Nlm=Nim 

But G8 
t = r-

L 

T = f r Ge (2nrdr)r 
L 

ce 
= -f(2nrdr)r 2 

L . I 

ce 2nr 4 
d/2 

=- [-Jo 
L 4 

= G0 [ 1td
4

] when 
L 32 

T = G8 J 
L 

from equation 2. 

= Polar Moment of Inertia 

...................... (3) 

where J =Polar moment of inertia= 1td
4 

for round bar. 
32 

Combining equation (2) & (3) 

r ce t ..................... (4) - =- =-
J L r 

Applying this formula for torsion of shaft and taking the approximate length (L) for the steel 

wire in the coil spring as: 
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L = 1tDn 

Then: 

Also maximum stress 'tmax will occur at r = d/2 

_ 16T 
'tmax - -

1t~ 
from T 1: 

J r 

..................... (5) - -------
d 1tDn 

Because the spring wire is twisted like a shaft through a total angle of E> and deflected by 

distance x by a load W along the axis of the coils then: 

x=(D/2)E> approximately, therefore E>=2x!D 

GE> G.2x!D 
= 

1tDN 1tDN 

Re-writing eq.(S) (+2) 

8WD Gx - --------
d 

The spring stiffness (k) of the helical spring will be the Axial Force divided by the 

deflection. 

Gd4 

k = W!x = --
8D3n 

The strain energy (U) caused by this pure torque is the work done by twisting. 

:. U = 11:zTE> (only for gradually applied Torque) see Figure 3. 
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Figure 3: Total energy distribution. 

where: U = area under graph 

= 1h base x height 

or U=lhWx 

2. Relation between stress and strain 

The extreme fibre stress ("t ), in the elastic range of a specimen, is related to the torque3 (T) 

by the torsion formula for circular shafts by: 

Tr 
"t: =- ...................... from equation 4 

J 

From Figure 4 which shows a twisted shaft, and from the definitions of the modulus of 

rigidity G = • ,the angle of twist can be expressed as: 
cl> 

LT 
rG 
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L' 
- - -

L 

(a) 

re 

Figure 4: Illustrating principal of twist in shafts. 
(b) 

Now consider the rod in Figure 4 with length (L) and radius (r) with a coupleT applied to 

one end and the other end constrained. Line AB, on the surface of the rod, is parallel to the 

axis before any strain is exercised on the rod. When the rod is subjected to strain, line AB 

now forms a long helix, AC and the angle E>, being the shear strain of the material at the 

surface. Since the <I> can be considered a very small angle: 

or 

BC= L<j> 

<I> = BC 
L 

But <1> _ ~ where t =shear stress in the material at the surface of the rod. 
G 

Also, LBOC is the angular movement of radius OB due to the applied strain in the length 

(L). 

Therefore: t = <J>G 

= rE> 
L 

(See also equation 4) 

Now in the above formula E>, L, and G will stay constant but r can be varied between 0 and 

r to find the shear stress at different points in the material. 
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Now let 

:. "t = kr 

e 
k = -G . L 

(constant) 

Hence if-c1 is the shear stress at a radius r1, we have .2 = ..:. 

'• r 
with the above formula we can find the stress distribution from the centre to outside of the 

rod, and with the formula <1> = ~ we can now also determine the strain distribution. 
G 

Figure 4(b) shows a stress-strain variation within the proportional limit and a stress- strain 

variation above the proportional limit. 

If a bar is subjected to torsional loading above the proportional limit the actual stress will 

not follow a straight line, but will follow the path of the solid line in Figure 4(b), but if 

proportionality between stress and stain was maintained up to the rupture point, the nominal 

stress distribution would be something like that shown by the dashed line. Ductility can also 

be determined by comparing the final fibre length L1 (Figure 4(a)) at rupture to the original 

length L. The value ofL1 is computed knowing Land r<!>, the ductility is expressed as a 

percentage of elongation ofthe outer fibre and is equal to [(L1
- L)/1] xlOO. One can 

conclude by saying that the state of stress, at any point in the cross section of the rod, is one 

of pure shear and that the strain is such that one cross-section of the rod rotates relative to 

another. 
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APPENDIX-B 

Results of strain gauge readings from isolated loop and complete 
coil spring. 
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Figure 1: Load venus strain graphs for all gauge positions. 
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Figure 2: Principal stress versus deflection graphs for all gauge positions. 
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APPENDIX-C 

Calculation of residual stresses in a rectangular beam. 
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Figure I: Stress distribution in a beam. 

If the beam is loaded to a fully plastic state the stress distribution will be as represented by 

rectangles oabc and odef as illustrated in Figure I ( b). Because of permanent deformation 

when the beam is unloaded, bending stresses are set up, which are then superimposed during 

the unloading (Figure I(c)). The bending stresses are of opposite signs and will therefore be 

given by the line goh. If the stress distributions are superimposed as shown in (d) and 

subtracted, it will then reveal the residual stresses present which remain after unloading the 

plastically deformed beam as revealed by (e). Ifwe want to quantify the values of the residual 

stresses, the loading and unloading moments must be equal, therefore the rectangle distribution 

oabc about the neutral axis must equal the Moment of the force due to the triangular 

distribution oag. 

Therefore: 

- Oy-

a b 

F 

Moment of oabc = F x \12 oa 

F = stress x area 
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Moment = stress x area x '12 oa 

= ab x A x '12 oa ...................... : .......... 1 

(where A= area) 

Moment of Mag: 

Moment = F x 2/3 oa 

= Average stress x area x 2/3 oa 

= '12 ag x A x 2/3 oa .............................. 2 

Now equating eq1 and eq2:. 

Now, 

ab x A x '12 oa = '12 ag x A x 2/3 oa 

o/3 ab= ag 

ab= aY (Yield stress) 

Therefore, 

The residual stresses at outside surface (bg) = 'hay 

and the residual stresses at the NIA (oc) =aY 

In the case of partial plastic bending the maximum residual stress will not occur at the centre 

of the beam but may occur at either the outside or the inner boundary of the yielded portion, 

depending on the depth of plastic penetration. 
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Figure 2: Stress distribution in a partial plastic beam. 

There is no residual stresses at the centre of the beam. From Figure 2(e) we can see that the 

residual stress along the NA is zero, also that the residual stresses will be a maximum at the 

outside fibres at points (I) and (4}and at the inside fibres at points (2) and (3). The stress in 

the outside fibres ag is determined by considering the plastic moment~ applied to the beam, 

assuming it to be elastic; thus: 

ag = a = MYY = 
I 

MPP D 
I 2 

Because of permanent deformation, beams which have been unloaded from plastic or partially 

plastic states, will be different from their original shapes. The moment needed at any section 

to return the beam to its original position, is that which is required to remove the residual 

stresses from the elastic core. 
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APPENDIX-D 

Case study in applying the ASTM method for calculating 

residual stresses. 
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Case study 

Consider the following example with respect to data reduction and data interpretation for a 

blind hole analysis. 

Material: Cold rolled steel bar. 

E= 203 MPa 

u = 0.29 

Drilled Hole <f>: Do= 1.78 mm 

Rosette <f>: D = 5.13 mm 

Ratio: D = 2.88 
Do 

Type rosette: TEA-06-062RK-120 

Depth of drilled hole: z = 2.03 mm 

After the gauge has been fixed and drilling equipment is aligned, we can follow the procedure 

as set out previously under determination of coefficient. After zeroing of the strain circuit the 

hole is drilled in increments and the following is recorded: Hole depth Z and strain values for 

E1, E2 and E3. See Table I for tabulation of results. 

From the above data the percentage strain relieve can be calculated at each increment. 
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Figure 1: Normalised relieved strains compared to ASTM 
E837-94a. 
{IDustJ:ntion courtesy of the Micro Measurements division of Measurements Group Inc., 

Rnleigh, NC, USA.) 

Sample calculation 

Take the full depth strain as representing 100% of strain relief (z = 2,03mm). 

From this 
z 2.03 = = 1.14 (FULL DEPTH) 

Do 1.78 

From Table 1 E1 = -152 JlE 

E2 = -42 JlE 

E3 = -85 JlE at z = 2.03 mm 

The relieved strain at Z = 1.52 mm is calculated as follows: 

z = 1.52 = 0.86 
Do 1.78 

Relieved strain % 
· E

1 
at Z = 1.52 

€1 = 
E 1 at Z = 2.03 

188 

= - 1.46 
X 1 00 = 

-152 
96% 



E2 at Z = 1.52 

E 2 at Z = 2.03 

E1 at Z = 1.52 

E1 at Z = 2.03 

= -40 = 95% 
-42 

= -79 = 93% 
-85 

The above calculation procedure must be repeated for each set of readings recorded at each 

increment. The results for 
z 

Do 
and for % relieved strains must then be tabulated as shown 

in Table l. 

In compliance with the recommendation in ASTM E837-94a the normalised strain is plotted 

versus ~ on the graph shown in Figure I. This is done to compare results to the 
Do 

published ASTM E837-94a scatter band. 

From the graph it can be observed that the new data falls slightly outside of the scatter band. 

This indicate nonuniform residual stresses. For the purpose of this example lets ignore the 

scatter band comparison and assume a uniform stress distribution. 

The coefficients a and b for this are determined with the aid ofTable 2 in the ASTM 837-

94a specifications. 

For this case study: Do = 0.347 
D 

From ASTM E837 Table 2 for blind hole analysis the corresponding values for a and b 

for full depth of hole can be interpolated. 

- Do 
a = 0.155 at- = 0.347 

D 
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Do 
b = 0.370 at - = 0.347 

D 

To find the a and b coefficients for the separate increments ofhole depth one has to make 

use of the graphs as determined by Schajer by means of finite element-analysis as published 

Measurement Group TN-503-4 and also as in ASTM E837. 

From these graphs determine the values for a and b . 

For 
D 
Do 

2.88 

z 
-
Do 

0.07 

0.43 

0.86 

- b a 

0.016 0.031 

0.109 0.215 

# # 

Note: # Beyond the scope of the graph. 

All values for a and b can be read off the graph and tabulated as shown by Table 1. 

Using these values for a and b and substituting it into equations (32) and (33) we can 

calculate the corresponding values of A and B . 

From equation (32) 
2EA a = 

1 + V 

A = 
1 + V 

.. - x a 
2E 

From equation (33) 

190 



- -b .. B =-
2E 

(*Note: Coefficients A and B are always negative] 

For a = 0.155 b = 0.370 E = 203 GPa 

V = 0.29 

A= ___ 1_+_0_.2_9 __ X 0.155 

2 X 203.55 X 109 

= -4.91 x 10-10 Pa-l 

Jj = - ---
1
--- X 0.37 

2 X 203.55 X 109 

= -9.09 x 10-10 Pa-l 

Determine all coefficient A and B for the increments as well as 4A and 4B and write 

them into Table 1. 

To find the maximum and minimum stress values we use equation (27) and (28) 

e.g. 

AT z = 1.14 A = -4.91 X 10-10 4A = -19.64 X 10-10 El = -1521JE 
Do 

E2 = -421JE 

B= -9.09 X 10-10 4B = -36 X 10-10 E3 = -85 IJE 

El + E3 f2 J 
0 = ± _y_-<. (E - E2)2 + (E2 - E3f 

max/min 4A 4B I 

= + 166.609 kPa 

.. o . = +75,900 kPa 
nun 
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Find a from equation (29): tan2a = 

.. a = -33.18° 

Now from the general rules a refers to omax 

since 

al = -33° fromgauge(l)to omax . 

By using this method the values for omax, omin and a can be determined for each increment. 
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w 

0 

.. 

~ --1-- ...., 

·- ··- ·--- ... ·-·· ··-·· -· 

Q2 Q4 Q6 QB 
Mid Depth (Z/2) 

1.2 

Figure 2: Equivalent stresses plotted at mid­
depth. 

At this point it is advisable to plot the maximum and minimum stresses (omax,orrun) for each 

increment versus the mid-depth of each increment (zl2) as shown in Figure 2. 

From this graph it is quite obvious that the stress is not uniform but varies significantly with 

depth. For a uniform stress, two straight line graphs are expected. 

From the data in Table I and the previous graph we can now attempt to calculate the 

"apparent" equivalent uniform stress for each increment. 

If o! = apparent equivalent uniform stress in the nth drilling increment 
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an, an - 1 =equivalent uniform stress from the surface depths z,, z,- 1 (arnax,amin) 

z,, z, - 1 = depths of drilling increments n and ( n - 1 ). 

o, = an Zn - an - I Zn - I 

Zn - Zn- I 

Sample calculation 

For n = 1 a. = 110 MPa 

an-1 =0 

z. = 0.13 mm 

zn-1 =0 

I 1110 MPa .. almin = 

For n = 2 a. = 103 MPa 

a ... = 110 MPa 

z. =0.25 mm 

z ... = 0.13 

.. 

a. = 248 MPa 

an-1 =0 

z. = 0.13 

z •.• =0 

I 
almax = 248 MPa 

a. = 234 MPa 

an-1 = 248 MPa 

z. = 0.25 

z •.• = 0.13 

I 95 MPa 
I = 219 MPa a2min = a2max 

The above calculation must be repeated for each point or increment; the data can be used to 

plot a graph of apparent stress versus depth increments. 
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The values for onwt and omin as shown in Table 1 or as represented in the graph of equivalent 

uniform stress versus zl2 nor the data in the apparent stress graph represent the actual residual 

stress. This is only the case when the stress is uniformly distributed. However, the results are 

very useful in identifying the presences of non-uniform stresses and indicating the trend in stress 

distribution. If small increments were used and strain measurements done accurately, the data 

should yield a good estimate of the average stress in each increment. 
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TABLE 1 

DEPTH MEASURED PERCENT COEFFICIENTS oc Equiv. Uniform 

STRAIN STRAIN Exponent of(IO) -lo Stress to Depth Z 

n)mm VDo ,U€ RELIEVED withA andB 
Omin Omax 

E, 0 0 a - b -

0 0 E2 0 0 A - 8 - - - -

EJ 0 0 4A - 48 -

E, -23 I5 a O.OI6 b 0.03I 

-9 
2I 

A 0,507 8 -0.052 
110,320 248,22 

3mm 0.07 E2 -320 +I6 +36 
I6 -0.035 

EJ -I4 4A -2,208 48 -0.2 IO 
-0. I40 

. 

el -49 32 a 0.037 b 0.067 

5mm O.I4 e] -2 I 50 A -I,I72 I03,425 234,43 
-0.08I 8 -0. I 13 -320 + I5 +34 

36 

EJ -3 I 4.4 -4,689 
-0.324 48 -0.453 

e, -90 59 a 0.077 b 0.147 

lmm 0.29 €2 -30 7I A 2,4399 8 -0.248 82,74 2I3,745 
-0. I69 -34° +I2 +3I 

65 
EJ -55 4A 9,7597 48 -0.994 

-0.675 

e, -118 78 a O.I09 b 0.2I5 
)mm 0.43 

€2 -33 79 A 3,4539 8 -0.363 75,845 199,955 
-0.228 -34° +11 +29 

80 
EJ -68 4.4 13,815 48 -1.453 

-0.911 

e, -136 89 a 0.131 b 0.27 
!mm 0.57 

€2 -36 86 A -4, I5I 8 -0.458 68,950 I79,270 
-0.287 -33° +IO +26 

86 
EJ -73 4A -I6,604 48 -1.832 

-I.l48 
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-

7mm El -143 94 a 
0.71 

.. - 90 

E2 -38 89 A 

EJ -76 4A 

El -146 96 a 

~mm 0.86 

E2 -40 95 A 

EJ -79 93 4A 

El -152 100 a 
~mm 

1.14 E2 -42 100 A 

100 
E3 -85 4A 

El a 

E2 A 

EJ 4A 

2 3 4 

Data rounded for tabulation 

le 1 : Measured strain and calculated residual stress data 

Do= 2 mm; E = 203 MPa 

D/D
0 
=2.88; V= 0.29; 

1+v 
2E 

'" _1_ 
2E 

= 3 168 X 10·9 
' 

= 2 456 X 10"9 

' 

lPsi = 6,895 kN/m2 

Material: Cold rolled steel 

0.142 b 0.315 

-3ZO 68,950 

-4,4996 B -7,7376 +10 172,375 

-0.311 -0.532 +25 

-17,9985 4B -3,095 
-1.244 -2.129 

b -- --
-- B -- Beyond Range of graph 

4B -- --
0.155 b 0.370 

-33° 75,845 165,480 
-4.911 B -9,0886 +11 +24 

-0.625 

-19,6462 4B -36,354 Coefficients a and b at full 
-1.356 -2.501 depth 

b 

B 

4B 

.5 6 7 8 9 
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APPENDIX-E 

Principles of Photo-Elastic and X-Ray Diffraction 

. Techniques for the measurement of Residual Stresses. 
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INTRODUCTION 

Residual stresses are difficult to measure since they are independent of the applied external load 

and they are imposed during the manufacturing or treatment processes. A wide range of 

methods have been used to measure residual stresses, with each method having a set of 

advantages or disadvantages for different applications. 

The following are some of the methods that have been used in the past for measurement of 

residual stresses: 

• Chemical etch 

• Hardness studies 

• Hole drilling 

• Layer removal 

• Magnetic method 

• Modified layer removal 

• Neutron diffraction 

• Photo-elasticity 

• Progressive turning 

• Stress out brittle lacquer drilling 

• Ultrasonic 

• X-ray 

The most frequently used techniques for the measurement of residual stresses are the hole­

drilling and X-ray measurement techniques. 

One of the biggest drawbacks of most of the methods mentioned is that they use destructive 

measuring techniques. Another problem is the mobility of equipment to do on-site 

measurements of residual stresses. The remainder of this paper will analyse the Photo-elastic 
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and X-Ray diffraction techniques. 

1. PHOTO ELASTICITY 

Photo elasticity stress analysis is a technique used for accurately measuring surface strains to 

detennine the stresses in a part or structure during static or dynamic testing. It can be used to 

identify stress concentration, assembly stresses and residual stresses. Photo-stress coatings can 

be used on the surface of virtually any test part regardless of its shape, size or material 

composition. This technique has an established history of successful applications in virtually 

every field of manufacture. 

1.1 Method of Application 

The following is the sequence for application of this technique: 

• A special strain sensitive plastic coating is first bonded to the test part. 

• Service loads are applied to the part while the coating is illuminated by 

polarized light from a reflection polariscope. 

• The part is viewed through a polariscope, the coating will display the strains in 

a colourful pattern that reveals the overall strain distribution. 

• An optical transducer can be fitted to the polariscope for performing 

quantitative stress analysis. 

• Video- or photo-recordings can be taken for permanent record of the overall 

strain distribution. 

The operation of the technique can shortly be described as follows: 

A light source emits waves containing vibrations in all perpendicular planes. The polarised 

filter will only allow one of the vibrations to be submitted. If V is the speed oflight and C the 

airspeed, then the index of refraction will be equal to CN. In a homogeneous body the index 
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is constant but in crystals the index depends on the orientation of the vibration with respect to 

the index axis. Certain materials e.g. plastic behaves isotopically when unstressed but become 

optically anisotropic when stressed. The change in index of refraction is a function of the 

resulting strain, analogous to the resistance change in a strain gauge. 

~-0 •1!\ 
• 

Reference 

Polarizer 

Reference 

Analyzer 

Rei ardal ion lntendency 
components 

Figure 1: Schematic of the propagation of a polarised beam 

With reference to Figure 1, when a polarised beam propagates through a transparent plastic 

of thickness t, where X and Y are the directions of principle strains at the point under 

consideration, the light vector splits and two polarised beams are propagated in planes X and 

Y. 

Now if E, and Ey is the strain intensity along X and Y and V, and VY the speed oflight in these 

directions, the time taken to cross the transparent plate will be tJV and therefore the retardation 

between the two beams are: 

0 c (-t - _t ) =· t ( _f_ c 
= - -) ······· .. (1) v;r vy v;r vy 

and 
c =Index of refraction (n) 
V 

.. 0 = t (n:r - n) .......... (2) 

200 



From Brewster's law: "The relative change in index of refraction is proportional to the 

difference of principal strains." -

:. nr - ny = K (Er - E) .......... (3) 

K = Strain optical coefficient (similar to gauge factor of a strain gauge) 

Substituting equation (3) into (2) 

:.0 = t [K (Er - EY)] .......... (4) for transmission. 

For reflection (light passes through plastic twice) 

0 = 2t [K (Er - E)] .......... (5) 

Therefor we can write the basic relation for strain measurement in Photo stress technique as: 

0 (E - E) = - .......... (6) 
r y 2tK 

Due to the relative retardation S, the two waves are no longer in phase when emerging from 

the plastic. The analyser will transmit only one component of each of these waves that will 

interfere and the resulting light intensity will be a function of retardation S, and of the angle 

between the analyser and direction of the principal strains CP - a ). 

The intensity oflight emerging from a plane polariscope will therefore be: 

I = a 2 sin2 2 CP - a) sin2 rt)...O .......... (7) 

This intensity of the light becomes zero when CP - a ) = 0 or when the crossed 

polariser/analyser is parallel to the direction of principal strains. The plane polariscope is set 

to measure principal strain direction. If quarter-wave optical filters are added in the path of the 

light as shown in Figure 2, it will produce circularly polarized light and the image observed is 

not influenced by the direction of the principal strains. 

Therefor: 
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Figure 2: Circular Polariscope with quarter wave optical filters. 

In the circular polariscope I = 0 when o = 0; o = 1 A, o = 2A, . . . , or o = NA 

N is the fringe order and it expresses the size of o. 

eg.: Iffor a selected wavelength A = 975 mm and N = 2 then o = 2A = 1150 mm 

Once o is calculated the difference in principal strains can be obtained by: 

o A 
Ex - E = - = N - = Nj 

Y 2tK 2tK 

Where:f= fringe value (all constants) 

N = result of measurement. 

This is a very elementary description or explanation of polarized light principle used in photo 

elasticity, for a more comprehensive detail consult references listed. 

1.2 INTERPRETATION OF STRAIN DISTRIBUTIONS 

When an object coated with a photo-elastic coat is subjected to a load or loads the resulting 

strains are faithfully transmitted to the coatings. This will appear as iso-chromatic fringes when 

viewed with a reflection polariscope. At the start of applying a load to the part, fringes will 

first appear at the most highly stressed points and, as this load is increased, the fringes will be 

pushed to areas oflow stress and new fringes will appear. Fringes are very ordered in the sense 
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that one continues and never cross or merge with another. 

When observed with a reflection polariscope, the photo-elastic fringes appear as a series of 

different colour bands, responding to the underlying strain in the test part. Each of these colour 

fringes can be quantified as shown in Table 1: 

Colour Approximate Relative Fringe Order N 
Retardation nm 

Black 0 0 
Grey 160 0.28 
White 260 0.45 
Pale Yellow 345 0.60 
Orange 460 0.80 
Dull Red 520 0.90 
Purple (Tint ofPassage) 575 1.00 

Deep Blue 620 1.08 
Blue-Green 700 1.22 
Green-Yellow 800 1.39 
Orange 935 1.63 
Rose Red 1050 1.82 
Purple (Tint of Passage) 1150 2.00 

Green 1350 2.35 
Green-Yellow 1440 2.50 
Red 1520 2.65 
Red/Green Transition 1730 3.00 

Green 1800 3.10 
Pink 2100 3.65 
Pink/Green Transition 2300 4.00 

Green 2400 4.15 

Table 1: Quantification of colour fringes 

Consider the following example of a cantilever form the Measurement Group Tech Note TN-

702-1. 

Figure 3 shows a beam coated on the one side with photo-elastic plastic and clamped to a 

table. A weight is bunged from the free end of the beam. 
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Figure 3: Beam subjected to photo elastic strain measurement. 

Where: t = 2,54 mm 

K = 0.15mm 

.A= 575 mm for white light: :. f = 754.6 Jlm/m/jringe 

FRINGE ORDER STRAIN 

N ( €x-€y = Nf) Jlrnlm 

OBLACK 0 

1 RED BLUE 754.3 

2REDGREEN 1509 

3REDGREEN 2271 

When observed· closely with ~he polariscope it can be seen that the retardation increases 

proportionally with strain. 

The simple line relationship can be expressed as follows: 
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.. In tenns_of shear strain r.xy 

t = Nf .xy 

= maximum shear strain at any point 

e..,, EY = principal strains 

N = fringe order 

A 
f = 2tK 

A = wave length (575 run for white light) 

t = thickness of coating 

K = strain optical coefficient. of coating 

The difference in principal strains, or the maximum shear strain in the surface of the test part, 

can be obtained by recognizing the fringe order and multiplying it by the fringe value of the 

coating. By Hooke's law the strain can be transformed to stress values in isotropic material by: 

o = E (E + ve) 
y 1 - y2 y 

and 0.., - 0 = ___.!}_ (E - E) 
Y l+v x Y 

E Nf 
+ V 

Where: o o 
X' y 

principal stresses in surface _ · 

E = elastic modulus of test part 

v = Poisson's Ratio of test part 
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The above is an introduction into strain and stress determination by the photo-elastic technique. 

It is a technique that has disappeared, but is slowly regaining its importance in stress 

distribution measurement. There are many new techniques and equipment available to the 

design engineer. The main disadvantage for measuring residual stresses are that it only 

considers surface stresses, but the method definitely holds promise for service or dynamic 

applications. 

2. X-RAY DIFFRACTION 

The principle of the x-ray methods for measuring residual stresses, one of the most highly 

developed non-destructive techniques available today will be reviewed in this part of the paper. 

Recent developments in this field have made field measurement possible, but it is still essentially 

a laboratory tool using high tech, expensive equipment. The technique of x-ray diffraction is 

mainly used for residual stress measurement in the surface that makes it essential that the thin 

layer under consideration reflects the true condition required for measurement. 

The two main principles used in x-ray analysis are the diffractometer and the film approach. 

The x-ray technique has been in use for ± half a century and it is recognised as one of the 

standards to which other techniques must be compared. The characteristics of the method are 

that x-rays may be diffracted from metals under conditions which allow the use of distances 

between atoms as gauge lengths. From the measuring of the change in these interatomic 

distances the strain could be determined. The main difference between x-ray strain 

measurement and strain gauge measurement is that the x-ray only measures elastic while strain 

gauges measure elastic and plastic strains. The x-ray technique is one of a few methods that 
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can be used to measure residual stresses without cutting or drilling the specimen. 

2.1 The principle of x-ray diffraction 

The x-ray method measures the interatomic spacing of crystals which is in the order of I 

angstrom (lA) or (1,57 x 10"10 mm). Taking into consideration that it is theoretically only 

possible to see objects larger than the wavelength of the light used for illumination, which is in 

the order of2500A. The wavelength ofx-rays is± the same as the atomic spacing in crystals. 

To describe the mechanics of x-ray diffraction consider a hypothetical cubic crystal lattice 

fracture as shown in Figure 4 (edge view of a single lattice plane). The atoms is spaced in the 

lattice planes with an interatomic spacing din the order of 1 A. 

Figure 4: Schematic of a cubic crystal lattice fracture. 
(Edge view) 

It must be realised that most of the radiation from the incident beam will pass through the plane 

and only those beams which impinge on an atom will cause radiation of a small amount of 

diffracted x-ray energy. This diffracted energy or reflection oflight produces the diffracted 

beam as illustrated in Figure 4. The length of the path of the beams from x- x toy- y is ofthe 

same magnitude. Now consider the case when diffracted beams from adjacent atomic planes 

are exactly in phase as illustrated in Figure 5. 
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Figure 5: In-phase diffracted beams. (Edge view) 

It can be observed in Figure 5 that in this condition where they are in phase the diffracted 

beams will reinforce each other. The length of e.g. path (2) between xx and yy exceeds the 

length of path (I) by distance AB +BC. Considering the right triangles AOB and BOC the 

difference in path length can be calculated as 2d sin e. 

AB = sin8 
d 

BC = sin8 
d 

AB+ BC= 2dsin8. 

In order for path ( 1) and (2) to be in phase at yy, it is necessary that the Jag of path (2) radiation 

. correspond to some integral number (n) of wave lengths. 

Therefore: nJ... = 2dsin8 .......... (1) 

Where: ), =wavelength ofx-ray radiation 

This equation (1) is known as the Bragg equation. From this it is clear that the radiation path 

(2) lags exactly nJ... behind path (I) and path (3) willlag by 2nJ... behind (1). 

For x-ray technique Bragg equation holds the key to stress determination. It can be explained 
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as follows: Any change to the value of d due to strain will cause sin8 to change 

correspondingly in order to keep n at its-precise integral value needed for maximum strength 

of the diffracted beam. The x-ray diffraction wavelength used must be selected to put 8 in the 

general range of close or about 90°. This will have the effect that any small change to sine will 

cause a relatively large change to e. This is of utmost importance for experimental accuracy 

as the change in d for steel is very small. A change of 0, 1% in steel subjected to 210 MP a 

uniaxial stress is common. To illustrate this point lets consider the graph in Figure 6. 

100 

Nenun<il 

d•lfroil[li.."'' angle 
e Ill d.!9ren 60 

10 

0 01 0.01 0.03 0 OL 0 0) 0.06 0 07 

(rror rll e d~gree~ 

Figure 6: Effect of change in "d" on uniaxial stresses 

A= 0,005% error in d = 10,59 MPa error in uniaxial stress 

B = 0, 01% error in d = 21,18 MP a error in uniaxial stress 

The graph shows the relationship between e, error in 8 and the resulting error in the 

component value of d. It is also clear from the graph that best results will yield with a relative 

diffraction angle of above 80°. 

Consider the following where surface residual stresses in a round shaft is determined assuming 

the surface residual stresses to be tangential. Ideally a direct measurement of lattice spacing 

would be made but this is impossible because of physical interference of the specimen with 

diffracted beam as shown in Figure 7. 
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Figure 7: Required orientation ofx-ray beams and lattice planes for direct measurement of 
dt for tangential strain. 

The above problem can be solved by making two separate x-ray determination at two different 

angles 6.L and 61Jr. The two exposure x-ray diffraction involves the following: First a 

perpendicular exposure with ray bisector perpendicular to the surface giving a diffraction angle 

of6.L is made, this is followed by an angle exposure with ray bisector at angle IJ1 giving a 

diffraction angle of 61Jr. This is shown in Figure 8. By determining the diffraction angles 6.L 

and 61Jr the lattice spacing d1 and d4 can be determined using the principle ofBragg's equation. 

Figure 8: Two exposure x-ray diffraction method showing the relation for 
perpendicular exposure to angled exposure. 

From the elastic theory the stresses parallel to the surface and in the plane of the paper can be 

calculated: 
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From: a = E dlJ1 - d.l. 

Consider the following explanation for determining the stress components using the above 

stress equation and the polygon of strain in Figure 9. 

y 

Figure 9: Polygon of strains. 

If d2 and d0 are values for the spacing in a stressed and unstressed body the strain: 

€ = dz- do 

do 

This is the average strain in the direction midway between diffracted beams and the direction 

normal to the surface. If the diffracted beams are nearly perpendicular to the surface they 

approximate the strain normal to the surface, therefore the principal stresses: 

-EE 
V 

Where E = Young's Modulus and v = Poisson's ratio 

For uniax.ial stresses a 2 = 0 and for biaxial stresses produced by torsion a
1 

= -a
2

• 

211 



The above method can be used to indicate generally the magnitude and distribution of biaxial 

stresses only. The stress in any direction in the plane of the surface, either in the direction of 

the principal stress, or otherwise, can be calculated from the following equation, derived from 

the approximate equation. 

Where a1 , a2 and a3 are the direction cosines of the measurement direction of E with respect 

to E1 ,E2 and E3. In Figure 9 the notation is as follows: 

a1 = simjlcos4> .......... (3) 
a2 = simjlsin6 ............ (4) 

a3 = cosljr .................... (5) 

Substitute equations (3), (4) and (5) into equation (2): 

E, is at an angle <!> to principal strain E1 

.. Equation 6 now becomes: 

NOW: 
o, = 0 at surface ofx~ray reflection 

:. E(E - E3) = [o:r - voy + v(o:r + o)] sin21jr 

= (1 + v) o:r sin21jr .......... (9) 
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Where: 

E _ E = diJI - do _ dz - do = diJI - dz 
3 do · do do 

Now if the unstressed lattice spacing do is replaced by dz and it is considered to have negligible 

influence we can rewrite equation (9) as: 

(J.x = 
1 + V 

E diJI - dz --'--- .......... (10) 
dz 

This is the stress component parallel to the surface, in the direction towards which the initial 

beam was tilted. It is not necessarily one of the principle stresses. 

By adapting equation (1 0) to suit the original example of the round bar: 

a = E diJI - d.l. 

+ v sin2IJI d .l. 

We can now also express the stress in terms of the diffraction angles: 

a = Cot8(8.l. - 81J1) 

Where e = nominal diffraction angle for unstrained material e 

8.1. - 81J1 =change measured in radians 

It must be noted that the above principle is based on the fact that the structure of the material 

is composed out of extremely small crystals of random orientation as shown in Figure 8. The 

interference of the specimen usually limits angle \jr to± 60°. This will cause some reduction 

In preCISIOn. 

It should be noted that the stress can be computed by this equation without determining the 

lattice spacing in the unstressed condition. There is thus no need to cut or otherwise to reduce 
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the stress to zero in the specimen. The fonnula used for calculating the stress at an angle <!> to 

the principal stress is: 

e = cj> 
E 

I + V 

Consider the following explanation: 

According to Bragg's Law A. = 2d sine for an incident x-radiation of wave length ). which 

strikes a specimen at angle e. The interplanar spacing d of the grains will cause diffraction at 

the same angle. Consider Figure I 0 where the surface stress is in compression. 

The only x-ray beams refracted onto the detector are those which impinge on grains with planes 

Figure 10: Schematic of diffractometer (compressive surface). Polygon of strains. 

parallel to the sample surface and with atom spacing of "cl' which then satisfy Bragg's law. It 

is important to realise that the planes are further apart in cases of compression than in a free 

state. The "d" space can as previously be obtained from the peak in intensity versus scatter 

angle (e.g. 2e and Bragg's Law). Typical graph of intensity versus increase in scatter angle 2e 

is shown in Figure II. 
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Figure 11: Intensity versus scatter angle. 

The diffraction angle is a lot lower in the presence of surface stresses than without surface 

stresses because of Poison's effect on these planes. The sample or the x-ray can now be tilted 

as shown in figure 12, which will cause diffraction of the x-ray beams from different grains. 

This change in orientation will cause a change in d spacings and in 8. 

Figure 12: Effect of tilt of sample on x-ray beams. 

Although diffraction occurs from other grains it is still from the same planes. These planes are 

now nearly perpendicular to the stress. Due to smaller influence of compressive surface stress 

on this orientation of planes, they are less separated causing the peak to occur at higher angles 

of28. 
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Figure 13: Effect of sample tilt on scatter angle. 

The strain due to the residual stresses can now be measured from the angular shift due to the 

change in "d" spacings. It is only necessary to do measurements from different tilts and not 

necessary to determine the value of the "d" spacing in the unstressed material. If the 

measurement is only done on the surface so that stress components normal to the surface are 

zero and the material adheres to the isotropic elastic theory, the stress oq, at an angle <I> to the 

principal stress can be calculated from: 

Where E =Young's modulus 

v = Poisson's ratio 

ljJ = angle of tilt 

This is based on the fact that the "d" spacing must be linear with sin21jJ and the stress is 

obtained from the slope. If this is verified for a specific case measurement at ljJ = 0°, ljJ = 45 o 

, or ljJ = 60° must be made. It is now possible to combine the terms to write the stress in terms 

of the angular peak shift: 
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o4> = K!J.28 When K =- ( E ) 
I + V 

Peaks must be chosen at high values for e because a given strain of lldld causes the largest 

angular shift in such a region. Shift can easily be measured to ± 0. 0 I o 8 and if ljJ= 4 5 o for steel 

the uncertainty in peak shift relates to only± 12 :MPa stress uncertainty when a CrKa radiation 

is used with a 211 peak ate= 78°. 

CONCLUSION: 

Measurement of residual stresses with X-rays is a well established field. It is mainly applicable 

to crystalline materials having randomly oriented small grains. The specimen must be accessible 

to the x-ray beams that move in straight line, therefore deep notches or groves cannot be 

measured. The penetration ofx-ray measurements is very shallow and therefore only suitable 

for surface stresses. The full principle, methods and the different techniques used in x-ray 

diffraction were beyond the scope of this document. 

REFERENCES 

Almen, John 0., and Paul H. Black. "Residual Stresses and Fatigue in Metals. McGraw-Hill 
Book Company, New York, 1963. 

Andrews, K.W. et al. "Stress measurement by X-ray diffraction using film techniques", Strain, 
10(3), pp 111-116, July 1974. 

Bowen, D.K. X-ray Topography of Surface Layers and Thin Films. In: Advances in X-ray 
Analysis. (C.S. Barrett, J.V. Gilfrich, R. Jenkins and P.K. Predicki, eds). Plenum, New York, 
1990, vol. 33, p. 13. 

Crites, Nelson A., and Alvin R. Hunter: Experimental Stress Analysis by Photo elastic 
Techniques, Product Engineering (Sept. 3, 1962). 

Cullity, B.D. "Elements of X-ray Diffraction", 2nd ed. Addison, Wesley, Reading, Mass. 
1978, Ch. 16, pp 447-479. 

Dally, James W., and W. F. Riley: " Experimental Stress Analysis," McGraw-Hill Book 

217 



Company, New York, 1965. 

Dolle, H. "Influence of Multiaxial Stress States, Stress Gradients and Elastic Anisotropy on 
the Evaluation of Stress by X~rays", J. Appl. Cryst., 12, 1979, pp 489-501. 

Duffy, J., and T. C. Lee: Measurement of Surface Strain by Means of Bonded Birefringent 
Strips, SASA Proc., vol. 18, no. 2 (1961). 

Durelli, A. J., and W. F. Riley: "Introduction to Photo mechanics," Prentice-Hall, Inc., 
Englewood Cliffs, N. J., 1965. 

French, D. N. and Macdonald, B. A. "Experimental methods of X-ray analysis", S.E.S.A., 
26(2), 456-462. 

Frocht, Max M.: "Photoelasticity," John Wiley & Sons, Inc., New York, vol. I, 1941; vol. 2, 
1948. 

Hetenyi, M.: The Fundamentals of Three-dimensional Photoelasticity, J. Appl. Mech., vol. 5 
(1938). 

Hetenyi, M. (ed.): "Handbook of Experimental Stress Analysis," John Wiley & Sons, Inc., 
New York, 1950. 

a Chap. 17-1, Fundamentals and Two-dimensional Applications [of 
Photoelasticity], by T. J. Dolan and W. M. Murray. 

b <;hap. 17-11, Three-dimensional Photoelasticity, by D. C. Drucker. 

Hetenyi, M. (ed.). "Handbook ofExperimental Stress Analysis", John Wiley & Sons Inc., New 
York, 1950. 

Heywood, R. B.: "Designing by Photoelasticity," Chapman & Hall, Ltd., London, 1952. 

Horger, Oscar J. ( ed. ): "ASME Handbook: Metals Engineering-Design," 2d ed., McGraw-Hill 
Book Company, New York, 1965, part 5, sec. 3.4, Photoelasticity, by Max M. Frocht. 

James, M.R. and J.B. Cohen. "Study of the Precision ofX-ray Stress Analysis", Adv. in X-ray 
Analysis, 20, 1977, pp. 291-307. 

James, M.R. and J.B. Cohen. "The Application of a Position-sensitive X-ray Detector to the 
Measurement ofResidual Stresses", Adv. in X~ray Analysis, 19, 1976, pp 695-708. 

James, M.R. and J.B. Cohen. "PARS- A Portable X-ray Analyzer for Residual Stresses", J. 
Testing and Evaluation 6, 1978, pp 91-97. 

Kakudo, M. and N. Kasai. X-ray Diffraction by Polymers. Elsevier, Tokyo, 1972. 

Kirk, D. "Experimental features of residual stress measurement by X-ray diffraction using film 
techniques", Strain, 1 0(3 ), July 1971. 

Kirk, D. "Theoretical aspects of residual stress measurement by X-ray diffractometry", Strain, 
6(2), 1970. 

218 



Lee, G. H.: "An Introduction to Experimental Stress Analysis," John Wiley & Sons, Inc., New 
York, 1950. 

Macherauch, E. and U. Wolfstieg. "A Modified Diffractometer for X-ray Stress 
Measurements", Adv. in X-ray Analysis, 20. 1977 pp 369-377. 

Moore, M. G. and Evans, W.D. "Mathematical correction for stress in removed layers in X-ray 
diffraction residual stress analysis", S.A.E. Trans., 66, pp 340-345, 1958. 

Murakami, M.; A Segmuller, K.N. Tu. X-ray Diffraction Analysis ofDiffusion in Thin Films. 
In: Analytical Techniques for Thin Films. (K.N. Tu and R. Rosenberg, eds.) Academic Press, 
San Diego, 1988, p 20 I. 

Rosenthal, and Norton. "A method of measuring tri-ax.ial residual stresses in plates", Journal 
Welding Society, (Welding supplement, 1945), 24, 295-307. 

Schwartz, L.H. and J.B. Cohen. Diffraction from Materials. Springer-Verlag, Berlin, 1987. 

Segmuller, A and M. Murakami. X-ray Diffraction Analysis of Strains and Stresses in Thin 
Films. In: Analytical Techniques for Thin Films. (K.N. Tu and R. Rosenberg, eds). 
Academic, San Diego, 1988, p. 143. 

Segmuller, A. and Murakami, M. Characterisation ofThin Films by X-ray Diffraction. In: Thin 
Films from Free Atoms and Particles. (K.J. Klabunde, ed.) Academic Press, Orlando, 1985, 
p. 325. 

Society ofMaterials Science, Japan "Standard Method for X-ray Stress Measurement", 1973. 
Supplement VI (K. Hayashi). 

Society of Automotive Engineers, SAE Handbook Supplement J784a "Residual Stress 
Measurement by X-ray Diffraction", SAE, Inc. New York, 1971. 

Speriosu, V.S., M.A. Nicolet, J.L. Tandon, and Y.C.M. Yeh. Interfacial Strain in AJGaAs 
Layers on GaAs. J. Appl. Phys. 57, 1377, 1985. 

Toney, M.F. and S. Brennan. Structural Depth Profiling of Iron Oxide Thin Films using 
Grazing Incidence Asymmetric Bragg X-ray Diffraction. J. Appl. Phys. 65, 4763, 1989. 

Vaughn, Dale A. and Nelson A. Crites: Measurement of Stress by X-ray Diffraction. Product 
Engineering, Sept 30, 1963. 

Waisman, and Phillips. "Simplified measurement of residual stresses", S.E.S.A., II(2), 29-44. 

Warren, B.E. X-ray Diffraction. Addison-Wesley, Reading, 1969. 

Zandman, F., and H. M. Maier: Six New Techniques for Photo elastic Coatings, Product 
Engineering (July 24, 1961). 

219 



APPENDIX-F 
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220 



The analysis of process effects of55Cr3 spring steel 
on residual stresses and the relation to fatigue 
properties. 
D.G. Hattingh and K.H. du Preez 
Faculty of Mechanical Engineering, Port Elizabeth Technikon, 
Private Bag X6011, Port Elizabeth, South Africa 
Email: danieh@ml.petech.ac.za 

karl@ml. petech.ac.za 

Abstract 

The understanding of the relationship between fatigue life, process effects 
and residual stresses needs to be evaluated carefully before the manufacturing 
process can be optimised for enhanced quality and product characteristics. 
Residual stresses in manufactured components are those stresses that exist without 
prior application of service or external loads. Virtually all manufacturing and 
surface treatments will introduce residual stresses into a component which may 
either be beneficial or detrimental to the fatigue properties. 

This paper investigates the mechanism that exists between fatigue 
properties and residual stresses and its relation to process effects by withdrawing 
samples from different stages of the manufacturing process. In order to measure 
the residual stresses present, the locked-in stresses must be relieved by removing 
material to enable a sensor to register the change in strain. These measurements 
were done by means of Centre Hole Drilling using an Air Abrasive Powder System 
and residual strain rosettes as sensors. 

The results revealed the nature and magnitude of the stresses induced into 
each component by every manufacturing process and the relation these induced 
stresses have on the fatigue properties of the components. In the final analysis this 
research should reveal the relation and impact of the manufacturing processes on 
residual stresses and fatigue properties of 5 5Cr3 spring steel. 

1. Introduction 

Residual stresses are an ubiquitous phenomenon which has been given 
many names. Most processes will induce residual stresses4

•
5
•
6 which include 

manufacturing processes and heat treatments. Residual stresses are receiving 
increased attention from the engineering research and design community because 
it is recognised that many opportunities for optimisation of design and manufacture 
leading to reduction of costs, are locked-up inside the correct understanding of 
residual stresses. Despite all the efforts, together with the 
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extremely large number of publications addressing residual stresses, it is still 
regarded as an area of uncertainty by most engineers. 

There is therefore an urgent need for determining residual stress induced 
into manufacturing components together with the need for reliable non-destructive 
techniques for determining these stresses accurately. What makes the measuring 
techniques so important, is the fact that it is generally very difficult to determine 
residual stress by analytical and computational methods. 

There are a number of techniques available for determining residual stress, 
each with its own set of advantages. Care should be exercised in selecting the 
technique to be used for measuring residual stresses for a specific application. 

The test samples under consideration in this paper are 55Cr3 spring steel 
withdrawn at different stages of the manufacturing process. An important 
characteristic to consider when selecting a measuring technique is the hardness of 
the material. Due to this factor, most of the conventional methods for removing 
material was found to be unsuitable for spring steel. The air Abrasive Centre Hole 
drilling method (ACH) was selected to measure the residual stresses in the 55Cr3 
spring steel samples specifically because of its ability to penetrate hard materials. 
It is believed that this method will induce negligible machinery stresses during the 
drilling process, because the inertia of the aluminium oxide power used is very low 
and cooling is effective when air is used as a transport medium from the abrasive 
powder. 

The ACH method is a proven measuring technique which yields accurate 
and reliable results2

. The above concept of the hole drilling method using strain 
gauges, was approved by ASTM and published in 1982 ASTMBook of Standards. 

2. Nomenclature 

D. = hole diameter 
D = gauge circle diameter 
Z =depth of hole 
E = Youngs' modulus 
ii, b = data reduction coefficients 
A, B = geometric constants 
ACH = Abrasive Centre Hole Drilling 
a = angle from first principle strain from first strain gauge 
£ 1.£2.EJ = relieved strains 
amax, amin =maximum/minimum principal stresses 
LT =Load Test 
HS = Hot Scragg 

3. Description of Equipment and Drilling Procedure 

In order to measure residual stress, the locked-in stress must be relieved by 
means of the destructive removal of successive layers of material. The method 
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utilised as described in this document is the hole-drilling strain gauge method of 
stress relaxation, illustrated in the photograph in Figure 1. 

Briefly summarised, the measurement procedure involves six basic steps: 

1. A three element strain rosette is installed at the point where stresses 
are to be measured. 

2. The three gauge grids are wired and connected to a static strain 
indicator. 

3. A precision drilling guide is attached to the test component being 
tested and accurately centred over a drilling target on the rosette. 

4. After zero balancing, a small hole is drilled through the centre of 
the rosette. The relieved strains are measured at three different 
depths, the final depth being 0. 4D. 

5. Readings are inade of the relaxed strains, corresponding to the 
initial residual stress. 

The foregoing procedure is relatively simple, and has been standardised in 
ASTM Standard Test Method E837. 

Figure 1 : Drilling of specimen 

Introduction of the small hole into the test specimen is one of the most 
critical operations in the procedure. The hole should be concentric with the drilling 
target on the special strain gauge rosette. It should also have the prescribed shape 
in terms of cylintricity, flat bottom and sharp corner at the surface, as illustrated in 

.. the photograph in Figure 2 It is clear on the photograph that all the mentioned 
criteria were adhered to accepting the flat bottom of the hole. This characteristic 
is typical for small holes. An average depth was measured and used in 
calculation. This could result in variation of stress readings. Current 
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experimentation is underway in order to compare the current ACH results to a 
milling method utilising a Sint drilling device. 

Figure 2: Hole cross section 

4. Sample Preparation 

Specimens were drawn from the standard spring manufacturing process line 
for 55Cr3 spring steel after the following stages : 

1. 
3. 
5. 

Hot coil and quench 
Hot scragg 
Before load test (painted) 

5. Calculation of results 

The following formulae were used: 

1 +v A=- . a 
2E 

B=-
1 

.b 
2£ 

2. 
4. 
6. 

Tempering 
Shot peen 
Load test 

0 max/min = 
e1 + e3 ± J(e3 - e1)

2 + (e3 + e1 - 2e2)
2 

4A 4B 
e

1 
- 2e

2 
+ e

3 tan 2cx = -----
e3 - et 

Note: The constants a and bare determined according to ASTM E837-94a. 
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6. Results 

6.1 Residual Strain Measurement and Stress Calculation 

Manufacturing process :Quench 

Dia Depth Measured Strain Unlfonn Sress 
(d0e6) 

(mm) JlE a 

•.. · ri~ 
.. ;•z;: HE> 

H, ... ; .......... 
/~iT . .•... ii, ·:n~ ;; ::.?~» .. . , ...... 

;,E2; 
..... E3 / 

1.168 0.456 0.609 0.238 -331 -360 -344.5 -36.6 228 211 

1.155 0.451 0.965 0.377 -286 -397 -346 -34.84 246 182 

1.155 0.451 1.016 0.397 -330 -350 -343 -32.14 233 222 

Manufacturing process : Before hot scragg (tempered) 

1.066 0.416 0.495 0.193 -21.5 -39.5 -36.5 -27.23 275 170 

1.066 0.416 0.83 0.324 -27 -44 -43 -24.18 318 219 

1.149 0.449 1.016 0.397 -42 -49 -47 -30.47 320 282 

Manufacturing process : After hot scragg 

1.041 0.407 0.533 0.208 -25 -13 -36 -36.27 323 167 

1.041 0.407 0.91 0.356 -35 -16 -32 -42.55 344 194 

Manufacturing process :Shot peen 

1.023 0.340 0.533 0.208 611 665 647 -31.71 -511 -546 

0.99 0.387 0.787 0.307 580 704 507 -38.59 -401 -553 

1.02 0.397 0.914 0.357 679 796 676 -44.63 -517 -622 

Manufacturing process : Before load test 

1.04 0.407 0.546 0.213 549 570 551 -43.56 -433 -450 

1.04 0.407 0.81 0.316 539 507 474 -44.07 -393 -420 

1.07 0.416 0.939 0.367 786 825 851 -5.65 -615 -642 

Manufacturing process : After load test 

1.054 0.412 0.508 0.198 466 538 493 -38.50 -359 -410 

1.016 0.397 0.787 0.307 684 766 940 9.88 -622 -743 

1.079 0.422 0.939 0.367 565 649 627 -29.84 -432 -483 

1.079 0.422 1.066 0.416 660 747 820 -2.50 -535 -601 

(1+•·) I (2E) E (GPa) V D (mm) 

3.13e-12 206 0.29 2.56 

Table I: Stram measurement and stress calculatiOn 
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Figure 3: Process effects on principal stresses at different hole 
depths as indicated in table 2 (not fatigue tested) 

Quenched Tempered After Shot Before 
HS Peened LT 

"' .: 0.609 0.495 0.533 0.533 0.546 -Q. 
0,965 0.83 0.91 0.787 0.81 C.l 

Cl 
C.l 

1.016 1.016 0.914 0.939 Q -... .... 
- - - - -

Table 2: Specific hole depths at different processes 

6.2 Fatigue Test Results 

From the graph shown in Figure 3 the following can be established: 

After 
LT 

0.508 

0.787 

0.939 

1.066 

1. Variation of residual stresses with depth of drilled hole for each process. 
2. The change in the magnitude and type of residual stress. 

The fatigue results and average hardness of the cross section of the sample are 
shown in Table 3. 
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Process stage Cycles of failure (Avg) Hardness (HRc) 

Quench 737 61 
Quench tempered 1 792 52 
Hot scragged 2 315 51.6 
Shot peen 2912710 52.7 
Painted (Before LT) 3034650 52.7 
Load tested 725480 52.2 

Table 3: Relation between process effect, and fatigue cycles and hardness for 5 5Cr3 
spring steel samples. 

7. Discussion 

7.1 Quenched Samples 

It was evident from analysis done on failures of the above samples that all 
fatigue failures initiated near the surface9 

- thus indicating that mechanical defects 
played a more dominant role than non-metallic inclusions. From Figure 3 it can be 
seen that a tensile residual stress gradient was measured and it can be concluded 
that these tensile residual stresses in the surface promote fatigue initiations near the 
surfaces. Most of the residual stress was relieved before the hole depth reached 0.5 
mm. 

7.2 Quenched Tempered Samples 

There was a slight increase in the fatigue resistance of the tempered samples 
but the fatigue initiation displayed the same phenomenon as the quenched sample. 
The tempering operation leads to a reduction of the tensile quench surface residual 
stresses but the result is still of a tensile nature and the dominant failure mechanism 
observed was a form of mechanical surface damage9

. An important observation 
was that the decrease in magnitude of the tensile residual stresses lead to a slight 
increase in the fatigue resistance of these test samples. The variation of the tensile 
residual stress with a hole depth was very small and most of the stress was released 
before the hole depth reached 0.5 mm. 

7.3 Hot Scragged Samples 

The hot scragging process involves the compression of the component to 
solid length resulting in plastic work, thus creating residual stress that will resist sag 
of a coil spring. The resultant residual stresses after this, are still of a tensile nature 
but reveal very little change from the tempered samples. The fatigue life again 
increased slightly as indicated by Table 3 but overall was still very low. Variation 
of the residual stress with depth showed the same behaviour as the tempered 
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samples and the predominant cause of fatigue failure was still surface-related, 
although some failures revealed signs of a hydrogen blister. 

7.4 Shot Peening 

As illustrated by the graph in Figure 3, it is clear that the shot peening 
process induces significant compressive residual. stress. This will ensure that a fully 
compressive residual stress state exists at the component surface and that any 
applied stress must now be superimposed on this compressive residual stress. This 
will result in an offsetting of the applied stress gradient and in effect will cause a 
more even tensile stress through the surface layer of the component. This is 
illustrated in Figure 4. 

10.--------------------------------------------

4~------------------------------------------

2~------------------------~----------------

0~~--------------------------~~~~~~~'"~ I I I 1 I I I I I I I I I I I 1 1 1 1 1 1 t 1 1 1 I I I I I t I I I I I I I I I I I I 

I I I I I I I I I I I I I I I I 

-2 ~------,,,-------.-,------.-,------.-,------.-,------., 

Applied Stress - -- · Resultant Stress 

· · · · · · · · Residual Stress 

Figure 4: Effect of residual stresses on surface 
layer of component 

By considering the fatigue results, it is_ clear that the shot peening process 
plays a major role in the increase of the fatigue life of the component. This increase 
in fatigue life coincides with the inducing of a significant large component of 
compressive residual stress in the surface. Failure analysis of the fatigue failures 
also reveals a shift away from surface initiates to sub-surface cause9

. Initiations 
originated mainly from sub-surface inclusions. Most of the residual stress was 
released at 0.5 mm into the material. 

7.5 Painted Samples 

The painted samples revealed a compressive surface residual stress of similar 
magnitude as that of the shot peened sample. The increase in fatigue life was of a 
very small magnitude and could be considered as a negligible. The type of failure 
was very similar to that of the shot peened samples. 
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7.6 Load Tested Samples 

The load test procedure can be considered as a cold scrag process. These 
samples reveal a very slight decrease in compressive residual stress but a substantial 
drop in fatigue resistance. This drop in fatigue resistance cannot be explained by 
the slight drop in residual stresses, but it is thought that the cold scrag set-in a 
certain amount of plastic defonnation which adversely affects the fatigue life of the 
test sample. This is a phenomenon which needs further investigation. Failure 
analysis revealed that most failures occurred subsurface and a prominent 
characteristic of the fracture surfaces was the presence of axial growth9

. 

In conclusion, the evidence is clear that compressive residual stresses near 
the surface are advantageous to the fatigue life of 55Cr3 spring steel. The shot 
peening process can be described as the most important process for inducing 
compressive residual stresses, which in turn contributes to a large increase in the 
fatigue life of the samples. 

The mechanics of shot peening presents an exciting and challenging 
opportunity for research. 

8. Conclusion 

Process methods have major influences on the fatigue properties of 55Cr3 
spring steel. It has also been revealed that there is a definite relation between the 
presence of compressive surface residual stresses and the improvement of fatigue 
results. 

The air abrasive hole drilling method has proven to be an accurate method 
for determining surface residual stresses. The process has proved to be very 
effective on the very hard sample e. g. quench sample, which had a hardness of 61 
HRC. 

Typical problems encountered can be described as follows: 

Gauges had to be protected by a covering strip, as the abrasive nature of the 
over spray of aluminium oxide power, could cause deterioration of the 
gauge which will influence strain reading. 
Alignment of the drilling device was critical and time- consuming with the 
drilling of such small holes (0,9 mm to 1 mm in diameter). 
The strain amplifier must be well grounded or disconnected as a large build 
of static electricity can be experienced which could damage the amplifier 
cards during drilling. 

Errors and uncertainties are always present to varying degrees in all 
measurement of physical variables. As a rule, their magnitudes are strongly 
dependant on the quality of the experimental techniques, as well as the equipment 
used. 
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OBSERVATION OF FATIGUE FAILURES IN" 55CR3 AUTOMOTIVE COIL 
SUSPENSION SPRING 

Hattingh D.G. 1 

Abstract 

The understanding of the relationship between 

fatigue failure and process effects in spring steel 

components needs tO be understood clearly before 

the manufacturing process con be optimised to 

produ"ce coil springs for enhanced performance 

operating at increased stress levels. 

The mechanisms responsible for component fatigue 

failure in a 5503 automotive suspension spring 

steel have been irrvestigated by subjecling coil 

springs, withdrawn from different stages of the 

manufacmring process, to fatigue tests. In this 

manner it has been ensured that all possible sources 

of fatigue initiation in this material batch have been 

identified, induding those not dominant in the 

finished component FraCJographic analysis has 

revealed a number of sources of initiation, which are 

largely related to mechanical d=ge and inherent 

material defects. 

The results indicate that decreasing defeCJ levels in 

the material would represent a valid method for 

enhancing the fatigue response, specifically levels of 

non-metallic indusions and surface mechanical 

damage. 

I. Head of Mechonic:ll Engineering. F acuity of Mecl!anicU 

E.ngiDeering. PE T c:chnikon. Pan Eliz.abdh. South Africa 

2. Rcsc:an:her, School ofM:111ul11cturing. Maleriab and Mochanic:ll 

Engineering. University of Plymouth, Devon. UK 

Holman AE.L 2 

Nomenclature 

K = Wahl factor 

D = Coil diameter (Mean) 

d = Wire diameter 

P = Spring load 

't = Induced stress 

Introduction 

World-wide government legislation and 

euviromnemal considerations are demanding 

increasingl.y higher fuel economy from road vehicles. 

One way in which the motor industry is responding to 

this legislation is through an overaU reduction in 

vehicle weigh1. tlws requiring more efficient, lighter 

components, operating under iDcreased working 

stress. 

The production of a suspension spring worlcing at 

iDcreased stress levels yields a two fold benefit in fuel 

economy since the component is not only ligluer but 

can be more compact t1ws aiding the reduction of 

vehicle frontal area and drag. 

There are two major properties of spring materials 

which gov~:n the u.<eful Jife of ihe spring component 

and which rnusi .Je carefully assessed in the 

development of any new design or rnanufacruring 

process, these being sag (or rela.'3tion) resistance and 

resistance to fatigue. 

1bis paper is concerned with the sowce of initiation of 

fatigue cracks in 55Cr3 spring steel components. To 

filcilitate the initiation of fatigue cracks from a range 

of sowces. fatigue tests were perfonned upon helical 



coil springs drawn from several stages of the 

IDaiJUfactnriDg process. In this way it has been 

poSSlble to identify several sources of initiation, not all 

of which are dominant in the fatigue f.Ulure of finished 

components. 

The steel spring manufacturing process 

Incoming material is drawn to an area reduction of 

15% . Tbe drawn steel is then subjected to centre-less 

grind which reduces the diameter by 3%. This is done 

to reduce the decartmrisation zone and to reduce 

swfaces damage inflicted during the steel 

manufacturing process. 

The ground steel bar is austenised between 868°C and 

880°C, bot coiled and then queocbed in oil of which 

the te~ is maintained at 60 °C. After 

queoching, the componen1 is tempered at 375°C for 

90 rni.mites. The above process will produce coil 

springs with a grain size of 5 - 8 AS1M 

1be componen1 now goes through a process of bot­

setting wbc.re by torsional residual stresses are 

induced. This is achieved by comrolling the cooling 

after tempering, when the material temperature is 

between 180°C to 200°C it is scragged three times to 

its solid length. At this temperalUre the yield point of 

the material is lower so that during scragging the yield 

is exceeded. This results in a hysteresis effect which 

induces a torsional residual stress which will resist 

sagging of spring during service. 

After scragging the component it is soot peened once 

only. This will induce a compressive residual stress: 
on the surface that will offset any appi.ied tensile 

stress, effectively increasing the farigue life. The coil 

spring is now painted and finally it is subjected to a 

cold scragg and load test for rating purposes. 

Stages of manufacture of fatigue 
samples: 

Fatigue samples were withdrawn after the following 

stages of manufacture: 

1. After Hot coil and quenching 

2. After tempering 

3. After Hot scrag 

4. After shot peen 

5. Before load test (painted) 

6. After load test 

For this work fatigue test samples were withdrawn on 

a random basis from the production line. five from 

each removal stage. 

Fatigue test method 

All fatigue tests were performed at Volkswagen SA 

quality assurance laboratory. The machine used was a 

"Coil Spring Fatigue Tester"' Type: Pl37/l340/l-29 

supplied by Rohloff. Germany, Figure 1. 

Figure 1 Fatigue test machine 

The machine must be loaded with four springs 

sinwltaneously, uses an eccentric principle and is 



FoUowing --- Overall IDstaJied Compressed Cycles to failure Hardness 

~p.:..;rocess=::::....::sta=g"'-e ......;l;;:;en::.~gth"="'::-'(o:=m=m"")_...:;le=n:.c:gt.:::ll~*~* ..l.:,·m=m=<-) _;;:lea;::.c;gth=:-:::··~· .>.::(m==m=-) _ _:<N"-'-"r)'-'(~av:-:=e::.;ra:::go.:e~.-) __ ..:.:@::::7"")-
Queach 396,5 376 176 737 61 
Temper 396,5 376 176 1792 52 
Hot scragg 346,5 326 126 2315 51.6 
Shot peen 346,5 326 126 2912710 52.7 
Paint 346,5 326 126 3034650 52.7 
Load test 346,5 326 126 725480 52.2 
OvaaU lmg!b • T otall=&lh of coil spring 

-lnslalled 1=&111 • l.al8lh to abt:ad spring is camp• ed before fllliguc tcst is """""''JU' 
-Compn::=t lmgth • La!gtb LD wbicb spris is coup esscd duriDg each faligue cycle.. 

Table 1- Summary of spring dimensions foUowing eac:b processiDg stage 

the machine automatically stops and a replacement 

sample must be installed to continue testing. 

Test specification 

Tests were performed according to the displac:emems 

given in Table 1.. The overall length of springs 

withdrawn after quencbiDg and tempering was 50 mm 

longer than a1 later stages due to permanent 

ddormalion a1 the bot scrag stage.It was therefore 

necessary to 3lljust the test set-up for these samples in 

order to induce the correct stresses. 

Springs where subject to a compressive stress range 
from 85.7MPa (min) to 951MPa (max.), calculaled 

using standard theory1
.l.3 as foUows: 

K = 4C -1 + 0,615 
4C-K C 

C=D 
d 

r=K8PC 
mi 

Analysis of fatigue failures 

Seventeen of the twenty four fatigue failures were 

available for investigation and were analysed visually, 

optically and using a Phillips XLJO SEM. Some 

elemental analysis of ~cles was performed using a 

energy dispersive X-ray (EDAX) technique. Three of 

the eigbreen inspected were damaged post fracture 

and were therefore beyond analysis. This post fracture 

damage can be annbuted to the violent way the spring 

will leave the fatigue machine after ftacture. Useful 

results were obtained using back-scatter image 

analyses. especially where prominent inclusions were 

presenL 

Position of failure in spring 

The location of fatigue fracture were noted for each 

failure in iurn of position on the complete spring. The 

majority of springs analy5ed, 12 o111 of 17, failed 

toward the ends of the component mainly within the 

first turn from the ends. In these areas the stresS SI3Ie 

is complicated due to a reduction in pitch designed to 

give the component parallel ends. 

The remaining six failures occurred within the 

constant pitch section of the component and 

exclusively in componerns selected from after the shot 

peening process. -

Macroscopic Ob~er•ations 

1llree characteristic macroscopic ftacture types were · 

obseJVed as illustrated in Figure 2 

The dominam fracture was type I comprising of a 

fatigue crack site a1 approximately 45 • to the wire axis 

and final fast fracture in a helical manner. Eleven of 

the eighteen failures analysed were of this type_ 



(I) (11) (ID) 

Figurel. The three fracture types observed; (I) Helical, 
(ll) Axial, (Ill) Tonioaal shear 

A propensity towards. type IT failure, essentially the 

same as type I with 45° fatigue CI3Ck and helical fast 

fracture.. but with an im.enncdiate axial crack growth. 

was evidem in four failures. Of these only one failure. 

rnunber 17. e.."<hlbited an axial surface greater than 1 

mm in length. In this case a significant seam v:as 

presem in the material although the fatigue initiation 

did not occur at this feablre. Three failures were of 

the torsional shear. type m, shape. characteristic of 

torsional shear. 

Microscopic analysis 

Three general causes of Fatigue initiation have been 

identified via optical and scanning electron 

microscopy, all being related to material and 

mechanical defects. 

1) Failure from mechanical damage 

Mechanical damage was the dominant cause of failure 

for coils drawn from before the shot peen process. 

Figure 3 shows an example of Fatigue initiation from 

mechanical ciamagc in a quenched and tempered · 

fatigue sample. 

Only one case of fatigue initiation from surface 

damage in shot peened coils (or coils from later 

stages) was found. This case. in a shot peened sample. 

is illustraled in Figure 4. The indentation. Figure 4(a). 

is very large. Figure 4(b) also shows that a large 

particle has been driven into the coil surface. X-Ray 

analysis shows this particle to be composed essentially 

of Iron, but of markedly di1fere111 composition to that 

of the matrix material 

F1g11re 3. SEM micrographs - (a) Fatigue iaitiation at 
surface indentation in quenched and tempered 
sample.x50 (b) at xlOO. 

Several coils failed from damage due to coruact 

between the first coil and the coil end during fatigue 

testing. Figure 5 shows detail of the surface of coil 23 .-· 
where this contact occurs. This e.umple demonstraieS 

the lack of sensiuvtty of post shot peened components 

to such damage since the test of this coil was 

suspended without failure at 6 million cycles. 



FigUre 4. SEM micrographs - (a) Initiation at 
mecbaaial indent ISO aad (b) Detail of particle xlOO 

FigureS Optical micrograph -Section - Mechanical 
damage due to clash of tnil and first coil 

2) Failure from non-metallic inclusions 

In a previous analysis of fatigue fuilures ~f helical coil 

suspension springs J in a silicon manganese steel it 

'"as found that in a batch of 28 fatigue tests. 61'% of 

failures were inclusions related One such failure is 

shown in Figure6. 

Figure6. Fatigue initiation from a large non-metnllic 
inclusion in asuuon nuurgancsesteel coil suspension 
spring 

In the current tests 2~% of failures ha,·e been analysed 

as originating at inclusions. therefore being 

significantly differem. However it should be noted that 

the previous work was performed upon finished coils 

whilst the current work is concerned \\ith coils drawn 

from \'arious manufacruring stages. A.s an example. 

referring to Table 2. Appendix.. it is. se:n that all 

failures in as quenched coils can be amibuted to 

mechanical damage of the spring swface: only when 

the coils are tempered does the material become less 

sensitive to such damage and other failure types occur. 

In the current work 7 5% of failures of coils taken from 

after the shot peening process failed due to non­

metallic inclusions. Thus it can be seen that the sole 

source of fatigue initiation in these coils springs has 

been mechanical defects and that in finished springs. 

presence of non-metallic inclusions becomes the 

dominant factor. 
-

In the preYious wo-:: i: was noted that all failures were 

found to originat~ :,~.. oc \\itll.in. approximately 20~m 

of the coil swface. This is to be e:-.-pccted since. for a 

bar in torsion.. a stress gradient exists such tllat 

maximum stress exists at the surface. falling to 

nominally zero at the bar centre. However in tllis work 

two cases of fatigue failure from inclusions well 

within tJ1e material have been recorded Figure 

7(a).(b ). In tJ1esc two failures a large inclusion wa.s 



evidem at the centre of a radial initiation at a depth of 

approximalely lmm. 

Fagure 7 SEM Micrograph - Non-metallic inclusion at 
centre fo 'flsb-eye' iD shot peened :stmple. (a) xSO (b) 
xSOO 

It would therefore seem possible that there is another 

mechanism evidem which is related to that of no~ 

metallic inclusion inc:lusions but. when present is 

somewhat more insidious, namely hydrogen 

embrittlement 

3) Failure due to hydrogen embrittlement 

Three of the twenty four failures analysed revealed 

evidence of Hydrogen embrittlement. This can clearly: 

be seen from the .. FISh eye"'. type initiatiori. shown in 

Figure 7(a) and (b), in a shot peened specimen. In 

addition Figure 8 shows a third fish eye fracture. 

found in a scragged coil failure, which shows no 

evidence of non-metallic inclusions. 

All of these coils had been processed past the 

tempered stage, in the :first case (No:l2) was 

withdrawn after bot scragging. the second (No: l4) 

after shot peening and the third (No:l8) after painting. 

Fagure8 Optical micrograph rub~ fracture with DO 

inclusion evidence, x2S 

Hydrogen embrittlemenr·6•
7 in this work, is the result 

of hydrogen absorbed throughout the metal at the 

molten stage. Sources of hydrogen are from moisture 

in the furnace atmosphere and additives to the melt 

Insoluble hydrogen may be released around 

inclusions. precipitaleS and other discoDlimrities. 

perhaps forming local brittle ruptureS, otherwise 

known asblistersorjlakes. 

Therefore the fish-eye fracture is often associated with 

an inclusion, as with the failures of test coils 14 and 

18. see Table 2. Appendix. In failure 12 no evidence 

of an inc:lusion could be found. although the opposite 

fracture surfuce was not in suitable condition for 

analysis. 

Discussion 

A total of 24 fatigue tests were perfonned upon coil 

springs drawn from various stages of the 

manufacturing process. Of these coils. all fatigue test 

results were available but only 22 of the resulting 

failures were available for investigation . Only 



sev~m of tbCSe were -in-sUitable -condition for -

successful analysis. 

Effect of process upon fatigue n:spoose 

Several sources of filtigue crack initiation have been 

identified in this experimem and, although not all aJe 

dominam in the finished component, some interesting 

trends have emerged. The sample size for each stage 

was four and this slxluld therefore be considered 

before analysing the average f3J:igue pelformance 

figures presented in table l. 

In as quenched and quenched and tempered coils the 

cause of 13ilure was found solely to be rret:kmical 

damage to the material sUrlace. Despite a reduction in 

hardness during the tempering process, average 

filtigue life of tempered coils was signifiC3IIlly 

increased as expected. After subsequem processes the 

variation in measured hardness values pfoved 
insignificant 

The hot scragg operntion is applied at the tempering 

temperature to coil springs mamifacnJred from 

chromiiDD steels in order to impart a degree of 

relaxation resistance to the finished componem, 

however it is evidem that the operation also has an 

effect in terms of fatigue performance, resulting in an 

average increase in filtigue life of approximaiely 28% 

over the quenched and tempered coils. In addition it 

was observed that subsurfdce f3J:igue initiation begins 

to occur only after this process; the effect of 

processing on the position of f3J:igue initiation is 

further discussed later. 

The most significam process in terms of promotion of 

high filtigue life was that of shot peening. producing a· 

massive increase in excess of one thousand-fold. 

Coils withdrawn from after shot peening, or later 

. stages, were found to 13il predominamly from defects 

other than surface mechanical damage. 

A fwther · in filtigue performance "''35 noted for 

painted springs although the. increase can be regarded 

as insignificant due to the sample size .. 

The most surprising change in fatigue perfonnance 

was observed for the final product, after load testing, 

resulting in a four-fold reduction in filtigue life. This 

stage consists of compressing each spring to solid 

height three times and is essential in order to emure 

constam length of the. finished components and for 

grading the final components into bands of equal 

stiffness. It is evidem that a serious detrimemal 

process is occurring at this stage and fwther 

investigation is in progress. 

Position of failures 

Of the 24 samples fatigue tested; 

• One coil drawn from the tempering stage. suffered 

a relaxation failure before fracture. 

• Twelve were found to have fractured near to the . . 

end of the coil. 

• One coil withstood six million cycles without 

13ilure. 

• The remaining ten 13ilures fractured in the main 

body of the componem and were exclusively in 

components selected from after the shot peening 

process. 

As discussed the stresses in a helical coil spring can 

be calculated us~ standard theory. For design 

purposes spring characteristics'can be determined via 

standard fomrula~•·>_ These fomwlae include a 

correction factor to accommodate the complex nature 

of stress in the helix which results in a higher stress on 

the inside of the coil reducing towards the outside 

surface. There are two reasons for thls 

1. The torque momem results in a steeper 

twist angle for the shon fibres at the inside 



of the coil than for the long ones at the 

outside and thus produces a higher shear 

stress at the inside. 

2. The axial load causes a direct shear stress 

which adds to the shear stress at the inside 

of the coil but is subtracted from the 

outside. 

Considering this it would be expected that ImSt coil 

failures should occur at the inside of the coil. whereas 

it was fourd that approximately 700/o of failures 

occurred at the top or bottom of the wire. 

Three reasons are suggested for this; 

l. The bending element in this spring design is 

mre significant than design foi'IIDJ.lae 

suggest, tlms creating a peak combined 

stress at the top/bottom of the wire. 

2. The standard design theory assumes the 

ideal situation where the coil is loaded 

perfectly a.'<ially. In reality this is never 

achieved. resulting in the introduction of a 

bending element 

3. Some damage to these (top and bottom) 

wire areas occurs during the scragging 

processes. 

In addition it was ooted that of the five failures from 

inside the coil four occurred in shot peened coils. 

This would indicate that the shot peen coverage is 

reduced in the inward surfaces of the component due 

to shielding of these areas 

Process, residual stress and fatigue 

The fatigue and ftactographic results presented can be 

compared to residual stress measuremerus made to the 

spring components from ~h manufacturing stage in 

order to clearly\ explain why variations in fatigue 

performances occur and. in particular, why coils from 

a given manufacturing stage. are sensitive to specific 

defects. Figure 9 shows the results of preliminary 

woms to investigate the variation of residual stress 

profile after each process and the contnbution of each 

stage to the composite residual stress. negative values 

representing a tensile residual stress and visa versa. 
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Figure9 Schematic represeatatioD of residual stress 
levels after each maaufacturillg stage. 

For quenched componems it can be seen that a tensile 

residual stress gradient results and this promotes 

fatigue initiation near the surface - thus at mechanical 

defects which tend to be larger than non-metallic 

inclusions. The tempering operation leads to a 

reduction of the tensile quench stresses but the 

resultant is still of a tensile na1Ure and the dominant 

failure mechanism remains to be from mechanical 

damage. 

The hot scragging process consists of a compression 

of the component to solid lengd'nesul.ting in the coil 

surface Wldergoins ,>lastic work. thus creating a 

compressive residual to offset the e.xisting tensile 

residual stress field. The resultant residual stresses 

after this operation are still of a compressive narure 

but significantly reduced in magnitude. One 

subsurface fatigue initiation was observed in these 

coils, from three failures observed, this being from a 

significant hydrogen blister. 



Further compressive residual stress, of significamly 

greater magnitude, is added by the shot peening 

process and is large enough to ensure that a wholly 

cornpressive residual stress Slate exists at the 

component sur1ilc:e, Figure 9 Any applied stress must 

now be superimposed upon the residual stress Figure 

I 0. offsetting the applied stress gradieDt aDd resulting 

in a more even tensile stress through the surlilce layers 

of :he component 
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FJ.gUre 10 The superpositioa of compressive residual 
stress upoa applied (teasile) stresses 

This significaDtly reduced effective peak stress along 

with and altered stress profile means that the surfdce 

is no longer the critical area in terms of defects, as 

verified by the significaot shift of failures to sub· 

surlilce defects. In addition the shot peening process 

serves to correct any stress raising sumce damage. 

although this should be reganled as being of 

secondary importance. 

Conclusions 

The current work has highlighted some interesting 

relationships between fatigue failure and critical · 

defect presence in automotive coil spring componerus. 

In addition it has been illustrated how the surface 

condition of the material, specifically with regard to 

the presence of residual stresses, alters the sowce of 

fatigue failure and the ord!=r of importance of defects 

in respect of detriment to fatigue perfonnance. 

-
It has been shown how, for components IDa11Ufilctured 

from the currem material, the critical defects in 

finished components are subsurlilce non-metallic 

inclusions and hydrogen damage. 

Fmally it has become evident that the last stage in the 

manufacturing process, the cold scragg operation, 

actually leads to a reduction in the fatigue 

performance of the finished product It is therefore 

clear that further work is required in this area in order 

to determine that nature of the process by which this 

detrimental effect occurs . 
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APPENDIX 

Specimen Reason for Failure Comments 
Number 

I: Quenched From surface damage 
Coil failed in.bc:llding manner- Probably due to 
bending elemCDt high in this (I st) coil 

2: Quenched From surface damage Helical initiation and fast fracture 

3: Quenched From surface damage Helical initiation and fast fracture 

5b:Q&T Initiation at surface indCDtation Helical initiation - Quasi helical fast fracture 

7:Q&T Initiation at clash from coil CDd Helical brittle type 

8:Q&T Initiation at clash from coil CDd Helical brittle type 

10 : Q,T, Sc:ragged Initiation from surface-· Helical initiation, axial growth, helical fast fracture 
damaged 

11 :Q.T. Sc:ragged Initiation at clash from coil CDd Helical brittle type 

12 : Q,T, Sc:ragged Fisheye, depth -4mm Torsional overload perpendicular to wire axis 

13 : Shot peened Initiation from surface - Helical initiation at surface, some axial growth, 
damaged mostly helical fast fracture 

14 : Shot peened Fisheye, depth- 1mm 60 1.11J1 Helical brittle appearance 
· inclusion Al. Mg, Ca, 0 inclusion 

15 : Shot peened Mechanical damage Helical brittle type, V. minor axial 

16 : Shot peened Surface indCDtation particle Helical initiation -Shear failure perpendicular to 

.embedded size 100 1.11J1 wire axis 

17: Painted 25~.~~J~Inclusion at depth I 0 l.liii Helical initiation, Large axial growth along 2 seams. 
helical fast fracture -~ 

18: Painted Fisheye, depth - I mm Helical initiation at fi~heye grew axially and 
perpendicularly. Hehcai fast fracture 

20 : Post load test Near surface initiation - Helical initiation near surface. Failure by torsional 
damaged shear 

22 : Post load test I 0 l.liii inclusion at subsurface Helical brittle 

Table 2 Summary of fatigue investigation observations 
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