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ABSTRACT 

Daniel Allan White "The absm·ption and utilisation of natural and synthetic astaxanthin 

forms in salmonid nutrition." 

Consumer preference for commercially reared fish products that resemble their wild 
counterparts has resulted in the supplementation of pigments called carotenoids into aquafeeds 
to promote a pink-red colour in the flesh of salmonid fish. To date synthetic forms of these 
pigments have been commonly utilised to achieve this desired colouration, with the carotenoid 
astaxanthin being the regular choice for the feed manufacturer. However, increase in 
consumer demand for farmed fish products reared on natural feed additives has evoked an 
interest in natural sources of astaxa·nthin that could be successfully used to pigment salmonid 
fish efficiently. 

In the current study, the microalga Haemalococcus pluvialis has been assessed as a potential 
feed supplement to pigment the flesh of rainbow trout (Oncorhynchus mykiss). More 
specifically, those natural characteristics that may well limit the absorption and utilisation of 
astaxanthin from this source have been assessed individually and discussed from a 
physiological standpoint. The cell wall of Haematococcus pluvialis when cracked efficiently 
presents no limitation to the absorption and utilisation ofastaxanthin from this source. Indeed, 
the cell wall remnants help to prevent oxidation of astaxanthin in the feed compared to cell 
wall free extracts of carotenoid from the same source. However, esterified astaxanthin (which 
this algae predominantly contains) is not absorbed as efficiently as unesterified synthetic 
astaxanthin. Furthermore, the extent of esterification is negatively related to the absorption of 
astaxanthin. Regional variation in ester hydrolysis along the gastrointestinal tract combined 
with gut transit time of the ingested feed may explain these limitations. However, despite 
limitations in absorption, the muscle deposition of astaxanthin supplied as esters does not 
significantly differ from the unesterified form. The optical purity of astaxanthin esters from 
this source does not prejudice the final deposition of astaxanthin in fish tissues. 

An in vitro model has been developed to assess the absorption of astaxanthin at the intestinal 
level in salmonid fish in order to define absorption characteristics of carotenoids under 
different abiotic and biotic conditions. The absorption of astaxanthin seems to occur in a 
linear passive manner into the intestinal tissue. Although size of the fish does not affect the 
absorption of astaxanthin, temperature does have a significant effect. Although there were no 
significant differences in absorption between Atlantic salmon (Salmo salar) and rainbow trout, 
absorption tended to be greater in the latter species and merits further study. 
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CHAPTER 1.0 

GENERAL INTRODUCTION 

1.1 Salmon id aquaculture and nutritional aspects of pigmentation 

As harvest limitations in global fisheries have become increasingly apparent aquaculture 

has developed into a rapidly expanding global industry with increasing importance. 

Meyers ( 1994) reviewed the status of the global aquaculture industry and its significance 

Among the carnivorous finfish species cultured, fifty percent are salmonids with a ratio of 

I : 1 salmon and trout. In the period of 1986-1989, increases of I 00-180% occurred in the 

production of farmed Atlantic salmon (Salmo salar) and Pacific salmon (Oncorhynchus 

spp.), with concurrent increases of around 20-70% for other farmed finfish and 

crustaceans. World production of all farmed salmon (in 1999) was estimated to be over 

750,000 metric tonnes per annum, with figures expected to approach I million metric 

tonnes by the year 2001 and 1.3 million tonnes by the year 2005 (Lorenz & Cysewski 

2000). The most prevalent growth has occurred within the Norwegian Atlantic salmon 

industry where from 1979 to the early 1990's production expanded from approximately 

4,000 to over 150,000 metric tonnes. Bjerkeng (1997) noted that this production of 

Atlantic salmon had increased to 220,000 metric tonnes. Chile, the other major producer 

of farmed salmonids, increased production of farmed salmon and sea trout from 200,700 

metric tonnes in 1998 to 222,900 metric tonnes in 1999, an 11% increase (Egan 2000). 

The United Kingdom and Canada U K., also recognised as significant contributors to 

world wide salmonid culture, increased production from 115,000 metric tonnes in 1998 to 

119,000 metric tonnes in 1999, a 3% increase (Egan 2000). 



This growth in the aquaculture industry has been facilitated in part by the parallel 

developments that have occurred within the salmonid feed industry, since successful fish 

culture is dependent on sound nutrition and feeding regimes {Cho 1990). In this respect, 

there has been considerable progress and advances in the last 30 years concerning the 

nutritional requirements of fish, particularly salmon and trout. Fish generally have a high 

requirement for protein that provides the key essential amino acids needed for growth and 

tissue repletion. Additionally, most carnivorous fish including salmonids have the ability 

to spare the use of protein for energy purposes by preferentially metabolising lipids and to 

a limited extent carbohydrate in the feed (GrisdaleHelland & Helland 1997; Sveier et al. 

1999). Lipids also supply the essential fatty acids such as the n-3 and n-6 series that are 

important for health and efficient growth performance at all stages of development. 

Modern aquafeeds for salmon and trout are formulated to be nutrient dense with respect to 

protein and energy. Therefore, it is standard practise to produce diets containing high oil 

inclusion (>30%) and based on premium quality fishmeal concentrates and selected 

ingredients such as soybean meal and corn glutein. These macro ingredient components 

are complemented with vitamin and mineral supplements to provide a completely balanced 

feed that satisfies the nutritional requirements of the species in question. 

It is essential that farmed fish resemble their wild counterparts in terms of size; shape; taste 

and texture. Furthermore, the final colour of fish flesh is an important consideration 

(Simpson & Kamata 1978; Goodwin 1986). The consumer prefers red-coloured products 

of salmonid fishes (Ostrander et al. 1976; Hatano et al. 1987; Rounds et al. 1992; 

Sigurgisladottir et al. 1994; Skonberg et al. 1998). Further to this preference, redness adds 

to enjoyment of eating salmonids (Sylvia et al. 1995) and may be an indicator of quality 

(Sylvia et al. 1996). Indeed, aquaculture practices that produce high-value salmonid 

species employ feeding strategies that result in the development of a pink to red colour in 
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the flesh of fish. This has been achieved in practise by the incorporation of pigments 

known as carotenoids, in commercial fish feeds at typical concentrations ranging from 40 

to 80 mg kg- 1 (Nickel! & Bromage 1998a). Although these carotenoids are naturally 

widespread in nature (primarily in plants), salmonids, amongst other animals, cannot 

synthesise these molecules de novo, hence the reason for their dietary inclusion (Hata & 

Hata 1973; Simpson & Kamata 1978; Ando et al. 1986b; Ando et al. 1992; Guillou et 

al.1992a; Storebakken & No 1992; Blanc & Choubert 1993; Choubert & Storebakken 

1996). 

ln nature, wild salmonids are pigmented through ingestion of crustaceans which contain 

the carotenoid astaxanthin (3,3 '-dihydroxy-~,~-carotene-4,4'dione) (Schiedt et al. 1986; 

Skrede & Storebakken 1986), yet synthetical! y manufactured astaxanthin and the 

carotenoid canthaxanthin (~,~-carotene-4,4'-dione) are commonly supplemented into 

salmonid feed to promote a desired flesh colouration (Schiedt et al. 1986; Bjerkeng 1992; 

Bjerkeng et al. 1992; Bell et al. 1998; Akhtar et al. 1999). 

1.2 Chemistry of carotenoids 

Carotenoids are pigments synthesised by photosynthetic microorganisms and plants, but 

not by animals (Furr & Clark 1997). However, animals can modify the structure of 

ingested carotenoids through various metabolic routes. These carotenoids represent over 

600 compounds in nature and all possess similar chemical features; an polyisoprenoid 

structure; a long conjugated series of double bonds within the centre of the molecule 

(usually 9-13 double bonds) and near symmetry around the central double bond (Britton 

1995; see Figure 1.1 ). 
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Figure 1.1 Structural formula of carotenoids other than astaxanthin mentioned in this 

study (a) lycopene (b) P-carotene (c) canthaxanthin (d) zeaxanthin (e) lutein The 

numbering of carbon atoms used in nomlenculture of carotenoids is given for P-carotene. 
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The system of alternating single and double bonds that form the central structure of the 

carotenoid molecule is known as the chromophore. It is the length and structure of the 

chromophore which gives the carotenoids as a group their distinctive molecular shape, 

chemical reactivity, and light (ultra violet and/or visible) absorbing properties (Van 

Breeman 1996), which ·leads to their colourful appearance (usually yellow to red in 

colour). Carotenoids contain 3-11 or more conjugated double bonds and may be present in 

numerous cis (Z) isomeric or trans (E) geometric forms (Bjerkeng et al. 1997; see Figure 

1.2). The aii-E-isomer is considered to be the predominant native form where Z isomers 

are generally artefacts. Furthermore, carotenoids may be present in various optical 

configurations i.e. they exist as various enantiomers. Astaxanthin has two chiral centres 

giving rise to three optical isomers; an enantiomeric pair and a mesa form; (JS,J 'S); 

(3R,3'R) and (3R, 3'S) (Bjerkeng, 1992; see Figure 1.3). Carotenoids that contain one or 

more oxygen functions e.g. astaxanthin and canthaxanthin, belong to a group collectively 

known as the xanthophylls (Ruban et al. 1993). 

1.3 Carotenoid Function 

It is believed that carotenoids first emerged in primitive archaebacteria as lipid based 

compounds that reinforced cell membranes (Vershinin 1999). However, apart from the 

desired colouration that carotenoids impart in salmonid flesh, the functional purpose of 

carotenoids in fish species generally remains to be explained fully. lt is well documented 

that carotenoids act as precursors for vitamin A in fish (Schiedt et al. 1985; Al-Khalifa & 

Simpson 1988; Christiansen et al. 1994; Torrissen & Christiansen 1995; Christiansen & 

Torrissen 1996). However, reviewed evidence suggests that these pigments could have a 

positive effect in relation to fecundity, fertility and larval development. 
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Figure 1.2 Geometric isomers of astaxanthin: (a) All-£-astaxanthin (b) 92-astaxanthin 
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Positive correlations have been noted between carotenoid supplementation in feeds and 

growth rate of fish during the start-feeding period in Atlantic salmon (Christiansen et al. 

1994; Torrissen 1984). Dietary astaxanthin has been shown to improve the condition of 

broodstock and enhance total egg production in spawning striped jack, Pseudocaranx 

dentex (Vassalo-Agius et al. 2001). Indirect evidence has demonstrated that at time of 

sexual maturation, deposited pigment in salmonid flesh is mobilised and transferred to the 

skin in males and the eggs in females, leading to the hypothesis that they play an important 

role during reproduction (Torrissen et al. 1989}. In addition, dietary supplementation with 

astaxanthin has been shown to improve liver ultrastructure in some fish species (Segner et 

al. 1989). This positive effect may be associated with a carotenoid's singlet-oxygen 

quenching ability inhibiting free radical formation (Tacon 1981 ). Several studies have 

shown the potential of carotenoids to prevent free radical production and lipid peroxide 

production (Miki 1991; Nakano et al. 1995; Kobayashi & Sakamoto 1999; Nakano et al. 

1999). Indeed, astaxanthin has been shown to be an excellent antioxidant that perfectly 

quenches excited states as well as ground state radicals (Beutner et al. 200 I). 

However, in Atlantic salmon, pigmentation of eggs had no effect of on subsequent 

fertilisation rates and survival from the eyed stage to hatching (Christiansen & Torrissen 

1997) or during the embryonic stage (Torrissen 1984). Choubert et al. ( 1998) found that 

feeding diets supplemented with canthaxanthin and astaxanthin to rainbow trout had no 

effect on frequency of maturing females; timing of ovulation; relative fecundity; egg 

weight; fertilisation rate and fingerling growth. This led the authors to suggest that any 

positive effect via dietary supplementation with carotenoids would only be noted under 

"abnormally poor" culturing conditions. 
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1.4 Sources of cat·o(enoid 

Dietary sources of syntheti: astaxanthin and canthaxanthin have been used extensively for 

the pigmentation of salmomd fish species. These sources are incorporated into beadlets 

containing a complex mixture of gelatin, carbohydrates starch and antioxidants. Although 

canthaxanthin was commercially· available some years prior to astaxanthin, the latter 

carotenoid has become the pigment of choice in most salmonid production facilities in 

Europe due to the more natural colour it imparts once deposited in salmonid flesh. The 

most economically important commercial source of synthetic astaxanthin (CAROPHYLL ® 

Pink, Hoffmann-La Roche, Base!, Switzerland; Bjerkeng et al. 1997) consists of a racemic 

mixture (1:2:1) of the (3R,3'R), (3R,3'S; meso) and (3S,3'S) isomers, respectively. In 

recent years both the consumer and fish farmer have become increasingly wary over the 

introduction of chemically synthesised additives into the food chain. This has encouraged 

a general trend for using natural sources of feed nutrients (Johnson & An 1991 ). Table I. I 

provides a summary of a number of feed trial type studies that have assessed the absorption 

and utilisation of carotenoids by salmonids from an array of different carotenoid sources. 

I. 4. I Crustaceans and by-products 

Crustaceans and crustacean waste produce contain relatively high concentrations of these 

pigments and have warranted considerable interest as an alternative natural source of 

carotenoids for salmon id feeds (Saito & Regier 1971; Spinelli et al. 1974; Kuo et al. 1976; 

Sivtseva & Dubrovin 1982; Choubert & Luquet 1983; Meyers & Thibodeaux 1983; 

Tidemann et al. 1983; Arai et al. 1987; Mandeville et al. 1991; Virtue et al. 1995). 
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Table I. I Comparative absorption and deposition of carotenoid from different sources in different salmonid species 

Reference Pigment source Salmon id Trial Dietary Dietary Apparent Plasma/serum F1esh F1esh 
species Length carotenoid Lipid Digestibility carotenoid carotenoid retentio 

(days) concentration (%) (%) concentration concentration (%) 
~mg kg-121 ~J.Lg ml"l2 ~mg kg·Ii 

SYNTHETIC 
Storebakken & Choubert ( 1991) Synthetic astaxanthin Rainbow trout 56 25-50 17 2 11 

Synthetic canthaxanthin Rainbow trout 56 25-50 17 2 7 

Choubert & Storebakken (1996) Synthetic astaxanthin Rainbow trout 15 12.5-200 17 61-79 

0 S yn theti c canthaxanthin Rainbow trout 15 12.5-200 17 54-69 

March & MacMillan (1996) Synthetic astaxanthin Rainbow trout 189 40-100 6-9 4 
Synthetic astaxanthin Chinook salmon 175 40-100 3-6 4 
Synthetic astaxanthin Atlantic salmon 280 40-100 3-4 4 

ALGAE 
Sommer et al. (1991) Haematococcus pluvialis, whole Rainbow trout 100 40 10 1 

Haematococcus pluvialis, broken Rainbow trout 100 40 10 2 
Synthetic astaxanthin Rainbow trout 100 40 10 4 

Sommer et al. (1992) Haematococcus pluvialis, broken Rainbow trout 100 20-80 18 1-3 
Synthetic asta.xanthin Rainbow trout lOO 80 18 5 

Choubert & Heinrich (1993) Haematococcus pluvialis Rainbow trout 28 100 7 6 1.5 
Synthetic astaxanthin Rainbow trout 28 100 7 12 4.1 
Asta.xanthin: canthaxanthin (I : 1) Rainbow trout 28 100 7 13 3.1 

Gouveia et al. (1998) Chlore/la vulgaris Rainbow trout 42 64 15-20 71-83 (15-21) 4-5 
Cantha.xanthin: astaxanthin (5:3) Rainbow trout 42 64 15-20 79-87 (14-21) 3-5 
Synthetic asta.xanthin Rainbow trout 42 24 15-20 63-75 (8-12 ) 5-8 



Table 1. 1 (continued) 

Reference Pigment source Salmonid Trial Dietary Dietary Apparent Plasma/serum Flesh Flesh 
species Length carotenoid Lipid Digestibility carotenoid carotenoid retentio 

(days) concentration (%) (%) Concentration concentration (%) 
(mg kg-121 (!,!g ml"l2 (mg kg-121 

Barbosa et al. (1999) Haematococcus plwialis Rainbow trout 5 100 9-24 7-9 
Synthetic astaxanthin Rainbow trout 5 100 9-24 5-8 

CRUSTACEAN 
Peterson et al. (I 966) Crayfish extract Brook trout 40 53 

Raw crayfish Brook trout 25 53 
(inc. skin, fms 
and flesh) 

Paprika extract Brook trout 35 257 3.22 
(inc. skin, fms 
and flesh) 

Spinelli & Mahnken ( 1978) Pleuroncodes planipes Coho salmon 120 30-90 3-5 
(oil extract) 

Torrissen er al. ( 1981) Shrimp waste Rainbow trout 87 5 29-30 45-71 1-2 
(Panda/us borealis) 

Meyers & Thibodea ux (1983) Crawfish meal Rainbow trout 90 20%inc. 4 
Crawfish meal extract in oil Rainbow trout 90 15%inc. 5 

(0.6mg Ax g·1 

oil) 

Chouben & Luquet (1983) Shrimp meal Rainbow trout 10-12 9-17 

Arai et al. (1987) Euphausia superba- Oil extract Coho salmon 28 70 13-15 2 

Mori et al. ( 1989) Krill oil Coho salmon 42 8-16 14-15 1.6-3.0 2 
Synthetic astaxanthin Coho salmon 42 8-16 14-15 0.7-2.2 2 



Table 1.1 (continued) 

Reference Pigment source Salmonid Trial Dietary Dietary Apparent Plasma/serum Flesh Flesh 
species Length carotenoid Lipid Digestibility carotenoid carotenoid retentio 

(days) concentration (%) (%) concentration concentration (%) 
(mg kg-')1 (I:!:S ml"') (mgkg·'i 

Coral et al. (1998) Pleuroncodes planipes Rainbow trout 42 75 10 1-4 
(oil extract) 

YEAST 
Johnson et al. (1980) Phaffia rhodozyma, intact Rainbow trout 87 55 2 

N Phoffia rhodozyma, broken Rainbow trout 48 55 11 
Phaffia rhodozymo, partially Rainbow trout 42 55 3 
digested 
Phaffia rhodozyma, fully digested Rainbow trout 42 55 12 

Gentles & Haard (1991) Phaffia rhodozyma Rainbow trout 56 112 15 (14-28) 
(mechanically milled; enzyme 
treated; spray-dried or extracted) 

Choubert et al. (1995) Phaffia rhodozyma (extracted) Rainbow trout 28 50-100 12-13 >70 1-4 3-4 

Coral et al. (1998) Phaffia rhodozyma Rainbow trout 42 75 11 1-4 

Whyte & Sherry (200 I) Phaffia rhodozyma, untreated Atlantic salmon 150 64 30 3-4 
Phaffia rhodozyma, heat treated Atlantic salmon 150 64 30 3-4 
Phaffia rhodozyma, heat and Atlantic salmon 150 66 30 3-4 
chemically treated 
SY!!thetic astaxanthin Atlantic salmon 150 69 30 3-4 

t Values based on total carotenoid content according to wet weight. % inclusion levels have been used where concentration values are not available. t 
Values in parentheses represent mg kg" 1 dry muscle. 



However, further processing of shrimp waste is required to extend this product's short 

shelf life and make it economically viable (Torrissen et al. 1981 ). Furthermore, crustacean 

meals are low in protein and high in minerals such as chitin and calcium carbonate, which 

restrict their use m feed formulations (Meyers & Rutledge 1971 ). Nonetheless, 

comparative studies of crustacean by-products and synthetic astaxanthin have 

demonstrated that this natural source can produce acceptable pigmentation levels in 

salmonids (Mori et al. 1989). 

1.4.2 Yeast 

Natural microbial sources have been identified as potential pigment sources for salmonids. 

For example, the yeast Phaffia rhodozyma has a high nutritional value (>20% protein and 

lipid) and contains the carotenoid astaxanthin (Johnson et al. 1977; Sanderson & Jolly 

1994; Calo et al. 1995). Choubert et al. ( 1995) compared carotenoid retention in the flesh 

of rainbow trout fed diets supplemented with synthetic astaxanthin, Phaffia rhodozyma and 

canthaxanthin. Flesh retention, when expressed as a percentage of carotenoid intake, was 

' 
higher for the astaxanthin group compared with the groups fed the yeast preparation. 

However, no differences were observed when retention was expressed according to the 

Apparent Digestibility Coefficients (ADC) of the astaxanthin sources, demonstrating that 

poor carotenoid retention was a result of low digestibility. This poorer digestibility may 

have been due to the naturally occurring cell wall that Phaffia rhoduzyma possesses. This 

can impede pigment uptake (will reduce carotenoid digestibility) unless sufficient 

rupturing of the cell (enzymatic treatment) is undertaken prior to dietary supplementation 

(Johnson et al. 1980). However, Atlantic salmon have been shown to deposit astaxanthin 

from Phaffia rhodozyma regardless of whether cells had been treated (heat and chemical 
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treatment) in comparison to the synthetic source of astaxanthin (Whyte & Sherry 2001 ). 

1.4.3 Algae 

Algae are a large and diverse group of organisms that synthesise carotenoids. A number of 

studies regarding the use of algal supplements as carotenoid sources have been published 

(Ben-Amotz et al. 1989; Stahl et al. 1993 Gouveia et al. 1998). 

The microalga Haematococcus pluvialis contains large amounts of astaxanthin (1.5-3.0% 

dry weight) although manipulation and production of mutant strains can result in early

enhanced (2 2-3.2 fold) astaxanthin accumulation (Tripathi et al. 2001 ). When strains of 

Haematococcus pluvialis are exposed to growth-limiting conditions (nitrogen and 

phosphate limitation; addition of NaCI and high temperature or light intensity) vegetative 

cells begin producing astaxanthin and concurrently undergo changes in cell morphology 

resulting in the formation of large red aplanospores (Boussiba & Vonshak 1991; Harker et 

al. 1996a) and the development of a thick sporopollenin cell wall that is resistant to 

oxidative degradation (Burczyk 1987). This encysted cell wall may impede absorption of 

pigment when used as a carotenoid source in animal diets (Johnson & An 1991 ). 

Additional carotenoids produced under these conditions include canthaxanthin, echionene, 

adonirubin and ~-carotene, although their contribution usually represents a small 

percentage of the total carotenoid (Grung et al. 1992). 

Additionally, 95% of the accumulated astaxanthin in this alga source is in an esterified 

form primarily consisting of monoesters, as opposed to diesters (Renstrom & Liaaen

Jensen 1981) These esters consist of 16:0, 18:1 and 18:2 fatty acids esterified onto the 3' 
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hydroxyl group of astaxanthin (Lorenz & Cysewski 2000). Furthermore, astaxanthin 

synthesised by Haematococcus pluvialis is optically pure, existing as the 3S,3 'S isomer 

(Renstmm et al. 1981) compared to the commonly used synthetic source which is a 

racemic mixture of isomers. 

Gastrointestinal ester hydrolysis is thought to be a pre-requisite to absorption of esterified 

carotenoids and vitamins into the systemic blood circulation (Mahadevan et al. 1963; 

Muller et al. 1976; Tyczkowski & Hamilton 1986a; Storebakken et al. 1987; Wingerath et 

al. 1995; Schweigert 1998). Subsequently, differences in digestibility may exist for 

astaxanthin esters compared to the free form since hydrolysis may be a limiting step. 

Moreover, reduced digestibility of carotenoid esters may result in poor flesh retention 

values for carotenoids in salmonids (Schiedt et al. 1986; Foss et al. 1987; Storebakken et 

al. 1987). 

Several studies have shown comparatively poorer efficiency in pigmentation of salmonids 

when using Haematococcus pluvialis as a source of astaxanthin in comparison to the 

synthetic free form of astaxanthin (Sommer et al. 1991; Sommer et al. 1992; Choubert & 

Heinrich 1993 ). In all cases it was suggested that poorer pigmentation was a result of 

reduced bioavailability of astaxanthin from Haematococcus pluvialis due to encysted cell 

wall encapsulation. 

However, contradictory evidence was presented by Barbosa et al. (1999) who compared 

the serum astaxanthin concentrations in trout fed diets supplemented with two different 

sources of astaxanthin (Haematococcus pluvialis and synthetic astaxanthin) at two 

different dietary lipid levels (9 and 24%) For the higher energy diet serum astaxanthin 
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concentrations were not significantly different between fish fed the algal and synthetic 

sources of astaxanthin. However, when dietary lipid level was low serum astaxanthin 

concentrations were significantly higher in fish fed diets supplemented with the algal 

source compared to the synthetic form. This su"ggests that differences noted in flesh 

retention between these two dietary sources as discussed previously were not a direct result 

of reduced bioavailability due to cell wall encapsulation or necessary carotenoid ester 

cleavage prior to blood absorption. 

Clearly, confounding evidence has been presented concerning the use of Haematococcus 

pluvialis as a pigment source for salmonids. If indeed use of this dietary astaxanthin 

source results in unfavourable flesh pigmentation compared to the synthetic free form, then 

the evidence may suggest that limitations in digestibility and absorption are the cause of 

these noted discrepancies. 

1.5 Flesh deposition of carotenoids 

Salmonids, unlike other fish species, deposit ingested astaxanthin (40-80%) unchanged in 

their flesh (Foss et al. 1984; Schiedt et al. 1985; Storebakken et al. 1985; Torrissen el al. 

1989; Bjerkeng 1992). Additionally, astaxanthin is deposited in its free form in salmonid 

flesh regardless of source (Choubert & Luquet 1983; Henmi et al. 1987). Henmi et al. 

(1989) demonstrated that in salmon muscle the carotenoids astaxanthin and or 

canthaxanthin binds with one P-ionine ring to a hydrophobic binding site which exists on 

the surface of the actomyosin protein within the myofibrils. Astaxanthin has one hydroxyl 

group and one carbonyl group on each of the P-ionine rings at opposite ends of its 

structure, where canthaxanthin has one carbonyl group on each of it P-ionine rings. These 
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hydroxyl and carbonyl groups form hydrogen bonds with the myofibril proteins. 

Subsequently, the strength of the carotenoid-protein association is dependent on the 

number of hydrogen bonds. Since astaxanthin can form two hydrogen bonds for each of it 

P-ionine rings, it combines more strongly to actomyosin than other carotenoids. 

Reported values for astaxanthin in the flesh of farmed salmon are between 4-1 Omg kg" 1 

(Torrissen et al. 1989). However, a number of abiotic and biotic factors are thought to 

influence the deposition of carotenoids in salrnonids (NickeU & Bromage 1998a) including 

size or age (Spinelli & Mahnken 1978; Torrissen et al. 1989; March et al. 1990; Bjerkeng 

et al. 1992; Hatlen et al. 199Sa); temperature (Storebakken et al. 1986; March et al. 1990) 

and sexual maturation (Crozier 1970; Sivtseva & Dubrovin 1982; Torrissen & Torrissen 

1985; Ando et al. 1992). 

Several authors have demonstrated a dose response relationship between dietary 

astaxanthin and pigmentation in salmonids, whereby a plateau in pigmentation capacity is 

reached at a feed astaxanthin concentration of ea. 60mg kg" 1 (Choubert & Storebakken 

1989; Torrissen et al. 1989; Storebakken & No 1992; Olsen & Mortensen, 1997). 

Consequently, increasing dietary astaxanthin concentration further would be uneconomic. 

It has been suggested that variations in the number and size distribution of muscle fibres 

may influence astaxanthin deposition (variability in availability of binding sites) thus 

limiting flesh retention and causing the plateau effect (Nickel! & Bromage 1998b ). 

However, Johnston et al. (2000) found no significant correlation between muscle fibre 

density and flesh astaxanthin concentration in Atlantic salmon. Other authors have 

explained this dose response effect in part by a limitation in absorption efficiency or 

digestibility of the carotenoid (Choubert & Storebakken 1989; Torrissen et al. 1990; 
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Hatleneta/. l99Sb). 

Added to an apparent dose response effect, deposition efficiency between carotenoids used 

for salmonid pigmentation (cantbaxanthin and astaxanthin) also differs. It has been 

repeatedly shown that rainbow trout deposit astaxanthin more efficiently in their flesh than 

canthaxanthin (Foss et al. 1984; Torrissen 1986, 1989b; Bjerkeng et al. 1990; Choubert & 

Storebakken 1989; No & Storebakken 1992). However, it has been shown more recently 

that Atlantic salmon absorb and/or deposit canthaxanthin more favourably in their flesh 

compared to astaxanthin (Buttle et al. 200 I). It is plausible that such differences result 

from a greater affinity for one carotenoid to bind to the flesh of salmonids in comparison to 

the other. However, Henmi et al. (1989, 1991) demonstrated that astaxanthin and 

canthaxanthin bound non-specifically to actomyosin in salmon muscle. This suggests that 

discrepancies between these carotenoids in terms of deposition do not result from 

limitations at the muscle binding sites. Perhaps these differences may be explained in part 

by more efficient absorption of astaxanthin compared to canthaxanthin (or visa versa) as 

has been suggested for rainbow trout (Torrissen 1986; Guillou et al. 1992a; Choubert et al. 

1994a). 

Despite evidence to support the notion that absorption of pigments from consumed feed 

into the systemic circulation may well be limiting, contradictory findings have been 

reported that suggest metabolism of pigments as opposed to absorption is responsible for 

poor flesh pigmentation (March et al. 1990). However, March & MacMillan (1996) 

presented data (for Atlantic salmon) that again suggested the absorptive capacity of the 

intestine limited the amount of astaxanthin that can be advantageously added to salmonid 

diets. Nonetheless, interest based on increasing digestibility and/or bioavailability of these 
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carotenoids is at the forefront of current scientific research investigations. 

1.6 Ca•·otenoid metabolism 

March et al. ( 1990) and March & MacMillan ( 1996) have indicated that rapid metabolism 

rather than failing absorption is responsible for poor pigmentation in salmonids, although 

no concise quantitative estimates are available on the proportion of absorbed astaxanthin 

that is metabolised. 

Salmon and rainbow trout differ from goldfish since they cannot oxidise 3,3 '-dihydroxy 

carotenoids (e.g. zeaxanthin) to astaxanthin (Hata & Hata 1973). Astaxanthin and 

canthaxanthin are reductively metabolised in salmonids (Schiedt et al. 1988ab, 1989; 

Bjerkeng et al. 1990, 1992; see Figure 1.4) .. In Arctic charr (Salvelinus alpinus) the 

recorded major reductive metabolite of astaxanthin was idoxanthin, comprising 47-75% of 

total flesh fillet carotenoids (Aas et al. 1997; Hatlen et al. 1995b). Bjerkeng et al. (1999a) 

inferred that this reduction of astaxanthin to idoxanthin predominantly takes place in the 

liver of the salmonid fish. This is in agreement with the findings of Hardy et al. ( 1990) 

who administered radiolabelled canthaxanthin orally to rainbow trout and noted that the 

liver was the major organ that contained reductive metabolites. However, the possibility 

exists that concentration of metabolites formed in other tissues and organs may take place 

in the liver, as suggested by Metusalach et al. ( 1996). 
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Figure 1.4 Reductive metabolism of astaxanthin and canthaxanthin in salmonid fish . Taken and adapted from Torrissen et al. (1989) . 



In rainbow trout astaxanthin and canthaxanthin are reductively metabolised into yellow 

xanthophylls and carotenes. Astaxanthin is reduced to zeaxanthin (p,p-carotene-3,3 '-diol) 

via P-adonixanthin (3,3-dihydroxy-p,p-carotene-4-one) and canthaxanthin is reduced to P

carotene (p,p-carotene) via echionene (Schiedt et al. 1985). Furthermore, rainbow trout 

can also convert ketocarotenoids into vitamin A in the intestinal wall, although in vivo this 

usually only occurs when the diet is not sufficiently supplemented with vitamin A 

(Lambertesen & Braekkan 1969; Schiedt et al. 1985; AI-Khalifa & Simpson 1988). Aas et 

al. ( 1999) reported the rapid conversion of astaxanthin into idoxanthin in Atlantic salmon 

fed a single dose of radiolabelled astaxanthin. The rapid appearance of idoxanthin in the 

blood suggested that the intestine could be an important site for astaxanthin metabolism. 

Reductive metabolites of astaxanthin and canthaxanthin are also found in the skin of 

rainbow trout (Schiedt et al. 1985; Bjerkeng et al. 1990) although it is not clear whether 

reductive metabolism occurs in the skin itself 

The cost of synthesised carotenoids and their necessary dietary implementation is high 

Approximately I 0-15% of the price of salmon feeds is due to the substantial investment 

required for dietary carotenoid inclusion (Torrissen et al. 1989; Hardy et al. 1990). In 

Norway, supplementation of synthetic astaxanthin in salmon diets accounts for 15-20% of 

the total feed costs (Torrissen & Ingebrigtsen 1992) Furthermore, only up to 15% of 

astaxanthin consumed is actually retrieved from fish muscle tissue (Torrissen et al. 1989; 

Storebakken & No 1992; Bjerkeng et al. 1999a). Consequently, understanding the 

mechanism of carotenoid absorption and the factors that may have an influence on the 

process are fundamental for improving flesh pigmentation in salmonids (Nickel! & 

Bromage 1998a). 
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1. 7 Carotenoid digestibility and absorption 

Of great consideration when formulating and producing fish feeds are the quality of raw 

materials and the digestibility of the feed ingredients (Spyradakis et al. 1989; Cho 1990). 

Indeed, knowledge of a supplemented carotenoid's digestibility is critical for evaluation of 

its pigmentation efficacy (Choubert et al. 1995). The digestibility of a compound after 

ingestion is a good primary indicator of absorption efficiency as it indicates the quantity of 

compound that has been absorbed from the feed matrix. The current literature shows large 

inconsistencies between digestibility and flesh retention values in salmonids which 

suggests considerably higher levels of these pigments are absorbed by salmon than are 

retained in the flesh. However, carotenoid digestibility values may have been over 

estimated due to the degradation of carotenoid in faecal samples (Meyers 1994). 

The bioavailability of carotenoids can be expressed as the proportion of carotenoid 

ingested that can be absorbed and is available for use and/or storage (Schweigert 1998). 

Bioavailability of carotenoids is influenced by a variety of factors. These include species 

of carotenoid; molecular linkage; amount of carotenoids consumed; matrix in which the 

carotenoid is incorporated; effectors of absorption and bioconversion; nutrient status of the 

host; genetic factors; host-related factors and mathematical interactions (Castenmiller & 

West 1998}. Furthermore, the efficiency of digestion and gut transit time are likely to 

influence the proportion of any micro-nutrient that is absorbed from feed (Jackson 1997). 

Bioavailability is considered a pnmary parameter when assessmg the pigmentation 

efficiency of a specified carotenoid. Most scientific feed trials employ an initial 

assessment of carotenoid absorption by taking digestibility measurements, and/or 

measurements of blood concentration in the fishes systemic circulation. Indeed, high 
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correlation has been recorded between dietary carotenoid concentration and carotenoid 

levels in the blood (Choubert et al. 1994a; Kiessling et al. 1995 Storebakken & Goswami 

1996). This evaluation can be conducted after continuous feeding to ascertain steady state 

concentrations of carotenoid in the blood. Alternatively, a post-prandial blood carotenoid 

profile can be formed after a single ingested dose of one or more carotenoids (Choubert et 

al. 1987; Gobantes et al. 1997). However, caution should be displayed when using blood 

concentrations as indicative of bioavailability since they are affected by absorption of 

carotenoid; removal of carotenoid from serum for storage/deposition; bioconversion, or 

excretion (Castenmiller & West 1998; Van het Hof et al. 2000). Additionally, inherent 

heterogeneity of subjects/animals results in large inter-individual variability in 

bioavailability assessment (Jackson 1997). 

1.8 Mechanism of carotenoid uptake by the intestine 

Digestibility values are influenced by the quantity of carotenoid that is absorbed within the 

gastrointestinal tract of the animal once ingestion has taken place. According to Torrissen 

( 1986) and Al-Khalifa & Simpson (1988) the absorption of carotenoids occurs mainly 

along the proximal and mid-intestine of salmonids, although other authors have found little 

difference in carotenoid absorption along the entire length of the intestine (Guillou et al. 

1992a). In humans, carotenoids appear to be absorbed by duodenal mucosal cells by a 

mechanism involving passive diffusion (Parker 1996). The pyloric section of the intestine 

in salmonids represents the human duodenal region 

The mechanism of carotenoid absorption in humans at the gastrointestinal level has been 

extensively reviewed (Erdman et al. 1993; Parker 1996; Furr & Clark 1997; Van den Berg 

1999). Figure 1.5 and the following summary is based on these publications. 
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Figure 1.5 Proposed uptake of astaxanthin from lipid micelles across the unstirred 

water layer (U.W.L) into intestinal mucosal cells; possible metabolic events and movement 

of astaxanthin into lymph and portal blood. 
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Prior to absorption, carotenoids have to be released from the food matrix in which they are 

ingested. Initially this is achieved by the action of gastric hydrolysis of dietary proteins 

and lipids. Once released, lipophilic carotenoids will naturally dissolve in the oily phase of 

lipid droplets produced by gastric hydrolysis. Natural gastric action then renders the lipid 

droplets into a fine emulsion that passes into the duodenum region of the gastrointestinal 

tract. Solubility of a carotenoid and distribution within the emulsion is determined by 

polarity of the pigment, where more polar xanthophylls are located at the surface and the 

least polar carotenoids incorporated into the triacylglycerol core. Carotenoid distribution 

will affect the transfer of carotenoids into mixed bile salt micelles. This is an essential step 

since carotenoid absorption does not take place without micelle formation. Lipid micelles, 

whose formation is dependant on bile flow from the gall bladder (stimulated by dietary 

fat), are thought to act as a vehicle for carotenoid transfer across the unstirred water layer 

(system of water lamellae along the microvillus surface of the intestine). Once this layer is 

traversed, carotenoids are absorbed unchanged in a passive manner by mucosal cells. 

lt is likely that this passive diffusion process is dependent on the carotenoid concentration 

gradient between the micelle and the plasma membrane of the enterocyte. As carotenoids 

are hydrophobic in nature, direct contact between the micelle and the cell membrane is 

probably required. 

If carotenoids are not metabolised in the enterocyte (usually applies to provitamin A 

carotenoids) they are packaged into chylomicron like structures and secreted into lymph 

and subsequently enter the systemic blood circulation. However, the intracellular 

mechanisms controlling these processes are not well understood. 

Tyczkowski & Hamilton ( J986b) demonstrated differential absorption for different 

carotenoids (zeacarotene and lutein) along the intestinal tract of chickens, suggesting 
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regulatory mechanisms for carotenoid absorption. However, the absorption of carotenoids 

in chickens is thought to be independent of lipid absorption since cases of lipid 

malabsorption and hypocarotenoidemia are not correlated (Osborne et al. 1982). Non

specific esterases have been found along the intestinal brush border membrane and within 

the cytoplasm of enterocytes in Nile tilapia, Oreochromis niloticus (Tengjaroenkul et al. 

2000). lf these findings apply to salmonids, this may suggest carotenoid-ester metabolism 

may take place intra- and extracellularly. 

1.9 Digestibility and micelle formation 

Formation of bile salt micelles is thought to be essential for the uptake of fatty acids, or 

indeed carotenoids, since they acts as a "shuttle" between the intestinal contents and the 

aqueous-microvillus interface of the intestine (Westergaard & Dietschy 1976). Micelles 

are thought to penetrate the unstirred water layer, a series of water lamellae adjacent to the 

microvillus surface which form a natural barrier to carotenoid uptake (Furr & Clark 1997). 

Furthermore, it has been recorded that micelle formation is more important for the 

absorption of insoluble non-polar lipids, such as a-tocopherol, compared to polar lipids 

such as oleic acid (MacMahon & Thompson 1969; MacMahon & Thompson 1970). In 

addition, the presence of polar lipid in micelles enhances the solubility of non-polar lipids 

(EI-Gorab & Underwood 1973). These findings imply that the formation of lipid micelles 

formed following intraluminal triglyceride lypolysis of the feed matrix is a restricting 

factor in the absorption of carotenoids (Bore! et al. 1996). 

The degree to which a specific carotenoid is incorporated into micelles may influence its 

relative digestibility. Choubert et al. ( 1994a) demonstrated that the clearance rate and 

potential absorption mechanism (passive absorption) of canthaxanthin and astaxanthin in 
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the blood of immature trout was similar, yet circulating blood levels of astaxanthin were 

2.3 times greater than that of canthaxanthin. Discrepancies in uptake may have been due 

to greater solubilisation of astaxanthin compared to canthaxanthin in micelles. 

However, it has been demonstrated in vitro that once critical micelle concentration of the 

bile salt(s) has been achieved (usually a low value) carotenoid absorption is sufftciently 

facilitated (Hollander & Ruble 1978). Moreover, when detergent concentrations are higher 

than this critical value, the uptake of P-carotene has been shown to decline sharply (El

Gorab et al. 1975). 

1.10 Dietary lipids and carotenoid absorption 

Dietary lipid stimulates the production of bile which facilitates intraluminal solubilisation 

of carotenoids (micelle formation) prior to absorption, without which apparent carotenoid 

absorption is reduced (Erdman et al. 1993; Williams et al. 1998) In fact a number of 

studies have found a positive relationship between lipid inclusion and apparent digestibility 

of carotenoids (Torrissen et al. 1990; Choubert et al. 1991; Gouveia et al. 1998) and 

pigmentation of salmonids (Abdul-Malak et al. 1975). Moreover, it has been shown that 

the absorption and deposition of astaxanthin is influenced by the source and composition 

of the oil in relation to fatty acid content (Christiansen et al. 1991 ). This may infer that 

differences between absorption of different fatty acid classes exist, a feature that has been 

recorded in turbot, Scophthalmus maximus (Koven et al. 1994; Koven et al. 1997). 

Bjerkeng et al. ( 1999b, 2000) demonstrated that flesh retention of astaxanthin was 

significantly higher in salmon fed capelin and Peruvian high PUF A oil compared to 

herring and sand eel oiL Salmon fed diets containing Peruvian high PUF A oil also had 
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significantly higher fillet carotenoid content than fish fed the other diets. However, plasma 

astaxanthin concentrations were positively related to monounsaturated fatty acids content 

and negatively to the content of n-3 fatty acids. There is evidence from analytical studies 

that suggests that PUFA's are more effectively absorbed than saturated fatty acids during 

lipid digestion in fish (Lie et al. 1987; Koven et al. 1997). In contrast, it has been recorded 

that rats absorb astaxanthin to a greater extent from olive oil emulsions compared to corn · 

oil emulsions, suggesting the presence of polyunsaturated fatty acids (PUFA) actually 

reduce uptake in mammals (Ciark et al. 2000). Furthermore, contradictory evidence was 

presented by Torrissen (I 985) who found no significant differences in pigmentation 

between fish fed diets supplemented with capelin oil "high" in free fatty acids and those 

fed an oil lower in fatty acids. Nonetheless, differences between the two oil sources may 

have not been great enough to promote a noticeable affect. 

• 
l.ll Blood transport of carotenoids 

Measurements of blood carotenoid concentration following carotenoid ingestion indicate 

the amount of carotenoid that has been absorbed into the systemic circulation and is 

potentially available for utilisation. In humans, carotenoids are transported in plasma 

exclusively by lipoproteins with the distribution among lipoprotein classes determined 

largely by the physical properties of the carotenoid (Erdman et al. 1993; Parker 1996). 

The available literature supports the contention that carotenoids must be bound to blood 

protein before transport in the blood of salmonids presumably to solubilise the 

hydrophobic pigment. For example, in Chum salmon (Oncorhynchus keta) astaxanthin is 

mainly bound to high-density lipoprotein (Ando et al. 1985; Nakamura et al. 1985) and 

very high-density lipoprotein fractions (Ando et al. 1986b ). Canthaxanthin has been found 

in all lipoprotein fractions in immature rainbow trout (Choubert et al. 1992; Chavez et al. 
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1998). In female chum salmon during spawning, appreciable amounts of astaxanthin are 

found bound to vitellogenin, a likely carrier of carotenoid from the flesh to the ovaries 

(Ando et al. I986c). In Atlantic salmon, astaxanthin in blood plasma is mainly associated 

with a protein other than lipoproteins, presumably albumin (Aas et al. 1999). These 

findings could suggest that binding of astaxanthin to blood proteins may limit internal 

distribution of astaxanthin and deposition in salmonid flesh. However, evidence has been 

presented for rainbow trout indicating that the saturation of lipoprotein fractions is not a 

limiting factor for transport of carotenoid (Chavez et al. 1998). Similar findings have been 

found in humans for the carotenoid P-carotene (Mathews-Roth & Gulbrandsen 1974 ). 

1.12 Differences between carotenoids and their bioavailability 

A number of different carotenoids may be present in fish feeds due to feed 

supplementation with different sources of carotenoid and the origin of other dietary 

ingredients. It has been demonstrated that different carotenoids may have different relative 

bioavailability (Schiedt et al. 1985; Guillou et al. 1992ab; Clark et al. 2000). In rainbow 

trout astaxanthin is more efficiently absorbed into the blood in comparison to 

canthaxanthin (Torrissen 1989a; Choubert et al. 1994a), and zeaxanthin (Guillou et al. 

1992a). 

Some authors have suggested that carotenoid polarity will influence the absorption of these 

pigments. For example, astaxanthin (two hydroxyl and ketone groups), is absorbed (blood 

plasma values) in rainbow trout to a greater extent than other carotenoids (canthaxanthin, 

zeaxanthin, P-cryptoxanthin, P-carotene and lycopene) which are more hydrophobic 

(Tyssandier et al. 1998) The authors suggested that less hydrophobic carotenoids are 

absorbed more efficiently, or, are cleared from the plasma at a slower rate. Gobantes et al. 

29 



( 1997) recorded post-prandial serum concentrations of astaxanthin and canthaxanthin in 

immature rainbow trout force fed individual doses of one of these carotenoids. The 

maximum level of canthaxanthin in serum was 1.6 times lower than that of astaxanthin_ It 

was suggested that this finding was due to canthaxanthin being less polar than astaxanthin 

and that this might effect an animal's ability to form intestinal micellar solutions with one 

carotenoid compared to another. Evidence from in vitro studies supports the theory that 

carotenoid polarity affects the solubility of these pigments in aqueous solutions of mixed 

micelles (EI-Gorab & Underwood 1973). Additionally, variation in carotenoid polarity 

leads to differences in regional distribution of these molecules within the lipid micelle, 

where polar and non-polar carotenoids are associated with the surface and the core of the 

micelle, respectively (Bore! et al. 1996) Distribution of carotenoids within the lipid 

micelle and the effect that this would have on the absorption characteristics of a carotenoid 

in fish are not clear. 

1.13 Carotenoid isomers and bioavailability 

Optical isomers of dietary astaxanthin are utilised equally by salmonids, and no 

epimerization occurs once deposited in the flesh (Foss et al. 1984; Storebakken et al. 1985; 

Arai et al. 1987). However, there is considerable interest in the bioavailability of different 

geometric isomers of carotenoids in various animal models, and the subsequent differences 

between them (Stahl et al. 1993; Hebuterne et al. 1995; Stahl et al. 1995; 0sterlie et al. 

2000). Bjerkeng et al. (1997) noted that flesh carotenoid concentration in rainbow trout 

tended to be higher in those fish fed diets supplemented with ali-E-astaxanthin compared 

to those fish fed a diet supplemented with a mixture of isomers. Furthermore, apparent 

digestibility coefficients (ADC) of total astaxanthin were higher for trout fed the all-£

astaxanthin diet compared to trout fed a diet supplemented with the stereoisomer mixture. 
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It was suggested that this indicated a competitive mechanism of uptake for the different 

stereoisomers. These findings were supported in an extension study where higher total 

carotenoid concentrations were found in the blood of trout fed diets supplemented with aii

E-astaxanthin compared to those trout fed diets supplemented with the stereoisomer 

mixture (0sterlie et al. 1999). This suggested more efficient intestinal absorption of the 

ali-E-isomers compared to the Z-isomers. Similarly, preferential accumulation of all-trans 

~-carotene compared to 9-cis-~-carotene in human plasma has been demonstrated (Gaziano 

et al. 1995). Furthermore, cis-trans isomerisation has been demonstrated during the 

absorption of ~-carotene, resulting in the near absence of post-prandial plasma 9-cis-~

carotene after its oral administration in humans (You et al. 1996). 

Selective accumulation of ali-E-astaxanthin has been recorded in the muscle of salmon, 

and in blood samples of both salmon and halibut (Bjerkeng & Berge 2000). These 

differences may be due to variation in intestinal micellar loading between isomers. Indeed 

Bjerkeng & Serge (2000) recorded higher Apparent Digestibility Coefficients for all-£

astaxanthin compared to the 9Z and 13Z isomer for both salmon and halibut 

However, contradictory evidence has been presented in humans where it has been shown 

that lycopene is isomerized from the trans to cis form pre-absorption in the gastric lumen 

(Re et al. 2001). lt was suggested that this might be significant as cis lycopene has greater 

bioavailability than the trans form due to increased solubility in micelles. Indeed, cis

isomers of carotenoids are less likely to crystallise/form aggregates than the extended trans 

configuration (Britton 1995; Castenmiller & West 1998) which would lead to increased 

incorporation into a bile-acid micelle. 
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1.14 Synergistic/antagonistic effects between carotenoids on bioavailability 

It is not uncommon practise for feed compames to supplement fish feeds with both 

astaxanthin and canthaxanthin. Indeed it has been documented that combined consumption 

of astaxanthin and canthaxanthin seems to have a synergistic effect on flesh pigmentation 

(Foss et a/ 1987; Torrissen 1989b). However, interaction at the intestinal level 

(competition during micellar incorporation, intestinal absorption, lymphatic transport) may 

reduce absorption of carotenoids (Van het Hof 2000). Indeed, numerous authors have 

suggested combined consumption of one or more carotenoids may inhibit the 

uptakelbioavailability of one or both pigments (Gartner et al. 1996; Hageman et al. 1999). 

For example, White et al. (1994) investigated the pharmacokinetics of P-carotene and 

canthaxanthin after individual and combined doses in the serum of human subjects. These 

authors noted that ingestion of a concurrent P-carotene dose reduced the peak serum 

canthaxanthin concentration (ea 39%) and the area under the serum canthaxanthin 

concentration time curve at twenty four (ea 38%) and seventy two (ea. 34%) hours. 

However, this antagonism was not reciprocal, as canthaxanthin did not inhibit the 

appearance of P-carotene. Similarly, combined doses of P-carotene and lutein results in 

reduced serum area under the curve values for lutein (54-61% of controls) in human 

subjects (Kostic et al. 1995). However, lutein reduced the area under the curve value for 

P-carotene in some subjects but enhanced it in others, suggesting individual responses can 

differ markedly. Results from these studies could suggest that; there are specific 

mechanisms for the intestinal carotenoid absorption; there is preferential absorption of 

specific carotenoid groups and/or there is competition between carotenoids for mixed 

micelles incorporation. Clearly, carotenoids do interact with each other during intestinal 

absorption, metabolism and serum clearance. Alternatively, it has been shown in rats that 

the absorption of pro-vitamin A carotenoids e.g. P-carotene may be increased due to other 
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carotenoids ( canthaxanthin and zeaxanthin) inhibiting the action of 13-carotene dioxygenase 

(Grolier et a/.1991). 

Pozo et al. ( 1988) recorded increased deposition of canthaxanthin in the flesh of rainbow 

trout when diets were supplemented with both canthaxanthin and vitamin E suggesting that 

this was a result of vitamin E reducing oxidative degradation of canthaxanthin in the trout 

gut. Similar findings have been shown for astaxanthin and vitamin E in Atlantic salmon 

(Christiansen et al. 1991; Bjerkeng, et al. 1999). Bjerkeng et al. ( 1999a) suggested that 

vitamin E inhibits the catabolism of astaxanthin, hence sparing the compound for 

deposition. 

1.15 Evidence from in vitro studies 

In vitro applications designed for the study of chemical and solute uptake across animal 

intestine have been established for many years (Fisher & Parsons 1949; Darlington & 

Quastel 1953; Wilson & Wiseman 1954) and are favoured by some in comparison to in 

vivo protocols of absorption assessment on both ethical and technical grounds. The only 

work that has been published regarding in vitro salmonid intestinal models and carotenoid 

absorption was a brief experiment carried out by AI-Khalifa & Simpson ( 1988). The 

authors observed the tissue (pyloric caeca and ileal intestine) conversion of astaxanthin 

dispersed in aqueous solution (Tween 20) into vitamin A Although this study indicated 

the usefulness of an in vitro approach, no further studies have investigated the potential to 

develop similar models for salmonids to assess factors that influence absorption and 

subsequently digestibility of astaxanthin. Other in vitro studies that have been published 

on carotenoids are focused on the uptake of 13-carotene in mammalian models (Oison 1964; 

EI-Gorab et al. 1975; Garret! et al. 1999ab). 
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1.16 Aims and Objectives 

The following thesis/project is based on a series of studies and experiments carried out in 

order to meet three general objectives: 

I. Develop methodology to assess carotenoid absorption in salmonids in order to evaluate 

the efficacy of commercially important sources of carotenoid for salmonid 

pigmentation. 

2. To determine what natural characteristics of the green microalga Haematococcus 

pluvia/is (Fiowtow) limit its potential as a dietary source of natural astaxanthin m 

salmonid feeds in comparison to other established synthetic forms of this carotenoid. 

3. To develop a viable in vitro technique to assess the absorption of carotenoids at the 

gastrointestinal level which can then be used to evaluate the influence of abiotic and 

biotic factors which could potentially influence the absorption of carotenoids. 

The first of these objectives was met m a senes of in vrvo investigations where 

measurements of digestibility (Apparent Digestibility Coefficients) and serum (blood) 

absorption of carotenoid were taken and determined for different carotenoid sources 

Furthermore, novel kinetic strategies were developed for analysis of post-prandial serum 

astaxanthin concentrations taken from groups of voluntarily feeding fish. The potential of 

this method for a rapid assessment of carotenoid bioavailability is discussed (see General 

Discussion). 
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The second of the main objectives was again evaluated in a series of in vivo feed trial 

investigations using the rainbow trout as a salmonid model and designed to answer the 

following questions: 

(a) To what extent does the sporopollenin cell wall of Haematococcus pluvia/is limit 

the digestibility and absorption of astaxanthin in rainbow trout? Is rupturing of the 

cell wall sufficient to render pigment available or is complete extraction of the 

carotenoid necessary prior to feed supplementation? 

(b) Is the gastrointestinal tract of rainbow trout effective in the hydrolysis of 

astaxanthin esters and subsequent absorption of astaxanthin? Is there regional 

variation along the intestine in relation to hydrolytic capacity that may present a 

physiological limitation to the use of an esterified source of astaxanthin for the 

pigmentation of salmonids? 

(c) Does the extent of esterification limit the absorption of astaxanthin? 

The final objective was met by evaluating two potential in vitro techniques designed to 

either examine solute uptake and translocation across the intestinal barrier (everted gut 

perfusions) or solute uptake by intestinal tissue (everted gut sacs). 
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CHAPTER 2.0 

GENERAL MATERIALS AND METHODS 

2.1 Experimental Diets-composition and analysis 

The diets used in the nutrition trials were produced by EWOS Technology Centre 

(Livingston, Scotland, U.K.) or Trouw Aquaculture Ltd. (Wincham, U.K.). These basal 

diets were formulated to meet the nutritional requirements of rainbow trout. A typical feed 

pellet size of 2-Smm was employed depending on the starting weight of fish for successive 

experiments. Specific details concerning dietary composition and carotenoid content can 

be found in the Materials and Methods sections of respective studies. 

2.1.1 Preparation of Haematococcus pluvialis feed supplements 

Extraction and isolation of carotenoid fractions i.e. astaxanthin monoesters, diesters or total 

carotenoid extracts from Haematococcus pluvialis spores was performed by the Carotenoid 

Research Group, Liverpool John Moores University, Liverpool. 

A volume (ea. 5ml) of Haematococcus pluvialis culture was centrifuged (MSE Mistral 

1000, Sanyo Gallenkamp PLC., Loughborough, Leicestershire, U.K.) at 1200 X g for Smin. 

The supernatant was discarded and the cells re-suspended in distilled water. The cells 

were then centrifuged ( 1200 X g) again for a further 5min. The supernatant was then 

discarded and the cells were re-suspended in re-distilled acetone. Cells were then carefully 

transferred to a bijou bottle containing 0.5cm diameter glass beads eh full). To ensure 

complete recovery of all cells the centrifuge tube was rinsed with re-distilled acetone into 
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the bijou bottle. The cells were then homogenised for Smin using a tissue homogeniser 

(Status X620, Phillip Harris Ltd., Leicestershire, U.K.). Following homogenisation, the 

sample was filtered through absorbent cotton fibres to remove cell debris. To ensure all 

material was removed, the bijou bottle and the lid were rinsed with re-distilled diethyl 

ether, which was then filtered and added to the sample. The filtrate was dried and stored at 

-20°C until separation of astax.anthin forms by TLC (see below) and spectrophotometric 

quantification of carotenoid content (see below). 

2.1.2 Addition of carotenoid to diets (top coating) 

Some of the experimental diets utilised in the current studies were supplied as basal feeds 

without carotenoid supplementation so that various carotenoid sources could be added in 

controlled amounts to meet target levels. In tllis procedure experimental feeds were placed 

in 3kg batches into a preheated oven (50°C) for 30min. The required amount of 

CAROPHYLL ® Pink (F. Hoffmann-La Roche, Base!, Switzerland) was added to 25ml of 

distilled water and warmed to 40°C in a sonicating water bath until the gelatine matrix had 

dissolved and the pigment had dispersed homogeneously (ea. 10-JSmin). The dispersed 

pigment was then poured into a glass beaker containing the desired quantity of oil 

(calculated according to 26% feed inclusion), plus 90ppm of the antioxidant ethoxyquin. 

The pigment, oil and water were mixed thoroughly using a magnetic stirrer bar for IOmin 

to form an emulsion. Haematococcus pluvialis products were dispersed directly into the 

oil without the addition of water owing to the absence of a gelatine matrix. The resulting 

emulsion was heated on a magnetic stirrer-hot plate to 40°C and then poured slowly and 

continuously onto the warmed experimental feeds whilst being mixed at a steady speed 

(Hobart Feed Mixer, Hobart Ltd., Southgate, U.K.). After all oil had been delivered to the 

feed, the diets were left to mix for a further 20min to ensure complete absorption of 

37 



residual oil. Diets were then left to air dry for 12 hours in the dark before being analysed 

for carotenoid concentration (see below) and bagged for storage at -20°C. 

2.1.3 Protein determination 

The protein content of fish feeds was determined by the Kjeldahl method. Typically 50-

IOOmg of ground feed was weighed into borosilicate digestion tube containing I Kjeldahl 

catalyst tablet (3g K2S04; lOSmg CuS04.SH20 and IOSmg Ti02; Thompson & Capper 

Ltd., Runcorn, Cheshire, U.K.). Concentrated H2S04 (IOml) was then added to each 

borosilicate tube prior to the digestion process. Digestion was performed on Gerhardt 

Kjeldatherm digestion block (Gerhardt Laboratory Instruments, Bono, Germany) for 

30min at 220°C and a further 60min at 380°C. Samples were then removed from the 

heating block and allowed to cool to room temperature (ea. 20°C). 

Samples were then diluted with distilled water and neutralised with 40% NaOH (Gerhardt 

Vapodest Distillation Unit). Following neutralisation, samples were steam distilled and the 

ammonia produced was collected in a 250ml conical flask containing 50ml of saturated 

orthoboric acid (H3B03) plus BDH 4.5 indicator. The resulting distillate was then titrated 

with 0.1M HCL and the percentage protein in the dry sample calculated by using the 

following equation: 

Crude protein(%)= 100 X (S1
- B1 

X 0.10 X 14 X 6.25) 

w 

Where; 

S1 = sample titre (ml) 

B1 = blank titre (ml) 
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W = sample weight (mg) 

0.10 = Molarity ofHCL 

14 = relative atomic mass of nitrogen 

6.25 = factor describing nitrogen to protein conversion 

2.1.4 Lipid determination 

Feed lipid content was determined gravimetrically (following pre-treatment of the feed 

with acid hydrolysis) essentially according to Bligh & Dyer (1959). Ground feed (ea 2g) 

was placed in a polypropylene tube (50ml) and lOml ofHCL (6M) and lOml of methanol 

were added. The tubes were then sealed and placed in the oven for 30min at 70°C. After 

the samples had cooled to room temperature 18ml of dichloromethane (DCM) was added 

before being shaken vigorously and left to stand for a further 60min. The tubes were 

shaken again and then centrifuged (I Omin at 20 I 0 x g) An aliquot of the resultant 

hypophase (I ml) was removed with a glass syringe and placed into a pre-weighed vial. 

The solvent was removed by evaporation under a gentle stream of nitrogen followed by 

heating at l05°C for 1 hour. After the samples had cooled to room temperature in a 

dessicator, the vials were re-weighed and the lipid content of the sample determined from 

the following equation: 

Lipid(%)= 100 X ]8 X 
r i wv -wv Equation (2.2) 

w 

Where: 

wvr = weight of vial final (g) 

wvi =weight of vial initial (g) 

W =weight of sample (g) 
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2. I. 5 Moisture determination 

Determination of moisture m the feed was carried out according to methodology 

previously described (A.O.A.C. 1990). Ground feed samples (ca.5-l Og) were fully dried at 

105°C to a final constant weight in a fan assisted-exhaust oven (Pickstone E 70F; RE 

Pickstone Ltd., Thetford, Norfolk, U.K.). The percentage moisture content was calculated 

using the following equation: 

Moisture(%)= 100 X Wf 

W' 

Where: 

wr =dried weight of sample (g) 

W; = initial weight of sample (g) 

2.1.6 Ash determination 

Equation (2 3) 

Ash content of feed was determined in accordance with A.O.A.C. ( 1990). Ground feed 

(0.45-0.Sg) was accurately weighed into a pre-weighed ceramic crucible and ashed at 

550°C for 12 hours in a muffie furnace (Carbolite GLM 11/7, Carbolite Furnaces Ltd., 

Bamford, Sheffield, UK.). The crucible and contents were then re-weighed and the 

percentage ash content of the sample calculated from the following equation: 

Ash(%)= Equation (2.4) 

w 
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Where: 

er= final weight of crucible and contents (g) 

C; = initial weight of crucible (g) 

W = sample weight (g) 

2.1.7 Energy determination 

The energy values of the experimental feeds were determined by bomb calorimetry 

according to AOAC. (1990}. 

Ground diet (ea. 0.5g) was pressed into a cylindrical pellet attached to a 6cm length of gun 

cotton using a vice and stainless steel pellet press. The pellet was then suspended on a 

nickel wire (attached to anode and cathode to complete the firing circuit) in an adiabatic 

bomb (Gallenkamp and Co. Ltd., Loughborough, U.K). Distilled water (lml) was added 

to the bomb to ensure absorption of combustion gases and the bomb was then assembled 

and pressurised to 30 bar with 100% oxygen. The bomb was then immersed into a 

calorimeter water jacket that inclusive of water weighed 3kg. The initial water temperature 

was then measured twice to ensure that there was no ambient temperature variation, before 

firing the bomb to ignite the combustion gases. The temperature rise of the water jacket 

was accurately recorded every two minutes until a maximum temperature was reached 

(most samples had a typical run time of 8mins) and the temperature rise was calculated. 

The same procedure was repeated for 0.5g of benzoic acid and 0.5g of a benzoic acid 

standard. All analyses were carried out in triplicate. The energy content of the sample was 

then calculated according to the following equation: 
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Energy content (kJ g" 1
) = Equation (2.5) 

Where: 

~1S =temperature change induced by combustion of sample 

~1B =temperature change induced by combustion ofO.Sg of benzoic acid 

E
8 

=energy value ofO.Sg of benzoic acid standard 

W = weight of the sample 

2.1.8 Inert marker analysis 

Yttrium oxide was included in the fish feed as an inert dietary marker (0.1%) and was 

analysed in both feed and faecal samples (following acid digestion) in order to determine 

Apparent Digestibility Coefficients. 

Approximately IOOmg of finely ground (pestle and mortar) feed or faecal material were 

weighed into a closed vessel 120ml teflon RPFA bomb (CEM Instruments, N.C., U.S.A.), 

and IOml of concentrated nitric acid (69%) was added. The teflon bomb was then sealed 

and placed in a digestion microwave (700W MDS-2000, CEM instruments) for Smin at 

lO% power; lmin at 20% power and lOmin at 50% power, followed by a Smin cooling 

period. The samples were then removed from the digestion microwave and allowed to 

cool to room temperature (ea. 20°C). The acid digests were then decanted into a 25ml 

volumetric flask and made to volume with distilled water. Samples were stored in SOml 

polypropylene tubes until Induction Coupled Plasma (ICP) analysis for yttrium content. 

All digestions were carried out in triplicate. 
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Analysis of yttrium was performed on an ICP emission spectrometer (Varian Liberty 200, 

Australia) and calculated on integrated analytical software (ICP AES) by linear correlation 

with external standards of known concentration (10, 20, 40 ppm). The content of yttrium 

oxide in both the diets and associated faeces was then calculated from the molecular 

weight of yttrium oxide and known weight of initial sample. All analyses were carried out 

in triplicate. 

2.2 Nutrition Trials 

2.2.1 Experimental fish 

All female, pigment naive rainbow trout (fed non-pigmented diets) were used in the 

experimental trials. These were hand-graded and obtained from Hatchland's Trout Farm 

(Devon, U.K.). Fish were randomly assigned into groups of 30-40 fish per tank at an 

initial mean weight of85-150g (depending on trial and conditions). 

Atlantic salmon utilised for in vitro everted gut sac experiments (ea. 400-500g) were 

obtained from Lovatt Fisheries (Inverness, Scotland, U.K). Fish were maintained in the 

saltwater system described below. 

2.2.2 Experimental System 

All feed trials were carried out within the aquarium facilities at the University of Plymouth 

(Plymouth, Devon, U.K.). The experimental trout systems consisted of six square 4001 

fibre-glass tanks supplied with re-circulated fresh water at a flow rate of ea_ I OL min·' 

through an external spray bar (maintained unidirectional flow). Outflow and water level 
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were controlled with an internal standpipe. The system was maintained at 15 ± I °C with a 

chiller and temperature controller (R & R Electronics, Cornwall, U.K.) and was kept under 

a 12 hours light/dark photo period regime using artificial light from fluorescent tubes. 

Removable pre-filter media (meshed sponge) was used to trap faecal and other particulate 

matter from outflow water and was washed once per week throughout experimental trial 

periods to prevent excess nitrogen levels in the ambient water. Following this initial 

filtration, water passed through an internal high surface area biofilter consisting of a trickle 

plate and plastic bio-spheres which contained denitrifying bacteria to convert toxic 

ammonia into nitrites and nitrates. In addition, water circulated through a filtration vessel 

containing charcoal filter media in order to maintain optimal water chemistry. 

Atlantic salmon were maintained in re-circulating saltwater systems in tanks with 800L 

capacity and temperature of 12 ± I °C. Water flow, filtration and biofilter systems were 

similar to those described above. Photoperiod was also controlled under artificial light 

with a 16-hour light: 8-hour dark regime. 

2.2.3 Feeding 

Prior to the feeding trial fish were usually acclimated for a minimum of two weeks in 

which time they were sparingly fed rations of commercial unpigmented feed (Trouw 

Aquaculture, Wincham, U.K). 

Typically, each experimental diets was hand fed to triplicate groups of fish one or two 

times daily at a feeding ration of 1-2% BW da/ for an 8-12 week period. Alterations to 

feed quantity were made daily assuming a feed conversion ratio (FCR) of I 0 with 

appropriate adjustments made for mortalities. This feeding ration may have been 
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reassessed for biomass after four weeks (fish were re-weighed) depending on the 

experiment in question. Over feeding was minimised by careful observation of fish 

feeding behaviour. Specific details concerning feeding strategies can be found in the 

Material and Methods sections of respective studies. 

2.2.4 Faecal Stripping 

In order to determine apparent digestibility coefficients (ADC) for astaxanthin, faecal 

material was required from fish. Fish were removed from their respective tanks and 

anaesthetised in a 200mg ml" 1 solution ofphenoxy-2-ethanol (Sigma, Poole, Dorset, U.K.) 

in domestic mains water. Once sufficiently anaesthetised, faecal samples were stripped 

from the fish by applying gentle pressure along the ventral abdominal region according to 

Austreng (1978) and collected in metallic trays. Faecal samples for whole groups/tanks of 

fish were pooled to provide a sufficient quantity of dried material for carotenoid analysis. 

The pooled samples were immediately frozen ( -20°C) for I h before being freeze-dried for 

a minimum of 24 hours to remove moisture. Samples in the freeze dryer were shielded 

from ambient light by using a black plastic covering_ Once dry, the samples immediately 

underwent carotenoid extraction (see below). 

2.2.5 Blood Sampling 

Serum carotenoid concentrations were routinely used as an indicator of carotenoid 

absorption in the nutrition feed trials. Carotenoid concentration was measured in serum in 

preference to plasma due to a I 0% increased carotenoid recovery (Nierenberg 1984; 

Stacwicz-Sapuntzakis et al. 1987) Fish were first anaesthetised in a 200mg mr1solution 

of phenoxy-2-ethanol (Sigma, Poole, Dorset, U.K.) in tap water. Blood was then taken 

45 



from the caudal vein of the fish using a 2ml non-heparanised disposable syringe equipped 

with 23.5 gauge needles (Becton Dickinson, Dublin, Ireland) and placed in 2ml eppendorf 

tubes. Blood samples were permitted to clot for 24 hours at +4°C before being centrifuged 

at 13000 x g (Micro-Centaur MSB010.CX2.5, Sanyo Gallenkamp PLC, Uxbridge, U.K.) 

for 15min to separate out blood serum. 

2.3 Assessment of growth and feed utilisation 

A number of parameters were used to define the growth performance and utilisation of 

feed by fish at the end of the nutrition trials. These were as follows: 

2.3.1 Specific Growth Rate (SGR) 

Specific Growth Rate (SGR) describes the daily growth of fish and is defined as the 

percentage increase in live weight over a certain period of time: 

r . 
I 00 x In w - In w' Equation (2.6) 

T 

Where: 

r 
w = final weight (g) 

w; = initial weight (g) 

T =trial duration (days) 
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2.3.2 Feed Conversion Ratio 

The feed conversion ratio (FCR) describes the amount of feed consumed that results in live 

weight gain. Alternatively, it indicates the extent to which feed is utilised for growth: 

FCR= Equation (2. 7) 

LW 

Where: 

Lf= total amount offeed fed 

LW = total biomass gain 

2.4 Carotenoid analyses 

2.4.1 Conventions adopted 

Due to the reactive nature of carotenoids a number of precautions as described by Schiedt 

& Liaaen-Jensen (1995) were taken to avoid the breakdown of the compounds during 

extraction and analysis: 

• All procedures were carried out under red/subdued ambient light. Reactions were 

carried out in darkness and equipment such as freeze-dryers were covered in a black 

lining. 

• Since high temperatures promote carotenoid isomerisation, high temperatures and 

extreme temperature fluctuation were avoided by carrying out reactions at room 

temperature or below. Solvents with low boiling points were used so that 
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concentration of samples in solvent could be performed in water baths with 

temperature not exceeding 40°C. Smaller sample volumes were evaporated with a 

gentle stream of nitrogen. All dried samples were stored under a blanket of nitrogen at 

-20°C. 

• Contact of samples with acids and alkalis was avoided by preventing the use of 

strongly acidic reagents and alkalis in the laboratory during routine carotenoid 

extraction and analyses. 

• All solvents used for the quantification and analysis of carotenoids in samples were of 

HPLC grade. Other materials used throughout the studies were at least of ANALAR 

grade if not higher depending on availability and supply. The addition of antioxidants 

i.e. butylated hydroxytoluene (BHT, 2,6-di-t-butyl-p-cresol) to solutions (namely 

methanol) during extraction was routine. Dichloromethane was used regularly in place 

of chloroform due to the high solubility of carotenoids in this solvent. 

• Pipettes and other instrumentation were regularly calibrated before use. 

• Carotenoid standards were prepared on a frequent basis to avoid artefact formation 

resulting from oxidation or isomerisation. 

2.4.2 Extraction from Feed and Faeces 

The feed and faeces extraction technique incorporated procedures fi·om the methods of 

Weber ( 1988) and Bligh & Dyer ( 1959). Approximately 4g (± 0.2g) of finely ground 

(Braun blender, Braun Consumer Service, Isleworth, Middlesex, U.K.) feed was placed in 

a 50 m I polypropylene conical tube containing I OOmg of Maxatase (P-3000 encapsulated, 

International Biosynthetics, Rijswik, Netherlands). Distilled water ( 15ml) was added to 

the sample, which was then vortexed for 30 seconds. The tube and contents were placed in 

a preheated (50°C) sonicating water bath for 35min, ensuring that the sample was vortexed 
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vigorously every 5min. The sample was then removed from the heated bath, placed in the 

dark, and allowed to cool to ambient temperature (ea. 20°C). Methanol (15ml+500ppm 

BHT) and dichloromethane ( 12ml) were added to the sample which was again vortexed. 

The sample was then centrifuged (2010 X g) for 15min at 5°C An aliquot (lml) of the 

resultant hypophase was pipetted into an amber vial and blown down under a gentle stream 

of nitrogen. Feed samples were re-suspended in hexane (4ml), carefully decanted into 

sealable eppendorf tubes, and centrifuged (Micro-Centaur MSBOIO.CX2.5, Sanyo 

Gallenkamp PLC, Uxbridge, U.K) at 13 000 x g for 5min to precipitate insoluble lipid 

prior to carotenoid quantification. Faecal samples were subjected to the following semi

purification process due to the presence oflarge amounts of insoluble matter. 

A preparative chromatography column was assembled by filling a disposable pasteur 

pipette (15cm) with a slurry ofn-hexane and silica gel (K.eiselgel60 GF254) supported on a 

glass wool wad. The pipette was then attached to a glass quick-fit water vacuum assembly, 

and filled with n-hexane to further moisten the silica packing. Carotenoid extracts from 

faeces were re-suspended in n-hexane (2ml) and transferred to the top of the column with a 

pasteur pipette This procedure was repeated several times to ensure all carotenoid had 

been transferred to the column. Lipids and beta-carotene were eluted from the extracts by 

running 20ml of 6% ether in hexane through the column under vacuum. Insoluble material 

present in the faeces precipitated at the top of the column packing. Carotenoids were then 

eluted with lOml of 100% ether and collected in a 20ml glass tube. Purified extracts were 

blown down under a gentle stream of nitrogen and stored at -20°C in amber vials prior to 

analysis. 
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2.4.3 Extraction from serum 

500fll of serum was pi petted into a 3ml glass Bijou bottle containing I ml of ethanol 

(precipitates protein). After mixing, I ml of diethyl ether and I ml of n-hexane were added 

to the sample, which was then mixed again. Samples were sealed and allowed to stand in 

the dark for I Omin to ensure efficient carotenoid extraction. The resultant hyperphase was 

pipetted (500~-tl) into an amber vial and then evaporated under a gentle stream of nitrogen. 

Samples were stored at -20°C prior to analysis by High Performance Liquid 

Chromatography (HPLC). 

2.4.4 Extraction from fish muscle 

The flesh extraction method utilised was a modified version of the procedure described by 

Bjerkeng et al. (1997) Rainbow trout fillets were de-skinned and pooled into groups (5 

fillets per group) The pools of flesh were then diced and placed in a blender (Waring 

blender, Phillip Harris Ltd., Leicestershire, U.K.) and homogenised into a fine paste 

consistency. Approximately 5g of this homogenate was placed in a SOml polypropylene 

tube to which Sml of distilled water and 5ml of methanol (containing SOOppm BHT) was 

added. The contents of the tube were then homogenised (Status X620, Phillip Harris Ltd , 

Leicestershire, U.K.) before the addition of ISml of dichloromethane. The tube and 

contents were then mixed vigorously for 30 seconds and placed in the dark for I Omin The 

tube and contents were then shaken vigorously for a further 30 seconds and then 

centrifuged (20 I 0 X g) at 5°C for IS min. An aliquot of the resultant hypo phase (3 ml) was 

withdrawn with a glass syringe and dispensed into a 4ml amber vial before being 

evaporated under a gentle stream of nitrogen Samples were then stored at -20°C prior to 

HPLC analysis. All analyses were carried out in duplicate. 
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2.4.5 Extraction from liver and gastrointestinal tract 

Fish livers were excised from the fish and homogenised whole (Uitra-turrax T8, IKA 

Labortechnik, Staufen, Germany) into a slurry from which 2g was used for carotenoid 

extraction. Samples of gastrointestinal tract (0.5-I.Sg) were taken according to the 

gastrointestinal region represented. All samples were placed in 20ml scalable glass vials 

and homogenised (Status X620, Phillip Harris Ltd., Leicestershire, U.K.) with 2ml of 

distilled water and 2ml of methanol (+500ppm BHT) for 30 seconds. Dichloromethane 

(6ml) was then added to the vial contents, which were then mixed vigorously for a further 

30 seconds. Vials were placed in the dark for 1 Omin to ensure complete extraction of 

carotenoid. Samples were removed from the dark, vortexed for a further 30 seconds and 

then centrifuged at 2010 X g for 15min at 5°C. An aliquot ofthe resultant hypophase (Jml) 

was withdrawn with a glass syringe and dispensed into a 4ml amber vial before being 

blown down under a gentle stream of nitrogen. Samples were stored at -20°C until HPLC 

analysis 

2.4.6 Extraction from skin 

Extraction of carotenoids from skin was as described by Schiedt et al. ( 1995). Frozen skin 

samples (I 00-200g) were cut with scissors and dehydrated with twice the quantity of 

anhydrous MgS04 for 30min. The sample was then covered in acetone and homogenised 

(Waring blender, Phillip Harris Ltd , Leicestershire, UK.) before filtration through a glass 

filter (porosity 2). The skin samples were re-extracted with two more volumes of acetone 

to ensure complete carotenoid recovery. The acetone was then evaporated from the sample 

using a rotary evaporator to leave a dry lipid-carotenoid residue. 
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The free polar carotenoids were then separated from less polar material (incl. carotenoid 

esters and fat) by partition between dimethyl sulphoxide (DMSO) and hexane ( 1: I v/v). 

The lipid extract of the skin was dissolved in an appropriate volume of hexane to give a 

5% solution (w/v) to which an equal volume of DMSO was added. Free astaxanthin 

(100%) partitioned into the DMSO phase and 90-95% of the lipid remained in the hexane 

phase that also contained xanthophyll esters. The two phases were then separated and the 

hexane phase was washed with water whilst adding small amounts of ethanol to prevent 

emulsions forming, before being evaporated. Carotenoids were re-extracted from the 

DMSO phase by first adding distilled water, saturated NaCI solution and ethanol to give a 

mixture ofDMSO: water: NaCI solution: ethanol of I :0.55: 0.25: I. Carotenoids were then 

extracted from the mixture with 2 to 3 volumes of ether/hexane (I : I) until colourless. The 

ether/hexane extract was then washed with water before being evaporated to dryness. 

2.4.7 Separation of pigments -Thin-Layer Chromatography (TLC) 

TLC was carried out to determine the percentage contribution of diesters and monoesters 

of astaxanthin as well as free astaxanthin in the Haematococcus pluvialis products, diets 

and faeces. TLC on the product itself as well as some diets was performed at Liverpool 

John Moores University. TLC identification of carotenoid species in faecal material was 

carried out at the University of Plymouth 

For semi-preparative work O.Smm thick self-prepared TLC plates were used. Commercial 

aluminium backed plates (Merck, Silica gel 60 GF2s4) were used for analytical studies to 

ensure high resolution and accurate determination of Rf values for the constituent 

carotenoids. Normal-phase silica TLC was used for all analytical and preparative work 
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Semi-preparative plates were prepared by adding 60g of Kieselgel 60 GF
254 

to 120mi of 

distilled water. The mixture was then shaken vigorously to form a slurry (quantity 

sufficient for the preparation of five, 20x20cm silica plates)_ Using a plate spreader the 

silica slurry was applied to acetone-washed glass plates at a thickness ofO.Smm_ The plates 

were then dried at 120°C for at least three hours prior to use. To prevent tailing of 

carotenoids plates were acidified with solution of2.S% (w/v) citric acid in methanol. Once 

coated the plates were allowed to dry fully before any sample was applied_ 

To separate pigments and astaxanthin forms an origin line was drawn approximately LScm 

above the bottom edge of the plate_ The sample was then re-suspended in a small volume 

of re-distilled diethyl ether and then applied to the plate along the origin This was 

achieved by using a capillary tube or a drawn-out Pasteur pipette. The TLC plate was then 

placed in a developing tank containing acetone in n-hexane (30/70 v/v) and the tank 

covered in a dark cloth. Once developed, the plate was removed from the tank and the 

solvent front marked. The colour and Rf value of each pigment band was recorded. The Rf 

value of each band was calculated using the following equation: 

Rf= X I y Equation {2 8) 

Where: 

x =distance of band from origin 

y =distance of solvent front from origin 

Where available, appropriate carotenoid standards (kindly donated by Hoffmann La Roche, 

Basel, Switzerland) were co-chromatographed with the sample. Rf values were lutein 
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(0.34); free astaxanthin (0.37); astacene (0.43); astaxanthin monoesters (0.47); 

canthaxantbin (0.48); astaxanthin diesters (0. 79); J3-carotene (0. 98). 

Starting with the lowest Rf value, each band was rapidly scraped off of the plate and 

placed in a small glass sinter. Carotenoid was removed from the silica under vacuum by 

the addition of a small volume of di-ethyl ether and collected in a 20ml glass tube. The 

sample was then decanted into a 4ml amber vial ensuring the glass tube was washed with 

small volumes of ether. Samples were then blown down under a gentle stream of nitrogen 

and stored at -20°C. Samples were analysed for astaxanthin content 

spectrophotometrically (see below). 

2.4.8 Preparation of carotenoid standards 

To prepare an astaxanthin standard approximately 3mg of crystalline astaxanthin (Sigma, 

Poole, Dorset, U.K.) was carefully weighed into a lOOm! amber volumetric flask. 

Choloroform (IOml) was then added to the flask and the solution briefly sonicated The 

solution was then made to volume with n-hexane and the solution gently everted several 

times to ensure homogeneity. An aliquot of this solution (Sml) was then pipetted into a 

second I OOml amber volumetric flask containing 4ml of chloroform and was made to 

volume with n-hexane (n-hexane: chloroform; 95.5:4.5). This solution was used as the 

external standard. The standard was stored at sac prior to concentration determination 

when it was brought to room temperature and again sonicated. 

To prepare a canthaxanthin standard approximately 3mg of crystalline canthaxanthin 

(Sigma, Poole, Dorset, U.K.) was carefully weighed into a I OOml amber volumetric flask. 

I Oml of chloroform was then added to the flask and the solution briefly sonicated. The 
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solution was then made to volume with n-hexane and the solution gently everted several 

times to ensure homogeneity. An aliquot of this solution (5ml) was then pipetted into a 

second amber 100ml volumetric flask containing 4ml of acetone and was made to volume 

with n-hexane (n-hexane: chloroform: acetone; 95.5:0.5:4.0). This solution was used as 

the external standard. The standard was stored at 5°C prior to concentration determination 

when it was brought to room temperature and again sonicated 

2.4.9 Spectrophotometric carotenoid quantification 

Some samples (namely feed and faecal samples) were assessed for carotenoid 

concentration using a UV-Vis spectrophotometer (Helios, UNICAM Ltd., Cambridge, 

U.K.). Samples were assessed for astaxanthin (unesterified, monoester or diester) at 

M70nm in n-hexane using an El% I cm of 2100 (Britton 1995). Corrections were made for 

absorption contributed by carotenoids other than astaxanthin (determined following 

separation of carotenoid extracts by TLC). Furthermore, background absorption 

contributed by other dietary ingredients was corrected for by carrying out extractions and 

quantification on basal feed (non-carotenoid supplemented). HPLC confirmed that basal 

feeds did not contain significant quantities of carotenoids (<I ppm). 

Astaxanthin and canthaxanthin standards were measured at 470nm (E1% I cm = 21 00) and 

466nm (El% I cm= 2260), respectively against suitable blanks. Determination of carotenoid 

concentration was carried out using the following formula: 

Carotenoid concentration (~tg m!" 1) = Absorbence at A.max x I 0000 Equation (2.9) 

55 



Where: 

A.max = wavelength corresponding to maximum absorption for a carotenoid in a particular 

solvent 

El% lcm =Extinction coefficient for a specific carotenoid in a particular solvent. 

2.4.1 0 High Performance Liquid Chromatography (HPLC) Analysis 

Two different HPLC stationary phases were employed for carotenoid analysis throughout 

the experimental trials. Blood (serum) and flesh samples were analysed using nitrile and 

silica stationary phases, respectively. Figure 2.1 illustrates typical chromatograms 

produced using both stationary phases. 

The isocratic HPLC system comprised a Spherisorb SS-CN nitrile column (Phenomenex, 

Cheshire, U.K.; length 250mm; internal diameter 4.6mm; particle size Sf.!m) with 20% 

acetone in hexane as mobile phase (l.Sml min- 1 flow rate). Alternatively, a Lichrosorb 5-

SIL 60A column (Phenomenex, Cheshire, U.K.; length 125mm; internal diameter 4mm; 

particle size Sf.!m) with 14% acetone in hexane as mobile phase (1.2ml min- 1 flow rate) 

was used. These were coupled with a P332 single channel detector and 325 pump 

(Kontron Instruments, Watford, Hertfordshire, U.K.). The detector wavelength was 

maintained at 470nm for a 12min run time throughout analysis of all samples, where all-£ 

astaxanthin exhibited a retention time of ea. 7 or llmin on the nitrile and silica columns, 

respectively. Kontron Kroma 2000 software was utilised to integrate samples against 

external carotenoid standards. 
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Figure 2.1 Typical HPLC chromatograms of all-trans-astaxanthin (standard) on a (a) 

nitrile (retention time ea. 7min) and (b) silica column (retention time ea. llrnin). A typical 

spectral scan of an astaxanthin standard (A.max 470nm) has been included in chromatogram 

(b). 
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2.5 Assessment of carotenoid absorption and utilisation 

2.5.1 Apparent Digestibility Coefficient (ADC) 

The ADC value can be calculated to indicate the percentage of a particular ingredient or 

additive that has been absorbed by an animal from ingested feed. The ADC for astaxanthin 

was calculated using the following equation by utilising yttrium as a non-absorbable 

marker in the feed: 

ADC(%)= 100- 100 X [ ~ J X [ ::. J 
Where: 

dyt= yttrium concentration in the diet (mg kg-1
) 

r' =yttrium concentration in the faeces (mg kg- 1
) 

t'" = astaxanthin concentration in the faeces (mg kg- 1
) 

dax = astaxanthin concentration· in the diet (mg kg- 1
) 

2.5.2 Flesh Retention 

Equation (2. I 0) 

Calculation of astaxanthin retention is an indicator of the percentage of astaxanthin fed that 

is actually retained in the fish muscle. The relative net apparent retention (NAR) of 

astaxanthin can be determined from initial and final flesh astaxanthin concentrations, the 

accurate determination of feed intake and biomass gain_ The ratio of 0.61 is applied to the 

biomass to compensate for the muscle to live weight ratio: 
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NAR (%) = (0.61 X v/ X Fax)- (0.61 X W X lax) 

Where: 

wf = final biomass 

wi = initial biomass 

Lf X d .. 

lax= mean initial flesh astaxanthin concentration (mg ki1
) 

Fax= mean final flesh astaxanthin concentration (mg kg- 1
) 

Lf = total feed fed 

dax =dietary astaxanthin concentration (mg kg- 1
) 

2.6 Statistics 

Equation (2. 11) 

Statistical evaluation of data was performed using the software package StatGraphics Plus 

4.0 (Manugistics Inc., Rockville, Maryland, US.A.). Regression analysis accompanied by 

graphical r~presentation was generally carried out using SigmaPlot 4.0 (SPSS Inc., 

Chicago, Illinois, USA). Specific details concerning statistical analyses of different data 

sets are presented within individual studies 
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CHAPTER 3.0 

THE SPOROPOLLENIN CELL WALL OF HAEMATOCOCCUS PLUVIALIS: 

EFFECTS ON ABSORPTION AND DEPOSITION OF ASTAXANTHIN IN 

RAINBOW TROUT. 

3.1 Introduction 

Distinctive colouration of farmed salmonid flesh owing to the dietary supplementation of 

carotenoids in salmonid feeds is critical for consumer acceptance (Torrissen et al. 1990). 

Subsequently, salmon farmers strive to achieve the market demand for a fish muscle 

astaxanthin concentration of between 6-7 mg kg·1 (Torrissen & Christiansen 1995). 

Carotenoid-containing products such as krill (Mori et al. 1989; Torrissen et al. 1989); 

shrimp wastes and oil extracts (Saito & Regier 1971; Torrissen et a! 1989); crayfish oil 

extracts (Peterson et a! 1966); red crab wastes and oil extracts (Spinelli et a! 1974; 

Spinelli & Mahnken 1978) as well as the yeast Pha./fia rhodozyma (Johnson et a! 1977) 

have been used successfully as feed supplements to pigment salmonids. 

The microalga Haematococcus pluvialis (Flowtow) is also a natural source of astaxanthin. 

This algae possesses the ability to accumulate large amounts of carotenoid (Choubert & 

Heinrich 1993) typically associated with the formation of aplanospores or cysts when the 

algae is subjected to growth limiting conditions e.g. depletion of nitrogen in the growth 

medium and/or exposure to high irradiances (Boussiba & Vonshak 1991; Harker et al. 

1996a). These cysts are similar to those found in many microalgae and in pollen from 

higher plants (VanWinkle Swift & Rickoll 1997) Furthermore, these cysts are surrounded 
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by a tough sporopollenin cell wall that renders them resistant to chemical attack (Good & 

Chapman 1979; Burczyk 1987) to KOH and acetolysis, but they can be attacked by 

chromic acid. Indeed, resistance to acetolysis is used in part to characterise such cell walls. 

Subsequently, these cell walls may impede absorption of carotenoid once ingested by an 

animal (Johnson & An 1991). Indeed, several studies have demonstrated comparatively 

poorer pigmentation efficiency when using Haemalococcus pluvialis as a source of 

astaxanthin with reference to the commercial synthetic source, CAROPHYLL ® Pink 

(Sommer et al. 1991; Sommer et al. 1992; Choubert & Heinrich 1993). In all cases poorer 

pigmentation was in part explained by reduced bioavailability of carotenoid as a direct 

result of the encysted cell wall. 

Several methods have been proposed to disrupt algal cells (Farrow and Tabenkin 1966; 

Ruane 1977; Nonomura 1987) although most methods are not very efficient for disrupting 

the sporopollenin wall of Haematococcus cysts. Methods that have been evaluated include 

cryogenic grinding (Burbrick 1991) autoclaving and homogenisation (Mendes-Pinto et al. 

200 I) It is important to consider the efficiency of such processing techniques with regards 

to homogeneous treatment of the sample and subsequently the bioavailability of 

astaxanthin for salmonid pigmentation. 

The following study is a description of two experimental feed trials designed to assess the 

degree to which cell wall encapsulation affects the digestibility, absorption and final flesh 

deposition of astaxanthin in rainbow trout. The first of these was designed to assess 

whether removal of the cell wall is necessary prior to feed supplementation in order to 

achieve satisfactory absorption and deposition of astaxanthin compared to the synthetic 

source. The second experiment investigated the potential of a confidential (patent 
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pending) cell wall cracking procedure at two different levels on the relative bioavailability 

of pigment again compared to the synthetic form of astaxanthin. 

3.2 Materials and Methods 

3.2.1 Experimental design 

In the following experiments each dietary treatment was assigned to triplicate tanks 

containing groups of fish. Subsequently, each tank is considered as a replicate (n=3). 

Following sampling and analysis of individual fish tissues, statistical comparison of results 

between treatments was based on mean values from each tank (n=3) to avoid pseudo

replication and false interpretation of results (Morris 1999). 

3.2.2 Basal Diets 

For both experiments, the basal feeds containing no added carotenoid and formulated to 

meet the nutritional requirements of rainbow trout were supplied by Trouw Aquaculture 

Ltd. (Wincham, UK). Table 3.1 outlines the dietary ingredients and proximate composition 

of the diets. 

3.2.3 Experimental diets (Experiment 1) 

Three experimental diets were utilised with an astaxanthin concentration target of 60ppm. 

Diet A contained the synthetic source of astaxanthin, CAROPHYLL ® Pink (F Hoffmann 

La Roche, Base!, Switzerland). Diet B was supplemented with a commercially available 

source of Haematococcus pluvialis (NatuRose, Cyanotech Corporation, Kailua-Kona, 
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Hawaii, U.S.A.) and Diet C contained a total carotenoid extract that had been extracted 

from Haematococcus pluvialis cells. Mechanical extraction of algal pigments prior to 

dietary supplementation was performed as described in Chapter 2 (section 2.1.1 ). Pigment 

sources were added to the pre-pelleted feed with additional oil (cod liver oil; Seven Seas 

Ltd, Hull, U.K.) in a top coating procedure (section 2. 1.2) to bring the diets to a 

commercial level of 26% oil. Carotenoid extraction and analysis of feeds was carried out 

as described previously (section 2.4.2). Thin layer chromatography was performed on feed 

extracted pigments to determine relative percentage contributions of astaxanthin forms 

(monoester, diester, unesterified) according to Kobayashi et al. (1991; see section 2.4 7) 

Table 3.2 outlines the astaxanthin composition of each diet. 

3.2.4 Fish, feeding and sampling (Experiment I) 

Rainbow trout (98.1 ± 0.4g) were obtained from Hatchlands Trout Fisheries (Devon, UK) 

and randomly assigned into individual tanks (40 fish per tank), maintained at l5°C under a 

12h light/dark photoperiod. Triplicate groups/tanks of fish were fed either experimental 

diets in a single morning ration (1.2-1.5% BW da/) for 10 weeks days with alterations 

made daily assuming a feed conversion ratio of 1.0. Flesh fillets were taken from trout at 

week 4 (5 fish per tank) and at the end of the trial (I 0 fish per tank) for carotenoid analyses 

(see section 2.4.4). The perceived colour of these fillets was also determined using the 

colour graded SalmoFan™ (F. Hoffmann-La Roche Ltd, Base!, Switzerland). Three 

individuals made separate determination for each fillet under artificial ambient light. Fish 

were also anaesthetised and stripped of faecal material (Austreng 1978) at week 8 of the 

trial. Faeces were pooled per replicate, freeze-dried and analysed for carotenoid and inert 

marker concentrations (see sections 2.1.8, 2.4.2 and 2.4. 9). 
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At week I 0, feeding of the experimental diets ceased but fish were fed for a further 4 days 

on a non-pigmented diet (same basal formulation as in Table 3.1} to permit blood clearance 

of astax:anthin (March et al. 1990}. Fish were then fed a single ration (1.3% BW day"1
} of 

the respective pigrnented diet and blood samples were taken (see sections 2.2.5) from fish 

(5 fish per tank) at five time intervals up to 24h post feeding for carotenoid analyses 

(section 2.4.10). 

3.2.5 Experimental diets (Experiment 2} 

Encysted-astax:anthin rich cells of Haematococcus pluvialis were broken using pressure 

treatment (details confidential-patent pending; A J Young pers. Comm). A wet slurry of 

freshly harvested cells were exposed to two different pressures (5000 and 20000psi). At 

the lower pressure (5000psi) the algal cell wall was ruptured (cell remained largely intact) 

and at the higher pressure (20000psi) the cell was fully disrupted with no cell structure 

remaining (determined histologically; see below). Ethoxyquin (I OOppm) was carefully 

mixed with the cell slurry following cracking and prior to spray drying (Lab Plant SD-05 

laboratory spray dryer). Analysis of carotenoid content and composition of the cracked 

products (before and after drying) revealed ea. 100% recovery of astaxanthin, with no 

detectable formation of astacene (an indicator of oxidised astax:anthin). 

Four experimental diets were utilised with an astaxanthin concentration target of 60ppm. 

Diet CP contained the synthetic source of astaxanthin, CAROPHYLL ® Pink (F. Hoffmann 

La Roche, Basel, Switzerland). Diet 5000 was supplemented with Haematococcus 

p/uvialis cracked under low pressure. Diet 20000 contained Haematococcus pluvialis cells 

cracked under high pressure and Diet NAT contained a commercially available source of 

Haematococcus pluvialis (NatuRose, Cyanotech Corporation, Kailua-Kona, Hawaii, 
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U.S.A.). Addition of pigment sources, carotenoid extraction, TLC and analysis was carried 

out as described previously. Table 3.3 outlines the astaxanthin composition of each diet. 

3.2.6 Fish, feeding and sampling (Experiment 2) 

Rainbow trout (106.2 ± O.lg) were randomly assigned into individual tanks (30 fish per 

tank). Triplicate groups of fish were fed experimental diets in a single morning ration (1.2-

1.5% BW da/) for 8 weeks with alterations made daily assuming a feed conversion ratio 

of 1.0. On the final day of the trial fish were stripped of faecal material (Austreng 1978) 

which was freeze dried and then analysed for carotenoid and inert marker concentrations 

(as described previously). Flesh fillets were taken from all fish (30 fish per tank) at the end 

of the trial for carotenoid analysis. 

3.2.7 Electron Microscopy 

Aplanospores of H. pluvialis (produced by a combination of nitrogen-deprivation and 

exposure to high irradiances) cracked under different pressures and cells of H. pluvialis 

from the NatuRoseTM product were examined by scanning electron microscopy using a 

JEOL JSM-840 microscope (Welwyn Garden City, U.K.) at an accelerating voltage ofi-

15KV. The samples were lyophilised (Chris Alpha 1-4, B-Braun Biotech lntl., Epsom, 

U.K.) at -52°C, and coated with a thin gold-palladium film (I 0-1 Snm) using a Polaron 

E5000 sputter unit (Thermo VG Scientific, East Grinstead, U.K.). Figure 3.1 shows 

magnified pictures of the various cracked cells taken using electron microscopy. 
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3.2.8 Statistical analysis 

Data were subjected to tests for normal distribution (standardised skewness and kurtosis) 

and variance checks (Cochrans and Barlett's test) before comparison. Net apparent 

retention (NAR) of astaxanthin was calculated according to Torrissen ( 1995) incorporating 

a flesh to body weight ratio of 0.61 (Wathne et al. 1998). Statistical analysis and 

regression/curve fitting of data was carried on StatGraphics Plus 4.0 and SigmaPlot 4.0, 

respectively. Flesh astaxanthin concentrations, NAR and apparent digestibility coefficients 

(ADC) were compared across treatments using the analysis of variance at the 95% 

confidence limit. 

3.2.9 Kinetic modelling 

After ingestion of a single meal the time course of serum astaxanthin concentration shows 

two phases: a Jag phase followed by the uptake phases. The following simple model was 

used to describe these kinetics. 

k, 

a b c 

In this model c represents the serum astaxanthin concentration, and the first order rate 

constants, k, and k2 apply to the lag and uptake phases, respectively. The following set of 

ordinary differential equations (3.1, 3.2 and 3.3) are derived from the model: 

da = -k,·a 

dt 

Equation (3 .1) 
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Equation (3.2) 

dt 

Equation (3.3) 

dt 

These were solved using Maple 6 (Waterloo Maple Inc., U.S.A.), using the limit values: a 

= a 0 at t = 0; b = 0 at t = 0; and c = Co at t = 0. Equation (3.4) shows the relationship 

between c and time, f. 

c = a+ c- k2 kt a (el-t ktl!.kt -e(-k2 tVk2) Equation (3.4) 

Equation (3.4) was fitted to the time courses of serum astaxanthin concentration using 1he . 

simplex method (Ebert et al. 1989). The maximum uptake rate of astaxanthin in each case 

was calculated using the best-fit values for k2, ao, and eo by multiplying k2 by (ao +eo). 

3.3 Results 

Within an experiment, no significant differences (P>O.OS) were recorded for mean feed 

conversion ratios (FCR) or specific growth rates (SGR) for rainbow trout between dietary 

treatments (Table 3.4). Although the initial starting weights of trout were similar in both 

experiments (ea. IOOg) fish fed diets in Experiment 2 displayed lower FCR (ea. 0.8) and 

higher SGR (ea 1.5) values than those fish fed in Experiment I (ea 0.1 and 12, 
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respectively) suggesting more efficient growth. This is supported by the increase in live 

weight of fish over time for fish in Experiment 1 (mean ftnal weight 286.7 ± 2.3g; ea. 29g 

week"1
) compared to fish in Experiment 2 (mean final weight 265.5 ± 1.8g; ea. 33g week· 

1
). Furthermore, fish in Experiment 1 grew at a slower rate between weeks 0-4 ( 17.3 ± 

0.2g week.1
) compared to weeks 4-10 (20.0 ± 0.3g week.1

; n=3, ±SEM) with an average 

wet weight of 167.2 ± 0.6g for fish at week 4. 

In Experiment I, no significant differences (P>0.05) were noted between mean apparent 

digestibility coefficients (ADC) for astaxanthin across dietary treatments (Table 3.5) with 

all mean values between 73-75% (n=3). Similarly, no significant differences were 

recorded between mean ADC values for astaxanthin across dietary treatments in 

Experiment 2 with mean ADC values between 59-70% (n=3). Mean ADC values for 

astaxanthin in Experiment I were notably higher than those in Experiment 2 for similar 

dietary treatments e.g. Diet A (73.6 ± 0.7) and Diet CP (69.1 ± 4.6) although this 

difference was not significant (P>0.05; n=3, ±SEM). 

In Experiment 1, no significant differences (P>0.05) were recorded between final muscle 

astaxanthin concentrations in rainbow trout fed the diet supplemented with unesterified 

astaxanthin, Diet A (6.2 ± 0 611g g" 1
), Haematococcus p/uvialis, Diet 8 (6.0 ± 0.51lg g· 1

) or 

cell free carotenoid extract, Diet C (5.2 ± O.l11g g"1
; n=3, ± SEM) (Figure 3.2) Similarly, 

no significant differences (P>0.05) were found between final NAR values for fish fed Diet 

A (11.3 ± 1.1%), Diet 8 (10.3 ± 1.3%) or Diet C (9.4 ± 0.6%). However, in Experiment 2 

the final mean muscle astaxanthin concentrations in rainbow trout were significantly 

higher (P<0.05) in fish fed Diet CP (2.8 ± 0.211g g" 1
) compared with those fed Diet 5000 

(2.3 ± O.I11g g" 1
) and Diet 20000 (2.3 ± 0.111g g"1

), but not significantly higher than those 
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fish fed Diet NAT (2.5 ± 0.2Jlg g-1
; n=3, ±SEM). In confirmation of this, the mean NAR 

values for Diet CP (7.2 ± 0.4%) were also significantly higher than those noted in fish fed 

Diet 5000 (4.2 ± 0.1%) and Diet 20000 (3.9 ± 0.1%), although were not significantly 

higher than the mean retention values recorded in fish fed Diet NAT (5.0 ± 0.4%). 

Examination of flesh astaxanthin concentrations after 4 and I 0 weeks of feeding in 

Experiment I show a positive increase in deposition over time (Figure 3.3). Furthermore, 

the rate of astaxanthin deposition was notably greater in the second half of the trial (weeks 

4-10) compared to weeks 0-4 where fish fed Diet A, Diet B, and Diet C only deposited I.J 

± 0 2Jlg g- 1
; I.J ± 0. IJ.!g g- 1 and 1.1 ± 0 04Jlg i 1 of astaxanthin, respectively (n=3, ±SEM). 

No significant differences (P>0.05) were perceived in coloration between the fillets of fish 

fed the different dietary treatments (assessed using the SalmoFanTM) with a range of 25-31. 

Evaluation of the relationship between Sa/moFanTM score and flesh concentrations of 

astaxanthin for fish taken at weeks 4 and 10 in Experiment I (Figure 3.4) demonstrated a 

significant relationship (P<O.OOI) between the two measurements. However, the 

correlation coefficient between the two parameters (0.80) only indicated a moderately 

strong association. 

Examination of the serum astaxanthin concentrations in fish fed a single meal of either of 

the experimental diets (Figure 3. 5) suggested significant quantities of astaxanthin were still 

present in the semm of fish at time 0 (ea. 0.8-IJlg mr 1
) despite feeding fish non-pigmented 

feed for four days. Nevertheless, kinetic assessment of maximum serum astaxanthin 

absorption rates showed that the mean absorption rate in fish fed Diet A (0.44 ± 0.07Jlg mr 

1h- 1
) was numerically but not significantly higher (P>O OS) compared to those in fish fed 

Diet 8 (028 ± O.l!Jlg mr 1h-1
) and Diet C (0.26 ± 0.02Jlg mr 1h. 1

) Furthermore, at time 
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24h, mean serum astaxanthin concentrations (minus values at time 0) were not 

significantly different (P>O.OS) in fish fed Diet A (1.07 ± O.l3f.lg ml"1
), Diet B (1.27 ± 

0.11 f.lg mr1
) or Diet C (1.10 ± 0.25f.lg mr 1

). 
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Table 3.1 Ingredients and formulation of the experimental diets for both experiments 

Ingredients: Percentage inclusion 

"LT Fish meal 61.3 

Wheat gluten 5.6 

Wheat 21.6 

Fish oil 10 

bVitamin premix 0.8 

bMineral premix 0.7 

Yttrium oxide 0.01 

Proximate composition: 

Protein 46.0 ± 0.3 

Fat 27.3 ± 0.1 

Ash 10.4 ± 0.1 

Moisture 6.1 ± 0.04 

Energy 21.7 ± 0.1 MJ kg· 1 

"Norse LT 94, Egersund, Norway. Vitamins/mineral premixes as formulated by Trouw 

Aquaculture Ltd. (Wincham, U.K.). Supplementary oil (Cod Liver Oil, Seven seas Ltd., 

Hull, U.K.) was added to basal formulation, providing a carrier for the astaxanthin sources 

and to increase final oil level to a commercial level of 26% (w/w). Analyses of diet 

composition {n=J, ± SEM) 
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Table 3.2 Astaxanthin forms and inclusion concentration in diets from Experiment I. 

Dietary treatment 

Diet A - Unesterified astaxanthin 

Diet B- Processed cells of H. pluvialis 

Astaxanthin monoesters 

Astaxanthin diesters 

Unesterified astaxanthin 

Total astaxanthin 

Diet C - Cell-free total carotenoid extract from H. 

Pluvialis 

Astaxanthin monoesters 

Astaxanthin diesters 

Unesterified astaxanthin 

Total astaxanthin 

Astaxanthin inclusion rate 

(mg kg.1
) (mean± SEM, n =3) 

61.7±2.5 

44.2 

15.5 

3 .I 

62.8±05 

42.2 

I 5.4 

2.9 

60.5 ± 2.0 

Relative concentrations of astaxanthin forms determined from percentage contribution as 

evaluated by TLC (see Materials and Methods). 
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Table 3.3 Astaxanthin forms and inclusion concentration in diets from Experiment 2 

Dietary treatment 

Diet CP- Unesterified astaxantbin 

Diet 5000 - Processed cells of H. pluvialis 

Astaxanthin monoesters 

Astaxanthin diesters 

Unesterified astaxanthin 

Total astaxanthin 

Diet 20000 - Processed cells of H. pluvia/is 

Astaxanthin monoesters 

Astaxanthin diesters 

Unesterified astaxanthin 

Total astaxanthin 

Diet NAT- Processed cells of H. pluvialis 

Astaxanthin monoesters 

Astaxanthin diesters 

Unesterified astaxanthin 

Total astaxanthin 

Astaxanthin inclusion rate 

(mg kg-1
) (mean± SEM, n =3) 

58.5 ± 0.4 

42.6 

19.0 

4.7 

66.3 ± 0.3 

51.9 

17.7 

4.5 

74.2 ± 0.4 

44.4 

15.1 

3.3 

62.8 ± 1.0 

Relative concentrations of astaxanthin forms determined from percentage contribution as 

evaluated by TLC (see Materials and Methods)_ 
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Specific Growth 

~ Rate (SGR). 

Feed Conversion 

Ratio (FCR). 

Diet A 

1.22 ± 0.02 

1.09 ± 0.02 

Table 3.4 Growth Parameters for rainbow trout fed diets in both experiments. 

Experiment 1 

Diet B 

1.27 ± 0.04 

1.04 ± 0.06 

Diet C 

1.23 ± 0.04 

1.10 ± 0.06 

Diet CP 

154._± 0.01 

0.81 ±0.01 

Experiment 2 

Diet 5000 Diet 20000 

1.54 ± 0.01 1.57 ± 0.01 

0.81 ± 0.01 0.79 ± 0.01 

Diet NAT 

1.58 ± 0.02 

0.78 ±0.02 

Values represent means (n=3, ±SEM). No significant differences were recorded between dietary treatments within an experiment for either SGR or FCR. 



Table 3.5 Apparent Digestibility Coefficients for Astaxanthin in Rainbow Trout Fed 

the Dietary Treatments for Both Experiments. 

Dietary Treatment 

Experiment l 

Diet A 

Diet B 

Diet C 

Experiment 2 

Diet CP 

Diet 5000 

Diet 20000 

Diet NAT 

ADC 

73.6 ± 0.1 

74 5 ±IS 

74.5 ± 1.3 

69.1±4.6 

61.1 ± 5. I 

59.8 ±45 

59.5 ± 6.4 

Values represent means (n=3, ±SEM). No significant differences were recorded between 

treatments within an experiment for ADC. 
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(a) (b) 

(c) (d) 

Figure 3.1 Scanning electron micrographs (x 2000) of Haematococcus pluvialis cells (a) intact cell; (b) cracked under 5000psi; (c) cracked under 

2000psi and (d) NatuRoseTM cell cracked using a proprietary process. 
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Figure 3.2 Flesh astaxanthin concentrations (solid bars) and NAR values (open bars) 

for fi sh fed diets in Experiment I (A) and Experiment 2 (B). Columns represent means 

±SEM (n=3). abColumns bearing different superscripts are significantly different (P<O.OS) 
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Figure 3.3 Astaxanthin deposition in the flesh of trout fed diets in Experiment 1 after 4 

and 10 weeks of feeding. Values represent means (n=3 , ± SEM) for Diet A (e ; solid line), 

Diet B (11; short dash) and Diet C (Y; long dash). No significant differences were 

recorded between treatments. 
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Figure 3.4 Relationship between fl esh astaxanthin concentrations and Sa/moFan™ 

Score for fish fed diets in Experiment 1. Equation for the regression analysis was 

SalmoFanTM score= 22.2366 + 0.767496xflesh astaxanthin (correlation coefficient=0.80; 

R2=64.63%). Values represent individual fish sampled at weeks 4 and I 0. 
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Figure 3.5 Post-prandial serum profiles for trout fed a single meal supplemented with 

either synthetic unesterified astaxanthin, Diet A (e; solid line); Haematococcus pluvialis, 

Diet B c-; short dash) or cell free carotenoid extract, Diet C (T ; long dash) . Values 

represent the means of replicates (n=3, ± SEM). Maximum absorption rates determjned by 

multiplying the respective apparent uptake rate constant (k2) by (ao + c0) . Time 0 

represents approrimately lh after fish were fed . 
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3.4 Discussion 

No apparent differences were recorded for growth of rainbow trout across treatments 

within experiments, indicating that the use of different astaxanthin supplements from 

Haematococcus pluvialis presents no deleterious effects on feed utilisation and growth 

performance. However, the differences in feed utilisation and growth rate of fish between 

the two experiments was unexpected since fish were essentially fed diets of identical 

proximate composition and nutritional value and were maintained under the same ambient 

conditions during the experimental trials. Such variation can only be explained by 

differences, possibly genetic, in the groups of fish brought into the experimental facilities 

for each experiment. 

Astaxanthin concentrations in diets varied throughout both experiments. In experiment I, 

Diet B (encysted Haematococcus pluvialis) had a stable astaxanthin profile yet both Diet A 

(synthetic/unesterified astaxanthin) and Diet C (cell free carotenoid extract) decreased in 

astaxanthin concentration by almost 20% over the ten-week trial period Similarly, in 

experiment 2, Diet CP decreased in astaxanthin concentration by almost 30%. However, 

the other diets supplemented with Haematococcus pluvialis products did not decrease 

significantly in astaxanthin content throughout the experiment. This suggests that the 

natural cell wall of Haematococcus pluvialis serves to prevent oxidation of dietary 

astaxanthin when added to aquafeeds, irrespective of whether the sporopollenin cell wall 

has been cracked. However, this variation in feed carotenoid levels hinders the 

interpretation of astaxanthin retention values in the flesh, especially those in fish fed 

unesterified astaxanthin that may be underestimated as a consequence. lt is questionable 

whether the ability to produce feeds with stable carotenoid supplements is an advantage 

since the turnover of feeds in today's intensive aquaculture facilities is rapid. 
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The Apparent Digestibility Coefficients (ADC) for astaxanthin in both experiments were in 

keeping with previously reported values of between 60-80% (Choubert & Storebakken 

1996; Bjerkeng et al. 1997). A lack of significant difference in ADC values between 

dietary treatments used in experiment I and experiment 2 suggests that if rupturing of the 

cell wall of Haematococcus pluvialis cells is adequate then the intestinal absorption of 

astaxanthin is not limited. However, although there were no significant differences in 

ADC values in experiment 2, there was a trend for fish fed diets supplemented with 

unesterified astaxanthin to have higher ADC values. Similarly, Storebakken et al. (1987) 

reported average apparent digestibility values for unesterified astaxanthin in Atlantic 

salmon (64%) that were higher than for astaxanthin dipalmitate (47%) although this 

difference was not significant. Furthermore, Foss et al. ( 1987) reported higher digestibility 

values for unesterified astaxanthin fed to rainbow trout (91-97%) compared to astaxanthin 

dipalmitate (42-67%). Variation in results and lack of significant differences may have 

been due to factors such as oxidation of pigment in faecal samples, incomplete extraction 

of carotenoid and destruction of carotenoids in the intestinal tract. 

The significant quantities of astaxanthin remaining in the serum of trout fed on a non

pigmented diet for four days suggests that longer periods of feeding are required to ensure 

minimal astaxanthin concentrations. It is not clear whether residual serum astaxanthin 

concentrations would have had an effect on uptake rate of astaxanthin into serum. 

However, if the concentration gradient between the feed and the serum were an important 

factor influencing uptake by passive diffusion (Kiessling et al. 1995), then astaxanthin in 

the semm would act to reduce this gradient subsequently reducing the uptake rate. 

Nevertheless, observation of the post-prandial astaxanthin serum profiles for the different 

trout groups demonstrated that all sources of astaxanthin were absorbed into the blood. In 
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addition, those fish fed synthetic astax:anthin had higher mean serum astax:anthin 

absorption rates compared to those fish fed Haematococcus pluvia/is and a cell free extract 

from the same alga, although this difference was not significant. This suggests that the 

uptake of astax:anthin derived from Haematococcus pluvialis may be rate limited. 

However, since the uptake of astax:anthin from the cell free extract was almost identical to 

that from the cracked cells, the necessary hydrolysis of astaxanthin esters contained within 

this alga may well be the rate-limiting step (Torrissen et al. 1989). However, at 24 hours 

after ingestion there was no significant difference in the mean serum astax:anthin 

concentrations between fish fed the different astax:anthin sources. 

Muscle astax:anthin concentrations at the end of the trial in experiment 2 are in keeping 

with values previously reported in other feeding trials of similar duration and feed 

carotenoid inclusion level (Sommer et al. 1991; Sommer et al. 1992) although those in 

experiment I (5-6J...lg g" 1
) were higher. In contrast, Choubert & Heinrich ( 1993) achieved 

levels of flesh pigmentation of 6.2mg carotenoid kg-• in rainbow trout fed diets 

supplemented with Haematococcus pluvialis, although feed inclusion levels used were 

higher (I OOmg kg- 1
) than in the current study. The moderate pigmentation levels in 

experiment 2 compared to experiment I may be explained in part by the lower ADC values 

and the shorter trial duration, although higher values were expected. [n contrast to 

previous studies (Sommer et al. 1991; So m mer et al. 1992; Choubert & Heinrich 1993 ), no 

significant difference in flesh pigmentation were recorded between fish fed the commercial 

synthetic (CAROPHLL ® Pink) and commercial natural (Haematococcus pi.; NatuRose) 

sources of astaxanthin. Flesh retention values for astaxanthin showed similar results. 

However, pigmentation efficiency for algal cells supplemented into Diet 5000 and Diet 

20000 (cracked in a confidential procedure) was significantly lower than the synthetic 

source. There were no differences between the contribution of monoesters, diesters and 
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unesterified astaxanthin in the various sources of algal cells. This may suggest inefficiency 

in the cracking procedure used on the Haematococcus pluvialis culture supplemented into · 

these two diets, compared to the procedure used to crack the commercial source of algal 

cells. However, this does demonstrate the necessity to efficiently crack the sporopollenin 

cell wall of Haematococcus pluvialis prior to dietary supplementation in order to achieve 

desired levels of flesh pigmentation. 

The rate of astaxanthin deposition in the muscle of those fish fed experimental diets in 

Experiment I was clearly greater in the second period of the trial (wk 4-1 0) compared to 

the first period (wk 0-4). Similarly, the rate of growth for fish was greater in the second 

period. Other authors have suggested that salmonids under 150g pigment poorly which is 

supported by the current findings (Abdul-Malak et al. 1975; Torrissen 1985; Arai et al. 

1987). This suggests that there may be a relationship between the growth or age of fish 

and the ability to deposit pigment, maybe due to a physiological constraint in the number 

of binding sites within the flesh (Nickell & Bromage 1998b ). However, other authors who 

have examined the ~~lationship between muscle fibre density and pigment deposition in 

Atlantic salmon have found no relationship (Johnston et al. 2000). Moreover, perhaps 

larger fish are able to absorb more pigment from the diet. This potential relationship 

between fish size and carotenoid absorption merits further study. 

Measurements of carotenoid concentration in the flesh should not be used as criterion of 

perceived colour (Little et al. 1979). Comparative measurements of flesh carotenoid 

deposition in the whole muscle using a colour fan have been used previously (Little et al. 

1979; Skrede et al. 1990; Johnston et al. 2000; Butt le et al. 200 I). Results in the current 

experiment suggest a linear relationship between flesh pigment concentration and visual 

colour according to the SalmoFan™. The correlation between perceived flesh colour and 
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flesh carotenoid concentration in the current study was similar to that found previously for 

rainbow trout (r=0.80) and sea trout (r=0.77; Foss et al. 1987). Similarly, other authors 

have found a good correlation between the astaxanthin concentration in salmon flesh and 

the Roche Colour Card for Salmonids (Skrede et al. 1990; Christiansen et al. 1995b ). 

However, Smith et al. (1992) did not observe a linear relationship between scores taken 

from the Roche Colour Card for Salmonids and the flesh astaxanthin concentration in 

Coho salmon, but the astaxanthin concentrations in their study tended to be higher than 

reported here. Differences between findings from these studies may be due to species 

differences and problematic differentiation of colour differences at higher concentrations. 

Torrissen et al. ( 1989) stated that the relationship between visual score and carotenoid 

level is linear only at low levels (up to 3 to 4 mg kg- 1
) in farmed fish. Fish farmers and 

producers of salmonids commonly use such visual assessments as opposed to chemical 

analyses for practical purposes. However, presentation of the sample, ambient 

illumination; variability between individuals in their subjective assessment of differences 

in colour and the masking effect of inter-muscular fat can bias visual perception. 

Subsequently, instrumental measurements of colour such as assessment of the CIELCH 

colour space are more accurate in evaluating pigmentation (Skrede & Storebakken 1986; 

Choubert et al. 1997; Olsen & Mortensen 1997; Hatlen et al. 1995b). 

There is an apparent lack of literature concerning different techniques to disrupt encysted 

cells of Haematococcus pluvialis and their efficacy, probably owing to commercial and 

proprietary constraints. Indeed those methods that have been proposed to disrupt algal 

cells are under patent and are not very efficient for disrupting the sporopollenin cell wall of 

Haematococcus cysts (Farrow & Tabenkin 1966; Ruane 1977; Nonomura 1987). 

However, Mendes-Pinto et al. (200 I) attempted to assess a range of physical and chemical 

processes on the recovery of astaxanthin from these algal cells. These authors examined 
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the effects of autoclaving; acid and alkali treatment; enzymatic treatment; spray drying and 

mechanical disruption with a cell homogeniser. Pigment availability from processed cells 

was assessed by extraction of astaxanthin into acetone. It was demonstrated that both 

mechanical disruption and autoclaving of the astaxanthin-rich algal biomass were effective 

treatments resulting in a high yield of astaxanthin. Such an in vitro assessment of 

availability requires further confirmation of carotenoid availability in vivo before real 

conclusions can be made on the efficacy of a cell disruption process. 

Results from this study suggest Haematococcus pluvialis can be efficiently utilised as a 

source of pigment for rainbow trout providing the cell wall is sufficiently ruptured prior to 

feed supplementation in order to aid carotenoid bioavailability. Furthermore, extraction of 

the pigment from the cell wall does not result in improved levels of pigmentation, is 

impractical on a large scale (Mendes-Pinto et al. 2001) and would only add to production 

costs of the product. Indeed, the cell wall, despite being cracked, seems to prevent 

oxidation of the product when added to the feed, an additional advantage compared to both 

the carotenoid extract and the synthetic source. Notable differences in rates of serum 

astaxanthin absorption from the synthetic, unesterified source compared to that of 

carotenoid extract from Haematococcus p/uvia/is, warrants examination of the role of the 

salmonid gastrointestinal tract in context of carotenoid ester hydrolysis, carotenoid 

absorption and subsequent assimilation. In addition, the utilisation of individual acyl esters 

and the differences between them requires further study. 
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CHAPTER4.0 

PHYSIOLOGY OF THE INTESTINE MAY LIMIT THE ABSORPTION OF 

ASTAXANTHIN FROM ESTERIFIED SOURCES IN RAINBOW TROUT, 

ONCORHYNCHUS MYKISS (WALBAUM). 

4.1 Introduction 

In the wild, salmonids achieve a natural flesh pigmentation through the ingestion of 

crustaceans that contain astaxanthin (3,3'-dihydroxy-~,~-carotene-4,4'dione; Schiedt et al. 

1986; Skrede & Storebakken 1986; Scalia et al. 1989). In intensive salmonid rearing, 

feeds are commonly supplemented with synthetic astaxanthin and the carotenoid 

canthaxanthin (~, ~-carotene-4, 4 '-dione; Bjerkeng 1992; Bjerkeng et al. 1992; Bell et al. 

1998; Akhtar et al. 1999). Nonetheless, consumer demand for strictly natural food 

additives has led to growth in the use of natural sources of feed ingredients (Johnson & An 

1991 ). 

The microalga Haematococcus pluvialis (Flowtow) contains a high quantity of astaxanthin 

(between 1.5-3.0% dry weight). However, up to 95% of astaxanthin from this source is 

esterified (ea. 70% monoesters, ea. 25% diesters; Lorenz & Cysewski 2000). Following 

ingestion of astaxanthin esters, intestinal hydrolysis is required before absorption of 

astaxanthin can occur into the systemic circulation of the fish (Schiedt et al. 1986; 

Storebakken et al. 1987). Synthetic astaxanthin dipalmitate is poorly utilised in comparison 

to free astaxanthin (Foss et al. 1987; Storebakken et al. 1987) and some authors have 

reported poorer pigmentation when using feeds supplemented with Haematococcus 

pluvialis compared to those supplemented with free astaxanthin (Sommer et al. 1991; 
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Sommer et al. 1992). The rate of hydrolysis of astaxanthin esters to free astaxanthin 

appears to be the limiting factor, and this may explain observed differences in deposition 

(Torrissen et al. 1989). 

Several factors may affect the rate of astaxanthin ester hydrolysis. These factors are 

influenced by, or are dependent on the physiological characteristics of the gastrointestinal 

tract Firstly, the action of digestive enzymes on nutrients and contact time at absorptive 

sites in the intestine are affected by transit rate of the feed bolus (Choubert & Storebakken 

1996). It has been stated that digestion efficiency and gut transit time are likely to 

influence the proportion of any feed supplemented micro-nutrient that is absorbed (Jack son 

1997). 

Secondly, there may be differences in esterase activity and subsequently hydrolysis along 

the length of the salmonid intestine. Indeed, the greater part of enzymatic hydrolysis, 

nutrient release and uptake in fish is reported to take place generally in the lumen of the 

anterior intestine (Fiinge & Grove 1979; Buddington & Doroshov 1986; Lie et a/ 1987; 

Vernier 1990). Regional variation in intestinal hydrolysis has been recorded for other 

forms of nutrients such as L-ascorbyl-2-phosphate in rainbow trout (Miyasaki et al. 1993) 

and lipids in turbot, Scophtha/mus maximus (Koven et a/ 1994, 1997). 

Finally, there may be differences in carotenoid absorption along the length of the salmonid 

intestine. Some authors have suggested that the anterior intestine region is primarily 

responsible for carotenoid absorption (Torrissen 1986; AI-Khalifa & Simpson 1988) while 

other authors have reported no variation (Guillou et al. 1992a). 
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The aims of this study were four fold. First, to compare the "steady state" serum 

astaxanthin concentrations in rainbow trout, Oncorhynchus mykiss (Walbaum) following 

daily feeding with esterified or free astaxanthin to indicate the efficacy of absorption under 

standard feeding conditions. Secondly, to quantitatively compare the absorption rates of 

astaxanthin in the serum of fish fed a single meal containing each astaxanthin source. It 

was envisaged that this would indicate a limitation in absorption as a result of the 

requirement for ester hydrolysis. Thirdly, to assess whether there are any differences along 

the trout intestine with respect to the hydrolysis of esterified astaxanthin. Finally, to 

compare the deposition of astaxanthin from these two sources in the flesh as this is 

ultimately the determinant of a product's pigmentation efficacy. 

4.2 Materials and Methods 

4.2.1 Experimental design 

In the following experiment each dietary treatments was assigned to triplicate tanks 

containing groups of fish. Subsequently, each tank is considered as a replicate (n=J). 

Following sampling and analysis of individual fish tissues, statistical comparison of results 

between treatments was based on mean values from each tank (n=3) to avoid pseudo

replication and false interpretation of results (Morris 1999). 

4.2.2 Experimental feeds 

Experimental diets, prepared at EWOS Technology Centre (Livingston, Scotland, U.K.), 

contained either free astaxanthin (Diet FR) added to dry ingredients as water dispersible 

beadlets (8% w/v astaxanthin content; CAROPHYLL ® Pink, F Hoffmann-La Roche, 

89 



Base!, Switzerland), or esterified astaxanthin (Diet EST) added to the feed mixture as a dry 

powder form of Haematococcus pluvia/is (NatuRose, Cyanotech Corporation, Kailua

Kona, Hawaii, U.S.A.). Basal dietary ingredients included fishmeal (59%); soya product 

(10.5%); wheat (13.5%) and fish oil (17%). Origin of ingredients is proprietary 

information. Feeds were analysed in duplicate (at EWOS) for protein by the Kjeldahl 

method (EC directive 93/28/EEC), for fat by extraction with petroleum spirit after acid 

hydrolysis (EC directive 84/4/EEC) and moisture by oven drying at I 03°C (EC directive 

71/393/EEC). Proximate composition of diets was protein (45%); lipid (25%) and dry 

matter (93%). Target dietary total carotenoid concentration was 50.6mg kg· 1 and 50.0mg 

kg·• for Diet FR and Diet EST, respectively. As a percentage of total astaxanthin in Diet 

EST, monoesters (ea. 50%) were predominant compared to diesters (ea. 40%) and 

free/unesterified astaxanthin (ea. 10%). This was confirmed by thin layer chromatography 

(see section 2.4.7) according to Kobayashi et al. (1991). 

4.2.3 Fish and feeding trial 

Female rainbow trout (Hatchlands Trout Farm, Devon, U.K.) were held in a re-circulation 

system (six 400L glass fibre tanks) maintained at l5°C and exposed to a 12h light/dark 

photoperiod (see section 2.2.2). Fish (85 ± 9g) were randomly assigned into groups of 30 

per tank. 

For determination of the steady state astaxanthin concentrations in the serum of the fish, 

test diets were fed in a single morning meal (1.5% BW dai1
) for 56 days, with rations 

being adjusted assuming a feed conversion ratio (FCR) of 1. 0. Fish in three of the tanks 

were fed Diet FR while fish in the other three tanks were fed Diet EST. On the final day 

and within I hour of fish being fed, samples of blood (see below); flesh; liver and 
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gastrointestinal tract regions with digesta (Figure 4.1) were taken for astaxanthin analysis 

(5 fish per replicate tank). 

To determine the time course of serum astaxanthin absorption after a single meal, the 

remaining fish were then fed a carotenoid-free diet with the same basal formulation as the 

experimental diets at 1.5% BW day" 1 for 14 days in attempt to clear astaxanthin from the 

serum. They were then fed a single meal of the respective astaxanthin-supplemented diets 

to appetite. Blood samples were taken (3 fish per replicate tank) at eight times up to and 

including 72h after the meal (Figure 4.4). The fish were not fed further meals following 

this single carotenoid-supplemented meal. 

4.2.4 Analysis of feed, digesta, gastrointestinal tract and blood 

Carotenoids were extracted from diets (at EWOS Technology Centre, Livingston, 

Scotland) essentially according to Schierle & Hardi (1994) In brief, following enzymatic 

digestion of the feed (Maxatase P-3000 encapsulated, International Biosynthetics, Rijswik, 

Netherlands), carotenoids were extracted with ethanol/dichloromethane (l: l v:v) and 

purified on a 4cm glass open-top silica (Silica gel 60) column. Extracts from diets were 

analysed spectrophotometrically for total carotenoid content in heptane (Diet FR) or 

dimethyl sulfoxide (Diet EST) at 470nrn (El% lcm =1910) or 492nm (E1% lcm =2220), 

respectively. 

Freeze-dried digesta were pooled on a replicate basis (n=3) and analysed usmg 

methodology modified after Weber ( 1988) (see section 2.4.2) Forms of astaxanthin 

(monoesters, diesters, and free astaxanthin) were separated by TLC according to 
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Kobayashi et al. (1991; see section 2.4. 7) and analysed spectrophotometrically in n-hexane 

at 470nm using an E 1% tcm value of21 00 (Britton 1995; see section 2.4. 9). 

Carotenoids were extracted from fish serum; muscle; liver and cleaned gut samples 

according to extraction methodology previously described (see sections 2.4.3; 2.4.4 and 

2.4.5). Samples were stored at -20°C until HPLC analysis (see section 2.4.10). 

4.2.5 Statistical analysis 

Data were subjected to tests for normal distribution (standardised skewness and kurtosis) 

and variance checks (Cochrans and Barlett's test). Statistical evaluation of data was 

carried out on StatGraphics Plus 4.0. Regression analysis and curve fitting was carried out 

on SigmaPlot 4.0. Astaxanthin uptake rates and astaxanthin concentrations in flesh; liver; 

gut tissue; digesta; serum and were compared across treatments using one-way analysis of 

variance test at the 95% confidence limit. 

4.2.6 Kinetic modelling 

After ingestion of a single meal the time course of serum astaxanthin concentration shows 

three phases: a lag phase followed by the uptake and elimination phases (Figure 4.2). The 

following simple model was used to describe these kinetics. 

a b c 
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In this model c represents the serum astaxanthin concentration, and the ftrst order rate 

constants, k1, k2 and k3, apply to the lag, uptake and elimination phases, respectively. The 

following set of ordinary differential equations ( 4.1-4.3) are derived from the model. 

da = -kJ"a Equation (4.1) 

dt 

db = k1·a- k2·b Equation (4.2) 

dt 

de = k2·b- k3·c Equation (4.3) 

dt 

These were solved using Maple 6 (Waterloo Maple Inc., U.S.A.), using the limit values: a 

= ao at t = 0; b = 0 at t = 0; and c = Co at t = 0. Equation ( 4.4) shows the relationship 

between c and time, t. 

Equation (4.4) 

Equation ( 4.4) was fitted to the time courses of serum astaxanthin concentration using the 

simplex method (Ebert et al. 1989). The maximum uptake rate of astaxanthin in each case 

was calculated using the best-fit values for k2, 8o, and Co by multiplying k2 by (a0 + Co). 

The latter represents the value that the serum astaxanthin concentration would reach at t = 

eo if there were no elimination of astaxanthin from the serum, i.e. if kJ = 0 (see Figure 4.2). 
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4.3 Results 

There were no significant differences (P>0.05) in growth after 56 days with final weights 

of215 ± 3.2g and 219 ± 1.6g (± SEM, n=3) and feed conversion ratios (FCR) of 1.1 ± 0.08 

and 1.0 ± 0.03 (± SEM, n=3) for fish fed diets supplemented with free (Diet FR) or 

esterified (Diet EST) astaxanthin, respectively. 

In both ftsh fed Diet FR or Diet EST the ileal intestine had significantly higher (P<0.05) 

mean astaxanthin (unesterified form) concentrations compared to the stomach and 

posterior intestine (Table 4.1). No significant differences (P>0.05) were recorded between 

fish fed Diet FR or Diet EST for each of the gut sections. HPLC analysis could not 

confirm the presence of astaxanthin esters in the gut-tissue samples. 

In the digesta of those fish fed Diet EST (Figure 4 3) astaxanthin was detected only in its 

free form in the ileal and posterior intestine (post pyloric region). Furthermore, in the ileal 

and posterior intestine the digesta contained a higher concentratio1_1 of free astaxanthin (7.1 

± 1.9~--tg g- 1 and 5.2 ± 2.9~--tg g- 1
, respectively) in comparison to the stomach (2.7 ± 0.6~--tg g· 

1
; ± SEM, n=3), though the total content of astaxanthin was lower. Astaxanthin forms in 

the stomach digesta were representative of the diet with slight increases in monoester (ea. 

9%) and corresponding decreases in diester (ea. 7%). Astaxanthin concentrations in the 

digesta from the stomach, ileal and posterior intestine were 34.3mg kg- 1
, 7.1 mg kg- 1 and 

5.2mg kg- 1
, respectively, with the most notable reduction in astaxanthin concentration 

occurring between the stomach and the ileal intestine. 

After 56 days of daily feeding the mean serum astaxanthin concentration of fish fed Diet 

FR (2.0 ± 0.3 f.lg mr 1
; ± SEM, n=3) was significantly higher to fish fed Diet EST (1.3 ± 

94 



0.1 ~tg mr1
; ± SEM, n=3) at the 90% confidence level (P=0.0582). However, following 

ingestion of a single meal the maximum post-prandial serum astaxanthin absorption rates 

of rainbow trout (Figure 4.4) were not significantly different (P>O.l) for fish fed Diet FR 

(0.8 ± 0.24J.Lg mr1h" 1
) or Diet EST (1.02 ± 0.37J.lg mr1h. 1

) (± SEM, n=3). Observation of 

regression analysis for post-prandial data shows a peak serum astaxanthin time of ca.l6h 

for fish fed either dietary treatment. Comparison of mean serum astaxanthin values at 16h 

for those fish fed a single meal of Diet FR (1.7 ± 0.3J.Lg ml" 1
) and Diet EST (1.0 ± 0.3J.Lg 

ml" 1
) revealed no significant differences, P>0.1 (n=3, ± SEM), although mean values were 

higher for fish fed Diet FR. 

At the end of the trial no significant differences (P>O.OS) were observed in the mean flesh 

astaxanthin concentrations (Table 4.2) between trout fed Diet FR (2.1 ± O.SJ.Lg g" 1
) or Diet 

EST (1.7 ± 0.4J.Lg g" 1
). Similarly, no significant differences were recorded between final 

mean liver astaxanthin concentrations between trout fed Diet FR (0.5 ± O.OSJ.Lg g"1
) or Diet 

EST (0.4 ± 0.02J.Lg g· 1
; n=3, ±SEM). Flesh concentrations of astaxanthin were notably 

higher than astaxanthin concentrations recorded in· the·liver. 
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Table 4.1 Mean astaxanthin concentrations (Jlg g-1 wet weight) in individual 

gastrointestinal regions of rainbow trout fed diets supplemented with free/unesterified 

(Diet FR) or esterified (Diet EST) astaxanthin. 

DietFR 

Diet EST 

Region I 

Stomach 

o.3 ± o.os• 

0.2 ± 0.043 

Region 2 

Ileal intestine 

b 0.8±0.14 

0.9 ± O.ISb 

Region 3 

Posterior intestine 

0.2±001" 

0.3 ± 0.14" 

Values represent means (n=3, ± SEM). Values within a row bearing the same superscripts 

are not significantly different (P>O.OS). 

Table 4.2 Mean astaxanthin concentrations in serum (Jlg mr\ liver and fish muscle 

(Jlg g-1 wet weight) from rainbow trout fed diets supplemented with free/unesterified (Diet 

FR) or esterified (Diet EST) astaxanthin for 56 days. 

Diet FR 

Diet EST 

Serum 

2.0 ± 0.3 

1.3 ± 0.1 

Liver 

0.5 ± 0.05 

0.4 ± 0.02 

Fish Muscle 

2.1 ±05 

1.7 ± 0.4 

Values represent means (n=3, ± SEM). Values within a column with different superscripts 

are significantly different (P<O.OS). 
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Region 1 Pyloric Region Region 2 Region 3 

Figure 4.1 Representation of the various gastrointestinal regions sampled; region 1 (stomach), region 2 (ileal intestine), region 3 (posterior intestine). 
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A simulated time course of serum astaxanthin after ingestion of a single 

meaL Details of the kinetic model used are described in the text. The dashed line 

represents a simulated time course using the same model and parameters except that k3 = 0. 
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4.4 Discussion 

A number of natural sources of astaxanthin, including crustacean wastes and microalgae 

e.g. Haematococcus pluvialis, contain predominantly esterified astaxanthin. This is often a 

complex mixture of monoesters and diesters, with unesterified astaxanthin representing a 

small percentage of the total carotenoid. Astaxanthin is deposited in a free, unesterified 

form in the white muscle of salmonids, but re-esterification takes place (with fatty acids 

endogenous to the fish) on deposition in the skin (Schiedt et al. 1985). Consequently, 

hydrolysis of these esters within the salmonid gastrointestinal tract prior to absorption may 

be an important factor limiting uptake and subsequent deposition of natural astaxanthin 

esters (Choubert & Heinrich 1993). 

Blood astaxanthin concentration tn the current study displayed expected high inter

individual variation (Guillou et al. 1992a; Gobantes et al. 1997). Attempts to normalise 

serum astaxanthin concentrations (following ingestion of a single meal), according to the 

amount of astaxanthin fed to each respective tank, resulted in no significant reduction in 

standard errors of mean values. This may be due to insufficient data concerning individual 

food consumption However, other authors have found weak correlation's with gut 

contents and blood astaxanthin concentrations (r=O. 71) in Atlantic salmon (Kiessling et al. 

1995). This may suggest that the amount of feed consumed is only partly responsible for 

the absorption of astaxanthin. Several approaches could be used and adapted to measure 

individual feed consumption by fish. Sequential feeding with different coloured foods has 

been used with relative success to define food intake in individual trout (Johnston et al. 

1994). Other authors have used more refined means by including radioactive isotopes 

within salmonid feeds (Storebakken et al. 1981; Storebakken & Austreng 1988a,b) 
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The mean steady state serum astaxanthin concentrations recorded after 56 days of feeding 

fish in the current trial suggest the absorption of astaxanthin was not as efficient when fed 

as a mixture of esters compared to the free form at the 90% confidence level. This 

suggests that intestinal hydrolysis of astaxanthin esters probably was limiting under the 

regular feeding conditions used in this study. These findings are contrary to those of 

Barbosa et al. (1999) who found no significant difference in serum astaxanthin 

concentrations between rainbow trout fed for 5 days on diets supplemented with either 

Haematococcus pluvialis or synthetic astaxanthin. However, Barbosa et al. (1999) used 

higher feed carotenoid concentrations (IOOmg kg-1
) than those in the current study (SOmg 

kg- 1
) which may explain why blood astaxanthin concentrations recorded by those authors 

(ea. 5-9J.Ig mr1
) were higher than reported here. This, combined with the shorter feeding 

period used by these authors, may account for the discrepancy between these authors 

findings and our own. Findings in the current study are in keeping with those of other 

groups who have demonstrated that synthetic astaxanthin dipalmitate is poorly utilised in 

comparison to free, unesterified astaxanthin in salmonids (Foss et al. 1987; Storebakken et 

al. 1987). However, since these groups made no direct assessment of absorption of 

astaxanthin into serum, direct comparisons with the current study are difficult 

Furthermore, the effective utilisation of dietary astaxanthin monoesters and diesters for the 

pigmentation of rainbow trout has been demonstrated (Bowen et al. 2001 ). 

Kinetics of astaxanthin and canthaxanthin absorption in the serum of immature rainbow 

trout fed individual doses of carotenoid has been previously studied (Gobantes et al. 1997). 

However, no groups to date have studied the uptake kinetics of astaxanthin derived from 

Haematococcus pluvialis. It is important that such kinetics are defined for this source 
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smce the rate of ester hydrolysis, and subsequently the rate at which astaxanthin is 

absorbed into the blood, is believed to be the limiting factor in the use of esterified sources 

of astaxanthin (Torrissen et al. 1989). The methodology used in this investigation to 

observe post-prandial blood astaxanthin concentrations is very similar to that previously 

described by Mori et al. ( 1989) who sub sampled fish at timed intervals from a group of 

Coho salmon (Oncorhynchus kisutch) fed a pigmented diet to satiation following a period 

of starvation. In the current study, analysis of post-prandial serum astaxanthin 

concentrations after ingestion of a single meal suggests that the absorption rates of 

astaxanthin are similar when supplied as free or esterified astaxanthin, in a single meal. 

Similar findings have been noted for Coho salmon (Oncorhynchus kisutch) fed free 

astaxanthin and an astaxanthin diester derived from krill (Mori et al. 1989). Results would 

suggest that the rate of absorption of astaxanthin into the blood was not limited by the 

requirement for hydrolysis when supplied as dietary esters in a single dose. However, 

serum peak astaxanthin concentrations (16h) were again higher in fish fed unesterified 

astaxanthin compared to those fish fed esterified astaxanthin. A lack of significant 

difference in uptake rates may have been due to variability in the data, caused by small 

sample sizes and satiation feeding. Certainly, the standard errors on values would support 

this. Further uptake rate assessments of this nature should subsequently address these 

factors. 

Although the pyloric caeca were not examined for astaxanthin concentration because of 

difficulties associated with removing feed particulates (Brett & Higgs 1970) our results 

support the contention that the anterior/ileal intestine is largely responsible for carotenoid 

absorption (Choubert el al. 1987; AI-Khalifa & Simpson 1988; Torrissen et al. 1990). 

Indeed, the histological structure of the mid-intestine examined in the current investigation 
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is identical to that of the pyloric caeca but different to that of the posterior intestine (Bergot 

et al. 1975). This has lead to the reasoning that pyloric caeca are structures which increase 

the intestinal surface area for absorption (Buddington & Diamond 1987). Austreng (1978) 

demonstrated that a large proportion of protein and fat absorption took place in the anterior 

half of the small intestine, including the caeca. Since carotenoid absorption is thought to 

be intrinsically associated with fat absorption (Parker 1996; Furr & Clark 1997), and 

positive effects of dietary fat supplementation have been recorded on carotenoid 

digestibility (Torrissen et al. 1990; Choubert et al. 1991; Gouveia et al. 1998), it is not 

surprising that carotenoids are absorbed in the anterior intestine. However, in vivo studies 

that have examined the influence of pyloric caeca have found little relationship between 

the number and length of these structures and the digestibility of fat and protein (Ulla & 

Gjerdrem 1985) or the digestibility of canthaxanthin (Choubert et al. 1991 ). 

Non detectable levels of astaxanthin monoesters and diesters in digesta taken from the ileal 

and posterior intestine suggest that the hydrolysis of esters prior to absorption also takes 

place in the pyloric region of the gastrointestinal tract. Other authors have investigated site 

dependency of esterase activity in animal and human gastrointestinal tract. For example, 

Augustijns et al. (1998) examined the distribution of esterase activity along the 

gastrointestinal tract of rat and pig by using homogenates of scraped intestinal mucosa 

from various parts of small intestine and colon using p-nitrophenyl acetate as a substrate. 

Not only did these authors find important interspecies differences with rat intestine 

possessing much higher activity than pig intestine, but also both species demonstrated a 

gradual decrease of esterase activity along the gut. Rigtrup & Ong ( 1992) demonstrated a 

retinyl ester hydrolase activity intrinsic to the brush-border membrane of rat small intestine 

as well as an esterase apparently originating from the pancreas. The esterase originating 
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from the pancreas preferentially hydrolysed short-chain retinyl esters and was stimulated 

by trihydroxy bile salts. These properties were similar to that of cholesterol ester 

hydrolase, known to bind to the brush border of the intestine. The second esterase, 

intrinsic to the brush border, preferentially hydrolysed long-chain retinyl esters and was 

stimulated by both trihydroxy and dihydroxy bile salts. Furthermore, Mathias et al. (1981) 

demonstrated that the majority of tocopheryl esters are hydrolysed in the intestinal lumen 

(pancreatic esterase) but some tocopheryl ester is hydrolysed within the enterocyte by a 

mucosal esterase associated with the endoplasmic reticulum. Non-specific esterases have 

been found along the intestinal brush border membrane and within the cytoplasm of 

enterocytes in Nile tilapia, Oreochromis niloticus (Tengjaroenkul et al. 2000). In vitro 

studies are required to determine if those esterases responsible for the hydrolysis of 

astaxanthin esters are specific and whether they originate from the pancreas of the fish or 

are intrinsic to intestinal cells. 

Barrowman (1984), who reviewed the hydrolysis of fat-soluble vitamin esters, stated that 

there was no evidence for specific vitamin ester bydrolases in pancreatic juice. Rather that 

the activity against these esters resides in enzymes of broader specificity such as non

specific lipase and possibly pancreatic lipase. In agreement with this, Harrison ( 1993), 

based on evidence from reviewed literature, stated that there were no purified enzymes that 

have been demonstrated to be "specific" for long chain retinyl esters or even to hydrolyse 

these at a faster rate than other esters. Furthermore, the author went on to state that there 

are at least three enzymes that are potentially involved in the hydrolysis of dietary retinyl 

esters: pancreatic lipase, pancreatic carboxyl ester lipase and one or more retinyl ester 

hydrolases associated with the brush border membrane. Each may play a role according to 

their ability to interact with retinyl esters in different physio-chemical forms in which the 
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vitamin may exist in the intestine (emulsions, mixed micelles, liquid-crystalline vesicles). 

Since the absorption of fat-soluble vitamins and carotenoids is likely similar owing to their 

hydrophobic nature, it is reasonable to assume that carotenoid esters are hydrolysed in the 

same manner. Although, the current study suggests that the majority of carotenoid-ester 

hydrolysis takes place in the pyloric region of the trout intestine, the capacity of the hind 

intestine for esterase activity cannot be ruled out. 

Regional differences in astaxanthin ester hydrolysis along the length of the trout intestine 

may result in an influence of gut transit rate on the absorption of astaxanthin from an 

esterified source. Frequent feeding may increase the gastrointestinal transit rate of the feed 

bolus limiting efficient digestion and absorption of nutrients, as has been suggested for dry 

matter, protein, lipid and energy (Staples & Nomura 1976; Pedersen 1987; Cho & Kaushik 

1990). These findings may account for the disparity in the current study between steady 

state astaxanthin concentrations after regular feeding and rate of astaxanthin absorption 

after ingestion of a single meal, when supplied as esterified or unesterified astaxanthin. 

Furthermore, such effects may account in part for discrepancies between studies on the 

utilisation of esterified astaxanthin. For example, in those studies by Storebakken et al. 

( 1987) and Foss et al. (1987) which recorded poor utilisation of astaxanthin diester, fish 

were fed every 20min for 18h and 24h (to excess) per day, respectively. In comparison, 

Bowen et al. (2001) fed a restricted ration (1.3-1.8% BW day"1
) and found no differences 

in the utilisation of esterified forms of astaxanthin. Although Choubert & Storebakken 

( 1996) found that feeding rate did not affect the digestibility of astaxanthin and 

canthaxanthin, further research is required on the effects of feeding rate on absorption of 

esterified carotenoids. Indeed, viable feeding strategies or feed ingredients that extend the 
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gastrointestinal residence time of feed may enhance the absorption of feed supplemented 

esterified astaxanthin. 

The final flesh astaxanthin concentrations recorded in the current study were lower than 

expected considering the length of the feed trial and the feed astaxanthin concentrations. 

In another study, rainbow trout fed diets supplemented with Haematococcus pluvialis 

contained final muscle astaxanthin concentrations of 6.2mg kg" 1 after just four weeks of 

feeding (Choubert & Heinrich 1993). However, the carotenoid inclusion levels were 

higher in that study (1 OOmg kg-1
) as was the initial starting weight of fish ( 140g). Starting 

weight of fish in the current investigation (ea 85g) may have resulted in initial poor 

deposition of pigment since other authors have stated that fish below I 00-ISOg pigment 

poorly (Abdul-Malak et al. 1975; Torrissen 1985a). However, final flesh astaxanthin 

concentrations in the current study are similar to those reported by Sommer et al. (1992) 

following 50 days of feeding with a 60ppm diet (ea l-2J.lg g" 1
) and Storebakken & 

Choubert ( 1991) who fed rainbow trout diets supplemented with SOppm astaxanthin for 

eight weeks. 

After 56 days of feeding there was no significant difference in final muscle or liver 

astaxanthin concentrations between fish fed diets supplemented with free or esterified 

astaxanthin. However, there was a trend for the mean flesh and liver astaxanthin 

concentration of those ftsh fed Diet FR to be higher than those of fish fed Diet EST 

(similar to the "steady state" blood astaxanthin concentrations). These findings are similar 

to those ofBowen et al. (2001) who demonstrated that the isolated Haematococcus mono

and diesters of astaxanthin were as equally well utilised as the synthetic unesterified 

astaxanthin in terms of deposition into the white muscle in rainbow trout. Similarly a 'cell-
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free' total carotenoid extract from Haematococcus was effective in pigmenting rainbow 

trout. However, these results contradict the fmdings of Schiedt & Leuenberger ( 1981) and 

Schiedt et al. (1985) who reported that synthetic astaxanthin dipalmitate was largely 

ineffective in pigmenting salmonids when compared to the unesterified form of the 

carotenoid. Furthermore, Choubert & Heinrich (1993) reported very low carotenoid 

retention rates (l.5%) for rainbow trout fed with Haematococcus and suggested that 

cleavage of the astaxanthin esters may be a limiting step for the deposition of astaxanthin. 

Sommer et al. (1991, 1992) also reported a lower efficiency for astaxanthin from cells of 

Haematococcus compared to synthetic astaxanthin. In the current study astaxanthin from 

both diets was equally utilised, suggesting that esterification per se is not a major factor in 

limiting the use of Haematococcus pluvialis as a pigment source. However, it is not clear 

whether the difference in mean flesh astaxanthin concentration between fish fed the two 

treatments in the current study would have been significant had the trial continued for 

longer. The poor deposition of astaxanthin in the liver compared to the flesh in fish fed the 

experimental diets suggests that the liver is not a major storage organ for astaxanthin, or, 

that the liver metabolises astaxanthin rapidly (Hardy et al. 1990). The presence of 

metabolites could not be determined in the current study. 

Although the encysted wall of Haematococcus pluvialis used in this study was ruptured 

(95% of cells cracked in a proprietary milling process) it may have posed some further 

limitation to astaxanthin absorption. Future investigations should be conducted using diets 

supplemented with astaxanthin fractions isolated from the encysted algal cells. 

Furthermore, astaxanthin from the esterified source used in the current investigation 

(Haematococcus pluvialis) was a mixture of mono- and diesters (predominantly mono

esterified). This raises questions concerning the extent of esteriftcation and its effects on 
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CHAPTER 5.0 

EXTENT OF ESTERIFICATION AND ITS INFLUENCE ON THE UTILISATION 

OF (3S,3'S)-ASTAXANTHIN IN RAINBOW TROUT, ONCORHYNCHUS MYKISS 

(WALBAUM). 

5.1 Introduction 

Accumulation of astaxanthin in Haematococcus pluvia/is is associated with the formation 

of aplanospores or cysts (induced by nitrogen limitation, high temperature or light 

intensity) where it develops a tough sporopollenin cell wall (Good & Chapman 1979; 

Burczyk 1987; Grung et al. 1992). Salmonids appear to lack the digestive enzymes 

necessary to break down the Haematococcus sporopollenin wall and intact astaxanthin-rich 

aplanospores of Haematococcus do not pigment the white muscle of salmonids (Sommer et 

al. 1991; Bowen et al pers. comm.). However, previous work (see Chapter 4) has shown 

that efficient cracking of this cell wall renders pigment available for deposition in the flesh 

of rainbow trout. Furthermore, this deposition is comparable to that of the synthetic, 

unesterified source of astaxanthin (CAROPHYLL Pink; F. Hoffmann La Roche, Basel, 

Switzerland) which is commonly used within the aquafeed industry. 

Another important factor that distinguishes algal astaxanthin from the synthetic form is the 

configuration of the carotenoid. ln this algae, astaxanthin predominantly occurs (>99%) as 

the (3S,3' S) form (Renstrom et al. 1981) whilst the synthetic, unesterified, product is a 

racemic mixture of the (3R, 3 'R), (3S, 3 '5) and the me so form (3R, 3 'S) in the ratio 11:2 

(Bernhard 1990). Foss et al. (1987) demonstrated that all three epimers of unesterified 
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astaxanthin are equally utilised by salmonids, suggesting that rainbow trout would not 

discriminate against the algal source of carotenoid according to its enantiomet 

composition. However, other feed trials with salmonids have shown discrimination against 

dipalmitate ester forms of (3S,3 'S)-astaxanthin with the (3R,3 'R) form deposited in the 

flesh to a greater extent (Schiedt et al. 1985; Foss et al. 1987) suggesting that all optical 

ester forms of astaxanthin are not utilised equally. 

A further characteristic of astaxanthin from Haematococcus is that a very high proportion 

(typically >95%) of the astaxanthin exists as a complex mixture of esters, primarily 

monoesters rather than diesters (Renstmm & Liaaen-Jensen 1981; Grung et al. 1992; 

Hacker et al. 1996b; Lorenz & Cysewski 2000). The carotenoid composition of the 

Haematococcus aplanospore is in part dependent upon the age of the culture so that the 

ratio of astaxanthin monoesters: diesters decreases with time (Harker et al. l996b ). The 

main fatty acid components of the astaxanthin esters from this alga are C1&:J and C2o: 1 

(Renstmm & Liaaen-Jensen 1981; Bowen & Young pers. comm.), which are major 

components of plant cell membranes. 

Esterification of astaxanthin may be an important factor limiting flesh deposition 

(Choubert & Heinrich 1993). Indeed the rate of hydrolysis of astaxanthin esters to free 

astaxanthin appears to be limited which may explain observed differences in deposition 

(Torrissen et al. 1989). It has been shown that synthetic astaxanthin dipalmitate is poorly 

utilised in comparison to free astaxanthin in trout and sea trout, and in addition 

canthaxanthin in salmon (Foss et al. 1987; Storebakken et a/ 1987). This is contrary to 

earlier observations where natural astaxanthin esters have been shown to be more effective 

in the pigmentation of rainbow trout compared to the free form of astaxanthin (Simpson & 
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Kamata 1979). Furthermore, a study by Mori et al. (1989) demonstrated that there was 

practically no difference between an astaxanthin diester from krill and synthesised free 

astaxanthin in their absorption and deposition by Coho salmon. Indeed, results from 

previous investigations (see Chapter 3 and 4) would agree with the latter examples since 

Haematococcus pluvialis products (which contain predominantly esterified astaxanthin) 

have been shown to be efficient sources of pigment compared to the synthetic/unesterifted 

form. However, some digestibility and rate absorption assessments (into serum) for 

astaxanthin from the same studies have suggested that the absorption of esterified 

aslaxanthin may well be limited, although not to a significant extent. Furthermore, it is 

difficult to interpret the significance of this limitation when astaxanthin esters are supplied 

in algal spores where the influence of the cracked cell wall cannot de differentiated from 

the limitation presented by the requirement for ester hydrolysis. 

Interpretation of the absorption efficiency of astaxanthin esters is confounded when they 

are supplied within a complex mixture of carotenoids. Haematococcus pluvialis 

commonly contains other carotenoids such as lutein; echionene; canthaxanthin and P

carotene in addition to the various ester forms of astaxanthin (Grung et al. 1992). Bias in 

absorption due to interaction between carotenoids at the intestinal level cannot be ruled out 

(White et al. 1994; Giirtner et al. 1996; Kostic et al. 1995; Hageman et al. 1999). 

Furthermore, it is not clear whether the extent of esterification limits the availability and 

deposition of astaxanthin. It is plausible to assume that the hydrolysis of an astaxanthin 

monoester to its free form may well be faster relative to the hydrolysis of an astaxanthin 

diester. Such differences and their implications have not been assessed previously in in 

vivo situations. 
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The following investigation was designed to evaluate whether the extent of esterification 

limits the digestibility and absorption of astaxanthin. In addition, to determine whether 

(3S,3 'S)-astaxanthin esters from Haematococcus pluvialis are utilised as efficiently as a 

racemic astaxanthin mixture. Finally to assess whether the extent of esterification 

influences utilisation in comparison to an unesterified synthetic form in pigmenting 

rainbow trout. 

5.2 Materials and Methods 

5.2.1 Experimental design 

In the following experiment each dietary treatment was assigned to triplicate tanks 

containing groups of fish. Subsequently, each tank is considered as a replicate (n=3). 

Following sampling and analysis of individual fish tissues, statistical comparison of results 

between treatments was based on mean values from each tank (n=3) to avoid pseudo

replication and false interpretation of results (Morris 1999). 

5.2.2 Experimental Diets 

The basal feeds containing no added carotenoid and formulated to meet the nutritional 

requirements of rainbow trout and were supplied by Trouw Aquaculture Ltd. (Wincham, 

UK) Dietary treatments had identical proximate basal composition (Table 5.1) and target 

levels of 30ppm astaxanthin. Diet FR contained free astaxanthin (8% w/v dispersible 

beadlets; CAROPHYLL ® Pink, F. Hoffman-La Roche); Diet MONO and Diet Dl 

contained astaxanthin monoesters and astaxanthin diesters (isolated from Haematococcus 

I I 3 



pluvialis), respectively. Diet HAEM was supplemented with a cell free carotenoid extract. 

Table 5.2 outlines the astaxanthin composition of the experimental diets. Carotenoid 

extraction from algal cells and astaxanthin ester isolation was performed as previously 

described (see sections 2.1.1 and 2.4.7). Astaxanthin fractions were added to the basal 

diets in a top coating procedure (see section 2.1.2) where the fat content of the diet was 

increased to a commercially acceptable level of26%. 

5.2.3 Fish feeding and sampling 

Rainbow trout (I 41 ± 0.6g) were randomly assigned into individual tanks ( 40 fish per tank) 

maintained at l5°C under a 12h light/dark photoperiod. Diets were fed in a single morning 

ration (1.3-1.8% BW dai 1
) to triplicate groups/tanks of fish for 8 weeks, with alterations 

to feed quantity made daily assuming a feed conversion ratio (FCR) of 1.0. Faeces were 

then stripped from fish (see section 2.2.4) and analysed for astaxanthin (see sections 2.4.2 

and 2.4.9) to determine apparent digestibility coefficients (ADC) as described previously 

(see sections 2.5.1). In addition, flesh and skin samples were taken from fish (5 fish per 

tank; 15 fish per treatment) and analysed for carotenoid by HPLC (see sections 2.4.4; 2.4.6 

and 2.4.10); optical isomer content (see below) and evaluation of carotenoid retention (see 

section 2.5.2). 

Following faecal stripping, fish were fed a carotenoid free diet (same basal formulation as 

experimental diets) for 14 days to reduce the level of carotenoid in the serum of fish to a 

minimum. Fish were then fed a single ration ( 1.3% BW) of the respective carotenoid 

supplemented diet. Blood samples were taken from fish ( 5 fish per tank; 15 fish per 

treatment) at six time intervals up to and including 72h for carotenoid analyses. 
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5.2.4 Analysis of astaxanthin chiral forms 

Analysis of the various chiral forms of astaxanthin in feeds, fish muscle and skin samples 

was performed at Liverpool John Moores University. Analysis was achieved by 

derivatization of unesterified (see below) carotenoid to produce their dicarnphanates. 

Astaxanthin was dissolved in dry pyridine (0.5rnl) and reacted with 50mg of (-)

camphanoyl chloride (Sigma, Poole, UK) for 1 Ornin at room temperature (ea. 20°C). The 

resulting dicamphanates were extracted by partition into diethyl ether. 

Analysis of dicamphanates was performed on normal-phase HPLC (Lichrosorb SI60; 250 

x 4.6mm; particle size 5J.1m; detection wavelength 49lnm). The solvent system used was 

n-hexane/ethyl acetate (75/25 v/v) at a flow rate of 0.5ml min- 1
. Retention times for 

isomers were; (3R,3'R) 18.5min; (3R,3'S) "meso" 19.8min; (3S,3'S) 21.3min. 

As astaxanthin is predominantly esterified in the skin of rainbow trout, anaerobic 

saponification was performed on these samples prior to optical isomer analysis. The 

method used was based on that originally developed by Schiedt et al. ( 1993). Typically 

1 0-IOOJ.Ig of carotenoid esters was dissolved in dichloromethane (maximum 3ml) and 

mixed. Sodium methoxide (lml; prepared by dissolving 1.5g of sodium in lOOml of 

methanol) per ml of astaxanthin solution was added to a side arm flask and the entire 

system flushed with nitrogen to remove all traces of oxygen. The sodium methoxide and 

astaxanthin solutions were frozen with liquid nitrogen and placed under vacuum. The 

solutions were then thawed at room temperature (ea. 20°C) in order to de-gas them. This 

freeze-thaw cycle was repeated at least three times. The sodium methoxide solution was 
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then mixed with the astaxanthin solution under high vacuum and constant stirring for 

15min. The mixture was then acidified with 1 ml of 1 N H2S04 ml" 1 of sodium methoxide, 

removed and diluted with ethanol and water. Astaxanthin was then extracted with hexane: 

diethyl ether (I: I v/v), washed with water and dried under a gentle stream of nitrogen. 

5.2.5 Statistical analysis 

Data were subjected to tests for normal distribution (standardised skewness and kurtosis) 

and variance checks (Cochrans and Barlett's test) before comparison. Net apparent 

retention (NAR) of astaxanthin was calculated according to Torrissen (1995) incorporating 

a flesh to body weight ratio of 0.61 (Wathne et al. 1998). Statistical analysis and 

regression/curve fitting of data was carried on StatGraphics Plus 4.0 and SigmaPiot 4.0, 

respectively. Flesh astaxanthin concentrations, NAR and apparent digestibility coefficients 

(ADC) were compared across treatments using the analysis of variance at the 95% 

confidence limit. 

5.2.6 Kinetic modelling 

Kinetic determination of serum astaxanthin uptake rates for fish fed the various dietary 

treatments was carried out as previously described (see Chapter 4, section 4.2.5). 

5.3 Results 

No significant differences (P>0.05) were recorded between the mean initial and final 

weights of rainbow trout used in this study across dietary treatments (Table 5.3). Fish 
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weight increased by ea. 150g throughout the trial with final fish weights representative of 

typical pan-size fish (ea. 250g). Similarly, no significant differences were noted for the 

mean feed conversion ratios (FCR) across treatments. 

The apparent digestibility coefficients (ADC) for the respective treatments (Figure 5.1) 

were Diet FR 65.73 ± 1.33%; Diet MONO 60.51 ± 2.80%; Diet DI 62.63 ± 0.74% and Diet 

HAEM 59.69 ± 2.22% (n=3, ±SEM). No significant differences (P>0.05) were recorded 

between the ADC values across treatments although there was a trend for higher ADC 

values in fish fed diet supplemented with free astaxanthin (Diet FR). However, there was 

no obvious difference in ADC values between the other treatments. 

Following ingestion of a single ration (Figure 5.2) there were no significant differences 

(P>O 05) in the serum-astaxanthin absorption rates between fish fed Diet CP (0.3 5 ± 

O.lOJ.Ig mr 1h- 1
); Diet MONO (0.24 ± 0.09J.1g mr 1h- 1

); Diet DI (0.19 ± 0.02J.1g mr 1h- 1
) or 

Diet HAEM (0.23 ± 0.11 J.lg m1" 1h-1
). However, the rate of absorption was clearly higher in 

fish fed free astaxanthin. Furthermore, there was a trend for fish fed monoesterified 

astaxanthin to have higher absorption rates than those fish fed diesterified astaxanthin. 

The serum peak times for astaxanthin were similar for all treatment (24-32h). However, at 

24h and 32h mean serum astaxanthin concentrations (minus values at time 0) were 

significantly higher (P=O.OOI and P=O.Ol8, respectively) in fish fed Diet FR (166 ± 

0.05J.Ig mr 1 and 1.61 ± 0.06J.1g mr 1
, respectively) and Diet MONO ( 1.43 ± 0.20J.1g mr 1 and 

154 ± O.IOJ.ig mr 1
, respectively) compared to fish fed Diet 01 (0.92 ± 0.07J.1g mr 1 and 

0.99 ± 0.07J.1g mr 1
, respectively) and Diet HAEM (0.65 ± 0.09J.1g mr 1 and 113 ± 0.20J.1g 

mr 1
, respectively)(n=3, ±SEM) 
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The deposition of astaxanthin and total carotenoid in the flesh/muscle of rainbow trout 

(Figure 5.3) was not significantly different {P>0.05) for fish fed Diet CP (4.0 ± 0.4 and 4.3 

± 0.5f.lg g·\ respectively); Diet MONO (4.3 ± 0.8 and 5.2 ± l.Of.lg g·1
, respectively); Diet 

Di (3.5 ± 0.5 and 4.1 ± 0.7f.lg g"1
, respectively) or Diet HAEM (3.9 ± 0.3 and 5.1 ± 0.4f.lg g· 

1
, respectively). In addition to astaxanthin, trace amounts of lutein, zeaxanthin and 

idoxanthin (3,3 ',4' -trihydroxy-~,~-carotene-4one) were found in all fish examined, 

including those fed synthetic all-trans astaxanthin (Diet FR). No significant differences 

(P>0.05) were found between the different diets for the levels of these xanthophylls 

deposited in the white muscle of rainbow trout (data not shown). Similarly, net apparent 

retention values (Table 5.4) for both total carotenoid (ea. 12-14%) and astaxanthin (ea. 10-

12%) were not significantly different (P>0.05) for fish fed the different dietary treatments. 

The chirality of astaxanthin (Table 5.5) deposited in the muscle of fish fed all diets was 

representative of the chirality of astaxanthin in the diets. Subsequently, those fish fed diets 

supplemented with ester fractions from Haematococcus pluvialis (Diet MONO, Diet EST .. 

and Diet HAEM) deposited the (3S,3 'S) astaxanthin form where fish fed the racemic 

mixture of astaxanthin (Diet CP) deposited the racemic mixture in the flesh. However, in 

vivo racemisation of astaxanthin was observed in the skin of fish fed all diets. For the diets 

supplemented with algal fractions an almost racemic ratio of I :2: I (3S,3 'S; 3R,3 'S: 3R,3 'R) 

was recorded suggesting extensive epimerization of the (3S,3 'S)-astaxanthin form. 

Both 9-cis and 13-cis isomers of astaxanthin were detected in the white muscle of rainbow 

trout (data not shown). Whilst 9-cis astaxanthin was noted in fish fed all diets, the 

presence of 13-cis was restricted to those fish fed astaxanthin derived from algae (Diet 
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Table 5.1 Ingredients and proximate composition of the experimental diets 

Ingredients: Percentage inclusion 

•L T Fishmeal 61.3 

Wheat gluten 5.6 

Wheat 21.6 

Fish oil 10 

bVitamin premix 0.8 

"Mineral premix 0.7 

Yttrium oxide 0.01 

Proximate composition: 

Protein 45.9 ± 0.4 

Fat 27.3 ± 0.1 

Ash I 0.4 ± 0.1 

Moisture 6.1 ± 0.03 

Energy 21.4 ± 0.1 MJ kg- 1 

•Norse LT 94, Egersund, Norway. Vitamins/mineral premixes as formulated by Trouw 

Aquaculture Ltd. (Wincham, U.K). Supplementary oil (Cod Liver Oil, Seven seas Ltd., Hull, 

U.K.) was added to basal formulation, providing a carrier for carotenoid (increase final oil 

level to ea. 26% w/w). Values represent means (n=3, ± SEM). 
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Table 5.2 Astaxanthin content and composition of the experimental diets 

Dietary Inclusion (mg kg- ) 

Diet FR Diet MONO Diet DI 

Astaxanthin 31.65 0.55 

Astaxanthin monoesterst 31.46 

Astaxanthin diesters! 30.28 

Total Astaxanthin 31.65 ± 1.85 32.01 ± 4.32 30.28 ± 1.92 

Diet HAEM 

1.37 

17.44 

6.42 

29.71 ±0.65 

tMonoester extract was 90.51% pure as confirmed by TLC. tDiester extract was 96.62% pure as confirmed by TLC. Lutein and ~-carotene were 

found to constitute these impurities (<I ppm). Relative inclusion of astaxanthin forms determined from percentage contribution as evaluated by 

TLC (see Materials and Methods). Values represent means (n=3, ± SEM). 



Table 5.3 Growth performance and feed utilisation of rainbow trout after eight weeks of 

feeding the dietary treatments 

Growth Data Diet FR Diet MONO Diet DI Diet HAEM 

Initial weight 140.37 ± 1.87 141.92 ± 1.98 142.03 ± l.SI 139.60 ± l.l9 

Final weight 246.70 ± 0.08 249.03 ± 0.28 252.06 ± 3.78 251.32 ± 4.97 

FCR 1.02 ± 0.03 1.02 ± 0.03 0.99 ± 0.02 1.0 ± 0.03 

Values represent means (n=3, ± SEM). No significant differences were recorded between 

dietary treatments for initial and final weight or FCR. 
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Figure 5.1 Apparent digestibility coeffi cients (ADC) for astaxanthin for fish fed the 

experimental diets. No significant differences (P>O.OS) were recorded between dietary 

treatments. 
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Figure 5.2 Post-prandial astaxanthin serum profiles for trout fed a single meal 

supplemented with either free astaxanthin (Diet FR e; solid line); monoester (Diet MONO T ; 

long dash) ; diester (Diet DI • ; short dash) or Haematococcus pluvialis extract (Diet HAEM 

+; medium dash) . Values represent the means of replicates (n=3 , ±SEM). Maximum 

absorption rates of astaxanthin determined as described in Materials and Methods (kinetic 

modelling). Time 0 represents approx. l h after fish were fed. 
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Figure 5.3 Astaxanthin (11) and total carotenoid (D) in white muscle of rainbow trout fed 

the experimental diets. Values are means (n=3, ± SEM). No significant differences (P>0.05) 

were recorded between dietary treatments. 
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Table 5.4 Net apparent retention of dietary carotenoid and dietary astaxanthin after 8 

weeks of feeding 

Diet 

Diet CP 

Diet MONO 

Diet Dl 

Diet HAEM 

Net Apparent Retention(%) 

Total carotenoidt 

12.3 ± 1.3 

14.6 ± 2.9 

12.3 ± 2.3 

12.6 ± 1.0 

Astaxanthint 

11.5±1.0 

12.2 ± 2.4 

10.4±1.6 

12.0 ± 0.9 

fDetermined spectrophotometrically in n-hexane. !Determined by HPLC analysis. Values 

represent means (n=3, ±SEM). No significant differences were recorded between dietary 

treatments. 
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Table 5.5 Chirality ofastaxanthin in the feeds, muscle and skin ofrainbow trout at the end ofthe nutrition trial. 

Chirality of astaxanthin (3S,3 'S; 3R,3 'S; 3R,3 'R)f 

Treatment Feeds White muscle Skin 

Diet CP 1.00: 2.00: 1.00 0.55: 1.00: 0.54 0.53: 1.00: 0.58 

Diet MONO 1.00: 0.08: 0.06 1.00: 0.20: 0.10 0.66: 1.00: 0.55 

Diet Dl 1.00: 0.07: 0.06 1.00: 0.40: 0.15 0.59: 1.00: 0.49 

Diet HAEM 1.00: 0.09: 0.05 1.00: 0.13: 0.06 0.85: 1.00: 0.60 

fRatio of the concentrations of each isomer. Astaxanthin chirality in the skin was determined following anaerobic saponification (see Materials 

and Methods). 



5.4 Discussion 

No apparent differences were witnessed in growth of rainbow trout across treatments, 

indicating that the use of different astaxanthin supplements from Haematococcus pluvia/is 

presents no deleterious effects on feed utilisation and growth performance. This confirms the 

fmdings of previous trials in this study. 

The ADC values recorded for astaxanthin in this trial are in keeping with values previously 

reported in the literature for rainbow trout of 50-70% (Foss et al. 1987; No & Storebakken 

1991; Bjerkeng et al. 1997). The ADC for free astaxanthin in this study (ea. 65%) was similar 

to that found by Bjerkeng et al. ( 1997) for trout fed a stereo isomer mixture of free astaxanthin 

(64%), and for free astaxanthin in diets fed to Atlantic salmon of ea. 59-64% (Storebakken et 

al. 1987; Bjerkeng & Berge 2000). However, the average ADC found for astaxanthin diesters 

in the current investigation (ea. 63%) was higher than that found for a synthetic astaxanthin 

dipalmitate fed to Atlantic salmon (47%; Storebakken et al. 1987) yet within the range for 

astaxanthin dipalmitate fed to rainbow trout ( 42-67%; Foss et al. 1987). The lack of 

significant differences between ADC values in the present study suggests that the hydrolysis 

of astaxanthin esters and subsequent absorption by intestinal mucosal cells presents no 

limitation to the use of esterified astaxanthin as a source of pigment in salmonid feeds. These 

findings are similar to those of Storebakken et al. ( 1987) who found no significant differences 

in digestibility between astaxanthin and astaxanthin dipalmitate. Furthermore, the degree of 

esterification i.e. mono- or diesters does not significantly influence the digestibility of 

astaxanthin, suggesting efficient ester hydrolysis at the gastrointestinal level under the feeding 

conditions applied. However, although there were no significant differences in ADC values, 
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there was a trend for fish fed diets supplemented with free astaxanthin to have higher ADC 

values. 

Analysis of post-prandial serum astaxanthin concentrations following ingestion of a single 

meal show that the absorption rate of free astaxanthin (Diet FR) tended to be higher than that 

of esterified astaxanthin, although not significantly. This could suggest that the requirement 

for intestinal ester hydrolysis before absorption into the blood is a limiting factor and may 

merit further study. This fmding agrees in part with the ADC value for Diet FR in this study 

which was higher than the other treatments but not significantly. The serum absorption rate of 

astaxanthin in fish fed diets supplemented with diesters was lower than that of fish fed 

astaxanthin monoesters. This suggests that the degree of esterification of astaxanthin may 

well limit the absorption of this carotenoid into the blood. Very similar uptake rates for Diet 

MONO and Diet HAEM may be expected since the cell free carotenoid extract was composed 

mainly of astaxanthin monoesters. Although the rates of uptake were not significantly 

different, the differences between them did result in significant differences m serum 

astaxanthin concentration between treatments at the peak serum time of 24 to 32 hours. 

Clearly, the extent of esterification of the astaxanthin molecule was negatively related to 

absorption of astaxanthin into trout serum. 

A lack of significant differences in digestibility coupled with significant differences in serum 

astaxanthin concentrations may suggest that intestinal cells absorb astaxanthin esters intact 

followed by intracellular hydrolysis prior to blood transport. Indeed, non-specific esterases 

have been found along the intestinal brush border membrane and within the cytoplasm of 

enterocytes in Nile tilapia, Oreochromis niloticus (Tengjaroenkul et al. 2000). Alternatively, 
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variations m sensitivity between the two assessments may account for the differences. 

Digestibility values may be overestimated due to carotenoid degradation in faecal samples 

(Meyers 1994). Absorption, as well as removal from the serum for storage; bioconversion and 

excretion influence blood carotenoid concentrations (Castenmiller & West 1998; Van het Hof 

et al. 2000). 

This study revealed that isolated monoesters and diesters of astaxanthin as well as a mixture of 

both in a total carotenoid extract, were utilised as efficiently as the free synthetic form of 

astaxanthin in pigmenting rainbow trout under these trial conditions. These results are 

contradictory to those of other groups who have showed that synthetic astaxanthin dipalmitate 

was largely ineffective in pigmenting salmonids in comparison to the free, unesterified form of 

this carotenoid (Schiedt & Leuenberger 1981; Schiedt et al. 1985; Foss et al. 1987; 

Storebakken et al. 1987). Comparison between these studies and the current investigation are 

confounded by variations in trial duration and feeding conditions; dietary carotenoid levels 

and choice of salmonid species. Nonetheless, moderate levels of pigmentation and relatively 

short trial duration in the current study may have negated development of significant 

differences between treatments. However, Torrissen et al. ( 1989) indicated that farmed 

salmonids should have at least 3-4~g g·1 of total carotenoid to be marketable, a level that was 

achieved for all treatments. Net apparent retention values for astaxanthin and total carotenoid 

in the current study (10-12%) were lower than the 18% reported by Torrissen & Braekkan 

( 1979) but in keeping with the 7-11% reported by Foss et al. ( 1987). Choubert & Storebakken 

(1989) obtained a retention coefficient of 12.5% for rainbow trout fed for six weeks on diets 

supplemented with astaxanthin. Direct comparison is however complicated by differences in 

calculation and carotenoid content of feeds. 
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Pigmentation results from this study are consistent with those findings of Mori et al. (1989) 

who found no difference between the deposition of a krill astax:anthin diester and synthetic 

free astax:anthin in juvenile Coho salmon (Oncorhynchus kisutch)_ Moreover, Simpson and 

Kamata ( 1979) reported higher levels of pigmentation when using an esterified source of 

astaxanthin in comparison to the free form. Choubert & Heinrich (1993) reported very low 

carotenoid retention levels (1.5%) in rainbow trout fed diets supplemented with 

Haematococcus and suggested that the requirement for ester hydrolysis may be a limiting step 

in the deposition of astax:anthin. Results from the present study suggest that this is not the 

case and that the cell wall of Haematococcus may be the main limiting factor (Johnson & An 

1991). Indeed, algal cells used in the study by Choubert & Heinrich (1993) were not 

homogenised/disrupted prior to addition to the feed thus limiting carotenoid bioavailability 

Enantiomers of astaxanthin in wild Salmo and Oncorhynchus species are typically found in the 

ratio 78-85: 2-6: 12-17 (3S,J'S): (JR,J'S): (JR,J'R) (Schiedt 1998). However, synthetic 

astaxanthin (CAROPHYLL ® Pink) has a ratio of I :2: I (i.e. a ratio of I: I for the racemate 

forms: Bernhard 1990). When salmonids deposit astaxanthin in their muscle, they do not 

discriminate between the three enantiomers of unesterified astaxanthin (Foss et al. 1984). 

This is in agreement with findings in the current study since both racemic (synthetic 

astaxanthin) and (3S,3 'S)-astax:anthin were deposited unchanged. However, it has been 

reported that astaxanthin esters are utilised differently from the unesterified carotenoid 

(Schiedt et al. 1985) where astaxanthin dipalmitate was utilised in the order racemic > 

(JR,J 'R) > (JS,J 'S). Indeed, rainbow trout and sea trout (Salmo lmtta. L.) fed a synthetic 

mixture of astax:anthin dipalmitate enantiomers deposited (JR,J 'R) astaxanthin in their flesh to 
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a greater extent than (3S,3 'S)-astaxanthin (Foss et al. 1987). This may be due to stereo

selective attack by ester hydrolases in the intestinal lumen of the fish and requires further 

study. 

When astaxanthin is deposited in the skin of salmonids it is re-esterified with fatty acids 

(namely 20:5 and 18:1) although this re-esterification has been found to be unspecific in 

relation to the enantiomeric form of the carotenoid molecule (Schiedt et al. 1985). In the 

present investigation, whilst no epimerization of astaxanthin in the muscle was recorded, 

deposition of astaxanthin from algal sources in the skin was accompanied with epimerization 

of (3S,3 'S)-astaxanthin, with both the (3R,3 'S) and (3R,3 'R) forms being deposited. Specific 

enrichment ofthe (3R,3'R) form in the skin ofsalmonids has been recorded when dipalmitates 

of these enantiomers have been used. Racemic astaxanthin dipalmitate was deposited in the 

ratio 0.4: 1.0:1.0 (3S,3 'S): (3R,3 'S): (3R,3 'R) suggesting discrimination against the (3S,3 'S) 

form (Schiedt et al. 1985, Schiedt 1998). In vivo racemisation of 3H-(3S,3 'S)-astaxanthin has 

also been observed in the shrimp Penaeus japonicus although it could not be determined 

whether this occurred during or after absorption (Schiedt et al. 199 I, I 993 ). 

The presence of geometrical isomers of astaxanthin in the white muscle of salmonids is in 

agreement with previous findings. The 9-cis, 13-cis and I 5-cis forms of astaxanthin have been 

detected in the white muscle of rainbow trout fed with synthetic astaxanthin (Bjerkeng et al. 

I 997). Furthermore these authors demonstrated that the ADC' s were significantly higher for 

all-trans astaxanthin compared to a mixture of cis/trans isomers. More recently, selective 

distribution of geometrical isomers of astaxanthin in the faeces, blood, liver and muscle of 

rainbow trout has been demonstrated (0sterlie et al. 1999). Since isomerisation of all-trans 
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astaxanthin may take place in the gastrointestinal tract and also following uptake (Bjerkeng et 

al. 1997) it is plausible that intestinal hydrolysis of astaxanthin esters might promote trans-cis 

isomerisation. However, the presence of cis isomers was minimal and did not seem to have 

any affect on deposition or retention. 

The presence of idoxanthin in the muscle of fish fed unesterified astaxanthin, astaxanthin 

esters or total carotenoid extract confirms other observations in rainbow trout (Bjerkeng et al. 

1997) and Atlantic salmon (Schiedt et al. 1988a). Since idoxanthin was not found in the feed 

it is plausible that this carotenoid may represent a reductive metabolite of astaxanthin. Indeed, 

in Arctic charr (Salvelinus alpinus) the recorded major reductive metabolite of astaxanthin was 

idoxanthin, comprising 47-75% of total fillet carotenoids (Aas et a/_ 1997; Hatlen et al. 

1995a). 

Data from the present investigation demonstrates that natural fatty acid astaxanthin esters 

(extracted from Haematococcus) are as efficiently utilised as a free synthetic form in the 

pigmentation of rainbow trout. These results have implications for the use of other natural 

sources of astaxanthin esters e.g. shrimps and krill wastes that contain esterified astaxanthin 

In addition, the degree of astaxanthin esterification has no significant influence on the 

apparent digestibility of carotenoid. However, this study does provide evidence that the extent 

of esterification of astaxanthin does influence the rate of astaxanthin absorption into the blood 

that results in significant differences in peak serum concentrations of astaxanthin. This may 

suggest that hydrolysis may occur intracellularly within the enterocyte post absorption by the 

intestine and requires further study. The use of younger cultures of this algal may be 
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recommended since the ratio of monoesters: diesters have been shown to decrease with time 

(Harker et al. 1996b ). 

Clearly, a more refined understanding concerning the intraluminal digestive and absorptive 

processes within the salmonid intestine in relation to astaxanthin and its various forms is 

required. Although in vivo feed trials are an excellent indicator of the limitations associated 

with absorption, complex combinations of physiological events that occur in the living animal 

and which as yet are not understood, confound detailed assessment. Furthermore, the relative 

significance of each event e.g. absorption as opposed to metabolism, can not be strictly 

determined in live animal investigations. Consequently, it is essential to develop in vitro 

models that isolate and enable examination of carotenoid absorption at the gastrointestinal 

level. 
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CHAPTER 6.0 

EVALUATION OF AN IN VITRO PERFUSION SYSTEM TO ASSESS THE UPTAKE 

OF ASTAXANTHIN IN ISOLATED INTESTINE FROM RAINBOW TROUT, 

ONCORHYNCHUS MYKISS (W ALBAUM). 

6.1 Introduction 

Astaxanthin is an important carotenoid that is commonly used as a feed supplement to pigment 

cultured salmonid fish (Torrissen 1989a; Nickell & Bromage 1998a) and due to its wide 

distribution in the animal kingdom must constitute part of the human diet (0sterlie et al 

2000). Astaxanthin has been documented as a potential antioxidant in salmonids (Christiansen 

et al. 1995a). In addition, when used as a feed supplement improvements in growth of 

Atlantic salmon (Salmo salar) fry (Torrissen 1984) and growth and survival during the start

feeding period (Christiansen et al. 1994) have been recorded. Subsequently, there is great 

interest in the absorption and metabolism of this carotenoid in the context of promoting fish 

health and production. 

The mechanism of carotenoid absorption in humans and mammals at the gastrointestinallevel 

has been extensively reviewed (Erdman et al. 1993; Parker 1996; Furr & Clark 1997; Van den 

Berg 1999) yet there is an apparent lack of knowledge relating to similar processes in 

salmonids. In mammals, once released from the food matrix (gastric hydrolysis), carotenoids 

dissolve into a fine emulsion that passes into the duodenum region of the gastrointestinal tract. 

Carotenoids are then incorporated into lipid micelles (formation is dependent on bile flow 
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from the gall bladder) which act as a vehicle for carotenoid transfer across the unstirred water 

layer. Carotenoids are then passively absorbed by mucosal cells before being packaged into 

chylomicron like structures, secreted into lymph and subsequently into the systemic blood 

circulation. There is a disparity of information concerning those intracellular events that result 

in the formation of these chylomicrons. 

A majority of carotenoid absorption studies in both humans and in fish have been assessed 

primarily through monitoring rise and decline of the carotenoid in the blood of subjects 

following acute or chronic administration (White et al. 1994; Gobantes et al. 1997; Van den 

Berg 1998; 0sterlie et al. 2000). However, although this approach is informative it does not 

quantify the amount of carotenoid that is absorbed (Garret! et al. 1999a). Furthermore, 

carotenoid levels in the blood are affected by metabolism and excretion as well as absorption 

(Castenmiller & West 1998; Van het Hof et al. 2000). Digestibility studies have been utilised 

to indicate the absorption of carotenoid at the intestinal level in salmonids (Torrissen et al. 

1990; Choubert & Storebakken 1996; Bjerkeng & Berge 2000). However, such measurements 

are often subject to overestimation due to oxidation of carotenoids in faecal samples (Meyers 

1994) 

In vitro assessment of intestinal nutrient absorption has been carried out following a number of 

approaches each with their own advantages and disadvantages. One of the earliest in vitro 

preparations designed to monitor intestinal solute uptake was a section of intestine, circularly 

perfused on its luminal side, with samples being drawn from both the luminal and serosal 

reservoirs (Fisher & Parsons 1949). This method was later replaced with the established 

everted sac technique (Wilson & Wiseman 1954) which incorporated an everted segment of 
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intestine filled with media, sealed at both ends (serosal compartment) and suspended in a 

luminal reservoir containing the solute of interest. However, this preparation is limited by the 

inability to oxygenate and sample the serosal compartment throughout the experimental 

period. Studies where anaesthetised (Sawchuk & Awni 1986; Peres del Castillo et al. 1997; 

Wang et al. 1997) and non anaesthetised animals (Saunders & Dawson 1963; Simmonds et al. 

1968; Thompson et al. 1969; Clark et al. 1998) are chronically catheterised are believed to be 

most physiologically representative. Such methods involve surgical procedures that are 

difficult and often impractical where fish are the subject of investigation, although in situ 

catfish intestinal preparations have been recently described (Kleinow et al. 1998; Doi et al. 

2000). A modern system described by Carmona (1998) used non-recirculating serosally 

perfused everted segments of intestine that were placed in large volume incubation chambers 

which avoid large changes in luminal concentration. The continuous flow of perfusate 

(serosal compartment) avoids accumulation of solutes in the tissue phase and tissue viability is 

kept optimal by oxygen delivery to both the luminal and serosal media. In addition continuous 

collection of serosal perfusate fractions allows the determination of translocation kinetics and 

monitoring of a steady state. 

The objectives of the current study were to assess the potential of an intestine perfusion 

system to monitor and describe the uptake kinetics of astaxanthin in two potential 

vectors/solubilising agents. Secondly, to assess the viability of intestinal tissue when used in 

an in vitro perfusion system. 
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6.2 Materials and Methods 

6.2.1 Experimental System 

The isolated gut perfusion preparation used throughout the investigations was based on 

methodology described by Carmona (1998) and Ando et al. (1986a). A diagramatic 

representation of the system can be seen in Figure 6.1. Everted intestines were mounted in a 

gassed (95% 02; 5% C02) luminal reservoir ( !5cm x 11 cm) containing physiological saline 

(450ml) of composition (g r1
): NaCI 7.37g; KCL 0.31g; CaC~ 0.17g; MgS04 0.14g; KH2P04 

0.46g; Na2H2P04 2.02g; 0.3% Tween 20; 0.1% glucose (pH 7.3} (AI-Khalifa & Simpson 

1988). The preparation was perfused with saline using a peristaltic pump (Gilson Miniplus 3, 

Villiers le Bel, France) at a set flow rate of I ml min- 1 to mimic the blood flow of fish in vivo 

(Barron et al. 1987). A 250ml glass Erlenmeyer flask was used as a perfusion reservoir and 

was also gassed (95 % 0 2; 5% C02) to ensure preparation viability. The intestines were 

mounted on a polythene mesh support (15cm x 8cm) above a magnetic flea, rotated using a 

magnetic stirrer (HI l90M, HANN A Instruments, UK). This ensured efficient flow of the 

saline across the intestinal mucosa. Both the luminal and perfusate reservoirs were chilled 

with circulating water (Maxicool 14, lMl Cornelius, U.K.) to ensure the preparation was 

maintained at a desired temperature below that of ambient, ea. 20°C (typically at I5°C ± I 0 C). 

No inserts were necessary to sustain luminal space along the intestine owing to inherent 

musculature of the organ. 
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6.2.2 Preparation of the intestine 

Rainbow trout (250-400g) were taken from the aquarium system (see section 2.2.2) and 

immediately culled via a blow to the cranium followed by destruction of the brain. Fish 

weight was recorded. The gastrointestinal tract was promptly dissected from the fish and the 

stomach and pyloric region (from the pyloric sphincter to the last pyloric diverticular) 

separated from that of the remaining intestine, and discarded. The remaining intestine was 

immediately placed in lOOm! glass beaker containing both chilled (5°C) and gassed (95% 0 2) 

physiological saline for an initial period of recovery. Any fat deposits adhering to the intestine 

were gently removed from the organ using tweezers and a scalpel taking care not to tear or 

puncture the organ. The intestine section was then everted on a stainless steel everting rod 

(300mm x 2mm) and placed in the luminal reservoir containing 450ml of the physiological 

saline and dissolved solute (carotenoid). The anterior end of the intestine was supplied with 

saline from the perfusate reservoir, via the peristaltic pump and PVC tubing (0.63 mm internal 

diameter) containing a 1.5cm stainless steel insert at its out flow (lml min- 1
). The intestine 

was attached to the tubing with surgical suture. The distal end of the preparation was attached 

directly to similar tubing leading to a rack containing six 20ml pre-weighed glass vials that 

acted as fraction collectors (!Omin fractions) throughout the experimental period (60min). 

The preparation was then back-filled with chilled physiological saline and observed for leaks 

An initial period (5 min) ofperistaltic flow (lml min- 1
) was then sustained (elute discarded) to 

observe preparation viability, and ensure residual carotenoid that may have entered the lumen 

of the organ during initial transfer would not influence uptake data. 
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6.2.3 Solubilisation of carotenoid 

Two different methods of solubilisation were employed in the current study. In Experiment 

MIC, astaxanthin was dispersed in a non-ionic surfactant (Tween 20, BDH Supplies, Poole, 

England) which was added to the luminal reservoir saline at 0.3% (v/v) (AJ-Khalifa & 

Simpson 1988). The surfactant was included at an amount higher than its micellar 

concentration (59 J.IM) and it was subsequently assumed that carotenoid was incorporated into 

these micelles. The saline was filtered (Whatman No. I) before use to remove crystalline 

carotenoid that was not dispersed. Due to the limited solubility of astaxanthin in this solution, 

a second experiment (Experiment EM) was carried out using water miscible beadlets 

containing 4.6% astaxanthin (CAROPHYLL ®Pink; Roche Ltd., Basel). These were dispersed 

into saline (in addition to 0.3% v/v Tween 20) by mixing at 40°C. In both experiments Tween 

20 was also added (0.3% v/v) to the serosal perfusate to act as a solubilising agent for 

translocated carotenoid (Loran & Althausen 1969}. 

6.2.4 Astaxanthin analysis 

At the end of the experimental period 2ml of methanol ( +SOOppm BHT) was added to each 

perfusate fraction followed by rapid vortexing. Dichloromethane (6ml) was then added to 

each fraction, followed again by vortexing and a I Omin extraction period in darkness. Each 

fraction was then given a final vortex and then centrifuged at 3000 X g for I 0 m in at I5°C. An 

aliquot of the resulting hypophase (3ml) was extracted (Sml glass syringe; Hamilton, Reno, 

Nevada}, filtered (0.2J.1m), blown down under a gentle stream of nitrogen and stored at -20°C 
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until analysis. Samples were re-suspended in lOOJ!I of dichloromethane, before injection into 

the HPLC system for carotenoid quantification (see section 2.4.10) 

6.2.5 Viability experiments 

A number of parameters were assessed throughout the investigations to ensure the viability of 

the preparation and the subsequent value of the data obtained. During the perfusion period the 

observation of normal peristaltic contractions and constant perfusate out flow were the most 

efficient indicators of viability. Those preparations that conformed to these parameters were 

subjected to histological examination and were compared against tissues taken from normal 

healthy animals. 

6.2.5.1 Perfusate outflow 

This was measured by subtracting the initial weight of the fraction collector (pre-weighed vial) 

from the final weight of the vial with perfusate If results varied considerably from one 

fraction to another e.g. a dramatic drop in serosal perfusate volume, the preparation was 

deemed non-viable and the data dismissed from further analysis. Tears, leakage and 

blockages were factors that may have been responsible for variation in flow 

6.2.5.2 Peristaltic contractions 

Observations of sudden and spontaneous contractions are normal for intestine preparations and 

were taken as an indicator of physiological viability. Only when contracture was severe and 
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lasted over long periods was this considered as an indicator of decreased viability and the data· 

was duly disregarded. 

6.2.5.3 Histological examination 

Approximately 2cm of the everted intestine sample was typically used for ultrastructure 

examination and confirmation of preparation viability. The sample was placed in a 20ml glass 

vial filled with 5% buffered formal saline and left for a minimum of 24 hours. The formal 

saline was then discarded and the sample washed and stored in 70% alcohol for 3 hours, 

followed by washing and storage in 90% alcohol for 2 hours. The sample was then washed 

and kept in absolute alcohol (100%) for a minimum of 12 hours. The alcohol was then 

decantered and the sample washed and placed in xylene for 2 hours with an intermittent 

transfer into fresh xylene after 1 hour. Following removal of the xylene the sample was set 

into a wax block mould. 

Sectioning was carried out on a rotary microtome with a typical section thickness of 8j.!m. 

Samples were then stained using the Mallory's Trichrome procedure. The slide with specimen 

was placed in haematoxylin for 20min, followed by washing with water. The specimen was 

briefly placed in a lithium carbonate solution; differentiated in I% acid alcohol, and then 

placed back into the lithium carbonate solution for a few seconds. The specimen was then 

washed thoroughly in distilled water. The si ide was then placed in acid fuchin solution for I 0 

seconds and again washed in distilled water. Following washing, the slide was placed in 

Mallory's stain for 10 seconds; washed with distilled water; placed in 90% alcohol for 5 
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seconds and I 00% alcohol 2 min. The sample was then placed in xylene for 2 min and then 

mounted with a coverslip using DPX. 

6.2.5.4 Uptake vs. perfusate volume plots 

Regression analysis and comparison was carried out on cumulative uptake of astaxanthin and 

cumulative perfusate volume data. Differences in the slopes of regressions between plots 

suggest uptake is independent of perfusate tlow and that uptake is not a factor of solvent drag. 

Comparisons between total perfusate volume (total perfusate in each time fractions at the end 

of the perfusion period) at each astaxanthin dose were carried out to determine differences in 

apparent net water tlux. 

6.2.6 Experiments 

Experiment MIC and Experiment EM were carried out as preliminary dose response 

investigations. Doses of carotenoid were chosen according to representation of physiological 

concentrations, solubility restrictions and detection limits (see discussion). Uptake rates of 

astaxanthin were measured as a function of the amount of astaxanthin in the perfusate 

fractions and normalised for wet weight of the intestinal preparation. Initial uptake rates of 

astaxanthin were based on the amount of astaxanthin absorbed in the first IOmin fraction 

where overall uptake rates were calculated according to the total amount of astaxanthin taken 

up over the 60min perfusion period. Absorption coefficients were calculated according to: 
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100 X total amount of astaxanthin in perfusate after 60min (I! g) 

total amount of astaxanthin in luminal reservoir (Jlg) 

Those doses of astaxanthin which generated cumulative uptake data showing typical saturation 

over time was subjected to Michaelis-Menten kinetic fittings to identify Vmax which 

represented a theoretical maximum tissue astaxanthin concentration. 

6.2.7 Statistical analyses 

All statistical comparisons were carried out on StatGraphics Plus (2) for Windows. All data 

sets were subjected to tests for normal distribution and variance checks before comparison 

with parametric or non-parametric (Kruskall Wallis) tests. Curve fitting and regression 

analysis of cumulative uptake, initial uptake rates and cumulative volume was performed 

using SigmaPiot 4.0. Uptake rates, absorption coefficients and Vmax values were compared 

across treatments using a one-way analysis of variance at the 95% confidence level. 

Regression analysis of cumulative uptake and volume data generated slope values that were 

compared using the Kruskal Wallis test at the 95% confidence limit. 

6.3 Results 

6.3.1 Viability 

Viability assessments demonstrated that greater than 95% of the intestinal preparations were 

viable over the 60min perfusion period. Preparations mainly failed (<7%) due to tears in the 
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tissue that occurred during excision from the fish. These were quickly noticed due to erratic 

variations in perfusate volume. Histological examination of the tissue (Figure 6.2) revealed a 

thinning of the lamina propria within the epithelial tissue cells which occurred in greater than 

95% of the samples (as compared to controls). 

Comparison of regression line slopes for cumulative uptake and perfusate volume revealed 

that significant differences (P<0.05) existed between plots and that astaxanthin absorption was 

not influenced by "solvent drag" (see Figures 6.3-6.8). However, the total perfusate volume 

(Table 6.1) at the end of the perfusion period did vary between astaxanthin doses in both 

experiments where a general trend of decreasing volume with increasing dose was recorded. 

In Experiment l\1.IC, the total perfusate volume at astaxanthin dose l mg 1" 1 was significantly 

higher (P=0.0247) than the perfusate volumes at doses of2 and 3mg rl Furthermore, the total 

perfusate volume at dose 6mg 1" 1 in Experiment EM was significantly lower (P=O 0 162) than 

the perfusate volume at doses 2 and 3 mg 1" 1
. 

6.3.2 Astaxanthin uptake 

In both experiments there was a significant (P<0.01) positive relationship between initial 

uptake rate (based on the first I Omin fraction) and dose of astaxanthin (Figures 6. 9-6.1 0) with 

P-values of 0.0021 and 0.0064 for Experiment l\1.IC and Experiment EM, respectively. 

However, variability in the raw data resulted in moderate R2 and correlation coefficients for 

both Experiment MIC (R2=321%; correlation coefficient=0.56644) and Experiment EM 

(R2=50.6%; correlation coefftcient=O. 711 024). In Experiment MIC, the initial uptake rate at 

doses of 2mg r 1 (0.30 ± 0.04 11g g"1h"1
; n=1 0~ ±SEM) and 3mg 1" 1 (0.40 ± 0.12 11g g" 1h" 1

; n=4, 
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±SEM) were significantly higher (P=0.0156) than that at 1mg r 1 (0.15 ± 0.04 J.lg g" 1h"1
; n=IO, 

±SEM). In Experiment EM, the initial uptake rate at a dose of 6mg r1 (0.31 ± 0.08 J.lg g"1h- 1
) 

was significantly (P=0.0270) higher than that at 2mg r1 (0.04 ± 0.01 j.lg g" 1h" 1
) but not 

significantly different from that at 3mg r 1 (0.17 ± 0.07 J.lg g" 1h- 1)(n=4, ± SEM). Interestingly, 

the mean uptake rates of astaxanthin in Experiment MIC (Tween 20) were higher at equivalent 

astaxanthin doses than those in Experiment EM (dispersible beadlets) although this difference 

was only significant (P=O.OO 19) at the 2mg r1 dose. 

The overall uptake rate of astaxanthin in both experiments was not significantly different 

(P>0.05) between doses in each experiment with mean values ranging from ea. 0.1 to 0.13 J.lg 

g"1h- 1 in Experiment MIC and ea. 0.02 to 0.1 J.lg g" 1h- 1 in Experiment EM. In both experiments 

the overall uptake rates were lower than the initial uptake rates of astaxanthin and did not 

show a positive increase with increasing doses of astaxanthin. 

Absorption coefficients were generally very small across both experiments (0 002-0.3%) but 

this may expected since these values are a function of the ratio of total volume of the luminal 

reservoir (450ml) to the tissue weight ea. 0.5-2g. As the volume of the luminal reservoir 

decreases the absorption coefficient would increase. ln Experiment EM there were no 

significant differences (P>0.05) in absorption coefficients. However, in Experiment MlC the 

absorption coefficient generally decreased with increasing dose. Furthermore the absorption 

coefficient at lmg 1" 1 (0.025 ± 0.0005%) was significantly higher (P=0.0238) than that at doses 

of2mg 1" 1 (0.012 ± 0.002%) and 3mg 1" 1 (0.01 ± 0.003%). 

146 



The Vmax values for those doses that generated typical time saturation kinetics (see Figures 

6. 11-6.12) in the cumulative uptake data (Doses 2 and 3mg r1 in Experiment MIC and 3 and 

6mg r1 in Experiment EM) were not significantly different and typically ranged from ea. 0. I to 

0.3 Jlg g-1
. 
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Figure 6.1 Everted intestine perfusion system used in the current study 
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(c) (d) 

Figure 6.2 Histological pictures of (a) control intestine (x 20 magnification); (b) control intestine (x 10 magnification); (c) everted intestine sample (x 20 

magnification) and (d) everted intestine (x 40 magnification). 
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Figure 6.3 Cumulative astaxanthin uptake (solid bars) versus cumulative perfusate 

volume (open bars) at dose lmg r1 in Experiment MJC. Comparison of slopes (linear 

regression) based on raw data (n=lO) revealed significant (P=0.0090) differences. Values 

represent means (n= 10, ±SEM). 
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Figure 6.4 Cumulative astaxanthin uptake (solid bars) versus cumulative perfusate 

volume (open bars) at dose 2mg r 1 in Experiment MlC. Comparison of slopes (linear 

regression) based on raw data (n= IO) revealed significant (P=0.0088) differences. Values 

represent means (n= I 0, ±SEM). 
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Figure 6.5 Cumulative astaxanthin uptake (solid bars) versus cumulative perfusate 

volume (open bars) at dose 3mg r 1 in Experiment MIC. Comparison of slopes (linear 

regression) based on raw data (n=4) revealed significant (P=0.0292) differences. Values 

represent means (n=4, ±SEM). 
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Figure 6.6 Cumulative astaxanthin uptake (solid bars) versus cumulative perfusate 

volume (open bars) at dose 2mg r1 in Experiment EM. Comparison of slopes (linear 

regression) based on raw data (n=4) revealed significant (P=0.0202) differences. Values 

represent means (n=4, ±SEM). 

153 



0.14 60 ---E --.. 0.12 
.._... 

~ 50 Q) 
I 

0> E 
0> 0.10 

::J 
:i. 0 .._... 40 > 
Q) Q) 
~ 0.08 ...... 
ro ro ...... en a. 30 
::J ::J 

0.06 't: 
Q) Q) 
> a. ...... 20 Q) ro 
::J 0.04 > ...... 
E rn 
::J 10 ::J 

0 0.02 E 
::J 
0 

0.00 0 

0 10 20 30 40 50 60 70 

Time (min) 

Figure 6.7 Cumulative astaxanthin uptake (solid bars) versus cumulative perfusate 

volume (open bars) at dose 3mg r1 in Experiment EM. Comparison of slopes (linear 

regression) based on raw data (n=4) revealed significant (P=0.0209) differences. Values 

represent means (n=4, ±SEM). 
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Figure 6.8 Cumulative astaxanthin uptake (solid bars) versus cumulative perfusate 

volume (open bars) at dose 6mg r1 in Experiment EM. Compari son of slopes (linear 

regression) based on raw data (n=4) revealed significant (P=0.0202) differences. Values 

represent means (n=4, ±SEM). 
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Table 6.1 Absorption parameters for perfused everted intestines exposed to different doses of astaxanthin 

Experiment Dose Initial uptake rate Overall uptake rate Absorption Coefficient'~ Vmaxt Total perfusate volume 

(mg 1"1) (!lg g"1h-1) (!lg g"1h-1) (%) (ml) 

*Experiment MJC 0.15 ± 0.04 0.10 ± 0.02 0.025 ± 0.005 54.49 ± 1.28 

(Tween micelles) 2 0.30 ± 0.048 0.10 ± 0.02 0.012 ± 0.0028 0.09 ± 0.02 49.70 ± 0.81 8 

3 0.40 ± 0.128 0.13 ± 0.03 0.010 ± 0.0038 0.16±0.04 48.49 ± 0.678 

V> 
0\ 

fExperiment EM 2 0.04 ± 0.01A 0.02 ± 0.01 0.002 ± 0.002 54.50 ± l.l3A 

(Dispersible beadlets) 3 0.17 ± 0.07AB 0.09 ± 0.05 0.007 ± 0.003 0.26 ± 0.17 54.45 ± 0.48A 

6 0.31 ± 0.088 0.10±0.01 0.006 ± 0.001 0.17±0.06 51.04 ± 0.508 

*Number of replicates varied between the I mg r1 (n= 1 0); 2mg r1 (n=l 0) and 3mg r1 (n=4) doses due to limited solubility of astaxanthin. f n=4 for each dose. tEstirnate of 

the maximum astaxanthin concentration in intestinal tissue at each dose. Does not apply to some doses due to linearity in regression plots. ~Calculated at the end of the 

perfusion period according to: [cumulative astaxanthin in perfusate (!lg)/astaxanthin in luminal reservoir (!lg)] X 100. ABvalues within a column within an experiment 

bearing different superscripts are significantly (P<0.05) different. All values are means± SEM. 
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Figure 6.9 Dose response curve for initial uptake rates of astaxanthin by perfused 

everted intestines in Experiment MJC (astaxanthin so lubilise in Tween 20). Open circle 

symbols represent individual uptake and filled ci rcl es represent mean uptake at intended 
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dose. Regression analysis of raw data gave the equation: uptake rate= 

0.0468937+0.122348xdose (P=0 .0021 ; R2=32.0854%; correlation coefficient = 0.56644). 
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Figure 6.11 Cumulative uptake of astaxanthin in Experiment MIC (Tween 20) by 

perfused everted intestines at astaxanthin doses of 1mg·r 1 
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6.4 Discussion 

Preliminary dose response investigations were carried out in order to evaluate the potential 

of an everted intestine perfusion system (Carmona 1998) as a useful in vitro tool to study 

the absorption of astaxanthin. This system necessitated the selection of a vehicle or 

aqueous carrier for carotenoid solubilisation. The current study investigated two such 

carriers; a non-ionic surfactant (Tween 20) that was included at a quantity above its 

micellar concentration and a commercial emulsion (CAROPHYLL ® Pink, Hoffmann La 

Roche, Base!) of proprietary composition. Both non-ionic surfactants (El-Gorab et al. 

1975) and water miscible preparations (Garrett et al. 1999) have been used to study the 

uptake of carotenoid in other in vitro models. 

6.4.1 Vmbility assessment 

Cumulative astaxanthin uptake plots and overall uptake rates seem to show saturation in 

the mechanism of uptake with increasing astaxanthin dose. For example, in Experiment 

MIC: translocation of astaxanthin across the intestine at the lowest dose· (I mg r•) appears 

to follow a linear trend over the perfusion period but translocation at the higher doses (2 

and Jmg l"1
) displays saturable kinetics. It is unlikely that saturation was a function of 

perfusate flow and solvent drag as regression comparisons for cumulative uptake versus 

cumulative perfusate flow demonstrated significant differences in these two variables 

(Campbell et al. !999). However, histological examination revealed structural differences 

concerning the epithelial cells of perfused intestines compared to those from normal trout 

intestines, namely the separation of the lamina propria from the outer epithelial cells The 

lamina propria is a layer of loose connective tissue that supports the epithelium and 

accommodates glands; blood vessels; lymphatic vessels and may contain lymph nodes 
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(Freeman & Bracegirdle 1967). This separation can often be a function of histological 

procedures, however intact structure of epithelia and sub-muscular layers suggest that this 

separation may have been caused by a constituents within the luminal reservoir saline. 

Detergents or surfactants such as Tween 20 may solubilise tight junction within epithelial 

cells causing layers to separate on fixation and sectioning during histological procedures. 

Since this phenomenon was recorded in all cells and to the same extent at each astaxanthin 

dose (determined from cell counts) it is unlikely that this result was due to astaxanthin 

movement into lymphatics. Solubilisation of tight junctions would plausibly lead to 

progressive increases in permeability with exposure time. Schep et al. (1998) investigated 

the permeability of salmon (Oncorhynchus tshawytscha) posterior intestine to two 

hydrophilic markers in the presence and absence of the bile salt sodium deoxycholate 

(SDA) whose detergent action would mimic that of non-ionic surfactants. Not only did the 

presence of the bile salt increase the permeability of the markers, but also histological 

examination seemed to show the same separation of the lamina propria, although the 

authors made no comment on this. Other authors have found no significant effects of bile 

salt micelles on the permeability of intestinal preparations (Sallee et al. 1972) Indeed, 

cumulative uptake plots for astaxanthin in the current investigation show rapid initial 

uptake followed by saturation indicating uptake was independent of this effect. 

Nevertheless, such changes induced in epithelia raise concerns over the use of surfactants 

in in vitro studies. 

6.4.2 Solubility of carotenoid 

Solubility of astaxanthin was limited when dispersed with the surfactant (Tween 20) with 

maxi mal concentration not exceeding 3. 5 mg r 1• Furthermore, desired carotenoid 

concentration could not consistently be achieved due to unreliability in solubility. 
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Combination of these factors resulted in a dose response cuiVe over a narrow range of 

concentrations with variability in averaged doses. However, based on the size range of fish 

used in these studies (250-400g) and feed consumption (2% BW feed; 50mglkg carotenoid 

inclusion) the maximum intake of carotenoid (ea. 0.4mg) is similar to the range of doses 

investigated {0.45-1.35mg; based on luminal reseiVoir volume and astaxanthin 

concentration). Due to the limited solubility of astaxanthin in Experiment MIC, attempts 

were made to examine the uptake of astaxanthin at higher doses by using water miscible 

beadlets containing astaxanthin (Experiment EM). The surfactant (Tween 20) was also 

included in the medium to prevent bias in tissue viability. However, inconsistency in 

uptake results between different stock solutions prevented extensive use of this method of 

solubility (results presented for Experiment EM originate from one batch of stock 

solution). A reason for inconsistency in uptake between stock solutions in this way may be 

due to varied incorporation of astaxanthin from the emulsion into the included surfactant 

(Tween 20) although possible partitioning was not determined. Similarly, Garrett et al. 

(1999) found that almost one third of P-carotene from water miscible beadlets had failed to 

incorporate into micelles when an attempt was made to make a solution of higher P

carotene concentration than could be achieved with micelles alone. 

Discrepancies in uptake rates at similar doses between Experiment MIC (Tween 20) and 

Experiment EM (water miscible beadlets) may be a result of differences in absorption of 

astaxanthin from the two different vectors. This phenomenon has been recorded by several 

groups that have used different vectors to study uptake of carotenoids in vitro (EI-Gorab et 

al. 1975; Garrett et al. 1999b) and in vivo (MacMahon & Thompson 1969; Bi:ihm & Bitsch 

1999). These findings may suggest that absorption of carotenoid can be influenced by the 

use of different solubilising agents, yet whether this effect is biochemical and/or 

physiological remains to be validated. Such variation calls for methods of solubilisation 
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that are more physiologically representative e.g. bile salt micelles, before extrapolation of 

findings can take place from in vitro to in vivo situations. 

6.4.3 Uptake of astaxantbin 

Dose response curves for initial uptake rates of astaxantbin in both experiments showed a 

significant proportional increase in uptake rate witb increasing astaxanthin dose. This 

would agree with findings in vivo where blood carotenoid concentration have been 

positively related to the carotenoid concentration of feed consumed (Choubert et al. 1994a; 

Storebak.ken & Goswami 1996) and would tend to agree with the hypothesis that the 

absorption of carotenoid occurs passively at those doses examined. Indeed, Kiessling et al. 

(1995) stated that the concentration gradient for astaxanthin between intestinal contents 

and blood of Atlantic salmon (Salmo salar) was influential on the uptake of this 

carotenoid. 

The process by which astaxanthin transfers from the mucosal medium to the serosal 

perfusate is not clear from this model. However, in mammals in vivo it is believed that 

once absorbed by the intestinal enterocyte (believed to be a passive process), carotenoids 

are incorporated into chylomicrons before being secreted into the lymph for blood 

transport (Fur & Clark 1997; Van den Berg 1999). Tbe assembly of chylomicrons is 

dependent on absorption of lipids by the enterocyte; cellular lipid (re)synthesis and 

translocation of cellular lipid pools; synthesis and post-translational modification of 

various apolipoproteins and the assembly of lipid and lipoprotein components into a 

chylomicron (V an Greevenbroeck & de Bruin 1998). Complex intracellular events such as 

these could plausibly become saturated at various stages resulting in reduced astaxanthin 

uptake. Hollander ( 1973) attempted to measure the translocation of a fat-soluble vitamin 
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(Vitamin K) across the intestine into the serosal fluid of mammalian (Sprague-Dawley rats) 

everted gut sacs. Results from this study suggested that uptake (determined from tissue 

concentrations) of this vitamin was via an active or facilitated transport system (saturable). 

Furthermore, translocation of the vitamin into the serosal fluid was minimal which may 

explain the saturable kinetics witnessed in the cumulative uptake plots from the current 

study. Csaky (1984) indicated that studies of lipid absorption with in vitro intestine 

systems are of limited usefulness as the epithelium rapidly accumulates the lipid and 

cannot transport it out of the absorptive cell. Because many lipids of biological importance 

are metabolised and incorporated into specific lipoproteins within the cell the rate of 

appearance of these particles at the serosal surface does not reflect the rate of absorption of 

the constitutive lipids across the intestinal brush border (Sallee et al. 1972). However, 

earlier studies (Loran et al. 1961; Loran & Althausen 1969) did demonstrate the transport 

of a fat-soluble vitamin across the intestine into serosal medium by including a solubilising 

agent (Tween 80) in the serosal medium. In the current study, Tween 20 was included in 

the serosal medium at a similar percentage to that in the luminal reservoir (0.3%). 

Percentage inclusion of this solubilising agent was not increased so as to avoid differences 

in osmotic gradient and technical difficulties associated with HPLC analysis. 

There is evidence in the literature to suggest that lipid absorption in rainbow trout is quite 

different to that in mammals. Analysis of blood following force feeding with radiolabelled 

palmitic acid suggested that fish are incapable of delivering triglyceride to its circulation in 

the usual way and that most of the lipid is absorbed as free fatty acids, probably via the 

portal system (Robinson & Mead 1973). Indeed other authors have presented evidence 

that suggests fish do not have true lymphatics (Vogel & Claviez 1981; Vogel 1985). 

However Sire et al. ( 1981) demonstrated that fatty acids are re-esterified in the trout 

intestine mucosal cells and transported m very low density lipoprotein like structures. 
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Furthermore, later studies have isolated chylomicrons from fish serum (Rogie & Skinner 

1981; Fremont et al. 1981; Sheridan et al. 1985). Sheridan et al. ( 1985) suggested that 

lipid absorption in fish may be a two-step process whereby soluble short chain fatty acids 

and carrier bound fatty acids are absorbed directly and a slower system where 

triacylglycerol (TAG) rich lipoprotein particles are formed. Since carotenoids and lipid 

absorption are associated, this potential route for absorption of carotenoids and its 

importance requires clarification. 

It is interesting to note that the predicted Vmax values for tissue saturation of astaxanthin 

(0.1-0.3 11g g" 1
) are similar to findings for intestinal tissue astaxanthin concentrations stated 

in a previous study by the author (Chapter 3; 0.2-0.91-lg g" 1
). However, data from that 

study suggested that there were significant differences between the ileal and hind intestine 

in terms of astaxanthin absorption. The current model used preparations that comprised 

both these regions and normalisation of data was based on total weight of the two. This 

may in part explain the large variation between replicates. As such future perfusion 

investigations should be carried out with isolated regions of intestine i.e. ileal and hind 

intestine to distinguish potential differences. 

The perfusion system used in this investigation has been used successfully to describe the 

cumulative translocation of astaxanthin across the intestine of rainbow trout and determine 

initial uptake rates for this carotenoid. Limitations associated with tissue viability; 

solubility of the carotenoid in aqueous media and issues of variability in uptake between 

solubilising agents prevented more detailed interpretation of dose response investigations. 

Those processes that influence translocation of carotenoid across the intestine are 

obviously complex and difficult to interpret with the current model. As such future 

developments with similar in vitro models should be focussed on the use of preparations 
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CHAPTER 7.0 

USE OF EVERTED GUT-SACS TO COMPARE THE ABSORPTION OF 

ASTAXANTHIN IN SALMONID FISH. 

7.1 Introduction 

The producers of high value salmonid species are in no doubt that the use of salmonids 

feeds which contain carotenoids and ultimately result in the red colouration of fish flesh is 

a vital asset to the market value of these fish. Indeed, feeding of pigments is regarded as 

the most important management practise for marketing of farmed salmon (Moe 1990). 

Furthermore, Torrissen & Christiansen (1995) have suggested that astaxanthin should be 

regarded as a vitamin for fish and should be included in feed to ensure the health of the 

animal. However, astaxanthin may account for 15-20% of the total feed cost or 6-8% of 

the total production cost of Atlantic salmon (Torrissen 1995). Consequently, knowledge of 

those factors that may affect the pigmentation is at the forefront of carotenoid research. A 

variety of biotic and environmental factors may influence the utilisation of carotenoids by 

salmonids. However, it is not well understood which factors, if not all, influence the 

absorption of carotenoids at the gastrointestinal level. 

Changes in intestinal permeability and properties of the unstirred water layer are known to 

occur with ageing and will influence absorption of lipid-soluble nutrients (Hollander & 

Tarnawski 1984). Bjerkeng et al. (1992) studied the pigmentation of rainbow trout from 

start feeding to sexual maturation and found body redistribution of carotenoids coinciding 

with smoltification and sexual maturation. These authors suggested that these findings 

could be explained by changes in carotenoid absorption; transport capacity; affinity for 

carotenoid in various tissues or to catabolism. In mammalian models, size or age has been 
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shown to be an influential factor in the intestinal absorption of vitamin D (Hollander & 

Tarnawski 1984) yet has no influence on the absorption of vitamin A (Hollander & 

Morgan 1979). Studies have shown that rainbow trout below an average weight of ea. 

1 50g do not efficiently deposit pigment in their flesh (Abdul-Malak et al. 1975; Torrissen 

1985a). Similarly, juvenile Coho salmon (Oncorhynchus kisutch) of ea. 80g weight are 

virtually unable to assimilate astaxanthin from the diet and deposit it in the flesh when 

raised in fresh water (Arai et al. 1987). 

Water temperature significantly influences growth and metabolism in fish (reviewed by 

Smith 1989) As fish are poikilotherms, their metabolism and nutrient utilisation are likely 

reduced at low temperatures. Commercial salmonid culture in outdoor ponds/lakes is 

subject to both regional and temporal fluctuations in ambient temperature. A reduction in 

environmental temperature increases the gastrointestinal holding time (Fange & Grove 

1979; Fauconneau et al. 1983) leaving more time for efficient digestion and potentially 

counteracting reduced digestive enzyme activity. Indeed, the rate of gastric digestion in 

fingerling sockeye salmon (Oncorhynchus nerka) expresses an optimum at ea I 5°C (Brett 

& Higgs 1970) However, in salmonids, some studies have reported lower apparent 

digestibility coefficients (ADC) of nutrients with decreases in temperature (Atherton & 

Aitken 1970; Brauge et al. 1995; Olsen & Ring0 1998; Medale et al. 1999) while others 

have found no influence (Windell et al. 1978). A key study by No & Storebakken (1991) 

recorded that rainbow trout kept at two different temperatures (1 5°C and 5°C) and fed 

dietary astaxanthin tended to absorb astaxanthin (according to digestibility values) more 

efficiently at the higher temperature, although pigmentation was not significantly different. 

Genetic differences associated with intestinal uptake of fatty acids have been demonstrated 

in mice (Keelan et al. 2000). Previous studies have demonstrated interspecific differences 
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between rainbow trout and Atlantic salmon in their ability to utilise and efficiently deposit 

ingested pigment (Foss et al. 1984; Storebakken et al. 1985; Storebakken et al. 1986;). 

Furthermore, compared with rainbow trout, Atlantic salmon have been shown to 

demonstrate more constant plasma astaxanthin concentrations regardless of dietary 

astaxanthin levels, indicating that the absorptive capacity of the salmon intestine may limit 

the amount of astaxanthin that can be advantageously added to their diet (March & 

MacMillan 1996). 

The following study presents a series of experiments carried out to examine the effects of 

environmental (temperature) and biotic (size and species comparison) factors on uptake of 

astaxanthin in vitro by everted intestine sacs taken from rainbow trout (Oncorhynchus 

mykiss) and Atlantic salmon (Salmo salar). 

7.2 Materials and Methods 

7.2.1 Experimental system 

The everted gut-sac preparation used throughout the investigations was based on 

methodology of Wilson & Wiseman ( 1954). Everted intestines were mounted in a gassed 

(95% 02; 5% C02) bath or luminal reservoir (15cm x llcm) containing a physiological 

saline designed for trout (AI-Khalifa and Simpson, 1988) of composition (g 1"1): NaCI 

7.37g; KCL 0.31g; CaC~ O.l7g; MgS04 O.l4g; KH2P04 0.46g; Na2HP04 2.02g; 0.1% 

glucose (pH 7. 3). When Atlantic salmon intestine was used, the NaCI content of the saline 

was increased to 8.77g 1" 1 (Nordrum et al. 2000}. The everted intestines were laid on a 

polythene mesh support ( 15cm x 8cm) above a magnetic flea, rotated using a magnetic 

stirrer (HI 190M, HANNA Instruments, U.K.) to ensure efficient flow of oxygenated 

170 



saline across the intestinal mucosa. The preparation was maintained at a desired 

temperature (commonly 1 5 ± 1 aq below that of ambient (if required) by circulating 

chilled water around the luminal reservoir. 

7.2.2 Preparation of a micellar solution 

Simple micelles of sodium salt and carotenoid were prepared according to simplified 

methodology of Canfield et al. ( 1990). Approximately 30mg of crystalline astaxanthin 

were dissolved in lOOm! of dichloromethane containing 25mg of BHT. The solvent was 

then evaporated in a 250ml round bottom flask almost to dryness (remaining wet film). 

lOOm! of sodium taurocholate solution (0.1 M) were then added to the flask and the 

contents shaken vigorously. The turbid solution was then placed in a sonicating water bath 

at 50°C for 2hrs with occasional shaking whilst maintained within a fume hood. On 

completion of sonication the solution was made to a final volume of 1 litre by adding 

physiological saline. The mixture was then transferred to ultra centrifuge tubes and 

centrifuged at 4°C for 4hrs at 50,000 X g. Post centrifugation the clear micelle solution 

was additionally filtered (Whatman no.1). 

The micellar solution (filtrate) was then analysed immediately for astaxanthin by adding 

2ml of solution to 2ml of methanol and 6ml of dichloromethane in a 20ml glass vial. The 

contents were then vortexed for 30 seconds and placed in the darkness for a 10min 

extraction period. The samples were then centrifuged at 20 I 0 X g for 1 Omin and 3 mls of 

the resultant hypophase extracted and blown down under a gentle stream of nitrogen. 

Samples were either re-suspended in hexane and analysed by HPLC (see section 2.4.10), 

or, stored at -20°C prior to analysis. All analyses were performed in triplicate. Micelle 
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solutions were used within 24hrs to ensure stability. Observations to support micellar 

incorporation were as described by Garrett et al. ( 1999). 

7.2.3 Preparation of the intestine 

Fish were taken from the holding facility (see sections 2.2.2) and immediately culled via a 

blow to the cranium followed by destruction of the brain (Schedule I, Home Office 

Procedures). Fish weight was recorded The gastrointestinal tract was promptly dissected 

from the fish and the stomach and pyloric region (indicated by the first pyloric diverticular) 

separated from that of the remaining intestine (ileal and posterior region), and discarded. 

The remaining intestine was immediately placed in l OOml glass beaker containing both 

chilled (5°C) and gassed (95% oxygen, 5% C02) physiological saline for an initial period 

of recovery. Fat deposits adhering to the intestine were carefully removed from the organ 

using tweezers and a scalpel. The intestine section was then everted on a stainless steel rod 

(300mm x 2mm) by securing the ileal end (suture) and rolling the proximal region over it. 

Once removed from the rod, the proximal end of the intestine was closed with suture and 

the anterior end secured to a syringe containing chilled physiological saline. The intestine 

was then filled with saline until distended and removed from the syringe whilst securing 

tightly. The preparation was then placed in the luminal reservoir containing 450ml of the 

micellar solution containing astaxanthin for a typical exposure period of 50 min. 

7.2.4 Carotenoid extraction from intestine 

Following the exposure period intestinal sacs were removed from the micellar solution and 

thoroughly washed in a beaker containing saline and sodium taurocholate (I OmM). The 

secured suture was then cut away and the serosal fluid drained and discarded, ensuring the 
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tissue was washed in saline simultaneously to avoid contamination. A section of ileal and 

posterior intestine were then separated; blotted dry; weighed separately and placed in 20ml 

glass vials. Methanol (2ml) and distilled water (2ml) was then added to the vials, and the 

contents homogenised. Dichloromethane (6ml) was then added to each fraction, followed 

by vortexing and a l Omin extraction period in darkness. Vial contents were then given a 

fmal vortex and centrifuged at 20 l 0 X g for lO m in at 5°C. An aliquot of the resultant 

hypophase (3ml) was then blown down under a gentle stream of nitrogen and stored at -

20°C until analysis. Samples were re-suspended in 250J.tl of n-hexane before injection into 

the HPLC system for carotenoid quantification (see section 2.4.1 0). 

7.2.5 Viability experiments 

A number of parameters were assessed throughout the investigations to ensure the viability 

of the preparation and the subsequent value of the data obtained. 

7.2.5.1 Peristaltic contractions 

Observations of sudden and spontaneous contractions are normal for intestine preparations 

and are usually taken as an indicator of physiological viability. Only when contracture was 

severe and prolonged was this considered as an indicator of decreased viability and the 

data was duly disregarded. 

7.2.5.2 Tissue lactate-dehydrodgenase (LDH), potassium and moisture content 

Measurements of lactate dehydrogenase (LDH) and potassium content of normal (initial) 

and micelle exposed ileal and posterior intestines were compared (n=6). Briefly, ea. 0 5g 
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of tissue was homogenised in 8ml of distilled water. The homogenates were then 

centrifuged at 50, 000 X g for 30min. The supernatant was then assessed for potassium 

concentration using a flame photometer {CORNING 480). A 1 in 10 dilution was 

performed on the supernatant before assessment of LDH was carried out. A significant 

decrease in this cytosolic enzyme in tissue preparations would indicate tissue damage and 

reduced viability. The LDH assay was based on the kinetic pyruvate reduction method that 

detects the disappearance of NADH at 340nm (Sigma diagnostics DG1340-K, Poole, 

U.K.) 

Moisture analysis of tissue samples was carried out by drying tissue samples as previously 

described (see sections 2.1.5) 

7.2.6 Statistics 

All data was analysed using StatGraphics Plus for windows (version 4.0). Data were 

subjected to tests for normality before carrying out statistical tests. A one-way ANOV A 

was used to compare the uptake of astaxanthin at different temperatures, between species 

and tissue viability measurements between control and exposed intestine. Regression 

analysis of astaxanthin uptake over time and uptake vs. fish weight was performed using 

Sigma Plot 4.0. 

7.2.7 Experiment I: Tissue saturation 

In order to define a suitable experimental exposure period (within linear uptake range) an 

experiment was carried out to determine the uptake of an above average physiological dose 

(5.1 ± 0.2mg 1" 1
) of dietary astaxanthin over a I hour exposure period with tissue uptake 
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assessment carried out after 30min and 60min. Six individual tissue preparations were 

analysed at both time points with both the ileal and posterior intestine assessed for 

astaxanthin content. 

7.2.8 Experiment 2: Fish size effects 

An experiment was carried out to determine whether rainbow trout from two different size 

classes (204-302g and 802-1689g) displayed differences in intestinal uptake capabilities 

for astaxanthin. Six preparations from each size class were exposed to a micelle solution 

ofastaxanthin (4.3 ± O.Jmg 1"1) for a 50min period. Both ileal and posterior intestine were 

analysed for tissue accumulation of carotenoid 

7.2.9 Experiment 3: Temperature effect 

The effect of temperature on intestinal uptake of carotenoid was examined at three 

exposl\re temperatures (8°C, l5°C and 20°C) that may represent typical aquaculture 

rearing conditions through both temporal and spatial variation Six intestinal preparations 

from rainbow trout were examined at each temperature with an exposure dose of 3.9 ± 

O.lmg 1" 1 for a period of50min. 

7.2.10 Experiment 4: Species comparison 

ln order to determine whether inter-specific differences in intestinal uptake of carotenoid 

exist between salmonid species, a comparison was made between rainbow trout and 

Atlantic salmon (Salmo salar). Seven intestinal preparations from each species were 

exposed to a micelle solution of astaxanthin for a period of 50min of concentration 4.3 ± 

175 



0.04mg r1 and 4.3 ± 0.05mg r1 for trout and salmon, respectively, after which they were 

assessed for tissue accumulation of astaxanthin. 

7.3 Results 

7.3.1 Viability 

Assessment of viability criteria revealed that the gut-sac preparation remained 

physiologically viable throughout the 50min exposure period. LDH activity (Figure 7.1) 

was significantly higher (P<0.05) in the posterior intestine (ca.ll6-120 U g- 1
) compared to 

the ileal intestine (ea. 74-79 U g-1
), regardless of whether the tissue had been exposed to 

the micelle medium (P=0.0037), or not (P=O.OOOI). However, no significant differences 

(P>0.05) were noted between micelle exposed and control intestinal samples from either 

the ileal (78.47 ± 9.92 and 73.79 ± 5.07 U g- 1
, respectively) or posterior (119.54 ± 4.53 and 

116 ± 4.00 U g- 1
, respectively) region (n=6, ± SEM). 

Interestingly, potassium concentration (Figure 7.2) was also significantly higher in the 

posterior region (ea. 57-64 IJmol g-1
) compared to the ileal intestine (ea. 51-53 11mol g-1

) in 

both micelle exposed (P=O.OOOI) and control tissues (P=0.0254). Furthermore, potassium 

concentration in the exposed posterior intestine (63.58 ± 0.64 j.lmol g- 1
) was significantly 

higher (P=O.OOOI) than in the control samples of posterior intestine tissue (57.48 ± 0.67 

IJmol g-1
). However, no significant differences (P>0.05) were recorded between the 

potassium content of the control (53.34 ± 1.43 IJillOI g- 1
) and exposed (5174 ± 1.53 IJillOI 

g- 1
) ileal intestine. 
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No significant differences (P>O.OS) were recorded for moisture content (Figure 7.3) 

between the ileal and posterior intestine region. Moreover, no significant differences 

(P>O.OS) in moisture content were noted between control and exposed ileal (80.24 ± 0.30 

and 81.33 ± 0.30 %, respectively) and posterior (79.52 ± 0.27 and 78.88 ± 0.27 %, 

respectively) regions {n=6, ±SEM). 

7.3.2 Time saturation 

In experiment 1, tissue astaxanthin concentration m the ileal and posterior intestine 

increased from time 0 {0.15 ± 0.12 and 0 !lg g-1
, respectively) to 60min (2.64 ± 0.42 and 

0.09 ± 0.02 !lg g- 1
, respectively; n=S, ± SEM) when exposed to astaxanthin micelles 

(Figure 7.4) The result of fitting linear regressions to the time saturation data suggests 

that uptake of astaxanthin by the ileal intestinal tissue followed a significant positive 

relationship (P=0.0045) over the 60 ruin period at the dose investigated (5.1 ± 0.2 mg r1
). 

Interestingly, uptake of astaxanthin by the posterior intestine showed no similar significant 

trend (P>0.05). Furthermore, tissue astaxanthin concentrations in the posterior intestine 

were significantly lower compared to the ileal intestine at 30min (P=0.0001) and at 60min 

(P=0.001). For experiments 2-4 doses of astaxanthin were kept below 5mg 1" 1 (-4mg 1" 1
) 

and exposure time was limited to SOmin (all results recalculated to express uptake over 

60min). This ensured astaxanthin uptake would be compared within the linear phase 

according to the results from experiment 1. 

7.3.3 Size effects 

Comparisons of intestinal uptake by two different size classes of rainbow trout in 

experiment 2 (Figure 7.5) revealed no significant relationships between fish weight and 
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uptake at the 90% or higher confidence level, with P-values of 0.1032 and 0.2961 for the 

ileal and posterior intestine, respectively. The correlation coefficient between fish weight 

and intestinal uptake for the ileal intestine was -0.52 indicating a moderately strong 

relationship between the variables. A relatively weak relationship was noted between 

uptake for the posterior intestine and fish weight with a correlation coefficient of -0.33. 

Again, astaxanthin uptake by the posterior intestine was significantly (P=0.039) lower than 

the ileal intestine across the size range of trout used. 

7.3.4 Effect of temperature 

In experiment 3, uptake of astaxanthin by the ileal intestine (Figure 7.6) was significantly 

higher (P=O.O 122) at 20°C (2.12 ± 0.56 llg g·1
) and I5°C (2.04 ± 0.27 llg g·1

) compared to 

that at 8°C (0.63 ± 0.08 llg g·1
; n=6, ± SEM) There was no significant difference {P>O OS) 

in astaxanthin uptake for the ileal intestine at I5°C compared to 20°C. However, no 

significant differences (P>O.OS) were recorded for astaxanthin uptake for the posterior 

intestine between the three exposure temperatures. Astaxanthin absorption by the ileal 

intestine was significantly higher (P=0.0039) than astaxanthin uptake by the posterior 

intestine at all three temperatures. 

7.3.5 Species differences 

Comparison of intestinal uptake between salmonid species in experiment 4 (Figure 7. 7) 

revealed no significant differences in uptake (P>O.OS) for either the ileal or posterior 

intestine regions. However, uptake by the ileal intestine for Atlantic salmon (0.36 ± 0.09 

llg g" 1
) expressed a mean value that was ea. 41% lower than that noted for rainbow trout 

178 



,• '• 
·. " 

t(b:62 ±;.0!091 J.1Kg{1~ .. \!Jp!ake ,·by, tlie ~posterior intestine, wlls !lg!li.o ,signif!<:~tndy IQw~r~than 
. . . 

itha._tof,the ilealiregion,fmtboth,trout (P"'Or.0064)iandi salmon (P=O.O,l104). 

{79 



140 

120 

---..-
100 I 

0> 

:::> ..._.... 
>. 

:t= 
80 

> ....., 
() 60 
<( 

I 
0 40 
_J 

20 

0 
ileal CNT ileal EXP posterior CNT posterior EXP 

Figure 7.1 Tissue LDH activity of control (CNT) and micelle exposed (EXP) ileal and 

posterior intestine sections of everted gut sacs from rainbow trout (n=6, ± SEM). 
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Figure 7 .2 Tissue potassium concentration of control (CNT) and micelle exposed 

(EXP) ileal and posterior intestine sections of everted gut sacs from rainbow trout (n=6, ± 

SEM). 
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Figure 7.3 Tissue moisture content of control (CNT) and micelle exposed (EXP) ileal 

and posterior intestine sections of everted gut sacs from rainbow trout (n=6, ± SEM). 
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Uptake of astaxanthin by everted gut sacs of rainbow trout over time. Open 

bars represent astaxanthin uptake by the posterior intestine and filled bars represent uptake 

by the ileal intestine (n=6, ± SEM). Astaxanthin dose was 5.1 ± 0.2 mg r1 at 15 ± I oc. 

Uptake at time 0 represents the astaxanthin concentration in intestinal tissue of control fi sh 

(n=3, ± SEM). Linear regression analysis of raw data gave a significant relationship 

(P=0.0045) between time and uptake (R2=66%; correlation coefficient=0.812006; 

uptake=O. l00909+0.042 l2 l2*time) for the ileal intestine. No such relationship was 

recorded for the posterior intestine (P=0.91 08). 
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Figure 7.5 Astaxanthin uptake by everted gut-sacs of rainbow trout as a function of 

fish weight. Open circles and open squares represent astaxanthin uptake by the ileal and 

posterior intestine, respectively. Astaxantbi_n dose was 4.3 ± 0.3 mg r1 at 15 ± 1 °C. 

Regression analysis of uptake vs. fish weight for the ileal and posterior intestine showed 

non-significant relationships (P>0.05). 
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Figure 7.6 Uptake of astaxanthin by everted gut-sacs of rainbow trout under different 

temperatures. Open and filled bars represent astaxanthin uptake by the posterior and ileal 

intestine, respectively (n=6, ± SEM). Astaxanthin dose was 3. 9 ± 0.1 mg 1"1
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Figure 7.7 Astaxanthin uptake by everted gut sacs of rainbow trout and Atlantic 

salmon. Open and filled bars represent astaxanthin uptake by the posterior and hind 

intestine, respectively (n=7, ± SEM) . . Astaxanthin dose was 4.3 ± 0.04 mg 1"1 and 4.3 ± 

0.05 mg r1 for trout and salmon respectively at I 5 ± I oc. 
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7.4 Discussion 

In the current study a senes of experiments was carried out in order to evaluate the 

potential of an in vitro gut sac technique to monitor the absorption of astaxanthin. 

Previous efforts with an everted gut perfusion system were limited due to an inability to 

effectively evaluate the translocation of carotenoid across the intestinal barrier. 

Furthermore, efforts have been made in the current study to solubilise astaxanthin in a near 

physiologically representative medium, namely bile salt micelles. Micelles were not 

formulated to incorporate additional fatty acids (mixed micelles) as information relating to 

typical fatty acid compositions of digesta from salmonids, is lacking. 

Measurements of LDH activity have been used previously in other in vitro models as an 

assessment of cellular integrity (Campbell et al. 1999; Pfitzner et al. 2000). Similarly, 

damaged intestinal tissue will leak potassium down an electrochemical gradient into the 

surrounding medium and is a function of anatomical position along the length of the gut 

(reflecting potassium absorption: Loretz 1995). However, other authors have shown that in 

African catfish (Clarias gariepinus) tissue potassium concentration was not position

dependent and therefore provides a better overall marker of potassium loss (Handy et al. 

2000). A measurement of water content in the tissue will indicate a net flux ofwater if the 

tissue is not in osmotic balance within the medium it is contained. However, these tissue 

viability assays carried out in this investigation showed no significant deleterious effects of 

exposing the intestine to the micelle medium within the experimental period (50min) 

suggesting uptake of astaxanthin into tissue occurred under nominal conditions. 

The uptake of astaxanthin over a 60min period (Figure 7.4) seemed to follow a linear trend 

at a higher than average physiological dose (-5 mg 1" 1
). This may suggest a passive 
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diffusion process of uptake. However, use of active uptake inhibitors is required before 

conclusions can be drawn as to the uptake mechanism of carotenoids at the gastrointestinal 

level. For the purposes of this study, this experiment served to identify an appropriate 

exposure period and suitable astaxanthin concentration for comparative uptake 

measurements within the linear range. An exposure period of 50min and dose of 4mg r 1 

was chosen to ensure linearity in uptake data for comparative purposes. 

Tissue concentrations of astaxanthin in this study were recorded above 2J.1g g·1 which are 

higher than findings in vivo (see Chapter 4). This may be partly due to the high 

"bioavailability" of astaxanthin in micelle media used in the present investigation, 

compared to in vivo where only a fraction of ingested astaxanthin may well be solubilised 

into micelles (data unavailable). Alternatively, after incubation in the astaxanthin micelle 

medium, astaxanthin may have been strongly bound to the mucosal cells of the ileal 

intestine. However, extensive washing with saline containing bile salts did not release 

significant amounts of astaxanthin. Other authors have found that a percentage of 

carotenoid presented in this way is surface bound rather than intracellular (EI-Gorab et al. 

1975). Refinements to the current method to distinguish between surface adherent and 

available substrate include washing with solvents (EI-Gorab et al. 1975) and use of non

absorbable markers (Salle et al. 1972). However, since radiolabelled astaxanthin is 

difficult to obtain the solvent extraction techniques and forms of analysis (HPLC) used in 

the current investigation would restrict the choice of an appropriate marker. 

Throughout this study a clear discrepancy was recorded between the uptake capacity of the 

ileal and posterior region of intestine for astaxanthin. Evidence from these in vitro 

experiments suggests that the ileal intestine has a greater affinity for astaxanthin uptake 

compared to that of the hind or posterior intestine. Indeed, this is supported by the view of 
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Torrissen (1986) and Al-Khalifa and Simpson (1988) and the current study (see Chapter 4) 

that absorption of carotenoids occurs mainJy along the proximal and mid-intestine of 

salmonids. This variation in nutrient uptake along intestinal regions is not limited to 

carotenoids and has been recorded for the amino acids in rainbow trout and Coho salmon, 

Oncorhynchus kisz1tch (Marcotte & de la Noiie 1984; Collie 1985). Discrepancies in 

absorptive capacity for astaxanthin along the length of the intestine, necessitates 

consideration of those factors associated with salmonid feeding practises that influence gut 

transit time. The feeding level and composition of the diet is a major determinant 

influencing digestion rate and thereby indirectly affecting absorption efficiency (Jobling 

1986). 

No significant relationship was recorded between fish weight and uptake of astaxanthin for 

either the ileal or posterior intestine regions. Uptake values were expressed per gram of 

intestinal tissue (wet weight) suggesting that there is no physiological change in the 

intestine associated with astaxanthin absorption, with development and maturation in the 

rainbow trout. A study that investigated the pigmentation of two size groups of Arctic 

charr (Salvelinus alpinus L.) using dietary canthaxanthin found that those fish which 

started at a smaller weight (17g), deposited relatively less pigment than those fish starting 

at a larger weight of 125g (Christiansen & Wallace 1988). Furthermore, the apparent 

digestibilities of canthaxanthin were 17.9% and 3 8. 7% for the small and large fish, 

respectively. This suggested that the poorer pigmentation of the smaller size class was a 

result of reduced digestibility of carotenoid. Similarly, Hollander & Dadufalza ( 1989) 

measured the uptake of vitamin E into the lymph and bile of young (4 months), middle

aged ( 14 months) and old (24 months) Sprague-Dawley rats in vivo. These authors 

recorded increased absorption ofthis vitamin in old (16,467pmol 5hr"1
) compared to young 

(5912pmol 5k1
) rats. However, these findings may be due to a direct increase in 
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intestinal length (and surface area) with increasing size of the animal. In contrast, vitamin 

A absorption has been shown to increase linearly with age in rats but changes in the 

absorptive surface area of the intestine were ruled out (Hollander & Morgan 1979). 

Instead, the authors suggested that a decrease in the unstirred water layer thickness with 

ageing may have resulted in greater efficiency of absorption associated with age, a 

phenomenon found with vitamin D (Hollander & Tarnawski 1984). Indeed, Wilson et al. 

(I 971) suggested that the unstirred water layer is rate limiting for intestinal absorption of 

lipids from micellar solutions. Results from the current study suggest that there is no 

difference in the uptake capacity of the trout intestine for astaxanthin between size classes 

and it is not clear whether the unstirred water layer is as influential in the absorption of 

carotenoids, in fish. However, only two size classes of rainbow trout were examined in the 

current study. Since Torrissen et al. (1989) suggest that rainbow trout under 90g pigment 

poorly, fish within this size range could be examined to define whether the poor 

pigmentation is associated with an inability to absorb astaxanthin at the gastrointestinal 

level. 

Uptake of astaxanthin was significantly higher for intestines (ileal region) maintained at 

zooe and l5°e compared to those at 8°e. These findings are supported from evidence in 

vivo where nutrient absorption has been shown to be greater at higher temperatures. For 

example, Medale et al. (1999) studied the utilisation of a carbohydrate-rich diet by 

common carp reared at 18 and 25°C. These authors noted that the apparent digestibility 

coefficients of energy and nutrients including starch were higher at 25°C. Olsen and Ring0 

(1998) demonstrated that the digestibility of protein, carbohydrate, lipid and dry matter 

was lower in Arctic charr kept at 0.6°e compared to woe suggesting that increased 

gastrointestinal holding time following low temperature adaptation does not fully 

compensate for lower digestive/absorptive metabolism Maintaining the fish at 0.6°e also 
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significantly reduced the ADC of saturated fatty acids, while the monounsaturated and 

polyunsaturated fatty acids were not influence by environmental temperature. The 

absorption of the fat-soluble vitamin K in vitro is influenced by temperature (Hollander 

1973). However, the latter study demonstrated that this temperature effect was due to the 

requirement of an energy requiring process for vitamin uptake. Available evidence 

suggests the absorption of carotenoid is via a passive process (Choubert et al. 1994a; 

Kiessling et al. 1995; Storebakken & Goswami 1996). This suggests that the effect noted 

in the current investigation may be due to the well-established Q10 effect that may well 

affect transporters, much like enzymes. However, speculations concerning the process of 

astaxanthin uptake are unfounded until in vitro experiments, in the presence of oxygen free 

environments and with active inhibitors, are carried out. 

Although no significant differences were found between intestinal uptake of astaxanthin 

between rainbow trout and Atlantic salmon, mean uptake was notably higher for rainbow 

trout (41%). Clearly, the use of a larger sample number (n>7) is required to define any 

differences that exist. Indeed, March and MacMillan (1996) suggested that the absorptive 

capacity of the Atlantic salmon intestine limited the amount of astaxanthin that could be 

advantageously added to their diet. Similarly, Storebakken et al. (1986) found that salmon 

utilised canthaxanthin less efficiently in comparison to rainbow trout. Torrissen et al. 

( 1989) on the basis of reviewed evidence stated that the digestibility of astaxanthin was 

greater in rainbow trout (91-97%) compared to Atlantic salmon ( 45-74%). Indeed, 

findings from our own laboratory suggest that the digestibility of astaxanthin is higher in 

rainbow trout (ea. 96%) compared to Atlantic salmon (ea. 35%; G. Page pers. comm.). 

Certainly, the current findings suggest that there is greater scope for the examination of 

carotenoid uptake between species using the current model and established in vivo 

protocols. 
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The use of everted gut sacs is favourable for the study of astaxanthin uptake compared to 

isolated intestinal perfusion studies owing to a number of advantages. The uptake of 

astaxanthin can be measured directly from tissue accumulation, which presents a 

significant quantity for reliable HPLC analysis (although samples do have to be 

concentrated). Samples can be re-suspended in hexane without precipitation from a 

solubilising agent, plus numerous preparations can be analysed within a comparatively 

shorter space of time. The advantageous characteristics of this in vitro model have allowed 

the successful examination of astaxanthin uptake at the intestinal level, under varying 

abiotic (temperature) and biotic (fish size and species) conditions. 
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CHAPTER8.0 

GENERAL DISCUSSION 

This study has encompassed a large number of themes related to the absorption and 

utilisation of astaxanthin forms in artificial feeds for salmonids, as demonstrated for trout 

and salmon. More specifically, the evaluation of a microalgae source of astaxanthin, 

namely Haematococcus pluvialis, has been undertaken. Scientific examination and 

assessment of those biological features of the algae and indeed physiological factors 

related to the gastrointestinal system of the rainbow trout that may limit the efficacy of this 

pigment source have been addressed. Furthermore, owing to limitations associated with in 

vivo measurements of digestibility and absorption, efforts have been made to develop an in 

vitro model suitable for studying the absorption of carotenoids at the gastrointestinal level 

in salmonids. 

The following discussion begins by individually considering those factors (both biological 

and physiological) that have been shown to limit the use of Haemalococcus pluvialis as a 

source of pigment in salmon id feeds; their relative importance and potential strategies to 

further improve or validate this carotenoid source. Secondly, the value of in vitro models 

to evaluate the absorption of carotenoids and the current findings from their use are 

discussed. Possible future experiments and their importance to commercial pigmentation 

strategies are proposed throughout. 
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8.1 Aplanospore cell wall of Haematococcus pluvialis. 

There is a general consensus that the aplanospore cell wall of Haematococcus pluvial is is a 

major limiting factor in the utilisation of this algal source of astaxanthin (Johnson & An 

1991; Choubert & Heinrich 1993; Sommer et al. 1991, 1992; Bowen et al. pers. comm.). 

Subsequently, techniques that can be applied to fracture or crack the cell wall need to be 

used before the alga is supplemented into animal feeds. Such techniques might include 

milling, enzyme treatment, homogenisation, or pressure treatment as was examined in 

Chapter 3. However, a dearth of published information regarding this topic, due to patent 

and commercial obligations, prevents comparisons being made on the efficiency of these 

techniques. 

Some investigations that have examined the utilisation of carotenoid from Haematococcus 

pluvialis in salmonids have made efforts to crack this cell wall before feed 

supplementation, where others have not. For example, Sommer et al. (1991) used a 

confidential homogenisation step on part of a concentrated biomass of algal spores and 

found with microscopic cell counts that ea. 60% of the cells were completely disrupted. 

Sommer et al. ( 1992) homogenised the total algal spore biomass prior to feed 

supplementation but failed to report the level of cell disruption with similar evidence from 

cell counts. However, Choubert & Heinrich ( 1993 ), in a feed trial with rainbow trout, used 

algal spores that had not been homogenised. All of these studies reported poorer levels of 

pigmentation and flesh retention when using the algae source in comparison to the 

synthetic source of astaxanthin. However, Barbosa et al. (1999) tested an algal biomass 

that was mechanically ground in a ball grinder for Smin to disrupt the cell wall and 

assessed grinding efficiency by microscopic observation. These authors noted that the 

absorption of astaxanthin into serum of rainbow trout was similar for the algal and a 
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synthetic source at a higher dietary lipid level but was better for the algal source at a lower 

dietary lipid level. 

Data from the current investigations suggest that "efficient" cracking of the cell wall 

renders contained pigment bioavailable to the fish. Furthermore, the degree of flesh 

pigmentation when the algal source is used in feed for rainbow trout is comparable to that 

of the synthetic source of astaxanthin (providing the cell wall is cracked efficiently). 

Indeed, use of an alga carotenoid extract (removed from the aplanospore) does not result in 

improved levels of absorption or pigmentation in comparison to the efficiently cracked cell 

when used in salmonid feeds. Moreover, the presence of a cell wall, although cracked 

prevents oxidation of contained pigment once supplemented into the feed. This ensures 

that salmonid feeds exhibit a stable astaxanthin profile over prolonged storage periods 

prior to use. Furthermore, methodology utilised in the current study to extract the 

carotenoid from the aplanospores (solvent extraction) would be impractical and 

uneconomic on a commercial scale. 

In the current study, the commercial source of Haematococcus pluvialis (NatuRose, 

Cyanotech, Hawaii; 95% of cells cracked) proved a more efficient pigment source than the 

algal cells disrupted by pressure treatment (confidential process), in comparison to the 

commonly used synthetic source of astaxanthin. This was despite electron microscopic 

examination having been utilised to assess efficacy of cell wall cracking. Although, 

microscopic examination can reveal the extent to which cells have been ruptured, it is not a 

real measure of bioavailability. Feeding trials and measurements of pigmentation, such as 

the ones employed in the current investigations, are costly, time consuming and 

confounded by physiological and metabolic processes that as yet are not understood. 

Subsequently, a rapid screening approach is required that measures the relative 
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bioavailability of pigment from a biomass of cracked cells and that would give greater 

biological meaning to how "efficient" a cracking technique is. Leaching measurements 

into polar solvents such as acetone have been used previously to assess the relative 

bioavailability of carotenoid from aplanospores (Mendes-Pinto et al. 200 I). This 

technique has been used to quantitatively estimate the amount of pigment that is potentially 

bioavailable. However, whether such an approach is physiologically representative is 

highly questionable. Other authors have assessed carotenoid bioavailability from meals by 

using in vitro digestion methods (Garrett et al. I 999a; Garrett et al. 2000; Ferruzzi et al. 

200I). In these studies, natural food items containing carotenoids e.g. carrots and tomato 

pastes are incubated under those conditions experienced in the stomach and small intestine 

of adult humans, consecutively. This involves sequential treatments with different 

enzymes and varying pH that simulate the digestion process. The aqueous fraction that 

contains micelles is then separated from the digesta by ultracentrifugation and the amount 

of micellar incorporated carotenoid quantified by HPLC. Further to this, the carotenoid 

containing micelles can then be exposed to human intestinal cell lines for a relative 

measurement of absorption. Such techniques could be readily adapted to mimic the 

digestive processes in fish. Indeed, previous efforts have been made to simulate, in vitro, 

the conditions found in the alimentary tracts of rainbow trout and carp to study the 

digestibility of proteins of broad bean and soya bean feed supplements (Grabner & Ho fer 

I 985). It is envisaged that these in vitro digestion techniques could be used to measure the 

bioavailability of carotenoid from Haematococcus pluvialis aplanospores, thus presenting a 

physiologically representative technique to evaluate the efficiency of a cell cracking 

procedure. 
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8.2 Astaxanthin esters 

The current investigations have generally shown that the use of dietary astaxanthin esters 

does limit astaxanthin absorption into the serum of rainbow trout compared to the 

unesterified form. This is supported by findings from both steady state serum astaxanthin 

concentrations and rates of absorption. This supports the suggestion that the requirement 

for intestinal hydrolysis of astaxanthin esters probably is a limiting factor in the absorption 

of astaxanthin. Moreover, the degree of esterification is negatively related to the serum 

absorption of astaxanthin so that astaxanthin from monoesters is absorbed more efficiently 

than from diesters. This may be an important observation when attempting to compare 

findings from different studies and when evaluating natural sources of astaxanthin. 

Although it has been reported that astaxanthin in Haematococcus pluvialis is primarily 

monoesterified (Renstrom & Liaaen-Jensen 1981) Choubert & Heinrich (I 993) reported a 

higher astaxanthin diester (ea. 29%) compared to monoester (ea. 12%) content in the algal 

biomass they used. Moreover, crustacean sources of astaxanthin have been shown to 

predominantly contain astaxanthin diesters (Torrissen et al. 1981; Arai et al. 1987; Mori et 

al. 1989). Other authors have examined the utilisation of astaxanthin dipalmitate (diester) 

and have drawn conclusions regarding the efficacy of astaxanthin esters per se in the 

pigmentation of salmonids (Storebakken et al. 1987; Foss et al. 1987). Certainly there is 

potential, at least for Haematococcus pluvialis, to be manipulated at the culture stage to 

increase the astaxanthin monoester content in comparison to the diesterified form. For 

example, other authors have stated that the monoester: diester ratio in Haematococcus 

pluvialis is a function of the age of the culture (Harker et al. 1996b) whereby younger 

cultures have a relatively higher monoester content. 
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Apparent digestibility coefficients (ADC) for astaxanthin esters and unesterified 

astaxanthin in the current investigation also seem to suggest that the absorption of 

unesterified astaxanthin is more etftcient. Furthermore, generally the trends in ADC 

seemed to correlate with the findings in the serum. However, evidence suggests that a 

combination of both measurements is required to avoid misleading conclusions regarding 

absorption. 

These combined findings would generally suggest that the hydrolysis of astaxanthin esters 

likely occurs in the lumen of the intestine prior to absorption into the blood. The pancreas 

and or the intestinal mucosa are the likely sources of this hydrolytic activity (Mathias et al. 

1981; Rigtrup & Ong 1992; Tengjaroenkul et al. 2000). Erlanson & Borgstrom (1968) 

demonstrated through gel filtration of rat pancreatic juice that pancreatic lipase was active 

in hydrolysing vitamin A palmitate. Similarly, fractions that contained esterolytic activity 

against a variety of water soluble vitamins also hydrolysed bile salt solutions of vitamin A 

palmitate. The latter enzyme was a carboxyl ester hydrolase of broad specificity which 

encompasses the activity of "cholesterol esterase", otherwise known as "non-specific 

lipase". Indeed, non-specific esterase is used in some methodologies to hydrolyse 

carotenoid esters prior to analysis (Jacobs et al. 1982). This raises the potential to use a 

non-specific esterase as a feed additive when using esterified forms of astaxanthin in order 

to facilitate the intraluminal hydrolysis of astaxanthin esters. However, the cost and 

viability of such a strategy might out-way the benefits of using the natural source of 

esterified astaxanthin compared to the synthetic unesterified form. Therefore, future 

scientific assessment of this strategy is required. 

Added to the requirement for intestinal hydrolysis of astaxanthin esters prior to absorption 

into the blood the current investigations have shown a clear regional disparity in esterolytic 
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activity along the gastrointestinal tract of the rainbow trout. Evidence suggests that the 

majority of astaxanthin ester hydrolysis take place in the pyloric region of the trout 

gastrointestinal tract. This physiological finding may in part limit further the absorption of 

astaxanthin from an esterified source depending on gut transit rate of the feed bolus as has 

been suggested for other nutrients (Staples & Nomura 1976; Pedersen 1987; Cho & 

Kaushik 1990). Consequently, efforts need to be made to determine the relative kinetics of 

ester hydrolysis for both monoester and diester forms within the salmonid intestine to 

establish optimum residence times for the carotenoid supplemented feed bolus. 

Practically, an in vitro approach incorporating intestinal homogenates from various regions 

of the gastrointestinal tract would be the first step (Koven et al. 1994, 1997). Additionally 

this would confirm the role and comparative importance of the various gastrointestinal 

regions in ester hydrolysis. 

Various factors are known to influence the gut transit time of ingested food including 

temperature (Brett & Higgs 1970); dietary lipid (Jobling 1986) and feeding frequency (Cho 

& Kaushik 1990). Plausibly, such factors could be manipulated in feed trials to prolong 

the residence time of any given feed bolus and subsequently maximise the time available 

for carotenoid ester hydrolysis. However, it is important not to maximise carotenoid ester 

hydrolysis at the expense of salmonid growth or final carcass composition. For example, 

reduced temperatures result in poorer growth rates in salmonids (Azevedo et al. 1998) and 

dietary lipid has obvious consequences in relation to consumer acceptance. However, 

manipulations of feeding frequency might offer a suitable strategy to maximise the 

absorption of astaxanthin when supplied in an esterified form. Rather than feeding little 

and often, one larger single meal may be more effective in this respect. This approach 

requires evaluation in a series of feeding studies with suitably sized fish. 
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8.3 Chirality of astaxanthin 

Haematococcus pluvialis contains optically pure astaxanthin (3S,3 'S; Renstr111m et al. 

1981) unlike synthetic astaxanthin which is a racemic mixture of optical isomers. The 

current study has noted that the optical purity of astaxanthin esters does not significantly 

influence the deposition of astaxanthin in the muscle of rainbow trout in comparison to the 

synthetic unesterified product (CAROPHYLL © Pink; F. Hoffmann La Roche, Base!, 

Switzerland). This suggests that evaluation of a novel astaxanthin source need not require 

analysis of enantiomer composition since optical isomers are deposited in the flesh in 

approximately the same ratio as they are found in the feed. However, some authors have 

suggested possible stereo-selectivity of ester hydrolysing enzymes within the intestine of 

the salmonid which do not favour the (3S,3 'S) form (Foss et al. 1987). Data from the 

current study does not support this suggestion although direct examination of such 

selectivity was not carried out. Either way, this suggestion is an interesting concept that 

could be ultimately examined in the future using the in vitro digestion model discussed 

previously. 

8.4 Discrepancy between astaxanthin absorption and deposition 

Despite differences in measurements of absorption between astaxanthin supplied as dietary 

esters or in its free form, no obvious differences were recorded between flesh pigmentation 

in trout fed diets supplemented with Haematococcus pluvialis and synthetic unesterified 

astaxanthin. The one exception to this was fish fed diets supplemented with cells cracked 

under different pressures (see Chapter 3) although this is likely due to an inefficiency in 

the cracking technique as the commercial source of Haematococcus pluvialis proved 
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effective. This raises obvious questions regarding measurements of absorption and their 

value in predicting the efficacy of a source of pigment. 

Choubert et al. ( 1994a) has shown positive linear correlations between plasma astaxanthin 

concentration and dietary astaxanthin concentration up to 200mg kg"1 in rainbow trout. 

Indeed, Storebakken & Goswami (1996) have demonstrated that measurements of plasma 

carotenoid (astaxanthin) concentrations were highly correlated with dietary astaxanthin 

concentration (r = 0.90) in Atlantic salmon. This suggests that plasma concentrations are 

good indicators of dietary astaxanthin content. Indeed, Storebakken & Goswami (1996) 

also demonstrated that plasma astaxanthin concentrations were highly correlated with the 

amount of astaxanthin retained in the flesh per kg of body weight (r = 0.92) and flesh 

carotenoid level (r = 0.95). This suggested that plasma astaxanthin concentration can be 

used as a useful indicator of astaxanthin availability and flesh deposition in salmon and 

thus can serve as a rapid screening test for different carotenoid sources. However, Wathne 

et al. ( 1998) found that the total carotenoid content in the blood plasma was not a useful 

indicator of final muscle astaxanthin concentration. However, these authors fed alternate 

meals with and without astaxanthin that may have resulted in fluctuating levels of blood 

plasma astaxanthin. 

Several authors have suggested that there is a limit or saturation level for the deposition of 

astaxanthin in trout muscle (Torrissen 1989b; Storebakken et al. 1987; Nickel! & Bromage 

1998b ). Moreover, several groups have reported a dose response effect with dietary 

carotenoid and deposition whereby there is a plateau reached when feed inclusion levels 

are ea. 60mg kg- 1 (Choubert & Storebakken 1989; Bjerkeng et al. 1990; Torrissen 1995; 

March & MacMillan 1996). 
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There are large variations among salmonid fish spectes m the capability to deposit 

carotenoids in the muscle. For example muscle astaxanthin concentrations as high as 

60mg kg-1 have been reported in sockeye salmon, Oncorhynchus nerka (Turujman et al. 

1997) compared to the more modest levels (ca.1-6mg kg-1
) reported for rainbow trout in 

the current investigation. However, the amount of dietary astaxanthin that is retained in 

the flesh rarely exceeds 18% in rainbow trout (Storebakken & No 1992) and I 5% in 

Atlantic salmon with respect to dietary intake (Torrissen et al. 1989). The physiological 

and biochemical constraints to deposition of pigment in the flesh are not well understood. 

It has been suggested that variations in the number and size distribution of muscle fibres 

may influence astaxanthin deposition (variability in availability of binding sites) thus 

limiting flesh retention and causing the plateau effect (Nickell & Bromage 1988b). 

Certainly data from the current studies would suggest that the deposition of astaxanthin is 

positively related to growth and muscle tissue accretion However, Henmi et al. (1989) 

demonstrated that carotenoids form hydrogen bonds with the surface of actomyosin 

proteins in salmon muscle and found that the binding capacity appears to be higher than 

observed maximum carotenoid levels. Indeed, Johnston et al. (2000) found no significant 

correlation between muscle fibre density and flesh astaxanthin concentration in Atlantic 

salmon. 

It may be too simplistic to assume that a physiological limitation exists in the muscle tissue 

specifically Although the transport capacity of blood proteins for carotenoids appears to 

be approximately I 00-fold higher than levels observed after feeding (Chavez et al. 1998) 

the dynamics of carotenoid transfer from the serum to the muscle tissue (probably 

associated with lipoprotein transfer) has not been investigated in fish. It is quite possible 

that discrepancies between high serum carotenoid concentrations and final muscle 
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concentrations are influenced by this factor. Limitations at the stage of carotenoid 

deposition in the flesh warrants further study. 

Metabolic transformation may also be influential in the final deposition of astaxanthin in 

muscle of fish. Canthaxanthin is more rapidly cleared from the plasma of rainbow trout 

than astaxanthin indicating that the metabolic turnover of canthaxanthin is greater in 

comparison (Gobantes et al. 1997). This may in part explain the lower levels of 

pigmentation encountered in salmonids when using canthaxanthin compared to 

astaxanthin. However, it does not explain the lower levels of apparent digestibility that are 

recorded for canthaxanthin in comparison to astaxanthin (Choubert & Storebakken 1996). 

Bjerkeng & Berge (2000) compared the apparent digestibility coefficients, carotenoid 

composition in muscle, liver and whole kidney of Atlantic salmon and the white-fleshed 

Atlantic halibut (Hippoglossus hippoglosSlls). These authors found that the ADC of 

astaxanthin was significantly higher (10-30%) in Atlantic halibut than in Atlantic salmon 

yet no astaxanthin was found in the muscle of the halibut and only low levels of carotenoid 

were detected in the plasma, liver and kidneys Furthermore, these authors found that 

halibut appeared to be able to transform astaxanthin reductively to idoxanthin suggesting 

that the ability to metabolically transform ingested carotenoids is highly influential in 

carotenoid accumulation and flesh colouration between fish species. 

Plausibly, once a threshold capacity is reached in the flesh in terms of astaxanthin 

deposition, differences between circulating blood levels as a result of consumption of 

different carotenoid sources becomes less important. Certainly, in the current 

investigations as the level of carotenoid. deposition in flesh became higher the difference 

between fish fed different astaxanthin sources became less apparent both visually and 

through chemical analysis. Ultimately, salmonid production and consumer acceptance is 
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judged solely on the criteria of flesh pigmentation. However, a rapid screening technique 

is required to primarily assess the absorption of carotenoids in the evaluation of any novel 

source. This can be carried out in vivo with measurements of circulating blood levels. 

However, excretion, metabolism and absorption affect blood carotenoid concentrations 

(Castenmiller & West 1998; Van het Hof et al. 2000). Furthermore, the use of live animals 

is wasteful and can be questioned on ethical grounds. Subsequently there is a need for an 

in vitro approach to evaluate the absorption of carotenoids at the gastrointestinal level. 

The current study has developed such an approach with interesting results. 

8.4 Evidence from in vitro studies on carotenoid absorption. 

Based on the information gathered from the in vitro gut perfusion and gut-sac experiments 

carried out in the current study the absorption process of astaxanthin into intestinal tissue is 

likely passive in nature. This is supported by the linear nature of initial uptake rates in the 

dose response and the time saturation experiments. This is supported by findings in vivo 

where positive linear correlation between plasma astaxanthin concentration and dietary 

astaxanthin concentration have been demonstrated in rainbow trout (Choubert et al. 1994a) 

and Atlantic salmon (Kiessling et al. 1995). Furthermore, Garrett et al. (1999) 

demonstrated using human Caco-2 intestinal cell lines that the cellular uptake of P-carotene 

and lutein in mixed micelles was proportional to the concentration of carotenoid in the 

medium. Other authors have demonstrated linear uptake as a function of substrate 

concentration for P-carotene in rat gut sacs (El-Gorab et al. 1975) and non anaesthetised 

rats using intestinal loops (Hollander & Ruble 1978). 

In contrast, differential absorption of different carotenoids (zeacarotene and lutein) along 

the intestinal tract of chickens has been demonstrated, suggesting regulatory mechanisms 
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for carotenoid absorption (Tyczkowski & Hamilton l986b). However, the absorption of 

carotenoids in chickens is thought to be independent of lipid absorption (Osborne et al. 

1982) unlike in fish where positive correlations have been recorded between dietary lipid 

and carotenoid absorption (Torrissen et al. 1990; Choubert et al. 1991; Gouveia et al. 

1998). Contrasting data such as this suggests distinct differences between species in 

relation to the mechanisms of carotenoid absorption. Indeed, the metabolic routes of 

carotenoids differ quite markedly between fish species (Hata & Hata 1973). Interspecies 

differences cannot be ruled out since the utilisation of different carotenoids e.g. astaxanthin 

and canthaxanthin has been demonstrated to be different in Atlantic salmon and rainbow 

trout. Buttle et al. (200 I) showed greater utilisation of canthaxanthin in comparison to 

astaxanthin in the pigmentation of Atlantic salmon. However, other groups have 

consistently confirmed more effective absorption and deposition of astaxanthin in 

comparison to canthaxanthin in rainbow trout (Foss et al. 1984; Torrissen 1986, 1989; 

Bjerkeng et al. 1990; Choubert & Storebakken 1989; No & Storebakken 1992; Choubert et 

al. 1994a; Gobantes et al. 1997). These differences may well be due to discrepancies in 

absorption of carotenoids between the two species. This is supported by evidence from in 

vivo studies where higher ADC values for astaxanthin in rainbow trout compared to 

Atlantic salmon have been found (G. Page, pers. comm ). Indeed findings in the current 

study (using everted gut-sacs) suggest that rainbow trout intestine absorbs astaxanthin to a 

greater extent than Atlantic salmon intestine although further dose response experiments 

are required to confirm this finding. In addition, the potential for differences in 

gastrointestinal hydrolysis of carotenoid esters should not be ignored as differences in the 

utilisation of astaxanthin esters between Atlantic salmon and rainbow trout have been 

recorded between different investigation (Storebakken et al. 1987; Bowen et al. 200 I). 
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A passive carotenoid absorption process might suggest that the pigmentation of salmonids 

could be achieved more rapidly by simply increasing the dietary carotenoid content. 

However, as discussed earlier, dose response flesh pigmentation investigations have shown 

a non-linear response (Torrissen 1989b; Storebakken et a!_ 1987). Furthermore, Apparent 

Digestibility Coefficients (ADC) for astaxanthin in the current study (ea. 60-75%) suggest 

that the absorption process is not highly efficient, especially when considering that ADC 

values are likely elevated due to the oxidation of carotenoids in faeces. Regional variation 

in carotenoid absorption along the gastrointestinal tract (as demonstrated in Chapter 4) 

coupled with the effects of gut transit rate may in part account for a reduced digestibility. 

Alternatively, there may be other stages in the intestinal absorption process that limit the 

absorption of astaxanthin. 

According to the current study, once a carotenoid has been suitably solubilised the 

absorption of carotenoid by the intestine is a passive process and is not limiting when a 

concentration gradient is maintained. Subsequently, it seems that the solubilisation stage is 

more likely influential in the absorption of carotenoid. 

In mammals, once released from the feed matrix carotenoids are solubilised in mixed bile

salt micelles (Erdman et al. 1993; Parker 1996; Furr & Clark 1997; Van den Berg 1999). It 

is interesting to note that the formation of micelles is dependent on the production of bile 

that is itself stimulated by dietary fat. It remains to be shown whether the increased 

absorption of carotenoids with increasing dietary fat in salmonids (Torrissen et al. 1990; 

Choubert et al. 1991; Gouveia et al. 1998) is a result of this phenomenon or simply a 

coincidence. Formation of these micelles is critical to ensure solubilisation and high 

concentrations of the highly hydrophobic carotenoids in aqueous solution that allows them 

to cross the unstirred water layer adjacent to the intestinal mucosa. Similarly, in rats it has 
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been demonstrated that the absorption of the lipophillic vitamin E requires bile salts in the 

intestine (Pearson & Legge 1972; MacMahon & Thompson 1970). The latter authors 

showed that although a polar lipid (oleic acid) was absorbed equally from an emulsion or 

micellar solution, a-tocopherol was absorbed to a lesser extent from the emulsion 

compared to the micellar solution. This indicates the greater importance of micellar 

solubilisation ofless-polar lipids. In the current study the uptake rates of astaxanthin have 

been shown to be different when using alternative solubilising strategies. Since the use of 

non-ionic surfactants above their CMC resulted in the formation of micelles and higher 

uptake rates compared to an emulsion (dispersible beadlets), the current study supports the 

contention that micelle incorporation is important in the absorption of hydrophobic 

carotenoids in salmonids. 

It is possible that differences in micellar incorporation owing to differences in polarity may 

account for the more efficient absorption of astaxanthin compared to canthaxanthin 

(Choubert et al. 1994a) Astaxanthin is more polar than canthaxanthin and may well 

partition into bile salt micelles more readily. In support of this, EI-Gorab & Underwood 

(1973) have shown that retinol is almost ten times more readily dissolved in micelles than 

P-carotene and exhibits a greater polarity. Furthermore, retinol may partition into the more 

polar peripheral region of the bile salt-micelle where P-carotene is probably solubilised in 

the hydrophobic core and its solubility may be enhanced by expansion of the micelle with 

polar lipids (there was no competition between the two for micellar solubilisation). An 

enhancement of solubilisation such as this could account for the synergistic affects 

witnessed when both astaxanthin and canthaxanthin are included in salmonid feeds in 

terms of flesh pigmentation (Foss et al. 1987; Torrissen 1989b ). The techniques used in 

the current study to form micelles could be readily utilised to determine potential 

differences of micelle incorporation for these two commercially important carotenoids. 
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Further to their role in the solubilisation of unesterified carotenoids, bile salts are likely 

necessary for the hydrolysis of astaxanthin esters .. Lombardo & Guy (1980) have stated 

that bile-salts are also involved in providing a suitable substrate (micellar solution of the 

fat-soluble vitamin esters) for the hydrolytic activity of the carboxyl ester hydrolase of 

pancreatic juice with the activity of this enzyme enhanced by the trihydroxy bile acids. 

However, the hydrolysis of vitamin A esters by rat intestine in vitro has been demonstrated 

in the presence of other synthetic solubilising agents (Mahadaven et al. 1963). 

Other studies have shown that the bile salts are necessary for the metabolism of P-carotene 

within the intestinal mucosa (El-Gorab et al. 1975). The formation of metabolites of 

astaxanthin in the intestine has not been assessed in the current investigation due to a lack 

ofradiolabelled compound, appropriate standards and analytical equipment However, it is 

plausible that measurements of astaxanthin absorption in everted gut-sacs may have been 

underestimated due to the rapid metabolism and formation of unidentifiable compounds. 

Indeed other authors have used everted gut sacs of trout intestine exposed to aqueous 

solutions of astaxanthin (H3 -radiolabelled) and have demonstrated the formation of retinol 

(AI-Khalifa & Simpson 1988). These authors noted that after 60min exposure 3% of 

astaxanthin absorbed was converted to retinol in the ileum where up to 12% was converted 

in the pyloric caeca, although this was probably a function of surface area. Since the ileal 

portion of the intestine was used in the current study it may be assumed that conversion 

was minimal (ea. 3%). Furthermore, findings presented by AI-Khalifa & Simpson (1988) 

suggest that bile salts are not necessary for the metabolism of astaxanthin to retinol since 

they used a synthetic detergent to solubilise the carotenoid. Nevertheless, it is envisaged 

that the everted-gut sac system could be used to study the metabolism of astaxanthin at the 
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intestinal level and the factors that influence this process. For example, the system could 

be used to compare the metabolism of astaxanthin esters, geometric and optical isomers. 

8.5 Additional future experiments 

Due to the focussed nature of the current study not all of the influential factors that have 

been published concerning the absorption of astaxanthin have been evaluated. However, 

the everted gut sac methodology used in the current investigations could be applied to 

assess some of these factors and consequently they require brief discussion. For example, 

the comparative absorption of astaxanthin stereoisomers (trans- and cis-astaxanthin) has 

not been evaluated. Bjerkeng et al. (1997) recorded significantly higher apparent 

digestibility coefficients for astaxanthin for rainbow trout fed aii-E-astaxanthin (79%) 

compared to trout fed a stereoisomer mixture (64%) and indicated a competitive 

mechanism of uptake of the different stereoisomers. It is envisaged that the current 

methodology could be utilised to compare micellar incorporation and intestinal absorption 

for the different isomers thus confirming a potential competitive mechanism at the 

intestinal level. In addition there is some evidence that the fatty acid composition of 

dietary oils may influence the absorption of astaxanthin (Bjerkeng et al. 1999b ). Micelle 

preparations used in the current study could be formulated to incorporate an array of 

different fatty acid classes representative of the proftle of various sources of dietary oil and 

examine their effects on micellar incorporation and intestinal absorption of astaxanthin. 
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8.6 Conclusions 

Several general conclusions can be put forward based on findings from the current study 

that are relevant to the salmonid feed industry and pigmentation strategies that are utilised 

in salmonid production. 

The microalgae Haematococcus pluvialis can be used as a viable source of pigment in 

salmonid feeds for the production of rainbow trout providing the cell wall structure is 

efficiently fractured to ensure bioavailability of pigment. Furthermore the presence of a 

cell wall in a fractured state ensures minimum oxidation of pigment and stable feed 

astaxanthin profiles. 

The extent of esterification does negatively influence the absorption of astaxanthin. 

However, these differences do not significantly influence the deposition of esterified 

astaxanthin in the muscle of rainbow trout. This has several implications. Firstly, the 

extent of esterification should be used as a consideration when choosing and evaluating 

other novel sources of carotenoid. Secondly, future assessment of natural carotenoid 

sources that contain esterified astaxanthin should make efforts to report the monoester: 

diester ratio as this may ultimately affect the findings and conclusions drawn from these 

studies. Thirdly, with reference to Haematococcus pluvialis, efforts should be made to 

maintain a higher monoester: diester ratio to ensure maximum absorption of astaxanthin 

(Hark er et al. l996b) 

The gastrointestinal absorption of astaxanthin and hydrolysis of astaxanthin esters takes 

place mainly in the pyloric and ileal region of the intestinal system as demonstrated in vivo 

and in vitro for rainbow trout and in vitro for Atlantic salmon. Such regional variation in 
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carotenoid-ester hydrolysis and astaxanthin absorption has implications related to feeding 

practises and their influence on gut transit rate. 

The absorption of astaxanthin by the intestine appears to be a passive linear process. The 

size of the fish does not appear to influence the uptake capacity of intestinal tissue in 

rainbow trout. However, increases in temperature (within a range found under typical 

culture conditions) result in positive increases in absorption of astaxanthin by trout 

intestine. 

The intestinal absorption of astaxanthin is not significantly different in rainbow trout 

compared to Atlantic salmon, although it appears to be higher. Subsequently, differences 

in intestinal absorption between these two salmonid species cannot be ruled out. 

Clearly, the role of pigmentation in the intensive culture of salmonid species in today's 

aquaculture industry is an important one. Consequently, there is still a demand for 

scientific research into this field in a continuing drive to increase the utilisation of different 

carotenoid sources from feeds, and subsequently reduce the substantial cost of this micro 

supplement. Ongoing changes in the manufacture of feeds with respect to macro 

ingredients and the demand for alternatives, especially with respect to lipid sources, will 

undoubtedly necessitate further studies in relation to pigmentation efficiency. The 

increasing production of a larger array of salmonid species will necessitate an 

understanding of those genetic strains and potential selection programmes of those fish 

groups that have a higher capacity for the absorption and utilisation of carotenoids. Future 

research into carotenoids should as a whole encompass factors relating to husbandry and 

feeding practises in addition to dietary. composition. It is essential that this research is 
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