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ABSTRACT 

STATISTICAL ASPECTS OF FETAL SCREENING 

CHRISTINE M DONOVAN 

This thesis discusses the current screening algorithm that is used to detect fetal 
Down's syndrome. The algorithm combines a model for predicting age related risks and a 
model for appropriately transformed serum concentrations to produce estimates of risks. A 
discriminant analysis is used to classify pregnancies as either unaffected or Down's 
syndrome. 

The serum concentrations vary with gestational age and the relationship between 
serum concentrations and gestational age is modelled using regression. These models are 
discussed and alternative models for these relationships are offered. Concentration values 
are generally expressed in terms of multiples of the medians for unaffected pregnancies, or 
MoM values, which involves grouping the concentrations into weekly bins. Transformations 
of the MoM values are used in the model for predicting risks. The transformed values are 
equivalent to the residuals of the fitted regression models. This thesis directly models the 
residuals rather than converting the data to MoM values. This approach avoids the need to 
group gestational dates into completed weeks. 

The performance of the algorithm is assessed in terms the detection rates and false 
positive rates. The performance rates are prone to considerable sampling error. Simulation 
methods are used to calculate standard errors for reported detection rates. The bias in the 
rates is also investigated using bootstrapping techniques. 

The algorithm often fails to recognize abnormalities other than Down's syndrome 
and frequently associates them with low risks. A solution to the problem is offered that 
assigns an index of atypicality to each pregnancy, to identify those pregnancies that are 
atypical of unaffected pregnancies, but are also unlike Down's syndrome pregnancies. 

Nonparametric techniques for estimating the class conditional densities of 
transformed serum values are used as an alternative to the conventional parametric 
techniques of estimation. High quality density estimates are illustrated and these are used to 
compute nonparametric likelihood ratios that can be used in the probability model to predict 
risks. 

The effect of errors in the methods of recording gestational dates on the parameter 
estimates that are used in the discriminant analysis is also considered. 
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Chapter 1 

Introduction 

1.1 Background 

Antenatal screening for genetic disorders has become a topical issue within the 

medical literature over the last decade. Particular attention has been given to the 

chromosomal abnormality, Down's syndrome. With an incidence rate of I :700 live births, 

Down's syndrome is the most frequently occurring genetic disorder during pregnancy (Van 

Lith (1994)). The disorder is the most common cause of severe mental retardation and it is 

characterized by short phalanges, a short and flat bridged nose and a flattening of the skull 

giving the appearance of a 'facial roundness'. There is clinical evidence of premature aging 

and pre-senile dementia, along with an increased risk of congenital heart disease (Martin 

{1978), Burger and Vogel (1973)). 

Seguin (1846) originally described the disorder as a 'true multiple congenital 

anomalies/mental retardation syndrome'. John Langdon Down (1866) declared the disorder 

to be a reversion to the Mongoloid type caused by maternal tuberculosis. Following a 

laboratory error that consequently enabled clear resolution of all 46 chromosomes resident 

in each human cell, Dr Lejeune ( 1979) made clinical history by discovering the presence of a 

third chromosome, attached to the twenty first pair of chromosomes, in subjects with the 

abnormality. 

Down's syndrome, (trisomy 21), and indeed other chromosomal disorders, can be 

detected reliably from the results of a trans-abdominal amniocentesis which is generally 

performed during the second trimester of pregnancy (weeks 15-21). Mid trimester 



amniocentesis was first developed during the late nineteen sixties (Jacobson and Barter 

(1967)), and has since been credited as a highly sensitive procedure. However, there can be 

severe complications of process-related fetal loss through miscarriage. Such an invasive 

surgical procedure would severely compromise the health of the fetus if the procedure was 

performed before a gestation of sixteen weeks. Moreover, karyotyping of the amniotic fluid 

cells requires a further 2-3 weeks of culturing before diagnosis. Intrusions at such a late 

stage of pregnancy may impose psychological complications on the mother as well as 

interrupting fetal development. 

Initial indications of successful first trimester genetic diagnosis were reported by 

Brambati and Simoni (1983 ). The publication discusses the various approaches to chorionic 

villus sampling. Their findings demonstrate that the most reliable method of sampling 

uncultured chorionic villi is by a transcervical insertion of a catheter coupled with ultrasonic 

guidance. Diagnostic karyotyping by this technique was considered successful enough at the 

time to move mid trimester cytogenetic diagnosis to the first trimester (weeks 0-14). Unlike 

amniocentesis, a result can be obtained within a few hours of sampling (Brambati and 

Simoni (1983)). Chorionic villus sampling permits an early diagnosis which has 

psychological and ethical advantages. However, more recent studies have reported the risk 

of process-induced miscarriage to be 1-2% (Lynch and Berkowitz (1992)). 

According to Wald et a/ (1988) the best estimate of the fetal loss rate through 

amniocentesis was determined in the randomised trial reported by Ann Tabor et a/ (1986) 

indicating that the risk is about I%. Amniocentesis is a well established procedure that 

imposes minimal risk on the fetus. This is probably responsible for the poor uptake of 

chorionic villus sampling in developed countries where the technological and economical 

necessities to cater for amniocentesis are widely available. The potential threat to fetal life 

along with economic factors restricts the relative utility of amniocentesis. The procedure is 
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only offered to women considered to be at high risk of delivering a Down's syndrome child. 

Penrose (1934) ascertained the link between increasing incidences of Down's 

syndrome births and advancing maternal age, this association has since been well 

recognized. Until relatively recently, women have been classified as high risk on the basis of 

maternal age alone. Typically, women over 35 have been regarded as high risk and offered 

an amniocentesis. The age criteria has been adjusted for the changes in the mean maternal 

age of the pregnant population during the last two decades and in some regions the age cut-

off has been increased to 37 (Van Lith (1994)). This procedure has led to approximately 5% 

of pregnant women being offered an amniocentesis. 

The best estimate of a model for predicting risk from maternal age is given in Cuckle 

et a/ (1987). This model was fitted using the results derived from a combination of eight 

published surveys that monitored live births. The risk for each maternal age, in years, was 

specified. The estimated risk, c, is considered in terms of the probability of a Down's 

syndrome outcome for a given maternal age m, or is described as an odds ratio of the 

probability that the pregnancy is unaffected, p( N I m), to the probability that it has Down's 

syndrome, p( D I m), such that 

p(N /m) =c=>odds= l:c 
p(Dim) 

A maternal age cut-off of 35-37 isolates less than 10% of the pregnant population, 

which amounts to 20-30% of all Down's syndrome pregnancies (Zeitune et a/ (1991)). 

Moreover, the uptake of amniocentesis is often as low as 50% reducing sensitivity to about 

20% (Youings et a/ (1991)). 

The problem of low detection for the system as a whole indicates the need for a 

more effective preliminary screen for identifYing a high risk group. Although the mean 

maternal age of the pregnant population has elevated in recent years, the frequency of 
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Down's syndrome births has not increased since the introduction of genetic screening. 

However, the past twenty years of prenatal screening has had no real impact on the 

incidences of Down's syndrome. Current age related screening programs of this type are 

inefficient in terms of sensitivity. This emphasises the need for a broader screen that includes 

the whole population of pregnant women so that the number of unnecessary amniocenteses 

performed is reduced. 

The possibility of an advanced screerung procedure, introducing biochemical 

diagnostic testing methods for the detection of Down's syndrome, was first discussed by 

Merkatz (1984). The paper concerns the events surrounding a 28 year old woman who, not 

having been offered an amniocentesis, delivered a female infant with multiple congenital 

anomalies. The mother's levels of maternal serum concentrations of alpha-feto proteins, 

(AFP), drawn·from blood sampling techniques, were available, as routine checks had been 

administered for neural tube defects. The analysis conducted by Merkatz (1984) shows that 

most autosomal trisomic births occur in women below 34 years. Evidence connecting fetal 

congenital abnormalities and low maternal serum concentrations of alpha-feto protein is also 

provided. Confirmation of this followed in a subsequent report by Cuckle et a/ (1987). In 

1987 Bogart et a/ announced that concentrations of the placental protein human chorionic 

gonadotrophin, (HCG), could be used as a biochemical screening variable for Down's 

syndrome. Canick et a/ (1988) announced that low levels of maternal serum concentrations 

ofunconjugated oestriol, (UE3), were associated with Down's syndrome pregnancies. 

A multitude of similar studies have since been conducted from many regions with 

varying populations being studied. Most have shared the same objective, to examine 

possible connections between Down's syndrome pregnancies and maternal serum markers. 
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1.2 Current screening algorithms 

Wald et a/ (1988) published a seminal article in the British Medical Journal which 

became a model for most subsequent work. Wald et a/ (1988) announced an achievable 

detection rate of 60% at an amniocentesis rate of 5%, by screening according to a 

composite risk derived from three analytes, AFP, UE3 and HCG in combination with 

maternal age. 

Wald et a/ (1988) performed a case control study in which 77 singleton pregnancies 

associated with Down's syndrome were selected as cases and for each of these, 5 unaffected 

singleton pregnancies were chosen as controls, that were matched for serum sample 

duration, maternal age and gestational age. As with most of the published data of this type 

the serum concentrations were standardized to units known as multiples of medians or 

MoMs. The dependency between serum concentrations and gestational age is well 

recognized and unaffected median concentrations are often regressed against gestational age 

to establish smoothed weekly medians. Most workers use weighted least squares to fit 

loglinear or exponential models (Knight (1991)). Frequently, medians for completed weeks 

of gestation are simply specified or taken from previous studies. Each serum concentration 

is expressed as a multiple of the unaffected median for the same gestation to give a MoM 

value. For example, 2 MoM indicates the serum concentration is twice the unaffected 

median concentration. It is considered that MoM values have the advantage of removing the 

variation between the screening centres and also provide a means of standardizing 

measurements across the gestational age distribution. Other factors have been shown to 

influence analyte serum levels such as maternal weight and smoking habits. Some workers 

adjust median values for these explanatory variables (Reynolds et a/ {1991), Wald et a/ 
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(1991), Wald et a/ (1992)). 

It is also assumed by Wald et a/ (1988) that the conditional probability density 

functions of appropriately transformed MoM values are multivariate Gaussian, with 

differing mean vectors and covariance matrices. In their paper, Wald et a/ (1988) highlight 

evidence of non-normality in the marginal distributions of transformed MoM analyte values. 

They therefore modify their algorithm so that it truncates excessively high or low values. 

Figures 1.1 to 1.3 illustrate the normal probability plots of the class conditional distributions 

of log transformed analyte values. Summaries of the data used to produce these figures are 

given in Chapter three. 
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Figure 1.1: Normal probability plot of log(MoM) AFP values for unaffected pregnancies, 
(black) and Down's syndrome pregnancies, (red). 
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Figure 1.2: Normal probability plot of log(MoM) UE3 values for unaffected pregnancies, 
(black) and Down's syndrome pregnancies, (red). 
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Figure 1.3: Normal probability plot of log(MoM) HCG values for unaffected pregnancies, 
(black) and Down's syndrome pregnancies, (red). 
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Having fitted these distributions to their data, Wald' s algorithm then uses the ratio of the 

densities for unaffected and Down's syndrome distributions to modifY the maternal age 

related odds, which produces a posterior odds ratio that is then used to identify a high risk 

group. Figures 1.4 to 1.6 plot the log(MoM) analyte values with the fitted Gaussian 

distributions. The plots demonstrate the degree of overlap between the marginal 

distributions for each outcome. 
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Figure 1.4: Fitted Gaussian distributions of log(MoM) AFP for unaffected pregnancies, 
(black) and Down' s syndrome pregnancies, (red). 
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Figure 1.5: Fitted Gaussian distributions of log(MoM) UE3 for unaffected pregnancies, 
(black) and Down's syndrome pregnancies, (red). 
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Figure 1.6: Fitted Gaussian distributions of log(MoM) HCG for unaffected pregnancies, 
(black) and Down's syndrome pregnancies, (red). 
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The posterior odds are used to assign each :pregnancy with a risk of Down's 

syndrome. A risk cut-off level is selected and those pregnancies associated with a higher 

risk of Down's syndrome are screened positive. This particular group of women are offered 

an amniocentesis. A number of factors contribute to the selection of the risk cut-off. The 

rate of fetal loss through procedure-related miscarriage is necessarily considered. A high 

rate of amniocentesis would naturally lead to an unacceptable number of miscarriages and 

the procedure would be deemed as socially intolerable. Also, attention is paid to the 

detection rates and false positive rates, which are the respective proportions of pregnancies 

correctly and incorrectly diagnosed as having the abnormality by the screen. A risk cut-off is 

selected that maintains a desirable detection rate whilst considering the balance with the 

false positive rate. A false positive rate of 5% is generally classed as acceptable. The risk is, 

therefore, considered as a screening variable since the cut-off level depends on the sampling 

distribution of risks and is not fixed over different centres. 

Most of the studies involving Down's syndrome screening that are presented in the 

medical literature follow this general model and they essentially utilize the same algorithm 

as that described by Wald et a/(1988). Chapter two of this thesis sets out the statistical 

methodology of the screening algorithm given by Wald et a/ (1988), and discusses the 

assumptions it involves. The use of MoM values is reviewed and discussed. Chapter three 

offers an alternative approach to modelling, that avoids the need to convert concentrations 

to MoM values. A regression analysis is conducted and the forms of the fitted models are 

discussed. 

The remainder of this chapter discusses the statistical theory that sets the 

foundations of the screening algorithms. The following sections discuss the application of 

discriminant analysis to screening, the methods of estimating performance measures, the 

meaning of risk and the current use of modelling techniques. Each item is dealt with 
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individually in subsequent chapters of this thesis. 

1.3 Discriminant analysis 

The problemofi>own's syndrome screening .is in essence a problem of discrimination 

and there is a wealth of relevant literature in this statistical field (Lachenbruch (1975), 

Aitchison and Dunsmore (I975), Hand (198+)). A short overview of discriminant analysis 

follows. The intention is simply to fix the basic notation and terminology for subsequent 

discussions rather than to provide a detailed summary. The notation adopted is in the style 

of McLachlan (1992). 

Formally, consider a set of individuals divided into g mutually exclusive and 

exhaustive groups, or classes G 1 , G 2 , ... ,G 
8

, g ~ 2 . For each set of subjects originating 

from a distinct group, G; , i = I, 2, ... , g, there exists a measurement space of recorded 

values from which a feature space of predictive variables can be selected. Values from the 

feature space provide each subject with a p -dimensional feature vector 

,!: = (x pX2, ... ,xP)1 with a unique density p~IG;), i =I, 2, ... , g. 

Biscriminant analysis is concerned with deriving an allocation rule, r(,!:), from the 

feature vectors of subjects with known origins. Subjects of unknown origin can then be 

classified to one of .g groups via the allocation rule. 'fhe allocation rule, or discriminant 

rule divides the measurement space into disjoint regions, Ri' i = I, 2,.,., g, of postulated 

group separation, that are bounded by decision surfaces. The decision surfaces are derived 

from Bayes principle of minimiZing error (Hand (I98I)). Hence, r(,!:) = i implies the 

subject with feature vector ,!: is allocated to group G; since the rule classifies ,!: in region 
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R 1 • The decision theoretical approach minimizes error by allocating a subject to a group 

that maximizes the posterior probability of ownership. Thus the optimal allocation rule, 

r0 (!), is such that 

p(GJ~) > p(Gi/~) Vj7:- i, i,j=l, 2, ... ,g then r0 (,!)=i 

Equivalently, since the posterior probabilities are rarely known, r0 (,!) can be 

redefined using Bayes fonnula, to give 

(G/ )=p(!/G1)p(G1 ) 

p I ,! P<!) 

yielding 

(1.1) 

where p ( G1 ) are the prior probabilities, or arrival rates of a random value belonging to 

each group in the classification space, and p ( ~ I G1 ) denote the class conditional 

densities, which are assumed to be known. With a space divided into two possible classes, 

as with the current screening algorithm, the minimum error decision rule reduces to a rule of 

the form 

p( G 2 ) allocate to G 
p(Gt) 2 

(1.2) 

By letting G1 be the class of unaffected pregnancies, N, and G2 be the Down's syndrome 

pregnancies, D, equation (1.2) can be rearranged to form the odds ratio used in the 

screening algorithm given by Wald et a/ (1988) to discriminate between the two groups 
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p(N I m) p~l N) > c then allocate toN 
p(Dim) p~l D) 

(1.3) 

where p(N I m), p(D I m) are the prior odds of each outcome specific to a maternal age 

m, p~ I N), p~ I D) are the class conditional distributions of MoM, or transformed 

MoM analyte values,!_, and c denotes the risk cut-offassociated with Down's syndrome. 

The rates of allocation of the decision rule are given below 

e;,/r)=Pr {r(,!)=j!Gi} "i/ i,j=l, 2, ... ,g (1.4) 

and these are evaluated through 

e;,/r)= f p(,!IG) d!. "i/ i,j= I, 2, ... ,g (1.5) 

RJ 

The correct allocation rates for the biochemical screen for Down's syndrome, and 

similarly for other diagnostic tests that require an outright allocation to either a diseased or 

unaffected category, are defined as the sensitivity and specificity of the test. The sensitivity 

and specificity relevant to Down's syndrome screening are defined as 

respectively, where eN.o(r) is the false positive rate of the test, that is the proportion of 

unaffected pregnancies incorrectly screened positive and eo.N(r) is the false negative rate of 

the test, that is the proportion of Down's syndrome pregnancies screened negative by the 

test. 

The decision rule of the form of equation (1.3) ts necessarily based on 
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precise knowledge of the form of the class conditional densities. The feature vectors can be 

directly 'plugged in' to the formulas to give the rates of allocation. However, it is rare that 

the class conditional densities are known. One solution to this problem is to estimate the 

class conditional densities from a training set of data yielding a sample based discriminant 

rule that serves to estimate the optimal Bayes minimum error rule. From the sample based 

discriminant rule, estimates of the true error rates of allocation are computed. Such 

estimative procedures require extreme caution since the estimated allocation rates may be 

prone to bias from many sources. The possibility of bias in the estimated error rates is 

discussed in section 1.4.1 ofthis chapter. 

1.4 Prenatal screening and discriminant analysis 

With most current screening algorithms for Down's syndrome, feature vectors of 

transformed MoM AFP, UE3 and HCG analyte values are selected as predictive variables. 

Risk estimates are calculated and a discriminant rule is applied to the risks. The rule 

classifies those pregnancies with risks in excess of a selected cut-off level as Down's 

syndrome, and those pregnancies associated with lower risks as unaffected. 

Parametric techniques are used to estimate the class conditional densities of 

transformed MoM values. The parameters are estimated from training data that is obtained 

from a retrospective study. Retrospective studies use samples whose classifications are 

already known. This gives rise to a sample based discriminant rule. The validity of the 

model is assessed through the detection rate and false positive rate ofthe algorithm. 
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1.4.1 Detection rates and tbeir standard errors 

In general the medical literature reports the performance statistics of the algorithm in 

the form of point estimates (Wald et a/ (1988), (1992)). Little or no attention is paid to 

sampling error or bias in the detection rates. It is well known that the discriminant rule is 

optimised for the design set so the estimated performance statistics are overrated. The 

parameter estimates will not be optimal for another random sample from the same 

distribution. 

Unrepresentative maternal age distributions can create another source of bias. Since 

the risk of a Down's syndrome pregnancy increases with advancing maternal age, samples 

that over represent more mature women will raise the sensitivity of the screen. 

Failure to consider the sampling error and bias in the estimated detection rates has led 

to unnecessary controversy over differences in the reported rates. Attention has focused on 

the benefits in screening with UE3 in addition to AFP and HCG (Crossley et a/ (1993)). 

Recent studies have indicated that free- P HCG is a more useful marker than Intact HCG 

(Spencer (1991)). A commercial interest has accelerated the race to achieve increased 

performance levels and combinations of markers have been patented in North America. 

Chapter four of this thesis deals with the problem of sampling error and the possible 

bias in the estimated performance rates. Standard errors are calculated for published 

detection rates and for the detection rates associated with the parameter estimates under the 

models fitted in Chapter three. Also, parametric and non parametric methods of calculating 

bias corrected error rates are discussed. A nonparametric method of bias correction is 

applied to the screening algorithm given by Wald et a/ (1988) to derive bias corrected 

detection rates and false positive rates. 
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1.4.2 Tbe incorporation of a non-specific screen 

The screening algorithm used by Wald et a/ (1988) is designed to classifY 

pregnancies as either unaffected or Down's syndrome. However, the algorithm often fails to 

recognize other abnormalities. Hey! et a/ ( 1990) highlight cases in which other 

abnormalities, such as trisomy 18, are assigned low risks. He emphasised that the algorithm 

cannot be used legitimately to reassure a women that her pregnancy is 'normal'. Some 

abnormalities have analyte MoM values that are dissimilar to a Down's syndrome outcome 

but are atypical of an unaffected outcome. Frequently, these pregnancies are assigned a low 

risk of abnormality and are subsequently classified as unaffected even though they may be 

highly atypical of this outcome. 

Some studies have made attempts to overcome the problem of low sensitivity in 

abnormalities other than Down's syndrome by incorporating other classifications into the 

screen. However, as Down's syndrome is the most common chromosomal fetal disorder, 

data involving other karyotypes are limited. It would therefore be impractical to screen for 

many fetal disorders simultaneously since any distributional assumptions would be unreliable 

due to small sample sizes. Some exceptions are other trisomy aneuploides, such as trisomy 

l3 and trisomy 18 whose occurrences are frequent enough to prompt researchers such as 

Hey! et a/ (1990) and Staples et a/ (1991) to screen for these disorders. 

The question of atypical events in discriminant analysis has been addressed in many 

statistical publications (Aitchison and Dunsmore (1975)). Wright et a/ (1993) offers a 

simple approach based on the Mahanolobis distance to deal with the problem of low 

sensitivity when screening with other abnormalities. The problem can be reduced by 

incorporating a non-specific classification into the current screening algorithm. An index of 
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atypicality relative to all pregnancies that are classified as unaffected can be constructed 

using the Mahalanobis distance and these pregnancies associated with sufficiently large 

atypicality indices can be screened as non-specific. Chapter five of this thesis describes 

fonnally the methodology used to compute atypicality indices and illustrates the benefits of 

incorporating a non-specific classification into the existing algorithm. 

1.4.3 Estimation of the class conditional densities 

Wald et al (1988) adopt a parametric approach to the problem of estimating the class 

conditional densities of appropriately transfonned MoM analyte values. Truncation limits 

are used to trim values that fall outside a linear range on a nonnal probability plot. This 

issue is addressed in Chapter two. 

The problem of estimating the class conditional probability density functions of the 

fonn given in equation (1.3) is an equivalent problem to estimating the discriminant 

function. Hand (1981) points out that for a sample based discriminant rule to give a good 

approximation of the Bayes minimum error rule, the decision surfaces must be precisely 

defined to ensure the correct allocation of observations that fall within the tails of these 

distributions. Accurate estimation in the extremes of the class conditional densities is 

therefore of the utmost importance. 

The lack of fit of a Gaussian fonn suggests the parametric approach to the problem is 

inadequate. In addition to this, the use of truncation limits coupled with the sparsity of data 

from affected pregnancies casts further doubt on the reliability of the estimation. 

Several nonparametric methods of density estimation exist, such as kernel and nearest 

neighbour techniques. These methods are well documented in the literature (Hand ( 1981 ), 

Silvennan (1986)). Implementing such robust procedures of density estimation into the 
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screening algorithm should add flexibility and serve to increase detection. Chapter six of this 

thesis discusses and illustrates the use of nonparametric density estimation in screening. A 

concise review of publications involving kernel methods of density estimation is also 

provided. 

1.5 The effect of errors recorded in the gestational dating methods 

It is now well established that analyte concentration levels vai)' with fetal age and 

concentrations are usually recorded during the second trimester of pregnancy. The methods 

of dating fetal growth rates Vai)'. According to DiPietro and Alien (1991) the most reliable 

method uses an abdominal ultrasound scan, otherwise known as sonography, that dates 

pregnancies on the basis of standard fetal measurements. A commonly used method of 

dating, known as LMP dating, is based on the last menstrual period. The estimated date of 

delivery is expected to be 40 weeks from the first day of the last menstrual period. A less 

frequently used method of dating involves a clinical assessment of the uterus. Wald et a/ 

(l992a) discuss the performance of the screening algorithm when different dating methods 

are used. The paper concludes that obtaining gestational ages from sonography offers 

substantial advantages to screening. 

It is, however, well known that each method of recording fetal age is subject to 

error. Linear regression models are currently used to model the analyte concentration values 

against gestational age. These models are based on the assumption that the explanatory 

variables are observed without error. No consideration is given to the errors in gestational 

dates that frequently occur. The errors in the recorded dates may affect the distributions of 

MoM values and also the calculation of risks. 

Chapter seven of this thesis discusses the gestational dating methods set out by 
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DiPietro and All en ( 1991 ). This Chapter investigates an alternative approach to modelling 

which replaces the regression models with functional models that assume a random error is 

present in the explanatory variable (Fuller (1980)). The functional models are used to 

illustrate the effects of errors in the recorded fetal dates on the parameter estimates for the 

linear models. 

1.6 Conclusion 

This thesis aims to highlight the main problems in the screening algorithm that is 

most commonly used in Britain to detect fetal Down's syndrome. An attempt is made to 

find solutions to these problems. Chapter eight of this thesis provides a summary of the 

research and discusses areas of possible future work. This section introduces these areas. 

Chapter six of this thesis deals with the problem of estimating the class conditional 

densities for unaffected and affected pregnancies. The densities are estimated from the 

training data which usually comprises of thousands of unaffected controls but only tens of 

cases. Chapter six demonstrates how the large samples of controls can be used to produce 

high quality nonparametric estimates of the density for unaffected pregnancies. However the 

scarcity of data for affected pregnancies questions whether nonparametric methods of 

density estimation can be used to construct reliable estimates of the densities for affected 

pregnancies in higher dimensions. 

Wright (1995) addresses the problem of estimating class conditional densities, for 

the purposes of discriminating between classes, when only relatively small samples are 

available from a class. The report investigates models in which the class conditional 

distributions are assumed to have a common distibutional form which is modelled using the 

nonparametric methods of density estimation described in Chapter six. Wright (1995) uses 
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Chapter 2 

Current Methodology 

2.1 Introduction 

The aim of this chapter is to give an overview of the current methodology that is 

used to quantify the risk of Down's syndrome from a statistical perspective. Section 2.2 

gives a brief historical review of screening methods. Section 2.3 describes the basic 

principles and assumptions involved in the model which is used to calculate risks. Section 

2.4 presents a formal derivation of the risk algorithm that is based on the assumptions given 

in section 2.3. The algorithm is viewed as having two components, one is a model for 

predicting age related prior risks and the other is a model for the appropriately transformed 

serum concentrations which provides the likelihood ratio. The form of these models are 

described in sections 2.5 and 2.6 respectively. Section 2. 7 discusses the use of MoMs in 

screening and questions their use as a standardized measure. Section 2.8 assesses the effects 

of truncation limits on the class conditional distributions of MoM values and on the 

calculation of risks in general. A brief summary of the chapter is given in section 2.9. 

2.2 Historical background 

Over the last twenty years, the relationship between an increased risk of Down's 

syndrome and maternal age has been well established and methods of selecting women for a 

diagnostic amniocentesis have been on the basis of maternal age. Typically, women aged 35 

or above have been offered the test. It is now, however, well recognized that selective 

maternal age screening leads to poor performance levels and has little impact on the birth 
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incidence of Down's syndrome. Since the pregnant population consists mostly of women 

younger than 36 years, only a small proportion are offered the screen (Snijders (1993)). The 

detection rate, based on a 5% amniocentesis rate, using age as a criteria for screening is 

about 20%-300/o, assuming a 100% uptake of amniocentesis (Wald et a/ (I 988)). 

Screening by maternal serum sampling was introduced in the mid 1980's. This 

brought about the opportunity to improve detection by using a screening program that 

combined the maternal age related risk with risks derived from maternal serum 

concentrations that were known predictors of Down's syndrome. The most widely used 

screen was introduced by Wald et a/ (1988). This combines the maternal age related risk 

with a risk derived from the analytes AFP, UE3, and HCG. Pregnancies are classified as 

screened positive if the risk is greater than a selected cut-off value and screened negative 

otherwise. The performance of the risk algorithm is monitored by the detection rate and 

false positive rate, which are described in Chapter one. 

The screening test that is based on the three analytes has more commonly become 

known as 'the triple test'. The test provides a broader screen and it gives rise to a detection 

rate of about 65%. Although some regions ofBritain still only use maternal age related risks 

to screen for Down's syndrome, most of the currently used screening algorithms are based 

on the methods of Wald et a/ (1988). However, developments in biochemical screening 

have led to differences in the combination of analytes and in the models used to calculate 

risks. Medical research publications debate the efficiency of various combinations of 

maternal serum markers as predictors of Down's syndrome. There is much controversy over 

the benefit in screening with different combinations of markers. Considerable attention is 

given to the use ofUE3 with AFP and HCG. Different workers report different incremental 

benefits in detection from the addition ofUE3 (Crossley et a/ (1993), Macri et a/ (1990)). 

The continuing argument over the reported performance statistics often ignores the 
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presence of sampling error and bias in the estimated detection rates. These issues are among 

those dealt with in Chapter four of this thesis. Variations in the choice of modelling 

techniques used to calculate estimates of risk also contribute to the argument over 

performance. Bishop (1994) discusses the findings reported by Ellis (1993) that highlight 

differences in the risk calculations between screening centres. Some centres also adjust the 

serum concentration levels for maternal weight, smoking habits, and ethnic origin (Reynolds 

et a/1992). 

2.3 The basic model and its assumptions 

Let N denote unaffected pregnancy outcomes and D denote Down's syndrome 

outcomes. m and g denote maternal age and gestational age respectively. X is the sample 

space of all possible feature vectors of appropriately transfonned analyte concentrations ! . 

The risk algorithm uses a posterior odds ratio of the fonn of equation (2.1) 

1-[p{Dim)] p{,!lg,N) 

p{Dim) p{!l g,D) 
{2.1) 

where p(D I m) is the maternal age related risk of Down's syndrome and both P(!l g,N) 

and P(! I g, D) are the class conditional distributions. A variety of approaches are 

described in the medical literature for estimating these parametric distributions. Leaving 

aside methods of estimation, this section considers the fundamental assumptions behind the 

form of equation (2.1) and the form of the class conditional distributions. The assumptions 

are given below. 
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Assumption (I) 

It is assumed that each outcome of the procedure belongs to one of two types, 

unaffected or Down's syndrome. 

(I) correctly states the mutually exclusiveness of the two outcomes, but also assumes 

exhaustiveness. Since abnormalities other than Down's syndrome may occur the 

classification scheme is not exhaustive. An important consequence of this is that low risks 

may be assigned to pregnancies with abnonnalities other than Down's syndrome. As 

previously noted, this point has been discussed in the medical literature, see for example 

Hey! (1990), and a simple solution is offered in Wright et a/ (1993). 

Assumption (D) 

p(DI m, g)= p(DI m) andp{N I m,g) = p(N I m) 

(II) states fonnally that given maternal age pregnancy outcome is independent of 

gestational age. It has been established that Down's syndrome pregnancies abort more 

readily than unaffected pregnancies, particularly in early pregnancy (Snijders (1993)). 

It is considered by some workers that spontaneous abortions are more frequent at 

later gestations with more mature women (Kratzer et a/ (1992)). Younger women may 

sustain abnormal pregnancies for longer durations. This issue is discussed in Snijders 

(1993). 
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Assumption {01) 

P(!l N,g,m) = p~/ N,g) andp{!l D,g,m) = P(!l D,g) 

(ill) states that given outcome and gestational age, the analyte concentration values 

are independent of maternal age. There is reported evidence of a slight negative correlation 

between UE3 values, when converted to MoMs, and maternal age (Davies et a/ (1991)). 

Although the correlation is statistically significant the dependency only explains 0. 2% of the 

variation in transformed UE3 MoM values. 

Assumption(IV) 

P(!l N,g)- N3(~g),L11 ) and P(!l D,g)- N3(~(g)+ _4,Lv) 

The conditional distribution of appropriately transformed analyte values, given the 

outcome and gestational age are assumed to have a multivariate Gaussian distribution with 

unknown mean vector ,u(g) and covariance matrix ~N for an unaffected outcome and 

mean vector ,u(g) + l\ and covariance matrix ~D for a Down's syndrome outcome (IV). 

Essentially, the mean vector of appropriately transformed analyte concentrations for both 

outcomes are expressed as functions of gestational age. The mean vector for Down's 

syndrome pregnancies is assumed to differ from the unaffected mean vector by an additive 

shift, A . The magnitude of the shift remains constant over the range of gestation. (IV) also 

includes the assumption that the dispersion about the mean is constant over the range of 

gestation. Consequences of violating this assumption are discussed in Chapter three. 

There is some debate over the differences in the Gaussian fit of the distributions of 

log(MoM)UE3 and MoM(UE3) (Wald et a/ (1993)). Both distributions demonstrate 
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marked deviations from a Gaussian form. Wald et a/ (1988) use untransformed UE3 MoMs. 

However, Wald et a/ (1992) conclude that a log Gaussian distribution fit the UE3 levels 

more efficiently. Crossley et a/ (1993) report better results with the untransformed data. 

Such arguments prompted Wald et a/ (1993) to reassess the issue using their original trials 

data, (Wald et a/ (I 988)), and the trials data used in the 1992 publication. The results 

conclude that although the distributions of MoM UE3, with and without the logarithmic 

transformations show deviations from a Gaussian form for both unaffected and affected 

pregnancies, the transformed distributions provide a better fit. Neither of these papers 

mention the assumption of homogeneity of variance which is as critical as the assumption of 

normality. These issues are considered in Chapter three of this thesis. 

The evidence of non-normality in the distributions of both MoM, and log(MoM) 

analyte values is more pronounced in the tails of the distributions. Truncation fimjts are 

applied to the transformed analyte values so that values that fall outside a linear range on a 

normal probability plot are trimmed to the nearest end limit. This is considered necessary in 

order to apply a Gaussian model which can be used in the calculation of risk. The 

application of truncation can be questioned over its inefficient use of data and its effect on 

the distributions, particularly in higher dimensions. There seems to be some confusion over 

the interpretation of the normal probability plots and the way they are used to determine 

truncating limits. This issue addressed in section 2.8. 

2.4 Risk calculation and screening 

With the (albeit false) assumption that only two categories, Down's syndrome and 

unaffected pregnancies are applicable, and by applying Bayes Theorem, the conditional 

probability of a Down's syndrome pregnancy, for each individual, given the maternal age, 

gestational age and maternal serum concentrations is given by 
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Dl _ P(;!.ID,m,g)p(Dim,g) 
P( ;!_,m, g)- p(xl D,m,g)p(D I m, g)+ p(;!_l N,m,g)p(N I m, g) 

(2.2) 

By assumption (II), equation (2.2) can be written as 

= P(!ID,m,g)p{Dim) 
p{! I D,m,g)p(D I m)+ P(!l N,m,g)p(N I m) 

(2.3) 

and by assumption (III), equation (2.3) can be written as 

p{!_l D,g)p{Dim) 

P(!l D,g)p(Dim)+P(!I N,g)p(N I m) 
(2.4) 

The discriminant rule fonns the posterior odds ratio of an unaffected pregnancy to a 

Down's syndrome pregnancy and is given as a product of the likelihood ratio and the prior 

odds according to maternal age, equation (2.5). 

p(N I !_,m,g) 
p{DI !_,m,g) 

p{!_IN,g) p{Nim) 
= .::.....c---__;:_:_ .::...-:---+ 

P(!l D,g) p{Dim) 
(2.5) 

The algorithm produces a sample based distribution of odds or risks. A risk cut-off is 

determined such that 5% of the sample receive risks ~ l:c. For any pregnancy, if 
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P(!.l N,g) p(N I m) 
p(!l D,g) p(DI m) 

<C 

or equivalently LR(x) x P(N I m) 
- P(Dim) 

(2.6) 

<C 

where LR(!.) is the likelihood ratio, the pregnancy receives a positive result from the 

screen and is classified as screened positive. These women are counselled and offered an 

amniocentesis. In general, current screening policies state that no further action is necessary 

if a pregnancy is assigned a risk smaller than the risk cut-off. The shortcomings of this 

assumption are discussed in Chapter five of this thesis. 

2.5 Models for predicting age related risks 

The model given by Cuckle et a/ (1987) is now the most widely accepted model for 

predicting maternal age specific risks of Down's syndrome. Cuckle et a/ (1987) combined 

the results from eight published surveys monitoring live births. Random error associated 

with the combined estimated probabilities was reduced using a constant plus an exponential 

function of age model as described by Lamson and Hook (1981). The fitted model is given 

below. 

p(Dim)=0.000627+exp( -16.2395+0.286m) (2.7) 

p(Nim) is found by calculating [1-p(Dim)], (Assumption(l)). 

The model illustrates the increase in the prior probability of a Down's syndrome 

pregnancy with advancing maternal age. The model is shown in Figure 2.1. 
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Distribution of Downs Syndrome Pregnancies vs Maternal Age (m) 

15 20 25 30 35 40 45 

maternal age in years (m) 

Figure 2.1 : The estimated prior probability of a Down's syndrome birth at term as a 
function of maternal age (m). The fitted model given by Cuckle et a/ is 
p(D I m) = 0.000627 + exp( - 16.2395 + 0.286m) 

Hecht and Hook ( 1994) recognize the extensive use of this model and therefore re-

examine the data and analyses of Cuckle et a/ ( 1987). Hecht and Hook (1994) attach 

confidence intervals to the maternal age specific rates calculated from this model. They 

report that the rates must be viewed with relative uncertainty when used in conjunction with 

results from biochemical screening tests. 

2.6 The likelihood 

The risk of Down's syndrome by blood serum sampling is obtained from an 

application of Bayes Theorem. Maternal serum concentrations from pregnancies with 

known outcomes are used to model class conditional distributions of analyte values. 
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An estimate of .u(g) is obtained by grouping the analyte concentrations into 

completed weeks of gestation. Median concentrations for unaffected pregnancies are then 

calculated for each week. Smoothed medians are established for unaffected pregnancies by 

applying median regression against completed weeks. As previously described, the 

concentration levels for each outcome are expressed in terms ofMoM values. The MoM is 

a standard measure that is widely accepted in the medical literature. Concentration levels for 

both unaffected and affected pregnancies are expressed as some multiple of the unaffected 

median concentrations. A normalizing transformation is applied to the data which is usually 

of the logarithmic form to produce features that can be used in the discriminant analysis. 

Gaussian distributions are fitted to the appropriately transformed multiples of medians. The 

standard deviations for the class conditional distributions are estimated from the values that 

fall between a linear range on a normal probability plot. Wald et a/ (1988) recommend 

estimating between the IO'h -90th centiles of the plot. Wald et a/ (1993) admit that this is 

not a suitable range to estimate the standard deviation of log(MoM) UE3 for affected 

pregnancies and suggests that the range between the 25th - 90th centile is more appropriate. 

Revised estimates of these standard deviations are provided. !:!_(g) and !:!_(g)+ l\, or some 

transformed versions, provide robust estimates of the means for the class conditional 

distributions. Truncation limits are applied to the transformed analyte values to remove 

excessive values. Gaussian densities are fitted to the truncated data and the quotient of the 

fitted densities for unaffected pregnancies and Down's syndrome pregnancies provides a 

likelihood ratio, LR(!) , which is then used to modifY the age related risk. 

The screening algorithms differ and the diiferences depend on the information used 

to compute MoM values. In Wald et a/ (1992) the transformed analyte concentrations are 

modelled separately for gestational age dates recorded by LMP dating methods and 

sonography. It is accepted that dating by sonography has less random error than dating by 
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LMP methods; therefore, the MoMs produced from gestational age5 obtained by 

sonography show less dispersion. Wald et a/ (1992) also adjust the median analyte 

concentrations for maternal weight. This also reduces the dispersion about the mean 

concentrations which will inevitably effect the correlations and standard deviations of the 

concentrl!tions. Thus, four algorithms are currently ·used. These comprise of LMP dating 

with and without weight corrections and sonography, also with and without weight 

corrections. 'Jlhe effects of recording concentrations using different dating methods on the 

calculated parameter estimates and performance statistics is discussed in Chapter seven. 

2. 7 The use of MoMs and median regression 

As already described, analyte concentrations are conventionally expressed as 

multiples of the median value for unaffected pregnancies. It is considered that the use of 

MoMs provides a means of standardizing measures across the range of gestation whilst 

removing the effects of variation between centres. Thus data from different centres can be 

pooled. 'J1his approach has practical appeal since data for affected pregnancies are scarce. 

However the use of MoMs as an efficient standardized measure has been questioned 

(Bishop ( 1994)). 

· Recent developments in screening have led to differences in the models used to 

calculate risk between screening centres. Some centres adjust normal median.concentrations 

for attributes such as smoking, maternal weight, ethnicity and gravidity (Reynolds et a/ 

(1991), Wald et a/ (1992)). Bishop reports the findings ofParvin et a/ (1991) that show that 

such methodological differences between screening centres result in a change in the 

distributional properties ofMoM analyte values. 

It is generally believed that the MoM is a standardized measure which removes 

variation between centres. Often, reported threshold values of MoMs are used as standard 
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indicators of Down's syndrome in studies conducted by different centres. Previously 

published parameter estimates are used as reference values for other independent trials. 

Such estimates may not perform efficiently as part of the calculation of risk if long term 

changes cause population shifts in the distributions of analytes or if the data is widely 

spread. Also differences in the calculations ofMoM values will invariably lead to differences 

in the distributional features. Bishop (1994) discusses the findings of Parvin et a/ (1991) 

that conclude that likelihood ratio based risk calculations will be significantly affected unless 

centre specific reference distributions of MoM values are computed. Bishop (1994) 

investigates the statistical properties of MoM AFP values and discusses the consequences of 

pooling AFP data from different centres. Bishop (1994) notes that the analysis is 

generalized and can be applied to any data presented as MoM values. The study shows that 

standardized threshold MoM values relate to different percentiles of the gestational age 

dependent distributions. This is because the distributions of MoM AFP have lognormal 

parameters that depend on gestational age and the methodology specific to each centre. 

Therefore, standarized threshold MoM values cannot be reliably used as reference values as 

these relate to percentiles that are gestational age dependent. Bishop (1994) further 

illustrates that the combined distributions of centre specific MoMs over the range of 

gestational age are, in fact, a mixture of Gaussian distributions with mixtures from different 

gestational ages. It is therefore unreasonable to pool data from different centres. Chapter 

three of this thesis offers an alternative approach to modelling the distributions of analyte 

concentrations that avoids the need to standardize measures to MoM values. 
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2.8 Truncation limits 

It has become standard practice to apply boundary or truncation limits to the analyte 

values outside the range over which, after transformation, a Gaussian distribution is deemed 

valid. Normal probability plots are generally used by Wald et a/ (1988) and (1992) as a 

criteria for identifying the range over which a Gaussian model seems appropriate. The 

transformed MoM values that fall outside this range are replaced with the nearest end limit 

ofthat range. 

In the original article by Wald et a/ (1988) the truncation limits corresponding to 

each analyte used in the screening algorithm were 0.4 ~ MoM(AFP) ~ 2.5, 

0.4 ~ MoM(UE3) ~ 1.4 and 0.2 ::;; MoM(HCG)::;; 5. In their 1992 publication , Wald et 

a/ revised the boundary limits for AFP and UE3 to 0.3 ~ MoM(AFP) ~ 3.3, and 

0.4::;; MoM(UE3)::;; 2.5 respectively. Crossley et a/ (1993) prompted Wald et al to 

reconsider their use of UE3 in screening. AB a result revised truncation limits for UE3 

distributions were given in Wald et a/ (1993). The revised values are 0.5 ~ MoM(UE3) ~ 2. 

One consequence of applying truncation limits is that all pregnancies with log(MoM) 

analyte values outside the boundary limits are assigned a risk associated with the Jog(MoM) 

value at the nearest end limit. 

It is generally assumed that the distribution is normal over the range where the 

points follow a straight line and it is non-normal elsewhere. However, even a small number 

of outliers can cause the plot to depart from a straight line well beyond the position of the 

outliers. This effect is illustrated below. Figure 2.2 plots the histogram and fitted Gaussian 

density for a random sample of I 000 observations drawn from a standard normal 

distribution. Figure 2.3 shows the normal probability plot of these observations. The 

observations in excess of ± 2 are outside a linear range. Figure 2.4 plots the histogram and 
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the fitted Gaussian density of the original data with 20 outliers each taking the value of -3.5. 

The plot illustrates that the distribution can be considered as Gaussian over the range of 

values above -3 . However, the normal probability plot for the contaminated data, shown in 

Figure 2.5, is affected much further into the distribution then -3 . The observations that fall 

below -1 depart from a straight line. If truncation limits were applied on the basis of this 

normal probability plot the lower limit would be equal to -1 and a large proportion of the 

data would be unnecessarily truncated. Therefore, such plots should not be used as a basis 

for setting limits within whlch the distribution can be assumed Gaussian. 

Original Data 

0 

-4 -2 0 2 4 

z 

Figure 2.2: Histogram and fitted Gaussian density to a random sample of l 000 
observations from a standard normal distribution. 
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Original Data 

Quanl!les of standard Nonnal 

Figure 2.3: Normal probability plot of original data. 

Contaminated Data 

-2 0 2 4 

z1 

Figure 2.4: Histogram and fitted Gaussian density to a random sample of 1000 observations 
from a standard normal distribution plus 20 observations each taking the value -3.5. 
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Contaminated Data 

-4 -2 0 2 4 

Ouantiles or Standard Normal 

Figure 2.5: Normal probability plot of contaminated data. 

2.9 Conclusion 

This chapter has focused on the form of the probability models that are used to 

produce risk estimates of Down's syndrome. The assumptions involved in the probability 

models have also been discussed. The disadvantages of using the conventional method of 

modelling the MoM analyte values have been highlighted and an alternative method that 

directly models the residuals of the fitted regression equations have been proposed. This . 

method of modelling is applied in Chapter six. The interpretation of the normal probability 

plots of the transformed MoM values and the use of truncation limits has been questioned. 
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Chapter 3 

Analysis of clinical trials data 

3.1 Introduction 

This chapter presents an liltemative to the conventionlil approach of using median 

regression to model analyte vlilues. The approach uses standard linear and non-linear least 

squares for model fitting. Full summaries of the data used in the anlilysis are,given in section 

3.2. Section 3.3 describes the methods used to moclel the data and discusses models for 

location and variation. Appropriate methods to delil with outliers are also introduced in 

section 3.3. Sections 3.4, 3.5 and 3.6 report the findings of the anlilysis based on AFP, UE3 

and HCG data respectively. Section 3. 7 summarizes the results. 

The parameter estimates of the fitted models quoted in this chapter are compared 

with those given -in Wlild et a/ (1988, 1992 and 1993) for LMP dating methods with no 

adjustment for matemlil age. These are shown in Table 3.1. The date in brackets gives the 

most recent year of update. 

PARAMETER ANALYTE UNAFFECTED DOWN'S 

MEANS AFP o,oooo (92) -0.3286 (88) 

UE3 0.0000 (92) -0.3249 (88) 

HCG 0:0000 (92) 0.6961 (88) 

SD AFP 0:4656 (92) 0.4720 (88) 

UE3 0.3362 (92) 0.3551 (93) 

HCG 0.5720 (92) 0.6309 (88) 

R AFP-UE3 0.2755 (92) 0.2708 (93) 

AFP-HCG 0.0723 (92) 0.1703 (88) 

HCG-UE3 -0.1752 (92) -0.3204 (93) 

Table 3.1: Means, standard deViations (SD), and correlation coefficients (R) in affected and 
unaffected pregnancies reported by Wlild et a/ (1988), (1992) and (1993). All estimates are 
in logarithms to the base e. The method of recording gestational dates is LMP. 
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3.2 Data 

The data used for analysis throughout this chapter and subsequent chapters are 

taken from the databases of six screening centres from the trial described by Davies et a/ 

{1991 ). 11he maternal serum concentrations AFP, U£3 and HCG are recorded. The centre 

indicators are shown below. 

NAME (I) (2) (3) (4) (5) (6) 

CENTRE Amersham BoiUI Gottingen Nottingham Romford Glasgow 

Trials 

Table 3.2: Summary of the screening centres from which data is obtained along with their 
indicator number. 

Centres 2, 3, 5, and 6 have gestational ages recorded in days whilst centre 1 and 4 

are in weeks. Simunary statistics of the analyte concentrations are provided in Tables 3.3 to 

3.5. 

(I) AFP 

UNAFFECTED PREGNANCIES DOWN'S SYNDROME PREGNANCIES 

CENTRE FREQ. MIN. ~ MEDIAN FREQ· 

1 60 13.95 98:75 33.05 NIA 

2 259 13.2 232.5 40.51 16 

3 279 9.01 86.7 31.81 9 

4 146 17.53 87.13 37.53 27 

5 381 5.76 88.71 41.29 26 

6 174 12.78 96.85 39.32 15 

Table 3.3: Summary statistics for AFP data recorded. 
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MIN. ~ MEDIAN 

NIA NIA NIA 

13.2 62.45 32.08 

10.5 74.67 36.03 

10.58 65,06 24.32 

10.07 93.53 34.62 

15.89 62.34 30.48 



(11) UE3 

UNAFFECJ'ED PREGNANCIES DOWN'S SYNDROME PREGNANCIES 

CENTRE FREQ. ~UN. MAX. MEDIAN FREQ. MIN. MAX. MEDIAN 

l 60 1.51 7.7 4.035 NIA NIA NIA NIA 

2 259 0.69 9.67 5.36 16 1.61 8.5 4.165 

3 278 1.16 9.82 3.59 9 1.33 8.69 3.75 

4 146 2.08 9.6 4.51 27 0.5 10.88 4.11 

5 399 0.49 15.08 5.01 26 0.98 7.84 3.85 

6 191 0.75 11.71 4.79 15 2.51 7.34 3.61 

Table 3.4: Summary statistics for UE3 data recorded. 

(Ill) BCG 

UNAFFECJ'ED PREGNANCIES DOWN'S SYNDROME PREGNANCIES 

CENTRE FREQ. ~- MAX. MEDIAN FREQ. ~UN. MAX. MEDIAN 

l 60 3.n 125.5 29.1 NIA NIA NIA NIA 

2 259 1.12 123.4 25.45 16 27.05 83.06 52.11 

3 285 7.22 148.4 31 9 22.84 356.1 69.18 

4 146 4.n 103.9 26.04 27 12.32 165.9 58 

5 399 4.78 88.57 23.74 26 12.73 111.2 46.2 

6 207 3.67 89.49 26.43 15 11.52 142.4 51.57 

Table 3.5: Summary statistics for HCG data recorded. 
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3.3 Modelling 

Wald et aJ (1988) apply weighted least squares to regress unaffected weekly median 

concentrations on gestational age, the weights being taken as the number of pregnancies at 

each week. The motivation for using this approach is that median values are more robust to 

outliers and abnormalities in the distributional shape. As described in Chapter one, 

concentration values are expressed as MoM values and it is generally accepted that the 

distribution of MoM analyte concentrations are adequately represented by a lognormal 

distribution. More specifically, the log(MoMs) are assumed to be normally distributed with 

a mean of zero and a constant variance. Multivariate Gaussian densities are fitted to the 

distributions oflog(MoMs), truncation limits are applied and excessively high or low values 

are replaced by the nearest end limit 

However, the log(MoM) values are equivalent to the residuals, after a log 

transformation, of the fitted regression models. Therefore, it is sensible to fit multivariate 

Gaussian densities to the residuals of the regression models rather than converting the data 

to MoM values. This approach avoids the need to group gestational dates into weeks so the 

fitted models are more representative of true gestational dates rather than those used for 

statistical analysis. This method also allows other explanatory variables such as weight and 

smoking status to be included in a multiple regression modeL 

This method of modelling is applied to the data described in section 3.2. Residuals 

associated with Down's syndrome pregnancies can be determined using the regression 

coefficients estimated from the unaffected data. Gaussian densities can be fitted to the 

distributions of residuals from unaffected and affected pregnancies and the ratio of these 

distributions provides a likelihood function that can be used in a discriminant analysis to 

calculate risks. 
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3.3.1 ModeUing'location 

Initial scatter diagrams of the raw data are plotted, A unifonnly distributed random 

number over the range (-0.5, 0.5) is added to the gestational age to make the points 

distinguishable on the scatter diagrams. Since the added noise is small in comparison to the 

range of the data the overall shape of the distribution is unchanged, but each point appears 

as a unique dot. The location for unaffected pregnancies is mOdelled by fitting appropriate 

regression models with gestational age and centre-as explanatory variables. The adequacy of 

the models are assessed graphically. Diagrams of the fitted models are illustrated. Also 

tables of parameter estimates are provided. 

3.3.2 Detection of outliers 

An effective method for detecting model deficiencies in the regression analysis is to 

examine .the residuals. The residuals, e;, should be independently distributed normal 

deviates with mean zero and a constant variance. The. graphical analysis of residuals of the 

fitted models consists of normal probability plots and plots of the. standardized residuals on 

length ofgestation, The graphs provide initial checks for any assumption violations such as 

non-normality, the presence of heteroscedastic errors; and·the presence of outliers. Otitliers 

are identified by removing cases for which the standardized residuals, t; = !L, are in excess 
sd 

of3 in magnitude and these are'classified as outliers and removed. 
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3.3.3 Modelling variability 

A standard assumption of least squares theory is the homogeneity of error variance. 

Although minor deviations from the assumptions will have little effect on the regression 

analysis, gross violations can lead to least squares estimates that are inefficient. 

Heteroscedastic errors can be dealt with by a suitable transformation, such as a logarithmic 

transformation or more generally Box Cox transformations (Box and Cox (1964)). Altman 

and Chitty ( 1994) describe a process to identifY heteroscedastic errors by modelling the 

standard deviations of a response variable as a function of gestational age. The paper 

discusses the study design and analysis necessary to derive centiles for fetal size and 

references a simple method for modelling the change in error standard deviations with 

gestation (Aitrnan (1993)). The absolute value of the residuals of a fitted model are 

regressed on length of gestation in days, using a linear or quadratic model. The fitted values 

of this model multiplied by If provide estimates of the gestational age specific residual 

standard deviations. The significance of the slope parameter is used to detect the presence 

of heteroscedasticity. Suitable transformations are applied to stabilize the error variance. A 

weighted regression using the reciprocal of the square of the estimated age specific standard 

deviations allows for the increase but Altman and Chitty ( 1994) point out the change is 

almost always rather small. 

The method of modelling gestational age specific residuals standard deviations 

described by Altman ( 1993) is used in the regression analysis of the trials data set out in 

sections 3.4-3.6. Illustrations of the fitted models are provided. Lowess curves are also 

fitted to the data. These provide robust estimates of the trend of the data over the range of 

gestational age which are based on median values rather than mean values. It has to be 
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recognized, however, that the distribution of the absolute values of the residuals is not a 

Gaussian distribution even if the residuals themselves have a Gaussian distribution. 

Significance tests for the relationship between the absolute residuals and gestational age are, 

therefore, invalid and are only used here as a guide. 

3.4 AFP 

Scatter diagrams of AFP and log(AFP) against gestational age for the pooled data 

for unaffected pregnancies are shown in Figure 3 . 1 and Figure 3 .2. A random uniform effect 

is added to make the points distinguishable on the graph. 

AFP vs GA by LMP (unaffected cases) 
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Figure 3.1: Plot of AFP concentrations against gestational age by LMP with a random 
uniform effect (unaffected pregnancies, n = 1299). 
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log(AFP) vs GA by LMP (unaffected cases) 
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Figure 3.2: Plot oflog(AFP) concentrations against gestational age by LMP with a random 
uniform effect (unaffected pregnancies, n = 1299). 

Current approaches to model AFP concentrations use weighted median regression 

of log(AFP) on gestational age. It is generally accepted that the relationship between 

log(AFP) and gestational age is linear and that the variation about the regression is normal 

with constant variance. The models fitted in this section are of this form. The model for the 

full data set is defined as ALINJ and the model for the data set with outliers removed is 

defined as ALIN2. The form of the models is given below. 

A A A 

log(AFP) = f3 0 + a.i +f3 1(GA) 

A A A 

a i = centre effect for centres j = I, 2, 3, 4, 5, f3 0 + a i = intercepts for centres j = I, 2, 
A 

3, 4, 5, and /30 = intercept for centre 6. 

The form of ALJNJ is illustrated for centre 6 in Figure 3.3 which shows the fitted 

lOth, 50th and 90th centiles of AFP. The analysis of the fit of the models follows. 
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Model ALIN1 
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Figure 3.3: The fitted lOth, 50th and 90th centiles of AFP derived from model ALINJ for 

centre 6. 

ModelALINl 

The parameter estimates for model ALIN 1 along with their standard errors are given in 

Table 3.6. 

VALUE STANDARD ERROR 
11 2.6080 0.1611 
Po 
11 

a, 0.0905 0.0278 

11 -0.0462 0.0120 
az 
11 0.0182 0.0094 
a 3 
11 

a4 0.0015 0.0056 

11 

a~ 
0.0048 0.0054 

11 0.0086 0.0014 
{J, 

Table 3.6: Parameter values of the fitted regression model ALINJ. 
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The R 2 value fi or the fitted model is 0.0859 indicating that 8.59% of the variation in 

the Iog(AFP) concentra tions is explained by gestational age and centre effects. Although the 

R 2 value is small, the effects of gestational age and centre effect are significant (p < 

0.0001). The normal pr obability plot ofthe residuals of the fitted model in Figure 3.4 shows 

evidence of deviations from a Gaussian form in the tails of the distribution but illustrates 

normality in the main b ody of the distribution. The plot ofthe standardized residuals against 

gestational age highligh ts the presence of outliers (Figure 3.5). The error variance remains 

constant across the ran ge of gestational age. 11 outliers are identified and removed from the 

original data. 

ModelALIN2 

Table 3. 7 lists the par ameter estimates of the model fitted to the reduced data set. 

VALUE STANDARD ERROR 
1\ 

Po 
2.6699 0.1536 

" 0.0859 0.0263 
a1 

1\ -0.0431 0.0114 
az 
1\ 0.0188 0.0089 a] 
1\ 0.0067 0.0054 a4 
1\ 0.0046 0.0052 
as 
1\ 

PI 
0.0081 0.0013 

Table 3.7: Table of par ameter estimates of the refitted regression ALIN2. 

The R 2 value fi or the fitted model ALIN2 is 0.0898 which is slightly greater than the 

R 2 value for model AL 1Nl. Figure 3.6 shows the normal probability plot of the residuals of 
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the fitted model. The outliers have little impact on the fitted model but they have a dramatic 

effect on the normal probability plot. Figures 3. 7-3 .12 illustrate the distribution of the centre 

specific residuals over the range of gestation. The centre specific residual standard 

deviations are shown in Table 3.8 along with estimates calculated from the product moment 

formula and robust estimates calculated between the 25'h - 75'h and lOth- 90th percentiles. 

In general the estimates are appreciably lower than those reported by Wald et al (1992). 

Figure 3.13 illustrates the distribution of the absolute residuals over the range of gestational 

age. The fitted values of this model provide estimates of the age specific standard 

deviations. The slope parameter of the fitted regression model of ~ x abs( ei) on length of 

gestation is not significant, p > 0.05. This confirms that the error variance can be assumed 

constant across the range of gestational age. 

Normal Probability Plot of AFP Residuals (unaffected cases) 

.. · 

~ ~--------~--------~----------~--------~ 

-2 0 2 

Quantiles of Standard Normal 

Figure 3.4: Normal probability plot ofthe residuals ofthe fitted model ALINJ. 
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AFP Std. Residuals vs GA by LMP (linear model) 
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Figure 3.5: Plot of standardized residuals, r; , of the fitted model ALIN 1 against gestational 
age. 

Normal Probability Plot of AFP Residuals (unaffected cases) 
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Figure 3.6: Normal probability plot ofresiduals of fitted model ALIN2. 
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AFP Std. Residuals vs GA by LMP - (Centre 1, linear model) 
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Figure 3. 7: Plot of the standardized residuals , 'i , of the fitted model AUN2 for centre 1. 
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AFP Std. Residuals vs GA by LMP- (Centre 2, linear model) 
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Figure 3.8: Plot of the standardized residuals, 'i, of the fitted model ALIN2 for centre 2. 
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AFP Std. Residuals vs GA by LMP - (Centre 3, linear model) 
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Figure 3.9: Plot of the standardized residuals, r;, of the fitted model ALIN2 for centre 3. 

AFP Std. Residuals vs GA by LMP- (Centre 4, linear model) 

N 

"' -;;; 
::;] 

"'0 ·;;; 
~ 

al 
N 0 

~ 
"' "'0 c 
~ 

~ . 

110 115 120 125 130 135 

GAbyLMP 

Figure 3.10: Plot of the standardized residuals, 'i, of the fitted model ALIN2 for centre 4. 
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AFP Std. Residuals vs GA by LMP - (Centre 5, linear model) 
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Figure 3.11: Plot of the standardized residuals, 'i , of the fitted model AUN2 for centre 5. 
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AFP Std. Residuals vs GA by LMP - (Centre 6, linear model) 
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Figure 3.12: Plot of the standardized residuals, 'i, of the fitted model ALIN2 for centre 6. 
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' 

CENTRE 1 2 3 4 5 6 
No. 

SD of 0.4132 0.4010 0.3468 0.3619 0.3560 0.3318 

residuals 
SD 0.4056 0.3613 0.3263 0.3361 0.3492 0.3420 

estimate 
0o25 -Q0.75 

SD 0.4389 0.4323 0.3341 0.3814 0.3286 0.3140 

estimate 
QO.l-Q0.9 

Table 3.8: Summary of centre specific residual standard deviations of the fitted model 
ALIN2. Wald et al (1992) report the estimated standard deviation of log(MoM) AFP to be 
0.4656, based on LMP dating methods and natural logarithms. The value is estimated 
between the 1 O'Jr - 90'h percentiles. 
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Figure 3.13: Plot of fitted regression model of ~ x abs( ei) of the model ALIN2 against 

gestational age with lowess trend curve. 

Fitted model :- ~ x abs(e;) = 0.1800+0.0015(GA) 
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3.5 UE3 

Scatter diagrams of UE3 and log(UE3) against gestational age for the pooled data 

for unaffected pregnancies are shown in Figure 3.14 and Figure 3.15. As with AFP, a 

random uniform effect is added to make the points distinguishable on the graph. 

Wald et a/ (1988) assumed that UE3 depends linearly on gestational age and that the 

distribution ofUE3 about the linear regression is normal with constant variance. Wald et a/ 

(1992) and (1993) conclude that the UE3 concentrations are more efficiently represented by 

a lognormal distribution. However, they assume that log(UE3) varies linearly with 

gestational age. 

Wright et a/ ( 1995) point out that a better fit is obtained by using a model in which 

the location ofUE3 depends linearly on gestational age, in accordance with Wald et a/ 

( 1988), but that the variation about the line follows a lognormal distribution as in Wald et a/ 

(1992). With the above discussion in mind, three forms of models are fitted in this section. 

These are 

(i) a simple linear regression of UE3 on gestational age (!he models fitted of this 

form are defined as UL!NJ for the full data set, and UL/N2 for the data set with 

outliers removed); 

(ii) a simple linear regression of /og(UE3) on gestational age (Fhe models fitted of 

this form are defined as ULOGLJN, for the full data set, and ULOGLJN2 for the 

data set with out/iers removed); 

(iii) a non-linear regression of /og(UE3) on gestational age in which the trend in 

UE3 depends linearly on gestational age but the distribution about the trend is 

/ognormal. (!he models fitted of this form are defined as UNUN I for the full data 

set, and UNLIN2 for the data set with outliers removed). 
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Figure 3.14: Plot ofUE3 concentrations against gestational age by LMP with a random 
unifonn effect (unaffected pregnancies, n = 1333). 

log(UE3) vs GA by LMP (unaffected) 
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Figure 3.15: Plot oflog(UE3) concentrations against gestational age by LMP with a 
random uniform effect (unaffected pregnancies, n = 1333). 
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Models described by (iii) can be considered as a hybrid between the model used in Wald et 

a/ (1988) and in Wald et a/ (1992). The analysis of the fit of the three models is given 

below. The forms of these models are illustrated for centre 6 in Figures 3.16-3.18 which 

show the fitted I Oth, 50th and 90th centiles of UE3. 

(i) A simple linear regression of UEJ on gestational age 

' ' ' 
UE3 =P.+a,+P,(GA) 

1\ 1\ 1\ 

O.i = centre effect for centres j= 1, 2, 3, 4, 5, P0 +a.i intercepts for centres j = 1, 2, 
1\ 

3, 4, 5, and Po = intercept for centre 6. 

Model UL/Nl 

Table 3.9lists the parameter estimates for the model fitted ULINJ. 

VALUE STANDARD ERROR 
1\ -2.7355 0.6630 
Po 
1\ 0.4533 0.1144 
a. 

1\ -0.2976 0.0496 
a2 
1\ 0.0483 0.0387 
a3 
1\ 0.0363 0.0229 
a4 
1\ 0.0173 0.0216 
as 
1\ 0.0632 0.0056 
P. 

Table 3.9: Parameter estimates ofthe fitted regression model ULINJ. 
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The R 2 value is 0.197, indicating that 19:7% of the variation in the l!JE3 

coilceiltrlitioils is exphuned .by gestational age,!ind centre effects, Although. the R2 value is 

small, the effects of gestational age and·centre are overwhelmingly significant (p· < 0.0001 

for both gestational age and1 ce11tre.effects). Ttie ·normal probability .piot of the residuals of 

the fitted' modeHs shown in Figure 3.'1 9. The. plot illustrates deviations from a· linear form ·in 

the tails. Figure 3.20 shows the distribution:ofthe1poolec! sUlll~ardized residiJals of the fitted 

model. 7 outliers are identified!and these are·removed from the original data. 

ModelULlN2 

Table 3.10 lists the;parameter estimates for the ·modeHitted ,tor the reduced data. set. 

VALUE STANDARD ERR,OR 
. -

1\ -2.4695 '0.6390 
Po 
1\ 0.4595 I o, 109.1 
a •. I --

1\ 

a2 "03063 
I 

0.0473 

1\ 0.0502 
!I I 

0.0473 
a3 --
1\ 0.023:7 a:- 0.0219 a4 ' ' --
1\ 0.0173 0,0207 i 

as :I 

1\ :I 0.0608 I 0,0054 P. I 

I ~ 

Table 3.10: Parameter estimates fot the,fitted regression model ULIN2. 

lihe R2 valuecfor the.fitted model lJL/Nl. is:0:2024', This:is an impro:v:ement on• the 

R2 value for model UL!Nl. Figure 3.2'1 ·shows the normal probability plot of the residuals 

of the. fitted model, Although the outliers have: little impact on the regression coefficients, 

they have a dramatic effect cin the normal probability plot. Figures 3:22~3.27 show the 
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centre specific standardized residuals across the range of gestation. There is evidence to 

suggest the error variance increases with gestational age. This is particularly noticeable in 

the plot for centre 3. The standard deviations estimated from the product moment formula 

and from values between the 25rh - 15'h and lO'h - 90rh percentiles are given in Table 3.15. 

These are somewhat larger than the estimate reported by Wald et a/ (1988). The fitted 

regression model of ~ x abs(e;) on gestational age is shown in Figure 3.28. The 

regression coefficient of this model is significantly different from zero (p < 0.05). This 

confirms that the error variance varies with gestational age. One way that this can be dealt 

with is to apply a log transformation to UE3 as in the models presented under (ii) and (iii) 

below. 

(ii) A simple linear regression of log(UE3) on gestational age 

A A A 

log(UE3) = 13 0 + Clj +ll.(GA) 

A A A 

Cli = centre effect for centres j = 1, 2, 3, 4, 5, 130 + Cli = intercepts for centres j = J., 2, 
A 

3, 4, 5, and !30 = intercept for centre 6. 
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Modei·ULOGLINJ 

The pllfametet estimates .for model ULOGL!Nl along wiih1their standard errors are·given in 

TableJJ L 

VALUE STANDARD'ERROR 
1\ -O:OlH 0.1489 I 

Po '' I 
' 

1\ o;o8S4 0.02S7 ' a •. ! '' 

1\ -O:OHI O.Ollll I' 

a2 '' 
1\ 0:0188. 

---
'0.0087 

a3· I 

' I 
1\ ' 0!0092 O.OOSl ' a4 I' -
1\ '' 0!0063 0.0049 
as I 

\ 

1\ 0!0127 I 0.0013 P. I 

'f.able:J;H: Parameter (lstimates1ofthe fitted regression model .UEOGUNr 

The .R2 value is 0.1848 indicating thlit 18.48% of the variation in the log(UE3) 

concentratjons is explained' by gestational age and centre effects: Again, the R2 val(le is 

small, but :the effects ofgestational rage land ceritre·effect.are overwhelmingly significant (p < 

0:0001 for both gestational .age and centre effects). The normal; probability plot of the 

residuals oft he fitted! model, show large deViations from a linear form iri the ·tails oft he .plot 

in Elgure 329 .. Figure 3.30 shows the distributio!l of.the p6oled standardized residuals of 

:the fitted. model. The error variance ·appears 1to be, C()nsistent across the range of gestational 

:age, 13 outliers are identified and these'are removed I from the ·original data. 
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Model ULOGLIN2 

Table 3.12lists the parameter estimates of the model fitted to the reduced data set. 

VALUE STANDARD ERROR 

" -0.0877 0.1342 
Po 
" 0.0996 0.0230 
a1 

" -0.0778 0.0100 
az 
" 0.0161 0.0078 
aJ 

" 0.0101 0.0046 
a4 
" 0.0069 0.0044 
as 
" 0.0134 0.0011 pl 

Table 3.12: Parameter estimates of the fitted regression model ULOGUN2. 

The R 2 value for the fitted model ULOGLIN2 is 0.243 indicating that 24.3% of the 

variation in the log(UE3) concentrations is explained by gestational age and centre. This is 

an improvement on the R2 value for model ULOGLJNJ. Figure 3.31 shows the normal 

probability plot of the residuals of the fitted model. The plot is linear over a greater range 

than the plot associate with model ULOGLINJ. Figures 3.32-3.37 show the centre specific 

standardized residuals across the range of gestational age. There is no evidence to suggest 

the error variance varies with gestational age. The standard deviations estimated from the 

product moment formula and from the values between the 25th- 75'h and lOth -90th 

percentiles are given in Table 3.16. These are generally lower than the estimate reported by 

Wald et a/ (1993). The fitted regression model of H x abs(e;) on gestational age is shown 

in Figure 3.38. The regression coefficient of this model is not significantly different from 
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zero (p > 0.05) This confinns that the error variance can be assumed constant over the 

range of gestational age. 

(iii) A non-linear regression of log(UEJ) on gestational age in which the trend in UEJ 

depends linearly on gestational age but the distribution about the trend is lognorma/ 

1\ 1\ 1\ 

log(UE3) = a i + log[l3 0 + 13 1 (G A)] 

1\ 1\ 1\ 

a i = centre effect for centres j = 1 , 2, 3, 4, 5, log (p 0 ) + a 1 = intercepts for centres j = 

1\ 

1, 2, 3, 4, 5, and log(l30 ) = intercept for centre 6. 

Model UNLINJ 

The parameter estimates for model UNUNJ along with their standard errors are given in 

Table 3.13. 

VALUE STANDARD ERROR 
1\ -0.0725 0.0533 
a1 

1\ 0.0935 0.0339 
a2 
1\ -0.2021 0.0347 
a1 
1\ 0.0129 0.0395 
a4 
1\ -0.0025 0.0315 
as 
1\ -3.0285 0.7521 
Po 
1\ 0.0644 0.0064 pl 

Table 3.13: Parameter estimates of the fitted regression model UNUNJ. 
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It is hypothesized that a non~linear model that is a hybrid fonn of the models given 

in Wald et a/ (1988) and (1992) may provide a more appropriate.description ofthe data in 

terms of fit. The R2 value for the fitted model is 0.1875, indicating that 18.75% of the 

variation in the log(UE3) values is explained by gestational age and centre. This value is 

comparable to the R2 values for the previous models. Both the effects of gestational age 

and centre effect are overwhelmingly significant (p < 0.0001 for both gestational age and 

centre effects). Figure 3.39 shows the normal probability plot of the residuals. The plot 

demonstrates.Jarge deviations from a linear form in the tails. The standardized residuals for 

the pooled data are plotted against gestational age in Figure 3. 40. I 5 outliers are identified 

and these are removed from the original data. 

Model UNLIN2 

The parameter estimates of the model fitted to the reduced data set are shown in 

Table 3.14. 

VALUE STANDARD ERROR 

" -0.0807 0.0472 
a. 

" 0.1ll4 0.0309 
a2 
" -0.2058 0.0309 
al 
1\ 0.0023 0.0351 
a4 
1\ -0.0010 0.0280 
as 
1\ -3.7616 0.6814 
Po 
1\ 0.0711 0.0059 P. 

Table 3.14: Parameter estimates for the· fitted regression model UNUN2. 
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The R2 value of the fitted model UNLIN2 is 0.2502 which is an improvement on 

the value for the fitted model UNL/NJ. This value is marginally greater than the R2 for 

model ULOGLJN2. 

The nonnal probability plot of the residuals of the fitted model is shown in Figure 

3 .41. Again, the removal of outliers has little impact on the fitted model but greatly 

improves the linearity of the normal probability plot in Figure 3.39. The distribution of the 

centre specific residuals on length of gestation are given in Figures 3.42-3.47. There is no 

evidence in the plots to indicate that the error variance is correlated with gestational age. 

The estimated standard deviations, shown in Table 3.17, are similar to those calculated from 

the model ULOGLIN2 and are generally lower than the estimates reported by Wald et a/ 

(1993). The slope parameter of the fitted model of~ x abs(e;) on gestational age is not 

significantly different from zero (p > 0.05) and therefore, there is no evidence of any 

violation of the assumption of homoscedasticity. 

Model ULIN1 

0 

100 120 140 

GAbyLMP 

_..----__ . 

160 180 

Figure 3.16: Plot ofUE3 concentrations against gestational age by LMP with a random 
uniform effect (unaffected pregnancies, n = 1333). 
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Model ULOGLIN1 
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GAbyLMP 

Figure 3.17: The fitted lOth, 50th and 90th centiles of UE3 derived from model 

ULOGUNJ for centre 6. 
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Figure 3.18: The fitted lOth, 50th and 90th centiles ofUE3 derived from model UNUNJ 

for centre 6. 
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Normal Probability Plot of UE3 Residuals 
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Figure 3.19: Normal probability plot of the residuals ofthe fitted model ULINJ. 

UE3 Std. Residuals vs GA by LMP (linear model) 
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Figure 3.20: Plot of standardized residuals, r; , of the fitted model ULIN 1 against 
gestational age. 
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Normal Probability Plot of UE3 Residuals 
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Figure 3.21: Normal probability plot of the residuals of the fitted model ULIN2. 
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Figure 3.22: Plot of standardized residuals, 'i, of the fitted model ULIN2 for centre 1. 
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UE3 Std. Residuals vs GA by LMP (Centre 2, linear model) 
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Figure 3.23: Plot of standardized residuals, 'i , of the fitted model ULIN2 for centre 2. 
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UE3 Std. Residuals vs GA by LMP (Centre 3, linear model) 
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Figure 3.24: Plot of standardized residuals, 'i , of the fitted model ULIN2 for centre 3. 
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UE3 Std. Residuals vs GA by LMP (Centre 4, linear model) 
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Figure 3.25: Plot of standardized residuals, r;, of the fitted model UUN2 for centre 4. 
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UE3 Std. Residuals vs GA by LMP (Centre 5, linear model) 
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Figure 3.26: Plot of standardized residuals, 'i , of the fitted model ULIN2 for centre 5. 
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UE3 Std. Residuals vs GA by LMP (Centre 6, linear model) 
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Figure 3.27: Plot of standardized residuals, r; , of the fitted model ULIN2 for centre 6. 

CENTRE 1 2 3 4 5 6 
No. 

SDof 1.2476 1.8246 1.2770 1.3559 1.5528 1.4503 

residuals 
SD 1.0434 1.5991 1.1957 1.2295 1.3983 1.3258 

estimate 
Oo2s -Oo.?s 

SD 1.1715 1.8160 1.2455 1.3051 1.5153 1.3626 

estimate 
QO.l-Q0.9 

Table 3.15: Summary of centre specific residual standard deviations of the fitted model 
ULIN2. Wald et a! ( 1993) report the estimated standard deviation of UE3 between the 
101

h- 90'h percentiles to be 0.5663 based on LMP dating methods and natural logarithms. 
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Abs. Residuals * sqrt(pi/2) vs GA by LMP 
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Figure 3.28: Plot of fitted regression model of H x abs(ei) of the model ULIN2 against 

gestational age with lowess trend curve. 

Fitted model :- H x abs(eJ = -1 .0564+0.0210(GA) 
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Figure 3.29: Normal probability plot of the residuals of the fitted model ULOGLINJ. 

UE3 Std. Residuals vs GA by LMP (linear model) 
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Figure 3.30: Plot of standardized residuals, 'i , ofthe fitted model ULOGLJNJ against 

gestational age. 
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Figure 3.31: Normal probability plot of the residuals of the fitted model ULOGLIN2. 
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UE3 Std. Residuals vs GA by LMP (Centre 1, linear model) 
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Figure 3.32: Plot of the standardized residuals, r;, of the fitted model ULOGUN2 for 

centre 1. 
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UE3 Std. Residuals vs GA by LMP (Centre 2, linear model) 
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Figure 3.33: Plot of the standardized residuals, r;, of the fitted model ULOGLIN2 for 

centre 2. 

71 



UE3 Std. Residuals vs GA by LMP (Centre 3, linear model) 
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Figure 3.34: Plot of the standardized residuals, 'i, of the fitted model ULOGIJN2 for 

centre 3. 

UE3 Std. Residuals vs GA by LMP (Centre 4, linear model) 
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Figure 3.35: Plot of the standardized residuals, 'i, of the fitted model ULOGIJN2 for 

centre 4. 
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UE3 Std. Residuals vs GA by LMP (Centre 5, linear model) 
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Figure 3.36: Plot of the standardized residuals, r;, of the fitted model ULOGLJN2 for 

centre 5. 

UE3 Std. Residuals vs GA by LMP (Centre 6, linear model) 
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Figure 3.37: Plot ofthe standardized residuals, r;, of the fitted model ULOGLIN2 for 

centre 6. 
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' 

CENTRE 1 2 3 4 5 6 
No. 

SDof 0.3000 0.3399 0.3451 0.2818 0.3152 0.2823 

residuals 
SD 0.2544 0.2763 0.3324 0.2733 0.2873 0.2676 

estimate 
Oo.25 - Oo.75 

SD 0.2660 0.3205 0.3445 0.2836 0.3118 0.2881 

estimate 
QO.l -Q0.9 

Table 3.16: Summary of centre specific residual standard deviations of the fitted model 
ULOGLIN2. Wald et al (1993) report the estimated standard deviation oflog(MoM) UE3 

between the 1 0'1' - 90111 percentiles to be 0.3362 based on LMP dating methods and natural 
logarithms. 
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Figure 3.38: Plot of fitted regression model of H x abs( eJ of the model ULOGLIN2 

against gestational age with lowess trend curve. 

Fitted model :- H x abs(eJ = 0.2419+0.0006(GA) 
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Normal Probability Plot of UE3 Residuals (non linear model) 
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Figure 3.39: Normal probability plot of the residuals of the fitted model UNUN I. 

UE3 Std. Residuals vs GA by LMP (non linear model) 
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Figure 3.40: Plot of the standardized residuals, r; , of the fitted model UNLINJ against 
gestational age. 

75 



Normal Probability Plot of UE3 Residuals (outliers removed) 

q 

I() 

c) 

.. 
~ 0 
"0 c) 
lii 
!!! 

I() 

q 

q 
~ 

~ ..... 
' 

·2 0 2 

Quantiles of Standard Normal 

Figure 3.41 : Normal probability plot ofthe residuals ofthe fitted model UNLJN2. 

UE3 Std. Residuals vs GA by LMP (Centre 1, non-linear model) 
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Figure 3.42: Plot of the standardized residuals, r, , of the fitted model UNLIN2 for centre 1. 
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UE3 Std. Residuals vs GA by LMP (Centre 2, non-linear model) 
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Figure 3.43: Plot of the standardized residuals, r;, of the fitted model UNLIN2 for centre 2. 
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UE3 Std. Residuals vs GA by LMP (Centre 3, non-linear model) 
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Figure 3.44: Plot ofthe standardized residuals, r; , of the fitted model UNLJN2 for centre 3. 
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UE3 Std. Residuals vs GA by LMP (Centre 4, non-linear model) 
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Figure 3.45: Plot of the standardized residuals, 'i , of the fitted model UNLIN2 for centre 4. 
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UE3 Std. Residuals vs GA by LMP (Centre 5, non-linear model) 

.., 

N 

~ . . 
0 

~ 

' 

"! 

<? 

100 

. . : .... 
··=··~·. . . ,1:,!··:· . . .~ .. ::. . . . .. · .. tul·,=· ;· •• • ·:1;• • . . • . • 

.. :• r'l;•!, .• · . • . . • •. ·I .. 1': of• I • .. : :1•.: .. . . . 
• • 1111 I . .. . . .. ·:·. :. . . . 

:· ... 

120 

GAbyLMP 

140 

.. 
.. 

160 

Figure 3.46: Plot of the standardized residuals, 'i , of the fitted model UNUN2 for centre 5. 
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UE3 Std. Residuals vs GA by LMP (Centre 6 , non-linear model) 

"' 
. . 

.. .. . . I . . . . . .. . .. .. I" 
Cii . . . .. 
::> . . . I • . .., :'. ·q; . ., ···:·: .. . 
~ 0 

. . .. 
' I .., . . . . . . . 

<11 . : ·t .. 
~ . 

!: 
.. ... . . . "E . : .. . .. ...• .., . . .. . c . .. '7 . . . . . I 

Ui 
. .. . . 

~ 

100 110 120 130 140 150 160 

GAby LMP 

Figure 3.47: Plot of the standardized residuals, 'i , of the fitted model UNLIN2 for centre 6. 

CENTRE 1 2 3 4 5 6 
No. 

SDof 0.2950 0.3412 0.3352 0.2813 0.3096 0.2829 

residuals 
SD 0.2546 0.2769 0.3294 0 .2754 0.2837 0.2686 

estimate 
0o25 -Q0.75 

SD 0.2601 0.3179 0.3353 0.2817 0.3118 0.2868 

estimate 
Oo -Q .I 0.9 

Table 3.17: Summary of centre specific residual standard deviations of the fitted model 
UNLIN2. Wald et a/ (I 993) report the estimated standard deviation of log(MoM) UE3 
between the lOth - 90th percentiles to be 0.3362 based on LMP dating methods and natural 
logarithms. 
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Abs. Residuals • sqrt(pi/2) vs GA by LMP 
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Figure 3.48: Plot of fitted regression model of~ x abs(ei) of the model UNL/N2 against 

gestational age with lowess trend curve. 

Fitted model :-~ x abs( e;) = 0.3182-0.0001 (GA) 
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3.6 HCG 

Scatter diagrams of the distributions of HCG and log(HCG) against gestational age 

for the pooled data for unaffected pregnancies are given in Figures 3.49 and 3.50. Again, a 

random uniform effect is added to the data to make the points distinguishable. 

Wald et al (1988) modellog(HCG) using a constant plus an exponential function of 

gestational age. This description was first offered by Bogart et a/ (1987). Two forms of 

models are fitted in this section. In the first model, log(HCG) depends linearly on 

gestational age and the distribution of log(HCG) about the regression is normal with 

constant variance. The second model is a non-linear model in which the location of HCG 

decays exponentially to a positive lower limit and the distribution about the regression is 

lognormal. This is the model used by Wald et a! (1988) and (1992). The form of the models 

fitted in this section are given below 

(i) a simple linear regression of log(HCG) on gestational age. (The models fitted of 

this form are defined as HIJNJ for the full data set, and HLIN2for the data set with 

outliers removed). 

(ii) a non-linear model in which the location of log(HCG) decays exponentially to a 

positive lower limit. The distribution about the location is normal. (The models fitted 

of this form are defined as HNLIN 1 for the full data set, and HNLIN2 for the data 

set with outliers removed). 

The analysis of the fit of the two models is given below. The form of these models are 

illustrated for centre 6 in Figures 3.51 -3.52 which show the fitted lOth, 50th and 90th 

centiles ofHCG. 
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HCG vs GA by LMP {unaffected cases) 
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Figure 3.49: Plot ofHCG concentrations against gestational age by LMP with a random 
unifonn effect (unaffected pregnancies, n = 1356). 
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Figure 3.50: Plot of log(HCG) concentrations against gestational age by LMP with a 
random unifonn effect (unaffected pregnancies, n =1356). 

82 



(i) A simple linear regression of log(HCG) on gestational age 

A 1\ 1\ 

log(HCG) = Po +a 1 + P1 ( GA) 

A 1\ 1\ 

a, = centre effect for centres j = 1, 2, 3, 4, 5, /30 + a 1 intercepts for centres j = 1, 2, 
1\ 

3, 4, 5, and Po = intercept for centre 6. 

ModelHLINl 

Table 3.18 lists the parameter estimates for the model fitted HLINJ. 

VALUE STANDARD ERROR 
1\ 4.3621 0.2360 
Po 
A -0.0630 0.04 15 
a1 
1\ 0.0316 0.0179 
a2 
1\ -0.0264 0.0140 a3 
A -0.0258 0.0083 
a-t 
1\ -0.0129 0.0076 
as 
A -0.0092 0.0020 
PI 

Table 3.18: Parameter estimates for the fitted regression model HLINJ . 

The R2 value for the fitted model is 0.0536 indicating that 5.36% ofthe variation in 

the log(HCG) concentrations is explained by the gestational age and centre effects. The 

effects of gestational age and centre effect are significant (p < 0.0001 for both gestational 

age and centre effects). The normal probability plot of the residuals of the fitted model, in 

Figure 3.53, illustrates deviations from a Gaussian form in the tails of the distribution. The 

plot ofthe standarized residuals, Figure 3.54, against gestational age highlights the presence 
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of outliers. There is no evidence to suggest the error variance is correlated with gestational 

age. 8 outliers are identified and removed from the original data. 

Model HLIN2 

Table 3.19 lists the parameter estimates of the fitted model on the reduced data set. 

VALUE STANDARD ERROR 

" 4.3143 0.2261 
f3o 

" -0.0588 0.0400 a ] 

" 0.0185 0.0172 
a 2 
" -0.0332 0.0134 
a 3 
" -0.0308 0.0080 
a 4 
" -0.0128 0.0073 
a s 
" -0.0086 0.0019 
/31 

Table 3.19: Parameter estimates for the fitted regression model HUN2. 

The R2 value of the fitted model HLIN2 is 0.0575 which is only a slight 

improvement on the R2 value for model HL!Nl. The outliers have little effect on the fitted 

model. Figure 3.55 shows the normal probability plot of the residuals of the fitted model. 

The plot is more linear in the tails than the plot in Figure 3.53 . Figures 3.56-3.61 plot the 

centre specific residuals on length of gestation. The standard deviations of the residuals 

estimated from the product moment formula and robust estimates calculated between the 

251h - 75th and lOth - 90th percentiles are tabulated, Table 3.22. The estimates are generally 

lower than the estimate reported by Wald et a! (1992). Figure 3.62 illustrates the 

distribution of the absolute residuals over the range of gestational age. The slope parameter 
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of the fitted regression model of ~ x abs( e;) against gestational age is not significant, 

confirming that the error variance can be assumed constant over the range of gestation (p > 

0.05). 

(ii) A non-linear regression of log(HCG) on gestational age in whiclt the trend in HCG 

depends linearly on gestational age but the distribution about the trend is lognormal 

1\ 1\ 1\ 

log(HCG) =a j+ log[fJ0 + .01 exp(- fJ2(GA - 115) I 10)] 

1\ 

a, = centre effect for centres j = 1, 2, 3, 4, 5. 

Model HNLINI 

Table 3.20 lists the parameter estimates for the model fitted HNIJNJ. 

VALUE STANDARD ERROR 
1\ 0.1415 0.0855 
a1 
1\ 0.0314 0.0535 
a 2 
1\ 0.1548 0.0550 
a3 
1\ 0.0116 0.0627 
a4 
1\ -0.0215 0.0496 
as 
1\ 20.2058 1.7736 
flo 
1\ 5.6556 1.9233 
/31 
1\ 0.7541 0.2283 
.02 

Table 3.20: Parameter estimates of the fitted regression model HNUNJ. 
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The R 2 value for the fitted model is 0.0633 indicating that 6.33% of the variation in 

the log(HCG) concentrations is explained by the gestational age and centre effects. The R 2 

value is slightly greater than those given for the models previously fitted. The effects of 

gestational age and centre effect are significant (p < 0.0001 for both gestational age and 

centre effects). The normal probability plot of the residuaJs of the fitted model, in Figure 

3.63, illustrates deviations from a Gaussian form in the tails of the distribution. The plot 

resembles the plot in Figure 3.53. The plot ofthe standarized residuals against gestational 

age, Figure 3.64, highlights the presence of outliers. There is no evidence to suggest the 

error variance is correlated with gestational age. 9 outliers are identified and removed from 

the original data. 

Model HNLIN2 

Table 3.21lists the parameter estimates of the model for the reduced data set. 

{\ 0.1657 0.0821 a, 
{\ 0.0612 0.0514 
a 2 
{\ 0.1442 0.0527 
a 3 
{\ -0.0015 0.0601 
a 4 
1\ -0.0432 0.0476 
a s 
1\ 21.1149 1.6664 
Po 
1\ 5.0452 1.8021 
/3, 

1\ 0.7884 0.2361 
/32 

Table 3.21: Parameter estimates of fitted regression model HNLIN2. 
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The R2 value for the fitted model HNLIN2 is 0.0648 which is a slight improvement 

on the R 2 value for the fitted model HNLINJ. The outliers have little impact on the fitted 

model. The normal probability plot shown in Figure 3.65 is more linear in the tails. The 

centre specific standardized residuals are illustrated in Figures 3. 66-3.71. There is no 

evidence in the residual plots to suggest the error variance is correlated with gestational 

age. The standard deviations of the residuals estimated from the product moment formula 

and robust estimates calculated between the 251
/t - 75th and 10th - 90'1' percentiles are 

tabulated, Table 3.23, and are generally lower than the estimated reported by Wald et a/ 

(1992). Figure 3.72 graphs the fitted model ofthe absolute residuals on length of gestation. 

The slope parameter of the fitted model is not significant to the regression. 

Model HLIN1 

100 120 140 160 180 
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Figure 3.51: The fitted 1Oth, 50th and 90th centiles of HCG derived from model HLIN 1 for 
centre 6. 
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Model HNLIN 1 
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Figure 3.52: The fitted lOth, 50th and 90th centiles ofHCG derived from model HNLJNJ 
for centre 6. 
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Figure 3.53: Nonnal probability plot of the residuals of the fitted model HLJNJ. 
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Figure 3.54: Plot of residuals of the fitted model HLJNJ against gestational age. 
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Figure 3.55: Normal probability plot of the residuals of the fitted model HLIN2. 
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HCG Std. Residuals vs GA by LMP (Centre 1, linear model) 
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Figure 3.56: Plot of the standardized residuals, rj, of the fitted model HUN2 for centre l. 
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Figure 3.57: Plot of the standardized residuaJs, r; , of the fitted model HLIN2 for centre 2. 
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HCG Std. Residuals vs GA by LMP (Centre 3, linear model) 
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Figure 3.58: Plot of the standardized residuals, If , of the fitted model HLIN2 for centre 3. 

HCG Std. Residuals vs GA by LMP (Centre 4, linear model) 
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Figure 3.59: Plot of the standardized residuals, r;, of the fitted model HLIN2 for centre 4. 
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HCG Std. Residuals vs GA by LMP (Centre 5, linear model) 
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Figure 3.60: Plot of the standardized residuals, r;, of the fitted model HLIN2 for centre 5. 
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HCG Std. Residuals vs GA by LMP (Centre 6, linear model) 
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Figure 3.61: Plot ofthe standardized residuals, r;, of the fitted model HLIN2 for centre 6. 
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CENTRE 1 2 3 4 5 6 
No. 

SDof 0.5426 0.5726 0.5298 0.5620 0.5335 0.5684 

residuals 
SD 0.5489 0.4916 0.5055 0.6088 0.5144 0.6371 

estimate 
<?o2s -~.1s 

SD 0.5339 0.5408 0.5250 0.5659 0.5562 0.5609 

estimate 
QO.l - Q0.9 

Table 3.22: Summary of centre specific residual standard deviations of the fitted model 
HUN2. Wald et a/ (1992) report the estimated standard deviation of log(MoM) HCG 
between the 1 01

}1 - 901
h percentiles to be 0.5720 based on LMP dating methods and natural 

logarithms. 
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Figure 3.62: Plot of fitted regression model of H x abs(eJ of the model HLIN2 against 

gestational age with lowess trend curve. 

Fitted model:- H x abs(eJ =0.3965+0.0012(GA) 
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Normal Probability Plot of HCG Residuals (non linear model} 
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Figure 3.63: Normal probability plot of the residuals ofthe fitted model HNLINJ. 
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Figure 3.64: Plot of the standardized residuals, r;, of the fitted model HNLINJ against 
gestational age. 
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Normal Probability Plot of HCG Residuals (non linear model) 
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Figure 3.65: Normal probability plot ofresiduals of fitted model HNLIN2. 

HCG Std. Residuals vs GA by LMP (Centre 1, non-linear model) 
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Figure 3.66: Plot of the standardized residuals, r;, of the fitted model HNUN2 for centre 1. 
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Figure 3.67: Plot of the standardized residuals, 'i, of the fitted model HNLIN2 for centre 2. 

HCG Std. Residuals vs GA by LMP (Centre 3, non-linear model) 
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Figure 3.68: Plot of the standardized residuals, 'i, of the fitted model HNLIN2 for centre 3. 
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HCG Std. Residuals vs GA by LMP (Centre 4, non-linear model) 
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Figure 3.69: Plot of the standardized residuals, 'i, of the fitted model HNUN2 for centre 4. 
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HCG Std. Residuals vs GA by LMP (Centre 5, non-linear model) 
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Figure 3. 70: Plot of the standardized residuals, 'i, of the fitted model HNLIN2 for centre 5. 

97 



.. 
1ii 
::0 .., 
-.; 
I!! .., 
~ 
1! .. .., 
0:: 

lll 

HCG Std. Residuals vs GA by LMP (Centre 6, non-linear model) 
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Figure 3.71: Plot ofthe standardized residuals, t;, ofthe fitted model HNLIN2 for centre 6. 

CENTRE 1 2 3 4 5 6 
No. 

SDof 0.5318 0.5734 0.5271 0.5310 0.5296 0.5659 

residuals 
SD 0.5573 0.5076 0.4920 0.5016 0.4945 0.6423 

estimate 
Oo2s -Oo.7s 

SD 0.5164 0.5404 0.4857 0.5521 0.5528 0.5627 

estimate 
Oo.t -Q0.9 

Table 3.23: Summary of centre specific residual standard deviations of the fitted model 
HNLIN2. Wald et a/ (1992) report the estimated standard deviation of log(MoM) HCG 

between the lOth -90th percentiles to be 0.5720 based on LMP dating methods and natural 
logarithms. 
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Figure 3. 72: Plot of fitted regression model of ~ x abs( eJ of the model HNUN2 against 

gestational age with lowess trend curve. 

Fitted model:- ~ x abs(eJ = 0.5579-0.000l(GA) 

3. 7 Conclusion 

The effect of centre is significant for all analytes. This confirms the dangers of 

pooling data from different centres without adjusting for the centre effects. The effect of 

outliers on the fitted models is negligible as there is no real impact on the regression 

coefficients. However, they have a large influence on the shape of the probability plots and 

the standard deviations and correlations. 

The analysis has demonstrated that linear and non-linear least squares are efficient 

methods of modelling analyte concentrations. The residuals of the fitted regression models 

are equivalent to the log(MoM) values that are currently used in clinical trials analysis. This 

approach avoids the need to standardize the trials data as Gaussian densities can directly be 

fitted to these residuals and the ratio of the fitted densities provides a likelihood function 
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which can be used in the discriminant analysis. Grouping the data into gestational weeks is 

unnecessary, therefore the fitted models more precisely describe the true relationship 

between concentration values and gestational dates. 

The loglinear and non-linear models that are fitted in this chapter confirm the 

assumption of homogeneity. The R 2 value for the linear models oflog(UE3) on gestational 

age and log(HCG) on gestational age are similar to the values given with the non-linear 

models. There is little difference between the fit of the loglinear and the non-linear models. 

However, the non-linear model may provide a better description of the trend of the 

distribution of log(HCG) over greater gestations. It would be informative to compare the 

use of these models with data having gestational ages recorded by sonography since this 

method of dating has less error. 

Residuals of the linear model AIJN2 and of the non-linear models UNUN2 and 

HNIJN2 are used for the analyses conducted in chapters four and six of this thesis, 

however, the choice between the use of the linear and the non-linear models is somewhat 

arbitrary. 

100 



Chapter 4 

Detection rates and false positive rates 

4.1 Introduction 

The perfonnance of the screening algorithms used by Wald et al (1988) and others, 

see for example Crossley et al (1993), is assessed in tenns of the detection rate and false 

positive rate which are the respective proportions of pregnancies that are correctly and 

incorrectly screened positive. The detection rates are used to compare the accuracy of 

different assay kits and to compare the effective use of analytes in screening. The estimated 

detection rates and false positive rates reported in the literature are generally provided as 

point estimates. Little or no attention is paid to sampling error. 

Failure to consider the sampling error of such estimates has led to debates over the 

differences between published detection rates and the relative utility of the various 

combinations of analytes - in particular the benefit of adding UE3 to a combination of 

maternal age, AFP and HCG. More recent studies have indicated that free p HCG, (total 

HCG minus the p subunit), is a more useful marker than intact HCG (Macri et a/ (1990)). 

The estimated perfonnance measures are also prone to bias from different sources. 

It is well known that the disciminant rule is optimized on a design set. Therefore, the 

perfonnance statistics that are estimated from this design set do not reflect the values that 

would be attained if the rule was applied to a randomly selected data set from the same 

distribution. Moreover, it is well established that Down's syndrome pregnancies are 
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associated with older women and since data for affected pregnancies are relatively rare it is 

often difficult to draw representative samples. 

This chapter addresses the issue of sampling error and investigates the possible bias 

in the estimated error rates. Section 4.2 gives a brief review of the debate over the 

differences between the published detection rates. Section 4.3 sets out the algorithm used to 

calculate the false positive rate and the detection rate. Section 4.4 reviews the application of 

these methods of estimation to screening. In section 4.5, Monte Carlo methods of 

simulation are used to simulate a number of repeats of the clinical trials data given in 

Chapter three and of the clinical trial conducted by Wald et a/ (1992). The detection rates 

are calculated for each simulated study and the sampling errors of the detection rates are 

estimated. For reference, this method is also used in Wright et a/ (1993a). Section 4.6 

discusses parametric and nonparametric methods of estimating discriminant rules and 

defines error rates of allocation. Some methods of computing parametric and nonparametric 

bias corrected error rates are reviewed. Section 4. 7 applies the nonparametric method of 

bootstrapping to assess the extent of the bias in the detection rates and false positive rates. 

The results of the studies are summarized in section 4.8. 

4.2 Background 

The seminal article published by Wald et a/ (1988) reports a detection rate of 60%, 

with a false positive rate of 5% using the three analytes AFP, HCG and UE3 and the 

maternal age distribution of pregnancies for England and Wales in 1981-1985. The data 

consists of77 affected pregnancies and 385 controls. The paper concludes that the addition 

of UE3 has the advantage of increasing the detection rate and decreasing the false positive 

rate. MacDonald et a/ ( 1991) use the same combination of analytes and report a detection 
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rate of 600/o at a false positive rate of 7.7% with data based on a 'representative screened 

population' and a sample of 18 cases. Macri et a/ (1990) find no basis to support the 

hypothesis that low levels of UE3, in 41 affected pregnancies, can be used to detect fetal 

Down's syndrome. 

Almost as much controversy surrounds the advantage of screening with freep HCG 

rather than Intact HCG. Spencer (1991) compares the efficiency of intact HCG and freep 

HCG when combined with AFP and UE3 at a false positive rate of 5.9%. The study, which 

includes 29 affected pregnancies, gives rise to a detection rate of 52% with the intact 

molecule and 66% with the freep subunit. Macri et a/ (1990) also support the use of free 

P HCG. The relatively recent introduction of new biochemical predictors of Down's 

syndrome, such as P APP-A and inhibin, has added to the argument. 

The debate over the relative use of analytes as predictors of Down's syndrome 

disregards sampling error. It is plausible that the reported performance statistics show little 

difference when considered along with their standard errors. The possibility of bias in the 

estimated detection rates and false positive rates must also be considered before 

comparisons can be made between the reported estimates. 

The problem of selecting screening variables is essentially a problem of variable 

selection. Variable selection and error rate estimation are central to discriminant analysis 

and a large amount of relevant work is available in the statistical literature (Habbema et a/ 

(1978), Lachenbruch (1975), McLachlan (1992)). 
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4.3 A simple algorithm for establishing the detection rate and false 

positive rate of the screen 

The estimated performance of the discriminant rule is assessed in terms of the 

detection rates and false positive rates. A discriminant rule of the form given in equation 

( 1. 3) uses estimated risks to classifY pregnancies as either unaffected or Down's syndrome. 

The proportions of women with maternal age m that are classified as unaffected and 

Down's syndrome are calculated. The detection rate is given by summing those proportions 

of affected pregnancies that are correctly classified as having the abnormality over the range 

of m. Conversely, the false positive rate is given by summing those proportions of 

unaffected pregnancies that are incorrectly classified. Essentially, the summations are 

formed by numerically integrating these proportions of pregnancies over the appropriate 

maternal age distribution. 

4.3.1 Detection rate 

The detection rate of the screen, p(screen + ve I D), gives the proportions of 

pregnancies correctly classified as Down's syndrome and is defined as 

p(screen + ve I D) = L p(screen + ve,m I D) (4.1) 
m 

= L p(screen + ve I m, D) p(m I D) 
m 

LP(screen + ve I m, D)p(DI m)T{m) 

p(D) 
(4.2) m 
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The probability of a Down's syndrome pregnancy can be written as 

p(D) = LP(Dnm) = L.p{DI m)p(m) 
m m 

equation (4.2) therefore becomes 

L p(screen + ve I m, D) P(D I m)p(m) 
p(screen + ve I D)= _,m::..._ ___________ _ 

LP(DI m)p(m) 
(4.3) 

m 

4.3.2 False Positive Rate 

The false positive rate, p(screen +veIN), gives the proportion of unaffected 

pregnancies incorrectly screened positive. 

p(screen +veIN)= L p (screen + ve, m IN) 
m 

Simply, by replacing D by N in equation (4.2) and equation (4.3) gives 

LP( screen + ve I m, N) p(N I m)p(m) 
p(screen+ veIN)= _;m!!!.._ __________ _ 

"'L.p(N lm)p(m) 
(4.4) 

m 
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4.3.3 Age specific performance levels 

Maternal age specific performance statistics can be estimated by numerically 

integrating the class con~itional probability density functions of transformed MoM analyte 

values over the regions where pregnancies are screened postive. 

The detection rate that is specific to women of age m is given by 

p(screen +veiD,m) = Jp(!_ID,m)d! (4.5) 
w. 

where Wm is the region where pregnancies of women aged m are screened positive 

The false positive rate that is specific to women of age m is, therefore, given by 

p(screen + ve I N,m) = J p(! I N,m)d! (4.6) 
w. 

4.4 Current methodology for estimating the detection rates and false 

positive rates 

Several methods have been used to estimate detection rates and false positive rates 

(Wald et a/ (1988), Davies et a/ (1991)). These methods are discussed below. 

Raw proportions 

The simplest approach calculates the number of Down's syndrome pregnancies and 

unaffected pregnancies, from a test set, whose risks are higher than a selected cut-off value, 
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and expresses each as a proportion of the total number of pregnancies with tbe same 

outcome. Bishop ( 1994) shows that this method of estimating the detection rate is not the 

most efficient. This approach disregards the bias caused by screening with unrepresentative 

maternal age distributions. Samples that over represent more mature women will 

optimistically bias the performance measures. 

Weighted age specific proportions 

A second method calculates estimates of the false positive rate and detection rate by 

directly modelling the clinical trials data. The approach corrects for unrepresentative 

maternal age distributions and has the advantage of utilizing each independent analyte value. 

Likelihood ratios are derived from the fitted Gaussian densities of appropriately transformed 

MoM values that are recorded from the trials data. The age specific risk of Down's 

syndrome given by Cuckle et a/ (1987) is applied to a standardized age distribution to 

estimate the expected proportion of unaffected and Down's syndrome births. The value of 

the likelihood ratio, A. (!), required to modifY the age specific risk to below a selected cut 

off value, c, for each single year of maternal age is determined. A pregnancy is screened 

positive if 

< 
c p{D!m) 

p(N !m) 
VmeM,!_eX (4.7) 

The sample proportions of pregnancies from the trials data screened positive for each 

maternal age and outcome are computed. The standardized age distribution is then used to 

estimate the age specific proportions of unaffected and Down's syndrome pregnancies that 

are screened positive which are given by 
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ft MD!~ 
p( screen+ ve I N,m) =proportion of unaffected cases for which J.. (!) < c .!....!.:::..._:__~ 

p(N I m) 

and 

ft p(Dim) 
p(screen + ve I D,m) =proportion of affected cases for which A.(!) < c ~-____!_ 

p(N I m) 

(4.8) 

(4.9) 

The estimated detection rate and false positive rate are given by summing these proportions 

over the standardized age distribution. 

" J\ " p(screen +veIN)= 'LP( screen+ ve I N,m)p(m IN) (4.10) 
m 

" " " p(screen + ve I D)= LP( screen+ ve I D,m)p(m I D) (4.11) 
m 

The overall screen positive rate of the algorithm is given by 

1\ 1\ " 1\ 1\ 

p(screen + ve) = p(screen + ve I D) p(D) + p(screen +veIN) p(N) 

Modelling 

A third method, adopted by Wald et a/ (1988), does not use test data but assumes 

multivariate Gaussian for the distributions of log(MoM)' s. The likelihood ratios are applied 

to a standardized age distribution as described previously and the detection rate and false 
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positive rate are given by numerically integrating the multivariate Gaussian densities over 

the regions where the likelihood ratio modifies the age specific risk of Down's syndrome to 

below a selected cut-off c, for each maternal age. This approach has the advantage of 

supplying more precise estimates of performance, but is necessarily based on more 

modelling assumptions and may lead to over estimated performance. 

An alternative approach to evaluating the integrals is to use Monte Carlo methods to 

simulate samples of (!I N) and (!I D) from the original multivariate Gaussian model of 

the trials data and compute likelihood ratios. These are integrated by simulation methods 

over a standardized age distribution in the regions where pregnancies are screened positive. 

Such an approach provides flexibility since the distributional assumptions and the existing 

risk algorithm can be changed with little programming effort. Repeated simulation of 

samples drawn from the multivariate Gaussian model of the original trial, corresponding in 

number to the trial, provides a tool for calculating standard errors to assess the statistical 

accuracy. 

Bishop (1994) shows that the methods of estimating the detection rates give rise to 

a variance that is proportional to the reciprocal of the sample size used. Bishop (1994) 

conducts a simulation study to produce the standard errors of the detection rates and false 

positive rates and discusses the confidence intervals attained from different sample sizes. 

Since the samples of affected data are small, the standard errors of the detection rates are 

large which leads to extremely wide confidence intervals for the detection rates. 

The following section describes the simulation algorithm used in Wright et a/ 

(1993a) to calculate the standard errors of the detection rates. The algorithm is used to 

simulate samples from the multivariate distribution that is specified by the parameter 

estimates under the fitted models AUN2, UNUN2, and HNUN2. These are shown in Table 

4.1. Detection rates are calculated for the simulated samples under these parameter 
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estunates and under the parameter estnnates specified by Wald et a/ (1992) and (1993). A 

copy of the simulation software that is used to conduct the analysis is given in Appendix A 

of this thesis. 

PARAMETER ANALYTE UNAFFECTED DOWN'S SYNDROME 

MEANS AFP 0 -0.2399 

UE3 0 -0.2824 

HCG 0 0.7133 

SD AFP 0.3747 0.4617 

UE3 0.3153 0.3840 

HCG 0.5416 0.5492 

R AFP-UE3 0.2971 0.4778 

AFP-HCG 0.1438 0.0663 

UE3-HCG -0.0819 -0.1718 

Table 4.1: Means, standard deviations, (SD), and correlation coefficients, (R), ofresiduals 
data recorded from 93 affected and 1284 unaffected pregnancies. 

4.5 Application of Monte Carlo Simulation Methods 

The effect of sampling error on the reported detection rates can be established by 

repeatedly applying the following algorithm to build up a sample of detection rates. 

The whole study is simulated by simply sampling from the assumed distributions of 

MoM's, or appropriately transformed values, with the sample sizes equivalent to those in 

the study. The sample means, standard deviations and correlations for the simulated study 

are specified. A risk cut-off, c, is selected, which when applied to a given population, will 

produce a screen positive rate of p . This is done by repeatedly calculating the screen 

positive rate, using the method set out in section 4.3, with different cut-offlevels until a rate 

of p is attained. The detection rates and false positives rates are calculated using the 

methods described under Modelling. 
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The Monte Carlo methods of simulation are used to simulate I 00 samples from the 

distributions specified by the parameters from the models ALIN2, UNLIN2 and HNLIN2, 

that were fitted in Chapter three. These are given in Table 4.1. The samples are used to 

calculate confidence intervals for estimates of detection rates which are derived from the 

algorithm based on the parameters in Table 4.1 and from the algorithm described in Wald et 

a/ ( 1988). All studies are modelled against the same maternal age distributions for England 

and Wales for the period 1986-1988 (Birth statistics 1986 - 1988). This distribution is 

tabulated in Appendix B. The detection rates are estimated at an overall 5% screen positive 

rate. Confidence intervals for the detection rates based on the analytes AFP, UE3 and HCG, 

and also for the rates based on AFP and HCG are derived, thus, the benefit of screening 

with UE3 can be assessed. The results of the study are given in Tables 4.2-4.4. 

Markers Dating No. of No. of cases Detection rate and 95% confidence 
method controls interval at 5% screen positive rate 

AFP, UE3, LMP 1284 93 59.9 (52.77, 67.01) 
HCG 
AFP,HCG LMP 1284 93 56.9 (50.14 , 63. 72) 

Table 4.2: Detection rates and confidence intervals based on the parameter estimates 
given in Table 4.1. 

Markers Dating No. of No. of cases Detection rate and 95% confidence 
method controls interval at 5% screen positive rate 

AFP, UE3, LMP 2113 77 58.56 (51.56 , 65.55) 
HCG 
AFP,HCG LMP 2113 77 56.31 (49.88, 62.74) 

Table 4.3: Detection rates and confidence intervals based on the parameter estimates 
given in Wald et a/ (1992) and in Table 3.1. 

Parameter estimates Difference in detection rate and 95% confidence 
interval at 5% screen positive rate 

Table 4.1 2.98 I ( -{).22 , 6.17) 
Wald et a/ (1992) 2.25 I (-1.07, 5.58) 

Table 4.4: Differences in detection rates based on AFP and HCG and the rates based on 
AFP, UE3 and HCG and confidence intervals using both sets of parameter estimates. 
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Table 4.2 and Table 4.3 show the mean detection rates plus confidence intervals for 

the mean detection rates based on the parameter estimates given in Table 4.1 and the 

estimates reported in Wald et a/ (1992), respectively. The standard errors are large which 

probably explains the argument over the differences in reported detection rates. Table 4.4 

shows the differences in the mean detection rates when UE3 is added to AFP and HCG and 

confidence intervals for these differences, for both studies. Both studies show an increase in 

detection when UE3 is added to the screen. However, when the detection rates are 

considered along with their standard errors there is little benefit in screening with UE3. 

Moreover, it is statistically very likely that some studies will show an apparent decrease in 

detection rate on addition of UE3. The study also indicates that any benefit in screening 

with UE3 is greater using the screening algorithm presented in this thesis. 

4.6 Some results from discriminant analysis and error rate estimation 

This section reVIews some of the important results from the literature on 

discriminant analysis and screening. These are then adapted to examine the degree of bias in 

the estimates of detection rates and false positive rates. 

Discriminant rules are designed to minimize the error rates. The error rates 

associated with the screening algorithms are the false positive rates and false negative rates. 

Definitions of these are given in Chapter one. An age related risk is combined with the 

likelihood ratio of the class conditional densities of transformed MoM analyte values to 

produce a risk which is used to classify pregnancies as either unaffected or Down's 

syndrome. If the group prior probabilities and class conditional densities are known, the 

realized feature vectors can simply be 'plugged in' to the probability model and the optimal 

rates of allocation can be computed. 
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The problem of unknown, or partially known group conditional densities is greater 

than the problem of absent prior probabilities (McLachlan (1992)). Ifthe group conditional 

densities are unknown reliable estimates of the probability density functions can be 

constructed from feature vectors whose classifications-are already known. This gives rise to 

a sample based discriminant rule thatis designed from training data The sample based rule 

provides estimates of the true rates of allocation. 

Parametric and nonparametric techniques can be used to estimate the class 

conditional densities. The screening algorithm adopted by Wald et a/ (1988) uses a 

parametric approach to estimate the class conditional densities and thus to formulate a 

sample based allocation rule. lhe parameters are often estimated from a design set by 

robust methods. The-sample based allocation rule is used to reclassify the design set and the 

error rates of allocation are computed. However, the estimated parameters are optimized 

for this design set so the apparent error rates of the allocation rule do not reflect the true 

error rates of the rule when it is applied to an independently selected data set from the same 

distribution. McLachlan (1992) discusses the difficulties in obtaining unbiased estimates of 

the error rates· of a sample based. allocation rule. The following section defines the types of 

error rates associated with discriminant rules and it also fixes the notation for the 

subsequent sections. 

4.6.1 Notation 

The ·notation provided is in accordance with that given in McLachlan (1992). Let 

r~;O define a decision rule that is formed from realized training data L consisting of 11, 

p -dimensional feature vectors ! . The feature vectors are drawn from a feature space for 

the purpose of allocating the entity to one·of g mutually exclusive and exhaustive groups, 
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from group G1 • The allocation rates associated with the optimal Bayes rule are defined 

eo ;,j (F;) = Pr{r. (K;F;) = j I GJ i,j = 1,2, ... ,g (4.12) 

which denote the probability that a randomly selected feature vector from G 1 is allocated to 

G 1 , via ro (.K; F;) where F; is the distribution function of X in group i . 

The group specific optimal error rates are given as 

g 

eo 1(F;)= Leo1.i(F;) i= l,2, ... ,g (4.13) 
j~i 

and the overall optimal error rate is defined 

g 

eo(F)= LP(G1)eo1(F;) (4.14) 
i=l 

where p( G1 ) denote the arrival rates of each group and F is the distribution function of X. 

The allocation rates of the sample based discriminant rule, r(:!~O, which is formed 

from training data , t , are 

(4.15) 

For groups i and j, equation (4.15) represents the probability that any random vector in 

the training set, L belonging to G 1 is allocated to G 1 , (i,j = l,2, ... ,g). The conditional 

error rates are often referred to as actual error rates. The group specific conditional error 

rates are defined 

g 

ec. (F ;O = ""ec .. (F ;t) 
I I L..J I,J I -

(i = 1,2, ... ,g) (4.16) 
i~i 

and the overall conditional error rate is then 

g 

ec(F;O = LP(G;)ec1(F;;O (4.17) 
i=l 
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The unconditional, or expected rates of allocation are formed by averaging the conditional 

allocation rates over the distribution of training sets. The unconditional allocation rates are 

given as 

(4.18) 

(i,j = 1,2, ... ,g) 

The unconditional group-specific:erroNates are denoted as 

g 

eu1(F;) = 'Leu1•1(F;) (4J9) 
i~i 

which gives the expected misclassification rate of each group. The overall unconditional 

error rate:is defined 

g 

eu(F) = LP(G;)eu1(F;) (4.20) 
i=l 

The true error rate is the expected error rate of the rule on future samples drawn from 

the same distribution as the design set. The unconditional allocation rates are of less 

importance than the conditional allocation rates in the context of diagnostic testing. lihe 

conditional allocation rates are used to monitor the·perfonnance of the screening algorithm. 

This section has discussed the problem of bias when estimating error rates from the 

same data that is used to formulated a sample based allocation rule, Some nonparametric 

and parametric methods of computing bias corrected error rates are discussed in the 

foUowing section. Special attention is paid to the conditional error rates for the reasons 

noted above. Definitions are supplied in terms of a fixed group, G1, since extensions to 

other groups is straightforward. 
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4.6.2 Some parametric and nonparametric error rate estimators 

The simplest estimator of the conditional error rate of r(!; ~~ , when allocating 

entities from G1, ( ec1 (fi, D), is the apparent error rate, A1 (0, which is calculated by 

reclassifYing the design set. The apparent error rate is the proportion of observations from 

G1 in [, that are misclassified by r(!;O. 

If ris a (gxn) matrix of group-indicators such that 

z. . = {1 if entity j belongs to group i 

I, J 0 elsewhere 

n 

and n1 = ~:>.,, 
j=l 

(4.21) 

The apparent error rate ofthe rule is computed from the same design set that is used 

to formulate the rule. 1ihis provides an optimistic view of the overall performance. The 

extent of the bias relates to the complexity of the discriminant rule, Parametric and 

nonparametric methods ofbias correction can be applied to remove the bias and provide 

reliable assessments of the true error rates of the rule. A review of these methods is 

provided in McLachlan ( 1992). This section reviews some of these nonparametric 

approaches. 

Data resampling techniques-are central to unbiaSed error rate estimation. Interest in 

computer intensive methods has surged since Efron's series of publications on the 

bootstrap, jackknife and cross validation approaches to estimation. (Efron (1979), Efron 

(1982), Efron (1983)). The improvement in computer technology has also increased the 

relative utility of these methods. One approach that uses nonparametric resampling methods 
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to eliminate the bias in the apparent error rate is the leave-one-out, or cross validation 

method, which was first introduced by Lachenbruch and Mickey (1974). An entity is 

omitted from the training data and the discriminant rule is recalculated from the remaining 

observations. The omitted entity is allocated on the basis of the new decision rule and 

checks for misclassification are made. The process is repeated so that each observation is 

removed from the training data, and a new allocation rule is formed from the remaining 

observations which is then used to classify the entity. Records of misclassification are made 

at each stage of the procedure until the training data is reduced to a single entity. 

The cross validation estimator of the apparent error rate, provides estimates of the 

conditional error rate and is defined as 

(4.22) 

where tu> denotes the training data [ with the j'h observation omitted. 

The cross validation estimator of the overall apparent error rate, A<cv>, is nearly unbiased 

but often is highly variable if n is small. 

Another nonparametric method of estimating bias uses the jackknife resampling 

technique. The jackknife estimate of bias was proposed by Quenouille in the mid 1950's. 

(Efron and Tibshirani {1993)). It was the first computer based resampling method for 

estimating bias and standard errors. The jackknife estimate of the apparent error rate omits 

one observation from the training data, and formulates the discriminant rule on the 

remaining observations. This is then used to classify each observation that is remaining in 

the training set. The proportion of misclassified observations is calculated at each stage. The 

apparent error rate is estimated from each set of allocated training data with one distinct 

observation omitted. The jackknife estimator of the apparent error rate is given as 

(4.23) 
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• • 
where A1(iJ = "[.z1.tQf l,r(~t;friJJJ I (n1 - /) and A1(.J = "[.A1ul /111 

bj j=l 

The jackknife fonn of the apparent error rate is appropriate for estimating the unconditional 

error rate as n approaches infinity. 

The nonparametric bootstrap method of resampling was introduced by Efron 

(1979), and a series of related publications concerning its applications has followed. A full 

review of the techniques involving the bootstrap is given in Efron and Tibshirani (1993). 

"' The nonparametric method of bootstrapping fonns an estimate, F, of the underlying 

"' distribution function, F, from the realized training data. F is referred to as the bootstrap 

A 

distribution. The nonparametric version of the bootstrap calculates F as the empirical 

distribution, which approximates the true distribution of the observations by placing a mass 

of _.!_ on each of them. Monte Carlo methods of simulation are used to draw bootstrap 
11 

"' samples, with replacement, from F, which are subsequently used to calculated bootstrap 

estimates of apparent error. 

An algorithm for the nonparametric bootstrap bias correction of the apparent error 

rate, based on G1, follows. 

·A 

{I) Fonn an estimate, F;, of the underlying distribution, F; from the realized 

training data, such that ~ is the empirical distribution with mass -
1 

at each ~1>~2 , ...• ~., 
11; 

in G;, i = 1,2, ... ,g. 

(2) Use Monte Carlo methods of simulation to simulate a new set of data, ( , from 

t . Samples are drawn independently and with replacement such that ( consists of the 

iid 1\ 

realized values of x;,1,x;,2 , ... ,x;,n, ""F; i = 1,2, .. ,g. 
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(3) Fonn the ruler~() from ( in the same manner as r~O is fonned from the 

original training set. 

( 4) The apparent error rate, A1 (() , of r(!; () for group G1 is given as 

(4.24) 

n . "" . where n1 == L.JziJ 
j=l 

" • 1 ~ • Under separate sampling ec1(F;;! ) = -L.Jzl,1Q[l,r(!1 ;~ )] and the difference 
Ill j=l 

" " da' =A1(()-ec1(J<;;() iscomputed. 

(5) The bootstrap bias of the apparent error rate for the first group is defined as 

" where E' is the expectation over the distribution of r' . The bias b 1 < 
8 

l can be estimated 

" by d 1' which is obtained by averaging over K independent samples of training data drawn 

from r' such that 

"• Kl\ 

d, ==Ld,/IK (4.25) 
k=l 

The boot strap bias corrected version of the apparent error rate for G1 is given by 

(4.26) 
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Efron and! Tibshirani (1993;) point out that 50 •J 00 replicated bootstrap samples is a 

sufli"ierit number for ·standard error and 'bias estimation. The: standard error of the Monte 

. ' 1\ 

Carlo•approximation d1• to the:bootStrap bias is the positiv~·square root()f 

±(diik. -d··rr{K(K -I)} 
k=l ' 

The error rate estimators discussed so far use nonparametric .approaches to estimation. If 

adequate infonnation concerning the class conditional densities is availal;ile, the parametric 

b<;>Qtstrap may be: appropriate. 

The parametric b"ootStrap postulates a fonn oHhe, class conditional; distributions, F, 

.m: F; in the· case of separllte samj>liriR The unkno\vn parameters of the distributions 

1\ 1\ 

F or F 1 are:estimated from 1the·ttainlng:data. Maximum likelihood estimates are·commonly 

:used for these estiffilltes, Instead of sampling from the data, Monte Carlo simulation 

• 1\ 1\ 

.methods are 1,1sed .to· generate pseudo. bootstrap samples from F or F; , corresponding in 

size to .the origlnal training data. An algorithm for ·cal~g the ,parametric bo·otstrap 

under a,separate sampling schemefoUows. 

(I) Postulate fonns for the population distribution functions F;. Define ;the· vector of 

urikriown• parameters as 'f' .. 

" (2) Calculate :estimate(! of the distribution functions, F; that have the same fonn as• 

-· - A 

F; and eStimate the unknown parameters, 'P, from the trairiirig data, {:_. 

(3) Apply MQnte Carlo methods. of simulation to generate a ,parametric ·bootstrap 

1\ 

~pie; { ·, of size n; from each F; . 

( 4) Continue from step ( 4) of the algorithm for calculating nonparametric boot strap 

estimates of:bias: 
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4. 7 Application of the nonparametric boots trap to screening to calculate 

estimates of bias 

The nonparametric method of bootstrapping is employed to calculate the bias in the 

detection rates and false positive rates of the screening algorithm given by Wald et a/ 

( 1988}. The original detection rates and false positive rates, and the bias corrected rates, are 

calculated over a standardized maternal age distribution. The extent of the bias is assessed 

over I 00 bootstrap replications. Maternal age specific bias corrected estimates of detection 

rates and false positive rates are also obtained. This enables an assessment of the changes in 

the bias caused by reclassiying the design set when screening with unrepresentative maternal 

age distributions. The values of the weighted bias in the detection rate and false positive rate 

are shown in Table 4.5. 

DR(%) FPR(%) 

I Weighted Bias +0.17 -0.51 

Table 4.5: Weighted bias in detection rates and false positive rates. 

The study indicates that the estimated detection rates and false positive rates are 

only marginally affected by bias. The bias in the rates for maternal ages in the ranges of 11-

15 and 45-55 was zero and the bias in the rates associated with the ages in the range of 16-

44 showed little variation from the values quoted in Table 4.5. Therefore, screening with 

maternal age distributions that are unrepresentative of the target population will have little 

effect on the extent of the bias caused by reclassifying the design set. 
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4.8 Conclusion 

This chapter has investigated the extent of the sampling error in the estimated 

detection rates and has shown how the differences in the reported estimates can be 

explained by sampling error. The results of the simulation studies suggest there is little 

benefit in screening with UE3 in addition to AFP and HCG, however, the algorithm used by 

Wald et a/ (1992) reduces the potential use of UE3 as a screening variable for Down's 

syndrome. This chapter has also discussed the problem of bias in error rates that are 

estimated by reclassifYing the design set with the allocation rule that was formulated from 

this set. It has been shown that the bias in the estimated detection rates and false positive 

rates is smaU. Also, screening with unrepresentative maternal age distributions does not lead 

to an increase in this bias. 
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Chapter 5 

The inclusion of a non-specific screen: a question of 
a typicality 

5.1 Introduction 

The screening algorithm used by Wald et a/ (19S8) classifies pregnancies as either 

unaffected or Down's syndrome. Frequently other abnormalities, notably trisomy 18 and 

trisomy 13, may have MoM values, or some appropriate transformation of them, that 

translate into low risks. 

A study was conducted by Hey( et a/ (1990) to assess the performance of the 

screening algorithm when dealing with various abnormalities as well as trisomy 21. Serum 

samples were collected from 16 trisomy 21 pregnancies and 18 with other autosomal 

aneuploides, including trisomy 18 and trisomy 13, whose mothers were known to have had 

an amniocentesis on the basis of advanced age. 

Heyl et a/ (1990) reported that the algorithm detected 63% of trisomy 21 

pregnancies with a false positive rate of 5%, using a risk cut off of I :365. Only 3 out of the 

18 pregnancies with other abnormalities were screened positive, none of which were either 

trisomies 18 or 13. Most abnormal pregnancies received extremely low risks, emphasising 

why such risks cannot legitimately be used to reassure a mother that her pregnancy is 

normal. 

Low detection in non-Dawn's syndrome abnormalities is reflected through the MoM 

analyte values. Often non-Down's syndrome abnormalities have MoM values that are 

dissimilar to those from trisomy 21 pregnancies and also have a low probability of being 
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associated with an unaffected pregnancy. Frequently these pregnancies are classified as 

unaffected even though they may be atypical of this outcome. 

A strategy to improve detection ofnon-Down's syndrome abnormalities would be to 

incorporate other specific screens into the screening algorithm. Such screens are not 

generally practiced because of the lower incidence rates of other abnormalities. Moreover, 

in cases such as trisomy 18, it may be considered unnecessary to incorporate a specific 

screen due to their lethality. However, interest surrounding specific screening of this kind 

has more recently developed. Staples et a/ ( 1991) examines the feasibility of extending 

second trimester screening for Down's syndrome to incorporate a specific screen for trisomy 

18. Staples et a/ (1991) reports the most useful analytes for identifying trisomy 18 are UE3, 

free a-subunit HCG, free 13-subunit HCG, estradiol and Human placental lactogen. The 

study focuses on 12 pregnancies with trisomy 18 outcomes and 390 matched controls. At a 

risk cut off of 1:400, 83.3% of affected pregnancies were detected at a false positive rate of 

2.6%. 

It would be impractical to specifically screen for many fetal abnormalities 

simultaneously. An alternative approach to the problem is suggested by Wright et a/ (1993). 

The approach incorporates a non-specific classification into the existing screen for those 

abnormalities that are unlike trisomy 21 but are also highly atypical of unaffected 

pregnancies. An index of atypicality can be constructed using the well established statistic, 

the Mahalanobis distance. By assigning an atypicality index to all pregnancies that are 

classified as unaffected, those that have sufficiently large indices but are associated with low 

risks of Down's syndrome can be classified as non-specific with no risk being reported until 

further investigations have been undertaken. 

Section 5.2 of this report describes the methodology employed by Wright et a/ 

( 1993) to monitor atypicality in data from a multivariate Gaussian distribution using 
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Mahalanobis distances and illustrates bow the calculation can easily be introduced into the 

existing screen with just a simple modification to the screening algorithm used by Wald et a/ 

(1988). This section also discusses the advantages should the enhancement be used as part 

of a screen for Down's syndrome. A summary of the materials used to illustrate the value of 

the modified screen by Wright et a/ (1993) is given in Table 5.1. 

Section 5.3 provides full details of the results of the analysis. The effects of the 

modified screen on the classification of abnormal pregnancies is considered. The risks and 

Mahalanobis distances for these pregnancies are provided in Table 5.2, and a summary of 

these results is given in Table 5.3. A discussion of the effects of the modified screen on the 

classification of unaffected pregnancies is also included. Section 5.4 reviews the 

consequences of using the enhanced screen in conjunction with the existing algorithm. The 

results are shown in Table 5.4. Figure 5.1 provides a plot of the 99 % contours of the 

atypicality indices for the unaffected and Down's syndrome pregnancies. 

5.2 Methodology 

5.2.1 Monitoring for atypicality in multivariate Gaussian data 

Given an observation y from a p-dimensional multivariate Gaussian distribution 

with mean vector )J and covariance matrix :E , the Mahalanobis distance, d , is defined 

d =(~- ~rr-~(~- ~) (5.1) 

By calculating d for each p-dimensional feature vector, y, an assessment of 

atypicality is given by declaring as atypical values those observations whose Mahalanobis 

distance exceeds the upper (I - a) 1000/o quantile of the chi-squared distribution with p 
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degrees of freedom, for suitably chosen values of a. Atypical observations are considered 

to be outliers of the distribution owing to the extremeness of their Mahalanobis distances. 

Larger indices of atypicality present more evidence to suggest the observations have been 

misclassified~ 

5.2.2 Incorporating tbe atypicality index into tbe existing screen 

The computation of the Mahalanobis distance can easily be incorporated into the 

existing screen with just a simple modifi~tion to the current algorithm given by Wald et a/ 

(1988). Since the Mahalanobis distance is the exponent part of the Gaussian density 

function, which is already computed when the likelihood ratios are evaluated, the 

information is readily available for extraction. 

A copy of the computer software, written in Turbo Pascal Version 4, which is 

designed to imitate the risk algorithm given byWald·(I988) butalso has the enhancement of 

reporting atypicality indices for both Down's syndrome and unaffected classifications, is 

contained in Appendix (D) of this thesis; along with detailed I documentation. 

5.2.:3 An assessment of a typicality as part of a screen for Down's· syndrome 

It has been suggested that one method of ensuring the classification of a pregnancy 

is reasonable is to assign to each feature vector of log(MoM) values an index of atypicality 

as an assessment ofhow typical the observation is of its particular classification. Also, it is 

considered that the inclusion of a non-specific category for those observatiollS deemed 

atypical of unaffected pregnancies, but unlike Down's syndrome pregnancies may partly 

overcome the problem of low risks being assigned to pregnancies with disorders other than 

trisomy 21. 
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If these hyPotheses are true the enhanced algorithm that is adjusted to incorporate 

atypicality indices would be expected, not only to adequately detect pregnancies with 

Down's syndrome but also to identity a proportion of those pregnancies with other 

disorders. Moreover, this would have the effect of reducing thefalse;positive rate. 

5.2.4 Method 

The 1993 paper by Wright et a/ assesses the modified algorithm by examining its 

detection rate based on transformed AFP and HCG MoM values that are recorded from 

pregnancies associated with various fetal chromosomal disorders. In order to directly 

compare the existing screen with the modified screen, the parameter estimates used in the 

modified screen are-those reported by Wald et a/ (1988) and (1992) and are shown in Table 

5.1. 

OUTCOME UNAFFECTED DOWN'S SYNDROME 

AFP BCG AFP BCG 

Sample Size 385 385 77 77 

Means 0 0 -0.3286 0:6961 

Std. dev. 0.4656 0.5720 0.4720 0.6309 

Correlations 0.0723 OJ703 

Table 5.1: Means, standard deviations and correlations assumed in calculating Down;s 
syndrome risks and Mahalanobis distances. (From Wald et a/ (1988) and (1992)}. Values 
are in logs. 

To demonstrate the value of the inclusion ofa non-specific screen, figures for a total 

of 3 7 pregnancies with various abnormalities were taken from published literature (Bogart 
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et :a/ {11981.), .Staples et a/ (199 ]),. Johnson et a/ (11'9%)) and anaiysed using the· modified 

screen given in Appendix (D) of:thineport. ~n ordeqo provide•an'unbiased assessment of 

the .algorithm, all mothers with unknown ages were assumed to· 'be 35 years old, thus 

ensuring the,best possible·chance ofa!screen positive result. 

A further 2000 unaffected pregnanci~· fiom. the RQyal GWent Bown;s syndrome 

Screening program. were analysed to determine the .possibility•of a reductioniin false•positive 

rates:with·the modified screen. UE3 was not used :because:the analyte is,not assayed.by the 

Gwent screeniog program . 

. 5.3 Illustration 

5.3~1 A:bnormalipregnancies 

Risks and I vaiues of the Mahalanobis distances for the. 3 7 abnormal pregnancies are 

given in Table 5)~ 

The Mahalanobis distances should :be eompared with quantiles of the chi-squared 

distribution with 'u == 2 df Selected contours for comparison were 95%, 98% and 99%, 

the corresponding cJU-squared: statistics ibeing 5.991, 7.824 and 9.210· respectively: lihe 

data are .plotted' together .with .the 99% contollrs of bOth uruufected and Down's syndrome 

distributions in· Figure 5.1. 'Fable 5.4 giv~s.a summary of the .perfotiriance ofthe screening 

algorithm. 

A most -concerniilg result of.this analysis is th~tt such: loV{ risks' can frequently be 

assigned to abnormal pregnancies when these pregnancies are clearly highly atypical of the 

this• c;mtcome, 

As :indicate_cl by '[able 5~5 it is notable that overall an· additional .15 out of the 37 

abnormal' outcomes-are classified as being abnormal using a I% cut offon the Mahalanobis 

128' 



distance. These 15 outcomes correspond to the 15 points which fall outside the 'Normal 

outcomes' contour in Figure 5.1. Of these 15, 73.33% are known to be trisomy 18. 

Table 5.3 also gives Mahalanobis distances for the distnl>ution of Down's syndrome. 

It is notable that the low risk, abnormal pregnancies are even more atypical of Down's 

syndrome than they are of unaffected outcomes. Using a risk cut-off of I :300, only 2 

pregnancies were screened positive. 

5.3.2 Unaffected pregnancies 

A summary ofthe results of the analysis of the 2000 unaffected pregnancies is given 

in Table 5.4. Using the nominal cut-off; 1.5% of normal pregnancies were screened 

negative and classified as atypical. This is rather large compared with the nominal I% 

reflecting the fact that the distribution of log (MoMs) is only approximately Gaussian in 

form. 

5.4 Conclusions 

This chapter has illustrated how the current screening algorithm frequently fails to 

recognise other congenital abnormalities that occur during pregnancy and often assigns to 

them extremely low risks, misclassii)ring them as being unaffected by any disorder. 

The modification needed to the current algorithm to monitor for atypicality is a 

simple one, and would enable pregnancies that were highly atypical of one outcome but 

unlike the other to be classified in their own right as non-specific to either outcome. 

In the sample of 37 abnormal pregnancies extracted from the literature (Bogart et a/, 

(1987), Staples et a/ (1991), Johnson et aJ (1991)) an additional 15 pregnancies were 

identified as atypical of unaffected pregnancies but were assigned risks that eliminated any 

suspicions of Down's syndrome. It is most concerning that such low risks can lead to false 

129 



reassurances. A set of atypical results would provide an indication for a considered review 

of the case before any notes are reported. 

MoM Mahalanobis 
Distance 

Case Abnonnality Maternal Risk Source 
Age 

AFP HCG Unaffected Down's 

1 3.59 5.31 +13 35* 53 B 16.12 12.86 

2 1.03 1.53 +13 35* 509 B 0.57 0.93 

3 0.25 0.37 +13 35* 1100 J 11.84 11.65 

4 1.67 0.45 +13 35* 17400 J 3.67 11.09 

5 0.89 0.65 +13 35* 2430 J 0.73 4.21 

6 0.50 0.75 +13 35* 593 J 2.45 3.11 

7 0.50 0.78 +13 35* 553 J 2.39 2.91 

8 1.76 4.96 xo 35* 41 B 9.77 5.11 

9 1.46 1.77 XXY 35* 639 B 1.64 2.44 

10 0.33 0.10 69,XXX 35* 3720 B 23.29 26.51 

11 0.75 0.16 46,)0C/47,XX, +9 35* 12600 J 11.96 18.73 

12 1.67 0.20 46,XY/47,XY,+Mar 35* 64800 J 10.66 20.71 

13 1.28 0.53 46,XY,7q+ 35* 7400 J 1.81 1.52 

14 0.20 0.58 47,XXY 35* 580 J 12.68 10.40 

15 0.58 1.15 45,X+ 35* 346 J 1.45 1.03 

16 0.80 1.53 46,XY,-18,+der18 35* 329 J 0.84 27.38 

17 0.96 0.10 +18 35* 35900 B 18.51 20.99 

18 1.01 0.15 +18 35* 27800 B 12.63 17.47 

19 1.00 0.19 +18 35* 20700 J 9.7 23.79 

20 2.50 0.21 +18 35* 153000 J 13.03 20.05 

21 2.50 0.30 +18 35* 85300 J 9.46 12.28 

22 1.25 0.32 +18 35* 16800 J 4.94 4.01 

23 0.67 0.62 +18 35* 1490 J 1.51 4.47 

24 1.33 0.85 +18 35* 3090 J 0.51 2.45 

25 1.00 0.95 +18 35* 1420 J 0.02 3.12 

26 0.72 0.72 +18 33 1970 s 0.86 15.40 

27 0.69 0.20 +18 21 31800 s 9.51 13.43 

28 0.53 0.23 +18 32 6620 s 9.10 32.04 

29 0.47 0.07 +18 27 21300 s 26.51 1.95 

30 0.82 0.93 +18 30 2420 s 0.20 20.41 

Table 5.2 Cont... 
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Cont. .. 

31 0.66 0.14 +18 23 39300 s 14.02 20.41 

32 1.06. 0;56 +18 29 12100 s 1.26 B9 

33 0.56• 0.20 +18 18 20000 s 10.29 15.19 

34 0.51 0.45 +18 32 2530 s 4.17 6.58 

35 1.41 0.97 +18 30 6100 s 0.56 4.16 

36 0.78 0.54 +18 27 8150 s 1.600 5.21 

37 0A9 0.08 +18 25 25100 s 23.91 29.54 

Table·5.2: Risks·and Maholanobis distances for a total ofl7 abnormal pregnancies, 
continued (Risks given to three significant digits.) Sources B = Bogart eM/(1987).; S = 
Stables et a/ ( 1991 ). ; J = Johnson et a/ ( 1991 ). Value for risk = n such thanhe risk is l : n, 
(Risks given.to 3 significant digits.) 
• No maternal age·given., 35 assumed for pwpose.ofrisk calculation. 

Outcome Outcome No. screened +ve No. screened -ve but atypical 

Total ofUnaffected at 

5% 2% I% 

IRIS 21 0 11 11 10 

' 
~R13 7 1 1 I I 

Others 9 1 4 4 4 

Total 37 2 16 16 15 

Table 5.3: Summary ofresuJts,ofmodified screening algorithm for abnormal pregnancies. 
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Screened Positive Screened -ve but atypical of Unaffected at 

5% 2% 1% 

Frequency 58 43 30 

85 

% 2.9% 4.25% 2.2% 1.5% 

Table 5.4: Summary of results of modified screening algorithm on 2000 unaffected 

pregnancies. 

log<non HCG) 
• X101 

0.28 

0.17 

0.06 

-.06 

-.17 

+ 0 
a 

-.28·+~~~~~~~0~~~~~~~~~~~ 
-.28 -.17 -.06 0.06 0.17 0.28 

xto' · 
log<non hFP'l 

Figure 5.1: Plot showing cases in Table 5.2 and 99% contours of the atypicality indices for 
the unaffected and Down's syndrome pregnancies., A= Trisomy 13,0 = Trisomy 18, 
+=others. 
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Chapter 6 

A nonparametric alternative: the kernel method of 
density estimation 

6.1 Introduction 

The algorithm employed by Wald et a/ (1988) adopts a parametric approach to the 

problem of estimating the class conditional densities of transformed MoM analyte values, 

The class conditional distributions ofMoM values are assumed to be adequately represented 

by multivariate lognormal distributions with differing mean and covariance matrices. Their 

1988 and 1993 papers, however, highlight evidence of non-normality in the marginal 

distributions of AFP, UE3 and HCG which is particuiarly pronounced in the tails of the 

distributions. The distributions of UE3 demonstrate the niost deviation from a Gaussian 

form. The problem is addressed by truncating the distributions to remove extreme values 

that fall outside a linear range on a normal probability plot. However, unreliable 

distributional assumptions affect the likelihood ratio based risks and the performance. of the 

algorithm as a whole. With such rigid distributional assumptions surrounding parametric 

techniques of.density estimation, nonparametric approaches.based on n,tore flexible methods 

may be more,appropriate, 

Nonparametric methods of estimating probability density functions are varied and 

there is a wealth of relevant litentture (Hand (1981), Silverman (1986), Hiirdle(l991)). 

More common techniques include the traditional histogr8111; the nearest neighbour method! 

the kernel estimator, and the orthogonal series estimator. This chapter considers the kernel 

method of estimation which is certainly the most studied mathematically and for the 

purposes of this Ph. B., is sufficient. Section 6.2 covers the background and motivation in 
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using nonparamtetric methods of density estimation. Section 6.3 provides an initial 

discussion of the statistical framework of kernel methods as described by its founders. 

Section 6.4 of this chapter provides a concise overview of past and present research in this 

field. Attention is paid to recent developments in multivariate estimation techniques. It is the 

intention to provide a review of the results of published work in this area, theorems and 

proofs are omitted. Section 6.4.1 and section 6.4.2 review univariate and multivariate kernel 

methods of density estimation. Section 6.4.3 discusses automatic methods ofwindow width 

selection. Some of the kernel estimators described at each stage of this chapter are applied 

to the clinical trials data for unaffected pregnancies which is summarized in Chapter three of 

this thesis. One and two dimensional density estimates are fitted to the class conditional 

distributions of residual analyte values for the models AIJN2, UNUN2 and HNIJN2, which 

are equivalent to log(MoM) values. 

The application of nonparametric density estimation to the affected data is discussed 

as a separate issue in section 6.5. In section 6.6, the techniques used to compute parametric 

density estimates described by Wald et a/ (1988) are applied to the affected and unaffected 

distributions of residuals and the parametric density estimates are graphically compared to 

those constructed by nonparametric methods. The two approaches are compared through 

the detection rates achieved in two dimensions, and these are discussed in a concluding 

section, section 6. 7. Copies of the software used in this chapter are given in Appendices E, F 

and G. 

6.2 Background 

The univariate kernel density estimator, was first described by Fix and Hodges 

( 1951) who employed this technique in a discriminant analysis that was conducted to assist 

with medical diagnosis. A specific nonparametric kernel density estimate of the populations 

134 



under study was used in a discriminant rule that was subsequently used to classify new 

subjects. A more general estimator of this type was introduced by Rosenblatt (1956) and 

Parzen (1962). Initial extensions to multivariate data were supplied by Cacoullos·(1966) and 

Epanechnikov • ( 1969). 

Let {X;} denote an independently and identically distributed sample of size 11, 

X1 E 9twith pdf f and {X) denote an independently and identically distributed sample of 

size 11, X 1 E 9td with pdf f. 

The kemei method of estimation is an adaptation of the more restrictive naive 

estimator. Define a weight function such that 

w(x) ={~ 
0 '. 

iflxl <l 

othetwise 

then the naive estimator becomes 

f(x) =_I fw(x- x;) 
nh l=l h 

(6.1) 

(6.2) 

Unlike the histogram, the naive estimator is not affected by the choice of origin. The 

parameter h governs the window width of estimation. However, undesirable properties of 

this estimator are apparent.in its jagged presentation. Figures 6.1- 6.3 .plot the histograms of 

the distributions of residual AFP, UE3 and HCG values. Figure 6.4 plots the naive density 

estimate of the distribution of HCG. The plot demonstrates the crudeness of the naive 

estimator. The effect is exaggerated by the use of a small window width (h = 0.04). A 

generalized weighting function would be less artificial. 
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Histogram of AFP Residuals 
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Figure 6.1: Histogram of AFP residuals. 
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Figure 6.2: Histogram ofUE3 residuals. 
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Histogram of HCG Residuals 
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Figure 6.3: Histogram ofHCG residuals. 
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Naive Density Estimate of HCG Residuals 
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Figure 6.4: Naive density estimate constructed from HCG residual data with h = 0.04. 
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In essence, the kernel estimator provides a smooth version of the density estimate 

given by the naive estimator. The univariate kernel estimator with kernel function K is 

defined as 

(6.3) 

Kis a symmetrical function centered at zero that integrates to unity and h is the smoothing 

parameter. Essentially, as· expressed by Silvennan (1986), the kernel estimator is a weighted 

sum of individual symmetrical 'bumps' centered over each observation. The choice· of kernel 

function detennines the form of the density estimate and the degree of smoothing imposed 

on the est~te is determined through the choice of h . 

With extensions to higher dimensions the general multivariate kernel density 

estimator is defined.below. 

1\ • 

f~H) = n-1LK1i(!- X 1) (6.4) 
i;::l 

where K is a d -variate probability density function, H is a symmetrical positive definite 

(d xd) matrix, and KH(!) = IHI-112 
K(H-112 !) . There are many permissible classes for H 

and these are discussed in section 6.4. Often it is satisfactory to replace H with a diagonal 

matrix yielding 
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which pennits different smoothings in each coordinate direction. Such multivariate kernel 

estimates are called product kernels. Even simpler estimates are attained using a fixed global 

smoothing parameter. If h1 = h, j = 1, ... ,d, then 

" 1 • d 1X -X ) J<~> =-d :Ln j l.j 

nh i=• J=• h 
(6.5) 

With a single dimension, a subjective choice of smoothing parameter is influenced by 

the sample size and data variability. If h is too small the estimate presents itself as a series of 

probability peaks over the original observations. Alternatively, if h is too large information 

is lost through the severity of smoothing. With bivariate and multivariate density estimation 

selecting the window widths can be problematic. Optimal parameterizations depend on the 

criteria of optimization used and on the choice of kernel function (Hand ( 1981 )). 

Silverman's revival of the theoretical foundations of density estimation in 1986, 

rekindled interest in this area of study. Many workers have updated old, and developed new 

methodologies to address such problems. A variety of routes to achieve the most efficient 

smoothing parameters have been explored by experts such as Habbema et aJ (1974), and 

Terrell and Scott (1992), and a diverse range of optimization criteria's have been used. 

More recent publications have considered all possible classes of parameterizations to achieve 

optimal estimation (Wand and Jones (1993)). Kernel estimation methods have again been 

adopted in discriminant analysis for the purposes of medical diagnosis (Titterington ( 1981 ), 

Rossiter (I 991), Boys (1992)). 
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6.3 Kernel functions and smoothing parameters 

For each distinct data set, kernel density estimates are uniquely specified by the 

choice of smoothing parameters and kernel function adopted. Since many probability density 

functions are symmetrical and integrate to unity most behave suitably as kernel functions. 

Some univariate kernel functions are defined in Table 6.1. The kernel estimates derived from 

this class of functions are themselves densities and, unlike the more traditional histogram, 

are independent of origin choice. Gaussian kernels, being continuous with derivatives of all 

orders, have desirable analytical properties which are inherited by the estimate, although 

bounded kernels, such as piecewise kernels, may be computationally quicker since extreme 

points have density estimates of zero (Hand (1981)). Kernel estimates have attractive . . 

mathematical properties and their potential effectiveness in higher dimensions provides 

practical appeal in medical research and allocation theory (Habbema et a/ (1974), Rossiter et 

a/(1991)). 

The degree of smoothing in single dimensional kernel estimates is generally 

controUed by a fixed smoothing parameter, or window width h . Selection may be subjective 

or automatic. A subjective choice can be attained by plotting a series of density estimates 

with varying window widths. An over detailed density that forms probability spikes at each 

observation suggests h is too small. An oversmoothed estimate that takes the form of the 

original kernel, K, indicates h is too large. Figures 6.5-6. 7 demonstrate the effects of 

varying the window widths of the kernel density estimate constructed using HCG residuals 

and a Gaussian kernel function, (see Table 6.1). With h = 0.04, the estimate shows too 

much spurious noise. Using h = 0.12 information is lost through oversmoothing. With h = 

0.08 the fine detail is removed and the general trend of the distribution is clear. illustrations 

of these types of effects are also offered in Silverman (1986) and Hiinlle(1991). 
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Kernel Density Estimate of HCG Residuals 
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Figure 6.5: Kernel density estimate constructed from HCG residual data with h = 0.04. 
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Figure 6.6: Kernel density estimate constructed from HCG residual data with h = 0.08. 
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Figure 6.7: Kernel density estimate constructed from HCG residual data with h = 0.12. 

Global smoothing parameters are l~ss effective with data from a long tailed 

distribution. Disturbances are apparent in the extremes of the estimate. A variable window 

width that adjusts the degree of smoothing over regions of differing densities would achieve 

parameter estimates that were closer to their theoretical optimum. This technique has 

developed with advancing years of research (Terrell and Scott (1992)). 

Automatic window width selection exhibits many fonns and degrees of complexity. 

Efficient computational routes towards optimal estimation has captured much of the 

research involving density estimation. Automatic selection of smoothing parameters for 

bivariate and multivariate data sets has proved to be even more involved. Sample data from 

a mixture distribution may have optimal parameters in one class that may not be optimal in 

another (Marron and Wand (1992)). Again, the inconsistency of smoothing parameters to 

remain optimal over the global space of estimation causes concern (Terrell and Scott 

(1992)). More recent advances have introduced orientational smoothings as well as different 

dimensional smoothings to deal with correlated variables (Wand and Jones (1993)). The 

following section of this chapter reviews the significant publications that have lead to the key 
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developments in methods of kernel density estimation, dating from the original declaration 

by Fix and Hodges (I 951 ). 

6.4 Review 

The initial proposal for an alternative approach to existing nonparametric methods of 

density estimation was offered by Fix and Hodges (1951). Fix employed the naive estimator 

to estimate the forms of unknown univariate densities for the purposes of discriminant 

analysis. Fryer ( 1977) later describes this estimator as a 'running histogram' that eliminates 

disputes over origin position. The advantages of such an estimate prompted Rosenblatt 

(1956) to investigate the generalized class of univariate estimators, defined as kernel or 

window estimators, with the kernel function K satisfYing the conditions for a probability 

density function. Parzen ( 1962) discusses the asymptotic properties of this class and, by 

imposing further restrictions on the kernel function, illustrates asymptotic unbiasedness 

when the kernel K takes on particular densities. The adaptation of specific forms of kernel 

estimators to multivariate estimators was introduced by Cacoullos (1966) in the cases of 

Bore) scalar kernels and product kernels. Desirable properties of more general multivariate 

density estimates with kernels of arbitrary form are set out by Epanechnikov (1969). 

Much of the theoretical groundwork involving kernel density estimation 1s 

investigated in these publications. The underlying statistical properties provide a basis for the 

optimal selection of smoothing parameters and kernel functions. Silverman (1986) points out 

that most of the important applications of density estimation are concerned with multivariate 

data. However, since multivariate methods are generalizations of univariate methods it is 

necessary to develop an understanding of both. An overview of the statistical properties in 

their univariate form, and the modifications needed for extensions to multivariate density 

estimation follows. 
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6.4.1 Statistical aspects of the kernel method for uoivariate data 

According to Hand (1981) an acceptable smoothing parameter attempts to find a 

satisfactory compromise between bias and random fluctuation. As given by Silverman 

A 

(1986) for finite samples, the bias and variance of the estimator f(x) is defined 

A A 

b[f(x)] = E[f(x)]- f(x) 

(6.6) 

A A A 

Var[f(x)] = E[f(x) 2
]- (E[f(x)]) 2 

and 

Var[f(x)]= Var(-1 f. K(x- X;))= -1
2 

Var[K(x- y)] 
nh i=I h nh h 

(6.7) 

A 

The bias of f(x) depends on the window width h, and the choice ofkemel function 

K. The bias does not directly depend on the sample size. However, if h is selected as a 

function of the sample size, 11 , the bias indirectly depends on n. Increasing the sample size 

alone will not succeed in reducing the bias. Approximate expressions for equations (6.6) and 

(6. 7) are given in Silvermao (1986) and written below. 
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where k 2 = J x 2 K ( x ) d x "1: 0 

11 I 
Var(f(x)] = -J(x)J K(x) 2dx + o(nh-1

) 
nh 

(6.8) 

(6.9) 

The variance of the kernel estimator is nearly proportional to (nhr 1
, thus a reduction in 

variation is achieved through increasing h, which leads to an unavoidable increase in bias. 

The apparent 'trade off problem between random and systematic error poses questionable 

debate over the most efficient criteria for selecting the smoothing parameter. A natural 

measure of discrepancy between the density estimator and the true density at a single point is 

the mean square error, MSE . An alternative settlement was first proposed by Rosenblatt 

11 

(1956) that measured the global performance off as an estimator off. Rosenblatt (1956) 

employed the method of minimizing the mean integrated square error, MISE, to assess the 

global accuracy of the density estimate. This method combines the effects of both the bias 

and variance in the selection of h . 

The mean square error of a point estimate, MSE , is defined 

11 11 

MSE[f(x)] = E(f(x)- j(xW 

= ( E f(x)- f(x)) 
2 

+ Var(f(x)) (6.10) 

and the mean integrated square error for global estimation, MISE is 

11 11 

MISE[f(x)] = E f {f(x)- f(x)} 2 dx 
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1\ 2 1\ 

= J {£ f(x)- f(x)} dx+ Jvar[f(x)]dx 

Equations (6.8)-(6.9) give the approximated integrated square bias and integrated variance 

as 

yielding 

A l f Var[f(x)]cb- ~ -f K(x) 2 ea 
nh 

Rosenblatt (1956) demonstrates tbat minimizing the MISE, equation (6.11), leads to 

an optimal choice of smoothing parameter which itself is a function of the unknown density 

and its derivatives. This led to Rosenblatt's (1956) disappointing theorem that for all 

continuous densities, there does not exist a uniformly unbiased estimator. 

Parzen (1962) defines the optimal smoothing parameter found by minimizing the 

approximated MISE to be 

(6.12) 

Substituting equation (6.12) into equation (6.11) gives the approximate value of the MISE 

for optimal selection of h , and provides support in the optimal choice of kernel function K . 
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where the constant c( K) is defined 

According to Epanechnikov ( 1969) the optimal choice of kernel function is given by 

-JS~x~../5 
elsewhere 

which later became known as the Epanechnikov kernel. 

KERNEL K(x) 

Epanechnikov ·~(t-~x 2)/JS for Jxj<JS 

0 otherwise 

Biweight ~(•-x2f for Jxl < l 
16 

0 otherwise 

Triangular l-Jxl for Jxl < l 

0 otherwise 

Gaussian 1 -(1/2)x2 
--e 
J2i 

Rectangular I JxJ<l - for 
2 

0 otherwise 

(6.13) 

EFFICIENCY 

I 

I 

( 3087) 2 "" 0.9939 
3125 

I e43 r ... 0.9859 
250 

I e611r ""0.9512 
125 

I cosy ""0.9295 
125 

Table 6.1: Some kernel density functions and their efficiencies relative to the Epanechnikov 
kernel estimator. 
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Parzen {1962) sets out the necessary conditions for estimates ofthe fonn in equation (6.3) 

to be asymptotically unbiased at all points x and for the probability density to be continuous. 

Kernels satisfying these conditions include the rectangular, triangular, Gaussian and Cauchy 

density functions. Table 6.1 gives a list of some kernel density functions along with their 

efficiencies. 

6.4.2 Statistical aspects of the kernel method for mu1tivariate data 

The first multivariate extensions to the univariate kernel density estimators were set 

out by Cacoullos (1966) and Epanechnikov (1969). Cacoullos (1969) modifies Parzen's 

work (1962) to derive results concerning consistency, asymptotic unbiasedness, and bounds 

for bias and mean· square error for estimation based on multivariaie kernel functions. 

Epanechnikov (1969) discusses asymptotic properties and considers the optimal values of h 

and K , for an arbitrary choice of multivariate kernel function. 

Results concerning the approximated bias, variance and the MISE of kernel 

estimates in higher dimensions, as given in Epanechnikov (1969) and revised by Silvennan 

(1986), are stated for completeness. 

then 

(6.14) 
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" I 
Var[f(:!)] R: nhd Pf(!) (6.15) 

and (6.16) 

The approximate optimal window width achieved through minimizing the MISE is given by 

(6.17) 

Again substituting equation (6.17) into equation (6.16) yields the approximate value of the 

MISE achieved with optimal smoothing parameters. 

6.4.3 Methods of automatic window width selection 

Multivariate density estimation permits several options for smoothing 

parameterizations. Possibilities extend to many classes of parameterizations. Distinct 

directional window widths are frequently more appropriate than a single global smoothing 

parameter (Epanechnikov (1969)). Kernel density estimates constructed from correlated 

variables may perform well with a matrix of window widths that provide orientations other 

than those of the coordinate direction (Deheuvels (1917)). Data transformations such as 

scaling, (equating the sample variances), and sphereing, (reducing the covariance matrix to 

unity), often enhances estimation (Fukunaga (1972)). 

The use of many smoothing parameters adds flexibility to the density estimation but 

also increases the difficulty of parameter optimization. Automatic window width selection 

based on minimizing the MISE requires prior knowledge of the true density. Although 

selection may be subjective, this is particularly undesirable for estimation in higher 

dimensions. Several methods for automatic window width selection have been offered 

149 



suitable for both univariate and multivariate data. These include simple procedures such as 

Silverman's 'rule-of-thumb' approach and more complicated selection procedures employing 

cross-validatory methods based on either least squares assumptions or the classical 

maximum likelihood technique (Bowman (1984)). Alternative kernel approaches such as 

variable methods that incorporate nearest neighbour techniques and adaptive kernel methods 

have been utilized to deal with the problems encountered with data from a long tailed 

distribution (Terrell and Scott (1992), Sheather and Jones (1991)). These approaches will 

now be reviewed along with more recent innovations. 

6.4.3.1 Rule of thumb method 

A simple approach to ·select the most suitable smoothing parameter, other than by a 

purely subjective choice is to use a standard family of distributions to assign a value to the 

term J f (x)2 dx in equation (6.12) for univariate data and J{V2 Jf in equation (6.17) for 

multivariate data. Silverman describes this approach as the rule-of-thumb method. 

Consider the univariate case. Silverman (1986) uses the Gaussian distribution with 

variance a 2 as an example. The standard normal density is defined $ and 

(6.18) 

Now, using a Gaussian kernel and substituting equation (6.18) into equation (6.12) gives 

h = (4 )-1110 ~ -112 -liS = 1 Q6 -liS 
opt 1f 1f 011 . 011 

8 
(6.19) 
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u can be estimated from the data and substituted into equation (6.19) to give the optimal 

smoothing parameter. Silverman points out that this approach works weU if the population is 

normally distributed but may cause oversmoothing if the population is multimodal. Improved 

results are obtained when a more robust measure of spread is used. If the interquartile range, 

R, replaces u, equation (6.19) becomes 

(6.20) 

The smoothing parameter in equation (6.20) gives better results with data from long tailed 

and skewed distributions. The adaptive estimate of spread 

A= min(standard deviation, interquartile range/1.34), 

instead of u in equation (6.19), works weU with unimodal densities and moderately weU 

with bimodal densities. Silverman also suggests reducing the factor 1.06 in equation (6.19). 

With a Gaussian kernel 

h = 0.9An-115 (6.21) 

gives a mean integrated square error within I 0% of the optimum for the lognormal 

distribution with skewness up to 1.8 and many others. Silverman concludes that using 

equation (6.21) as a smoothing parameter works very well with many densities and is a good 

starting point for optimal parameter selection with others. 

The smoothing parameter given in equation (6.21) is used to construct density 

estimates from AFP, UE3 and HCG residuals and these are given in Figures 6.8-6.10. 

151 



Kernel Density Estimate of AFP Residuals 
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Figure 6.8: Kernel density estimate constructed from AFP residual data with the smoothing 
parameter determined by equation(6.21), h = 0.08. 

Kernel Density Estimate of UE3 Residuals 
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Figure 6.9: Kernel density estimate constructed from UE3 residual data with the smoothing 
parameter determined by equation(6.21), h = 0.06. 
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Kernel Density Estimate of HCG Residuals 
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Figure 6.10: Kernel density estimate constructed from HCG residual data with the 
smoothing parameter determined by equation (6.21), h = O.l. 

The rule-of-thumb technique can be applied to multivariate data. Equation (6.17) can 

be used to compute a global window width when f is a standard density such as the 

multivariate normal. The multivariate Gaussian kernel function is defined as 

(6.22) 

and define <I> as the unit d - variate normal density then 

(6.23) 

Substituting equation (6.23) into equation (6.17) gives the optimal window width, hopr, for 

normally distributed data with unit variance 

hopt = A(K)n-ll(d+4) (6.24) 

(6.25) 
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' 

depends on the kernel function K. Silverman (1986) provides a list of the appropriate 

constants A(K) with their respective kernels. With a general untransfonned data set and a 

radially symmetrical kernel the value ohopt is used as the window width, where a is a single 

scale parameter. One suitable selection for a is a 2 = d -' L s;; where s,; is the appropriate 

entry in the covariance matrix:. 

Figures 6.11-6.13 show the bivariate density estimates constructed from the residual 

data using ah opt where a is the average marginal standard deviations of the appropriate 

analytes. The estimates perform well in the main body of the distributions but the tails of the 

distributions show spurious noise. This is particularly noticeable in Figure 6.11 . The use of a 

global window width with data from a long tailed distribution leads to too much fine detail in 

the tails of the distribution. Increasing the window width is one way of dealing with this 

difficulty but this creates an oversmoothing problem in the main part of the distribution. This 

issue is addressed in section 6.4.3 .3. 

Kernel Density Estimate of AFP and UE3 Residuals 
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Figure 6.11: Bivariate Kernel density estimate constructed from AFP and UE3 residual data 
with the smoothing parameter determined by equation (6.24), h = 0.10. 
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Kernel Density Estimate of AFP and HCG Residuals 
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Figure 6.12: Bivariate Kernel density estimate constructed from AFP and HCG residual 
data with the smoothing parameter determined by equation (6.24), h = 0.14. 
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Figure 6.13: Bivariate Kernel density estimate constructed from UE3 and HCG residual 
data with the smoothing parameter determined by equation (6.24), h = 0.13. 
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6.4.3.2 Cross validation techniques 

The inclusion of cross validation techniques with density estimation was initiated by 

Habbema et a/ (1974) as a means of deriving density estimates explicitly from sample data. 

Essentially the idea was developed from a modification of the classical maximum likelihood 

based principles of parameter selection. Optimal smoothing parameter estimates are selected 

using the criteria of minimizing an appropriate loss function derived from cross validatory 

approaches. Habbema et a/ (1974) use this technique to construct multivariate density 

estimates for the purposes of discriminant analysis. The optimal allocation rule and the most 

efficient combination of variables is achieved by mini.mizjng an expected loss function which 

is evaluated by the leaving one out technique. By considering the reasoning of likelihood, the 

rationale behind the method becomes clear. 

If an independent observation Y is available in addition to the independent 

observations X 1, X 2 , • . . , X n• from the density f , the smoothing parameter is selected so as 

1\ 1\ 

to maximize the likelihood, or log likelihood of Y belonging to the density I where I is 

regarded as a parametric family of densities depending on the window width h . The log 

1\ 

likelihood becomes log(/ (Y)). In the absence of such an observation, Y is replaced with 

one of the original observations, X;, and a kernel density estimate is constructed from the 

remaining data points. 

1\ 

Define 1_1 as the univariate density estimate constructed from all observations 

except X; . Then 

" 1 n (x -X.J 
1-l(x ) = (n - l)h~K h ' (6.26) 
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The cross validation function, CV(h), is determined by averaging over each log likelihood 

function with one distinct observation X; omitted. 

1 " 1\ 

CV(h) =-L:Iogf_;(X;) 
n i= l 

(6.27) 

By the following reasoning, Bowman (1984) demonstrates that selecting the maximizer of 

CV(h) as the optimal smoothing parameter is equivalent to selecting the minimizer of the 

Kullback-Leibler loss function defined in equation (6.29). 

1\ 

Let f n- l be a density estimate based on (n - 1) observations, then 

E[CV(h)] = E[logf -n(Xn)] = .EJ f(x)logj n- l (x)dx 

(6.28) 

1\ 

where l(j,j) is the Kullback-Leibler loss function and is defined 

(6.29) 

illustrating that -CV(h), up to a constant, is an unbiased estimator of the expected Kullback 

Leiber error function based on a sample size of (n - 1) . Since the latter term of equation 

(6.28) is independent of h the expression is maximized by minimizing this error function, 

(equation (6.29)). 

However, likelihood cross validation techniques are subject to criticism. Scott and 

Factor (1981) report reduced performance with data containing outliers. If a kernel function 

has bounded support and an observation is parted from any other observation by a distance 
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greater than h , / _; becomes zero and CV(h) will be infinity. The maximizer of CV(h) 

must be large enough to overcome this difficulty, which again leads to possible over 

smoothings. Silverman (1986) points out that although using a kernel function with heavier 

tails may deal with this problem Chow et al (1983) report that this may lead to 

undersmoothed densities. Further, an infinite value of CV(h) may be attained when the data 

contains identical observations ( Hardle (1990)). Schuster and Gregory (1981) demonstrate 

that if the tails of 1 are eventually monotonic and die off at an exponential rate the cross 

validation method of estimation may lead to inconsistent estimates of the density since the 

distance between the outliers in the tails will not decrease as the sample size increases. Hall 

(1983) stresses the need for more robust estimation procedures. 

Rudemo (1982) and Bowman (1984) investigate the chance to improve estimation 

using cross validation techniques of automatic selection. Satisfactory smoothing parameters 

are achieved through minimizing an estimate of a quadratic risk function which is based on 

the integrated square error, rather than the Kullback-Leibler information. The minimization 

process maintains computability through the risk function' s detachment from the true 

fl 

density. Define the integrated square error (lSE) of any density estimate 1 as 

ISE[f] =I (f- 1)2 =I J- 2 I J 1 +I 1 2 (6.30) 

Since the latter term is independent of h it can be excluded from the minimization process. 

Let 

(6.31) 

fl 

Least squares cross validation constructs an estimate of R(f) from the data. This estimate 

is minimized over h to select the smoothing parameter. 

fl 

Now, I 1 2 is computable from the data. Consider the function M(h)where 
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11 11 

M(h) =I / 2
- 2n-1Lf_;(X;) (6.32) 

i 

Since 

[
1 11 ] 11 

E n J;! _;(XJ = EI f(x)f(x)dx (6.33) 

substituting equation (6.33) into equation (6.32) gives 

11 11 

M(h) =I / 2 - 2 I f(x)f(x)dx 

Now E[M(h)] = E[R(.{)] and hence M(h)- I f 2
, for all h , is an unbiased estimator of 

the mean integrated square error and minimizing E[M(h)] is equivalent to minimizing the 

MISE . 

Stone (1984) shows that under mild conditions; asymptotically, least squares cross 

validation achieves the best possible choice of smoothing parameter in the sense of 

minimizing the integrated square error. The method is well justified in the cases of large 

samples. Silverman (1986) reports that Stone's theorem says that the score function M(h) 

teUs us, asymptotically, as much about the optimal smoothing parameter, from the integrated 

square error point of view, as if the underlying density f was known. 

Both methods of parameter selection have multivariate extensions that are formed by 

simply replacing K with an appropriate multivariate function. Estimating densities in 

multidimensions amplifies the difficulties experienced from outliers with the likelihood cross 

validation techniques. These extreme points are less detectable and are more frequent in 

larger spaces. Although Habbema et a/ (1974) reported adequate results with kernels of 

unbounded support, problems such as these suggests the method of maximum likelihood 

cross validation is less adequate than the method of least squares cross validation when used 

to estimate multivariate densities (Silverman (1986)). 
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Bowman (1984) conducts a simulation study to examine the small sample properties 

of both cross validation methods. The study shows little evidence of any differences between 

the two approaches with bivariate data from normal or normal mixture distributions, 

although the Kullback Leibler cross validation is marginally superior to the least squares 

cross validation with data from a standard normal distribution. Least squares cross 

validation, however, outweighs the Kullback Leibler method, in terms of performance, with 

data from a long tailed distribution. 

A further application of cross validation methods to density estimation was proposed 

by Scott and Terrell (1987). The paper introduces some biased cross validation criteria for 

the selection of smoothing parameters of kernel density estimates which is comparable to the 

unbiased method of least squares. Equation ( 6.11) defines the approximated MISE , for the 

univariate case which involves estimating f . (x) 2
• The biased cross validation function 

" " proposes the most natural estimate to be J" (x) 2
, where f is a kernel estimator. Define the 

biased cross validation function as 

(6.34) 

" vm{ 1 n {x-X}J 1 Now Var[((x)]= -
3 
L:K ; ~-5 J K(x?rlx 

h f=l h nh 

Parzen (1962) suggests a sequence of bandwidths which are proportional to n -115 should be 

used to minimize the MISE . If this choice of bandwidth is used for the optimization of 

" 
BCV(h) then Var[f" (x)] will not converge to zero and BCV(h) cannot approximate the 

" 
MISE . However Scott and Terrell (1987) provide a formula for the expectation off" (x) 2 
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when the kernel K and density f are at least twice continuously differentiable. The formula 

IS 

which is correct for density estimates based on quartic, triweight or Gaussian kernels. The 

bias in equation (6.34) can be corrected by 

which is asymptoticaJly unbiased when h ~ n-115
• The biased cross validation estimator 

becomes 

BCV(h) = .!.h''k2 

2[J j· (x) 2 dx---4 f K' (x) 2 dx]+-1 f K' (x) 2 
(6.35) 

4 nh nh 

1\ 

Scott and Terrell (1987) further show that hocv = arg[minBCV(h)] ts 

asymptotically optimal in the case of minimizing the !SE . Simulation studies are conducted 

to examine small sample properties of the biased and unbiased estimators. The studies 

indicate the biased cross validation estimator oversmooths the density estimate and the 

unbiased estimator has a very large variance. Large gains in asymptotic efficiency are 

observed with sample sizes beyond 500-1 000, with the exception of the lognormal density 

which requires several thousand observations to construct an adequate density estimate. 

More recent work involving the further development of cross validation based parameter 

selection is reported in Stute (1992) and Feluch and Koronacki (1992). 

161 



6.4.3.3 Variable and adaptive kernel methods 

Most of the techniques for smoothing parameter estimation discussed so far cause a 

problem of oversmoothing in density estimates that are constructed from distributions with 

outliers. If h is selected to avoid a multiple peaked estimate in areas of low density 

information in the main body of the distribution is obscured. Oversmoothing inevitably leads 

to poor performance, particularly when constructing multivariate densities. The difficulty is 

caused by the use of a fixed global window width over regions of differing density. Variable 

and adaptive methods of window width estimation were introduced specifically to address 

this problem. The techniques allow h to vary over the domain of estimation so that any 

spurious effects with long tailed distributions are removed without masking vital information 

in areas of high density. 

The variable kernel method, proposed by Loftsgaarden and Quesenberry ( 1965), is 

an extension of the nearest neighbour approach to density estimation. Silvennan (1986) 

reviews the nearest neighbour method and its association with kernel methods. The estimate 

is constructed by standard kernel techniques, but the window width is free to vary with each 

point from which the estimate is taken, thus the degree of smoothing over regions of 

extreme mass is controlled. The generalized k tJt nearest neighbour estimator and the variable 

kernel estimator are defined below. 

Let K be a kernel function and k be a positive integer. Define d., (x) to be the 

Euclidean distance from x to the ktJt nearest sample point in the set comprising of the other 

( n - 1) observations. The generalized k tJt nearest neighbour estimator is defined as 

(6.35) 

fl 

f ( x) is the kernel estimate evaluated at x with window width d t ( x) . 
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The variable kernel density estimator is defined as 

f(x) = _!_ L _l_K(x-X~J 
11 ; hd1 k hd1 t . . 

where d1,k is the distance between the i'h observation and the k'h nearest sample point. The 

degree of smoothing depends on the local density of data and is proportional to d1,k 

ensuring that regions of low density have more widespread kernels than regions of higher 

density. Define the multivariate variable kernel estimator to be 

(6.36) 

Breiman et a/ ( 1977) define an alternative estimator that also enables variable 

smoothing over the domain of estimation. In its general form, the adaptive kernel estimator 

consists of a fixed series of kernel functions K with varying window widths that depend on 

the point of estimation rather than the observed values. 

.. 
An initial pilot estimate of the true density over each observed value, f (!.) , ts 

.. 
constructed that satisfies f (X 1 ) > 0 V i . This requires the use of another density 

estimation method. Breirnan et a/ (1977) suggest that since the method of adaptive 

smoothing is insensitive to the detailed information of the pilot estimate a natural choice of 

kernel function, in the multivariate case, would be the Epanechnikov kernel. Define local 

window width factors it1 by 

.. 
where g is the geometric mean of f (X 1 ) and a is the sensitivity parameter satisfying 

0 :s; a :s; 1 . The univariate and multivariate adaptive kernel estimators are respectively 

defined as 
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f(x) = _!_ i _1 K(x- X~) 
n 1=1 hl; h.A 1 

(6.37) 

f\ 1" 1 (x-X .) 
/(! ) = n ~ h d l / K - hA--:' (6.38) 

where K is an appropriate kernel function satisfying the conditions set out in section 6.1 

and h is the smoothing parameter. Larger values of a lead to increased variation in the 

smoothing applied over the domain of estimation. The adaptive kernel estimate ensures that 

the constructed density is free from heavy tails. The estimate also has all the differential 

properties of the fixed width kernel estimate. 

A special case of the adaptive kernel estimate is also defined by Breiman et a/ ( 1977) 

with a = I I d where d is the dimensionality of the space in which the density is being 

estimated. Abramson (1982) proposes using a= 1 I 2 for all dimensions, since this gives a 

density estimate with a bias of smaller order than that of the fixed width kernel estimate. 

Silverman ( 1986) illustrates the use of the adaptive kernel estimator with a = I I 2 and 

reports great improvements in the performance of this estimator, in both the tails and the 

main part of the density, when compared to fixed width kernel estimators with data from a 

shifted lognormal distribution. Silverman concludes that the adaptive kernel estimator with 

a = I I 2 is worth serious consideration when constructing densities that require more 

accuracy in the tails. 

Since the residual analyte data is contaminated by outliers which produce longtailed 

effects in the distributions, the method of adaptive smoothing seems to be a suitable method 

to estimate the class conditional densities of residual values. Univariate and multivariate 

adaptive kernel density estimates are constructed from the analyte residual data. Abramson' s 

choice of a = I I 2 is selected as the sensitivity parameter and Silverman's rule of thumb 

method is applied to calculate values of h which are used in the construction of the pilot 
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estimate. Gaussian kernel functions are employed. Figure 6.14 plots the adaptive kernel 

density estimate constructed from the HCG residual data. This can be compared to the fixed 

width kernel estimate in Figure 6.10 where h is again selected by Silverman's rule of thumb 

method. Information is lost in the main part of the density estimate using the fixed width 

kernel approach and the tails of the estimate are over detailed. The adaptive kernel method 

smoothes over the detail in the tails of the density and illustrates more information in the 

main body of the density. Figures 6.15-6.17 iUustrate bivariate kernel density estimates of 

the residual data using adaptive methods of smoothing. The performance of the adaptive 

kernel estimator outweighs the performance of the fixed width kernel estimator, the 

estimates of which are shown in Figures 6.11-6.13. Again, the fixed width estimator 

oversmooths the main body of the densities and illustrates spurious effects in the tails of the 

density. The spurious detail in the tails of Figure 6.11 are removed in Figure 6.15, and ·the 

improvement in the density estimate is dramatic. The problem of oversmoothing is 

particularly apparent in Figure 6.11. Figure 6.16 shows how the adaptive kernel estimator 

smoothes over the effects of noise in the tails of the density without losing detail in the main 

part of the density. 
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Adaptive Kernel Density Estimate of HCG Residuals 
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Figure 6.14: Univariate adaptive kernel density estimate constructed from HCG residual 
data 

Adaptive Kernel Density Estimate of AFP and UE3 Residuals 
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Figure 6.15: Bivariate adaptive kernel density estimate constructed from AFP and UE3 
residual data. 
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Adaptive Kernel Density Estimate of AFP and HCG Residuals 
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Figure 6.16: Bivatiate adaptive kernel density estimate constructed from AFP and HCG 
residual data. 
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Figure 6.17: Bivariate adaptive kernel density estimate constructed from HCG and UE3 
residual data. 

Terrell and Scott (1992) investigated these estimators further to examme the 

possibility of improving univariate and multivariate kernel density estimates pointwise and 
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globally. The performance is based on lllliUllllZlllg the MSE and the MISE usmg 

asymptotic and finite sample results from simulated studies. The paper states that for 

pointwise estimation of the density, the window width of the kernel may depend only on the 

point of estimation, x , or the sample point X; . These two approaches give rise to the 

balloon estimators, equation (6.39), and sample smoothing estimators, equation (6.40), 

respectively. The multivariate forms of these estimators are defined as 

(6.39) 

A 1 " (x -X.) 
/ 2 (~) = nh(X; )d tt K hCL) (6.40) 

where h(~) is the distance between the point of estimation, ~, and the k rh sample point, 

and h(X ;) is the distance between the X /h observation and the klh sample point. TerreU 

A 

and Scott ( 1992) report that nearest neighbour estimators are asymptotically of type / 1 (~) • 

When applied globally, this estimate does not integrate to unity so is not a probability 

density function. Moreover, there is little improvement, in common cases, with this type of 

estimator over the fixed kernel approach. 

The sample smoothing estimator, akin to the Abramson estimator, and Breiman 

estimator in the asymptotic sense, is a mixture of identical but individually scaled kernels at 

each observation (TerreU and Scott (1992)). This estimator satisfies the conditions required 

for a probability density function , provided K is a density. In all dimensions though, the 

estimate at any point is highly influenced by extreme observations and not just by nearby 

points which increases in severity with increasing sample size. 
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6.4.3.4 Recent developments in kernel density estimation 

Most recent developments to achieve optimal estimation have addressed the problem 

of estimating all possible parameterizations of the kernel density estimator in higher 

dimensions. The simplest multivariate kernel estimator has a fixed global bandwidth 

( Cacoullos ( 1966) ). The next level of parameterization allows different bandwidths in each 

co-ordinate direction (Epanechnik:ov (1969)). Full parameterization enables a matrix of 

bandwidths, H, defined in equation (6.4), that pennits smoothings in orientations other than 

those of the co-ordinate direction (Deheuvels (1977)). Wand and Jones (1993) consider the 

effects of different smoothings in each co-ordinate direction coupled with additional 

orientational parameters involving data scaling and sphereing. All possible classes of 

parameterizations for H which are used in the kernel density estimation of a bivariate 

density f are defined in Wand and Jones (1993) using the multivariate Gaussian kernel, 

equation (6.22). The classes are written below. 

(I is the identity matrix). Choosing H e 1i1 means the kernel density estimate will always be 

spherically symmetrical, having circular contours. H e 1i2 pennits different smoothing 

parameters in each co-ordinate direction so the contours may be elliptical but with elliptical 

axes parallel to the co-ordinate axis. Full parameterization, H e 1i 3 , produces elliptical 

contours with arbitrary orientation. 

Wand and Jones (1993) consider other classes of parameterizations that involve 

scaling and sphereing the data ( i 1 and i 2 respectively). These are defined as 
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where C is the covariance matrix corresponding to the density f with (i,j) entry elf, 

p 12 is the correlation coefficient of the density f, D = diag(c1.,c22 ) . Wand and Jones 

(1993) define r as the hybrid parameterization. This class allows for sphereing and 

independent smoothings in each co-ordinate direction. Optimal window widths for 12 

differing mixtures of normal distributions are derived by the criteria's of minimizing the 

asymptotic and exact mean integrated squared error. Each class of smoothing parameter is 

compared, in terms of efficiency, to the class 1i3 . The results indicate the importance of 

different window widths for each co-ordinate direction, and show that generally this type of 

parameterization is sufficient. Arbitrary orientations may often be appropriate for densities 

with high amounts of curvature. Sphereing data to select orientation parameters is generally 

detrimental. 

The preceding sections of this chapter reviewed most of the major publications 

involving nonparametric methods of kernel density estimation and illustrated some of these 

techniques by constructing one and two dimensional kernel density estimates of the residual 

data for unaffected pregnancies. The illustrations in these sections demonstrate the high 

performance of the adaptive kernel estimator which certainly performs better than the fixed 

kernel estimator, when used to construct univariate and bivariate density estimates from the 

trials data for unaffected pregnancies. In the following section, the adaptive kernel method 

is used to construct nonparametric density estimates of the residual AFP UE3 and HCG 

data for Down's syndrome pregnancies. The adequacy of the estimates are discussed along 

with circumstances that may affect the suitable use of these estimation methods. 
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6.5 Analysis of Down's syndrome residuals data 

Nonparametric methods of density estimation are applied to the Down's syndrome 

residual AFP, UE3 and HCG data to provide estimates ofthe univariate and bivariate class 

conditional densities of logarithmic transformed MoM values. The adaptive kernel estimator 

that is discussed in section 6.4.3.3 is used to construct bivariate density estimates of the 

affected data that are then used to compute likelihood ratios. 

Section 6.4 illustrates the benefits of using nonparametric methods to estimate the 

class conditional densities for unaffected pregnancies. Since there is a vast amount of data 

available for unaffected pregnancies reliable estimates can easily be formed in higher 

dimensions. However the rarity of data for affected pregnancies questions whether 

multivariate nonparametric methods of density estimation are suitable. Silverman (1986) 

discusses the required sample sizes for a given degree of accuracy of a nonparametric 

density estimate at a single point. Silverman considers estimating f at the point 0 when the 

true density is unit multivariate normal, the kernel function is normal and the window width 

h is chosen to minimize the mean square error at this point. Silverman provides the sample 

sizes required to ensure that the relative mean square error E{f(O) - f(O)r I /(0)
2 

is 

less than 0.1. Some of these sample sizes are shown in Table 6.2. This kind of accuracy can 

be achieved in one, two, and three dimensions with relatively small sample sizes. 

n 4 19 67 223 768 2790 10700 

dim I 2 3 4 5 6 7 

Table 6.2: Sample sizes, n, required to ensure that the relative mean square error at zero is 
less than 0.1, when estimating a standard multivariate normal density in dim dimensions 
using a normal kernel and the window width that minimizes the mean square error at zero. 
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Univariate and bivariate kernel estimates ofthe densities for affected pregnancies are 

constructed from a sample of 93 pregnancies. Figures 6.18-6.20 plot histograms 

constructed from AFP, UE3 and HCG residuals. The longtailed effects in the distribution of 

UE3 are accentuated. Figures 6.21-6.23 illustrate fixed width univariate kernel density 

estimates constructed from the data. Silverman's rule of thumb method, given in equation 

(6.21}, is used to calculate the smoothing parameters, h. The estimates generally show 

more spurious noise than those constructed from the larger samples of unaffected data. The 

multivariate rule of thumb method cif calculating smoothing parameters, equation (6.24), is 

used to construct the bivariate density estimates in Figures 6.24-6.26. The fixed kernel 

approach demonstrates poor performance when used to construct density estimates from 

the affected data. Detail in the tails of the densities is exaggerated. Adaptive methods of 

smoothing are applied to the data, in Figures 6.27-6.29 to deal with this problem. The 

adaptive kernel estimates smooth out the fluctuations in the tails of the densities and 

illustrate more detail in the main body of the densities. 
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Figure 6.18: Histogram of AFP residuals for Down's syndrome pregnancies. 
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Figure 6.19: Histogram ofUE3 residuals for Down's syndrome pregnancies. 
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Figure 6.20: Histogram ofHCG residuals for Down's syndrome pregnancies. 
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Kernel Density Estimate of AFP Residuals 
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Figure 6.21: Kernel density estimate constructed from AFP residual data for Down's 
syndrome pregnancies with the smoothing parameter determined by equation (6.21), 
h=O.I7. 
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Figure 6.22: Kernel density estimate constructed from UE3 residual data for Down's 
syndrome pregnancies with the smoothing parameter determined by equation (6.21), 
h=O.I2. 
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Figure 6.23: Kernel density estimate constructed from HCG residual data for Down's 
syndrome pregnancies with the smoothing parameter determined by equation ( 6. 21 ), 
h=0.24. 
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Figure 6.24: Bivariate kernel density estimate constructed from AFP and UE3 residual data 
for Down's syndrome pregnancies with the smoothing parameter detennined by equation 
(6.24), h = 0.19. 
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Kernel Density Estimate of AFP and HCG Residuals 
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Figure 6.25: Bivariate kernel density estimate constructed from AFP and HCG residual 
data for Down's syndrome pregnancies with the smoothing parameter determined by 
equation (6.24), h = 0.27. 
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Figure 6.26: Bivariate kernel density estimate constructed from HCG and UE3 residual 
data with the smoothing parameter determined by equation (6.24), h = 0.24. 
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Adaptive Kemel Density Estimate of AFP and UE3 Residuals 
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Figure 6.27: Adaptive kernel density estimate constructed from AFP and UE3 residual 
data. 
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Figure 6.28: Adaptive kernel density estimate constructed from AFP and HCG residual 
data. 
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Adaptive Kemel Density Estimate of UE3 and HCG Residuals 
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Figure 6.29: Adaptive kernel density estimate constructed from UE3 and HCG residual 
data. 

The ratio of the class conditional density estimates of the trials data provides 

nonparametric likelihood ratios that can be used in the risk algorithm. Figures 6.30-6.32 

illustrate contours of likelihood ratios of the bivariate class conditional densities, that are 

constructed using the adaptive kernel estimator, of unaffected residual data to affected 

residual data. The contours generally indicate the ratios expected for the analyte residual, or 

log(MoM) values given within the plotted range. However, the density estimates 

constructed from the affected data are based on a relatively small sample size and this 

prevents the estimation procedure achieving its optimal performance. This is reflected in the 

plotted contours. Although the bivariate density estimates that are constructed from this 

data are reasonably efficient the reliability of the density estimates and likelihood ratios 

formed in higher dimensions is questionable. Therefore, reliable estimates of risk can only be 
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constructed from nonparametric likelihood ratios that are fonned from bivariate class 

conditional density estimates. 
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Figure 6.30: Likelihood ratio of fitted nonparametric densities constructed form AFP and 
UE3 residual . 
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Figure 6.31 : Likelihood ratio of fitted nonparametric densities constructed from AFP and 
HCG residuals. 
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Figure 6.32: Likelihood ratio of fitted nonparametric densities constructed from UE3 and 
HCG residuals. 

The problem of estimating class conditional densities when only relatively small 

samples are available from particular classes is addressed in Wright (1995). The report 

discusses the application of discriminant analysis to medical screening and investigates 

models in which the class conditional distributions are assumed to have a common 

distributional form. Wright applies nonparametric density estimation to model this common 

form, and uses parametric shifts in location and dispersion to model the differences between 

the classes. This technique is applied to Down's syndrome screening and the distributions of 

affected cases are represented as shifted and scaled versions of those of unaffected cases. 

Since there is a vast amount of data available for unaffected pregnancies, this approach can 

be used to provide higher dimensional models of the affected distributions which can then 

be used in the calculation of risk. The models given in Wright (1995) are discussed in the 

concluding chapter of this thesis. 
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In the following section the methods adopted by W aid et a/ ( 1988) to construct 

parametric density estimates are applied to the unaffected and affected distributions of 

residual analyte concentrations. These can be compared to the adaptive nonparametric 

estimates formed in this chapter. The parametric based likelihood ratios that are used in the 

risk algorithm are constructed from the trials data. The parameter estimates given in Wald et 

a/ (1992) and (1993) are shown in Table 3.1. In section 6.7, the detection rates based on the 

likelihood ratios that are constructed from the bivariate nonparametric density estimates 

using AFP and HCG residuals data are calculated and compared to those computed using 

the screening algorithm given by Wald et al (1988). 

6.6 Parametric density estimation 

The parameter estimates given in Wald et al (1992) are used to construct parametric 

density estimates of the trials data described in Chapter three. These can be compared to the 

parameter estimates derived under the models fitted in Chapter three, given in Table 4.1. 

Figure 6.33 and Figure 6.34 plot the parametric density estimates constructed from 

the unaffected and affected residual AFP and HCG data respectively. In accordance with 

Wald et a/ (1988) and (1992), truncation limits are applied to the residual values. The 

application of truncation limits has a dramatic effect on the estimated densities. Figure 6.35 

plots the contours of the parametric likelihood ratios of unaffected pregnancies to affected 

pregnancies. The contours are generally a lot smoother that those constructed from the 

nonparametric density estimates. However, the effects of applying truncation limits are 

clearly visible in the plot. 

For comparison, Figures 6.36 and Figure 6.37 plot the parametric density estimates 

constructed from the unaffected and affected AFP and HCG residual data respectively 
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without applying truncation limits to the log(MoM) values. The contours are more precisely 

defined and are more representative of the true distributions of residual values. 

Gaussian Density Estimate of AFP and HCG Residuals 
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Figure 6.33: Gaussian density estimate of truncated AFP and HCG residual data for 
unaffected pregnancies. 
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Figure 6.34: Gaussian density estimate of truncated AFP and HCG residual data for 
Down's syndrome pregnancies. 
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Figure 6.35: Likelihood ratio of fitted parametric densities constructed from truncated AFP 
and HCG residuals. 
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Figure 6.36: Gaussian density estimate of AFP and HCG residual data for unaffected 
pregnancies (without truncation). 
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Figure 6.37: Gaussian density estimate of AFP and HCG residual data for Down's 
syndrome pregnancies (without truncation). 

The following section compares the performance of the adaptive kernel density 

estimates with the parametric density estimates constructed using the approach given in 

Wald et al ( 1992). The conclusions of this chapter are summarized below. 

6. 7 Conclusion 

This chapter proposes the use of nonparametric methods to estimate the densities of 

the class conditional distributions of transformed MoM analyte values. Various techniques 

for the construction of nonparametric univariate and multivariate density estimates are 

applied to the trials data described in chapter three. The adaptive kernel estimator provides 

high quality density estimates of the data for unaffected pregnancies. The problem of 

estimating nonparametric densities in higher dimensions from the relatively small samples of 
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affected data is discussed and one solution to this problem is set out in Chapter eight of this 

thesis. 

The likelihood ratios computed from the bivariate adaptive kernel density estimates 

and from the parametric density estimates, that are based on the truncated distributions, of 

the AFP and HCG residual data, are combined with maternal age related risks which are 

derived from a standardized age distribution to provide estimates of detection rates and 

false positive rates. The rates are shown in Table 6.3. 

CUT-OFF DR FPR 

Nonparametric 1:230 60.0% 5.1% 

Likelihood Ratios 

Parametric Likelihood Ratios 1:310 57% 5.1% 

(with truncation limits) 

Table 6.3: Detection rates and false positive rates based on nonparametric and parametric 
likelihood ratios constructed form AFP and HCG residual data. Wald et a/ (1988) report a 
detection rate of 54% at a false positive rate of 5% using analytes AFP and HCG in 
combination with maternal age. 

The detection rate of the screerung algorithm is greater when the parametric 

likelihood ratios are replaced with nonparametric estimates based on the adaptive kernel 

estimator using the residual data described in Chapter three. Both of the detection rates 

quoted in Table 6.3 are higher than the rate reported in Wald et a/ (1988), for a 5% false 

positive rate. However, as pointed out in Chapter four of this thesis, detection rates are 

prone to considerable sampling error, therefore, there is little difference between the 

detection rates when they were considered along with their standard errors. Moreover, 

detection rates that are based on nonparameteric methods of density estimation are more 

prone to bias than those based on parametric techniques. This is simply because the 
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nonparametric density estimates are constructed entirely from the original data values. The 

similarity in the performance of the two type of estimators is not surprising since, after 

removing the outliers, the residual data provides a fairly good approximation to a Gaussian 

form. The performance of screening algorithms that are based on data with distributions that 

showed large deviations from a Gaussian form, such as screens involving nuchal 

translucency, would benefit from the use of nonparametric density estimates. However, the 

study demonstrates that the adaptive kernel estimator is a strong competitor to the 

parametric estimator when applied to the trials data to calculate bivariate estimates. Further, 

it is believed that by combining the use of the adaptive kernel estimator with the use of the 

nonparametric shift model suggested by Wright (1995), higher quality density estimates can 

be constructed from the data for affected pregnancies and the performance of the screening 

algorithm based on nonparametric techniques can be improved. 
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Chapter 7 

The effects of errors recorded in gestational dating 
methods on the current screening algorithm for 
Down's syndrome 

7.1 Introduction 

The screening algorithm described in Wald et a! (1988) and MacDonald et a/ (1 991) 

is based on the assumption that fetal age is recorded without error. However, as mentioned 

in Chapter one of this thesis, all methods for assessing gestational age are subject to errors. 

Imprecision in the recorded fetal ages may impact the estimated parameters and the 

performance measures given by the screening algorithm. In 1991 DiPietro and Allen 

published an article on child development. The article gives details of the procedures used 

to record fetal age. These procedures are reviewed in Section 7.2. The limitations of each 

procedure are also discussed. 

To date, linear and non-linear regressions have been used to model the relationships 

between the analyte levels and recorded gestational ages. The form of the fitted regression 

equations published in Wald et a/ (1988) and (1992) were discussed in Chapter three. An 

alternative approach for modelling the relationship between gestational age and analyte 

concentrations is to use a model that assumes the explanatory variable is observed with 

error. There is a large amount of literature on these types of error-in-variables models, see 

for example Fuller (1980), Gleser (198 1 ). 
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This chapter investigates the use of functional models in which the recorded 

gestational age comprises of the true gestational age plus an error term. Section 7.3 

discusses how errors in gestational dates may provide misleading information concerning 

the outcome of pregnancy. Section 7.4 introduces the form ofthe functional model and the 

assumptions incorporated in the model. An expression is formulated for the difference 

between the covariance matrices that can be attributed to the error in the explanatory 

variable. 

Section 7.5 applies the loglinear regression models that are fitted in Chapter three to 

estimate the standard deviations and correlations that would arise if the error in gestational 

age could be removed. Section 7.6 discusses the results of this analysis. 

7.2 A review of the procedures for recording fetal age 

It has been noted that each method for dating pregnancies records fetal age with an 

element of imprecision. Wald et a/ (1992a) discusses the changes in the performance of the 

algorithm when different gestational dating methods are used. In their trial, 12063 women 

were screened for Down's syndrome and the gestational ages were recorded by either 

ultrasound at the time of screening, (65%), or by LMP dating methods if no ultrasound was 

available. In the event of either methods being unavailable a clinical assessment was used. If 

a positive result was obtained by the screen for pregnancies whose gestational dates were 

recorded by LMP dating methods and the difference between dates and scans were as much 

as 17 days, the result of the screen was revised. The trial detected 12 out of 25 Down's 

syndrome pregnancies. According to Wald et a/ (1992a), the low level of detection was due 

to the selective use of ultrasound scans among women with positive results. An assessment 
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of the gestational dating methods are given in DiPietro and Alien (1991 ). This section 

reviews these procedures and their limitations. 

Sonography, which involves an abdominal ultrasound scan, can be used to date 

pregnancies in the first and second trimesters of pregnancy. Different parts of the fetus are 

measured and these are compared to gestational age standards. Such measurements include 

fetal crown rump, biperietal diameter of the head, femur length and chest diameter. Before 

sonography was introduced, gestational dating relied on a clinical assessment, such as 

evaluating the size of the uterus. This type of assessment is most accurate in early 

pregnancy. 

Dating by the last recorded menstrual period calculates the expected date of birth 

from the first day of the last menstrual period, including the two weeks prior to conception. 

Forty weeks are projected from this point to determine the estimated date of confinement. 

Each method of estimating gestational age has its own degree of error. According to 

DiPietro and All en ( 1991) accuracy of early second trimester dating by sonography has been 

accomplished using confirmation of ovulation by basal temperature records. Ultrasound is 

most reliable in first and early second trimesters as fetal growth rates are more invariant in 

early pregnancy (Campbell et a/ (1985)). 

The accuracy in LMP dating methods can be impaired by irregular menstrual cycles, 

the use of oral contraceptives and unrecognised spontaneous abortions. The main problem 

with LMP dating is caused by the degree of inaccuracy in the dates recalled by the mothers. 
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7.3 The effects of the errors in gestational dating methods on the 

performance of the risk algorithm. 

It is now well established that in unaffected pregnancies the levels of HCG decrease 

with advancing pregnancy whilst the levels of AFP and UE3 increase. Also higher levels of 

HCG and lower levels of AFP and UE3 are associated with Down's syndrome (Wald et a! 

(1988), Merkatz et a/ (1984), Canick et a! (1988)). However errors in the recorded 

gestational dates filter through to the transformed MoM values and this can subsequently 

effect the classification of the pregnancy. An example of this effect can be illustrated using 

the analytes HCG and AFP: If the recorded gestation of a pregnancy is younger than the 

true gestation, the mother's HCG concentration will be lower than that predicted and her 

AFP concentration will be higher. This will affect the log(MoM) values associated with the 

pregnancy and the estimated risk will be reduced. If Down's syndrome pregnancies have 

sufficiently large enough errors of this type in their gestational dates, the estimated 

detection rate of the algorithm could be reduced. Alternatively, if the recorded gestation is 

more advanced than the true gestation, then the recorded HCG concentrations will be 

higher than that predicted and the AFP concentrations will be lower. These type of errors 

will have the effect of increasing the mother' s risk ofDown's syndrome. If the error is large 

and the pregnancy is actually unaffected by any abnormality, it could be classified as 

Down' s syndrome. 

Consider the further effects on the risk distribution. The 5% of pregnancies with the 

highest risks are screened positive and referred for an amniocentesis. Some of these 

pregnancies may be unaffected but may have risks that are contaminated by gestational age 

errors. Therefore, it is possible that the false positive rate amongst women with accurate 
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dates is lower than the rate amongst women with inaccurate dates. Moreover, with LMP 

based gestational ages, it could be argued that women with accurate dates suffer as a 

consequence of those who have inaccurate dates. By removing these errors, the risks are 

reduced and fewer women are referred for an amniocentesis. In order to maintain a 5% 

screen positive value, the selected cut-off on the risk would need to be decreased. One 

consequence of this is that the detection rate would increase. 

7.4 The functional and structural model 

It has been suggested that models with errors-in-variables may be appropriate for 

the regression of the logaritlunic analyte values on gestational age. Two forms of these 

errors-in-variables models are the functional and structural models. These models assume 

the variables in the regression are observed with an element of random error (Fuller (1980)). 

The form of the model relates the correct values of the response variable ( Y;J ) and the 

explanatory variable ( X;) by a linear regression. If the X; 's are regarded as fixed, the 

model is a functional model. Alternatively, if the X; 's are drawn independently from a 

population with mean ~x and finite variance cr! the model is a structural model (Nyquist 

(1987)). 

This section uses a simplified model that assumes the log analyte values are linearly 

related to gestational age. Denote the true gestational age for subject i , by X; and the 

recorded gestational age by xi. The true log transformed analyte values for subject i and 

analyte j are denoted by Y;,i and the recorded log analyte values by Y; J . In the discussion 

presented below, the values of a i and f3 i are assumed to be known. 

The true values of the variables (X; , f;.i) are related through 
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The true values of the variables ( X1, Y;,i) are related through 

The observed pairs ( X1 , y 1 ./ ) have errors of the fonn 1]1 and s .i such that 

Y·. = Y, .+E .. '·' '·' '·' 

The errors-in-variables model assumes the errors (TJi, s.i ) are uncorrelated with 

mean zero and have finite variances cr~, and a e, 2 respectively. The pairs (X1 , Y;,i ) are 

independent of the errors (TJi, e,,1 ) . X 1 has mean llx and variance cr!. 

The log(MoM) values that are based on true gestational age are defined as 

E -1= y . . - (a . +/3 .X .) 
I , 1,) J J I 

i = 1,2, .. ,n j = 1,2, .. ,p 
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The log(MoM) values, eij , that are based on recorded gestational age are given as 

Hence the recorded log(MoM) values are the true values plus an additional error, - f3 i 1J; . 

The variances and covariances of the recorded log(MoM) values contain components that 

result from gestational age error. Therefore 

V(e1 .) = V( E· · -p ·ll.J ,) 1 , ) } I 

(7.1) 

(7.2) 

Thus the effect of errors in gestational age inflate the standard deviations of the log(MoM) 

values and bias the correlation coefficients. The following section uses the differences in the 

parameter estimates, given in the expressions in equation (7.1) and equation (7.2), to 

investigate the effect of the bias on these estimates. 

193 



7.5 Application of the functional model in the screening algorithm 

This thesis has discussed the procedures for recording fetal age and has highlighted 

the problem of error in the recorded dates. The weeks in which gestational ages are 

recorded with the most precision are reported in DiPietro and Alien ( 1991 ). 

The effects of errors on the parameter estimates given in Table 7.2 is demonstrated 

in this section. The regressions involving AFP and UE3 match the form of those used by 

Wald et al (1992). The possible advantages of the functional regression model over the 

Linear regression models are assessed by means of a simple study that examines the changes 

in the parameter estimates for each outcome, when the bias associated with an gestational 

age error standard deviation of up to 7 days is extracted from the parameter estimates for 

the linear models. The slope parameters for the regression equations are given in Table 7.1 . 

The statistics used in the study are given in Table 7.2. Table 7.3 and Table 7.4 show the 

changes in the standard deviations for unaffected and Down's syndrome outcomes when the 

bias is removed. Table 7.5 and Table 7.6 show the changes in the correlation coefficients. A 

concluding overview of the results is provided. 

Slope parameters of the loglinear regression models fitted in Chapter three 

Mode/ALIN2 Model ULOGUN2 Mode/HUN2 

P. =o.oo81 P2 =0. 0134 fi 3 = -o.oo86 

Table 7.1 : Slope parameters of the loglinear regression equations fitted in Chapter three of 
this thesis. 
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7.6 Conclusion 

Unaffected pregnancies 

The effect of the bias on the standard deviations for each analyte is extremely small 

and removing the bias leads to only a slight reduction in the standard deviations. The 

greatest reduction is seen in the standard deviation for log(UE3), which reduces by 0.0128 

of a standard deviation if the bias associated with a 7 day error standard deviation is 

removed. The effect of the bias on the correlation coefficients is also marginal. There is a 

slight decrease in the positive correlation between AFP and UE3 and an increase in the 

positive correlation between AFP and HCG. The negative correlation between UE3 and 

HCG marginally reduces. However, the effect of the bias is extremely small. 

Down's syndrome pregnancies 

Again, the effect of the bias on the standard deviations for each analyte is extremely 

small and removing the bias leads to a slight reduction in the standard deviations. The 

standard deviation for UE3 reduces the most, if the bias associated with a 7 day error 

standard deviation is removed. The reduction is 0.0125 of a standard deviation. The effect 

of the bias on the correlation coefficients is also very small The changes in the correlation 

coefficients are very slight and the changes move in the same directions, for the same pairs 

of analytes, as described above. 

This study has used functional models to investigate the extent of the bias caused by 

errors in recorded gestational ages on the parameter estimates for the transformed analyte 

values. The results show that, for both unaffected and Down' s syndrome pregnancies, the 
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bias in the standard deviations and correlation coefficients is small. Also it has been 

established that the bias is a function of the slope parameters of the fitted linear regression 

models. In this study, the slope parameters were assumed to be known, however, the slope 

parameters are actually biased downwards bet>..,ause of the errors in the recorded gestational 

ages, therefore, the results of this study probably underestimate the effect of the bias. 

Moreover, the R2 values of the fitted regression models that are quoted in Table 7.1 are 

small, indicating that only a small amount of the variation in the transformed analyte values 

is explained by gestational age. The bias would have more impact on the parameter 

estimates under models that are associated with greater R2 values. Under these conditions, 

errors-in-variables models would be more appropriate. 
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ESTIMATED COVARIANCE MATRICES UNDER THE MODELS IN TABLE 7.1 

Unaffected pregnancies Down's syndrome pregnancies 

AFP UE3 HCG AFP UE3 HCG 

AFP 0.1404 0.0489 0.0208 AFP 0.2132 0.0815 0.0156 

UE3 0.1221 -0.0215 UE3 0.1265 -0.0451 

HCG 0.3053 HCG 0.3144 

STANDARD DEVIATIONS 

Unaffected pregnancies Down's syndrome pregnancies 

AFP UE3 HCG AFP UE3 HCG 

0.3747 0.3494 0.5525 OA617 0.3556 0.5607 

CORRELATION COEFFICIENTS 

Unaffected pregnancies Down's syndrome pregnancies 

AFP UE3 AFP UE3 

AFP 0.3732 AFP 0.4963 

HCG 0.1006 -0.1112 HCG 0.0602 -0.2263 

Table 7.2: Covariance matrices, standard deviations and correlation coefficients under the 
models given in Table 7 .1. 
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(J'l CORRECTED LOG(MoM) STANDARD DEVIATIONS 

(days) 

AFP UE3 BCG 

0 0.3747 0.3494 0.5525 

I 0.3746 0.3492 0.5525 

2 0.3743 0.3484 0.5523 

3 0.3739 0.3471 0.5519 

4 0.3733 0.3453 0.5515 

5 0.3725 0.3429 0.5509 

6 0.3715 0.3401 0.5501 

7 0.3704 0.3366 0.5493 

Table 7.3 : Standard deviations of log(AFP), · log(UE3) and log(HCG) for unaffected 
pregnancies, with bias caused by gestational age errors removed. 

(J'l CORRECTED LOG(MoM) STANDARD DEVIATIONS 

(days) 

AFP UE3 HCG 

0 0.4617 0.3556 0.5607 

I 0.4617 0.3554 0.5606 

2 0.4615 0.3547 0.5605 

3 0.4612 0.3534 0.5601 

4 0.4606 0.3516 0.5597 

5 0.4600 0.3493 0.5591 

6 0.4592 0.3465 0.5583 

7 0.4582 0.3431 0.5575 

Table 7.4: Standard deviations oflog(AFP), log(UE3) and log(HCG) for Down's syndrome 
pregnancies, with bias caused by gestational age errors removed. 
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0'1 CORRECTED CORRELATION COEFFICIENTS 

(days) 

AFP-UE3 AFP-HCG UEJ-HCG 

0 0.3732 0.1006 -0.1112 

1 0.3730 0.1008 -0.1109 

2 0.3716 0.1020 -0.1093 

3 0.3692 0. 1038 -0.1068 

4 0.3659 0.1065 -0.1032 

5 0.3615 0.1099 -0.0986 

6 0.3561 0.1140 -0.0928 

7 0.3496 0.1190 -0.0857 

Table 7.5: Correlation coefficients for log(AFP), log(UE3) and log(HCG) for unaffected 
pregnancies, with bias caused by gestational age errors removed. 

0'1 CORRECTED CORRELATION COEFFICIENTS 

(days) 

AFP-UE3 AFP-HCG UE3-HCG 

0 0.4963 0.0602 -0.2263 

I 0.4960 0.0605 -0.2258 

2 0.4953 0.0614 -0.2246 

3 0.4942 0.0628 -0.2226 

4 0.4925 0.0648 -0.2198 

5 0.4904 0.0674 -0.2162 

6 0.4877 0.0706 -0.2117 

7 0.4846 0.0744 -0.2063 

Table 7.6: Correlation coefficients for log(AFP), log(UE3) and log(HCG) for Down's 
syndrome pregnancies, with bias caused by gestational age errors removed. 
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ChapterS 

Conclusion 

This thesis has reviewed the screening algorithm that is currently used to calculate 

risks of fetal Down' s syndrome. The algorithm uses a discriminant analysis to classify 

pregnancies as unaffected or Down' s syndrome and this thesis has focused on improving the 

methodology applied in the analysis. Alternatives to the conventional methods of modelling 

the clinical trials data, and methods of estimating the class conditional densities, have been 

offered and illustrated. This thesis has also discussed the reported use of the estimated 

performance rates and the possibility of bias in these estimated rates has been researched. 

The interpretation of risks that are associated with abnormalities other than Down's 

syndrome has been questioned and a non-specific classification scheme has been introduced 

to increase sensitivity with these pregnancies. This chapter summarises the results of the 

research conducted in this thesis and points to areas of possible further research. 

8.1 Modelling tbe analyte concentration values. 

Current procedures used to estimate the risk of Down' s syndrome are based largely 

on the risk algorithm described in Wald et a/ (1988). A probability model for maternal age 

related risks is combined with a probability model based on maternal serum samples to 

produce risks of Down' s syndrome. Wald et a/ (1988) report the most useful analytes for 

predicting risks are AFP, UE3 and HCG. A risk cut-off is selected and a discriminant rule is 

applied that classifies pregnancies as either unaffected or Down's syndrome, depending on 
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whether their associated risk is lower or higher than the cut-off. Median maternal serum 

concentrations for unaffected pregnancies are regressed against gestational age which is 

recorded to the nearest completed week. The maternal serum concentrations are generally 

standardized to multiples of the unaffected median concentrations for the same gestations. 

Research has indicated that expressing concentration values as MoM values for completed 

weeks of gestation does not provide an efficient means of standardizing data. Different 

centres use different approaches to model the median analyte values so MoM values 

calculated from different clinical trials should not be pooled and subsequently used as part 

of a discriminant analysis (Bishop (1994)). 

Chapter two states that the log(MoM) values are equivalent to the residuals of the 

fitted models. Therefore, the residuals of these models can be used directly in the 

discriminant analysis. This approach avoids the need to group gestational dates into 

completed weeks and standardize the data. 

In Chapter three, the form of the regression models that are currently used by Wald 

et a! (1992) to model the median concentrations of transformed AFP, UE3 and HCG values 

against gestational age were applied to the ungrouped data. Non-linear regression models 

were also used to model the separate regressions of log(UE3) and log(HCG) on gestational 

age. The models assume that the distribution about the location is lognormal. Centre was 

used as a factor in the analysis. The analysis has shown that there is little difference, in terms 

of fit, between the models used by Wald et a! (1992), and the non-linear models proposed in 

this thesis. However, the effects of centre were overwhelmingly significant to the 

regresston. 

The gestational dates of the data used in the analysis were recorded by LMP dating 

methods. The motivation for using this data was that the sample based on LMP dates was 

larger for both unaffected and affected pregnancies than the sample based on dates that 
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were recorded by sonography. It would be infonnative to apply the same analysis to data 

with the gestational ages recorded by sonography, since it is well recognized that dating by 

sonography has less error. 

8.2 Detection rates and false positive rates 

Chapter four has discussed the debate over the differences between the published 

detection rates. The problem is partly caused by sampling error in the estimates of detection 

rates and false positive rates. Simulation studies were conducted in this chapter to calculate 

the standard errors of these rates. The standard errors are large and illustrate why clinical 

trials that are conduct under similar conditions, may obtain different perfonnance estimates. 

The possibility of bias in the reported error rates was also investigated. It is well known that 

error rates which are estimated from the design set that was used to fonnulate the 

discriminant rule are overrated. The nonparametric bootstrap was applied to correct the bias 

in the detection rates and false positive rates. The extent of the bias caused by reclassifying 

the design set when screening with unrepresentative maternal age distributions was also 

assessed. The results indicate that the bias in the estimated perfonnance rates is extremely 

small. Also, there are no real differences in the bias that is specific to each maternal age. 

8.3 The interpretation of risk in non-Down's abnormalities 

The risk algorithm given by Wald et a/ (1988) often fails to recognize abnonnalities 

other than Down's syndrome and frequently associates these abnonnalities with low risks 

(Heyl et a/ ( 1990) ). The risks should, therefore, not be used to reassure a mother that her 

pregnancy is unaffected by any disorder. This problem can be addressed by incorporating a 
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non-specific classification into the existing screen. The Mabalanobis distance can be used to 

create an index of atypicality, to identify those pregnancies with analyte concentration 

values that are unlike trisomy 21 pregnancies but are highly atypical of unaffected 

pregnancies (Wright et a/ (1993)). These pregnancies can then be classified as non-specific 

to either outcome. This approach can easily be implemented into the existing algoritlun. The 

approach provides an effective screen for non-Dawn's syndrome abnormalities and reduces 

the false positive rate of the screen. 

8.4 Estimation of the class conditional densities 

Chapter six of this thesis compared the parametric approach adopted by Wald et a/ 

(1988) to estimate the class conditional densities of transformed MoM analyte values with a 

nonparametric approach. A review of the methods of kernel density estimation has been 

given and illustrations of nonparametric density estimates of the trials data were provided. 

The adaptive kernel estimator provided high quality density estimates of the data for 

unaffected pregnancies. Adaptive kernel density estimates for the affected data were also 

constructed. Nonparametric likelihood ratios were calculated from bivariate density 

estimates, and these were used as part of the discriminant analysis to discriminate between 

affected and unaffected pregnancies. 

Estimating densities in higher dimensions from relatively small samples can lead to 

estimates that are inefficient. Wright (1995) investigates models in which the class 

conditional distributions are assumed to have a common distributional form and applies 

nonparametric density estimation to model this common form. Wright (1995) uses 

parametric shifts in location and dispersion to model the differences between the classes. ln 

the report, the technique is applied to Down's syndrome screening and the distribution of 
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affected cases are represented as shifted and scaled versions of those of unaffected cases. 

The univariate model is defined below. The notation is of the style given in Wright (1995). 

Let X g1 Xg2 , ••• , X denote the n observations comprising of the training data ' gng g 

on the g'h class (g = 1,2, ... , G), which are used to estimate the probability density 

functions. The nonparametric approach involves fitting a density of the form 

where hg is the smoothing parameter for group g and K is the kernel function. Define the 

class conditional densities as / 2 , / 3 , ... , f a for affected classes and /Jor the unaffected 

class. Then, for affected classes, the density is of the form 

where ag > 0 is the scale parameter and bg is the location parameter for group g. 

Wright ( 1995) states that if these parameters are fixed, the combined sample of 

n = n1 + n 2 + ... +ng observations can be used to obtain the density estimate 

where for convenience a1 = 1 and b1 = 0 . 

Since there is a vast amount of data available for unaffected pregnancies, this 

approach can be used to provide higher dimensional models for the affected distributions 

which can then be used in the calculation of risk. This nonparametric shift model can be 

used with the adaptive kernel estimator to produce high quality density estimates. There is 

scope for future research involving the application of this model to screening. The methods 

of correcting bias in the error rates can be applied to the rates associated with this model. 
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Also, a nonparametric atypicality index can be applied to the estimated densities to establish 

a preliminary screen for non-Down's syndrome abnormalities. 

8.5 Errors in the gestational dating methods 

Chapter seven has discussed how the models that are currently used for the 

relationship between analyte concentration values and gestational age do not account for the 

errors in the recorded gestational dates. The chapter shows how errors-in-variables models 

can be used for these relationships. One such errors-in-variables model is the functional 

model that assumes the explanatory variable is recorded with a random error. The functional 

model was used to investigate the possibility of bias in the estimated standard deviations and 

correlation coefficients for the linear models. The· bias was found to have very little effect 

on the standard deviations and the correlation coefficients that were derived for the 

loglinear models given in Chapter three. This could be due to the fact that the bias is a 

function of the slope parameters of the fitted models, and the R 2 values for the fitted 

regression models were particularly small. Therefore, only a small proportion of the 

variation in the transformed analyte values is explained by gestational age. 
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Appendix A 
c 
C PROGRAM DOWNlES.FOR 
c ••••••••••••••••••• 
c 
C LAST MODIFIED 1/1/94 
c 
C TillS PROGRAM CONDUCTS MONTE CARLO SlMULA TIONS OF TilE DOWN SYNDROME 
C SCREENING ALGORITHM USING GAUSSlAN LIKELIHOOD RATIOS TO MODIFY AGE 
C RELATED RISKS. RANDOM NUMBER GENERA TORS ARE USED TO INITIALIZE 
C THE SIMULA TIONS. TilE CURRENT VERSION APPLIES TRUNCATION 
C LIMITS OUTSIDE (.3,3.3),{.2,5.0) AND (0.5,2.) FOR AFP, HCG AND UE3 
C RESPECfiVEL Y. 
c 
c 
$LARGE 
$TITLE :'DOWNS SCREENING SlMULA TION SOFTWARE' 

PROGRAM DOWNS 
INTEGER MAXP,MAXSAM,MAXCAT,MXSIMG,MXSIMP 
PARAMETER (MAXP=5,MAXSAM=50000,MAXCAT=50,MXSIMG=l ,MXSIMP=l,NOG=l0) 
INTEGER IFREQ(MAXCA T),NCATS,INCODE{MAXP),COUNT,NTIMES,NP 
INTEGER ICODES(l4,MAXP),IOUT 
INTEGER NSAMPN,NSAMPD,NSSIZE,DSSIZE,IX,IY,IZ,I,J,K,SIMNO 
REAL AGE(MAXCAT),PANORM(MAXCAT),PADOWN(MAXCAT), 
* PR(MAXCA T),PDOWN,NMEAN(MAXP),NCOV(MAXP,MAXP) 
REAL NCOVL{MAXP,MAXP),CVINVN{MAXP,MAXP),DETCVN, 
* THELRN(MAXSAM),NMEANL(MAXP),CHOLN(MAXP,MAXP) 
REAL NMCOPY(MAXP),DMCOPY(MAXP),NCCOPY(MAXP,MAXP), 
* DCCOPY{MAXP,MAXP),DAT(3000,MAXP) 
REAL NML l(MAXP),DML l(MAXP),NCVLl(MAXP ,MAXP), 
* DCVLl(MAXP,MAXP),XBARN{MAXP),XBARD(MAXP),SN(MAXP,MAXP) 
REAL SD(MAXP,MAXP),DMEAN(MAXP),DCOV(MAXP,MAXP), 
* CHOLD(MAXP,MAXP),DCOVL{MAXP,MAXP),CVINVD(MAXP,MAXP),DETCVD 
REAL THELRD(MAXSAM),DMEANL(MAXP),XMIN(5),XMAX(5), 
* G(NOG),PMI, TillSG,PN(NOG),PD(NOG),LPM(NOG),LPMl, 
* PNlOO,PDlOO,PMlOO 
REAL SCREEN,R2,SLOPE,INTER 
REAL PM(NOG),GMEAN,PNMEAN,PDMEAN,PMMEAN 
CHARACTER *31 FILEIN,LOGFILE,ROCFILE,DETFll..E 
COMMON /RANDIIX,IY,IZ 
COMMON /SIMDAT/ DAT 
COMMON /LIMITS/ XMIN,XMAX 
OAT A G/200,220,240,260,280,300,3 20,340,360,380,400/ 

****OPEN 1/0 FILES 
WR1TE(*,3211) 

3211 FORMA T(20(1X/),27X, 'DOWNS SCREENING SIMULATION'/ 
+ 27X,26('_'), lO(lX/), 
+ 3X,'INPUT FILE : ') 
open(2,file = 'runfile') 
do 8888 iii=l , l 
READ(*,'(A)') FILEIN 
OPEN(l,ST A TUS='OLD',FILE=FD..EIN) 
READ(l ,'(A)') LOGFILE 
READ(l ,'(A)') ROCFILE 
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READ(l,'(A)') DETFILE 
OPEN{9,FILE= LOGFILE) 
OPEN(6,FILE= ROCFILE) 
OPEN(7,FILE= DETFILE) 

****READ IN TilE MATERNAL AGE DISTRIBliTION 
CALL READAG(AGE,IFREQ,MAXCAT,NCATS) 

****WORK OUT TilE MASTER TABLE 
CALL WT ABLE(NCA TS,AGE,IFREQ,P ANORM,P ADOWN,PR,PDOWN) 

****FIND OliT DIMENSIONALITY REQUIRED 
READ( 1, *) NP 
WRITE(*,9997) NP 

9997 FORMAT(3X, 'NO PARAMS=',l5) 

****READ NO OF REPEATS 
READ( 1, *) NTIMES 

****READ SAMPLE SIZE FOR XBAR AND S 
READ(1,*) NSAMPN 
READ(1,*) NSAMPD 

****READ TRUNCATION LIMITS FOR CALCULATION OF LIKELIHOOD RATIO 
READ( 1, *)(XMIN(I),I= 1 ,NP) 
READ{l, *)(XMAX{I),I=l,NP) 

****INITIALISE INCODES 
DO 10 1=1,NP 

10 INCODE{I)=1 

****FIND OUT PARAMETERS REQUIRED FOR NORMAL POPULATION 
CALL PARAMS('Normal Population',NMEAN,NCOV,MAXP,NP, 
* CHOLN,MAXP,NML1,NCVL1,MAXP,CVINVN,MAXP,DETCVN, 
* NSSIZE,MAXSAM,JNCODE) 

****FIND OUT PARAMETERS REQUIRED FOR DOWNS POPULATION 
CALL P ARAMS('Downs Population',DMEAN,DCOV,MAXP,NP, 
* CHOLD,MAXP,DML1,DCVLl,MAXP,CVINVD,MAXP,DETCVD, 
* DSSIZE,MAXSAM,JNCODE) 

****COPY FOR SAMPLING 
DO 20 I=l ,MAXP 
NMCOPY{I)=NMEAN{I) 
xbam(i) = nmean(i) 
xbard(i) = dmean(i) 
DMCOPY{I)=DMEAN(I) 

DO 21 J=l ,MAXP 
sn(ij) = ncov(ij) 
sd(ij) = dcov(ij) 
NCCOPY(I,J)=CHOLN(l,J) 

21 DCCOPY{l,J)=CHOLD{l,J) 

20 CONTINUE 

****ASK FOR SEEDS TO SIMULATION 
CALL SEED 
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****ASK FOR VALUE OF PM (SCREEN RATe) 

READ(1,*) PM1 
****READ SIMULATION SPECIFICATION 

DO 333 1=1,100 
READ(l , * ,END=777) (ICODES(l,J),J= l ,NP) 
write(*,*) (ICODES{I,J),J= I ,NP) 

333 CONTINUE 
777 CONTINUE 

NCODES = I-I 

****DO "NTIMES" COMPLETE SIMULATIONS 

DO 999 I COUNT= 1 ,NTIMES 

IF(NTIMES.GT.I) TIIEN 
CALL SAMCOV(NSAMPN,NMCOPY,NCCOPY,XBARN,SN,MAXP,NP,INCODE) 
CALL SAMCOV(NSAMPD,DMCOPY,DCCOPY,XBARD,SD,MAXP,NP,INCODE) 
END IF 

****RUN THROUGH ALL COMBINATIONS OF MARKERS 
DO 400 I= I,NCODES 
DO 402 J = I,NP 

· ll..JCODE(J) = ICODES(I,J) 
402 CONTINUE 

K = O 
DO 401 J = I,NP 

IF((INCODE(J).NE.1).AND.(INCODE(J).NE.O))GOTO 400 
K = K +INCODE(J) 

401 CONTINUE 
IF(K.LE.O) GOTO 400 

CALL SELECT{XBARN,SN,MAXP,INCODE,NP,NPI,NMEAN,NCOV) 
CALL SELECT{XBARD,SD,MAXP,INCODE,NP,NP1,DMEAN,DCOV) 
CALL SELECT{NML1,NCVLl,MAXP,INCODE,NP,NPl,NMEANL,NCOVL) 
CALL SELECT(DMLl,DCVLl,MAXP,INCODE,NP,NPl,DMEANL,DCOVL) 
CALL CHOLES(NCOV ,MAXP,NPl,CHOLN,MAXP) 
CALL CHOLES(DCOV ,MAXP,NPl,CHOLD,MAXP) 
CALL INVERT(NCOVL,MAXP,NPl,CVINVN,MAXP,O.lE-10,DETCVN) 
CALL INVERT(DCOVL,MAXP,NPI,CVINVD,MAXP,O.lE-10,DETCVD) 

****COMPUTE ROC 

DO 500 SIMNO=l,MXSlMG 

****SIMULATE TilE LIKELlliOOD RATIO ASSUMING NORMALS 
CALL SIMUL{THELRN,NSSIZE,NPl,NMEAN,CHOLN,MAXP, 
* NMEANL,CVINVN,MAXP,DETCVN,DMEANL,CVINVD,MAXP, 
* DETCVD,INCODE) 

****SIMULATE TilE LlKELlliOOD RATIO ASSUMING DOWNS 
CALL SIMUL(THELRD,DSSIZE,NP1,DMEAN,CHOLD,MAXP, 
* NMEANL,CVINVN,MAXP,DETCVN,DMEANL,CVINVD,MAXP, 
* DETCVD,INCODE) 
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****DO THE CALCULATIONS 
CALL ROC(NOG,G,PANORM,PADOWN,PR,NCATS,PDOWN 

* ,THELRN,NSSI.ZE,THELRD,DSSI.ZE,PN,PD,PM) 
****WRITE VALUES FOR TillS RUN 

IF (NP.EQ.l) ASSIGN 990 I TO IOl.IT 
IF (NP.EQ.2) ASSIGN 9902 TO IOl.IT 
IF (NP.EQ.3) ASSIGN 9903 TO IOl.IT 
IF (NP.EQ.4) ASSIGN 9904 TO IOl.IT 
IF (NP.EQ.5) ASSIGN 9905 TO IOl.IT 

9901 FORMA T{l5, IX, 112, lX,F4.0,3( 1X,F5.2)) 

9902 FORMAT(15,212, 1X,F4.0,3(1X,F5.2)) 
9903 FORMAT{I5,312,1X,F4.0,3(1X,F5.2)) 
9904 FORMAT{I5,412, IX,F4.0,3( 1X,F5.2)) 
9905 FORMA T{l5,512, lX,F4.0,3( 1X,F5.2)) 

DO 31 LL = l ,NOG 
PN100 = PN(LL)*lOO 
PDlOO = PD(LL)*lOO 
PMlOO = PM(LL)*lOO 
WRITE(6,IOUT)ICOU!\TT,{INCODE(J),J=l ,NP),G(LL),PN100,PD100,PM100 
WRITE(*,IOUT)ICOUNT,{INCODE(J),J=l ,NP),G(LL),PNlOO,PDlOO,PMIOO 

31 LPM(LL) = LOG(PM(LL)+0.00001) 
LPMI= LOG(PMl) 
CALL REGRESS(NOG,LPM,PD,LPMl,SCREEN,SLOPE,INTER,R2) 

IF (NP.EQ. l) ASSIGN 980 l TO IOl.IT 
IF (NP.EQ.2) ASSIGN 9802 TO IOl.IT 
IF (NP.EQ.3) ASSIGN 9803 TO IOl.IT 
IF (NP.EQ.4) ASSIGN 9804 TO IOl.IT 
IF (NP.EQ.5) ASSIGN 9805 TO IOl.IT 

9801 FORMAT(I5,12,1X,2(lX,F5.2)) 
9802 FORMAT{I5,212,1X,2(1X,F5.2)) 
9803 FORMAT{I5,312,1X,2(1X,F5.2)) 
9804 FORMAT{I5,412,1X,2(1X,F5.2)) 
9805 FORMAT{I5,512,1X,2(1X,F5.2)) 

WRITE(? ,IOUT)ICOUNT,{INCODE(J),J= l.NP), 1 OO*PMl, l OO*SCREEN 

500 CONTINUE 

400 CONTINUE 
999 CONTINUE 

8888 continue 
7777 STOP 

END 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

SUBROUTINE PARAMS(TITLE,MEAN,COV,MAXP,NP,CHOL,ICH, 
* MEANL,COVL,ICL,COVINV,ICI,DETCOV,NSSIZE,MAXSAM,lNCODE) 
CHARACTER*(*) TITLE 
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INTEGER NP,MAXP,ICH,ICLNSSIZE,MAXSAM,ICL,INCODE(5) 
INTEGER MCOP,NPI,IROW,ICOL 
P ARAMETER(MCOP=5) 
REAL COVCOP(MCOP,MCOP),MEAN(NP),MEANL(NP) 
REAL COV(MAXP,NP),CHOL(ICH,NP),COVINV(ICI,NP), 
* DETCOV,COVL(ICL,NP),CORR(MCOP,MCOP) 

****FIND OUT MEAN AND COV ARIANCE MATRIX OF POPULATION 
****NOTE 2 COV ARIANCE MATRICES 
****ONE FOR SIMULATION, OTIIER TO BE PLUGGED INTO LIKELIHOOD RATIO 

CALL ASK(TITI..E,MEAN,COV,MAXP,NP,MEANL,COVL,ICL,INCODE,NPI) 

****FIND CHOLESKY DECOMPOSmON OF COV ARIANCE MATRIX (SIMULATION) 
CALL CHOLES(COV,MAXP,NP1,CHOL,ICH) 

****COPY COV ARIANCE MATRIX 
DO 1 IROW=1,NPI 

DO 2 ICOL=1,NPI 
COVCOP(IROW,ICOL)=COVL(IROW,ICOL) 

2 CONTINUE 
I CONTINUE 

****WRITE MEAN VECTOR, COV AND CORR MATRIX 
WRITE(9, 9004) TITLE 
WRITE(9,9CHlO) 

9004 FORMAT(/1//IX, 70('*')//IOX, 'POPULATION: ',Al0/1) 
· 9000 FORMAT(///30X,'SIMULATION'//) 

WRITE(9,900 1) (MEAN(J),J=I,NPI) 
9001 FORMAT(IX,70('*')//5X, 'MEAN VECfOR'//5(3X,FI0.5)) 

WRITE(9,9CHl2) 
9002 FORMAT(//5X,'COVARIANCE MATRIX'//) 

DO 901 I =l,NPI 
WRITE(9,9003)( COV(I,J),J=I ,NPI) 
DO 904 J =I,NPI 
CORR{I,J) = COV(I,J)/SQRT(COV{I,l)*COV(J,J)) 

904 CONTINUE 
901 CONTINUE 

WRITE(9,9006) 
9006 FORMAT(//5X,'CORRELATION MATRIX'//) 

DO 905 I = I,NPI 
905 WRITE(9,9003)(CORR(I,J),J=l ,NPl) 

9003 FORMAT(5(3XFI0.5)) 
WRITE(9,9005) 

9005 FORMA T(//1/lX, 70('*')//30X,'ALGOR1TIIM'/I) 
WRITE(9,9001) (MEANL(J),J =1,NPI) 
WRITE(9, 9002) 
DO 902 I= I,NPI 
WRITE(9,9003)( COVL(I,J),J =l,NP1) 
DO 906 J = l,NP1 
CORR(I,J) = COVL(I,J)/SQRT(COVL(LI)*COVL{J,J)) 

906 CONTINUE 
902 CONTINUE 

WRITE(9,9006) 
DO 907 I= 1,NPI 

907 WRITE(9,9003)(CORR(I,J),J=1,NPI) 
****FIND INVERSE & DET OF COV ARIANCE MATRIX IN L.R STATISTIC 

CALL INVERT(COVCOP,MCOP,NP l ,COVINV,ICLO.IE-IO,DETCOV) 

****ASK FOR TilE SAMPLE SIZE REQUIRED FROM TillS POPULATION 
CALL ASKSAM(NSSIZE,MAXSAM) 
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WRITE(*, *)NSSIZE 

RETURN 
END 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

SUBROUTINE ASK(TITLE,MEAN,COV,MAXP,NP,MEANL,COVL,ICL,INCODE, 
* NPl) 
CHARACTER*(*) TITLE 

****TillS SUBROUTINE ASKS FOR THE MEAN & COVARIANCE MATRIX 
INTEGER MAXP,NP,ICL,NPl,I,J,K 
REAL MEAN(NP), COV(MAXP,NP),MEANL(NP),COVL(ICL,NP) 
REAL DUMEAN(5),DUMCOV(5,5) 

****READ APPROPRIATE POPULATION PARAMETERS 

READ( I , *)(MEAN(l),l=l ,NP) 
READ( I , *)((COV(I,J),J=1,I),I=l ,NP) 

****READ L-R MATRICES 
READ(1, *)(MEANL(l),I=1,NP) 
READ( 1, *)((COVL(l,J),J= 1,1),1= 1 ,NP) 

••••COPY OVER TilE COV ARIANCE MATRIX 
DOlO I=l ,NP 
DO 9 J=l,l 

COV(J,I)=COV(l,J) 
COVL(J,I)=COVL(I,J) 

9 CONTINUE 
lO CONTINUE 

***•SELECT REQUIRED VARIABLES 
CALL SELECT(MEAN,COV,MAXP,INCODE,NP,NPl,MEAN,COV) 
CALL SELECT(MEANL,COVL,MAXP,INCODE,NP,NPl,MEANL,COVL) 

RETURN 
END 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

SUBROUTINE CHOLES(V,IV,N,T,IT) 
IMPLICIT REAL(A-H,O-Z) 
INTEGER IV,N,IT 
REAL V(IV,N),T(IT,N) 
REAL TE,S,EPS 
INTEGER I,Il,J,Jl,K 

****CHOLESKY SQUARE ROOT OF V 
****V ASSUMED TO BE POSITIVE DEFINITE 
****WANT TO FIND T (LOWER TRIANGULAR) 
****SUCH THAT (T)*(T)TR = (V) 

EPS=0.1E-11 
DO lOO 1=1,N 
DO 101 J=l,N 
T(J,I)=O.O 

101 CONTINUE 
lOO CONTINUE 

TE=V(l , l) 
IF(TE.L T.EPS) GO TO 50 
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T(1, 1)=SQRT(TE) 
IF(N.EQ.I )RETURN 
T(2, 1)=V(2, l)ff(l , I) 
TE=V(2,2)-T(2, 1)**2 
IF(TE.LT.EPS) GO TO 50 
T(2,2)=SQRT(TE) 
IF(N.EQ.2)RETURN 
DO 31 1=3,N 
T{l, 1)=V(I,1)ff{l , 1) 
IL=I-1 
DO 29 1=2,11 
S=O.ODO 
Jl=J-1 
DO 28 K=1,Jl 

28 S=S+T(I,K)*T(J,K) 
29 T{I,J)=(V{I,J)-S)ff(J,J) 

S=O.ODO 
DO 30 J= l,ll 

30 S=S+T{I,J)**2 
TE=V{I,I)-S 
IF(TE.L T.EPS) GO TO 50 

31 T(I,I)=SQRT(TE) 
RETURN 

****ERROR MESSAGES 
50 CONTINUE 

WRITE(6,76) 
76 FORMAT(' ***ILL-CONDmONED VARIANCE MATRIX***') 

STOP 
END 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

SUBROUTINE SEED 
INTEGER IX,IY,IZ,l,ISEED(3) 
COMMON IRAND/IX,IY,IZ 
LOGICAL OK 

****READS SEEDS FOR RANDOM NO. GENERA TOR 
READ( 1, *)(ISEED(I),I= 1 ,3) 
OK=.TRUE. 
DO 3 1=1,3 
IF((ISEED(I).LT.1) .OR (ISEED(I).GT.30000))0K=.F ALSE. 

3 CONTINUE 
IF(.NOT. OK) THEN 

WRITE(6,10) 
10 FORMAT(' *** SEED OUTSIDE RANGE I - 30000 ***') 

STOP 

IX=ISEED(1) 
IY=ISEED(2) 
IZ=ISEED(3) 
RETURN 
END 

END IF 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

SUBROUTINE NRAND(SIM,N) 
IMPLICIT REAL(A-H,O-Z) 
INTEGER N,l,NHALF 
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REAL SIM(N),DUM,U,V,VV,RANOOM 

****TillS SUBROUTINE GENERATES A NORMAL RANDOM VARIABLE 
****FROM TWO lNDEPENDENT UNIFORMS BY TilE POLAR MARSAGLIA-BRA Y METIIOD 

NHALF=(N+1)/2 
DO 1 1=1,NHALF 

2 U=RANDOM(DUM) 
V=RANDOM(DUM) 

****U AND V ARE IND. U(0,1),TRANSFORMTO U(-1 ,1) 
U=(2.0DO*U)-l.ODO 
V=(2.0DO*V)-l .ODO 

****TRANSFORM TO TWO liD N(O, l)'S 
VV=(U*U)+(V*V) 
IF(VV.GT.l.ODO)GO TO 2 
VV=SQRT((-2.0DO*LOG(VV))NV) 
SIM(I)=U*VV 
SIM(N-1+ l)=V*VV 

I CONTINUE 
RETIJRN 
END 

******************************•················································ 

REAL FUNCTION RANDOM(DUM) 

****ALGORITHM AS 183 APPL. STATIST. (1982) VOL.31, N0.2 
****RETIJRNS A PSUDO-RANDOM NUMBER RECT ANGULARLY DISTRIBUTED 
****BETWEEN 0 AND 1. 
****IX,IY AND IZ SHOULD BE SET TO INTEGER VALUES BETWEEN 
**** 1 AND 30000 BEFORE FIRST ENTRY 
****INTEGER ARITIIMETIC UP TO 30323 IS REQUIRED 

INTEGER IX,IY,IZ 
REAL DUM 
COMMON IRANDIIX,IY,IZ 
REAL FLOAT 
INTEGER MOD 
REALDMOD 

lX=l71*MOD(IX,177)-2*(IX/177) 
IY=l72*MOD(IY,l76)-35*(IY/l76) 
IZ= l70*MOD(lZ, l78)-63*{1Z1178) 
IF(lX.LT.O) lX=lX+30269 
IF(IY.LT.O) IY=IY+30307 
IF(lZ.L T.O) IZ=IZ+ 30323 
RANDOM=MOD(FLOAT(lX)/30269.000 +FLOAT(IY)/30307.000 
* +FLOAT(lZ)/30323.0DO,l.OOO) 
RETIJRN 
END 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

SUBROUTINE INVERT(A,IA,N,B,ffi,EPS,DEL) 
INTEGER IA,ffi,N 
REAL A(IA,N),B(IB,N),EPS 
REAL DEL,AMAX,AMUL T,ATMP,BTMP,DIV 
INTEGER I,J,.K,IMAX,KPl 
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****MATRIX INVERSION BY ELIMINATION WITII PARTIAL PIVOTING 
****ORIGINAL MA TRIX=A INVERSE MATRIX =B 
****NOTE TIIA TA IS CHANGED ON EXIT 
****EPS IS A SMALL QUANTITY USED TO SEE IF MATRIX SINGULAR 
****DEL IS VALUE OF DETERMINANT ON EXIT 

****CONSTRUCT IDENTITY MATRIX B(I,J)= I 
DO 6 I=l ,N 
005 J=l,N 
B(I,J)=O.O 

5 CONTINUE 
B(I,I)=l.O 

6CONTINUE 

****LOCATE MAXIMUM MAGNITUDE A(I,K) ON OR BELOW MAIN DIAGONAL 
DEL=l.O 
D045 K=l ,N 
IF (K-N) 12,30,30 

12 IMAX=K 
AMAX=ABS(A(K,K)) 
KPI=K+l 
DO 20 I=KPI,N 
IF(AMAX- ABS(A(I,K)))l5,20,20 

15 IMAX=I 
AMAX =ABS(A(I,K)) 

20 CO!'>fllNUE 

****INTERCHANGE ROWS IMAX AND K IF IMAX NOT EQUAL TO K 
IF(IMAX -K)25,30,25 

25 DO 29 J=I ,N 
A TMP=A{IMAX,J) 
A(IMAX,J)=A{K,J) 
A{K,J)=AlMP 
BTMP=B{IMAX,J) 
B(IMAX,J)=B{K,J) 

29B{K,J)=B1MP 
DEL=-DEL 

30CONTINUE 

****TEST FOR SINGULAR MATRIX 
IF(ABS(A{K,K))- EPS)93,93,35 

35 DEL=A{K,K)*DEL 

****DIVIDE PNOT ROW BY ITS MAIN DIAGONAL ELEMENT 
DN=A{K,K) 
DO 38 J=l,N 
A{K,J)=A{K,J)/DIV 

38 B{K,J)=B{K,J)/DN 

****REPLACE EACH ROW BY LINEAR COMBINATION WITII PIVOT ROW 
DO 43 I=l ,N 
AMUL T=A(I,K) 
IF (1-K) 39,43,39 

39 DO 42 J= l ,N 
A(I,J)=A(I,J) - AMUL T* A(K,J) 

42 B(I,J)=B(I,J) - AMUL T*B{K,J) 
43CONTINUE 
45 CONTINUE 

RETURN 
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93 WRITE(6,113)K 
113 FORMAT(' SfNGULAR MATRIX FOR K=',l3) 

STOP 
END 

******************************************************************************* 

SUBROUTfNE MVN(X,NPAR,MEAN,CHOL,IC,INCODE) 
INTEGER NP AR,IC,INCODE(5),MAXP AR,DIM,DIM2 
PARAMETER (MAXP AR=5) 
REAL X(NPAR),CHOL{IC,NPAR),MEAN(NPAR),NOl(MAXPAR) 

****GENERATE A RANDOM SAMPLE OF NPAR NORMAL(O, l) 
CALL NRAND(NOl,NPAR) 

****CONVERT TO MULTIV ATIA TE NORMAL WITH MEAN= MEAN(l.. .NPAR) 
****AND A VARIANCE COVARIANCE MATRIX WHOSE CHOLESKY DECOMPOSITION = CHOL 

DO lO DIM=l,NPAR 
X(DIM)=MEAN(DIM) 
DO ll DIMl=l,NPAR 

X(DIM)=X(DIM) + CHOL(DIM,DIM2)*NOl(DIM2) 
11 CONTINUE 

****RETIJRN UE3 TO ORIGINAL SCALE 
C IF ((NPAR.EQ.3).AND.(DIM.EQ.3)) X(DIM)=EXP(X(DIM)) 
C IF ((NPAREQ.2).AND.(INCODE(3).EQ.l).AND.(DIM.EQ.2)) 
C * X(DIM)=EXP(X(DlM)) 
C IF ((NPAR.EQ. l).AND.(INCODE(3).EQ. l)) X(DIM)=EXP(X(DIM)) 

to CONTINUE 
RETIJRN 
END 

******************************************************************************* • 

SUBROUTfNE SIMUL(SIM,NSIMS,N,MEAN,CHOL,IC, 
* MEANl,CVliNV,ICVl,DETl,MEAN2,CV2INV,ICV2,DET2,INCODE) 
INTEGER NSIMS,N,IC,ICVI ,ICV2,INCODE(5),MAXPAR,ISIM 
PARAMETER (MAXP AR=5) 
REAL SIM(NSIMS),X(MAXPAR),MEAN(N),CHOL{IC,N),PDF 
REAL MEANl{N),CVliNV(ICVl,N),DETl 
REAL MEAN2{N),CV21NV(ICV2,N),DET2 

DO 1 ISIM = 1, NSIMS 

****GENERATE MVN WITII MEAN=MEAN & COV ARlANCE MATRIX 
****WHOSE CHOLESKY DECOMPOSTION IS CHOL 

CALL MVNCX,N,MEAN,CHOL,IC,INCODE) 

****FORM A LR STATISTIC 
SIM(ISIM)=PDFCX,N,MEANl,CV11NV,ICVl,DETl,INCODE)/ 

* PDFCX,N,MEAN2,CV2INV,ICV2,DET2,INCODE) 
!CONTINUE 
RETURN 
END 

******************************************************************************* 

REAL FUNCTION PDFCX,N,MEAN,CVINV,IC,DET,INCODE) 
INTEGER N,IC,MAXPAR,I,J 
PARAMETER (MAXP AR=5) 
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REAL X(N),MEAN(N),CVINV{IC,N),DET ,x:MIN(5),XMAX(5) 
REAL XMMU(MAXPAR),CXMMU(MAXPAR),QUAD 
INTEGER INCODE(MAXP AR) 

****RETURNS MVN PDF (NOT INCLUDING PI PARTS) 

****SET VALUES FOR CENSORING 

COMMON !LIMITS/ XMIN,XMAX 

****ALLOW FOR MISSING V ARS 
J= l 
DOlO 1=1,3 
IF (INCODE(I).EQ.l) THEN 

XMIN(J)= XMIN{I) 
XMAX(J)=XMAX{I) 
J=J+1 

END IF 
10 CONTINUE 

****CENSORING ... 
DO 1 I=1,N 

C IF (X(I).LT.XMIN(I)) X{l) = XMIN(I) 
C IF (X(I).GT.XMAX(I)) X(l) = XMAX(I) 

XMMU(I)=X(I)- MEAN(I) 
I CONTINUE 

****EVALUATE PDF 
QUAD=O.ODO 
D02 I= 1,N 

CXMMU(I)=O.ODO 
DO 3 J= l,N 
CXMMU(I)=CXMMU(I) + CVINV(l,J)*XMMU(J) 

3 CONTINUE 
QUAD=QUAD + XMMU(I)*CXMMU(O 

2CONTINUE 
PDF=EXP(-0.5*QUAD)/SQRT(DET) 
RETURN 
END 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

SUBROUTINE READAG(AGE,IFREQ,MAXCAT,NCATS) 
INTEGER MAXCAT,IFREQ(MAXCA T),NCATS,l,NUMSO,IFR 
REAL AGE(MAXCA T),AGECAT 
CHARACTER*20 FNAME 

****READS MATERNAL AGE DISTRIBUTION 
READ( 1,2l)FNAME 

21 FORMA T(A20) 
OPEN(5,ST A TUS='OLD',FILE=FNAME) 
NUMSO=O 
DO lO l=l ,MAXCAT 
READ(5, * ,END=30,ERR=40)AGECAT,XIFR 
AGE(I)=AGECAT 
IFREQ(I)=3 *XlFR 
NUMSO=I 

IO CONTINUE 

****CHECK TO SEE NO MORE INFO IN FILE 
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READ(5, * .END=30)AGECAT 
WRITE{6,50)MAXCAT 

50 FORMAT(' Program only allows for ',14,' age categories') 
STOP 

30 NCATS=NUMSO 
IF (NUMSO.EQ.O)THEN 

WRITE(6,60) 
60 FORMAT(' NO INFO IN AGE FILE!!!!') 

STOP 
END IF 
RETURN 

****ERROR MESSAGES 
40 WRITE{6,4l) 
41 FORMAT(' ERROR IN READING MATERNAL AGE FILE!!!!!') 

STOP 
END 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

SUBROUTINE Wf ABLE(NCATS,AGE,IFREQ,P ANORM,P ADOWN,PR,PDOWN) 
INTEGER NCATS,IFREQ(NCATS),l,MTOT,MAXCAT 
PARAMETER (MAXCAT=50) 
REAL AGE(NCATS),P ANORM(NCATS),P ADOWN(NCATS),PR(NCA TS) 
REAL PDOWN,PDAGE(MAXCA T),PAGE(MAXCAT),DMTOT,PNORM 

****GfVEN MATERNAL AGE DISTRIBUTION IN NCATS GROUPS, CALCULATES : 
**** MAT. AGE DISTN. FOR DOWNS (PADOWN) 
**** MAT. AGE DISTN. FOR NORMALS (PANORM) 
**** PROB RATIOS NORMALS OVER DOWNS FOR EACH MAT. AGE {PR) 
**** OVERALL PROPORTION OF DOWNS (PDOWN) 

MTOT=O 
DO ll=l,NCATS 
PDAGE(l)=0.000627DO + EXP(-l6.2395DO + 0.286DO*AGE{l)) 
PR(l)=(l .ODO-PDAGE(l))IPDAGE(l) 
MTOT=MTOT +IFREQ(l) 

I CONTINUE 
DMTOT=FLOAT(MTOT) 
PDOWN=O.ODO 
DO 2 I=l,NCATS 
PAGE(I)=FLOA T(IFREQ(l))/DMTOT 
PDOWN=PDOWN + PDAGE(I)*PAGE(l) 

2CONTINUE 
PNORM= l.ODO-PDOWN 
DO 4I= l,NCATS 
P ADOWN(l)=PAGE(I)*PDAGE(I)IPDOWN 
P ANORM(l)=PAGE(I)*( l .ODO-PDAGE(I))IPNORM 

4CONTINUE 
RETURN 
END 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

SUBROUTINE DOCALC(G,P ANORM,P ADOWN,PR,NCA TS,PDOWN,PN,PD,PM, 
* SNORM,NNORM,SDOWN,NDOWN) 
INTEGER NCATS,NNORM,NDOWN,I 
REAL G,P ANORM(NCATS),P ADOWN(NCA TS),PR(NCATS), 
* PDOWN,PN,PD,PM,SNORM(NNORM),SDOWN(NDOWN) 
REAL PROPN,Pll,P2l, THISV(50) 
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rNTEGER NT AL(50),DT AL(50) 
****RETURNS PN,PD AND PM FOR GIVEN G 

PN=Q.ODO 

PD=Q.ODO 
DO I 1=1,NCATS 
NT AL(I)=NNORM 
DT AL(I)=NDOWN 

1 THJSV(l) = GIPR(I) 

DO 4 1=1,NNORM 
DO 3 J=NCATS,1,-1 
IF(SNORM(I).GT.THJSV(J))THEN 
D02K =l,J 

2 NT AL(K)=NT AL(K)-l 
GOT04 
END IF 

3 CONTINUE 
4 CONTINUE 

DO 7 I= 1,NDOWN 
DO 6 J =NCATS,1,-l 
IF(SDOWN(l).GT.THJSV(J)) mEN 
DO 5 K=l,J 

5 DT AL(K) = DT AL(K)-l 
GOT07 
END IF 

6 CONTINUE 
?CONTINUE 
DO 8 I=l ,NCATS 
PN=PN+FLOAT(NT AL(I))*P ANORM(I)/FLOAT(NNORM) 
PD=PD+FLOAT(DT AL(I))*P ADOWN(l)IFLOAT(NDOWN) 

8 CONTINUE 
PM=PN*(l.ODO-PDOWN) + PD*PDOWN 
RETURN 
END 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

SUBROUTINE ROC(NOG,G,PANORM,PADOWN,PR,NCATS,PDOWN, 
* SNORM,NNORM,SDOWN,NDOWN,PN,PD,PM) 
INTEGER NCATS,NNORM,NDOWN 
REAL G(NOG),P ANORM(NCATS),P ADOWN(NCATS),PR(NCATS), 

* PDOWN,PM(NOG),SNORM(NNORM),SDOWN(NDOWN) 
REAL PN(NOG),PD(NOG),PMTOP,GBOT,GTOP,GMID,PMMID,ASZERO 
LOGICAL CONVGE,LOWER 

**** FINDS DETECTION RATES PN(NOG), PD(NOG) AND PM(NOG) FOR NORMALS, DOWN 
**** SYNDROME AND TOTAL POPULATION RESPECTIVELY FOR RISK CUT-OFFS STORED 
****IN G(NOG). 

**** NOTE SHOULD BE ABLE TO MAKE THIS MUCH FASTER BY DEALING WITH ENTIRE 
**** ARRAY OF G'S AND EXPLOITING MONOTONICITY 

DO lOO I = l,NOG 
CALL DOCALC(G(I),PANORM,P ADOWN,PR,NCATS,PDOWN,PN(I),PD(I) 

* ,PM(l),SNORM,NNORM,SDOWN,NDOWN) 
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lOO CONTINUE 

RETURN 
END 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

SUBROUTINE REGRESS(N,X, Y,XPRED, YPRED,SLOPE,INTER,R2) 

INTEGER N 
INTEGER I 

REAL X(N),Y(N),SLOPE,INfER,XPRED,YPRED 
REAL XD,YD,SXX,SXY,SYY 

SXX=O 
SXY=O 
SYY = O 

XMEAN=O 
YMEAN=O 

DOl I =I,N 
XMEAN = XMEAN+ X(I)/N 
YMEAN = YMEAN+ Y(I)/N 

1 CONTINUE 

D02 I =l,N 
XD = X(l) - XMEAN 
YD = Y(l) - YMEAN 
SXX = SXX + XD*XD 
SXY = SXY+XD*YD 
SYY = SYY+YD*YD 

2CONTINUE 

SLOPE = SXY/SXX 
INTER = YMEAN-SLOPE*XMEAN 

YPRED = INTER+SLOPE*XPRED 

R2 = SXY*SXY/(SXX*SYY) 

RETURN 

END 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
REAL FUNCTION PROPN(X,N,XNUM) 
INTEGER N,I,COUNT 
REAL X(N),XNUM 

****TillS SUBROUTINE FINDS THE PROPORTION OF THE ARRAY WHICH IS 
**** LESS THAN XNUM 

COUNT=O 
DO 1 I=1,N 

1 IF (X(I).L T.XNUM) COUNT=COUNT+ 1 
PROPN=FLOAT(COUNT)IFLOAT(N) 
RETURN 
END 
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******************************************************************************* 

SUBROUTINE MEANOF(X,N,XMEAN) 
INTEGERN,l 
REAL X(N),XMEAN,TOT,SUM 

****CALCULATES MEAN OF ARRAY X 

TOT=O.O 
SUM=O.O 
DO 1 I= l ,N 
TOT=TOT+ X(l) 

I CONTINUE 
XMEAN=TOT~OAT(N) 

RETURN 
END 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

SUBROUTINE ASKSAM(NSAMP,MAXSAM) 
INTEGER NSAMP,MAXSAM 

****GET SAMPLE SIZES REQUIRED FOR SUBROUTINE SIMUL 
READ(l , *)NSAMP 
IF((NSAMP.LT.l).OR(NSAMP.GT. MAXSAM)) THEN 

WRITE(6,10) MAXSAM 
10 FORMAT(' ***SAMPLE SIZE OUTSIDE RANGE 1 -',16) 

RETURN 
END 

STOP 
END IF 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

SUBROUTINE SELECT(XBAR,S,MAXP,INCODE,NP,NPl,NEWXB,NEWS) 
REAL XBAR(NP),S(MAXP,NP),NEWXB(NP),NEWS(MAXP,NP) 
INTEGER INCODE(5),NP,NPl,I,J,K 

****SELECTS ROWS AND COLS FROM XBAR AND S AS DEFINED IN INCODE AND 
****STORES IN NEWXB AND NEWS 

K= l 
DOl I= l ,NP 
IF (INCODE(I).EQ. l) THEN 

NEWXB(K)=XBAR(I) 
002 J=l ,NP 

2 NEWS(K,J)=S(I,J) 
K=K+l 
END IF 

1 CONTINUE 
K=l 
DO 3 J= l ,NP 
IF (lNCODE(J).EQ.l) THEN 

D04 I= l ,NP 
4 NEWS(I,K)=NEWS(I,J) 

K=K+l 
END IF 

3 CONTINUE 
NPl=K-1 
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RETURN 
END 

******************************************************************************* 

SUBROUTINE SAMCOV{N,MCOPY,CCOPY,MEAN,S,MAXP,NP,INCODE) 
REAL MCOPY(MAXP),CCOPY(MAXP,MAXP),MEAN{NP), 
* X(5),DAT(3000,5),S(MAXP,MAXP) 
INTEGER N,MAXP,NP,INCODE(MAXP),I,J 
COMMON/SIMDAT/DAT 

****GENERATES SAMPLE OF SIZE N FROM APPROPRIATE MVN DISTRIBUTION, RETURNS 
****UE3 TO ORIGINAL SCALE AND CALCULATES SAMPLE MEAN AND COV AR MATRICES 

DO 1 J=l,N 
CALL MVN(X,NP,MCOPY,CCOPY,MAXP,INCODE) 
D02 I=l,NP 

C IF ((NP.EQ.3).AND.(I.EQ.3)) X(I)=LOG(X{I)) 
C IF ((NP.EQ.2).AND.(INCODE(3).EQ.1).AND.(I.EQ.2)) 
C * X{I)=LOG(X(I)) 
C IF ((NP.EQ.l).AND.(INCODE(3).EQ.l)) X{I)=LOG(X(l)) 

2 DAT(J,I)=X{I) 
1 CONTINUE 
CALL SAMMA T{NP,N,MEAN,S,MAXP) 
RETURN 
END 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

SUBROUTINE SAMMA T{NP,NOBS,XBAR,S,MAXP) 
REAL X(3000,5),XBAR{NP),S(MAXP,MAXP) 
INTEGER NP,NOBS,I,J,K 
COMMON/SIMDAT/X 

****CALCULATES MEAN AND COVARIANCE MATRIX FOR DATA IN X 

DO 10 I=1,NP 
XBAR(I)=O. 0 
DO 10 J=l ,NP 

10 S(I,J)=O.O 
DOl I=1,NP 
DO 2 J=1,NOBS 

2 XBAR{I)=XBAR{I)+X(J,I) 
1 XBAR{I)=XBAR(I)/NOBS 
DO 3 I=l ,NP 
DO 3 J=1,NOBS 

3 X(J,I)=X(J,I)-XBAR{I) 
D04 I=l ,NP 
DO 5 J=I,NP 
DO 6 K=l ,NOBS 

6 S{I,J)=S(I,J)+ X(K,I)*X{K,J) 
S(l,J)=S(l,J)/(NOBS-1) 

5 S(J,I)=S{I,J) 
4CONTINUE 
RETURN 
END 
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AppendixB 
Maternal age distribution for England and Wales ( 1986-1988) 

11 
12 2 
l3 23 
14 189 
15 1102 
16 4412 
17 10787 
18 17506 
19 23862 
20 28686 
21 33847 
22 38958 
23 43582 
24 47234 
25 49737 
26 49847 
27 48500 
28 45507 
29 41935 
30 37269 
31 31259 
32 26333 
33 21781 
34 17800 
35 14405 
36 11216 
37 8682 
38 6752 
39 5042 
40 3463 
41 20% 
42 1218 
43 691 
44 388 
45 201 
46 113 
47 68 
48 46 
49 29 
50 19 
51 15 
52 13 
53 8 
54 6 
55 8 
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Appendix C 
$LARGE 

PROGRAM SAMPLING 

PARAMETER (MAXN=300,MAXP=3,MAXG=4,AGEMIN= 11 ,AGEMAX=55,NCATS=60) 
COMMON IRANDfiX.lY,IZ 
REAL XN(MAXN,MAXP),XD(MAXN,MAXP),RANDOM,XBARN(MAXP),XBARD(MAXP) 
REAL SN{MAXP,MAXP),SD{MAXP,MAXP),INVN(MAXP,MAXP),lNVD{MAXP,MAXP) 
REAL DETN,DETD,ESP,XMIN(MAXP),XMAX(MAXP),PDF,RlSK(NCATS) 
REAL XNB(MAXN,MAXP),XDB(MAXN,MAXP),MRISKN(NCATS),MRlSKD(NCATS) 
REAL BIAS(MAXG,NCA TS),BIASC(MAXG,NCATS),OABERRORN,OABERRORD 
REAL ERROR,DS(MAXG,NCATS),AP(MAXG,NCA TS),SUMBIAS(MAXG) 
REAL OABRIGHID,BADRIGHTD,SUMAP(MAXG) 
REAL SUMBlASDR(MAXG),BIASDR(MAXG,NCATS),BIASCDR(MAXG,NCATS) 
REAL DSDR(MAXG,NCATS),SUMODR(MAXG),ODR(MAXG,NCATS) 
REAL SUMBIASC(MAXG),SUMBIASCDR(MAXG) 
REAL CONDPMN(ncats),CONDPMD(ncats),PM(NCATS),FREQM(NCATS), TALLY 
DOUBLE PRECISION LRN(MAXN),LRD(MAXN) 
INTEGER NTOT AL,DTOT AL,K,R,G,INDEX(MAXN),D,P,SET,C 
INTEGER OAN(MAXN,NCATS),BAN(MAXN,NCATS),OABN(MAXN,NCATS) 

INTEGER OAD(MAXN,NCATS),BAD(MAXN,NCATS),OABD(MAXN,NCATS) 

****SAMPLING.FOR **** 
****A UTI-I OR: CHRISTINE DONOVAN **** 

****PURPOSE: This program is designed to calculate •••• 
****age specific bias corrected estimates of the group **** 
****conditional error rates for a sample based discriminant**** 
****rule. The comnputer intensive resampling technique, **** 
****bootstrapping, is employed to generate a series of**** 
****apparent error rates that are corrected for bias**** 

****APPLICATION: The program is applied to Down's syndrome screening **** 
****to provide age specific biased corrected estimates of the rates of **** 
****misclassification ofWald's screening algoritlun based on two**** 
****or more markers. The sampling distributions of detection rates and false positive rates **** 
****are summed over a standardized maternal age distribution. **** 

****Data file read in is a: \data, error rates are written to **** 
****a:\results **** 

OPEN(3,FILE='a :data2.txt') 
OPEN( 4,FILE='a:results') 
OPEN(5,FILE='a:DAT A.txt') 
OPEN(6,FILE='a:DDAT A.txt') 
OPEN(7 ,FILE='A:AGE.DA T') 

****G indicates the number of classesin the discriminant analysis, P sets the data dimension**** 

READ(J ,*)G 
READ(J ,*)P 
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****NTOTAL and DTOTAL denote samples sizes for normals and Downs data**** 

READ(3, *)NTOT AL 
READ(3, *)DTOT AL 

****R indicates the number ofbootstrap samples required**** 

READ(3,*)R 

****XN stores the normal data **** 

DO 10 J=l ,NTOTAL 
READ(5, *){XN{J,D),D=l,P) 

10 CONTINUE 

****XD stores the Downs data **** 

DO 50 J=l ,DTOTAL 
READ(6, *){XD{J,D),D=1 ,P) 

50 CONTINUE 

****sets truncation limits on markers **** 

DO 103 I= L,P 
READ(3,*)XMIN(1) 
READ(3, *)XMAX(l) 

103 CONTINUE 

****reads in maternal age distribution*** 

DO 121 J=AGEMIN,AGEMAX 
READ(7, *)FREQM(J) 
TALL Y=T ALLY +FREQM(J) 

121 CONTINUE 

****calculates relative frequencies*** 

DO 232 J=AGEMIN,AGEMAX 
PM(J)=FREQM(J)ff ALLY 

232 CONTINUE 

****reads in selected risk cut off**** 

PRINT*,'RlSK CUT OFF=' 
READ*,C 

****calculates age specific risks **** 

CALL AGERISK(MRlSKN,MRJSKD,RlSK) 

****calculates parameter estimates for the class conditional distributions**** 

CALL SEED 
CALL SETCOV(NTOT AL,P,XBARN,SN,XN) 
CALL INVERT(SN,MAXP ,P,INVN,MAXP,ESP,DETN) 
CALL SETCOV(DTOT AL,P,XBARD,SD,XD) 
CALL INVERT(SD,MAXP,P,INVD,MAXP ,ESP,DETD) 
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****calculates likelihood ratios associated with original normal subjects **** 

CALL LIKR(P,XBARN,XBARD,INVN,INVD,DETN,DETD,NTOT AL,xN,LRN,C) 

****classifies original normal subjects according to assumed age distribution **** 
****stores in OAN **** 

CALL AGEBIAS(NTOT AL,LRN,RISK,OAN,C, I) 

****calculates likelihood ratios associated with original Down's subjects**** 

CALL LIKR(P,XBARN,XBARD,INVN,INVD,DETN,DETD,DTOT AL,XD,LRD,C) 

****classifies original Down's subjects according to assumed age distribution**** 
****stores in OAD **** 

CALL AGEBIAS(DTOT AL,LRD,RISK,OAD,C,2) 

****initializes the bias in each group to zero **** 

DO 2 M=AGEMIN,AGEMAX 
DO 1 I=l,G 
DS(I,M)=O 
dsdr(i,m)=O 
CONTINUE 

2 CONTINUE 

****resamples **** 

DO 35 K= l,R 

****resamples from normal data, stores in XNB **** 

CALL BOOT(NTOT AL,INDEX) 
DO 70 J=l ,NTOTAL 
DO 80 D=l ,P 
XNB(J,D)=XN(INDEX(J},D) 

80 CONTINUE 
70 CONTINUE 

****resamples from Down's data, stores in XDB **** 

CALL BOOT(DTOT AL,INDEX) 
DO 90 J=l,DTOTAL 
DO 100 D=l,P 
XDB(J,D)=XD(INDEX(J),D) 

lOO CONTINUE 
90 CONTINUE 

CALL SETCOV(NTOT AL,P,XBARN,SN,XNB) 
CALL INVERT(SN,MAXP,P,INVN,MAXP,ESP,DETN) 
CALL SETCOV(DTOT AL,P,XBARD,SD,XDB) 
CALL INVERT(SD,MAXP,P,INVD,MAXP,ESP,DETD) 

****calculates likelihood ratios ofbootstrap normal samples**** 
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CALL LIKR(P,XBARN,XBARD,INVN,INVD,DETN,DETD,NTOT AL,XNB,LRN,C) 

****classifies XNB for each m stores in BAN •••• 

CALL AGEBIAS(NTOT AL,LRN,RISK,BAN,C, 1) 

****calculates likelihood ratios ofbootstrap downs sample**** 

CALL LIKR(P,XBARN,XBARD,INVN,INVD,DETN,DETD,DTOT AL,XDB,LRD,C) 

****classifies XDB for each m, stores in BAD **** 

CALL AGEBIAS(DTOT AL,LRD,RISK,BAD,C,2) 

****calculates lrs of original nonnal data using bootstrap rule •••• 

CALL LIKR(P,XBARN,XBARD,INVN,INVD,DETN,DETD,NTOTAL,XN,LRN,C) 

****classifies nonnal data lrs computed by bootstrap rule, OABN •••• 

CALL AGEBIAS(NTOTAL,LRN,RISK,OABN,C, l) 

****calculates lrs of original downs data using bootstrap rule •••• 

CALL LIKR(P,XBARN,XBARD,INVN,INVD,DETN,DETD,DTOT AL,XD,LRD,C) 

****classifies downs data lrs computed by bootst:rap rule, OABD •••• 

CALL AGEBIAS(DTOT AL,LRD,RISK,OABD,C,2) 

****calculates bootstrap bias of apparent error rate of norrnals, ( 1), •••• 
****by averaging over the age specific bias in each bootstrap sample •••• 

DO 51 M=AGEMIN,AGEMAX 
OABERRORN=ERROR(NTOT AL,OABN,M) 
BIAS( l ,M)=ERROR(NTOT AL,BAN,M)-OABERRORN 
DS(l,M)=DS(l,M)+BIAS(l ,M) 

****calculates bootstrap bias of apparent error rate of Down's, (2), •••• 
****by averaging over the age specific bias in each bootstrap sample •••• 

OABERRORD=ERROR(DTOT AL,OABD,M) 
BlAS(2,M)=ERROR(DTOT AL,BAD,M)-OABERRORD 
DS(2,M)=DS(2,M)+BIAS(2,M) 
OABRIGHTD=l-OABERRORD 
BADRIGHTD= 1-ERROR(DTOT AL,BAD,M) 
BlASDR(2,M)=BADRIGHTD-OABRIGHTD 
DSDR(2,M)=DSDR(2,M)+BIASDR(2,M) 

51 CONTINUE 
35 CONTINUE 

****calculates the age specific group conditional error rates **** 
****of the original data sets •••• 

DO 52 M=AGEMIN,AGEMAX 
AP( I ,M)=ERROR(NTOT AL,OAN,M) 
AP(2,M)=ERROR(DTOT AL,OAD,M) 
ODR(2,M)= l-AP(2,M) 
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••••corrects the age specific group coodjtional apparent error rates for bias **** 
••••to provide unbiased estimates of the actual group conditional**** 
••••error rates •••• 

BIAS(l,M)=DS(I,M)/R 
BlAS(2,M)=DS(2,M)/R 
BlASDR(2,M)=DSDR(2,M)/R 

BlASC(l,M)=AP(l,M)-BlAS( L,M) 
BIASC{2,M)=AP(2,M)-BlAS(2,M) 
BIASCDR(2,~DR(2,M)-BlASDR(2,M) 

****writes results to file •••• 

WRITE(4,*)'AP(l ',M,')=',AP(l ,M) 
WRITE( 4, *)'AP(2 ',M, ')=',AP(2,M) 
WRITE(4,*)'BIAS(I',M,')=',BIAS(l ,M) 
WRITE(4, *)'BIAS(2 ',M,')=',BIAS(2.M) 
WRITE(4,*)'BIASC(l',M,')=',BlASC(I ,M) 
WRITE( 4, *)'BIASC(2 ',M,')=',BIASC{2,M) 
WRITE( 4, *)'BIASDR(2 ',M,')=' ,BIASDR(2,M) 
WRITE(4, *)'BIASCDR(2 ',M,')=',BlASCDR(2,M) 

52 CONTINUE 

• ***calculates the age related probabilities for norrnals •••• 
****and Down's outcomes, CONDPMN and CONDPMD *** * 

CALL AGESET(PM,MRJSKN,CONDPMN) 
CALL AGESET(PM,MRISKD,CONDPMD) 

****calculates weighted averages of the age specific error rates •••• 
• ***according to the proportions of the maternal age distribution * • ** 
****for normal outcomes •••• 

CALL RA TES(SUMAP,CONDPMN,AP, l) 
CALL RA TES(SUMBIAS,CONDPMN,BIAS, 1) 
CALL RATES(SUMAP,CONDPMN,AP, l) 
CALL RA TES(SUMBIASC,CONDPMN,BIASC, I) 

****calculates weighted averages of the age specific error rates • *** 
****according to the proportjons of the maternal age distribution **** 
****for Down's outcomes •••• 

CALL RA TES(SUMODR,CONDPMD,ODR,2) 
CALL RATES(SUMBIAS,CONDPMD BIAS,2) 
CALL RA TES(SUMBIASDR,CONDPMD,BIASDR,2) 
CALL RA TES(SUMBIASCDR,CONDPMD,BIASCDR,2) 

••••writes results to file •••• 

WRITE(4,*)'SUMMED BIAS(l )=',SUMBIAS( l ) 
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WRITE(4, *)'SUMMED BIASDR(2)=',SUMBIASDR(2) 
WRITE( 4, *)'SUMMED BIASC( I )=',SUMBIASC( I) 
WRITE(4, *)'SUMMED BIASCDR(2)=',SUMBIASCDR(2) 
WRITE(4,*)'SUMMED AP(I)=',SUMAP(l) 
WRITE(4, *)'SUMMED ODR(2)=',SUMODR(2) 

CLOSE(3) 
CLOSE(4) 
CLOSE(5) 
CLOSE(6) 
CLOSE(?) 

PRINT* , 'PROGRAM HAS TERMINATED' 
STOP 
END 

SUBROUTINE SEED 

••••Reads seeds for random no. generator 

INTEGER IX,IY,IZ,I,ISEED(3) 
COMMON IRANDnx,IY,IZ 
LOGICAL OK 

DO 5 1=1,3 
PRINT* ,'SEED=' 
READ(*, *)ISEED{l) 

5CONTINUE 
OK=.TRUE. 
DO 3 1=1,3 
lF((JSEED(I).L T. I) .OR (ISEED(I).GT.30000))0K=.F ALSE. 

3 CONTINUE 
lF(.NOT. OK) THEN 

PRINT*,' *** SEED OUTSIDE RANGE I - 30000 ***' 
STOP 

IX=ISEED(l) 
IY=ISEED(2) 
IZ=ISEED(3) 
RETURN 
END 

ENDlF 

REAL FUNCTION RANDOM(DUM) 

****Algorithm as 183 appl. statist. (1982) vol.3 1, no.2 
••••returns a pseudo-random number rectangularly distributed 
****between 0 and I. 
****IX, IYand IZ should be set to integer values between 
**** land 30000 before fust enuy 
****integer arithmetic up to 30323 is required 

INTEGER IX,IY,IZ 
REAL DUM 
COMMON IRANDIIX,IY,IZ 
REAL FLOAT 
INTEGER MOD 
REALDMOD 
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IX= l71* MOD(IX,I77)-2* (IX/177) 
IY= l72* MOD(IY,l76)-35* (IY/176) 
IZ=l70* MOD(IZ, l78)-63* (IZ/178) 
IF(IX.L T.O) IX=IX + 30269 
IF(IY.L T.O) IY=IY + 30307 
IF(IZ.LT.O) IZ=IZ+30323 
RANDOM=MOD(FLOAT(IX)/30269 .ODO +FLOA T(IY)/30307.0DO 
+ +FLOAT(IZ)/30323.000, l .ODO) 
RETURN 
END 

SUBROUTINE BOOT(M,INDEX) 

****This subroutine returns a bootstrap sample of a set of M integers**** 
****and stores the sample in INDEX **** 

PARAMETER (MAXN=300) 
INTEGER INDEX(MAXN),J 
REAL DUM,RANDOM, Y 
COMMON IRAND/IX,fY,IZ 

DUM = O 
DO 100 J= l ,M 
INDEX(J)=INT( RANDOM(DUM)*M)+ 1 

lOO CONTINUE 
RETURN 
END 

REAL FUNCTION MEAN(T,D,X,P) 

****This function returns the arithmetic mean ofT numbers read 
****from a data matrix , with D indicating the data column 
****to be accessed 

PARAMETER (MAXP=3,MAXN=300) 
REAL X(MAXN,MAXP) 
INTEGER T,J,D,P 

MEAN=O 
D04 J=l,T 
MEAN=X(J,D)+MEAN 

4 CONTINUE 
MEAN=MEANfT 
RETURN 
END 

REAL FUNCTION COV(MU,T,D,Q,X,P) 

****This function computes the covariance of two variables consisting 
****of 1,2, . .t observations read from a data matrix X. D and Q 
****index the variables used. the array MU stores the mean of the 
****variables 
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PARAMETER (MAXP=3,MAXN=300) 
REAL X(MAXN,MAXP),MU(MAXP) 
INTEGER T,D,Q,P 

COV=O 
DO 6 J=l,T 
COV=COV+((X(J,D)-MU(D))*(X(J,Q)-MU(Q))) 

6 CONTINUE 
COV=COVI(T -1) 
RETURN 
END 

SUBROUTINE SETCOV(T,P,XBAR,S,X) 

****Returns the covariance, S(P,P),for each variable P=l,2, .. P 
****from COV. XBAR stores the mean vector of the variables. 

PARAMETER (MAXP=3,MAXN=300) 
REAL XBAR(MAXP),S(MAXP,MAXP),COV,MEAN,X(MAXN,MAXP) 
INTEGER T,SUM,P,Q,D,J 

DO 3 D=l,P 
XBAR(D)=MEAN(T,D,X,P) 

3 CONTINUE 
DO 40 SUM=l,P 
D=SUM 
DO 10 Q=SUM,P 
S(D,Q)=COV(XBAR, T,D,Q,X,P) 
S(Q,D)=S(D,Q) 

10 CONTINUE 
40 CONTINUE 

RETURN 
END 

SUBROUTINE INVERT(A,IA,N,B,ffi,EPS,DEL) 

****Matrix inversion by elimination with partial pivoting 
****original matrix A inverse matrix =B 
****note that A is changed on exit 
****EPS is a small quantity used to see if the matrix is singular 
****DEL is value of determinant on exit 

PARAMETER (MAXP=3,MAXN=300) 
INTEGER IA,ffi,N 
REAL A(IA,N),B(ffi,N),EPS 
REAL DEL,AMAX,AMUL T,A TMP,BTMP,DIV 
INTEGER I,J,K,IMAX,KPl 

****construct identity matrix B(I,J)= I 
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EPS=O.lE-ll 
DO 6 I= l ,N 
D05 J= l ,N 
B(I,J)=O.O 

5CONTINUE 
B(I,I)= l.O 

6CONTINUE 

****locate maximum magnitude A{l,K) on or below main diagonal 

DEL= l.O 
0045 K=l ,N 
IF (K-N) 12,30,30 

12IMAX=K 
AMAX=ABS(A{K,K)) 
KPI=K+l 
DO 20 I=KPI ,N 
IF(AMAX- ABS(A(l,K)))l5,20,20 

15IMAX=I 
AMAX=ABS(A{l,K)) 

20CONTINUE 

****interchange rows IMAX and K if IMAX not equal to K 

IF(IMAX-K)25,30,25 
25 DO 29 J= l ,N 

A TMP=A(IMAX,J) 
A{IMAX,J)=A(KJ) 
A{K,J)=ATMP 
BTMP=B(IMAX,J) 
B{IMAX,J)=B(KJ) 

29B(KJ)=BTMP 
DEL=-DEL 

30 CONTINUE 

****test for singular matrix 

IF(ABS(A(K,K))- EPS)93,93,35 
35 DEL=A{K,K)* DEL 

****divide pivot row by its main diagonal element 

DIV=A{K,K) 
DO 38 J=l,N 

A(K,J)=A(K,J)/DIV 
38 B{K,J)=B(K,J)/DIV 

****replace each row by Linear combination with pivot row 

D043 I=l ,N 
AMUL T=A{l,K) 
IF (I-K) 39,43,39 

39 DO 42 J= l,N 
A(l,J)=A{l,J) - AMUL T* A{K,J) 

42 B(l,J)=B{I,J) - AMUL T* B{K,J) 
43 CONTINUE 
45 CONTINUE 
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RETURN 
93 WRITE(* ,113)K 
113 FORMAT(' SINGULAR MATRIX FOR K=',I3) 

STOP 
END 

REAL FUNCTION PDF(P,)CBAR,INV,X,J) 

****returns mvn pdf (not including pi parts) 
****set values for censoring 

PARAMETER (MAXP=3,MAXN=300) 
INTEGER P,I,J,A 
REAL X(MAXN,MAXP),XBAR(MAXP),INV(MAXP,MAXP) 
REAL XMIN(MAXP),XMAX(MAXP) 
REAL XMMU(MAXP),CXMMU(MAXP),QUAD 

DO 1 1=1,P 

C IF (X(J,l).LT.XMIN(l)) X(J,I) = XMIN(l) 
C IF (X(J,l).GT.XMAX(l)) X(J,I) = XMA.X(l) 

XMMU(l)=X(J,l)- XBAR(l) 

1 CONTINUE 

****evaluate PDF 

QUAD=O.ODO 
DO 2 I= l ,P 

CXMMU(l)=O.ODO 
DO 3 A=l ,P 
CXMMU(l)=CXMMU(l)+INV(l,A)*XMMU(A) 

3 CONTINUE 
QUAD=QUAD+(XMMU(l)*CXMMU(l)) 

2 CONTINUE 
PDF= (-0.5*QUAD) 

RETURN 
END 

SUBROUTINE LIKR(P,XBARN,XBARD,INVN,INVD,DETN,DETD, T,X,LR,C) 

****Tbis subroutine calculates the positive likelihood ratio of**** 
****a normal outcome to a Down's, storing the result in LR**** 
****The routine employs PDF**** 

P ARA.METER (MAXP=3,MAXN=300) 
INTEGER P,T ,J,l,C 
REAL XBARN(MAXP),XBARD(MAXP),INVN{MAXP,MAXP),MA:x,MIN 
REAL INVD(MAXP,MAXP),DETN,DETD,X(MAXN,MAXP),PDF 
DOUBLE PRECISION LR(MAXN) 
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MAX=LOG((SQRT(DETN)*C)/(SQRT(DETD)*28)) 
MIN=LOG((SQRT(DETN)*C)/(SQRT(DETD)* 1578)) 

DO 3 J= 1,T 
LR(J)=PDF(P,)<BARN,INVN,X,J) 
LR(J)=LR(J)-PDF(P,)CBARD,INVD,X,J) 
IF (LR(J).GT.MAX) mEN 
LR(J)=MAX 

END IF 
IF (LR(J).LT.MIN) mEN 
LR(J)=MIN 

END IF 
LR(J)=EXP(LR(J)) 
LR(J)=LR(J)*(SQRT(DETD)/SQRT(DETN)) 

3 CONTINUE 
RETURN 
END 

SUBROUTINE AGERISK(MRISKN,MRISKD,RISK) 

****This subroutine calculates the maternal age related risk of an age **** 
****distribution from AGEMIN to AGEMAX, according to Cuckle(1987),**** 
****and stores them in MRISKN and MRISKD. RISK stores the ratio of the two probabli1ties.**** 

PARAMETER (NCATS=60,AGEMIN= l1,AGEMAX=55) 
REAL MRISKN(NCATS),MRISKD(NCATS),RISK(NCATS) 

DO 61 J=AGEMIN,AGEMAX 
MRISKN(J)=O. 999373-EXP( -16.2395+(0.286* J)) 
MRISKD(J)=( l-MRISKN(J)) 
RISK(J)=MRISKN(J)IMRISKD(J) 

61CONTINUE 
RETURN 
END 

SUBROUTINE AGEBrAS(T,LR,RISK.,ALL,C,I) 
PARAMETER (MAXN=300,NCATS=60, AGEMIN= ll , AGEMAX=55) 
DOUBLE PRECISION LR(MAXN) 
REAL RISK(NCATS) 
INTEGER J,C,T,J,ALL(MAXN,NCATS) 

**** AGEBIAS calls ALLOCATE for each subject in order to allocate the subject to **** 
****either Down's or norrnals , for an assumed maternal age distribution**** 

DO lOO J= l ,T 
CALL ALLOCATE(J,RISK,LR,ALL,C,l) 

100 CONTINUE 
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RETURN 
END 

SUBROUTINE ALLOCA TE(J,RlSK,LR,ALL,C,I) 
PARAMETER (AGEMJN=ll, AGEMAX=55, MAXN=300, NCATS=60) 
DOUBLE PRECISION LR(MAXN) 
REAL RISK(NCATS) 
INTEGER C,S,M,J, TEMP, I,ALL(MAXN,NCATS) 

****Tills routine allocates each subject to the classification Down's or oormals by allocating**** 
****a 0 or l , with l indicating membership of group i. Subjects are**** 
****allocated over an assumed age distribution from AGEMIN to AGEMAX **** 
****The criteria of allocation is based on a risk cut off value c. **** 
****if LR > (c/RISK) then the subject is classified as normal.*** 

2 

4 

TEMP=AGEMIN 

IF (I.EQ.2) THEN 
DOl M=TEMP,AGEMAX,l 

ELSE 

JF (LR(J).GT.(float(C)*(1/RISK(M)))) THEN 
ALL(J,M)=O 

ELSE 
DO 2 S=M,AGEMAX 

ALL(J,S)=1 
CONTINUE 
goto 999 

END IF 
CONTINUE 

TEMP=AGEMAX 
DO 3 A=TEMP,AGEMIN,-1 

IF (LR(J).LE.(float(C)*(IIRISK(A)))) THEN 
ALL(J,A)=O 

ELSE 
DO 4 U=A,AGEMIN,-1 

ALL(J,U)=1 
CONTINUE 
goto 999 

END IF 
3 CONTINUE 

END IF 
999 RETURN 

END 

INTEGER FUNCTION SET(U) 

****This function returns the error of an allocation integer U**** 

INTEGER U 
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IF (U.EQ. l) THEN 
SET=O 
ELSE 
SET=l 
END IF 
RETURN 
END 

REAL FUNCTION ERROR(f,ALL,M) 

****This function returns the apparent error rate of an allocation**** 
••••vector C, based on T subjects, employing the function SET**** 

PARAMETER (MAXN=300,NCATS=60) 
INTEGER T,J,SET,ALL(MAXN,NCATS),M 

ERROR=O 
DO 10 J= J,T 
ERROR=ERROR+SET(ALL(J,M)) 

10 CONTINUE 
ERROR=ERROR!f 
RETURN 
END 

SUBROUTINE AGESET(PM,MRlSK,CONDPM) 
PARAMETER (AGEMIN= l l ,AGEMAX=55,NCA TS=60,MAXG=4) 
REAL SUM,CONDPM(NCATS) 
REAL MRISK(NCATS),PM(NCATS) 
INTEGERJ 

****This subroutine provides a weighted average of the maternal age related 
••• probabilities by summing the age related probabilities of risk •••• 
••••over the maternal age distribution••• 

SUM=O 
DO 601 J=AGEMIN,AGEMAX 
SUM=SUM+PM(J)*MRlSK(J) 

601 CONTINUE 
DO 701 J=AGEMIN,AGEMAX 
CONDPM(J)=(PM(J)*MRlSK(J))/SUM 

701 CONTINUE 
RETURN 
END 

SUBROUTINE RA TES(TOT AL,CONDPM,AMOUNT,I) 
PARAMETER (AGEMIN= ll ,AGEMAX=55,NCATS=60,MAXG=4) 
REAL TOT AL(mlLxg),CONDPM(NCATS) 
REAL AMOUNT(MAXG,NCA TS) 
INTEGERJ,I 

****This subroutine sums any received amount by the •••• 
••••maternal age distribution ••• 
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TOTAL=() 
DO 656 J=AGEMIN,AGEMAX 
TOT AL(i)=TOT AL(i)+AMOUNT(l,J)*CONDPM(J) 

656 CONTINUE 

RETURN 
END 
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AppendixD 

{A TYPICALITY INDEX.PAS} 
{AliTHOR: CHRISTINE DONOVAN} 
{DATE: 10/04/92} 
{PURPOSE: This program is primarily designed to produce sets of atypicality} 
{indices from a random sample of recorded analyte concentrations or MoM} 
{values taken from either Down's syndrome or Normal pregnancies, to provide} 
{an assessment of how typical each observation is of each catagorization.} 
{The risk algorithm given by Wald et a/ ( 1988) is used to assign a risk of abnormality to} 
{each pregnancy. } 

program atypicaJity(input,output,filein,fileout); 

type vectora= 1 . .5; 
vectorb= 1.. 5; 
vectorl =array[vectora) of real; 
\'ector2=array[vectora,vectorb] of real; 
vector3=array[ 1..2000) of real; 

var p,n,ij,nsarnp,count5,count2,countl,countrisk:integer; 
eps,detn,detd,ain,aid,aintrunc,aidtrunc,Likr,agerisk, risk: real; 
meann,meand,xminn,xmind,xmaxn,xmaxd,nmin,dmin,nmax,drnax,x:vector 1; 
cvinvn,cviuvd,covn,covd:vector2; 
age:vector3; 
nonsingular:boolean; 
filein,fileout,logout:text; 
namein,nameout,xout:string[20]; 

procedure invert(var v, inv:vector2; var p 1 ,p2, n 1 :integer; 
var nonsingular:boolean;var eps,det:real); 

{calculates v inverse by elimination with partial pivoting, original } 
{matri.x = v, inverse matrix = inv, v changes on exit; eps is a small } 
{value used to see if matrix is singular, det is the determinant on exit} 

var antax,amult,atmp,btmp,divn:real; 
ij.k,imax,kp 1 :integer; 

begin 
for i := l to pl do 
begin 
for j :=1 to pi do 
inv[ij) :=O; 

inv[i,i) := 1 
end; 

det:= 1; 
nonsingular:=true; 
k :=l ; 
eps:=0. 1e-11; 

while ((k<=p l) and nonsingular) do 
begin 
if(k<pl) then 
begin 
imax:=k; 
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amax:=abs(v[k,k ]); 
kpl :=k+ l ; 

{locate maximwn magnitude a(i,k) on or} 
{below the main diagonal} 

for i:=kpl to pl do 
begin 
if (amax<abs(v[i,k])) then 
begin 
imax:=i; 
amax:=abs(v(i,k]) 

end; 
end; 

if (k<>imax) then 
begin 
for j :=l to pl do 
begin 
atmp:=v[imaxj]; 
v[irnaxj]:=v[kj]; 
v[kj]:=atmp; 

{interchange rows imax and k ifimax} 
{not equal to k} 

btmp: =inv( irnaxj]; 
inv[imaxj] :=inv[kj]; 
inv[kj] :=btmp 

end; 
det:~~ 

end; 
end; 

·if (abs(v[k,k])<=eps) then {test for singular matrix} 
nonsingular:=false 
else 
begin 
det:=v[k,k]*det; 
divn:=v[k,k]; 
for j := l to pl do {divide pivot row by its main} 
begin {diagonal element} 
v[kjj :=v[kj]/divn; 
inv[kj] :=i nv[kjlfdivn 

end; 
for i:=l to pl do 
begin 

amult:=v[i,k]; 

if (i<>k) then 
begin 
for j := l to pi do 
begin 
v[ij] :=v[ij] -amult*v[kj] ; 
inv[ij]:=inv[ij)-amult*inv[kj) 

end; 
end; 

end; 
end; 
k:=k+ l ; 

end; 
end; 

function pdf(var nl ,pl ,p2:integer,\'ar det,quad:real; 
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var mean,xmin,xmax,x:vector l ;var cvinv:vector2):real; 

{this function returns mvn pdf, not including pi parts. and produces an} 
{ atypicality index} 

type lista=1..5; 
1istl =array[lista] of real; 

var ij: integer; 
cxmmu,xmmu:list 1; 

begin 
for i:= 1 to p1 do 
begin 
if (x[i)<x:rnin[i]) then 
x[i) :=xmin[i); {censoring x values by comparison with} 

{cut-<>ffvalues read from file} if (x[i)>xmax[i)) then 
x[i] :=xmax[i); 

xnunu[i] :=(x[i)-mean[i)); 
end; 

quad:=O.Oe-10; {evaluate pdf} 

for i:=l to pl do 
begin 
cxmmu[i):=O.Oe-10; 
for j :=l to pl do 
cxmmu[i] :=cxmmu[i)+cvinv[ij]*xmmu[j]; 

quad:=quad+xmmu[i]*cxrnmu[i) { quad=atypicality index} 
end; 

pdf:=(exp( -0.5*quad)/sqrt(det)); 
end; 

procedure lr(var nl ,p 1 ,p2 :integer;var detn,detd,ain,aid,likr:real; 
var meann,meand,xminn,xmind,xmaxn,xmax.d,x :vector 1; 
var cvinvn,cvivnd:vector2); 

{this procedure calculates the likelihood ratio, or odds modifier} 

var v,u:real; 
ij:integer; 

begin 

u :=pdf( n 1 ,p 1 ,p2,detn,ain,meann,xminn,xmax.n,x, C\'invn); 
v:=pdf(n 1 ,p 1 ,p2,detd,aid,meand,x:mind,xmaxd.x,C\'invd); 
likr:=u/v 

end; 

begin 
writeln('input file?') ; 
readln(namein); 
writeln('output file?'); 
readln(nameout); 
writeln('output log file?'); 
readln(xout); 
assign(filein,namein); assign(fileout,narneout); assign(logout,xout); 
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reset(filein); 
rewrite(fileout);rewrite(logout); 

write('matrix dimensions n.p='); 
readln(n,p); 

for i:= l top do 
readln(filein,meann[i]); 

for i:= l top do 
readln(filein,meand[i]); 

{reads from file mean vectors} 
{x cut-offs and covariance matrices} 

for i:= l top do 
readln(filein.xminn[i],nrnin[i)); 

for i:=l top do 
readln(filein,xmind[i],dmin[i]); 

for i:=l top do 
readln(filein,xmaxn[i],nmax[iJ); 

for i:=l top do 
readln( filein,XIll.axd[i] ,dmax[ i]); 

for i:=l top do 
begin 
for j :=l ton do 
readln(filein,covn[ij]); 

end; 

for i:=l top do 
begin 
for j :=l ton do 
readln(filein,covd[ij]); 

end; 

invert( covn,cvinvn,p,p,n, nonsingular,eps,detn); 
invert( covd,cvinvd,p,p,n,nonsingular ,eps,detd); 
readln(filein,nsamp); 

write(fileout,' AIN AID 
writeln(fileout,' AGE RISK 

count5:=0; 
countl:=<l; 
countl :=0; 
countrisk: =<l; 

for i:=l to nsamp do 
begin 
read(filein.age[i]); 
for j :=l top do 
begin 

read(filein.xO]); 
x[j) :=(ln(x0])/2.3025851 ); 
write(logout,xO],' '); 

end; 
readln(filein); writeln(logout); 

LIKR '); 
RISK'); 

{calculates cov inverse} 
{for downs and nonnals} 

lr( fl.p,p,detn,detd,ain,aid,l ikr,meann,meand,xmi nn,xmi nd. 
xmaxn,xmaxd,x,cvinvn,cvinvd); 

agerisk:=((O. 9993 73-exp( -16.2395+(0.286*age[ i])))/ 
(0.000627+exp( -16.2395+(0.286*age[i])))); 

lr( n.p,p,detn.detd,aintrunc,aidtrunc,l ikr ,meann,meand, nmin,dmin, 
nmax,dmax,x,cvinvn,cvinvn); 

risk:=likr*agerisk; 
writeln(fi leout,ain,aid,likr,agerisk,risk); 
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{fileout contains the atypicality} 
{indices and} 
{the likelihood ratios for each subject} 

if (risk > 300) then 
begin 
if (ain >= 5.991) then 
count5 :=count5+ 1; 
if(ain >= 7.824) then 
count2 :=count2+ 1; 
if(ain >= 9.210) then 
count1:=count1+1; 

end 
else 
countrisk:=countrisk+ 1; 

end; 
writeln(fileout, 'No. screened neg. but atypical of nonnal at'); 
writeln(fileout,' 5% 2% 1%'); 
write1n(fileout,count5:3,count2:5,count1 :5); 
writeln(fileout, 'No. screened pos. =',countrisk); 

close(fileout); close(logout); 
end. 
D 
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AppendixE 

Software written in S-Pius designed to construct univariate and bivariate kernel density estimates 

> de 
function(x, data, h) 
{ 

pts <- length(x) 
de <- vector(length = pts) 
n <-length(data) 
for(i in I :pts) { 

de(i] <- sum(dnonn(x[i], data, h)/n) 
} 
as. double( de) 

} 
> de2 
function(x, data, hl , h2) 
{ 
# 
# 
# x is an mx2 vactor of points 
# 

pts <- length(x[, l]) 
n <-length(data[, I]) 
de <- vector(length = pts) 
for(i in l:pts) { 

print(i) 
de[i] <- sum(dnorm(x[i, 1], data[. 1], hl) * dnonn(x[i, 2], 

data[, 2], h2))/n 
} 
as. double( de) 

} 
> 
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AppendixF 

Software written in S-Plus designed to construct univariate and bivariate parametric densities 

gauss_ function(p,x,mu,inv j ,det,xmin,xmax) 
{ 

pts <- length(x) 
x <- matrix(nrow=pts,ncol=2) 
mu <- vector(length=2) 
xmmu <- vector(length=2) 
cxmmu <- vector(length=2) 
inv <- matrix(nro'"= 2,ncol=2) 

for ( i in l:p){ 
ifelse((x[j,i]> xmin[i]),xO,i],xmin[i]) 
ifelse((x[j,i]< xmax[i]),x[j,i],xmax[i]) 
} 
for ( i in l :p){ 
xmmu[i]<-x[j,i]-mu[i] 
} 

quad<-0 
for (i in l :p){ 
cxm.mu[i]<-0 
for (kin l :p) { 
cxmmu[i]<- cxmmu[i]+inv[i,k]*xmmu[k] 
} 
quad<~uad+(xmmu[i]*cx.mmu[i]) 

} 
temp<-( -0. 5 *quad) 
prod<-(6. 283 *sqrt( det))i' -l 
prod*exp(temp) 
} 
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Appendix G 

Software written in FORTRAN designed to calculate detction rates and false positive rates. 

PARAMETER (maxn= 1500,maxg=2,agemin= 11 ,agemax=55) 
PARAMETER (ncats=60) 
REAL DR,FPr 
REAL CONDPMN(NCATS},CONDPMD(NCATS),PM(NCATS),FREQM(NCATS),T ALLY 
REAL lrn(maxn},lrd(maxn),risk(ncats),mriskn(ncats) 
REAL mriskd(ncats),pos(rnaxg,ncats) 
INTEGER n(maxg),C 

OPEN( l ,ffiE='a:lm') 
OPEN(2,ffiE='a:lrd') 
OPEN(3,FILE='a:AGE.DA T') 
open(5,file='a:results') 

DO 121 J=AGEMIN,AGEMA.X 
READ(3, *)FREQM(J) 
TALL Y=T ALLY +FREQM(J) 

121 CONTINUE 

DO 232 J=AGEMIN,AGEMA.X 
PM(J)=FREQM(J)ff ALLY 

232 CONTINUE 

WRITE(*, *)'SAMPLE SIZE NORMALS=' 
READ(*,*)N(L) 
WRITE(*, *)'SAMPLE SIZE DOWNS=' 
READ(*,*}N(2) 
WRITE(*, *)'CUTOFF VALUE=' 
READ(*,*)C 

DO 12 J= 1,n(l) 
READ( 1, *)lm(j) 

12 CONTINUE 

DO l3 J= 1,n(2) 
READ(2, *)lrd(j) 

13 CONTINUE 

call agerisk(mriskn,mriskd,risk) 

CALL SCREENPOS(N(1),LRN,pos,C, 1,risk) 
CALL SCREENPOS(N(2),LRD ,pos, C,2,risk) 
CALL AGESET(PM,MR.ISKN,CONDPMN) 
CALL AGESET(PM,MRISKD,CONDPMD) 
CALL RA TES(FPR,CONDPMN,POS, l) 
CALL RA TES(DR,CONDPMD,POS,2) 
write(5, *)'dr=',dr 
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write(5, *)'fpr=' ,fpr 

close( 1) 
close(2) 
close(3) 

STOP 
END 

SUBROUTINE AGERISK(MRJSKN,MRISKD,RISK) 

****This subroutine calculates the maternal age related risk of an age **** 
****distribution from AGEMIN to AGEMAX, according to Cuckle(l987), **** 
****and stores them in MRISKN and MRISKD. RISK stores the ratio of the two probablilties. **** 

PARAMETER (ncats=60,agemin= 11 ,agemax=55) 
REAL MRISKN(NCATS),MRISKD(NCA TS),RISK(NCATS) 

DO 61 J=AGEMlN,AGEMAX 
MRISKN(J)=O. 999373-EXP( -16.2395+(0.286* J)) 
MRISKD(J)=( 1-MRISKN(J)) 
RISK(J)=MRISKN(J)IMRISKD(J) 

6I CONTINUE 
RETURN 
END 

SUBROUTINE SCREENPOS(N,LR,POS,C,T,risk) 
PARAMETER(AGEMIN=l1,AGEMAX=55,MAXN=1500,maxg=2,ncats=60) 
real pos(maxg,NCATS) 
J:NTEGER N,l,J,C,T 
REAL LR(MAXN),RISK(NCA TS),no I (maxg,NCATS) 

DO 1 J=AGEMlN,AGEMAX 
nol(T,J)=O.dO 
DO 2 l=l ,N 

IF (LR(D.L T. (C/RISK(J))) TIIEN 
NOI(T,J)=NOI(T,J)+l.dO 

END IF 
2 CONTINUE 

pos(T,J)=no 1 (tj)/N 
write(5, *)'screen pos(',T,',',J,')=',pos(T,J) 

I CONTINUE 
RETURN 
END 

SUBROUTINE AGESET(PM,MRISK,CONDPM) 
PARAMETER(AGEM1N= II,AGEMAX=55.NCATS=60,MAXG=2) 
REAL SUM,CONDPM(NCATS) 
REAL MRISK(NCATS),PM(NCATS) 
INTEGERJ 
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****This subroutine provides a weighted average of the maternal age related 
••• probabilities by summing the age related probabilities of risk •••• 
****over the maternal age distribution*** 

SUM=O 
DO 601 J=AGEMIN,AGEMAX 
SUM=SUM+PM(J)*MRISK(J) 

60 I CONTINUE 
DO 701 J=AGEMIN,AGEMAX 
CONDPM(J)={PM(J)*MRISK(J))/SUM 

701 CONTINUE 
RETURN 
END 

SUBROUTINE RA TES(TOT AL,CONDPM,POS,I) 
PARAMETER (AGEMIN=ll,AGEMAX=55,NCATS=60,MAXG=2) 
REAL CONDPM(NCATS) 
REAL POS{MAXG,NCA TS) 
INTEGERJ,I 

****This subroutine sums any received amount by the conditional**** 
****maternal age distribution *** 

TOTAL=O 
DO 656 J=AGEMIN,AGEMAX 
TOT AL=TOT AL+POS(l,J)*CONDPM(J) 

656 CONTINUE 
RETURN 
END 
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