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ABSTRACT
STATISTICAL ASPECTS OF FETAL SCREENING
CHRISTINE M DONOVAN

This thesis discusses the current screening algorithm that is used to detect fetal

Down’s syndrome. The algorithm combines a model for predicting age related risks and a
model for appropriately transformed serum concentrations to produce estimates of risks. A
discriminant analysis is used to classify pregnancies as either unaffected or Down’s
syndrome. .
The serum concentrations vary with gestational age and the relationship between
serum concentrations and gestational age is modelled using regression. These models are
discussed and alternative models for these relationships are offered. Concentration values
are generally expressed in terms of multiples of the medians for unaffected pregnancies, or
MoM values, which involves grouping the concentrations into weekly bins. Transformations
of the MoM values are used in the model for predicting risks. The transformed values are
equivalent to the residuals of the fitted regression models. This thesis directly models the
residuals rather than converting the data to MoM values. This approach avoids the need to
group gestational dates into completed weeks.

The performance of the algorithm is assessed in terms the detection rates and false
positive rates. The performance rates are prone to considerable sampling error. Simulation
methods are used to calculate standard errors for reported detection rates. The bias in the
rates is also investigated using bootstrapping techniques.

The algorithm often fails to recognize abnormalities other than Down’s syndrome
and frequently associates them with low risks. A solution to the problem is offered that
assigns an index of atypicality to each pregnancy, to identify those pregnancies that are
atypical of unaffected pregnancies, but are also unlike Down’s syndrome pregnancies.

Nonparametric techniques for estimating the class conditional densities of
transformed serum values are used as an alternative to the conventional parametric
techniques of estimation. High quality deisity estimates are illustrated and these are used to
compute nonparametric likelihood ratios that can be used in the probability model to predict
risks.

The effect of errors in the methods of recording gestational dates on the parameter
estimates that are used in the discriminant analysis is also considered.
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Chapter 1

Introduction

1.1 Background

Antenatal screening for genetic disorders has become a topical issue within the
medical literature over the last decade. Particular attention has been given to the
chromosomal abnormality, Down’s syndrome. With an incidence rate of 1:700 live births,
Down’s syndrome is the most frequently occurring genetic disorder during pregnancy (Van
Lith (1994)). The disorder is the most common cause of severe mental retardation and it is
characterized by short phﬂmges, a short and flat bridged nose and a flattening of the skull
giving the appearance of a ‘facial roundness’. There is clinical evidence of premature aging
and pre-senile dementia, along with an increased risk of congenital heart disease (Martin
(1978), Burger and Vogel (1973)).

Séguin (1846) originally described the disorder as a ‘true multiple congenital
anomalies/mental retardation syndrome’. John Langdon Down (1866) declared the disorder
to be a reversion to the Mongoloid type caused by maternal tuberculosis. Following a
laboratory error that consequently enabled clear resolution of all 46 chromosomes resident
in each human cell, Dr Lejeune (1979) made clinical history by discovering the presence of a
third chromosome, attached to the twenty first pair of chromosomes, in subjects with the
abnormality.

Down’s syndrome, (trisomy 21), and indeed other chromosomal disorders, can be
detected reliably from the results of a trans-abdominal amniocentesis which is generally

performed during the second trimester of pregnancy (weeks 15-21). Mid trimester




amniocentesis was first developed during the late nineteen sixties (Jacobson and Barter
(1967)), and has since been credited as a highly sensitive procedure. However, there can be
severe complications of process-related fetal loss through miscarriage. Such an invasive
surgical procedure would severely compromise the health of the fetus if the procedure was
performed before a gestation of sixteen weeks. Moreover, karyotyping of the amniotic fluid
cells requires a further 2-3 weeks of culturing before diagnosis. Intrusions at such a late
stage of pregnancy may impose psychological complications on the mother as well as
interrupting fetal development.

Initial indications of successful first trimester genetic diagnosis were reported by
Brambati and Simoni (1983). The publication discusses the vartous approaches to chorionic
villus sampling. Their findings demonstrate that the most reliable method of sampling
uncultured chorionic villi is by a transcervical insertion of a catheter coupled with ultrasonic
guidance. Diagnostic karyotyping by this technique was considered successful enough at the
time to move mid trimester cytogenetic diagnosis to the first trimester (weeks 0-14). Unlike
amniocentesis, a result can be obtained within a few hours of sampling (Brambati and
Simoni (1983)). Chorionic villus sampling permits an early diagnosis which has
psychological and ethical advantages. However, more recent studies have reported the risk
of process-induced miscarriage to be 1-2% (Lynch and Berkowitz (1992)).

According to Wald er al (1988) the best estimate of the fetal loss rate through
amniocentesis was determined in the randomised trial reported by Ann Tabor ef a/ (1986)
indicating that the risk is about 1%. Amniocentesis is a well established procedure that
imposes minimal risk on the fetus. This is probably responsible for the poor uptake of
chorionic villus sampling in developed countries where the technological and economical
necessities to cater for amniocentesis are widely available. The potential threat to fetal life

along with economic factors restricts the relative utility of amniocentesis. The procedure is



only offered to women considered to be at high risk of delivering a Down’s syndrome child.

Penrose (1934) ascertained the link between increasing incidences of Down’s
syndrome births and advancing maternal age, this association has since been well
recognized. Until relatively recently, women have been classified as high risk on the basis of
maternal age alone. Typically, women over 35 have been regarded as high risk and offered
an amniocentesis. The age criteria has been adjusted for the changes in the mean maternal
age of the pregnant population during the last two decades and in some regions the age cut-
off has been increased to 37 (Van Lith (1994)). This procedure has led to approximately 5%
of pregnant women being offered an amniocentess.

The best estimate of a model for predicting risk from maternal age is given in Cuckle
et al (1987). This model was fitted using the results derived from a combination of eight
published surveys that monitored live births. The risk for each maternal age, in years, was
specified. The estimated risk, ¢, is considered in terms of the probability of a Down’s
syndrome outcome for a given maternal age m, or is described as an odds ratio of the

probability that the pregnancy is unaffected, p(N /m), to the probability that it has Down’s

syndrome, p(D/m), such that

p(N /m)
p(D/m)

=c=>odds=lc

A maternal age cut-off of 35-37 isolates less than 10% of the pregnant population,
which amounts to 20-30% of all Down’s syndrome pregnancies (Zeitune ef al/ (1991)).
Moreover, the uptake of amniocentesis is often as low as 50% reducing sensitivity to about
20% (Youings ef al (1991)).

The problem of low detection for the system as a whole indicates the need for a
more effective preliminary screen for identifying a high risk group. Although the mean

maternal age of the pregnant population has elevated in recent years, the frequency of



Down’s syndrome births has not increased since the introduction of genetic screening.
However, the past twenty years of prenatal screening has had no real impact on the
incidences of Down’s syndrome. Current age related screening programs of this type are
inefficient in terms of sensitivity. This emphasises the need for a broader screen that includes
the whole population of pregnant women so that the number of unnecessary amniocenteses
performed ts reduced.

The possibility of an advanced screening procedure, introducing biochemical
diagnostic testing methods for the detection of Down’s syndrome, was first discussed by
Merkatz (1984). The paper concerns the events surrounding a 28 year old woman who, not
having been offered an amniocentesis, delivered a female infant with multiple congenital
anomalies. The mother's levels of maternal serum concentrations of alpha-feto proteins,
(AFP), drawn from blood sampling techniques, were available, as routine checks had been
administered for neural tube defects. The analysis conducted by Merkatz (1984) shows that
most autosomal trisomic births occur in women below 34 years. Evidence connecting fetal
congenital abnormalities and low maternal serum concentrations of alpha-feto protein is also
provided. Confirmation of this followed in a subsequent report by Cuckle er a/ (1987). In
1987 Bogart ef al announced that concentrations of the placental protein human chorionic
gonadotrophin, (HCG), could be used as a biochemical screening variable for Down’s
syndrome. Canick e al (1988) announced that low levels of maternal serum concentrations
of unconjugated oestriol, (UE3), were associated with Down’s syndrome pregnancies.

A multitude of similar studies have since been conducted from many regions with
varying populations being studied. Most have shared the same objective, to examine

possible connections between Down’s syndrome pregnancies and maternal serum markers.



1.2 Current screening algorithms

Wald ef al (1988) published a seminal article in the British Medical Journal which
became a model for most subsequent work. Wald ef al/ (1988) announced an achievable
detection rate of 60% at an amniocentesis rate of 5%, by screening according to a
composite risk derived from three analytes, AFP, UE3 and HCG in combination with
maternal age.

Wald et al (1988) performed a case control study in which 77 singleton pregnancies
associated with Down’s syndrome were selected as cases and for each of these, 5 unaffected
singleton pregnancies were chosen as controls, that were matched for serum sample
duration, maternal age and gestational age. As with most of the published data c;f this type |
the serum concentrations were standardized to units known as multiples of medians or
MoMs. The dependency between serum concentrations and gestational age is well
recognized and unaffected median concentrations are often regressed against gestational age
to establish smoothed weekly medians. Most workers use weighted least squares to fit
loglinear or exponential models (Knight (1991)). Frequently, medians for completed weeks
of gestation are simply specified or taken from previous studies. Each serum concentration
is expressed as a multiple of the unaffected median for the same gestation to give a MoM
value. For example, 2 MoM indicates the serum concentration is twice the unaffected
median concentration. It is considered that MoM values have the advantage of removing the
variation between the screening centres and also provide a means of standardizing
measurements across the gestational age distribution. Other factors have been shown to
influence analyte serum levels such as maternal weight and smoking habits. Some workers

adjust median values for these explanatory variables (Reynolds et al (1991), Wald ef a/















The posterior odds are used to assign each .pregnancy with a risk of Down’s
syndrome. A risk cut-off level is selected and those pregnancies associated with a higher
risk of Down’s syndrome are screened positive. This particular group of women are offered
an amniocentesis. A number of factors contribute to the selection of the risk cut-off. The
rate of fetal loss through procedure-related miscarriage is necessarily considered. A high
rate of amniocentesis would naturally lead to an unacceptable number of miscarriages and
the procedure would be deemed as socially intolerable. Also, attention is paid to the
detection rates and false positive rates, which are the respective proportions of pregnancies
correctly and incorrectly diagnosed as having the abnormality by the screen. A risk cut-off is
selected that maintains a desirable detection rate whilst considering the balance with the
false positive rate. A false positive rate of 5% is generally classed as acceptable. The risk is,.
therefore, considered as a screening variable since the cut-off level depends on the sampling
distribution of risks and is not fixed over different centres.

Most of t.he studies involving Down’s syndrome screening that are presented in the
medical literature follow this general model and they essentially utilize the same algorithm
as that described by Wald ef al (1988). Chapter two of this thesis sets out the statistical
methodology of the screening algorithm given by Wald er a/ (1988), and discusses the
assumptions it involves. The use of MoM values is reviewed and discussed. Chapter three
oﬁ‘efs an alternative approach to modelling, that avoids the need to convert concentrations
to MoM values. A regression analysis is conducted and the forms of the fitted models are
discussed.

The remainder of this chapter discusses the statistical theory that sets the
foundations of the screening algorithms. The following sections discuss the application of
discriminant analysis to screening, the methods of estimating performance measures, the

meaning of risk and the current use of modelling techniques. Each item is dealt with
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individually in subsequent chapters:of this thesis.
1.3 Discriminant analysis

The problem of Down's syndrome screening is in essence a problem: of discrimination
and there is a wealth of relevant literature in this statistical field (L.achenbruch (1973),
Aitchison and Dunsmore (1975), Hand (1981)). A short overview of discriminant analysis
follows. The intention is simply to fix the basic notation and terminology for subsequent
discussions rather than to provide a detailed summary. The notation adopted is in the style
of McLachlan (1992).

Formally, consider a set of individuals divided into g mutually exclusive and

exhaustive groups, or classes G, , G, ,...,.G g+ 82 2. For each set of subjects 6riginating 7

from a distinct group, G,, / =1, 2, .., g, there exists a measurement space of recorded
values from which a feature Space of predictive variables can be selected. Values from the
feature 'lspace | provide each subject with a p-dimensional feature wvector
x=(x l,x2,...,xp)r with a unique density p(x/G,), i=1,2,.,8.

Discriminant -analysis is concerned with deriving an allocation rule, r(x), from the

feature vectors of subjects with known origins. Subjects of unknown origin can then be

classified to one of g groups via the allocation rule. The allocation rule, or discriminant
rule divides the measurement space into disjoint regions, R,, i = 1, 2,..., g, of postulated
group separation, that are bounded by decision surfaces. The decision surfaces are derived
from Bayes principle of minimizing error (Hand (1981)). Hence, r(x) = i implies the

subject with feature vector X is allocated to group G, since the rule classifies x in region
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R, . The decision theoretical approach minimizes error by allocating a subject to a group

that maximizes the posterior probability of ownership. Thus the optimal allocation rule,

1,(x), is such that

p(G,/x) > p(G,/x) Vj# i, i,j=1,2,.,g then r(x)=i

Equivalently, since the posterior probabilities are rarely known, r,(x) can be

redefined using Bayes formula, to give

px/G)PG,)
p(x)

p(Gx IE) =

yielding

px/GIp(G)>plx!G)p(G,) Vj=i, i j=12,.,8then r(x)=i
(1.1)

where p(G,) are the prior probabilities, or arrival rates of a random value belonging to
each group in the classification space, and p(x/G,) denote the class conditional

densities, which are assumed to be known. With a space divided into two possible classes,

as with the current screening algorithm, the minimum error decision rule reduces to a rule of

the form
. px/G) _ p(Gy) . P(x/G) _ p(Gy)
allocate to G, and 17 < lHocate to G
FooGiC, - p@,) Mecteto G and if BTGy < p@,) et G
(1.2)

By letting G, be the class of unaffected pregnancies, N, and G, be the Down’s syndrome
pregnancies, D, equation (1.2) can be rearranged to form the odds ratio used in the

screening algorithm given by Wald ef a/ (1988) to discriminate between the two groups
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pN/m) p(x/N)

1.3
XD/ m) p@/D)>cthenallocatetoN (1.3)

where p(N /m), p(D/m) are the prior odds of each outcome specific to a maternal age
m, p(x/N), p(x/ D) are the class conditional distributions of MoM, or transformed
MoM analyte values, x, and ¢ denotes the risk cut-off associated with Down’s syndrome.

The rates of allocation of the decision rule are given below

e, (0)=Pr{r(x)=jIG} V i,j=12,..¢ (1.4)

and these are evaluated through

e, = | p@iGde ¥V ij=12..g (1.5)

R,

The correct allocation rates for the biochemical screen for Down’s syndrome, and
similarly for other diagnostic tests that require an outright allocation to either a diseased or
unaffected category, are defined as the sensitivity and specificity of the test. The sensitivity

and specificity relevant to Down’s syndrome screening are defined as

epp(r) =1-ep(r) and exn(r) =1-ey(r)

respectively, where ey ,(r) is the false positive rate of the test, that is the propoertion of
unaffected pregnancies incorrectly screened positive and e, (r) is the false negative rate of

the test, that is the proportion of Down’s syndrome pregnancies screened negative by the
test.

The decision rule of the form of equation (1.3) is necessarily based on
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precise knowledge of the form of the class conditional densities. The feature vectors can be
directly ‘plugged in’ to the formulas to give the rates of allocation. However, it is rare that
the class conditional densities are known. One solution to this problem is to estimate the
class conditional densities from a training set of data yielding a sample based discriminant
rule that serves to estimate the optimal Bayes minimum error rule. From the sample based
discriminant rule, estimates of the true error rates of allocation are computed. Such
estimative procedures require extreme caution since the estimated allocation rates may be
prone to bias from many sources. The possibility of bias in the estimated error rates is

discussed in section 1.4.1 of this chapter.

1.4 Prenatal screening and discriminant analysis

With most current screening algorithms for Down’s syndrome, feature vectors of
transformed MoM AFP, UE3 and HCG analyte values are selected as predictive variables.
Risk estimates are calculated and a discriminant rule is applied to the risks. The rule
classifies those pregnancies with risks in excess of a selected cut-off level as Down’s
syndrome, and those pregnancies associated with lower risks as unaffected.

Parametric techniques are used to estimate the class conditional densities of
transformed MoM values. The parameters are estimated from training data that is obtained
from a retrospective study. Retrospective studies use samples whose classifications are
already known. This gives rise to a sample based discriminant rule. The validity of the

model is assessed through the detection rate and false positive rate of the algorithm.
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1.4.1 Detection rates and their standard errors

In general the medical literature reports the performance statistics of the algorithm in
the form of point estimates (Wald ef a/ (1988), (1992)). Little or no attention is paid to
sampling error or bias in the detection rates. It is well known that the discriminant rule is
optimised for the design set so the estimated performance statistics are overrated. The
parameter estimates will not be optimal for another random sample from the same
distribution.

Unrepresentative maternal age distributions can create another source of bias. Since
the nisk of a Down’s syndrome pregnancy increases with advancing maternal age, samples
that over represent more mature women will raise the sensitivity of the screen.

Failure to consider the sampling error and bias in the estimated detection rates has led
to unnecessary controversy over differences in the reported rates. Attention has focused on
the benefits in screeming with UE3 in addition to AFP and HCG (Crossley et al (1993)).
Recent studies have indicated that free- § HCG is a more useful marker than Intact HCG
(Spencer (1991)). A commercial interest has accelerated the race to achieve increased
performance levels and combinations of markers have been patented in North America.

Chapter four of this thesis deals with the problem of sampling error and the possible
bias in the estimated performance rates. Standard errors are calculated for published
detection rates and for the detection rates associated with the parameter estimates under the
models fitted in Chapter three. Also, parametric and nonparametric methods of calculating
bias corrected error rates are discussed. A nonparametric method of bias correction is
applied to the screening algorithm given by Wald ef al (1988) to derive bias corrected

detection rates and false positive rates.
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1.4.2 The incorporation of a non-specific screen

The screening algorithm used by Wald e/ al/ (1988) is designed to classify
pregnancies as either unaffected or Down’s syndrome. However, the algorithm often fails to
recognize other abnormalities. Heyl e al (1990) highlight cases in which other
abnormalities, such as trisomy 18, are assigned low risks. He emphasised that the algorithm
cannot be used legitimately to reassure a women that her pregnancy is ‘normal’. Some
abnormalities have analyte MoM values that are dissimilar to a Down’s syndrome outcome
but are atypical of an unaffected outcome. Frequently, these pregnancies are assigned a low
risk of abnormality and are subsequently classified as unaffected even though they may be
highly atypical of this outcome.

Some studies have made attempts to overcome the problem of low sensitivity in
abnormalities other than Down’s syndrome by incorporating other classifications into the
screen. However, as Down'’s syndrome is the most common chromosomal fetal disorder,
data involving other karyotypes are limited. It would therefore be impractical to screen for
many fetal disorders simultaneously since any distributional assumptions would be unreliable
due to small sample sizes. Some exceptions are other trisomy aneuploides, such as trisomy
13 and trisomy 18 whose occurrences are frequent enough to prompt researchers such as
Heyl et al (1990) and Staples ef al (1991) to screen for these disorders.

The question of atypical events in discriminant analysis has been addressed in many
statistical publications (Aitchison and Dunsmore (1975)). Wright et al (1993) offers a
simple approach based on the Mahanolobis distance to deal with the problem of low
sensitivity when screening with other abnormalities. The problem can be reduced by

incorporating a non-specific classification into the current screening algorithm. An index of
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atypicality relative to all pregnancies that are classified as unaffected can be constructed
using the Mahalanobis distance and these pregnancies associated with sufficiently large
atypicality indices can be screened as non-specific. Chapter five of this thesis describes
formally the methodology used to compute atypicality indices and illustrates the benefits of

incorporating a non-specific classification into the existing algorithm.

1.4.3 Estimation of the class conditional densities

Wald ef al (1988) adopt a parametric approach to the problem of estimating the class
conditional densities of appropriately transformed MoM analyte values. Truncation limits
are used to trim values that fall outside a linear range on a normal probability plot. This
issue is addressed in Chapter two.

The problem of estimating the class conditional probability density functions of the
form given in equation (1.3) is an equivalent problem to estimating the discriminant
function. Hand (1981) points out that for a sample based discriminant rule to give a good
approximation of the Bayes minimum error rule, the decision surfaces must be precisely
defined to ensure the correct allocation of observations that fall \-avithin the tails of these
distributions. Accurate estimation m the extremes of the class conditional densities is
therefore of the utmost importance.

The lack of fit of a Gaussian form suggests the parametric approach to the problem is
inadequate. In addition to this, the use of truncation limits coupled with the sparsity of data
from affected pregnancies casts further doubt on the reliability of the estimation.

Several nonparametric methods of density estimation exist, such as kernel and nearest
neighbour techniques. These methods are well documented in the literature (Hand (1981),

Silverman (1986)). Implementing such robust procedures of density estimation into the

17



screening algorithm should add flexibility and serve to increase detection. Chapter six of this
thesis discusses and illustrates the use of nonparametric density estimation in screening. A
concise review of publications involving kernel methods of density estimation is also

provided.

1.5 The effect of errors recorded in the gestational dating methods

It is now well established that analyte concentration levels vary with fetal age and
concentrations are usually recorded during the second trimester of pregnancy. The methods
of dating fetal growth rates vary. According to DiPietro and Allen (1991) the most reliable
method uses an abdominal ultrasound scan, otherwise known as sonography, that dates
pregnancies on the basis of standard fetal measurements. A commonly used method of
dating, known as LMP dating, is based on the last menstrual period. The estimated date of
delivery is expected to be 40 weeks from the first day of the last menstrual period. A less
frequently used method of dating involves a clinical assessment of the uterus. Wald ef a/
(1992a) discuss the performance of the screening algorithm when different dating methods
are used. The paper concludes that obtaining gestational ages from sonography offers
substantial advantages to screening.

It is, however, well known that each method of recording fetal age is subject to
error. Linear regression models are currently used to model the analyte concentration values
against gestational age. These models are based on the assumption that the explanatory
variables are observed without error. No consideration is given to the errors in gestational
dates that frequently occur. The errors in the recorded dates may affect the distributions of
MoM values and also the calculation of risks,

Chapter seven of this thesis discusses the gestational dating methods set out by
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DiPietro and Allen (1991). This Chapter investigates an alternative approach to modelling
which replaces the regression models with functional models that assume a random error is
present in the explanatory variable (Fuller (1980)). The functional models are used to
illustrate the effects of errors in the recorded fetal dates on the parameter estimates for the

linear models.
1.6 Conclusion

This thesis aims to highlight the main problems in the screening algorithm that is
most commonly used in Britain to detect fetal Down's syndrome. An attempt is made to
find solutions to these problems. Chapter eight of this thesis provides a summary of the
research and discusses areas of possible future work. This section introdu-ceS these aréas.

Chapter six of this thesis deals with the problem of estimating the class conditional
densities for unaffected and affected pregnancies. The densities are estimated from the
training data which usually comprises of thousands of unaffected controls but only tens of
cases. Chapter six demonstrates how the large samples of controls can be used to produce
high quality nonparametric estimates of the density for unaffected pregnancies. However the
scarcity of data for affected pregnancies questions whether nonparametric methods of
density estimation can be used to construct reliable estimates of the densities for affected
pregnancies in higher dimensions.

Wright (1995) addresses the problem of estimating class conditional densities, for
the purposes of discriminating between classes, when only relatively small samples are
available from a class. The report investigates models in which the class conditional
distributions are assumed to have a common distibutional form which is modelled using the

nonparametric methods of density estimation described in Chapter six. Wright (1995) uses
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‘paramétric: shifts!in location anddispersion to model the :differences between classes. The:

form of the model given in ‘Wright (1995) is defined in Chapter eight and its ‘application to

screening:is discussed..




Chapter 2

Current Methodology

2.1 Introduction

The aim of this chapter is to give an overview of the current methodology that is
used to quantify the risk of Down’s syndrome from a statistical perspective. Section 2.2
gives a brief historical review of screening methods. Section 2.3 describes the basic
principles and assumptions involved in the model which is used to calculate risks. Section
2.4 presents a formal derivation of the risk algorithm that is based on the assumptions given
in section 2.3. The algorithm is viewed as having two components, one i1s a model for
predicting age related prior risks and the other is a model for the appropriately transformed
serum concentrations which provides the likelihood ratio. The form of these models are
described in sections 2.5 and 2.6 respectively. Section 2.7 discusses the use of MoMs in
screening and questions their use as a standardized measure. Section 2.8 assesses the effects
of truncation limits on the class conditional distributions of MoM values and on the

calculation of risks in general. A brief summary of the chapter is given in section 2.9.

2.2 Historical background

Over the last twenty years, the relationship between an increased risk of Down’s
syndrome and maternal age has been well established and methods of selecting women for a
diagnostic amniocentesis have been on the basis of maternal age. Typically, women aged 35
or above have been offered the test. It is now, however, well recognized that selective

maternal age screening leads to poor performance levels and has little impact on the birth
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incidence of Down’s syndrome. Since the pregnant population consists mostly of women
younger than 36 years, only a small proportion are offered the screen (Snijders (1993)). The
detection rate, based on a 5% amniocentesis rate, using age as a criteria for screening is
about 20%-30%, assuming a 100% uptake of amniocentesis (Wald er al (1988)).

Screening by maternal serum sampling was introduced in the mid 1980’s. This
brought about the opportunity to improve detection by using a screening program that
combined the maternal age related risk with risks derived from maternal serum
concentrations that were known predictors of Down’s syndrome. The most widely used
screen was introduced by Wald ef a/ (1988). This combines the maternal age related risk
with a risk derived from the analytes AFP, UE3, and HCG. Pregnancies are classified as
screened positive if the risk is greater than a selected cut-off value and screened negative
otherwise. The performance of the risk algonthm is monitored by the detection rate and
false positive rate, which are described in Chapter one.

The screening test that is based on the three analytes has more commonly become
known as ‘the triple test’. The test provides a broader screen and it gives rise to a detection
rate of about 65%. Although some regions of Britain still only use maternal age related risks
to screen for Down’s syndrome, most of the currently used screening algorithms are based
on the methods of Wald ef a/ (1988). However, developments in biochemical screening
have led to differences in the combination of analytes and in the models used to calculate
nisks. Medical research publications debate the efficiency of various combinations of
maternal serum markers as predictors of Down’s syndrome. There is much controversy over
the benefit in screening with different combinations of markers. Considerable attention is
given to the use of UE3 with AFP and HCG. Different workers report different incremental
benefits in detection from the addition of UE3 (Crossley er al (1993), Macti ef al (1990)).

The continuing argument over the reported performance statistics often ignores the
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presence of sampling error and bias in the estimated detection rates. These issues are among
those dealt with in Chapter four of this thesis. Varations in the choice of modelling
techniques used to calculate estimates of risk also contribute to the argument over
performance. Bishop (1994) discusses the findings reported by Ellis (1993) that highlight
differences in the risk calculations between screeming centres. Some centres also adjust the
serum concentration levels for maternal weight, smoking habits, and ethnic origin (Reynolds

et al 1992).

2.3 The basic model and its assumptions

Let N denote unaffected pregnancy outcomes and D denote Down’s syndrome

outcomes. m and g denote maternal age and gestational age respectively. X is the sample
space of all possible feature vectors of appropriately transformed analyte concentrations x .

The risk algorithm uses a posterior odds ratio of the form of equation (2.1)

1-[p(D/m)] p(x/g,N)
p(D/m)  p(x/g.D)

where p(D/m) is the maternal age related risk of Down’s syndrome and both p(g/g, N)

2.1)

and p(x/g,D) are the class conditional distributions. A variety of approaches are

described in the medical literature for estimating these parametric distributions. Leaving
aside methods of estimation, this section considers the fundamental assumptions behind the
form of equation (2.1) and the form of the class conditional distributions. The assumptions

are given below.
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Assumption (I)
It is assumed that each outcome of the procedure belongs to one of two types,

unaffected or Down’s syndrome.

(D) correctly states the mutually exclusiveness of the two outcomes, but also assumes
exhaustiveness. Since abnormalities other than Down’s syndrome may occur the
classification scheme is not exhaustive. An important consequence of this is that low risks
may be assigned to pregnancies with abnormalities other than Down’s syndrome. As
previously noted, this point has been discussed in the medical literature, see for example

Heyl (1990), and a simple solution is offered in Wright er a/ (1993).

Assumption (II)

p(D/m,g) = p(D/m)and p(N/m,g) = p(N | m)

(IT) states formally that given maternal age pregnancy outcome is independent of
gestational age. It has been established that Down’s syndrome pregnancies abort more
readily than unaffected pregnancies, particularly in early pregnancy (Snijders (1993)).

It is considered by some workers that spontaneous abortions are more frequent at
later gestations with more mature women (Kratzer et a/ (1992)). Younger women may
sustain abnormal pregnancies for longer durations. This issue is discussed in Snijders

(1993).
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Assumption (III)

plx/ N,g,m)=p(x/ N,g) and p(x/ D,g,m) = p(x/ D,g)

(IIT) states that given outcome and gestational age, the analyte concentration values
are independent of maternal age. There is reported evidence of a slight negative correlation
between UE3 values, when converted to MoMs, and maternal age (Davies ef al (1991)).
Although the correlation is statistically significant the dependency only explains 0.2% of the

variation in transformed UE3 MoM values.

Assumption(IV)

p(x/ N,g) ~ Ny(p(2).Zy) ang Px/ D.g) ~ Ni(ulg) +AZ,)

The conditional distribution of appropriately transformed analyte values, given the
outcome and gestational age are assumed to have a multivariate Gaussian distribution with

unknown mean vector £( g) and covariance matrix Zpy for an unaffected outcome and

mean vector E(g) + A and covariance matrix Zpy for a Down’s syndrome outcome (IV).

Essentially, the mean vector of appropriately transformed analyte concentrations for both
outcomes are expressed as functions of gestational age. The mean vector for Down’s
syndrome pregnancies is assumed to differ from the unaffected mean vector by an additive
shift, A. The magnitude of the shift remains constant over the range of gestation. (IV) also
includes the assumption that the dispersion about the mean is constant over the range of
gestation. Consequences of violating this assumption are discussed in Chapter three.

There is some debate over the differences in the Gaussian fit of the distributions of

logMoM)UE3 and MoM(UE3) (Wald er al (1993)). Both distributions demonstrate
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marked deviations from a Gaussian form. Wald er al (1988) use untransformed UE3 MoMs.
However, Wald ef a/ (1992) conclude that a log Gaussian distribution fit the UE3 levels
more efficiently. Crossley ef al (1993) report better results with the untransformed data.
Such arguments prompted Wald er al (1993) to reassess the issue using their original trials
data, (Wald er a/ (1988)), and the trials data used in the 1992 publication. The results
conclude that although the distributions of MoM UE3, with and without the logarithmic
transformations show dewviations from a Gaussian form for both unaffected and affected
pregnancies, the transformed distributions provide a better fit. Neither of these papers
mention the assumption of homogeneity of variance which is as cnitical as-the assumption of
normality. These issues are considered in Chapter three of this thesis.

The evidence of non-normality in the distributions of both MoM, and log(MoM)
analyte values is more pronounced in the tails of the distributions. Truncation limits are
applied to the transformed analyte values so that values that fail outside a linear range on a
normal probability plot are trimmed to the nearest end limit. This is considered necessary in
order to apply a Gaussian model which can be used in the calculation of risk. The
application of truncation can be questioned over its inefficient use of data and its effect on
the distributions, particularly in higher dimensions. There seems to be some confusion over
the interpretation of the normal probability plots and the way they are used to determine

truncating limits. This issue addressed in section 2.8.

2.4 Risk calculation and screening

With the (albeit false) assumption that only two categories, Down’s syndrome and
unaffected pregnancies are applicable, and by applying Bayes Theorem, the conditional
probability of a Down’s syndrome pregnancy, for each individual, given the maternal age,

gestational age and maternal serum concentrations is given by
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p(x!D,m,g)p(D/Im,g)
x/D,m,g)p(DIm,g)+ p(x!/N,m,g)p(N/m,g)

p(D/x,m,g)= p(

(2.2)
By assumption (II), equation (2.2) can be written as
_ p(x/D,m,g)p(D I m) (2.3)
plx/ D,m,g)p(D/m)+ p(x/ N,m,g)p(N /m)
and by assumption (III), equation (2.3) can be written as
B px/D,g)p(D/m) (2.4)

 p(x/D,2)p(D/m)+p(x! N.g)p(N I m)

The discriminant rule forms the posterior odds ratio of an unaffected pregnancy to a
Down’s syndrome pregnancy and is given as a product of the likelihood ratio and the prior

odds according to maternal age, equation (2.5).

pP(N/xmg) px/N.g) p(N/m)
pD/x,mg) p(x/D,g) p(D/m)

(2.5)

The algorithm produces a sample based distribution of odds or risks. A risk cut-off is

determined such that 5% of the sample receive risks > l:c. For any pregnancy, if
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plx/N.g) p(N/m)
x/D.g) p(DIm) ~° (2:6)

P(N /m)
P(DIm) ~°

or equivalently LR(x) x
where LR(x) is the likelihood ratio, the pregnancy receives a positive result from the
screen and is classified as screened positive. These women are counselled and offered an
amniocentests. In general, current screening policies state that no further action is necessary

if a pregnancy is assigned a risk smaller than the risk cut-off. The shortcomings of this

assumption are discussed in Chapter five of this thesis.

2.5 Models for predicting age related risks

The model given by Cuckle ef al (1987) is now the most widely accepted model for
predicting maternal age specific risks of Down’s syndrome. Cuckle ef a/ (1987) combined
the results from eight published surveys monitoring live births. Random error associated
with the combined estimated probabilities was reduced using a constant plus an exponential
function of age model as described by Lamson and Hook (1981). The fitted model is given

below.

p(D/m)=0.000627+exp(-16.2395+0.286m) @7

p(N/m) is found by calculating [ 1-p(D/m)], (Assumption(T}).
The model illustrates the increase in the prior probability of a Down's syndrome

pregnancy with advancing maternal age. The model is shown in Figure 2.1.
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An estimate of ﬁ(g) is obtained by grouping the analyte concentrations into

completed weeks of gestation. Median concentrations for unaffected pregnancies are then
calculated for each week. Smoothed medians are established for unaffected pregnancies by
applying median regression against completed weeks. As previously described, the
concentration levels for each outcome are expressed in terms of MoM values. The MoM is
a standard measure that is widely accepted in the medical literature. Concentration levels for
both unaffected and affected pregnancies are expressed as some multiple of the unaffected
median concentrations. A normalizing transformation is applied to the data which is usually
of the logarithmic form to produce features that can be used in the discriminant analysis.
Gaussian distributions are fitted to the appropriately transformed multiples of medians. The
standard deviations for the class conditional distributions are estimated from the values that
fall between a linear range on a normal probability plot. Wald él al (1988) recommend
estimating between the 10™ — 90" centiles of the plot. Wald ef al (1993) admit that this is
not a suitable range to estimate the standard deviation of log(MoM) UE3 for affected
pregnancies and suggests that the range between the 25" — 90 centile is more appropriate.

Revised estimates of these standard deviations are provided. u(g) and u(g)+A, or some

transformed versions, provide robust estimates of the means for the class conditional
distributions. Truncation limits are applied to the transformed analyte values to remove
excessive values. Gaussian densities are fitted to the truncated data and the quotient of the
fitted densities for unaffected pregnancies and Down’s syndrome pregnancies provides a
likelihood ratio, LR(x), which is then used to modify the age related risk.

The screening algorithms differ and the differences depend on the information used
to compute MoM values. In Wald ef al (1992) the transformed analyte concentrations are
modelled separately for gestational age dates recorded by LMP dating methods and

sonography. It is accepted that dating by sonography has less random error than dating by
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LMP methods; therefore, the MoMs produced from gestational ages obtained by
sonography show less dispersion. Wald ef @/ (1992) also adjust the median analyte
concentrations for maternal weight. This also reduces the dispersion about the mean
concentrations which will inevitably effect the correlations and standard deviations of the
concentrations. -Thus, four algorithms are currently used. These comprise of LMP dating
with and without weight corrections and sonography, also with and without weight
corrections. The effects of recording concentrations using different dating methods on the

calculated parameter estimates and performance statistics is discussed in Chapter seven.

2.7 The use of MoMs and median regression

As already described, analyte concentrations are conventionally expressed as
multiples of the median value for unaffected pregnancies. It is considered that the use of
MoMs provides a means of standardizing measures across the range of gestation whilst
removing the effects of variation between centres. Thus data from different centres can be
pooled. 'Flﬁs approach has practical appeal since data for affected pregnancies are scarce.
However the use of MoMs as an efficient standardized measure has been questioned
(Bishop (1994)).

" Recent developments in screening have led to differences in the models used to
calculate risk between screening centres. Some centres adjust normal median. concentrations
for attributes such as smoking, maternal weight, ethnicity and gravidity (Reynolds et a/
(1991), Wald ef al (1992)). Bish_op reports the findings of Parvin ef al (1991) that show that
such methodological differences between screening centres result in a change in the
distributional properties of MoM analyte values.

It is generally believed that the MoM is a standardized measure which removes-

variation between centres. Often, reported threshold valués of MoMs are used as standard
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indicators of Down’s syndrome in studies conducted by different centres. Previously
published parameter estimates are used as reference values for other independent tnials.
Such estimates may not perform efficiently as part of the calculation of risk if long term
changes cause population shifts in the distributions of analytes or if the data is widely
spread. Also differences in the calculations of MoM values will invariably lead to differences
in the distributional features. Bishop (1994) discusses the findings of Parvin ef al (1991)
that conclude that likelihood ratio based risk calculations will be significantly affected unless
centre specific reference distributions of MoM values are computed. Bishop (1994)
investigates the statistical properties of MoM AFP values and discusses the consequences of
pooling AFP data from different centres. Bishop (1994) notes that the analysis is
generalized and can be applied to any data presented as MoM values. The study shows that
standardized threshold MoM values relate to different percentiles of the gestational age
dependent distributions. This is because the distributions of MoM AFP have lognormal
parameters that depend on gestational age and the methodology specific to each centre.
Therefore, standarized threshold MoM values cannot be reliably used as reference values as
these relate to percentiles that are gestational age dependent. Bishop (1994) further
illustrates that the combined distributions of centre specific MoMs over the range of
gestational age are, in fact, a mixture of Gaussian distributions with mixtures from different
gestational ages. It is therefore unreasonable to pool data from different centres. Chapter
three of this thesis offers an alternative approach to modelling the distributions of analyte

concentrations that avoids the need to standardize measures to MoM values.
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2.8 Truncation limits

It has become standard practice to apply boundary or truncation limits to the analyte
values outside the range over which, after transformation, a Gaussian distribution is deemed
valid. Normal probability plots are generally used by Wald er al (1988) and (1992) as a
criteria for identifying the range over which a Gaussian model seems appropriate. The
transformed MoM values that fall outside this range are replaced with the nearest end limit
of that range.

In the original article by Wald ez a/ (1988) the truncation limits corresponding to
each analyte used in the screening algorithm were 04 < MoM(AFP)<25,
04 < MoM(UE3)< 14 and 02 < MoM(HCG) < 5. In their 1992 publication , Wald et
al revised the boundary limits for AFP and UE3 to 03 < MoM(AFP)<33, and

04 < MoM(UE3) <25 respectively. Crossley et al (1993) prompted Wald et al to

reconsider their use of UE3 in screening. As a result revised truncation limits for UE3

distributions were given in Wald ef al (1993). The revised values are 0.5 < MoM(UE3)<2.

One consequence of applying truncation limits is that all pregnancies with log(MoM)
analyte values outside the boundary limits are assigned a risk associated with the log(MoM)
value at the nearest end limit.

It is generally assumed that the distribution is normal over the range where the
points follow a straight line and it is non-normal elsewhere, However, even a small number
of outliers can cause the plot to depart from a straight line well beyond the position of the
outliers. This effect is illustrated below. Figure 2.2 plots the histogram and fitted Gaussian
density for a random sample of 1000 observations drawn from a standard normal
distribution. Figure 2.3 shows the normal probability plot of these observations. The

observations in excess of +2 are outside a linear range. Figure 2.4 plots the histogram and
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Contaminated Data

Quantiles of Standard Norma!

Figure 2.5: Normal probability plot of contaminated data.

2.9 Conclusion

This chapter has focused on the form of the probability models that are used to
produce risk estimates of Down's syndrome. The assumptions involved in the probability
models have also been discussed. The disadvantages of using the conventional method of
modelling the MoM analyte values have been highlighted and an alternative method that
directly models the residuals of the fitted regression equations have been proposed. This .
method of modelling is applied in Chapter six. The interpretation of the normal probability

plots of the transformed MoM values and the use of truncation limits has been questioned.
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Chapter 3

Analysis of clinical trials data

3.1 Introduction

This chapter presents an alternative to the conventional approach of using median
regression to model analyte values. The approach uses standard linear and non-linear least
squares for model fitting. Full summaries of the:data used in the analysis are .given in section
3.2. Section 3.3 describes the methods used to model the data and discusses models for
location and variation. Appropriate methods to deal with outliers are also introduced in
section 3.3. Sections 3.4, 3.5 and 3.6 report the findings of the analysis based on AFP, UE3
and HCG data respe&ively. Section 3.7 summarizes the results.

The parameter estimates of the fitted models quoted in this chapter are compared
with those given in Wald ef a/ (1988, 1992 and 1993) for LMP dating methods with no
adjustment for maternal age. These are shown in Table 3.1. The date in brackets gives the

most recent year of update.

PARAMETER ANALYTE UNAFFECTED DOWN'S
MEANS AFP 0.0000 (92) "03286 (88)
UE3 0.0000 (92) 03249 (88)

HCG 0.0000 (92) 0691 (88)

SD AFP 04656 (92) | 04720 (88)
UE3 03362 (92) | 03551 (9%

HCG T 05720 (92) | 06309 (88)

R AFP-UE3 02755 (9) | 02708 (93)
AFP-HCG 00723 (92) 0.1703 _(39)

HCG-UE3 0.1752 (92) 03204 (93)

Table 3.1: Means, standard deviations (SD), and correlation coefficients (R) in affected and
unaffected pregnancies reported by Wald ef al (1988), (1992) and (1993). All estimates are
in logarithms to the base e. The method of recording gestational dates is LMP.
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3.2 Data

The data used for analysis throughout this chapter and subsequent chapters are
taken from the databases of six screening centres from the trial described by Davies e a/
(1991). The maternal serum concentrations AFP, UE3 and HCG are recorded. The centre:

indicators are shown below.

NAME ¢)) (2) 3) (@) ) - ®
CENTRE | Amersham Bonn Gottingen | Nottingham { Romford | Glasgow

Tnals

Table 3.2: Summary of the screening centres from which data is obtained along with their
indicator number. :

Centres 2, 3, 5, and 6 have gestational ages recorded in days whilst centre 1 and 4

are in weeks. Summary statistics of the analyte concentrations are provided in Tables 3.3 to

3.5
(I) AFP
UNAFFECTED PREGﬁANClES DOWN'S SYNDROME PREGNANCIES

CENTRE | FREQ. MIN. MAX. MEDIAN | FREQ. | MIN. MAX. | MEDIAN
1 60 1395 | 9875 | 3305 | NA | NA | NA | NA
2 | 259 132 | 2325 | 4051 16 132 | 6245 | 32.08
3 279 501 | 8.7 | 3181 9 | 105 | 767 | 3603
4 146 | 1753 | 8713 | 37.53 27 1058 | 6506 | 2432
5 381 | 5.7 88.77 | 41.29 26 1007 | 9353 | 3462
6 174 | 12.78 | 9685 | 39.32 05 1589 | 6234 | 3048

Table 3.3: Summary statistics for AFP data recorded.
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(1) UE3

UNAFFECTED PREGNANCIES DOWN'S SYNDROME PREGNANCIES
CENTRE | FREQ. MIN. MAX. | MEDIAN { FREQ. MIN. MAX. | MEDIAN
1 60 1.5% 77 4.035 N/A N/A N/A N/A
2 259 0.69 9.67 5.36 16 1.61 8.5 4.165
3 278 1.16 9.82 359 9 1.33 8.69 3.75
4 146 208 96 4.51 27 0.5 10.88 4.1
5 399 0.49 15.08 5.01 26 0.98 7.84 385
6 191 0.75 11.71 4.79 15 251 7.34 361

Table 3.4: Summary statistics for UE3 data recorded.

(TN HCG
UNAFFECTED PREGNANCIES DOWN'S SYNDROME PREGNANCIES
CENTRE FREQ, MIN. MAX, MEDIAN FREQ. MIN. MAX. MEDIAN
1 60 - 377 125.5 29.] N/A N/A N/A N/A
2 259 1.12 1234 2545 16 27.05 83.06 52.11
3 285 722 148.4 k] 9 22.84 356.1 69.18
4 146 477 103.9 26.04 27 12.32 165.9 58
5 399 478 88.57 23.74 26 12.73 111.2 46.2
6 207 367 89.49 26.43 15 11.52 142.4 51.57

Table 3.5: Summary statistics for HCG data recorded.
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3.3 Modelling

Wald et al (1988) apply weighted least squares to regress unaffected weekly median
concentrations on gestational age, the weights being taken as the number of pregnancies at
each week. The motivation for using this approach is that median values are more robust to
outliers and abnormalities in the distributional shape. As described in Chapter one,
concentration values are expressed as MoM values and it is generally accepted that the
distribution of MoM analyte concentrations are adequately represented by a lognormal
distribution. More specifically, the log(MoMs) are assumed to be normally distributed with
a mean of zero and a constant variance. Multivariate Gaussian densities are fitted to the
distributions of log(MoMs), truncation limits are applied and excessively high or low values
are replaced by the nearest end limit.

However, the log(MoM) values are equivalent to the residuals, after a log
transformation, of the fitted regression models. Therefore, it is sensible to fit multivariate
Gaussian densities to the residuals of the regression models rather than converting the data
to MoM values. This approach avoids the need to group gestational dates into weeks so the
fitted models are more representative of true gestational dates rather than those used for
statistical analysis. This method also allows other explanatory variables such as weight and
smoking status to be included in a multiple regression model.

This method of modelling is applied to the data described in section 3.2. Residuals
associated with Down’s syndrome pregnancies can be determined using the regression
coefficients estimated from the unaffected data. Gaussian densities can be fitted to the
distributions of residuals from unaffected and affected pregnancies and the ratio of these
distributions provides a likelihood function that can be used in a discriminant analysis to

calculate risks.
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3.3.1 Modeling/location

Initial scatter diagrams of the raw data are plotted. A uniformly distributed random
number over the range (-0.5, 0.5) is added to the gestational age to make tle points
distinguishable on the scatter diagrams. Since the added noise is small in comparison to the
range of the data the overall shape of the distribution is unchanged, but each point appears
as a unique dot. The location for unaffected pregnancies is modelled by fitting appropriate
regression models with gestational age and centre as explanatory variables. The adequacy of
the models are assessed graphiically. Diagrams of the fitted models are illustrated. Also

tables of parameter estimates are provided.

3.3.2 Detection of outliers

An effective method for detecting model deficiencies in the regression analysis is to

examine .the residuals. The residuals, e,, should be independently distributed normal

deviates with mean zero and a constant variance. The. graphical analysts of residuals of the
fitted models consists of normal probability plots and plots of the standardized residuals on
length of gestation. The graphs provide initial checks for any assumption violations such as

non-normality, the presence of heteroscedastic errors, and the presence of outliers. Outliers
are identified by removing cases for which the standardized residuals, r= % , are in excess
S

of 3 in magnitude and these are:classified as outliers and removed.
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3.3.3 Modelling variability

A standard assumption of least squares theory is the homogeneity of error variance.
Although minor deviations from the assumptions will have little effect on the regression
analysis, gross violations can lead to least squares estimates that are inefficient.
Heteroscedastic errors can be dealt with by a suitable transformation, such as a logarithmic
transformation or more generally Box Cox transformations (Box and Cox (1964)). Altman
and Chitty (1994) describe a process to identify heteroscedastic errors by modelling the
standard deviations of a response variable as a function of gestational age. The paper
discusses the study design and analysis necessary to derive centiles for fetal size and
references a simple method for modelling the change in error standard deviations with
gestation (Altman (1993)). The absolute value of the residuals of a fitted model are

regressed on length of gestation in days, using a linear or quadratic model. The fitted values
of this model multiplied by \/:57; provide estimates of the gestational age specific residual

standard deviations. The significance of the slope parameter is used to detect the presence
of heteroscedasticity. Suitable transformations are applied to stabilize the error variance. A
weighted regression using the reciprocal of the square of the estimated age specific standard
deviations allows for the increase but Altman and Chitty (1994) point out the change is
almost always rather small.

The method of modelling gestational age specific residuals standard deviations
described by Altman (1993) is used in the regression analysis of the trials data set out in
sections 3.4-3.6. Illustrations of the fitted models are provided. Lowess curves are also
fitted to the data. These provide robust estimates of the trend of the data over the range of

gestational age which are based on median values rather than mean values. It has to be
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log(AFP) vs GA by LMP (unaffected cases)

log(AFP)

100 120 140 160

GA by LMP

Figure 3.2: Plot of log(AFP) concentrations against gestational age by LMP with a random
uniform effect (unaffected pregnancies, n = 1299). .
Current approaches to model AFP concentrations use weighted median regression
of log(AFP) on gestational age. It is generally accepted that the relationship between
log(AFP) and gestational age is linear and that the variation about the regression is normal
with constant variance. The models fitted in this section are of this form. The model for the
full data set is defined as ALIN/ and the model for the data set with outliers removed is

defined as ALIN2. The form of the models is given below.
log(AFP) = B+ a;+B,(GA)
a; = centre effect for centres j=1, 2, 3,4, 5, fB,+a; = intercepts for centres j=1, 2,

3,4,5,and B, = intercept for centre 6.

The form of ALIN! is illustrated for centre 6 in Figure 3.3 which shows the fitted

10th, 50th and 90th centiles of AFP. The analysis of the fit of the models follows.
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The R? value for the fitted model is 0.0859 indicating that 8.59% of the variation in
the log(AFP) concentrations is explained by gestational age and centre effects. Although the
R’ wvalue is small, the effects of gestational age and centre effect are significant (p <
0.0001). The normal probability plot of the residuals of the fitted model in Figure 3.4 shows
evidence of deviations from a Gaussian form in the tails of the distribution but illustrates
normality in the main body of the distribution. The plot of the standardized residuals against
gestational age highlights the presence of outliers (Figure 3.5). The error variance remains
constant across the range of gestational age. 1 outliers are identified and removed from the

original data.

Model ALIN2

Table 3.7 lists the parameter estimates of the model fitted to the reduced data set.

VALUE STANDARD ERROR
a 2.6699 0.1536
B,
n 0.085% 0.0263
a)
N -0.0431 0.0114
(78]
" 0.0188 0.0089
as
" 0.0067 0.0054
Qs
n 0.0046 0.0052
s
2 0.0081 0.0013
B,

Table 3.7: Table of parameter estimates of the refitted regression ALIN2.

The R’ value for the fitted model AL/N2 is 0.0898 which is slightly greater than the

R? value for model ALIN!. Figure 3.6 shows the normal probability plot of the residuals of






AFP Std. Residuals vs GA by LMP (linear model)

standardized rasiduals

100 120 140 160

GA by LMP

Figure 3.5: Plot of standardized residuals, r;, of the fitted model ALIN! against gestational
age.

Normal Probability Plot of AFP Residuals (unaffected cases)
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Figure 3.6: Normal probability plot of residuals of fitted model ALIN?.
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3.5UE3

Scatter diagrams of UE3 and log(UE3) against gestational age for the pooled data
for unaffected pregnancies are shown in Figure 3.14 and Figure 3.15. As with AFP, a
random uniform effect is added to make the points distinguishable on the graph.

Wald et al (1988) assumed that UE3 depends linearly on gestational age and that the
distribution of UE3 about the linear regression is normal with constant variance. Wald ef a/
(1992) and (1993) conclude that the UE3 concentrations are more efficiently represented by
a lognormal distribution. However, they assume that log(UE3) varies linearly with
gestational age.

Wright e/ al (1995) point out that a better fit is obtained by using a model in which
the location of UE3 depends linearly on gestational age, in accordance with Wald et al
(1988), but that the variation about the line follows a lognormal distribution as in Wald et a/
(1992). With the above discussion in mind, three forms of models are fitted in this section.

These are

(i) a simple linear regression of UE3 on gestational age (The models fitted of this
Jorm are defined as ULINI for the full data set, and ULIN2 for the data set with

outliers removed);

(ii) a simple linear regression of log(UE3) on gestational age (The models fitted of
this form are defined as ULOGLIN, for the full data set, and ULOGLIN2 for the

data set with outliers removed,);

(iii) a non-linear regression of log(UE3) on gestational age in which the trend in
UE3 depends linearly on gestational age but the distribution about the trend is
lognormal. (The models fitted of this form are defined as UNLINI for the full data
set, and UNLIN2 for the data set with outliers removed).
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Models described by (jii) can be considered as a hybrid between the model used in Wald et
al (1988) and in Wald et al (1992). The analysis of the fit of the three models is given
below. The forms of these models are illustrated for centre 6 in Figures 3.16-3.18 which

show the fitted 10th, 50th and 90th centiles of UE3.

(i) A simple linear regression of UE3 on gestational age

UE3 = B, +a,+B.(GA)

2% A N -
a; = centre effect for centres j=1,2,3,4,5, P,+a; = intercepts for centres j=1, 2,

3,4,5,and B, = intercept for centre 6.

Model ULIN1

Table 3.9 lists the parameter estimates for the model fitted ULIN!.

VALUE STANDARD ERROR
n -2.7355 0.6630
B,
n 0.4533 0.1144
ai
" -0.2976 0.0496
a:
n 0.0483 0.0387
as;
A 0.0363 0.0229
Q4
A 0.0173 0.0216
as
n 0.0632 0.0056
B,

Table 3.9: Parameter estimates of the fitted regression model ULINI.
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The R* value is 0.197, indicating that 19:7% of the variation in the UE3
concentrations is explained by gestational age .and centre effects, Although the R?* value is
small, the-effects: of gestational age and.centre are overwhelmingly significant (p- <'0.0001
for both gestational age and: centre.effects). The normal probability plot of the residuals of
the fitted' modelis shown in Figure 3.19. The plot illustrates - deviations from' a-linéar form in
the tails. Figure 3.20 shows the distribution.of the\pooled standardized residuals of the fitted

‘model. 7 outliers are identifiediand these are removed from the original data.

Model ULIN2

Table 3.10 lists tfhe;pa:a;ﬁetere'stimatcs for the model fitted toithe reduced data.set..

VALUE STANDARD ERROR
. A -2.4695 0.6390
i ﬂo - 1
‘ n 0.4595 | '0.1091
Qi o I
A -0.3063 1 0.0473
az 7 ‘
" . 0.0502 | 0.0473
as; il
~ :0.0237 | 0.0219
s ) ! _ .
A . 0.0173 0.0207
as ,' | L 1 . _
" il 0.0608 | 0.0054
, ﬂ‘uv _ Il ’

Table 3.10 : Parameter estimates for. thé fitted regression model ULIN2.

The R? value:for the fitted model ULIN2 is:0.2024; This is an ifiprovement on the
R* value for model ULINI. Figure 3.21 shows ‘the normal probability plot of the residuals
of the fitted model, Although the outliers have: little impact.on the regression coefficients,

they have a dramatic effect oi the normal probability plot. Figures 3:22-3.27 show the
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centre specific standardized residuals across the range of gestation. There is evidence to
suggest the error variance increases with gestational age. This is particularly noticeable in
the plot for centre 3. The standard deviations estimated from the prodict moment formula
and from values between the 25" — 75" and 10” — 90" percentiles-are given in Table 3.15.

These are somewhat larger than the éstimate reported by Wald e a/ (1988). The fitted
regression model of ng abs(e;) on gestational age is shown in Figure 3.28. The

regression coefficient of this model is significantly different from zero (p < 0.05). This
confirms that the error variance varies with gestational age. One way that this can be dealt

with is to apply a log transformation to UE3 as in the models presented under (ji) and (i)

‘below.

(i) A simple linear regression of log(UE3) on gestational age

log(UE3) = B, + a;+B,(GA)

aj = centre effect for centres j=1, 2, 3, 4,5, B,+a; = intercepts for centres j=1, 2,

3,4,5,and B, = intercept for centre 6.
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Model ULOGLINI

The parametet estimates.for model ULOGLIN along withitheir standard errors are given in

Table 3:11.

VALUE ~ | STANDARDEERROR

a 00111 0.1489 l
B, 7 . |
N 0.0854 0.0257 .
. ] |
. . -0:0731 ~ooomt |
a2 o |
A | 0:0188. © 0 0.0087

1 a]’ : o o

it ~ { 0:0092 ' 0.0051

'l [2 47 | o 1

{ " ] 010063 , 0.0049

' as ‘ ) . : )

1 » T 00127 : 0.0013

!,‘ -ﬂl o ) ! )

Table:3.11: Parameter estimatesiof the fitted regression model ULOGLINI.

The R? lvalue is 0.1848 indicating that 18.48% of the variation in the log(UE3)
concentrations is explained by gestational age and centre effects: Again, the R® value is.
small, but the effects of gestationalage and centre effect are overwhelmingly significant (p <
0:0001 for both gestational .age -and ‘centre effects). The normal probability plot -of the
residuals of the fitted model, show large deviations from a linear form in the tails of the plot
in figure 3.29. Figure 3.30 shows the distribution of tlie pooled standardized residuals of
the fitted model. The error variance-appearsito be:consistent across the range of gestational

‘age. 13 outliers-are identified and these:are.removed: from the original data.
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Model ULOGLIN2

Table 3.12 lists the parameter estimates of the model fitted to the reduced data set.

VALUE STANDARD ERROR

P -0.0877 0.1342
Bo

n 0.0996 0.0230
at

A -0.0778 0.0100
a:

A 0.0161 0.0078
as

» 0.0101 0.0046
@

" 0.0069 0.0044
as

n 0.0134 0.0011
B,

Table 3.12: Parameter estimates of the fitted regression model ULOGLIN2.

The R? value for the fitted model ULOGLINZ is 0.243 indicating that 24.3% of the
variation in the log(UE3) concentrations is explained by gestational age and centre. This is
an improvement on the R’ value for model ULOGLIN!. Figure 3.31 shows the normal
probability plot of the residuals of the fitted model. The plot is linear over a greater range
than the plot associate with model ULOGLINI. Figures 3.32-3.37 show the centre specific
standardized residuals across the range of gestational age. There is no evidence to suggest
the error variance varies with gestational age. The standard deviations estimated from the
product moment formula and from the values between the 25” —75" and 10" —90™

percentiles are given in Table 3.16. These are generally lower than the estimate reported by
Wald ef al (1993). The fitted regression model of ‘/% x abs(e,) on gestational age is shown

in Figure 3.38. The regression coefficient of this model is not significantly different from
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zero (p > 0.05) This confirms that the error variance can be assumed constant over the

range of gestational age.

(iii) A non-linear regression of log(UE3) on gestational age in which the trend in UE3

depends linearly on gestational age but the distribution about the trend is lognormal

log(UE3) = a;+ log[B, +B,(GA))

o; = centre effect for centres j=1,2,3, 4, 5, log(8,)+a, = intercepts for centres j =

1,2,3,4,5, and log(B, ) = intercept for centre 6.

Model UNLINI

The parameter estimates for model UNLINI along with their standard errors are given in

Table 3.13.

VYALUE STANDARD ERROR

A -0.0725 0.0533
(74]

" 0.0935 0.0339
(24

~ -0.2021 0.0347
Qs

~ 0.0129 0.0395
o4

n -0.0025 0.0315
as

~ -3.0285 0.7521
B,

" 0.0644 0.0064
B,

Table 3.13: Parameter estimates of the fitted regression model UNLINI.
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It is hypothesized that a non-linear model that is a hybrid form of the models given
in Wald e/ a/ (1988) and (1992) may provide a more appropriate.description of the data in
terms of fit. The R? value for the fitted model is 0.1875, indicating that 18.75% of the
variation in the log(UE3) values is explained by gestational age and centre. This value is
comparable to the R’ values for the previous models. Both the effects of gestational age
and centre effect are overwhelmingly significant (p < 0.0001 for both gestational age and
centre effects). Figure 3.39 shows the normal probability plot of the residuals. The plot
demonstrates.large deviations from a linear form in the tails. The standardized residuals for
the pooled data are plotted against gestational age in Figure 3.40. 15 outliers are identified

and these are removed from the original data.

Model UNLIN2

The parameter estimates of the model fitted to the reduced data set are shown in

Table 3.14.
VALUE STANDARD ERROR

A -0.0807 0.0472
a)

" 0.1114 0.0309
[24]

A -0.2058 0.0309
aj

A 0.0023 0.0351
aa .
A -0.0010 0.0280
as

A -3.7616 0.6814
B

n 0.0711 0.0059
B

Table 3.14: Parameter estimates for the fitted regression model UNLIN2.
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The R® value of the fitted model UNLIN2 is 0.2502 which is an improvement on
the value for the fitted model UNLINI. This value is marginally greater than the R’ for
model ULOGLIN2.

The normal probability plot of the residuals of the fitted model is shown in Figure
3.41. Again, the removal of outliers has little impact on the fitted model but greatly
improves the linearity of the normal probability plot in Figure 3.39. The distribution of the
centre specific residuals on length of gestation are given in Figures 3.42-3.47. There is no
evidence in the plots to indicate that the error variance is correlated with gestational age.
The estimated standard deviations, shown in Table 3.17, are similar to those calculated from

the model ULOGLIN2 and are generally lower than the estimates reported by Wald et al
(1993). The slope parameter of the fitted model of ‘/% x abs(e;) on gestational age is not

significantly different from zero (p > 0.05) and therefore, there is no evidence of any

violation of the assumption of homoscedasticity.

Model ULIN1

10
1

UE3
8
L

100 120 140 160 180

GA by LMP

Figure 3.16: Plot of UE3 concentrations against gestational age by LMP with a random
uniform effect (unaffected pregnancies, n = 1333).
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Model ULOGLIN1

15

10
<L

UE3

100 120 140 160 180

GAby LMP

Figure 3.17: The fitted 10th, 50th and 90th centiles of UE3 derived from model
ULOGLIN1 for centre 6.

Model UNLIN1

15

10
\

UE2

100 120 140 160 180

GA by LMP

Figure 3.18: The fitted 10th, 50th and 90th centiles of UE3 derived from model UNLINI

for centre 6.
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standardized residuals

Figure 3.69

standardized residuals

Figure 3.70

HCG Std. Residuals vs GA by LMP (Centre 4, non-linear model)
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: Plot of the standardized residuals, r,, of the fitted model HNLIN2 for centre 4.

HCG Std. Residuals vs GA by LMP (Centre 5, non-linear model)
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: Plot of the standardized residuals, r., of the fitted model HNLIN? for centre 5.
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HCG Std. Residuals vs GA by LMP (Centre 6, non-linear model)

standardized residuals

100 110 120 130 140 150 160

GAby LMP

Figure 3.71: Plot of the standardized residuals, r,, of the fitted model /NLIN2 for centre 6.

CENTRE 1 2 3 4 5 6
No.

SD of 0.5318 0.5734 0.5271 0.5310 0.5296 0.5659
residuals

SD 0.5573 0.5076 0.4920 0.5016 0.4945 06423
estimate

@025 %75

SD 0.5164 0.5404 0.4857 0.5521 0.5528 0.5627
estimate

Go1~ %09

Table 3.23: Summary of centre specific residual standard deviations of the fitted model
HNLIN2. Wald et al (1992) report the estimated standard deviation of log(MoM) HCG

between the 10” —90™ percentiles to be 0.5720 based on LMP dating methods and natural
logarithms,




Abs. Residuals * sqri{pi/2) vs GA by LMP
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Figure 3.72: Plot of fitted regression model of \/g x abs(e;) of the model HNLIN2 against
gestational age with lowess trend curve.

Fitted model :- J’—f x abs(e;)=0.5579-0.0001(GA)

3.7 Conclusion

The effect of centre is significant for all analytes. This confirms the dangers of
pooling data from different centres without adjusting for the centre effects. The effect of
outliers on the fitted models is negligible as there is no real impact on the regression
coefficients. However, they have a large influence on the shape of the probability plots and
the standard deviations and correlations.

The analysis has demonstrated that linear and non-linear least squares are efficient
methods of modelling analyte concentrations. The residuals of the fitted regression models
are equivalent to the log(MoM) values that are currently used in clinical trials analysis. This
approach avoids the need to standardize the trials data as Gaussian densities can directly be
fitted to these residuals and the ratio of the fitted densities provides a likelihood function
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which can be used in the discriminant analysis. Grouping the data into gestational weeks is
unnecessary, therefore the fitted models more precisely describe the true relationship
between concentration values and gestational dates.

The loglinear and non-linear models that are fitted in this chapter confirm the
assumption of homogeneity. The R? value for the linear models of log(UE3) on gestational
age and log(HCG) on gestational age are similar to the values given with the non-linear
models. There is little difference between the fit of the loglinear and the non-linear models.
However, the non-linear model may provide a better description of the trend of the
distribution of log(HCG) over greater gestations. It would be informative to compare the
use of these models with data having gestational ages recorded by sonography since this
method of dating has less error.

Residuals of the linear model AL/N2 and of the non-linear models UNLIN2 and
HNLIN2 are used for the analyses conducted in chapters four and six of this thesis,
however, the choice between the use of the linear and the non-linear models is somewhat

arbitrary.
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Chapter 4

Detection rates and false positive rates

4.1 Introduction

The performance of the screening algorithms used by Wald ef al (1988) and others,
see for example Crossley ef al (1993), is assessed in terms of the detection rate and false
positive rate which are the respective proportions of pregnancies that are correctly and
incorrectly screened positive. The detection rates are used to compare the accuracy of
different assay kits and to compare the effective use of analytes in screening. The estimated
detection rates and false positive rates reported in the literature are generally provided as
point estimates. Little or no attention is paid to sampling error.

Failure to consider the sampling error of such estimates has led to debates over the
differences between published detection rates and the relative utility of the various
combinations of analytes - in particular the benefit of adding UE3 to a combination of

maternal age, AFP and HCG. More recent studies have indicated that free g HCG, (total
HCG minus the £ subunit), is a more useful marker than intact HCG (Macri et al (1990)).
The estimated performance measures are also prone to bias from different sources.
It is well known that the disciminant rule is optimized on a design set. Therefore, the
performance statistics that are estimated from this design set do not reflect the values that
would be attained if the rule was applied to a randomly selected data set from the same

distribution. Moreover, it is well established that Down’s syndrome pregnancies are
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associated with older women and since data for affected pregnancies are relatively rare it is
often difficult to draw representative samples.

This chapter addresses the issue of sampling error and investigates the possible bias
in the estimated error rates. Section 4.2 gives a brief review of the debate over the
differences between the published detection rates. Section 4.3 sets out the algorithm used to
calculate the false positive rate and the detection rate. Section 4.4 reviews the application of
these methods of estimation to screening. In section 4.5, Monte Carlo methods of
simulation are used to simulate a number of repeats of the clinical trials data given in
Chapter three and of the clinical trial conducted by Wald et al (1992). The detection rates
are calculated for each simulated study and the sampling errors of the detection rates are
estimated. For reference, this method is also used in Wright es al (1993a). Section 4.6
discusses parametric and nonparametric methods of estimating discritinant rules and
defines error rates of allocation. Some methods of computing parametric and nonparametric
bias corrected error rates are reviewed. Section 4.7 applies the nonparametric method of
bootstrapping to assess the extent of the bias in the detection rates and false positive rates.

The results of the studies are summarized in section 4.8.

4.2 Background

The seminal article published by Wald er af (1988) reports a detection rate of 60%,
with a false positive rate of 5% using the three analytes AFP, HCG and UE3 and the
maternal age distribution of pregnancies for England and Wales in 1981-1985. The data
consists of 77 affected pregnancies and 385 controls. The paper concludes that the addition
of UE3 has the advantage of increasing the detection rate and decreasing the false positive

rate. MacDonald ef al (1991) use the same combination of analytes and report a detection
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rate of 60% at a false positive rate of 7.7% with data based on a ‘representative screened
population’ and a sample of 18 cases. Macri e/ a/ (1990) find no basis to support the
hypothesis that low levels of UE3, in 41 affected pregnancies, can be used to detect fetal
Down’s syndrome.

Almost as much controversy surrounds the advantage of screening with free § HCG
rather than Intact HCG. Spencer (1991) compares the efficiency of intact HCG and free §
HCG when combined with AFP and UES3 at a false positive rate of 5.9%. The study, which
includes 29 affected pregnancies, gives rise to a detection rate of 52% with the intact
molecule and 66% with the free § subunit. Macri ef al (1990) also support the use of free
S HCG. The relatively recent introduction of new biochemical predictors of Down’s
syndrome, such as PAPP-A and inhibin, has added to the argument.

The debate over the relative use of analytes as predictors of Down’s syndrome
disregards sampling error. It is plausible that the reported performance statistics show little
difference when considered along with their standard errors. The possibility of bias in the
estimated detection rates and false positive rates must also be considered before
comparisons can be made between the reported estimates.

The problem of selecting screening variables is essentially a problem of variable
selection. Variable selection and error rate estimation are central to discrimjnant analysis
and a large amount of relevant work is available in the statistical literature (Habbema et a/

(1978), Lachenbruch (1975), McLachian (1992)).
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4.3 A simple algorithm for establishing the detection rate and false

positive rate of the screen

The estimated performance of the discriminant rule is assessed in terms of the
detection rates and false positive rates. A discriminant rule of the form given in equation
(1.3) uses estimated risks to classify pregnancies as either unaffected or Down'’s syndrome.
The proportions of women with maternal age m that are classified as unaffected and
Down’s syndrome are calculated. The detection rate is given by summing those proportions
of affected pregnancies that are correctly classified as having the abnormality over the range
of m. Conversely, the false positive rate is given by summing those proportions of
unaffected pregnancies that are incorrectly classified. Essentially, the summations are
formed by .'numen'cally -integrating these proportions of pregnancies over the appropriate

maternal age distnbution.
4.3.1 Detection rate

The detection rate of the screen, p(screen+ve/D), gives the proportions of

pregnancies correctly classified as Down’s syndrome and is defined as

p(screen+vel D) = z p(screen + ve,m/ D) (4.1)

=Y p(screen +ve!m,D)p(m! D)

> pscreen +ve | m, D) p(D/m)p(m)

= 42
) (42)
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The probability of a Down’s syndrome pregnancy can be written as

p(D)=Y. p(Drmy=" p(D!m)p(m)

equation (4.2) therefore becomes

> piscreen +ve!/m, D) P(D/m)p(m)
p(screen+ve/ D) = S ADI m)pim)

(4.3)

4.3.2 False Positive Rate

The false positive rate, p(screen+ve/ N), gives the proportion of unaffected

pregnancies incorrectly screened positive.

p(screen +ve/ N)=7" p(screen +ve,m/ N)

Simply, by replacing D by N in equation (4.2) and equation (4.3) gives

> plscreen +ve/m, N)p(N ! m)p(m)
p(screen+ve/ N) == S AN Im)p(m)

(4.4)
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4.3.3 Age specific performance levels

Maternal age specific performance statistics can be estimated by numerically
integrating the class conditional probability density functions of transformed MoM analyte
values over the regions where pregnancies are screened postive.

The detection rate that is specific to women of age m is given by

p(screen +ve/D,m) = j'p(g/ D, m)dx 4.5)

W,

where W_ is the region where pregnancies of women aged m are screened positive

The false positive rate that is specific to women of age m is, therefore, given by

plscreen +ve/ N,m) = [ p(x/ N,m)dx (4.6)
w7,

4.4 Current methodology for estimating the detection rates and false

positive rates

Several methods have been used to estimate detection rates and false positive rates

(Wald et al (1988), Davies ef al (1991)). These methods are discussed below.

Raw proportions

The simplest approach calculates the number of Down’s syndrome pregnancies and

unaffected pregnancies, from a test set, whose risks are higher than a selected cut-off value,
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and expresses each as a proportion of the total number of pregnancies with the same
outcome. Bishop (1994) shows that this method of estimating the detection rate is not the
most efficient. This approach disregards the bias caused by screening with unrepresentative
maternal age distributions. Samples that over represent more mature women will

optimistically bias the performance measures.

Weighted age specific proportions

A second method calculates estimates of the false positive rate and detection rate by
directly modelling the clinical trials data. The approach corrects for unrepresentative
maternal age distributions and has the advantage of utilizing each independent analyte value.
Likelihood ratios are derived from the fitted Gaussian densities of appropriately transformed
MoM values that are recorded from the trials data. The age specific risk of Down’s
syndrome given by Cuckle ef al (1987) is applied to a standardized age distribution to
estimate the expected proportion of unaffected and Down’s syndrome births. The value of
the likelihood ratio, 4 (x), required to modify the age specific risk to below a selected cut
off value, ¢, for each single year of matemal age is determined. A pregnancy is screened

positive if

Alx) < CM—)— VmeM,xeX (4.7;)
P(N /m)

The sample proportions of pregnancies from the trials data screened positive for each
maternal age and outcome are computed. The standardized age distribution is then used to
estimate the age specific proportions of unaffected and Down’s syndrome pregnancies that

are screened positive which are given by
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;7( screen +ve / N,m) = proportion of unaffected cases for which \.(x) < c pIm

PN/ m)
48)
and
;(screen +ve/ D,m) = proportion of affected cases for which A (x) < ¢ %
(4.9)

The estimated detection rate and false positive rate are given by summing these proportions

over the standardized age distribution.

;(screen +ve/N)=>" ;(screen +ve/! N,m) ;(m/ N) (4.10)

;(screen +ve/D)=)" s(screen +ve! D,m)p(m/ D) 4.11)

The overall screen positive rate of the algorithm is given by

;)(screen +ve) = ;(screen +ve/ D) ;:(D) + ;(screen +ve/ N) ;(N)

Modelling

A third method, adopted by Wald et al/ (1988), does not use test data but assumes
multivariate Gaussian for the distributions of log(MoM)’s. The likelihood ratios are applied

to a standardized age distribution as described previously and the detection rate and false
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positive rate are given by numerically integrating the multivariate Gaussian densities over
the regions where the likelihood ratio modifies the age specific risk of Down’s syndrome to
below a selected cut-off ¢, for each maternal age. This approach has the advantage of
supplying more precise estimates of performance, but is necessarily based on more
modelling assumptions and may lead to over estimated performance.

An alternative approach to evaluating the integrals is to use Monte Carlo methods to

simulate samples of (x/ N) and (x/D) from the original multivariate Gaussian model of

the trials data and compute likelihood ratios. These are integrated by simulation methods
over a standardized age distribution in the regions where pregnancies are screened positive.
Such an approach provides flexibility since the distributional assumptions and the existing
risk algorithm can be changed with little programming effort. Repeated simulation of
samples drawn from the multivariate Gaussian model of the original tral, corresponding in
number to the trial, provides a tool for calculating standard errors to assess the statistical
accuracy.

Bishop (1994) shows that the methods of estimating the detection rates give rise to
a variance that is proportional to the reciprocal of the sample size used. Bishop (1994)
conducts a simulation study to produce the standard errors of the detection rates and false
positive rates and discusses the confidence intervals attained from different sample sizg:s.
Since the samples of affected data are small, the standard errors of the detection rates are
large which leads to extremely wide confidence intervals for the detection rates.

The following section describes the simulation algorithm used in Wright et a/
(1993a) to calculate the standard errors of the detection rates. The algorithm is used to
simulate samples from the multivariate distribution that is specified by the parameter
estimates under the fitted models ALIN2, UNLIN2, and HNLIN2. These are shown in Table

4.1. Detection rates are calculated for the simulated samples under these parameter
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estimates and under the parameter estimates specified by Wald ef af (1992) and (1993). A

copy of the simulation software that is used to conduct the analysis is given in Appendix A

of this thesis.

PARAMETER ANALYTE UNAFFECTED DOWN'S SYNDROME

MEANS AFP 0 0.2399

UE3 ] -0.2824

HCG 0 0.7133

SD AFP 0.3747 0.4617

UE3 0.3153 0.3840

HCG 0.5416 0.5492

R AFP-UE3 0.2971 0.4778

AFP-HCG 0.1438 0.0663

UE3-HCG -0.0819 -0.1718

Table 4.1: Means, standard deviations, (SD), and correlation coefficients, (R), of residuals
data recorded from 93 affected and 1284 unaffected pregnancies.

4.5 Application of Monte Carlo Simulation Methods

The effect of sampling error on the reported detection rates can be established by

repeatedly applying the following algorithm to build up a sample of detection rates.

The whole study is simulated by simply sampling from the assumed distributions of

MoM’s, or appropriately transformed values, with the sample sizes equivalent to those in

the study. The sample means, standard deviations and correlations for the simulated study

are specified. A risk cut-off, ¢, is selected, which when applied to a given population, will

produce a screen positive rate of p. This is done by repeatedly calculating the screen

positive rate, using the method set out in section 4.3, with different cut-off levels until a rate

of p is attained. The detection rates and false positives rates are calculated using the

methods described under Modelling.




The Monte Carlo methods of simulation are used to simulate 100 samples from the
distributions specified by the parameters from the models ALIN2, UNLIN2 and HNLIN2,
that were fitted in Chapter three. These are given in Table 4.1. The samples are used to
calculate confidence intervals for estimates of detection rates which are derived from the
algorithm based on the parameters in Table 4.1 and from the algorithm described in Wald e/
al (1988). All studies are modelled against the same maternal age distributions for England
and Wales for the period 1986-1988 (Birth statistics 1986 - 1988). This distribution is
tabulated in Appendix B. The detection rates are estimated at an overall 5% screen positive
rate. Confidence intervals for the detection rates based on the analytes AFP, UE3 and HCG,
and also for the rates based on AFP and HCG are derived, thus, the benefit of screening

with UE3 can be assessex. The results of the study are given in Tables 4.2-4.4.

Markers Dating No. of No. of cases | Detection rate and 95% confidence
method controls interval at 5% screen positive rate
AFP, UE3, LMP 1284 93 59.9 (32.77,67.01)
HCG
AFP, HCG LMP 1284 93 56.9 (50.14, 63.72)

Table 4.2: Detection rates and confidence intervals based on the parameter estimates

given in Table 4.1.

Markers Dating No. of No. of cases | Detection rate and 95% confidence
method controls interval at 5% screen positive rate
AFP, UE3, LMP 2113 77 58.56 (51.56 , 65.55)
HCG
AFP, HCG LMP 2113 77 56.31 (49.88 ,62.74)

Table 4.3: Detection rates and confidence intervals based on the parameter estimates
given in Wald ef a/ (1992) and in Table 3.1.

Parameter estimates Difference in detection rate and 95% confidence
interval at 5% screen positive rate
Table 4.1 2.98 (0.22,6.17)
Wald et al (1992) 2.25 (-1.07, 5.58)

Table 4.4: Differences in detection rates based on AFP and HCG and the rates based on

AFP, UE3 and HCG and confidence intervals using both sets of parameter estimates.
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Table 4.2 and Table 4.3 show the mean detection rates plus confidence intervals for
the mean detection rates based on the parameter estimates given in Table 4.1 and the
estimates reported in Wald er a/ (1992), respectively. The standard errors are large which
probably explains the argument over the differences in reported detection rates. Table 4.4
shows the differences in the mean detection rates when UE3 is added to AFP and HCG and
confidence intervals for these differences, for both studies. Both studies show an increase in
detection when UE3 is added to the screen. However, when the detection rates are
considered along with their standard errors there is little benefit in screening with UES3.
Moreover, it is statistically very likely that some studies will show an apparent decrease in
detection rate on addition of UE3. The study also indicates that any benefit in screening

with UE3 is greater using the screening algorithm presented in this thesis.

4.6 Some results from discriminant analysis and error rate estimation

This section reviews some of the important results from the literature on
discriminant analysis and screening. These are then adapted to examine the degree of bias in
the estimates of detection rates and false positive rates.

Discriminant rules are designed to minimize the error rates. The error rates
associated with the screening algorithms are the false positive rates and false negative rates.
Definitions of these are given in Chapter one. An age related risk is combined with the
likelihood ratio of the class conditional densities of transformed MoM analyte values to
produce a risk which is used to classify pregnancies as either unaffected or Down’s
syndrome. If the group prior probabilities and class conditional densities are known, the

realized feature vectors can simply be ‘plugged in’ to the probability model and the optimal

rates of allocation can be computed.
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The problem of unknown, or partially known group conditional densities is greater
than the problem of absent prior probabilities (McLachlan (1992)). If the group conditional
densities are unknown reliable estimates of the probability density functions can be
constructed from feature vectors whose classifications.are already known. This gives rise to
a sample based discriminant rule that is designed from training data. The sample based rule
provides estimates of the true rates of allocation.

Parametric and nonparametric techniques can be used to estimate the class
conditional densities. The screening algorithm adopted by Wald et af (1988) uses a
parametric approach to estimate the class conditional densities and thus to formulate a
sample based allocation rule. The parameters are often estimated from a design set by
robust methods. The:sample based allocation rule is used to reclassify the design set and the
error rates of allocation are computed. However, the estimated parameters are optimized
for this design set so the apparent error rates of the allocation rule do not reflect the true
error rates of the rule when it is applied to an independéntly selected data set from the same
distribution. McLachlan (1992) discusses the difficulties in obtaining unbiased estimates of
the error rates of a sample based allocation rule. The following section defines the types of
error rates associated with discriminant rules and it also fixes the notation for the

subsequent sections.

4.6.1 Notation

The notation provided is in accordance with that given in McLachlan (1992). Let
r(x;?) define a decision rule that is formed from realized training data ¢ , consisting of n,
p-dimensional feature vectors x. The feature vectors are drawn from a feature space for

the purpose of allocating the entity to one-of g mutually exclusive and exhaustive groups,
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G,,G,,...,G,. Define n=n, +n,+..+n, and n, to be the number of observations sampled

from group G,. The allocation rates associated with the optimal Bayes rule are defined

eo, ;(F)=Pr{r,(X;F))=jlG;} ihj=12,..g (4.12)
which denote the probability that a randomly selected feature vector from G, is allocated to
G, via r,(X; F)) where F, is the distribution function of X ingroup i .

The group specific optimal error rates are given as

eo,.(F,.):Zg:eoi_j(E) i=12,...,g (4.13)

J=i

and the overall optimal error rate is defined
g
eo(F)= 3 p(G,)eo,(F}) . . (4.14)
i=1

where p(G,) denote the arrival rates of each group and F is the distribution function of X .
The allocation rates of the sample based disciminant rule, r( X;f), which is formed
from training data , !, are
ec;;(F;;0) = prir(X;0) = j/G,.t} (4.15)
For groups /and j, equation (4.15) represents the probability that any random vector in
the training set, f, belonging to G is allocated to G j» @,J=12,..,8). The conditional

error rates are often referred to as actual error rates. The group specific conditional error

rates are defined

e (Fiy=3ec (Fit) (=128 @.16)

=i

and the overall conditional error rate is then

eclFit) = 3" PG, ec,(Fysf) @1
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The unconditional, or expected rates of allocation are formed by averaging the conditional
allocation rates over the distribution of training sets. The unconditional allocation rates are
given as

eu; ,(F) = Elec, ,(F;1)] (4.18)
=Pr{r(X;T) = j/G;} (G.j=12,..8)

The unconditional group specific-error rates are denoted as

eu,(F) = 3 eu, (F) 4.19)

J=i
which gives the expected misclassification rate of each group. The overall unconditional

error rate:is defined

eu(F)= zg: p(G,)eu,(F)) (4.20)

i=1

The true error rate is the expected error rate of the rule on future samples drawn from
the same distribution as the design set. The unconditional allocation rates are of less
importance than the conditional allocation rates in the context of diagnostic testing. The
conditional allocation rates are used to monitor the performance-of the screening algorithm.

This section has discussed the problem of bias when estimating error rates from the;
same data that is used to formulated a sample baséd allocation rule: Some nonparametric
and parametric methods of computing bias corrected error rates are discussed in the
following section. Special attention is paid to the conditional error rates for the reasons
noted above. Definitions are supplied in terms of a fixed group, G,, since extensions to

other groups is straightforward.
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4.6.2 Some parametric and nonparametric error rate estimators

The simplest estimator of the conditional error rate of r(x;?), when allocating
entities from G,, (ec,(K,1)), is the apparent error rate, A4,(f), which is calculated by
reclassifying the design set. The apparent error rate is the proportion of observations from
G, in ¢, that are misclassified by r(x;?).

If zis a (gxn) matrix of group-indicators such that

1 if entity ) belongs:to group i
zZ,.=9
L] |0 elsewhere
] n
then A,(g)=n—Zz_,_jQ[1,r(gj;U] 4.21)

1 j=i

0 'fr(-_x_j;£)=1

where Q[Lr(J_r,-;z)]={] e M2,
i J=t

The apparent error rate of the rule is computed from the same design set that is used
to formulate the rule. This provides an optimistic view of the overall performance. The
extent of the bias relates to the complexity of the discriminant rule. Parametric and
nonparametric methods of bias correction can be applied to remove the bias and provide
reliable assessments of the true error rates of the rule. A review of these methods is
pm\-rid‘ed in McLachlan (1992). This section reviews some of these nonparametric
approaches.

Data resampling techniques-are central to unbiased etror rate estimation. Interest in
computer intensive methods has surged since Efron’s sertes of publications on the
bootstrap, jackknife and cross validation approaches to estimation. (Efron (1979), Efron
(1982), Efron (1983)). The improvement in computer technology has also increased the

relative utility of these methods. One approach that uses nonparametric resampling methods
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to eliminate the bias in the apparent error rate is the leave-one-out, or cross validation
method, which was first introduced by Lachenbruch and Mickey (1974). An entity is
omitted from the training data and the discriminant rule is recalculated from the remaining
observations. The omitted entity is allocated on the basis of the new decision rule and
checks for misclassification are made. The process is repeated so that each observation is
removed from the training data, and a new allocation rule is formed from the remaining
observations which is then used to classify the entity. Records of misclassification are made
at each stage of the procedure until the training data is reduced to a single entity.

The cross validation estimator of the apparent error rate, provides estimates of the

conditional error rate and is defined as

A = %Z"lzl,,-Q[l,r(z o) (4.22)

1 j=1
where ., denotes the training data { with the J™ observation omitted.

The cross validation estimator of the overall apparent error rate, A is nearly unbiased
but often is highly variable if 7 is small.

Another nonparametric method of estimating bias uses the jackknife resampling
technique. The jackknife estimate of bias was proposed by Quenouille in the mid 1950’s.
(Efron and Tibshirani (1993)). It was the first computer based resampling method for
estimating bias and standard errors. The jackknife estimate of the apparent error rate omits
one observation from the training data, and formulates the discriminant rule on the
remaining observations. This is then used to classify each observation that is remaining in
the training set. The proportion of misclassified observations is calculated at each stage. The
apparent error rate is estimated from each set of allocated training data with one distinct

observation omitted. The jackknife estimator of the apparent error rate is given as

A1U°) = A +(m —1)(4, — Ayy) (4.23)
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where 4, = Zz”Q[lr(x,,,lm)]/(n, 1) and A= ZA:(,)/”l

Py
The jackknife form of the apparent error rate is appropriate for estimating the unconditional
error rate as 7 approaches infinity.

The nonparametric bootstrap method of resampling was introduced by Efron
(1979), and a series of related publications concerning its applications has followed. A full

review of the techniques involving the bootstrap is given in Efron and Tibshirani (1993).
The nonparametric method of bootstrapping forms an estimate, F , of the underlying
distribution function, F°, from the realized training data. F* is referred to as the bootstrap

A
distribution. The nonparametric version of the bootstrap calculates F as the empirical

distribution, which approximates the true distribution of the observations by placing a mass

of lon each of them. Monte Carlo methods of simulation are used to draw bootstrap
n

A
samples, with replacement, from F, which are subsequently used to calculated bootstrap
estimates of apparent error.
An algorithm for the nonparametric bootstrap bias correction of the apparent error

rate, based on G, follows.
(1) Form an estimate, F., of the underlying distribution, F, from the realized

.. A .. e 3 |
training data, such that F; is the empirical distribution with mass — at each x,,x,,....,x
n

n

inG,, i=12,..g.
(2) Use Monte Carlo methods of simulation to simulate a new set of data, ¢, from

{. Samples are drawn independently and with replacement such that ¢ consists of the

iid A
reahzedvaluesofX' X‘ X’ zF} i=12,.g
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(3) Form the rule r(x;1") from ¢* in the same manner as r(x;¢) is formed from the
original training set.
(4) The apparent error rate, 4,(1°) , of r(x;t") for group G, is given as

4@ =13z, 0l r(xi)) (4.24)

"I i=1

n
L]
where n' = 3"z, '
I=l

Under separate sampling ec, (I*ﬁl;g'): LZzUQ[Lr(g j;g' )] and the difference
m e

d’ = A, (g')—ecl(l?;;f) is computed.

~ (5) The bootstrap bias of the apparent error rate for the first group is defined as

A (B) PR . . A *
b =B @)= E {4 -eodur)

where E’is the expectation over the distribution of 7°. The bias 5:1'®’ can be estimated

by 211’ which is obtained by averaging over K independent samples of training data drawn

from T such that

At K A
d =Ydu.' /K (4.25)

k=1
and die = A,(t, )—ec,(F;t,") forthe k& bootstrap replication.
The bootstrap bias corrected version of the apparent error rate for G, is given by
A = 4, - b ® (4.26)
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Efron and' Tibshirani (1993) point out that 50 -100 replicated bootstrap samples is a

sufficient rumber for standard error and bias estimation. The standard error of the Monte

Carlo-approximation: d\’ to the:bootstrap bias is the positive square root:of
LN A2
Z(diik"—a KK - 1)} (427)
k=1 V-
The error rate estimators discussed so far use nonparametric .approaches to estimation. If
adequate information concerning the: class conditional densities is available, the parametric
bootstrap may be:appropriate.
The parametric bootstrap postulates a form of the: class conditional: distributions, F,

cor F, in the case of separate sampling: The unknown parameters of the: distributions

F or F, areestimated: from the training.data. Maximum likelihood estimates are-commonly

used for these estimates, Instead of sampling from the data, Monte Carlo simulation

A A

methods are used to  generate pseudo. bootstrap samples from F or F, , corresponding in
size to the original training data. ‘An algorithm for calculating the parametric bootstrap,
under a-separaté sampling scheme follows.

(1) Postulate forms for the population distribution functions F,. Defineithe vector of
unknown parameters as ‘V'.

(2) Calculate estimates of the distribution functions, IA‘: that have the same form as
F, and estimate the unknown parameters, ‘IA';‘, from'the training data, 1.

(3) Apply Monte Carlo- methods of simulation to generate a parametric bootstrap
sample, 1", of size n, from each F, .

(4) Continue from step (4) of the algorithin for calculating nonparametric bootstrap

estimates of'bias:
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4.7 Application of the nonparametric bootstrap to screening to calculate

estimates of bias

The nonparametric method of bootstrapping is employed to calculate the bias in the
detection rates and false positive rates of the screening algorithm given by Wald er af
(1988). The original detection rates and false positive rates, and the bias corrected rates, are
calculated over a standardized maternal age distribution. The extent of the bias is assessed
over 100 bootstrap replications. Maternal age specific bias corrected estimates of detection
rates and false positive rates are also obtained. This enables an assessment of the changes in
the bias caused by reclassiying the design set when screening with unrepresentative maternal
age distributions. The values of the weighted bias in the detection rate and false positive rate

are shown in Table 4.5.

DR (%) FPR (%)

Weighted Bias +0.17 -0.51

Table 4.5; Weighted bias in detection rates and false positive rates.

The study indicates that the estimated detection rates and false positive rates are
only marginally affected by bias. The bias in the rates for maternal ages in the ranges of 11-
15 and 45-55 was zero and the bias in the rates associated with the ages in the range of 16-
44 showed little variation from the values quoted in Table 4.5. Therefore, screening with
maternal age distributions that are unrepresentative of the target population will have little

effect on the extent of the bias caused by reclassifying the design set.
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4.8 Conclusion

This chapter has investigated the extent of the sampling error in the estimated
detection rates and has shown how the differences in the reported estimates can be
explained by sampling error. The results of the simulation studies suggest there is little
benefit in screening with UE3 in addition to AFP and HCG, however, the algorithm used by
Wald ef al (1992) reduces the potential use of UE3 as a screening variable for Down’s
syndrome. This chapter has also discussed the problem of bias in error rates that are
estimated by reclassifying the design set with the allocation rule that was formulated from
this set. It has been shown that the bias in the estimated detection rates and false positive
rates is small. Also, screening with unrepresentative maternal age distributions does not lead

to an increase in this bias.
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Chapter 5

The inclusion of a non-specific screen: a question of
atypicality

5.1 Introduction

The screening algorithm used by Wald e al (1988) classifies pregnancies as either
unaffected or Down’s syndrome. Frequently other abnormalities, notably trisomy 18 and
trisomy 13, may have MoM values, or some appropriate transformation of them, that
translate into low risks.

A study was conducted by Heyl et a/ (1990) to assess the performance of the
screening algorithm when dealing with various abnormalities as well as trisomy 21. Serum
samples were collected from 16 trisomy 21 pregnancies and 18 with other autosomal
aneuploides, including trisomy 18 and trisomy 13, whose mothers were known to have had
an amniocentesis on the basis of advanced age.

Heyl et al (1990) reported that the algorithm detected 63% of trisomy 21
pregnancies with a false positive rate of 5%, using a risk cut off of 1:365. Only 3 out of the
18 pregnancies with other abnormalities were screened positive, none of which were either
trisomies 18 or 13. Most abnormal pregnancies received extremely low risks, emphasising
why such risks cannot legitimately be used to reassure a mother that her pregnancy is
normal.

Low detection in non-Down’s syndrome abnormalities is reflected through the MoM
analyte values. Often non-Down's syndrome abnormalities have MoM values that are

dissimilar to those from trisomy 21 pregnancies and also have a low probability of being
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associated with an unaffected pregnancy. Frequently these pregnancies are classified as
unaffected even though they may be atypical of this outcome.

A strategy to improve detection of non-Down's syndrome abnormalities would be to
incorporate other specific screens into the screening algorithm. Such screens are not
generally practiced because of the lower incidence rates of other abnormalities. Moreover,
in cases such as trisomy 18, it may be considered unnecessary to incorporate a specific
screen due to their lethality. However, interest surrounding specific screening of this kind
has more recently developed. Staples et al (1991) examines the feasibility of extending
second trimester screening for Down's syndrome to incorporate a specific screen for trisomy
18. Staples et al (1991) reports the most useful analytes for identifying trisomy 18 are UE3,
free a-subunit HCG, free B-subunit HCG, estradiol and Human placental lactogen. The
study focuses on 12 pregnancies with trisomy 18 outcomes and 390 matched controls. At a
risk cut off of 1:400, 83.3% of affected pregnancies were detected at a false positive rate of
2.6%.

It would be impractical to specifically screen for many fetal abnormalities
simultaneously. An alternative approach to the problem is suggested by Wright et a/ (1993).
The approach incorporates a non-specific classification into the existing screen for those
abnormalities that are unlike trisomy 21 but are also highly atypical of unaffected
pregnancies. An index of atypicality can be constructed using the well established statistic,
the Mahalanobis distance. By assigning an atypicality index to all pregnancies that are
classified as unaffected, those that have sufficiently large indices but are associated with low
risks of Down's syndrome can be classified as non-specific with no risk being reported until
further investigations have been undertaken.

Section 5.2 of this report describes the methodology employed by Wright ef al

(1993) to monitor atypicality in data from a multivariate Gaussian distribution using
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Mahalanobis distances and illustrates how the calculation can easily be introduced into the
existing screen with just a simple modificatton to the screening algorithm used by Wald ef a/
(1988). This section also discusses the advantages should the enhancement be used as part
of a screen for Down's syndrome. A summary of the materials used to illustrate the value of
the modified screen by Wright et a/ (1993)-is given in Table 5.1.

Section 5.3 provides full details of the results of the analysis. The effects of the
modified screen on the classification of abnormal pregnancies is considered. The risks and
Mabhalanobis distances for these pregnancies are provided in Table 5.2, and a summary of
these results is given in Table 5.3. A discussion of the effects of the modified screen on the
classification of unaffected pregnancies is also included. Section 5.4 reviews the
consequences of using the enhanced screen in conjunction with the existing algorithm. The
results are shown in Table 5.4. Figure 5.1 provides a plot of the 99 % contours of the

atypicality indices for the unaffected and Down's syndrome pregnancies.
5.2 Methodology

5.2.1 Monitoring for atypicality in multivariate Gaussian data

Given an observation y from a p-dimensional multivariate Gausstan distribution

with mean vector 4 and covariance matrix Z , the Mahalanobis distance, d , is defined

d=(y-4) 2" () G.1)

By calculating d for each p-dimensional feature vector, Y, an assessment of

atypicality is given by declaring as atypical values those observations whose Mahalanobis

distance exceeds the upper (1 - a) 100% quantile of the chi-squared distribution with p
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degrees of freedom, for suitably chosen values of a.. Atypical observations are considered
to be outliers of the distribution owing to the extremeness of their Mahalanobis distances.
Larger indices- of atypicality present more evidence to suggest the observations have been

misclassified.

5.2.2 Incorporating the atypicality index into the existing screen

The computation of the Mahalanobis distance can easily be incorporated into the
existi-ng screen with just a simple modification to the current algorithm given by Wald et af
(1988). Since the Mahalanobis distance is the exponent part of the Gaussian density
function, which is already computed when the likelihood ratios are evaluated, the
information is readily available f(')r_ extraction.

A copy of tl.1e computer software, written in Turbo Pascal Version 4, which is
designed to imitate the risk algorithm given by Wald'(1988) but also has the enhancement of
reporting atypicality indices for both Down's syndrome and unaffected classifications, is

contained in Appendix (D) of this thesis; along with detailed'documentation.

5.2.3 An assessment of atypicality as-part of a screen for Down's syndrome

It has been suggested that one method of ensuring the classification of a pregnancy
is reasonable is to assign to each feature vector of log(MoM) values an index of atypicality
as an assessment of how typical the observation is of its particular classification. Also, it is
considered that the inclusion of a non-specific category for those observations deemed
atypical of unaffected pregnancies, but unlike Down's syndrome pregnancies may partly
overcome the problem of low risks being assigned to pregnancies with disorders other than

trisomy 21.
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If these hypotheses are true the enhanced algorithm that is adjusted to incorporate
atypicality indices would be expected, not only to adequately detect pregnancies with
Down's syndrome but also to identify a proportion of those pregnancies with other

disorders. Moreover, this would have the effect of reducing the false positive rate.

5.2.4 Method

The 1993 paper by Wright er al assesses the modified algorithm by examining its
detection rate based on transformed AFP and HCG MoM values that are recorded from
pregnancies associated with various fetal chromosomal disorders. In order to directly
compare the existing screen with the modified screen, the parameter estimates used in the

modified screen are those reported by Wald ef al (1988) and (1992) and are shown in Table

5.1,
OUTCOME UN‘AFFECTED ' | DOWN'S SYNDROME
AFP HCG AFP HCG
Sample Size 385 385 77 77
Means 0 0 -0.3286 0.6961
Std. dev. 0.4656 0.5720 0.4720 0.6309
| Corvelations 0.0723 0.1703

Table 5.1: Means, standard deviations and correlations assumed in calculating Down's
syndrome risks and Mahalanobis distances. (From Wald er a/ (1988) and (1992)). Values
are in logs.

To demonstrate the value of the inclusion of a non-specific screen, figures for a total

of 37 pregnancies with various abnormalities were taken from published literature (Bogart
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et‘al (1987), Staples ef al:(1991), Johnson et al. (1991)) and analysed using the modified
scréen given in Appendix (D) of this report. In ‘order to provide:an-usibiased asséssment.of
the .algorithin, all mothers with unknown ages were assumed to'be 35 years old, this
ensuring the:best possible-chance of a:scréeri positive result.

A further 2000 unaffected pregnancies from the Royal Gwent Down's syndrome
Screening program.were analysed to determine the possibility of a reductioniin false:positive
rates with the modified screen. UE3 was not used becauseithe analyte is:not -assayed by the

Gwent screening program.

5.3 Illustration
5.3.1 Abnormal pregnancies

Risks and! values of the Mahalanobis distances for the.37 abnormal pregnancies are
given in Table 5.3:

The Mahalanobis distances should ‘be compared with quantiles of the chi-squared
distribution with v = 2 df’ Selected contours for comparison were 95%, 98% and 99%,
the corresponding chi-squared' statistics ‘being 5.991, 7.824 and 9.210 respectively. The
data are plotted together with the 99%. contours of both unaffected and Down's syndrome
distributions in'Figure 5.1. Table 5.4 gives.a summary of the performance of the screening
algorithm.

A most concerning result of ‘this analysis is that such: low risks' can fréguently be
-assigned to ‘abnormal pregnancies when these pregnancies are clearly highly -atypical of the
this-outcome,

As ‘indicated by Table S.5 it is notable that overall an additional 15 out of the 37

abnormal' outcomes are classified as being abnormal using a 1% cut off on the Mahalanobis
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distance. These 15 outcomes correspond to the 15 points which fall outside the ‘Normal
outcomes' contour in Figure 5.1. Of these 15, 73.33% are known to be trisomy 18 .

Table 5.3 also gives Mahalanobis distances for the distribution of Down's syndrome.
It is notable that the low risk, abnormal pregnancies are even more atypical of Down's
syndrome than they are of unaffected outcomes. Using a risk cut-off of 1:300, only 2

pregnancies were screened positive,

5.3.2 Unaffected pregnancies

A summary of the results of the analysis of the 2000 unaffected pregnancies is given
in Table 5.4. Using the nominal cut-off, 1.5% of normal pregnancies were screened
negative and classified as atypical. This is Irather large compared with the nominal 1%
reflecting tl.le fact that the distribution of log (MoMs) is only approximately Gaussian in

form.

5.4 Conclusions

This chapter has illustrated how the current screening algorithm frequently fails to
recognise other congenital abnormalities that occur during pregnancy and often assigns to
them extremely low risks, misclassifying them as being unaffected by any disorder.

The modification needed to the current algorithm to monitor for atypicality is a
simple one, and would enable pregnancies that were highly atypical of one outcome but
unlike the other to be classified in their own right as non-specific to either outcome.

In the sample of 37 abnormal pregnancies extracted from the literature (Bogart ef a/,
(1987), Staples et al (1991), Johnson ef al (1991)) an additional 15 pregnancies were
identified as atypical of unaffected pregnancies but were assigned risks that eliminated any

suspicions of Down's syndrome. It is most concerning that such low risks can lead to false
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reassurances. A set of atypical results would provide an indication for a considered review

of the case before any notes are reported.

MoM Mahatanobis
Distance
Case Abnormality Matemal Risk | Source
Age
AFP | HCG Unaffected | Down’s
1 1359|531 +13 35+ 53 B 16.12 12.86
2 11.03]1.53 +13 35%* 509 B 0.57 0.93
3 |[0.25]037 +13 35% 1100 J 11.84 11.65
4 |167)045 +13 35¢% 17400 J 367 11.09
5 1089]0.65 +13 35+ 2430 I 0.73 4.21
6 {0.50]0.75 +13 35¢% 593 I 245 3.11
7 1050]0.78 +13 35# 553 J 2.39 291
8 [ L76]4.9 X0 35+ 41 B 9.77 5.11
9 [ 146|177 Xy 35 639 B 1.64 2.44
10 {033 ]0.10 69, XXX 35+ 3720 B 2329 26.51
11 [0.75]0.16| 46,XX/47.XX+9 35+ 12600 J 11.96 18.73
12 | 1,67 | 0.20 | 46,XY/47,XY +Mar 35* 64800 J 10.66 20.71
13 |1.28 | 0.53 46,XY,7q+ 35+ 7400 J 1.81 7.52
14 | 0.20 | 0.58 47,XXY 35+ 580 J 12.68 10.40
15 | 0.58 | L.15 45 X+ 35* 346 J 1.45 1.03
16 | 0.80 | 1.53 | 46,XY,-18,+derl8 35+ 329 J 0.84 27.38
17 | 0.96 | 0.10 +18 35 35900 B 18.51 20.99
18 | 1.01]0.15 +18 35+ 27800 B 12.63 17.47
19 | 1.00]0.19 +18 35¢% 20700 ] 9.7 23.79
20 [ 250021 +18 35+ 153060 J 13.03 20.05
21 | 250|030 +18 35+ 85300 J 9.46 12.28
22 | 1.25{032 +18 35+ 16800 ] 494 4.01
23 | 0.67]0.62 +18 5% 1490 J 1.51 4.47
24 | 133085 +18 35+ 3090 J 0.51 2.45
25 j 1.60| 095 +18 35¢ 1420 J 0.02 3.12
26 10.72]0.72 +18 33 1970 S 0.36 15.40
27 10691020 +18 21 31800 S 9.51 13.43
28 | 053]0 +18 32 6620 S 9.10 32.04
29 10471007 +18 27 21300 S 26.51 1.95
30 | 0.82]0.93 +18 30 2420 S 0.20 20.41
Table 5.2 Cont...
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31 ] 0661014 +18 23 | 3930 | S 1402 | 204l
32 | 1.06] 0.56 +18 29 12100 | S 1.26 5.99
33 | 0.56710.20 +18 18 ] 20000 | S 1029 | 15.19
34 | 051|045 +18 32 2530 | S 417 6.58
35 | 141097 +18 30 6100 | S 0.56 416
36 |0.78 | 054 +18 27 8150 | S 1.600 521
37 [0.49 | 0.08 +18 25 25100 | S 1391 | 2954

Table 5.2: Risks and Maholanobis distances for a total of 37 abnormal pregnancies,
continued (Risks given to three significant digits.) Sources B = Bogart eral.(1987).; S =
Stables et al (1991).; J = Johnson ef al (1991). Value for risk = n such that the risk is 1 ; n.
(Risks given to 3 significant digits.)

* No maternal age given, 35 assumed for purpose of risk calculation.

Outcome Outcome No. screened +ve | No. screened -ve but atypical
Total of Unaffected at
5% 2% 1%
TRI8 |21 0 11 11 {10
l'FR13 7 1 1 1 1
[Others 9 i | 2 i |4
Total 37 7 | 7618 15

Table 5.3; Summary of resultsiof modified screening algorithm for abnormal pregnancies.
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Screened Positive Screened -ve but atypical of Unaffected at
| 5% 2% 1%
Frequency 58 43 30
8s
% 2.9% 4.25% 2.2% 1.5%

Table 5.4: Summary of results of modified screening algorithm on 2000 unaffected

pregnancies.

Lag(tioft HCG)

x10!
0.28._

O0WNS

0.06/

-.086

~-.17)]

Figure S.1: Plot showing cases in Table 5.2 and 99 % contours of the atypicality indices for
the unaffected and Down's syndrome pregnancies., A= Trisomy 13, 0= Trisomy 18,
+= others.
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Chapter 6

A nonparametric alternative: the kernel method of
density estimation

6.1 Introduction

The algorithm employed by Wald er al (1988) adopts a paramétric approach to the
problem of estimating the class conditional densities of transformed MoM analyte values.
The class conditional distributions of MoM values are assumed to be adequately represented
by multivariate lognormal distributions with differing mean and covariance matrices. Their
1988 and 1993 papers, however, highlight evidence of non-normality in the marginal
distributions of AFP, UE3 and HCG which is particularly pronounced in the tails of the
distributions. The distributions of UE3 demonstrate the most deviation from a Gaussian
form. The problem is addressed by truncating the distributions to remove extreme values
that fall outside a linear range on a normal probability plot. However, unreliable
distributional assumptions affect the likelihood ratio based risks and the performance of the
algorithm as a whole. With such rigid distributional assumptions surrounding parametric
tec!n'niques of density estimation, nonparametric approaches based on more flexible methods
:may be more:appropriate.

Nonparametric methods of estimating probability density functions are varied and
there is a wealth of relevant literature (Hand (1981), Silverman (1986), Hiirdle(1991)).
More common techniques include the traditional histogram, the nearest neighbour method,
the kernel estimator, and the orthogonal series estimator. This chapter considers the kernel
method of estimation which is certainly the most studied mathematically and for the

purposes of this Ph.D., is sufficient. Section 6.2 covers the background and motivation in
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using nonparamtetric methods of density estimation. Section 6.3 provides an initial
discussion of the statistical framework of kernel methods as described by its founders.
Section 6.4 of this chapter provides a concise overview of past and present research in this
field. Attention is paid to recent developments in multivariate estimation techniques. It is the
intention to provide a review of the results of published work in this area, theorems and
proofs are omitted. Section 6.4.1 and section 6.4.2 review univariate and multivariate kernel
methods of density estimation. Section 6.4.3 discusses automatic methods of window width
selection. Some of the kernel estimators described at each stage of this chapter are applied
to the clinical trials data for unaffected pregnancies which is summarized in Chapter three of
this thesis. One and two dimensional density estimates are fitted to the class conditional
distributions of residual analyte values for the models ALIN2, UNLIN2 and HNLIN2, which
are equivalent to log(MoM) values.

The application of nonparametric density estimation to the affected data is discussed
as a separate issue in section 6.5. In section 6.6, the techniques used to compute parametric
density estimates described by Wald e af (1988) are applied to the affected and unaffected
distributions of residuals and the parametric density estimates are graphically compared to
those constructed by nonparametric methods. The two approaches are compared through
the detection rates achieved in two dimensions, and these are discussed in a concluding
section, section 6.7. Copies of the software used in this chapter are given in Appendices E, F

and G.

6.2 Background

The univariate kernel density estimator, was first described by Fix and Hodges
(1951) who employed this technique in a discriminant analysis that was conducted to assist

with medical diagnosis. A specific nonparametric kernel density estimate of the populations
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under study was used in a discriminarit rule that was subsequently used to classify new
subjects. A more general estimator of this type was introduced by Rosenblatt (1956) and
Parzen (1962). Initial extensions to muliivariate data were supplied by Cacoullos:(1966) and
Epanechnikov:(1969).

Let {X,} denote an independently and identically distributed sample of size »,
X, e Rwith pdf f and {X,} denote an independently and identically distributed sample of
size #, X, eR? with pdf f .

The kernel method of estimation is an adaptation of the more restrictive naive

estimator. Define a weight function such that

1 .
wiy=1z T M(.' (6.1)
o: otherwise
then the naive estimator becomes
=)
= — 62
f@ =2 = (62)

Unlike the histogram, the naive estimator is not affected by the choice of origin. The
parameter h governs the window width of estimation. However, undesirable properties of
this estimator are apparent in its jagged presentation. Figures 6.1- 6.3 plot the histograms of
the distributions of residual AFP, UE3 and HCG values. Figure 6.4 plots the naive density
estimate of the distribution of HCG. The plot demonstrates the crudeness of the naive
estimator. The effect is exaggerated by the use of a small window width (# = 0.04). A

generalized weighting function would be less artificial.
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In essence, the kernel estimator provides a smooth version of the density estimate
given by the naive estimator. The univariate kernel estimator with kernel function K is

defined as

jw =535 63)

K'is a symmetrical function centered at zero that integrates to unity and /4 is the smoothing
parameter. Essentially, as expressed by Silverman (1986), the kernel estimator is a weighted
sum of individual symmetrical 'bumps' centered over each observation. The choice of kernel
function determines the form of the density estimate and the degree of smoothing imposed
on the estimate is determined through the choice of h.

With extensions to higher dimensions the general multivariate kernel density

estimator is defined below.

FesH) =" K, (x- X,) (6.4)

i=l
where Kis a d -variate probability density function, H is a symmetrical positive definite

=112

(d xd) matrix, and K, (x)=|H|" K(H"*x). There are many permissible classes for H

and these are discussed in section 6.4. Often it is satisfactory to replace H with a diagonal

matrix yielding

0 Y v vt 1 L Lo
TirTamTd hh Lhy. ] h

J=1 J
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which permits different smoothings in each coordinate direction. Such multivariate kernel
estimates are called product kernels. Even simpler estimates are attained using a fixed global

smoothing parameter. If 4, =h, j=1,....d, then

K(———xf ;X'-’ ] 6.5)

With a single dimension, a subjective choice of smoothing parameter is influenced by

n d
=1

A 1
S (x) —Wgn

i=l f

the sample size and data variability. If & is too small the estimate presents itself as a series of
probability peaks over the original observations. Alternatively, if 4 is too large information
is lost through the severity of smoothing. With bivariate and multivariate density estimation
selecting the window widths can be problematic. Optimal parameterizations depend on the
cnteria of optimization used a‘md on the choice of kernel function (Hand (1981)).

Silverman's revival of the theoretical foundations of density estimation in 1986,
rekindled interest in this area of study. Many workers have updated old, and developed new
methodologies to address such problems. A variety of routes to achieve the most efficient
smoothing parameters have been explored by experts such as Habbema et al (1974), and
Terrell and Scott (1992), and a diverse range of optimization criteria’s have been used.
More recent publications have considered all possible classes of parameterizations to achieve
optimal estimation (Wand and Jones (1993)). Kernel estimation methods have again been
adopted in discriminant analysis for the purposes of medical diagnosis (Titterington (1981),

Rossiter (1991), Boys (1992)).
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6.3 Kernel functions and smoothing parameters

For each distinct data set, kernel density estimates are uniquely specified by the
choice of smoothing parameters and kernel function adopted. Since many probability density
functions are symmetrical and integrate to unity most behave suitably as kernel functions.
Some univariate kernel functions are defined in Table 6.1. The kernel estimates denived from
this class of functions are themselves densities and, unlike the more traditional histogram,
are independent of origin choice. Gaussian kernels, being continuous with derivatives of all
orders, have desirable analytical properties which are inherited by the estimate, although
bounded kemnels, such as piecewise kernels, may be computationally quicker since extreme
points have density estimates of zero (Hand (1981)). Kernel estimates have attractive
mathematical properties an'd their potential effectiveness in higher dimensions provides
practical appeal in medical research and allocation theory (Habbema et al (1974), Rossiter et
al (1991)).

The degree of smoothing in single dimensional kernel estimates is generally
controlled by a fixed smoothing parameter, or window width /. Selection may be subjective
or automatic. A subjective choice can be attained by plotting a series of density estimates
with varying window widths. An over detailed density that forms probability spikes at each
observation suggests » is too small. An oversmoothed estimate that takes the form of the
original kernel, X, indicates % is too large. Figures 6.5-6.7 demonstrate the effects of
varying the window widths of the kernel density estimate constructed using HCG residuals
and a Gaussian kemel function, (see Table 6.1). With 2 = 0.04, the estimate shows too
much spurious noise. Using # = 0.12 information is lost through oversmoothing. With A =
0.08 the fine detail is removed and the general trend of the distribution is clear. Illustrations

of these types of effects are also offered in Silverman (1986) and Hindle (1991).
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Kemel Density Estimate of HCG Residuals
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Figure 6.5: Kernel density estimate constructed from HCG residual data with 4 = 0.04.

Kemel Density Estimate of HCG Residuals
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Figure 6.6: Kernel density estimate constructed from HCG residual data with A = 0.08.
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Kernel Density Estimate of HCG Residuals
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Figure 6.7: Kemnel density estimate constructed from HCG residual data with # = 0.12.

Global smoothing parameters are less effective with data from a long tailed
distribution. Disturbances are apparent in the extremes of the estimate. A variable window
width that adjusts the degree of smoothing over regions of differing densities would achieve
parameter estimates that were closer to their theoretical optimum. This technique has
developed with advancing years of research (Terrell and Scott (1992)).

Automatic window width selection exhibits many forms and degrees of complexity.
Efficient computational routes towards optimal estimation has captured much of the
research involving density estimation. Automatic selection of smoothing parameters for
bivariate and multivariate data sets has proved to bé even more involved. Sample data from
a mixture distribution may have optimal parameters in one class that may not be optimal in
another (Marron and Wand (1992)). Again, the inconsistency of smoothing parameters to
remain optimal over the global space of estimation causes concern (Terrell and Scott
(1992)). More recent advances have introduced orientational smoothings as well as different
dimensional smoothings to deal with correlated variables (Wand and Jones (1993)). The
following section of this chapter reviews the significant publications that have lead to the key
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developments in methods of kemne! density estimation, dating from the original declaration

by Fix and Hodges (1951).

6.4 Review

The initial proposal for an alternative approach to existing nonparametric methods of
density estimation was offered by Fix and Hodges (1951). Fix employed the naive estimator
to estimate the forms of unknown univariate densities for the purposes of discriminant
analysis. Fryer (1977) later describes this estimator as a 'running histogram’ that eliminates
disputes over origin position. The advantages of such an estimate prompted Rosenblatt
(1956) to investigate the generalized class of univariate estimators, defined as kernel or
window estimators, with the kemel function X satisfying the conditions for a probability
density function. Parzen (1962) discusses the asymptotic properties of this class and, by
imposing further restrictions on the kernel function, illustrates asymptotic unbiasedness
when the kernel X takes on particular densities. The adaptation of specific forms of kernel
estimators to multivariate estimators was introduced by Cacoullos (1966) in the cases of
Borel scalar kernels and product kernels. Desirable properties of more general multivariate
density estimates with kernels of arbitrary form are set out by Epanechnikov (1969).

Much of the theoretical groundwork involving kernel density estimation is
investigated in these publications. The underlying statistical properties provide a basis for the
optimal selection of smoothing parameters and kernel functions. Silverman (1986) points out
that most of the important applications of density estimation are concerned with multivariate
data. However, since multivariate methods are generalizations of univariate methods it is
necessary to develop an understanding of both. An overview of the statistical properties in
their univariate form, and the modifications needed for extensions to multivariate density

estimation follows.
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6.4.1 Statistical aspects of the kernel method for univariate data

According to Hand (1981) an acceptable smoothing parameter attempts to find a

satisfactory compromise between bias and random fluctuation. As given by Silverman

(1986) for finite samples, the bias and variance of the estimator }'(x) is defined

BLf (x)]= ELf ()] - f(x)

: j%K{f—;—y}f(y)dy - f(x) (66)

var[f(x)]= E[f(x)*1- (ELf(0)])?

and

Var[_;'(x)]= Var(#iz::l K[x —hX,.D _ "}1,2 Var[K[x ; y”

o [ie(z52) romn-sx{52) )

2

K222 s0a-afens s 67

nh?

The bias of f(x) depends on the window width , and the choice of kemel function
K . The bias does not directly depend on the sample size. However, if # is selected as a
function of the sample size, », the bias indirectly depends on #. Increasing the sample size
alone will not succeed in reducing the bias. Approximate expressions for equations (6.6) and

(6.7) are given in Silverman (1986) and written below.
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HF D=2 S (D +o(h?) ©8)
where k, = [ x?K (x)dx # 0

Var[}(x)] = # f(x)j K(x)’dx + o(nh™) (6.9)

The variance of the kernel estimator is nearly proportional to (n4)™', thus a reduction in
variation is achieved through increasing A, which leads to an unavoidable increase in bias.
The apparent ‘trade off' problem between random and systematic error poses questionable
debate over the most efficient criteria for selecting the smoothing parameter. A natural
measure of discrepancy between the density estimator and the true density at a single point is
the mean square error, MSE . An alternative settlement was first proposed by Rosenblatt
(1956) that measured the global performance of } as an estimator of f . Rosenblatt (1956)

employed the method of minimizing the mean integrated square error, MISE , to assess the
global accuracy of the density estimate. This method combines the effects of both the bias
and variance in the selection of & .

The mean square error of a point estimate, MSE , is defined
MSE(f(x)]= E[f(x)~ f(x))’

A 2 A
=(E7)- 1) +Var(Fen (6.10)
and the mean integrated square error for global estimation, M/SE is

MISE(f (x)] = E[{f (x)~ f(x)}?dx

145




= _[ {E _Af(x)— f(x)} dx+IVar[}'(x)]dx

Equations (6.8)-(6.9) give the approximated integrated square bias and integrated variance

as

Ib[}(x)]zdx & %h“kfj.f"(x)zdx

A 1 )
[Varl f (x))dx = — | K(x)
yielding
MISE[f(x)] = %h‘k:If"(x)’dx+#jK(x)2dx (6.11)

Rosenblatt (1956) demonstrates that minimizing the MISE , equation (6.11), leads to
an optimal choice of smoothing parameter which itself is a function of the unknown density
and its derivatives. This led to Rosenblatt's (1956) disappointing theorem that for all
continuous densities, there does not exist a uniformly unbiased estimator.

Parzen (1962) defines the optimal smoothing parameter found by minimizing the

approximated MISE to be

B, = k;§ { J’ K(x)’dx}é{ | f"z(x)a!t}_%n_% (6.12)

Substituting equation (6.12) into equation (6.11) gives the approximate value of the MISE

for optimal selection of &, and provides support in the optimal choice of kernel function X .
4
s

MISE(h,) = >eRO[ £'C0defe
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where the constant ¢(K) is defined

o(K )= k,3 {[xex )’dx}g

According to Epanechnikov (1969) the optimal choice of kernel function is given by

3 xz]
— |1-= -
Koo < 4J§( : 5<x<5 (6.13)
elsewhere
0
which later became known as the Epanechnikov kernel.
T X (x) EFFICIENCY
Epanechnikov 3 1 !
p -_(1__);2)/J§ for |x] <5
4 5
0 otherwise
Biweight 15 :
g _(1—ch)2 for |x| <1 (@)2 ~ 09939
16 3125 '
0 otherwise
Triangular =] for |x <1 2433
(EEJ ~ 09859
0 otherwise '
Gaussian 1 o 36z %
— — 1] =09512
Rectangular 1 :
2 for |x| <1 (E) ? o 09295
125
0 otherwise

Table 6.1: Some kernel density functions and their efficiencies relative to the Epanechnikov

kernel estimator.
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Parzen (1962) sets out the necessary conditions for estimates of the form in equation (6.3)
to be asymptotically unbiased at all points x and for the probability density to be continuous.
Kemels satisfying these conditions include the rectangular, triangular, Gaussian and Cauchy
density functions. Table 6.1 gives a list of some kernel density functions along with their

efficiencies.
6.4.2 Statistical aspects of the kernel method for multivariate data

The first multivariate extensions to the univariate kernel density estimators were set
out by Cacoullos (1966) and Epanechnikov (1969). Cacoullos (1969) modifies Parzen’s
work (1962) to derive results concerning consistency, asymptotic unbiasedness, and bounds
for bias and mean- square error for estimation based on multivariaie kernel functions.
Epanechnikov (1969) discusses asymptotic properties and considers the optimal values of #
and X , for an arbitrary choice of multivariate kernel function.

Results concerning the approximated bias, variance and the AMISE of kernel
estimates in higher dimensions, as given in Epanechnikov (1969) and revised by Silverman

(1986), are stated for completeness.

Define @ = | x,’K(x) dx and = [ K(x)*dx
then

BLf (x)] = Zlh’aV’f(z) 6.12)
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Varl f (D=1 (2) 6.15)

A 1 2 1
and  MISE[f(x)]~ Zh‘oﬁ [(vif)de+ —5h (6.16)
The approximate optimal window width achieved through minimizing the MISE is given by

Byt = dfa ™ {I(V2 7) }"n-' (6.17)

Again substituting equation (6.17) into equation (6.16) yields the approximate value of the

MISE achieved with optimal smoothing parameters.

6.4.3 Methods of automatic window width selection

Multivariate density estimation permits several options for smoothing
parameterizations. Possibilities extend to many classes of parameterizations. Distinct
directional window widths are frequently more appropriate than a single global smoothing
parameter (Epanechnikov (1969)). Kemnel density estimates constructed from correlated
variables may perform well with a matrix of window widths that provide orientations other
than those of the coordinate direction (Deheuvels (1977)). Data transformations such as
scaling, (equating the sample variances), and sphereing, (reducing the covariance matrix to
unity), often enhances estimation (Fukunaga (1972)).

The use of many smoothing parameters adds flexibility to the density estimation but
also increases the difficulty of parameter optimization. Automatic window width selection
based on minimizing the MISE requires prior knowledge of the true density. Although
selection may be subjective, this is particularly undesirable for estimation in higher

dimensions. Several methods for automatic window width selection have been offered
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suitable for both univariate and multivariate data. These include simple procedures such as
Silverman’s *‘rule-of-thumb’ approach and more complicated selection procedures employing
cross-validatory methods based on either least squares assumptions or the classical
maximum likelihood technique (Bowman (1984)). Alternative kemnel approaches such as
variable methods that incorporate nearest neighbour techniques and adaptive kernel methods
have been utilized to deal with the problems encountered with data from a long tailed
distribution (Terrell and Scott (1992), Sheather and Jones (1991)). These approaches will

now be reviewed along with more recent innovations.
6.4.3.1 Rule of thumb method

A simple approach to ‘select the most suitable smoothing parameter, other than by a

purely subjective choice is to use a standard family of distributions to assign a value to the
term I f (x)*dx in equation (6.12) for univariate data and I(V’ J )2 in equation (6.17) for

multivariate data. Silverman describes this approach as the rule-of-thumb method.

Consider the univariate case. Silverman (1986) uses the Gaussian distribution with

variance o as an example. The standard normal density is defined ¢ and

f f(x)dx= 0‘5I¢"(x)2dx = %n'“”ﬁ ~ 021207 (6.18)
Now, using a Gaussian kernel and substituting equation (6.18) into equation (6.12) gives

e = (42) " 2 < 106om ™ (6.19)
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o can be estimated from the data and substituted into equation (6.19) to give the optimal
smoothing parameter. Silverman points out that this approach works well if the population is
normally distributed but may cause oversmoothing if the population is multimodal. Improved
results are obtained when a more robust measure of spread is used. If the interquartile range,
R, replaces o, equation (6.19) becomes

By = 0.79R™ (6.20)

The smoothing parameter in equation (6.20) gives better results with data from long tailed
and skewed distributions. The adaptive estimate of spread

A= min(standard deviation, interquartile range/1.34),
instead of o in equation (6.19), works well with unimodal densities and moderately well
with bimodal densities. Silverman also suggests reducing the factor 1.06 in equation (6.19).
With a Gaussian kernel

h=094n™" (6.21)
gives a mean integrated square error within 10% of the optimum for the lognormal
distribution with skewness up to 1.8 and many others. Silverman concludes that using
equation (6.21) as a smoothing parameter works very well with many densities and is a good
starting point for optimal parameter selection with others.

The smoothing parameter given in equation (6.21) is used to construct density

estimates from AFP, UE3 and HCG residuals and these are given in Figures 6.8-6.10.
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Kemel Density Estimate of AFP Residuals
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Figure 6.8: Kernel density estimate constructed from AFP residual data with the smoothing
parameter determined by equation(6.21), # = 0.08.

Kemel Density Estimate of UE3 Residuals
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Figure 6.9: Kernel density estimate constructed from UE3 residual data with the smoothing
parameter determined by equation(6.21), » = 0.06.
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Kemel Density Estimate of HCG Residuals
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Figure 6.10: Kemnel density estimate constructed from HCG residual data with the
smoothing parameter determined by equation (6.21), # =0.1.

The rule-of-thumb technique can be applied to multivariate data. Equation (6.17) can

be used to compute a global window width when f is a standard density such as the

multivariate normal. The multivariate Gaussian kernel function is defined as

K(x)=(2n)™ em(—%z’z) (6.22)
and define ¢ as the unit d - variate normal density then
(1,1 '
vi) =(2 (——d —dz) 6.23
J(ve) =(24x) (3d+7 (6:23)
Substituting equation (6.23) into equation (6.17) gives the optimal window width, 4_, , for

normally distributed data with unit variance

R, = A(Kn™" @ (6.24)

(d+4)

where A(K) = [dﬂa"’ { | (v%)z}_l] (6.25)
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Kemnel Density Estimate of AFP Residuals

038
I

Dens. Est.
04

0.2

00

N
-
Q
-

AFP Res.

Figure 6.21: Kernel density estimate constructed from AFP residual data for Down’s
syndrome pregnancies with the smoothing parameter determined by equation (6.21),
h=0.17.

Kemel Density Estimate of UE3 Residuals
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Figure 6.22: Kernel density estimate constructed from UE3 residual data for Down’s
syndrome pregnancies with the smoothing parameter determined by equation (6.21),
h=0.12.
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