
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

Faculty of Science and Engineering School of Engineering, Computing and Mathematics

2024

PhysicsInformed Neural Networks to

Model and Control Robots: A

Theoretical and Experimental

Investigation

Liu, J

https://pearl.plymouth.ac.uk/handle/10026.1/22373

10.1002/aisy.202300385

Advanced Intelligent Systems

Wiley

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.

Physics-informed Neural Networks to Model and Control Robots:
a Theoretical and Experimental Investigation
Jingyue Liu1,∗ Pablo Borja2 Cosimo Della Santina1,3

1Department of Cognitive Robotics, Delft University of Technology, Delft 2628 CD, The Netherlands
{J.Liu-14, C.DellaSantina}@tudelft.nl
2School of Engineering, Computing and Mathematics, University of Plymouth, Plymouth PL4 8AA,
United Kingdom. pablo.borjarosales@plymouth.ac.uk
3Institute of Robotics and Mechatronics German Aerospace Center (DLR) Oberpfaffenhofen 82234,
Germany
∗Corresponding author

Keywords: Physics-informed neural networks, Hamiltonian neural networks, Lagrangian neural net-
works, model-based control, dissipation, Euler-Lagrange equations, port-Hamiltonian systems

This work concerns the application of physics-informed neural networks to the modeling and control of complex robotic
systems. Achieving this goal required extending Physics-informed Neural Networks to handle non-conservative effects. We
propose to combine these learned models with model-based controllers originally developed with first-principle models in
mind. By combining standard and new techniques, we can achieve precise control performance while proving theoretical
stability bounds. These validations include real-world experiments of motion prediction with a soft robot and of trajectory
tracking with a Franka Emika Panda manipulator.

1 Introduction

Deep Learning (DL) has made significant strides across various fields, with robotics being a salient ex-
ample. DL has excelled in tasks such as vision-guided navigation [1], grasp-planning [2], human-robot
interaction [3], and even design [4]. Despite this, the application of DL to generate motor intelligence in
physical systems remains limited. Deep Reinforcement Learning, in particular, has shown the potential
to outperform traditional approaches in simulations [5–7]. However, its transfer to physical applications
has been primarily hampered by the prerequisite of pre-training in a simulated environment [8–10].
The central drawback of general-purpose DL lies in its sample inefficiency, stemming from the need to

distill all aspects of a task from data [11, 12]. In response to these challenges, there’s a rising trend in
robotics to specifically incorporate geometric priors into data-driven methods to optimize the learning ef-
ficiency [13–15]. This approach proves especially advantageous for high-level tasks that need not engage
with the system’s physics.
Physics-informed neural networks (PINNs) [16–18], infusing fundamental physics knowledge into their

architecture and training, have found success in various fields outside robotics, from earth science to
materials science [19–22]. In robotics, integration of Lagrangian or Hamiltonian mechanics with deep
learning has yielded models like Lagrangian Neural Networks (LNNs) [23], and Hamiltonian Neural Net-
works (HNN) [24]. Several extensions have been proposed in the literature, for example, including con-
tact models [25], or proposing graph formulations [26]. The potential of LNNs and HNNs in learning the
dynamics of basic physical systems has been demonstrated in various studies [18, 27–29]. However, the
exploration of these techniques in modeling intricate robotic structures, especially with real-world data,
is still in its early stages. Notably, [30] applied these methods to a position-controlled robot with four
degrees of freedom, which represents a relatively less complex system in comparison to contemporary
manipulators.
This work deals with the experimental application of PINN to rigid and soft continuum robots [31].

Such endeavor required modifying LNN and HNN to fix three issues that prevented their application to
these systems: (i) the lack of energy dissipation mechanism, (ii) the assumption that control actions are
collocated on the measured configurations, (iii) the need for direct acceleration measurements, which are
non-causal and require numerical differentiation. For issue (iii), we borrow a strategy proposed in [32,33],
which relies on forward integrating the dynamics, while for (i) and (ii), we propose innovative solutions.

1

Furthermore, we exploit a central advantage of LNNs and HNNs compared to other learning tech-
niques; the fact that the learned model has the mathematical structure that is usually assumed in robots
and mechanical systems control. By forcing such a representation, we use model-based strategies origi-
nally developed for first principle models [34–36] to obtain provably stable performance with guarantees
of robustness.
The use of PINNs in control has only recently started to be explored. Recent investigations [33,37,38]

focused on combining PINNs with model predictive control (MPC), thus not exploiting the mathemati-
cal structure of the learned equations. Indeed, this strategy is part of an increasingly established trend
seeking the combination of (non-PI and non-deep) learned models with MPC [39, 40]. Applications to
control partial differential equations (PDEs) are discussed in [41–44], while an application to robotics is
investigated in simulation in [45].
Preliminary investigations in other model-based techniques are provided in [30, 46], where, however,

controllers are provided without any guarantee of stability or robustness and formulated for specific
cases.
To summarize, in this work, we contribute to state of art in PINNs and robotics with the following:

1. An approach to include dissipation and allow for non-collocated control actions in Lagrangian and
Hamiltonian neural networks, solving issues (i) and (ii).

2. Controllers for regulation and tracking, grounded in classic nonlinear control that exploit the mathe-
matical structure of the learned models. For the first time, we prove the stability and robustness of
these strategies.

3. Simulations and experiments on articulated and soft continuum robotic systems. To the authors’
best knowledge, these are the first validation of PINN and PINN-based control applied to complex
mechanical systems.

2 Preliminaries

2.1 Lagrangian and Hamiltonian Dynamics

Robots’ dynamics can be represented using Lagrangian or Hamiltonian mechanics. In the former, the
state is defined by the generalized coordinates q ∈ RN and their velocities q̇ ∈ RN , where N repre-
sents the configuration space dimension. The Euler-Lagrange equation dictates the system’s behavior
d
dt

(
∂L(q,q̇)

∂q̇

)
− ∂L(q,q̇)

∂q
= Fext, where L(q, q̇) = T (q, q̇) − V (q) with potential energy V (q) ∈ R and kinetic

energy T = 1
2
q̇⊤M(q)q̇, where M(q) ∈ RN×N is the positive definite mass inertia matrix. External forces

denoted as Fext ∈ RN , include control inputs and dissipation forces.
In Hamiltonian mechanics, momenta p ∈ RN replace the velocities, with q̇ = M−1(q)p. The Hamilto-

nian equations q̇ = ∂H(q,p)
∂p

, ṗ = −∂H(q,p)
∂q

+ Fext, where H(q, p) = T (q, p) + V (q) is the total energy. The

kinetic energy in this case is defined as T (q, p) = 1
2
p⊤M−1(q)p.

2.2 LNNs and HNNs

Lagrangian Neural Networks (LNNs) employ the principle of least action to learn a Lagrangian function
L(q, q̇) from trajectory data, with the learned function generating dynamics via standard Euler-Lagrange
machinery [34]. The loss function for the LNN in [23] is given by the mean squared error (MSE) between

the actual accelerations q̈ and the ones that the learned model would expect ˆ̈q

LLNN = MSE(q̈, ˆ̈q). (1)

HNNs, conversely, are designed to learn the Hamiltonian function H(p, q). Once learned, this Hamilto-
nian function provides dynamics through Hamilton’s equations. The loss function for HNN is similar an

2

MSE but between the predicted and actual time derivatives of generalized coordinates and momenta:

LHNN = MSE((q̇, ṗ), (ˆ̇q, ˆ̇p)). (2)

We use fully connected neural networks with multiple layers of neurons with associated weights to learn
the Lagrangian or the Hamiltonian, shown in Figure 1.

2.3 Limits of classic LNNs and HNNs

Note that both loss functions rely on measuring derivatives of the state q̈ and ṗ, which - by definition
of state - cannot be directly measured. This issue is easily circumvented in simulation by the use of a
non-causal sensor. Yet, this is not a feasible solution with physical experiments. An unrobust alternative
is to estimate these values from measurements of positions and velocities numerically. This relates to
issue (iii), stated in the introduction.
Moreover, existing LNNs and HNNs assume that Fext ∈ RN is directly measured. This is a reasonable

hypothesis only if the system is conservative, fully actuated, and the actuation is collocated. The first
characteristic is never fulfilled by real systems, while the second and the third are very restrictive outside
when dealing with innovative robotic solutions as soft [31] or flexible robots [47]. Note that learning-
based control is imposing itself as a central trend in these non-conventional robotic systems [48]. These
considerations relate to issues (i) and (ii) stated in the introduction.

......

......

......

......

......

Input Output Hidden Layers

Figure 1: Fully connected network.

3 Proposed algorithms

3.1 A learnable model for non-conservative forces

In standard LNNs theory, non-conservative forces are assumed to be fully known and to be equal to
actuation forces directly acting on the Lagrangian coordinates q. This is very restrictive, as already dis-
cussed in the introduction.
In this work, we include external forces given by dissipation and actuator forces, i.e., Fext = Fd(q, q̇) +

Fa(q). We propose the following model for dissipation forces

Fd(q, q̇) = −D(q)q̇, (3)

where D(q) ∈ RN×N is the positive semi-definite damping matrix. Besides, we model the actuator force
as

Fa(q) = A(q)u, (4)

where u ∈ RW is the control input signal to the system, and A(q) ∈ RN×W is an input transformation
matrix. For example, A could be the transpose Jacobian associated with the point of application of an
actuation force on the structure. With this model, we take into account that in complex robotic sys-
tems, actuators are, in general, not collocated on the measured configurations q. Note that, even if we
accepted to impose an opportune change of coordinates, for some systems, a representation without A is
not even admissible [49]. With (4), we also seemingly treat underactuated systems.

3

Note that [46] uses a dissipative model but considers it in a white box fashion.
Hence, we rewrite the Lagrangian dynamics as follows

q̈ =

(
∂2L(q, q̇)

∂q̇2

)−1(
A(q)u− ∂2L(q, q̇)

∂q∂q̇
q̇ +

∂L(q, q̇)

∂q
−D(q)q̇

)
, (5)

which can be alternatively expressed as follows

q̈ = M−1(q) (A(q)u− C(q, q̇)q̇ −G(q)−D(q)q̇) ,

where C(q, q̇) ∈ RN×N and G(q) ∈ RN .
Similarly, the Hamiltonian takes the form[

q̇
ṗ

]
=

[
0 I
−I −D(q)

][∂H(q,q̇)
∂q

∂H(q,q̇)
∂p

]
+

[
0

A(q)

]
u. (6)

3.2 Non-conservative non-collocated Lagrangian and Hamiltonian NNs with modified loss

Figure 2 reports the proposed network framework, which builds upon Lagrangian and Hamiltonian NNs
discussed in Sec. 2.2. Our work incorporates the damping matrix network, input matrix network, and a
modified loss function into the original framework. The damping matrix network is used to account for
the dissipation forces in the system via (3), while the input matrix network corresponds to A(q) in (4).
We predict the next state by integrating (5) or (6) with the aid of the Runge-Kutta4 integrator. Clearly,
different integration strategies could be used in its place.
The dataset D = [Dk, Tk|k ∈ {0, ..., kend}] contains information about the state transitions of the

mechanical system. With this compact notation, we are not exclusively referring to a single trajectory
of the system’s behavior, but we aggregate data from multiple system trajectories. The input data Dk is
composed of either [qk, q̇k, uk,∆t], for Lagrangian dynamics, or [qk, pk, uk,∆t] in the case of Hamiltonian
dynamics. Similarly, the corresponding label Tk is either q̇k+1, for the Lagrangian case, or [qk+1, pk+1] for
Hamiltonian dynamics. Here, k and k + 1 refer to consecutive time steps in the dataset, where k provides
input data at one time step, and k + 1 corresponds to the label data at the subsequent time step ∆t.
The values of M(q, θ1), V (q, θ2), D(q, θ3), and A(q, θ4) are estimated by four sub-networks, namely, the

mass network (M-NN), potential energy network (V-NN), damping network (D-NN), and input matrix
network (A-NN), as shown in Figure 2. The parameter θi, where i ∈ {1, 2, 3, 4}, represents the sub-
networks’ model parameter.
The kinetic energy can be calculated once the values of q̇ or p are obtained. Then, the Lagrangian

or Hamiltonian functions can be derived from the kinetic and potential energies. The derivative of the
states ¨̂q or [˙̂q ˙̂p]⊤ can be computed using (5) or (6), respectively. The predicted next state ˙̂q or [q̂ p̂]⊤

can be obtained using the Runge-Kutta4 integrator. We thus employ the following modified losses [32,33]

LLNN =
1

#D
∑
k∈D

(
∥ qk+1 − q̂k+1 ∥22 +∥ q̇k+1 − ˆ̇qk+1 ∥22

)
(7)

for LNNs, where #D is the cardinality of D, and

LHNN =
1

#D
∑
k∈D

(
∥ qk+1 − q̂k+1 ∥22 + ∥ pk+1 − p̂k+1 ∥22

)
(8)

for HNNs. Thus, compared to (1) and (2), we are calculating the MSE of a future prediction of the
state—simulated via the learned dynamics—rather than of the current accelerations, which cannot be
measured. Note that we also include a measure of the prediction error at the configuration level for

LHNN because the information on ∂H(q,q̇)
∂p

appears disentangled from D and A (which are also learned)

in the first n equations of (6).

4

or

Lagrangian L

Integrator: Runge-Kutta4

Lagrangian Dynamics Eq. (5)

Hamiltonian Dynamics Eq. (6)

Sub-Networks

A-NN

D-NN

V-NN

M-NN
Kinetic
Energy Hamiltonian H

Loss Function

Eq. (7)

Eq. (8)

Figure 2: The overview of Lagrangian and Hamiltonian neural networks: the yellow part—i.e., Dk and Tk—represents the input and
label data used in the network; in red, the data and calculation process required for Lagrangian dynamics; the green parts represent
the corresponding data and calculation associated with the Hamiltonian dynamics.

3.2.1 Sub-Network Structures

Constraints based on physical principles can be imposed on the parameters learned by the four sub-
networks. Specifically, the mass and damping matrices must be positive definite and positive semi-definite,
respectively. To this end, the network structure of the dissipation matrix can follow the prototype estab-
lished for the mass matrix in [50]. This structure can be decomposed into a lower triangular matrix LD

with non-negative diagonal elements, which is then computed using the Cholesky decomposition [51] as
D = LDLD

⊤. The representation of D(q) is illustrated in Figure 3.

......
......

0 0

0

......

............

......

......

......

......

......FNN non-
negative

Softplus

......

Figure 3: Diagram of the damping matrix including a feed-forward neural network, a non-negative shift for diagonal entries, and the
Cholesky decomposition

The output of M-NN and D-NN is calculated as (N2 +N)/2, with the first N values representing the
diagonal entries of the lower triangular matrix. To ensure non-negativity, activation functions such as
Softplus or ReLU are utilized as the last layer. Furthermore, the constant ϵ is introduced to guarantee
that the mass matrix is positive definite. Note that ϵ is a hyperparameter that should be selected to be
small-enough but strictly positive. The remaining (N2 −N)/2 values are placed in the lower left corner of
the lower triangular matrix.

5

The calculation of the potential energy is performed using a simple, fully connected network with a
single output, which is represented as V (q, θ2). Moreover, A-NN, depicted in Figure 4, calculates A(q, θ4)
with dimensions RN×W .

......
reshape

A-N N

......
FNN

Figure 4: Diagram for actuator matrix: The fully connected network output is a vector in RNW , which is reshaped to a matrix in
RN×W . A sigmoid activation function can be applied to the matrix elements for value constraint.

3.3 PINN-based controllers

We provide in this section two provably stable controllers by combining the learned dynamics with clas-
sic model-based approaches. Before stating these results, it is important to spend a few lines remarking
on the potential relationships between the outcomes obtained through proposed LNN and the ground
truth, as well as their implications for controller design. Due to the inclusion of the actuator matrix and
the inherent non-uniqueness of the Lagrangian, we assume that the Lagrangian LL(q, q̇) learned by LNN
can be represented as follows:

LL(q, q̇) = aL(q, q̇) + b, (9)

where a is a non-zero constant, and b is another constant term. In this section, we highlight the compo-
nents that have been learned by adding an L as a subscript to provide a clearer illustration. The LNN
enables us to discover an ODE with a solution that matches that of the real ODE:

M−1(q)(A(q)τ − C(q, q̇)q̇ −G(q)−D(q)q̇︸ ︷︷ ︸
q̈

) = M−1
L (q)(AL(q)τ − CL(q, q̇)q̇ −GL(q)−DL(q)q̇︸ ︷︷ ︸

q̈L

) (10)

Also, by construction, ML, GL, AL, DL will have all the usual properties that we expect from these
terms, like ML and DL being symmetric and positive definite, and GL being a potential force. Yet, this
does not imply that M = ML, G = GL, A = AL, and D = DL. Indeed, there could exist a constant
matrix P such that PM(q), PG(q), PA(q), PD(q) have all the properties discussed above while simulta-
neously fulfilling

L(q, q̇;PM,PG, PA, PD) = aL(q, q̇;M,G,A,D) + b (11)

So controllers must be formulated and proofs derived under the assumption of the learned terms being
close to the real ones up to a multiplicative factor.

3.3.1 Regulation

The goal of the following controller is to stabilize a given configuration qref

u = A−1
L (q)GL(q) + A−1

L (q)(KP(qref − q)−KDq̇), (12)

where we omit the arguments t and θi to ease the readability. GL(qref) is the potential force which can
be calculated by taking the partial derivative of the potential energy learned by the LNN; KP and KD

are control gains.
For the sake of conciseness, we introduce the controller, and we prove its stability for the fully actu-

ated case. However, the controller and the proof can be extended to the generic underactuated case
using arguments in [36, p.50]. This will be the focus of future work.

6

Proposition 1. Assume that W = N , with A and AL both full rank, and the existence of a constant
matrix P ∈ RN×N such that ||GL(q)− PG(q)|| < δG, for some finite and positive δG. We assume that

||A−1(q)P−1[AL(q)− PA(q)]|| < 1, (13)

and that the gains KP, KD are chosen such that

P−1KP ≻ 0, and, P−1KD ≻ 0. (14)

Then, given a maximum admitted error δq, the closed loop of (5) and (12) is such that

lim
t→∞

q(t) = qss with ||qss − qref|| < δq. (15)

Remark 1. Assumption (13) is a request on the learned matrix AL(q) being close enough to A(q) up to
a multiplicative factor P , which is something we need to ensure, as discussed in Section 3.3. Indeed, if
AL(q) ≃ PA(q), then (13) is fulfilled.

Remark 2. Note that there always exist KP and KD that fulfill assumption (14). Specifically, they can be

expressed as KP = PK̂P and KD = PK̂D, where K̂P and K̂D denote positive definite matrices.

Proof. Let us introduce the matrix ∆A ∈ RN×N such that AL(q) = PA(q) + ∆A(q). This matrix is
small enough by assumption as detailed in Remark 1. We now want to bound the difference between the
inverse of A(q) and PAL(q). The goal is to write A−1

L (q) = (PA(q))−1 +∆I(q), with ||∆I(q)|| < δI.
Because of(13), we can use the Neumann series—see, for instance, [52, p.20]—to obtain the following

A−1
L (q) = (PA(q) + ∆A(q))

−1 =
∞∑
k=0

(−(PA(q))−1∆A(q))
k(PA(q))−1. (16)

Rearranging terms, we get that

∆I(q) = A−1
L (q)− (PA(q))−1 =

∞∑
k=1

(−(PA(q))−1∆A(q))
k(PA(q))−1. (17)

Therefore, we can bound the norm of ∆I(q) as follows

||∆I(q)|| ≤
∞∑
k=1

||(PA(q)−1∆A(q))||k||(PA(q))−1|| = ||(PA(q))−1∆A(q)||||(PA(q))−1||
1− ||(PA(q))−1∆A(q)||

< δI. (18)

Hence, the generalized forces produced by the controller A(q)u are given by

A(q)A−1
L (q) [GL(q) + (KP(qref − q)−KDq̇)]

= A(q)(A−1(q)P−1 +∆I(q)) [(PG(q) + ∆G(q)) +KP(qref − q)−KDq̇]

= (P−1 + A(q)∆I(q)) [(PG(q) + ∆G(q)) +KP(qref − q)−KDq̇]

= G(q) + ∆all(q) + K̂P(qref − q)− K̂Dq̇

(19)

where ∆all(q) = P−1∆G(q) + A(q)∆I(q)PG(q) + A(q)∆I(q)∆G(q) + A(q)∆IKP(qref − q) − A(q)∆IKDq̇

is a bounded term, as sum and product of bounded terms. The gains K̂P and K̂D are positive definite
matrices, resulting from the products P−1KP and P−1KD, respectively, as indicated in Remark 2. Thus,
the closed-loop system takes the form

M(q)q̈ + C(q, q̇)q̇ = ∆all(q) + K̂P(qref − q)− (D(q) + K̂D)q̇. (20)

7

To conclude, replicating the arguments provided in [53, Theorem 1] yields the result. In turn, that work
was adapted from the seminal paper [54]. Alternatively, (20) can be rewritten as

M(q)q̈ + C(q, q̇)q̇ + (D(q) + K̂D)q̇ + K̂P(q − qref)︸ ︷︷ ︸
nominal system

= ∆all(q),

Thus, considering the Lyapunov candidate function

V(q, q̇) = 1

2
q̇⊤M(q)q̇ +

1

2
(q − qref)

⊤ K̂P (q − qref) , (21)

a simple stability analysis shows that the nominal system has an asymptotically stable equilibrium point
at the desired configuration. Therefore, the closed-loop system can be interpreted as a perturbed system,
where the perturbation is given by ∆all(q). Hence, the result can be proven following arguments for
perturbed systems—see, for instance, [35, Chapter 9].

Note that even if we provided the proof using a Lagrangian formalism, the Hamiltonian version can be
derived following similar steps. Also, note that the bounds on the learned matrices are always verified
for any choice of δA, δG at the cost of training the model with a large enough training set.
We conclude with a corollary that discusses the perfect learning scenario.

Corollary 1. Assume that W = N and A is full rank. Then, the closed loop of (5) and (12) is such that

lim
t→∞

q(t) = qref, (22)

if it exists a matrix P ∈ RN×N such that ML(q) = PM(q), AL(q) = PA(q), GL(q) = PG(q).

Proof. Note that ∆all = 0 as the deltas are now all zero. So, the closed loop (20) is always the equiv-

alent of a mechanical system, without any potential force, controlled by a PD. Note that the gains K̂P

and K̂D are positive definitive. The proof of stability follows standard Lyapunov arguments (see, for ex-
ample, [34, p.186]) by using the Lyapunov candidate given in (21).

3.3.2 Trajectory tracking

The goal of the following controller is to track a given trajectory in configuration space qref : R →
Rn. We assume qref to be bounded with bounded derivatives. We also assume the system to be fully
actuated—i.e., W = N , det(A) ̸= 0, det(AL) ̸= 0. Under these assumptions, we extend (12) with the
following controller to follow the desired trajectory

u =A−1
L (q) (ML(qref)q̈ref + CL(qref, q̇ref)q̇ref +DL(qref)q̇ref +GL(qref))

+A−1
L (q) (KP(qref − q) +KD(q̇ref − q̇))) ,

(23)

where we omit the arguments t and θi to ease the readability. We highlight the components that have
been learned from the ones that are not by adding an L as a subscript. We can obtain the Coriolis ma-
trix CL(qref, q̇ref) from the learned Lagrangian by taking the second partial derivative of the Lagrangian

with respect to the desired joint position qref and velocity q̇ref, i.e.,
∂2L(qref,q̇ref)
∂qref∂q̇ref

.

Corollary 2. The closed loop of (5) and (23) is such that, for some δq ≥ 0,

lim
t→∞

||q(t)− qref(t)|| < δq, (24)

If it exists a matrix P ∈ RN×N such that AL(q) = PA(q), ML(q) = PM(q), CL(q) = PC(q), GL(q) =
PG(q), DL(q) = PD(q).

8

Proof. We can rewrite (23) by substituting the values of the learned elements in terms of P . The result
is

A(q)u =(M(qref)q̈ref + C(qref, q̇ref)q̇ref +D(qref)q̇ref +G(qref))

+P−1 (KP(qref − q) +KD(q̇ref − q̇))) .
(25)

Moreover, with the assumption (14) in Corollary 1, the closed loop is equivalent to the one discussed
in [55]. Therefore, the proof follows the same steps as discussed there.

Finally, note that we provided here only proof of stability for the perfectly learned case. Similar hy-
potheses and arguments to the ones in Proposition 1 would lead to similar results in the tracking case,
with ||PAL(q) − A(q)|| < δA, ||PML(q) − M(q)|| < δM, ||PCL(q) − C(q)|| < δC, ||PGL(q) − G(q)|| < δG,
||PDL(q)−D(q)|| < δG, for some finite and positive δA, δM, δC, δG, δD ∈ R.

4 Methods: Simulation and experiment design

To evaluate the efficacy of the proposed PINNs and PINN-based control, we apply them in three dis-
tinct tasks: (T1) Learning the dynamic model of a one-segment spatial soft manipulator, (T2) Learning
the dynamic model of a two-segment spatial soft manipulator, (T3) Learning the dynamic model of the
Franka Emika Panda robot. We selected (T1) and (T2) because they have a nontrivial A(q), and (T3)
because it has several degrees of freedom. Furthermore, we employ the learned dynamics to design and
test model-based controllers for T2 and T3.
In a hardware experiment, the LNN is utilized to learn the dynamic model of the tendon-driven soft

manipulator reported in [56] and the Panda robot. We show for the first time experimental closed-loop
control of a robotic system (the Panda robot) with a PINN-based algorithm.

4.1 Data Generation

Training data for T1 and T2 are generated by simulating the dynamics of one-segment and two-segment
soft manipulators in MATLAB. For these two cases, a random sampling strategy is employed in data
generation due to the unbounded configuration space inherent to soft manipulator models in simulation.
For T1, ten different initial states are combined with ten different input signals to generate data using
the one-segment manipulator dynamics model. Each combination produces ten-second training data
with a time step of 0.0002 seconds. For T2, we use a variable step size in Simulink to generate datasets
from the mathematical model of a two-segment soft manipulator. With this approach, we create twelve
different sixty-second trajectories, which are subsequently resampled at fixed frequencies of 50Hz, 100Hz,
and 1000Hz. Concerning T3, the PyBullet simulation environment is used to generate training data
corresponding to the Panda robot. Then, different input signals are applied to the joints to create the
data of 70 different trajectories with a frequency of 1000Hz. These trajectories are thoughtfully designed
to encompass a significant portion of the robot’s workspace.
Regarding experimental validation, we propose the following experiments. For the tendon-driven con-

tinuum robot, we provide sinusoidal inputs with different frequencies and amplitudes to the actuators—
four motors—and record the movement of the robot. An IMU records the tip orientation data with a
10Hz sampling frequency. As a result, 122 trajectories are generated, and four more are collected as the
test set. For the Panda robot, we provide 70 sets of sinusoidal desired joint angles with different ampli-
tudes and frequencies. We collect the torque, joint angle, and angular velocity data using the integrated
sensors, considering a sampling frequency of 500Hz.

4.2 Baseline Model and Model Training

To provide a basis for comparison, baseline models are established for all simulations and hardware ex-
periments. These models, which serve as a control, are constructed using a fully connected network and
trained using the same datasets as the proposed models, however, with a larger amount of data and a

9

Figure 5: PCC approach illustration: (a) two-segment soft manipulator is shown, where Si is the end frame, the blue parts are the
orientated plane, ℓi is the original length of each segment; (b) shows the length of the four arcs whose ends connected to the frame
Si

greater number of training epochs. These baseline models aimed to demonstrate the benefits of incorpo-
rating physical knowledge into neural networks.
In this project, all the neural networks utilized are constructed using the JAX and dm-Haiku packages

in Python. In particular, the JAX Autodiff system is used to calculate partial derivatives and the Hes-
sian within the loss function. The optimization of the model parameters is carried out using AdamW
in the Optax package, which inherently includes regularization terms within the optimization process,
eliminating the need for additional explicit regularization terms in the loss function.

5 Simulation Results

5.1 One-segment 3D soft manipulator

To define the configuration space of the soft manipulator, we adopt the piecewise constant curvature
(PCC) approximation [57] shown in Figure 5. Customarily, this approximation describes the config-
uration of each segment as qi = [ϕi, θi, δℓi], where ϕi is the plane orientation, θi is the curvature in
that plane, and δℓi is the change of arc length. In this work, the configuration-defined method reported
in [58] is used to avoid the singularity problem of PCC. Hence, the configuration of each segment is
given by [∆xi,∆yi,∆ℓi], where ∆xi and ∆yi are the difference of arc length.

Table 1: One-segment soft manipulator simulation detailed information

Black-box model
Lagrangian-based
learned model

Hamiltonian-based
learned model

model (width × depth) 128×5 32×3, 5×3, 16×2 32×3, 5×3, 16×2
sample number 19188 8000 8000
training epoch 15000 6000 6000
traning error 6.891e−5 ± 4.63e−4 8.418e−7 ± 1.77e−5 5.374e−11 ± 7.74e−10

prediction error [m] 7.647± 10.413(5s) 0.171± 0.272(5s) 0.0220± 0.0210 (5s)

The figure indicates that the model trained by LNNs exhibits a high degree of predictive accuracy,
manifesting near-infinite prediction capabilities with over 50,000 consecutive prediction steps in this ex-
ample. While some areas exhibit less precise fits, such errors do not accrue over time. These outcomes
suggest that LNN-based models can effectively capture the underlying dynamics of the one-segment soft
manipulator. In contrast, the black-box model converges during the training process but lacks the gen-
eralized predictive ability outside the training dataset. Its performance reveals its inability to capture
and generalize the underlying dynamics. This system is also learned using HNNs by providing momen-

10

0 1 2 3 4 5 6 7 8 9 10

-2

-1

0

1

2

0 1 2 3 4 5 6 7 8 9 10

-2

-1

0

1

2

Figure 6: One-segment soft manipulator learned model comparison results: (a) depicts the predictions generated by the black-box
model (△), the Lagrangian-based learning model (· · ·), and the ground-truth (−) arising from the dynamic mathematical equations;
(b) shows the prediction error of these two learned models.

LNN-based HNN-based
Models

0.0

0.1

0.2

0.3

0.4

M
SE

 (m
2)

Figure 7: One-segment soft manipulator LNN-based and HNN-based learned models prediction MSE results

tum data. Hamiltonian-based neural networks yield similar quality prediction results as Lagrangian-
based neural networks, as shown in Figure 8. The HNN outperforms the LNN with identical training
sample size and network dimensions, primarily due to two key factors. Firstly, the nature of the op-
timization problem favors HNN, which benefits from a unique solution. Secondly, HNN’s input data,
momentum, provides a more comprehensive description of system dynamics. The detailed information
regarding the one-segment soft manipulator simulation is elucidated in Table 1. The MSE shown in Ta-
ble 1 and Figure 7 over a five-second duration reveals substantial performance advantages for both the
Lagrangian-based and Hamiltonian-based learned models in comparison to the black-box model. No-
tably, the Hamiltonian-based model demonstrates a remarkable superiority, yielding a prediction error
of 0.0220 ± 0.0210 for the 5-second simulation period. This underscores the model’s efficacy in adeptly
capturing and predicting the intricate dynamics of the system.
The matrices obtained from these two physics-based learning models are shown in Table 3 and 4,

where G(q) represents the potential forces, i.e., ∂V (q)
∂q

. As Table 4 shows, HNNs can learn the physically

meaningful matrices, while LNNs only learn one of the solutions satisfying the Euler-Lagrangian equa-

11

0 5 10 15 20 25 30

-4

-2

0

2

4

0 5 10 15 20 25 30

-0.4

-0.2

0

0.2

0.4

Figure 8: One-segment soft manipulator HNN and LNN comparison: (a) shows the Lagrangian-based learned model prediction
results (· · ·), Hamiltonian-based learned model prediction results (◦), and the ground-truth prediction (−); (b) error of the two
models with the ground truth.

Table 2: Mathematical model matrices of one-segment soft manipulator

q M(q) M−1(q) D(q) G(q) A(q) 1.20
−0.20
0.15

 1.73e−3 −3.12e−5 −1.96e−3

−3.12e−5 1.55e−3 3.26e−4

−1.96e−3 3.26e−4 9.29e−2

 593.09 9.35 12.47
9.35 647.61 −2.08
12.47 −2.08 11.04

 0.1 0 0
0 0.1 0
0 0 0.1

 1.29
−0.22
−1.15

 −0.04 −1.0 0.07
0.78 0.04 −0.01
0. 0. 0.77

 0.80
0.20
0.30

 3.64e−3 4.52e−5 −1.94e−3

4.52e−5 3.47e−3 −4.84e−4

−1.94e−3 −4.84e−4 9.67e−2

 277.76 −2.84 5.55
−2.84 288.42 1.39
5.55 1.39 10.46

 0.89
0.22
−1.09

 0.03 −0.99 0.06
0.90 −0.03 0.02
0. 0. 0.89

Table 3: Lagrangian-based learning model matrices of one-segment soft manipulator

q ML(q) DL(q) GL(q) AL(q) P 1.20
−0.20
0.15

 4.23e−3 1.20e−3 −0.03
1.20e−3 5.99e−3 −0.02
−0.03 −0.02 0.59

 0.16 −0.02 0.0
−0.02 0.33 −0.01
0.0 −0.01 0.35

 2.44
−0.61
−5.25

 0.12 −1.72 −0.21
3.05 −0.19 −0.13
−0.34 1.01 3.40

 0.61 −0.02 0.03
−0.02 0.28 0.01
0.33 0.15 0.25

 0.80
0.20
0.30

 6.93e−3 1.84e−3 −0.03
1.84e−3 0.01 −0.02
−0.03 −0.02 0.50

 0.17 −0.01 −0.0
−0.01 0.33 −0.01
−0.0 −0.01 0.35

 1.62
0.81
−4.67

 0.19 −1.66 −0.20
2.97 −0.25 −0.13
−0.40 1.01 3.43

 0.62 −0.02 0.03
−0.02 0.31 0.01
0.21 0.10 0.26

tion. Comparing the corresponding matrices in Table 2 and 3, we can find that the matrices and vectors
learned by the LNNs are related to the real parameters through a transformation P . Notably, P man-
ifests subtle variations across different states; however, in theory, P is anticipated to remain constant.
The observed discrepancies are attributed to inherent learning errors within the network.

5.2 Two-segment 3D soft manipulator

The two-segment soft manipulator model is simulated in MATLAB, where the configuration space is also
defined as in the one-segment case. The training and testing information for this task is presented in Ta-
ble 5. In the 100Hz dataset, the Lagrangian-based learned model outperforms the black-box model with
a notably lower prediction MSE of 1.690± 0.673 meters with less training data. Figure 9 summarizes the
prediction results of the 50Hz, 100Hz, and 1000Hz learned model. From the simulations, we conclude
that the higher the sampling frequency within a certain range, the more accurate the learned model is.
This phenomenon is attributed to the sensitivity of the integration algorithm to step size. Employing
more accurate integration algorithms or shorter time steps in future experiments is expected to enhance
model precision.
Based on the learned model trained at 1000Hz, we devise a PINN-based control loop as in (12). To

12

Table 4: Hamiltonian-based learning model matrices of one-segment soft manipulator

q M−1
L (q) DL(q) GL(q) AL(q) 1.20

−0.20
0.15

 600.32 16.90 15.67
16.90 622.92 −1.34
15.67 −1.34 11.61

 1.02e−1 3.44e−3 8.12e−5

3.44e−3 1.05e−1 −4.39e−4

8.12e−5 −4.39e−4 9.91e−2

 1.33
−0.18
−1.15

 −0.06 −0.94 0.05
0.83 0.02 −0.04
0.0 0.01 0.78

 0.80
0.20
0.30

 285.01 11.08 6.65
11.08 292.46 2.06
6.65 2.06 10.59

 1.01e−1 3.48e−3 6.56e−4

3.48e−3 1.03e−1 −7.45e−5

6.56e−4 −7.45e−5 9.87e−2

 0.93
0.25
−1.10

 0.03 −0.96 0.05
0.92 −0.03 −0.02
−0.01 0.0 0.89

Table 5: Two-segment simulated soft manipulator training and testing detailed information

Black-box model
100Hz

Lagrangian-based learned model
50Hz 100Hz 1000Hz

model(width × depth) 152×3 42×3, 5×3, 42×2 42×3, 5×3, 42×2 42×3, 5×3, 42×2
sample number 59200 45000 45000 45000
training epoch 15000 5500 5500 5500
traning error 3.536e−4 ± 1.08e−3 5.916e−4 ± 8.61e−3 1.652e−4 ± 2.12e−2 1.822e−7 ± 6.67e−6

prediction error [m] 44.683± 4.518(10s) 2.098± 1.253(10s) 1.690± 0.673(10s) 0.089± 0.278(10s)

0 5 10

0

2

4

6

8

10

0 5 10

0

2

4

6

8

10

0 5 10

0

2

4

6

8

10

0 5 10

-1

0

1

2

3

4

0 5 10

-1

0

1

2

3

4

0 5 10

-1

0

1

2

3

4

Figure 9: Two-segment soft manipulator prediction performances under different sampling frequencies

demonstrate the performance of the designed controller, we employ it to control the two-segment soft
manipulator in MATLAB. The proportional gains KP and derivative gains KD are set to 10 and 50, re-
spectively, for all six configurations. The alterations in the states of the two-segment manipulator under
control are depicted in Figure 10, whereas the performance of the controller is demonstrated in Figure
11. Results indicate that the controller is capable of tracking a static setpoint within one second while
keeping the root mean square error (RMSE) less than 0.23%, and exhibits a stable and minimal over-
shoot performance. These performances underscore the reliability and efficiency of the designed con-
troller based on the learned model.

5.3 Panda robot

Table 6 presents the training and testing results of the simulated Panda in PyBullet, while Figure 12
displays the prediction results obtained from the learned model. In comparison to the dynamics models

13

Figure 10: The sequence of movements at the times 0.0s, 0.1s, 0.3s, 0.6s, and 1.0s executed by the two-segment soft robot as a result
of the implementation of the LNN-model-based controller. The red line represents the tip’s position

Figure 11: Two-segment soft manipulator model-based controller performance: (a) shows the evolution of the configuration variables
and the desired state with dotted lines; (b) shows the error between the desired states and current states; (c) shows control effort.

formulated in MATLAB, the simulator’s dynamics model is characterized by increased complexity, influ-
enced by the inherent physical constraints in robotic systems, including restrictions on acceleration and
velocity. This heightened complexity presents challenges in learning the dynamics model. Nevertheless,
the LNN-based model demonstrates a smaller prediction MSE than the MSE of the black-box model.
Notably, limitations emerge in long-term predictions. Consequently, in Figure 12 c, we adopted a contin-
uous prediction approach—forecasting 50 steps consecutively and updating the model state to effectively
illustrate its performance.

Table 6: Panda simulation detailed information (1000Hz)

Black-box model Lagrangian-based learned model
model (width × depth) 120×4 40×3, 20×2

sample number 550000 25000
training epoch 10000 10000
traning error 1.476e−4 ± 2.69e−3 1.424e−4 ± 2.90e−3

prediction error/ [rad] 110.610± 8.809(2s) 8.884± 6.323 (2s)

Based on this learned model, we build the tracking controller discussed in Sec. 3.3. The results are
depicted in Figure 13, where we observe that our controller has a fast response time and can quickly
adapt to changes in the reference signal. It can maintain high accuracy and low phase lag, which makes
it well-suited for tracking fast-changing signals.

14

Figure 12: Franka Emika Panda learned model prediction results: (a) shows 1500 steps prediction in a row; (b) is the angle errors of
the prediction concerning the ground truth; (c) shows the long prediction results with 50-step window size.

Figure 13: Performance of the model-based controller designed using the model learned by the LNNs. The desired trajectories are
plotted with dotted lines.

6 Experimental Validation

6.1 One-segment tendon-driven soft manipulator – NECK

We validate the proposed approach in the platform depicted in Figure 14, which is constructed based
on [56, 59]. We consider two different data preprocessing methods. (i) Moving average method: This
method reduced the noise and outliers in the data, generating a more stable representation of underlying
trends. However, it may overlook intricate relationships between variables, resulting in some information
loss. (ii) Polynomial fitting: This method captured non-linear patterns in the data. However, it was sus-
ceptible to the influence of outliers, resulting in spurious information that may compromise the quality
of the trained model.
The training and testing information is shown in Table 7.
The method of moving average is implemented in MATLAB through the utilization of the movmean

function, with a prescribed window size of 50 points. The processed data are used for training the LNNs.
In Figure 15, we compare the continuous prediction ability of black-box and Lagrangian-based learning
models. The prediction performance in this figure indicates that the Lagrangian-based learning model
exhibits superior predictive accuracy in this sample. Furthermore, Figure 15 (c) shows that the learning
model can realize long-term predictions under the short-term update.
The polynomial fitting of the data is done in MATLAB using the function polyfit. The prediction

results of the model are shown in Figure 16. The learned model exhibits a decent performance when the

15

Figure 14: Experiment platform: One-segment tendon-driven soft manipulator equipped with IMU

Table 7: The tendon-driven soft robot – NECK training and testing information

Black-box model Lagrangian-based learned model

smoothing

model 60×3 21×2, 25×2, 10×2
sample number 69426 69426
training epoch 10000 3000
traning error 1.985e−2 ± 1.85e−1 2.277e−2 ± 2.39e−1

prediction error [◦] 13.229± 60.762 (5s) 2.429± 1.259 (5s)

fitting

model 60×3 21×2, 25×2, 10×2
sample number 57950 48200
training epoch 5000 5000
training error 4.431e−3 ± 3.07e−2 2.758e−3 ± 2.84e−2

prediction error[◦] 8.368± 12.575 (5s) 6.426± 36.237 (5s)

0 2 4 6 8

-5

0

5

0 2 4 6 8

-4

-2

0

2

0 2 4 6 8 10 12 14 16 18

-15

-10

-5

0

Figure 15: The smoothing data black-box model (△) and physics-based learning model (- -) continuous prediction results: (a) and
(b) show prediction 43 prediction steps in a row; (c) depicts the prediction results with 5-step window size.

window size is reduced, as shown in Figure 16(c). In contrast to the previous model, this model exhibits
significant prediction errors shown in Table 7. This can be caused by the significant noise in the sensors
and misinformation caused by the approximation used to fit the data.

6.2 Rigid Robot – Franka Emika Panda

The collected data are processed through a Butterworth filter in MATLAB to reduce noise. Further
details are provided in Table 8. In the experiment, we observe small joint acceleration, which results in

16

0 1 2 3 4 5

-6

-4

-2

0

0 1 2 3 4 5

0

0.5

1

1.5

2

0 2 4 6 8 10 12 14 16 18

0

5

10

15

(a) (b)

(c)

Figure 16: The fitting data black-box model (△) and physics-based learning model (· · ·) continuous prediction results: (a) and (b)
show 25 prediction steps in a row; (c) shows the prediction results with 5-step window size.

minimal velocity change. To prevent the network from focusing solely on learning a large mass matrix
and neglecting other important factors, we utilize a scaling sigmoid function. This function ensures that
the elements in the mass matrix are scaled within a specific range. For this particular case, we have set
the scaling factor to 3.50.

Table 8: Panda experiment detailed information (500Hz)

Black-box model Lagrangian-based learned model
model (width × depth) 120×5 40×3, 20×2

sample number 550000 25000
training epoch 10000 3000
traning error 1.371e−5 ± 2.03e−5 1.68e−7 ± 6.64e−6

prediction error[rad] 182.495± 64.645 (2s) 2.681± 1.383 (2s)

Figure 17 illustrates the predictive performance of our physics-based model, where Figure 17 (b) de-
picts the continuous prediction error within 2 seconds or 1000 prediction steps and (c) shows that updat-
ing the model’s input with real-time state data can help us make a long prediction.
A controller based on the equation presented in (23) is proposed for the actual robot. The propor-

tional gain matrix, KP, is set to a diagonal matrix with entries 600, 600, 600, 600, 250, 150, and 50, re-
spectively. The derivative gain matrix, KD, is set to a diagonal matrix with entries 30, 30, 30, 30, 10, 10,
and 5, respectively. Figure 18 illustrates a series of photographs depicting the periodic movement used
to track a sinusoidal trajectory within a time frame of 10 seconds. The whole tracking performance is
shown in Figure 19.
Furthermore, we have presented the trajectory of the end-effector, which is a helical motion shown in

Figure 20, and its resultant control effect has been visually demonstrated in Figure 19.
In these Figures, we can observe that the designed controller has satisfactory performance, as evi-

denced by its ability to track a desired trajectory. The tracking error, while present in some joints, re-
mains within acceptable bounds and does not significantly impair the overall performance of the con-
troller in practical applications. An examination of the controller’s performance reveals that, while gen-
erally effective, its performance exhibits some degree of variability across different joints. The overall
performance of the controller remains within acceptable levels and suggests its potential for effective use
in real-world applications.

17

0 0.5 1 1.5 2

-2

-1

0

1

2

0 0.5 1 1.5 2

-0.1

-0.05

0

0.05

0 1 2 3 4 5 6 7 8

-2

-1

0

1

2

Figure 17: Panda physics-based learning model prediction results: (a) and (b) show prediction of about 800 steps in a row; (c)
depicts the prediction results with a 5-step window size.

Figure 18: Photo sequence of one periodic movement resulting from the application of the LNN-model-based controller tracking
trajectory

7 Conclusions

This paper presented an approach to consider damping and the interaction between robots and actua-
tors in PINNs—specifically, LNNs and HNNs—, improving the applicability of these neural networks
for learning dynamic models. Moreover, we used the Runge-Kutta4 method to avoid acceleration mea-
surements, which are often unavailable. The modified PINNs proved suitable for learning the dynamic
model of rigid and soft manipulators. For the latter, we considered the PCC approximation to obtain a
simplified model of the system.
The modified PINN approach exploits the knowledge of the underlying physics of the system, which

results in a largely improved accuracy in the learned models compared with the baseline models, which
were trained using a fully connected network. The results show that PINNs exhibit a more instructive
and directional learning process because of the prior knowledge embedded into the approach. Notably,
physics-based learning models trained with fewer data are more general and robust than the traditional
black-box ones. Therefore, continuous long-term and variable step-size predictions can be achieved. Fur-
thermore, the learned model enables decent anticipatory control, where a naive PD can be integrated for
a good performance, as illustrated in the experiments performed with the Panda robot.

18

Figure 19: Performance of the model-based controller that is designed using the learned model.

Figure 20: Photo sequence of helical motion of the end-effector by using LNN-model-based controller

Acknowledgements
We wish to acknowledge the EMERGE for their financial support, which enabled us to carry out this

research. We are also grateful to Bastian Deutschmann, the inventor of the NECK experimental plat-
form, which greatly facilitated our work. I would also like to express my deepest gratitude to Francesco
Stella and Tomás Coleman for their invaluable guidance and help in the experiments. Finally, we extend
our appreciation to our colleagues for their insightful feedback and constructive criticism, which helped
refine our ideas and methods.

References

[1] A. I. Chen, M. L. Balter, T. J. Maguire, M. L. Yarmush, Nature Machine Intelligence 2020, 2, 2 104.

[2] J. Ichnowski, Y. Avigal, V. Satish, K. Goldberg, Science Robotics 2020, 5, 48 eabd7710.

[3] D. Mukherjee, K. Gupta, L. H. Chang, H. Najjaran, Robotics and Computer-Integrated Manufacturing
2022, 73 102231.

[4] F. Stella, C. Della Santina, J. Hughes, Nature Machine Intelligence 2023.

[5] L. Buşoniu, T. De Bruin, D. Tolić, J. Kober, I. Palunko, Annual Reviews in Control 2018, 46 8.

[6] P. R. Wurman, S. Barrett, K. Kawamoto, J. MacGlashan, K. Subramanian, T. J. Walsh, R. Capo-
bianco, A. Devlic, F. Eckert, F. Fuchs, et al., Nature 2022, 602, 7896 223.

[7] N. Rudin, D. Hoeller, P. Reist, M. Hutter, In Conference on Robot Learning. PMLR, 2022 91–100.

[8] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A. Paino, M. Plappert,
G. Powell, R. Ribas, et al., arXiv preprint arXiv:1910.07113 2019.

19

0 10 20 30

0.3

0.35

0.4

0 10 20 30

0.46

0.51

0.56

0 10 20 30

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 10 20 30

-30

-20

-10

0

10

20

30

Figure 21: Performance of the model-based controller that is designed using the learned model: (a) shows the desired end-effector
trajectory; (b) shows the corresponding joints’ angle and the control results; (c) is the controller’s input torques for such motion.

[9] W. Zhao, J. P. Queralta, T. Westerlund, In 2020 IEEE symposium series on computational intelli-
gence (SSCI). IEEE, 2020 737–744.

[10] P. Kulkarni, J. Kober, R. Babuška, C. Della Santina, Advanced Intelligent Systems 2022, 4, 1
2100095.

[11] N. Sünderhauf, O. Brock, W. Scheirer, R. Hadsell, D. Fox, J. Leitner, B. Upcroft, P. Abbeel,
W. Burgard, M. Milford, et al., The International journal of robotics research 2018, 37, 4-5 405.

[12] G. Antonelli, S. Chiaverini, P. Di Lillo, Nonlinear Dynamics 2023, 111, 7 6487.

[13] H. Beik-Mohammadi, S. Hauberg, G. Arvanitidis, G. Neumann, L. Rozo, arXiv preprint
arXiv:2106.04315 2021.

[14] A. Simeonov, Y. Du, A. Tagliasacchi, J. B. Tenenbaum, A. Rodriguez, P. Agrawal, V. Sitzmann, In
2022 International Conference on Robotics and Automation (ICRA). IEEE, 2022 6394–6400.

[15] J. Urain, N. Funk, G. Chalvatzaki, J. Peters, arXiv preprint arXiv:2209.03855 2022.

[16] A. Daw, A. Karpatne, W. Watkins, J. Read, V. Kumar, arXiv preprint arXiv:1710.11431 2017.

[17] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, L. Yang, Nature Reviews Physics
2021, 3, 6 422.

[18] F. Djeumou, C. Neary, E. Goubault, S. Putot, U. Topcu, In Learning for Dynamics and Control
Conference. PMLR, 2022 263–277.

[19] M. Chen, R. Lupoiu, C. Mao, D.-H. Huang, J. Jiang, P. Lalanne, J. Fan 2021.

[20] B. Huang, J. Wang, IEEE Transactions on Power Systems 2022, 38, 1 572.

[21] Z. Mao, A. D. Jagtap, G. E. Karniadakis, Computer Methods in Applied Mechanics and Engineering
2020, 360 112789.

[22] S. A. Niaki, E. Haghighat, T. Campbell, A. Poursartip, R. Vaziri, Computer Methods in Applied
Mechanics and Engineering 2021, 384 113959.

[23] M. Cranmer, S. Greydanus, S. Hoyer, P. Battaglia, D. Spergel, S. Ho, arXiv preprint
arXiv:2003.04630 2020.

20

[24] S. Greydanus, M. Dzamba, J. Yosinski, Advances in neural information processing systems 2019, 32.

[25] Y. D. Zhong, B. Dey, A. Chakraborty, Advances in Neural Information Processing Systems 2021, 34
21910.

[26] R. Bhattoo, S. Ranu, N. A. Krishnan, Machine Learning: Science and Technology 2023, 4, 1 015003.

[27] M. A. Roehrl, T. A. Runkler, V. Brandtstetter, M. Tokic, S. Obermayer, IFAC-PapersOnLine 2020,
53, 2 9195.

[28] Y. D. Zhong, B. Dey, A. Chakraborty, In Learning for dynamics and control. PMLR, 2021 1218–
1229.

[29] R. Bhattoo, S. Ranu, N. Krishnan, Advances in Neural Information Processing Systems 2022, 35
29789.

[30] M. Lutter, J. Peters, The International Journal of Robotics Research 2023, 42, 3 83.

[31] C. Della Santina, M. G. Catalano, A. Bicchi, M. Ang, O. Khatib, B. Siciliano, Encyclopedia of
Robotics 2020, 489.

[32] J. K. Gupta, K. Menda, Z. Manchester, M. J. Kochenderfer, arXiv preprint arXiv:1902.08705 2019.

[33] J. K. Gupta, K. Menda, Z. Manchester, M. Kochenderfer, In Learning for Dynamics and Control.
PMLR, 2020 328–337.

[34] R. M. Murray, Z. Li, S. S. Sastry, S. S. Sastry, A mathematical introduction to robotic manipulation,
CRC press, 1994.

[35] H. K. Khalil 2015.

[36] C. Della Santina, C. Duriez, D. Rus, IEEE Control Systems Magazine 2023, 43, 3 30.

[37] Y. Zheng, C. Hu, X. Wang, Z. Wu, Journal of Process Control 2023, 128 103005.

[38] S. Sanyal, K. Roy, arXiv preprint arXiv:2209.09025 2022.

[39] L. Hewing, J. Kabzan, M. N. Zeilinger, IEEE Transactions on Control Systems Technology 2019, 28,
6 2736.

[40] I. Mitsioni, P. Tajvar, D. Kragic, J. Tumova, C. Pek, IEEE Transactions on Robotics 2023.

[41] S. S.-E. Plaza, R. Reyes-Baez, B. Jayawardhana, In Learning for Dynamics and Control Conference.
PMLR, 2022 520–531.

[42] S. Sánchez-Escalonilla, R. Reyes-Báez, B. Jayawardhana, In 2022 IEEE 61st Conference on Decision
and Control (CDC). IEEE, 2022 2463–2468.

[43] F. Arnold, R. King, Engineering Applications of Artificial Intelligence 2021, 101 104195.

[44] S. Mowlavi, S. Nabi, Journal of Computational Physics 2023, 473 111731.

[45] J. Nicodemus, J. Kneifl, J. Fehr, B. Unger, IFAC-PapersOnLine 2022, 55, 20 331.

[46] M. Lutter, K. Listmann, J. Peters, In 2019 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE, 2019 7718–7725.

[47] C. Della Santina, Encyclopedia of Robotics 2021, 20.

[48] C. Laschi, T. G. Thuruthel, F. Lida, R. Merzouki, E. Falotico, IEEE Control Systems Magazine 2023,
43, 3 100.

21

[49] P. Pustina, C. Della Santina, F. Boyer, A. De Luca, F. Renda, arXiv preprint arXiv:2306.07258
2023.

[50] M. Lutter, C. Ritter, J. Peters, arXiv preprint arXiv:1907.04490 2019.

[51] L. N. Trefethen, D. Bau, Numerical linear algebra, volume 181, Siam, 2022.

[52] K. B. Petersen, M. S. Pedersen, The Matrix Cookbook, Technical University of Denmark, 2008.

[53] M. Montagna, P. Pustina, A. De Luca, In I-RIM Conference. 2023 .

[54] P. Tomei, IEEE Transactions on automatic control 1991, 36, 10 1208.

[55] R. Kelly, R. Salgado, IEEE Transactions on Robotics and Automation 1994, 10, 4 566.

[56] B. Deutschmann, J. Reinecke, A. Dietrich, In 2022 IEEE 5th International Conference on Soft
Robotics (RoboSoft). 2022 54–61.

[57] M. W. Hannan, I. D. Walker, Journal of robotic systems 2003, 20, 2 45.

[58] C. Della Santina, A. Bicchi, D. Rus, IEEE Robotics and Automation Letters 2020, 5, 2 1001.

[59] B. Deutschmann, Tendondrivencontinuum, https://github.com/DLR-RM/TendonDrivenContinuum,
2022.

22

https://github.com/DLR-RM/TendonDrivenContinuum

