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NAVIGATIONAL EFFICIENCY IN MARINE TRAFFIC 
OPERATIONS IN 1HE PORT OF KEELl:JNG 

Bin UN 

ABSTRACT 

The rapid economic growth of Taiwan has been paralleled by an increase in marine. traffic 
in the port of Keelung. The increase has been evolutionary and, prior to this study, has 
lacked,the benefit of supporting research necessary to ensure no loss in navigational efficiency. 
The study uses eclectic methodologies to: identify the nature of marine traffic at Keelung; 
assess the associated risks; and identify measures needed to reduce risk and increase 
navigational efficiency. 

For contextual purposes the study reviews current marine traffic operations at Keelung 
against the background of geographical constraint and environmental conditions. Radar 
survey and extensive sampling of professional opinion indicate that existent traffic control 
measures are both.inadequateand open. to contravention. Casualty analysis further identifies 
areas of concern where navigation risk has been shown to exist In particular the traffic 
separation scheme, introduced in 1990; has been found inadequate and lack of movement 
control reduces navigational efficiency. 

Hse of visual simulators, at Taiwan Ocean University and University of Plymouth, provided 
a unique opportunity to compare present miuine traffic operations against a modified model. 
The modified model incorporated limited vessel traffic service functions and·channel markers, 
neither of which exist at present in the live situation. Most significantly the experiment 
has enabled evaluation of the difference between Taiwanese and foreign ship masters when 
handling ships in the port approaches. 

Analysis of ship's tracks, and subjects' perceptions, concludes that provision of channel 
markers and sequence control greatly simplifies the operation and reduces risk. The need 
to widen the traffic lanes by reducing the separation zone between inward and outward 
lanes is identified. 

The study shows that navigational safety and efficiencyat Keelung can be improved through 
the introduction of small changes to operation and working practices, The study provides 
the basis for a programme of continuing work necessary to maintain or further improve 
standards once the recommendations of the study have been implemented. 
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CHAPrER 1 

INTRODUCTION 

Ll BACKGROUND 

Ports provide the interface between land transportation and sea trade, of great economic 

importance to many countries. Keelung is one of the principal ports of Taiwan, and 

provides important direct shipping services to the north Pacific coasts and to south east 

Asia. Following the rapid development of Taiwan's economy both local and 

export/import trading patterns, including the type of shipping and transport services, have 

a direct impact on the port1
• During recent years, there has been considerable expansion 

in maritime trade. The number of ships calling at Keelung has increased significantly. 

The port authority has continuously improved cargo handling facilities, converting many 

small piers to container berths, to cope with the increased volume and changed nature 

of trade. The port now has to face the attendant problems of increased activity. 

High traffic density in restricted navigational waters endangers navigational safety simply 

because the ship encounter rate increases2
• Increased activity without a matching increase 

in port capacity inevitably leads to delays. Waiting ships occupying navigable water 

hamper other vessels' movements and increase accident risk. Concurrently the impact of 

meteorological conditions on traffic safety becomes more significant as increased 

congestion heightens the effects of poor visibility, strong wind and currentl. 

1 



Chapter 1 

The risk influences ship manoeuvring so as to reduce navigational efficiency. Navigating 

in a high risk area, ships may be delayed because navigators have to slow down ship 

speed and continuously take actions to avoid risk and prevent occurrence of accidents. 

Marine accidents which result in loss of life and property as well as environmental 

pollution can arouse public concern beyond the shipping community"·5•6• It is well 

understood that improved efficiency can decrease operation costs because ships can 

reduce transit time arid accident damage, and make better use of the waterways in a 

pore. 

Safety is an inherent part of efficiency, and follows from it. A port has implicit 

obligations including the provision of a safe and efficient navigational environment. 

When a port authority is taking measures to provide a safer operation, improvement of 

efficiency must be simultaneously considered for most users in the area8• For a port, 

efficiency is necessary for survival in a competitive world. Reduced navigational risk can 

consequently bring greater profits to the port authority and ship owners. 

In the absence of appropriate measures navigational risk at Keelung will also grow in 

hand with port development as the economy grows9
. The nature of that increased risk, 

and whether appropriate measures can be identified and implemented, is a matter for 

investigation. 

1.2 AIM OF 'RIE STUDY 

Reduction of risk and increase in navigational efficiency are proper objectives for any 

port authority. As a first step in achieving these objectives a study into the nature of the 

2 



Chapter 1 

existing services and safety measures, and the identification of any shortcomings must 

be made. The study has to be wide enough to cover general factors as well as factors 

specific to the port under review. It needs to investigate and analyse activities and 

procedures that influence navigational safety and efficiency in marine operations in the 

port and its approaches. Against the background of increased activity at Keelung such a 

study for the pbrt is now timely. 

Keelung port authority established a traffic separation scheme in the port approaches in 

March 1990, with the aim of improving the flow of marine traffic. It is recognized that 

although separation schemes can produce substantial improvements in safety there is often 

a cost in lost time to pay10
• No study has been conducted to assess the validity of the 

scheme at Keelung. A particular element of the navigational efficiency review conducted 

in the research will be directed at assessing the effectiveness of the traffic separation 

scheme, and whether the need for modification is indicated. 

Finally there is a wide armoury of navigation aids, systems and techniques available in 

the promotion of navigational safety and efficiency. They are by no means universally 

applicable. The special characteristics of the situation existing at Keelung will be 

analysed with the aim of producing a best fit solution. 

1.3 METHODOLOGY 

1.3.1 Analysis of navigational safety 

1here have been a number of studies analysing navigational safety, some of which have 

been used to assess port efficiency11
•
12

• A study of such work identifies salient factors 

3 



Chapter 1 

and the nature of the costs resulting from marine casualties. The literature review also 

enables analytical comparison of the aids to port navigation available and used throughout 

the world. 

1.3.2 Investigation of marine casualties in Keelung 

Marine accidents may reflect navigational risk in the area. To assess the types and levels 

of risk, statistics have been obtained from the port authority, covering all accidents over 

the period 1987 to 1991. Particular attention has been paid to those accidents involving 

collision, grounding and contact. A detailed analysis has been made to determine the 

nature and frequency of those accidents in order to defme the problem. Data has been 

collected relating to ship type, size, time of event, environmental conditions, etc., on 

statistical analysis and indication of relationships between the causes of accidents and ship 

characteristics and weather conditions. The damage costs resulting from accidents has 

been determined through direct approach to the owners of the vessels involved. 

1.3.3 Assessment of professional opinions 

An established method of obtaining data relating to navigational risk is by interviews 

with, and self-report questionnaires from, those active in the field of study. In order to 

obtain an initial supply of data with a more comprehensive understanding of the 

navigational problems at Keelung, it was decided to consult mariners serving on vessels 

frequenting the port. This eclectic approach widens the scope of the study and can 

provide a degree of compensation when statistical data is inadequate. 

4 



Chapter 1 

Commonly such surveys present interviewees with descriptions of situations involving 

navigational risk, and ask how they grade the attendant risk. Responses are subjective 

and individually can only give impressions, but collectively they indicate a level of 

navigational risk. In addition such a study can yield interesting qualitative data on 

individual attitudes to safety, and quantitative data on differences between different 

subject sets. Responses to questionnaires of this nature may be positively correlated13
• 

Those who readily recognize risk equally recognize measures that increase or reduce such 

risk, while those who have difficulty identifying risk also have difficulty in identifying 

influencing factors. 

1.3.4 Comparison with radar survey 

Direct observation by radar of traffic flow provides positive information relating to the 

nature of traffic, and forms a further eclectic part of the study. Mariner behaviour is a 

vital input to many forms of marine traffic research. Radar observation gives sound 

indications of traffic patterns, areas of conflict, and as such adds to the overall 

understanding of the problem. In particular, observational surveys are free of the risk of 

bias that can exist in respondent centred data14
• 

1.3.5 Simulation experiment 

Simulation is a very powerful method for solving system problems because of its wide 

applicability and because it provides a laboratory to study systems without the costs of 

building or modifying the real systems15 • When handling a simulator, mariners respond 

as they do in a real ship. It is possible to repeat sample situations to test several mariners 
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in order to build up a statistically significant sample. Through simulation experiment by 

nautical simulator, the results of mariners' responses can offer a good source. Therefore, 

navigational risks under the particular situation can be emphasised, and then methods for 

improving safety and efficiency aiming to the risks can be found. 

Comparisons of the existing situation in Keelung with a designed situation which is 

replaced some conditions related with the risks will provide the basis for determining the 

TSS and traffic control effectiveness. The existing traffic control measures can be 

simulated using the MRNS 9000 navigation simulator in the University of Plymouth and 

the shiphandling simulator in Taiwan Ocean University. Modifications to the traffic 

control measures can be evolved and again simulated. Subjects' perceptions and ship 

tracks from experiment are significantly useful data for analysis. 

1.4 THE STRUCTURE OF mE THESIS 

The thesis comprises eight chapters. Following this introductory chapter, Chapter two 

introduces the nature of marine traffic operations at Keelung, including physical 

characteristics such as geography and environment, and traffic statistics. It also considers 

the regulation and control of traffic at Keelung. 

In Chapter three analysis is made of circumstances and effects of navigational casualties 

at the port during the five year period 1987-1991, while Chapter four provides an 

analysis of professional opinions regarding navigational risk at Keelung. The results of 

these analysis are compared with those from the radar survey. 
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Chapter five presents effectiveness of traffic separation scheme (TSS) and vessel traffic 

services (YTS). Through analysis of profession opinions, measures of improving 

navigational safety and efficiency are preliminarily found. 

Taking the unique opportunity presented by availability of the simulators Chapter six 

introduces the criteria, indicated by the results of the previous chapters, for simulation 

experiment, and analyses ship tracks obtained from those experiments. The results are 

compared with those from Chapter seven, evidencing the effectiveness of floating aids 

and traffic control, and modifying the TSS. Chapter eight presents conclusions drawn 

from the earlier chapters, and details current studies. 
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CHAPTER2 

MARINE TRAFFIC OPERATIONS IN .KEELUNG 

2.1 INTRODUCTION 

Taiwan is an island, located 200 kilometres from Mainland China, between Japan and 

the Philippines (Figure 2-1). The area of the island is 35,961 square kilometres, about 

66% of the land being covered by mountains. Owing to lack of natural resources, the 

development of the economy must be accomplished by means of international trade, 

involving import of materials and export of products. Based on the General Agreement 

on Tariffs and Trade (GATT) statistics, in 1991 Taiwan was ranked the 14th largest 

among trading nations of the world, with total exports taking 12th place and imports 

ranked 16th1
• Textiles, machinery and electrical goods are among the chief exports, and 

marine transportation has become essential to economic growth over the past ten years. 

Recently, the Taiwanese government put forward major proposals for the future 

development of the Island, and the marine transportation role of Keelung port was 

highlighted. 

2.2 GENERAL DESCRIPTION OF KEELUNG PORT 

The Keelung port, on the northern end of the Island at Latitude 25009'N, Longitude 

12l 045'E, faces northward to the East China Sea (Figure 2-2). The main channel 
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between the breakwaters is about 250 metres wide. Inside the breakwaters lie the outer 

and inner harbours. The harbours have a total of 57 piers: 39 piers for merchant ships, 

18 for customs and navy ships. Fishing vessels also berth at the eastern part of the 

harbour and use the main channel to enter or leave the port. There is a one-pier 

petroleum port, Sen-ao, four miles to the east (Figure 2-3). 

The water area, outside the breakwaters, is bounded on the west and south by a curving 

coastline, and on the eastern side there is Keelung Island. The gap between Keelung 

Island and the western coast, called Yeh-liu Cape, is about five miles wide. Within this 

area and half a mile off the coast, the water depth is over 40 metres. The spit of gravel 

and rock, named An-tou-pao Shoal, extends one mile south-westward from Keelung 

Island with the water depth less than 10 metres. There are strong tidal currents on the 

shoal which should not be crossed by ships2• 

Figure 2-1 Location of Taiwan, ROC 
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2.2.1 Commercial activities 

Keelung is one of two major commercial ports in Taiwan; the other being Kaohsiung. 

Keelung accounts for 29.2% of the total import and export cargoes of the Island3
• In 

1991 23,267 merchant vessels with 308 million gross tonnage (grt) visited Taiwan, and 

7,514 vessels with 99 million grt called at Keelung, about 20.6 vessels per day (Table 

2-1). During the past twenty years, not only has the size of vessels visiting Keelung 

tended to increase, but there has been a parallel shift towards containerization. The 

average grt of the ships in Keelung was 8, 306 per ship in 1981 , and 13, 170 in 1991. 

From Table 2-2 and Table 2-3, it can be seen that the number of ships whose grt is over 

40,000, increased significantly during the period under study, and the number of 

container ships increased from 1,915 in 1981, to 4,377 in 1991. 

Table 2-1 Vessels visiting Keelung and all ports in Taiwan 
(1981-1991) 

Year Number Gross Tonnage (1,000 GRT) 

Keelung All Ports Ratio(%) Keelung All Ports Ratio(%) 

1981 5,622 15,747 35.7 46,698 131 ,311 35.6 
1982 5,660 16,251 34.8 50,244 146,068 34.4 
1983 5,919 17,131 34.6 54,212 163,786 33 .1 
1984 6,237 17,199 36.3 62,403 175,104 35.6 
1985 6,184 17' 195 36.0 64,798 186,285 34.8 
1986 6,648 19,038 34.9 75,658 215,557 35. 1 
1987 6,977 20,119 34.7 87,099 242,569 35.9 
1988 7,243 21,384 33 .9 92,916 273, 144 34.0 
1989 7,572 21,957 34.5 96,367 284,429 33 .9 
1990 7,623 21 ,973 34.7 97,928 291,553 33.6 
1991 7,514 23,267 32.3 98,959 308,029 32.1 

Source : Monthly Statistics of Transportation, January 1992. 
The Ministry of Communication, ROC. 

12 



Table 2-2 Category of vessel by gross tonnage in Keelung 
(1981-1991) 

GRT GRT GRT GRT GRT 
Year Total Less 1,000 - 5,000- 10,000- 20,000-

Than 4,999 9,999 19,999 39,999 
1,000 

1981 5,510 227 2,366 1,249 1,210 450 
1982 5,660 288 2,282 1,166 1,398 521 
1983 5,919 353 2,413 990 1,499 659 
1984 6,237 460 2,425 861 1,562 900 
1985 6,184 592 2,209 905 1,434 973 
1986 6,648 555 2,187 970 1,692 1 '130 
1987 6,977 567 1,960 1,082 1,960 1,241 
1988 7,243 480 1,990 1,277 2,017 1,189 
1989 7,572 566 2,061 1,434 1,973 1,204 
1990 7,623 584 1,988 1,507 1,975 1,207 
1991 7,514 445 1,939 1,592 2,019 1,127 

1991 100% 5.9% 25.8% 21.2% 26.9 % 15.0% 

%change + 36.4 + 96.0 -18.1 +27.5 +66.9 + 150.4 
1981-91 

Source : Statistical Abstract 1991 (Keelung Harbour Bureau) 
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GRT 
More 
Than 
40,000 

8 
5 
5 

29 
71 
114 
167 
290 
334 
362 
392 

5.2 % 

+ 4800 

The number of container ships has doubled over the ten year period whilst the number 

of general cargo ships decreased and other ship types only slightly increased. The port 

authority, Keelung Harbour Bureau, converted many general cargo berths to container 

berths during the 1970's and 1980' s. Currently, there are three container terminals 

comprising 13 berths. Ships up to 275 metres in length can be handled. Keelung was the 

seventh of the world's largest container ports in 19894
• In 1991 the number of containers 

handled in Keelung was two million 20-foot equivalent units (TEUs), about 13.9 million 

tons of cargoes accounting for 83.2% of the total cargoes handled in the porf. The 

Keelung Harbour Bureau has planned to convert another five piers to container berths in 

order to increase services for container ships. 
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Year 

1981 

1986 

1991 

%change 
1981-1991 

Table 2-3 Category of vessel type in Keelung 
(1981-1991) 

No./grt. Container G. Cargo Others 

Number 1,915 2,774 821 
(34.75%) (50.34%) (14.91 %) 

grt 19,906,009 19,876,416 6,864,200 
(42.67%) (42.61 %) (14.72%) 

Number 3,471 2,225 952 
(52.21 %) (33.47%) (14.32%) 

grt 55, 189,785 13,553,297 6,914,606 
(72.95%) (17.91 %) (9.14%) 

Number 4,377 2,219 918 
(58.25%) (29.53%) (12.22%) 

grt 72,827,643 16,249,302 9,882,330 
(73.59%) (16.42%) (9.99%) 

Number +128.56% -20.00% +11.81% 

grt +265.86% -18.25% +43 .97 % 

Source : Statistical Abstract 1991 (Keelung Harbour Bureau) 
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Total 

5,510 
(100%) 

46,645,625 
(100%) 

6,648 
(100%) 

75,657,688 
(100%) 

7,514 
(100%) 

98,959,275 
(100%) 

+36.37% 

+ 112. 15 % 

Although the port authority has improved the wharf facilities, some shipping companies 

shifted their trade to Kaohsiung port instead of Keelung. On 1 January 1992 Maersk 

Line, the world's third largest container company, so moved its operation. At Kaohsiung 

Maersk now leases an exclusive berth, a facility not available to the company at 

Keelung6
• 

Sen-ao port is an exclusive port for the China Petroleum Company. The berthing system 

is installed for the use of 36,000 dead weight (dwt) oil tankers or liquid petroleum gas 

(LPG) tankers with the length under 213 metres. In summer season, the draft for tanker 

entrance is limited to 11.8 metres and winter season to 10.8 metres. For the safe 
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regulation of the port, the berthing operation should be in good weather with wind 

velocity less than 8 metres/sec (m/sec) and visibility not less than one mile7
• The 

average number of tankers calling at Sen-ao Port is 74.8 per year during the period of 

1987-1991 (Table 2-4). Some of them are used to anchoring at Keelung approaches. 

Table 2-4 Distribution of calling ships in Sen-ao port 
(1987-1991) 

TYPE GROSS TONNAGE 
Year 

LPG Product Total Under 10,000- 20,000- Over 
10,000 19,999 39,999 40,000 

1987 9 33 42 21 2 14 5 
1988 18 50 68 20 - 37 11 
1989 20 78 98 27 - 53 18 
1990 17 65 82 4 11 67 -
1991 17 67 84 2 4 66 12 

Total 81 293 374 74 17 237 46 

Source: China Petroleum Company 

2.2.2 Distribution of ship movement 

Total 

42 
68 
98 
82 
84 

374 

According to the data (1987-1989) from the Keelung Harbour Bureau, 36.6% of vessels 

came from Japan and South Korea including through cargoes from North America, 

31.6% from South-East Asian countries including the through cargoes from European 

countries, 29.6% from other ports in Taiwan where the major port was Kaohsiung, and 

2.2% from the United States directly. From the traffic pattern of ships in 1991 , shown 

in Figure 2-4, the arrivals were greatest in December, 5.8% higher than the mean, and 

least in March, 12.1% lower than that8• The traffic movements at Keelung during 
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January to March, accounted for about 23.2% of the annual total while that for July to 

September was 25.8%. 

SbJp (%) 
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Figure 2-4 Monthly variation of calling ships 
from annual mean in Keelung in 1991 

Source: Keelung Harbour Bureau Statistical Abstract 1991 

The best and cheapest time to berth is early morning. Therefore, 56.3% of ships arrived 

in Keelung approaches in day-time, between 0600 and 1800 hours, and the peak time of 

ships arriving was between 0500 and 0800 hours during the five year period 1987-19919
• 

Some ships could not enter the port immediately and had to wait for a while due to pilot 

or berth unavailability. The proportion of ships entering the port in day-time was 83 .5% 

and leaving ships was 60.5%. The peak time of entering appeared in the morning, 

especially between 0800 and 0900 hours, and that of departure between 0900 and 1000 

hours (Figure 2-5, 2-6, 2-7). 
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SHIP ARRIVING KEELUNG APPROACHES HOURLY 
(1987-1991) 
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Figure 2-5 The hourly distribution of arriving ships 
in Keelung (1987-1991) 

Source: China Port Consultant Institute, Taiwan 
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Figure 2-6 The hourly distribution of entering ships 
in Keelung (1987-1991) 

Source: China Port Consultant Institute, Taiwan 
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SH IP DEPARTING KEELUNG PORT HOURLY 
(1987-1991) 
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Figure 2-7 The hourly distribution of leaving ships 
in Keelung (1987-1991) 

Source: China Port Consultant Institute, Taiwan 

2.2.3 Climate and sea condition 

1. Wind and sea 

Chapter 2 

From September to May the prevailing wind direction is NE to NNE, whereas, from 

June to August they are SSW to S. In the winter season, the NE monsoon is an 

extremely strong wind, sometimes reaching a gale or force 9 on the Beaufort wind scale, 

the SW monsoon is not so strong, but occasionally the wind scale ranges from 7-8, or 

near gale to gale. The typhoon season is normally August and September for Keelung. 

From the weather reports, during the last five-year period 1987-1991 , there were 5.4% 

of the total days with the maximum wind force over force 8, mostly from September to 

November, and 57.1 % under force 5. The average wind force in winter is stronger than 
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in summer10 (Figure 2-8). The maximum speed has been recorded as high as 56.5 

DAYS(~) 
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Figure 2-8 Distribution of maximum wind force 
in Keelung (1987-1991) 

Source: Taiwan Central Weather Bureau 

The harbour is sheltered by hills on the western, southern and eastern sides and by 

Keelung island on the north-east, but N winds create heavy seas in the harbour 

approaches12
• During the NE monsoon period, there is frequently a rough sea with a 

NE direction . 4.4% of the total wave records annually have height greater than three 

metres. 

2. Visibility 

The winter season is also the rainy season from early October to the next early April 
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each year. Because the port is surrounded by mountains, the vapour in the air tends to 

be more easily affected by the ocean current and frontal movement. Generally speaking, 

the rainfall in November, December and January is about two thirds of the annual 

rainfall. The foggy season is from February to April due to lower wind speed in spring 

and early summer season. However, because of air pollution, from the ever-increasing 

factory exhaust and traffic, poor visibility is an increasing occurrence13
• Taiwan Central 

Weather Bureau's 1987-1991 records show, on 2% of all days visibility was less than 

two miles, and on 40.4% days between two and five miles14
• The average visibility 

from January to April was worse than in other months (Figure 2-9). 
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Figure 2-9 Distribution of visibility in Keelung 
(1987-1991) 

Source: Taiwan Central Weather Bureau 
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3. Tide and tidal streams 

The range of the tide varies from the maximum 1.9 metres to the minimum 0.0 metres. 

The tidal streams are negligible, and are less than one knot inside the breakwaters. As 

there is no large river in the harbour, the weather has no effect on the current, but in the 

monsoon season there are surges near the entrance. 

Outside the harbour, the tidal current is the reversing current that flows alternately in 

approximately opposite directions with a six-hour period at each reversal of the current 

The tidal streams two miles off the breakwaters have a maximum rate of three knots, 

with the W-going stream in flood tide and E-going stream in ebb tide. Just off the 

harbour entrance, the stream has a maximum rate of one to two knots. 'Fhe direction of 

the streams almost perpendicular to the navigation fairway. A counter-current runs just 

outside the breakwater. 

2.3 MARINE OPERATION IN KEELUNG PORT 

2.3.1 Aids to navigation 

1. Fixed aids to navigation 

There are two conspicuous landmarks located at the outside of Keelung port: the Keelung 

Island and the Yeh-liu Cape; the former at the eastern side and the latter west. In good 

weather, when ships approach Keelung from 10 miles away, duty officers can easily find 

the above landmarks by visual observation or by radar. A light of 17 miles of luminal 

range is exhibited from a tower on the summit of Keelung Island, 182 metres in height. 

The Yeh-liu lighthouse is 92 metres high with a light of 14 mile range. 
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The Keelung lighthouse is another long distance visual aid located at the inside harbour 

near the west breakwater with a 16 mile light. In addition to the lighthouses, two 

columns with 6-mile luminal range light are built separately at each tip of two 

breakwaters to indicate the harbour entrance. Generally speaking, in clear weather 

navigators can easily fix positions visually no matter whether by day-time or night­

time15. In poor visibility the position has to be fixed carefully with radar. There is no 

floating aid installed outside the harbour. In Taiwan, lighthouses and other fixed or 

floating aids to navigation are under the Customs' control. 

2. Traffic Separation Scheme 

Because of the strong requirement from ship owners and masters after some accidents 

outside the port, the port authority was forced to act. The rules on the use of the fairway 

under the traffic separation schemes in the approaches to the harbour were advised to 

navigators on 1st March 199016. The fairway is in a sector-shaped separation that starts 

from 0.75 mile off the breakwater and extends outward for two miles (see Figure 2-3). 

The entrance lane leads 170 degree towards the entrance and the exit lane leads 012 

degree from the entrance. The width of both navigation lanes is 700 metres. Vessels are 

prohibited from anchoring or lingering in this fairway. 

From the outer harbour to the nearer edge of TSS is the main channel permitting the 

passage of one ship only at a time through the entrance channel. The outward bound 

ships have right of way over those entering. The main channel outside the breakwaters 

is also a sector-shaped. 
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2.3.2 Harbour control 

1. Anchorage 

In the outer harbour, a quarantine anchorage lies on the eastern side in the inner 

breakwater and clear ofthe main channel, in depths of about 7.3 metres to 13.1 metres. 

It is a small water area only allowing two or three ships to anchor, and usually 

congested. Anchorage is prohibited in the central and west part of the outer harbour. 

No official anchorage is designated outside the harbour. The TSS rule by the port 

authority only prohibits vessels from anchoring in the fairway and the main channel, so 

except for those areas a master can anchor his ship anywhere he likes. Usually vessels 

anchor at the western side off the inbound traffic lane, north-west two miles off the 

breakwaters. This. area is about four square miles, and the water depth is over 40 meters 

in the whole area. 

It is recommended that the minimum length of mild steel cable to use, in metres, for the 

ship's anchoring may be taken as approximately 25 times the square root of the depth of 

water in metres17
• Thus at least six shackles of cable are required for a ship anchoring 

in this area. In winter, the strong wind and tidal streams occasionally make the anchored 

ship drag the anchor, even breaking the anchor chain. So the Keelung Harbour Bureau 

gives notice to calling vessels that it is not advisable to·anchor in this area during the NE 

monsoon season. Even in favourable weather, the anchored ship should always remain 

alert18
• The China Master Association also suggests the ship anchoring should use six 

or seven shackles of cable, and are best advised to weigh anchor and drift at open sea 

if the wind is strong19
• 
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2. Pilotage 

Pilotage is optional from the approaches up to the quarantine anchorage in the Outer 

Harbour, but is compulsory elsewhere in the harbour. Pilots are usually available for 

vessels arriving between 0700 and 2300 hours, but not outside those hours. Departure 

may be made at any time20
• 

When the ship's master requires a pilot aboard his ship at the outer water of the port 

entrance, he may request his agent to apply to the Pilot Association21
• Pilots board at 

the pilot station, Latitude 25°11 'N, Longitude 121°44 'E, a distance of 1.5 miles from the 

breakwaters, weather permitting. For safety to pass through the narrow entrance channel 

the agent usually requests the pilot to board from the pilot station. Sometimes, when a 

ship is approaching at night or in bad weather or other special circumstances, the pilot 

is unable to get out of the harbour. Under this situation, the master alternatively may 

proceed to the port entrarice to pick up the pilot inside the breakwater at his own risk or 

stay outside the harbour to wait for the weather to improve. 

When the ship is leaving, normally the pilot will leave the ship at the outer harbour main 

channel, about 0. 7 miles to breakwaters, with the consent of the master. If the master 

requires pilotage extended to waters outside the harbour, he shall submit his request 

before the ship leaves. The pilot shall not refuse to render his service unless it is night­

time or foul weather or other special circumstances. 

Use of tugs is optional. Tug services work only inside the harbour in coordination with 
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the pilot. Usually the tug attends the inbound ship or leaves the outbound ship at the 

outer harbour. 

3. Port entry and exit 

According to the rule of application procedures for ship's calling at Keelung, ships 

approaching the 10 miles water off the port shall call the Signal Station by VHF as early 

as possible to confirm the estimated time of arrival (ETA), and to provide a preferable 

pilot boarding time to avoid any mistakes. Permission to enter harbour must be obtained 

through the station. Ships waiting at the outside waters should maintain enough space for 

the ship's manoeuvring and the master must pay close attention to the safety of his own 

ship without the benefit of pilotage assistance. When more than one ship is requesting 

entry or departure simultaneously, priority will be determined by the station according 

to the situation. A warship has priority over other ships in using the entrance channel. 

Merchant vessels can be required to stop without prior notice. There is no information 

service to be provided for navigation assistance or advice from the station. 

Upon arrival, with or without a pilot, the calling ship may anchor at the outer harbour 

anchorage for quarantine and other inspection formalities. After the completion of these 

formalities, the ship then can proceed to the assigned berth under the pilotage of a 

harbour pilot and berth with the assistance of linesmen and/or tug. 

2.4 SUMMARY 

Keelung port plays an important role in the Taiwanese economy. About one third of 

Taiwanese exports pass through this port. In Keelung some meteorological conditions are 
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disadvantageous to navigation, such as the NE monsoon in winter, poor visibility in 

spring and the strong currents at the approaches. The port authority is faced with the 

requirement to ensure that the layout and operational strategies are adequate to cope with 

the increase of ship numbers and ship size in all likely operational conditions. Like other 

busy ports, the port authority has provided many aids to navigation, and established a 

TSS. To control ship movement, the compulsory pilotage in the harbour and VHF 

communication in reporting ship's ETA are regulated. 
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CHAPTER 3 

THE ANALYSIS OF MARINE TRAFFIC CASBALTIES 

3.1 INTRODUCTION 

During the past 20 years a number of serious casualties have occurred in the approaches 

to Keelung port. Although full details are difficult to obtain, the cases of the Borag and 

Choong Yong are exemplary. 

On 5th February 1977, the Kuwait tanker, Borag (21,616 grt), anchored outside Keelung 

port to wait for a berth in Sen-ao port to discharge oil. On the 7th, just after weighing 

anchor and proceeding to Sen-ao, the ship grounded on the Hsinlai reef. The reef is 

located 2.2 miles north of the Keelung breakwater, and dredged to 18 metre depth in 

1987. The result of the casualty incurred total loss of the ship and oil pollution that was 

estimated at US$60 million damage•. The cause of the accident was that the ship lacked 

proper charts to indicate the correct position of the reef. There was no pilot on board. 

On 28th December 1984, the Korean general cargo ship, Choong Yong (12,477 grt), 

arrived at Keelung pilot station. While waiting for the pilot, the ship deviated from her 

position by strong wind and rough seas, and grounded2
• The hull damage was US$6 

million, and the cargo lost was US$8 million. 
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For the purpose of providing a substantial basis for ships' safety in the Keelung area, the 

first task must be to realize the risk by investigating ship casualties and interpreting 

casualty statistics. Each water area has its own navigation problems depending on the 

geography, weather, traffic situation, etc. Without a specific investigation into safety 

improvement, the actual causal factor is often unidentified. The proverb is "we learn by 

our mistakes". Past errors give clues to present safety. Once causes of accidents have 

been identified, action can be taken to prevent them happening again. Complete safety 

may be unattainable, but the level of safety can usually be increased. 

3.2 MEmODS 

Before analysing navigational risk in the approaches to Keelung port, the frrst task was 

to build a data base and the second to identify factors related to the analysis. The central 

analysis is based on an investigation into the casualties occurring to seagoing trading 

ships. After the basic data were collected and augmented, the analysis was carried out 

by the SPSS/PC+ computer software package, a statistical package for social sciences. 

3.2.1 Scope of casualty data 

Data on maritime casualties were required for giving an indication of existing levels of 

safety to assess the risk. Thus, the scope of casualty data in this research was defined by: 

a. the area covered 

b. a sufficient period of time being covered to make statistical techniques valid 

c. casualties which actually occurred being included. 
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3.2.1.1 Scope of area 

The sea area of Keelung port includes inside and outside the harbour. Inbound ships 

passing the breakwaters and entering the harbour, should reduce speed to less than five 

knots in compliance with the port regulation3
, and tugs may have been waiting for the 

ship to assist in its manoeuvring. Generally speaking, the situation inside the harbour for 

ship handling is safe, especially under pilot control. The northern water areas of Keelung 

Island and Yeh-liu Cape are open sea, and from the record of the Keelung Harbour 

Bureau appear to have a very low probability of marine accidents. Therefore the area of 

this study is from the main channel between the breakwaters extending five miles 

seaward to Latitude 25°15'N. It is bounded to the east by Keelung Island and the west 

by Yeh"liu Cape and the shoreline. This water area encompassing 25 square miles is 

referred to as the Keelung approaches. 

3.2.1.2 Scope of period 

Vessel casualties are relatively rare events4
• The Keelung approaches cover a small area. 

The short term accident history contains too few accidents to obtain a reliable indication 

of future events. To obtain enough areacspecific casualties for analysis, many years of 

data are required. Yet, over a long period, many factors that can affect the occurrence 

of casualties change. Especially, the TSS that was established in 1990, has changed the 

route patterns in the given area. Conversely long term records are considered 

unsatisfactory, since they do not represent the instantaneous reality. Therefore this 

chapter will present and analyse information relating to the number of vessel movements 

for.the time period 1987 to 1991 inclusive to give the indication of the number of ships 

involved in casualties within the defined area. 
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3.2.1.3 Scope of casualty categories 

The Casualty Returns published by Lloyd's Register ofShipping divides marine accidents 

into nine primary groupings5• There were other different explanations to defme the 

marine accidents in some papers6·
7

• Generally, maritime casualties can be divided into 

two distinct groups according to their primary causes: traffic accidents and technical 

accidents. Collisions, groundings, and contacts are traffic accidents; founderings, 

explosions and fires, floodings are technical accidents. Tuovinen commenteds: 

"The remedies.against traffic accidents can be found in the development of 
the traffic situations and environment but the technical accidents call for 
technical developments of the ships." 

This study is concentrated on the marine traffic operation in Keelung port. It is however 

possible to analyse the accidents relating to factors including human errors and adverse 

environment. Thus here the casualties covered are categorised by three major divisions: 

a. Collision includes ships, underway under their own power, colliding with 

another vessel, whether underway, moored or anchored. 

b. Grounding includes ships that had gone onto or gone against a shoal or an 

underwater reef, or run aground in the shore zone, where the shore area 

was visible above the sea surface. 

c. Contact includes ships colliding with all objects other than other vessels or 

the bottom, e.g. hitting breakwaters. 

3.2.2 Investigation of casualty data 

It is an essential contribution to encompass all casualties from the trifling up to the most 
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serious, as often major disasters have followed trivial events. Accidents occurring 

within harbours, rivers, canals or inland waters almost invariably involve special 

circumstances or local factors9
• Nevertheless, the Marine Research Institute of 

Netherlands pointed out that it was very difficult to obtain sufficient data concerning 

the causes of accidents, the environmental conditions and the damage sustained10
, 

especially of those accidents which involved foreign vessels. 

In the Keelung Harbour Bureau accident reports and protests including fishing boat 

accidents are not differentiated. There are many reports and protests without full 

information. The basic features of the accident reports in Keelung were the ship name 

and date of accident. Thus, the part-completed accident data base needed to be 

augmented by adding more data from the standard references. In circumstances where 

data on certain aspects were not found, entries were classified as, "not determined". 

3.2.3 Defmition of casualty data 

1. Ship type and size 

In the records three-quarters of the required data concerning ship's type and tonnage 

was available. 'Iihe remainder was obtained from the Lloyd's Register of Shipping. In 

this study the ship type was categorised into container ship, general cargo ship, bulk 

carrier and tanker according to the Keelung Harbour Bureau's statistics. The general 

cargo ship includes all dry cargo ships, except container ships. There are various 

measures to describe the size of a ship. Gross tonnage is the most commonly used 

measure, not only for data on traffic statistics but also in most IMO conventions11
• For 

the availability of the analysis ship size was divided into three groups: 
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a. Small size includes the ships with grt under 5,000. 

b. Medium size includes the ships with grt between 5,000 and 20,000. 

c. Large size includes the ships with .grt more than 20,000. 

2. Wind 

Wind is an important factor in relation to navigational risk and its effect on local traffic 

patterns. The wind speed at which the navigation of a vessel is significantly affected 

clearly depends upon the size, shape and speed of the vessel. This implies that a range 

of different wind forces exists. In COST 301, a project carried out by European 

Cooperation on Science and Technology, two levels of wind force were adopted: wind 

up to 33 knots (Beaufort Force 7), and wind over 33 knots (Beaufort Force 8 and 

above). It was thought that when the wind was stronger than force 7, it might have a 

significant effect on the navigation of the average ship12
• To emphasise wind effect, 

three levels of wind force were adopted in this study: 

a. Wind up to 22 knots (10. 7 metres/second) 

b~ Wind between 22 and 33 knots (10.7 and 17.1 metres/second) 

c. Wind over 33 knots (17.1 metres/second). 

3. Visibility 

Reduced visibility is still a risk factor for ship traffic. When vessels arrive at the 

Keelung approaches, about five nautical miles off the breakwaters, the need for 

navigators to appreciate the traffic movement situation in whole area, encompassing the 

pilot station and entrance, is essential. Navigators obtaining timely information by sight 
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can take better action to avoid risk than getting it from other navigational equipment. 

Therefore, the levels of visibility in this study of the casualties have been classified into 

three categories: 

a. Clear weather, with a visibility greater than five miles 

b. Restricted visibility, with a visibility range between two miles and five 

miles. 

c. Poor visibility, with a visibility range less than two nautical miles. 

4. Tidal current 

It is believed that currents have an important effect on groundings and contacts, but 

little effect on collision accidents13
. Unfortunately, most of the accident reports in 

Keelung lack current information, That information available appeared very poor in 

comparison with what was needed to arrive at sufficient conclusions. 

3.3 STATISTICS OF CASUALTY DATA 

The results of investigation obtained from the Keelung Harbour Bureau on traffic 

accidents in the defmed boundaries of the Keelung approaches are summarized in Table 

3-1. The accidents in which the vessel was a merchant ship of over 100 grt were 

considered. Among collision accidents a ship colliding with another at anchor was 

counted as two. ships involved in one case, and a collision involving a merchant ship 

and a fishing vessel was considered as a case with one ship. It contains 29 collision 

cases, four grounding cases and six contact cases, and there were 61 merchant ships 
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involved in the accidents. Compared with the total of 36,929 incoming ships, which 

called at Keelung during the five years from 1987 to 1991, the accident probability was 

1.65 per 1,000 ships. The figures of the rate of ships involved showed variations from 

year to year. There was no significant difference to explain the tendency of accidents 

that occurred. The location of all above casualties are plotted in Figure 3-1 . 

Table 3-1 The number of casualties and ships (1987-1991) 

1987 1988 1989 1990 1991 Total 

Collision 7 (12) 5 (9) 6 (12) 5 (8) 6 (10) 29 (51) 
Grounding 2 ( 2) 1 (1) 0 ( 0) 1 (1) 0 ( 0) 4 ( 4) 
Contact 1 ( 1) 1 (1) 0 ( 0) 1 (1) 3 ( 3) 6 ( 6) 

Total 10(15) 7 (11) 6 (12) 7 (10) 9 (13) 39 {61) 

Incoming Ships 6,977 7,243 7,572 7,623 7,514 36,929 

Ratio 0.215% 0.152 % 0.158% 0.131 % 0.173 % 0.165% 

Remark: 1. Number of cases ( Number of ships involved in the cases) 
2. Ratio = Number of ships I Incoming ships. 

Source: Author 

According to Taiwan's regulations1
\ any vessel, regardless of register, involved in an 

accident within the jurisdiction waters of the harbour must submit a report or a protest 

to the port authority for endorsement. Unfortunately collisions occurring in port areas 

usually result in only minor damage and are therefore less likely to be reported15
• 

Sometimes the ship might submit the report at the next port because the office of the 

Bureau was closed during the period of vessel calling. Therefore the actual casualties 

could be higher than the figures given. 
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To categorise by type 61 ships involved in the accidents, it was found that 34 container 

ships accounted for 55.7% of all accidents (Table 3-2). Due to efforts of the port 

authority to establish new container piers and renew the facilities of container operation, 

container ships have been increasingly attracted to call at Keelung. During the five years 

of 1987-1991, 55 .6% of visiting ships in Keelung were container ships. The ratio was 

equivalent to the proportion of container ships involved in accidents. The more container 
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ships visited, the more accidents occurred with those. The general cargo ship and the 

bulk carrier were other types also significant in the accident records. General cargo ships 

comprised 35.6% of total traffic, but were involved in only 19.7% of the accidents. By 

comparison, bulk carriers experienced an accident rate three times higher than their share 

of the traffic. 

Table 3-2 Accidents categorised by ship types (1987-1991) 

Ship Type Collision Grounding Contact Total 1987- 1991 

Container 28 0 6 34 20,544 
(54.9%) (100 %) (55.7%) (55.6%) 

General Cargo 10 2 0 12 13 ,162 
(17.6%) (50.0%) (19.7%) (35.6%) 

Bulk Carrier 10 1 0 11 I ,871 
(19.6%) (25.0%) (18.0%) ( 5.1 %) 

Tanker 3 1 0 4 1,352 
( 5.9 %) (25.0 %) ( 6.6 %) ( 3.7%) 

Total 51 4 6 61 36,929 
(83.6%) ( 6.6%) ( 9.8 %) (100.0 %) (100.0 %) 

Source: Author 

Table 3-3 shows the relationship between ship size and accident rates. The large ship 

appears significantly more prone to accidents than other groups. The previous chapter 

has shown the number of large container ships , bulk carriers and tankers calling 

Keelung has increased significantly. That large ships have a higher accident risk has 

provided a warning to the port authority of the need to improve navigational efficiency. 

3.3.2 Casualty affected by circumstance 

In order to assess the influence of environmental conditions on the number of 
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casualties, it is necessary to relate these casualty parameters to the prevailing light 

condition, wind and visibility. Table 3-4, 3-5, 3-6 and 3-7 display the accident 

distribution under each environmental condition. 

Table 3-3 Accidents categorised by ship gross tonnage (1987-1991) 

Ship Size Collision Grounding Contact Total 1987-1991 

Small ship 8 1 0 9 12,580 
(16.0%) (25.0%) (15.0 %) (34.1 %) 

Medium ship 25 2 2 29 16,836 
(50.0%) (50.0%) (33.4%) (48.3 %) (45.6 %) 

Large ship 17 1 4 22 7,513 
(34.0%) (25.0 %) (66.6%) (36.6%) (20.3 %) 

Total 50 4 6 60 36,929 
(83.3 %) ( 6.7 %) (10.0 %) {100%) (lOO %) 

Remark: One ship gross tonnage is non-determined. 

Source: Author 

Table 3-4 Accidents by time of day in Keelung (1987-1991) 

Time Collision Grounding Contact Total 

Day-time 11 2 6 19 
(45.8%) (50.0 %) (100%) (55.9%) 

Night-time 13 2 0 15 
(54.2%) (50.0%) (44.1%) 

Total 24 4 6 34 
(70.6%) (11.8 %) (17.6%) (100%) 

Remark: five cases are non-determined. 

Source: Author 
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Table 3-5 Accidents by wind direction (1987-1991) 

Wind Direction Collision Grounding Contact Total 

North 6 3 2 11 
(20.7%) (75.0%) (33.3%) (28.2%) 

North-East 12 1 3 16 
(41.4%) (25.0%) (50.0 %) (41.0%) 

East 6 0 1 7 
(20.7%) {16.7 %) (17.9%) 

South-East 2 0 0 2 
( 6 .9%) (5.1%) 

South 3 0 0 3 
(10.3%) ( 7.7%) 

Total 29 4 6 39 
(74.3%) (10.3%) (15.4%) {100%) 

Table 3-6 Accident by wind force (1987-1991) 

Wind Force Collision Grounding Contact Total 

< 10.7 m/sec 14 0 5 19 
(48.3 %) (83.3%) (48.7%) 

10.7-17. 1 m/sec 13 2 1 16 
(44.8%) (50.0%) (16.7%) (41.0%) 

> 17. 1 m/sec 2 2 0 4 
( 6.9 %) (50.0%) (10.3 %) 

Total 29 4 6 39 
(74.3%) (10.3%) (15.4%) (100%) 

Table 3-7 Accident by visibility (1987-1991) 

Visibility Collision Grounding Contact Total 

< 2 miles 3 0 1 4 
(10.3%) (16.7 %) (10.3 %) 

2- 5 miles 11 4 3 18 
(37.9%) (100.0%) (50.0%) (46.2%) 

> 5 miles 15 0 2 17 
{51.7%) (33.3%) (43.6%) 

Total 29 4 6 39 
(74.3%) (10.3%) (15.4%) (100%) 

Source: Author 
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3.3.3 Damage cost 

Casualties causing damage involve the ship owners in increased costs. From the Lloyd's 

Registration, 42 shipping companies, managing the 55 ships involved in the accidents at 

during the period, were found. Damage fonns were mailed to those companies seeking 

damage information. Only 16 companies replied to the letter. Among them, 11 

companies provided 19 ships' damage data. The few returned damage records and the 

diverse types of losses make the analysis of damage costs complex. To resolve the 

problem, this study divided the ship repair costs by US dollars into three groups for 

accident damage: less than $10,000, $10,000-$100,000, more than $100,000. 

Table 3-8 indicates the repair costs that were derived from the response forms. The 

average cost in collision accidents was $203,600 including one bulk carrier which sunk 

with total loss. The costs by grounding or contact accidents were much higher than the 

collision accidents. One large tanker sustained $2,700,000 damage to the hull following 

grounding. Average repair cost of three contact ships was $1, 110,000. When approaching 

a port, the ship speed has to be reduced from sea speed to manoeuvre speed. So the 

casualty damage in collision should be lighter than those occurring at sea. An 

examination of the Canadian Coast Guard's Casualty investigation showed that the 

damage casualties in the harbour were less serious on the average of all casualties; the 

repair costs were 48% of overall average16
• 

The repair will take the ship out of service for several days, even several weeks with 

serious damage. From the response forms of shipping companies, there were four ships 

granted permission from survey to delay the repair until the annual refit, five ships 

41 



Chapter 3 

delayed the service for repairs and one ship became a total lost. Excluding the total loss, 

the repair period of three collision ships was under one week with $7,900 for the average 

of loss of use, one aground ship for four months and one contact ship for six weeks. 

From the response letters, the hire rate of a 30,000 grt container ship was $24,000 per 

day, and a 10,000 grt container ship was $10,000 in 1990. 

Table 3-8 Repair costs to the accident ships (1987-1991) 

Cost Collision Grounding Contact Total 

Less than $10,000 6 0 0 6 

$10,000-$100,000 5 0 0 5 

More than $100,000 4 3 8 

Total 15 3 19 

Source: Author 

Among the accidents, there was one grounding case causing human death. Two people 

died during the rescue operation for the aground ship. Fortunately only one grounding 

accident caused slight oil spill in all cases which was cleaned up quickly. Regarding the 

effect to traffic movement, no report in the Keelung Harbour Bureau mentioned the 

fairway being blocked through ship accident. 

3.4 ANALYSIS OF CASUALTIES 

3.4.1 Collision accidents 

Almost three-quarters of all accidents in the study period were collisions. Most collision 
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cases were at the centre of the approaches within a 3-mile range near the entrance, the 

area of the greatest traffic density in Keelung port. Theoretically, the probability of 

collision increases with the traffic density. Captain Cockcroft pointed out17
: 

"For traffic proceeding in random direction on a plane surface the 
frequency of collisions; if no avoiding action is taken, is approximately 
proportional to the square of the traffic density and directly proportional to 
the size and speed of the craft." 

Before the TSS was established in 1990, the inbound and outbound ships encountered 

each other in the middle of the Keelung approaches, and most of the collisions occurred 

in the central section of the approaches. Since 1990, the ship encounters shifted to the 

outside area of the TSS. It was still found that collisions could not be avoided after the 

TSS was established during 1990-1991, and the number of cases was almost average in 

this two year period. Among the collision accidents, one collision case involving an 

inbound ship and an outbound ship occurred in the main channel sector, and two cases 

in traffic lanes involving a ship at anchor after the TSS was established. The accident 

colliding with an anchored vessel tends to be of high ratio. There were 17 cases (58.6%) 

involving a ship at anchor. Fishing vessels' obstacles.caused some collisions. There were 

another eight cases (27 .6%) involving a fishing vessel. 

From the distribution of collision by ship type and size (Figure 3-2), 25 container ships 

(92.6%) and all 10 bulk carriers involved were medium and large size; all 10 general 

cargo ships were small and medium size. 
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Remark: One container ship's gross tonnage is not determined. 

Figure 3-2 Ship type and size in collision accidents (1987-1991) 
Source: Author 

The daily distribution of the collision accidents at night-time was little more than at day-

time. If traffic pattern was considered, there was 41.6% of traffic moving in the night-

time18• Hence the distribution of collision accidents, 54.2%, seems a high ratio. 82.8% 

of collisions were under the N, NE and E winds. There was no significant fmding 

relating wind force to collision. While during the five year period under review visibility 

less than two miles occurred on just 2% of days, 10% of collisions were during poor 

visibility. 

From analysis of type and size of 51 ships involved in collisions, three in two cases 

happening under strong wind involved one medium general cargo ship, one large 

container ship and one bulk carrier; five in three cases happening under poor visibility 

involved three medium ships and two large ships (Figure 3-3, 3-4, 3-5, 3-6) . 
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3.4.2 Grounding accidents 

During the study period the groundings had shown a considerable decrease. One 

grounding at the An-tou-pao shoal in five metres of water depth was remarkable. No 

container ship was involved in grounding. But all groundings occurred with the wind 

force over force 5 from N and NE, one of those by force 6 and the others over force 7. 

Strong wind has a significant effect on grounding rate. Two ships ran aground due to 

dragging the anchor under strong NE monsoon. Visibility did not influence the 

groundings. 

3.4.3 Contact accidents 

The sharp increase of contact accidents in 1991 might highlight the risk. The most 

obvious feature of the contacts is all of them involved container ships striking the 

breakwaters, two medium ships and four large ships. That all contacts happened to 

inbound ships in the day-time may be related to Keelung pilots mostly working inbound 

ships in the day-time. Wind was not significant to influence the contacts. Besides on 

contact with wind force 7, the other five contact accidents were under force 5. One 

accident occurred in poor visibility. Unfortunately no current information was provided 

for these accidents. A simulation test for ship's manoeuvring in Keelung port carried out 

by the Taiwan Ocean University commented as follows19
: 

"A 25,000 grt container ship with full cargoes could safely pass the 
breakwaters by its ability under the good ship handling with current under 
1.0 knots and wind under 25 knots. The navigational risk to strike the 
breakwaters will increases following the increase of current and wind force, 
especially with current over 2.5 knots and wind force over 30 knots." 
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3.5 CONCLUSIONS 

Owing to the accident reports kept by the Keelung Harbour Bureau lacking uniformity there 

has been a significant lack of detailed information, however, from the available data, the 

following results of accident analysis can still give indications (fable 3-9): 

a. Collisions constituted 74.4% of all accidents, and 58.6% of the collisions involved 

a ship at anchor, 27.6% involved a fishing boat. 

b. Large and medium ships were involved in most collision and contact accidents, 

especially container ships and bulk carriers. 

c. The component contributing to the collisions was poor visibility. 

d. The component contributing to the groundings was the ship dragging under the strong 

NE winds. 

e. The component contributing to the contacts was possibly the strong current. 

f. Groundings and contacts caused the cost relating to ship repairs to be high. 

Table 3-9 Factors relating to traffic accidents 

Factors Collision Grounding Contact 

Container ship X X 

Large ship X X 

Night-time X 

Poor visibility X 

Strong wind X 

Strong current X 

High damage costs X X 
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CHAPI'ER 4 

mE ANALYSIS OF NA VIGATI0NAL RISKS 

4.1 INTRODUCTION 

Casualty analysis can identify factors relating to navigational risk, but there may be 

inconsistencies between different sources. The casualty data base for this study was 

relatively small and incomplete, and may not sufficiently cover some elements. In order 

to obtain a more comprehensive understanding of problems, within the area concerned, 

it was decided to complement the study by means of a questionnaire eliciting mariners' 

opinions. The investigation of mariner opinion is a participant observation, which is 

usually considered the basic method of qualitative research 1• Learning from the 

experience of mariners is probably one of the most effective ways of preventing 

accidents. They are in a position to judge what happens to endanger navigation, and what 

information is valuable for safe passage planning and decision making on board. After 

all, the purpose of establishing any safety system is for assistance to mariners. In order 

to assessing the effectiveness of TSS, the results of the questionnaire will be compared 

with an analysis of radar observation survey. 

4.2 QUESTIONNAIRE SURVEY 

The construction of the questionnaire used in this research, shown in Appendix A, is in 

three parts : 
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A. Basic information of the respondents 

- Function of respondent and type of vessel 

- Recent experience calling at Keelung Port 

B. Factors of navigation risk 

- Risk factors at the outside area, the TSS area and the anchorage respectively 

- Overall risk by area, season and light 

C. Risk deduction 

- Methods of improving marine safety 

- Modification to the existing TSS 

Every part provided the respondent with an opportunity to write a further interpretation 

for the answers given and to offer their suggestions. This chapter only concentrates on 

the. part B, navigation risk. Regarding risk deduction, it will discuss in the next chapter. 

4.2.1 Pilot study 

Initially this research was evaluated by a field test. The results of the pretest were used 

to refine the questionnaire and locate potential problems in interpretation or analysis of 

the results. The pre-test of the research was carried out by five masters, two pilots and 

three maritime instructors in person. Their comments were embodied in the revised 

questionnaire. 

4.2.2 Participants of tbe survey 

Keelung is an international commercial port. The experience and technique of navigators 

on merchant ships are the most valuable sources in this study for assessment of the 
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present risk. Although the approaches to the outer harbour are a non-compulsory pilot 

area, most ships request pilotage assistance due to the narrow entrance and to adverse 

weather. The pilot is primarily occupied with the safe and efficient navigation of the 

individual ship. Thus, pilots' opinions give other important information, and the pilot 

often provides specific information on their aspects of interest. 

After the TSS was established in 1990, the traffic pattern was changed in the defmed 

area. Masters·of merchant ships that called at Keelung before 1990 providetheir opinions 

to compare with the present situation data to assess the effectiveness of the TSS. 

The survey commenced in April 1992. All questionnaires were anonymous and self­

addressed envelopes were attached. Merchant ships calling at Keelung Port were given 

a copy of the questionnaire at random by Keelung pilots, Initially 200 questionnaire 

forms were used. In addition, questionnaires were sent to all 24 Keelung pilots. 40 forms 

were sent to masters ashore, chosen at random by the China Master Association. 

4.2.3 Results of the survey 

4.2.3.1 Distribution of sample groups 

Of these 264 questionnaire, 161 were duly completed and returned before 31 August 

1992, a response rate of 61.0%. There were 122 questionnaire samples collected from 

navigators who recently called at Keelung port with fulltime shipboard experience. The 

perception of the respondents can effectively explain the requirement of navigational 

safety for merchant ships within the defined area. The sea experience of the 122 samples 

ranged from one to 36 years. It would be impossible in the context of the present study 
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to analyse a group mixing all navigators without considering the aspect of experience. 

Experienced mariners are less likely to pass dangerously close and hence less likely to 

spend unnecessary time increasing their miss distance, if already at safe distance. Thus, 

these respondent navigator were broken down into two occupational groups: a senior 

group comprising 67 navigators with more than 10 years experience, and a junior group 

of 55 navigators with 10 years experience or less (fable 4-1). The average of fulltime 

shipboard experience of the former group was 16.8 years, and the latter was 7.1 years. 

Table 4-1 Distribution of questionnaire survey 

Sample name Number Number Rate of Group name Number Rate in 
of survey of survey of return return of analysjs of analysis total 

Merchant ship 200 122 61.0% Senior 67 41.6% 
Junior 55 34.2% 

Pilot 24 10 41.7% Pilot 10 6.2% 
Former master 40 29 72.5% Ex-master 29 18.0% 

Total 264 161 61.0% 161 100.0% 

Source: Author 

The pilot was considered to be an occupational group. There were 24 pilots working in 

Keelung Port for service, but only 10 questionnaire samples were collected; the response 

rate was 41.7%. The pilot is in control of all the tasks with his experience based on local 

knowledge when working on board. In Taiwan, a pilot must have experience of at least 

three years working as master on merchant ship with gross tonnage more than 3,000. The 

average marine experience of the pilot group was 20.9 years. Another 29 masters, with 

a response rate of 72.5%, who visited Keelung Port by ship before 1990 meaning they 

had no experience of navigating in the TSS, was attributed to another occupational group, 

the ex-master group. 
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4.2.3.2 Distribution of ship's type and gross tonnage 

The responses in the navigator groups of senior and junior navigators are affected by ship 

type and size. Naturally, it is important that the distribution of the returned questionnaire 

according to vessel type and size is in reasonable agreement with the traffic composition. 

The distribution of the 122 navigators were divided into four ship type groups including 

container, general cargo, bulk and tanker group, and three ship size groups including 

small, medium and large size groups. The definition of ship size coincides with that for 

the analysis of accidents in para 3.2.3. Compared with the distribution of ships calling 

at Keelung, the small ship proportion seemed low. Most general cargo ships were 

medium-sized, and all tankers were large-sized, shown in Table 4-2. 

Table 4-2 The type and size of merchant ships in respondents 

Count I less I s,ooo I more I 
Row Percent I than I - I than I Row 

Column Percent 15,000 1 19,999 120,000 I Total 
TYPE + 

5 36 59 I 100 
Container ship 5.0 36.0 59.0 I 82.0 

62.5 83.7 83 .1 I 
+ 

1 6 I 7 
G. cargo ship 14.3 85.7 I 5.7 

12.5 14.0 I 
+ 

2 I 7 I 10 
Bulk carrier 20.0 10.0 70.0 I 8.2 

25.0 2.3 9.9 I 
+ 

5 I 5 
Tanker 100.0 I 4.1 

7.1 I 
+ 

Column 8 43 71 122 
Total 6.6 35.2 58.2 100.0 

Source: Author 
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4.2.4 Methods of statistics 

Navigational safety is affected by many factors. By applying probability concepts, the 

analysis of data in samples can make a conclusion or inference about an entire 

population. From mariners' responses this study seeks to analyse the most dangerous 

factors influencing ships moving in the Keelung approaches by statistical methods, and 

in the meanwhile to find significant differences between the populations, if existent. 

The state of a null hypothesis in this survey was that H.: the populations of all groups 

are identical on the response of the variables in the questionnaire; the alternative 

hypothesis was that H,: some of the groups tend to choose greater or lower scores than 

other groups. The significance level was established at 5% in two tail test. The non­

parametric test was chosen to analyse the data in this survey because the sample size of 

the pilot group and ship type groups were small, and no evidence could prove the 

samples had come from normal distribution population. In some situations non-parametric 

tests are probably more powerful than the parametric tests, especially if the sample size 

is smalF. The power of any test increases as the sample size increases. So a less 

powerful test could also be used with a larger sample size. "fhere were two non­

parametric test methods using for the null hypotheses test in this part, Wilcoxon-Mann­

Whitney test and Kruskal-Wallis test. Analysis of response data was carried out by 

computer with the SPSS/PC+ software package. The commands and procedures of the 

SPSS/PC+ programme used in this research are shown in Appendix B. 

56 



Chapter 4 

4.2.4.1 Wilcoxon-Mann-Whitney test 

The Wilcoxon-Mann-Whitney test, also known as the M~W test, is used to test whether 

two independent samples have been drawn from the same population. This is one of the 

most powerful of the non-parametric tests. The test requires only that the observations 

be a random sample and that values can be ordered. In the computation of the M-W test, 

all data of both samples are combined into ascending order and replaced by ranks from 

the smallest to the largest. The statistic for testing the hypothesis that the two 

distributions are equal is the sum of the ranks for each sample. If the populations have 

the same distribution, their sample distributions of ranks should be similar. If the average 

rank for one of the groups is very small (or very large), then there is reason to suspect 

that the two samples were not drawn from the same populationl. 

For the M-W test in this survey, the responses in occupation groups were composed to 

six pairs, named senior/junior, senior/pilot, senior/ex-master, junior/pilot, junior/ex­

master and pilot/ex-master respectively. Meanwhile, the responses of navigators were 

also composed to pairs depending on ship type and ship size. In ship type category, there 

were six pairs, named container/general-cargo, container/bulk, container/tanker, general­

cargo/bulk, general-cargo/tanker and bulk/tanker; in ship size,category, there were three 

pairs, named small/medium, small/large and medium/large. The M-W test was used to 

comparing the distribution of two groups in each pair. 

4.2.4.2 Kruskai-Wallis test 

The Kruskal-Wallis one-way analysis of variance (K-W test) by ranks is an extremely 
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useful test for deciding whether three and more independent samples are from different 

populations. It is the direct extension of the M-W test, and in applying the K-W test, the 

data are also combined and replaced by ranks. The K-W test assesses the differences 

among the average ranks to determine whether these samples were drawn from the same 

population. 

In this survey, every question was first tested by the K-W comparing the responses of 

four occupation groups, and also comparing those of four ship type groups.and three ship 

size groups. If the result of probability was smaller than 5%, the null hypothesis had to 

be rejected, and significant difference was existing within the populations. Then the three 

(or four) groups had to be separated by two group as a pair and be tested by the M-W 

test to find which couples had significant difference between the groups. The responses 

were tested by the K-W test first, because the M-W test would make too many pairs and 

some would appear to be significant even when all population were equal. Multiple 

comparison tests could protect against calling too many differences significant". 

4.3 ANALYSIS OF MARINER OPINIONS 

In the questionnaire, part B investigated the risk perception. Question Bl asked 

respondents to what extent marine accident risks would be increased by certain risk 

factors, and question B2 asked respondents the risk associated with each geographical 

area, season and light condition. 
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4.3.1 Overall risk by area 

In this survey the Keelung approaches were divided into three zones: outside the TSS, 

within the TSS and near the breakwaters, and within the outside anchorage, because 

traffic patterns and the navigational circumstance that mariners face differed within these 

zones after TSS was established. Theoretically, approaching or leaving the TSS a ship 

would encounter other crossing ships near the entrance. For an example, a inbound ship 

coming from Japan must cross course lines of ships bound for south-east Asia from 

Keelung. Within the TSS, movement follow directions of traffic lanes and the encounter 

in which ships meet each other in overtaking or being overtaken is simplified. At 

anchorages, the encounter is probably between a ship underway and a ship at anchor. 

From the arithmetical means of response scores, all occupation groups significantly 

considered the area within the TSS and near the breakwaters to be the most dangerous 

area, and the figures were quite higher than other areas (Appendix C-1). They marked 

the risk was over moderate risk to that question. Most senior navigators (58.5%) and 

junior navigator (66.6%) judged that the risk was high or very high (Appendix D-2). 

Through the K-W test to examine the difference between the groups, no significance was 

found in this area (Table 4-3). That meant the responses from mariners of the four 

groups were identical. When the results were analysed with the ship type and size 

groups, the small ship group was with lower risk than the medium and large groups 

significantly, but no significant difference in ship type was identified through the 

statistical tests (Table 4-4). Thus most navigators working on larger ships, regardless of 

ship type, had the tendency to declare a higher risk in this area. 
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Table 4-3 The significance level by K-W test for overall risk 

ITEM Occupation Ship type Ship size 
group group group 

B2. PERCEPTION ON OVERALL RISK 

Outside area of Traffic Separation Scheme 0.0072 0.6248 0.1012 

Within area of TSS and near the breakwater 0.0886 0.0519 0.0245 

Within area of anchorage 0.1216 0.1182 0.1969 

January to March 0.3778 0.0802 0.0048 

April to June 0.0706 0.4515 O.Oll5 

July to September 0.0016 0.3436 0.2841 

October to December 0.1209 0.3028 0.0763 

During day-time 0.0405 0.7540 0.0319 

During night-time 0.0183 0.0071 0.0123 

Source: Author 

Table 4-4 The significance level by M-W test for overall risk 

Occupation group SII S I P SI M J I p I I M p / M 

Outside area of the TSS 0.7516 0.0031 0.8160 0.0002 0.9850 0.0033 
July to September 0.0434 0.0053 0.8585 0.0002 0.1001 0.0157 
Day-time 0.0585 0.1305 0.7188 0.0151 0.0607 0.2211 
Night-time 0.3774 0.0136 0.3713 0.0030 0.1002 0.0421 

Ship type group C / G C / B C / T G I B G / T B I T 

Night-time 0.0031 0.3133 0.0729 0.0504 0.6479 0.3234 

Ship size group S / M S I L M / L 

Within area of the TSS 0.0331 0.0091 0.2914 
January to March 0.0342 0.0037 0.0577 
April to June 0.0383 0.0059 0.1236 
Day-time 0.0448 0.0073 0.4480 
Night-time 0.2033 0.0115 0.0334 

Group symbol: Occupation S- Senior J- Junior P- Pilot M- Ex-master 
Ship type C- Container G- General cargo B- Bulk T- Tanker 
Ship size S- Small M- Medium L- Large 

Source: Author 
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4.3.2 Overall risk by season 

All occupation groups indicated that the overall risk during the winter and spring months, 

from Octoberto March, was higher than the summer and autumn months, from April to 

September (Appendix C-1). The same result was also reflected on the ship type and ship 

size groups. The distribution revealed that about 70% of respondents in navigator groups 

considered high risk or very high risk during spring and winter. In both of the two 

seasons, 60% of pilots commented on high risk (Appendix D-4, D-7). 

Through K-W test to compare the mean rank of occupation groups in each season, no 

significant difference was found in spring and winter months. With the same tests to ship 

type and ship size groups, no significant difference was found within ship type groups, 

but significant differences within ship size groups was found in spring. The responses of 

the large ship group indicated higher risk than those of the small ship. Consequently, no 

matter the ship type, most users considered navigation in the Keelung approaches had 

high risk during spring and winter than in summer and autumn. 

4.3.3 Overall risk by time of day 

The means of responses by all groups revealed navigation with much higher risk during 

night-time (Appendix C-1). Significant difference within the occupation groups was found 

at night-time. Pilot's scores for night-time, although 90% with moderate and high risk, 

were lower than other groups' scores. From the navigator groups, there were significant 

differences found in ship type and size categories. For night-time risk, respondents from 
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container ships indicated higher risk than those from general cargo ships. Similarly, 

respondents from small ships selected lower risk than those from large ships. Through 

M-W test, pilots seemed to have more confidence to manoeuvre ships in night-time. 

General cargo group and small ship group had significant differences from other groups 

in each category with lower risk. 

4.3.4 Factors of risk 

When investigating the dangerous factors to navigational risk, it found nearly all 

occupation groups ranked poor visibility, fishing vessel congestion, strong wind and 

strong current as the four most dangerous factors to ships navigating in Keelung 

approaches (Appendix C-2, C-3, C-4). The mean scores of these four factors were higher 

than other four factors. 

Within the area of TSS and near the breakwaters, these four dangerous factors were 

consistently weighted similarly by each occupation group, although the mean scores in 

pilot group were higher than those in other groups, This indicated the factors often 

increase risk, especially poor visibility and strong wind. When comparing navigator 

responses with ship type and size, the four factors mentioned above still kept the most 

dangerous place with different sequence. Significant difference within occupation groups 

was found in factor of strong wind by K-W test for this area (Table 4-5). Then through 

M-W test to compare each pair, pilots had a higher risk perception on strong wind than 

senior navigators (Table 4-6). Through the·tests, navigators on container ships had higher 

risk perception than those on tankers for the factor fishing vessel's congestion. No 

significant difference was found in ship size groups. 
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Table 4-5 The significance level by K-W test for area of TSS 

ITEM Occupation Ship type Ship size 
group group group 

ll_!L PERCEPTION ON RISK FACTORS 

2. Within area of the Traffic Separation Scheme and near the breakwater 

High density of traffic 0.4623 0.0067 0.8700 

Fishing vessels in shipping lanes 0.8627 0.0169 0.5549 

Strong currents 0.6017 0.2030 0.9106 

Poor visibility (fog, rain) 0.1044 0 .2247 0.8834 

Strong wind 0.0332 0 .3665 0.7322 

Shallow water 0.0603 0.1789 0.9443 

Natural underwater hazard 0.1029 0 . 1890 0.7969 

Table 4-6 The significance level by M-W test for area of TSS 

Occupation group S/J S I P S / M J I p J I M P I M 

Strong wind 0.0897 0.0070 0.3158 0.0566 0.7382 0.0530 

Ship type group C / G C/B C IT GIB G /T BIT 

High density of traffic 0.0266 0.2202 0.0082 0.3246 0.4811 0. 1232 
Fishing vessels in area 0.0790 0.1651 0.0127 0.6361 0 .2350 0 .1072 

Group symbol: S- Senior J- Junior P- Pilot M- Ex-master 
C- Container G- General cargo B- Bulk T- Tanker 

Source: Author 

There were interpretations from the questionnaire of personal perceptions regarding risk 

factors in Keelung approaches as follows: 

a. The signal station often advised two or three ships to meet at the pilot station at 

the same time for pilot boarding without giving any entering sequence. 

b. Under strong wind and seas, the ship had to enter the port under the master's 

handling to pick up the pilot, when the pilot boat could not overcome the seas. 
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c. The long waiting times for the pilot increased risk. 

d. Many ships contravened the regulations preventing collision, and anchored within 

the traffic lanes. 

e. Fishing vessels in the vicinity of shipping routes were a great danger to 

navigators, especially during poor visibility. 

f. Navy ships having the priority to enter caused all merchant vessels immediately 

had to stop moving to wait for permission again, without any regard to danger. 

g. Communications between ship and shore were defective. 

h. There was no official anchorage designed for merchant ships. 

4.4 ANALYSIS OF RADAR OBSERVATION 

The investigation of traffic flow in the vicinity of Keelung was carried out, with a mobile 

radar from 6th to 9th of March 1992, by the Marine Transportation Department of 

Taiwan Ocean University acting in collaborating with this study. The author joined this 

investigation and obtained raw data for analysis. 

During the continuous period of 96 hours, there were 78 inbound ships arriving at 

Keelung comprising 38 ships entering the harbour directly, and 40 ships stopping to 

anchor. There were another 22 ships, which included some of the 40 anchoring ships 

mentioned, entering the harbour from the anchorage. Sixty-nine outbound ships were 

identified. Among the outbound tracks, only one was stopped outside the breakwater 

(Appendix E). Because the ship tracks were transferred from data which only included 

ship's bearing and distance from the observation point written down by hand, some data 

was incomplete and has been deleted. The ship numbers observed is, therefore, less than 

the average number of calling ships mentioned in para 3.2.2. 
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4.4.1 Traffic flow 

To analyse the traffic flow, a base line is established. The line crosses both the start 

point of the inbound lane and the end point of the outbound lane from the northern end 

of Yeh-liu Cape to Keelung Island, where it is 4.2 miles wide. The northern water of the 

base line was divided two 90-degree section, named NW, and NE respectively. From the 

radar observation, the proportion of the inbound ships and outbound ships passing 

through the NW section was 64.1% and 60.3% respectively; through the NE section was 

35.9% and 39.7% (Figure 4-1). The distribution of traffic flow from radar observation 

was very close with that from governmental statistic data5• 

FigUre 4-1 Distribution of ship directions 
Source: Author 

To evaluate the efficiency of the TSS, the base line is divided into 10 sections, section 

5 encompassed the inbound lane and section 8 encompassed the outbound lane. Among 
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the inbound shlps, except the ships directly entering the harbour, 35 anchoring shlps and 

three shlps from anchorage passed the base line (Figure 4-2). 

Figure 4-2 Distribution of ships passing the base line 
Source: Author 

There were 13.1 % of in bound ships passing the line within section 8 and 9, and 8. 8% 

of outbound ships passed within section 3, 4 and 5 (fable 4-7). That means those ships 

crossed the opposite traffic lane. All of them travelled from the NE sector or toward the 

NW sector. Another 23.7% of in bound ships and 51. S% of outbound ships passed the 

line within section 6 and 7 which is between both lanes. Those ships might encounter 

each other within the area between two lanes in a head-on meeting. It is also found that 

ships drifted at the pilot station hindering other ships' movement. Among the 38 ships 
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directly entering there were six ships that drifted to wait for the pilot more than 30 

minutes. One of them arrived at the pilot station then turned outward passing the base 

line and entering again. 

Table 4-7 Distribution of ships crossing base line 

SECTION 2 3 4 5 6 7 8 9 10 Total 

Directly entering ships 
Number 0 0 2 4 11 10 5 5 1 0 38 
Per cent 5.3 10.5 28.9 26.3 13.2 13.2 2.6 100 

Anchored ships 
Number 0 5 7 9 8 1 1 3 1 0 35 
Per cent 14.3 20.0 25.7 22.9 2.9 2 .9 8.5 2.9 100 

Entering from anchorage 
Number 0 0 2 0 0 1 0 0 0 0 3 
Per cent 66.7 33 .3 100 

TOTAL OF INBOUND SHIPS 
Number 0 5 11 13 19 12 6 8 2 0 76 
Per cent 6.6 14.5 17.1 25.0 15.8 7.9 10.5 2.6 100 

TOTAL OF OUTBOUND SHIPS 
Number 0 0 1 3 2 8 27 24 3 0 68 
Per cent 1.5 4.4 2.9 11.8 39.7 35.3 4.4 100 

Source: Author 

The ship speed analysed while ships were passing the base line is shown on Table 4-

8. It is found that the outbound ships have higher speed than the inbound ships. 

Among the inbound ships, the speed of the ships entering directly is higher than that 

of the ships to anchor. The anchoring ship has to stop the movement after passing the 

base line, but the ship directly entering keeps a slow speed to pick up the pilot and 

then increases speed to pass the breakwaters. 

4.4.2 Location of ship anchoring 

The figure 4-3 shows the location of 40 ships at anchor. Most of ships anchored at 
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the west area of the TSS, four ships within the inbound traffic lane, and some ships 

near the boundary of the lane. For avoiding risk of dragging to ground, they kept 

more than one mile off shore for safe distance. 

Table 4-8 Ship speed crossing the base line 

Directly Anchored Entering Total Total 
entering ships from in bound outbound 
ships anchorage ships ships 

Number 38 35 3 76 68 
Means 9.32 7.88 5.81 8.51 11.21 
St dev. 3.12 3.08 1.37 3.16 2.93 

Source: Author 
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Figure 4-3 Locations of ships dropping anchor 
Source: Author 
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4.5 FACTORS OF NA VIGA'RONAL RISK 

From the analysis of marine casualties, mariner opinions and radar observation, 

navigational risks in Keelung approaches emerged. Generally speaking, those risks could 

be attributed to three factors: geographical factor, human factor and environmental 

factor. 

4.5.1 Geographical factor 

The accident records in Keelung revealed many collision cases involving anchoring ships 

and fishing vessels. Keelung approaches, about five miles in width, is used by merchant 

ships and fishing vessels. The navigable water in this area is constrained. When 

designating a fairway for ships moving, a port authority also needs to consider providing 

sea room for ships anchoring in safety. The water depth in Keelung approaches is over 

40 metres in the outside anchorage, and deeper at northern area of the approaches. 

Except this area, there is no safe area in the vicinity of the port for anchorage. 

Therefore, without alternative, the TSS is designated at the east side of the approaches, 

and the width of traffic lanes is constrained. The west side is left for anchorage, although 

there is not an official anchorage and not very suitable for anchoring under adverse 

weather. 

In the recent years, following the increase in the number and size of merchant ships 

calling at Keelung, higher traffic density causes the movement of several ships 

simultaneously in the narrow channel, increasing collision risk. Meanwhile there has been 

an increase in the number of anchoring ships due to port facilities not being sufficient for 
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all arriving ships to berth directly. From radar observation, the number of anchoring 

ships was often about ten in that small anchorage. The presence of ships anchoring 

reduces the traditional margins of safety on turning areas, and increases the potential for 

accident. 

4.5.2 Human factor 

4.5.2.1 Violation of TSS regulations 

The area within the TSS and near breakwaters was consistently recognized as the most 

dangerous water at Keelung for navigation by all users in the questionnaire. There was 

no difference between the navigator and ex-master groups, and the mean score of the 

former was even higher than that of the latter. That indicated the risk in that area has not 

effectively improved since the TSS established. The purpose of establishing TSS is to 

simplify the patterns of traffic flow and then decrease the risk of the potential encounter 

leading to collision6
• But contravention of the Regulations for Prevention Collision at Sea 

(COLREGS) in Keelung: such as ships anchoring in the lanes causing collisions, fishing 

vessels congesting in the lanes to obstruct ship's movement, ships moving in the opposite 

lane, causes ships moving in the lanes still having to cope with encounters. 

Det Norske Veritas reports human navigation errors composed the largest percentage of 

causal factors in accidents involving Norwegian registered vessels during 1970-19787
• 

The most frequent error, with a 23.4% incidence rate, was violation of COLREGS. 

Other researches also found violation in TSS influenced navigational safetl·9
• These 

studies indicated the violation threatened the safety of ships complying with the TSS 
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regulation, and increased accident risk. Collision risk in Keelung has grown because of 

higher traffic density. 'The increasing encounter probability in traffic lanes causes 

dangerous situations. Radar observation revealed the contravention ships become a 

serious risk factor to navigation. The chief pilot in Keelung pointed out in the 

questionnaire: 

"The TSS has been established for two years, but many masters contravene 
the regulations for TSS, and the fishermen still work by the same means 
without any knowledge about the regulations. If they cannot be managed, 
the TSS functions will be reduced, and the accident cannot be prevented." 

4.5.2.2 Port operation defection 

From radar observation some ships linger in the traffic lanes for more than half an hour. 

'fhat is prohibited by the TSS regulation of Keelung port. There are two reasons for such 

lingering: one is waiting for pilots, the other is waiting permission from the signal station 

to enter the port. Without an explicit time for pilot boarding, or due to a navy ship 

having priority, the inbound ship probably faces drifting in the restricted area. When 

inbound ships converge simultaneously at the pilot station collision risk increases. One 

collision case in 1987, causing great damage, involved two ships waiting for pilots. 

Another factor is optional pilotage permitting inbound ships to pass through the main 

channel without a pilot. Most masters are not familiar with the port and local 

environmental conditions. They may not recognize the potential risk in Keelung. For 

ships entering the port, the manoeuvring in the narrow channel between breakwaters is 

very dangerous without pilots. The risk of contact with the breakwaters threatens all 
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calling ships. In 1991 one large container ship colliding with the inner breakwater was 

under master's handling. 

4.5.3 Environmental factors 

Ships in transit in the coastal area are exposed to the variable effects of tidal current, 

reduced visibility, wind and sea states. These factors cause serious navigational risk. 

According to the users' view in questionnaire, poor visibility, strong wind and strong 

current are the major risk factors to navigation in the approaches. 

4.5.3.1 Restricted visibility 

An investigation into navigational safety near the Taiwanese coast in 1989 found poor 

visibility was the major risk factor10
• 'Jhe concern about the risk by poor visibility is 

related to the higher risk perception in spring, the foggy and rainy season in Keelung. 

Collisions occurred consequently due to the encounter of two or more ships which were 

clearly unable to take effective action in the time available. Within the confined sea 

room, it would be difficult for the ship to take proper and effective action to avoid 

collision timely under restricted visibility. An analysis of marine accidents in London and 

Mersey ports ( 1968-1970) indicated risk of incident was between four and ten times 

higher in fog11 • Restricted visibility was reportedly a factor some 35% of sea collisions 

world-wide. Cockcroft commented that the risk of collision is greater for encounters 

between vessels proceeding in opposite directions in poor visibility12
• Therefore the ship 

of violating TSS regulation in Keelung wiU increase collision risk during poor visibility. 

That is confrrmed in the collision records in Keelung. 
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The respondents of questionnaire also agreed a higher risk at night when human 

judgement is affected by darkness. At night identifying other ship movements by sight 

is more difficult than by day. According to Cockcroft's study collisions by night are 

twice as frequent as those by day. Pilots have gained their expertise with experience and 

local knowledge in navigating the vessel through the area so that their comments on risk 

at night were lower than navigators. 

4.5.3.2 Strong wind and current 

In winter the strong NE monsoon wind in Keelung increase the risk to ship grounding 

due to wind direction toward shore. It was found in grounding records that the 

probability of grounding was higher under strong wind. Radar observation revealed 

anchoring ships kept one mile distance from the shore to reduce the risk from wind 

effect. That decreases the availability of the small anchorage and increases ship density 

leading to collision risk. Cross currents in the approaches may also cause the ship to drift 

off the course line. 

The influence of wind and current on manoeuvring is a recognized accident causal factor. 

Large vessels, especially container ships when in light condition are less manoeuvrable 

in strong winds and currents13• A vessel which is stopped will tend to lie with the wind 

approximately abeam, but may drift as much as 60 degrees off the downwind direction14
• 

Movement of unassisted vessels is generally controlled by the action of propellers and 

rudders. The higher the speed, the more rudder effect produced. Allowing for the 

influence of wind and current at low ship speeds is often difficult. Through analysis of 

the questionnaire, it was found that navigators on large container ships and bulk carriers 
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had higher risk perception to strong wind. Pilots also recognized that strong wind within 

the TSS increases risk. The result could be related with the pilot's work environment. 

When an inbound ship moves in the vicinity of the pilot station, the speed has been 

changed to manoeuvring speed and reduced to under five knots for pilot boarding in 

comply with the port regulation. Manoeuvring the ship at low speed in restricted channels 

tends to be more affected by wind and current. This risk will increase when more large 

container ships call at Keelung. 

4.6 CONCLUSIONS 

From the responses and comments in questionnaire, mariners pointed out their 

perceptions regarding risk in Keelung. The most dangerous area in the approaches is 

within TSS and near the breakwaters. During spring and winter, and at night, all mariner 

had higher risk perception. The most important factors to affect navigational safety were 

poor visibility, strong winds and currents, and fishing vessels congesting. From radar 

observation, many ships navigated in the opposite traffic lane, and anchored in the lanes. 

Combining these results with accident records, the factors increase navigation risks are: 

higher traffic density being constrained by narrow navigable water, ships violating TSS 

regulations, ships drifting near pilot station and main channel, poor visibility in spring, 

strong NE monsoon in winter, and strong cross current. 
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CHAPTER 5 

MEmODS 6F RISK REDUCTION 

5.1 INTRODUCTION 

From the preceding chapters, factors of risks to navigation at Keelung approaches are 

identified Keelung port authority should recognize that their efforts to improve safety run 

short of mariner requirements. The trend of the shipping market shows growth in large 

container vessel services. If the risks at Keelung are not reduced, the possibility of 

marine accident may increase as large container ships are at high risk. The port authority 

holds the key to fmding a solution to the problem, and needs to improve on port 

operation. This study is concerned not only with identifying existent navigational risks, 

but also means of reducing the risks. Measures for improving safety adopted elsewhere 

in the world, and mariner opinions, are good references for this study. 

5.2 LITERATURE REVIEW 

Historically, the responsibility for navigational safety has largely rested with ship owners. 

Over the past twenty years accidental spillage of oil, due to marine traffic accidents, has 

often caused great damage incurring social costs. Increasingly the burden of 

responsibility has shifted towards coastal states and port authorities to establish effective 

76 



Chapter 5 

systems, aimed at producing acceptable levels of vessel safety and incident prevention 

within their areas. In addition to visual and electronic navigational aids, traffic separation 

schemes (TSS) and vessel traffic services (VTS) have been established throughout the 

world to assist safe navigation. 

5.2.1 Effectiveness of TSS 

High traffic density demands an organised system of routeing. TSS is the most useful 

routeing system. In addition to providing a one way traffic route for ships and removing 

head-on encounter, TSS also separate traffic flow from dangerous water in areas of 

convergence. For accurate position fixing within a scheme, there should be adequate 

marking by buoys. The statistics for collisions and groundings show a gradual decrease 

after establishment of a TSS, and there has been a considerable decrease of meeting 

collisions in the separation areas. The decrease can be attributed to the effects of TSS12• 

But the effectiveness of TSS can be reduced by 'rogue' vessels that fail to comply with 

the scheme. Where traffic separation is not in force, the number of meeting situations 

may be expected to be of the order of three times the number of overtaking situations. 

It has long been appreciated that narrow angle encounters between ships on opposite or 

nearly opposite courses present the greatest collision risk. Therefore, radar surveillance 

systems have been introduced to monitor traffic and improved the traffic discipline. 

"A Traffic Separation Scheme, without surveillance and without a 
coordinating information service, was inadequate for the dense and complex 
maritime traffic problems." 
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5.2.2 Effectiveness of VTS 

In harbour approaches a vessel may experience high traffic density within close proximity 

to shallow water and other obstructions. Improved information decreases risk. Passive 

aids, such as visual aids and TSS, provide only one part of the information needed by 

the navigator, and do not provide mariners with full knowledge of the ever-changing 

interactions between vessels4
• When passive aids cannot effectively reduce navigational 

risk, assistance given from the shore providing interactive dynamic information is of 

greater benefit to the navigator. VTS is such an interactive navigational aid. 

The functions of a modem VTS are: (a) surveillance; (b) radio communications; (c) 

identification (d) information; (e) monitoring; and (f) obtaining general information such 

as the position of navigation marks. It often includes some means of area surveillance, 

a traffic separation scheme, perhaps a vessel movement reporting scheme, a traffic 

centre, and, of necessity, some method of enforcement that can increase a specific level 

of safety and traffic efficiency. Hence, TSS and visual aids to navigation may be 

elements of, but do not constitute, VTS. The addition of radar surveillance provides a 

means to monitor compliance with and effectiveness of any traffic scheme. The shore­

based radar system can identify the ships and survey the traffic situation to give a useful 

tactical warning about ships apparently contravening the separation scheme, about the 

progress ofhampered shipping, about concentration of shipping and about other transient 

hazards. 

Since the shore control centre has VHF and shore based radar, even in the most 

restricted modes of operation; these can be used for obtaining estimates of the future 
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movements of vessels. Further, the accurate position of a ship can be sufficiently 

determined so that advice·can be given to the ship from the shore in an emergency. The 

Marine Research Institute of Netherlands concluded that in areas with a busy and 

complicated traffic pattern, intensive offshore activities involving noxious or dangerous 

cargoes, navigational difficulties, and environmental sensitivity, the implementation of 

a YTS should be seriously considered5• 

Figures regarding the effect of the Channel Navigation Information Service (CNIS), one 

kind of VTS at the Dover Strait, showed that since the implementation of this service, 

the number of rogues contravening the TSS in the Dover Strait had decreased from 

approximately 40 per day in 1972 to approximately 6 per day in 19826
• Captain 

Cockcroft analyzed the collisions in the Dover Strait during the period 1957-19817
: 

"The incidence of collisions between vessels proceeding in opposite 
directions has been reduced to approximately 10% of the incidence before 
TSS was introduced in this area; There have been no collisions between 
vessels proceeding in opposite directions within the traffic lanes since 1972 
when the CNIS into operation." 

The proven value of YTS in increasing safety factor in sensitive areas was identified by 

two research projects: Canadian Vessel Traffic Services and European Co-operation on 

Science and Technology (COSTc301), assessing the effectiveness of existing VTS systems 

in Canada and Europe respectively8
• The Canadian Coast Guard undertook their project 

from 1977 to 1984. The success of VTS in reducing marine risk was shown to be 

widespread. For complex traffic situations in confined waters, the YTS effectiveness by 

bridge-to-shore broadcasting system with restriction regulation in reducing accidents was 

35%. The system was more effective with radar surveillance and automated analysis. The 
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maximum effectiveness for the most sophisticated VTS system when considering 

collisions, rammings and groundings was assumed to be 70% . The VTS effectiveness 

percentages determined are shown in Table 5-1. 

Table 5-1 VTS effectiveness percentages 

Water Attributes 

Open Waters Confined Waters 

VTS System 
Simple Complex Simple Complex 
Traffic Traffic Traffic Traffic 
Patterns Patterns Patterns Patterns 

Bridge-to-Bridge 12 10 15 10 
with TSSIMRR 35 25 20 15 

Ship-to-Shore 35 20 40 30 
with TSSIMRR 40 30 45 35 

Ship-to-Shore 
plus basic Radar Surveillance 45 50 45 50 
with TSSIMRR 55 55 55 65 

Ship-to-shore 
plus basic Radar Surveillance 
plus Automated Analysis 55 65 50 55 
with TSSIMRR 65 70 60 70 

Remark: TSS (Traffic Separation Schemes) are not viable in confined waters. 
MRR (Movement Restriction Regulation) is assumed to have a significant effect in confined 
water areas only. 

Source: Vessel Traffic Services (Canadian Coast Guard) 

COST-301 was undertaken by the Council of the European Communities co-operating 

during the four-year period, 1983-1986, in an effort to reduce collisions and groundings 

in European waters9
. From the experimental results, the summary of VTS effects on 

collision and stranding avoidance is as follows: 

a. With VTS, ship-ship communications increased dramatically, particularly when 

other ships had been identified by name. 
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b. A VTS was considered helpful in clarifying the intentions of other ships and in 

reducing ship-ship collision risks. 

c. Identification of ships was an important factor. Not only did it improve the speed 

and effectiveness of communications but it also assisted in enforcement of rules. 

d. A VTS may be able to provide advance warning of local hazards, and perhaps 

advise the navigator of the ship on a course of action to follow. 

e. For those ships with cross-current, the effect of VTS was significantly to reduce 

cross-track deviation from the centre-line. 

f. For ships in poor visibility, VTS had the effect of reducing cross-track error. 

g. The levels of effectiveness were derived and given in Table 5-2. 

Table 5-2 VTS effectiveness on reduction of casualties 

% Reduction in Casualties 
vrs Level 

Collisions Strandings 

VTS with VHF communications 30 0 

VTS with VHF communication and a single radar installation 
with automatic processing 40 40 

VTS with VHF communications and five radar stations with 
automatic processing 40 40 

Source: COST 301 Final Report 

5.3 MARINER OPINIONS FOR RISK REDUCTION 

In the questionnaire mentioned in Chapter 4, the part C investigated what extent certain 

measures would improve marine safety at Keelung port. Meanwhile, the suitability of the 

TSS is evaluated from the responses. 
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5.3.1 Methods contributing to safety improvement 

In question Cl, eight options offering improved safety, aimed directly atthe risk factors, 

were indicated in the questionnaire as follows: 

a. Institution of speed limits in traffic lanes 

b. Improved provision of weather infonnation 

c. Improved control over fishennen in traffic lanes 

d. Improved control of ship sequence at pilot station 

e. Stricter enforcement of ship safety regulations 

f. Upgraded fixed and floating aids 

g. Upgraded shore based electronic navigational aids 

h. Provision of Vessel Traffic Services. 

According to the mean responses of navigators, any of these options could reduce risks 

and achieve safety improvement. Among the options, they emphasised the safety 

improvement by control of ship sequence at the pilot station, provision of vessel traffic 

services, improvement by control over fishermen in traffic lanes, and enforcement of ship 

safety regulations would be significant. Although individual rankings varied nearly all 

respondents placed these four options at the top of their choice of methods. Provision of 

VTS was received with particular approval by the junior group. Beyond the above four 

options, upgraded visual and electronic navigational aids were identified as second 

priorities (Appendix C-5). 

Pilots gave first priority to the same options, but provision of VTS received only 

moderate approval with a large standard deviation, revealing inconsistency between the 
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pilot opinions. The remaining four options were rated relatively lowly, although the ex-

master group showed more interest in improved navigational aids than other groups. 

The K-W test was applied to each of the options between the occupation groups. No 

significant difference was found in the four priority options, the M-W test indicating all 

mariners were in the same distribution. Some significant differences were found in the 

other options, because pilots marked lower scores. By both tests to ship type and size 

groups, only the method of sequence control at pilot station was identified as having 

special significance to the container group, who showed greater desire than others to 

improve safety by this method (Table 5-3, 5-4). Additional to the above methods, there 

was a strong demand to equip certain buoys with racons to mark the TSS. 

Table 5-3 The significant level by K-W test on improving safety 

ITEM Occupation Ship type Ship size 
group group group 

I Cl. OPTIONS FOR RISK REDUCTION I 
Instirution of speed limits in traffic lanes 0.0010 0.4822 0.8013 

Improved provision of weather information 0.0030 0.4819 0.3687 

Improved control over fishermen in traffic lanes 0.4608 0.2358 0 .2706 

Improved control of ship sequence at pilot station 0.0503 0.0220 0.9332 

Stricter enforcement of ship safety regulations 0.4222 0 .6230 0.4950 

Upgraded fixed and floating aids 0.0004 0.5752 0.9704 

Upgraded shore based electronic navigational aids 0.0025 0.5819 0.8581 

Provision of Vessel Traffic Services 0.1131 0.4026 0 .1981 

Source: Author 

83 



Chapter 5 

Table 5-4 The significant level by M-W test on improving safety 

Occupation group SIJ S I P S / M J/P J /M P IM 

Speed limits in traffic lanes 0.4060 0.0003 0.4195 0.0001 0.8643 0.0009 
Provision of weather information 0.4346 0.0019 0.4901 0.0002 0.9406 0.0005 
Upgrade visual navigational aids 0.2533 0.0016 0.1195 0.0001 0.4393 0.0001 
Upgrade shore based electronic aids 0.2565 0.0155 0.0250 0.0026 0.1521 0.0005 

Ship type group C/G C/B C/T GIB G / T B IT 

Ship sequence at pilot station 0.0471 0.5362 0.0124 0.2439 0.5526 0.0632 

Group symbol: S- Senior J- Junior P- Pilot M- Ex-master 
C- Container G- General cargo B- Bulk T- Tanker 

Source: Author 

5.3.2 Modification to TSS 

In Question C2, navigators and pilots, who were using the TSS , were asked to express 

their views on how the TSS should be modified. Addressing the length, width, location 

of pilot station and direction, navigators agreed a need to modify the location of pilot 

station, but were satisfied regarding the other three items. Pilots were satisfied with the 

existing TSS configuration (Appendix C-6). Through K-W test on the responses of these 

three groups, significant differences were found from responses to pilot station location 

(Table 5-5). Most pilots' scores were lower than navigators' scores, especially in the 

junior group. More than 50% of respondents in the junior groups sought to modify the 

location. No significant differences were found from ship type groups and ship size 

groups on modification of the location of pilot station (Table 5-6). But significant 

differences were found from ship type groups. The general cargo group had a greater 

desire to modify the length of traffic lanes, and the container ships had a greater desire 

to modify the width of traffic lanes. 
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Table 5-5 The significance level by K-W test on modification to TSS 

ITEM Occupation Ship type Ship size 
group group group 

I C2. MODIFICATION TO TRAFFIC SEPARATION SCHEME I 
Length of traffic lanes 0 .1702 0.0157 0.2802 

Width of traffic lanes 0.2653 0.0346 0.2872 

Location of pilot station 0.0041 0.2072 0.2632 

Direction of traffic lanes 0.2173 0.0584 0.0511 

Table 5-6 The significance level by M-W test on modification to TSS 

Occupation group S/J S I P J I p 

Location of pilot station 0.0781 0.0333 0.0007 

Ship type group CIG CIB C IT G I B G I T B I T 

Length of traffic lanes 0.0024 0.9657 0.1814 0.0194 0.4386 0.3078 
Width of traffic lanes 0.1236 0.3305 0.0094 0.5104 0.1550 0.1865 

Group symbol: S- Senior J- Junior P- Pilot M- Ex-master 
C- Container G- General cargo B- Bulk T- Tanker 

Source: Author 

5.4 SOLUTIONS FOR RISK REDUCTION 

The above options considered by mariners are directly related to the risks in Keelung 

mentioned in para 4.5 . The four priority options identified relate to control of ships 

complying with TSS regulations. Visual navigational aids would further reduce human 

errors and environmental effects. Shifting pilot station to a more suitable location would 

improve available sea room for ships. 
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5.4.1 &tablishment of VTS 

Human error, including ships contravening TSS regulations and drifting simultaneously 

at the pilot station, is the most serious problem in Keelung. No system or aid to 

navigation that can prevent human error. But safety can be enhanced by suitable traffic 

control within the lanes, and the possibility of mistake or confusion can also be reduced. 

An efficient VTS would provide such control. The key factors of an efficient VTS, now 

existing in many major water areas in the world, must by definition be communication 

and surveillance. In Keelung, the communication in reporting ship's ETA to the signal 

station exists, but so far radar surveillance is not provided. 

In addition to the installation of shore-based radar, the association of communication and 

surveillance to identify ship movements also needs to be made at Keelung. Traffic 

regulation cannot be achieved solely by prescribing different lanes for traffic proceeding 

in the opposite directions, but also requires identification. With ship's identity and 

position, contravention can be identified and stopped, and the problem of fishing vessels 

working in the lanes to obstruct ship movement can be reduced. Due to development of 

computer techniques, processors can precisely monitor and identify ship's movement, 

once the ship's position is reported. 

Simultaneously, traffic control in Keelung could include ship's sequence in the lanes. 

Collision is always related to the probability of ships encounter. Restricted by the 

navigable channel, a number of potential encounters become actual encounters leading 

to collisions. The actual encounter by overtaking situation in TSS is increased10
• The 

overtaking situation within Keelung TSS must become an actual encounter, because a 
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ship cannot maintain a safe distance to the· overtaken ship within the narrow traffic lane, 

700 metres (0.38 miles), except by moving outside the lane with risk of colliding with 

opposite or anchored ships. It is necessary to prohibit overtaking in the lanes. The best 

method is to control ships in sequence maintaining a safe distance. With control, the risk 

of two ships congesting at pilot station could be reduced. Determination of safe distances, 

and safe waiting areas, can be made by experiment. 

With the assistance of VTS, human errors may be detected and timely remedial action 

taken 11 • According to the definition of the Canadian Coast Guard report, Keelung 

approaches is a confined water with simple traffic patterns. If VTS with shore-based 

radar plus automatic processing were established, and TSS regulations enforced 

effectively, the opportunity for undetected failure to comply with regulations could be 

minimised, and navigational risk could be reduced by 60%. 

5.4.2 Installation of visual aids 

In Keelung approaches, there is an apparent lack of aids to navigation in the existing 

traffic operation. To install buoys marking the entrance and exit of the TSS would assist 

navigation accuracy in the lanes, especially under poor visibility, and make the scheme 

more effective. Contravention of TSS regulations may be either deliberate or 

accidental 12
• Although both would be remedied by radar surveillance, the chance of 

accidental contravention could be prevented by provision of buoys. 

The nature of harbour approach navigation differs from that in open seas, and is 

characterised by the necessity for an immediate reaction to avoid dangers. There is little 
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time for navigators to fix position when having to cope with other urgent events, such 

as pilot communication and collision avoidance. When the demands of navigation and 

collision avoidance are in conflict, other techniques are required to ensure safe 

navigation. The use of the buoys to identify traffic lanes is one such technique. A U .S. 

Coast Guard project indicated that turn point buoys significantly improved the accuracy 

of cross track position when ships turned into a straight channel13
• 

Estimation of ship's position using traffic buoys can be accurate and reliable, and reduce 

navigational errors that occur when estimating position from landmarks, under conditions 

of strong wind or cross current. Danger can be immediately determined, and a safe 

passage follows with complete confidence'\ as evidenced by COST-301. 

Another buoy installed at An-tou-pao shoal, as a cardinal buoy placed between the danger 

and the outbound traffic lane, could warn ships of the risk of grounding. The shoal is 0. 7 

miles off the outbound traffic lane, and the maximum E-going stream in ebb tide is 5.5 

knots in the vicinity. Adverse weather affecting navigational safety can not be prevented, 

but its influence can be reduced by improved navigation aids15
. 

5.4.3. Modification of pilot station 

A great number of respondents in the questionnaire indicated that the pilot station at 

Keelung was too near the breakwaters, giving insufficient sea room for a ship to drift 

safely in bad weather with wind and current towards shore. Before designating an 

optimal position for the pilot station, the required sea room and the configuration of the 

TSS should be considered. 
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Assuming that the central line of the traffic lane is the track intended by navigators, ship 

position can rarely be maintained on the course line due to wind and current. To avoid 

the ship deviating across the lane boundary, toward dangerous areas, adjustments keeping 

the ship in the centre line have to be executed. Nevertheless, the compensatory actions 

are seldom perfect and require continuous adjustment. Therefore ship positions oscillate 

and the actual path seldom coincides with the central line. At the Keelung pilot station, 

the track of a ship moving with low speed has greater deviations than that with high 

speed under cross current. Therefore the traffic lane near the pilot station has to be wide 

enough to cater for oscillation in ship's track under local environmental conditions. 

Whether the inbound traffic lane is wide enough, or the pilot station needs to shift, can 

be evaluated through experiment. 

5.4.4 Compulsory pilotage 

Compulsory pilotage is commonplace around the world, but Keelung is.one of a minority 

of ports providing optional pilotage. Shiphandling is constrained not only by the ship's 

inherent manoeuvring perfonnance but also by the skill and experience of operators. Pilot 

experience can make up for a master's lack, reducing risk. As a matter of fact, the pilot 

enhances not only the safe conduct of the vessel he is piloting, but also the safety and 

protection of other vessels navigating or moored in the area. In the public interest and 

in the interests of port authority and port users, Keelung port should make pilotage 

compulsory for certain ships entering and leaving the port. 

5.5 SUMMARY 

Through mariner opinions on the improvement of safety at the Keelung approaches, the 
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need to establish a VTS with shore-based radar as surveillance to, control the traffic flow 

within TSS, and the sequence of entrance at the pilot station is identified as an urgent 

requirement by mariners. Buoys should also be established to delineate the TSS. 

Compulsory pilotage for entering and leaving the port must be taken into account for 

navigation safety. Although respondents' experience give validity to their opinions, these 

methods and navigational efficiency from them should be further investigated through 

experiment. Simultaneously, location of pilot station and safe distance between ships in 

the lanes should also be evaluated. 
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CHAPTER 6 

SIMULATION EXPERIMENTS 

6.1 INTRODUCTION 

The experiments were designed to assess the existing traffic operation, and test the use 

of visual aids and some VTS functions in reducing accidents, in Keelung approaches 

under chosen conditions. The purposes of the experiments were: 

1. to establish the extent to which provision of additional visual aids may help 

improve lane discipline; 

2. to investigate whether the configuration of traffic lanes provides enough sea room 

to maintain a safe distance from other ships during adverse weather; 

3. to establish the potential of movement information and sequence control as means 

of reducing close quarter situations near the pilot station; 

4. to evaluate the role of pilotage and to observe on the pilot station location. 

6.2 SIMULATOR FOR EXPERIMENTS 

Simulation is a powerful analysis tool for studying system dynamics and solving system 

problems where it would be impossible or impractical to study the real situation. 

Simulation involves some kind of model or simplified representation. Payne defined1
: 
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"Simulation is the process of designing a model of a real system and 
conducting experiments with this model for the purpose either of 
understanding the behaviour of the system or of evaluating various 
strategies for the operation of the system." 

A model can be developed to represent an object, system, or concept. As such it can 

substitute in whole or part for a real situation2
• Experimentation using models can 

eliminate many of variables that create difficulty in obtaining good match under real 

conditions. A marine simulator is a compound of models representing the systems and 

environment. Simulation provides advantages over other techniques in areas of cost, 

safety and repeatability. Experimentation using simulated traffic flow gives the ability to 

examine navigational problems. University of Plymouth and Taiwan Ocean University 

provided a unique opportunity for simulation experiment in support of this study. 

6.2.1 Experiments by ship simulator 

Maritime industries have generally accepted that the efficiency of training and research 

by means of simulators is superior to all other known methods. With a simulator, 

dangerous situations can be generated in order to observe the mariner's response, and if 

a collision results there is no damage to the ship or risk to life and oil pollution. To 

achieve the purpose of training or research, different situations, operational scenarios, 

fault or emergency conditions, and encounter situations can be repeated many times in 

order to build up a statistically significant sample of responses. The validity of simulator 

in research has been confirmed by the results of Curtis and Barratt's study3: 

"The results (of their validation investigation) gave no reason to doubt the 
validity of radar simulator data; mariners at sea can be expected to respond 
in the same way as the subjects in the tests (on the simulator)." 
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With a real-time simulator the ship manoeuvring simulations can be simulated under real­

time condition in a real-looking environment. In order to give navigators an.actual feeling 

of attendance on board, a ship simulator will4
: 

1. display the view from the bridge 

2. model realistically the dynamic behaviour of the ship 

3. provide a simulated radar and instrumentation package. 

In recent years, a ship simulator has comprised five sections (Figure 6-1), namely: bridge 

section, visual display section, computer section, control and monitoring section, and 

recording section5• The simulator uses computer-generated imagery to provide a visual 

scene consisting of own ship's bow, land, other ships, and simple presentations of aids 

for day and lights for night. The manoeuvring behaviour of the own ship is accurately 

and reliably governed by a fairly complex computer mathematical model so that the 

ship's manoeuvring characteristic is correct giving users a real ship feeling. The ship 

models combine sophisticated hydronamics with the capability for a variety of 

environmental effects, such as tidal stream and wind effects. Varying conditions of 

visibility may also be simulated. 

6.2.2 Simulator in the University of Plymouth 

In the University of Plymouth, the marine radar and navigation simulator Racal MRNS 

9000, called the UP simulator in this study, is manufactured by Racal Simulation 

Limited. The UP simulator is fitted with full radar facilities comprising radar and 

separate ARPA, and a wide range of navigational equipment6
• Helm and engine 

telegraph controls are used for manual input of heading and speed changes. The operator 
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can directly control over the speed and the heading of the ship. The design of this real 

time simulator is based on a night-time presentation. The visual scene covers 135 degrees 

horizontal. 
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Figure 6-1 Schematic of a ship simulator 
Source: Author 
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6.2.3 Simulator in Taiwan Ocean University 

The majority of the experiments in this study were run on a ship handling simulator at 

Taiwan 0cean University, called the NTOU simulator. The NTOU simulator was 

manufactured by Krupp Atlas Elektronik GMBH in 1985. This simulator, also a real time 

simulator, has a full-size bridge compartment which is mounted on a motion base to 

simulate ships' sea state motion providing a high level of realism to the operators 

undergoing the exercise7
• A six-section screen is fixed around the bridge compartment, 

providing a visual scene with 135-degree horizontal field of view and the capability for 

a very complex visual scene, The significant difference between the UP and NTOU 

simulators is the kind of visual display. The visual system of the NTOU simulator 

generates a coloured picture of the environment with appropriate display of day-time 

scenes and night-time scenes by six projectors. 

6.3 DESCRIYfiONS OF EXPERIMENTS 

Generally, the first stage of an assessment with an experiment is necessary to test the 

model which represents the existing real system. The second stage is to change the model 

to represent the proposed real system. The purpose of the experiments then is to measure 

the effect of this on the response and compare the difference between the two models8
• 

6.3.1 Criteria of scenario design 

In this study there were two simulation experiments comprising an inbound experiment 
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and an outbound experiment. Each subject for either experiment should operate two 

exercises, named Ex-A and Ex-Bin this study. In Ex-A the scenario of traffic operation 

system was simulated to be the nearest approach possible to that currently existing at 

Keelung. In Ex•B buoys and ship control with different environmental conditions were 

added. Difficulty in bringing together voluntary bridge teams, including a master, mate 

and a quarter master, for the experiment led to each exercise being conducted solely by 

a master. 

The data base of Keelung harbour has been built in the NTOU simulator. The coast line 

on both visual screen and radar display presents a true situation. There is no data base 

of Keelung harbour built in the UP simulator, and it is impossible to built the data base 

due to problems of obtaining the data source. Instead the data base of Cromarty Firth in 

Scotland was partially rebuilt and set up in the UP simulator to model Keelung 

approaches. A chart (Figure 6-2) encompassing this area was redrawn, and TSS as in 

Keelung approaches was added to the chart for the experiments using the UP simulator. 

The current indications were also converted onto this chart. 

The own ship used in the UP simulator for this study was a large container ship, the ship 

type with higher risk in Keelung, with displacement 50,100 tonnes, Unfortunately, 

without the same ship model in the NTOU simulator, the biggest container ship model 

with displacement 32,000 tons (32,514 tonnes) was used {Table 6-1). The details of two 

ship models are shown at Appendix-F. The experiment results by the different ship 

models required comparison. 

97 



\0 
00 

5' 4" ss· 

;~o~"· 
\ n, 

15, 

12, 
1., 

12, 

t:, 

11, 

Figure 6-2 The chart for UP simulator experiments 

16 

,/ 

,/""'' 

37' 

Source: Author 



Table 6-1 Own Ship Particulars 

Item NTOU simulator UP simulator 

Type Container Container 
Length (LBP) 202.4 metres 212 metres 
Beam 32.2 metres -
Draft 8.2 m /8.4 m 12.2 m /12.2 m 
Displacement 32,000 tons 50,100 tonnes 
Maximum speed 24.4 knots 23 knots 
Maximum RPM 125 120 

Source: Simulator MRNS-9000 Operator's Manual , 
and Simulator SFS/NTC System Description. 

6.3.1.1 Ship routes in experiments 

Chapter 6 

The study was concentrated on the TSS and adjacent waters to examine ship manoeuvre 

and usage of sea room. The own ship in the inbound experiment started from the centre 

of the NE sector and ended in the vicinity of the pilot station. The ship in the outbound 

experiment started from the outer harbour, and went away through the centre of the NW 

sector. From radar observation, most ships contravening TSS regulations took these 

routes. As soon as each experiment started, the subject was free to choose his course and 

speed (Figure 6-3, 6-4). 

Collision is the major type of accident occurring in the Keelung approaches. One type 

of potential encounter in these experiments involved two threat ships, the own ship and 

another target ship. The participant might take avoiding action by altering own ship's 

course and/or speed. The target ship in each experiments was a container ship. The 

initial scenarios for the validation study were programmed so that the initial speed and 

locations would be as similar as possible to those experienced in the live situation. 
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1. Inbound experiment 

The own ship started from Lat 25•13.5'N Long 121•46.l'E, two miles to the NE of the 

entrance of inbound traffic lane, with 240'(T) initial course and 12-knot initial speed. 

When the ship arrived at the pilot station, ship speed should reduce to under five knots 

ready for picking up the pilot. Total running distance was about four miles. The target 

ship, two miles ahead of the own ship, entered the traffic lane with seven knots speed. 

The own ship was a give-way ship, and the target ship was a privilege ship. When the 

target ship arrived the pilot station, she would stop engines for ten minutes to pick up 

the pilot, and then move toward the harbour. 

2. Outbound experiment 

The own ship started from the outer harbour at usual the pilot disembarkation zone, 0. 7 

miles inside breakwaters, with 5-knot initial speed and 348•(T) initial course. The ship 

passed through the main channel without pilot assistance. The destination was at three 

miles NW off the exit of outbound traffic lane, but the exercise ended when the ship left 

the traffic lane without further danger. Total running distance by the ship was also about 

four miles. The target ship, an inbound ship stopping at the pilot station, was ready to 

enter the harbour, after own ship had clear the main channel. 

6.3.1.2 Environmental conditions 

In this study, Ex-A and Ex-B were given different environmental conditions for 

comparison of weather effects. The wind and visibility in Ex-A were in normal 

condition, NE wind direction with force 10.7 m/sec and good visibility. In Ex-B a bad 
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weather conditions were designed with NE and 17.1 m/sec wind, and 2-mile visibility. 

The wind and visibility design depended on consistency with casualty data. Experiments 

carried out by the UP simulator were in night-time scenario, and by the NTOU simulator 

were either day-time or nighHime conditions. 

Both exercises kept the same tidal stream conditions: SE with 2.5-knot stream at the 

adjacent water of the entrance and exit of traffic lanes, SE with 1-knot stream near the 

pilot station, no tidal stream in the harbour. This stream design is often a normal 

condition of ebb tide in Keelung approaches9
• The difference between the exercises on 

current was that no current information was provided to subjects in Ex-A, and 

information was provided in Ex-B. 

6.3.1.3 Aids to Navigation 

In Ex-A navigational aids were kept as at present. Two kinds of aids were additionally 

arranged in Ex-B. First, an entrance buoy was positioned at the start point of the east 

boundary of the inbound traffic lane for the inbound experiment; An exit buoy was 

positioned at the end point of the western boundary of the outbound traffic lane, and 

another buoy at the end of An-tou-pao shoal for the outbound experiment. All buoys 

were fixed with lights, illustrated in Figure 6-3, 6-4. To enhance the buoys echoes on 

radar screen, a racon was mounted on each traffic buoy. 

Secondly, traffic information and control of movement sequence was provided. Before 

the beginning of the exercise, the movement of target ship including course, speed 
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turning point and her actions was notified to subjects. Meanwhile, the own ship in the 

inbound experiment was advised to keep a safe distance from the target ship, which was 

to be first to pick up the pilot. 

6.3.2 Data collected from experiments 

Two sorts of data were collected from the experiments: one relating to subjects' 

intentions, the other to results of their actions. Regarding the former a form of 

questionnaire was used. The latter was extracted from ship tracks. Before a mariner 

handles a ship to arrive at a defined point or a particular situation, he has to judge what 

heading or speed is best. Sometimes the result of his actions is quite different from his 

intention because external influences are too complicated to predict. By analysing 

mariners' intentions in the experiments, their concepts and perceptions to safety can be 

judged. Comparing their intentions with the results, the external effects can be assessed. 

6.3.2.1 Subject perception 

Expressions in quantitative terms of marine traffic situations have been used by 

researchers to analyse navigational risk10
• The questionnaire is one method by which 

human perception can be quantified. Any change of the existing situation should consider 

navigators' perceptions. Subjects completed the questionnaire after the experiment. By 

comparing response to Ex-A with Ex-B, findings specific to improvement of safety at 

Keelung approaches were deduced. The elements of the questionnaire, shown in 

Appendix G and Appendix H, were: 
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l. participant's personal background; 

2. assessment of the effectiveness of the designed buoys on identification of 

the traffic lanes; 

3. analysis of wind effect and current effect to ship manoeuvring; 

4. analysis of collision risk by the designed potential encounter; 

5. assessment of the effectiveness of sequence control at pilot station in the 

inbound experiment; assessment of the effectiveness of the designed buoy 

at An-tou-pao shoal for reduction of grounding risk in the outbound 

experiment; 

6. analysis of contact risk at breakwaters. 

6.3.2.2 Data from simulator 

During experiments own ship data, including heading, rudder angle and speed, were 

recorded at one minute intervals from the UP simulator's monitor, and at half minute 

intervals from the NTOU simulator. Additionally, an X-Y plot track record was 

maintained. 'Fhe raw data of ship track, the computer-recorded position of the ship 

centre, were primary data for this research. The tracks were converted into X, Y 

coordinates and the following details computed: 

1. CPA, TCPA and relative bearing to the target ship; 

2. distance to a defined point when passing a defined base line. 

6.3.3 Statistical methods for analysis 

No two mariners are identical, and as a consequence each has his own preferred course 
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of action in any particular situation11 • The navigation of a ship is an intensely personal 

affair with every mariner having his concept of safety. The performance of one subject 

generates a single result in the experiment. Repeating runs by different subjects of simple 

procedure were treated as independent sample values12
• The results of the experiments 

by questionnaire and ship track were divided into three groups depending on scenario 

time and experiment location: day-time in NTOU, night-time in NTOU, and night-time 

in UP. To analyse the difference between any two independent groups the M-W test was 

used. The null hypothesis was that between the populations of two groups there was the 

same concept and action to navigation safety in the experiment. The comparison of two 

groups in NTOU was to examine the effect of light on a mariner's ship handling. The 

comparison of two groups in the night-time scenario was to examine the influence of 

environment factors on different size of container ships, and the difference of ship 

handling between subjects. 

In this simulation experiment, every subject needed to operate an Ex-A exercise first, and 

then an Ex-B exercise for each experiment. Two groups of experimental data from the 

two exercises could not be treated as independent samples, because these were produced 

by the same person under their personal performance standards. When analysing the 

difference between results, the samples had to test as matched-pairs, the existing situation 

and the defined situation. 

The standard non-parametric technique for analysing data from two matched-pair samples 

is to apply the Wilcoxon matched-pairs signed-ranks test, called the Wilcoxon test in this 

study. In this study the null hypothesis assumed the average rank differences in the 
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population is zero. Based on the sampling distribution, the observed significance level 

could be calculated. If the observed significance level was smaller than 5%, the 

hypothesis was rejected. 

6.3.4 Application of simulation experiments 

As the programme was developing, pre-experiments were conducted by three masters to 

test the validity of the models using the UP simulator. The visual perception and ship 

manoeuvring were acceptable. The programme was modified on their advice. After it 

was completed, the simulation experiments were conducted in Taiwan Ocean University 

and the University of Plymouth respectively. The experiment had to be performed by a 

master, because he has responsibility on the bridge to select a safe course and make 

proper safety decisions when the ship is navigating in port approaches. 27 experiments 

in Taiwan were carried out by Taiwanese, including four Keelung pilots, five navigation 

lecturers, and 18 ship masters who were recommended by shipping companies. All of 

them need master certificates, with experience calling at Keelung port. In Plymouth 

experiments were carried out by seven mariners including three British, one Korean and 

three from Hong Kong. Except one lecturer with pilotage experience, subjects were 

students with master certificate. There were eight subjects, four in Taiwan and four in 

Plymouth, with sea experience less than 10 years. 

When the experiments in Taiwan were divided by light, there were 17 in day-time 

performance (Run 1 to 17) and 10 in night-time performance (Run 18 to 27). The seven 

experiments in Plymouth were night-time experiments (Run 28 to 34). Most subjects 
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were lacking in simulator experience. They had the benefit of an introduction on 

simulator handling before conducting the experiment. However, through this preparation 

and their many years experience afloat, they experienced no difficulty in manoeuvring 

the simulator instead of a real ship. 

Essential data.provided to the participant in Ex-A were a chart with pilot station and TSS 

designated, own ship's initial position and speed, wind force and speed, and visibility. 

The participant had to detect target ship's movement and current information by himself. 

As in the existing circumstance in Keelung, advice was given indicated the pilot was 

going to board when the ship arrived. In Ex-B every subject was not only informed 

above data, but also provided actual current, target ship's movement and the advice that 

clearly indicated the own ship was the second ship after the target ship to pick up pilot 

and a safe distance from the target ship must be kept. During exercise run, each subject 

remained alone on the bridge without external contact. 

6.4 RESULTS OF SIMULATION EXPERIMENTS 

As soon as the own ship was moving, ship position data were recorded and drawn on the 

simulator X-Y plotter. These have been reproduced by using AutoCAD. The separate 

tracks of each subject with ship positions, at one minute interval for Run 1 to Run 27 and 

two minute interval after the first minute for Run27 to Run 34, are shown in Appendix-! 

and J. Total 34 ship tracks in each exercise and each experiment are shown in Figure 6-

5, 6-6, 6-7 and 6-8. 
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Figure 6-5 All inbound ship tracks in Ex-A 
Source: Author 

Figure 6-6 All inbound ship tracks in Ex-B 
Source: Author 
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Figure 6-7 All outbound ship tracks in Ex-A 
Source: Author 

Figure 6-8 All outbound ship tracks in Ex-B 
Source: Author 
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For the purpose of analysis, .the sea room used by inbound ships was divided into two 

parts, outside area and lane area. In the outside area, a base line was constructed, 

connected from the start point of the own ship to the east boundary of the inbound lane. 

20 data lines perpendicular to the base line were spaced 0.1 mile (185 metres) apart 

across the traffic flow. The first data line was near the ship start point, and the 20th data 

line was passed the lane start point. In the lane area various data lines, perpendicular to 

the centre line with· o~ 1 mile interval space to each line, were constructed in the inbound 

traffic lane. The first data line also crossed the point designating the entrance buoy, and 

the 15th line was near the pilot station (Figure 6-9). 

The sea room used by outbound ships was also divided into two sections, main channel 

area and lane area. In the.outbound traffic lane, there were 21 data lines constructed, as 

in the inbound lane, to defined sea room. The first data line started from the beginning 

of the lane, and the 21st line crossed the end of west boundary designating the exit buoy 

(Figure 6c 1 0). 

In order to obtain further details, the tracks needed to be quantified. Measuring the ship's 

cross track position at specified lines could analyse the traffic distribution13
• Therefore, 

a linear interpolation of the track position at each data line, and the distance between the 

position and the base line were calculated by computer using Turbo Basic language 

(Appendix-K). The mean and standard deviation of the 34 track distances passing each 

data line in each exercise are shown in Appendix-L. 

6.4.1 Inbound ship tracks 

The graphical tracks provide a general impression regarding subjects' actions. The 
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distribution of tracks in Ex-B which is obviously influenced by the positioned buoy and 

by sequence control is different from that in Ex-A. 

0 

Figure 6-9 Data line for analysis of inbound ship tracks 

Figure 6-10 Data line for analysis of outbound ship tracks 
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6.4.1.1 lnbound traffic at outside area 

The ship tracks in the outside area indicate how subjects took action to join the inbound 

lane and to avoid the defined. encounter situation. The right side of the base line is open 

sea. While a track position was on the left of the base line, the ship might cross the 

separation wne. The track distribution in Ex-A was wide spread. After the exercise 

started, most ships kept position on the left side of the base line. When ships crossed the 

20th data line, 23 track positions, 67.6% of total tracks, were on the left side. Those 

then crossed the east boundary of the inbound lane to arrive at the pilot station, except 

one ship which ended in the separation wne. When all data lines were sub-divided into 

gates of 200 metres so as to clearly indicate the distribution, the scatter of track number 

in each gate is shown in Figure 6-11. The mean distance crossing data lines was on the 

left side from start, shown in Figure 6-12, arid generally further from the base line. 

Eventually, the mean distance was 216.8 metres to the left of the base line. 

Although the traffic flow in Ex-B also had a wide distribution, it was spread to the right 

side, All tracks crossed the right side of the 20th data line, except one ship; the 

proportion of tracks to the left dropped to 2.9%. In Ex-B the mean distances on the 

beginning were close to that of Ex-A, but from the 4th data line the Ex-B curve started 

to diverge towards the right. At the 20th data line, the mean distance was 554.2 metres 

to the right of the base line. The greatest distance was 1,815 metres in Run 30, The 

scatter of ship tracks is showed in Figure 6-13. It was simple to fmd significant 

differences on the distance of each track between two exercises through the Wilcoxon 

test. From the first data line to the 20th data line, except the third and 4th where the two 

curves of mean distance met together, the observed significance level between two 

exercises were less than 0.05, reaching the significant difference (Appendix M-1). 
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Figure 6-12 Mean distance of Ex-A and Ex-Bin outside area 
of inbound experiment 

Source: Author 
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Through the M-W test to check the cross tracks divided into three groups: day-time in 

NTOU, night-time in NTOU and night-time in UP, no significance was found between 

the two groups in NTOU, neither in Ex-A nor in Ex-B. When compared with two night-

time groups in both exercises, the tracks between the groups had significant difference 

at the front data lines where the UP tracks had the trend to lay on the NTOU tracks' left. 

Because the large ship on the UP simulator was more influenced by current effect before 

the masters were ready to take actions for the exercises. 

6.4.1.2 Inbound traffic in lane area 

On leaving the outside area ship tracks enter the adjacent area of the inbound lane, and 

show how ships used the sea room in the lane to approach pilot station. In Ex-A, ships 
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continued with their tracks spreading very wide. At the first data line of lane area, 29 

tracks were on the left side of the centre line of the inbound traffic lane (Figure 6-14). 

When calculating the distance between ship position and the centre line, 23 tracks were 

outside the east boundary, three tracks outside the west boundary, the remaining 23.5% 

of total tracks within the lane. The mean distance was 718.2 metres on left side of the 

centre line (Figure 6-15). The range ofgreatest distance on both side covering usage of 

sea room was some 3,000 metres. 

Then, while ships approached the pilot station, the tracks gradually concentrated on the 

centre line. The distance of tracks to the left of the centre line apparently decreased, and 

the right tracks moved to centre slowly. At the 15th data line, which was close to the 

pilot station; the number of ship tracks reduced to 24, because there were 10 tracks 

which ended their exercises in the vicinity of pilot station but ahead of the station. The 

mean distance was 65. 1 metres to the right of the centre line, 66.7% of tracks in the 

lane. The range of sea room covering reduced to 1,411 metres. There were one track 

outside the east boundary and seven tracks outside the west boundary. 

In Ex-B, tracks were more concentrated than those in Ex-A at the beginning. When ships 

passing the fust data line, 23 tracks (67.6%) entered the lane within both boundaries, one 

track outside the east boundary and 10 outside the west boundary. The mean distance 

from the centre line was 204.5 metres to the right. The standard deviation was less than 

half of that in Ex-A. The farthest distance was 986 metres to the right, and 652 metres 

to the left, covering 1,638 metres (Figure 6-16). The next farthest track, on the left, was 

only 120 metres. That revealed no ship moved near the buoy within 230 metres at this 

data line. 
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After the ftrst data line, the change of spread was not apparent, but the distribution 

moved toward the left in parallel. The smallest range covered was 1406.4 metres at the 

third data line. There were also 24 tracks crossed the 15th data line, including 18 tracks 

(75 .0%) within the lane and three tracks outside either boundary of the lane. The mean 

distance to the centre line was 20.9 metres on the line left, covering 1,905 metres. The 

average range covering at total 15 data lines was 1590.9 metres. 

Through the M-W test, no significant difference regarding distance at each data line was 

found between groups, neither in Ex-A nor in Ex-B, except at the 14th between the two 

night-time groups in Ex-A. Compared all cross tracks in Ex-A with Ex-B through the 

Wilcoxon test, the differences from the fust to the 8th data line were significant, and the 

remains were not (Appendix M-2). 
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in lane area in Ex-A 

Source: Author 
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6.4.2 Outbound ship tracks 

6.4.2.1 Outbound traffic in main channel 

The width of main channel between breakwaters is about 250 metres. With a line 

connecting the breakwaters as a datum line, cross track distance from ship's centre to the 

centre point of the datum line could be measured. In Ex-A, the mean distances was 11 .7 

metres left to the centre point, range from 71 metres left to 51 metres right (Table 6-2). 

Through the M-W test, the difference between two groups in the NTOU simulator was 

not significant, but that between two night-time groups was significant, P = 0. 0006. All 

tracks performed in the UP simulator were close to the west breakwater. Among the 

tracks the closest distance to the breakwater was 54 metres. 

Table 6-2 Distance of tracks to the central point of main channel 

Ex-A Ex-B 
Subjects No. of 

tracks Mean St. dev. Mean St. dev. 

Day-time in NTOU 17 -3.0 26.1 9.6 17.7 
Night-time in NTOU 10 7.0 20.6 15.2 17.1 
Night-time in UP 7 -59.6 7.5 -70.9 21.6 

Total 34 11.7 33.0 -5.3 38.4 

Remark: Positive values of mean are on the right side of the centre point. 
Negative values are on the left side. 

In Ex-B, the mean distance to the centre point was 5.3 metres to left, range from 98 

metres left to 41 metres right. Compared with Ex-A by the Wilcoxon test, the tracks 

passing the breakwaters were not different between two exercises. The comparison of 

groups by the M-W test, the results were the same as Ex-A, significant difference 

between two night-time groups. The nearest distance to the west breakwater was only 27 
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metres, on the UP simulator. When examining the difference between the tracks at UP 

in both exercises, no significant difference was found. 

6.4.2.2 Outbound traffic in lane area 

After passing the breakwaters, the outbound ship had to turn right immediately to avoid 

entering the inbound traffic lane. In this experiment, there was another inbound ship 

drifting at pilot station. In Ex-A, 12 tracks (35.3%) were on the outside of the west 

boundary at the first data line. The mean distance to the centre line was 291.1 metres on 

the left. The farthest distance on the centre line left was 527 metres, and on the line right 

was 106 metres, the range being 633 metres. Then the tracks generally joined the lane, 

but there were still three tracks on the outside at the 21st data line. No track was outside 

the east boundary (Figure 6-17, 6-18). The mean distance of the cross track positions at 

the 21st data line was 97.3 metres to the left of the centre line. The range between the 

farthest tracks on either side was 1 ,263 metres. The mean range of total 21 data lines 

was 835.0 metres. 

In Ex~B, nine tracks were outside the west boundary at the first data line. The mean 

distance of all tracks to the centre line was 276.7 metres to left. The farthest distance on 

the left was 457 metres to the centre line. The extreme right track was also on the centre 

line left with 73 metres (Figure 6-19). The range was 384 metres. At the 21st data line, 

no track was outside the west boundary, but 2 tracks outside the east boundary, where 

the mean distance was 42.4 metres to the centre line right. The farthest distances to that 

line were 224 metres on the left and 579 metres on the right, with a range of 803 metres. 

The mean range at all 21 data lines was 593.3 metres. The Wilcoxon test revealed the 
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significant differences between Ex-A and Ex-B were from the ninth to the 21st data line. 

When the tracks were divided into groups, no difference between groups reached the 

significant level (Appendix M-3). 

6.4.2.3 Closest distance to An-tou-pao shoal 

Before outbound ships leave the traffic lane, there is a grounding risk at An-tou-pao 

shoal. The mean closest distance of ship tracks to the shoal was 1,738.9 metres in Ex-A, 

and the nearest track was 1,282 metres. The mean closest distance in Ex-B was 1,654.4 

metres (Table 6-3), and the nearest track was 1,257 metres. When testing the difference 

between two exercises through the Wilcoxon test, it was significant with P = 0. 0133. 

Most of tracks in Ex-B had smaller distance than those in Ex-A. When testing the 

difference between two groups in each exercise, no significance was found. 
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Table 6-3 The closest distance of tracks to An-tou-pao shoal 

Ex-A Ex-B 
Subjects No. of 

tracks Mean St. dev. Mean St. dev. 

Day-time in NTOU 17 1,735.5 189.4 1,673.5 78.1 
Night-time in NTOU 10 1,746.8 129.5 1,673.2 97.9 
Night-time in UP 7 1,736.0 241.7 1,581.3 192.5 

Total 34 1,738.9 180.6 1,654.4 117.2 

6.5 FINDINGS FROM SHIP TRACKS 

The above results from ship tracks indicate some points. The first is that the violation 

in use of the TSS in Keelung could be prevented from traffic control and installation of 

traffic lane buoys. Comparing ship tracks in both exercises in the inbound experiment, 

the situation of crossing the separation zone was significantly improved in Ex-B. 

Statistical tests, evidenced quite different performances between exercises, except when 

approaching within 0.6 miles of the pilot station. In Ex-A , masters tended to used the 

sea room on left side of the base line, the opposite resulted in Ex-B. One reason was the 

sequence control at the pilot station caused the own ship to delay her time at the station 

when there was another ship waiting. The action to defer ETA was either by reducing 

ship speed early and/or detouring ship route. From Figure 6-6, the distribution of ship 

tracks obviously shifted to north of the lane in Ex-B. Many ships run a great turn before 

entering the lane. Another reason impinging on traffic flow was the buoy positioned at 

the in bound traffic lane. Ships took the buoy as a reference point keeping a short distance 

to turn into the lane. In the experiment, the initial course had an angle of 65 degrees to 

the direction of the inbound lane. Over half of the tracks in Ex-B passed north of the 

122 



Chapter 6 

buoy within 400 metres. That was confirmed in Ex-B of the outbound experiment that 

no tracks were on the left of the exit buoy. 

Ship tracks also evidenced that the violation in use of the TSS is serious in the existing 

situation. In Emden's study, some ship masters deliberately contravened COLREGS for 

taking a short-cut if no radar surveillance14
• According to the Rule lO(e) of COLREGS, 

the separation zone is only used by crossing vessel or in cases of emergency. But the 

destination of the own ship in the experiment was the pilot station, so that she should use 

the lane and wait for the pilot. The ship had to join the lane at the termination. In Ex-A, 

23 inbound ships crossed the separation zone towards the pilot station. This supports the 

findings in Chapter 4 that occasionally inbound ships from the NE sector will take a risky 

operation to save time, regardless of the hazard to their own and other ships. 

The second is thatthe span of sea room used, especially near the pilot station, was much 

wider than the traffic lane. In Ex-B of the inbound experiment, 67.6% of ships joined 

the lane at the entrance, and at most 82.4% of ships were within the lane. But at the pilot 

station the proportion decreased to 75%. That trend of using sea room was consistent 

with the range covered by tracks. It was slightly decreased to 1,406 metres at first, but 

eventually increased to 1,905 metres, near three times of the width of the lane. Even in 

Ex-A with moderate wind force, the range was still 1,411 metres. That indicated ships, 

even with higher speed, joining the lane had difficultly maintaining positions in the lane. 

When arriving at the station, the manoeuvring became more difficult under strong wind. 

Third, ships had more risk of contact the west breakwater without pilot assistance. In 

both exercises of the outbound.experiment, the tracks on the UP simulator had significant 
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difference from those on the NTOU. It was apparent in the experiment that larger 

container ships drifted to lee side, even under moderate wind force. The nearest track 

was 27 metres from ship to the breakwater; when half width was deducted, the distance 

of ship side to breakwater was only 12 metres. Examining the speed at the time of 

passing the breakwaters, those ship speeds were lower than others in NTOU. In order 

to disembark the pilot, ship speed has to be reduced to under five knots. After that, it 

has to be increased for sufficient steerageway for pass the breakwater. The distance 

allowance for that is 0. 7 miles. Under strong wind, before the rudder effect is available, 

the ship has drifted away from the centre line. Most Taiwanese masters increased ship 

speed as soon as the exercises started. Masters serving on large container ships without 

experience calling at Keelung might delay the time increasing speed. That resulted higher 

·risk to contact the breakwater. 

Fourth, the edge of the inbound lane is too close to the breakwaters. Although the track 

distribution in the outbound experiment was more narrow than the inbound track 

distribution, most tracks were concentrated on the left side of the lane at the beginning. 

All tracks in Ex-B turned to the right immediately, when the subjects considered the 

breakwaters had been passed clearly, but there were still 26.4% of tracks which did not 

join the lane at the first data line. The usage of sea room at the main channel sector 

seemed not enough for ships turning into the outbound lane. A few ship tracks were very 

close to the inbound lane when they were turning the right. The track distribution in Ex­

B had no difference from Ex-A at the first eight data lines. It indicated the manoeuvring 

was difficult for some masters to properly turn into the lane, even with a traffic buoy. 
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There are other findings, such that light is not an influencing factor; the outbound lane 

provides sufficient sea room for ships keeping from An-tou-pao shoal. All findings from 

ship tracks are compared with subjects' intentions in the questionnaire in the next 

chapter, to conclude some optimal methods for safety improvement in Keelung. 

6.6 SUMMARY 

Simulation provided an efficient method to assess the navigational risks and the measures 

for safety improvement found from the previous chapters. Ship tracks resulted from the 

simulation experiments indicate range of performance. The risk of the violation of 

crossing the separation zone could be minimised by traffic control through shore based­

radar surveillance and installation of traffic buoys. The width of the in bound traffic lane 

is insufficient for ships manoeuvring under strong wind, especially at the pilot station. 

Outbound ships handling by masters with little local knowledge have higher risk to 

contact the west breakwater withoutpilot's assistance. Before turning into the outbound 

lane, some ships have risk of colliding with an inbound ship waiting for entering. 
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CHAPTER 7 

IMPR@VEMENT OF NAVIGATION EFFICIENCY IN KEELUNG 

7.1 INTRODNCTION 

Navigator intention is related to experience and knowledge. Through analysis of subjects' 

intentions, methods reducing navigational risk evidenced from ship tracks can be 

emphasised. The questionnaire designed to accompany the experiments addressed 

comparison of the defined condition with the existing situation, and focused on the risk. 

That was different from the questionnaire used in the earlier chapters. Additionally, after 

assessing the available sea room used by ships, the TSS can be effectively modified. This 

is the first assessment of the benefit of the scheme, since it was established in 1990. With 

risk reduction, navigation efficiency may increase. 

7.2 EFFEC'RVENESS OF FLOATING BUOYS 

7.2.1 Effectiveness of traffic lane buoys 

Part B of the questionnaire sought to find the effectiveness of the lane buoys. From Table 

7- I, it is apparent to reveal that in Ex-B the identification of traffic lanes by the buoys 

became easier in both inbound and outbound experiments. Using the Wilcoxon test to 
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compare the difference between two exercises, it reached significance level in both 

experiments, P = 0.0003, 0.0005 respectively. 

In question B3 and 84, if an entrance buoy were located on the traffic lane, 70.6% of 

mariners would use it to check the location of the lane by vision in clear visibility; 

64.7% used it by radar under poor visibility. The proportion using the exit buoy was 

higher in clear visibility and lower in poor visibility than that in the inbound experiment 

(Table 7-2). Some mariners interpreted the best method was to identify by vision with 

buoy, and then by radar for double check, if visibility was available. In question BS, that 

the effectiveness of the buoys would be increased significantly when fitted with a racon 

was agreed by 94% of responses in the inbound experiment and 82.4% in the outbound 

experiment. No significant difference was found in group comparisons in these three 

questions. That indicated all mariners had the same distribution, regardless of time and 

ship size. 

These results confirmed the efficiency of the lane buoys. There were conspicuous 

landmarks for position fixing by radar or by vision during the experiment, especially 

Keelung island only one mile from the outbound lane. Question Bl evidenced the 

identification of the traffic lanes was not very difficult, and was easier for outbound ships 

than inbound ships. But mariners were still favoured installation of the buoys, to provide 

more significant information, such as a safe area, ship position and location of traffic 

lanes, than the landmarks. Cotter interpreted in his study that the establishment of 

fairway lights instead of a 'danger light' would help to minimise groundings and 

collisions1
• After TSS was established, the navigation problem of position fixing seems 

to be replaced by the problem of how to find traffic lane. It was believed that many ships 
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could not properly turn into the lane due to inaccurate estimation of position. From ship 

track analysis, the buoy influenced the performance of traffic flow on making tracks near 

by it to turn into the lane. By using the buoys, the inaccurate estimation incurring 

contravention of TSS regulations may be minimised2
, and the traffic flow pattern may 

be narrowed near the termination of the TSS3• Therefore, the benefit from the buoy is 

not only reducing risk but also increasing efficiency in transit. 

Table 7-1 The mean responses for identification of traffic lanes 

Day (NTOU) Night (NTOU) Night (UP) Total 

Question B 1: To identify the entrance of the in bound traffic lane in Ex-A. 
Inbound 2.6471 3.3000 2.7143 2.8529 
Outbound 2.1765 2.6000 2.8571 2.4412 

Question B2: To identify the entrance of the inbound traffic lane in Ex-B. 
Inbound 1.8824 2.0000 1.1429 1. 7647 
Outbound 1.5294 1.6000 1.5714 1.5588 

Score: 1 - very easy, 2 - easy, 3 - average, 4 - difficult, 5 - very difficult. 

Significance level 

Question Bl 
Question B2 

Day/Night (NTOU) 

Inbound Outbound 
0.1022 0.2201 
0.8444 0.8216 

Night (NTOU)/(UP) 

In bound 
0.2747 
0.0275 

Outbound 
0.5333 
0.9563 

Table 7-2 The best methods for identification of the traffic lanes 

lnbound ships Outbound ships 

Methods Clear Poor Clear Poor 
Visibility Visibility Visibility Visibility 

1. by vision with landmarks 11.8% - 11.8% 5.9% 
2. by vision with the lane buoy 70.6% 11.8% 82.3% 11.8% 
3. by radar with landmarks 5.9% 23.5% 2.9% 26.5% 
4. by radar with the lane buoy 11.8% 64.7% 2.9% 55.9% 
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7 .2.2 The buoy on An-tou-pao shoal 

Answers to El and E2 in the outbound experiment revealed mariners did not consider 

An-tou-pao shoal constituted a serious risk (table 7-3). No significant difference was 

found between the two questions, P = 0.1166. When testing the difference between 

groups, the subjects in UP had a moderate risk perception, relatively higher than those 

in NTOU. Although the shoal was little dangerous, the strong wind and poor visibility 

made subjects consider a larger distance from it (fable 7-4). 38.3% of subjects thought 

the safe distance should be greater than one mile in Ex-A condition, but 61.8 % in Ex-B 

had the same view. 

Table 7-3 The mean responses of risk to An-tou-pao shoal 

Day (NTOU) Night (NTOU) Night (UP) Total 

Question E 1: The shallow water to the outbound ship in Ex-A. 
2.3529 1.9000 3.0000 2.3529 

Question E2: The shallow water to the outbound ship in Ex-B. 
2.0000 1.8000 2.5714 2.0588 

Score: 1 - very little dangerous, 2 - little dangerous, 3 - moderate dangerous, 
4 - dangerous, 5 - very dangerous. 

Significance level 

Question El 
Question E2 

Day/Night (NTOU) 

0.3796 
0.9543 

Night (NTOU)/(UP) 

0.0081 
0.0080 

The buoy established at An-tou-pao shoal gave a characteristic which indicated that it 

placed between the danger and the traffic lane. But the tracks in Ex-B concentrating on 

the west side of the lane were more influenced by the lane buoy than the shoal buoy. 
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When moving in the lane, most subjects increased ship speed so as to produce better 

turning effect and maintain straight tracks4
• They did not take action to avoid the shoal. 

The average distance of tracks to the shoal was about 0. 9 miles, similar to their concepts. 

Mariners could keep a safe distance from the shoal without a location buoy. It is 

therefore not suggested here that a buoy be provided. 

Table 7-4 The safe distance to An-tou-pao shoal 

Wind 10.7 m/s Wind 17.1 m/s 
Clear visibility Poor visibility 

Safe distance (mile) 
number percent number percent 

1. 0.3 - 0.5 1 2.9 % - -
2. 0.5 - 0.7 6 17.6% 5 14.7 % 
3. 0.7 - 1.0 14 41.2% 8 23.5 % 
4. 1.0 - 1.5 11 32.4% 16 47.1% 
5. more than 1.5 2 5.9 % 5 14.7 % 

7.3 REDISTRIBUTION OF USAGE OF SEA ROOM 

7.3.1 Environmental factors to traffic 

Through part C of the questionnaire, effects of wind and current on ship manoeuvring 

in traffic lanes were analysed. Table 7-5 indicates the influence of wind and current had 

similar weights in the experiments. Affected by the defined wind and current, ship 

position might deviate from the intended course line. In Ex-B with strong wind and 

current information provided, subjects needed to set a large leeway to maintain the ship 

on the course line (Table 7-6). 

131 



1. 
2. 
3. 
4. 
5. 

Chapter 7 

Table 7-5 The mean responses of wind and current effects 

Day (NTOU) Night (NTOU) Night (UP) Total 

Cl: Wind effect has more influence than current to ship 's manoeuvring in Ex-A. 
lnbound 2.2941 2.6000 3.4286 2.6176 
Outbound 2.7059 2.7000 3.4286 2.8529 

C2: Wind effect has more influence than current to ship's manoeuvring in Ex-B. 
lnbound 3.0588 3.0000 2.7143 2.9706 
Outbound 3.0588 3.0000 3.4286 3.1176 

Score: 1 - disagree strongly, 2 -disagree, 3 - uncertain, 4 - agree, 5 - agree strongly. 

Significance level 

Question Cl 
Question C2 

Leeway 

< 3 degrees 
3- 5 degrees 
5-10 degrees 
10-15 degrees 
> 15 degrees 

Day/Night (NTOU) 

In bound 
0.1988 
0.7515 

Outbound 
0.8713 
0.9370 

Night (NTOU)/(UP) 

In bound 
0.1098 
0.4743 

Outbound 
0.0615 
0.3840 

Table 7-6 Leeway set in experiments 

Inbound ships Outbound ships 

Wind 10.7 m/s Wind 17.1 m/s Wind 10.7 m/s wind 17.1 m/s 
no current data current data no current data current data 

provided provided 

14.7% 2.9 % 29.4% 5.9% 
38.2% 2.9% 50.0 % 44.1% 
32.4% 44.1 % 17.6% 44.1 % 
11.8% 26.5% - 2.9% 
2.9% 23.5 % 2.9% 2.9 % 

When wind force was 17.1 m/s, 94.1% of inbound traffic and 49.9% of outbound traffic 

set leeway more than five degrees; half of subjects in inbound experiment needed to 

allow for leeway of more than ten degrees. With the significant difference, wind effect 

with 17.1 m/s speed would cause difficulty of ship manoeuvring. Generally, leeway is 

continuously estimated, tested, and adjusted by a navigator until he obtains a reasonable 

heading overcoming wind and current effects to keep ship position on the desire route. 
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When the leeway is large, the navigator has to take long time to fix position and assess 

the problem. During the process, ship position will probably deviate far from the route. 

If the ten-degree leeway, under the define situation in the experiment, was ignored, a 

ship would drift about 480 metres off the course line when arriving at the pilot station. 

Therefore, a large sea room has to be provided for ship manoeuvring when local 

environmental effects are strong. 

7.3.2 Assessment of lane width 

The subjects indicated that the manoeuvre to keep the ship within the inbound lane would 

be easier after current information was provided. Because the difference between 

questions C3 and C4 was significant, P = 0.0054 (Table 7-7). Due to rudder effect, the 

problem of current effect within the outbound lane was lessened. There was a similar 

question El asked the situation of waiting for pilot at station with slow speed. 50% of 

subjects considered the manoeuvre was difficult. The mean score was even higher than 

that in C3 and C4. That conftrmed the most difficult area of ship manoeuvring in the 

approaches is near pilot station. 

Determination of current effect is not certain by ship-borne facilities, and the velocity of 

current is also subject to change5. The navigator may estimate it from deviation of ship 

position caused by many external factors. Sometimes before he detects the existing 

current the ship will have drifted well off course. Underestimating local current could 

take the ship towards danger. Therefore, according to subject responses, Keelung port 

should provide this information. Providing current information can remind navigators to 

take early compensation action and can reduce the number of manoeuvres needed to 
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maintain position. Following the action, track deviation and oscillation could decrease. 

Consequently, efficiency in the use of the sea room and the transit time could increase. 

Table 7-7 The mean responses of ship manoeuvring in inbound lane 

Day (NTOU) Night (NTOU) Night (UP) Total 

C3: To keep ship position within the lane without current information in Ex-A 
lnbound 3.0000 3.6000 3.2857 3.2353 
Outbound 2.5294 3.0000 3.0000 2.7647 

C4: To keep ship position within the lane with current information provided in Ex-B 
Inbound 2.6471 2.2000 2.7143 2.5294 
Outbound 1.7647 2.1000 2.5714 2.0294 

El: To keep ship position in the lane at pilot station to wait for pilot 
Inbound 3.5882 3.6000 3.5714 3.5882 

Score: 1 - very easy, 2 - easy, 3 - average, 4 - difficult 5 - very difficult 

C7: Widening the inbound traffic lane to provide large sea room for ship manoeuvring 
lnbound 3.0588 3.7000 3.4286 3.3235 
Outbound 2.5294 3.6000 3.4286 3.0294 

Score: 1- very unimportant, 2- unimportant, 3- average, 4- important, 5- very important. 

Significance level Day/Night (NTOU) Night (NTOU)/(UP) 

In bound Outbound Inbound Outbound 
Question C3 0.0734 0.0840 0.3780 1.0000 
Question C4 0.2680 0.0837 0.1039 0.0517 
Question El 0.9576 0.9166 
Question C7 0.1676 0.0037 0.6465 0.7947 

Through the above questions in this part, the subjects were eventually asked whether the 

width of the lane was adequate for ship manoeuvring against the defined wind and 

current condition. Although the average response, 3.3235, revealed that widening the 

in bound traffic lane to provide large sea room was slightly important, 55.9% of subjects 

marked "important" . No significant difference was found between groups. That meant 

more than half of mariners agreed the need to increase the lane width. 

134 



Chapter 7 

However, most of mariners responded that the width of the inbound lane cannot provide 

sufficient sea room, when taking account of the probable deviations by the wind and 

current effects. Ship tracks have revealed that the average range of covering sea room 

was 1590.9 metres. It is apparent that the present inbound traffic lane is insufficient. 

Many concepts now being taken to improve safety of navigation in the world are based 

essentially on traffic separation. To achieve the aim of separating opposing traffic, the 

lane width should be adequate to allow safe navigation6
• Although the TSS in Keelung 

is constrained by the area, it must provide safe passage for transit. 

7.3.3 Modification of TSS 

When revision of lane width is undertaken, other risks have to be addressed. One risk 

is the An-tou-pao shoal to outbound ships, another is to ships anchoring at the west side 

of the inbound lane. According to the majority of subject perceptions, the least distance 

of outbound ships to the shoal should be 0. 7 miles under clear visibility and l. 0 miles 

under poor visibility. The TSS is not only for the reduction of collisions but is also 

concerned with the reduction of strandings. The east boundary of the present outbound 

lane is about 0. 7 miles to the shoal, and the west boundary is about 1.05 miles. The 

tracks also indicated that outbound ships had no alternative but to use the left side of the 

lane, when entering. Therefore, not only has the east boundary already been the margin 

for safety from the shoal, but also the west boundary should shift to the left. Regarding 

the anchoring ships, the water area between the inbound lane and Yeh-liu coast is the 

favourite anchorage for small and medium ships. Due to the deep water surrounding 

Keelung approaches, only this area is suitable for anchoring. To consider segregating 

anchoring ships by the TSS, it is impossible to widen the inbound lane to the left. 
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As sea room is limited it will be necessary to use some of the separation zone for 

widening lanes. The zone is 1,600 metres wide at the northern edge and 200 metres at 

the southern edge at present. It is recommended that the zone is reduced to a "straight­

line" width of200 metres allowing a 1,400 metres least width for both lanes. 200 metres 

is an appropriate buffer under the circumstances assuming emergent actions are taken. 

A separation line to separate traffic flow has been used in some ports in the world, such 

as Lamma channel in Hong Kong, when water area of port approaches is confined7
• 

After the separation zone is replaced by the proposed separation line, the buffer region 

is decreased. On the other hand, the probability of head-on encounter increases, if there 

is no other aids to assist navigators to detect ship's deviation. Therefore, the role of radar 

surveillance and traffic lane buoy, mentioned in 7.2 para, becomes more important. A 

buoy fitted with highly visible light and racon would positioned at the north point of the 

separation providing a good mark for ships to identify the location of lanes, and keeping 

to the designated traffic lanes. It is fair to assume that the great majority of merchant 

ships rely on the radar when in poor visibility or high density traffic. With experience 

in the use of radar it becomes apparent that navigators would benefit from the improved 

detection and identification of the buoys with racon8
• The water depth at that point is 

about 70 metres. According to information from a marine engineering company advising 

for this study, there is no technical problem mooring a buoy in deep water. 

Additional to reducing navigation risk, a significant increase of efficiency is in the use 

of the sea room, after the TSS is modified. Ships coming from the NE section or leaving 

to the NW section will save the time of passage unnecessary to detour a great turn into 

or out the lane. When all inbound tracks in Ex-A were analysed with the datum line used 
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in para 4.4, 44.2% of tracks passed through section 6. Those ships would have become 

in legal transit, if the separation zone were minimised. Meanwhile, ships joining the lane 

from the west boundary encountering anchored ships may be expected to decrease. 

Obviously the widened lanes can make smooth ship movement. 

7 .3.4 Location of pilot station 

Regarding the pilot station in question E5, 44.1% of subjects were satisfied that the 

location was appropriate, while 14.7% were uncertain. The remaining 14 subjects 

( 41.2%) thought the location was inappropriate, and suggested various position for the 

pilot station depending on their experience; four subjects considered two miles off 

breakwaters; two subjects thought open sea outside TSS; eight subjects preferred the 

entrance of the inbound lane to be pilot station. No significant difference was found in 

this questions between groups by the M-W test. 

In para 6. 5. 1, the mean distance of 24 inbound tracks near the station in Ex-B was 20. 9 

metres on the left of the centre line with 371 metres the standard deviation. Through the 

Kolmogorov-Smirnov test, specifically designed for analysing the goodness-of-fit 

situation 10
, the distribution of track distances was a normal distribution, P = 0. 961. 

After the separation zone is minimised, the lane width at the 15th data line will be about 

920 metres, still only covering 78.3% of tracks. For increasing the possibility of ships 

navigating within the lane, the station should shift to a wider area. 

When replacing the station, a potential encounter has to be considered. Some outbound 

tracks in the experiment turned the left as soon as passing the lane buoy and then 
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crossing the northern area outside the inbound lane. Inbound ships drifting at the this 

area will increase collision risk. For providing a safe area to the subsequent coming ship 

not only keeping a safe CPA from the ship waiting at the pilot station but also from those 

NW bound leaving ships, the new station should keep one mile from the entrance. The 

area in the entrance with 1,400 metre width can provide sufficient sea room, for the 

subsequent ship waiting, without collision risk. Therefore, the optimal choice from 

subjects' suggestions for the station is 1.9 miles off the breakwaters, about 0.4 miles 

north from the present station. The lane width there is 1,058 metres, covering tracks 

increasing to 84.5%. In the investigation of marine opinions, pilots did not agree to 

modify the station. But for reduction of risk, this shift should be approved by them. 

Meanwhile, they have more time for judgement and to gain sufficient steerageway before 

entering. 

7.4 ESTABLISHMENT OF TRAFFIC CON'FROL 

7 .4.1 lnbound ship's encounter 

In the existing situation, no information about ship movements is provided to arriving 

ships at Keelung. In Dl with Ex-A condition, subjects identified a high collision risk, 

when potential encounters happened in the experiment. After information was .provided, 

in D2, mean score steeply descended to 1.6176 (Table 7-8). Obviously the difference 

between the two questions was significant, P = 0. 0000. The navigators in each group 

had the same perception, That indicated the information was positively effective in 

reducing the collision risk, even in poor visibility. 
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Following the target ship, the own ship entered the traffic lane. Under clear visibility in 

question D3, 85.3% of subjects thought the safe distance to the privileged ship could be 

between 0.3 and 1.0 mile, and most of them took the choice of from 0.5 to 1.0 mile. 

Under restricted visibility in D4, the risk perception to subjects increased. 97.1 % agreed 

the distance should be more than 0.5 miles. Over half of subjects considered the distance 

should be more than 1.0 mile (Table 7-9). 

Table 7-8 The mean responses of collision risk in inbound experiment 

Day (NTOU) Night (NTOU) Night (UP) Total 

D 1: Collision risk under two-ship encounter without information of ship movement 
Inbound 4 .0000 4.4000 3.7143 4.0588 

D2: Collision risk under two-ship encounter with information of ship movement 
Inbound 1.5882 1.8000 1.4286 1.6176 

Score: 1 - very low, 2 -low, 3 - moderate, 4 -high, 5 -very high. 

Significance level 

Question Dl 
Question D2 

Table 7-9 

Safe distance (mile) 

1. less than 0.1 mile 
2. 0 .1 - 0.3 
3. 0.3 - 0.5 
4. 0.5 - 1.0 
5. more than 1.0 

Day/Night (NTOU) 

0.4682 
0.2687 

Night (NTOU)/(UP) 

0.0960 
0.1260 

The safe distance to the privileged ship 

Wind 10.7 m/s Wind 17.1 m/s 
Clear visibility Poor visibility 

number percent number percent 

- - - -
2 5.9% - -
12 35.3 % 1 2.9 % 
17 50.0 % 14 41.2% 
3 8.8% 19 55.9% 
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7 .4.2 Sequence at pilot station 

From part F of the questionnaire, 30 subjects had called on Keelung when they worked 

on ships. Apart from two, all had met other ships at the pilot station at the same time 

waiting for the pilot. 16 subjects had that experience frequent! y. 

When there were two ships near the pilot station simultaneously, the perceived collision 

risk was high. In question E3, subjects agreed the risk could be reduced by control of 

ship sequence. Consequently, the difference between those two questions was significant, 

P = 0.0000. The mean scores were respectively higher than Dl and D2. The inference 

through the M-W test was navigators had same perception to collision risk at pilot station 

(Table 7-10). 

Table 7-10 The mean responses of collision risk at pilot station 

Day (NTOU) Night (NTOU) Night (UP) Total 

E2: Collision risk when two ships waiting for pilots near pilot station 
Inbound 4.2941 4.4000 4.0000 4.2647 

E3: Collision risk when two ships with same ETA to pilot station by sequence control 
Inbound 2.1176 1.9000 1.8571 2.0000 

Score: 1 - very low, 2 - low, 3 -moderate, 4 -high, 5 - very high. 

Significance level 

Question E2 
Question E3 

Day/Night (NTOU) 

0.9084 
0.8627 

Night (NTOU)/(UP) 

0.2779 
0.7934 

In question E4, when the sequence of pilot boarding and the movement information were 

provided, 20 .6% of subjects considered the best location for a privileged ship awaiting 
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pilot was near pilot station. 32.4% considered the place was at the entrance of traffic 

lane, and 47.1% of subjects would drift the ship outside the TSS. 

7.4.3 Outbound ship's encounter 

Outbound ships also have a risk of potential encounter due to inbound ships waiting to 

enter. An outbound ship has priority on leaving the main channel. But before turning into 

the outbound lane, she may be close to any ship waiting near the pilot station. Based on 

past experience of those who had visited Keelung, in question F7, another ship drifting 

near pilot station during their leavings was a normal situation. 

Subjects thought, in question D 1, that the in bound ship drifting near the pilot station was 

a moderate collision risk to the outbound ship. After the information of another ship's 

movements was provided in D2, even under restricted visibility, the collision risk became 

very low (Table 7-11). A significant difference between the two questions, P = 0.0000. 

Table 7-11 The mean responses of collision risk to outbound ships 

Day (NTOU) Night (NTOU) Night (UP) Total 

D 1: Collision risk when in bound ships drifting near pilot station without information 
Outbound 3.1176 3.1000 2.8571 3.0588 

D2: Collision risk when inbound ships drift.ing near pilot station with information 
Outbound 1.4118 1.3000 1.5714 1.4118 

Score: 1 -very low, 2- low, 3 - moderate, 4- high, 5 - very high. 

Significance level 

Question D1 
Question D2 

Day/Night (NTOU) 

0.9794 
0.5688 
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How far from the breakwaters should the inbound ship have to remain to avoid 

obstructing the movement of the outbound shipping? 41 .2% of subjects thought the safe 

distance could be less than one and half miles under clear visibility, and another 41.2% 

agreed from one and half miles to two miles. Under restricted visibility, the proportion 

of responses to the former distance dropped to 14.7% , and the same proportion on the 

later. But the remaining 44.1% thought the distance should be at least two miles (Table 

7-12). 

Table 7-12 The safe distance to the leaving ship 

Wind 10.7 m/s Wind 17.1 m/s 
Clear visibility Poor visibility 

Safe distance (mile) 
number number percent percent 

1. 1.0 - 1.5 14 41.2% 5 14.7% 
2. 1.5-2.0 14 41.2% 14 41.2% 
3. 2.0 - 2.5 5 14.7% 6 17.6% 
4. 2.5-3.0 - - 6 17.6% 
5. more than 3.0 l 2.9 % 3 8.8% 

7 .4.4 The closest distance in ship tracks 

In addition to the distance from the base line, tracks also provided the distance to the 

target ship for potential encounter. The distance between both ships was measured at one 

minute intervals from ship tracks. The output data included time, heading of the own ship 

and relative bearing between both ships. Through the data, the closest distance of 

approach was found, and own ship's heading and relative bearing at that time. Lewison 

represented that collision was always related with the probability of potential encounter 

and actual encounter11
• He defined that the situation where two ships would pass within 
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half a mile of each other in the absence of avoiding action was potential encounter; the 

situation where two ships eventually passed within the given distance was actual 

encounter. The actual encounter may give rise to a collision. However, if one ship takes 

avoiding action to pass another ship with larger distance than half a mile, no actual 

encounter will arose. Therefore, the probability of actual encounter directly relates to the 

number of collisions. 

7.4.4.1 CPA in inbound tracks 

In the inbound experiment, the target ship would stop steer for 10 minutes from the 15th 

to 25th minute after the start of exercise play. In Ex-A, the average of CPAs to the target 

ship was 681.9 metres (0.37 miles); In Ex-B, that was 1258.9 metres (0.68 miles), 

shown in Table 7-13. There were eight tracks in Ex-A incorporating actions by alteration 

of course or/and speed to keep CPA greater half a mile. The encounter of.the remaining 

26 tracks became the actual encounter, CPAs less than half a mile. Among those tracks, 

the smallest CPA was in Run 17 in which two ships collided, when the TCPA was at the 

23rd minute. The next smallest CPA was only 14 metres in Run 3 at the 19th minute. 

Both of exercises were carried out with the NTOU simulator in day time. 

In Ex-B, 20 tracks kept a safe CPA to the target ship. In the remaining 14 tracks the 

CPAs were less than half a mile. The smallest CPA, 109 metres, was occurred in Run 

24. Some ships drifted in the northern area, one mile off the lane entrance, to wait for 

traffic to clear. From simulator records, the maximum heading reached 302 degrees. 

Through statistical tests, the CPA in Ex-B was significantly larger than that in Ex-A. 

Furthermore, the CP A performed by the UP subjects was larger than that by the NTOU 
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subjects, and the former had very small standard deviation indicating consistency among 

the subjects. 

With sequence control navigators' actions in avoiding collision risk are influenced. 

Without traffic control some masters do not consider carefully the risk of encounter with 

other ships. When collision risk is eventually detected, they take emergency action by 

reversing propulsion to stop the ship, even going astern. It is possible to observe subject 

behaviour on entering an actual encounter situation. The experimental programme 

designed that at the 25th minute the target ship completed pilot boarding and moved into 

the harbour from the station. If the TCPA was between the 15th and 25th minute, the 

period of the target ship being stopped, that indicated the own ship was stopping or 

moving astern at that time to avoid collision by urgent reduction of speed. On the 

contrary, when the TCPA was at or after the 25th minute, the own ship was moving 

forward slowly at the time because the subject had taken early avoiding action. In Ex-A, 

there were 13 tracks for either situation. In Ex-B, there were only four tracks before and 

ten tracks after the 25th minute. Under traffic control, navigators would take an early 

and safe actions of collision avoidance. 

Table 7-13 CPA to the target ship in inbound experiment 

Ex-A Ex-B 
Subjects No. of 

tracks Mean St. dev. Mean St. dev. 

Day-time in NTOU 17 676.9 520.8 988.9 628.6 
Night-time in NTOU 10 670.5 345.8 1076.2 561.4 
Night-time in UP 7 710.6 739.2 2175.8 339.5 

Total 34 681.9 513.5 1258.9 724.2 
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7.4.4.2 CPA in outbound tracks 

In Ex-A, the average closest distance between the outbound ship and the target ship 

waiting at the pilot station, was 1060.2 metres (Table 7-14), five tracks came into 

encounter with CPAs less than half a mile. The smallest CPA was 789.8 metres in Run 

33. In Ex-B, the mean CPA was 1187.9 metres with no track resulting in encounter 

within half a mile. Through statistical tests, no difference between either exercises or 

groups was significant. 

Table 7-14 CPA to the target ship in outbound experiment 

Ex-A Ex-B 
Subjects No. of 

tracks Mean St. dev. Mean St. dev. 

Day-time in NTOU 17 1186.1 167.0 1209.8 82.1 
Night-time in NTOU 10 1149.4 106.4 1186.0 91.0 
Night-time in UP 7 1112.6 216.9 1137.6 256.2 

Total 34 1160.2 161.3 1187.9 135.1 

7 .4.5 Provision of traffic control 

On account of the dangerous situation in Keelung approaches, in addition to installation 

of shore-based radar to monitor the movement of vessels in the TSS and detect 

infringement of the one-way lanes, the traffic control should include: 

1. organisation of inbound ships to pilot station; 

2. providing information of ship movement to relevant ships; 

3. suggestion of safe distance to other ships in the lanes; 

4. arranging accurate pilot boarding time. 
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Subject perceptions indicated the infonnation of ship movement and sequence control 

were effective in reducing collision risk. The in bound tracks confirmed the CP A could 

be increased by those methods when visibility is restricted. Due to ship congestion in the 

port approaches, potential encounter is unavoidable. In such confined waters, the ships 

path cannot be fixed as in the open sea. Masters have to alter course and speed 

frequently to maintain a safe distance from other vessels. Theoretically, the relative 

distance to the target ship when taking action to resume the passage is affected by the 

range of first detection12
• With earlier and more accurate detection navigators can take 

safer action. Accordingly, knowledge of other ship movements is necessary. When work 

pressure is high, knowledge of an appropriate quality cannot always be obtained from 

shipboard observation. Assistance from the shore is widely acceptable, and when such 

information about ship movements is provided, the master can consider carefully before 

judgements. 

Due to the consideration of risk on overtaking, the number of ships using the lanes has 

to be controlled. In Curtis' study13
, there were a significant number of mariners who 

passed dangerously close, when they were overtaking other ships in fog. In the 

experiment, it was also found that 76.5% of own ships were close to the target ship 

within 0.5 mile under clear visibility, and 41.2% under poor visibility, when there was 

no radar monitoring and control. After the lane is widened, sea room is still insufficient 

for two ships congesting near the pilot station. According to subjects, half agreed to 0.5 

miles as a safe CP A in the in bound lane. Nevertheless, the unpredictable situation 

causing risk made the final CPA, 0.37 miles as the average of tracks, shorter than their 

intentions. After the sequence control was performed in Ex"B, those actions of collision 

avoidance mentioned above decreased the probability of actual encounter and increased 
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CPA to the ship picking up pilot. The average CPA of tracks, 0.68 mile distance, was 

still less than the reasonable CPA from subjects' concepts. The result revealed traffic 

control of safe distance between ships must make allowance for ship manoeuvring in 

emergency. l:lnder a complicated situation, navigators cannot always handle ships as they 

would wish. 

Therefore, the shore station has to control the distance between ships in lanes to one mile 

to give sufficient reserve for emergencies. To prevent possible saturation, traffic should 

be restricted in numbers of ships waiting at the pilot station. If there is a ship waiting, 

the subsequence ship has to slow down near the entrance in the lane where sufficient sea 

room exist for manoeuvring. Mariners would be informed of precedence in picking up 

the pilot and would prefer to be called forward by shore control, so as to maintain one 

mile separation between inbound vessels at all times. 

Meanwhile, traffic control should include accurate pilot boarding time. The subjects 

considered it was difficult to keep ship position within the lane whilst waiting for pilots. 

After the TSS is modified; the lane's width at the pilot station is still narrower than the 

covering range of ship tracks. Therefore, the shore station has to coordinate ship's ETA 

with the pilot to avoid drifting while waiting for the pilot. 

In addition to control of the closest distance between inbound ships the situation of an 

inbound ship, waiting for clearance, threatening leaving ships in the main channel also 

needs to be considered. In the experiment, 35.3% of tracks could not join the lane from 

the first data line under the existing situation, and 26.5% were out of the lane under the 

defined situation. Some of them almost invaded the inbound lane. There was no 
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significant difference between tracks in Ex-A and Ex-B, when ships turned into the lane. 

Therefore, the average CPA in both exercises were about 0.63 miles. That revealed the 

sea room of the main channel sector was too small. The present main channel sector in 

Keelung extends for 0.75 miles from the breakwaters. Accordingly, many inbound ships 

waiting for entrance tend to stay at the edge of the sector, rather than at pilot station, to 

save time on entering. It is impossible for outbound ships to keep a safe distance from 

those ships. In order to protect outbound ships from being threatened by inbound ships 

waiting to enter, the main channel sector needs to be extended to one mile in accordance 

with subjects perceptions, and the shore station should control entry of those ships 

staying near the pilot station to ensure enough sea room for outbound ships. 

Strict regulation of traffic movements within TSS has to be complete in a super port14
• 

To enforce strict control can ensure smooth and safe flow. Under control, there may be 

inconvenience to some ships following shore station advice to maintain position within 

a lane or area, but safer navigation will reduce time used in avoiding risk. Provision of 

information on traffic movement enable masters to take early and efficient collision 

avoidance action. 

7.5 IMPROVEMENT OF PILOT SERVICES 

A serious accident contacting the breakwater might cause blockage of the main channel. 

Maintaining a clear port entrance is a basic requirement on navigational efficiencyl5• 

Among the 30 subjects who had called at Keelung, 46.7% had experience entering the 

port through breakwaters without pilot's assistance. In question F5, 19 subjects 

recognized that action was very dangerous under bad weather, and 9 subjects agreed that 
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was dangerous. The accident of an in bound ship contacting the breakwaters occasionally 

happens. 

When outbound ships passed the breakwaters the pilot had very often disembarked. 19 

of the 30 subjects stated that to be standard practice under any weather condition, 

although the pilot assistance could be requested. After the outbound experiment. In F1, 

14 subjects thought that action was dangerous, and another 14 thought it safe, while six 

were uncertain. Through the Wilcoxon test, significant difference, P = 0. ()()()(), was 

found between the questions, FS in the inbound experiment and F 1 in the outbound 

experiment. That revealed the action of ship master handling ship to enter the port was 

more dangerous than when leaving. Although no simulation experiment of inbound ship 

entering the main channel was undertaken in this study, from analysis of ship tracks and 

accident records it could be concluded that the risk to the inbound ship under master's 

handling on entering port is high, and compulsory pilotage for ships passing the main 

channel must be introduced. When pilots are unable to operate and the service is 

suspended due to adverse weather, ship masters should not be allowed to substitute. The 

port should be temporarily closed under such extreme condition. 

7.6 SUMMARY 

The nature of navigation in the approaches to Keelung, the identification of risk and 

means of addressing that risk have been identified through simulation and questionnaire. 

It has been shown that: 

1. While identification oftraffic lanes is not a major problem provision of racon fitted 

the buoy at the outer ends of the separation line would prove advantageous. 
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2. Under strong wind and current condition, maintaining,position within the inbound lane 

is not easy. The problem is complicated when vessels have to progress at slow speed 

or are delayed in the vicinity of the pilot station while awaiting the pilot. Under 

normal conditions, minimising the separation zone to enlarge the sea room of both 

lanes can provide adequate separation between ships. 

3. While collision risk, such as contravention,of TSS regulation and congestion in traffic 

lanes, is a major problem, shore-based radar monitoring, sequence control to pilot 

station, advice of a safe distance between ships and providing information of current 

and traffic movements are available methods for reducing the risk. 

4. For vessels to pass between the breakwaters with the benefit of pilotage advice 

improves safety. 
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CHAPTERS 

CONCLUSIONS AND RECOMMENDATIONS 

8.1 NAVIGATIONAL RISKS IN KEELUNG 

In recent years, increased ship size and traffic density have heightened navigational risk 

in Keelung. Risk reduces navigational efficiency and serious accidents have occurred. 

The probability of traffic accidents including collisions, groundings and contacts, was 

1.65 per 1,000 ships during the five years from 1987 to 1991. Among the accidents some 

three quarters were collisions. Incidence of collision has not significantly decreased since 

the TSS was established in 1990. With regard to Keelung port, mariners observed that 

the water areas within the TSS and near the breakwaters were the most dangerous. 

Through analysis of investigations in this study, factors incurring navigational risk in the 

approaches have been identified (Table 8-1). 

A major cause of navigational risk is violation of the regulations. According to the 

COLREGS and Keelung TSS regulation, "ships shall proceed in the appropriate traffic 

lane in the general direction of traffic flow for that lane." Through radar survey, a few 

ships proceed in the opposite lane regardless of the establishment of TSS. A number of 

ships do not cross the lanes at right angles, and many ships anchor in the TSS or near 

its terminations. Fishing vessels work in traffic lanes and obstruct ship movement. 

Among the collision accidents in the approaches, 28% of the collisions involved fishing 

vessels. 
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Table 8-1 Factors of navigational risk found from investigations 

Factors 
Casualty Mariner Radar Simulation 
Records Opinions Survey Experiment 

Navigable water insufficient X X X 

Violation of TSS regulations X X X X 

Fishing vessel congestion X 

Port operation defection X X X 

Poor visibility X X X 

Strong wind X X X 

Strong current X X X 

Inadequacy of traffic management also constitutes a risk. Ships congesting near the pilot 

station and the main channel sector caused a high risk of collision. Regulation gives the 

priority to outbound ships, but the signal station cannot effectively communicate this to 

inbound ships. As the west part of the approaches provides anchorage for ships, the area 

designated to the fairway is very narrow, only 700 metres width for each traffic lane. It 

is difficult for ships manoeuvring to avoid collision risk, or to wait for the pilot in the 

lane. The accident records revealed many collision cased involving ships in the 

anchorage. 

Another identified risk factor relates to the ship handling techniques applying to large 

vessels. Container ships and bulk carriers formed a higher proportion than other type 

ships in collisions. Navigators on large container ships, especially without experience 

calling at Keelung, have a higher than average risk perception. 

Restricted visibility is the maJor environmental factor m navigational risk. Users 
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expressed concern when transiting at night and in spring, the rainy and foggy season. 

Strong winds have a significant effect on grounding. The NE monsoon often causes ships 

to drag anchor in the outside anchorage. Strong current is a potential factor in contacts. 

In the simulation experiment most subjects agreed that the strong current was the main 

environmental factor in the cases of inbound ships colliding with breakwaters. The strong 

current also was similarly considered to be a major concern when anchoring. 

8.2 NAVIGATION EFFICIENCY AFFECTED BY RISKS 

Navigation efficiency is reduced by accidents and by traffic congestion in the approaches. 

Depending on traffic flow, efficiency was considered in terms of costs and time. Costs 

resulting from accidents were determined from information providing from shipping 

companies, although information was only obtained relating to 31.1 % of the vessels 

involved. During 1987-1991, the average cost of hull damage caused by collision 

accidents was US$203,600 including one bulk carrier which sank as a total loss. The 

repair costs attributable to grounding or contact were much higher than those of 

collisions. In addition to hull repair cost, a ship owner may increase operational cost due 

to charter other ships to continue the service. Fortunately, during the five years there was 

only one grounding accident causing oil spillage, and that was cleaned up quickly. Two 

people died in rescue operations following a further grounding. The Keelung Harbour 

Bureau confmned no accident blocked the fairway. 

From the radar survey, it was found that 16.8% of inbound ships were delayed more 

than 30 minutes while waiting at the pilot station. The drifting denies other ships the use 

of sea room. Due to the navigable water being constrained, any action drifting in the 
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lanes or violating the TSS regulations may cause subsequent ships to increase passage 

time in collision avoidance by altering courses and/or speed. The simulation experiment 

revealed some ships took a great turn at the northern part of the approaches. That may 

endanger other users, such as ships bound for the NW section. Strong wind and current 

cause ships need to take.a great leeway to maintain position, especially large container 

ships. It can be inferred that some ships take time in adjusting ship position. 

8.3 IMPROVEMENT OF NAVIGATIONAL SAFETY AND EFF1CIENCY 

The majority of accidents occurring in Keelung approaches result in additional costs to 

ship owner, port authority and public. In order to decrease these costs, reducing 

navigational risk is a principal object to Keelung port authority in competition with other 

ports. It is apparent that efficient traffic flow will automatically result from the safe 

navigation environment so produced. 

According to mariners' opinions, the navigational risk in Keelung approaches could be 

reduced by sequence control at the pilot station, traffic control in traffic lanes, and 

enforcement of safety regulations. They also support TSS functions to strictly separate 

the opposing traffic flow, particularly in cases of poor visibility. Due to violation of 

regulations by merchant ships and fishing boats, the safety improvement by the TSS is 

not significant. It was supposed that there were some reasons for these violations, 

inCluding lack of sufficient sea room, lack of identification mark and lack of surveillance. 

Through the simulation experiment, these suppositions were confirmed. 

In the experiment, the width of lanes were found insufficientto cover the observed range 
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of ship tracks. Taking account of limitation of navigable water area, the only way to 

increase the lane area is to change the relatively large separation zone to a narrow 

separation line, using this sea area for wider traffic lanes. Then, establishment of a 

fairway buoy provides an accurate identification of lanes (Figure 8-1, 8-2). Radar 

surveillance is necessary to monitor ship movement and warn against violation. The 

effectiveness of these methods for changing traffic flow into a safer system has been 

evidenced and supported by the experiment. 

The restriction of traffic flow is concerned not only with proper ship movement but also 

with safe distance between ships in the lanes. Control of ship sequence at the pilot station 

is another measure for improving safety. After the separation line recommendation is 

adopted, the inbound lane near the pilot station is wider but the manoeuvring room is still 

insufficient for two ships to pass safely during a strong wind. From subjects' opinions, 

a one mile CPA to a ship boarding pilot is necessary for safety. Therefore, the signal 

station in Keelung must establish a sequence control so that following ships can reduce 

speed early and choose a safe area for drifting. Provision of weather and ship movement 

information may enable relevant ships to take early and proper action. 

Meanwhile, the experiment pointed out that vessels without pilots were more at risk of 

striking the breakwaters, especially in adverse weather. Compulsory pilotage is 

commonplace in the majority of ports throughout the world. Any accident in Keelung 

could damage not only the ship but also port facilities, and a serious accident could block 

the channel. So as to maximise profit it is recommended that Keelung should become a 

compulsory pilotage area for some ships transiting the main channel. 
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Figure 8-2 The recommended Keelung TSS 
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Improvement of navigational efficiency may be expected to follow these measures (Table 

8-2), especially for large container ships and foreign flag ships whose masters are not 

familiar with the port conditions. Traffic control and compulsory pilotage may 

inconvenience a few ships, but this would be a marginal cost when compared with the 

overall economic gains in safety and efficiency. Once the traffic lanes are widened and 

the fairway buoy installed, ships could easily locate the lane entrance or exit, and make 

a better approach and departure route. Position fixing would be simplified allowing 

greater alteration to other tasks. The lane width would be adequate for ships waiting at 

the pilot station, and under positive shore control delays at the pilot station should be 

minimised or removed. 

Table 8-2 Navigational efficiency from measures improving safety 

Methods 
Reducing Reducing Decreasing Smoothing Shortening 
deviation position collision traffic flow ship route 

error risk 

Widening lane width X X X 

Positioning fairway buoy X X X 

Radar surveillance X X X X 

Sequence control X X X 

Distance control X 

Compulsory pilotage X X X X 

Providing current 
information X X 

Providing ship 
X X movement information 

The measures, including: shore-based radar surveillance; sequence control and CPA 

advice; provision of current and ship movement information; compulsory pilotage; and 
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particularly modification of the TSS and installation of a fairway buoy, .are 

recommendations to Keelung port authority for improvement of navigational safety and 

efficiency. It is thought that this study may contribute to Keelung port development. 

8.4 FUTURE RESEARCH 

The recommendations made in para 8.3 are set against the existing situation at Keelung. 

It is recognized that many of the problems that need to be overcome, in this study, 

stemmed from the lack of an adequate information data base, As improvement of 

navigational safety and efficiency is a continuing objective, it is necessary to build up an 

archive giving an accurate record of marine accidents, from which to evaluate continuing 

risk. Following complete or partial implementation of the recommendations stemming 

from this study, further observations and analysis are required. The future investigations 

include the speed proftle of ships entering and leaving Keelung harbour and ship 

encounter rate in the area north of the separation scheme. The traffic control in the 

traffic lanes may associate with speed limit. The encounter is related to the collision risks 

near the suggested fairway buoy. From such analysis the effectiveness of the measures 

and any need to fine tune could be determined. 
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Questionnaire's form of mariner opinions 
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QUESTIONNAIRE ON MARINE SAFETY 
IN KEELUNG PORT WATER 

A. BASIC INFORMATION 

A 1. FULL TIME SHIPBOARD EXPERIENCE 

Appendix A 

Please indicate your number of years of fulltime shipboard experience. 
year(s) 

A2. MOST RECENT YEAR OF FULLTIME SHIPBOARD EXPERIENCE 
Please 'indicate your most recent year of fulltime shipboard experience 
calling Keelung port. 1 9 __ _ 

Please indicate your occupation during your most recent year of fulltime 
shipboard experience calling Keelung port. Circle the appropriate number. 

1 . Master/Mate of a merchant vessel. 
2. Master/Mate of a fishing vessel. 
3. Master/Mate of a government vessel. 
4. Pilot. 

5. Other, please specify ------------

If your answer is "1 •, please indicate the type and gross tonnage of 
the vessel by circling the appropriate number. 
Type: 

1 . Container ship. 
2. General cargo ship. 
3. Bulk carrier. 
4. Tanker. 
5. Passenger ship. 
6. Other, please specify ------------

Gross tonnage: 
1 . Less than 500 grt. 
2. 500 . 999 grt. 
3. 1 ,000 . 4,999 grt. 
4. 5,000 . 9,999 grt. 
5. 1 0,000 . 1 9,999 grt. 
6. 20,000 . 39,999 grt. 
7. More than 40,000 grt. 
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B. RISK PERCEPTION 

81. RISK FACTORS 
Various factors contribute to accidents or to situations where the chance 
of an .accident increase. Based on your total experience, please indicate 
how often, iri your opinion, the factors below would increase marine risk 
in Keelung port. Circle the appropriate number on each row. 

1. Outside area of the Traffic Separation Scheme: 

Undecided/ Very seldom Seldom Sometimes Often Very often 

no opinion/ increases increases increases increases increases 

don't know risk risk risk risk risk 

High density 0 2 3 4 5 

of traffic 

Fishing vessels 0 2 3 4 5 

in shipping lanes 

Strong currents 0 2 3 4 5 

Poor visibility 0 2 3 4 5 
(fog, rain) 

Strong wind 0 2 3 4 5 

Shallow water 0 2 3 4 5 

Natural. underwater 0 2 3 4 5 
hazard 

Other. please specify 

2. Within area of the Traffic Separation Scheme and near the breakwater: 

Undecided/ Very seldom Seldom Sometimes Often Very. often 

no opinion/ increases increases increases increases increases 

don't know risk risk risk risk risk 

High density 0 2 3 4 5 

of traffic 

Fishing vessels 0 2 3 4 5 

in shipping'lanes 

Strong currents 0 2 3 4 5 

Poor visibility 0 2 3 4 5 

(fog, rain) 

Strong wind 0 2 3 4 5 

Shallow water 0 2 3 4 5 

Natural underwater 0 2 3 4 5 

hazard 

Other, please specify 
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3. Within area of anchorage: 

Undecided/ Very seldom Seldom Sometimes Often Very often 
no opinion/ increases increases increases increases increases 
don't know risk risk risk risk risk 

High density 0 2 3 4 5 
of traffic 

Fishing vessels 0 2 3 4 5 
in shipping lanes 

Strong currents 0 2 3 4 5 

Poor visibility 0 2 3 4 5 
(fog, rain) 

Strong wind 0 2 3 4 5 

Shallow water 0 2 3 4 5 

Natural underwater 0 2 3 4 5 
hazard 

Other, please specify 

B2. OVERALL RISK 

For each area, season, daytime and nighttime in Keelung port, and for the 
generally prevailing conditions, please indicate its overall risk as you 
see it. Circle the appropriate number. 

By area: 

Outside area of Traffic 
Separation Scheme 

Undecided/ 
no opinion/ 
don~t know 

0 

Within area of Traffic 
Separation Scheme and 
near the breakwater 

0 

Within area of 
anchorage 

By season: 

Jan.· Mar. 

Apr.· Jun. 

Jul.· Sop, 

Oct.- Dec. 

By light: 

Day· time 

Night-time 

0 

0 

0 

0 

0 

0 

0 

Very 
low 
risk 

Low 
risk 

2 

2 

2 

2 

2 

2 

2 

2 

2 

moderate 
risk 

3 

3 

3 

3 

3 

3 

3 

3 

3 

Other, please-specify-----------------
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4 

4 

4 

4 

4 

4 

4 

4 

4 

Very 
high 
risk 

5 

5 

5 

5 

5 

5 

5 

5 
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C, OPTIONS FOR RISK REDUCTION 

Cl. OPTIONS 

C2. 

There are different ways of improving marine safety. Please indicate 
the contribution of the following methods in improving marine safety 
in Keelung port. Circle the appropriate number on each row. 

Undecided/ Very Very 

no opinion/ linle Linle Moderate Significant significant 

don't know 

Institution of speed 0 2 3 4 5 

limits in traffic lanes 

Improved provision of 0 2 3 4 5 

weather information 

Improved control over 0 2 3 4 5 

fishermen in traffic lanes 

·Improved control of ship 0 2 3 4 5 

sequence at·pilot station 

Stricter enforcement of 0 2 3 4 5 

ship safety regulations 

Upgraded fixad and 0 2 3 4 5 

floatingiaids 

Upgraded shore based 0 2 3 4 5 

electronic navigational aids 

Provision of Vessel 0 2 3 4 5 

Traffic Services 

Other, please specify 

MODIFICATION TO TRAFFIC SEPARATION SCHEME 
Please indicate how, in your opinion, the design of Traffic Separation 
Scheme in Keelung port should be modified by circling the appropriate 
number. 

Undecided/ Slightly Slightly 

no opinion/ Disagrees disagree agree Agree 

don't know 

Length of traffic lanes 0 2 3 4 

Width of traffic lanes 0 2 3 4 

Location of Pilot station 0 2 3 4 

Direction of traffic 0 2 3 4 

lanes 

Other, please specify 
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Commands of the SPSSIPC + 
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TITI£ 'NAVIGATIONAL RISK SNRVEY'. 

SET DISK = 0N. 
SET LISTING 'QUESTION.LIS'. 
DATA LIST FILE = 'QUESTION.DAT' 

I No 1-3 Ex 4-5 Yr 6-7 Occ 8 Rank 9Type 10 Ton 11 
Bll TO B18 13-20 
B21 TO B28 21-28 
B31 TO B38 29-36 
B41 TO B50 38-47 
Cll TO C19 48-56 
C21 TO C25 57-61. 

VARIABLE LABELS 
Ex 'the number of years of experience' 

I Yr 'the recent year calling Keelung port' 
I Occ 'occupation' 
I Rank 'the rank on the merchant vessel' 
I Type 'the type of the merchant vessel' 
I Ton 'the gross tonnage of the merchant vessel' 
I Bll 'high density of traffic at outside area' 
I Bl2 'fishing vessel at outside area' 
I B13 'strong current at outside area' 
I B14 'poor visibility at outside area' 
I Bl5 'strong wind at outside area' 
I B16 'shallow water at outside area' 
I B17 'natural underwater hazard at outside area' 
I Bl8 'the other factors at outside area' 
I B21 . 'high density of traffic within TSS area' 
I B22 'fishing vessel within TSS area' 
I B23 'strong current within TSS area' 
I B24 'poor visibility within TSS area' 
I B25 'strong wind within TSS area' 
I B26 'shallow water within TSS area' 
I B27 'natural underwater hazard within TSS' 
I B28 'the other factors within TSS area' 
I B31 'high density of traffic in anchorage' 
I B32 'fishing vessel in anchorage' 
I B33 'strong current in anchorage' 
I B34 'poor visibility in anchorage' 
I B35 'strong wind in anchorage' 
I B36 'shallow water in anchorage' 
I B37 'natural underwater hazard in anchorage' 
I B38 'the other factors at outside area' 
I B41 'overall risk at outside area' 
I B42 'overall risk within TSS area' 
I B43 'overall risk at anchorage area' 
I B44 'overall risk from January to March' 
I B45 'overall risk from April to June' 
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I B46 'overall risk from July to September' 
I B47 'overall risk from October to December' 
I 848 'overall risk at day-time' 
I 849 'overall risk at night-time' 
I C 11 'speed limitation' 
I C12 'provision of weather information' 
I C13 'controlling fishermen' 
I C14 'sequence at pilot station' 
I C15 'stricter regulations' 
I C16 'visual navigational aids' 
I C17 'electronic navigational aids' 
I C18 'the reduction of risk by VTS' 
I C19 'the reduction of risk by other options' 
I C21 'length of traffic lanes' 
I C22 'width of traffic lanes' 
I C23 'location of pilot station' 
I C24 'direction of traffic lanes' 
I C25 'modification to TSS in other options'. 

MISSING VALUE 

Appendix B 

Ex (99)/ Yr (99)/ Occ (9)/ Rank (9)/ Type (9)/ Ton (9)/ Bll to C25 (9). 

VALUE LABELS 
Type 1 'Container Ship' 

2 'General Cargo Ship' 
3 'Bulk Carrier' 
4 'Tanker' 

I Ton 1 'Small ship' 

RECODE 

2 'Medium ship' 
3 'Large ship'. 

Ton (lo thru 3 = 1) (4 thru 5 = 2) (6 thru 7 = 3). 

MEAN Ex by Occ. 

CROSSTABULATION Type BY Ton 
/OPTIONS = 3,4. 

MEANS Bll to B18 by Occ. 

CROSSTABULATION Occ by Bll to B18 
/OPTIONS = 3. 

NPAR TESTS K-W = Bll to Bl8 by Occ(1,4). 

NPAR TESTS K-W = Bll to B18 by Type(l,4). 
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NPAR TESTS K-W = Bll to Bl8 by Ton(1,3). 

NPAR TESTS M-W = Bll to B18 by Occ(l,2). 

NPAR TESTS M-W = Bll to B18 by Occ(l,3). 

NPAR TESTS M-W = Bll to Bl8 by Occ(l,4). 

NPAR TESTS M-W = Bll to B18 by Occ(2,3). 

NPAR TESTS M-W = Bll to B18 by Occ(2,4). 

NPAR TESTS M-W = Bll to B18 by Occ(3,4). 

NPAR TESTS M-W = Bll to B18 by Type(1,2). 

·NPAR TESTS M-W = Bll to B18 by Type(l,3). 

NPAR TESTS M-W = Bll to B18 by Type(l,4). 

NPAR TESTS M-W = Bll to B18 by Type(2,3). 

NPAR TESTS M-W = Bll to Bl8 by Type(2,4). 

NPAR TESTS M-W = Bll to B18 by Type(3,4). 

NPAR TESTS M-W = Bll to B18 by Ton(1,2). 

NPAR TESTS M-W= Bll to B18 by Ton(1,3). 

NPAR TESTS M-W = Bll to B18 by Ton(2,3). 
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Means and standard deviation of mariner opinions 
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C-1 Overall risk 

Senior Junior Pilot El master Total 

Outside area of TSS 
No. 65 54 10 24 153 
Per cent 42.5 % 35.3% 6.5% 15.7% 100.0% 
Mean 2.9846 3.0000 2.2000 3.0417 2.9477 
Std Dev 0.8384 0.7004 0.4216 0.8065 0.7846 

Within area of TSS and near B/W 
No. 65 54 10 26 155 
Per cent 41.9 34.8% 6.5% 16.8% 100.0% 
Mean 3.6308 3.7407 3.2000 3.3462 3.5935 
Std Dev 0.7618 0.9150 0.6325 1.0175 0.8556 

Outside anchorage 
No. 64 54 10 23 151 
Per cent 42.4% 35.8% 6.6% 15.2% 100.0% 
Mean 3.1250 3.1481 2.6000 2.8261 3.0530 
Std Dev 0.9172 0.7869 0.6992 0.7777 0.8469 

January - March 
No. 66 54 10 26 156 
Per cent 42.3% 34.6% 6.4% 16.7% 100.0% 
Mean 3.9242 4.0000 3.8000 3.7308 3.9103 
Std Dev 0.7905 0.9316 0.6325 0.8274 0.8376 

April - June 
No. 62 53 10 26 151 
Per cent 41.1% 35.1% 6.6 % 17.2% 100.0% 
Mean 2.7419 2.8491 2.4000 2.3846 2.6954 
Std Dev 0.7668 0.8412 0.8433 0.8038 0.8164 

July - September 
No. 62 53 10 25 150 
Per cent 41.3% 35.3% 6.7% 16.7% 100.0% 
Mean 2.5645 2.8491 1.9000 2.5600 2.6200 
Std Dev 0.7601 0.7441 0.3162 0.8206 0.7743 

October- December 
No. 65 54 10 26 155 
Per cent 41.9% 34.8% 6.5 % 16.8% 100.0% 
Mean 3.8154 4.0370 3.4000 3.7308 3.8516 
Std Dev 0.7684 0.8459 0.8433 0.8744 0.8280 

Day-time 
No. 63 53 9 28 153 
Per cent 41.2% 34.6% 5.9% 18.3 % 100.0 % 
Mean 2.5397 2.7547 2.1 111 2.5000 2.5817 
Std Dev 0.6905 0.6476 0.7817 0.6939 0.6941 

Night-time 
No. 66 53 10 28 157 
Per cent 42.0 % 33.8% 6.4% 17.8% 100.0% 
Mean 3.6970 3.8491 3.1000 3.5714 3.6879 
Std Dev 0.8222 0.7178 0.5676 0.6341 0.7583 

1 - very low risk 
2 - low risk 
3 - moderate risk 
4- high risk 
5 - very high risk 
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C-2 Risk factors at outside area of the TSS 

High density of traffic 
No. 
Per cent 
Mean 
Std Dev 

Fishing vessel in area 
No. 
Per cent 
Mean 
Std Dev 

Stronger currents 
No. 
Per cent 
Mean 
Std Dev 

Poor visibibty 
No. 
Per cent 
Mean 
Std Dev 

Strong wind 
No. 
Per cent 
Mean 
Std Dev 

Shallow water 
No. 
Per cent 
Mean 
Std Dev 

Natural underwater hazard 
No. 
Per cent 
Mean 
Std Dev 

1 - very seldom increase risk 
2 - seldom increases risk 
3 - sometimes increases risk 
4 - often increases risk 
5 - very often increases risk 

Senior 

64 
41.3% 
3.1875 
1.0820 

66 
42.6% 
3.5303 
0.9643 

64 
40.8% 
3.4375 
0.9900 

63 
41.4% 
3.6825 
0.9972 

65 
41.4% 
3.4154 
0.9167 

59 
39.9% 
2.4407 
0.9874 

58 
40.6% 
2.3966 
1.0077 

Junior Pilot 

54 10 
34.8% 6.5% 
3.2222 2.5000 
0.9648 0.8498 

54 10 
34.8% 6.5% 
3.6296 3.0000 
0.9961 0.9428 

55 10 
35.0% 6.4% 
3.4000 3.2000 
0.9926 0.9189 

54 10 
35.5% 6.6% 
3.7593 4.0000 
0 .9098 1.0541 

54 10 
34.4% 6.4% 
3.6496 3.5000 
0.9770 1.1785 

52 10 
35.1% 6.8% 
2.8269 1.9000 
1.1669 1.1005 

49 10 
34.3 % 7.0% 
2.7347 2.1000 
1.1863 0.9944 
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El master Total 

27 155 
17.4% 100.0% 
2.7778 3.0839 
0.8916 1.0126 

25 155 
16.1% 100.0% 
3.3200 3.4968 
0 .9000 0.9695 

28 157 
17.8% 100.0% 
3.2143 3 .3694 
0.8325 0.9560 

25 152 
16.4% 100.0% 
3.3600 3.6776 
1.1136 0.9940 

28 157 
17.8 % 100.0% 
3.7143 3.5478 
0.8545 0.9436 

27 148 
18.2% 100.0% 
2.8519 2.6149 
1.0635 1.0975 

26 143 
18.2% 100.0% 
2.8462 2.5734 
1.1556 1.1101 
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C-3 Risk factors within area of the TSS and near the breakwater 

High density of traffic 
No. 
Per cent 
Mean 
Std Dev 

Fishing vessel in area 
No. 
Per cent 
Mean 
Std Dev 

Stronger currents 
No. 
Per 
Mean 
Std Dev 

Poor visibility 
No. 
Per cent 
Mean 
Std Dev 

Strong wind 
No. 
Per cent 
Mean 
Std Dev 

Shallow water 
No. 
Per cent 
Mean 
Std Dev 

Natural underwater hazard 
No. 
Per cent 
Mean 
Std Dev 

1 - very seldom increase risk 
2 - seldom increases risk 
3 - sometimes increases risk 
4 - often increases risk 
5 - very often increases risk 

Senior Junior 

64 55 
41.3 % 35.5% 
3.4688 3.6727 
1.1543 1.0725 

65 54 
42.5% 35.3% 
3.7077 3.8333 
1.0266 0.9857 

65 55 
41.4% 35.0% 
3.6923 3.8182 
0.9507 1.0017 

64 55 
41.6% 35.7 % 
3.7188 3.8545 
1.0461 1.0787 

65 55 
41.2% 34.8 % 
3.5538 3.8545 
0.9525 0.9313 

59 54 
39.1% 35.8% 
2.8814 3.3148 
1.2047 1.1627 

55 51 
38.7% 35.9% 
2.5636 2.9608 
1.1982 1.2643 
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Pilot El master Total 

10 26 155 
6.5% 16.8% 100.0% 
3.5000 3.2692 3.5097 
0.9718 1.2508 1.1303 

10 24 153 
6.5% 15.7% 100.0% 
4.0000 3.7083 3 .7712 
0.8165 1.1221 1.0098 

10 27 157 
6.4% 17.2% 100.0% 
4.0000 3.5185 3 .7261 
0.8165 1.1887 1.0039 

10 25 154 
6.5 % 16.2% 100.0% 
4.4000 3.4000 3 .7597 
0.5164 1.2910 1.0910 

10 28 158 
6.3 % 17.7% 100.0% 
4.4000 3.7500 3 .7468 
0.9661 1.0408 0 .9770 

10 28 151 
6.6% 18.5% 100.0 % 
2.3000 2.9643 3.0132 
1.3375 1.2905 1.2328 

10 26 142 
7.0% 18.3 % 100.0 % 
2.1000 2.8846 2.7324 
1.1972 1.4513 1.2823 



C-4 Risk factors at outside anchorage 

High density of traffic 
No. 
Per cent 
Mean 
Std Dev 

Fishing vessel in area 
No. 
Per cent 
Mean 
Std Dev 

Stronger currents 
No. 
Per cent 
Mean 
Std Dev 

Poor visibility 
No. 
Per cent 
Mean 
Std Dev 

Strong wind 
No. 
Per cent 
Mean 
Std Dev 

Shallow water 
No. 
Per cent 
Mean 
Std Dev 

Natural underwater hazard 
No. 
Per cent 
Mean 
Std Dev 

1 - very seldom increase risk 
2 - seldom increases risk 
3 - sometimes increases risk 
4 - often increases risk 
5 - very often increases risk 

Senior 

65 
42.8% 
3.2923 
0.9957 

66 
42.9% 
3.2576 
1.0570 

66 
43.1% 
3.3030 
0.9441 

65 
42.5% 
3.4769 
1.0474 

64 
42.1% 
3.7500 
0.8729 

60 
40.5% 
2.8833 
1.1802 

59 
41.0% 
2.8136 
1.1814 

Junior Pilot 

52 9 
34.2% 5 .9% 
3.4615 3.3333 
0.9385 0.7071 

53 9 
34.4 % 5.8% 
3.4717 3 .1111 
1.0489 0.6009 

52 9 
34.0% 5 .9% 
3.5962 3.5556 
0.9754 0.5270 

53 9 
34.6% 5.9 % 
3.6792 3.7778 
1.0701 1.2019 

53 9 
34.9% 5.9 % 
3.5556 3.5556 
1.0065 0.5270 

53 9 
35.8% 6.1% 
3.2264 2.2222 
1.1708 0.9718 

50 9 
34.7% 6.3 % 
3.1200 1.8889 
1.1718 0.7817 
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El master Total 

26 152 
17.1% 100.0% 
3.1538 3.3289 
1.1556 0.9885 

26 154 
16.9% 100.0% 
3.0385 3.2857 
1.0385 1.0335 

26 153 
17.0 % 100.0 % 
3.3462 3.4248 
0.8458 0.9226 

26 153 
17.0% 100.0% 
3.5385 3.5752 
0.9479 1.0431 

26 152 
17.1% 100.0% 
3.6923 3.6776 
0.9282 0.9106 

26 148 
17.6% 100.0 % 
3.1538 3.0135 
1.0842 1.1663 

26 144 
18.1 % 100.0 % 
2.9615 2.8889 
1.2159 1.1892 
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C-5 Risk deduction in improving marine safety 

Senior Junior Pilot El master Total 

Speed limits in traffic lanes 
No. 63 55 10 27 155 
Per cent 40.6 % 35.5% 6.5 % 17.4% 100.0 % 
Mean 2.9048 3.0727 1.6000 3.0370 2.9032 
Std Dev 0.9790 0.9973 0.6992 1.0913 1.0431 

Provision of weather information 
No. 65 55 10 26 156 
Per cent 41.7% 35.3% 6.4% 16.7% 100.0 % 
Mean 3.3231 3.4909 2.2000 3.5000 3.3397 
Std Dev 1.0913 0.9403 0.6325 0.9055 1.0255 

Control over fishermen in traffic lanes 
No. 65 55 10 27 157 
Per cent 41.4% 35.0% 6.4% 17.2% 100.0 % 
Mean 4.2000 4.2727 3.9000 4.2222 4.2102 
Std Dev 0.7746 0.7807 0.5676 0.7511 0.7598 

Control of ship sequence at pilot station 
No. 64 55 10 26 155 
Per cent 41.3% 35.5% 6.5 % 16.8% 100.0% 
Mean 4.4219 4.4364 3.9000 4.1538 4.3484 
Std Dev 0.8127 0.6314 0.5676 1.0077 0.7862 

Enforcement of ship safety regulation 
No. 66 55 10 27 158 
Per cent 41.8% 34.8% 6.3 % 17.1% 100.0% 
Mean 4.0909 4.3455 4.2000 4.1111 4.1899 
Std Dev 0.8544 0.7257 1.0328 0.9740 0.8458 

Upgraded visual navigational aids 
No. 63 55 10 26 154 
Per cent 40.9% 35.7% 6.5 % 16.9 % 100.0% 
Mean 3.7460 4.0364 2.4000 4.1923 3.8377 
Std Dev 1.1635 0.8812 0.9661 0.8494 1.0815 

Upgraded shore based electronic navigational aids 
No. 61 55 8 25 149 
Per cent 40.9% 36.9% 5.4% 16.8% 100.0% 
Mean 3.6393 3.9091 2.5000 4.2800 3.7852 
Std Dev 1.2115 1.0690 1.0690 0.8426 1. 1482 

Provision of Vessel Traffic Services 
No. 64 55 8 25 152 
Per cent 42.1% 36.2% 5.3% 16.4% 100.0% 
Mean 4.2500 4.4727 3.3750 4.4400 4.3158 
Std Dev 0.8729 0.6900 1.5059 0.5831 0.8412 

1 - very little improvement 
2 - little improvement 
3 - moderate improvement 
4 - significant improvement 
5 - very significant improvement 
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Length of traffic lanes 
No. 
Per cent 
Mean 
Std Dev 

Width of traffic lanes 
No. 
Per cent 
Mean 
Std Dev 

Location of pilot station 
No. 
Per cent 
Mean 
Std Dev 

Direction of traffic lanes 
No. 
Per cent 
Mean 
Std Dev 

1 - disagree to modify 
2 - slightly disagree to modify 
3 - slightly agree to modify 
4 - agree to modify 

C-6 Modification to TSS 

Senior Junior Pilot 

59 52 10 
41.8% 36.9% 7.1% 
2.1356 2.2115 1.9000 
0.6005 0.4985 0.3162 

58 51 10 
41.7% 36.7% 7.2% 
2.1034 2.2157 2.0000 
0.6124 0.4610 0.4714 

64 53 10 
43.2% 35.8% 6.8% 
2.4219 2.6226 1.9000 
0.7929 0.6272 0.3162 

60 52 10 
42.0% 36.4% 7.0% 
2.1000 2.2308 2.0000 
0.7059 0.5465 0.4714 
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El master Total 

20 141 
14.2% 100.0% 
2.3000 2.1702 
0.8013 0.5850 

20 139 
14.4% 100.0% 
2.4500 2.1871 
0.8256 0.5967 

21 148 
14.2% 100.0% 
2.6667 2.4932 
0.8563 0.7423 

21 143 
14.7% 100.0% 
2.6190 2.2168 
0.9207 0.6934 
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Distribution of responses on risk 
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Count 
Row Percent 1 
Group-

1 
Senior 1.5 

2 
Junior 3.7 

Pilot 

Ex-master 

Column 3 
Total 2.0 

1 - very low risk 
2 - low risk 
3 - moderate risk 
4- high risk 
5 - very high risk 

D-1 Overall risk at outside area 

2 3 4 

18 29 15 
27.7 44.6 23.1 

6 37 8 
11.1 68.5 14.8 

8 2 
80.0 20.0 

6 12 5 
25.0 50.0 20.8 

38 80 28 
24.8 52.3 18.3 
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I Row 
5 I Total 

+ 
2 I 65 

3.1 I 42.5 

+ 
1 I 54 

1.9 I 35.3 

+ 
I 10 

I 6.5 

+ 
I 24 

4.2 I 15.7 

+ 
4 153 

2.6 100.0 



Count 
Row Percent 1 
Group-

Senior 

1 
Junior 1.9 

Pilot 

1 
Ex-master 3.8 

Column 2 
Total 1.3 

1 - very low risk 
2 - low risk 
3 - moderate risk 
4 - high risk 
5 - very high risk 

D-2 Overall risk within TSS area 

2 3 4 

4 23 31 
6.2 35.4 47.7 

4 13 26 
7.4 24.1 48.1 

6 3 
10.0 60.0 30.0 

4 9 9 
15.4 34.6 34.6 

13 51 69 
8.4 32.9 44.5 

178 

Appendix D 

I Row 
5 I Total 

+ 
7 I 65 

10.8 I 41.9 

+ 
10 I 54 

18.5 I 34.8 

+ 
I 10 

I 6.5 

+ 
3 I 26 

11.5 I 16.8 

+ 
20 155 

12.9 100.0 



Count 
Row Percent 1 
Group-

Senior 1.6 

1 
Junior 1.9 

Pilot 

1 
Ex-master 4.3 

Column 3 
Total 2.0 

1 - very low risk 
2 - low risk 
3 - moderate risk 
4- high risk 
5 - very high risk 

D-3 Overall risk at anchorage area 

2 3 4 

15 28 15 
23.4 43.8 23.4 

7 32 11 
13.0 59.3 20.4 

5 4 1 
50.0 40.0 10.0 

6 12 4 
26. 1 52.2 17.4 

33 76 31 
21.9 50.3 20.5 
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I Row 
5 I Total 

+ 
5 I 64 

7.8 I 42.4 

+ 
3 I 54 

5.6 I 35.8 

+ 
I 10 
I 6.6 

+ 
I 23 
I 15.2 

+ 
8 151 

5.3 100.0 



D-4 Overall risk from January to March 

Count 
Row Percent 
Group-

Senior 

Junior 1.9 

Pilot 

Ex-master 

Column 1 
Total 0.6 

1 - very low risk 
2- low risk 
3 - moderate risk 
4 - high risk 
5 - very high risk 

2 

3 
4.5 

3 
5.6 

2 
7.7 

8 
5.1 

3 4 

14 34 
21.2 51.5 

8 25 
14.8 46.3 

3 6 
30.0 60.0 

7 13 
26.9 50.0 

32 78 
20.5 50.0 

180 

Appendix D 

I Row 
5 I Total 

+ 
15 I 66 

22.7 I 42.3 

+ 
17 I 54 

31.5 I 34.6 

+ 
1 I 10 

10.0 I 6.4 

+ 
4 I 26 

15.4 I 16.7 

+ 
37 156 

23 .7 100.0 



Count 
Row Percent 
Group-

2 
Senior 3.2 

2 
Junior 3.8 

1 
pilot 10.0 

3 
Ex-master 11.5 

Column 8 
Total 5.3 

1 - very low risk 
2 -low risk 
3 - moderate risk 
4 - high risk 
5 - very high risk 

D-5 Overall risk from April to June 

2 3 4 

21 31 7 
33.9 50.0 11.3 

15 27 7 
28.3 50.9 13.2 

5 3 1 
50.0 30.0 10.0 

12 9 2 
46.2 34.6 7.7 

53 70 17 
35.1 46.4 11.3 
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I Row 
5 I Total 

+ 
1 I 62 

1.6 I 41.1 

+ 
2 I 53 

3.8 I 35.1 

+ 
I 10 

I 6.6 

+ 
I 26 

I 17.2 

+ 
3 151 

2.0 100.0 



Count 
Row Percent 1 
Group-

3 
Senior 4.8 

1 
Junior 1.9 

1 
Pilot 10.0 

1 
Ex-master 4.0 

Column 6 
Total 4.0 

1 - very low risk 
2- low risk 
3 - moderate risk 
4- high risk 
5 - very high risk 

D-6 Overall risk from July to September 

2 3 4 

28 24 7 
45.2 38.7 11.3 

16 26 10 
30.2 49.1 18.9 

9 
90.0 

12 7 4 
52.0 28.0 16.0 

66 57 21 
44.0 38.0 14.0 
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I Row 
5 I Total 

+ 
I 62 

I 41.3 

+ 
I 53 

I 35.3 

+ 
I 10 

I 6.7 

+ 
I 25 

I 16.7 

+ 
150 

100.0 



D-7 Overall risk from October to December 

Count 
Row Percent 
Group-

Senior 

Junior 

Pilot 

Ex-master 

Column 
Total 

1 - very low risk 
2- low risk 
3 - moderate risk 
4- high risk 
5 - very high risk 

2 3 

3 17 
4.6 26.2 

2 12 
3.7 22.2 

2 2 
20.0 20.0 

2 8 
7.7 30.8 

9 39 
5.8 25.2 
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4 5 

34 11 
52.3 16.9 

22 18 
40.7 33.3 

6 
60.0 

11 5 
42.3 19.2 

73 34 
47.1 21.9 
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I Row 
I Total 

+ 
I 65 

I 41.9 

+ 
I 54 

I 34.8 

+ 
I 10 

I 6.5 

+ 
I 26 

I 16.8 

+ 
155 

100.0 



Count 
Row Percent 1 
Group -

3 
Senior 4.8 

2 
Junior 3.8 

2 
Pilot 22.2 

1 
Ex-master 3.6 

Column 8 
Total 5.2 

Count 
Row Percent 1 
Group- -

1 
Senior 1.5 

Junior 

Pilot 

Ex-master 

Column 1 
Total 0.6 

1 - very low risk 
2 -low risk 
3 - moderate risk 
4 - high risk 
5 - very high risk 

D-8 

D-9 

Overall risk at day-time 

2 3 4 

27 29 4 
42.9 46.0 6.3 

13 34 4 
24.5 64.2 7.5 

4 3 
44.4 33.3 

14 11 2 
50.0 39.3 7.1 

53 77 10 
37.9 50.3 6.5 

Overall risk at night-time 

2 3 4 

3 20 33 
4.5 30.3 50.0 

15 28 
1.9 28.3 52.8 

1 7 2 
10.0 70.0 20.0 

1 11 15 
3.6 39.3 53 .6 

6 53 78 
3.8 33.8 49.7 
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I Row 
I Total 

+ 
I 63 

I 41.2 

+ 
I 53 

I 34.6 

+ 
I 9 

I 6.0 

+ 
I 28 

I 18.3 

+ 
153 

100.0 

I Row 
5 I Total 

+ 
9 I 66 

14.3 I 42.0 

+ 
9 I 53 

17.0 I 33.8 

+ 
I 10 

I 6.4 

+ 
1 I 28 

3.6 I 17.8 

+ 
19 157 

12.1 100.0 



APPENDIX- E 

Tracks of ship movement from radar observation 
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Appendix E 

E-1 All inbound ship tracks (6-9 March 1992) 

E-2 Tracks of inbound ships entering directly (6-9 March 1992) 
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Appendix E 

E-3 Tracks of inbound ships anchoring first (6-9 March 1992) 

E-4 Tracks of entering ships from anchorage (6-9 March 1992) 
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Appendix E 

E-5 All outbound ship tracks (6-9 March 1992) 
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APPENDIX- F 

Details of ship models for simulation 
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Container ship in University of Plymouth 

Specification 

Displacement: 
LengthS P: 
Block Coefficient: 
Type of Engines: 
Number of Shafts: 
Shaft Separation: 
Direction of Rotation: 
Maximum Shaft Speed: 
Type ofPropeUers: 
PropeUers Depth: 
Area of Each Rudder: 
Maximum Rudder Angle: 
Rudder Time Mid/Max: 
Maximum Speed Full Away: 
Maximum Speed Full Ahead: 
Half Ahead to Full Ahead Time: 
Draught Forward: 
Draught Aft: 
Moulded Depth: 
Bridge Height From Deck: 
Bridge Distance From COG: 
Antenna Height From Sea: 
Antenna Offset From,COG: 
Radar Blind Arc: 

Characteristics (35 Deg Port Rudder) 

"Fime to Steady State 
Speed and Rate of Turn: 
Maximum Rate of Turn: 
Percentage Loss of Speed: 
Steady State Speed: 
Steady State Rate of Turn: 
Steady State:Drift Angle: 
Time to Turn 360 Degrees: 

Telegraph Settings 

Ahead: 

Full 
Half 
Slow 
Dead Slow 
Stop 

A stem: 

Dead Slow 
Slow 
Half 
Full 
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50100 
212 
0:6 
ssd 

1 

Clockwise 
120 

1 Fixed 
ll 
44 
35 
13 
23 

17.2 
860 
12.2 
12.2 

26 
20 

-71 
37 

-71 
178-183 

631 
60.6 
50.9 
8.4 

40.3 
23;4 
491 

RPM 

90 
70 
50 
35 
0 

Speed 

17.2 Kts 
13.4 Kts 
9.6 Kts 
6.7 Kts 

0 Kts 

35 5.4 Kts 
45 6.9 Kts 
60 9:2 Kts 
80 12.2 Kts 
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Tonnes 

M 

RPM 

M 
SqM 

Deg 
s 

Kts 
Kts 

s 
M 
M 
M 
M 
M 
M 
M 

DEG.REL 

s 
DEGIMlN 

Kts 
DEGIMlN 

Deg 
s 

Pitch-% 

lOO 
lOO 
lOO 
lOO 
lOO 

lOO 
lOO 
lOO 
lOO 



Container ship in Taiwan Ocean University 

NAME: l\EELUNG :EXJ>flESS 

OWN· SHIP PARTICULARS 

l 

-------------------

Typ.o of ship : CUNT,\INEn SIIIP IIITII DBCI( LU;\DI::D 

Length : · LO,\ 209 ,92 N. I LDI' 202.'•0 ~1. 
Boom: J2, 20 NJ.::TJ.::ItS 
Droft, fulllood : B.~o }1. I DL':P'fll 12,33 H. 
Displocamcnt, full lood: 32, ou .o TUNS 

half lo11d;2t:J,G00 'l'U~S 
~allaot r23,00D TUNS 

Rudder orrongemont: s U-/Ci Ll~ lttiVD J.:: lt 

llUDDJ.::l! TUI!NlNG Sl'i::J.::D: (mNHIUN) t. 2 /SCC. 

. DISTA.\'CJ.:: UUI( TU !llllVGt::: J}7.r• H. 

Propeller nrrnngomcnt: SINGLE scnEI{ 
Typo of propeller: FIXBD PITCll PROPELLER 
Power plnnt type: DIESBL ·ENGINE 
Totnl povycr: 2'•, 500 Kll I 33, ooo rst:: 
Mnximum RPM: 125 ni'H I Z'•. ~ KNUTS 

CRITICAL RPH .1 90 RPH 
Thrusters: . D0\1 TIIHUSTEn 

llfiAF'l' HI DEff£JtENT LU1\DING CIINDITION1 
U,\LLAS1': Fllltl.:: 5.2 H. 1,\f'T 7.5 H. 
Ju\LF LoAD: " 7.5 H. I .. 7,7 H. 
ru LL LOJ\D • 11 a. 2 H. 1 " a ·'• H. 

il·lil!·l·l·l·l·ll·~ 
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Appendix F 

I NAME: KJ;:~LUNG J::XI'IIJ::SS ( .cUHl',\IN~II Sill I' NAME: li~t;LUNG EXI'IIESS { CUHTAINEII Sill I' ) 

RPM- SPEED- TABLE STOPPING TEST WITII IIEVEOSE ENGINE 

ORDER RPM PITCH SPEED 
ICNUTS 

. 10(5Jo:A 9PJ::~D) 125 100 '/> 2'• ··'· 
( 2'•. 1) 

Initial spoed: 21• .J KNOTS 
lnilioi•RPM: 12~ IIPH 
Initial heading: ooo DEGIIEE. 

8 (l1JI.L o\llE.IU) J 00 100" 19.5 
(20.0) 

6 (l~llf' ,\JIJ::AD) 75 100 " 1'•.6 
( 15. 1.) 

4 (HUll AJIJ::.ID) 50 J 00 " 9;8 
( 10, 5) 

2(0/5 ,\11~.10) JO IOU.~ z·9 ( .•.) 

0 ( STOl' ) 0 100 I' 0 

Engine order: FULL ASTERN 

Timo to revorso enQino: 5 Hili. 2J s~c. 

HUIIHAL II~V£05£ 111'111 J~ III'H 
- ?(ojs ASl'CIOH) -'2'1 1 oq ,; -5.1) 

'- 4 ( SLUW ,\STEI\/1) -'•O I UQ :' ( -0.5) 
' 

6 ( 11.\Lf ,\STI:IIN) -60 100 ~ ( -12.5) Stopping distance: 1.5 N.tllLES 
Slopping time: 7 IIIN. J'• SEC. ~ 

- 8 -80 100 " ( -16. J) Final heading: 022 D~GIIECS · 
Final RPM: -69 OI'H 

- 10(l'ULL ASTE\111) -100 100 " (-19.9) 
l'IL\NSFEII UIST.IHC£1 !00 11. 

r I <1•>'1'" t'lGIJUES nr. n:sr ouT 

Loading condition: UALL..IST Wind: 0 Loading condition: IIALL..\ST Wind: 0 

Cllllii~H'r 1 0 . CUOru:NT 1 0 
Watet depth: 100 H. Seostotc: C.\LII Water depth: 100 11. Scastate: Co\LII 
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i· 

NAME: t(et:LUIIG t::xt•tl£ss ( coNTAINt::tt Sill I' 

TURNING CIRCLE PT 

708 Jl. 

01:) 0 min 
11.9 ~~s · 
98 OPM 

06:26 n1in 
6.7 kts 
91 RPM 

2UO fl . 

LAST fl01' : 52fNlN . 

r 
7)0 fl. 

Appendix F 

NAME: ltEt::LUHG l::Xt'llliSS ( COHTtiiNEII Sill 

TURNING CIRCLE STB 

I 
n:J tl. 

735 fl . 

- 290 H. -1 

Ol:J:lmin 
12.2 kts 
99 RPM 

0]:10 
8,6 
9J 

'•70 11. 

0:00 min 
2J,J . kts 
J2 1t . RPM · 

. J L. ,,.~. 
1121, RPM 0~ 1 ~~. mln 

7, o kts 
91 APM 

35' PT Rudder 
( 17 SEC ,) 

HAX, n.o.T.: 6' JIJ N. 

Lo<~ding condition: FULL Wind: o 
CUitltt::NT; . 0 

Water depth : > 100 tl. Sc:~st<~to: CA Lli 
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. '35' STB Auddor 

(lBSEC,) 

0~ 151,mln 
7.7 lets 
92 RPM 

nu. n.o .1· .: 74/IIIH 

Loodlng condition: fULL Wind: 0 
CUIUlliNT 1 • 0 

W<~tcr dcr.th: > 1 oo H. Scostote: CAUl 
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Questionnaire for inbound experiment 
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A. Background of the navigator 

1. Rank on the merchant ship: 

DPilot OMaster OChief Mate OSecond Mate OThird Mate 
Oothers, _________ _ 

2. Experience of sea service: 

Oless than 5 years 05-9 years 010-14 years 015-19 years 

Omore than 20 years. 

B. Identification of the entrance of the inbound traffic lane 

1. In Ex1A, to identify the entrance of the inbound traffic lane is: 

Overy easy Oeasy Oaverage Odifficult Overy difficult. 

2. In Ex1B, to identify the entrance of the inbound traffic lane is: 

Overy easy Oeasy Oaverage Odifficult Overy difficult. 

Appendix G 

3. If a buoy were established at the termination of the inbound lane in Ex1A, when 

the visibility is clear, the best method for identification of the entrance of the 

lane should be: 

Oby vision with landmarks .Oby vision with entrance buoy Oby radar with 

landmarks Oby radar with entrance buoy Oby others. ______ _ 

4. When the visibility is poor, as Ex1B, the best method for identification of the 

entrance of the inbound traffic lane is: 

Oby vision with landmarks Oby vision with entrance buoy Oby radar with 

landmarks Oby radar with entrance buoy Dby others. ______ _ 

5. In Ex1B, the effectiveness of the racon on the entrance buoy is: 

Overy little Olittle Dmoderate Osignificant Overy significant. 

C. Wind effect and current effect 

l. In Ex1A, wind effect is the more important factor to influence ship's 

manoeuvring than current effect. 

Odisagree strongly Odisagree Ouncertain Oagree Oagree strongly. 

2. In Ex1B, wind effect is the more important factor to influence ship's 

manoeuvring than current effect. 

Odisagree strongly Ddisagree Duncertain Oagree Oagree strongly. 

3. In Ex1A, when ship is moving in the traffic lane, to keep ship position within 

the lane without current information is: 

Overy easy Oeasy Oaverage Odifficult Overy difficult. 
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4. In Ex1•B, after current information is provided, to keep ship position within 

traffic lane with the information is: 

Overy easy Oeasy Oaverage Odifficult Overy difficult. 

5. How many degrees did you set as leeway in Ex1A? 

Dless than three degrees 03-5 degrees 05-10 degrees 011-15 degrees 

Omore than 15 degrees. 

6. How many degrees did you set as leeway in Ex1B? 
Oless than three degrees 03-5 degrees 05-10 degrees Oll-15 degrees 
Omore than 15 degrees. 

7. Widening the inbound traffic lane to provide large sea room for ship 

manoeuvring against wind and current effects in the exercises is: 

Overy unimportant Ounimportant Oaverage Oimportant Overy important. 

D. Ship's encounter 

1. In Ex1A, when two ships encountered at the restricted water area without 

information about ship movements provided, the collision risk is: 

Overy low Olow Omoderate Ohigh Overy high. 

2. In Ex1B, after the information of other ship movements was provided, the 

collision risk to the own ship is: 

Overy low Olow Omoderate Ohigh Dvery high. 

3. Within the port approaches, the safe distance to keep from other ships under 

clear visibility, as Ex1A, is: 

Oless .than 0.1 miles 00.1-0.3 miles 00.3-0.5 miles 00.5-1.0 miles 

Omore than 1.0 miles. 

4. Within the port approaches, the safe distance to keep from other ships under 

restricted visibility, as Ex1B, is: 

Oless than 0.1 miles 00.1-0.3 miles 00.3-0.5 miles 00.5-1.0 miles 

Omore than 1.0 miles. 

E. Ship's manoeuvre near the pilot station 
1. In the exercises, when ship is waiting for the pilot with slow speed at the pilot 

station, to keep ship position in traffic lane is: 

Overy easy Oeasy Oaverage Odifficult Dvery difficult. 

2. When two ships waiting for pilots near the pilot sta.tion at the same time without 

control of ship sequence, as Ex1A, the collision risk is: 

Overy low Olow Omoderate Ohigh Overy high. 
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3. When two ships have the same ETA to pilot station under sequence control, as 

ExlB, the collision risk is: 

Dvery low Dlow Dmoderate Dhigh Dvery high. 

4. In ExlB, where is the best place for the own ship waiting for the pilot under 

poor visibility? 

Dnear pilot station Oat the entrance of traffic lane Doutside of TSS. 

5. The position of the pilot station in this port is appropriate. 

Ddisagree strongly Ddisagree Duncertain Dagree Dagree strongly. 

6. In Q6, if your answer is 'disagree strongly' or 'disagree', where is the best 

position as pilot station in this port approaches? 

F. Ship handling in entrance channel between breakwaters 

1. Have you ever been Keelung when working on ship? 

DYes ONo. 

If your answer to Ql is 'Yes', please answer the following questions: 

2. How many times have you been Keelung? 

Donee Dtwice 03-5 times 06-10 times Dmore than 10 times. 

3. Do you have the experience that two or more ships were waiting for the pilot 

at Keelung pilot station at the same time? 

Dnever Dseldom Dsometimes Doften Dall times. 

4. Do you have the experience that your ship entered Keelung port through 

breakwaters by ship master control without pilots? 

Dnever Donee Dtwice Dthree times Dmore than three times. 

5. Occasionally an entering ship has to pass through breakwaters by master's 

ability without pilot's assistance due to bad weather. The action is: 

Dvery safe Dsafe Dmoderate Ddangerous Dvery dangerous, 

6. Occasionally an inbound ship strikes the breakwater. The main environmental 

factor involved in those accidents to affect ship's handling is strong current. 

Ddisagree strongly Ddisagree Duncertain Dagree Dagree strongly. 

7. In Q6, if your answer is 'disagree strongly' or 'disagree', which environmental 

factor is the main reason for the accident? 
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A. Background of the navigator 

1. Rank on the merchant ship: 

OPilot OMaster OChief Mate OSecond Mate OThird Mate 
Oothers. __________ _ 

2. Experience of sea service: 

Oless than 5 years 05-9 years 010-14 years 015-19 years 

0 more than 20 years. 

B. Identification of the exit of the outbound traffic lane 

1. In Ex2A, to identify the exit of the outbound traffic lane is: 

Overy easy Oeasy Oaverage Odifficult Overy difficult. 

2. In Ex2B, to identify the exit of the outbound traffic lane is: 

Ov-ery easy Oeasy Oaverage Odifficult Overy difficult. 

Appendix H 

3. If a buoy were established at the termination of the outbound lane in Ex2A, 

when the visibility is clear, the best method for identification of the exit of the 

lane should be: 

Oby vision with landmarks Oby vision with exit buoy Oby radar with 

landmarks Oby radar with exit buoy Oby others'--------
4. When the visibility is poor, as Ex2B, the best method for identification of the 

exit of the outbound traffic lane is: 

Oby vision with landmarks Oby vision with exit buoy Oby radar with 

landmarks Oby radar with exit buoy Oby others'---------

5. In Ex2B, the effectiveness of the racon on the exit buoy is: 

Overy little Olittle Omoderate Osignificant Overy significant. 

C. Wind effect and current effect 

1. In Ex2A, wind effect is the more important factor to influence ship's 

manoeuvring than current effect. 

Odisagree strongly Odisagree Ouncertain Oagree Oagree strongly. 

2. In Ex2B, wind effect is the more important factor to influence ship's 

manoeuvring than current effect. 

Odisagree strongly Odisagree Ouncertain Dagree Oagree strongly. 

3. In Ex2A, when ship is moving in the traffic lane, to keep ship position within 

the lane without current information is: 

Overy easy Oeasy Daverage Odifficult Overy difficult. 
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4. In Ex2B, after current information is provided, to keep ship position within 

traffic lane with the information is: 

Dvery easy Deasy Daverage Ddifficult Dvery difficult. 

5. How many degrees did you set as leeway in Ex2A? 

Dless than three degrees 03-5 degrees 05-10 degrees Dll-15 degrees 

D more than 15 degrees. 

6. How many degrees did you set as leeway in Ex2B? 

Dless than three degrees 03-5 degrees 05-10 degrees Dll-15 degrees 

Dmore than 15 degrees. 

7. Widening the outbound traffic lane to provide large sea room for ship 

manoeuvring against wind and current effects in the exercises is: 

Dvery unimportant Dunimportant Daverage Dimportant Dvery important. 

D. Ship's encounter 

1. In Ex2A, when another inbound ship drifting at pilot station without information 

about her movements provided, the collision risk to the own ship is: 

Dvery low Dlow Dmoderate Dhigh Dvery high. 

2. In Ex2B, after the information of another ship's movements is provided, the 

collision risk to the own ship is: 

Dvery low Dlow Dmoderate Dhigh Dvery high. 

3. When an outbound ship is passing the breakwaters under clear visibility, as 

Ex2A, other inbound ships shall keep a safe distance from breakwaters at least: 

01 mile 01.5 miles 02 miles 02.5 miles 03 miles. 

4. When an outbound ship is passing the breakwaters under restricted visibility, 

as Ex2B, other inbound ships shall keep a safe distance from breakwaters at 

least: 

D 1 mile D 1.5 miles 02 miles 02.5 miles 03 miles. 

E. Shallow water near An-tou-pao shoal 

1. In Ex2A, the shallow water to the outbound ship is: 

Dvery little dangerous Dlittle dangerous Dmoderate dangerous Ddangerous 

Dvery dangerous. 

2. In Ex2B, the shallow water identified by a buoy to the outbound ship is: 

Dvery little dangerous Dlittledangerous Dmoderate dangerous Ddangerous 

Dvery dangerous. 

3. In Ex2A, the safe distance to an outbound ship keeping from the shallow water 

and Keelung Island shall be at least: 

00.3 mile 00.5 miles DO. 7 miles D 1 miles D 1.5 miles. 
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4. In Ex2B, the safe distance to an outbound ship keeping from the shallow water 

and Keelung Island under strong wind shall be at least: 

00.3 mile 00.5 miles 00.7 miles 01 miles 01.5 miles. 

F. Ship handling in main channel between breakwaters 

1. Usually a leaving ship ·has to pass through breakwaters by master's ability 

without pilot's assistance. The action is: 

Overy safe Osafe Dmoderate Odangerous Overy dangerous. 

2. Occasionally an outbound ship strikes the breakwater. The environmental factor 

to affect ship's handling is strong current. 

Ddisagree strongly Odisagree Duncertain Dagree Dagree strongly. 

3. In Q2, if your answer is 'disagree strongly' or 'disagree', which environmental 

factor is the main reason for the accident? 

4. Have you ever been Keelung when working on ship? 

DYes ONo. 

If your answer to Q4 is 'Yes', please answer the following questions: 

5. How many times have you been Keelung? 

Donee Otwice 03-5 times 06-10 times Omore than 10 times. 

6. Do you have the experience that your ship left Keelung port through 

breakwaters by ship master control without pilots? 

Dnever Oseldom Osometimes Ooften Oall times.· 

7. Do you have the experience that another ship drifting near pilot station when 

your ship was leaving Keelung port? 

Onever Dseldom Dsometimes Ooften Oall times. 
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cls:clear 
outfil$= "c:\distance.out" 
Totalline=20 
inpfile$ = "c: \distance. inp" 

'The result of ship position and distance' 
'The first data line' 
'All files of ship tracks' 

'The first data line as an example' 
dim pointl (2, Totalline),point2(2, Totalline) ,point3(2, Totalline) 

pointl (1' 1) =291 
point1(2,1)=2760 
point2(1,1)=926 
point2(2, 1) = 1668 
point3(1,1)=609 
point3(2, 1) =2214 

for i = 1 to totalline 
next i 

dim coe(3,Totalline) 

fori= 1 to Totalline 'Equation of the first data line' 
X 1 =point1(l ,i) 
y1 =point1(2,i) 
x2 =point2(1 ,i) 
y2 =point2(2,i) 
call GetCoeffOfLine(x1,y1,x2,y2,a,b,c) 
coe(1,i)=a 
coe(2,i)=b 
coe(3,i)=c 

next i 

open inpfile$ for input as #1 'To extract data from ship track file' 
k=O 
41 
if eof(1) then goto 42 

incr k 
input #1,a$ 
print a$,k 

goto 41 
42 
close #l 
print 
dim na$(k) 
open inpftle$ for input as #1 
for i=1 to k 
input #1,na$(i) 

next i 
close #1 
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totals=k 

open outfil$ for output as #3 
for file1 = 1 to totals 

nam$=na$(file1)+ ".dat" 

open nam$ for input as #1 
k=O 
print nam$, 
while eof(1) =0 

line input #l,a$ 
incr k 

wend 

print k 
close #1 

'To find the two connected points on opposite side of the first data line' 
dim track1(2,k) 

open nam$ for input as #1 
for i=1 to k 

line input #1,a$ 
track1(l,i) =val(mid$(a$,19,5)) 
track1(2,i) =val(mid$(a$,27 ,4)) 

next i 
close #1 
xtl =trackl(1,1) 
yt1 =track1(2, 1) 
for i=2 to k 

xt2 =trackl(l ,i) 
yt2 =track1(2,i) 
for lineid = 1 to Totalline 

l=lineid 
pa=coe(l,l) 
pb =coe(2,1) 
pc=coe(3,1) 
pxl=pointl(1,1) 
pyl=point1(2,1) 
px2 =point2(1 ,1) 
py2 =point2(2,1) 
xm=point3(1,1) 
ym =point3(2,1) 
Call GetSignal(xtl ,ytl ,pa,pb,pc,signt1) 
Call GetSignal(xt2,yt2,pa,pb,pc,signt2) 
if signt1 *signt2 < 0 then 

'Equation of the line of these two connected points on track' 
Call GetCoeffOfLine(xtl,ytl,xt2,yt2,ta,tb,tc) 
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'To confirm the data line and the above line crossing' 
Call GetSignal(pxl ,py 1, ta, tb ;tc, signp 1) 
Call GetSignal(px2,py2, ta, tb, tc, signp2) 
if signp 1 *signp2 < 0 then 

'The point of ship track crossing the first data line' 
intx = (pc"'tb-pb*tc)/(pa*tb"ta*pb) 
inty = (pa "'tc-ta *pc)/(pa"'tb-ta*pb) 
Call GetSignal(intx,inty ,ta,tb,tc,sig) 
Call GetSignal(intx,inty ,pa,pb,pc,sig1) 

'The distance of this point to the base line' 
dx=intx-xm 
dy=inty-ym 
dist=(dx*dx+dy*dy) ... 0.5*2.92969 

'Equation of the base line' 
ptx1=609 
ptyl =2214 
ptx2=-580 
pty2=1629 
Call GetCoeffOfLine(ptxl,ptyl,ptx2,pty2,d,e,t) 

'To find the cross point on which side of the base line' 
sigb =d*intx +e*inty-f 
if sigb > 0 then 
dist=-dist 
end if 

print #3,nam$; 
print#3," "; 
print #3,using "########.###";dist 

end if 
end if 

next lineid 
xtl =xt2 
yt1=yt2 

next i 
erase trackl 
print #3, "" 

next flle1 
print #3, 1111 

close 
end 
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sub GetCoeffOfLine(xl ,yl ,x2,y2,a,b,c) 
if (xl~x2) =0 then 
a::;::l 
b=O 
c=x1 
else 
a=(y1-y2)/(x1-x2) 
b=-1 
c=a*xl-y1 
end if 

end sub 

sub GetSignal(x,y ,a,b,c,sign2) 
if abs(a*x+b*y-c) < 0.0001 then 

sign2= 0 
else 

if a*x+b*y-c>O then sign2= 1 
if a*x+b*y-c<O then sign2=-1 

end if 
end sub 
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Data line 
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1S 
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18 

19 

20 

The distance between inbound ship tracks and base line 
in outside area in Ex-A (in metres) 

Day-time(NTOU) 

mean I st.dev 

-l.SI 4.9 

-1S.61 22.4 

41.31 S3.0 

-S8.31 82.6 

-70.21 109.7 

-73.1/ 134.7 

-72.71 !60.6 

-64.21 193.4 

-SO. 71 232.6 

-38.01 276.6 

-27.61 321.3 

-16.01 36S.6 

-11.51 40S.2 

-9.51 443.0 

-18.1148S.9 

-34.91 S39.8 

-S3.11 S81.0 

-78.SI611.S 

-117.1/ 634.2 

-197.7/ 644.6 

Night-time(NTOU) 

mean I st.dev 

1.31 4.1 

4.SI 17.1 

-17.51 3S.S 

-23.41 S0.4 

-30.31 64.0 

-34.21 77.1 

-39.81 92.1 

40.31 110.2 

-38.21 129.7 

-41.31 144.9 

-47.11 !S9.9 

-48;61 17S. 7 

-Sl.ll 193.3 

-S4.61 214.6 

-67.01 239.8 

-82.21 262.5 

-110.91287.6 

-168.31 330.3 

-253.1/ 442.6 

-347.0/ S76.3 

Night-time(UP) 

mean I st.dev. 

-10.01 9.S 

-31.31 28.8 

~6.31 42.7 

-106.71 4S.7 

-1S 1.41 39.2 

-189.31 42.1 

-21S.71 60.3 

-237 .SI 80.7 

-249.11 111.2 

-260.01 132.5 

-25S.41 169.2 

-233.41 227.0 

-200.51 292.3 

-147.1/ 3S3.0 

-124.81407.3 

-140.6/ 441.6 

-14S.41 S12.1 

-124.SI 609.S 

-97.2/ 676.2 

. 76.9/ 7S0.6 

Remark: The positive mean distance is on the right side of the base_~ine. 

The negative mean distance is on the left side of the base line. 
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Total 

mean I st.dev 

-2.41 8.0 

-1S.61 23.7 

-39.41 48.4 

-S8.01 72.S 

-7S.21 9S.3 

-8S.61 117.9 

-92.51 140.S 

-92.81 168.3 

-87.91 200.1 

-84.71 232.9 

-80.31 26S.S 

-70.31 299.8 

-62.1/ 332.8 

-SI.ll 36S.O 

-S4.S/ 402.6 

-70.61 444.1 

-89.11 48S.2 

-114.4/ S29.3 

-!S3.0/ S79.6 

-216.8/ 63S.6 



Data line 
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19 

20 

'rbe distance between inbound ship tracks and base line 
in outside area in Ex-B (in metres) 

Day-time(NTOU) 

mean I st.dev 

-2.71 4.4 

-15.81 17.4 

-31.6/ 36.7 

-29.3/ 56.7 

-11.8/ 76.8 

20:01 101.7 

53.21 133.2 

100.81 172.4 

!57.01223.7 

211.4/278.8 

263.7/ 333.1 

314.21 371.9 

358.11 401.2 

339.3/ 425.6 

431.3/ 443.7 

459.6/ 454.8 

474.1/ 460.3 

471.1/457.8 

457.31444.9 

418.51 424.1 

Night-time(NTOU) 

mean I st.dev 

-1.91 3.3 

-13.31 13.6 

-28.11 28.5 

-26.61 42.2 

-951 61.7 

22.2/ 95.5 

54.11 134.9 

90.31 178.6 

135.2/ 230.7 

183.3/ 283.9 

236:61 341.3 

300.41 399.9 

356.1/ 446.6 

402.0/ 483.9 

438.9/ 508.1 

475.0/ 517.7 

501.41 5!6.3 

521.91 512.5 

535.91 504.3 

538.41 485.9 

Night-time(UP) 

mean I stdev. 

-19.01 5.4 

-58.71 15.8 

-86.61 30.0 

-101.51 49.6 

-117.81 83.4 

-11!.51 !58.3 

-72.81 235.5 

-19.21 316.9 

57.51400.2 

124.61463.7 

209.61 529.1 

303.5/ 559.2 

401.6/ 584.5 

495.01 594.3 

587.6/611.6 

694.1/ 638.9 

775.5/ 674.5 

835.1/696.4 

884.717!8.6 

906.4/ 737.3 

.. _ -

Remark: The .positive mean distance is on the right side of the base line. 

The negative mean distance is on the left side of the base line. 
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Total 

mean I st.dev 

-5.81 8.0 

-23.91 23.8 

-41.91 39.7 

-43.4/ 58.3 

-32.91 84.2 

-6.41 122.5 

27.51 162.3 

73.01 209.0 

130.11 263.4 

185.31 316.0 

244.61 370.1 

307.9/409.3 

366.51441.5 

419.8/ 466.3 

465.71 487.7 

5!2.4/ 506.4 

544.21 522.1 

561.3/ 531.0 

568.4/ 535.8 

554.2/ 535 .I 
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Appendix l. 

The distance between inbound ship tracks and centre line 
in lane area in Ex-A (in metres) 

Day-time(NTOU) 

mean I st.dev 

-684.71 797.8 

-476.31 693.6 

-306.91 607.8 

-195.31 552.7 

-120.71 509.8 

-10.41 475.2 

-35.21 437.0 

-27.01 415.2 

-8.51 407.4 

-2.31 404.4 

-8.61 407.1 

-18.71 391.9 

-UI350,0 

24.31 306.5 

23.51 326.5 

Night-time(NTOU) 

mean I st.dev 

-672.71476.8 

-424.91 491.0 

-275.21 468.9 

-158.31 453~9 

-109.91 448.9 

-93.61 443.2 

-95.81 437.6 

-120.61 435.8 

-126.81 418.3 

-138.71 391.2 

-52.31 363.8 

-151.71347.6 

-164.11343:0 

-144.01 338.6 

-46.51 430.3 

Night-time(UP) 

mean I st.dev. 

-864.411023.0 

-600.11 849.5 

-296.01 669.4 

115.91 520:0 

222.31 451.5 

251.31 444.4 

253.51 456.3 

242.11458.3 

214.81 461.3 

214.01 437.0 

175.31433.8 

170.61 412.3 

171.01373.4 

250.71 281.3 

259.81 246.1 

Total 

mean I st.dev 

-718.21 752.7 

-486,81 658.9 

-295.31 566.4 

-120.31 518.3 

-46.91 487.0 

-11.01 466.3 

6.41446.8 

0.91 436.8 

2.71 426.1 

2.IJ 413.9 

~13.01 405.1 

-18.81 388:9 

-17.51 361.8 

14.11 332.3 

65.11344.1 

Remark: The positive mean distance is on·the. right side of the centre line. 

The negative mean distance is on the left side of the centre line. 
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The distance between inbound ship tracks and centre line 
in lane area in Ex-B (in metres) 

Day-time(NTOU) 

mean I st.dev 

140.71 336.4 

251.71332.6 

304.21 336.8 

321.71338.4 

317.01336.0 

295.61 333.8 

266.11 338.1 

224.01 346.2 

159.71340.8 

144.61 347.5 

110.41 349.8 

74.71359.4 

37.41368;3 

2.71391.4 

-50.1/439.7 

Night-time(NTOU) 

mean I st.dev 

239.51 296.9 

297.71 259.2 

306.1/247.9 

287.41 242.5 

251.71236.2 

206.31 232.6 

165.41 230.3 

126.31 226.8 

87.61 225.0 

49.31225.7 

15.41 222.3 

-12.81 217.9 

-47.11 213.0 

-65.31 217.6 

-43.51 228.2 

Night-time(UP) 

mean I st.dev. 

309.31 196.5 

351.71 231.4 

369.71 280.7 

370.01 324.7 

328.21 361.4 

270.61 380.0 

228.31 386.9 

179.31 319.7 

147.01400.9 

125.81 412.0 

119.61 434.5 

101.91 451.5 

95.61480.2 

108.81 510.8 

81.01 501.8 

Remark: The positive mean distance is on the right side of the.centre line, 

The negative,mean distance is on the left side of the.centre line. 
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Total 

mean I st.dev 

204.51 301.2 

285.81 288.6 

318.31294.6 

321.61 302.6 

300.11307.8 

264.21 310.8 

228.71314.7 

186.01 319.1 

135.91316.8 

112.71324.2 

84.31330.4 

54.61338.7 

24.51 350.0 

-0.21 360.7 

-20.91 390.7 
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Appendix L 

The distance between outbound ship tracks and centre line 
in lane area in Ex-A (in metres) 

Day-time(NTOU) 

mean I st.dev 

-256.71 146;3 

-254.31 149.3 

-246.8/ 153.0 

-240.91 157.4 

-236.3/ 16L6 

-228.41 167.0 

-221.9/ 173.5 

-214.6/ 179.6 

-206.1/ 184.8 

-199.3/ 190.7 

-188.7/ 196.9 

-179.5/ 203.0 

-168.0/ 209.8 

-154.2/ 214.8 

-143.4/ 220.3 

-132.0/ 230:0 

-122.4/ 242.4 

-121.11 262.7 

-123.5/283.8 

-131.9/ 307.8 

-150.5/ 336:0 

Night-time(NTOU) 

mean I st.dev 

-327.91 115.8 

-320:9/ 115.3 

-306.11 110.8 

-289.41 108.1 

-270:91 108.1 

-250:91 110.9 

-237.0/ 113.0 

-225.1/ 114.6 

-211.11 115.0 

-201.5/ 115.9 

-190.3/ 118.5 

-18L8/ 121.1 

-171.4/ 125.3 

-157.8/ 130.6 

-153.6/ 135.6 

-131.8/ 141.9 

-115.1/ 148.0 

-100.4/ 153.9 

-85.4/ 159:9 

.fJ9.2/ 165.1 

.fJ1.8/ 167.8 

Night-time(UP) 

mean I st.dev. 

-322.21 206.9 

-312.7/221.5 

-300.61 234.5 

-290.51 247.5 

-283.2/ 252.1 

-275.9/ 246.8 

-264.4/ 237.6 

-261.71 228.8 

-250.3/ 230.8 

-236.91 236.0 

-213.91 243.6 

-195.5/ 240.5 

-173.4/ 233.3 

-150.6/217.3 

-129.8/ 200.9 

-109.7/ 183.9 

-77.41 173.2 

-49.3/ 163.8 

-25.5/ 151.8 

-15.7/ 135.3 

-18.7/ 122.1 

Remark: The positive mean distance is on the right side of the base line. 
---

The negative mean,distance is on the left-side of the base line. 
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Total 

mean I st.dev 

-291.11 151.8 

-285.91 156~2 

-275.31 159.8 

-265.41 164.2 

-256.11166.8 

-244.8/ 168.2 

-235.11 169.2 

-227.4/ 170.6 

-216.7/ 173~7 

-207.7/ 177.9 

-194.4/ 183.1 

-183.5/ 185.9 

-170.1'1 186.5 

-154.5/ 188.7 

-141.3/ 189.5 

-127.4/ 193.3 

-111.0/200.6 

-100.2/ 213.5 

-92.1/ 227.3 

-89.5/ 242.7 

-97.3/ 261.3 
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Appendix L 

The distance between outbound ship tracks and centre line 
in lane area in Ex-B (in metres) 

Remark: 

Day-time(NTOU) 

mean I st.dev 

-252.61 90.0 

-247.51 91.2 

-237.41 90.4 

-228.11 87.0 

-217.4/ 85.4 

-203.4/ 82.7 

-190.11 80.7 

-176.01 78.9 

-157.7/ 78.5 

-143.51 79.0 

-124.3/ 81.6 

-108.2/ 85.3 

-88.7/ 89.5 

-68.0/ 92.0 

-50.8/ 94.7 

-34.2/ 98.2 

-17.0/ 102.4 

4.11 106.4 

3.4/ 109.2 

5.0/ 133.6 

-12.8/ 126.1 

Night-time(NTOU) 

mean I st.dev 

-289.31 102.5 

-275.71 108.1 

-258.91 109.9 

-244.71 107.7 

-229.4/ 103.7 

-211.5/ 110.7 

-195.5/ 99.7 

-178.5/ 99.7 

-158.4/ 99.2 

-140.6/ 98.3 

-121.8/ 97.8 

-106.6/ 99.1 

-89.7/ 100.1 

-70.6/ 101.7 

-55.0/ 103.2 

-37.7/ 107.4 

-19.5/ 112.2 

-5.71 117.7 

6.9/ 124.1 

17.2/ 248.4 

11.6/147.8 

Night-time(UP) 

mean I st.dev. 

-317.01 129.2 

-303.81 129.2 

-275.01 131.0 

-246.21 132.8 

-220.0/ 128.8 

-192.7/ 130.5 

-160.6/ 137.6 

-128.2/ 149.9 

-95.3/ 161.8 

-66.7/ 175.7 

-29.9/ 192.7 

-5.5/ 208.2 

16.6/ 220.6 

40.61 223.4 

67.2/221.5 

100.3/ 229.5 

133.3/ 239.7 

160.0/ 238.0 

191.11 239.4 

214.0/ 248.4 

220.6/ 254.8 

The positive mean distance is•on the right side of the centre line. 

The negative mean distance is on the left side of the centre line. 
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Total 

mean I st.dev 

-276.71 102.5 

-267.41 103.7 

-251.51 103.0 

-236.7/ 100.6 

-221.5/ 97.5 

-203.6/ 96.0 

-185.61 97.4 

-166.9/ 101.1 

-145.11 105.3 

-126.8/ 110.6 

-104.11 118.6 

-86.6/ 125.9 

-67.3/ 131.7 

46.41 134.2 

-27.8/ 136.3 

-7.61 143.2 

13.2/ 151.1 

29.2/ 155.3 

43.11 162.0 

51.6/ 172.2 

42.4/ 184.6 



APPENDIX M 

The results of Wilcoxon test and M-W test to ship tracks 
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Appendix M 

M-1 The significance level of distance at outside area for inbound tracks 

M-W test 
Wilcoxon test 

Data Ex-A Ex-B 

line Ex-A I Ex-B day/night night day/night night 
(NTOU) (NfOUIUP) (NTOU) (NTOU/UP) 

34/34 tracks 17/10 tracks 10n tracks 17/ 10 tracks 10n tracks 

1 0.0032 0.1509 0.0127 0 .6321 0.0006 
2 0.0268 0.2379 0.0404 0.4215 0.0006 
3 0.4519 0.3401 0.0248 0.3795 0.0025 
4 0.3471 0.3932 0.0084 0.6879 0.0047 
5 0.0196 0.3153 0.0006 0.8408 0.0147 
6 0.0042 0.3153 0.0006 0.9600 0 .0510 
7 0.0012 0.3933 0.0013 0.9200 0.1432 
8 0.0004 0.6156 0.0025 0.9200 0 .2831 
9 0.0002 0.8018 0.0047 0.9200 0.4350 
10 0.0001 0.8018 0.0063 0.8408 0.4945 
11 0.0001 0.8803 0.0510 0.8408 0.5582 
12 0.0001 1.0000 0.1432 0.7632 0.9223 
13 0.0000 1.0000 0.4350 0.8408 0 .6963 
14 0.0000 0.9600 0.5582 0 .9600 0 .6963 
15 0.0000 0.9600 0.7697 0 .9600 0 .6256 
16 0.0000 0.9200 0.4350 0 .9600 0 .5582 
17 0.0000 0.8803 0.3798 0 .9600 0.3291 
18 0.0000 0.6879 0.4945 0.8018 0.2046 
19 0.0000 0.5139 0.7697 0 .7632 0.2046 
20 0.0000 0.6514 0.6963 0 .6156 0 .2046 
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Appendix M 

M- 2 The significance level of distance at lane area for inbound tracks 

M-W test 
Wilcoxon test 

Data Ex-A Ex-B 

line Ex-A I Ex-B day/night night day/night night 
(NTOU) (NTOUIUP) (NTOU) (NTOUIUP) 

34/34 tracks 17/10 tracks 1017 tracks 17/ 10 tracks 1017 tracks 

1 0.0000 0 .9200 0.3291 0.4514 0.1917 
2 0.0000 0.8018 0.2046 0.5468 0.6256 
3 0.0000 0.8803 0.5582 0.8018 0.7697 
4 0.0002 0.7632 0.4945 0.9200 0.6961 
5 0.0017 0.8408 0 .3798 0.7252 0.7697 
6 0.0064 0 .9600 0.2831 0.6514 0.7697 
7 0.0196 0.9600 0.2046 0.5807 0 .6963 
8 0.0410 0 .8408 0.2046 0.5139 0.9223 
9 0.0955 0.6156 0.2046 0.5807 1.0000 

10 0.1852 0.4218 0.0971 0.2693 1.0000 
11 0.2628 0.3401 0. 1432 0.3401 0.9223 
12 0.3515 0.3401 0.1432 0.9661 0 .8453 
13 0.5553 0.3152 0.0637 0.2693 0.8453 
14 1.0000 0.3703 0.0393 0.3135 0.7389 

(28/28 tracks) (16/10) (10/6) (14/9) (9/5) 
15 0.4460 0 .8148 0.2623 0.8658 0.9353 

(18/18 tracks) (1216) (6/6) (1217) (7/5) 

Remark: 1. There were 24 shjp tracks reached the 15th data line in both exercises. 

2 . Among those tracks, 18 pairs of tracks were performed by the same subjects. 
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Appendix M 

M-3 The significance level of distance in lane area for outbound tracks 

M-W test 
Wilcoxon test 

Data Ex-A Ex-B 

line Ex-A I Ex-B day/night night day/night night 
(NTOU) (NTOU/UP) (NTOU) (NTOU/UP) 

34/34 tracks 17/10 wn 17/10 wn 
tracks tracks tracks tracks 

1 0.3515 0.3661 0.6256 0.3401 0.5582 
2 0.1998 0.3933 0.4945 0.4821 0.4945 
3 0.1138 0.3933 0.4945 0.5807 0.6963 
4 0.1303 0.5468 0.4350 0.5807 0.8453 
5 0.1218 0.8408 0.4945 0.6695 0.6963 
6 0.0990 0.9600 0.5582 0.7632 0.6963 
7 0.0955 0.9800 0.6256 0.7632 0.6256 
8 0.0577 0.9200 0.4945 0.8018 0.5582 
9 0.0235 0.9200 0.3291 0.7441 0.4350 

10 0.0135 0.9600 0.3798 0.8018 0.3798 
11 0.0078 0.8803 0.4350 0.8018 0.3798 
12 0.0078 0.7252 0.4945 0.7632 0.3291 
13 0.0075 0.7632 0.4945 0.7632 0.3291 
14 0.0049 0.8018 0.6963 0.6879 0.2416 
15 0.0027 0.6879 0.9223 0.6514 0.2416 
16 0.0021 0.6514 0.9223 0.6879 0.1463 
17 0.0028 0.7632 0.6963 0.8018 0.1432 
18 0.0032 0.8018 0.4350 0.8803 0.1184 
19 0.0042 0.7632 0.3291 0.8408 0.0971 
20 0.0041 0.8403 0.3291 0.8408 0.0791 
21 0.0064 0.8803 0.3798 0.9600 0.0791 
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