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Calculations of topological observables in lattice gauge theories with traditional Monte Carlo
algorithms have long been known to be a difficult task, owing to the effects of long autocorrelations
times. Several mitigation strategies have been put forward, including the use of open boundary
conditions and methods such as parallel tempering. In this contribution we examine a new approach
based on out-of-equilibrium Monte Carlo simulations. Starting from thermalized configurations
with open boundary conditions on a line defect, periodic boundary conditions are gradually
switched on. A sampling of topological observables is then shown to be possible with a specific
reweighting-like technique inspired by Jarzynski’s equality. We discuss the efficiency of this
approach using results obtained for the 2-dimensional CP𝑁−1 models. Furthermore, we outline
the implementation of our proposal in the context of Stochastic Normalizing Flows, as they share
the same theoretical framework of the non-equilibrium transformations we perform, and can be
thought of as their generalization.
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1. Introduction

At very fine lattice spacing, the vacuum of Lattice regularized QCD with periodic boundary
conditions is well known to be characterized by the emergence of topological sectors. These are
labeled by different values of the topological charge 𝑄, and are separated by energy barriers whose
height tends to infinity as the continuum limit is approached. As the lattice spacing is reduced,
standard Markov Chain Monte Carlo (MCMC) algorithms based on local updating algorithms be-
comes less and less efficient in overcoming these barriers, and, eventually the Markov chain remains
trapped in a fixed topological sector. This phenomenon, known as “topological freezing”, causes
topological quantities to suffer from very long autocorrelation times, that increase exponentially as
the continuum limit is approached, see Refs. [1–14].

A strategy to mitigate this issue is provided by Open Boundary Conditions (OBC) in the tempo-
ral direction, see Refs. [15, 16], that effectively remove the barriers between topological sectors: in
MCMC simulations with such boundary conditions, topological observables feature much smaller
autocorrelation times. Yet, OBC induce sizeable finite-size effects, and relevant observables can be
computed only on portions of the volume far enough from the boundaries. Moreover, a notion of
global topological charge is lost. Another promising alternative proposed to mitigate topological
freezing is known as Parallel Tempering on Boundary Conditions (PTBC), see Ref. [17]: in this
state-of-the-art approach, replicas with different boundary conditions, interpolating from open to
periodic, are simulated simultaneously and configurations of neighbouring replicas are swapped
using a Metropolis step. This allows for an efficient sampling of topological observables on the
replica with periodic boundary conditions (PBC), by exploiting the relatively short autocorrelation
time of the replica with OBC and bypassing complications introduced by OBC.

In this contribution, we propose a new MCMC method based on out-of-equilibrium evolutions
inspired by Jarzynski’s equality, see Ref. [18], a well known result in non-equilibrium statistical
mechanics. This approach has been widely used in lattice field theory as well, namely in the
computation of interface free energies, see Ref. [19], of the equation of state, see Ref. [20], of the
renormalized coupling of gauge theories, see Ref. [21], and of the entanglement entropy of lattice
field theories, see Ref. [22]. Moreover, it has also been combined with Normalizing Flows (see
Ref. [23]), a deep-learning architecture that has been recently applied to lattice field theories: see
Ref. [24] for an introduction. In this new framework, called Stochastic Normalizing Flows (SNFs),
see Refs. [25, 26], MCMC updates that compose out-of-equilibrium evolutions are combined with
discrete coupling layers, i.e. the building blocks that compose Normalizing Flows, resulting in an
improvement of the purely stochastic approach.

In the context of topological freezing mitigation, out-of-equilibrium evolutions can leverage
the advantages of OBC–small autocorrelation times–while avoiding its pitfalls–the complication
introduced by the boundaries–by a direct sampling of the PBC theory via an appropriate reweighting-
like technique. In the following, we test this method on the CP𝑁−1 models in two dimensions, and
perform a direct comparison with results obtained in the same setting using the PTBC.
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2. Out-of-equilibrium evolutions

Consider a family of actions 𝑆𝑐 (𝑛) for a system of fields 𝜙, interpolating in 𝑛step steps between
a prior action 𝑆0 = 𝑆𝑐 (0) and a target action 𝑆 = 𝑆𝑐 (𝑛step ) , where the protocol 𝑐(𝑛) describes the
value of one or more parameters in the action along the interpolation. It is well known that the
ratio between the prior and target partition functions, 𝑍0 and 𝑍 , can be calculated using Jarzynski’s
equality, see Ref. [18],

𝑍

𝑍0
= ⟨exp (−𝑊)⟩f, (1)

where 𝑊 is the generalized work, defined as

𝑊 (𝜙0, 𝜙1, . . . , 𝜙) =
𝑛step−1∑︁
𝑛=0

{
𝑆𝑐 (𝑛+1) [𝜙𝑛] − 𝑆𝑐 (𝑛) [𝜙𝑛]

}
. (2)

The generalized work is the change in the action of the system along a given protocol 𝑐(𝑛). The
averaging operation ⟨. . . ⟩f is defined to act on a quantity 𝐴 as follows,

⟨𝐴⟩ 𝑓 =
∫

d𝜙0 d𝜙1 . . . d𝜙 𝑞0(𝜙0) 𝑃f [𝜙0, 𝜙1, . . . , 𝜙] 𝐴(𝜙0, 𝜙1, . . . , 𝜙), (3)

where 𝑃f [𝜙0, 𝜙1, . . . , 𝜙] =
∏𝑁−1

𝑛=0 𝑃𝑐 (𝑛) (𝜙𝑛 → 𝜙𝑛+1) is the product of transition probabilities
𝑃𝑐 (𝑛) , each defined by the protocol 𝑐(𝑛). The average in Eq. (3) defines an out-of-equilibrium
evolution, which can be used to sample any observable O on the target probability distribution
using a reweighting-like formula:

⟨O⟩ = ⟨O(𝜙) exp(−𝑊 ((𝜙0, 𝜙1, . . . , 𝜙)))⟩f

⟨exp(−𝑊 ((𝜙0, 𝜙1, . . . , 𝜙)))⟩f
. (4)

In practical terms, an expectation value from Eq. (3) can be computed as follows:

1. Sample from the prior distribution 𝑞0 = 𝑒−𝑆0/𝑍0 (e.g., a thermalized Markov Chain) the
starting configuration 𝜙0;

2. Change the protocol parameter from 𝑐(0) to 𝑐(1) to compute the first term of the sum of
Eq. (2);

3. Using a suitable MCMC algorithm, with transition probability 𝑃𝑐 (1) (𝜙0 → 𝜙1)), generate
the configuration 𝜙1, now not necessarily at equilibrium anymore;

4. Repeat until the final value of the protocol 𝑐(𝑛step) has been reached. Once the final config-
uration 𝜙 has been generated, the expectation value of an observable O(𝜙) can be computed
according to Eq. (4).

In order to sample the space of intermediate configurations 𝜙0, 𝜙1, . . . , this procedure is repeated
𝑛ev times. In case the prior distribution is a thermalized Markov Chain, number of MCMC updates
between successive starting configurations is also a relevant parameter, that we call 𝑛relax.

3
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To assess the quality of the protocol chosen to perform the out-of-equilibrium evolutions, one
can consider the Kullback–Leibler divergence between the forward and the backward evolutions,

�̃�KL(𝑞0𝑃f∥𝑝𝑃r) = ⟨𝑊⟩f + log
𝑍

𝑍0
≥ 0 , (5)

where the inequality is a restatement of the Second Principle of Thermodynamics. The metric that
we will use in the following is the Effective Sample Size (ESS), defined as:

ESS =
⟨exp(−𝑊)⟩2

f

⟨exp(−2𝑊)⟩f
∈ [0, 1], (6)

which is equal to 1 in the case of a perfectly reversible evolution.

3. Numerical results in the 2𝑑 CP𝑁−1 models

Our numerical experiments have been conducted on the two-dimensional CP𝑁−1 models, as
in the original PTBC study, see Ref. [17], employing the numerical setup described in Ref. [9],
where PTBC is implemented on a system with a tree-level 𝑂 (𝑎) Symanzik-improved lattice action.
More precisely, the family of lattice actions used along the out-of-equilibrium stochastic evolutions
is defined by:

𝑆𝑐 (𝑛) = −2𝑁𝛽𝐿

∑︁
𝑥,𝜇

{
𝑘
(𝑛)
𝜇 (𝑥)𝑐1ℜ

[
�̄�𝜇 (𝑥)𝑧(𝑥 + �̂�)𝑧(𝑥)

]
+

𝑘
(𝑛)
𝜇 (𝑥 + �̂�)𝑘 (𝑟 )

𝜇 (𝑥)𝑐2ℜ
[
�̄�𝜇 (𝑥 + �̂�)�̄�𝜇 (𝑥)𝑧(𝑥 + 2�̂�)𝑧(𝑥)

]}
,

(7)

where 𝛽𝐿 is the inverse bare ’t Hooft coupling, 𝑐1 = 4/3 and 𝑐2 = −1/12 are the Symanzik-
improvement coefficients, and the factors 𝑘

(𝑛)
𝜇 (𝑥) regulate the boundary conditions along a given

defect of length 𝑑: namely, 𝑘 (𝑛)
𝜇 (𝑥) ≡ 𝑐(𝑛) for any site 𝑥 on the defect and 𝜇 = 0, while 𝑘

(𝑛)
𝜇 (𝑥) ≡ 1

otherwise. In practice this means that the boundary conditions on the defect at any given step 𝑛 of
an out-of-equilibrium evolution follow the protocol 𝑐(𝑛). We always choose lattices with a physical
volume of 𝑉 = (𝑎𝐿)2.

Our observable of choice is the topological susceptibility 𝜒𝑡 :

𝜒𝑡 =
1
𝑉
⟨𝑄2⟩, (8)

which we compute from the geometric definition of the lattice topological charge

𝑄 =
1

2𝜋

∑︁
𝑥

ℑ logΠ12(𝑥) ∈ Z , (9)

where Π𝜇𝜈 (𝑥) ≡ 𝑈𝜇 (𝑥)𝑈𝜈 (𝑥 + �̂�)�̄�𝜇 (𝑥 + �̂�)�̄�𝜈 (𝑥). In order to compute 𝜒𝑡 with PBC, we make
use of Eq. (4): in particular, we consider evolutions that start from the probability distribution of a
system with fully OBC along the defect of length 𝑑 (i.e., we set 𝑐(0) = 0) and reach the probability
distribution with PBC after 𝑛step steps (i.e. 𝑐(𝑛step − 1) = 1). We always use a protocol 𝑐(𝑛) that
grows linearly with 𝑛, i.e., 𝑐(𝑛) = 𝑛/(𝑛step − 1).

We performed simulations in various settings. Several values of the defect length 𝑑 were
explored in the interval [6, 𝐿], each defining a different prior system. The number of steps 𝑛step

4
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(a) 𝑁 = 21, 𝛽𝐿 = 0.7, 𝐿 = 114.
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(b) 𝑁 = 41, 𝛽𝐿 = 0.65, 𝐿 = 132.

Figure 1: Topological susceptibility for various values of 𝑛step and 𝑑, compared to the result of [9] obtained
with 11 (left) and 15 (right) replicas.

separating the prior system from the target system was always chosen in the interval [100, 2000].
Each non-equilibrium evolution started from a configuration belonging to a thermalized ensemble of
the prior system. These thermalized ensembles were generated with a 1:4 mixture of local heat-bath
and over-relaxation update algorithms, with two successive configurations being separated by either
𝑛relax = 110 or 𝑛relax = 250 full lattice sweeps. The total number of out-of-equilibrium evolutions
𝑛ev was tuned so that the various simulations all have a comparable overall numerical cost. An
overestimate of the latter is (𝑛step + 𝑛relax) × 𝑛ev. In order that a reliable comparison with the PTBC
algorithm can be performed, we used the same simulation settings as a subset of those explored in
Ref. [9], including the same MCMC updating procedures. For more details, we refer to Ref. [9].

The first step in our analysis was to check that the value of 𝜒𝑡 obtained from the out-of-
equilibrium evolutions is correct. That this is the case can be inferred from the results displayed
in Figs. 1a and 1b. A perfect agreement is found between these values and the values obtained in
Ref. [9] with the PTBC algorithm.

One of the goals of this study is to understand the magnitude of the numerical effort needed, in
terms of out-of-equilibrium evolutions, in order to sample efficiently a system with PBC, starting
from a system with a defect or with full OBC. To that aim, we display in Figs. 2a and 2b the values
of the Effective Sample Size as a function of 𝑑 (left panel) and 𝑛step (right panel). Qualitatively
speaking, a very small ESS (e.g., < 0.05) signals a (possibly extremely) inefficient sampling of the
target distribution. Visual inspection of Fig. 2a shows that the ESS is a decreasing function of the
defect length 𝑑. This is in agreement with the fact that a prior system defined by larger defect length
𝑑 is farther from the target one with PBC. Thus, at a fixed value of 𝑛step, sampling a system with
PBC is increasingly more difficult as the prior system approaches the full OBC (embodied by the
choice 𝑑 = 𝐿). At the same time, as can be seen from Fig. 2b, ESS is an increasing function of 𝑛step.
Hence, a simple solution to this issue seems to be to increase 𝑛step to a sufficiently large value for
each 𝑑. Intuitively, this makes the evolution slower, as it is close to a quasi-equilibrium evolution,
and also more expensive to perform.

5



P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
0
0
5

Out-of-equilibrium simulations to fight topological freezing Alessandro Nada

0 20 40 60 80 100
d

0.0

0.2

0.4

0.6

0.8

1.0
E

S
S

nstep = 500

nstep = 1000

nstep = 2000

(a) ESS as a function of the length 𝑑 of the defect.
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(b) ESS as a function of the number of steps in each evolution.

Figure 2: ESS for different combinations of lengths of the defect and total number of steps in each evolution,
for 𝑁 = 21, 𝛽𝐿 = 0.7 and 𝐿 = 114..

Finally, we display in Figs. 3a and 3b preliminary results concerning the efficiency of this
method compared to the PTBC approach. We compare the error on the quantity 𝜒𝑡 , multiplied by
the square root of the total numerical effort spent to obtain the numerical results. In the case of
the out-of-equilibrium evolutions, this is given by (𝑛step + 𝑛relax) × 𝑛ev, while in case of the PTBC
algorithm this is given by the number of measurements multiplied by the number of replicas. No
specific choice in terms of the values of 𝑛step or 𝑑 seems to be strikingly more efficient than others.
Moreover, it is quite encouraging to see that even for large values of 𝑑, non-equilibrium methods
provide remarkably competitive results, although the computational cost in terms of updates per
evolution is larger. Generally speaking, non-equilibrium evolutions performed with 𝑛step = 1000 or
2000 enable a very precise sampling of the target distribution, even if the number of evolutions 𝑛ev

themselves is comparably smaller. This is not surprising, as the use of relatively large values of
𝑛step was essentially the same strategy already followed in the computation of the SU(3) equation of
state in Ref. [20].

In the case of 𝑁 = 21, displayed in Fig. 3a, the preliminary results for out-of-equilibrium
evolutions presented in this contribution are not yet comparable in efficiency with PTBC: we
remark however that we opted for a very conservative estimation of the errors. In this respect,
results obtained for 𝑁 = 41 shown in Fig. 3b are even more encouraging, since autocorrelation
times grow as a function of 𝑁 , making topological freezing much worse at larger values of 𝑁 .

4. Conclusions and future outlooks

In this contribution we showcased the first application of out-of-equilibrium methods based
on Jarzynski’s equality towards the mitigation of so-called freezing of topological observables in
lattice field theory.

With this method, it is possible to leverage the milder autocorrelation times that enjoyed by
lattice models with open boundary conditions while simultaneously bypassing the complications

6
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(a) 𝑁 = 21, 𝛽𝐿 = 0.7, 𝐿 = 114.
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(b) 𝑁 = 41, 𝛽𝐿 = 0.65, 𝐿 = 132.

Figure 3: Efficiency in the computation of 𝜒𝑡 for various values of 𝑛step and 𝑑, compared to the parallel
tempering (black band) from [9].

they introduce. With an exact reweighting-like method, the physically-interesting observables with
periodic boundaries could be computed, and the preliminary numerical results on the 2𝑑 CP𝑁−1

models show that this method is already competitive with state-of-the-art calculations performed
with the PTBC algorithm, an approach that has recently seen wide use also for non-Abelian gauge
theories in four dimensions.

An advantage of out-of-equilibrium evolutions over PTBC is that no additional replicas are
needed, as each evolution is simulated independently. Moreover, as shown by recent studies
on Stochastic Normalizing Flows (SNFs), the combination of non-equilibrium methods with the
coupling layers of Normalizing Flows allows to improve their efficiency even further. This opens
up to a potentially exciting new development for the algorithmic approach pioneered in the present
study, as a suitable training process of only moderate length could provide the values of the
parameters of the coupling layers of SNFs. In the future, we plan to explore this direction by
implementing the above method with a suitable SNF architecture. This could boost even further
its numerical efficiency, and provide a unique approach to mitigate topological freezing in the 2𝑑
CP𝑁−1 models, and beyond.
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