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First-order phase transitions in the early universe might produce a detectable background of
gravitational waves. As these phase transitions can be generated by new physics, it is important
to quantify these effects. Many pure Yang-Mills gauge theories are known to undergo first-order
deconfinement phase transitions, with properties that can be studied with lattice simulations.
Despite the recent surge of interest in 𝑆𝑝(2𝑁) gauge theories as a candidate for models of physics
beyond the standard model, studies of these theories at finite temperature are still very limited. In
this contribution we will present preliminary results of an ongoing numerical investigation of the
thermodynamic properties of the deconfinement phase transition in 𝑆𝑝(4) Yang-Mills theory, using
the linear logarithmic relaxation algorithm. This method enables us to obtain a highly accurate
determination of the density of states, allowing for a precise reconstruction of thermodynamic
observables. In particular, it gives access to otherwise difficult to determine quantities such as
the free energy of the system, even along metastable and unstable branches, hence providing an
additional direct observable to study the dynamics of the phase transition.
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1. Introduction

New strongly interacting sectors based on symplectic gauge theories have properties which are
phenomenologically interesting to physics beyond the standard model. For a recent review on this
see Ref. [1] and references therein. Due to the non-perturbative nature of these theories, the lattice
is the natural first-principles method to study their properties.

If, as is the case for deconfinement in 𝑆𝑝(2𝑁) (𝑁 > 1), these theories undergo first-order phase
transitions in the early universe, they can leave imprint through the generation of long wavelength
gravitational waves, opening gravitational wave astronomy as a promising route to constrain new
physics, see for instance discussion from Ref. [2] and references therein. The recent announced
detection of a gravitational wave background from NANOGrav would be consistent with this type of
signal [3]. However, to constrain new physics, accurate estimations of the expected power spectrum
from theory is required. The lattice literature on 𝑆𝑝(2𝑁) gauge theories at finite temperature is
quite limited [4, 5]. We present the initial results of a project which aims to accurately calculate the
thermodynamic properties of the deconfinement phase transition in 𝑆𝑝(2𝑁) gauge theories through
the use of a novel lattice method, the logarithmic linear relaxation (LLR) method [6–16].

Two important quantities of interest are latent heat and surface tension. In the critical region
the system will exhibit co-existing phases separated by a potential barrier. The probability of
tunnelling through the barrier is related to the surface tension and the latent heat is equal to the
energy difference between the phases. Through continuum and infinite volume extrapolations of
observables of the lattice system, these quantities can be computed in the continuum theory.

Sec. 2 presents the lattice setup and details of the LLR algorithm. In Sec. 3, we report the
thermodynamic observables for a single lattice size, 𝑁𝑡 ×𝑁3

𝑠 = 4×203, for 𝑆𝑝(4) pure gauge theory,
and we discuss and compare our results to those of SU(3) pure gauge theory [6] — see also the
comprehensive discussion in Ref. [17].

2. Lattice setup and the LLR method

We use an 𝑁𝑡 × 𝑁3
𝑠 hypercubic lattice in Euclidean spacetime, with periodic boundary condi-

tions, spacing 𝑎 and volume �̃� = 𝑎4𝑁𝑡𝑁
3
𝑠 . When 𝑁𝑡 < 𝑁𝑠, the temperature of this system is given

by the inverse of the temporal extent 𝑇 = 1/𝑎𝑁𝑡 . We use the standard Wilson action, defined by

𝑆[𝑈] ≡ 6�̃�
𝑎4 (1 − 𝑢𝑝 [𝑈]), (1)

where 𝑈 refers to the lattice configuration and 𝑢𝑝 is the average plaquette. The partition function
of this system at coupling 𝛽 is given by

𝑍𝛽 ≡
∫

[𝐷𝑈`]𝑒−𝛽𝑆 [𝑈 ] . (2)

To study the thermodynamic properties across the phase transition, the temperature is varied by
keeping the number of sites fixed and altering the lattice spacing through the coupling, 𝛽(𝑎).

The lattice configurations, 𝑈, consist of link variables 𝑈 = {𝑈` (𝑛𝑡 , ®𝑛𝑠)}, where 𝑈` ∈
𝑆𝑝(2𝑁) ⊂SU(2N) , obey the condition 𝑈`Ω(𝑈`)𝑇 = Ω. The symplectic matrix, Ω, is defined
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as

Ω =

(
0 1𝑁×𝑁

−1𝑁×𝑁 0

)
. (3)

The centre of the group 𝑆𝑝(2𝑁) is Z2, for all finite 𝑁 . On the lattice, the deconfinement phase
transition is associated with the spontaneous breaking of the centre symmetry. The corresponding
order parameter is the average Polyakov loop, defined as〈

𝑙𝑝
〉
𝛽
≡

〈
1

2𝑁𝑁3
𝑠

∑︁
®𝑛𝑠

Tr

(
𝑁𝑡−1∏
𝑛𝑡=0

𝑈0(𝑛𝑡 , ®𝑛𝑠)
)〉

𝛽

{
= 0 confined phase

≠ 0 deconfined phase
. (4)

For 𝑁 > 1, 𝑆𝑝(2𝑁) gauge theories have first-order deconfinement phase transitions. The co-
existence of phases in the proximity of first-order transitions leads to metastable dynamics which
is problematic when using Monte Carlo importance sampling methods. To accurately sample the
phase space, the system must tunnel between the vacua many times. For small lattices, in general
this is not a problem as the potential barrier is small. However, as the lattice volume increases, the
potential barrier grows and more configurations are required to obtain accurate results.

Following the results presented in Ref. [6], we employ the logarithmic linear relaxation method
to overcome the metastability problems around the deconfinement phase transition. The goal of the
LLR method is to accurately estimate the density of states,

𝜌(𝐸) ≡
∫

[𝐷𝑈]𝛿(𝑆[𝑈] − 𝐸), (5)

as a piecewise log linear function, with the total energy range relevant to the processes of interest
broken down into 2𝑁𝐼 − 1 intervals,

ln 𝜌(𝐸) ≈ 𝑎𝑛 (𝐸 − 𝐸𝑛) + 𝑐𝑛. (6)

where 𝑛 = 1, ..., 2𝑁𝐼 − 1, denotes the energy interval that the expression is valid for, 𝐸𝑛 − Δ𝐸/4 ≤
𝐸 ≤ 𝐸𝑛 + Δ𝐸/4. The 𝑐𝑛 term is set by the continuity of 𝜌 at the boundary of the intervals,
𝑐𝑛 = 𝑎1Δ𝐸/4 + (Δ𝐸/2)

∑𝑛−1
𝑘=2 𝑎𝑘 + Δ𝐸𝑎𝑛/4. We take 𝐸1 ≠ 0, therefore 𝑐1 is arbitrary and we set it

to 0.
In each interval we calculate the coefficient, 𝑎𝑛, by solving the equation ⟨⟨𝐸 − 𝐸𝑛⟩⟩𝑛 (𝑎𝑛) =

⟨⟨𝑢𝑝 − (𝑢𝑝)𝑛⟩⟩𝑛 (𝑎𝑛) = 0, where (𝑢𝑝)𝑛 = 1 − 𝐸𝑛𝑎
4/6�̃� . The double angle bracket ⟨⟨...⟩⟩𝑛 (𝑎𝑛)

denotes the expectation value for configurations restricted to the 𝑛𝑡ℎ energy interval, for a coupling
𝑎𝑛. In this work, these expectation values are computed through a modified heat bath algorithm, as
discussed in Ref. [6].

We solve these equations, to find the set of 𝑎𝑛 values, through a combination of Newton-
Raphson and Robbins-Monro iterations, Eq. (12) and (14) of Ref. [6] respectively. In the limit of
infinite Robbins-Monro iterations, the exact solution would be found, however only a finite number
of iterations are possible, introducing a truncation error. The truncation error is estimated by
repeating the determination of the 𝑎𝑛 values and bootstrapping the results.

Once {𝑎𝑛}2𝑁𝐼−1
𝑛=1 has been found, the density of states can be reconstructed. This is used to

compute the plaquette, or equivalently energy, distribution of the system at coupling 𝛽, through the
relation

𝑃𝛽 (𝑢𝑝) =
1
𝑍𝛽

𝜌(𝐸)𝑒−𝛽𝐸 |𝐸=6�̃� (1−𝑢𝑝 )/𝑎4 , 𝑍𝛽 =

∫
𝑑𝐸𝜌(𝐸)𝑒−𝛽𝐸 . (7)

3
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Figure 1: The values of 𝑎𝑛 against (𝑢𝑝)𝑛 = 1 − 𝐸𝑛𝑎
4/6�̃� , the plaquette values corresponding to the centre

of each energy interval, for 𝑆𝑝(4) pure gauge theory on a lattice of size 4× 203. We use 48 intervals between
(𝑢𝑝)1 = 0.58 and (𝑢𝑝)48 = 0.565, with Δ𝐸𝑎

4/6�̃� = 0.0006. The solid blue line shows the final values of 𝑎𝑛
after 10 Newton-Raphson iterations followed by 300 Robbins-Monro iterations, with errors calculated from
20 repeats. The black crosses show the measured vacuum expectation value of the average plaquette against
𝛽, calculated from 500,000 configurations generated using conventional importance sampling methods, for
𝛽 = 7.32, 7.33, 7.34 and 7.35. The red dashed line shows the initial 𝑎𝑛 values, constructed by fitting a cubic
polynomial to the importance sampling results.

Expectation values can then be reconstructed avoiding the metastability problem.
This work focuses on 𝑆𝑝(4) pure gauge theory on lattice with size 4× 203. The energy range is

split into 48 intervals, from (𝑢𝑝)1 = 0.58 to (𝑢𝑝)48 = 0.565, and interval size Δ𝐸𝑎
4/6�̃� = 0.0006.

The initial estimates for 𝑎𝑛 were based on standard importance sampling results. This guess is
improved through by 10 Newton-Raphson iterations followed by 300 Robbins-Monro iterations.
This process has been repeated 20 times to estimate truncation errors. The final 𝑎𝑛 values and
their dependence on the centre of the interval (𝑢𝑝)𝑛 is shown in blue in Fig. 1. In black is the
importance sampling results for ⟨𝑢𝑝⟩𝛽 against 𝛽. The initial guesses for 𝑎𝑛 is shown in red. The
non-invertible behaviour in the function of 𝑎𝑛 (𝑢𝑝), that is characteristic of a first-order transition,
emerges dynamically.

3. Thermodynamic observables

The main thermodynamic properties we are interested in studying in this work are the latent heat
and the surface tension. These observables can be related, through infinite volume and continuum
extrapolations, to properties of the plaquette distribution at the critical point, 𝛽𝑐, at which the two
coexisting phases are equally probable — the plaquette distribution has a double Gaussian structure

4
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with two peaks of equal height. The difference in the value of plaquette between the two peaks,
Δ⟨𝑢𝑝⟩𝛽𝑐 , can be used to compute the latent heat, Eq. (33) of Ref. [18]. The logarithm of the ratio
of the height of the central (unstable) minima, 𝑃𝑚𝑖𝑛, and the degenerate maxima of the plaquette
distribution, 𝑃𝑚𝑎𝑥 , − ln(𝑃𝑚𝑖𝑛/𝑃𝑚𝑎𝑥), can be related to the surface tension, see Eq. (48) of Ref. [18].
Here we compute these lattice quantities at a single lattice size.

The critical coupling can be found by fitting a double Gaussian distribution to the plaquette
probability distribution, Eq. (8), and tuning the coupling until the difference in height between
the two maxima of the distribution is below a certain threshold. At this point Δ⟨𝑢𝑝⟩𝛽𝑐 and
− ln(𝑃𝑚𝑖𝑛/𝑃𝑚𝑎𝑥) can be read directly from the distribution, as shown in Fig. 2a, with the results
presented in Tab. 1.

The same quantities can also be determined directly from the free energy of the micro-states,
𝐹, we define as

𝐹 (𝑡) ≡ 𝐸 − 𝑡𝑠, 𝑠 ≡ ln 𝜌 𝑡 ≡ 𝜕𝐸

𝜕𝑠
≡ 1

𝑎𝑛
, 𝑓 (𝑡) ≡ 𝑎4

�̃�
(𝐹 (𝑡) + Σ𝑡), (8)

where 𝑠 is the entropy and 𝑡 is the temperature. 𝑓 (𝑡) is defined to remove the dependence of the
arbitrary 𝑐1 term in Eq. (6) and make the observed swallow tail structure more clear. The additive
constant term Σ, is equal to the average entropy.

From the plot of 𝑓 against 𝑡, Fig. 2b, we can determine the critical point, the plaquette jump
and −𝑙𝑛(𝑃𝑚𝑖𝑛/𝑃𝑚𝑎𝑥). The critical point is the point at which the two metastable branches (solid
blue lines) cross (cyan dashed vertical line), with 𝛽𝑐 = 1/𝑡𝑐. The plaquette jump is determined by
the difference between the plaquette values in the metastable regions at which 𝑎𝑛 = 𝛽𝑐 in the plot
of 𝑎𝑛 against 𝑢𝑝, see the inset of Fig. 2b. Note we use a linear interpolation between the points.
The free energy is related to the extrema of the energy distribution, through

𝑒−
𝐹 (𝑡 )
𝑡 = 𝑍𝛽𝑃𝛽 (𝐸) |𝛽=1/𝑡 ,𝐸=𝐹 (𝑡 )+𝑡𝑠 . (9)

The change in the free energy between the metastable and unstable branches at the critical
point, Δ𝐹 (𝑡𝑐) = �̃�Δ 𝑓 (𝑡𝑐)/𝑎4, can be related to the logarithmic term we calculated previously
as − ln(𝑃𝑚𝑖𝑛/𝑃𝑚𝑎𝑥) = �̃�Δ 𝑓 (𝑡𝑐)/𝑎4𝑡𝑐.

In Tab. 1 the results from the probability distribution and from the free energy are presented,
for 𝑆𝑝(4), for a single lattice size. They are in good agreement, demonstrating that the methods
calculate equivalent values. Additionally, included in this table are the results for SU(3) for the
same lattice size, calculated from the free energy using LLR results presented previously in Ref. [6].
Direct comparison of the results, suggest that SU(3) has a stronger first-order phase transition as
both the plaquette jump is larger and the change in the free energy is larger. Therefore making
jump in energy larger and the probability of tunnelling through the barrier lower. However, these
quantities are not physical. Without taking the infinite volume and continuum limits, to gain access
to the physical quantities of the continuum theory — surface tension and latent heat— we cannot
reach any definite conclusions on their relative value.

4. Conclusion

We presented initial results for the thermodynamic properties of the deconfinement phase
transition in 𝑆𝑝(2𝑁) gauge theories using the LLR method. Building on the methodology presented

5
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(a) (b)

Figure 2: The reconstructed plaquette distribution at the critical point (left) and the free-energy (right) for
𝑆𝑝(4) pure gauge theory on a lattice of size 4 × 203, found using the LLR method with 48 intervals between
plaquette values of (𝑢𝑝)1 = 0.58 and (𝑢𝑝)48 = 0.565, with Δ𝐸𝑎

4/6�̃� = 0.0006. The critical coupling in the
left plot was found by tuning 𝛽 until the two peaks of the distribution have equal height. The plaquette values
corresponding to the peaks of the distribution are shown by the green dashed line. The height of the maxima,
𝑃𝑚𝑎𝑥 , and minima, 𝑃𝑚𝑖𝑛, are shown by the orange dashed line. On the right panel the red, blue and black
lines show the unstable, metastable and stable regions, respectively. The points in the inset match those of
the main plot, showing the corresponding values of 𝑎𝑛 and 𝑢𝑝 . The critical coupling is shown by the dashed
cyan line, the orange dashed line shows the free energy values when 𝑡 = 𝑡𝑐 and the green dashed line on the
inset show the plaquette values when 𝑎𝑛 = 1/𝑡𝑐.

Table 1: The values of the critical coupling, 𝛽𝑐, the plaquette jump, Δ⟨𝑢𝑝⟩𝛽𝑐 , and the change in the free
energy divided by the critical temperature, Δ𝐹 (𝑡𝑐)/𝑡𝑐, are shown for SU(3) and 𝑆𝑝(4) pure gauge theories
on 4× 203 lattices. The 𝑆𝑝(4) results were found using the LLR method with 48 intervals between plaquette
values of (𝑢𝑝)1 = 0.58 and (𝑢𝑝)48 = 0.565, with Δ𝐸𝑎

4/6�̃� = 0.0006. The SU(3) values were computed
using the results of previous work presented in Ref. [6] with Δ𝐸𝑎

4/6�̃� = 0.0007. The second column notes
whether the value was calculated from the free energy,𝐹 (𝑡), or from the plaquette distribution, 𝑃𝛽𝑐 (𝑢𝑝).

𝛽𝑐 = 1/𝑡𝑐 Δ⟨𝑢𝑝⟩𝛽𝑐 Δ𝐹 (𝑡𝑐)/𝑡𝑐 = − ln(𝑃𝑚𝑖𝑛/𝑃𝑚𝑎𝑥)
SU(3) 𝐹 (𝑡) 5.69189(4) 0.00257(3) 0.0919(83)
𝑆𝑝(4) 𝑃𝛽𝑐 (𝑢𝑝) 7.34009(3) 0.00203(2) 0.0714(43)
𝑆𝑝(4) 𝐹 (𝑡) 7.34010(3) 0.00205(3) 0.0708(48)
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in Ref. [6], we calculated the critical coupling, the plaquette jump and the change in the free energy
at this coupling for 𝑆𝑝(4) on a single lattice size 4× 203, presented in Tab. 1. These quantities have
been calculated by reconstructing the energy distribution at the critical point, Fig. 2a, and separately
from the free energy of the micro-states, Fig. 2b. Both methods are in good agreement. These
results were compared with results for SU(3) at the same lattice size, although without continuum
and infinite volume extrapolations these comparisons are not physical. In future work, we aim to
extend our analysis to additional lattice sizes to accurately compute the physical thermodynamic
observables, the latent heat and the surface tension.
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