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Abstract 

Title: Investigation and Modelling of a Cortical Learning Algorithm in the Neocortex  

Damir Dobric  

 

Many algorithms today provide a good machine learning solution in the specific 

problem domain, like pattern recognition, clustering, classification, sequence learning, 

image recognition, etc. They are all suitable for solving some particular problem but 

are limited regarding flexibility. For example, the algorithm that plays Go cannot do 

image classification, anomaly detection, or learn sequences. Inspired by the functioning 

of the neocortex, this work investigates if it is possible to design and implement a 

universal algorithm that can solve more complex tasks more intelligently in the way the 

neocortex does. Motivated by the remarkable replication degree of the same and 

similar circuitry structures in the entire neocortex, this work focuses on the idea of the 

generality of the neocortex cortical algorithm and suggests the existence of canonical 

cortical units that can solve more complex tasks if combined in the right way inside of 

a neural network. Unlike traditional neural networks, algorithms used and created in 

this work rely only on the finding of neural sciences. Initially inspired by the concept of 

Hierarchical Temporal Memory (HTM), this work demonstrates how Sparse Encoding, 

Spatial- and Sequence-Learning can be used to model an artificial cortical area with 

the cortical algorithm called Neural Association Algorithm (NAA). The proposed 

algorithm generalises the HTM and can form canonical units that consist of biologically 

inspired neurons, synapses, and dendrite segments and explains how interconnected 

canonical units can build a semantical meaning. 

Results demonstrate how such units can store a large amount of information, learn 

sequences, build contextual associations that create meaning and provide robustness 

to noise with high spatial similarity. Inspired by findings in neurosciences, this work also 

improves some aspects of the existing HTM and introduces the newborn stage of the 

algorithm. The extended algorithm takes control of a homeostatic plasticity mechanism 

and ensures that learned patterns remain stable.  

Finally, this work also delivers the algorithm for the computation over distributed mini-

columns that can be executed in parallel using the Actor Programming Model.  
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 Introduction 

Nowadays, artificial intelligence and machine learning are a megatrend successfully 

applied in the industry. Many techniques, algorithms, and approaches today, like linear 

regression, clustering, sequence learning, image recognition, and many others, solve 

common machine-learning problems. However, they are all explicitly designed to 

provide a solution in a specific problem domain. Even if successfully applied in the 

industry, in contrast to the brain, they are not flexible and cannot adapt and solve 

problems they are not designed for. For example, algorithms that learn sequences 

cannot do clustering, or a game-playing algorithm cannot do anomaly detection. A 

general motivation was to build a smart or intelligent machine. But, algorithms 

developed in many directions like supervised, unsupervised, or reinforcement learning. 

They use different approaches and can solve specific problems only. They are all 

successfully applied in the industry but are not intelligent. The brain was and still is the 

motivation of many studies. Some algorithms are inspired by the brain’s functioning 

and incorporate some general properties of neurons and their populations. They build 

artificial neural networks and involve various learning rules  driven by the psychological 

hypothesis that defines how synaptic connections change depending on the 

experienced pattern. Such algorithms can learn and process a lot of information, but 

they are still not intelligent and do not work as the brain does. This fact implies 

questions like "What is intelligence" "Is it possible to design an intelligent machine" 

and so on. Inspired by these questions, the original idea of this work was to investigate 

if and how it is possible to design and implement an algorithm that aligns with a 

hypothetical cortical algorithm. At the beginning of this work, many algorithms have 

been analysed to understand different learning techniques with different goals, 

approaches, and motivations. The book "On Intelligence" (Hawkins, Blakeslee, 2004), 

later followed by a second edition, "A thousand brains"  (Hawkins, Dawkins, 2021), 

delivered a promising approach that sounded feasible. 

 

The research in neurosciences (Ahmad, Hawkins, Cui, 2017) indicates that the neocortex 

might contain the cortical algorithm, which is universal and adaptable. Motivated by 

the remarkable replication degree and uniformity (Kaas, 2012), (Hubel, Wiesel, 1974) of 

the same and similar circuitry structures (Douglas, Martin, 1989) in the entire neocortex, 

this work focuses on the idea of the generality of the neocortex algorithms. 
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Furthermore, it suggests the hypothesis of canonical cortical units that can solve more 

complex tasks if combined in the right way inside a neural network. 

This research investigates whether designing and implementing such an algorithm is 

feasible. The review undertaken in this research shows that algorithms like Hierarchical 

Temporal Memory Cortical Learning Algorithm (HTM CLA) best align with biological 

learning processes found in the neocortex. It is a new algorithm still under research 

with immense potential (Yuwei, Ahmad, Hawkins, 2017), (Wielgosz, Pietroń, Wiatr, 

2016), (Melis, Chizuwa, Kameyama, 2009), (Bonhof, 2008), (Ahmad, Lavin, Purdy, 2017) 

etc. 

1.1 The Contribution area  

This section summarises the scientific and engineering contributions of this research. 

This work relies on many biological findings to create the artificial cortical learning 

algorithm. It explicitly avoids any approach or solution not previously found in biology. 

Most, but still not all, theoretical parts of this work find a corresponding 

implementation used for experimental work and delivered as an open-source 

framework.  

 

This thesis’s contributions target Computational Intelligence and Parallel Computing. 

The Computational Intelligence part starts with analysing the existing cortical learning 

algorithms and related findings in neural sciences. Then, it investigates the robustness 

to noise of the algorithm and analyses the similarity capability. It demonstrates how 

memorising spatial patterns can store a considerable amount of information and 

simultaneously be naturally robust to noise and build similarities. 

 

Furthermore, this work extends and generalises the existing Hierarchical Temporal 

Memory Cortical Learning Algorithm (HTM CLA) and shows how to achieve stable 

learning by putting the algorithm in a state that corresponds newborn stage of 

mammals. Also, the new extended algorithm shows how to solve the problem called 

the stability-plasticity dilemma.  

 

Finally, inspired by HTM CLA, it suggests a generalised cortical algorithm called Neural 

Association Algorithm. 
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The Parallel Computation part of this work analyses different approaches providing the 

solution for the parallel execution of the cortical algorithm in the cluster of many 

distributed nodes. Finally, it proposes the best method for parallelising described 

cortical algorithms. 

1.2 Thesis Structure 

 

The thesis thematically contains five parts. The first part is a background overview of 

several scientific areas related to this work. It analyses relevant findings in 

Neurosciences, Machine Learning, Cortical Algorithms, and Parallel Programming 

techniques. The second part, Design and Implementation of the Cortical Algorithm, 

describes how the cortical algorithm is designed and implemented. The third part of 

the thesis, Parallel Computation, focuses on the parallel design of the cortical area. 

Finally, part four, Cortical Capabilities, focuses on essential features of the cortical 

algorithm and provides some improvements, like a definition of the newborn stage of 

the cortical algorithm. 

 

The last, fifth part, Discussions, gives a critical discussion of the results of this work, 

finalised by recommendations for future work. 

1.2.1 Part one – The background 

The first introductory part consists of chapters 2, 3, and 4. Chapter 2 introduces the 

biological background related to the functioning of the cortical learning algorithm. It 

summarises the most relevant findings in the field of neurosciences, which have 

considerable importance for research in this work. Described findings are used as a 

foundation for modelling the cortical algorithm.  

 

Chapter 3 focuses on machine learning algorithms that mostly align with the biology 

of the neocortex described in chapter 2. It briefly explains the HTM cortical learning 

algorithm and how this research helps build the CLA in this work. Finally, this chapter 

summarises a few other biologically inspired algorithms analysed in this work.  

 

Chapter 4 summarises, in the context of this work, the most important parallel 

programming techniques analysed to create the parallel version of the cortical 

algorithm, which is a focus of part three of this work. 
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1.2.2 Part two - Design and implementation of the Cortical Algorithm 

Part two (chapter 5) describes the design of the cortical learning algorithm created in 

this work. It starts with explaining the enormous memorising capacity of the SDR 

encoding and briefly describes modelling the cortical area, including sensory encoding, 

activation of synapses, and dendrites. Next, it describes how HTM-inspired Spatial 

Pooler and Temporal Memory algorithms have been designed and implemented in this 

work. Finally, this part introduces a Neural Association Algorithm. 

1.2.3 Part three – Parallel computation of the cortical area 

Chapter 6 describes the concept of the parallel model of computation inside the 

Cortical Algorithm over mini-columns and a cortical area. The idea expressed in this 

chapter proposes a computation model based on the Actor Programming Model (see 

chapter 4). It explains the redesign of the open-source neocortexapi framework (Dobric, 

2019) extended to support the Parallel Computation on the example of the Spatial 

Pooler. This chapter summarises the most critical findings that also have been 

published at the International Conference on Artificial Intelligence and Soft Computing 

(Dobric, Pech, Wennekers, Ghita, 2020) and in the International Journal for Artificial 

Intelligence (Dobric, Pech, Ghita, Wennekers, 2020). It also gives an idea of the model 

for general parallel execution of the entire cortical area.  

1.2.4 Part four – Cortical Capabilities of the Neural Association Algorithm 

Chapters 7 and 8 describe the essential capabilities of the cortical algorithm designed 

in part two and published as part of this research. Chapter 7 focuses the noise 

robustness and spatial similarity, which are features of the SP design. It describes how 

the sparsely encoded pattern is robust against noise and how spatial similarity is 

achieved. Chapter 8 improves the Spatial Pooler algorithm by introducing a newborn 

stage of the cortical algorithm. Inspired by findings in neurosciences, It shows how 

controlling homeostatic plasticity can enhance the learning process and clarifies why 

such an infant stage is essential for the cortical algorithm of species. 
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1.2.5 Part five – Discussions and future work 

This part (chapter 9) summarises all results and provides a critical discussion on all 

topics. Finally, this part also includes a list of future work items needed to make the 

results of this work industry ready. 
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 Biology of the Neocortex  

Recent research studies in neurosciences suggest that the same principles for 

information processing inside the neocortex might be used to implement a 

computational system that aligns with the brain’s biological architecture and 

functionality. The motivation of such systems is to provide more cognitive capabilities 

than standard neural networks and today’s machine learning algorithms. 

 

Most traditional machine learning algorithms rely on statistical analysis or a 

mathematical approach to solve specific problems (LeCun, Bengio, Hinton, 2015). Some 

find their roots in the biological processing of information by different brain parts but 

do not necessarily provide a fundament for cognitive capabilities. Instead, most 

solutions are math-focused, allowing them to solve specific problems. However, 

because of the dedicated focus on a particular problem domain, such algorithms are 

not applicable when it comes to flexibility or implementing cognitive features.  

 

More than a hundred years of research on neurosciences seem to provide a 

tremendous amount of information today, which can be used to design and implement 

a cortical algorithm that requires less computation power and naturally provides 

cognitive features in the core of its structure. Most of the research summarised in this 

work relates to the neocortex because it is evolutionary, the "new part of the brain" 

probably responsible for intelligence (Hawkins, Ahmad, 2016). 

 

The human brain contains approximately 100 billion neurons (Herculano-Houzel, 2009) 

and more than 100 billion glial cells (Solomon, Henry, Sushmitha, Partha, Melwin, 2015), 

the tissue surrounding the neurons, providing oxygen for neurons. Some studies 

assume that an increase in the number of neurons in several brain areas is concurrent 

with an increase in the number of non-neurons (i.e. glial cells). They show that the ratio 

of glia/neurons increases with brain size. In other words, the mass of the brain does not 

necessarily lead to higher cognitive capabilities because the number of neurons does 

not increase proportionally to group (Herculano-Houzel, 2009). Furthermore, different 

cellular rules in species show clearly that a higher mass does not imply a higher number 

of neurons. However, a higher number of neurons directly indicate increased cognitive 

capabilities.  
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The brain consists of different kinds of cells, which fulfil some functions and form the 

brain’s tissue. However, not necessarily all of them play an essential role in developing 

cognitive features. For example, as known today, the glia-cells seem not to influence 

cognitive characteristics of the brain, even if their number is high compared to other 

kinds of neuronal cells. Other types of neurons are spiny and non-spiny neurons. Spiny 

neurons are mostly pyramidal (75-80% of all neurons) and found in mini-columns and 

play an essential role in this research. Non-spiny cells are so-called inhibitory cells (10-

25%) of the neocortex.  

The estimated number of 100 billion neurons represents a significant challenge for 

modelling a cortical algorithm on modern computers: according to different sources 

(Solomon D, Henri, Charles, Melwin, Ninoshka, 2015), a single neuron might have up to 

a hundred thousand synapses. Assuming that a single neuron forms one to ten 

thousand synapses to other neurons or input sensory cells, the human brain may 

contain more than 10E+14 synapses of ten thousand synapses per neuron. 

 

The complexity of the brain is unlikely to be matched soon by the existing computing 

paradigms. Therefore, from a practical perspective, to represent the above synapses 

as an array on a modern software development framework used in this work, like the 

.NET Core 64-bit operative system’s maximum possible array size of integers (32 bits) 

is 2,147,483,592. Therefore, this number is calculated as follows: 

 

                                         
2³²

2
− 56=2147483592  

(1) 

 

Half of the maximal integer value on a 64-bit system is subtracted by 56, an internal 

framework overhead to hold and manage an array. The solution will require 

approximately 50000 such arrays to achieve a hundred billion synapses, 

 

                                               
10¹⁵ 

2147483591 
=  46566.13 

 

(2) 

 

The neocortex is a thin sheet of different kinds of neural cells (see Figure 1), which are 

highly interconnected and occupy a fragile surface area (Mountcastle, 1997). All 
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neurons in the neocortex are organised into six horizontally layered columnar 

structures (Kaas, 2012).  

 

Figure 1.  

The neocortex is a thin surface area of approx. 2600 cm² with a thickness of 3–4 mm. On the left: 

neocortex unfolded tissue. On the right: unfolded neocortex tissue consisting of cortical cells (in blue) 

distributed vertically across the cortex sheet. 

 

Inside all layers, neurons are organised in columnar structures. One of the goals of 

neurosciences is to understand how the complex columnar organisation generates and 

controls human behaviour. The organisation of neurons seems to follow the same 

pattern across the entire neocortex, which plays a vital role in this work. They build a 

complex and highly interconnected "distributed system" (Mountcastle, 1997). It is 

assumed that there is a small canonical unit inside the population of neurons. This unit 

might be essential in solving basic and complex cognitive tasks. It is created from a 

population of cells and forms structures called mini-columns. Further, mini-columns 

form cortical columns, forming a more complex system called layers. 

 

The following sections describe more precisely the most relevant entities of the brain 

and their features used for investigating the cortical algorithm and its parallel 

execution. 

2.1 Neurons, synapses and dendrites 

Reverse engineering of the neocortex or the brain itself is challenging. Nowadays, how 

neurons process the input from many synapses is still a mystery. They are one of the 

essential lower-level elements of neural biology in this context. Simplified, the neural 

cell (neuron) consists of the cell body (soma), dendrite segments, axons and synapses. 
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When the membrane potential of the neural cell rapidly oscillates, the neuron 

generates the action potential (Chen; Lui., 2021). The action potential brings the neuron 

to the firing or spiking state. A neuron "computes" input into a sequence of action 

potentials or spikes (Arcas, Fairhall, Bialek, 2003). The firing frequency of the neuron 

can vary and might encode even space and time (Hasselmo, 2013), which is more than 

a single bit of information. In this work, the spiking (firing) neuron represents the carrier 

of a single bit of information.  

 

Axon is a part of the neuron that arises from the cell body. It transforms impulses from 

one neuron to one or more other neurons. The cell that sends the signal (fires) is called 

a presynaptic cell or sometimes, in this work, referred to as a source cell. Before the 

axon terminates, it spreads into branches ending with terminals that connect to 

postsynaptic neural cells. Axon terminals of the presynaptic cell end with synaptic 

connections to dendrites and dendritic spines of the postsynaptic cell. Receiving and 

processing the information in the neuron occurs in the dendrites and the cell body.  

Neurons generally have an excitatory or inhibitory function (Swanson, Maffei, 2019). 

Information flows via excitatory neurons and excites the neuron to spike. In contrast, 

inhibitory neurons prevent a neuron from spiking. Inhibition and excitation are both 

critical and keep information processing and encoding balanced. 

Synaptic connections between neurons influence the learning process in the brain, and 

there is evidence that they also form memories (Abraham, Jones, Glanzman, 2019). 

Synaptic connections are created, destroyed and remodelled (Chklovski, Mel, Svoboda, 

2004). 

 

Their ability to strengthen or weaken synaptic connectivity over time is called functional 

plasticity. The synaptic plasticity in this work is mainly based on the Hebb Rules (Hebb, 

1949) encapsulated in the phrase "cells that fire together wire together". 

2.2 Columns 

One of the critical entities in the cortex is the classic column or cortical column, 

sometimes called a module (Mountcastle, 1997). This entity will be referred to in this 

work as a cortical column. It represents a grouping of cells across layers, which shares 

the same sensory input (see Figure 4). Different sensory inputs stimulate specific 

regions and are associated with a particular column. The size of one cortical column 

may vary from 300 µm to 600 µm in diameter.  
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Cortical columns are organised in groups and form another entity in this work called 

an area. Areas (in the HTM context, also called regions) are highly interconnected and 

build a hierarchical information processing system. It is assumed that every area is 

associated with a unique semantical level of processing. This assumption does not 

affect the cortical algorithm because it does not require any specific design and 

implementation detail. It is used solely to express that area A1 processes lower-level 

information (i.e., sensory input). A1 output is passed as input to the higher-level area 

A2, which will build higher-level information from pre-processed sensory input. 

For example, visual information processing in the brain is done in areas V1, V2 and V3 

(see Figure 2). Every area has a particular function in a cortical algorithm. According to 

many papers, i.e.: (Kaas, 2012) and (Lyon, 2001), these areas form a semantical 

hierarchical tree for processing information: V1->V2->V3, where the volume of areas 

satisfies V1 > V2 > V3. 

In this example, information flows from the retina to V1 and V2 and V3. Every named 

area sends feedback information to the area lower in the hierarchy, which is the 

opposite of the feed-forward flow. 

 

Figure 2.  

Shows information flow in areas of visual cortex V1, V2 and V3. The flow of information indicates 

hierarchical connectivity between tree areas. For example, information is received from the retina (not 

shown in the picture) and forwarded to V1, then V2 and finally to V3. Feedback flow is the opposite. 

As described later, this semantical hierarchical structure is one of the crucial features of 

the cortical algorithm. Furthermore, the hierarchical organisation implies the idea of 

the modular sensory cortex and the concept of canonical cortical circuits. Specifically, 

regarding processing information in V1 and V2, there is also a concept of the hyper 

column consisting of cells responding to different aspects of visual stimulus like 

detecting lines, their orientation and colour (Ts’o, Zarella, Burkitt, 2009). 
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Understanding the neocortex’s semantical topologies is crucial to scaling the cortical 

algorithm. The organisation of cells in the region is essential for this work. Cells form a 

large number of synapses and interconnected areas (regions). A large number of 

connections impact parallel execution and the scaling algorithm, and it plays a vital role 

in building higher-level meaning based on information shared in semantically lower-

level areas. 

2.3 Mini-columns 

The vertical cell column of the neocortex has been a model for a cortical organisation for 

some time (Mountcastle, 1957; Mountcastle, 1997). It is horizontally organised into six 

layers and vertically into a group of cells connected by synapses across layers (see  

Figure 3). The well-structured horizontal population of neurons inside the column forms 

another important entity called mini-columns. Mini-columns have been developed 

during the evolution of all mammalian brains. Researchers believe that the brain cortex 

increases by adding new elementary units (mini-columns) rather than simply increasing 

the number of neurons. The estimated diameter of a single mini-column inside the 

cortical column falls within 30–50 µm (Buxhoeveden, Casanova, 2002). Mini-columns 

span multiple layers and typically share the same proximal receptive field properties. 

 

The columnar structure in the neocortex and synaptic connections follow the concept 

of a biologically distributed system. In this context, a distributed system is defined as a 

set of spatially separate “units” that communicate by exchanging messages by firing 

neurons. 

 

The neocortex contains two basic types of neurons: neurons spiny and none-spiny 

(Buxhoeveden, Casanova, 2002). Spiny (stellate) neurons are mostly pyramidal (75-80% 

of all neurons) and found in mini-columns. They play an essential role in this work 

because they are excitatory cells carrying information across neurons. Non-spiny cells 

occupy 10-25% of the neocortex. In contrast to spiny cells, they are inhibitory cells. 
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Figure 3  

The figure shows the organization of mini-columns inside of a cortical column. Mini-columns typically 

span all layers. Left: An arrangement of different types of neurons in the mini-column across layers 

(Mountcastle, 1997). Right: Thin vertical lines in the simulation show the high cellular concentration of 

different cells (depending on the layer), forming mini-columns.  

2.4 Layers 

One of the brain’s uniqueness is the layered structure that might play an essential role 

in the brain’s functioning (Guy, Staiger, 2017). Layers are sheets of populations of 

neurons layered on top of each other that share some commonalities. Brains and parts 

of the brain might generally have a variable number of layers. For example, the human 

neocortex is divided into six layers (Mountcastle, 1997). In contrast, the three-layer 

cortex arose in the early amniote forebrain’s olfactory, hippocampal and dorsal cortex. 

Three-layer and six-layer cortexes are built on pyramidal cells with proximal, apical and 

basal (distal) dendritic trees (Shepherd, 2011). It is possible to identify basic circuits for 

recurrent excitation and lateral inhibition across all the cortical regions. It seems that 

the layer-specific function does not reside in the layer but in the circuit, irrespective of 

its topology (Guy, Staiger, 2017).  

 

Every layer is typically formed by many cells of a few different cell types. For example, 

every cortical column in the area represents an information processing unit whose 

neural cells are layered (see Figure 4). 
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Figure 4  

They layered cellular organisation. Every cortical column spans six layers and spreads across a 300 to 600 

µm diameter range. All layers have different functions in the brain. For example, layer IV consists of 

stellate and pyramidal neurons, which receive a feed-forward sensory input. Layers II/III (usually 

considered together) are responsible for sequence learning. 

 

The function and interaction within each layer are as follows:  

 

Layer I - receives feedback axons from higher-level areas and the central nervous 

system (usually monoamine neurons). These connections receive feedback axons 

from higher levels in the information processing hierarchy. (Thomson, 2003). 

 

Layers II and III – are the so-called output layer, which provides temporal information 

processing and results in higher-level projection. These layers might be responsible for 

learning sequences (Hawkins, Ahmad, 2016). 

 

Layer IV – receives the feed-forward input, not involved in receiving feedback 

information. Also, it sends axons to other areas and forms long-distance horizontal 

connections within the layer (Douglas, Martin, 2004). This layer plays a major role in 

spatial sparse pattern representation. Most of this work’s investigation and modelling 

of the cortical algorithm is related to this layer. 
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Layer V – it has been suggested that this layer encodes the duration between sequences 

(George, Hawkins, 2009).  

 

Layer VI - is connected to the thalamus, sending processing feedback to lower layers 

in the hierarchy, receiving feed-forward input, and sending its output to layer V 

(Hawkins, Ahmad, Subutai, Yuwei, 2017). Layers VI and V, similarly to layers IV and II/II, 

provide an input-output circuit instance, which can be modelled as a broadly 

distributed neocortex. 

 

Making the algorithm that models (emulates) this layering structure is vital for this 

work. Layers are still under research, and today it is unknown how layers exactly should 

or can be interconnected to achieve the best cognitive capabilities. Following the idea 

of the canonical microcircuit in the visual cortex (Hubel, Wiesel, 1974), (Douglas, Martin, 

1989) and the hypothesis of the possible existence of the canonical unit that can solve 

some higher cognitive tasks. This work uses the layered structure approach (among 

others) to model the cortical algorithm. In this work, layers host smaller units that 

incorporate algorithms for spatial recognition, associative learning and sensory 

encoding.  

 

2.5 Dendrites 

Excitatory input of neurons typically comes over dendrite segments. The excitation 

subthreshold voltage is directly dependent on the relative location of the dendrite to 

the cell body (Williams, 2005). The dendrites with an approximate distance from the 

cell body of 250 μm are called proximal dendrites. Dendrites with an approximate 

distance of 500 μm belong to the distal (basal) dendrite segments category. The 

excitation voltage of the neuron decreases exponentially with the distance of the 

dendrite from the soma. 
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Figure 5  

The influence of the distance of dendrites on the somatic voltage. Dendrites with a 250 μm distance 

(proximal) have a much higher impact on the polarization of the neuron (Williams, 2005) than dendrites 

with a distance larger than 500 μm (Distal) 

 

A similar finding (Larkum, Nevian, 2008) points out that the depolarization amplitude 

caused by the synaptic input is also a function of the distance from the soma. The local 

input resistance primarily determines this function.  

 

Proximal dendrites are responsible for receiving feedforward input (Hawkins, Ahmad, 

2016). The short distance to the soma and lower resistance considerably affect the cell 

and can directly generate the action potential.  

 

Basal (distal) dendrites originate from nearby cells of the same region. They do not 

have a significant direct effect on the activation of the cell to an action potential. But 

they generate the NMDA spike (Larkum, Nevian, 2008), which can excite the cell and 

put it in the pre-depolarisation state. In this state, the cell is partially activated 

(depolarised). Therefore, clustered and multiple synchronous inputs to basal dendrites 

can have a more significant impact on a local dendritic spike than a somatic action 

potential. Dendritic signalling and information clustering are fundamental artefacts for 

understanding information processing in the brain. 
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Finally, apical dendrite segments are located far away from the cell’s body (more than 

1mm). They seem responsible for connecting different regions (i.e. higher-level 

regions). The NMDA spike generated in the apical dendrites does not directly affect the 

cell but leads to a Ca2+ spike. The exact correlation between NMDA spike, Ca2+ spike 

and action potential is still an area of research in neurosciences. Independent of how 

this biologically works, the feedback from higher-level regions can also lead to the cell’s 

depolarization.  

2.6 Encoding and the information persistence 

 

One of the crucial questions to understand the information processing in the brain is 

to determine how neurons in a given area are activated and how this information is 

encoded. An important belief is that knowledge is coded in a distributed manner in the 

brain. This is also known as the Parallel Distributed Processing (PDP) theory of cognition 

(Bowers, 2009), also known as the dense coding scheme. In contrast, there is also a 

belief that knowledge is persisted in a localist fashion, where an object, some concept 

or even behaviour (cat, house, grandmother smiling etc.) is encoded by a hypothetically 

single neuron commonly called the grandmother neuron. This hypothetical neuron 

(Solomon, Henry, Sushmitha, Partha, Melwin, 2015) is also known as a Jennifer Aniston-

Cell, Cardinal-Cell or a Gnostic-Cell. This theory is often titled a localist theory (Bowers, 

2009). The key difference between the two theories is that each cell in localist theory 

codes precisely one item, and the PDP cell is involved in coding multiple items. 

 

Hubel and Wiesel conducted experiments on the visual system of cats and monkeys, 

providing the first insights into the neural representations of visual information in the 

brain (Hubel, Wiesel, 1959). They detected firing neurons in the visual cortex when a  

line pattern was projected on a particular place on the retina depending on orientation 

or when the line was moving. They also showed the topological map of the visual cortex 

describing the columnar organisation of cells (Hubel, Wiesel, 1962). They explained how 

the V1 is organised in columns and holds so-called simple cells in coding similar but 

slightly different line orientations at the same retinal position (cells in adjacent columns 

code for line segments that vary by approximately 10° in their orientation). These 

columns are organised into hypercolumns and code for a range of line orientations in 

a range of retinal locations. Very important in this context is that information is encoded 

hierarchically. Complex cells in V1 are interconnected with multiple simple cells and 
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encode more complex information (Hubel, Wiesel, 1968), which might support the 

evidence of grandmother neurons. These organised units encode visual information 

and pass them to higher-level regions of the brain, where the visual image is formed, 

and the model of the world is created. However, it is probably unrealistic to expect 

every mental state to be described by a single neuron (Hubel, 1995). Hubel and Wiesel’s 

experiments clearly show that a minimal number of neurons fire when more complex 

moving shapes are detected. This result might be an indicator of evidence of sparse 

coding of information. However, Bowers (Bowers, 2009) described distributed codes as 

a representation in which each neuron is involved in coding more than one familiar 

“thing”, and consequently, the identity of a stimulus cannot be determined from the 

activation of a single unit. He also argued that there is no unique coding scheme and 

pointed out Dense Distributed Representation (DDR) in relation to PDP, where each 

neuron is involved in coding many things. Another attractive coding scheme might be 

Coarse Coding. Multiple neurons are coactively firing in this coding mechanism when 

coding some item. In this case, neurons that encode similar things are located in 

neighbouring areas of the cortex.  

 

The number of neurons and columns in the cortex has grown over the course of the 

evolution of the mammalian brain. However, it is surprising that many neocortical 

neurons show low firing rates on a stimulus. The experimental evidence (Barth, Poulet, 

2012) in the mammalian neocortex indicates that most neurons keep silent (no firing), 

and only a tiny portion keep firing. This sparse encoding is achieved by competition 

across neurons and tuned by a homeostatic mechanism (Perrinet, Laurent, 2010), 

(Turrigiano, Nelson, 2004). Homeostatic signalling constrains neural plasticity and 

contributes to the uniform stability of neural function in the long term (Graeme. Davis, 

2006), (Davis, 2013),The functional stability of neural circuits is achieved by homeostatic 

plasticity. It balances the network excitation and inhibition and coordinates changes in 

circuit connectivity (Tien and Kerschensteiner, 2018).  

 

According to (Turrigiano, Nelson, 2004), the homeostatic plasticity boosting 

mechanism is only active in the early stage of the development of a newborn animal. 

Later, over time, the bosting is deactivated or shifted from cortical layer L4. This could 

mean that homeostatic plasticity in L4 has a task to uniformly activate mini-columns by 

continuously learning unsupervised patterns observed from the environment. However, 

continuous activation (boosting) changes synaptic weights and implies deleting 

previously learned patterns. This finding plays a vital role in this work in implementing 
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the cortical learning algorithm, as briefly described in chapter  8. In addition to 

homeostatic plasticity, the adult mammalian cortex supports structural plasticity 

(structural dynamic) manifested by forming new synapses and destroying existing 

synapses (Zito, Svoboda, 2002). This process is dependent on genetic and 

environmental input influence.  

 

The evidence of homeostatic plasticity correlates with another coding called Sparse 

Distributed Representation (SDR). The SDR describes complex stimuli with few neurons 

(Bowers, 2009). SDR enables high memory capacity and low overlap between stored 

information. Moreover, the relatively low number of neurons enables fast information 

processing compared to other coding mechanisms. Investigation of the functional 

significance of coding strategies provides many valuable insights, but the exact coding 

in the brain remains unclear. This is because it is generally challenging to make precise 

experimental observations in conjunction with many cellular dependencies  (Finelli, 

Haney, Bazhenov, Stopfer, Sejnowski, 2007). 

 

The synapses seem to exhibit a degree of stochasticity due to various noise sources, 

such as thermal fluctuations and variability in the release of neurotransmitters (Faisal, 

Selen, Wolpert, 2008). However, stochasticity does not necessarily require synaptic 

precision, which is the ability of synapses to transmit signals with high accuracy and 

reliability. This contradicts some traditional views in neuroscience, emphasising the 

importance of precise synaptic transmission for neural computation. 

 

Some findings (Kajić, Gosmann, Stewart, Wennekers, Eliasmith, 2017) related to 

dendritic spikes suggested clustering of inputs along a part of dendritic segments. This 

may enable dendrites to separate threshold groups of similar inputs and allow a single 

neuron to recognise multiple patterns. 

 

The current evidence suggests that the brain uses distributed codes in primary sensory 

areas and sparser and invariant representations in higher areas (Quiroga, Kreiman, 

2010).  

 

Another crucial biological aspect in this context is sensory encoding. For example, the 

ear audio signal is processed differently than the retina video signal. But, in both cases, 

some SDR is created and forwarded to the neocortex. The sensory encoding follows 

the principle explained in the following example. The cochlea in the ear is a mechanism 
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for converting frequencies and amplitudes of sounds (Harold, Kirchner, 1974). The 

structure of a hair cell is organised in an array. Every cell in the array encodes a range 

of frequencies. Neighbourhood cells in this structure overlap their encoding frequency 

range. This implies two crucial claims. First, the overlap of the frequency range is a 

biological redundancy mechanism. If some cells are damaged, the neighbourhood cells 

will take over the encoding of frequencies owned by damaged cells. Second, similar 

frequencies are encoded similarly. That means that two nearby frequencies sound 

almost equally.  
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 Machine Learning and Cortical 
Algorithms 

At the beginning of this work, many algorithms have been analysed to understand 

different learning techniques and to find the best computational intelligence approach. 

The analysis was originally not only focused on brain-inspired algorithms. For example, 

traditional Machine Learning algorithms like Logistic Regression Restricted Boltzmann 

Machine, K-Means etc., were also analysed. However, algorithms like Perceptron, 

Multilayer Perceptron (MLP), Convolutional Networks, and others were more 

interesting for this work. This section summarises the most relevant findings related to 

this work.  

Artificial Neural Networks (ANNs) are artificial adaptive systems inspired by the human 

brain (McCulloch, Pitts, 1943). They typically build a synthetic model of the biological 

neural network that contains mainly neurons and synapses. A typical learning method 

in this context is supervised learning that involves weight updates of synaptic 

connections using the backpropagation algorithm (Guo, Xiang, Zhang, Su, 2021). The 

backpropagation algorithm is efficient but still a mathematical construct without 

biological evidence. It updates the synaptic weights to narrow the output value to the 

expected target value. Unlike supervised learning, unsupervised learning is also a 

widely used algorithm (LeCun, Bengio, Hinton, 2015). A typical unsupervised learning 

method is based on Hebb-Rules (Hebb, 1949) and its spike-motivated temporally 

asymmetric form called Spike Timing Dependent Plasticity – STDP (Gerstner, Kempter, 

Hemmen, Wagner, 1996). The synaptic weight change Δwj of a presynaptic 

neuron j depends on the relative timing between presynaptic spike arrivals and 

dependent postsynaptic spikes. For example, suppose the presynaptic spike is repeated 

a few milliseconds before postsynaptic action potentials cause Long-Term Potentiation 

(LTP) of many synapse types. In contrast, if the presynaptic spike is repeated after 

postsynaptic spikes, the Long-Term Depression (LTD) of the synapse is caused. 

 

As described later, the model investigated in this work is mainly based on the principles 

of Hebbian-Rules (Hebb, 1949). Following this rule, synaptic weight (permanence) is 

incremented by repeating input and decremented if the input doesn’t stimulate the 

synapse. Using these simple rules synapses, durably persist the learned information in 

the form of weight. However, continuous learning naturally creates a constraint called 
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the stability-plasticity dilemma. Learning requires plasticity for storing new knowledge 

and stability to prevent forgetting previous knowledge. Too much plasticity will result 

in forgetting, whereas too much stability will prevent learning (Martial, Aurélia, Patrick, 

2013).  

 

Merging HTM Hebb-Rules and STDP is a challenging task (Sebastian Billaudelle, 

Subutai Ahmad, 2016). Adopting the learning rules in HTM to the dynamic spiking 

model like HMF (Hybrid Multi-Scale Facility – University Heidelberg) is a nontrivial task.  

The cortical model investigated in this work does not integrate the complete chemical 

temporal asymmetry as suggested by STDP. Fortunately, the dynamic of synaptic 

activation in this work incorporates the resulting causality principle offered by STDP. 

 

One of the prominent examples of brain-inspired algorithms solving classification 

problems is Multilayer Perceptron (MLP) and Deep Neural Networks (DNN). Such 

algorithms build a network (see Figure 6) of neurons connected by synapses across 

multiple layers (Arora, Basu, Mianjy, Mukherjee, 2018). 

 

  

Figure 6 

 Deep Neural Network model 

A popular deep learning algorithm inspired by the processing of visual information in 

the brain is a Convolutional Neural Network (Fukushima, 1980), initially called 

neocognitron. It is widely used for pattern recognition unaffected by a shift in position. 

This algorithm uses a Spatial Pooling and dimension reduction algorithm that typically 

performs a down-sampling of images. However, even if very efficient and biology-
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motivated, CNN does not work human-like. Moreover, some experiments challenge the 

plausibility of CNN as a theoretical framework for understanding image classification 

(Dietmar Heinke, Peter Wachman, Wieske von Zoest, E. Charles Leek, 2021). 

 

Another important algorithm used for sequence learning in this context is the Recurring 

Neural Network (RNN) in its novel form, Long Short-Term Memory, initially introduced 

in 1991 (Hochreiter, Schmidhuber, 1997). This algorithm form is shown in Figure 7. It 

also uses neural cells interconnected with synapses (Sherstinsky, 2020). 

 

 

Figure 7  

Cell connections in a Recurring Neural Networks - Long Short-Term Memory (LSTM) 

 

All named algorithms perform well by solving dedicated problems in the industry. But 

they do not implement the cortical algorithm. They are brain-inspired and create some 

kind of neural network, but they all end up with a strong mathematical approach. The 

fact is, there is no evidence of such a robust mathematical formulation in the brain. The 

goal of this work is not to create just another better-performing mathematical 

formulation of the same approach. Instead, this work investigates whether canonical 

cortical units exist and how they might work. Some of the truly brain-inspired models 

described later in this chapter appeared to be Ganger’s and Hinton’s Joint View and 

Object Models. Also, the DeepLearbra framework provides an exciting approach in the 

context of the processing of visual streams. Because the idea of the HTM best aligns 

with biological findings described in the next chapter, this model plays the most critical 

role in this research.  
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3.1 Hierarchical Temporal Memory Cortical Algorithm 

The Hierarchical Temporal Memory cortical learning algorithm (HTM-CLA) is a novel 

machine-learning algorithm inspired by the working principle of the neocortex, a part 

of the human brain believed to be responsible for intelligence (Hawkins, Ahmad, 

Dubinsky, 2011), (Hawkins, Dawkins, 2021). HTM-CLA, later in this document, also 

referred to as HTM, provides a theoretical framework that models several fundamental 

computational principles of the neocortex. The idea of the HTM-CLA was initially 

described in the book “On Intelligence” (Hawkins, Blakeslee, 2004), later followed by a 

second edition, “A thousand brains” (Hawkins, Dawkins, 2021). Today, the HTM idea is 

still in research. Still, the emerging framework already has many applications described 

in many papers (Bonhof, 2008), (Melis, Chizuwa, Kameyama, 2009), (Guo, Xie, Zhang, Li, 

2015), (Shah, Ghate, Paranjape, Kumar, 2017), (Shah, Ghate, Paranjape, Kumar, 2018) , 

(Pal, Bhattacharya, Dey, Mukherjee, 2018), (Sousa, Lima, Abelha, Machado, 2021) etc. 

The core of the framework integrates several algorithms inspired by the neocortex’s 

functioning. As described later in this chapter, in contrast to DNN, the HTM uses a 

different, more complex biological model of the neuron (described later in chapter 5). 

It does not use backpropagation or any mathematical calculation as long there is no 

evidence that they are a property of the brain. Instead, it uses Hebbian learning with a 

natural STDP integration. This section gives a short introduction to HTM-CLA. A 

detailed description of the HTM-CLA, its adaption and implementation related to this 

work is presented in chapter 5. 

 

The HTM-CLA introduces an artificial neuron model that is more complex than 

commonly used neuron models in neural networks. The neuron model implements the 

dendritic properties of pyramidal cells found in the neocortex (Spruston, 2008). 

For example, a neuron in HTM can take a pre-depolarised state (see 2.5) in addition to 

active and inactive states. This kind of neuron state is suggested to be a predictive state 

(partially depolarised) of the cell. If the neuron is in a predictive state, it will probably 

generate an action potential (it will fire). Cells in this state fire earlier than cells 

stimulated only by feedforward stimulus and inhibit neighbourhood cells, creating even 

sparser pattern recognition. The HTM model hypothesises that active firing neurons 

correspond to bursting activity, and predictive state corresponds to tonic firing (Ferrier, 

2014). In this state, the neuron remains depolarized, which is just below the threshold 

for firing an action potential.  
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Also, synaptic connections between cells and sensory inputs are more aligned with 

biology and use the concept of the receptive field (Lücke, 2004), (Lücke, Bouecke, 2005) 

instead of interconnecting all neurons across layers. The permanence value ‘p’ (weight) 

defines the synaptic connection between the presynaptic cell and the dendrite segment 

of the postsynaptic cell.  

 

                                  p ∈ ℛ |  0 ≤ p ≤ 1 (3) 

Every time some input pattern occurs, the permanence value increases by permanence 

increment, typically set at 0.15. An existing synaptic connection decrements if the 

spatial pattern does not appear. With this rule, synapses are formed, destroyed and 

strengthened. If the permanence of the synapse is above the threshold value 

Permanence Connected, the synapse is declared as connected. This value defines the 

synaptic binary state used in the HTM (Hawkins, Ahmad, 2016). With this rule, the HTM 

can learn and forget patterns (Quiroga, 2017). This process of synaptic connections 

becoming stronger with frequent activation is also called Long-Term Potentiation (LTP). 

 

The HTM idea, in a nutshell, enables the creation of a cortical area (HTM region) or the 

whole cortical column (see 2.2), with any number of mini-columns and cells inside mini-

columns. Most experiments in this work and papers related to HTM CLA are configured 

to run with 1024, 2048, and 4096 (Pietron, Wielgosz, Wiatr, 2016) and 16384 mini-

columns. Figure 8 represents a simple HTM layer as a cortical area with two crucial 

algorithms, the Spatial Pooler and Temporal memory. The simplified layer model in the 

figure is built with six mini-columns with five cells each. As described later, models used 

in this work with 1024 or 2048 mini-columns demonstrate some cognitive capabilities.  

 

Unlike standard neural networks, the HTM operates by design explicitly and 

exclusively on binary values (‘0’ and ‘1’). If the sensory input outside of the HTM area 

does not provide a binary input, the HTM offers the concept of encoders, which 

encode non-binary input in the required bit sequence. The primary information 

representation of the internally generated results in HTM is Sparse Distributed 

Representation (SDR), as described in more detail in the next section. 

http://www.neuroscientificallychallenged.com/glossary/long-term-potentiation-ltp
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Figure 8 

 HTML-CLA model with the encoder of sensory data and integrated Spatial Pooler and Temporal memory 

algorithm in a single cortical area. 

 

After encoding the sensory input (if required), the input bit-sequence is passed to the 

proximal dendrite segment of the HTM region, where the Spatial Pooler starts to learn 

the spatial input and encode it into the sparse code. The sparse code produced by the 

SP is encoded as a set of active mini-columns. The encoded sensory input (active mini-

columns) is the input for the Temporal Memory algorithm, which is responsible for the 

learning sequences. The output of the TM is also a sparse code. The TM output is 

represented as a set of active cells.  

 

The cortical area design flexibility of the HTM makes it possible to create any topology 

of the artificial tissue of the neocortex or brain. With this, minimal cortical areas can be 

created, and their cognitive capabilities can be investigated. 

For example, the Temporal Memory algorithm (cell SDR) output can be further used as 

input for higher-level HTM areas (see Figure 9). 
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Figure 9  

The cortical area built with Hierarchical Temporal Memory with two lower layers and a single top layer. 

 

The first implementation of the HTM was published under the name Nupic (Numenta, 

2008), followed by a new version in 2013. Shortly after, the open-source 

implementation of the JAVA HTM-CLA followed (open-source, htm-java, 2013). For this 

work, the HTM-CLA .NET Core C# version was implemented and published under the 

name neocortexapi (Dobric, 2019). 

3.1.1 Sparse Representation of patterns  

The synaptic mechanism in the brain, which drives neuronal circuit function while 

processing information, is still not entirely understood. As described in 2.6, the data 

can be encoded as dense, coarse or sparse. In a sparsity case, the information is 

encoded with typically less than 5% of active neurons in the population of some cortical 

area (Weliky, Fiser, Hunt, Wagner, 2003), (Hromádka, Weese, Zador, 2008). The HTM, in 

general, makes use of sparse encoding (Subutai, Hawkins, 2016). That means only a tiny 

fraction of neurons get active (see 2.6) and drive action potentials (Finelli, Haney, 

Bazhenov, Stopfer, Sejnowski, 2007) when the recognised pattern is encoded. For 

example, in a population of 100000 neurons, only 2% of neurons (2000) would become 

active (depolarised) if some pattern is recognised. The HTM defines the sparsity by ratio 

and can vary from a dense encoding scheme defined by PDP to a sparse representation 

(see 2.6). The effect of sparsity in HTM is that the cortical representation activates a tiny 

percentage of the neurons’ populations while most remaining neurons stay inactive. 

This is a very efficient technique for memorising a large number of patterns inside a 
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relatively small number of neurons (Larkum, Nevian, 2008). In contrast, neurons in 

typical ANN store a single pattern, known as a “point neuron”.  

 

Sparsity in this context is defined as ratio a/n, where n is the number of neurons in the 

population, and a is the number of neurons used to represent an encoded pattern. The 

population of neurons in HTM is considered to be sparse if a ≪ n. Sparseness or density 

at the time t is defined as a ratio of active neurons divided by the number of available 

neurons: 

 

𝑺𝒕 =
1

𝑁
∑ 𝑎𝑘𝑡

𝑁

𝑘=1

 
(4) 

𝑎𝑘𝑡  is a kth bit (neuron) at the time (step) t.  

 

Given a number of bits in the SDR vector n and the number of ON-bits a that represents 

a pattern, the possible number of memorised patterns (capacity of the population) is 

calculated as: 

(
𝑛

𝑎
) =

𝑛!

𝑎! (𝑛 − 𝑎)!
(5) 

 

In the context of machine learning and pattern recognition, the number of recognised 

patterns is a subset of the set of all possible patterns. Given a 𝜃 as a threshold that 

splits recognised from unrecognised patterns, the number of possible recognised 

patterns is calculated as: 

      

                     𝑐𝜃 = ∑ (𝑎
𝑖
)𝑎

𝒊=𝜃  | 𝜃 <  𝑎     (6) 

However, the cell population also recognises many other patterns simultaneously, 

which might falsely activate a neuron. The possible activation set of all combinations is 

calculated as follows: 

Ω = ∑ (
𝑎

𝑖
)

𝑎

𝒊=𝜃

∗ (
𝑛 − 𝑎

𝑎 − 𝑖
)

(7) 

 

The probability of false positives e can be calculated as Ω divided by the total capacity  

of the population: 
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𝑒 =
∑ (𝑎

𝑖
)𝑎

𝒊=𝜃 ∗ (𝑛−𝑎
𝑎−𝑖

)

(𝑛
𝑎

)
 

 

      (8) 

These equations will be used later in this document to describe how the HTM was 

modelled and implemented in the framework used in this work. 

 

In general, sparse encoding algorithms originated in signal processing but are now 

extensively used in learning algorithms. From that perspective, they are related to 

Compressed Sensing reconstruction, also called CS-Theory (Donoho, 2006). The theory 

suggests that if the signal is sparse or compressive, then the original signal can be 

reconstructed. Sparse algorithms can be categorized from various viewpoints 

depending on their motivation, strategies, concerns, and so on. One interesting 

comparison and brief overview (Zhang, Xu, Yang, Li, Zhang, 2015) empirically 

categorize sparse encoding algorithms into four groups: greedy strategy, constrained 

optimization strategy, proximity algorithms, and homotropy algorithms. The same 

study categorizes sparse encoding algorithms based on norm minimization with 

respect to sparsity constraints: L0-norm minimization, Lp-norm (0<p<1) minimization, 

L1-norm, L2,1-norm and L2-norm minimization. It was also shown that the L2-norm is 

not strictly sparse. The study clearly shows that all sparse algorithms are rooted in 

various mathematical strategies used for the theoretical optimization of sparse coding.  

 

This work, however, relies rather on biological than mathematical sparse representation 

algorithms. The biological motivation behind the theory of efficient information 

encoding belongs to computational theories of representational learning, and it is an 

important field of research. Some algorithms specifically suggest that efficiency in 

visual neuronal encoding implies that neurons sense independent shapes that 

constitute an image. For example, the causal generative image representation model 

called SparseNet (Olshausen, Field, 1996) uses Gabor filters to create a localized, 

oriented receptive field similar to that in the primary visual cortex described by Hubel 

and Wiesel in 2.6. Similarly, (Bell, Sejnowsky, 1997) developed a sparse encoding 

algorithm based on Independent Component Analysis (ICA). Both models generate 

smooth neural activity with a smaller variance (narrower or peakier) Gaussian 

distribution. 
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The more efficient form of sparse encoding provides the model Sparse-Set Coding 

network (SSC). In this encoding mechanism, neurons and mini-columns can only take 

binary states (Rhen, Sommer, 2006). Another work (Thronton, Srbic, Main, Chitsaz, 

2011) uses sparse encoding to encode the input by setting the synaptic permanences 

to an integer value rather than using binary values. Synapses used in the learning 

process are created between mini-columns and input neurons. This technique might 

potentially be suitable for encoding images. 

 

Sparse encoding of information also appears to be an essential component of 

associative memory, as demonstrated by the biologically motivated Sparse Associative 

Memory algorithm (Hoffmann, 2019). In this model, active input neurons are projected 

onto a pattern-specific sparse set of active neurons, representing the associative 

memory. This model randomly connects hidden layers to neurons in the input layer and 

claims that any fixed number of connections to the input layer has no biological 

plausibility.  

 

Choosing the optimal Sparse encoding algorithm is an important part of this work. As 

described later, sparse encoding in this work is used to encode the sensory 

information into SDR and store the spatially learned patterns and sequences. 
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3.1.2 The model of the neuron 

As mentioned in 3.1, biological dendritic excitation suggests a more complex neuron 

model than typically used in artificial neural networks. The HTM uses the neuron model 

(Hawkins, Ahmad, 2016) that distinguishes three dendrite segments basal, distal and 

apical (see 2.5). As shown coloured in Figure 10 A, dendrite segments are classified by 

the distance from the cells’ soma (body of the cell). The nearer segment to the cell, the 

higher impact on the excitation of the cell. Proximal segments are used in this work to 

connect to the sensory input and learn spatial patterns. Learning spatial patterns is 

described in more detail in the next section. Distal (basal) segments are used for 

learning contextual information. As described in section 5.8, Apical segments are used 

primarily to build associative connections between areas that host different contextual 

information. 

 

Neurons that send the information (pre-synaptic neurons) connect with their axons to 

the receiver (postsynaptic) neurons and form receptor synapses (Figure 10  B). The 

formed synaptic connection has a strength defined by equation (3). If there is a synaptic 

connection between two neurons, the synapse that connects neurons is called in HTM, 

the potential synapse. Biologically, this corresponds to axons that pass close enough 

to a dendrite segment, forming a (potential) synaptic connection (Figure 10 B). 

Every time the pre-synaptic neuron is activated (firing), the synaptic permanence value 

p is incremented. The increment value Permanence Increment used in this work was 

typically 0.1 or 0.15. In contrast, every time the receiving neuron spikes and its pre-

synaptic neuron is not spiking, the permanence value is decremented by the value 

PermanenceDecrement.  

 

 

 

 

 

 

A 
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B 

  

Figure 10 

 HTM  model of the neuron. A) The neuron has three segments: apical, distal (basal) and proximal 

dendrite. B) A Presynaptic (sending) cell connects with axons to the distal dendrites of the pos-synaptic 

(receiving) and forms receptor synapses. 

 

The decrement value used in this work was typically between 0.15 and 0.25. If the 

decrement value is higher than the increment value, the synapse learns slower than it 

forgets. Once the permanence of the synapse exceeds the threshold value, Connected 

Permanence 𝜽𝒑, the potential synapse becomes a connected synapse. In contrast, if 

permanence falls under the threshold, it will become the potential one. These essential 

parameters define synaptic plasticity in HTM and directly impact learning.  
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Another important characteristic of the HTM neuron model is the definition of two 

states. The first state is the active neuron state (firing state). The second neuron state 

is the predictive state. The neuron is in the predictive state if the total count of synaptic 

connections to the basal dendrite segment exceeds a predefined threshold value. As 

described in section 3.1, these synaptic connections define the context and can activate 

a neuron without any direct input received at the proximal dendrite segment. 

 

3.1.3 Spatial Pooler 

 

The Spatial Pooler is an algorithm used inside HTM for learning spatial patterns (Cui, 

Ahmad, Hawkins, 2018). The SP receives the spatial input inside layer IV (see 2.4) and 

encodes it to SDR. Mathematically the SP acts as a function that maps the spatial input 

I  into the sparse code represented as the set of active mini-columns 𝐶𝑎  
.  

 

𝑠𝑝: 𝑰 →  𝐶𝑎  
(9) 

The Spatial Pooler forms receptive fields for all mini-columns, as described in sections  

2.3 and 3.1. The purpose of the SP is to encode the spatial input into the sparse 

representation of mini-column states, as shown in Figure 11.  

 

The input of the Spatial Pooler is the SDR typically feedforwarded from sensory cells or 

cells from other HTM regions described in 2.4. In the case of the sensory input, mini-

columns form synaptic connections via proximal dendrite segments (see 2.5) to input 

sensory cells. The SP learns patterns by following Hebbian learning rules (see 3.1) that 

continuously strengthen synapses on the repeated appearance of the same pattern 

(Hawkins, Ahmad, 2016). More details about the mathematical formalisation of HTM 

CLA can be found in (Mnatzaganian, Fokoué, Kudithipudi, 2016). Please note that SP 

does not implement the structural plasticity mechanism with rewiring synaptic 

connections.  
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Figure 11 

Spatial Pooler builds the receptive field for every mini-column. It connects the neural input cells to mini-

columns. 

 

SP integrates homeostatic excitability control (see 2.6), ensuring neural stability. One 

of the properties of SP is to produce the same or similar SDR code for similar spatial 

inputs. It exclusively uses two inhibition (see 2.1) mechanisms: Global- and Local-

Inhibition. The Global-Inhibition uses the receptive field (see 2.3 and 3.1) over the entire 

region. In contrast, the Local-Inhibition uses a smaller area defined by inhibition radius 

and a more complex algorithm, which makes the Local-Inhibition slower than global 

one. The learning process of the SP is fast and usually takes no more than two or three 

cycles (iterations) to converge to the input’s final SDR code. 

 

The SP is designed as an independent component that learns presented spatial 

patterns. It uses neurons as input and activates mini-columns without involving mini-

column cells in the calculation. The whole mini-column with all its cells is considered 

active when the pattern is recognised. Section 5.7. provides more details about the 

design and implementation of the Spatial Pooler used in this work. Moreover, the SP 
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provides noise resistance (Wielgosz, Pietron, Wiatr, 2016), a cortical feature described 

in chapter 7. 

3.1.4 Temporal Memory 

Temporal memory is the algorithm in the HTM that is responsible for sequence 

learning. The algorithm, by definition, learns the transition from the cell state c  in the  

previous step t-1 to the cell state in the current step t.  

 

tm: 𝒄𝒕−𝟏 →  𝒄𝒕
(10) 

The algorithm creates the temporal dependency between the two steps by building the 

reliance on the previous step. With this, the cell state in the last step defines the context. 

The input of the TM algorithm is always the SDR (bit-array), which can be the output of 

the SP, the output of some other TM or similar. The challenge of the HTM modelling is 

to build the proper flow of SDRs between algorithms.  

 

In contrast to SP, which outputs the SDR of active mini-columns, the TM algorithm acts 

as a function that maps the SDR into another SDR within the same area.  

 

As suggested in the paper (Hawkins, Ahmad, 2016), learning of sequences biologically 

might be a part of layer 2/3 (see 2.4, Figure 12 A). The input of the TM is, by default, 

the set of active mini-columns that recognise some spatial pattern (see the previous 

section). According to the HTM theory, the spatial pattern is recognised and encoded 

by the set of active mini-columns. For example, patterns A, B, C, D and X are encoded 

as unique active mini-column sets. Figure 12 B shows the state of cells before temporal 

learning but after spatial learning. All patterns are learned, and all cells inside active 

mini-columns activate the column, but not the particular cell inside the column. 
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Figure 12  

Sequence Learning with HTM. Different elements in the sequence (A, B, C or D) are encoded as a unique 

set of active cells, depending on the context defined by the previous element (Hawkins, Ahmad, 2016). For 

example, C followed A has a different SDR code than C followed B. However, in both cases, active cells 

that encode C belong to the same set of active mini-columns.  

 

After learning the sequence B followed by A, C, followed by B and D followed by C, (A-

>B->C->D), the TM has activated particular cells inside of the mini-column that 

represent the spatial pattern (see Figure 12 C). However, when B appears after X, the 

representation of that B (noted as B’’) is different than the representation of B followed 

after A (noted as B’). This is because B’ and B’’ share the same active mini-column set 

but use different cell states. Also, C’ and C’’ that follow B’ and B’’, respectively, are 

encoded differently. 

 

One of the essential features of the TM is activity-dependent structural plasticity that 

supports biology findings described in 2.6. With increased activity, the TM can create 

new segments and synapses and destroy inactive synapses. Section 5.8 provide more 

details about the structural plasticity model used in this work. 
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3.2 Other related models 

In this research, a few more models have been investigated that narrow biological 

findings to model the cortical algorithm. 

Granger’s Model 

Granger’s model is a model which defines a more specific mapping onto the 

thalamocortical circuitry (Rodriguez, Whitson, Granger, 2004). The idea behind this 

model is that there are multiple waves of processing of sensory data. Every wave is 

differentiated from the previous ones by producing a temporally extended sequence 

of elaborated categorical encodings. 

Synapses in this model are activated and potentiated according to physiologically-

based rules. Features incorporated into the model include differential time courses of 

excitatory vs inhibitory postsynaptic potentials. The model also includes differential 

axonal arborizations of pyramidal cells vs interneurons and different laminar afferent 

and projection patterns. 

Most aspects of this model, like pyramidal cells and excitatory and inhibitory 

mechanisms, are widely integrated into HTM. 

The GLOM Model 

The basic idea behind this model (Hinton, 1981) is that the spatial and object pathways 

must learn side by side to generate predictions about what will happen next. Over time 

this idea of the part-whole hierarchy representation was improved as a GLOM system 

(Hinton, 2021). The GLOM model suggests how to encode an object as a set of parts 

(primitive shapes). This work is motivated by the capability of the brain to connect 

objects semantically to a hierarchy that persists complex objects consisting of simpler 

objects and shapes. For example, the car consists of wheels, doors, windows etc. The 

model proposes using columns at five levels. Lower levels in the column recognise 

simple shapes. The higher the level in the column, the more complex the object is. 

Elements recognised at lower levels are synoptically connected to objects recognised 

at higher levels.  

 

Compared to GLOM model, HTM CLA appears more naturally aligned to the biology of 

the brain. Furthermore, in contrast to Hinton’s model, the HTM CLA distinguishes 

between spatial recognition and temporal prediction calculus as done in the neocortex. 

The HTM is not only restricted to image procession and provides a more general theory. 
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Deep Leabra - a Comprehensive Model of Three Visual Streams 

This model (O’Reilly, Wyatte, Rohrlich, 2017) is similar to one of the older version of 

HTM CLA, which was initially based on the Bayesian generative model. It integrates 

many biological findings and supports learning with a sophisticated neuron model 

similar to HTM. The Deep Leabra model focuses processing of visual streams. It tries to 

demystify the higher-level knowledge built from perceptual experience. It 

encompasses most of the posterior visual neocortex, the dorsal and ventral. It 

incorporates two processing streams What (the dorsal one) and Where (the ventral 

one). The third information stream connects two named streams. The model records a 

sequence of video frames where one out of 100 different objects moves and makes 

random saccades every 200 msec. It assumes that the currently favoured Hebb learning 

cannot solve real-world problems and that some error signal, like in Backpropagation 

Algorithm, is required. Deep Leabra shows promising results in a range of applications, 

including speech recognition, visual object recognition, and text classification. 

However, the model is still in the early stages of development. More research is needed 

to evaluate its performance on more complex tasks and optimize its architecture and 

parameters. 

 

In the meantime, the HTML CLA model was improved and provided a more general 

theoretical framework. 

 

3.3 Conclusion 

This chapter summarises many findings in the field of Machine Learning that are 

essential for this research. It concludes that traditional algorithms solve many industrial 

problems but cannot be declared Cortical Algorithms even if motivated by some brain 

features. They are dedicated to solving a specific problem and are not adaptable to be 

used for any other problem. 

The GLOM demonstrates hierarchical learning, but the design does not strictly align 

with findings in neuroscience as the HTM does. In contrast, Deep Leabra uses some 

aspects of the cortical algorithm. It delivers a solution that well fits biological findings. 

However, it is focused on the Image Classification problem and does not provide the 

general framework as HTM. Some core features of Deep Libra, like the error feedback 

propagation, are already implicitly integrated into the Cortical Algorithm created in this 

work. However, how the Cortical Algorithm deals with the error propagation differs 
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entirely from a standard backpropagation approach used in Deep Libra and common 

Machine Learning algorithms. In addition, using Alpha and Gamma cycles in Deep 

Leabra is a feature that is not explicitly used in the Cortical Algorithm in this work. As 

described later in section 9.4, dealing with cycles is a part of the future work. Still, 

explicit usage of alpha and gamma frequencies is not part of the algorithm and belongs 

to future work (see 9.5.1.6). 

 

 



 

48  |                 Investigation and Modelling of a Cortical Learning Algorithm in the Neocortex  

 

 

 Parallel programming 

Parallelism in computer sciences is a technique of writing programs that execute tasks 

in parallel on the same machine (also referred to as a node) shared across multiple CPU 

cores or multiple machines (also called nodes) and cores in a cluster environment. This 

is similar to teamwork in organisations when the work needs to be orchestrated across 

different individuals, teams and even organisations to exceed the capacity of a single 

persona. The parallel work needs to be organised, orchestrated and synchronised in a 

distributed manner, which is generally a complex task. Parallel programming faces very 

similar challenges.  

 

One of the goals of this work was to find the best technique, model or algorithm 

capable of efficient parallel execution of the HTM CLA. Several parallelisation 

approaches, especially in the context of Machine Learning (Pethick, Liddle, Werstein, 

Huang, 2003), have been analysed to find the best approach. One of the promising 

approaches is a parallelization strategy based on the message-passing interface (MPI), 

which allows multiple nodes in a cluster computer to communicate and coordinate their 

computations. 

The original HTM algorithm must be investigated and redesigned to support the 

execution on multiple CPU cores and nodes. The challenge of this task is a large number 

of mini-columns and their cells in HTM layers, as described in chapter 2. 

 

4.1 The problem with concurrent access to shared resources 

 

The compiled code running in the OS is typically distributed through multiple 

processes. Depending on the implementation, one process can internally run on 

multiple threads. 

Using multiple threads inside multiple processes is an efficient technique to speed up 

the execution of the code. This approach can also be extended to numerous machines. 

In that case, we talk about the distributed environment and parallel execution. Running 

the code distributed across various machines is in the industry called horizontal 

scalability. 
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However, the implementation gets very hard when it comes to concurrent access to 

shared resources inside a single process, at a single machine and across multiple 

machines in a distributed environment. Concurrent access introduces a requirement to 

guarantee mutually exclusive access to the resource. Depending on the application, the 

protected resource can be a variable, an object, rows in a database etc. Depending on 

the sequence and timing of the execution, the system can run in an inconsistent state 

if the access to resources is not mutually exclusive. This is known as a race condition 

(Wheeler, 2004), (Mitchell, 2005). Another critical issue that can occur in this context is 

called deadlock. A deadlock typically occurs when two threads lock the access to the 

shared resource and wait on the release of the lock at the same time. 

 

The common approach to solving the synchronisation problem is to use resource 

synchronisation (locks) around method execution.  

This programming technique is not easy to implement and typically must target a 

solution in three domains. First is concurrent access from multiple threads to the shared 

memory inside the same process. This problem is widely solved in modern 

programming languages using Monitors (Moon, Chang, 2006) (Yang, Kent, Aubanel, 

Taylor, 2015). Modern programming languages solve this very efficiently by providing 

language constructs that synchronise code blocks (Wagner, Anderson, Kulikov, 2022). 

 

Second is the concurrent access to resources shared between multiple processes on 

the same machine (Andrews, 1998). This problem is commonly solved by using mutexes 

at the level of the operative system (Wilson, 2007)  (Microsoft, 2020). This approach 

allows the code in one process to lock the shared resource. While holding a lock, the 

Code in another method that tries to access the resource will wait until the resource is 

released. 

 

Finally, the third approach, distributed lock, solves the problem of concurrent access to 

shared resources in a distributed environment (Jonathan Lejeune, 2015). This is a 

complex problem solved by using many different methods. One of the approaches is a 

Chubby Lock service (Mike, 2006) developed by Google. The project Apache Zookeeper 

(Foundation, 2016) is a similar open-source implementation of the same approach. The 

problem of distributed lock is generally solved but has a drawback. With the increasing 

number of concurrent access participants, the system’s performance does not scale 

linearly. To be able to parallelise an algorithm, the designer of the distributed system 
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must redesign the algorithm to be able to partition workloads. With the partitioning of 

the workload, the concurrent access can be categorised into groups of participants that 

concurrently access different shared resources. 

This approach is one of the significant features of the Actor Programming Model 

described in the next section. 

4.2 Actor Programming Model 

Object-oriented programming (OOP) is a widely accepted and proven, and familiar 

programming model. It is a modern programming technique taught by many 

Computer Sciences education institutions. One of the most fundamental OOP concepts 

is the concept of  “object” and “class” (Xinogalos, 2015).  

One of the core pillars of this model is inheritance and encapsulation (Snyder, 1986), 

which support extensibility and ensure that the private part of an object is invisible 

outside of the object’s context. The object must, by design, expose operations that 

protect the invariant nature of its encapsulated data.  

 

However, instructions inside invoked methods, executed in parallel on multiple threads 

or machines, can be interleaved, leading to side-effect called race conditions (see 4.1). 

Consequently, invariants will probably not remain intact if threads accessing them are 

not coordinated. As mentioned in the previous section, the problem of coordinating 

concurrent access to shared resources is a complex task. With a high number of 

concurrent threads and especially threads shared across multiple physical machines (in 

this work referred to as nodes), implementing such a solution with OO programming 

languages is complex, expensive and error-prone. Moreover, because the typical OO-

based applications usually rely on stateless services, use a relational database as a 

backend and are modelled by so-called three-tier or even multi-tier architecture, they 

show weak performance with an increasing number of nodes in the system. Weak 

performance in this context means that the performance does not increase linearly with 

the growing number of nodes. Even worse, a growing number of nodes can sometimes 

lead to stagnation or a decrease in performance. 

 

In contrast, the Actor Programming Model (Hewitt, Bishop, Steiger, 1973) is a 

mathematical theory and computation model which targets massive concurrency. The 

Actor model builds on existing models of nondeterministic computation, for example, 

Turing’s model, Petri nets etc., and sets the focus on concurrency. In this theory, the 
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“Actor” is treated as the universal primitives of concurrent computation (Hewitt, 2010). 

An Actor is a computational unit (see Figure 13) that can concurrently run code in 

response to an asynchronous message it receives. By default, the actor algorithm inside 

common frameworks typically processes incoming messages unordered. However, if an 

application requires ordered message processing, a single batch-message can be 

serialized as a sequence of messages processed in the order. 

The motivation for this programming model in this work is more simple reasoning 

about concurrent computation. It allows one to think about code in terms of 

communication. This reasoning is based on the fact that computation units, which 

execute concurrently, are contextually independent and can be executed in parallel 

without the need to provide a distributed lock mechanism, which always limits 

performance at a large scale. The Actor Programming Model (APM) introduces the 

concept that does not require concurrent access control in an explicit way as OO does. 

As shown in Figure 13, the actor executes in a single thread and holds its state 

(resources) persisted to some volatile or durable store. Messages are received and 

stored in the queue before being processed. The implementation of the APM 

framework internally dispatches messages to the destination actor, whose instance is 

identified by the actor type and actor ID. With this concept, two messages cannot 

trigger the concurrent execution of the same code in the same context, defined by the 

particular actor instance. It appears, at first, that the actor cannot increase performance 

because it cannot scale out of a single thread. Adding more CPU cores to the machine 

that executes the same actor instance would not increase the performance. APM can 

only support efficient parallel execution if the computation can be partitioned into 

many actor instances.  In that case, multiple actor instances can run concurrently 

without synchronization. This very simple approach makes it possible to quickly 

implement the highly distributed code by running many actors. All resources that need 

to be concurrently shared are allocated only to actors that need to access them. An 

actor has no constructor as a class in the OOP model.  Theoretically, an actor virtually 

always exists. It is executed when it is needed and released when it becomes inactive. 

By definition, the code sending the message to the actor has no knowledge about the 

cluster where actors will be executed. This message routing detail is called location 

transparency. It is transparent to the developer and simplifies the implementation of 

the actor itself and the code that consumes the actor’s functionality. 
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Implementing the APM must be theoretically split into two physically separate parts. 

The first part will be where the user’s code is physically executed. The second part is 

the computation at the remote node in an actor.  

These two parts play the role of scatter and gather (Hearst, Karger, Pedersen, 1996). 

Such an approach describes a way of addressing the actor. The scatter code prepares 

all required parameters for executing the code inside an actor. It acts as a proxy 

between the user’s code and the executing code in the actor. The gather is the opposite 

side inside the framework. It receives the parameters from the scatter and dispatches 

the execution to the actor. 

 

Due to the increasing popularity of cloud technologies, more and more applications 

are becoming distributed and require programming models that make this kind of 

computing easier (Dobric, 2016). However, another issue today might be a driving 

factor for the Actor Programming Model. The CPUs are not getting faster than in the 

last decade. Some programming frameworks (JAVA, .NET, NodeJS etc.) widely accepted 

in the industry target multicore programming (single physical machine with multiple 

CPUs) and solve this problem efficiently (Leijen, Schulte, Burckhardt, 2009). Running 

computational logic across many physical nodes with multiple CPUs represents a 

significant challenge. This is where the Actor Programming Model is, in some scenarios, 

a great alternative. 

 

Figure 13  

The model of the actor. Messages are received and executed in a single thread. The actor persists internal 

state to the volatile or durable storage. 
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To find out the actor framework that best fits the requirements of this work, several 

newer and modern Actor Programming Model implementations have been evaluated: 

 

 Orleans Virtual Actors 

The Orleans (Microsoft, 2019) is an open-source Actor Programming Model 

Implementation mainly used internally by Microsoft and Microsoft partners. It 

was initially designed by Microsoft Research (Bernstein, Bykov, Geller, Kliot, 

Thelin, 2014). This model was originally implemented as a backend for the 

game “Hello” and found limited adoption in the community and several 

enterprise projects.  

  

 Service Fabric Reliable Actors  

The Service Fabric is the container technology that supports the Actor 

Programming Model (Microsoft Corporation, 2016). It is similar to the Orleans 

Virtual Actors currently used as a backend of many services in the Microsoft 

Azure platform (Dobric, 2016). The drawback of this model is a strong 

dependency on the Service Fabric cluster technology. Because this product will 

be consequently merged with the Kubernetes technology, the actor model 

framework will be discontinued. For this reason, this framework will no longer 

be followed in this work. 

  

 Akka.NET  

The open-source implementation of the Actor Programming Model (Actors, 

2015)  (Petabridge, 2016) is widely used for enterprise software development. 

JAVA and .NET developer communities adopt this framework widely because it 

allows OO developers to deal easily with the APM approach. However, the 

drawback of this model is the complexity of the maintenance of the cluster and 

the limited configuration of native internal execution details. 

  

 Azure Durable Functions 

The stateful serverless programming model supports durable entities on top of 

Actor Model principles (Microsoft, 2021). This framework represents a trendy 
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Serverless Stateful Programming Model. Developers are not required to 

manage a cluster of nodes because the serverless platform serves and 

automatically maintains the computation nodes.  

 

 As described later in chapter 6, many ideas from the listed frameworks were 

integrated with this work. However, due to the specific requirements of the HTM 

model, it was not possible to fully meet these requirements. For example, the 

actors' focus within Orleans is to provide a framework for high-scaled 

computation of a short computation logic implemented in modules called 

grains. The framework does not provide a control of the instantiation of grains 

from the client side. This is an advantage for developers because they do not 

need to care about the destination of the code in the grain (actor). However, this 

design enforces the framework to persist the state of the actor right after the 

execution or to provide communication between nodes to maintain the life cycle 

of the actor. Both the persisting of the state and the internal communication 

slow down the performance, especially when the state occupies a large amount 

of memory, as in the case of Cortical Learning Algorithms. Depending on the 

implementation, persisting of the state of an actor usually might take more than 

ten to a hundred times longer than the execution. The same limitation was found 

in the Akka.Net framework—the running of the HTM-CLA in these two 

frameworks led to high-CPU, craching and overload of the cluster. 

 Finally, the Azure Durable Functions framework enables state maintenance and 

code execution with the Actor Model principals. However, the drawback of this 

model is that it does not support any configuration and control of message 

routing and internal code execution. Moreover, it is designed for typical 

enterprise applications. It is robust, reliable and easy to use but generally too 

slow and expensive to serve many actors representing cortical mini-columns. 

  

 As a result of testing all named frameworks, it was decided that all of them 

were not suitable for implementation of the CLA. For this reason, a new 

lightweight Actor Model framework was designed and implemented (see 6.2). 
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 Modelling of a Cortical Learning 
Algorithm 

 

Following different computation intelligence approaches discussed in chapter 3, the 

Hierarchical Temporal Memory Cortical Learning Algorithm (HTM CLA) was chosen as 

the best match to the biological findings described in chapter 2. In contrast, all other 

traditional (standard) algorithms are well-designed to solve problems in the specific 

problem domain. Still, they can not be a foundation for building a unified cortical 

algorithm. 

 

The main objective of this work was to create the Cortical Learning Algorithm by 

following the principles of the HTM CLA. This chapter describes the Algorithm designed 

and implemented in this work. It starts with the memorizing capacity (5.1), followed by 

the model of computational plasticity (5.2). Next, the model of the artificial cortical area 

and associated receptive field are described in section 5.3. Finally, sections 5.4 and 5.5 

describe synaptic and segment activation mechanisms and encoding model, 

respectively. 

 

Sections 5.7 and 5.9 describe how required parts of HTML CLA are integrated into the 

algorithm created in this work called the Neural Association Algorithm (NAA). 

 

Section 5.8 describes the NAA that extends the HTM CLA and provides a more general 

Cortical Learning Algorithm. This algorithm is a theoretical framework that fully 

implements the part related to HTM CLA. Some other parts of this algorithm are still in 

development. The implementation in .NET C# is published as an open-source 

framework called neocortexapi (Dobric, 2019). Implementing the HTM part of the NAA 

is strictly aligned with the original Java implementation, even though this approach 

does not fit naturally to the .NET Core and C# language. This decision was made to 

compare scientific results across different frameworks better.  
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5.1 Huge memory capacity in the small space 

 

It is commonly believed that computer memory is very limited compared to the brain's 

memory. This belief derives from conventional thinking related to the standard 

computation technology and memory limitations. However, the sparse neural 

information persistence described in 3.1.1 suggests an entirely different approach that 

enables a vast capacity on commodity hardware. To get an idea of memorizing capacity 

of the neuron population, assume the number of neurons is just n=16, and every 

pattern is represented by a=3 active neurons (see Figure 14). Then, applying equation 

(5) with these parameters, the memory in the neocortexapi can save 560 bits in only 16 

available physical bits.  

 

 

Figure 14  

Sparse encoding of the pattern. Two different patterns encoded with 3 bits in the space of 16 bits, which 

define sparse factor (sparsity) 3/16=0.187. The maximum number of stored patterns is 560. 

  

By using the same equation, together with the sparsity of approx. 2% of neuron 

population set as described in 3.1.1,  the memory capacity of the population of neurons 

is calculated for values n from n=500 to n=4096 bits.  These values were chosen 

because they are reasonably small numbers that can be used in experiments on 

commodity hardware. They are also large enough to recognize patterns with described 

sparsity. The capacity as a function of the number of neural cells by a fixed density of 

2% is shown in Figure 15. For example, the population of 2048 neurons with 40 active 

neurons (sparsity 2%), gives the capacity of 1084 possible patterns.  
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Figure 15  

The number of patterns represented as a power of 10 that the SDR can memorize as a function of the 

number of neural cells in SDR with 2% active neurons. The vertical axis represents a capacity as a 

number of patterns that can be stored. Horizontal axes represent the number of available neurons in the 

population formed by HTM. 

 

According to the results shown in the previous diagram, it can be concluded that even 

a minimal number of neurons (i.e. 2048 or 4096) can store a huge number of patterns. 

Following the biological functioning of synapses described in section 2.1 and equation 

(6), the HTM recognizes the pattern if the number of active neurons, synapses or mini-

columns is greater than the activation threshold 𝜽. For example, if 40 neurons are 

defined to be active by the encoding of some pattern (2% of 2000 mini-columns) and 

the 𝜽 = 𝟑𝟎, then the pattern is defined as recognized if 30 or more neurons are active. 

Theoretically, the threshold 𝜽 can be set to the number of available bits in the population 

(in this example 𝜽 = 𝟒𝟎). The implementation of neocortexapi can handle this naturally. 

However, the algorithm might sometimes predict ambiguous patterns with insufficient 

contextual information. However, for practical reasons, according to 2.6 and 3.1.1, some 

other value 𝜽 < 𝒏 should be chosen. There is no precise threshold that can be used to 

deliver the best result, but experiments in this work suggest using a threshold 

𝜽 ≈ 0.7 n. 

 

Because every neuron in the population recognizes multiple patterns (see 2.6), the 

probability of false positives must also be considered. By following equations (7) and 
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(8), the false-positive error probability of the sparse representation in HTM can be 

calculated. For example, Table 1 shows error probabilities for a=40 and n=600.  

Threshold Error 

probability 

40 2.307E-63 

35 6.842E-46 

30 1.507E-33 

20 8.530E-16 

Table 1 

 List of error probabilities for activation thresholds of 40, 35, 30 and 20 by SDR  

with 600 neurons(n=600) and 40 active neurons (a=40). 

Even by the threshold of 20 recognized neurons, which is 50% of 40 neurons used for 

encoding in the population of 600 neurons by the sparsity of 0.0667 (40/600), the error 

probability is extremely low, just 8.530E-16. By a=40, there are 40 synapses forming 

connections to active neurons. Therefore, with an expected threshold of 20, the 

recognized synapses neuron will generate the NMDA spike (see 2.6) with an error 

probability of 8.530E-16. To be sure that using suggested populations of neurons in 

this project in the range between approximately 500 and 4096 is feasible, the error 

probabilities of false positives have been calculated. For this calculation, the sparsity of 

2% was used, which. gives a different number of active neurons for every defined 

population. Also, the threshold Q was used in the range 𝒂 > 𝜽 > 𝟎. 𝟑𝒂. The result is 

shown in Figure 16. 

 

The result in the figure implies the following findings. First, the error probability of the 

sparse representation is extremely low. Second, the higher number of neurons in the 

population leads to a lower error probability. 
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Figure 16   

Error probability of the false positives. The result is shown for different populations of neurons mainly 

used in experiments in this work. The X-axis represents the threshold Q, which is the number of neurons 

required to recognize the pattern. The Y-axis shows the exponent value of error probability of the 

population by a given threshold Q. 

 

That means increasing the number of neurons in the artificial tissue model can 

recognize patterns with decreasing error probability. Third, the error probability of the 

population with fewer neurons can be reduced by choosing the higher threshold. 

Fourth, threshold values with even just 50% of active neurons of the population still 

generate an extremely low error probability. 

5.2 Synaptic plasticity and the Overlap function 

 

The idea behind the HTM algorithm relies rather on the cell population's activity and 

instead on a single neuron's activity. Following the encoding mechanism discussed in 

3.1, the HTM in this implementation (Dobric, 2019) also models neuron activations and 

synapse weights with binary states. According to neocortical theory, they align with 

biological synapses, have stochastic nature (see 2.6), and do not require synaptic 

precision. The synaptic connection is considered if its Permanence (see 3.1.2) exceeds 
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the Connected Permanence threshold value 𝑄𝑐. This threshold switches the binary state 

of the synapse in the HTM. As long the permanence is under this value, the synapse is 

not-connected, and it is not involved in the internal calculation. Not-connected 

synapses are called Potential Synapses. This value makes the potential synapse becomes 

a connected synapse and vice versa. Continuous adoption of the permanence value of 

the synapse is motivated by synaptic plasticity, described in section 2.1.  

 

The overlap function is one of the most critical functions in the created algorithm. It 

counts the number of connected synapses (active synaptic connections) of 

postsynaptic neurons to pre-synaptic active neurons. For example, assume that two 

populations of neurons, P1 and P2, are synaptically connected. The population P1 

creates presynaptic connections to dendrites of neurons of the population P2. From the 

point of view of P2, the overlap function is defined as the number of connected 

synapses to active (firing) neurons of the population P1. Synapses connected to inactive 

(non-firing) neurons in the population P1 are not counted in the overlap because they 

are binary switched off. If the 𝑐𝑗
2 is the binary representation of the potential connection 

from some cell of the population P2 to a cell 𝑐𝑖
1

 of the population P1, then the overlap 

between populations P1 and P2 is calculated as: 

 

o = {∑ 𝑐𝑗
1 ∗ 𝑐𝑖

2}  ≡ ∥𝑃1∧𝑃2∥ (11) 

 

The overlap function calculation is simple to implement and very fast operation. Analog 

to overlap, the Percentage Overlap is a ratio between the number of synapses 

connected to active neurons and the total number of neurons. For example, if one cell 

from P2 is connected to 1000 neurons from P1 and 100 of 1000 neurons are active, then 

the overlap is 100. Analogue, the percentage overlap is defined as the ratio is 100/1000 

= 0.1 (10%). 

 

The synaptic permanence, potential connection, active and predictive neuron states, 

and the overlap function described in this section are the fundament for implementing 

the cortical algorithm in this work.  
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5.3 Modelling the Hierarchical Temporal Memory cortical area 

 

The HTM algorithm created in this work is designed to model a cortical area with almost 

any topology in order to investigate the resulting cognitive capabilities. The simplified 

HTM cortical area is shown in Figure 17 left. It consists of mini-columns that cross all 

six layers inside a hypothetical cortical column previously described in section 2.4. Note 

that connections between cells inside and between mini-columns are omitted in the 

figure. However, to create such an area, the implementation must provide some 

concept of a cortical network consisting of interconnected smaller cognitive units.  

The cognitive unit used in this work is defined as a set of mini-columns that belong to 

the same biological layer described in 2.4. That means the cognitive unit forms the so-

called HTM layer that biologically represents a part of a cortical column that fits a single 

cortical layer. Figure 17 right shows the model of such a cognitive unit, the smallest 

canonical unit used in this research. In the example presented in the figure, the layer 

builds connections to the sensory input, which corresponds to the cortical layer IV. The 

layer in Figure 17 right can form the HTM model shown in Figure 8 with Spatial Pooler, 

Temporal Memory, or even some other future algorithm.  

 

When modelling multiple cortical layers, like in Figure 9, the input of some layers is the 

output of the preceding layer(s) or the sensory input (Lewis, Purdy, Ahmad, Hawkins, 

2019).  

 

During the layer's initialisation, mini-columns build a receptive field (RF) with synaptic 

connections to their input cells. In the example in Figure 17, bottom right, sensory cells 

are input for the layer, and every mini-column creates synaptic connections to the 

subset of sensory cells. Connections are built from presynaptic input cells to proximal 

dendrite segments (see 3.1). Neighbourhood mini-columns typically overlap their RF, 

as shown in Figure 17. With this, neighbourhood mini-columns build redundant 

connections to input cells, a biological robustness mechanism. 
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Figure 17  

Left: Simplified representation of the mini-columns inside of a cortical column of an area across all layers 

(layers boundaries are omitted). Right: Shows a cortical unit forming the HTM Layer IV overlapping the 

receptive field of synaptic connections to sensory input.  

 

The examples in Figure 17 right show a receptive field of two mini-columns with 

synaptic connections to six sensory input cells each. Every mini-column span over the 

column dimensional space with the uniform column ratio set CS:  

 

𝐶𝑆 = {
𝑘

𝑐𝑜𝑙𝑁𝑢𝑚
; 𝑘 ∈ {0, . . , 𝑐𝑜𝑙𝑁𝑢𝑚 − 1}} 

 

(12) 

With given four columns (example) column ratio set looks like this: 

 

{0,
1

4
,
2

4
,
3

4
}

 

(13) 

Every element in the CS < a subset of the sensory input, potentially connected to the 

mini-column cell. The topology can be defined in multiple dimensions. Given id and cd 

as numbers of input and output dimensions, respectively, as well as 𝐼id  and 𝐶cd
 

multidimensional input and column spaces, the column-span SI over the sensory input 

space 𝐼id in every dimension is defined as: 

 

                              𝑠𝑝𝑎𝑛 = {
𝑐𝑜𝑙𝐷𝑖𝑚𝑖

𝑖𝑛𝐷𝑖𝑚𝑖
; 𝑖 ∈ {1, . . , min (𝑖𝑑, 𝑐𝑑)}} (14) 

SI defines the ratio, which represents how many sensory input cells fit in the receptive 

field (RF) of a single mini-column with respect to uniform RF share across all mini-

columns. This value, in combination with CS, is used to calculate the centre of the RF of 
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the mini-column 𝑐𝑘 , by function 𝑐𝑒𝑛(𝑐𝑘). From the centre, every mini-column builds its 

RF over the area defined by a parameter potential radius 𝑟. Within a possible radius, 

every mini-column is potentially connected to the input. In generalized form, the 

receptive field  RF is a set of input cells 𝑖𝑗 With index 𝑗 connected to a mini-column with 

the index 𝑘: 

 

𝑅𝐹 id = 𝑐𝑒𝑛(𝑐𝑘) − 𝑟 < 𝑖𝑗  < 𝑐𝑒𝑛(𝑐𝑘) + 𝑟  | 𝑅𝐹id
⊂ 𝐼id

, 𝑖𝑗 ∈ 𝐼id, 𝑐𝑘 ∈ 𝐶cd
(15) 

Figure 18 A - shows a distribution of the receptive field of the layer with 128 mini-

columns and 32 sensory input cells with a radius of 5.  The vertical axis is the index of 

the mini-column, and the horizontal axis is the index of the cell to which the mini-

column is potentially connected. It shows that mini-columns overlap their receptive 

field. Figure 18 B shows a zoomed area indicating the centre of the RF of the mini-

column. 

In the case of multiple dimensions, both mini-columns and sensory input are flattened. 

For example, sensory input 32x32 will be represented by an array of 1024 cells, and 

mini-columns 64x64 will be represented as an array of 4096 cells (see Figure 19). 

 

 

 

 

B 
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Figure 18  

Receptive Field of the HTM layer with 128 mini-columns,  sensory input of 32 cells and radius 5. The 

vertical axis is an index of the mini-column. The horizontal axis is an index of sensory input cells. Note 

that colours in rows have no other meaning than visually separate rows. A) Shows all RF sets of the layer. 

Increasing the mini-column index shifts its RF. B) Shows a zoomed snapshot of cells (columns 10-21). For 

example, mini-column centres are marked from the bottom for the 1st and 3rd rows. Because the radius 

is 5, left and right from the centre, 5 cells are included in RF. 

 

 

Figure 19 

Represents a cortical column's receptive field (RF) with 64x64 mini-columns and 32x32 sensory input 

cells. Dimensions are flattened as 4096 and 1024 cells for mini-columns and sensory input cells, 

respectively. 

 

However, not every input cell within an RF defined by equation (15) will be connected 

to a mini-column. The percentage value of the RF’s subset Potential Percentage 𝑅𝐹𝑝 

defines a percentage of input cells within RF, which will be randomly connected to a 

specific mini-column. Currently, there is no biological evidence for this behaviour in the 

tissue. However, the HTM implements this as a possible mechanism that can be used 

in experiments. For example, Figure 20 shows RF with a radius of 5, which according to 

equation (15), occupies 10 cells. By  𝑅𝐹𝑝 = 0.5 (Figure 20 right) 5 of 10 cells within an 
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RF will be connected by synapses to mini-columns. Figure 20 left shows the RF with 

𝑅𝐹𝑝 = 1.0, where all cells within RF are connected to selected input cells. 

 

 

Figure 20  

Mini-Column receptive field with potential percentage value 1.0 left and 0.5 right. 

 

The overlap of the RF between mini-columns in the neighbourhood increases the 

robustness against damage in neurons. If, for example, one of the input cells would be 

damaged, many other cells share many of the same connections to mini-columns and 

vice versa, as shown in Figure 18 B. 

5.4 Activation of synapses and dendrite segments 

As previously described in 2.1, synapses connect the source cell's axons with the 

receiving cell's dendrites. The HTM model potentially combines a dendrite segment D, 

owner of the synapse, with a neural cell called source cell or presynaptic cell 𝒄𝒔 . During 

the learning process, every repeating input strengthens the synaptic permanence value. 

This is a very simple and fast computational operation defined by the Hebbian rule (see 

3.1). In contrast to standard neuronal networks, binary synaptic states in conjunction 

with described Hebb rule is easy to compute and require much fewer computation 

resources than the backpropagation algorithm.  

 

Figure 21 shows the model of dendrite segments used in this work. Proximal dendrites 

(green) are directly connected to the input sensors. Distal or basal segments (blue) 

connect to cells of other mini-columns inside the same area (region) described in the 

previous section. Apical segments (magenta) build synaptic connections to cells from 

other areas (regions).  
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Figure 21  

Dendrite Model of the neural cell. Green: Proximal Dendrite Segment connecting to sensory input. Blue: 

Distal Dendrite Segments connecting to cells from other mini-columns inside the same area (region). 

Magenta: Apical Dendrite Segments connecting to cells from other areas (regions) 

 

The model distinguishes between two activation rules. The first one is used to activate 

(select) the mini-column when the number of connected synapses on the proximal 

segment (green) exceeds the defined column stimulus threshold 𝜽𝒑. The second and 

third ones are used to activate the distal and apical segments when the number of 

connected synapses exceeds the activation threshold 𝜽𝒅 and  𝜽𝒂 respectively. 

 

A synapse is, by default connected if its permanence value is greater than a defined 

synapse Permanence Connected Threshold 𝜽𝒄 (see 5.2). Even if the synapse holds two 

states, its permanence value represents the postsynaptic cell's activation probability 

when the presynaptic cell is activated. When a sparsely encoded pattern is recognized, 

a segment topology creates n pre-synaptic potential connections from other cells to 
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segment cells as defined by equation (15). Formally, the whole segment can be 

represented as a binary vector: 

 
𝑫 = [𝑏0, 𝑏1, . . , 𝑏𝑛−1] (16) 

where 𝑏𝑖  are non-zero values, and i is an index of presynaptic connection independent 

of the segment type. With s = |D| is the segment's defined number of potential 

connections. When the pattern is recognized, the subset of connections D’ inside of 

the segment is activated:  

 
𝑫′ ⊂ 𝑫; s≪n (17) 

 

A dendritic segment is considered active if it holds more connected synapses (as 

defined by equation (11) of active cells on that segment than the segment activation 

threshold 𝜽𝒅. Finally, the neuron is considered as the active one (firing) if it owns the 

active segment. 

 

To recap, synaptic permanence value, learned by the Hebb rule, defines whether the 

synapse is in a connected (active) or potential (inactive) state. The binary state of 

synapses on the proximal segment activates the mini-column if the total count of 

connected synapses on the proximal segment is greater than the synapse threshold 𝜽𝒑.  

The binary state of synapses on the distal and apical segment activates the segment if 

the total count of synapses of active cells is greater than the segment activation 

threshold 𝜽𝒅 and 𝜽𝒂 and respectively. 

 

With this, the described HTM model in this work drives the activation of synapses, 

neural cells and dendrite segments. 

5.5 Sensory Input Encoding 

Section 5.2 describes the HTM using binary states of neurons and synapses to perform 

internal calculus. For this reason, sensory cells must be capable of transforming the 

sensory information into the binary code, represented as an SDR. By design, any 

information represented in this form can be used as input for the cortical algorithm. 

The HTM provides an encoder concept suggesting how any sensory input can be 

encoded as an SDR. This work has implemented various encoders like Scalar Encoder, 
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DateTime Encoder, Category Encoder, GeoSpatialEncoder, BooleanEncoder and more. 

The primary role in this work is a Scalar Encoder. It is used to encode the scalar numbers 

from a specific range. All other named encoders rely on the concept of the encoding 

of a scalar number. 

 

The encoder concept described in 2.6 inspires the implementation of encoding of 

different types of sensory inputs like motion, temperature, sound, pressure or almost 

anything else. This biological concept encodes similar values with a high number of 

overlapped bits. Once the data is encoded as SDR, the HTM will process it naturally as 

it would be sourced by any possible sensory cell. 

 

A scalar Encoder uses several parameters that define the encoding algorithm. The first 

important parameter is the number of bits N in the SDR that will be used as a spatial 

output of the encoder. The parameter W (width) specifies how many non-zero bits will 

be used to represent a single scalar value. For example, the following vector represents 

an SDR with the total number of output bits N=10 and the width W=4 of non-zero bits: 

 

0011110000 

 

The encoder does not encode the input using any known code like ASCII or similar. The 

output of the encoder rather represents the energy concentration around firing 

neurons in a biological way. For example, two similar values, 6 (0011110000) and 7 

(0000111100), are encoded with more overlapping bits than values 0 (1111000000).  

and 9 (0000001111). Encoding the same values in ASCII or binary code would lead to 

losing the biological similarity of nearby values. Technically, the Scalar Encoder always 

requires the possible encoding range for practical reasons. The values Minimum and 

Maximum define this range. For example, encoding the voltage in the household would 

require encoding in a range of 0 – 220 V. This should not be understood as a limitation. 

It is rather biologically inspired. All sensory cells in an organism are always limited in 

sensing a range of values. Given the number of bits N and the width of an encoded 

value, the number of possible uniquely encoded values Emin without overlapping of 

non-zero bits can be calculated as: 

 

Emin =
𝑵

𝑾
  | W < N, W>=1                                             (18) 



 

69  |                 Investigation and Modelling of a Cortical Learning Algorithm in the Neocortex  

 

 

 

Because there is no overlapping, this is the minimum number of possible uniquely 

encoded patterns for given N and W. The maximum encoded value Emax can be 

calculated when shifting the non-zero bits sequence by a single bit: 

 

Emax = 𝑵 − 𝑾 + 𝟏 | W < N                                               (19) 

 

Figure 22 shows two encoding examples. Example A shows the encoding of 13 possible 

values with the given number of bits N=15 and width W=3.  

 

(A) 
 

1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 

 

(B) 
 

1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 
0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 
0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 
0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 
0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 
0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 
0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 
0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 
0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 

 

(C) 
 

1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 
0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 
0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 
0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 
0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 
0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 
0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 
0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 
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Figure 22  

Represents three examples of the encoding of a range of scalar values. A) Encoding of 13 possible values 

for N=15 and W=3. Yellow marked bits overlap by encoding two nearby values.  B) Encoding of 9 

possible values for N=10 and W=3. C) Inefficient encoding with the same SDR for two different values. 

Yellow rows show two same SDRs that encode two different values. In this case, either the number of bits 

in SDR N is too small to encode the required range or the number of required active bits W is too large 

compared to the number N. 

 

This can form ranges like 0-12, 10-22, 1000-1012 or any other range. The encoding 

value has no absolute meaning at the encoding stage and is used later as a spatial 

input non-supervised. Values encoded this way can represent any sensory input. For 

example, it can be the frequency the cochlea receives in the ear, a colour range, 

temperature, ultrasonic frequency or even a range of numbers received by some device 

representing a new kind of sensor. 

 

All encoded values in this example overlap in two bits. If the greater width were used, 

the number of uniquely encoded values would decrease according to equation (19). 

However, suppose the number of required encoding scalar values defined by the range 

[min, max] is greater than the number of maximal possible uniquely encoded values 

Emax. In that case, the encoder will use the same encoding for multiple values from the 

range. Such configuration would prevent the HTM from distinguishing different values 

with the same code, which leads to improper learning. Such an SDR is shown in Figure 

22 C. Therefore, the encoding range should be shared appropriately across available 

bits N with the given encoding width W.  

 

One of the essential requirements in this research is the calculation of similarities 

between SDRs. Comparing several similarity functions found that typical sparsity (i.e., 

2% - see 3.1.1) highly influences the similarity due to the significant difference between 

the number of non-zero bits and zero-bits. For this reason, the similarity function used 

in this work encounters only non-zero bits.  

Given two arrays A1 and A2 with indexes of non-zero (active) cells a11, a12,..,a1N1 and a21, 

a22,..,a2N2  from arrays A1 and A2, respectively, the similarity 𝒔 of arrays can be computed 

as shown in the following equation: 

 

𝒔 =
𝟏𝟎𝟎

𝒎𝒂𝒙(𝑁1,𝑁2)
∑ 𝑎1𝑎2(𝒊)

𝒎𝒊𝒏(𝑁1,𝑁2)

𝒊=𝟎
                                               (20) 
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The equation does not propose strict limitations for the length of comparing array. 

However, all experiments in this work use arrays with the same length that differ in 

the position of active (non-zero) bits. Table 2 shows six examples that demonstrate 

how encoder-produced SDRs are compared.  

 

Arrays Similarity 

0, 0, 0, 0, 1, 1, 1, 1, 0, 0,  

0, 0, 0, 0, 1, 1, 1, 1, 0, 0,  

100.0% 

0, 0, 0, 0, 1, 1, 1, 1, 0, 0,  

0, 0, 0, 0, 0, 1, 1, 1, 0, 0,  

75.0% 

0, 0, 0, 0, 1, 1, 1, 1, 0, 0,  

0, 0, 0, 0, 0, 1, 1, 1, 1, 0,  

75.0% 

0, 0, 0, 0, 1, 1, 1, 1, 0, 0,  

0, 0, 0, 0, 0, 0, 0, 1, 1, 0,  

25.0% 

0, 0, 0, 0, 1, 1, 1, 1, 0, 0,  

0, 0, 0, 0, 0, 0, 0, 1, 0, 0,  

25.0% 

0, 0, 0, 0, 1, 1, 1, 1, 0, 0,  

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 

00.0% 

Table 2.  

Similarities between several SDR examples 

 

The left column shows two arrays and the right column shows the similarity calculated 

by equation (20). Two arrays are similar if both have an active bit at the same index. 

 

In this implementation, the HTM SDRs generated by encoders are used explicitly as an 

input of the Spatial Pooler, as described in the following section. 

5.6 The definition of the model 

 

The implementation of the HTM in this work models HTM entities in an object-oriented 

manner. This section describes the model of a few most important entities used in this 

research. It explains how the design decision fits the biology findings described in 

Chapter 2 and the overall HTM idea described in Chapter 3.1. Please see (Dobric D. , 

NeoCortexApi Entities, 2019) for a detailed implementation of all used entities. 

 



 

72  |                 Investigation and Modelling of a Cortical Learning Algorithm in the Neocortex  

 

 

The following entities (see Figure 23) and their relations have been defined to support 

the model defined in section 5.3: Cell, Synapse and Column (means mini-column as 

described in 2.3). The neural cell (see 2.1, 3.1.2) consists of a set of distal dendrite 

segments (see 2.5) and a set of Receptor Synapses. Receptor Synapses connect the cell 

as a source cell to distal dendrite segments of other cells, as shown in Figure 10 B. 

Please note that the Cell has no connection to the ProximalDendrite. This is because 

the cells in the HTM do not form direct connections to sensory cells. Instead, the 

connections to sensory in HTM cells are established from the Column entity (mini-

column) through the ProximalDendrite. For this reason, the entity Column holds a 

ProximalDendrite as a property.  

 

Figure 23 

The simplified HTM model contains the most important entities. 

The ProximalDendrite creates the pool of synapses and builds the Receptive Field to 

sensory cells, as described in sections 2.3 and 3.1. The class Segment is the simple base 

class implementation for all dendrite segments, as described in 2.5. 

 

Another vital entity in the framework is the class Connections. It implements all the 

internally required states that form the Hierarchical Temporal Memory with Spatial 

Pooler and Temporal Memory.  
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5.7 Design and implementation of the Spatial Pooler 

 

As already mentioned, the SP algorithm encodes the spatial pattern into the SDR code 

represented as the set of active columns. This section describes how this encoding in 

implementing the HTM in this research works. 

 

To initialize the SP algorithm, the set of configuration parameters (HtmConfig) and the 

instance of the Connections entity (see the previous section) are required. During the 

initialization process of the SP, the ProximalDentrite segment creates potential synaptic 

connections to the set of sensory cells (see Figure 8). With these connections, the 

sensory input generated by an encoder is feed-forwarded into the HTM. The internal 

state of the algorithm is saved to the entity Connections. Once the synaptic connections 

from mini-columns to the input cells are established, they will change their permanence 

over time. Still, no new connections will be created, and no existing connections will be 

removed. With this decision, the SP does not generally support structural plasticity (see 

3.1). As described later in the next section, this plasticity is a part of distal dendritic 

activation. The SP limits the permanence value to 1 and sets it to zero if it is under the 

defined value SynPermTrimThreshold. Currently, there is no biological evidence for this 

value, but all experiments in this work initiate this threshold to 0.05.  

 

The input of the SP is an array of bits defined as a set of N neurons 𝐼𝑛
. This input can 

be multidimensional (see Figure 11), but internally it is flattened and then mapped to 

sensory neurons. Every input is represented as a set of values (0/1), where 𝑁 is the total 

number of neurons in the input. A flattened version of an input vector 𝐼𝑘 is defined as: 

 

𝐼𝑘 = {0,1}1x𝑁

 
(21)

 

Also, a mini-column set 𝐶𝑥  in area x is defined as a flat column array, where 𝑀 is the 

total number of mini-columns: 

 

𝐶𝑥 = {𝐶1 , 𝐶, . . , 𝐶𝑀}1xM (22)

 

Sometimes the index notation is omitted, and the mini-column set is declared as 𝐶. As 

mentioned in section 5.6, mini-columns connect to input neurons via the 

ProximalDentrite segment and form potential synapses. This happens at the 
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initialization time of the SP. Connected synapses will not be destroyed, or a new 

synaptic connection will be created during the entire lifetime of the SP. The SP connects 

to a strictly controlled subset of input neurons defined by a receptive field (RF) of 

potential synapses of the mini-column. Giving the possible connection space 𝜆𝑁x𝑀  the 

following expression defines the set of potential synapses that build the RF to input 

neurons connected to the mini-column with index k.  

 

𝑋𝑘
1x𝑁 = { 𝑥𝑘1. . , 𝑥𝑘𝑁} | 𝑋𝑘 ∈ X𝑁x𝑀 , 0 ≤ 𝑘 < 𝑀, 𝑥𝑘𝑖 ∈ {0,1} (23)

 

If the input neuron with index i is synaptically connected to the mini-column k, the 

element  𝑥𝑘𝑖 from 𝑋𝑘 is set to 1. Mathematically the SP algorithm maintains a matrix 𝝀 

called in this work connection matrix. This matrix is the union of all receptive fields 𝑋𝑘 .  

 

𝝀 = (

𝑥11 𝑥12

𝑥21

…

𝑥𝑀1 𝑥𝑀2

   

… 𝑥1𝑁

𝑥𝑀𝑁

)|𝑥𝑖𝑗 ∈ {0,1}   

 

 
(24)

Indexes i and j define the position of the flattened versions of columns and sensory 

neurons, respectively. The mini-column 𝐶𝑖  is potentially connected to the sensory 

neuron 𝐼𝑗 if 𝑥𝑖𝑗 = 1. Similarly, to 𝑋𝑘  the set of potential synapses of the mini-column k 

can is defined as follows: 

 

𝑃𝑘
 = { 𝑝𝑘𝑢 . . , 𝑝𝑘𝑤} | 𝑃𝑘 ∈ P𝑁x𝑀, 0 ≤ 𝑘 < 𝑀, 0 ≤ 𝑝𝑘𝑖 ≤ 1, ∈ {0,1}| 

𝑢, 𝑤 ∈ {0, 𝑁} 

(25)

 

5.7.1 The Overlap function 

 

The core of the learning process in HTM is calculating the overlap between every mini-

column and the currently presenting input pattern. The overlap algorithm aligns with 

equation (11) and calculates the overlap value for the entire mini-column set of the 

cortical area (5.3), as shown in Algorithm 1. 
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Algorithm 1 Overlap Calculation 

01| function overlap (I, 𝜃𝑐) 

02|     // 𝜃𝑐  Connected permanence threshold 
03|     FOREACH 𝑐𝑜𝑙 IN 𝐶1x𝑀   // traverse all mini-columns  
04|             𝑜𝑘  ← columnOverlap(I, col, 𝜃𝑐) 

05|     ENDFOR 
06| end 

07| // I: Input vector. k: mini-column to calculate the overlap. 

08| function columnOverlap(I, k, 𝜃𝑐) 

09|         // gets the RF of column k. 

10|          𝑋𝑘
1x𝑁 ← X 

11|         // Multiply every RF-bit with a connected synapse with the value of the input vector 

12|         o ← {∑ 𝑥𝑘𝑗  𝑖𝑗} | 𝑥𝑘𝑗 ∈ 𝑋𝑘; 𝑝𝑘𝑗 ≥ 𝜃𝑐, 𝑘 ∈ {1, 𝑀}, 𝑖𝑗 ∈ 𝐼, 𝑗 ∈ {1, 𝑁}    

13|         return o 
14| end 

 

The overlap is calculated in every cycle for all mini-columns in set C (see lines 03-05). 

The overlap for every mini-column is calculated in the function columnOverlap (lines 

08-13). The receptive field 𝑋𝑘  between the mini-column k and the input vector, is 

retrieved from set X of all RFs in 𝜆. Every 𝑥𝑘𝑗 has an associated synaptic permanence 

value 𝑝𝑘𝑗 . This value controls if the potentially connected mini-column (𝑥𝑘𝑗 = 1) will be 

included in the overlap. The function builds the sum of products 𝑥𝑘𝑗𝑖𝑗, which encounters 

all mini-columns that are connected (𝑥𝑘𝑗𝑖𝑗| 𝑝𝑘𝑗 ≥ 𝜃𝑐 ) to the currently active input 

neurons.  

The overlap algorithm is a straightforward and efficient one. Because of its efficiency, 

it can easily be applied even in cortical areas with a high number of neurons.  

 

5.7.2 Learning patterns 

During the learning process, the SP first calculates the overlap of the mini-columns set 

at the given cycle for the given input. Then, every time an input is presented to the SP, 

the set of potential synapses Xk  defined by equation (23) is considered. Figure 24 shows 

the receptive field (simplified) of two columns in the cortical area of seven columns. 
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Figure 24  

Synaptic plasticity in the Spatial Pooler learning process. 

 

At some time t, the vector It is presented to the SP. As shown in Algorithm 2 (line 07), 

the SP first calculates the overlap of every mini-column by using Algorithm 1. In this 

example, the column’s 𝐶1 receptive field 𝑋1generates the overlap 0, because none of 

input neurons in the field i0,.., i6 is active. The overlap of the column 𝐶2 that spans input 

neurons i5,.., i9  is 3, because 3 of input neurons in the receptive field are active. 

Next, the permanence of all synapses in the receptive field 𝑥𝑘  every mini-column is 

adapted (line 9). The adoption process biologically represents synaptic plasticity, as 

described in sections 2.1 and 5.2. In this step, the permanence values 𝑝𝑖𝑗  defined by 

(25) of all synapses within the receptive field 𝑋𝑘 are incremented with the value actInc 

if the synapse connect to the active (firing) inut neuron. In contrast, the synaptic 

permanences are decremented by the value inactDec if connected to non-active input 

neurons. Decrement of the permanence value of the synapse is a natural biological way 

to integrate the error feedback, similar to backpropagation. 

In the same turn, the algorithm forms the set of active mini-columns 𝐶𝑎
  that have an 

overlap higher than the stimulus threshold 𝜃𝑝 for the given input (line 11). Please note 

that this is the simplified version of learning without inhibition and the homeostatic 

plasticity mechanism described later in this chapter. Learning patterns is an iterative 

process that typically takes many cycles. The pattern is, by definition, learned if the 

output SDR calculated by the Spatial Pooler function sp does not change over time 

when the same pattern is presented to the SP. 
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Algorithm 2. The basic algorithm for learning spatial patterns 

01| function compute (𝐼, 𝜃𝑝, 𝜃𝑐, 𝑎𝑐𝑡𝐼𝑛𝑐 , inactInc) 

02|     // 𝜃𝑝:  Stimulus Threshold. Num. of connected synapses to activate the column  

03|     // actInc     : increment value for  active column  

04|     // incatInc : increment value for  active column  

05|    // I : Input vector 

06|     FOREACH 𝑐𝑜𝑙 IN 𝐶1x𝑀  //traverse all mini-columns                                         
07|         𝑜𝑘  ← columnOverlap(input, col, 𝜃𝑐) 

08|        // increment the permanence if the column is connected to active neuron. 

09|          𝑝𝑘𝑖 ← 𝑝𝑘𝑖 + 𝛿 | {
𝛿 = 𝑎𝑐𝑡𝐼𝑛𝑐;                𝑥𝑘𝑗 ∗ 𝑖𝑗 = 1 

𝛿 = −1 ∗ 𝑖𝑛𝑎𝑐𝑡𝐷𝑒𝑐; 𝑥𝑘𝑗 ∗ 𝑖𝑗 = 0
; 𝑥𝑘𝑗 ∈ 𝑋𝑘 , 𝑖𝑗 ∈ 𝐼, 𝑘 ∈ {1, 𝑀}}  

10|         // Activate all columns with overlap higher than stimulus threshold. 

11|        𝐶𝑎  ←{𝑐𝑘| 𝑜𝑘  ≥ 𝜃𝑝, 𝑘 ∈ {1, 𝑀}  } 

12|     ENDFOR 

13| end 

 

Mathematically, according to (9), the set of active mini-columns 𝐶𝑎  
 converges to the 

stable state. The stability is defined by the following equation. 

 

𝐶𝑎  = sp(𝐼) = 𝑐𝑜𝑛𝑠𝑡; 𝑡𝑖 >𝑡𝑠  (26)

The SP is stable if the set of active columns 𝐶𝑎  , learned for every input presented to 

the SP, does not change in any iteration after the iteration ts.  In this case, the iteration 

ts is the iteration (cycle) of entering the stability. 

In real-world applications, it will not be possible to ensure that SP will learn the entire 

possible input set in all scenarios. However, learning many patterns will ensure uniform 

activation of all mini-columns, leading to better stability. 

 

Stability issues of the original version of the SP have been discovered and, in detail, 

analysed in this work. In addition, the current SP algorithm has been extended and 

improved. More information about stability and algorithm improvement can be found 

in Chapter 8.   

5.7.3 Column Inhibition 

Another vital part of the SP is the inhibition algorithm, which represents the biological 

inhibition process described in sections 2.1 and 2.4.  

The inhibition is the process of deactivating the fraction of mini-columns that tend to 

be active in the current learning cycle. This ensures that the encoding of learned 
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patterns becomes sparse and not dense. In this work, several versions of the inhibition 

have been implemented. However, two diametral approaches are considered in this 

section: global and local inhibition. The global inhibition performs the active mini-

column deactivation in the entire mini-column space defined by equation (22). In 

contrast, the local inhibition inhibits columns in the locally defined neighbourhood.  

The inhibition algorithm implements the inhibition mechanism described in 2.1. The 

HTM model described in section 5.3 relies on the explicit use of excitatory cells in mini-

columns. However, following the biological mechanisms described in Chapter 2, there 

must also be a set of inhibitory cells that prevent the overexcitation of mini-columns. 

The design of the HTM in this work omits using explicit inhibitory cells for performance 

reasons. As a replacement for inhibitory cells, the HTM in this work provides an 

inhibition algorithm that extends Algorithm 2 by inhibiting mini-columns activated in 

line 11. 

5.7.3.1 Global Inhibition 

The main idea of inhibition is to inhibit potentially active mini-columns in an area 

occupied by the so-called Inhibition Radius. In the case of Global Inhibition, the 

Inhibition Radius is calculated as the maximum number of cells of a single dimension 

across column dimensions (see also equation (12). 

 

𝑖𝑟 = max ({𝑐𝑑𝑖𝑚1, 𝑐𝑑𝑖𝑚2, . . , 𝑐𝑑𝑖𝑚𝑐𝑑 }) (27)

 

Value 𝑐𝑑𝑖𝑚𝑖 is the number of mini-columns in the i-th dimension of available cd 

dimensions. If the mini-column space is single-dimensional, this value equals the 

number of mini-columns M in the HTM area as defined by equation (22). In the case of 

multi-dimensional mini-column space and global inhibition, the Inhibition Radius ir is 

the maximum number of mini-columns across all dimensions. 

 

Algorithm 3 shows how mini-columns are globally activated. First, the inhibition radius 

is calculated by equation (27) in line 9. As next, the algorithm needs to determine the 

inhibition density. The density is defined as the percentage of mini-columns allowed to 

be activated inside the inhibition radius. According to the previous discussion (see 

3.1.1), the number of active mini-columns per inhibition area 

(NumActiveColumnsPerInhArea) is usually around 2% of the total mini-columns. This 

value can be set by the configuration parameter actCols. The number of active mini-
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columns can also be controlled by the configuration property LocalAreaDensity (see 

HtmConfig in section 5.3). It can be either manually set or calculated, as shown in line 

13.  

 

If LocalAreaDensity is not specified, the calculated density is limited to 50%, assuming 

higher density is not sparse. Also, if LocalAreaDensity (locDense) is not set, then the 

number of active columns in the inhibition area 𝑎𝑐𝑡𝐶𝑜𝑙𝑠 must be set. 

 

𝑑 = min (0.5,
𝑎𝑐𝑡𝐶𝑜𝑙𝑠

min(𝑡𝑛𝑐,  (2𝑖𝑟 + 1)𝑐𝑑)
) 

(28)

The density is a fraction of the wanted number of active columns (actCols) and the 

minimum of the total number of mini-columns (tnc), and the  

inhibition diameter 2𝑖𝑟 + 1 powered with the number of mini-column dimensions (cd). 

This expression is calculated in line 11. The overlap function in line 15 calculates ac 

mini-columns that can be activated. To prevent overactivation, the inhibition algorithm 

uses the density (line 17) to randomly select the top active mini-columns utilising the 

function T(𝑎𝑐).  

In the final implementation of the SP, the calculation of the value ac (active mini-

columns calculated by overlap) is not a part of the inhibition algorithm.  

It is instead used as the input argument of the inhibition function. It is added to 

Algorithm 3  to get a better understanding of the dependency between overlap, active 

mini-columns and inhibition. 

 

Algorithm 3. Global Inhibition over the entire HTM area. 

01| function inhibitGlobal (cdims←{𝑐𝑑𝑖𝑚1, 𝑐𝑑𝑖𝑚2, . . , 𝑐𝑑𝑖𝑚𝑐𝑑}, 𝑙𝑜𝑐𝐷𝑒𝑛𝑠, 𝑎𝑐𝑡𝐶𝑜𝑙𝑠, 𝜃𝑝, 𝑖) 

02|   // cdims: Number of columns in every column dimension 

03|   // locDense: Configured Local Aread Density 

04|   // actCols: Number of active columns. Defines the sparsity. 

05|   // 𝜃𝑝: Stimulus Threshold  

06|   // i: The input pattern that is currently learned. 

07|    
08|   // calculate the inhibition radius 

09|   𝑖𝑟 ← max(cdims) 

10|  // Calculates the total number of mini-columns. 

11|  𝑡𝑛𝑐 ← ∏(𝑑𝑖𝑚𝑠) 

12|   // calculate local area density if not explicitly set 
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13|   𝑑 ←  {
𝑙𝑜𝑐𝐷𝑒𝑛𝑠𝑒;  𝑙𝑜𝑐𝐷𝑒𝑛𝑠𝑒 > 0 

𝑙𝑜𝑐𝐷𝑒𝑛𝑠𝑒 = min (0.5,
𝑎𝑐𝑡𝐶𝑜𝑙𝑠

min (𝑡𝑛𝑐, (2𝑖𝑟+1)𝑐𝑑)

} 

14|  // Activate all columns with overlap higher than stimulus threshold. 

15|  𝑎𝑐 ←{𝑐𝑘 | 𝑐𝑜𝑙𝑢𝑚𝑛𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝐼, 𝑘) ≥ 𝜃𝑝, 𝑘 ∈ {1, . . , tnc}  } 

16|  // The inhibition. Select top mini-columns and make the result sparse. 

17|  𝐶𝑎  ← T(𝑎𝑐); |𝐶𝑎| = 𝑑 𝑡𝑛𝑐 

18| end 

 

For example, assuming that the number of mini-columns is 10 (see Figure 25), the 

stimulus threshold 𝜃𝑝=2 and actCols=4, the inhibition algorithm would first select six 

mini-columns (black and green) in line 15 and then adjust this value in line 17 using 

the calculated density (green only). The final number of active mini-columns would be 

four, as shown in the figure. 

 

Figure 25 

Global Inhibition example. Columns with the maximum overlap are selected as active. 
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5.7.3.2 Local Inhibition 

Nowadays, it is unclear how inhibition in the neocortex is exactly performed. For this 

reason, in this work, several algorithms were tried. One of them is the local inhibition 

algorithm shown in Algorithm 4. Algorithm 4 requires as input the exact topology of 

the HTM area defined by column dimensions cdims and input dimensions idims.  

Both parameters specify how many mini-columns and input neurons are placed in every 

dimension to form the HTM area. However, in contrast to the global inhibition  

 

Algorithm 3, local inhibition, has a more complex calculation of the inhibition radius 

(lines 08-14). First, the input span s is calculated as a ratio of the number of input 

neurons in the receptive field of the mini-column and the number of mini-columns (line 

09). Then the average of the column-input ratio across all dimensions is calculated (line 

12). Next, these two values are used to calculate the inhibition radius of the columns' 

inhibition neighbourhood (line 14).  

 

In contrast to global inhibition, the local inhibition algorithm traverses all mini-columns 

in the HTM area (lines 19-25) and activates mini-columns only inside the column’s 

neighbourhood. The function getColumnNeighborhood selects all mini-columns inside 

the neighbourhood of the currently calculating mini-column k. Columns selected by 

this function have overlap greater than the stimulus threshold 𝜃𝑝 and the overlap of 

the currently calculating column.  

 

Figure 26 shows two examples of local inhibition. The grey frame represents the sliding 

window (local inhibition area) with the calculating (centre of the local inhibition area) 

mini-column marked by the arrow. The inhibition radius defines the local inhibition 

area or sliding window. For 𝜃𝑝 = 2, all mini-columns inside the window are marked if 

their overlap is greater than two and the overlap of the calculating mini-column marked 

with the arrow. 
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Algorithm 4 Local Inhibition algorithm 

01| function inhibitLocal (𝐶𝑥, cdims←{𝑐𝑑𝑖𝑚1, 𝑐𝑑𝑖𝑚2, . . , 𝑐𝑑𝑖𝑚𝑐𝑑},       

                                            idims←{𝑐𝑑𝑖𝑚1, 𝑐𝑑𝑖𝑚2, . . , 𝑐𝑑𝑖𝑚𝑐𝑑},  𝑙𝑜𝑐𝐷𝑒𝑛𝑠, 𝑎𝑐𝑡𝐶𝑜𝑙𝑠, 𝜃𝑝, 𝑖) 

02|   //  𝐶𝑥: Mini-Columns space in calculating area x. 

03|   // dims: Number of columns in every column dimension 

04|   // locDense: Configured Local Area Density 

05|   // actCols: Number of active columns. Defines the sparsity. 

06|   // 𝜃𝑝: Stimulus Threshold  

07|   // i: The input pattern that is currently learned. 

08|   // calculate the average input span across all receptive fields in 𝑋. 

09|     𝑠 ← {  
∑ 𝑙𝑒𝑛(𝑋𝑘)

𝑀
}  | 𝑋𝑘 ∈ 𝑋    

10|      

11|   // calculate the average column-input ratio across dimensions 

12|     𝑓 ← {
∑

𝑐𝑑𝑖𝑚𝑖 

𝑖𝑑𝑖𝑚𝑗  
 

𝑀
 | 𝑖 ∈ {1, cd}, 𝑗 ∈ {1, id} }     

 
13|   // calculate inhibition radius 

14|   𝑖𝑟 ← max(1,
(𝑓∗𝑠)−1

2
 ) 

15|  // Calculates the total number of mini-columns. 

16|  𝑡𝑛𝑐 ← ∏(𝑑𝑖𝑚𝑠) 

15|  // calculate local area density if not explicitly set 

17|   𝑑 ←  {
𝑙𝑜𝑐𝐷𝑒𝑛𝑠𝑒;  𝑙𝑜𝑐𝐷𝑒𝑛𝑠𝑒 > 0 

𝑙𝑜𝑐𝐷𝑒𝑛𝑠𝑒 = min (0.5,
𝑎𝑐𝑡𝐶𝑜𝑙𝑠

min (𝑡𝑛𝑐, (2𝑖𝑟+1)𝑐𝑑)

} 

 

18|  // Traverse all columns and calculate inside the sliding window 

19|    FOREACH 𝑐𝑘 in 𝐶𝑥 

20|       // Get columns in the neighbourhood (sliding window) 
21|       // that has overlap higher than the current mini-column 

22|        highCols ← 𝑔𝑒𝑡𝐶𝑜𝑙𝑢𝑚𝑛𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑(𝑘, 𝑖𝑟, 𝜃𝑝, 𝑖) 
23|       // Append mini-columns until 𝑑 ∗ 𝑡𝑛𝑐  columns are activated 

24|        𝐶𝑎 ← 𝑎𝑝𝑝𝑒𝑛𝑑(𝑐𝑘  ; 𝑐𝑘 ∈ highCols ; |𝐶𝑎| ≤ 𝑑 𝑡𝑛𝑐) 
25|    ENDFOR 

26| end 

27| 

28| // Gets mini-columns from the neighbourhood with overlap ≥ 𝜃𝑝 

29| //  and overlap greater than the calculating mini-column k. 

30| function getColumnNeighborhood (𝑘, 𝑖𝑟, 𝜃𝑝, 𝑖) 

31|  // Get all columns in the area with overlap higher than stimulus threshold. 

32|  𝐶𝑎 ←{𝑐𝑘| 𝑐𝑜𝑙𝑢𝑚𝑛𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝑖, 𝑗) ≥ 𝜃𝑝  ∧ 

                           𝑐𝑜𝑙𝑢𝑚𝑛𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝑖, 𝑗) > 𝑐𝑜𝑙𝑢𝑚𝑛𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝑖, 𝑘)); 

                            𝑗 − 𝑖𝑟 ≤ 𝑗 ≤ 𝑗 + 𝑖𝑟  } 

33|  𝑟𝑒𝑡𝑢𝑟𝑛 𝐶𝑎  

34| end 
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Figure 26  

The local Inhibition moving window defines the local inhibition area. 

 

5.7.3.3 Summary 

In this research, multiple different versions of the inhibition algorithm were tested. 

However, significant differences in learning performance could not be detected. The 

global inhibition supported a faster calculation cycle and was used in most experiments 

in this work. In contrast, the local inhibition is CPU intensive because it has to create 

local areas and shift them over the entire mini-column space. This algorithm aims to 

ensure balanced network excitation and inhibition, as mentioned in Chapter 2. Neurons 

used in the cortical algorithm in this work are responsible for the excitation. 

In contrast, the Inhibition algorithm ensures that only a sparse set of neurons remains 

activated in each cycle. Without inhibition, the learning algorithm would, over time, 

activate most mini-columns, preventing it from learning. This is why an inhibition 

algorithm is critical in CLA. However, nowadays, it is not clear how inhibition exactly 

works in the neocortex. Nevertheless, local inhibition seems to match well with the 

biological findings. The current implementation is just one of many possible 

implementations that keep the cortical algorithm stable and ensure sparse encoding. 

 

Improving and investigating inhibition is the part of future work. 
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5.7.4 Computational Design of Homeostatic Plasticity 

Similar to mini-columns inhibition, an active biological homeostatic plasticity 

mechanism is described in 2.6 that takes control of a uniform excitation of neurons. 

However, in contrast to inhibition, this mechanism regulates the excitability of neurons 

relative to their activity in the defined cortical area. The Cortical Algorithm in this work 

provides an algorithm inside the SP as a computational equivalent of homeostatic 

plasticity.  

This algorithm consists of two parts: Synaptic boost of mini-columns with low overlap 

and uniform activation of mini-columns. 

 

5.7.4.1 Synaptic Boost of mini-columns with insufficient proximal connections 

A mini-column has a low overlap if the total count of synapses that have established 

connections at the proximal dendrite segment is below the Stimulus threshold 𝜃𝑝 (5.4), 

in a learning cycle. If the mini-column has a low overlap, then the permanence values 

of all potential synapses of a mini-column will be slightly incremented by parameter si 
(Stimulus Increment). As described in 5.7.2, independent of boosting, synaptic 

permanences are mainly incremented if connected to firing neurons. 

 

Algorithm 5 is an extended version of basic spatial learning shown in Algorithm 2. It 

refactors and extends the basic idea of learning by adding inhibition and synaptic 

plasticity in lines 09-15. Also, the original synaptic learning from Algorithm 2 in Line 09 

is moved to the function adaptColumnSynapses Line 17 and extended with the synaptic 

boosting mechanism of inactive mini-column in the function boostSynapses Line 27.  

 

After the permanence values are adapted (Line 21), the permanences of mini-column 

synapses connected to firing input neurons with low overlap (Line 30) will be slightly 

increased (Line 32). It is crucial to choose the value 𝜃𝑝 carefully, concerning the number 

of input bits N and the potential radius described in equation (16). In most experiments 

in this work, the value for 𝜃𝑝 was typically chosen between 20-50% of the number of 

input bits N. Choosing higher or lower values prevents the SP from converging to the 

stable state defined in 5.7.2. In this work, no further investigation of this threshold has 

been done. However, it is still an important part of the research because it significantly 

influences learning patterns in the SP. 
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Algorithm 5 Spatial learning algorithm extended with a synaptic plasticity. 

01| function compute(I, si, 𝜃𝑝, 𝜃𝑐, si) 

02|     // 𝐼:               Input Vector 
03|     // 𝜃𝑝:            stimulus threshold. Required num of connected synapses.  
04|     //actInc:     increment value for  active column  

05|     //inactInc:  increment value for  active column  

06|     // 𝜃𝑐  connected permanence threshold 
07|     // si:  stimulus increment  
08|     // traverse all mini-columns 

09|     FOREACH 𝑐𝑜𝑙 IN 𝐶1x𝑀                                           
10|           𝑜𝑘  ← columnOverlap(input, col) 

11|           𝐶𝑎  (𝑘) ← 𝑖𝑛ℎ𝑖𝑏𝑖𝑡(. . ) 

12|           𝐶𝑎  (𝑘) ← 𝑎𝑑𝑎𝑝𝑡𝐶𝑜𝑙𝑢𝑚𝑛𝑆𝑦𝑛𝑎𝑝𝑠𝑒𝑠(𝑘, 𝑜𝑘 , 𝜃𝑝) 

13|         ENDFOR 
14|     𝐫𝐞𝐭𝐮𝐫𝐧 𝐶𝑎  

 

15| end 

16| 
17| function adaptColumnSynapses(k, 𝑜𝑘, 𝜃𝑝) 

18|    // st: Stimulus Threshold.  𝑝𝑘𝑖: Permanence of synapse of 𝑐𝑘  with input i. 
19|    // k: The index of the calculating active mini-column. 
20|    // increment the permanence if overlap greater than stimulus threshold. 

21|     𝑝𝑘𝑖 ← 𝑝𝑘𝑖 + 𝛿 |  {
 𝛿 = 𝑎𝑐𝑡𝐼𝑛𝑐;                ∑(𝑜𝑘 ≥ 𝜃𝑝) 

𝛿 = −1 ∗ 𝑖𝑛𝑎𝑐𝑡𝐷𝑒𝑐; ∑(𝑜𝑘 < 𝜃𝑝)
; 𝑖 ∈ {1, 𝑁}|𝐼(𝑖) = 1, 𝑘 ∈ {1, 𝑀}  

22|      
23|     𝑏𝑜𝑜𝑠𝑡𝑆𝑦𝑛𝑎𝑝𝑠𝑒𝑠(𝐼, 𝑘, 𝑠𝑖, 𝜃𝑐, 𝜃𝑝) 

24|      
25| end 

26| // For the full implementation. See BoostProximalSegment (Dobric, 2019) 

27| function boostSynapses(I, k, si, 𝜃𝑐, 𝜃𝑝) 

28| 

29|    // Boost synapses of active mini-columns with no enough connected synapses. 
30|    WHILE(∑(𝑝𝑘𝑖 ) ≤ 𝜃𝑝| 𝑝𝑘𝑖 ≥ 𝜃𝑐, 𝑝𝑘𝑖 ∈ 𝑃𝑘 )  

31|        // increment the permanence if overlap greater than stimulus threshold. 
32|         𝑝𝑘𝑖 ← 𝑝𝑘𝑖 + 𝑠𝑖 | 𝑖 ∈ {1, 𝑁}|𝐼(𝑖) = 1, 𝑘 ∈ {1, 𝑀}       
33|     END  

34| end  
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5.7.4.2 Uniform Activation of mini-columns 

The second part of the plasticity (see 2.6) implementation ensures that all mini-columns 

in the HTM area become uniformly activated. As described later in Chapter 8, the 

absence of this kind of plasticity leads to uncontrolled sparsity in the cortical area, 

leading to incorrect prediction and inaccurate learning. The columnar overlap and 

columnar activation frequency are considered to ensure the uniform participation of 

mini-columns in learning. Assuming that the value of synaptic permanence defines 

some kind of energy accumulated in the synaptic connection, the goal here is to keep 

that energy uniformly distributed across the entire cortical area. For example, inactive 

mini-columns must be stimulated (boosted) compared to their neighbours. That means 

their overlap values to input neurons will be slightly increased by a column boost factor 

𝑏𝑘 , which needs to be recalculated in every cycle. If the mini-column is not active 

enough, it will often not participate in learning. Because of that, to activate the mini-

column, the column overlap needs to be controlled too. Having the set of events ℱ the 

event 𝑓𝑘 ∈ ℱ, 𝑓𝑘 ∈ {0,1} is counted every cycle. The set ℱ holds elements appearances (0 

or 1) of the event 𝑓𝑘 for every mini-column k in the current cycle. With this in mind, two 

such event types are considered: Participation of the mini-column in the overlap and 

activation of the mini-column. Both events are calculated with the help of the same 

equation shown in Algorithm 6.  

 

Algorithm 6 Calculation of the normalized frequency of an event 

01| function calcEventFrequency(𝐶𝑓 , ℱ, 𝑝, 𝑖) 
02|    // 𝐶𝑓: The current frequency values of the event. 
03|    // 𝑝  : Activation period value. 
04|    // i   : The learning cycle (iteration) 
05|    // ℱ : List of any kind of event {0,1} 
 

06|        𝑝 = {
 𝑝; 𝑖 < 𝑝; 

𝑖; 𝑖 ≥ 𝑝 } 

07|    // Calculates the normalized event frequency. 

08|        𝑐𝑘
𝑓

 ←
(𝑝−1) 𝑐𝑘

𝑓
+ 𝑓𝑘

𝑝
 | 𝑘 ∈ {1, 𝑀}, 𝑓𝑘 ∈ ℱ, 𝑓𝑘 ∈ {0,1} , 𝑐𝑘

𝑓
∈ 𝐶𝑓, 0 ≤ 𝑐𝑘

𝑓 < 1 

09| end 

 

The parameter p is the period value that defines how many cycles the calculated 

frequency will be held on low values (line 06). The equation in line 08 calculates in the 

normalized form the frequency of the appearance of events in the event set ℱ during 

the learning process of the spatial pattern. The set 𝐶𝑓 defines the current state of 

normalized frequencies 𝑐𝑘
𝑓

 of the event 𝑓𝑘 ∈ ℱ  for every mini-column 𝑐𝑘 ∈ C .  
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The Columnar Overlap Frequency 

With a given frequency calculation of an event, the mini-column with low overlap 

frequency will be reactivated (boosted) by using Algorithm 7. First, the overlap events 

are collected in every cycle (Line 08). The column is considered in this calculation if it 

has any overlap 𝑜𝑘 > 0 as described in 5.7.1 and calculated by Algorithm 1. Elements 

𝑓𝑘 ∈ ℱ hold in this case overlap frequency events, with non-zero if the mini-column has 

an overlap and with zero if the mini-column has no overlap in the current cycle. The 

new state of overlap frequencies 𝐶𝑓𝑜
 is calculated in line 10 from the current frequency 

state 𝐶𝑓𝑜
 and the set of events ℱ. 

 

Algorithm 7 Boosting of mini-columns with low overlap frequency 

01| function BoostByOverlapFrequency(o, 𝐶𝑓𝑜 , 𝑝, 𝑓𝑜𝑚𝑖𝑛, 𝑖, 𝑠) 

02|    // o: Overlap calculated for all mini-columns ;  𝑜 ∈ 𝑂1𝑥𝑀. 
03|    // 𝐶𝑓𝑜 : The current state of mini-column overlap frequencies. 
04|    // 𝑝: The period value. s: Increment value 
05|    // 𝑓𝑜𝑚𝑖𝑛: The minimum required overlap frequency. 0 ≤ 𝑓𝑜𝑚𝑖𝑛 < 1 
06|    // i: The learning cycle 
07|    // Given a frequency set ℱ; 𝑓𝑘 = 1 if the mini-column has an overlap.  

08|     𝑓𝑘 ←  {
1; 𝑜𝑘 > 0; 
 0; 𝑜𝑘 = 0;

 | 𝑘 ∈ {1, 𝑀}, 𝑓𝑘 ∈ ℱ }  

09|     // Calcuates the overlap frequency. 
10|     𝐶𝑓𝑜 ←  𝑐𝑎𝑙𝑐𝐸𝑣𝑒𝑛𝑡𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝐶𝑓𝑜 , ℱ, 𝑝, 𝑖) 

11|    // Get the subset of columns to be considered. 

12|     𝐶′𝑓𝑜 ←  {
𝐶𝑓𝑜                            ; 𝑔𝑙𝑜𝑏𝑎𝑙𝑖𝑛ℎ.

{𝑐𝑖
𝑓𝑜

} | |(𝑘 − 𝑖)| < 𝑖𝑟; 𝑙𝑜𝑐𝑎𝑙 𝑖𝑛ℎ. ;
 | 𝑘 ∈ {1, 𝑀}, {𝑐𝑖

𝑓𝑜
∈ 𝐶𝑓𝑜   }  

13|    // Calculates the minimum required overlap frequency in the inhibition area. 

14|     𝑐𝑓𝑜𝑚𝑖𝑛 ← (max(𝐶′𝑓𝑜) 𝑓𝑜𝑚𝑖𝑛) | 𝑘 ∈ {1, 𝑀}, 𝑐𝑘
𝑓𝑜𝑚𝑖𝑛

∈ 𝐶𝑓𝑜𝑚𝑖𝑛  

15|     // Create the set of mini-columns with the low overlap frequency 
16|     𝑐𝑘

𝑙𝑜𝑤 ← {𝑐𝑘  } ; 𝑐𝑘 < 𝑐𝑓𝑜𝑚𝑖𝑛 ;  𝑘 ∈ {1, 𝑀}, 𝑐𝑘
𝑙𝑜𝑤 ∈ 𝐶𝑙𝑜𝑤   

17|    // Boost synapses of all mini-columns with the low overlap-frequency 
18|    FOREACH(𝑝𝑘𝑖  | 𝑝𝑘𝑖 ∈ 𝑃𝑘

𝑙𝑜𝑤) 
19|        // increment the permanences of mini-columns with low overlap. 
20|         𝑝𝑘𝑖 ← 𝑝𝑘𝑖 + 𝑠 | 𝑖 ∈ {1, 𝑁}|𝐼(𝑖) = 1, 𝑘 ∈ {1, 𝑀}       
21|     END  
22| end 

 

The required minimum overlap frequency is controlled by the configuration parameter 

0 ≤ 𝑓𝑜𝑚𝑖𝑛 ≤ 1. The minimum required overlap frequency for every mini-column is 

calculated in line 14 as a multiply between factor  𝑓𝑜𝑚𝑖𝑛  and the current maximal 

overlap frequency inside the neighbourhood defined in line 12. In the case of local 

inhibition, only neighbouring mini-columns are considered. This neighbourhood area 

is occupied by the mini-columns inside the inhibition radius 𝑖𝑟.  In the case of global 

inhibition, the entire column set is considered. Inside the selected area, mini-columns 

that have a low frequency are chosen 𝑐𝑘
𝑙𝑜𝑤 ∈ 𝐶𝑙𝑜𝑤  (line 16). 
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Finally, in the loop in lines 18-21, permanence values of mini-columns with low overlap 

frequency are incremented. The permanences of mini-columns with the low overlap 

frequency belong to the temporary calculated space 𝑃𝑘
𝑙𝑜𝑤associated with the mini-

column k. 
 

The Columnar Activation Frequency 

After the reactivation (boosting) of mini-columns by the low overlap, the mini-columns 

with the low activation frequency must also be reactivated, as shown in Algorithm 8. 

First, the mini-column activation frequency is calculated (line 08). The event appears (1) 

if the mini-column is active in the current cycle. This is the case when the number ∑ 𝑝𝑘𝑖 

of connected synapses (  𝑝𝑘𝑖 ≥ 𝜃𝑐 ) is greater than the stimulus threshold 𝜃𝑝 .The 

normalized frequency of the column activation is calculated in line 10 using  

Algorithm 6. 
 

Algorithm 8 Boosting of mini-columns with low activation frequency. 

01| function BoostByActivationFrequency(𝐶𝑓𝑎, 𝑝 , 𝑓𝑎𝑚𝑖𝑛, 𝑏𝑚𝑎𝑥 , 𝜃𝑝) 

02|    // 𝐶𝑓𝑎: The current state of mini-column activation frequencies. 
03|    // 𝑝: The period value. 
04|    // 𝑓𝑎𝑚𝑖𝑛: The minimum required activation frequency. 0 ≤ 𝑓𝑜𝑚𝑖𝑛 < 1 

05|    //𝑏𝑚𝑎𝑥: Maximal boost value. 
06|    // 𝜃𝑝:  Stimulus Threshold. Num. of connected synapses to activate the column.  
07|    // Given a frequency set ℱ; 𝑓𝑘 = 1 if the mini-column is active.  

08|     𝑓𝑘 ←  {
1 = ∑ 𝑝𝑘𝑖 ≥ 𝜃

𝑝
| 𝑝𝑘𝑖 ≥ 𝜃𝑐 

 0 = ∑(𝑝𝑘𝑖) < 𝜃
𝑝

| 𝑝𝑘𝑖 ≥ 𝜃𝑐
| 𝑘 ∈ {1, 𝑀}, 𝑓𝑘 ∈ ℱ, 𝑝𝑘𝑖 ∈ 𝑃𝑘  }  

09|     // Calcuates the activation frequency. 
10|     𝐶𝑓𝑎 ←  𝑐𝑎𝑙𝑐𝐸𝑣𝑒𝑛𝑡𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝐶𝑓𝑎, ℱ, 𝑝) 

11|    // Get the subset of columns to be considered. 

12|     𝐶′𝑓𝑎 ←  {
𝐶𝑓𝑎                             ; 𝑔𝑙𝑜𝑏𝑎𝑙𝑖𝑛ℎ.

{𝑐𝑖
𝑓𝑎

} | |(𝑘 − 𝑖)| < 𝑖𝑟; 𝑙𝑜𝑐𝑎𝑙 𝑖𝑛ℎ. ;
 | 𝑘 ∈ {1, 𝑀}, {𝑐𝑖

𝑓𝑜
∈ 𝐶𝑓𝑜    }  

 

13|    // Calculates the minimum required overlap frequency for the cycle. 
14|     𝑐𝑓𝑎𝑚𝑖𝑛 ← max(𝐶′𝑓𝑎 ) ∗ 𝑓𝑎𝑚𝑖𝑛| 𝑘 ∈ {1, 𝑀}  
15      IF |𝑐𝑓𝑎𝑚𝑖𝑛| > 0 

16|            𝑐𝑘
𝑏 ←

(1−𝑏𝑚𝑎𝑥 ) 𝑐𝑘
𝑓𝑎

𝑐𝑓𝑎𝑚𝑖𝑛
+ 𝑏𝑚𝑎𝑥| 𝑘 ∈ {1, 𝑀}, 𝑐𝑘

𝑓𝑎
∈ 𝐶𝑓𝑎   

17|   ENDIF 
18| end 

 

The required minimum overlap frequency is controlled by the configuration 

parameter factor  0 ≤ 𝑓𝑎𝑚𝑖𝑛 ≤ 1. Depending on the inhibition algorithm, the subset of 

mini-columns 𝐶′𝑓𝑎 ∈ 𝐶𝑓𝑎
 is considered (line 12). The minimum required activation 

frequency for every mini-column of the current cycle is calculated in line 12.  
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The boost value for the mini-column is calculated if the configuration value 𝑓𝑎𝑚𝑖𝑛 is 

not set to zero (line 14). Finally, the equation in line 16 calculates the boost factors 𝑐𝑘
𝑏 

for every mini-column. The boost factors are used in the learning compute function in 

Algorithm 5 in line 10 by calculating the overlap. Every calculated overlap value 𝑜𝑘    is 

multiplied with the corresponding boost factor calculated in the previous cycle. With 

this change, Algorithm 5 completely supports the boosting described in this section. 
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5.7.5 Comparison to existing Sparse Encoding Algorithms 

Most models described in the section (2.6) are motivated by the biological vision 

system of the brain. In contrast, the algorithm behind HTM - Spatial Pooler provides 

the general sparse encoding model that can be used for any input pattern. Depending 

on the point of view, it is crucial to understand that sparse encoding in this context can 

be classified into two categories: soft and hard-sparse. For example, models described 

in section 3.1.1, SparseNet and ICA produce soft-sparse code. It means they both 

produce neural activity with a narrower or (peakier) Gaussian distribution. In contrast, 

other models, like the Sparse-Set Coding network (SSC), produce a more efficient hard-

sparse code (see 3.1.1). The Spatial Pooler belongs to the same category of hard-sparse 

coding algorithms.  

 

As mentioned, the general motivation behind SP and HTM is to emulate the brain's 

reliance on binary data streams.Interestingly, the augmented version (3.1.1)  of the 

Spatial Pooler modifies the notation of the overlap function. The original overlap 

function previously defined in (5.7.1) takes binary values 0 and 1, indicating whether 

the mini-column is connected to an active or inactive input. The modified Augmented 

SP violates the claim of the HTM theory that only binary activation is biologically 

plausible. This change might produce favourable results for a specific use case but 

should be approached differently.  

 

As described later in Chapter 9, the colour of the pixel represents contextual 

information. Similarly, some other information like time delay between music notes can 

also be considered contextual information. Section 9.4 provides the exact definition of 

contextual information and proposes how it should be encoded. 

 

Hofmann’s Sparse Associative Memory (SAM) model, also mentioned in section (3.1.1) 

randomly connects input neurons with the neurons in the hidden layer. Hoffmann 

argues that connections in SAM would be biologically more plausible than the SP due 

to the fixed number of connections required by the SP algorithm. This claim is 

particularly incorrect because it assumes fixed connections between mini-columns and 

input neurons. The SP creates a random set of potential synapses inside the defined 

receptive field, which is created during the initialization process of the SP.  
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With this, it is not required to continuously recalculate the number of connections, 

which would be biologically implausible. Additionally, as briefly described later in this 

work, synaptic connections are controlled by several plasticity mechanisms aligned to 

biological findings. 
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5.7.6 SP Summary  

This section summarized the most important details related to designing and 

implementing the Spatial Pooler algorithm used in this work. It described how the 

native overlap (5.7.1) function is used to implement the learning of spatial patterns by 

using a simple Hebbian learning rule (5.7.2). It also introduced many important 

parameters that control the learning process. By design of the cortical algorithm 

aligned with HTM, learning the pattern happens on the level of mini-columns and not 

at the cellular level inside mini-columns. The pattern is learned and recognized by the 

activation of mini-columns. The currently activated set of mini-columns encodes the 

input to the sparse representation. The sparsity is directly controlled by the inhibition 

(5.7.3) and boosting (5.7.4) algorithms that ensure that all parts of the area are 

uniformly used according to the biological homeostatic mechanism. 

 

Figure 27 illustrates the learning process of the Spatial Pooler. The SP learns two spatial 

patterns represented as SDR. The input SDR in the example was created by the scalar 

encoder (5.7.5 for values 0 and 7. Encoding was configured to encode 100 scalar values 

as SDR with 200 bits and 15 non-zero bits. The following arrays represent positions of 

non-zero bits in the SDR for randomly chosen values 0 and 7, respectively. 

 

0: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 

7: 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 

 

SDRs of named values overlap in two bits only at positions 13 and 14, indicating a slight 

similarity relative to the set of 100 values used by the encoder. The diagram in Figure 

27 at the top shows active input neurons at the vertical axis (0-100) representing the 

encoded spatial input value, which the SP will learn. The learning experiment presents 

both values, one after the other, to the SP. Every time the SP sees some values, it will 

learn the pattern and activate a set of mini-columns representing the pattern. This 

process is repeated iteratively until the SP enters the stable state. By following Figure 

27 – bottom, it can be noticed that the set of active mini-columns for both patterns 

change in the first five iterations. After the 6th iteration step (bottom left), the SDR enter 

the stable state for the value 0. The SDR of the value 7 enters the stable state at the 4 th 

iteration step. As previously discussed, the SP continuously activates, reactivates and 
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inhibits mini-columns in the entire area in every iteration step. In this context, 

estimating the exact step when a spatial pattern is learned is not of interest.  

 

 

 

 

Figure 27  

Encoding of the spatial input to SDR. Top – The SDR of scalar values 0 and 7 encoded by the scalar 

encoder. Bottom left – active mini-column SDR of the value 0. Bottom right – active mini-column SDR of 

the value 7.  

 

All patterns enter the stable state at different iteration steps. Learning a pattern takes 

a short time, which means less than five cycles. However, when learning many 

patterns, the homeostatic plasticity algorithm described in 5.7.4 will actively reactivate 

mini-columns in every iteration to achieve the uniform distribution of permanence 

values (energy) across the entire synaptic space in the area. This process might take 

hundreds or even more iterations until all mini-columns become uniformly activated. 



 

94  |                 Investigation and Modelling of a Cortical Learning Algorithm in the Neocortex  

 

 

One of the essential outputs of this research, briefly discussed in Chapter 8, improves 

the homeostatic plasticity in the Spatial Pooler to achieve a stable learning process. 
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5.8 Neural Association Algorithm 

 

This section describes how mini-column SDRs and the population of neurons, in 

general, can further be used to build associations between SDRs, establish semantic 

learning and create meaning. Such associations make semantic connections 

(dependencies) between SDRs representing contextual states. For example, if the SDR1 

encodes visual information (context1) and SDR2 encodes audio information (context2), 

then the synaptic connection between two SDRs creates an association between 

contextual states encoded by SDRs. If the direction of the synaptic connection 

(association) does not matter, the associating context is called Spatial Context.  In that 

case, State1 associates with State2 and vice versa. For example, hearing a song is often 

associated with the location and vice versa. In this work, the Spatial Context is created 

by the Spatial Pooler. However, some contexts may be represented by SDRs that are 

encoded by some other algorithms. For example, grid cells (Marianne Fyhn,Torkel 

Hafting,Menno P. Witter,Edvard I. Moser,May-Britt Moser, 2008) encode the location 

information, which defines a Location Context (Bennett, 2020). 

 

If there is a causality between SDRs, then the association direction does matter. Because 

of the time dependency, such associations create the Temporal Context. Therefore, if 

State2 follows State1, State1 creates a Temporal Context for State2.  

 

Section 5.8.1 describes a general model between mini-columns, cells, segments and 

synapses. Section 5.8.2 describes how learning associations between cell populations 

and a single segment might work. Section 5.8.3 describes in detail how the structural 

plasticity is modelled.  

 

Finally, the learning process is split into sections 5.8.4 and 5.8.5. Section 5.8.4 describes 

how the cortical algorithm activates the population of cells (cellular activation 

algorithm). Section 5.8.5 describes which role play segments in the learning process. 

The Neural Association Algorithm (NAA) described in this chapter is a theoretical model 

that demonstrates how Cortical Learning might work. However, the central part of this 

algorithm, restricted to a single area, is implemented in this work as part of the 

previously introduced framework NeoCortexApi (Dobric, 2019) following the idea of 

HTM  (3.1). This implementation was used in all experiments later described in chapters 

6 to 8. 
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5.8.1 The proposed Model 

After the SDR code has been generated, the association can be built between SDRs 

independent of their root. This critical claim makes it possible to combine sensory 

inputs from different sources and process all sensory inputs exactly the same way. 

Following this idea, like in mammals, the same cortical algorithm might be used in 

species that embody different sensory cells. Even more, any type of artificial sensor can 

be used as long there is an encoder (see 5.5.) that maps the sensor's output to the SDR. 

 

Assume that the cortical space (brain) consists of 𝐳 areas that implement the same or 

similar cortical algorithm described in this chapter. This area represents the Cortical 

Unit in this work. The Spatial Pooler algorithm described in the previous chapter 

assumes that the operating area consists of mini-columns defined by the area  𝐶𝑖  and 

their cell set  ℂ𝑖. The entire cell set across all areas can be generalized as the union of 

cell sets  ℂ𝑖  of 𝐳 areas. 

 

ℂ = ⋃  ℂ𝑖

𝐳

𝒊=𝟏

| 𝑧 ∈ N  
(29) 

 

As defined by equations (9) and (26), the spatial pooler function maps the encoded 

spatial input into the set of active mini-columns 𝐶𝑎  inside of a single operating area, 

let’s say area  𝐶𝑦 . 

 

𝑠𝑝: 𝑰 →  𝐶𝑎  | 𝐶𝑎 ∈  𝐶𝑦  

  

(30) 

 

In contrast to the SP, which uses mini-columns to encode the SDR, the building of 

associations uses cells and dendrite segments based on the model illustrated in Figure 

10 and Figure 21. The neural association function ϕ takes a further step after the 

encoding has been completed in all areas to the set of active mini-columns or active 

cells (depending on the encoding algorithm). Based on rules described later in this 

section, the neural association algorithm activates a sparse set of cells ℂ𝑦
𝑎

 in the 

operating area 𝐶𝑦 in every learning cycle. 
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                           ϕ:  ℂ𝑎  →  ℂ𝑦
𝑎  | ℂ𝑎 ⊂ ℂ, ℂ𝑦

𝑎 ∈  𝐶𝑦 , ℂ𝑦
𝑎 ⊂ ℂ𝑎 

 

(31) 

 

It maps the set of active cells ℂ𝑎 ⊂ ℂ into the new set of active cells ℂ𝑦
𝑎 . The association 

function ϕ uses as input the sparse set of a cell population from any area  ℂ𝑖 ∈ ℂ in the 

given cortical space. Given the total T number of cells per mini-column, the entire cell 

set of cells of the area  𝐶𝑦 is defined as: 

 

                                                 ℂ𝑦 = {𝑐11 , . . 𝑐𝑢𝑤, . . , 𝑐𝑀𝑇}1x(MxT)| u ∈ {1, 𝑀}, w ∈ {1, 𝑇}  (32) 

 

The cardinality of  ℂ𝑦  in the area is the total number of cells MxT across all mini-columns 

in the area  𝐶𝑦. Further, the cell and segment models are defined as tuples using the 

following equation. 

 

 𝑐𝑒𝑙𝑙𝑘𝑖 = {𝑆𝑘𝑖→ = { 𝑠𝑘𝑖1 , . , 𝑠𝑘𝑖𝐸𝑘𝑖
}, ℰ 𝑘𝑖 = { ℰ𝑘𝑖1, . . , ℰ𝑘𝑖𝐷𝑘𝑖

}}, 

ℰ𝑘𝑖𝑗 = { 𝑐𝑒𝑙𝑙𝑘𝑖 , 𝑆𝑘𝑖𝑗← = { 𝑠𝑢𝑤1, . . ,  𝑠𝑘𝑖𝑅𝑘𝑖𝑗
} } | 

𝑘 ∈ {1, 𝑀}, 𝑖 ∈ {1, 𝑇}, 𝑢 ∈ {1, 𝑀}, 𝑤 ∈ {1, 𝑇} 

(33) 

The model of the cell i in mini-column k is a tuple defined by the set of “outgoing” 

potential or connected synapses 𝑆𝑘𝑖→ from the cell and the set of cell segments ℰ 𝑘𝑖. 

Outgoing synapses connect the  𝑐𝑒𝑙𝑙𝑘𝑖  to segments of some other cells, which can 

belong to any area. Similarly, other cells from any other area might be connected to 

the cell  𝑐𝑒𝑙𝑙𝑘𝑖  via segment  ℰ 𝑘𝑖 . The number M specifies the total number of mini-

columns in the area. The total number of segments of a cell change over time, and it is 

terminated by the value 𝐷𝑘𝑖. In this context, the symbol ‘→’ represents an outgoing 

synaptic connection from the cell, known as a pre-synaptic cell. Similarly, the symbol 

‘←‘ represents the incoming synaptic connection to the segment. The index i indicates 

one of the T cells inside of a mini-column.  

 

This work assumes that every mini-column in the area contains the same number of 

cells. This can be easily changed in the future if required. 

 

Every synapse has an associated permanence value (synaptic strength). Therefore, the 

set of (outgoing) synapses 𝑆𝑘𝑖→
 contains receptor synapses with their permanence 

values 𝑝𝑘𝑖 . Receptor synapses connect pre-synaptic neurons (cells) with index ki by their 
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axons to the dendrite segment of some other neuron (postsynaptic cell).  Due to 

structural plasticity, every cell has a different number of outgoing synapses, which is 

defined by the value 𝐸𝑘𝑖 .  

 

The second set ℰ 𝑘𝑖
 in the equation contains 𝐷𝑘𝑖  dendrite segments (apical, distal or 

proximal) owned by the cell  𝑐𝑒𝑙𝑙𝑘𝑖, which is known as the parent cell of the segment ℰ𝑘𝑖 . 

Following the structural plasticity rules previously described (see 3.1), every cell can 

have a different number of dendrite segments, which are created and destroyed during 

the learning process.  

 

Finally, the set of segments ℰ 𝑘𝑖 owned by the cell  𝑐𝑒𝑙𝑙𝑘𝑖 holds the set of (incoming) 

potential or connected 𝑅𝑘𝑖𝑗  synapses 𝑠𝑢𝑤
𝑘𝑖𝑗←

 sourced from other pre-synaptic cells 𝑐𝑒𝑙𝑙𝑢𝑤  

(noted by symbol ‘ ← ’) from an area. These synapses build connections to the 

segment ℰ𝑘𝑖𝑗  whose owner cell 𝑐𝑒𝑙𝑙𝑘𝑖 is the postsynaptic cell of the cell 𝑐𝑒𝑙𝑙𝑢𝑤. 

 

The cell in the segment definition and the segment set in the cell definition build a 

circular reference in the cell-segment model. 

 

Note that the set of outgoing synapses of the cell 𝑆𝑘𝑖→ is defined by two indexes, mini-

column index k and cell  index i. The set of incoming synapses 𝑆𝑘𝑖𝑗← is defined by three 

indexes. The cell is defined by mini-column index k, cell index i and the segment index 

j. The segment holds typically multiple synapses. 

  

Outgoing synapse  𝑠𝑘𝑖𝑗  from the set 𝑆𝑘𝑖→ can also be represented with the following 

equivalent expressions: 

 

 𝑠𝑘𝑖𝑗  ≜ 𝑠𝑘𝑖𝑗
𝑢𝑤𝑧→ ≜ 𝑠𝑘𝑖

𝑢𝑤𝑧→
(34) 

The synapse  𝑠𝑘𝑖𝑗  belongs to the mini-column k, the cell i and has an index j, where  

0 < 𝑗 < 𝐸𝑘𝑖 , 𝑗 ∈ 𝒩 . The equivalent notation of the same synapse 𝑠𝑘𝑖𝑗
𝑢𝑤𝑧→ might 

sometimes be useful. This notation points out that cell i in the mini-column k forms a 

synaptic connection j to the segment ℰ𝑢𝑤𝑧. The synapse index j is sometimes omitted 

𝑠𝑘𝑖
𝑢𝑤𝑧→, which indicates the connection of the outgoing connection from the  𝑐𝑒𝑙𝑙𝑘𝑖to 

the segment ℰ𝑢𝑤𝑧 . Similarly, incoming connections can be represented as 𝑠𝑢𝑤𝑙
𝑘𝑖𝑗←

 or 

𝑠𝑢𝑤
𝑘𝑖𝑗←

. 
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Please note that synaptic connections 𝑠𝑢𝑤𝑙
𝑘𝑖𝑗←

and 𝑠𝑘𝑖𝑗
𝑢𝑤𝑙→ are physically the same but 

represent a different point of view. 𝑠𝑘𝑖𝑗
𝑢𝑤𝑙→ represents the connection of the synapse l 

from the cell  𝑐𝑒𝑙𝑙𝑢𝑤 to the segment j of the cell  𝑐𝑒𝑙𝑙𝑘𝑖. Similarly, 𝑠𝑢𝑤𝑙
𝑘𝑖𝑗←

 represents the 

connection j to the cell  𝑐𝑒𝑙𝑙𝑘𝑖 from the synapse l of the cell  𝑐𝑒𝑙𝑙𝑢𝑤 Because they are 

the same, they share the same permanence value 𝑝𝑢𝑤𝑙
𝑘𝑖𝑗

≜ 𝑝𝑘𝑖𝑗
𝑢𝑤𝑙 . 

 

5.8.2 Learning Associations 

 

If a dendrite segment is apical, distal or proximal, it can have two states in a learning 

iteration: matching or active.  

The segment is, by default, the active one if the total count of connected synapses is 

greater than the segment Activation Threshold  𝜃𝑎
𝑎𝑐𝑡

, 𝜃𝑑
𝑎𝑐𝑡  and 𝜃𝑝

𝑎𝑐𝑡  respectively, for 

apical, distal (basal) or proximal segments (see 3.1.2). The segment is by default, the 

matching one if the total count of connected synapses on the segment is larger than 

the Segment Minimum Threshold 𝜃𝑎
𝑚𝑖𝑛

, 𝜃𝑑
𝑚𝑖𝑛  and 𝜃𝑝

𝑚𝑖𝑛  (respectively for the segment 

type) but less than a corresponding segment Activation Threshold 𝜃𝑎
𝑎𝑥𝑡

, 𝜃𝑑
𝑎𝑐𝑡 and 𝜃𝑝

𝑎𝑐𝑡. 

The following equations define the set of active and matching distal segments.  

 

 

𝓔𝑑 
𝑎𝑐𝑡 = { ℰ𝑘𝑖𝑗 , . . } ;  (∑ 𝑝𝑘𝑖𝑗

𝑢𝑤𝑙) ≥ 𝜃𝑑
𝑎𝑐𝑡 ; 𝑝𝑘𝑖𝑗

𝑢𝑤𝑙 > 𝜃𝑐 (35) 

 

The set of active distal segments ℰ𝑑
𝑎𝑐𝑡is defined as a set of segments whose sum of 

connected synapses 𝑠𝑘𝑖𝑗
𝑢𝑤𝑙

 with permanences 𝑝𝑘𝑖𝑗
𝑢𝑤𝑙 >  𝜃𝑐 exceeds the segment Activation 

Threshold  𝜃𝑑
𝑎𝑐𝑡. Similarly, the matching segment is defined as a set of segments that 

have a sum of potential synapses more significant than the Segment Minimum 

Threshold 𝜃𝑑
𝑚𝑖𝑛. 

 

            𝓔𝑑 
𝑚𝑎𝑡𝑐ℎ = { ℰ𝑘𝑖𝑗 , . . } ;  𝜃𝑑

𝑚𝑖𝑛 ≤ (∑ 𝑝𝑘𝑖𝑗
𝑢𝑤𝑙) < 𝜃𝑑

𝑎𝑐𝑡 , 𝑝𝑘𝑖𝑗
𝑢𝑤𝑙 > 0              (36) 

The association between neurons and a segment is defined as a function that associates 

a set of neurons with a dendrite segment. The function associate (see Algorithm 9) is 

the lowest-level function in the neural association algorithm.  
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associate:            ℂ𝑥 
𝑎 → ℰ𝑘𝑖𝑗  , 𝑐𝑒𝑙𝑙𝑘𝑖  | 𝑐𝑒𝑙𝑙𝑘𝑖 ∈  𝐶𝑦, ℂ𝑥 

𝑎 ⊂  ℂ𝑥  (37) 

The function implicitly builds the N:1 relation between ℂ𝑥 
𝑎

 a subset of active cells of the 

population  ℂ𝑥 and the cell  𝑐𝑒𝑙𝑙𝑘𝑖 from the mini-column 𝐶𝑦, which is the owner of the 

associating segment  ℰ𝑘𝑖𝑗. The associating population of neurons is illustrated in Figure 

28. Mini-columns with index i and j belong to the area x  and contain currently active 

cells with indexes 𝑖1, 𝑖2 𝑎𝑛𝑑 𝑗2 . All cells in mini-columns i and j build synaptic 

connections to the cell u2. In this example, the mini-column 𝑢 belongs to a different 

area than mini-columns i and j. This example shows that associating neurons do not 

have to belong to the same area.  

 

The set of active cells (green) ℂ𝑥 
𝑎 = {𝑖1, 𝑖2, 𝑗2} in the current learning cycle should be 

associated with the segment  ℰ𝑢21  of the mini-column 𝑢  and the cell 𝑢2 . Because 

outgoing synapses from cells 𝑠𝑖1
𝑢21→ , 𝑠𝑖2

𝑢21→, 𝑠𝑗2
𝑢21→ from cells 𝑖1, 𝑖2, 𝑗2, respectively, to the 

segment  ℰ𝑢21 , are already connected, they will be strengthened. In contrast, synapses 

𝑠𝑗1
𝑢21→, 𝑠𝑗3

𝑢21→, 𝑠𝑖3
𝑢21→ that also build connections to the segment and originate from cells 

j1, j3 and i3, which are inactive in the current learning cycle (grey), will be weakened1. 

With this rule, the more often the cell is associated with the segment, the stronger the 

association between the cell and the segment will be. 

 

By following the Hebb Rules described in 2.1 and 3, if incoming synapses 𝑠𝑢𝑤
𝑘𝑖𝑗←

 of the 

dendrite segment ℰ𝑘𝑖𝑗 located in the area y already form connections from a set of 

active cells ℂ𝑥 
𝑎

  located in the area x defined by the set of outgoing synapses 𝑆𝑢𝑤 𝑎𝑐𝑡→ , 

then their permanence values will be incremented with the value permInc (Lines 07 and 

08) in Algorithm 9. 

These synapses are calculated as the intersection between the set of outgoing synapses 

of active cells and the synapses at the dendrite segment 𝑆𝑘𝑖𝑗← ∩ 𝑆𝑢𝑤 𝑎𝑐𝑡 → .  

 

 

 
1 Permanences are only weakened during encoding over mini-columns in the Spatial Pooler (SP). If the area does not use a mini-

column structure (all cells belong to the area without mini-columns), then the weakening of permanence values does not occur if 

cells are not active in the current cycle. In such areas, weakening is achieved through Long-Term Depression when a synapse 

remains inactive for an extended period.  
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Figure 28 

 Synaptic connections between pre-synaptic cells from area X to segments in area Y Cell i3 forms 

previously created synaptic connections. Cells i1, i2 and j2 will create new synaptic connections. 

 

In the example in Figure 28, the permanence value of synapses from cells i1, i2, and j2 

will be incremented. 

 

Permanences of all other synapses of the segment ℰ𝑘𝑖𝑗, which are not connected with 

the synapses of cells 𝐶𝑥
 calculated by expression 𝑆𝑘𝑖𝑗← ∩ 𝑆𝑢𝑤 𝑎𝑐𝑡→ ∈ ∅  will be 

decremented1 with the value permDec  (Lines 07 and 08). The association is 

remembered in the weight of the synaptic permanence values. In the example in Figure 

28, the permanence value of synapses from cells i3, j1 and j3 will be decremented. 

 

Increasing the synaptic permanence value strengthens the association between active 

pre-synaptic cells in area x and the postsynaptic cells in area y. 

Similarly, decreasing the permanence value stimulates the forgetting of the association.  

 

Finally, if the total count of connected synapses (cells) 𝑅𝑘𝑖𝑗  is zero, the segment is 

destroyed (line 16). 
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Algorithm 9 Cell to Segment association  

01| function associate (ℰ𝑘𝑖𝑗 , ⋃ ℂ𝑖
𝑎𝑐𝑡

𝑧
, 𝑝𝑒𝑟𝑚𝐼𝑛𝑐, 𝑝𝑒𝑟𝑚𝐷𝑒𝑐) 

02|    // ℰ𝑘𝑖𝑗 : The segment in the area  ℂ𝑦  to be associated with cells in area x. 

03|    // ⋃ ℂ𝑖
𝑎𝑐𝑡

𝑧
: Set of cells from all areas, including area  ℂ𝑦  to be associated with the  

04|                             segment in the area  ℂ𝑦. 
05|    // 𝑝𝑒𝑟𝑚𝐼𝑛𝑐: Permanence increment value when learning. 
06|    // 𝑝𝑒𝑟𝑚𝐷𝑒𝑐: Permanence decrement value when forgetting. 
07|    //Increment permanence of all synapses of cells in ℂ𝑥  connect to the segment ℰ𝑘𝑖𝑗 

08|     𝑝𝑢𝑤𝑙
𝑘𝑖 ← 𝑝𝑢𝑤𝑙

𝑘𝑖 + 𝛿 {
𝛿 =  𝑝𝑒𝑟𝑚𝐼𝑛𝑐;             𝑆𝑘𝑖𝑗← ∩ 𝑆𝑢𝑤 𝑎𝑐𝑡→ ∉ ∅ 

𝛿 = −1 (𝑜𝑟 0)  ∗ 𝑝𝑒𝑟𝑚𝐷𝑒𝑐  𝑆𝑘𝑖𝑗← ∩ 𝑆𝑢𝑤 𝑎𝑐𝑡→ ∈ ∅
} | 

09|                                                𝑐𝑒𝑙𝑙𝑢𝑤 ∈ ⋃ ℂ𝑖
𝑎𝑐𝑡

𝑧
,  𝑐𝑒𝑙𝑙𝑘𝑖 ∈  ℂ𝑦 

10|     // 𝛿 = 0 if the area is not mini-column based1. 
11|     // Destroy synapse if permanence is too small. Structural plasticity.  

12|     IF 𝑝𝑢𝑤𝑙
𝑘𝑖 < 0.00001 

13|         destroySynapse(𝑝𝑢𝑤𝑙
𝑘𝑖 ) 

14|    END     
15|     // Destroy the segment if no cell is connected. Structural plasticity. 

16|     IF 𝑅𝑘𝑖𝑗 = 0 

17|         destroySegment(ℰ𝑘𝑖𝑗) 

18|    END      

19| end 

 

5.8.3 Modelling structural plasticity 

As previously discussed, structural plasticity is one of the essential findings that need 

to be supported in a cortical algorithm. The NAA defines this plasticity as a dynamic 

process of creating and destroying segments and synapses at the segment. In the 

established learning process, when synapses are already created between pre-synaptic 

cells, associations are created by Algorithm 9. However, learning is a dynamic process 

that not only manipulates synaptic weights (permanence values). The learning 

continuously enforces the creation of synapses, which is the opposite of destroying 

synapses in Algorithm 9, line 13. Synapses are created between pre-synaptic cells and 

a segment. Presynaptic cells can belong to the same or a different area than the 

destination (postsynaptic) cell, which owns the segment. Figure 29 shows synaptic 

connections between the segment of the cell in mini-column u nested in the area 𝑦 

and active pre-synaptic cells from mini-columns i and j nested in the area 𝑥. 
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Figure 29 Synaptic connections between pre-synaptic cells from the area 𝑥 to segments in the area 𝑦. Cell 

i3 forms previously created synaptic connections. Cells i1,i2 and j2 will create new synaptic connections. 

 

Assume active cells i1, i2 and j2 do not form synapses to the segment u21. In 

contrast, the active cell i3 is already synaptically connected to the segment u21. 

Structural plasticity runs two algorithms in this context. The first one, Algorithm 10, 

creates new synaptic connections between the population of neurons shown in Figure 

29. The second one, Algorithm 11, is responsible for creating segments. 

 

Given the set of associating cells ℂ𝑥 
𝑎 , the segment j of the mini-column k and the cell i 

the function createSynapses in Algorithm 10 creates cnt number of new (incoming) 

synapses 𝑆𝑘𝑖𝑗← at the segment  ℰ𝑘𝑖𝑗. In contrast to Algorithm 9, which performs learning 

(strengthening and weakening) on existing synaptic connections in Figure 29, 

Algorithm 10 forms new synaptic connections and implements structural plasticity (see 

2.6).  

Instead of associating active cells ℂ𝑥 
𝑎  from the single area 𝑥 as shown in Figure 29, the 

algorithm operates rather on the union set ⋃ ℂ𝑖
𝑎𝑐𝑡

𝑧
of active cells from Z associating 

areas. First, the set X of cells in ⋃ ℂ𝑖
𝑎𝑐𝑡

𝑧
 that already forms synapses with the segment 

 ℰ𝑘𝑖𝑗  is calculated (line 09). The complement set 𝑋𝑐of 𝑋 holds all remaining cells in 

⋃ ℂ𝑖
𝑎𝑐𝑡

𝑧
 that do not form synapses to the segment (Line 11). 
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Algorithm 10 Structural plasticity with synapse creation 

01| function createSynapses ( ℰ𝑘𝑖𝑗 , ⋃ ℂ𝑖 −𝑎𝑐𝑡
𝑧

, 𝑚𝑎𝑥𝑠) 

02|     //  ℰ𝑘𝑖𝑗 : The Segment to create synapses that will connect presynaptic cells. 

03|     //  ⋃ ℂ𝑖−𝑎𝑐𝑡
𝑧

:  List Presynaptic active cells from different areas, excluding  ℂ𝑦  

04|     //            that will be connected to the segment with a new synapse.  
05|     //            In a case of bursting, these are winner cells. 
06|     //  𝑚𝑎𝑥𝑠:  The required number of synapses to be created. 
07|     //   𝑝0:  Initial synaptic permanence value 
08|     // X is a set of cells that already have a synaptic connection to the segment.  

09|    𝑋 = { 𝑐𝑒𝑙𝑙𝑢𝑤 ∈  ⋃ ℂ𝑖−𝑎𝑐𝑡
𝑧

;  𝑆𝑘𝑖𝑗← ∩ 𝑆𝑢𝑤→ ∉ ∅} 

10|         // Create a required number of synapses, from non-connected active cells 

11|         FOR 𝑖 = 1, 𝑖 < min (𝑚𝑎𝑥𝑠, |𝑋𝑐|; ⋃ ℂ𝑖−𝑎𝑐𝑡
𝑧

= 𝑋 ∪ 𝑋𝑐 ) 

12|             // Get random cell from cells in ℂ𝑥that do not create the synapse to segment.                  
13|             𝑐𝑒𝑙𝑙𝑢𝑤 ← 𝑟𝑎𝑛𝑑𝑜𝑚(𝑋𝑐 ) | 𝑢 ∈ {1, 𝑀}, 𝑤 ∈ {1, 𝑇},  𝑐𝑒𝑙𝑙𝑢𝑤 ∉ 𝑋𝑐

 

14|             // createSynapse from the cell to the segment 
15|            createSynapse( 𝑐𝑒𝑙𝑙𝑢𝑤,  ℰ𝑘𝑖𝑗 ,  𝑝0) | 𝑐𝑒𝑙𝑙𝑢𝑤 ∉ 𝑋𝑐 

16|         ENDFOR   
17| end 

 

 

The loop in lines 11-16 randomly selects cells from 𝑋𝑐and create the synapse from the 

cell to the segment until cnt synapses are created or all cells in ⋃ ℂ𝑖
𝑎𝑐𝑡

𝑧
 form outgoing 

synapses 𝑆𝑢𝑤→ to the segment  ℰ𝑘𝑖𝑗. 

 

At the beginning of the Association Algorithm, no synaptic connections exist in the 

population of neurons: 𝑆𝑘𝑖← = ∅, 𝑆𝑢𝑤→ = ∅. Connections are created and destroyed 

dynamically by using Algorithm 9 and Algorithm 10.  

 

Another important part of structural plasticity is the bursting algorithm. The bursting 

of the active-mini mini-column (see Algorithm 11) is a process divided into two steps: 

Learning Associations at the winner segment (Lines 10-18) and Creation of new 

segments (Lines 19-27). 

 

Both steps are responsible for creating segments at cells, creating and growing 

synapses at segments and learning associations (strengthening or weakening synapses) 

at the segment.   
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Algorithm 11 Structural plasticity with column bursting 

 

01| function burstMiniColumn (𝑐𝑘, ⋃ ℂ𝑖
𝑎𝑐𝑡

𝑧
, ℂ𝑤𝑖𝑛 , 𝑝𝑒𝑟𝑚𝐼𝑛𝑐, 𝑝𝑒𝑟𝑚𝐷𝑒𝑐, 𝑚𝑎𝑥𝑆) 

02|     // 𝑐𝑘 : The bursting mini-column.;  𝑐𝑘 ∈ 𝐶𝑦 

03|     // ℂ𝑤𝑖𝑛 :  Presynaptic winner cells from the last iteration. 
04|    // ⋃ ℂ𝑖

𝑎𝑐𝑡
𝑧

List of sets of associating active cells. 

05|    // 𝑝𝑒𝑟𝑚𝐼𝑛𝑐: Permanence increment value when learning. 
06|    // 𝑝𝑒𝑟𝑚𝐷𝑒𝑐: Permanence decrement value when forgetting. 
07|    //  𝑚𝑎𝑥𝑆:  Maximal number of  allowed new synapses at the segment. 
08|    //Form the set of matching segments in the mini-column. 

09|    E ← {ℰ𝑖
𝑚𝑎𝑡𝑐ℎ

 in 𝑐𝑘}; 𝜃𝑑
𝑚𝑖𝑛 ≤ (∑ 𝛿𝑖 ; {

𝛿 = 1; 𝑝𝑖 ≥ 0
𝛿 = 0; 𝑝𝑖 < 0

}) < 𝜃𝑑
𝑎𝑐𝑡

  

10|    IF 𝐸 ∉ ∅ // If there are matching segments. 
11|           // Find the segment in a mini-column with the maximal number 
12|          // of potential synapses. Calculate a maximal number of potential synapses.  
13|         ℰ 𝑚𝑎𝑥

 ← max {|𝑆𝑘𝑖𝑗← |} | 𝑆𝑘𝑖𝑗← ∈  ℰ𝑘𝑖𝑗,  ℰ𝑘𝑖𝑗 ∈ 𝐸 
14|           // associate the segment. 
15|           associate(ℰ 𝑚𝑎𝑥, ⋃ ℂ𝑖

𝑎𝑐𝑡
𝑧

, 𝑝𝑒𝑟𝑚𝐼𝑛𝑐, 𝑝𝑒𝑟𝑚𝐷𝑒𝑐) 

16|           // Create a set of new synapses. 
17|           createSynapses(ℰ 𝑚𝑎𝑥, ℂ𝑤𝑖𝑛, 𝑚𝑎𝑥𝑆 − 𝑚) ⟺ 𝑚𝑎𝑥𝑆 − 𝑚 > 0  

18|          return ({ 𝑐𝑘𝑖 }, 𝑐𝑒𝑙𝑙𝑚𝑎𝑥| i ∈ {1,2,..T}) 
19|     ELSE // If there are no matching segments 
20|            // Find the cell with the least number of segments in the mini-column k. 
21|             (𝑛𝑢𝑚, 𝑐𝑒𝑙𝑙𝑘−𝑚𝑖𝑛 ) ← 𝑚𝑖𝑛 {|ℰ𝑘𝑖| } | ℰ𝑘𝑖 = { ℰ𝑘𝑖𝑗}, 1 < i ≤ T, 1 < j ≤ 𝐷𝑘𝑖   

22|            // Create the new segment.  
23|           newSeg←createSegment(𝑐𝑒𝑙𝑙𝑘−𝑚𝑖𝑛)  
24|           // Create a set of new synapses at the new segment. 
25|           createSynapses(𝑛𝑒𝑤𝑆𝑒𝑔, ℂ𝑤𝑖𝑛, 𝑚𝑎𝑥𝑆 − |ℂ𝑥𝑤𝑖𝑛|) 
26|          return ({ 𝑐𝑘𝑖 }, 𝑐𝑒𝑙𝑙𝑘−𝑚𝑖𝑛| i ∈ {1,2,..T}) 
27|     ENDIF 

28| end 

 

 

The bursting of the mini-column is initiated if the mini-column has no active segments. 

The mini-column bursts (activates) all cells in the mini-column if the mini-column has 

no active segments. Some papers related to HTM theory define bursting at the cell level 

(see 3.1), which differs from mini-column bursting described in this section. The goal 

of bursting is to form new synapses that activate segments. According to equation (36) 

segment is considered as matching one if the total count of connected synapses (see 

permanence connected threshold 𝜃𝑐 𝑖𝑛 section 5.3) at the segment reaches thresholds 

𝜃𝑑
𝑚𝑖𝑛. The bursting algorithm distinguishes between mini-columns that have a number 

of segments greater than  𝜃𝑑
𝑚𝑖𝑛 (matching-segments threshold) and lower than 𝜃𝑑

𝑎𝑐𝑡 
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(active segment threshold). At the beginning (Line 09), the set of matching segments E  

of the processing mini-column is calculated. 

 

Step 1:  Learn ing associations a t the match ing segment with  the most synapses 

If the mini-column has matching segments and no active segments (Line 10), the 

segment ℰ 𝑚𝑎𝑥
  with the maximum number of potential synapses (see 5.2) is calculated 

in Line 13. Then, that segment is chosen as a “winner” for learning associations (Line 

15). Learning associations will strengthen or weaken synapses (see Algorithm 9). As 

next (Line 17), more synapses are created at the “winner” segment up to the required 

number of synapses maxS. All other non-“winner” segments in the mini-column are 

ignored in the current turn. At the end (Line 18), the algorithm returns all cells as active 

cells (bursting) and selects the cell 𝑐𝑒𝑙𝑙𝑚𝑎𝑥
 as the winner-cell (best one) with the highest 

number of synapses. This step makes sure that the association between a set of active 

cells ℂ𝑥𝑎𝑐𝑡 and the best winner-segment with the highest number of synapses is 

strengthened, which will, over time, build a sparse contextual dependency (association) 

between a context encoded by a sparse set of active cells  ℂ𝑥𝑎𝑐𝑡
 and the winner- 

segment.  

 

Step 2:  Creation  of  a new segment if not match ing and  active segments  ex is t 

If the mini-column has no matching segments (the number of synapses of all segments 

is less than 𝜃𝑑
𝑚𝑖𝑛) the algorithm will initiate creating a new segment (Line 19). In this 

case, the least used cell has to be found (Line 21) in the active mini-column 𝑐𝑘 . That is 

the cell with a minimum number of segments. For every cell  𝑐𝑒𝑙𝑙𝑘𝑖  (Line 21) in the mini-

column, the set of segments  ℰ𝑘𝑖 = { ℰ𝑘𝑖𝑗} is looked up and the 𝑐𝑒𝑙𝑙𝑘−𝑚𝑖𝑛 with the 

minimum number of segments 𝑚𝑖𝑛{|ℰ𝑘𝑖| } is selected as the least used cell. Finally, a 

new segment is created for the 𝑐𝑒𝑙𝑙𝑘−𝑚𝑖𝑛 (Line 23). At the end of this step, all cells in 

the mini-column are returned as active cells. The cell 𝑐𝑒𝑙𝑙𝑘−𝑚𝑖𝑛  with the minimum 

segments is chosen as the winner one. 

 

Summary 
 

To recap, in both steps bursting the mini-column activates all cells in the mini-column 

if the mini-column has no active segments. However, the rule for choosing the winner 

cell is different. In the case of matching segments (step 1), the cell owner of the 

segment with the highest number of potential synapses is chosen as the “winner” cell.  
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In step 2, a new segment is created in the cell with the lowest number of segments. 

That cell is marked as the winner cell, and it will be preferred for growing synapses in 

the next learning cycle.  

Outgoing synapses of all active cells in the cycle are strengtheneth or weakened (see 

Algorithm 9 and Algorithm 11).  

Finally, new synapses are created on the winner cells only.  

 

5.8.4 Associating by cellular activation 

 

As defined by equation (31), the cellular association Algorithm 12 activates a sparse set 

of cells in the target area that belong to mini-columns that form the area y (see Figure 

28). Given the operating area 𝑦 with the set of mini-columns 𝐶𝑦 = { 𝑐1 ,  𝑐1 , . . ,  𝑐𝑀}, and 

sets of active segments ℰ𝑑
𝑎𝑐𝑡 and matching segments ℰ𝑑

𝑚𝑎𝑡𝑐ℎ of any kind (a, d or p - see 

5.8.2) the cellular activation algorithm traverses all of the mini-columns in the area y in 

every learning iteration and activates cells in 𝐶𝑦 according to equation (31). Note that 

this algorithm operates on mini-columns that hold cells of the specific area 𝐶𝑦. The 

NAA does not propose how mini-columns should be activated. This work focuses the 

encoding by Spatial Pooler, which encodes the spatial pattern into a set of active mini-

columns. However, some future versions of NAA might use an additional encoding 

mechanism like grid cells, which would encode the location information with the 

Location Context rather than spatial information with the Spatial Context.  

 

In generalized form, the cellular activation takes as input the active cells from the entire 

cell population ℂ defined by equation (29), but it activates only cells in its operating 

area 𝑦 of the population ℂ𝑦 . Associating active cells from specific area to active cells of 

some other or the same area creates meaning in the given context.  The set ⋃ ℂ𝑖
𝑎𝑐𝑡

𝑧
 is 

represented as a union or list of sets of associating active cells that belong to multiple 

areas. Additionally, the algorithm uses also as input the set of winner cells ℂ𝑦𝑤𝑖𝑛 from 

operating area 𝑦. Winner cells are cells chosen for growing of synapses in the current 

cycle according to rules of structural plasticity as described later in this section. The 

result of this algorithm in every learning cycle is an updated set of chosen active 

ℂ𝑦𝑎𝑐𝑡 and winner ℂ𝑦𝑤𝑖𝑛 cells.  
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Algorithm 12 performs the following tasks:  

 

1. Weak existing associations at matching segments of inactive mini-columns 

(Lines 11-19) 

For all mini-columns that are not active in the current cycle but hold cells with 

matching segments as defined by equation (36), the permanence value of 

synapses 𝑆𝑢𝑤→ 
 from presynaptic cells ⋃ ℂ𝑖

𝑎𝑐𝑡
𝑧

 to the matching segments of the 

inactive mini-column are decremented by the value permDec (Lines 13-18).  

One of the major principles of this algorithm is that all learning operations 

should happen on cells and synapses inside active mini-columns only. 

Therefore, in this step, no active and winner cells are selected. 

 

2. Strengthening the existing associations in active mini-column  

(Lines 20-29) 

a. Strengthening the existing associations of active segments inside active 

mini-columns. If the mini-column is the active one and has active 

segments as defined by equation (35), then existing synapses 𝑆𝑢𝑤→ 
 

from presynaptic cells ⋃ ℂ𝑖
𝑎𝑐𝑡

𝑧
 to the active segment are strengthened. 

(Lines 20-28). 

b. In the same turn, the number of synapses at active segments of the 

active mini-column is grown. Active segments will create new synapses 

(Line 26) to the specified limit. The algorithm specifies the maximal 

number of synapses at the segment maxS (Line 07). Having the set of 

synapses 𝑆𝑎𝑐𝑡← at the segment ℰ 𝑎𝑐𝑡 according to equation (32), the 

remaining (missing) number of synapses at the segment is calculated 

from the required number of potential synapses 𝑚𝑎𝑥𝑆 and the number 

|𝑆𝑎𝑐𝑡← | of potential and connected synapses at the active segment ℰ 𝑎𝑐𝑡.   

c. In Line 28, cells that are owners of the active segment  ℰ 𝑎𝑐𝑡
 are chosen 

as active and winner cells in the current iteration (see equation (35). 

This step completes with sets of active and winner cells. 
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3. Column Bursting if no segment is active at the active mini-column  

(Lines 30-33) 

Cells with no active segments create new segments and form new synapses. 

This process is called bursting, as described in the previous section. The 

bursting process results in a set of active cells in the operating area that 

contain all mini-column cells from that area. In this step, the single winner cell 

is chosen. This is the cell 𝑐𝑒𝑙𝑙𝑘−𝑚𝑖𝑛  with the minimum number of segments (see 

Algorithm 11, Lines 20-26). 

 

The cellular activation algorithm executes three major tasks. First, it weakens 

(punishes) existing associations at matching segments of inactive mini-columns. 

Second, it strengthens the existing associations between active cells in the entire 

population ⋃ ℂ𝑖
𝑎𝑐𝑡

𝑧
and active segments in the active mini-column of the operating 

area ℂ𝑦. In the same turn, new synapses are created between winner cells in the area 

ℂ𝑥 and active segments in active mini-column of the area ℂ𝑦. Third, the active mini-

column is burst if there are no active segments in the mini-column. 

 

The result of the algorithm is an updated set of chosen active ℂ𝑦𝑎𝑐𝑡 and winner 

ℂ𝑦𝑤𝑖𝑛 cells. 
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Algorithm 12 Cellular Activation 

01| function activateCells (⋃ ℂ𝑖
𝑎𝑐𝑡

𝑧
, ℂ𝑦𝑤𝑖𝑛, 𝑝𝑒𝑟𝑚𝐷𝑒𝑐, permInc, 𝑚𝑎𝑥𝑆, 𝐶𝑦) 

02|     // ⋃ ℂ𝑖
𝑎𝑐𝑡

𝑧
: List of sets of active cells from all areas including area y. 

03|     //  ℂ𝑦𝑤𝑖𝑛:  Winner cells from mini-columns space the area 𝐶𝑦. 

04|     //  𝑝𝑒𝑟𝑚𝐼𝑛𝑐, 𝑝𝑒𝑟𝑚𝐷𝑒𝑐:  The perm. Increment/decrement when learning. 
05|     //  𝑚𝑎𝑥𝑆:  Maximal number of new synapses at the segment. 
06|     // 𝐶𝑦: The area with mini-columns that hold cells ℂ𝑖

𝑎𝑐𝑡, ℂ𝑦𝑤𝑖𝑛 
07|     

08|    // Iterates all mini-columns in the area 

09|    FOREACH  𝑐𝑘  IN 𝐶𝑦 

10|                // If the mini-column is NOT active in the current iteration. 
11|               IF  𝑐𝑘 ∉ 𝐶𝑎

  

12|                      // Punish inactive mini-column. 
13|                   FOREACH ℰ 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔

 IN 𝑐𝑘  

14|                           // Gets the set of presynaptic cells of the matching segment. 

15|                           ℂ→ = { 𝑐𝑒𝑙𝑙𝑢𝑤}|𝑆𝑢𝑤→ ∈ ℰ 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔
 ,  𝑐𝑒𝑙𝑙𝑢𝑤 ∈ ⋃ ℂ𝑖

𝑎𝑐𝑡
𝑧

  

16|                          // Decrements existing synapses on the segment. 

17|                          associate(ℰ 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔, ℂ→ , −1 ∗ 𝑝𝑒𝑟𝑚𝐷𝑒𝑐, 0) 

18|                    ENDFOR 

19|                ELSE  If the mini-column is active in the current iteration. 
20|                    FOREACH ℰ 𝑎𝑐𝑡

 IN 𝑐𝑘  // Process active segments in the active mini-column. 
21|                           //  Gets the set of presynaptic cells of the active segment. 
22|                           ℂ→ = { 𝑐𝑒𝑙𝑙𝑢𝑤}|𝑆𝑢𝑤→ ∈ ℰ 𝑎𝑐𝑡

 ,  𝑐𝑒𝑙𝑙𝑢𝑤 ∈ ⋃ ℂ𝑖
𝑎𝑐𝑡

𝑧
  

23|                          // Increment existing synapses on the segment. 

24|                          associate(ℰ 𝑎𝑐𝑡, ℂ→, 𝑝𝑒𝑟𝑚𝐼𝑛𝑐, 𝑝𝑒𝑟𝑚𝐷𝑒𝑐) 
25|                          // Increment number of synapses at the segment. 

26|                          createSynapses(ℰ 𝑎𝑐𝑡, ℂ→ , 𝑚𝑎𝑥𝑆 −  |𝑆𝑎𝑐𝑡← |) 
27|                          // Increment number of synapses at the segment. 

28|                          ℂ𝑦𝑤𝑖𝑛 = ℂ𝑦𝑎𝑐𝑡 ← ⋃ ( 𝑐𝑖)
|𝑆𝑎𝑐𝑡←|
𝒊=𝟏  | 𝑠𝑖

← ∈ ℰ𝑎𝑐𝑡
 

29|                     ENDFOR 

30|                      𝐸  ← {ℰ 𝑎𝑐𝑡
 in 𝑐𝑘 } // Get the set of active segments. 

31|                     IF  |𝐸𝑐 | > 0// Process non-active segments at the mini-column. 
33|                        (ℂ, 𝑐) ←burstMiniColumn( 𝑐𝑘 , ⋃ ℂ𝑖

𝑎𝑐𝑡
𝑧

, ℂ𝑦𝑤𝑖𝑛, 𝑝𝑒𝑟𝑚𝐼𝑛𝑐, 𝑝𝑒𝑟𝑚𝐷𝑒𝑐, 𝑚𝑎𝑥𝑆)  

32|                        ℂ𝑦𝑤𝑖𝑛 ← 𝑐, ℂ𝑦𝑎𝑐𝑡 ← ℂ     

33|                     ENDIF 

34|                ENDIF  
35|     ENDFOR   

36| end 
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5.8.5 Associating by segment activation 

The previous section describes how the NAA activates cells using various biological 

rules. The result of the cellular activation algorithm is the population of active and 

winner cells ℂ𝑦𝑎𝑐𝑡 and ℂ𝑦𝑤𝑖𝑛 . Winner cells do not play any role in the activation of 

segments. The cellular activation executes at active and matching segments in the mini-

column. Selecting segments into active and matching is part of the segment association 

algorithm described in this section. 

 

The task of this part of the NAA is to activate segments for the next cycle  𝑡+1 . Segments 

activated in the current cycle  𝑡+0 for the next cycle are used to activate cells in the next 

cycle 𝑡+1 (see 5.8.4). Also, cells activated in the  𝑡+1 are used to activate segments for 

the cycle  𝑡+2 . 

 

The activation of segments starts with counting all synapses of every presynaptic cell 

in a set of active cells ℂ𝑦𝑎𝑐𝑡 and looks up connected segments of their postsynaptic 

cells. It takes cells in ℂ𝑦𝑎𝑐𝑡 as pre-synaptic cells and follows their outgoing synapses, 

which connect to destination segments as defined by (33). Destination cells can 

theoretically be a part of any area. However, the limitation of the current algorithm 

implementation assumes that connecting cells are in the same area. 

 

The outgoing synaptic connections of active cells in ℂ𝑦𝑎𝑐𝑡
 keep memorized synaptic 

associations to some other cell population ℂ𝑧𝑎𝑐𝑡2 . In other words, the population 

ℂ𝑦𝑎𝑐𝑡associates to population ℂ𝑧𝑎𝑐𝑡2
. The intensity of the association is calculated with 

synaptic activity in the function countSynapses of Algorithm 13 in Lines 17-32. This 

function finds all following segments connected by outgoing synapses of pre-synaptic 

cells in ℂ𝑦𝑎𝑐𝑡  and calculates how many potential- and active synapses are at each 

connected segment in lines 27 and 29, respectively. 

 

The segment activation starts with calculating the synaptic activity in line 10. The 

segment from the area C𝑦
 is added to the list of active segments (Line 12) if the total 

count of connected synapses is over the threshold 𝜃𝑑
𝑎𝑐𝑡 as defined by equation (35). 

Similarly, the segment from the area C𝑦 is added to the list of matching segments if the 

total count of potential synapses is over the defined threshold 𝜃𝑑
𝑚𝑖𝑛  as defined by 

equation (36). 
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Algorithm 13 Segment Activation 

01| function activateSegments (𝜃𝑐 , ℂ𝑥𝑎𝑐𝑡, ℂ𝑦𝑎𝑐𝑡
, 𝜃𝑑

𝑎𝑐𝑡, 𝜃𝑑
𝑚𝑖𝑛) 

02|    // 𝜃𝑐: Connected Permanence threshold 
03|    // ℂ𝑦𝑎𝑐𝑡

:  Set of active associating cells in area y 
04|    // ℂ𝑥𝑎𝑐𝑡

:  Set of active associating cells in area x 

05|    // 𝜃𝑑
𝑎𝑐𝑡: Number of required synapses to activate the segment 

06|    // 𝜃𝑑
𝑚𝑖𝑛: Number of required synapses to declare matching segment 

07|    // Initialize empty lists for active and matching segments 

08|    𝑎𝑐𝑡𝑆𝑒𝑔𝑠[] = ∅, 𝑚𝑎𝑡𝑐ℎ𝑆𝑒𝑔𝑠[] = ∅ 

09|    // calculate potential and connected synapse counters. 
10|    (𝑠𝑦𝑛𝐶𝑛𝑡𝑀𝑎𝑝𝑝𝑜𝑡 , 𝑠𝑦𝑛𝐶𝑛𝑡𝑀𝑎𝑝𝑎𝑐𝑡 ) ←countSynapses(ℂ𝑦𝑎𝑐𝑡, 𝜃𝑐) 

11|    // Add segment as active if number of connected (active) synapses overcomes 𝜃𝑑
𝑎𝑐𝑡  

12|    ℰ 𝑦𝑎𝑐𝑡 ← ℰ𝑘𝑖𝑗 ⟺ 𝑠𝑦𝑛𝐶𝑛𝑡𝑀𝑎𝑝𝑎𝑐𝑡[ℰ𝑘𝑖𝑗] ≥ 𝜃𝑑
𝑎𝑐𝑡, ℰ𝑘𝑖𝑗 ∈ C𝑦 

13|    // Add segment as matching if number of connected synapses overcomes 𝜃𝑑
𝑚𝑖𝑛  

14|    ℰ 𝑦𝑚𝑎𝑡𝑐ℎ[] ← ℰ𝑘𝑖𝑗 ⟺ 𝑠𝑦𝑛𝐶𝑛𝑡𝑀𝑎𝑝𝑚𝑎𝑡𝑐ℎ[ℰ𝑘𝑖𝑗] ≥ 𝜃𝑑
𝑚𝑖𝑛, ℰ𝑘𝑖𝑗 ∈ C𝑦 

15| end 

16| 

17| function countSynapses (ℂ𝑎𝑐𝑡, 𝜃𝑐) 

18|    //  ℂ𝑎𝑐𝑡
:  Set of activated (spiking) cells in area(s) 

19|    // 𝜃𝑐: Connected Permanence threshold 
20|    // Defines maps for segment synaptic counters. 
21|    𝑠𝑦𝑛𝐶𝑛𝑡𝑀𝑎𝑝𝑝𝑜𝑡 [] = ∅, 𝑠𝑦𝑛𝐶𝑛𝑡𝑀𝑎𝑝𝑎𝑐𝑡 [] = ∅ 

22|    // Traverse all presynaptic active cells. 

23|    FOREACH 𝑐𝑒𝑙𝑙 IN ℂ𝑎𝑐𝑡
 

24|       //  𝐺𝑒𝑡𝑠 𝑡ℎ𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 of the presynaptic cell 
25|       ℰ𝑘𝑖𝑗 ← 𝑐𝑒𝑙𝑙 

26|       // Increment counter of potential synapses to the segment ℰ𝑘𝑖𝑗 

27|       𝑠𝑦𝑛𝐶𝑛𝑡𝑀𝑎𝑝𝑝𝑜𝑡 [ℰ𝑘𝑖𝑗]+= ∑ 𝛿  {
𝛿 =  1; ⟺   𝑝𝑢𝑤

𝑘𝑖𝑗 >   0

𝛿 = 0; ⟺  𝑝𝑢𝑤
𝑘𝑖𝑗 = 0

}

𝑢,𝑤

 

28|       // Increment counter of active synapses to the segment ℰ𝑘𝑖𝑗 

29|       𝑠𝑦𝑛𝐶𝑛𝑡𝑀𝑎𝑝𝑎𝑐𝑡[ℰ𝑘𝑖𝑗]+= ∑ 𝛿  {
𝛿 =  1; ⟺   𝑝𝑢𝑤

𝑘𝑖𝑗 ≥  𝜃𝑐

𝛿 = 0; 0 <  𝑝𝑢𝑤
𝑘𝑖𝑗 <  𝜃𝑐

}

𝑢,𝑤

 

30|      ENDFOR  

31|    return (𝑠𝑦𝑛𝐶𝑛𝑡𝑀𝑎𝑝𝑝𝑜𝑡 , 𝑠𝑦𝑛𝐶𝑛𝑡𝑀𝑎𝑝𝑎𝑐𝑡) 

32| end 
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5.8.6 Learning Associations by cellular and segment activation 

The previous sections in this chapter describe structural plasticity, cellular activation 

and segment activation. Learning associations is a process that associates a cell 

population from an area with the cell population of the same or another area. For 

example, colour receptor SDRs can be associated with location cells. Association 

learning is not only limited to sensory cells. They can be built between any cell 

population and any area. 

To understand how associating works, assume the learning should be processed in the 

area ℂ𝑦 . The same learning happens in every area separately synchronized by the clock 

that defines a learning cycle (iteration). The learning area 𝑦 is connected with another 

associated area 𝑥 (Figure 30). The area 𝑦 learns the temporal associations between cell 

populations inside 𝑦 and associations from the population in 𝑋. Temporal associations 

inside of 𝑦 are created between active cells in the cycle ℂ𝑦𝑎𝑐𝑡(𝑡𝑛) and active cells in the 

cycle ℂ𝑦𝑎𝑐𝑡(𝑡𝑛+1) .  

 

The learning algorithm is executed in the function compute in Algorithm 14. It is divided 

into two steps. In the first step (Line 08), the learning implements Algorithm 12, 

described in section 5.8.4, which chooses the set of active cells in the current iteration 

𝑡𝑛 for the given input (⋃ ℂ𝑖
𝑎𝑐𝑡

𝑧
, ℂ𝑦𝑤𝑖𝑛) based on the current segment state. Chosen cells 

are used (Line 10) to suggest active segments for the next cycle.  

 

Algorithm 14 Neural Association computation 

01| function compute(⋃ ℂ𝑖
𝑎𝑐𝑡

𝑧
, ℂ𝑦𝑤𝑖𝑛, 𝑝𝑒𝑟𝑚𝐷𝑒𝑐, permInc, 𝑚𝑎𝑥𝑆, 𝐶𝑦) 

02|     // ⋃ ℂ𝑖
𝑎𝑐𝑡

𝑧
: List of sets of active cells from all areas. ℂ𝑦𝑎𝑐𝑡 ∈ ⋃ ℂ𝑖

𝑎𝑐𝑡
𝑧

 

03|     //  ℂ𝑦𝑤𝑖𝑛:  Winner cells from mini-columns space the area 𝐶𝑦. 

04|     //  𝑝𝑒𝑟𝑚𝐼𝑛𝑐, 𝑝𝑒𝑟𝑚𝐷𝑒𝑐:  The perm. Increment/decrement when learning. 
05|     //  𝑚𝑎𝑥𝑆:  Maximal number of new synapses at the segment. 
06|     // 𝐶𝑦: The y area with mini-columns that hold cells  ℂ𝑦𝑎𝑐𝑡, ℂ𝑦𝑤𝑖𝑛 
07|    // Activate new cells for the current learning iteration (cycle) 

08|       (ℂ𝑦𝑤𝑖𝑛, ℂ𝑦𝑎𝑐𝑡) ← activateCells(⋃ ℂ𝑖
𝑎𝑐𝑡

𝑧
, ℂ𝑦𝑤𝑖𝑛, 𝑝𝑒𝑟𝑚𝐷𝑒𝑐, permInc, 𝑚𝑎𝑥𝑆) 

09|    // Activate new segments for the current learning iteration (cycle) 

10|     ℰ 𝑦𝑎𝑐𝑡, ℰ 𝑦𝑚𝑎𝑡𝑐ℎ ← activateSegments(𝜃𝑝, ℂ𝑥𝑎𝑐𝑡 , ℂ𝑦𝑎𝑐𝑡
, 𝜃𝑑

𝑎𝑐𝑡, 𝜃𝑑
𝑖𝑛) 

11|       RETURN (ℂ𝑦𝑎𝑐𝑡, ℂ𝑦𝑤𝑖𝑛, ℰ 𝑦𝑎𝑐𝑡, ℰ 𝑦𝑚𝑎𝑡𝑐ℎ) 

12| end 
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The selection of segments for the next cycle semantically represents the prediction 

capability of the NAA. The result of the execution of learning associations is a state, 

defined as a tuple of winner cells of the learning area, active cells of the learning area, 

matching segments and active segments of the learning area.  

 

(ℂ𝑦𝑎𝑐𝑡, ℂ𝑦𝑤𝑖𝑛, ℰ 𝑦𝑎𝑐𝑡, ℰ 𝑦𝑚𝑎𝑡𝑐ℎ)(𝑡𝑛+1) ← 

(ℂ𝑦𝑤𝑖𝑛, ℰ 𝑦𝑎𝑐𝑡, ℰ 𝑦𝑚𝑎𝑡𝑐ℎ, ⋃ ℂ𝑖
𝑎𝑐𝑡

𝑧

 )(𝑡𝑛) 

(38) 

The process of learning in area y is illustrated in Figure 30. In the example, area y is a 

learning association from area x. In the iteration 𝑡𝑛. area x has two active cells (top left). 

In this context, it is not of interest how area x is built and how cells are activated. At the 

same time, area y has two active cells inside two active mini-columns. Mini-columns 

are activated as a result of the SP algorithm described in 5.7. They encode the proximal 

spatial input of the SP (bottom left). By activating mini-columns, Algorithm 12, starting 

in condition at Line 20, selects cells that will be activated. After the selection of active 

cells in area y, the Segment Activation (Algorithm 13) predicts segments that are 

expected to be active in the next iteration. Active cells in the iteration 𝑡𝑛, built outgoing 

synapses to some other cells by using Algorithm 12 and possibly some other areas (not 

illustrated in the figure). At the end of the iteration, the area y state is defined by two 

predicted active segments (Figure 30 - right) owned by two cells expected to be active 

in the next iteration. The next iteration 𝑡𝑛+1. starts in the area y again by activating mini-

colums (shown in green frame at right) through some other proximal spatial input 

streamed in the SP. At the same time, some other cell populations (two cells at the top 

right) are activated in area x. Again, the cell activation algorithm (Algorithm 14, Line 08)  

starts to activate cells based on the segment state calculated in the iteration 𝑡𝑛 

(Algorithm 14 Line 10). Synapses from all active cells to activated cells are strengthened 

and existing synapses from non-active cells (red) are weakened. 
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Figure 30 Temporal association over multiple areas 

 

The learning association algorithm builds associations through synaptic connections, 

the Hebb rule, structural plasticity etc. It dynamically grows segments and synapses 

and can predict the next state. If the predicted state occurs, the permanence values of 

synapses are increased. Synapses between falsely predicted cells are punished, which 

is the main feature of reinforcement learning (see Chapter 1). 

Aligned to biology described in Chapter 2, Neural Association Algorithm described in 

this chapter demonstrates how areas, mini-columns, synapses, segments and neural 

cells play together to build cognitive capabilities like associations and prediction. From 

the point of view of a learning area y in the last example, the proximal segment has the 

most significant impact on the activation of cells, as described in 2.5. By building 

associations between cells inside of the same area, the temporal association is created 

between the current state (set of active segments ℰ 𝑦𝑎𝑐𝑡 and cells  ℂ𝑥𝑎𝑐𝑡
 and the next 

state. However, the next state is also influenced by synaptic connections from other 

areas. Semantically, connections from other areas define the context for associations. 

The algorithm, by default, continuously learns and also forgets, which is known as 
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online learning. It learns the “world” presented by proximal spatial inputs from some 

sensory areas. Figure 31 illustrates the transition of the learned state in a simplified 

form. Every circle inside a box represents the set of active cells inside the area. Different 

position of the circle represents a different set of active cells. Figure 31 has the same 

meaning but a simplified representation of the cell state shown in Figure 30. 

 

Area Y learns associations from area X that provides spatial contextual information to 

area Y. Additionally, area Y forms synapses inside the area. These synapses create 

another kind of temporal association. Every cell state in the area represents some 

encoded event or a spatial state. Associating (outgoing) synapses from active cells of 

the event state suggests (predicts) the next set of active cells that encode the following 

event and so on.  

 

 

Figure 31 Temporal Association Learning Path. Simplified representation  

 

The set of temporal associations in area Y forms a temporal association path. Such 

temporal association between multiple events (elements) can learn sequences. Every 

association consist of the spatial contextual information from another area and 

Temporal Context in its area. Theoretically, the association algorithm can form a spatial 

and temporal association between all areas. 

Area Y has enough information to predict the next active state. Theoretically, area Y has 

enough information to follow the temporal association path to predicting the state in 
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any future iteration, assuming that the proximal spatial input does not change over 

time.  

 

5.8.7 Summary 

This section briefly describes the Neural Association Algorithm, which can create any 

kind of association like spatial and temporal associations. It aligns with the biological 

findings described in Chapter 2 and generalizes the idea of HTM described in Chapter 

3. The algorithm operates on multiple cortical areas and hypothesizes that all internal 

states in every area are represented as SDR encoded in any possible way. During the 

learning process, NAA dynamically creates and destroys segments and synapses. As a 

result, synaptic connections between cells and segments in areas create associations 

between SDRs. Associations can be made between spatial states or can have a temporal 

character. Spatial associations demonstrate the capability of the algorithm to learn 

spatial patterns. Similarly, temporal associations illustrate the ability of NAA to learn 

sequences. Section 9.4 discusses how these capabilities can be used to create a context 

and a semantical meaning. 

5.9 Design and Implementation of the Temporal Memory 

Temporal memory, the next important algorithm in this research, belongs to the HTM 

concept described in 3.1.4. In contrast to SP, which learns spatial patterns, the Temporal 

Memory (TM) algorithm is responsible for learning sequences. The input of the TM 

consists of two parts. The first input includes the mini-column SDR encoded by the SP 

defined by equation (26). The second input is the set of active cells inside the learning 

area in the current iteration. This input represents the temporal context for the next 

iteration step. The output of TM is the set of active cells that belong to active mini-

columns activated by the SP.  

 

The Temporal Memory Algorithm is a special case of the Neural Association Algorithm. 

By removing associating area X and running the algorithm inside area Y, the set of 

associating cells is reduced to the set of active cells in area Y. 

 

⋃ ℂ𝑖
𝑎𝑐𝑡

𝑧

=  ℂ𝑦𝑎𝑐𝑡 (39) 
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With this restriction, the Temporal Memory algorithm reduces the generalized Neural 

Association model defined by (38) to the following equation: 

 

 

(ℂ𝑦𝑎𝑐𝑡, ℂ𝑦𝑤𝑖𝑛, ℰ 𝑦𝑎𝑐𝑡, ℰ 𝑦𝑚𝑎𝑡𝑐ℎ)(𝑡𝑛+1) ← 

(ℂ𝑦𝑤𝑖𝑛, ℂ𝑦𝑤𝑖𝑛, ℰ 𝑦𝑎𝑐𝑡, ℰ 𝑦𝑚𝑎𝑡𝑐ℎ )(𝑡𝑛) 

(40) 

 

The only contextual information in TM is the previous state of active cells because no 

other areas are involved in the learning process. Because the only existing Spatial 

Context is the set of active cells in the same area, the same active cells in every learning 

cycle define a Temporal Context for the upcoming cycle semantically.  In other words, 

cells that are active in cycle 𝑡𝑛, predict cells that will be active in the cycle 𝑡𝑛+1, by their 

associating synapses. With this, the TM learns sequences by creating temporal 

associations between a set of cells in the previous iteration with the set of cells in the 

current iteration.  

Figure 32 shows a simple area with four mini-columns containing four cells each. The 

model in the figure comprises four mini-columns and assumes that spatial element ‘A’ 

activates the first mini-column, the element ‘B’ the second one etc. Every mini-column 

contains four cells. This model is unrealistic because the number of mini-columns and 

cells is too low to build a usable SDR. This simplified model is chosen to illustrate the 

temporal learning process. The SDR in this model will activate a single mini-column, 

which is simplified, and not a realistic case. 

 

 

Figure 32 Simplified area with four mini-columns with four cells each 
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Figure 33 shows how the TM learns the sequence of elements. The figure shows two 

sequences: ABCD (green) and BDAC (blue), with their so-called Temporal Path. The 

Temporal Path shows temporal dependencies between SDRs representing particular 

sequence elements. Every learning cycle, t0, t1, t2 and t3, represents a cortical model 

(grey box) defined in Figure 32. In every cycle, an element of the sequence is presented 

to SP. The SP encodes the element into a set of active mini-columns. This simplified 

example encodes the element with a single active mini-column. Element ‘A’ is encoded 

by activating the mini-column A, element ‘B’ by activating the mini-column B etc. For 

example, in cycle t1, element B of the first sequence (green) is spatially encoded by the 

second mini-column B. In the same cycle, element D from the second sequence (blue) 

is encoded by the fourth active mini-column D. 

 

 

 

Figure 33  

Temporal Learning in simplified form. An active cell represents the set of active cells. Active mini-column  

represents a set of active mini-columns. 

 

At the beginning of learning in cycle t0, the algorithm chooses the set of active cells by 

Algorithm 11 (Lines 19-27). When learning the first sequence, this set is represented as 

a green cell in the active mini-column A. Analog, in the case of the second sequence, 

this set is represented as a blue cell in the active mini-column B. In the real, non-

simplified model, every active cell in Figure 33 would represent a set of active cells, and 

every active mini-column would represent a set of active mini-columns.  
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Further activation of cells in the learning process is driven by Algorithm 12. After a few 

iterations associating synapses are created between cell populations that define a set 

of active cells for states in t0, t1, t2 and t3. The temporal synaptic path is established 

after the learning process is completed, as shown in Figure 33. The synaptic 

associations depolarize associated cells as predictive cells. Predictive cells are cells that 

are supposed to be active in the next iteration. Having the population of predictive 

(depolarized) cells, it is also possible to look up the set of predictive cells in any other 

upcoming iteration. With this mechanism, the TM can predict the population of active 

cells in any iteration in the future.  
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 The concept of Distributed Compute 
of mini-columns 

As described in Chapter 3.1, both NAA and HTM CLA are dedicated to reverse 

engineering and replicating the neocortex's functioning. One of the trending issues in 

this research was, from the beginning, the support for the large-scale model with a 

large number of cells and synapses. If the cortical algorithm requires many cortical 

areas to execute a needed calculus and increase cognitive capabilities, the problem of 

distributed computation must be solved. This chapter describes the distributed model 

of the NAA algorithm with a single area corresponding to the HTM CLA. 

6.1 Introduction 

The primary implementation of HTM CLA was initially implemented in Python as a part 

of the NUPIC framework developed by Numenta. (Numenta, 2008). Also, C++ and JAVA 

implementations of HTM CLA are available (open-source, htm-java, 2013). Because 

many modern enterprise applications use .NET with increasing demand for cross-

platform support (Linux, Windows and macOS) for professional enterprise developers 

(Anon., 2019), the NAA and an extended version of HTM CLA (Dobric, 2019) were 

implemented to support this research. By design, the .NET version of HTM CLA mainly 

aligns with JAVA implementation, initially motivated by the Python version. This design 

decision makes it possible to compare experimental results across different 

implementations. All algorithm changes, and additional features in the new framework 

are implemented as an extension.  

 

The new framework initially supported only a single-core computation for Spatial 

Pooler and Temporal Memory algorithms (see Chapter 5). It didn’t support multiple 

CPUs and computation at multiple nodes. This chapter describes how the Spatial Pooler 

was successfully redesigned for scale by supporting multiple processors at a single 

machine and the parallel execution in a distributed environment. 

 

This work started with the realistic assumption that the algorithm described in this work 

configured with a high number of neurons is CPU and RAM-intensive. As a result, all 

algorithms described in Chapter 5 are relatively to standard algorithms (i.e., back-

propagation) straightforward and efficient. However, the complex topology of areas in 
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HTM requires more computing power and memory in some scenarios than on a single 

“commodity” machine.    

 

To support the required scale, the original version of the algorithm had to be 

redesigned. The investigation has shown that the original design has, in this context, 

two limitations of interest: The memory limit of the synaptic matrix and the long 

calculation time required due to a large number of synapses.  

 

For example, in the case of 4096 mini-columns connected to 1024 input neurons, which 

corresponds to an input image of 32x32 pixels, the SP algorithm will create 4.194.304 

synapses using the global inhibition described in 5.7.3.1. The challenge of this task was 

not only to redesign the existing algorithm for distributed calculation. The goal was to 

maintain the existing concept and ensure alignment with corresponding 

implementations in other frameworks. 

 

The following sections describe how the cortical algorithm on the example of the 

Spatial Pooler (5.7) was redesigned to run on multiple CPU cores and nodes and run 

on a theoretically unlimited number of mini-columns and areas. The redesign's 

emphasis was on using the Actor Programming Model described in section 4.2. After 

investigating several parallel techniques described in Chapter 4, the Actor 

Programming Model (4.2) was chosen as the best approach. The new, redesigned 

Spatial Pooler supports the elastic distribution of computation inside a single area and 

connects multiple regions distributed in a collective cognitive network.  

6.2 Making the proper Actor Model Framework 

Both approaches, HTM CLA and the Actor Programming Model (APM), are biologically 

inspired models. This abstraction naturally integrates both models. The promise of a 

new design on top of the APM reasoning is the simplification of the distribution of 

computations across different cores, especially across different machines. The HTM CLA 

is a complex algorithm with many interconnected synapses, dendrites and cells. This 

work aims to simplify the design of distributed cortical algorithms by using the Actor 

Programming Model (APM). Because the existing framework neocortexapi needs to be 

extended, an Actor Model implementation is required, which shares the same 

underlying platform .NET.  
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All frameworks described in section 4.2 are well-designed and successfully applied in 

the industry. Still, they mostly do not offer custom partitioning functionality or rely on 

some corporate-specific product (i.e., Microsoft Service Fabric). For example, the 

Orleans framework was the original Microsoft Actor Programming Model framework. 

After a while, the company decided to implement the new one called the Service Fabric. 

Both frameworks simplify the implementation of distributed systems and make all 

intricate details transparent to developers. However, needed changes in the underlying 

algorithm are difficult or not possible. 

Moreover, due to frequent changes in the strategy of approaching the best solution, 

the most promising framework appeared Akka.NET. As described in 4.2, all the listed 

frameworks have shown unsatisfactory results, such as high CPU usage, a lack of control 

over state persistence and craching due to high memory consumtion. 

 

Unfortunately, after performing the first experiments, it has also manifested 

unsatisfactory performance results regarding networking under a high CPU load and 

custom persistence of the state. Also, using the Serverless Actor Model inside Durable 

Entities technology was not a good option for scientific work. The approach, simplicity 

over flexible extensibility, does not allow required changes or controlled clustering in 

the framework. Therefore, the dependency on the serverless model, in general, is 

insufficient for this task. 

 

Finally, all listed frameworks are designed to build enterprise state-full services 

efficiently. They are designed to be simple and efficient for widely used enterprise 

scenarios. However, one of the critical requirements of this task was to move a part of 

the routing and partitioning functionalities (see 4.2) to the code that sends messages 

to the actor. To share the load efficiently across all nodes in the cluster, the Actor Model 

needs to know about the topology of the cortical algorithm. This detail is only known 

to the algorithm. This requires an Actor Model framework with the ability to make 

routing decisions outside of the actor server, violating the Actor Model reasoning 

principles. With the ability to place the computation logic on the right node within the 

algorithm, higher efficiency of overall CPU power across multiple nodes can be 

achieved. For this reason, a lightweight dedicated Actor Model Framework was 

designed and implemented in C# .NET Core (Chadha, Dobric, 2020).  

Actor Model Frameworks commonly use location transparency (see 4.2) when 

executing code on remote nodes. This is a valuable principle because it simplifies 
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implementing the APM code. Unfortunately, complex algorithms like cortical 

algorithms cannot rely on this concept for efficiency reasons. The locally executed part 

of the algorithm has the best knowledge of the current execution state. Therefore, it 

can make the best decision on where to execute which part of the algorithm. This 

concept enables the local part of the algorithm to place the execution of the code 

anywhere in the cluster. It introduces a dedicated partitioning concept that extends the 

classical Actor Programming Model. It uses a logical partition, which defines an isolated 

unit for executing complementary computational steps. With this, the algorithm does 

not decide about a thread or physical node, which would require more complex code. 

Instead, it uses a logical concept of partitions organized as virtual containers inside the 

host process. It can choose a partition as a logical artefact but remains location 

transparent. Before the algorithm runs, the initialization process creates a logical 

representation of partitions and associates them with the physical node. 

 

The framework developed to support this research (Chadha, Dobric, 2020) is based on 

the existing messaging platform provided by Microsoft Azure Service Bus (Anon., 2009). 

Please note that the messaging framework can be replaced by any other one that 

supports the client message session concept (Pelluru, Schneider, Wolf, 2021). The 

session concept ensures that a single message receiver will receive messages with the 

same session identifier at a single place in a cluster. This means that it is guaranteed 

that messages with the same identifier will not be received by more than one receiver 

anywhere in the cluster. This lightweight framework combines the Remote Procedure 

Calls (RPC) and the Message API styles into a single framework. It uses the RPC API 

style to enable easy and intuitive procedural implementation. At the same time, it keeps 

the internal messaging transparent to the developer to simplify the usage of the 

framework. The Message APIs style uses a broker to distribute messages to nodes in 

the cluster and enable more effortless adding of new nodes while the system runs. The 

following pseudo-code shows how to start the execution of the calculation of the 

overlap of a column within the algorithm. 

 

First, the actor’s local system is instantiated (Line 03), which drives the calculation and 

will play the role of scatter described in section 4.2. Next, multiple system instances can 

be instantiated, which acts independently. Then the proxy to an actor is created (Line 

05). Finally, the Actor itself is executed remotely on some of the nodes. 
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The executing code in this context implements some calculus of the Cortical Algorithm. 

Finally, the calculus is started using a generalized method Ask (Line 07). This method 

routes the message request to an actor on its node in the cluster, starts the calculation 

and awaits the result. Combining the actor type name and the actor identifier is used 

to create the unique message session identifier. With this rule, every actor receives 

messages in a dedicated message session, ensuring that the actor code runs at a single 

node. The class HtmActor implements many different calculations as remote operations 

(Overlap, AdaptSynapses, BoostColumns, etc.), which are looked up by messages named 

Overlap, AdaptSynapses, etc., respectively.  

 

 

Listing 1  Example of pseudocode that invokes an actor compute  

01| function runactor_sample (name, config) 

02|     // create the proxy to the actor system 

03|    𝑠 ← ActorSystem(name,config) 

04|     // create the proxy to the actory system  

05|    𝑎 ← 𝑠. 𝐶𝑟𝑒𝑎𝑡𝑒𝐴𝑐𝑡𝑜𝑟(HtmActor, colIndex) 
06|    // Invokes the actor remotely with argument “overlap” 

07|     𝑟𝑒𝑠 ←a.Ask(“Overlap”) 

08| end 

 

 

However, before an operation in the actor can be invoked, the Actor Model Cluster 

needs to be initialized. To create the cluster (host) running theoretically any number of 

actors, the pseudo-code in Listing 2 is used. The function runNodeInCluster is supposed 

to be started inside of a process. It implements the Actor Host algorithm that 

theoretically runs on any number of nodes. The system scales by increasing the number 

of hosting processes that form the cluster of actors. Every Actor Host automatically 

loads and maintains requests dedicated to the actors. The proposed model builds an 

infrastructure that can run in any container, making it suitable for execution in modern 

cloud environments. The cluster node starts at line 3 simultaneously at multiple physical 

machines. Nodes in the cluster do not have any knowledge about each other. Every 

node is connected to a dedicated subscription defined by its name subscriptionName 

under the given topic. 

 

The topic in this context corresponds to the standard queue listener implemented by 

the broker. Hence, a topic implements a message subscription pattern. It is an extended 
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implementation of the Queue – Point to Point pattern (Sachs Kai and Appel, Stefan and 

Kounev, Samuel and Buchmann, Alejandro, 2010) called Publish-Subscribe (Pub/Sub) 

(Mishra Tania Banerjee, Sahni Sarta, 2013). 
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Listing 2 Pseudo-code executed at all hosts.  

01| function runNodeInCluster 

02|    𝑠 ← ActorSystem(name,config) 

03|    𝑠. 𝑆𝑡𝑎𝑟𝑡(config.SubScriptionName) 
04| end function 

05| 

06| function Start(subscriptionName) 

07|   DO    

08|         s ←AcceptMessageSession(subscriptionName)  

09|         runMessageReceiverAsync(s, isStopRequested)                 

10|   WHILE isStopRequested = FALSE 

11| end function 

12| 

13| function runMessageReceiverAsync(session, isStopRequested) 

14|    DO                  

15|       m← session.ReceiveMessage() 

16|       𝑟𝑒𝑠𝑢𝑙𝑡 ← invokeActor(m) 

17|       𝑠𝑒𝑛𝑑𝑅𝑒𝑠𝑢𝑙𝑡(𝑟𝑒𝑠𝑢𝑙𝑡) 

18|    WHILE (isStopRequested) 

19| end function 

 

Every Topic hosts physically multiple receiving subscription queues called Subscriptions. 

That means that every message sent to a Topic is copied to the subscription queue 

defined under the topic as long the subscription filter matches. Each subscription in this 

framework defines a filter expression corresponding to the node's name, which hosts 

the Actor System at the node. When the actor proxy (Listing 1, Line 07) converts the 

procedure call to the message, it attaches the name of the destination node to the 

message, so the filter at the appropriate node can peek at the message. For example, 

the code shown in Listing 1 knows about nodes running in the cluster. This 

implementation enables the code on the client side to selectively choose the message's 

route and implicitly place the computation on the remote node inside the selected 

actor. The algorithm in the scatter can decide at which node the code will be executed 

by setting the subscription name. Selecting the dedicated subscription violates the 

location transparency principle (see 4.2) of the Actor Model, but it helps to increase the 

performance of the cortical algorithm. 

 

Accepting a massage session in line 8 is coordinated by the underlying messaging 

system of the Service Bus broker. It automatically accepts a set of messages from the 
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same session. Once the message session is accepted, it remains in the same process 

during the entire calculation time of the actor. For example, if some calculation is driven 

by N messages (several steps), all calculation parts triggered by N messages remain in 

the same process. With this in mind, the Actor Model will ensure that all messages 

inside the same session S1 will execute sequentially on the same node and in the same 

process. In contrast, for all messages which belong to another session, S2 will execute 

parallel to S1. 

 

This concept provides flexibility to run any code remotely and can easily decide which 

code (actor) can execute sequentially or in parallel. Independent of this research, the 

introduced Actor Programming Model framework can be used for the implementation 

of any parallel algorithm.  

 

The following section describes how this framework helps to model the distributed CLA 

inspired by HTM and NAA. 

6.3 Distributing a Partial Computation 

 

An Actor Programming Model framework described in the previous section enables the 

straightforward distribution of the computation by taking complete control of the 

computation that will be executed in a sequence or parallel. 

Assume some complex computation can formally be generalized as a set of sequential 

partial computations expressed by the following equation, 

 

= {𝑐1 , 𝑐2, . . , 𝑐𝑄}         
(41) 

where Q defines the number of partial computations. The computation set  is 

implemented inside the actor code, let’s say actor A, as a set of operations that will be 

executed remotely. Algorithm 15 starts at Line 05, using the actor local system defined 

in Listing 1 to initiate the orchestration function φ. During the initialization process, the 

local system will connect to the cluster of N nodes and associate every actor instance 

to a dedicated message session P running each at the dedicated node. Every partial 

computation in the set  is typically executed sequentially using the orchestration 

function φ . The function φ spans a distributed computation 𝑐𝑖  that is executed in 

multiple instances of the actor A in the cluster (Lines 06-09). The parallel execution is 
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started by function φ (Line 07)  using a partitioning algorithm described in the next 

section. The function φ will invoke the remote parallel computation 𝑐𝑖  on multiple 

instances of actor A each at a dedicated physical node. Every actor instance is 

associated with the dedicated message session. This approach guarantees that every 

instance of the actor runs only once in the cluster, as described in a previous section. 

Note that the function φ does not implement the computation logic. It acts as a proxy 

and routes the computation request to the concrete implementation φ′, which runs 

remotely. 

 

Algorithm 15 Partial Computation 

01| input: I // Set of neural cells. I.e. sensory input. 

02| output: o // Set of neural cells. I.e. active cells of a mini-column.  

03| configuration: N //Nodes, P // Sessions                       

04| begin  

05|   φ ← actorSystem( , 𝑁, 𝑃) // Creates an orchestration function  

06|  FOREACH 𝒄𝒊∈  

07|         𝑟 ← φ(𝑐𝑖 , 𝐼)                 // Runs in parallel for each p∈P 

08|        𝑜𝑖  ← S(𝑜𝑖−1, 𝑟)             // Recalculate internal column state 

09|  ENDFOR 

10|  return o 

11| end 

 

Finally, the function S in line 8, which is usually not CPU intensive, recalculates the 

internal state depending on the results of partial calculations in Line 07.   

 

The cluster of nodes that run the Actor Model is created by running a wanted number 

of identical processes, which executes the code shown in Algorithm 16. Nodes in the 

cluster are not interconnected and run independently of each other. This is not required 

because the execution logic is controlled at the node that initiates the distributed 

execution. The actor systems start at every node with the initialization of message 

receivers for the limited number T of concurrent sessions P (Lines 01 and 02). Line 04 

initiates the listening for incoming computation requests. Messages received by the 

listener contain the requested computation 𝑐𝑖 , the partial computation identifier i  and 

the actor identifier 𝑖𝑑 including the set of arguments 𝑎𝑟𝑔𝑠[] dedicated for the 𝑐𝑖 .  

 

The identifier id in Algorithm 15 is the index of the mini-column, which suggests the partial 

implementations of a mini-column as an actor. Because the function φ (Line 5, in Algorithm 15) 
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holds the session P, all messages sent to the actor 𝑎  with the same identifier id will be 

processed by φ′  in order. A next (line 6) the 𝑡ℎ𝑟𝑒𝑎𝑑𝑡 is created. 

 

Algorithm 16 Remote Execution of the partial computation in the cluster 

01| input: actorSystem       // Actor system initialization.     

02| configuration: P, Ç, T  // P:sessions,  Ç: Cache, T: max concurrent actors                        

03| begin  

04|     (𝑡ℎ𝑟𝑒𝑎𝑑𝑡, 𝑐𝑖 , 𝑖𝑑, φ′, 𝑎𝑟𝑔𝑠[]) ← 𝑎𝑐𝑡𝑜𝑟𝑆𝑦𝑠𝑡𝑒𝑚(𝑚𝑠𝑔) | 𝑐𝑖 ∈ , 0 < t < T 

05|           begin thread 

06|              𝑡ℎ𝑟𝑒𝑎𝑑𝑡(𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒, 𝑐𝑖, 𝑖𝑑, 𝑎𝑟𝑔𝑠[]) 

07|                IF 𝑐𝑖 ∉ Ç  // If computing logic is not in the cache 

08|                    Ç ← Ç ∪ (𝑎 ← [φ′(𝑐𝑖 , 𝑖𝑑)])   // Create the actor and add it to the cache 

09|                𝑎 ← Ç(id) // Get the actor with id from the cache  

10|               𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 ← 𝑎(𝑎𝑟𝑔𝑠[])     // Execute the compute logic  

11|           end thread 

12| end 

 

According to Actor Programming Model rules, there is a single execution of the partial 

calculation of 𝑐𝑖  running in a unique thread for every actor instance in the entire cluster. The 

mini-column actor with the partial computation 𝑐𝑖   is created by the function φ′(𝑐𝑖 ) (line 08) 

or retrieved from the cache (line 09), if previously already created. The same orchestration 

function φ′(𝑐𝑖 ) prepares the computation result in Algorithm 15 - Line 07, which has requested 

the partial computation. 

 

This approach makes it easy to distribute any computation logic that can be partitioned. 

6.4 Redesign of the Spatial Pooler 

 

The SP and TP default design was initially migrated from JAVA to NET Core, supporting 

single-threaded execution of both algorithms. This alignment enables easy debugging 

and investigations of the cortical algorithm under various conditions. However, due to 

single-core limitation, it is constrained when applying the algorithm in real-world 

applications. Therefore, the SP algorithm was redesigned in this work to support 

parallel execution.  

 

In the first step, it was investigated how the SP can support multiple CPU cores when 

running inside a single process on a single machine. It was clear that running parts of 
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an algorithm on multiple cores on a single machine is still a different and more 

challenging approach than running the same on multiple physical machines. However, 

the first step in both approaches was the same. The task was to identify possible partial 

calculations of the algorithm, which can be contextually split from each other. This 

section describes identified structures of the original design of HTM and SP, intending 

to redesign them and enable them for parallel execution. 

 

The matrix 𝜆 defined by equation (24) enforces the design of the SP to be tightly 

coupled to a single thread and a single process. This matrix represents a shared resource 

that requires controlled concurrent access (4.1). Threads are necessary to speed up the 

execution, but they require concurrent access to the shared matrix, which is a singleton 

instance in this algorithm. That means that even if some thread does not need to access 

all matrix elements, the whole matrix must be locked by a single thread for a short CPU  

time, usually called quantum time. For example, if all mini-columns are executed in 

parallel, every mini-column will need to access only a single row of the matrix (see 5.7). 

Every computation 𝑐𝑖  inside a mini-column is a part of the SP algorithm that can be 

executed independently in the context of the mini-column. In other words, the idea is 

to refactor the code into blocks that can run independently. The calculus inside of the 

mini-column  𝐶1 can be executed independently on the calculus of the mini-column  𝐶2 

(see Algorithm 2 and Figure 24). In that case, mini-column computation can run 

independently.  

This matrix was removed from the original version of the SP and semantically 

restructured into the graph inside mini-columns to better share the memory and enable 

partitioned calculus of the entire cortical space. Figure 34 shows a mini-column that 

integrates the part of the model in Figure 23 related to the SP. 

 

Removal of this matrix enabled more straightforward reasoning about a single mini-

column calculus, which fits better with the proposed Actor model and biology of the 

mini-column. With this redesign, it is possible to separate the SP algorithm into 

independent mini-columns and distribute them across multiple nodes. Furthermore, if 

the algorithm that runs inside mini-columns is implemented as an Actor, then using 

distributed locks can be omitted. After the suggested redesign, three implementations 

of SP are implemented and considered: 
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Figure 34 

Simplified representation of a single mini-column in the NAA and HTM  model related to the Spatial 

Pooler. 

 

 

 Single-Threaded Spatial Pooler  

 

The single-threaded SP is the original version of the SP without algorithm-

specific changes. This version aligns with the initial referenced implementation 

of HTM CLA as described in 3.1. This version of the SP is suitable for research 

and debugging. However, it is limited to execution at the single CPU core only. 

Because of this, it shows a lack of performance and is incapable of parallel 

execution. 

 

 Spatial Pooler Multithreaded  

 

This version of SP was designed and implemented as a first redesigning step of 

a referenced single-threaded version. It supports multiple CPU cores on a 

single machine. This version does not use the Actor Programming model and 

cannot be used to run in parallel at various nodes in the cluster. However, the 

redesigned HTM model and the Spatial Pooler in this version are conceptual 

models for the parallel version SP-Parallel.  
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 Spatial Pooler-Parallel 

 

SP-Parallel is the parallel version of SP designed and implemented in this work. 

It uses the SP-MT version's conceptual model and supports multiple cores and 

nodes on top of the Actor Programming Model (4.2). The rest of this chapter 

describes the core concept of this version. 

 

In the context of parallel implementation, the Spatial Pooler algorithm consists in 

general of two critical stages that must be considered separately. Initialization and 

Learning stages are grouped in partial computations (partial algorithms) shown in 

Figure 35. For example, the Initialization stage prepares the parallel computation. Mini-

Columns and synapses in the initialization stage create mini-columns cells, proximal 

dendrite segments and synapses between segments and input cells. The initialization 

stage runs once, and the Learning stage runs for every spatial input.  

 

 

Figure 35  

Spatial Pooler logic is grouped into Initialization and Learning stage (on the left). Every stage has 

corresponding partial calculations (on the right). 

 

Except for Column Inhibition (Figure 35 right) introduced in 5.7.3, which is currently 

shared across all three versions of the SP, all other computations are SP-version specific. 

In future versions of the Spatial Pooler, the inhibition of mini-column and possibly other 

parts of the algorithm (not listed in Figure 35) might also be redesigned for parallel 

execution.  

They have importance from the engineering point of view, but their redesign would not 

scientifically contribute to this work.  
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The Spatial Pooler Parallel focuses on partitioning memory and CPU usage. The 

memory consumption inside SP can be expressed as follows: 

 

𝑚 = 𝑚(𝑖𝑘) + ∑ 𝑚𝑐 (𝑢)

𝑀

𝑢=1

 

      
(42) 

 

𝑚𝑐 (𝑢) = 𝑚0𝑐 + ∑ 𝑚𝑠(𝑤)

𝑄

𝑤=1

 

(43)

Where: 

 

M       – Number of mini-columns. 

𝑚       – Memory consumption of a single SP instance during learning. 

𝑖𝑘       – The spatial input as produced by encoder:  k𝜖{1, 𝑁} 

𝑚(𝑖𝑘)  – Memory consumption of an input vector. 

𝑚𝑐 (𝑢) – Memory consumption of a mini-column. 

𝑚0𝑐      – Memory of a mini-column without synapses. Nearly the same for all mini-

columns. It depends on references to a different count of synapses. 

𝑚𝑠(𝑤) – Memory occupied by an instance of a synapse inside a mini-column. The part 

of the equation (43) corresponds to the memory occupied by the proximal dendrite 

segment with 𝑄 synapses.  

 

The reference implementation of the SP and the Multi-Threaded version consumes the 

same overall memory m inside a single process. For this reason, they are limited by the 

physical memory of the hosting machine. Mini-column instances and their synapses 

occupy a majority of the memory. Every row of the matrix 𝝀 is by new design associated 

with the mini-column (see Figure 23). By sharing mini-columns and associated 

computations across multiple physical nodes, the overall occupied memory at the 

single node will be reduced according to equations (42) and (43). The challenge here is 

to find the right way to group mini-columns and place them on physical nodes, 

including the code required to operate on columns.  

 

The SP-Parallel version solves this problem using a dedicated partitioning technique to 

allocate the required space and execute code remotely. 
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6.5 The Concept of Partitions 

 

As mentioned in the previous section, the execution can be processed in parallel on 

multiple CPU cores (SP-MT) and parallel on multiple nodes (SP-Parallel). To ensure 

efficient parallel execution, mini-columns must be shared between nodes in the cluster 

where the algorithm will be executed. Because the number of mini-columns is typically 

much higher than the number of physical nodes, an algorithm must be created which 

calculates the proper distribution of mini-columns across nodes. The process of 

distributing mini-columns is called partitioning, and the algorithm that performs this 

task is called the partitioning algorithm in this work. All mini-columns that belong to 

different partitions will be processed in parallel across multiple nodes. For example, ten 

mini-columns will run in parallel on multiple nodes if associated with a different 

partition. 

In contrast, mini-columns within the same partition will be processed sequentially. 

Theoretically, the maximal performance can be achieved if all mini-columns run parallel. 

Running all mini-columns in parallel is possible if the total number of CPU cores across 

all nodes in the cluster equals the number of mini-columns M and if every single mini-

column is associated with a single partition. 

 

The SP-Parallel creates partitions only in the initialization phase. The partitioning 

algorithm runs on the chosen scatter node (see 6.26.2) that controls partitioning, 

invokes remote partial calculations and collects results. The partition is defined as a set 

of tuples which describe how to execute remote code. A partition tuple holds the 

following elements: the Partition Identifier, a set of indexes of mini-columns assigned 

to the partition, and the actor's descriptor, which will host mini-columns. 

 

The initialization stage of the SP calculates and creates partitions and then starts 

placing partitions on physical nodes. The current implementation of SP-Parallel uses 

the uniform partitioning algorithm shown in Listing 3. The purpose of the function 

createPartitions is to distribute mini-columns across available physical nodes in the 

cluster uniformly. Assuming that numElements is the total number of available mini-

columns in the area, the algorithm first calculates how many columns can be placed in 

the single partition (Line 04). The algorithm ensures that all partitions are uniformly 

distributed across all nodes in the cluster.  
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For example, given the total count of mini-columns numElements = 90000, the number 

of nodes = 3, and the number of partitions numOfPartitions = 35, 34 partitions will 

be filled with 2572 elements. The last partition will be filled up with the remaining 2552 

elements. This algorithm assumes that all mini-columns associated with partitions will 

have similar execution times. This holds because the mini-column boosting algorithm 

section 5.7.4 inside   SP ensures that all columns are uniformly engaged in the learning 

process. The slight difference in the mini-column calculation time depends on 

implementing homeostatic plasticity, as discussed in section 5.7.4. 

 

 

    

Listing 3 Pseudo code that demonstrates uniform creation of partitions 

01| createPartitions(numElements, numOfPartitions, nodes[]) 

02|       

03|    𝑑𝑒𝑠𝑡𝑁𝑜𝑑𝑒𝐼𝑛𝑑𝑒𝑥 ← 0, 𝑚𝑖𝑛 ← 0,  𝑚𝑎𝑥 ← 0 

04|    𝑛𝑢𝑚𝑃𝑒𝑟𝑃𝑎𝑟𝑡 ← |
1+𝑛𝑢𝑚𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠

𝑛𝑢𝑚𝑂𝑓𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠
|  ;  𝑛𝑢𝑚𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠 > 𝑛𝑢𝑚𝑂𝑓𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 > 0 

05| 

06|   𝐅𝐎𝐑 𝑝𝑎𝑟𝑡𝐼𝑛𝑑𝑥 = 0 TO (numOfPartitions OR min >= numElements) 

07|     𝑚𝑖𝑛 ← 𝑛𝑢𝑚𝑃𝑒𝑟𝑃𝑎𝑟𝑡 ∗ 𝑝𝑎𝑟𝑡𝐼𝑛𝑑𝑥; 

08|         𝑚𝑎𝑥𝑃𝑎𝑟𝑡𝐸𝑙 ← 𝑛𝑢𝑚𝑃𝑒𝑟𝑃𝑎𝑟𝑡 ∗ (𝑝𝑎𝑟𝑡𝐼𝑛𝑑𝑥 + 1) − 1 

09|    IF 𝑚𝑎𝑥𝑃𝑎𝑟𝑡𝐸𝑙 < 𝑛𝑢𝑚𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠 

10|       𝑚𝑎𝑥 ← 𝑚𝑎𝑥𝑃𝑎𝑟𝑡𝐸𝑙  

11|    ELSE 

12|      𝑚𝑎𝑥 ← 𝑛𝑢𝑚𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠 − 1 // filling the last partition 

13|    ENDIF       

14|      𝑑𝑒𝑠𝑡𝑁𝑜𝑑𝑒𝐼𝑛𝑑𝑥 ←  𝑑𝑒𝑠𝑡𝑁𝑜𝑑𝑒𝐼𝑛𝑑𝑥 % |nodes| 
15|    𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 ← (𝑑𝑒𝑠𝑡𝑁𝑜𝑑𝑒𝐼𝑛𝑑𝑥, 𝑝𝑎𝑟𝑡𝐼𝑛𝑑𝑥, 𝑚𝑖𝑛, 𝑚𝑎𝑥)   
16|    𝑚𝑎𝑝. 𝑎𝑑𝑑(𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡) 
17|      𝑑𝑒𝑠𝑡𝑁𝑜𝑑𝑒𝐼𝑛𝑑𝑥 ←  𝑑𝑒𝑠𝑡𝑁𝑜𝑑𝑒𝐼𝑛𝑑𝑥 + 1 
18|  ENDFOR 

19|  return map; 

20|end 

 

Next, the algorithm traverses all mini-columns (Line 06) sequentially. It uses the 

flattened index of the mini-column according to equation (22). Then, it looks up the 

mini-column range flatten index (min-max index Lines 07-12) and associates it with the 

partition and the node (Lines 14-16). The result (Line 19) is a so-called placement set 
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that maps mini-columns to partitions associated with nodes. The algorithm in Listing 3 

is not HTM-dependent. It can be used for any other kind of distributed calculation. 

 

Another important task was investigating how the calculation described in Chapter 7 

can be remotely executed in the context of a cortical algorithm. This work focused on 

the SP algorithm described in section 5.7. Using the same approach, the Neural 

Association Algorithm (see 5.8) can also be adapted for parallel execution. The adoption 

of the SP corresponds to the parallel implementation of Algorithm 5. Every partial 

calculation in Figure 35 performs calculations over columns and synapses. They all were 

redesigned to operate on a single mini-column instead operating over the entire matrix 

𝝀. 

 

A partition placement algorithm is created according to the described partitioning 

mechanism in Listing 3. In the case of node parallelization, the computation of every 

mini-column can theoretically be executed on any core. However, the partitioning 

algorithm places a set of mini-columns in a single partition. In simplified form, the 

overall calculation time can be defined as follows: 

 

𝑡 = 𝑀 ∗ 𝑡𝑠 +
1

𝑁𝑐
∑ 𝑡𝑢

𝑀
𝑢  + 𝑀 𝑡𝑔  | 𝑚 < 𝑚θ

 (44)

 

Theoretically, the total time for any step (see Figure 35) is defined as the sum of scatter 

time 𝑡𝑠  needed to dispatch the computation remotely, the sum of all mini-column 

computations 𝑡𝑢 divided by the number of cores 𝑁𝑐  and gather time 𝑡𝑔 for collecting 

results. Note that the mini-column time 𝑡𝑢  depends on the number of connected 

synapses on a proximal segment. This equation assumes that the total working memory 

of the node is below the threshold 𝑚θ . If this threshold is exceeded, the operative 

system will reallocate memory fragments to the disk. This effect is called hard-page 

fault and typically leads dramatically drop in performance. Developers should take care 

of proper configuration to avoid this effect. Computation time in such a distributed 

system is more complex than shown in the previous equation: 

 

𝑡 = 𝑡𝑟𝑐𝑣 + 𝑡𝑠𝑐ℎ𝑒𝑑 + 𝑡𝑠𝑡𝑎𝑟𝑡 + 𝑡𝑐𝑎𝑙𝑐 + 𝑡𝑝𝑒𝑟𝑠𝑖𝑠𝑡 + 𝑡𝑒𝑛𝑑 + 𝑡𝑠𝑒𝑛𝑑  | 𝑚 < 𝑚θ  (45)

 

rcv: Time for receiving the message, which triggers the calculation 
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tsched: Time required by the system to schedule calculation.  

tstart, tend: Time overhead to start and end the computation inside the framework. 

tpersist: Time to save the current state of calculation. 

tsched: Time to send the result. 

 

Coordinating the lifecycle of partitioned calculations is not a trivial task. Messages must 

be ordered, and distributed locks avoided whenever possible. To solve this problem, 

the discussed Actor Programming Framework was used (Chadha, Dobric, 2020). The 

framework extensively uses the so-called message session concept. The message 

session concept ensures that all messages inside the same session are executed in the 

order they arrive. The named framework associates the partition with the session. In 

that case, every message sent inside the same session is processed inside the same 

partition. With this design decision, partial computations defined by (41) are 

guaranteed to be executed in order without overlap within the same node. 

Computations are orchestrated by Algorithm 15 and performed by Algorithm 16. This 

design ensures that every single computation runs in a single thread in the entire 

cluster. Because of this, no distributed lock is required. The time tsched is, in this case, 

minimal. Therefore, it is removed from the algorithm and remains part of the messaging 

system. 

In this concept, one partition is implemented in the Actor. The Actor defined by the 

partition is responsible for executing the computation over multiple mini-columns in 

the sequence. The mini-column computations that belong to other partitions (actors) 

will run in parallel. Every mini-column performs computation over RF space 𝑋𝑘  as 

defined by equation (23). This space is much smaller than the entire space 𝝀  and 

enables the faster execution of the algorithm. 

  

𝑋𝑘 = {𝑥𝑘1, 𝑥𝑘2, . . , 𝑥𝑘𝑈} | 𝑈 < 𝑁 ∗ 𝑀 (46)

 

The partition Actor operates on a set of 𝑋𝑘  elements defined by placements calculated 

in Listing 3, and it runs every partial computation listed in Figure 35. The distributed 

algorithm of SP-Parallel performs partitioning inside the orchestrator node (see Figure 

36 left), which plays the role of the scatter where the partitioning algorithm (Listing 3) 

is executed. Actors on remote nodes are started (orchestrated) by routing messages to 
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the messaging broker (see Listing 1) initiated by the Ask function (Line 07) and awaited 

on multiple threads inside of the orchestrator. 

 

The Actor model system runs session listeners (see 6.2) that receive messages (Listing 

2, Line 08) from the dedicated topic subscription associated with the physical node. 

Every accepted session executes actors, and results are sent back to the orchestrator 

node. 

 

 

Figure 36 

Partitioned column space. Every partition is implemented as an Actor, which owns a mini-column subset. 

Given the number of mini-columns and nodes, the number of partitions can be chosen.  

 

To recap, the orchestrator knows the number of partitions and nodes in this partitioning 

concept. As discussed, this is the needed change in the location transparency definition 

of the Actor Programming Model. The SP-Parallel orchestrator code places a partition 

to the required node. With this concept, the Actor Model framework ensures that the 

computation is executed in a sticky session on the node. A sticky session improves 

performance and does not require a durable persistence of the calculation state 

because the state is kept in the cache. 
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Another approach was also tested but excluded from this work, where the orchestrator 

node operates without any knowledge of the cluster.  

Such design enables a simpler system architecture but requires a durable state. This 

means that nodes must be able to durably load and save their state, which adds 

significant performance costs defined by 𝑡𝑝𝑒𝑟𝑠𝑖𝑠𝑡. The second approach performs better 

in typical enterprise applications with shorter computation time and smaller states. In 

contrast to typical enterprise applications, HTM CLA requires longer computation and 

large memory consumption for state persistence due to a large number of cortical 

columns and synapses. 

6.6 Results 

In this work, various experiments have been conducted to compare the performance 

of redesigned Spatial Pooler algorithms, namely SP-Parallel, SP-MT, and the reference 

implementation. MNIST (Yann LeCun, n.d.) images of 28x28 pixels have been used for 

all tests. Initially, the performance of the single-threaded algorithm was compared to 

the SP-MT  using various topologies (results presented for 32x32 columns). 

Subsequently, the computation time of SP-Parallel was evaluated for a column 

topology of 200x200 on one, two, and three physical nodes. 

Most experiments today use HTM column topologies with 2048 or 4096 mini-columns, 

which can be executed on a single node. Finally, the performance of several topologies 

has been tested in a cluster of the three physical nodes. 

 

All tests have been executed on nodes with the following “commodity” configuration 

on virtual machines in the Microsoft Azure cloud: 

 

Used OS               Windows Server 2016  

CPU                             Intel Xeon E5-2673 v4, 2.30GHz, 2295 MHz,  

                                         2 Cores, 4 Logical Processors 

RAM                   16.0 GB 

 

The initial experiment aimed to demonstrate the performance enhancements of SP-MT 

compared to the single-threaded SP algorithm, both operating on a single node. The 

experiment utilized the MNIST test image of 28x28 pixels and employed a cortical 

column topology of 32x32. Figure 37 shows the resulting sparse representation of the 

MNIST image. 
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Figure 37.  

 NIST digit in sparse representation. Column topologies are 32x32 (top-left), 64x64 (top-right) and 

128x128 (bottom). Every topology can result in different sparsity. For example, the image with a topology 

of 64x64 has a sparsity of 2%, which corresponds to  (81) mini-columns. 

 

Based on Figure 38, it can be observed that SP-MT achieves a speed approximately two 

times faster than the single-threaded SP on the specified configuration. 

 

Figure 38.  

Performance results, SpatialPooler single-core (SP) versus Spatial Pooler multicore (SP-MT) on a single 

machine with MNIST 28x28 test image used 32x32 columns.  

 

During the same experiment, measurements were taken to assess memory 

consumption (see Figure 39) and processing time in relation to the column topology 

(as depicted in Figure 40). 
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Figure 39  

Memory usage of the SpatialPooler-MT algorithm on a single node. 

 

 

Figure 40  

SpatialPooler-MT computes time in milliseconds dependent on column topology. 

 

In a similar experiment, the SP-Parallel approach was employed instead of SP-MT, with 

topologies consisting of a larger number of columns and multiple nodes. The 

experiment aimed to measure the learning performance of MNIST images on 1, 2, and 

3 nodes. As illustrated in Figure 41, it can be observed that SP-Parallel on a single node 

requires nearly the same amount of time as SP-MT (see Figure 40).  
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Figure 41 

Learning time in [ms] of an MNIST image 28x28 with 200x200 Columns.  

 

The obtained result indicates that the Actor model framework does not significantly 

consume time on internal messaging. By adding more nodes to the cluster, the 

performance improves as anticipated. However, the optimal number of partitions still 

requires further investigation. Currently, in order to enable parallel execution of 

calculations on multiple partitions, it is recommended to set the number of partitions 

to be 2 or 3 times higher than the number of cores across all nodes. 

 

Figure 42 illustrates the memory and CPU consumption on a gathering node during 

distributed calculations across multiple nodes, regardless of the column topology. Both 

memory and CPU usage are distributed among the nodes in the cluster. The figure 

demonstrates that memory usage increases during the initialization phase (step 1) as 

space is allocated for the columns. 

 

 

Figure 42  

Process memory on a node while computing of SP-Parallel is running. 
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Subsequently, the memory consumption stabilizes throughout the iterative learning 

process during the repeating steps 2, 3, and 4. The system was then subjected to a test 

run with a maximum of 250,000 cortical columns. In this configuration, a total of 

196,000,000 synapses were allocated to the sensory input, which consisted of 28x28 

sensory neurons connected to the proximal dendrite. The experiment employed global 

inhibition, as discussed in section 5.7.3.1. 

 

The final experiment, depicted in Figure 43, expands upon the previous experiment by 

introducing topologies that require a considerably larger number of mini-columns and 

synapses. Specifically, the experiment compares the performance of topologies with 

dimensions of 200x200, 300x300, and 500x500 (equivalent to 250,000 columns). 

Furthermore, it should be noted that the initialization time of the SP instance, as shown 

in Figure 44, should not be underestimated. The allocation of mini-columns and their 

corresponding synapses takes significantly longer than the actual computation time. 

The experiments also indicate that there is no significant difference in the compute time 

between the 200x200 topology with 20 partitions and the same topology with 15 

partitions. This is primarily because the number of partitions exceeds the number of 

available cores (3 nodes with 4 logical processors) in both cases. 

 

If the number of partitions is lower than the number of available cores, it would result 

in underutilization of the CPU power, while having an excessively high number of 

partitions would lead to frequent context switches, thereby reducing overall 

performance. 
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Figure 43  

Compute the time of SP-Parallel on three nodes depending on column topology. 

 

The presented results have been evaluated using an Actor model implementation, 

where calculations are bound to specific nodes without a persistent calculation state. 

The persistence of calculations typically has a negative impact on performance. 

Additional experiments (not included in this document) have revealed that a single 

column, when persisted as JSON, occupies approximately 700 kb of space. Persisting 

partitions, as described in this work, with thousands of columns would require 

gigabytes of storage and necessitate a sophisticated algorithm for efficient state saving 

and loading. Addressing this challenge is one of the future tasks in this research context. 

 

Figure 44  

The initialization time of SP-Parallel in milliseconds in a cluster of 3 nodes varies depending on the 

column topology. Topologies used in the experiment include 200x200 with 20 partitions, 200x200 with 15 

partitions, and so on. 
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 How mini-columns develop the spatial 
similarity and robustness to noise 

This chapter focuses on noise robustness and spatial similarity as cortical features 

found in SP. It describes how the sparsely encoded pattern develops robustness against 

noise and how the same capability detects the similarity between patterns. 

The results described in this chapter were published at Symposium on Pattern 

Recognition and Applications, 2022, in Rome (Dobric, Pech, Ghita, Wennekers, 2020). 

7.1 Introduction 

The Spatial Pooler is responsible for clustering similar spatial patterns of active neurons 

into a sparse representation of mini-columns. The resulting Sparse Distributed 

Representation (SDR) generated by the Spatial Pooler typically occupies a small 

fraction, around 2%, of the total column space as defined in section 3.1.1. One of the 

capabilities of the SP is robustness against noise. That means the SP keeps stable 

output when adding noise to the input. This was initially documented in previous works 

(see 3.1.3). According to previous research, the trained Spatial Pooler (SP) demonstrates 

greater resilience against noise when compared to its untrained counterpart. The 

objective of this work was to examine the impact of encoding on the robustness of the 

learned Sparse Distributed Representation (SDR) against noise. Understanding this 

relationship is crucial for developing practical, real-world applications based on SP that 

can reliably operate with noisy inputs. 

The hypothesis in this work is that the robustness against noise depends on the 

sparseness of the input. Based on the assumption that sparseness is defined as the 

fraction of active neurons divided by the total number of available neurons, the 

hypothesis suggests that higher sparseness leads to improved robustness. 

 

Section 7.2 describes methods applied to measure the robustness and validate the 

hypothesis. Finally, experiments in Results section 7.3 proves that the higher number 

of non-zero bits in the input leads to more robustness against noise and better 

memorizing of the pattern.  
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This finding suggests that the input pattern can easily be boosted to memorise the 

reference pattern better and produce a more stable representation of SDR with a very 

high noise level. 

The finding implies that by activating more neurons in encoding the input pattern, the 

ability to effectively memorize the reference pattern and generate a more stable Sparse 

Distributed Representation (SDR) is enhanced, even in significant noise levels. 

7.2 Methods  

 

To measure the robustness against noise, a reference input vector is created without 

and trained with ten iterations due to the fast memorizing capability of the SP. This 

number of iterations ensures a stable sparse representation achieved with a set of 

parameters shown in Table 3. Second, a portion of the noise is added to the reference 

input vector by flipping a specific percentage of bits (zeros bits to one-bits and vice 

versa). Finally, noise robustness is calculated by measuring the sensitivity of the SP to 

varying input noise.  In this work, robustness was measured by manipulating the 

sparsity of the input vector using both trained and untrained Spatial Poolers (SP). To 

illustrate this methodology, two random images of 28x28 pixels were selected from the 

MNIST database (LeCun, 2010). These images were converted into binary 0-1 vectors 

and utilized as input during the training phase. Initially, these images were employed 

to evaluate the noise robustness of the trained and untrained SP. Specifically, "Image 

8" exhibited a sparsity level of 17%, while "Image 7" had a sparsity level of 6%. 

 

 

  

 

Figure 45 - Digits "7" and "8", 28x28 pixels obtained from MNIST database. 
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All experiments in this chapter were executed on the .NET core implementation of 

Spatial Pooler (Dobric, 2019). For every tested image, the same instance of SP was used 

with the configuration shown in Table 3. In these tests, Global Inhibition was used. 

However, Local Inhibition (5.7.3) shows nearly the same results. In addition, mini-

Column Bosting (see 5.7.4) was set to a high cycle period to ensure that Spatial Pooler 

doesn’t enter column boosting while the experiment runs2. Disabling boosting during 

experiment execution ensures that eventually, activated boosting will not clear 

memorized spatial patterns during the learning process. Chapter 8 briefly describes this 

effect and changes in the SP algorithm needed to ensure stability. 

 

To achieve a stable Sparse Distributed Representation (SDR) of active mini-columns for 

both images, the learning process was configured to undergo ten iteration steps. This 

allowed the Spatial Pooler (SP) to reach a steady state, as described in section 5.7.3. 

Typically, with the configuration described in Table 3 and the given input vectors, SP 

attains a stable state within 2-3 steps. The choice of ten iteration steps was based on 

practical considerations. 

 

As next, various levels of noise percentages, denoted as k={5, 10, 15, ..., 100}, were 

introduced to the reference image. For each noise level, the same instance of the Spatial 

Pooler (SP) was trained using the noise-distorted representation of the reference input. 

Following each training step, the input distance metric and output distance between 

the vectors were calculated. 

The distance value introduced in this work is a metric of similarity. For example, the 

input vector with noise is compared with the reference input vector without noise. The 

same calculation of distance is done on output vectors. Finally, the distance of the 

output vector of the input with noise is compared with the reference output value 

calculated for input without noise. Subsequently, the input and output distances are 

compared, and their relationship is utilized as a metric to gauge the resistance against 

noise. The model is considered robust against noise if a lower output distance is 

observed for a higher input distance. In essence, the Spatial Pooler (SP) demonstrates 

robustness when the output remains largely unchanged despite a considerable level of 

noise in the input. 

 

 
2 Instability issue of the SP discussed in the next chapter. This issue was solved by introducing Homeostatic Plasticity Controller. 
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The distance metric in this context is a value which defines the similarity between 

compared vectors. First, the number of the same bits between the vector and the 

reference vector is calculated by Equation (47) in Algorithm 1.  

 

 𝐨k= ∑ ∥  𝐚0(𝑖) ∘  𝐚k(𝑖) ∥

𝑁

𝑖=0

(47)

 

 𝐥k = ∑  𝐚k(𝒊)

𝑵

𝒊=𝟎

(48)

 

 

  𝐝k=
 𝐥0−(𝑁− 𝐨k)

 𝐥0
 100 ;  𝐨k < N                       (49)

 

Let  𝐚0  denotes a reference vector (input or output) without any noise and let  𝐚k 

represent a vector (input or output) with a noise level specified by level 𝑘 . Both 

comparing vectors must have the same number of bits denoted by N. Each input vector 

with injected noise is bitwise compared with the reference input vector using the L0-

norm described in equation (47). The equation counts the total number of non-zero 

elements of the noised vector 𝑘. The overlap 𝐨k is calculated as the number of non-

zero bits at the same position. Conversely, 𝑁 −  𝐨k represents the number of different 

bits. 

In the equation (48), the value 𝐥𝑘 corresponds to the number of non-zero bits in the 

noised vector 𝑘 , while the value 𝐥0  represents the number of non-zero bits in the 

reference input vector without any noise. The distance 𝐝𝑘 as defined in equation (49), 

serves as the metric utilized in this experiment to determine the similarity between 

vector 𝐚k and the reference vector 𝐚0. This metric, referred to as distance, is employed 

in all subsequent experiments outlined in this chapter. 

 

Parameters Value 

Potential Percentage 1 

Local Area Density -1 (automatically calculated) 

Potential Radius -1 (all inputs are connected to every 

column) 

Active Mini-Columns in Area 0,02*64*64 (2% of columns) 
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Stimulus Threshold 0,5 

Synaptic Decrement 0,01 

Synaptic Increment 0,01 

Permanence Connected 0,1 

Table 3.  

SP parameters used in the experiment. For more detailed information about the meaning of all 

parameters, please see (Dobric, 2019). 

 

In each experiment, the predefined or randomly generated input vectors are iterated 

through. For each vector in the input vector list, the Spatial Pooler is trained to 

memorize its spatial pattern. The training process is repeated ten times to ensure that 

the pattern is completely learned. In this context, the pattern is considered learned if 

the set of active mini-columns encoded by the Spatial Pooler remains unchanged when 

the previously learned vector reappears. 

 

It is important to note that no additional encoding is applied between the input vector 

and the Spatial Pooler (SP). Typically, when working with the SP, an encoder such as a 

Scalar Encoder or Date Encoder is used to preprocess the input. However, in the 

experiments conducted in this study, the input vectors are raw images or random 

vectors that are utilized directly without any additional encoding steps. 

 

The training process was implemented using the pseudo-code presented in Algorithm 

1 (Dobric, Pech, Ghita, Wennekers, 2020). Each input vector underwent training at 

multiple noise levels. The first noise level corresponds to zero noise, representing the 

reference input vector without any noise. The subsequent five levels incrementally 

added 5% more noise to the original (reference) input vector, resulting in noise levels 

of 5%, 10%, 15%, 20%, and 25%. It is important to note that the Spatial Pooler (SP) was 

trained using both the reference input vector and the corresponding noised input 

vectors at each noise level. 

 

In each result, the metric 𝑑𝑘 is computed by comparing the output Sparse Distributed 

Representation (SDR) for a specific noise level with the SDR output for the same input 

vector without any noise (reference output). 
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7.3 Results 

Figure 46 shows the distance of the trained Spatial Pooler for two randomly chosen 

MNIST images presented in Figure 45. The blue line represents the Distance Metric 

(similarity) between the reference input and noised input. It falls nearly linearly, as 

expected. The orange line represents the output distance between the SDR of noised 

input and the SDR of the reference input. In the case of image “7” (sparseness 6%), the 

output distance holds a stable set of active columns till approximately 30% of noise. 

 

Likewise, "Image 8" (with a sparsity of 17%) remains stable until approximately 40% of 

the noise is introduced. These results demonstrate a certain level of noise resistance in 

both cases, although varying degrees. Thus, it can be inferred that "Image 8" exhibits 

greater noise resistance compared to "Image 7". This observation aligns with the 

hypothesis presented in section 7.1, suggesting that the level of resistance is influenced 

by the sparsity of the spatial input. 

  

 

In order to verify this hypothesis, two box images were generated with dimensions of 

1024x1024 pixels (Figure 47). The first image, referred to as "Box1", contains 240 non-

zero bits, while the second image, "Box2", contains 110 non-zero bits. This results in 

sparsity levels of 0.24 and 0.11, respectively, indicating that "Box2" is sparser than 

"Box1". In the experiment, noise levels ranging from 5 to 100 percent were added to 

both reference images. 

Figure 46 

 Blue line shows calculated distance metric (similarity) between input and Input after adding noise. 

Orange line shows the distance between active mini-columns for the reference input and active mini-

columns for encoded noised input vector. 
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Figure 48 shows the encoding of the five noise levels for each of the two boxes. Then, 

the SP was trained with both reference and noised images. Every image in the figure 

on the left represents the input used for Spatial Pooler. 

 

 

 

The resulting encoded Sparse Distributed Representation (SDR) is presented as a sparse 

output of active mini-columns, providing a top view of the representation. The SDR 

output is displayed for various input scenarios, including the reference input without 

noise (0%), as well as inputs with 5%, 10%, 15%, and 20% noise levels. Referring to 

Figure 49, it can be observed that Box 1 is still accurately recognized, with an output 

distance of approximately 100%, given an input distance of around 40% (as shown in 

Figure 47 on the left). 

 

The results for Box 2 exhibit some variation. The image containing Box 2 is correctly 

recognized for inputs with noise levels up to 25%. This implies that Box 1, with a greater 

number of nonzero bits, demonstrates superior noise robustness compared to Box 2. 

This outcome serves as a compelling indication that the robustness is indeed influenced 

by the sparsity of the input. To further validate this assumption, numerous random 

input vectors were employed, with the percentages of non-zero bits being varied at a 

specified noise level. 

 

Figure 47  

 For training process, two boxes with dimensions of 1024x1024 pixels were utilized. The left box had a 

sparsity of 0.24, while the right box had a sparsity of 0.11. These boxes were visually represented in 

yellow color. A comparison was made between the two images, taking into account their different 

numbers of non-zero bits.  
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Figure 48 

Images on top show the noised input and output of Box1. Images on the bottom show the noised input 

and output of Box 2. Each image represents the input vector with a specific noise level (on the left) and 

their sparse representation of active columns (on the right).  

 

The results of the experiment are shown in Figure 50. Note that Figure 50 has a 

slightly different representation than Figure 49. Instead of distance and noise, the 

input and output overlap are compared in Figure 50. The more noise is contained in 

the input vector, the less overlap between noised and input reference vector. For the 

same noisy input vector, the output overlap is calculated between the output SDR of 

the noised vector and the reference output SDR encoded by the reference input 

without noise. 
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Figure 49 

Noise resistance of two boxes. The blue line shows the distance between noised input and reference 

input vectors without noise. The orange line shows the same distance between the output of the 

trained Spatial Pooler of noised input and the output of the reference input.  

 
 

 

Upon comparing the results between enabled learning (Figure 50 - left) and disabled 

learning (Figure 50 - right), it can be inferred that the Spatial Pooler maintains a stable 

SDR output when learning is enabled. However, the Spatial Pooler with disabled 

learning does not memorize the pattern and is not resistant to noise. As shown in the 

figures on the right for all experiments, the output distance changes even faster without 

learning enabled than the input distance, especially for lower noise levels. Also, the 

Spatial Pooler does not show good resistance with enabled learning by using less than 

10% of non-zero bits (first figure on the left). In this case, even slightly deforming the 

input immediately deforms the output, which is not the desired result. 

 

Nevertheless, when learning is enabled and the input contains a greater number of 

non-zero bits, the distance between the output of the noised vector and the reference 

output, which has zero noise input, remains nearly constant across a relatively broad 

range of noise levels. This observation suggests that the Spatial Pooler retains the 

memory of the reference value even when exposed to highly noisy conditions. 

For instance, when the number of non-zero bits is increased to 20% (as shown in the 
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Figure 50  

The impact of the number of non-zero bits on the output overlap is depicted in the graphs, with 

training enabled (on the left) and training disabled (on the right). The X-axis indicates the input 

overlap as a percentage, while the Y-axis represents the output overlap. 
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second figure on the left), the output remains stable with an output distance of over 

90% even when subjected to approximately 25% input noise. Similarly, with 30% non-

zero bits, the Spatial Pooler maintains nearly unchanged output even with up to 50% 

distorted input. This serves as a strong indication of the robustness of the Spatial 

Pooler. The experiment demonstrates that a higher number of non-zero bits grouped 

together, forming a certain pattern in the input, leads to increased robustness. 

However, it is worth noting that a higher number of non-zero bits reduces sparsity and 

diminishes the capacity of the Cortical Algorithm.  

 

Finally, the same experiment has been executed for a large set of random input 

patterns. The experiment's goal was to investigate the behaviour of robustness to noise 

in the case of random patterns.  

 

 

a) 

 

b) 

 

c) 

 

d) 

Figure 51 Reference Random Vector with three examples of 5, 10 and 15 percent noise levels. 
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In this case, the input is generated to distribute active bits with a given noise 

percentage uniformly. Figure 51 shows the reference Random Vector (a) along with 

three random vectors with noise levels of 5% (b), 10% (c), and 15% (d). 

 

The noise was generated randomly by flipping zero bits to one and vice versa at 

random positions, starting with the reference vector. As previously described, the left 

side of each image represents the input shown to the SP, and the right side shows the 

corresponding SDR.  Figure 52 shows the distribution of the output distance for 

random vectors with 5,10,15, and 20 percent of the noise. 

 

 

 Figure 52 Distribution of output distance when presenting random input patterns 

 

 

The results demonstrate that the Spatial Pooler does not retain random patterns when 

even a tiny portion of noise (i.e., 5%) is added to the reference vector. It can be 

concluded that the SP is not robust to noise in the case of random input patterns, as 

shown in the previous figure. Robustness is achieved with patterns formed by grouping 

non-zero bits together. 
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 Homeostatic Plasticity Control and the 
Need for the newborn stage 

This chapter describes how spatial learning in the SP was improved by introducing a 

newborn stage of the cortical algorithm. It demonstrates the importance of the stage 

that the cortical algorithm starts at the beginning of learning and needs to activate all 

areas with the help of the homeostatic plasticity mechanism. 

Inspired by findings in neurosciences, it shows how plasticity enhances the learning 

process and clarifies why a newborn stage is essential for the cortical algorithm of 

species. Furthermore, the extended algorithm prevents the original SP algorithm from 

entering unstable (“epileptic”) behaviour.  

 

This part of the work related to mini-column plasticity was first published in 2021 at 

the International Conference on Pattern Recognition Applications and Methods 

(ICPRAM) in Vienna and awarded as the best industrial paper (Dobric, Pech, Ghita, 

Wennekers, 2021).  

 

Further research in this domain builds upon the previous study and addresses the 

remaining instabilities. It specifically investigates the plasticity of synapses and 

demonstrates how the Spatial Pooler (SP) can achieve complete stability by controlling 

and disabling the excitation of inactive synaptic connections between input neurons 

and mini-columns, particularly after the newborn stage. Results of extended work were 

published in 2022 in the Springer Nature Computer Science Journal (Dobric, Pech, 

Ghita, Wennekers, 2022). 

 

8.1 Introduction 

 

Experiments in this work show an unusual behaviour of the SP, which indicates that the 

SP, by design, can become unstable over time. That means that learned patterns will 

be forgotten and learned again during the learning process. This is known as the 

stability-plasticity dilemma (see Chapter 3). The learning and forgetting repeat 

continuously over time, meaning that the Spatial Pooler oscillates between stable and 

unstable behaviour. Moreover, experiments also show that instability is related to 

specific patterns and not necessarily to the entire set of input patterns.  

 

For example, The SP can hold the stable SDR1 for a specific pattern i1 while SDR2 for 

another pattern i2 becomes unstable. The stability of the SP is crucial for applications 

that depend on spatial pattern recognition. Since the Sparse Distributed 
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Representations (SDRs) generated by the SP are utilized as input for the Neural 

Association Algorithm, an unstable SP would adversely affect the performance of 

subsequent algorithms. In this part of the research, the instability of the SP was 

investigated and compared with biological observations. As a result, a modified version 

of the SP was developed and tested to address this instability. The extended algorithm 

not only ensures the stability of the SP but also prevents it from exhibiting unstable or 

"epileptic" behaviour, as observed in the original algorithm. This chapter describes how 

and why the Spatial Pooler forgets learned SDRs during training. It also introduces the 

newborn stage of an artificial algorithm like SP.  

 

The concept of the newborn stage in the modified algorithm was inspired by 

neuroscientific research (Maffei, Nelson, Turrigiano, 2004), which indicates that a 

plasticity mechanism is predominantly active during the early development of newborn 

mammals and subsequently deactivated or shifted away from the cortical layer L4, 

where the Spatial Pooler (SP) operates. This insight guided the design of the modified 

algorithm, ensuring that the SP behaves in a manner consistent with the biological 

observations and developmental processes in mammals. 

 

 As explained in the following section, the new algorithm controls the boosting of 

inactive mini-columns and weak synapses. The new SP with the newborn stage was 

designed first to enable the homeostatic plasticity mechanism (Turrigiano, Nelson, 

2004) that boosts inactive mini-columns and exitize weak synapses and then disables 

them (see 5.7.4). The final solution of the extended SP clearly shows that learned SDRs 

remain stable during the lifetime of the Spatial Pooler. 

 

The extended algorithm introduces a mechanism to regulate the activation and 

strengthening of inactive mini-columns and weak synapses within the Spatial Pooler 

(SP). This mechanism, inspired by the concept of homeostatic plasticity (Turrigiano, 

Nelson, 2004), initially enables the boosting of these inactive elements during the 

newborn stage and subsequently disables them (as described in section 5.7.4). Through 

this approach, the modified SP achieves stable learned Sparse Distributed 

Representations (SDRs) that persist over the lifespan of the algorithm. The final solution 

demonstrates the effectiveness of the extended SP in maintaining stability and 

robustness in pattern recognition tasks. 

 

 

8.2 Methods 

 

To analyze the learning process of the Spatial Pooler, a specific instance of the SP was 

utilized, employing a set of common parameters outlined in  Table 3. The experiments 

conducted in this work involved varying the number of mini-columns, and the results 
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presented here were obtained using 2048 mini-columns. As described in section  5.5, 

the scalar encoder was employed to encode the scalar input values used to train the 

SP. The SP was trained to encode input ranging from 0 to 100. Prior to presenting an 

input to the Spatial Pooler, each input value was encoded using 200 bits, with 15 non-

zero bits representing each value. 

 

In 

 Figure 53, three examples of encoded scalar values (0, 1, and 2) are depicted, which 

were utilized as input for the SP in this experiment. For a comprehensive understanding 

of the significance of all parameters, please refer to (Dobric, 2018). The encoded input 

value is displayed on the right side, while the corresponding SDR is shown on the left. 

In the figure, the grey colour represents zero bits, representing the background of the 

image, while the black colour represents active bits. The grey dots on the left represent 

active mini-columns after the input has been encoded to SDR. 

 

As mentioned in section 2.6, the Spatial Pooler implements a boosting of inactive mini-

columns and excitation of passive (weak) synapses. Moreover, the plasticity mechanism 

is implemented inside the Spatial Pooler (Damir Dobric, Andreas Pech, Bogdan Ghita, 

Thomas Wennekers, 2021). This mechanism guarantees the uniform utilization of all 

mini-columns across all observed patterns (refer to 5.7.4.2).  

 

The Spatial Pooler converts each input pattern into a Sparse SDR, which is expressed 

as a collection of active mini-column indices, denoted as 𝐴𝑘  for the given pattern in 

iteration k (see 5.7.2). Then, in every learning step of the same pattern, the similarity 

between SDR in step k and step k+1 is calculated as shown in equation (50). 

 

𝑠 =
|𝐴𝑘 ∩ 𝐴𝑘+1|

max (|𝐴𝑘|, |𝐴𝑘+1|)
 

      (50) 
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 Figure 53:   

The Scalar Encoder (on the right) encodes three input values, while the corresponding Sparse 

Distributed Representation (on the left) is encoded by the Spatial Pooler. The figure shows examples 

of the encoded values 0,1, and 2. 

 

According to the equation, the similarity, denoted as 𝑠, is a ratio that compares the 

number of identical active mini-columns in SDRs generated at steps k and k+1 to the 

maximum number of active mini-columns observed in two comparison steps. The SP is 

considered stable if the generated SDR for a particular pattern remains unchanged 

throughout its entire lifespan. In such cases, the similarity between all SDRs 

corresponding to the same pattern is 100%. 

 

In Figure 54, the SDR of a specific input pattern presented to the SP is displayed over 

25000 iterations. The SP demonstrates rapid learning, typically requiring only a few 

iterations to learn presented input. The y-axis represents the similarity, denoted as 𝑠, 

between the SDRs of the current and previous iteration steps. The x-axis indicates the 

iteration step number. A similarity of 100% means that the learned SDR remains 

consistent over time. However, after an unknown number of learning steps, the SP 

forgets the already learned SDRs and begins learning anew. As a result, the similarity 

drops from 100% to zero or another value. 
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Contrarily, maintaining a similarity of 100% implies that the learned SDR remains 

constant for the entire duration of the iteration. A similarity below 100% indicates that 

the generated SDRs for the same input differ, revealing an unstable Spatial Pooler. As 

shown in Figure 54, the learning state oscillates between stable and unstable states 

throughout the learning process, which is impractical for applications. This experiment 

demonstrates the instability of the Spatial Pooler but does not delve into the specific 

encoding details that cause the unstable SDR. Figure 55 presents the same behaviour, 

illustrating the encoding of the SDR for the same pattern in the first 300 iterations 

(cycles) using a single input value. 

 

 

Figure 54 

The graph illustrates an unstable Spatial Pooler (SP). The y-axis represents the similarity 

of the SDR for a specific pattern in each iteration step (x-axis). Initially, the SP learns the 

pattern over 25000 iterations, and during this time, the SDR remains unchanged. After 

an unspecified number of iterations, when boosting becomes active, the SP forgets the 

previously learned SDR, resulting in a drop in similarity. Subsequently, the SP begins the 

learning process again.active. 
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Initially, the Spatial Pooler produces a stable SDR during the early stages of the learning 

process and maintains its stability (unchanged) for around 200 iterations. However, 

subsequent iterations result in unstable SDRs, followed by a return to the stable state 

(not depicted in the figure), and this pattern continues intermittently. 

 

In the conducted experiment, the boosting of inactive mini-columns was deactivated 

by assigning zero values to the parameters DUTY CYCLE PERIOD and MAX BOOST. 

These parameters regulate the frequency of mini-column activation (refer to section 

see 5.7.4.2). Disabling boosting in the Spatial Pooler (SP) leads to stable SDR 

generation, as demonstrated in Figure 56. The figure illustrates a specific instance of a 

stable encoding for a single pattern, achieved by employing the disabled boosting 

algorithm. During the initial iterations, the SP learns the pattern and successfully 

encodes it into a stable SDR. 

 

 

Figure 55 

In the first approximately 350 iterations, the chosen input is encoded to SDR.The 

encoded SDR remains stable for approximately the first 220 iterations. After this 

point, the SDR undergoes changes, leading to instability in subsequent iterations. 
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Figure 56  

Spatial Pooler generates stable SDR after the boosting is disabled . 

 

 

Based on the findings, it can be concluded that turning off the boosting algorithm can 

result in a stable Spatial Pooler (SP). However, this approach leads to SDRs with varying 

numbers of active mini-columns since the uniform activation of all mini-columns is not 

guaranteed (see 5.7.4.2). Figure 57 shows the SDRs of two input values ‘0’ and ‘6’.  With 

disabled boosting, the SP will also enter a stable state for all inputsDuring this 

experiment, the value '0' was encoded with approximately 40 active mini-columns, 

while the value '6' was encoded with only 4 active mini-columns. This is a significant 

unwanted difference. Experiments showed (not presented in this work) that some 

patterns can even be encoded without any active mini-column if boosting is ultimately 

disabled or disabled early. The SP needs time to activate all mini-columns in the cortical 

area. This time interval measured in a number of iterations plays an essential role in 

this work. 

 

When there is a substantial discrepancy in the number of active mini-columns within 

SDRs for different inputs, the subsequent processing of memorized SDRs can become 

inefficient. This inefficiency arises because many operations in a cortical algorithm 

depend on calculating the overlap function (see 5.7.1). In that case, SDR-s with a 

significantly higher number of active mini-columns will have a higher probability than 

patterns with fewer ones. This unbalance will cause the generation of false positives 

inside the algorithm. As previously discussed, the homeostatic plasticity keeps all mini-

columns in balance, so the SP should do the same.  
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Figure 57 

The Spatial Pooler, with the boosting algorithm disabled, generates two SDRs with varying counts of 

active mini-columns. 

  

The parameter NUM ACTIVE COLUMNS PER INH AREA sets the percentage of mini-

columns within the inhibition area that will be used to encode a pattern. As explained 

in section 3.1.1, this value is typically set to 2%. In the conducted experiments, with 

global inhibition (see 5.7.3) utilizing 2048 mini-columns, the SP generates SDRs 

containing 40 active mini-columns. However, when boosting algorithm described in 

5.7.4.2 is activated, passive mini-columns are subsequently raised. This alters the 

synaptic permanence values learned by the SP, as outlined in section 5.7.2. and leads 

to forgetting learned patterns (SDRs), and learning resumes when the same pattern 

reoccurs.  

 

In summary, disabling boosting allows the SP to achieve a stable state. However, it 

results in SDRs with varying numbers of active mini-columns for different inputs. On 

the other hand, enabling boosting ensures uniform activation of mini-columns, but it 

leads to unstable learning, which is the default behaviour of the SP. 

 

The findings in neural sciences, as mentioned in section 2.6, indicate that homeostatic 

plasticity is primarily active during the early stages of development in newborn 

mammals. Building upon this insight, this research extends the Spatial Pooler algorithm 

by incorporating the concept of a newborn stage within the Spatial Pooler. 

 

The deactivation of boosting homeostatic plasticity observed in the cortical layer L4 

can also be implemented in the SP. Although the precise workings of this mechanism 
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in the brain are not yet fully understood, a similar approach can be adopted within the 

SP. Currently, this mechanism involves boosting inactive mini-columns and boosting 

(exciting) mini-columns with a relatively low overlap compared to others (see 5.7.4.2). 

 

The idea in this part of the work, aiming to stabilize the SP and keep using the plasticity, 

is to add an algorithm to SP that does not entirely change the existing one. The 

extension of the SP algorithm (Dobric, 2021) is implemented in the Homeostatic 

Plasticity Controller (HPC) component. The newborn stage is achieved by attaching the 

HPC to the existing implementation of the SP. Following the computation in each 

iteration, both the input pattern and its corresponding SDR are transmitted from the 

SP to the HPC. The HPC keeps the boosting active until the SP enters the stable state, 

measured over the given number of iterations.  

 

During this period, the SP operates in what is referred to as the newborn stage, 

producing outcomes similar to those shown in Figure 54 and Figure 55. Once the SP 

reaches a stable state, the HPC will deactivate the boosting mechanism and inform the 

application of the state change. The controller monitors the involvement of mini-

columns across all observed patterns. When it observes that the mini-columns are 

evenly utilized and that the SDRs generated for the observed patterns consist of 

roughly the same number of active mini-columns, the SP is considered to have entered 

the stable state by default. At this point, the SP exits the newborn stage and resumes 

its regular operation without employing the plasticity algorithms described in sections 

5.7.4.1 and 5.7.4.2. These plasticity algorithms are deactivated by setting the 

configuration values MinPctOverlapDutyCycles, MinPctActiveDutyCycles, and MaxBoost 

to zero. 

 

Switching off these values initiates the exit of the newborn stage of the Spatial Pooler. 

From that moment, the HPC will count the stable cycles and enter the stable state if 

the required minimum of stable cycles (numOfCyclesToWaitOnChange) is reached. The 

following section describes the HPC (Dobric, 2021) algorithm in more detail. 

 

8.3 Results 

The objective of the following experiment was to demonstrate the efficacy of utilizing 

the Homeostatic Plasticity Controller in improving the SP algorithm's ability to 

consistently achieve a stable state. The experiment, outlined in Listing 4, involved 

running 25,000 iterations and presenting 100 scalar values to the SP. The experiment 

was repeated numerous times, employing different configurations. The scalar encoder, 

specified in line 11, utilized a set of parameters (line 5) as described in Listing 4. Each 

input value within the range of 0 to 100 was encoded as a 200-bit vector. Furthermore, 

every value within the specified range was encoded using 15 non-zero bits, as 

illustrated in Figure 51 (right). 
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Listing 4. Using improved SP - Pseudo code 

00 | function Experiment( inputPatterns ) 

01 | begin ( 𝚰 ) 

02 |   p            // SP configuration parameters. 

03 |  hp,enp   // HPC and encoder configuration parameters 

06 |  isStable = false 

05 |  en←create(enp) 

06 |  hpc ←create(hp, onStateChange);  

07 |  sp ←create(i, hpc);  

08 |  FOR  i = 0;  i  <  25000 

09 |      FOREACH  i  IN inputPatterns 

10 |           // Learn and generate SDR for the input. 

11 |           o ← sp.compute(encode(i));   

12 |           IF isStable = true  

13 |               // newborn stage exited 

14 |               // Use stable SDRs. Custom code here.  

15 |           ENDIF 

16 |      ENDFOREACH  

17 |   ENDFOR  

18 | end 

19 |  

20 | function onStateChange(state) 

21 |  begin 

22 |       isStable = state // The state has changed. SP becomes stable or unstable. 

23 |  end 

 

A new instance of the SP is instantiated with a predefined set of parameters (line 3). 

This configuration is consistent with the experiment described in the preceding section, 

which yielded the results displayed in Figure 54 and Figure 55. The HPC is commonly 

associated with the SP instance (line 7, second argument) and utilized within the 

compute method. To facilitate practical implementation, the HPC offers a callback 

function (line 6, second argument) that is invoked when the controller identifies the SP 

has reached a stable state. The experiment is structured to execute a specified number 

of training iterations (line 8 sets the value to 25000). In each iteration, the SP undergoes 

training utilizing the complete set of input values denoted as 𝚰 (line 9). 
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The spatial input undergoes training in line 11, resulting in an SDR code (a set of active 

mini-columns) represented by the output variable o. Prior to being presented to the 

SP, the input value i is encoded using the Scalar Encoder. This encoder is configured 

with a specific set of parameters described in Table 4. The Scalar Encoder is 

implemented as a function e, which transforms the given scalar value into a binary array. 

 

𝑒: ℝ ⟶  {0,1} 

 

The computation within the SP operates solely on binary arrays, resembling the 

functioning of the neocortex (refer to section 3.1). In this work, the SP compute 

algorithm has been expanded to include the activation of the Homeostatic Plasticity 

Controller (HPC) outlined in Algorithm 17. The HPC computation takes place after the 

Spatial Pooler completes the current iteration. 
 

Parameters Value 

W – number of required active bits to 

encode  a single value 

15 

N – Total number of input bits 200 

MinVal – Minimum encoded value  0 

MaxVal – Maximum encoded value 100 

Table 4  

Scalar Encoder parameters 

 

The HPC Algorithm takes two inputs: the binary array representing an encoded input 

pattern and the SDR calculated by the SP for that input. Initially, the algorithm does not 

make any changes to the SP, entering a phase referred to as the newborn stage. Once 

the minimum required number of iterations (m or minCycles) is surpassed (line 15), the 

HPC disables boosting in the SP. For all subsequent iterations exceeding m, the 

boosting of inactive mini-columns (Algorithm 8) and mini-columns with low overlap 

(Algorithm 7) is turned off by setting the parameters MinPctActiveDutyCycles, MaxBoost, 

and MinPctOverlapDutyCycles to zero. 

 

The first two parameters, MinPctActiveDutyCycles and MinPctOverlapDutyCycles, are 

responsible for updating the boost factors for each column during every iteration. In 

Algorithm 7, these boost factors are utilized in the SP to enhance the synapses of 

inactive mini-columns, increasing the likelihood of their activation. By setting 

MinPctActiveDutyCycles to zero, the condition in line 13 of Algorithm 8 is not met, 
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preventing the boosting of permanence values. Similarly, when 

MinPctOverlapDutyCycles is set to zero, the code in lines 18-21 of Algorithm 7 is not 

executed, thereby eliminating the boosting of synapses with low overlap frequency 

(weak synapses). 

 

Algorithm 17. The Homeostatic Plasticity Algorithm 

01 | input:   i  // The sensory input.  

02 | output: o // Set of active mini-columns that defined the SDR.  

03 | configuration parameters:  

04 |        b // SP max boost 

05 |        d // SP min pct. overlap duty cycles                      

06 |  begin  

07 |   H ← ℎ𝑎𝑠ℎ(i); // Calculate the hash value of the input of N bits. 

08 |    Ε ← (H, ∑ 𝑜𝑘)M
k=0  𝑜𝑘 ∈ 𝒐 // Calculate the number of active mini-columns in SDR. 

     |    // The average change of num. of the act. Columns in p steps. 

09|    𝛿 ←  
1

𝑝
∗ ∑ |

p−1
𝑘=0 𝑒𝐻𝑘 − 𝑒𝐻(𝑘+1)| 𝑒𝐻 ∈  Ε 

    |    // Calculate the correlation between the current and the previous output. 

10|    𝒄 =  𝑐𝑜𝑟𝑟(𝒐′, 𝒐) | 𝒐′ ∈ ℋ 

    |    // Store input-hash and SDR pair 

11|    ℋ←(H, o)      

     |    // Increment the counter of stable iterations for i.  

12|    Γ← γ𝐻 + 1[𝛿 = 0, 𝒄 >  𝜃|0.9 < 𝜃 < 1, γ𝐻 ∈  Γ] 

     |    // Fire stable state event  

13|    StableState [γ𝐻 = 𝜏, ∀ γ𝐻 ∈  Γ, 𝜏 ∈ 𝐍] 

     |    // Reset the counter of stable iterations for i.  

14|    Γ← 0𝐻[𝒄 ≤ 𝜃|0.9 < 𝜃 < 1.0] 

     |    // Disable boost and synaptic excitation after specified num. of iterations.  

15|    inactiveColumnBoost=off;synapseExitation=off [𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 >=  𝑚 ] 
16| end 

 

Upon disabling plasticity, the algorithm initiates the tracking of all encountered 

patterns and their corresponding SDRs. To avoid storing the entire input dataset 

internally, the hash function (line 6) computes a hash value over the sequence of input 

bits for the current iteration. This computed hash value is represented as a sequence of 

bytes and defined as the set H (line 7). Next, in line 8, a tuple consisting of the input's 
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hash value H and the number of active columns in the associated SDR is linked with the 

set Ε. The set Ε retains p tuples of this information. 

As mentioned, the objective is to maintain a constant number of active mini-columns 

across the entire SDR space. The value δ denotes the average change in the number of 

active mini-columns within each interval of p SDRs (line 9). The cycle interval p refers 

to the number of previous iterations utilized for calculating δ. In most experiments, this 

value was set to five, which is deemed appropriate because once the Spatial Pooler 

enters a stable state, the number of active mini-columns remains constant. Therefore, 

during the SP's unstable state, a five-state interval is sufficiently long to compute δ as 

a non-zero value. 

 

The value 𝛿  is calculated as an average sum of deltas e𝐻𝑘 − e𝐻(𝑘+1)  in the last p 

iterations for the given input hash value H.  

 

𝛿 = 
1

𝑝
∗ ∑ |

p−1
𝑘=0 𝑒𝐻𝑘 − 𝑒𝐻(𝑘+1)| 𝑒𝐻 ∈  Ε 

 

 

      (51) 

The stability of the new Spatial Pooler depends on two conditions. The first condition 

is satisfied when the value 𝛿  is zero, indicating that the total count of active mini-

columns in the SDR for a particular input remains unchanged over a certain number of 

iterations (p). The second condition for the stability of the Spatial Pooler is to achieve 

a consistent SDR for every input encountered throughout the entire training process. 

 

To ensure this, the set ℋ is utilized to store tuples (H, o) consisting of input hash values 

and their corresponding SDRs. In subsequent iterations, the SDRs of inputs replace the 

previously stored tuple of the current input, thereby updating the information in ℋ.  

ℋ contains a unique tuple (H, o) for each input. These tuples in ℋ are employed to 

compute the correlation c between the previous and current SDRs of the specific input, 

as indicated in lines 10 and 11. 

 

If the correlation between the last SDR  𝒐′ and the new (current) SDR 𝒐 of the given 

input i is greater than the specified tolerance threshold 𝜃 (typically near 100%), and the 

𝛿 = 0, then the counter for stable iterations of the given input i is incremented (line 

12).  
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If the correlation between 𝒐 and 𝒐′ is under the threshold 𝜃, then the number of stable 

iterations for the given input pattern is set to zero. The threshold 𝜃 can theoretically be 

enforced to 1.0. This might lead to false instability. The SP internally selects the defined 

NumActiveColumnsPerInhArea of active mini-columns. Two mini-columns with the 

same overlap will compete for activation (see 5.7.3). The random selection of mini-

columns with the same overlap will cause slightly different SDR in subsequent cycles. 

The HPC algorithm encounters this behaviour and builds in the explicit tolerance 

defined by 𝜃 less than 1.0. The more efficient approach would be to adopt the SP 

algorithm to allow side-by-side activation of competing mini-columns. Further 

exploration and investigation are required for this task in future endeavours. 

 

The second condition for stability is fulfilled when the number of stable iterations, 

represented by γ𝐻, reaches a chosen threshold τ (line 13) for the entire input space 

during the training. In the conducted experiments, the threshold τ was set to 50. 

However, the actual value chosen varied between 15 and 150 in different experiments. 

Whenever the correlation value falls below the threshold τ, the counter for stable 

iterations γ𝐻 for that particular input is reset, indicating that the input has not yet 

achieved the desired stability. 

 

Once the stable state is reached, all generated Sparse Distributed Representations 

(SDRs) should remain unchanged throughout the lifespan of the Spatial Pooler (SP) 

instance. The SP is considered stable when two conditions are met: there is a uniform 

number of active cells in all SDRs, and the required number of stable iterations is 

reached for all SDRs. The HPC  algorithm (Dobric, 2021) continues to monitor stability 

even after the SP has reached a stable state. The results demonstrate that the extended 

SP with the HPC algorithm consistently achieves stability with a uniform distribution of 

active columns for all SDRs. 

 

In Figure 58, the SDRs of two chosen input samples are depicted. The inputs '0' and 

'1' are both encoded with the stable SDR after approximately 300 iterations. It is 

observed that the generated SDRs exhibit instability within the first 300 iterations. 

During this interval, defined as the HTM newborn stage, denoted by the parameter m 

(line 15), the active columns encoding the SDRs undergo continuous changes. In this 

stage, mini-column stimulation is active, and SDRs of all inputs frequently change 

during the learning process (approximately the first 300 hundred cycles in Figure 58.  
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Following approximately 300 cycles, the HPC mechanism deactivates stimulation, 

resulting in the rapid convergence of SDRs to a stable state that persists throughout 

the lifespan of the Spatial Pooler. This experiment involved conducting tests with up 

to 30,000 iterations, during which the Spatial Pooler remained stable, except for one 

exception. In some cases, the SP exhibited brief periods of instability shortly after 

reaching the stable state. 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 58  

The spatial pooler in the stable state represents two SDRs of two input pattern examples with the 

activated Homeostatic Plasticity Controller. 

 

 

The HPC algorithm is designed to enforce instability when the same processing input 

undergoes a change in its SDR. In such cases, the HPC algorithm resets the counter of 

stable iterations for the specific input (line 14), which subsequently declares the Spatial 

Pooler (SP) as unstable. 

 

In the event of this exceptional occurrence, the learning process can persist until the SP 

re-enters the stable state for the entirety of its lifespan. This undesired behaviour is 

predominantly observed when the designated minimum required iterations, denoted 
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as m, are set too low. Opting for larger values of m appears to resolve this exceptional 

behaviour; however, it prolongs the duration to transition from the newborn stage to 

the stable state. Nevertheless, even with higher values of m, there is a possibility of 

slight changes in the Sparse Distributed Representation (SDR) of a pattern over time. 

 

In the HPC algorithm, the stability or instability of the Spatial Pooler (SP) is determined 

by the tolerance threshold θ. The SP selects the set of active mini-columns based on 

their overlap, which is calculated by sorting them. During the learning process, certain 

synapses between columns and input neurons may increase their permanence, leading 

to an increase in the overlap of specific mini-columns. As a result, these mini-columns 

are included in the set of active mini-columns. However, due to the required fixed 

number of mini-columns per SDR, it is possible that previously active mini-columns 

may be excluded from the set of active mini-columns. 

For example, assume four mini-column encode four SDR(i,t) of the input i at the stable 

iteration t: C1-10, C5-10, C15-9, and C20-9. The first digit denotes the index of the mini-

column. The second digit is the overlap of the mini-column in the iteration t. At the 

current iteration, the mini-column C14 has an overlap of 8. C14-8 is not a part of the 

SDR because four mini-columns with a higher overlap are chosen. In the next iteration, 

mini-column C14 increases its overlap to 9. The SDR(i, t+1) might become C1-10, C5-

10, C14-9 and C15-9. In this example, the previously active mini-column C20 with the 

same overlap 9 is randomly replaced with C14-9. The same change will happen if named 

mini-columns do not change overlap over time. SDR of four mini-columns will be 

chosen from C1-10, C5-10, C14-9, C15-9, and C20-9. Random choosing of different 

mini-columns can appear as unstable behaviour to HPC. 

 

By setting the tolerance threshold to θ=1.0, any change in the set of active mini-

columns would cause the HPC to transition the stable Spatial Pooler (SP) into an 

unstable state in the next iteration (t+1). Conversely, with a tolerance threshold of 

θ=0.75, the SP would remain stable even if a single mini-column within a set of four 

mini-columns is replaced. Through extensive testing, we discovered that setting 

θ=0.975, with 40 active mini-columns out of 2048, generates a stable SP. However, 

higher values of θ may result in temporary instability of the SP after reaching a stable 

state. Therefore, it is crucial for application developers to carefully select an appropriate 

value for θ. If the value is not optimally chosen, the HPC algorithm will notify the 

application when the SP becomes unstable, allowing the application to take necessary 



 

174  |                 Investigation and Modelling of a Cortical Learning Algorithm in the Neocortex  

 

 

actions. In future work, improvements will be made to the HPC algorithm to 

automatically handle this behaviour without requiring manual intervention. 

 

Figure 59 illustrates this behaviour. In this experiment, the HPC was configured with a 

relatively low value of m=30 for the minimum required number of iterations during the 

newborn stage. This value is typically considered a very short interval for the newborn 

stage. In the first experiment (Figure 59, left), a threshold of θ=1.0 was utilized, 

indicating that no changes in the Sparse Distributed Representation (SDR) were allowed 

to maintain the stable state. The SP entered the stable state at iteration 129 (indicated 

by the left green line), but it temporarily became unstable at iteration 391 (shown by 

the left red line) due to replacing a single mini-column. 

In the second experiment (Figure 59, right), a threshold of θ=0.975 was used. With this 

value, it was permissible to replace a single mini-column within the set of 40 chosen 

active mini-columns. The SP entered the stable state at iteration 84 (indicated by the 

right green line) in this experiment. Since θ=0.975 allowed a few column replacements 

during the learning process, the stability of the SP was maintained. 

 

                             
Figure 59 
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In Figure 59 (right), the stable state of the Spatial Pooler (SP) is demonstrated, even 

when some mini-columns are replaced after entering the stable state (indicated by the 

right blue line). In both cases, the SP exhibits the same behaviour, but the HPC 

algorithm utilizes a different threshold to determine the iteration step of stability. 

 

This work also examined how stability is achieved throughout the entire input data set. 

To test this, the number of stable cycles was recorded after a significant period 

following the start of a stable state. The resulting data trace shown in Figure 60 shows 

the count of stable cycles for all patterns.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this particular experiment, the SP reached the stable state at iteration 441, as shown 

in Figure 59. The experiment was concluded at iteration 4012, during which the SP 

remained stable. For the input data set, the minimum number of stable states, 3637, 

was observed for input 64, while the maximum number, 3962, was observed for 

Shortly after entering the stable state, the Spatial Pooler (SP) may experience temporary instability 

for certain input patterns during a few learning iterations. However, after a few iterations, the SP 

regains stability and remains in a stable state. The similarity thresholds used in this context are  

𝜃 = 0.97  and  𝜃 = 1.0. 

 

 

 

Figure 60 

The internal trace of the Homeostatic Plasticity Controller displays the count of 

stable cycles for each generated Sparse Distributed Representation (SDR) within the 

entire input data set. 
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multiple numbers such as 0, 1, 2, 3, 4, 5, 6, and more. It should be noted that the SP's 

stability in these experiments was determined based on a threshold of τ=50 stable 

iterations. Notably, the maximum number of stable cycles can be calculated by 

subtracting τ from the total number of iterations, i.e., 4012 - τ. This implies that inputs 

with the maximum number of stable cycles entered a stable state early in the learning 

process. This outcome demonstrates that certain patterns achieve stability relatively 

quickly, while others require more learning cycles to stabilize. 

 

Figure 61 depicts all the SDRs stored in SP after reaching the stable state. In this 

experiment, the SP was trained using a set of encoded scalar input values ranging from 

1 to 100. The x-axis represents the input values from 1 to 100, while the y-axis 

represents the active mini-columns for each respective input. For instance, the black 

dots aligned with the green line indicate the SDR code for the scalar input value 60. 

When input 60 is presented to the SP, the mini-columns along the green line become 

activated. 

 

 

 

 

Figure 61  

All SDRs at once. Representation of all generated SDRs seen in the training process of 100 input 

patterns. The horizontal axis shows the index of the input. The vertical axis shows the SDR. Every 

black “dot” represents the active mini-column. 

 

This figure shows that the SP uniformly uses the entire mini-column space, resulting 

from the well-designed plasticity algorithm. As discussed in this chapter, mini-
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columns wouldn’t be uniformly used without the newborn stage, and the set of active 

mini-columns across all input patterns would be partially used. 
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 Discussions 

9.1 On Parallel Cortical Learning Algorithm with Actor Model  

 

Results in Chapter 6 show that the cortical algorithm can efficiently be scaled with the 

Actor Programming Model by using higher-level programming languages on 

commodity hardware. Proposed algorithms SP-MT and SP-Parallel can successfully run 

on multicore and multi-node architecture, respectively. SP-MT executes on a single-

node multicore architecture without the Actor Programming Model and any 

infrastructure requirement. In contrast, the SP-Parallel algorithm successfully extends 

the modified version of the CLA and enables it to run in parallel in the cluster. In 

addition, the specifically modified version of the SP can run internal partial 

computations for a large number of mini-columns in the Actor Model cluster. Building 

this algorithm natively in hardware using lower-level programming languages can show 

better performance when it comes to CPU and RAM usage. However, using widely 

industrial accepted and efficient higher-level programming languages enable easier 

use of the computing power of modern cloud environments and enables this 

technology to a wide community of developers.  

 

Finally, this work shipped the improved version of Spatial Pooler by enabling it for an 

easy horizontal scale on multiple nodes with support for Windows, Linux, and macOS 

on almost any kind of hardware. In addition, the Neural Association Algorithm and 

Temporal Memory can be redesigned and enabled for parallel execution by following 

the same approach.  

9.2 On Noise Robustness and Similarity 

 

As previously described, the SP can build the similarity between patterns and achieve 

noise resistance. Both capabilities work side-by-side and can be controlled by various 

parameters. Following the results in Chapter 7, the number of non-zero bits in the input 

vector that encodes a specific spatial pattern greatly influences the noise robustness. 

Therefore, to better remember some spatial patterns and achieve better robustness on 

the noise, a higher number of non-zero bits should be used when encoding an input. 

Biologically, it means that more energy in sensory input leads to higher robustness. 

However, the increase in the number of non-zero bits will decrease the overall capacity 
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of the memory and a higher probability of false positives. According to equation (5), 

this trade-off must be considered when building applications. 

 

This finding has a direct impact on the design and implementation of encoders. For 

example, encoders like scalar encoders, category encoders, etc., should boost encoded 

input values. This technique uses more active neurons and enables better memorizing 

and higher resistance against noise (see Figure 50). 

However, another technique must be used in the case of images or similar spatial 

patterns. Therefore, it is proposed to implement a new spatial boosting input layer or 

a boosting encoder to achieve better results for such kinds of inputs. Note that this 

suggestion is unrelated to the existing mini-column boosting algorithm described in 

section 5.7.4.1, which has a different purpose. Furthermore, the proposed spatial 

boosting input layer should receive encoded input from the encoder appropriately (by 

keeping the same semantical meaning of input) and increase the number of non-zeros 

by bolding (striking out) the encoded input and then passing it to Spatial Pooler.  

 

Finally, this component should also ensure that all semantically different patterns 

have a similar sparseness because different sparseness of inputs will lead to different 

robustness against noise. 

 

9.3 On plasticity and the newborn stage 

 

As previously discussed, the original version of the Spatial Pooler already incorporated 

a form of homeostatic plasticity mechanism based on previous neuroscience research. 

However, this initial algorithm exhibited instability during the learning process, posing 

significant challenges in building reliable applications. Chapter 8 of this work delves 

into the analysis of this issue and presents a solution by enhancing the existing Spatial 

Pooler algorithm with a novel component called the Homeostatic Plasticity Controller. 

The development of the enhanced Spatial Pooler was inspired by observations from 

neuroscience research, which documented the role of homeostatic plasticity 

mechanisms during species' developmental stages. Taking cues from these findings, 

the Homeostatic Plasticity Controller introduces the concept of a "newborn stage" in 

the Spatial Pooler. During this stage, the algorithm emulates the behaviour observed 

in many species during their early developmental phases. This research underscores 

the significance of heightened plasticity activity during the initial stages of cortical 

tissue development. However, this plasticity mechanism brings about a challenge 
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known as the "stability-plasticity dilemma," where the stability of the learning process 

can be disrupted. Nonetheless, the plasticity mechanism ensures that all mini-columns 

in the experimental tissue are activated in a balanced manner. 

 

As experiment results show, many mini-columns would not participate in the learning 

process without plasticity. In that case, parts of the cortical tissue would not be used, 

and encoding to SDR would not be efficient. 

 

Therefore, during the newborn stage, the algorithm stimulates the inactive mini-

columns and synapses connected to input neurons. The HPC algorithm injected in the 

SP waits for a specified number of iterations (newborn stage) and then switches off the 

synaptic and mini-column stimulation mechanism waiting on the SP to enter the stable 

state. This behaviour corresponds to a growth of the cortical area to the mature form. 

 

By adopting this approach, the Spatial Pooler achieves rapid convergence to a stable 

state. Applications can subscribe to an event that notifies them about changes in the 

SP's state. Although the immediate disabling of boosting is not a natural mechanism, 

it can be easily adjusted if necessary to facilitate a more gradual transition out of the 

newborn stage, mimicking a biological process. 

 

In conclusion, the original version of the Spatial Pooler (SP) exhibited an unexpected 

instability resembling an "epileptic" condition. The new Spatial Pooler, incorporating 

the Homeostatic Plasticity Controller (HPC) and the concept of a newborn stage 

controlled by the HPC, significantly enhances the learning capabilities of the SP and 

enables the development of more reliable solutions. 

 

9.4 On Cortical Learning Algorithm 

 

Previous chapters described various capabilities like SDR encoding, Contextual 

Associations, Spatial Pooling, and Temporal Memory. In addition, it was shown how 

different algorithms inspired by biological findings (see Chapter 2) can form artificial 

tissue called area and how HTM (see Chapter 3.1) integrates into the cortical algorithm.  

 

The Neural Association Algorithm introduced and described in section 5.8 is designed 

as a theoretical framework for learning associations between populations of cells. It is 

capable of storing a massive number of spatial patterns, can learn sequences and create 

contextual associations between SDRs. 
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In experiments in this work, the algorithm focuses mainly on associations with the 

Spatial Context and the Temporal Context. This context selection is because the SP and 

TM are completely implemented parts of this cortical algorithm within neocortexapi. 

The Spatial Context creates associations, and the Temporal Context predicts the next 

state. The prediction is modelled as a depolarization of cells that corresponds to 

biological findings related to basal segments described in section 2.5. 

 

However, the NAA does not propose a strict kind of SDR used as input. This work uses 

SDR-s encoded by SP or TM. However, the NAA might also use some other type of SDR 

as the input. For example, some work  (Hawkins, Lewis, Klukas, Purdy, Ahmad, 2019) 

proposes layer six as a cortical grid cell location. That means that in L6, a different 

encoding mechanism might be used than the SP encoding in L4. This assumption 

claims that the location encoded by grid cells would create the Location Context in the 

NAA. Using grid cells in L6 is currently not implemented, but it is a part of future work. 

 

This idea leads to the hypothesis that different encodings in different layers or areas 

establish associations in different contexts. Still, their encoded SDRs are involved in 

learning the same way, independent of their origin. This algorithm design enables the 

same cortical algorithm to handle different problems, unlike traditional ML algorithms 

discussed in Chapter 3.  

 

Two populations of firing neurons without associations in NAA exist without meaning. 

Established association between populations of active neurons acts in both directions 

as a context. For example, population 2 gives some meaning (context) to associated 

population 1. Associating firing populations set the context and provides a contextual 

meaning between populations. Giving the meaning to the population is very similar to 

the labelling task in the supervised algorithms mentioned in Chapter 3. This is an 

exciting finding because the unsupervised cortical algorithm NAA creates the context 

which characterizes the supervised learning in every association step. Although the 

algorithm works unsupervised, it implicitly establishes supervised learning.  

 

Further, associations across multiple regions can create higher-level contextual states 

that build more complex semantics and meaning. That is when the encoded contextual 

information from other regions is associated with apical dendrites described in section 

2.5.  
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The following sections discuss how the NAA  can be used to model the canonical unit, 

to universally solve higher-level tasks and different problems addressed in chapters 2 

and 3. First, section 9.4.1 discusses how multiple hierarchical levels can be used to 

recognize the sequence and the behaviour according to discussed biological findings. 

Second, section  9.4.2 discusses how associations in NAA are used to build contextual 

semantics. 

9.4.1 Complex cells as a temporal association  

As described in section 5.9, the Temporal Memory algorithm is a part of the Neural 

Association Algorithm. By design, any encoding that produces SDR can be used as an 

input for learning sequences. Learning a sequence introduces the temporal 

dependency, which predicts the next state. That means the series of elements (events) 

can be contextually associated with time. For example, the sequence of elements 

“ABCDEFG” can represent just an abstract sequence, a Peptides Sequence that encodes 

the cancer information, or similar. Even videos are a sequence of encoded frames. 

Section 5.9 describes sequence learning in TM and how elements create the Temporal 

Path. The Temporal Path semantically connects sequence elements in a single unit in 

the order as they appear. For example, frames of a video are temporally chained, 

indicating that they belong to the same video. If the TM learned many videos, selecting 

a Temporal Path will look up a single video. 

 

The question of interest in this context is, is it possible to achieve a single SDR 

representing the Temporal Path of the sequence or some part of it? Section 2.6 

discusses two main encoding theories, a localist and a dense theory. The localist theory 

assumes that a mental state is ideally encoded by a single neuron called the 

grandmother neuron (Janifer Aniston neuron). In contrast, a dense theory assumes that 

a single neuron encodes multiple mental states. The following example shows how the 

whole sequence can be encoded as a single SDR using sequence learning with multiple 

levels without favouring any named views. 

Furthermore, according to Hubel and Wiesel (see section 2.6), lower levels change 

states frequently when the sequence is recognized, while the topmost layer keeps 

stable, indicating the identified sequence. The following example explains how NAA 

naturally performs this task. According to Hubel and Wiesel, sequence learning with 

temporal associations takes the role of simple cells (lower layers) and complex cells 
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(higher layers). Figure 62 illustrates how this can be achieved with NAA and Temporal 

Memory. This unique SDR corresponds neither to localists nor to the dense theory. 

Moreover, it uses a set of neurons that might be used for encoding multiple states 

(sequences), but it also forms a unique SDR that encodes a unique sequence (mental 

state). 

 

 

 

 

Figure 62  

Learning sequence at multiple levels. The last level recognizes the whole sequence by activating a single SDR.  

 

The sequence is learned at Level 1, as described in section 5.9. Every learned state (SDR) 

as the output of Level 1 represents the transition semantically from one element to 

some other element. For example, the green dot at Level 1 (set of multiple active cells) 

in the cycle at time t1 represents the transition from element A to element B. This state 

encoded as a set of active cells can be used as an input for the next Level 2. Level 2 

starts with the element, which is SDR produced at Level 1. SDR made at Level 1 means 

the transition from A to B (noted as “AB” at Level 2 in cycle t1). In the next cycle, t2, 
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Level 2 will learn the SDR “BC” after the SDR “AB”. That means Level2 will form at the 

cycle t2, the SDR, representing the subsequence “ABC”. This rule can be applied to all 

elements at multiple levels. Finally, at Level 4, the produced SDR at the cycle t3 will 

encode the whole Sequence “ABCD”, whereas lower levels will encode parts of the 

sequence. 

 

This example shows that NAA-modelled sequence learning in this work can recognize 

more complex sequences (behaviours) at higher levels. Theoretically, connecting 

cortical areas to endless hierarchy levels would be able to remember the sequence with 

infinite elements. In other words, the infinite number of elements could encode the 

entire universe persisted as a sequence if the same would be repeated a few times to 

enable learning. Furthermore, such a theoretical brain would be able to recognize all 

states learned from the beginning as a single sequence. This exciting finding will be a 

topic of future research.  

9.4.2 Contextual Associations and a Meaning  

Chapter 5 described how the Cortical Learning Algorithm was modelled in this work 

based on biological findings and ideas of the HTM. It briefly described all artefacts like 

SDR, Plasticity, Inhibition, Spatial Pooler, Temporal Memory, the Neural Association 

Algorithm etc. In this work, all crucial components have been implemented and used 

for experiments presented in this document. The general Neural Association Algorithm 

that connects multiple areas is still a work in progress, but it already introduces exciting 

ideas that might help to understand how meaning is created in the neocortex and the 

brain. 

The algorithms described in this work are all designed strictly aligned with biological 

findings. Patterns are continuously learned (SP) and temporally associated (TM). 

As mentioned, two patterns encoded as two independent SDRs have no meaning. 

However, if synaptic connections are formed between two SDRs (see section 5.8), an 

association is created. In that case, the associating SDR establishes a context and 

meaning for the associated SDR. That means that two independent SDRs (states) are 

meaningless until they are associated.  

Also, if the SDRs (states) are associated with the same SDRk, then the associated SDRk 

formally tags the set of associating SDRs. This kind of association defines supervised 

learning, which spontaneously happens inside an unsupervised cortical algorithm when 
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associations are created between meaningless SDRs. The SDRk defines, in this case, 

some meaning at the higher level in the given context. 

 

For example, if the set of associating SDRs represents images of fruits, then the SDRk 

might represent the tag “fruit”. The same example can also be hierarchically 

constructed using multiple levels of learning (Multilevel Learning). This is illustrated in 

Figure 63. Assume the experiment contains three areas (Cortical Units): Areal Level 1, 

Area Level 2 and Area Level 3. The Areal Level 1 receives a sensory input that algorithm 

A1 learns. As discussed, the Neural Association Algorithm does not strictly propose 

what algorithm must be used to encode the SDR. In this example, the Spatial Pooler 

encodes the input pattern into a set of active mini-columns represented as SDR. Area 

Level 1 learns fruits f1 to fM. Every fruit is represented as a set of images fij. At the same 

time, when presenting the fruit image, the supervised context input is created for Area 

Level 2 using some algorithm A2. This algorithm encodes the supervised contextual 

input into the SDR f1 for all images (inputs) f1- fN. The Neural Association Algorithm 

immediately creates associations from SDRs fij to a set of active cells f1. It associates 

populations to a single population and mathematically reduces dimensions 

simultaneously. 

 

Following the same principle, a set of images of fruit f1 is associated with the single 

SDR f1, a set of images of fruit f2 is associated with the single SDR f2 etc. Further, SDRs, 

which represent some specific fruit f1, f2,.., f1,.., fK can be associated with another but 

same SDR f that represents a higher level state called, let’s say “all known fruits”. This 

principle can be further followed. For example, the SDR f that represents “all known 

fruits” can be associated with other higher or even lower-level SDR that represents 

anything else. This is how meaning is grown by creating a mesh of associations between 

sensory inputs and contextual SDRs at multiple levels.  

 

Encoding two contextual values together as a paired value does not build meaning. For 

example, the month can be encoded with the date as a paired value, JAN-15 or FEB-

15. 

In some industrial scenarios, this is an efficient and helpful technique often used in 

HTM solutions. It sets the “meaning” to the pair of values. However, such encoding 

leads to the loss of the meaning of encoded values in their context. For example, if both 

values were encoded with the scalar encoder (see 5.5), the produced SDR would 
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spatially build the similarity at the same date (15th in the month), but this does not 

create an explicit meaningful association to date and month. 

 

 

Figure 63 

Building semantic associations and meaning by using multiple levels of learning (Multilevel Learning) 
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9.5 Future Work 

 

Results presented in this work demonstrate that the current version of the NAA is a 

universal algorithm able to approach solutions for different kinds of problems 

discussed in chapters 2 and 3. The algorithm described in this work is a theoretical 

approach that generalizes the HTM. It explains how to model an artificial cortical area 

as a canonical cortical unit, which can be synoptically connected to a network of units, 

capable of solving higher-level tasks by establishing contextual associations. At the 

moment of writing this document, one part of NAA was already implemented in the 

neocortexapi (Dobric, 2019) with full support for Spatial Pooler, Temporal Memory, 

inhibition, structural plasticity and various encoders. However, the current 

implementation is limited to a single area only. With this limitation, the algorithm 

cannot learn any contextual associations but the temporal ones. One of the important 

requirements for the next version of the neocortexapi framework is a complete 

implementation of the algorithm, as described in section 5.8. This implementation will 

enable the final validation of the algorithm and implementation of more sophisticated 

scientific and industrial scenarios. The following sections describe in more detail the 

tasks that should be targeted in the near future. The future studies are grouped in two 

areas: Tasks related to core algorithm research and task related to industrial scenarios. 

9.5.1 Core Algorithm Research 

The following sections describe recommended future work related to the further 

research of core features of the cortical algorithm described in Chapter 5. 

9.5.1.1 Finalization of implementation of NAA 

To validate the NAA, a complete implementation of the algorithm is required. As 

mentioned, the current implementation supports the SP, TM, encoders and related 

inhibition and plasticity algorithms. However, due to the limitation of the single cortical 

area, the current version can not learn associations that are not temporal (used by TM). 

Therefore, the framework should be extended to enable a network of cortical areas to 

make this possible. As discussed in 9.4.2, such a network can build multiple contextual 

associations and enable the learning of higher-level cognitive tasks. Extending the 

framework mainly includes support for interconnecting areas by implementing apical 

synaptic connections (see 2.4). The current implementation does support proximal 

dendrite segments to sensory input (used by SP) and the distal (basal) dendrite 
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segments (used by TM). The extended version should include support for apical 

dendrite segments (see 2.5) that will connect cells and mini-columns across different 

areas, enabling contextual associations and the establishment of meaning between 

SDRs (see 9.4.2).  

9.5.1.2 Reverse Encoding 

The typical experiment in this area requires implementing the inferring (prediction) 

code. This primarily requires reverse encoding from the SDR back to the input value. 

For example, the set of active mini-columns encoded by the SP or the set of active cells 

encoded by the TM should be converted back to the spatial input or state transition, 

respectively. Currently, the neocortexapi enables such scenarios using the HtmClassifier 

component, which is not implemented by aligning with any biological finding. The 

drawback of this component is the increasing memory by increasing the number of 

input elements. The full implementation of NAA could use associations and the 

supervised labelling mechanism described in the previous section to implement the 

reverse encoding. For example, reverse encoding to the spatial input could be done by 

establishing associations between the encoder output and the encoded SDR. 

 

9.5.1.3 Feed Forward Network for hierarchical recognizing of sequences 

As discussed in 9.4.1, NAA's multiple hierarchically connected feed-forward layers can 

recognize sequences. This can be achieved by using apical connections (see 9.5.1.1), 

which will create a Feed-Forward layered cortical structure shown in Figure 62. The 

output of every layer is the SDR, a set of active cells calculated in this case by the TM. 

Because every SDR semantically represents a transition from the state, it will be used 

as a higher-level contextual input (not just an element in the sequence) for the next 

layer. In this context should also be investigated if using the feedback connection can 

improve the learning process. This implementation should validate that NAA can 

produce results originally found by (Hubel, Wiesel, 1959). 

9.5.1.4 Invariant Object Representation 

As discussed in chapters  5.7 and  7, Spatial Pooler recognizes spatial patterns, which 

group patterns by spatial similarity, but does not provide any semantic relation 

between them. To semantically associate patterns in a specific context, the SP SDR 

should be connected with other contextual areas of different sizes of the receptive field. 
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For example, SP1 can learn a specific pattern in the receptive field (see 2.3) in size 28x28, 

and SP2 can learn the same pattern in size 64x64. The same principle can be applied to 

rotated patterns etc. All SPs that learn a different pattern variation will build 

associations to the same pattern that represents a context in a different area, as 

discussed in section 9.4.2. The set of all learned SPs can be used to predict spatial 

patterns in a learned position. 

9.5.1.5 Implementation of Grid-Cells 

The current version of the algorithm and its framework implementation uses various 

encoders described in section 5.5. The information observed by theoretically any sensor 

can be encoded to SDR, which is used as input for further processing. The encoded 

input is typically used by the Spatial Pooler to create the SDR representation in the 

form of active mini-columns, which TM uses to produce the cell SDR. However, the NAA 

does not explicitly propose how the SDR of active cells should be created. That means 

any kind of encoding can be used inside an area to represent some mental or other 

state. For example, one of the encoding mechanisms can be implemented with the help 

of Grid Cells (see 9.4), which typically encode a location but can be used to encode 

mental states. This task aims to provide support for Grid Cell encoding inside of NAA 

and investigate the impact on learning of associations. 

 

9.5.1.6 Applying Alpha and Gamma Cycles and error feedback 

There is biological evidence that the learning process in the brain is organized in phases 

within alpha and gamma cycles (O’Reilly, Wyatte, Rohrlich, 2017). Alpha cycles are 

defined by 100ms (10Hz) oscillations and typically characterize the dynamics of the 

deep neural network. In contrast, superficial network layers are characterised by 

Gamma oscillations of 25ms (40Hz). The current version of NAA does not make explicit 

usage of both cycles. However, as discussed in section 9.4.1, learning at lower levels is 

faster because every next higher level must wait on the result of the previous level. 

 

The framework Deep Leabra discussed in section 3.2 provides a model that uses named 

cycles. It should be investigated if and how alpha and gamma oscillations occur in NAA, 

intending to understand their meaning better. Another interesting aspect of this 

framework that needs to be examined is using the feedback error. 
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9.5.1.7 Investigating Inhibition  

In this research, multiple inhibition algorithms have been tried. However, no significate 

influence on the performance has been noticed. Therefore, in future work, the inhibition 

algorithm should be more focused on analysing how the inhibition process influences 

the sparsity and the overall performance of the learning process. 

9.5.1.8 Hardware Implementation 

As described in Chapter 6, this work delivers a proposal and the framework for running 

the algorithm in parallel clusters of many nodes. However, to increase performance, 

implementing the NAA on the hardware platform could enable the implementation of 

new scenarios.  

9.5.2 Industrial Scenarios 

This section describes some important and valuable industrial scenarios that 

should/can be implemented using NAA and HTM. 

9.5.2.1 Anomaly Detection 

The capability of learning sequences by creating the temporal contextual association 

(see 5.9) can be used for anomaly detection scenarios. For example, the sequence of 

elements ABCDEFG or numbers 1.5, 75, 9, and 3.5 can be learned by NAA. As described 

in section 5.9, the algorithm holds a set of predictive cells in any learning cycle. When 

element B appears, the set of predictive cells that encode the next element C will be 

depolarized etc. The anomaly detection solution can easily be implemented by 

observing the next predicted element (see ComputeCycle.PredictiveCells in 

neocortexapi framework) and comparing it with the actual element. When predicting 

numbers like power consumption or similar predictions, a more complex solution can 

be created. In such cases, the NAA can predict precisely the expected learned value, 

like 123.45. The anomaly detection code should be optimized for the specific industrial 

scenario and allow some reasonable tolerance. For example, similar to the scalar 

encoder (see 5.5), all values in the range 120.00-125.00 should not be detected as an 

anomaly. With this approach, values are not encountered as discrete values but rather 

with a configurable overlap between nearby values (see Figure 22). 
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9.5.2.2 Video Detection and Image Classification 

The capability of the sequence learning and neural associations makes possible 

implementation of the video learning algorithm easy. The NAA algorithm 

implementation in the neocortexapi already contains a component for encoding the 

image into the SDR that can be used as input of the Spatial Pooler. The incoming video 

stream should be split into a sequence of frames, encoded by the image encoder to 

SDR and learned by NAA. The learning can be done by sequence learning or by 

associative learning. Every learned frame should be associated with the video. The 

prerequisite for this experiment is the full implementation of NAA, as described in 

section 9.5.1.1. 
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9.6 Summary of novelties and important findings 

This section summarizes all the important findings and novelties of this work. 

 

1. Understanding and applying the biological encoding of sensory input to SDR 

(see 5.5). 

 

2. Proposal for Neural Association Algorithm as a generalization for HTM-CLA (see 

sections 5.8 and 9.4). 

 

3. Understanding and controlling the robustness to noise and similarity in Spatial 

Pooler (see sections 7 and 9.2). 

 

4. Understanding of the instability of the Spatial Pooler due to structural plasticity 

(see Chapter 8). 

 

5. Solving the instability of the SP by introducing the newborn stage (see Chapter 

8). 

 

6. Proposal for solving plasticity-stability dilemma (see section 9.3). 

 

7. Proposal for spatial and temporal representation of the state defined by SDR 

(see section 5.9, Figure 33). 

 

8. Proposal for definition of meaning and contextual associations (see section 

9.4.2). 

 

9. Proposal on how sequence learning and temporal associations can enable 

higher-level meaning, akin to how Complex Cells function (see section  9.4.1). 
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10. Design and implementation of the opensource framework neocortexapi in C# 

with support for Encoders, Spatial Pooler, Temporal Memory, Homeostatic 

Plasticity Controller (newborn stage), HtmClassifier (SDR reverse encoding), 

Neural Association Algorithm and Predictor for Multisequence Learning (see 

section 5.8). 

 

11. Design and implementation of the lightweight Actor Model Framework for 

cortical calculation (see 6.2). 
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