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A M WILSON - REPRODUCTIVE ALLOCATION IN FLOWERING PLANTS 

ABSTRACT 

The proportion of resources which an organism devotes to reproduction 
has been assumed to be of great evolutionary and ecological 
significance. However, in previous studies of reproductive allocation 
(RA) in plants, there has been no consensus of precisely what is being 
measured nor how it should be measured. An attempt was made to 
determine the 'best' method of measuring RA and then apply this to a 
range of species with differing ecological strategies. 

Under nutrient stress caused by a low N treatment Taraxacum officinale 
and Poa annua were found to maintain their RA despite up to 4 fold 
reductions in biomass. Under K and P deficient conditions there was a 
preferential allocation of these elements to reproductive structures in 
Taraxacum. Ruderal plants therefore, seem to maintain biomass RA and 
seed quality despite nutrient stress. 

Although the nutrient RA in Taraxacum was found to be significantly 
different from biomass RA (KRA = 71% PRA = 66% BRA= 51.7%) the 
extent of the difference varied between treatments. There was 
therefore no obvious alternative currency to biomass. 

The evolutionary consequences of reproduction may also be measured 
through a reproductive cost which may take the form of reduced future 
reproduction, survival or growth. Prevention of flowering in Digitalis 
purpurea resulted in an increase in the number of axillary buds 
produced, Similarly in Plantago lanceolata removal of flowers resulted 
in a 3 fold increase in production of buds. In both species 
realisation of a reproductive cost was prevented. The importance of 
individual variability was noted. 

The importance of plant morphology was evident and was used to explain 
some of the anomalous RA values in the comparative experiment. RA 
values were collected for 40 species of Gramineae. RA was a useful 
ecological index which emphasised the ruderal element of a plant's 
strategy. When used in conjunction with other parameters particularly 
Rmax, RA produced a meaningful classification of species in terms of 
their ecological strategy. 
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CHAPTER 1 - INTRODUCTION 

The concept of resource allocation by organisms has been thought to be 

of evolutionary and ecological significance. The way in which an 

organism partitions finite resources between its various activities 

will determine the probability of its passing on its genes to 

succeeding generations. The 'principle of allocation' (Cody 1966) is 

that natural selection results in each organism optimising the 

partitioning of its resources to maximise fitness (see Ch. 4). This 

principle was originally developed to apply to birds but the 

constraints of a finite world where resources are limited and need to 

be subdivided, must also apply to plants. 

Natural selection does not favour any particular pattern of allocation 

per se, but acts by optimising the genetic contribution of an 

individual to future generations, relative to the contribution of other 

individuals. Any allocation pattern that increases that contribution 

will be favoured. The proportion of resources allocated to 

reproduction will not necessarily be equivalent to fitness since finite 

resources devoted to reproduction must be obtained at the expense of 

·other functions such as defence and growth. Nevertheless much 

attention has been focussed on the reproductive allocation or effort of 

species in relation to their ecological and evolutionary status. 

The variability of plant size, number of inflorescences and 

reproductive capacity (the seed characteristics) of plants on fertile 

and infertile soils was first noted by Salisbury (1942). He drew 

attention to the broad correlations between the reproductive capacity 

of a species and its ecological status. However, as Harper and Ogden 

(1970) noted, reproductive capacity itself has not proved very 

successful as a criterion for making ecological comparisons and they 
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suggested that the proportion of total resources that a plant devotes 

to reproduction might be more useful. 

Since their application of reproductive allocation or effort to plants 

there has been much controversy about what exactly constitutes 

reproduction and which method should be adopted in order to measure it. 

Some of the difficulties inherent in reproductive allocation studies 

are explored in Ch.2. Antonovics (1980) believes that much of the 

confusion in reproductive allocation studies arises from a confusion of 

perspective and purposes. Studies have differed in perspective in 

their interest in: 

a. The mechanics of the generation of the allocation pattern in 

physiological terms. 

b. The origin of the allocation pattern in an evolutionary sense 

(ie its adaptive significance). 

c. The measurement of an allocation pattern as an approximation 

of the life-history of the organism. 

A suitable method for measuring RA should be chosen dependent on the 

purpose of the study. 

Harper and Ogden (1970) introduced the use of biomass allocation (the 

proportion of total biomass stored in each organ) as a way to study 

allocation patterns and this method has subsequently been used to 

approach a variety of questions (Gadgil and Solbrig 1972, Ogden 1974, 

Hickman 1975, 1977 Holler and Abrahamson 1977, Pitelka 1977). One of 

the most frequently posed questions in allocation studies is the effect 
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of stress on allocation patterns. In particular environments, certain 

patterns of resource allocation might confer greater fitness. Where a 

species has a plastic ability to adjust to environmental conditions the 

allocation pattern might be re-aligned to conform with changing 

environmental circumstances. An environmental stress might take many 

forms eg drought, shade or nutrient deficiency. The effect of one 

particular stress - nutrient deficiency - on reproductive allocation in 

two species is investigated in Ch.3. 

The identification of biomass as the crucial limiting resource, 

however, has always been a critical assumption in many previous studies 

of RA. If the evolutionarily important allocation patterns are to be 

revealed then biomass itself should be the crucial limiting resource or 

alternatively it should follow the same allocation pattern as the 

limiting resource. It has been suggested (Lovett-Doust 1980a, Stewart 

and Thompson 1981) that mineral allocation might be a more appropriate 

currency by which to gauge RA. This suggestion is explored in Ch.4. 

through chemical analysis of the composition of plants obtained from 

the nutrient limitation experiment. 

Although it might appear that it would be most adaptive for an organism 

to allocate as much of its resources to reproduction as possible (since 

this would seem to maximise its contribution to the next generation) 

this is often not the case. Within an individual, present growth and 

survival increase future survival and future reproduction. Present 

reproduction entails a reproductive cost in terms of future growth, 

reproduction and survival. Bell (1980) argues that measurement of this 

reproductive cost is more relevant to fitness than RA. It is this 

reproductive cost which has an evolutionary consequence. The 
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possibility of measuring reproductive cost in terms of future survival 

and growth (5.1) and future reproduction (5.2) is investigated in Ch.5. 

Once the most satisfactory method of measuring RA has been determined 

it can be applied in comparative experiments to determine the 

ecological and adaptive significance of various life history 

strategies. The value of comparative experiments has been noted by 

Grime (1984) and in Ch.6 the RA of various species of Gramineae of 

contrasting ecology is compared and discussed. 
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CHAPTER 2 - PROBLEMS INVOLVED IN MEASURING REPRODUCTIVE ALLOCATION 

In many studies of reproductive allocation there has been no consensus 

of exactly what is being measured, nor how it should be measured. 

Consequently both conceptual and methodological difficulties arise. 

2.1 Conceptual Problems 

Much confusion occurs over the terminology used in RA studies and, to 

avoid further confusion, the rationale behind the terminology used in 

this work should be explained. The proportion of resources which a 

plant devotes to reproduction was originally termed the 'reproduc~ive 

effort' (eg Harper and Ogden 1970). However, in an evolutionary 

context, this term does tend to imply thought and purposefulness on the 

part of the plant and could lead to misleading views and conclusions 

(Antonovics 1980). Moreover, the 'reproductive effort' as originally 

defined by Harper and Ogden (1970) only considered the energy or weight 

of the reproductive propagules (together with their protective tissues 

and dispersal aids where present). Stewart and Thompson (1981) and 

Waite and Hutchings (1981) have argued that this definition ignores the 

cost of producing any associated structures on which reproduction 

depends. In certain species eg scapigerous plants the investment in 

these structures can be considerable. ''Reproductive Effort" has also 

been used as a term to cover this wider definition by some authors eg 

Gadgil and Solbrig (1972). However the term 'Reproductive Allocation' 

was used by Hickman 1975, 1977) to refer to this broader definition and 

this terminology was preferred by Waite and Hutchings (1981). 

Throughout this thesis 'RA' is used in the broader sense, meaning the 

total proportion of resources devoted to reproduction. Ideally this 

term should (for the reasons outlined in the following paragraph) refer 

to all the reproductive structures but some authors do not include all 
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reproductive structures in the definition. 

Stewart and Thompson (1981) contend that RA or 'Total Reproductive 

Effort' as they term it, gives a more realistic estimate of the total 

resources devoted to reproduction than does seed output. The 

production of the floral apparatus and its associated structures is 

obviously part of the 'effort' involved in reproduction whereas seed 

output is the result of the interaction of this effort with a number of 

environmental variables such as pathogens, climate, predators, 

pollinators etc over which the plant has little or no control. 

However, if this definition is accepted, it gives rise to a further 

conceptual problem. Some species eg scapigerous plants can be 

distinctly separated into vegetative and reproductive parts. In 

species with an erect leafy structure, the reproductive stem above the 

highest leaf may reasonably be counted as reproductive. However, 

difficulties arise when considering rosette plants where the flowering 

spike bears cauline leaves. These leaves may produce sufficient 

photosynthate to enable the production of the entire flowering 

structure. Indeed Bazzaz and Carlson (1979) have shown that flowers 

may bear a large proportion of the photosynthetic cost of their own 

production and undoubtedly the green scapes of scapigerous species must 

contribute much photosynthate to the production of the reproductive 

apparatus. Stewart and Thompson (1981) argue that if the concept of a 

limiting resource in the principle of allocation is to be meaningful 

then biomass or energy cannot be the appropriate currency by which RA 

should be gauged. They suggest that mineral allocation could be a 

plausible alternative and this possibility is investigated further in 

Ch.4. 
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An additional conceptual problem has been suggested by the work of Van 

Andel and Vera (1977). The reproductive strategy of a species may vary 

according to the level of stress in the environment. The level of 

mineral nutrient depletion which completely prevented the perennial 

fro m flowering, 
Chamaenerion angustifolium;had no effect on the RA of an annual 

~necio sylvaticus. This reflects a general problem inherent in 

comparing the RA of perennials and annuals. Moreover, in the case of 

Chamaenerion, which level of RA should be considered the norm; the RA 

under stress or without stress? Or should the range of possible RA 

levels within a species be measured? The problem of the variation in 

RA under conditions of stress (specifically nutrient stress) is 

considered in Ch.3 and the value of comparative experiments which 

investigate RA under uniform conditions is discussed in Ch.6. 

It has also been postulated by Bell (1980) that RA may not be the 

quantity or factor which is of evolutionary importance to the plant. 

He suggests that it is the cost of reproducing which is of consequence 

in evolutionary terms. That is, the deleterious effect of a certain 

level of reproduction on future survival, growth and reproduction is of 

more significance than the quantitative level of that reproduction per 

se. This approach to measuring reproductive allocation is discussed in 

Ch.S. 

All of these conceptual problems lead to methodological problems in the 

measurement of RA. These practical problems become evident when trying 

to design experiments on RA. 

2.2 Methodological problems 

If, as suggested in 2.1, allocation to all reproductive structures 

should be considered then the practical problem of exactly which 
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structures to include as reproductive material becomes app arent. 

Obviously, species can be chosen which have a structure that 

facilitates division into reproductive and vegetative parts, but when 

comparative experiments are desired (eg Ch.6) the problem becomes more 

acute. If all structures not possessed by the vegetative plant are 

counted as reproductive, then in annuals in which flowering invariably 

takes place eg Senecio vulgaris, RA should technically be regarded as 

100%. A more conventional approach is to include either only the 

flowers or everything above the highest leaf as being reproductive. 

This latter definition seems preferable (and is usually adhered to 

throughout this thesis) since it includes the peduncles and those parts 

of the stem whose only function is the support of the flowers. 

However, it may underestimate RA in rosette plants with tall leafy 

flowering spikes such as Digitalis purpurea. 

Related to the conceptual problem concerning the variation in RA under 

different environmental conditions is the problem of laboratory versus 

field experiments. Genetic and environmental influences on RA are not 

separable in the field. The problem is summarised by Gadgil and 

Solbrig (1972). 

increased birth rate under conditions of DI mortality is not 

sufficient evidence for a r-strategy •••••• The crucial evidence •••••• 

is whether an organism is allocating a greater proportion of its 

resources to reproductive activities •••••• under any and all DD and DI 

mortality conditions. 

In some cases eg Raynal (1979) differences in RA between quarry and 

meadow populations, observable in the field, disappear when the plants 

are grown under controlled laboratory conditions. Environmentally cued 
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variations in RA tactics may occur in field experiments. Those 

investigators eg Gaines et al (1974), Newel! and Tramer {1978) and 

Abrahamson (1979) who have only measured RA in the field have failed to 

eliminate any environmental effects on RA. The results of Harper and 

Ogden (1970) and Van Andel and Vera (1977) suggest that any given 

population of a species possesses a fixed maximum potential RA which is 

realised under ideal or optimum conditions. 

Nevertheless, there are circumstances where conditions are presumed to 

be optimal and yet not all of the individuals in a population flower. 

The question then arises as to whether the true RA of the population is 

represented by the RA of the individuals which flowered or the RA of 

the population as a whole, including those individuals which did not 

flower and whose RA was consequently zero. This situation occurs in 

Ch.4 and Ch.7, although the solution adopted is different in each case. 

Perhaps this question can only be resolved in the context of each 

individual experiment and species under consideration. 

A further practical difficulty concerns the timing of the measurement 

of RA. Since different parts of the reproductive apparatus attain 

their maximum size at different times it is possible that no single 

measurement can be entirely satisfactory. A possible solution to this 

problem would be to take serial harvests in order to determine the 

maximum development of each part and calculate RA by summing the 

maxima. This method could, however, over-estimate RA if (as seems 

likely) there is appreciable reallocation of resources between 

reproductive structures during the course of flowering. If the 

difference between serial estimates and single estimates is not great 

the single harvest method seems preferable because of the relative ease 

and simplicity of measurement. 
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In statistical analysis of RA data difficulties often occur because the 

figures under consideration are usually percentages or proportions. 

Although these figures can easily be transformed, it does make small 

variations in variables less easy to detect. 

Consequently the area of RA research is fraught with various problems, 

both conceptual and methodological, which hinder the interpretation of 

existing research material. In the following chapters an attempt is 

made to resolve some of these problems, both by the re-examination of 

published data and by the presentation of the results of new 

experiments. 
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CHAPTER 3 - THE EFFECT OF NUTRIENT STRESS ON THE PLASTICITY OF 

REPRODUCTIVE ALLOCATION 

3.1 Introduction 

3.1.1 The advantages of a plastic allocation strategy 

The partitioning of resources by organisms has been regarded as of 

great evolutionary and ecological significance. (see Chapter 1). The 

way in which an organism allocates limited amounts of resources to 

either growth, maintenance or reproduction will affect its fitness. In 

particular environments certain patterns of resource allocation might 

confer greater fitness. Thus, in organisms with plastic abilities to 

adjust to environmental circumstances, one might expect a re-alignment 

of the allocation pattern in different environments (Snell and Burch 

1975). The modification of the basic genotypic programme or strategy 

may be expressed in a range of phenotypes representing varied tactics. 

The strategy itself determines the range of possible tactics (Bradshaw 

1965) and the particular developmental pathway which is followed will 

depend on the environmental conditions to which the organism is 

exposed. 

Genetically determined differences in allocation strategy may also be 

found in populations in different habitats (See chapter 6), Much of 

the available evidence pertaining to variations in RA does not 

distinguish between genetic and phenotypic variations and evidence 

which does not prove any observed variation in .RA to be phenotypic has 

been omitted from this chapter. 
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3.1.2 Selection for phenotypic plasticity 

The plant's strategy (or genotype) itself determines the possible range 

or breadth of possible tactics. Transplant experiments have shown that 

each genotype has its own genetically determined degree of 

modifiability or plasticity. Hiesey, Clausen and Keck (1942) found 

that plants of Achillea borealis from a large colony growing under 

favourable conditions produced very variable offspring and were 

apparently highly heterozygous. On the other hand, progeny from 

individuals growing in a small population on an exposed coastal bluff 

were much more nearly uniform indicating a much more severe action of 

selection in the latter locality. Bostock (1980) found that different 

populations of Tussilago farfara differed in the range of their plastic 

responses ie plants from certain areas exhibited more variation in 

their allocation patterns than others. Antonovics (1980) suggests that 

if the environment in which an individual is likely to find itself is 

unpredictable there may have been selection for phenotypic responses 

that allocate resources in such a way that life history is optimal for 

any particular environment. Similarly, Hickman (1975) argues that the 

developmentally plastic changes in reproductive strategy which he finds 

in Polygonum cascadense are the likely outcome of the short-term 

unpredictability of the environment in which the species grows. In 

extreme sites plants with a narrow range of responses may be selected 

whereas in less extreme and more variable sites plants with a wider 

spectrum of responses might be at a selective advantage (Briggs and 

Walters 1984). 

3.1.3 The plasticity of reproductive allocation 

Harper (1967) first raised the question of whether the proportion of a 

resource (in his case energy) which a plant allocated to seed 

production was fixed and characteristic of a species or group of 
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species, or whether it was plastic, being subject to change in response 

to environmental stress. It is known that plants display greater 

phenotypic plasticity than animals (Briggs and Walters 1984). Adaptive 

modifications may be initiated by a direct response to the 

environmental factor adapted to or may be triggered by other factors 

(Bradshaw 1965). Also, the plastic variations may be fixed early in 

development or may occur at any time as growth proceeds allowing a 

continuous adjustment to the environment. Species of indeterminate 

growth such as Vicia faba may respond to a stress such as density by 

altering the number of plant parts formed whereas species of 

determinate growth such as Helianthus annuus tend to respond by changes 

in the size of plant parts (Harper 1961). 

Transplant experiments eg by Clausen, Keck and Hiesey (1940) have shown 

that the phenotype can be altered much more profoundly in some 

characteristics than in others. Stebbins (1950) argued that characters 

formed by long periods of meristematic activity eg total plant size 

will be more subject to environmental influences and are likely to be 

more plastic than characters formed relatively rapidly eg floral 

organs. Indeed, Silvertown (1982) notes that although total net 

assimilation and' total seed production may be decreased drastically by 

stress or interference from other plants, RA is often less severely 

affected. Nevertheless, clear plasticity in RA is known to occur eg in 

iteroparous plants there may be years in which vegetative growth 

continues but no flowers are produced. Plastic differences in RA in 

response to environment have been found in annuals by Hickman (1975) 

for Polygonum cascadense and Snell and Burch (1975) for Chamaesyce 

hirta, and in perennials by l~igham (1973) for Uvularia perfoliata and 

by Ogden (1974) for Tussilaso farfara. 
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3.1.4 The effect of environmental conditions on RA 

In addition to studies which have studied the effect of nutrient 

availability on plastic variation in RA (see 3.1.5) there have been 

others which have considered the effect of other environmental 

influences on RA. Some authors have considered phenotypic variation in 

RA over environmental gradients in the field eg Hickman (1975, 1977) 

and Whigham (1973), while others have considered the specific effects 

of certain stresses such as density (Snell and Burch 1975, Waite and 

Hutchings 1982, Ogden 1974), light (Pitelka et al 1980, Lee and Cavers 

1981) and water (Cunningham et al 1979). The results of this work have 

often been confusing since they frequently depend on the specific 

characteristics or strategy of the species studied eg whether they are 

annuals or perennials, have vegetative reproduction etc. In addition 

to this difficulty much of the available work which has observed 

species in field situations does not adequately distinguish between the 

effect of the different stresses which may operate at specific 

locations. De Ridder et al (1981) suggest that under different 

circumstances the effect of multiple stresses may counteract each other 

or work in the same direction eg water stress at an early stage in 

development may counteract the negative effect of nitrogen supply on 

the harvest index, whereas water stress at a later stage in development 

may •ncrea~ the unfavourable effect. Grime (unpub) has found that 

plants of Poa annua react very differently in response to shortages of 

water, light or nutrients. The response of a plant may depend on 

whether the species has been regularly exposed to the particular stress 

during its evolutionary history. In this case it may have 'learnt' an 

appropriate responseto the particular stress under consideration. Also 

the ratio of seed to total biomass is closely related to nutrient 

translocation processes from the vegetative to reproductive parts 

(Donald and Hamblin 1976) so that the stage in development at which 
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stresses occur is also important. Given these factors, it is crucially 

important that in work on RA the effects of different stresses are 

separated. Nevertheless, some generalisations about the range of 

possible phenotypic responses of RA to environmental variables can be 

made. 

i. Constancy 

The first possible response of RA to the environment is not to 

change at all ie to have an unplastic strategy. This type of 

response has been identified in several studies. The proportion of 

total biomass allocated to reproductive tissues in Senecio vulgaris 

(Harper and Ogden 1970), Senecio sylvaticus (Van Andel and Vera 

1977), Taraxacum officinale (Gadgil and Solbrig 1972) and Veronica 

agrestis (Harris and Lovell 1980) was found to be constant over a 

range of artificial stresses such as reductions in pot size and 

nutrient concentrations. In many of these cases the stresses 

imposed caused great reductions in plant weights but nevertheless 

the proportional allocation to reproduction was maintained. 

A possible variation on this type of strategy is to maintain a 

constant RA in those individuals which flower but to vary the 

proportion of flowering individuals. Many of the previous studies 

on RA have used population means in their analysis and thus 

variations in the numbers of plants which flower have been masked. 

This alternative reproductive strategy has been identified by 

Stewart and Thompson (1982). 

The perennial Chamaenerion angustifolium showed no variation in 

individual RA with treatments of mineral fertilizer but at higher 

stress many plants failed to flower (Van Andel and Vera 1977). 
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Harper and Ogden (1970) found that at the highest stress level, 

flowering in Senecio vulgaris became very erratic. Similarly 

Pitelka et al (1980) found that light level affects size of Aster 

acuminatus. Only large plants produced flowers suggesting that 

light level affects sexual reproduction indirectly through plant 

size. Many plants need to attain a critical size or nutritional 

status before flowering can be initiated (Stewart and Thompson 

1982) and thus environment may affect the population RA by limiting 

the size of plants and hence the resulting number of flowering 

plants. 

ii. individual variation in RA 

Variability in individual allocation to reproduction can be in 2 

directions. An increase of RA in response to environmental 

harshness has been observed by Hickman (1975) for Polygonum 

cascadense. Plants allocated proportionately more of their biomass 

to reproduction in harsh, open, dry habitats. Populations of 

Andropogon scoparius behaved similarly (Roos and Quinn 1977). RA 

was phenotypically greater in early successional stages, probably 

because the date of first anthesis was later with increase age of 

field. 

Alternatively, individual RA may decrease with increasing stress eg 

Chamaesyce hirta decreased the level of individual RA with 

increasing density (Snell and Burch 1975). The perennial Tussilago 

farfara decreasQd vegetative RA with increasing density but seed RA 

remained relatively constant (Ogden 1974). 
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iii. correlation of RA with plant size 

A further possible mechanism of variation in RA has been identified 

by Reinartz (1984) and Waite and Hutchings(l982). In several 

populations of the biennial Verbascum thapsus there was a positive 

correlation between plant size and RA (Reinartz 1984). This type 

of strategy was also found in 3 populations of Plantago coronopus 

(Waite and Hutchings 1982) where RA increased as plant size 

increased. l~aite and Hutchings (1982) suggest that the adaptive 

value of this strategy is related to the fact that the length of 

time before flowering in Plantago coronopus is flexible ie it has 

the option of completing an annual, biennial or perennial life 

cycle. Under these circumstances the costs of reproduction in 

terms of the subsequent probability of survival become particularly 

important. A plastic weight-related reproductive strategy can be 

considered an evolved adaptive trait which can be explained in 

terms of individual plant fitness. 

3.1.5 The effect of nutrients on plastic variation in RA 

The effect of nutrient availability on RA is not easily discernible. 

In many cases the relative biomass allocation to reproduction remains 

constant in spite of large effects on plant weight. This phenomenon 

was found for Senecio vulgaris by Harper and Ogden (1970) where despite 

a 7-fold decrease in plant weight as a result of decreased soil volume, 

the allocation to reproductive structures remained constant. Similarly 

Fenner (in press) found that RA in Senecio vulgaris remained fairly 

constant (30.9% - 32.6%) over a range of nutrient concentrations. 

Senecio sylvatica also showed a lack of response to the addition of 

mineral fertilizers (Van Andel and Vera 1977) as did Plantago coronopus 

(Waite and Hutchings 1982), Plantago major and Spergula arvensis 

(Trivedi and Tripathi 1982). 
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However in contrast to these studies, RA has been found to increase 

with addition of nutrients in 2 species of Asclepias (Wlllson and Price 

1979), where the application of fertilizer increased the proportion of 

plant weight invested in pods, and for desert winter annuals (Wllllams 

and Bell 1981). Kawano and Hayashl (1977) found that the annual grass 

Calx ma-yuen generally responded to increased availability of nitrogen 

by increasing RA, while low nutrient levels reduced RA of Chamaescye 

hirta at all densities (Snell and Burch 1975). Similarly Lovett Doust 

(1980b) found that a low nutrient treatment had less than half the RA 

(blomass) of a control treatment in Smyrnium olusatrum. This effect 

was even more marked when the allocatloa of phosphorus was measured. 

In some plants the effect of reduction in nutrients is to alter the 

proportion of plants which flower eg Chamaenerion angustlfolium 

increased the proportion of flowering plants with increasing levels of 

fertilizer (Van Andel and Vera 1977). Suggestions of a similar effect 

have been found in Smyrnium olusatrum (Lovett-Doust 1980) and Senecio 

vulgaris (Harper and Ogden 1970). 

Alternatively, De Ridder et al (1981) state that nitrogen application 

generally results in a decrease in the ratio of seed to total blomass 

in cereals. Wllllams and Bell (1981) suggest a possible explanation 

for this reaction. In some plants, under conditions of nitrogen 

deficiency, photosynthesis and growth are penalised in favour of 

reproduction, thus ensuring ma~lmu~seed production. However, when the 

deficiency is alleviated the competition between photosynthesis and 

seed production processes is reduced and the photosynthetic tissues 

benefit relatively more. 
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Despite the quantity of work on the general effect of nutrients on RA 

there is very little published work on the effect of individual 

nutrient elements on RA. Some of the work which assesses the effect of 

fertilizer applications on RA uses nitrogen fertilizer eg Kawano and 

Hayashi (1977) Williams and Bell (1981) and Trivedi and Tripathi (1982) 

but the observed response of RA to nitrogen varies. Interest in the 

effect of individual nutrient elements on RA has been stimulated by the 

controversy over the correct currency by which to measure RA (Lovett 

Doust 1980b, Thompson and Stewart 1981, Silvertown 1982). In Lovett 

Doust's (1980b) experiment on Smyrnium olusatrum the allocation of 

phosphorus is measured. However, there is no particular justification 

for phosphorus, rather than any other nutrient element, to be selected. 

Indeed, as Silvertown (1982) points out, the allocation of phosphorus 

and biomass to reproductive structures in the low nutrient treatment is 

very similar, suggesting that in fact phosphorus was not the limiting 

nutrient in impoverished soil. The limiting nutrient element could 

only have been determined by selective addition or limitation of 

various nutrient elements. Accordingly, the following experiment was 

designed, in order to: 

i. determine the effect of selected nutrient deprivation on RA; 

and 

ii. determine the most appropriate currency by which to measure 

RA. 
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3.2 Methods 

3.2.1 Species 

Species were selected using criteria which would enable efficient 

sampling and analysis. Taraxacum officinale and Poa annua were chosen 

because of their rapid growth rate and their facility in harvesting. 

In reproductive allocation studies it is important for a species to 

have relatively distinct vegetative and reproductive parts (see ch.2). 

It is also important that a species should not be pollinator limited, 

as occurs in certain species (Bierzychudek 1981), since this would 

affect the quantity of seed set. The presence or absence of 

pollination may also affect the weight of achenes produced in certain 

species (Van Leeuwen 1981). 

Taraxacum officinale is a perennial species with a rosette growth form. 

The species is apomictic ie fruits ripen independently of 

fertilisation. Over 100 forms or clones have been recognised in the 

British Isles (Clapham, Tutin and Warburg 1962). It is usually found 

in waste places, waysides, meadows and grasslands and is generally 

considered to be adapted to a competitive grassland habitat (Bostock 

and Benton 1979). Bostock and Benton (1979) have also shown that 

Taraxacum officinale has a very low rate of vegetative reproduction and 

the absence of vegetative reproduction would simplify any subsequent 

analysis. 

Seed had been collected from a single plant in the previous season and 

it was originally intended to use this seed. This would have reduced 

any genetic variability especially since the species is apomictic. 

Unfortunately, however, germination tests showed that hardly any of 

this seed was viable. Bostock (1978) has shown that Taraxacum 
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officinale seed stored in soil has a half life of approximately 3 

months so the majority of seed does not survive to a subsequent growing 

season. Moreover Grime et al (1981) have shown that Taraxacum seed 

which has been dry stored for 3-6 months has a significantly lower 

germination rather than freshly collected seed. Consequently, seed 

had to be collected at the time (December) from whatever plants were 

available in local waste ground. 

Seed from Poa annua - a ruderal grass - had been collected the previous 

season from a pasture site. Although often annual, biennial (or short­

lived perennial) individuals of Poa annua are known (Law et al 1977). 

Individuals are generally inbreeding (Ellis 1974) so it was hoped that 

there would be little variation in seed collected from a homogeneous 

site. Poa annua is found in open habitats throughout the British Isles 

(Clapham, Tutin and Warburg 1962). 

3.2.2 Nutrient Treatments 

The seeds were germinated and grown in John Innes No 1 potting compost 

until they were large enough to be handled. The seedlings were then 

planted out in February 1981 into 5" pots containing perlite - a 

chemically expanded volcanic rock. This was considered to be a 

suitable neutral medium for plant growth. The pots were then placed in 

trays on raised benches in a greenhouse at Rumleigh experimental 

station. The greenhouse was kept at a temperature of minimum 15°C -

maximum c. 23°C and additional light from mercury lights was available 

at the beginning of the season. 

Control plants were watered with a standard nutrient solution obtained 

from tables in Hewitt (1966). The macro-nutrient composition was of 

the 4-salt type used by Shive and Robbins (1942) which has been 
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successfully used for a wide range of crops in sand and water cultures. 

The micro-nutrient composition was taken from complete nutrient 

solutions based on nitrate or ammonium nitrogen as used at Long Ashton 

(Hewitt 1966). This 4-salt nutrient solution was chosen in order to 

facilitate manipulation of the nitrogen, potassium and phosphorus 

content in any treatments. 

The treatment plants were given nutrient solutions with ionically 

determined levels of deficiency of nitrogen, phosphorus and potassium. 

(See table 3.2.1 for exact composition of each treatment nutrient 

solution). These 3 nutrient elements were selected because they are 

mobile nutrients and are generally thought to influence plant growth and 

reproductive output (Chapin 1980). In total there were 7 different 

nutrient solutions: A, the control: B, 50% of the original N content: 

C, 20% of the original N content: D, 50% of the P content: E ,, 20% of 

the p content: F, SO%K: G, 2Q%K. 

Very low or high pH can impair the absorption of certain minerals eg 

phosphor~and iron (Hewitt 1952). Since some of the compounds present in 

the original control nutrient solution had been replaced by others in the 

treatment nutrient solutions eg Na 2so4 for NaN0 3 it was decided to check 

the pH levels of the treatment nutrient solutions. The results are in 

table 3.2.2. Since there were no large discrepancies in pH level and 

Hewitt (1966) states that the influence of pH appears to be relatively 

unimportant between 5 and 7, (provided iron remains available) it was 

decided to proceed with the experiment. 

Nutrient solutions were made up at 100x concentrations and diluted every 

week. 10ml of the diluted solution was added to each pot. Fresh iron 

citrate solution was made up weekly since this solution degrades in 
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TABLE 3.2.1- COMPOSITION OF NUTRIENT SOLUTIONS 
g/litre (after Shive and Robbins 1942) 

MACRO NUTRIENTS 

Salts NaN03 

A Control 0.34 
B tN 0.17 
c 1/5N 0.068 
D tP 0.34 
E 1/5P 0.34 

F tK 0.34 
G 1/5K 0.34 

MICRONUTRIENTS (PRESENT 

Fe Citrate 5H20 
MnS04 4H20 
zn so4 7H2o 
CuS04 5g 2o 
H3 B03 
Na 2Hao4 2HO 
NaC1 
c0 so4 7H2o 

Mg so47H2o eac1 2 KH 
2Po4 NaS04 

0.514 1.1665 0.214 
" " 0.214 0.142 
" " 0.214 0.2272 
" " 0.017 
" " 0.0428 

" " 0.107 
" " 0.0428 

IN EACH SOLUTION) 

g/litre 
0.0335 
0.00223 
0.00029 
0.00025 
0.00031 
0.00012 
0.0058 
0.000056 

Stock soln requirement 
6.70 g 

K so4 2 

0.0683 
0.10927 
NaH2Po 42H2o 
0.12246 
0.1959 

Each solution made up at 100 times concentrations from complete nutrient 
solutions used at Long Aston (Hewitt 1966) 

AN EXfu~LE OF THE CALCULATION OF DEFICIENT NUTRIENT SOLUTIONS 

g/litre 
0.34 

Motor 
0.004 

Na will be replaced by Na 2so4 for 50%N solution. 

1m soln Na No 3 = 85g/11tre 

0.34g/litre = 0.34m = 0.004 
85 

0.17g = t X 0.004 

Mol wt Na 2so4 = 71 

0.004 x t x 71 = 0.142g/litre 

So for 50%N need O.l7g/litre Na 2 S04 
+0.142g/litre Na 2 S04 

TABLE 3.2.2 - PH OF NUTRIENT SOLUTIONS AT lOx CONCN 

PH 

A 
Control 

5.5 

B 
50%N 

5.7 

c 
20%N 

5.6 

D 
50%P 

5.9 
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E 
20%P 

6.3 

F 
50%K 

5.6 

G 
20%K 

5.6 
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light. As the plants might require additional water and watering from 

above might result in nutrient runoff, the plant pots were placed in 

trays with 6 pots in each tray. 

Initially, it was hoped to take 2 harvests for each species, since RA 

might vary according to the flowering stage reached when the harvest was 

taken. Therefore an early harvest could be performed on one set of 

plants when the first inflorescences had matured. At this point the 

entire plant would be collected and separated into component parts. In 

addition a late harvest could be performed on another set of plants 

removing each individual inflorescence on maturity, followed by harvesting 

the entire plant at the end of the flowering season. This plan was 

carried out for Poa annua but it became obvious during harvesting that 

not all of the Poa would flower, thus reducing the sample size. It also 

seemed possible that not all of the Taraxacum would flower and, addition 

to this problem, Taraxacum characteristically develops only one flower at 

a time. Consequently, in order to maintain a reasonable sample size and 

because of the growth habit of Taraxacum, it was decided to perform only 

one harvest (late) on the entire group of Taraxacum plants. Plants were 

checked for mature inflorescences twice a week. 

3.2.3 Experimental design 

Altogether there were 168 plants per species - 7 treatments, 2 harvests 

and 12 plants per treatment (see fig 3.2.1). Each treatment was arranged 

in 4 trays of 6 pots. The physical width of the greenhouse bench only 

allowed a block 4 trays wide and 7 trays long, so an experimental design 

had to take this limitation into account. 
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Normally, in the situation where there are 7 treatments, but the block 

size is only large enough for 4, an incomplete randomised block design 

would be used, allocating 4 of the treatments to each block in such a way 

that block effects can be eliminated. However, because it was possible 

to run 7 blocks (equal to the number of treatments) a more sensitive 

design - a Youden square could be adopted. The use of this design would 

also mean that any effects running along the blocks could be eliminated. 

The elimination of any possible environmental effects due to the location 

of the door, such as gradients of temperature, humidity etc would be 

important in the subsequent analysis of the results. 

A Youden square design is essentially similar to a Latin square but with 

a number of rows missing (Johnson and Leone 1964). A 7x4 Youden square 

design was chosen from Fisher and Yates (1974) and the rows and columns 

randomised. The trays were then arranged on the greenhouse bench in this 

design (see fig 3.2.2). 

3.2.4 Laboratory methods 

After harvesting, reproductive parts were placed in manilla envelopes, 

labelled, and dried at 60°C until a constant weight was achieved 

(normally 48 hours see fig 3.2.3.) This temperature is not considered to 

be high enough to cause any significant loss of mineral nutrients (Allen 

1974). 

The vegetative parts of the early harvest~ were collected when the 

first inflorescences matured. The vegetative parts of the late~ were 

collected when the plants appeared to have stopped producing flowering 

initials. All the Poa had finished flowering by 5 August. Vegetative 

plant parts were similarly dried. It was hoped that the Taraxacum plants 

would display similar 'tailing off' of flowering but this was not the 

case. It was therefore decided to terminate the experiment on 26 October 
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3.3 Results 

3.3.1 Taraxacum 

i. Data Analysis 

The data obtained for the Taraxacum officinale plants were tested for 

normality using the normal probability plot correlation coefficient 

which measures the 'straightness' of a probability plot. This test 

statistic is essentially equivalent to the Shapiro-Wilk (1965) test 

(Ryan et al 1982) and compares favourably with 7 other normal test 

statistics (Filliben 1975). The values of the correlation 

coefficient obtained for the Taraxacum data were below the 

appropriate values in the tables of percentage points of the normal 

probability plot correlation coefficient. Consequently, the 

hypothesis of normality can be accepted. 

It is obvious from fig 3.3.1 that there was no difference in the 

proportion of plants which flowered in each treatment. Approximately 

half the plants failed to flower in every nutrient treatment. It was 

possible that the plants which failed to flower were behaving as a 

separate and significantly different population. If this was the 

case, the inclusion of these plants in any statistical analysis might 

obscure any treatment effects. 

T-tests comparing the vegetative dry weights for all the flowerers 

and non-flowerers (Table 3.3.1) show that the vegetative weight of 

the non-flowerers was significantly greater than the vegetative 

weights of the flowerers (excluding the weight of the reproductive 

parts). However the vegetative weight of the non-flowerers was 

consistently lower than the total weight of the flowering plants 
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(P<O.OOl). When the treatments are considered separately (Table 

3.3.1 and Fig 3.3.3) it can be seen that the total weight of 

flowering plants was significantly higher in all cases. The weight 

of the non-flowering plants was significantly higher than the 

vegetative weight of the flowering plants in 6 out of 7 

treatments. The exception was in treatment 3 - the 20%N treatment -

where all the plants had very low weights (see later) . 

It was therefore decided to treat the flowering and non-flowering 

plants as two separate populations in the subsequent analysis. The 
. 

number of plants which flowered in each treatment was not equal and a 

multivariate analysis of variance on samples with unequal sizes was 

not possible with the available statistical packages . In addition to 

this problem, the original experimental design had been based on 

trays rather than individual plants and theoretically the analysis 

ought to be performed on values per tray to conform with this design. 

To overcome these problems it was decided to perform multivariate 

analyses of variance on the data for mean tray weights . There were 

no significant differences between tray weights within each 

treatment. 

Multivariate F-tests were computed by fitting a generalised linear 

model using 'GLIM' (Baker and Nelder 1978). In anova models the 

dependent variable y is considered to be the sum of a number of 

systematic components and a random component or residual having a 

normal distribution. Hence the model 

y = f1 + CO RO + TR 

was fitted where ? 
CO 

generalised mean 
variance due to columns 

RO variance due to rows 
TR = variance due to treatment 
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Table 3.3 .1 

RESULTS OF T-TESTS COMPARING DRY WT OF FLOWERERS AND NON-FLOWERERS 

Treatment A c D ,-:: 

Veg wt T 2.11 4.58 0.43 8.54 3.16 5.49 2.40 

F's OF 17.3 17.2 21.2 21.9 18.0 12.7 19.1 

V p 0.050 o.ooo 0.67 o.ooo 0. 0058 o.ooo 0.027 

Veg wt Sig <0.050 "0.001 NS < 0.001 < J . 01 <. 0 .001 < -0 .1 

NF's 

Veg wt T -5 .69 -3.71 -4.47 -6.24 -4.37 -4 .28 -4.76 

NF's OF 12.9 21.8 14.3 15.2 12.5 8.9 19.7 

V p 0 . 0000 0.0013 0.0000 o.oooo 0.0009 0.0027 o.oooo 

Total Sig < 0 . 001 <0.001 <O.OO 1 c(0.001 <0.001 ~0.0 1 .(0.001 
wt 
F's 

All data Veg F Veg F Tray Means Veg F v Veg NF v 
v Veg NF Total F Veg NF Total F 

T -5.6 -7.93 -4.02 -4.76 
OF 164 117.7 48.8 45.4 

p 0.0000 0.0000 0.0002 o.oooo 
Sig 0.001 0.001 0.001 0.001 

F :: fl o.,.ering plarts T = t st ati s t ic OF= degrees of fr eedom 

NF = non flowerin~ plants p ~probability NS = not signi ficant 

Scattergrams, means, s tandard deviations, standard errors, t-tests, 

correlatfons and one way anovas were computed using 'Mlnitab' (Ryan , 

Joiner and Ryan 1976). 

ii. Weights of components parts 

As noted above it was evident that the vegetative weight of the non-

flowering plants was significantly higher than that of the flowering 
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plants (excluding reproductive parts). The total weight of both the 

non-flowering and flowering plants aypears to have been affected by 

the treatments - in particular the 50%N and the 20%N treatments (see 

fig 3.3.2 and fig 3.3.3). The means for these figures are in 

Appendix 1. When this effect was tested using a multivariate anova, 

the effect of the treatments was found to be highly significant in 

all cases (Table 3.3.2). The vegetative weight of the non-flowerers 

was significantly affected (P<O.OOl) as was the the vegetative weight 

of the non-flowerers (P<O.OOl). This effect was more pronounced in 

the non-flowering plants. Reproductive weight in the flowering 

pta nts was significantly affected by treatment (P ~ 0.01) although 

less so than vegetative weight. Similarly the total weight of the 

flowering plants was affected by treatment (P<O.Ol). 

The results of this multivariate analysis showed that the columns and 

rows had no significant effect on the data. Consequently it could be 

assumed that the position of the plants on the greenhouse bench had 

no effect on the results. In order to check the results of the F­

tests on mean tray weights another one way anova was conducted on the 

data for individual plants (see table 3.3.3). The results show 

essentially the same pattern of significance. 

To obtain an estimate of the specific treatments which were having an 

effect on the plant weights, the least significant difference was 

calculated for each of the significant anovas. By calculating the 

difference between the control mean and the treatment means and 

comparing this figure with the LSD it is possible to see which 

treatments are significantly different. It is evident that it was 

mainly the 50% and 20% N trea t ments which affected the plant dry 

weights. In the case of the total weights and non-flowering weights 
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ANOVAS TARAXACUM- EFFECT OF TREATMENT. 

Vegetative wt/tray (Mean) 

a, Flowerers 
Source df 

Cols 6 
Rows 3 
Treats (Adj) 6 
Error 12 

Total 27 

LSD "' 0.261 

ss 

0.855 
0.200 
1.6367 
0.3463 

3.038 

MS 

0.2728 
0.0288 

F 

9.4722 

P<0.001 

Sig diffs "' between Control and 50% N, 20% N, 50% P 

b. Flowerers and Non-Flowerers 

Source 

Cols 
Rows 
Treats 
Error 

Total 

LSD "' 0.212 

df 

6 
3 
6 

12 

27 

c. Non-Flowerers 

Source 

Cols 
Rows 
Treats 
Error 

Total 

LSD = 0.290 

df 

6 
3 
6 

12 

27 

ss 

0.0671 
0.016 
3. 238 
o. 2 319 

4.158 

ss 

1.071 
0.127 
4.3274 
0.4276 

5.953 

Sig cliffs = Control v 50% N + 20% N 
Also 50% N v 20% N 
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MS 

0.539 
0.019 

MS 

o. 7212 
0.0356 

F 

27.92 

P<0.001 

F 

20.258 

P<0.001 

Table 3.3.2 



Table 3.3.2 
Reproductive wt/Tray (Mean) 

d. Flowerers 

Source df ss MS F 

Cols 6 1.557 
Rows 3 0.259 
Treats 6 5. 7 57 0.9595 5.956 
Error 12 1.932 0.161 

P<'O. 01 
Total 27 9.505 

LSD = 0.616 
Sig diffs = Control v 50% N, 20% N 

Reproductive wt/Tray 

e. Flowerers and Non-Flowerers 

Source df ss MS F 

Cols 6 2.385 
Rows 3 0.312 
Treats 6 1.5918 0.2653 3. 72 
Error 12 0.8552 0.07126 

P(0.05 
Total 27 5.144 

LSD= 0.41 

Total wt/Tray (Mean) 

f. Flowerers 

Source df ss MS F 

Cols 6 3.99 
Rows 3 0.66 
Treats 6 12.683 2.113 8.1614 
Error 12 3.107 0.2589 

p, o. 01 
Total 27 20.44 

LSD = 0.783 
Sig diffs Control V 50% N, 20% N 

Also 50% N V 20% N 

g. Flowerers and Non-Flowerers 

Source df ss MS F 

Cols 6 3.038 
Rows 3 0.346 
Treats 6 8.1036 1. 3506 23.612 
Error 12 0.6874 0.0572 

P(0.001 
Total 27 

LSD = 0.368 38 



Table 3.3.2 
Number of Flowers per tray (Mean) 

h. Flowerers 

Source df ss MS F 

Cols 6 68.00 
Rows 3 9.60 
Treats 6 81.28 13.546 3.548 
Error 12 45.82 3.818 

P~0.05 

Total 27 204.7 

LSD= 3.01 

Slg dlffs = Control v 20% N 

1. Flowerers and Non-Flowerers 

Source df ss MS F 

Cols 6 61.76 
Rows 3 7.44 
Treats 6 24.81 4.135 2.11292 
Error 12 23.49 1.9575 

P<0.1 
Total 27 



Table 3.3.3 

One way F-tests on all data - just flowerers 

Veil wt 
Source df ss MS F 

Treatment 6 6.6440 1.1073 11.49 
Error 72 6.9365 0.0963 P<O.OOl 
Total 78 13.5804 

Rep wt 

Treatment 6 17.817 2.969 8.87 
Error 72 24.113 0.335 P'I:O.OOl 
Total 78 41.929 

Number of flowers 
Treatment 6 310.74 51.79 5.48 
Error 72 679.86 9.44 P<O.OOl 
Total 78 990.61 

R i\ ( 2ro2n) 
Treatment 6 0.1491 0.0248 1.11 
Error 72 1.6144 0.0224 NS 
Total 78 1. 7 634 

Total wt 
Treatment 6 43.365 7.227 18.14 
Error 72 28.691 0.398 P.;O.OOl 
Total 78 72.056 

ASIN RA 
Treatment 6 561.8 93.6 1.09 
Error 72 6198.0 86.1 NS 
Total 78 6759.8 
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the 20%N treatment was significantly different from the 50% N 

treatment. The 50% phosphorus treatment also seems to affect the 

vegetative dry weight but this effect disappears at the 20% P level. 

Over the population of flowering plants as a whole, reproductive 

weight is correlated significantly with vege~a~ ive weight (see 

table 3.3.4). 

ii. Numbers of flowers 

From fig 3.3.1 it is obvious that the numbers of flowers produced by 

each plant was related to the treatments. The greatest number of 

flowers produced by a plant in the 50% and 20%N treatments was 7 and 

3 respectively. However, 13 flowers were produced by one plant in 

the control treatment and 15 flowers were produced by one plant in 

the 50%K treatment. This is perhaps not surprising since the number 

of flowers produced by each plant was highly correlated with 

vegetative weight (P<0.01), reproductive weight (P<O.OOl) and total 

weight (P~O.OOl). 

Analyses of variance on the numbers of ~lowers show that treatment 

had a significant effect (P-<0.05). Calculation of the LSD (table 
shows tha tthis can mainly be 

3.3.2)Aattributed to the effects ofthe 20%N treatment on the number 

of flowers. 

iv. Reproductive allocation 

From consideration of fig 3.3.4 it is evident that there is no large 

variation between treatments in the proportion of dry weight 

allocated to reproduction. When an F-test was carried out on 

reproductive allocation the effect of the treatments was not 

significant (P<.l), see table 3.3.5. Similarly one way anovas on 

the data for individual plants are not significant (table 3.3.3). 
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Table 3.3.4 

Taraxacum - Correlation Coefficients 

r df p 

Vegetative weight v 
reproductive weight 0.347 78 P< 0.01 

Vegetative weight v 
no of flowers 0.336 78 P<.O.O 1 

Reproductive weight v 
no of flowers 0.892 78 P<0.001 

Total weight v 
no of flowers 0.826 78 P(0.001 

RAv No of flowers 0.531 78 P<.:0.001 

RA V reproductive wt 0.604 78 P-.0.001 

RA V total wt 0.266 78 P\0.05 

RA V veg wt -0.449 78 P<0.001 
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Table 3.3.5 

Taraxacum - non flowerers included 

Reproductive effort proportion 

Source OF ss MS F 

Blocks 6 0.3929 
Rows 3 0.0464 
Treats 6 0.0895 0.0149 1.568 
Residual 12 0.1148 0.0095 NS 

Total 27 0.6436 

Arcs in trans RA- Non-flowerers included 

Blocks 6 .1729 
Rows 3 .0314 
Treats 6 .0552 92 1.4939 
Res id 12 .0739 61.58 NS 

Total 27 .3334 

RE - Non-flowerers omitted 

Blocks 6 0.0467 
Rows 3 0.01316 
Treats 6 0.05611 0.00935 2.868 
Res id 12 0.03913 0.00326 pc: .1 

Total 27 0.1551 

Arcs in trans RA - Non-flowerers omitted 

Blocks 6 163.00 
Rows 3 46.5 
Treats 6 194.2 32.366 2.9006 
Res id 12 133.9 11.158 P(.1 

Total 27 537.6 
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Table 3.3.5 (cont) 

REAS effect of cols and rows - non-flowerers omitted 

Columns 
Source OF ss MS F 

Treatment 6 233 
Rows 3 46.6 
Cols 6 124.1 20.6 1.8 

Error 12 133.9 ll.l NS 

Total 27 537.6 

Rows 
Treatment 6 233 
Cols 6 124.2 
Rows 3 46.5 15.1 1.3 
Error 12 133.9 ll.l NS 

Total 27 537.6 

Test on VW Fit OF 
3.038 27 

Fit + eo 2.183 21 0.855 
0.2 + RO 1.983 18 0.2 

TR 0.3463 12 1.636 7 

2.2859 Fit + TR = 0.7529 21 Fit + TR 0.7529 2.2859 
0.199 + RO = 0.5538 18 + CO 0.5454 0.2075 
2.075 + eo 0.3463 12 + RO 0.3463 0.1991 
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l,U!producttve allocation was signHicantiy 
1

posit:l;vely: corr.e•l!ated with 

the total weight of .the plantsi !(P<6'•02) arthough: 'i't is obvious from' 

fig 3.3.5 that the prop()rction of variance: in RA exp~a·irted 1by total 

·weight :i.s small... RA was also significantly neg~tively correlated 

i' 
I 

4.6 
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3.3 ~esults 

3.3.2 Poa annua 

i. Data analysis 

The data obtained for Poa annua in both harvests were tested for 

normality using the normal probability plot correlation coefficient 

(Filliben 1975). The hypothesis of normality was accepted at the 5% 

level for all variables with the exception of vegetative weight in 

the first harvest. A log-transformation changed the value of the 

correlation coefficient from O.R70 to 0.988. The transformed values 

were used in any statistical analysis of the vegetative weight in 

the first harvest. 

In each harvest 6 plants failed to flower and these plants appeared 

to differ in their morphology (see plate 3.3.1). The plants which 

failed to flower had a prostrate growth form with more vigorous 

tiller growth. This growth habit is typical of Poa annua ~ 

reptans (Hutchinson and Seymour 1982). When the mean vegetative 

weight of the non-flowering plants was compared with the mean weight 

of the flowering plants it was evident that the non-flowering plants 

were much larger (fig 3.3.la). This difference was tested and was 

found to be highly signifcant (P<O.OOl) in both the first and second 

harvests (table 3.3.la.). 

The occurrence of non-flowering individuals also seemed to be random 

and bore no relation to the treatments. 
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Table 3.3.1a 

Results F-tests com2arin~ ves wt of non-flowerers with ves wt and total 
wt of flowerers 

Harv one N mean at dev SE mean 
Veg wt non f's 6 4.740 0.978 0.40 
Veg wt f's 78 1.273 0.815 0 092 

T = 8.46 
OF = 5.5 

p = 0.0004 
p = ( 0.001 

Veg wt non f's 6 4.740 0.978 0.40 
Total wt f' s 78 1.614 0.869 0.098 

T = 7.60 
p = 0.0006 

OF= 5.6 
p = 0.001 

Harv two 
Veg wt non f's 6 5.165 0.644 0.26 
Veg wt f's 78 2.294 0.989 0.11 

T = 10.5 p = <0.0001 
OF = 7.0 p =<0.001 

Veg wt non-f's 6 5.165 0.644 0.26 

Total wt f's 78 3.62 1.39 0.16 

T = 5.04 OF = 9.2 
p = o.oooo p .. ~.001 

52 



Frequency of non-flowering plants 

Harvest 1 

Harvest 2 

Control 

2 

1 

50%N 

0 

20%N 

0 

0 

50%P 

1 

0 

20%P 

1 

2 

SO%K 

1 

1 

20%K 

0 

2 

Consequently it was decided to treat the flowering and non-flowering 

plants as two separate populations and to exclude the non-flowering 

plants from any subsequent statistical analysis. To allow for the 

experimental design and to overcome the problems of unequal sample 

numbers, analyses of variance were carried out on the data for mean 

tray weights. There were no significant differences between mean 

tray dry weights within each treatment. 

Multivariate F-tests were calculated using GLIM (Baker and Nelder 

1978) and other statistical analyses, including one way anovas were 

calculated using Mlnitab (Ryan, Joiner and Ryan 1976). 
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ii. Weight of Component Parts 

As noted above, the mean vegetative weight of the non-flowering 

plants was significantly greater than the mean total weight of the 

flowering plants. There were insufficient numbers of non-flowering 

plants to test whether treatment had a significant effect on their 

weight but it was obvious that treatment was not affecting the 

frequency of non-flowering individuals. 

It is evident from Figs 3.3.2a and 3.3.3a that both the early and 

late harvests show the same pattern of response to the nutrient 

treatments. The treatment effect on vegetative weight was 

significant in both harvests (see tables 3.3.2a and 3.3.3a) and the 

higher F value in the later harvest shows that the effect was more 

pronounced when the plants had been growing longest. By calculation 

of the least significant differences and comparing the treatment 

mean weights in Appendix 1, it is possible to determine which 

treatments were significantly different from the control treatment. 

The 20%N treatment was signficantly lower than the control in both 
significantly 

harvests and the 50%N treatment wasAlower in the early harvest. 

However the 50%K vegetative weight was greater than the control 

weight in both harvests and the 50%P and 20%K treatments were 

greater than the control in the late harvest. The 50%N treatment 

was significantly greater than the 20%N treatment in both harvests. 

Since the rows and columns had no significant effect a one way 

analysis of variance was also conducted on the data for individual 

plants in table 3.3.4a and this shows similar results. 

The reproductive weight of the plants was also significantly 

(P(O.Ol) affected by treatments in both harvests although the effect 

was less pronounced in the second harvest (tables 3.3.2a and 



4 

V1 
~ 3 
<( 
a:: 
(.:> 

z 
I-
I 2 
(.:> 

w 
!= 
z 
<( 
W I 
~ 

V1 
~ 
<( 
a:: 4 
<..:> 

z -
1-
I 
<..:> 
w 
!= 
z 2 
<( 
w 
~ 

Fi g 3. 3. 2a 

POA - HARVEST ONE 

Fig 3. 3. 3a 

POA - HARVEST TWO 

55 

~ reproducti-ve 
~ vegetative 

D reproductive 
~vegetative 



Anovas poa harvest one 

Vegetative wt - flowerers 

Source 

Cols 
Rows 
Treats 
Error 
Total 

df 

6 
3 
6 

12 
27 

ss 

2.863 
0.63 
5. 98 
1.857 
ll.33 

MS 

0.9966 
0.154 7 

Table 3.3.2a 

F 

6.442 

p 0.01 

LSD "' 0.606 Sig Diffs = Control v 20%N. Also v 50%K (larger) 

Log veg wt - flowerers 

Source 

Cols 
Rows 
Treats 
Error 
Total 

df 

6 
3 
6 

12 
27 

ss 

1.956 
0.2 
4.3315 
0.7665 
7.254 

MS 

0.7219 
0.0638 

F 

11.315 

P~0.001 

LSD = 0.389 Sig Oiffs = Control v 50%N 20%N 50% K (larger) 

Reprod wt - flowerers 

Source df 

Cols 6 
Rows 3 
Treats 6 
Error 12 
Total 27 

LSD "' 0.092 Sig Diffs "' 
V 50% N 

Poa - harvest one anovas 

Total weight - flowerers 

Source 

Cols 
Rows 
Treat 
Error 
Total 

df 

6 
3 
6 

12 
27 

ss 

0.0478 
0 •. 0161 
0.3173 
0.04347 
0.4247 

Control 

ss 

3.32 
0.6 
3.284 
1.626 

13.8'3 

MS F 

0.05288 14.607 
0.00362 P<0,001 

v 20%N v 50%N (larger). 

MS 

1.380 
0.1355 

F 

10.18 
P..::0.001 

Also 20%N 

LSD "' 0.5671 Sig Diffs = Control v 50%N, 20%N and 50%K (larger) 
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Anovas - harvest two 

Vegetative weight - flowerers 

Source 

Cols 
Rows 
Treats 
Error 
Total 

df 

6 
3 
6 

12 
27 

ss 

2.43 
0.09 

17.885 
1.535 

21.94 

MS 

2.980 
0.1279 

F 

23.299 

P(0.001 

LSD= 0.5510 Sig Diggs = Control v 20%N (smaller). Also 
Control v 50%P, 50%K, 20%K 20%N v 50%N 

Reproductive weight - flowerers 

Source 

Cols 
Rows 
Treat 
Error 
Total 

df 

6 
3 
6 

12 
27 

ss 

0.867 
0.301 
5.563 
2.148 
8.879 

MS 

0.927 
0.179 

LSD = 0.6518 Sig Diffs = Control v 50%N, 20%N 

Total weight - flowerers 

Source 

Cols 
Rows 
Treat 
Error 
Total 

df 

6 
3 
6 

12 
27 

ss 

5.4 
0.15 

38.48 
3.077 

47.11 

MS 

6.413 
0.2564 

F 

5.178 
p.;o. o 1 

F 

25.0ll 

p.;Q.002 

LSD= 0.779 Sig Diffs =Control v 20%N, 50%N (smaller) 
Control v 50%K 50%N v 20%N 
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One way anovas - poa harv one 

Vegetative Weight 

Source 

Treatments 
Error 
Total 

df 

6 
71 
77 

LSD= 0.05.71 x 2x0.397 
12 

ss 

22.995 
28.179 
51.174 

MS 

3.833 
0.397 

= 1.993 X .661 .2572 
= .5126 

Control v 50%N, v 20%N, 50%K larger 

Reproductive Weight 

Source 

Treatments 
Error 
Total 

df 

6 
71 
77 

ss 

0.9853 
0.9253 
1.9107 

MS 

0.1642 
0.130 

LSD = 0.293 50%P, 20%P, 50%K, 20%K v 20%N 

LOGTEN vw 

Source df ss MS 

Treatments 6 13.2053 0.5342 
Error 71 1.8698 0.0263 
Total 77 58.750 

F 

9.66 

P(0.001 

F 

12.60 
P.cO. 001 

F 

20.29 
P<0.001 

Sig Diffs = Control v 50%N, 20%N, 50%Nv 20%N, 50%K larger 

Total weight 

Source df ss MS F 

Treatments 6 31.926 5.321 14.43 
Error 71 26.178 0.369 P<:0.001 
Total 77 58.104 

LSD= 0.494 Control v 50%N, 20%N, 50%K larger, 50%N V 20%N 

Source df ss MS F 

RA/ Treatments 6 0.04125 0.00687 1. 21 
Prop Error 71 0.40246 0.00567 NS 
Total 77 0.44371 

Source df ss MS F 

Arcs in RA/ 
T:reats 6 237.0 39.5 1.2 7 
Error 71 2214.8 31.2 NS 
Total 77 2451.9 
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One way anovas - poa harv two 

Vegetative wt 

Source df ss MS F 

Treats 6 49.404 8.234 22.51 
Error 71 25.969 0.366 
Total 77 75.374 P<0.001 

LSD= 0.571 = 1.993 
= 0.4922 Control v 20%N, 50%P 50%K and 20%K larger 

50%N V 20%N 

Reproductive wt 

Source df ss MS F 

Treats 6 16.617 2. 770 9.17 
Error 71 21.436 0.302 
Total 77 38.053 P<0.001 

LSD = 0.447 Control v 50%N, 20%N, 50%N, 20%N 

Total wt 

Source df ss MS F 

Treats 6 117.228 19.538 43.64 
Error 71 31.738 0.448 
Total 77 149.016 P<0.001 

LSD= 0.544 Control v SO%N, 20%N 50% and 20%K larger 

RA 

Source df ss MS F 

Treats 6 0.0956 0.0159 0.94 
Error 71 1.2079 0.0170 NS 
Total 77 1.3035 

Arcs in RA 

Treat 6 437.1 72.9 0.94 
Error 71 5527.5 77.9 NS 
Total 77 5964.7 
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3.3.3a). In the first harvest the 20%N treatment weight was 

significantly lower than the control whilst the 50%K treatment was 

significantly higher.· In the second harvest both N treatments were 

significantly lower. The one way anovas show essentially the same 

pattern (table 3.3.4) although the N treatments were not 

significantly different from the control plants in the first 

harvest. 

Similarly, the effect of treatments on total weight was significant 

in both harvests (P(O.OOl) although the F value was greater in the 

second harvest. The 50% and 20%N values were significantly lower 

than the control and the 50%K was significantly larger in both 

harvests. 

Vegetative weight was significantly correlated with reproductive 

weight in both harvest one (P<O.OOl) and harvest two (P~O.Ol). See 

table 3.3.5a. 

iii. Reproductive Allocations 

The mean level of RA increased from 22.9% in the first harvest to 

35.7% in the second harvest, but there was very little variation in 

the proportion of dry weight allocated to reproduction between 

treatments (Fig 3.3.4a). None of the analyses of variance was 

significant (table 3.3.4a and 3.4.6a). 

RA was significantly correlated with vegetative weight in both 

harvests (see table 3.3.5a and figs 3.3.5a and 3.3.6a), RA was also 

significantly (P(O.Ol) negatively correlated with total weight in 

the first harvest (fig 3.3.7a) but this negative correlation was not 

apparent in the second harvest. 
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Table 3.3.5a 

Correlations 

Harvest one 
r sig 

Log veg wt v rep wt 0.502 P~.001 
veg wt v rep wt 0.254 P<O.OS 
RA v Total weight -0.441 P(O.O 1 
RA v rep wt 0.496 Pc0.01 
RA v log veg wt -0.431 P<0.01 
RA v veg wt -0.565 P<O.O 1 

Harvest two 
Veg wt v rep wt 0.332 P<0.01 
RA v total wt 0.197 NS 
RAv rep wt o. 749 P(0.01 
RA v veg wt -0.256 P<0.02 
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Table 3.3.6a 

Poa anovas on reproductive allocation 

Harvest one - flowerers 

RA Source df ss MS f 

Cols 6 221 
Rows 3 75.5 
Treat 6 260.5 43.41 1.20 
Error 12 431.2 35.93 NS 
Total 27 988.2 

Arcs in RS 

RA Source df ss MS f 

Cols 6 103.9 
Rows 3 37.7 
Treat 6 137 22.83 1.340 
Error 12 204.4 17.03 NS 
Total 27 483.0 

Harvest two - flowerers 

RA Source df ss MS f 

Cols 6 186 
Rows 3 38 
Treat 6 585.6 97.6 1.3 
Error 12 896.4 74.7 
Total 27 170.7 

Arcsin RA 

RA Source df ss MS f 

Cols 6 68.3 
Rows 3 13.6 
Treat 6 215.3 35~88 1.267 
Error 12 339.8 28.31 
Total 27 637.0 
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3.4 Discussion 

3.4.1 Plant weights 

The most obvious effect of low nitrogen treatments was to cause a 3 and 

4 fold reduction in total weight in Poa annua and Taraxacum officinale 

respectively. The mean weight of the plants decreased consistently 

with decreasing nitrogen supply. Sl ow and retarded growth is a 

characteristic sympton of nitrogen deficiency (Epstein 1972) and 

nitrate levels have been found to influence plant weights in Spergula 

arvensis and Plantago major (Trivedi and Tripathi 1982) and in Phalsa 

Sadhu et al (1975). Similarly Lovett Doust (1980), Waite and Hutchings 

(1982) and Fenner (in press) found that low concentrations of general 

nutrient solutions or fertilisers reduced plant weight. 

Nevertheless, the potassium and phosphorus deficient treatments did not 

show a significant, consistent effect on plant weight nor any other 

parameter. It is possible that the concentration of K and P in the 

control nutrient solution were relatively much higher than the N 

concentration in terms of the specific requirements of these plants. 

Indeed Epstein (1972) suggests that the concentrations of P and K which 

are found in typical nutrient solutions are much higher than the 

concentrations found in typical soil solutions. Many plants do not 

require such high concentrations of P and K provided that adequate 

replenishment of nutrient levels is ensured eg Williams (1961) grew 

plants of Hordeum vulgare satisfactorily in culture solutions where the 

K concentration was kept at 0-0lppm. The concentration of K in the 

control treatment in this experiment was 117ppm (Hewitt 1966). 

Despite the severe suppression of plant growth in the nitrogen 

deficient treatments, the probability of flowering was not altered in 
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either species. Similarly Lovett-Doust (1980) found that the effect of 

his most severe treatment (defoliation and deradi£O.ti on) of Smyrnium 

olusatrum which reduced the dry weight by 80%, only slightly affected 

the probability of flowering. This is in contrast to the behaviour of 

Chamaenerion angustifolium (Van Andel and Vera 1977) where a low 

mineral treatment reduced the proportion of plants which flowered. 

In Poa annua the plants which did not flower were undoubtedly 

genetically dissimilar since thei r vegetative weigh t at the end of the 
mean 

experiment was greater than the ~ total weight of the flowering plants. 

Therefore, these plants were not prevented from flowering by their 

inability to achieve a critical weight. However, in the case of the 

Taraxacum officinale plants, the mean weight of the non-flowering 

plants was consistently lower than the mean total weight of the 

flowerers. Nevertheless, a specific critical weight was not apparent 

since the mean weight of the non-flowerers in the control population 

was greater than the mean weight of the flowerers in the most defic ient 

(20%N) Nitrogen treatment. 

3.4.2 Reproductive Allocation 

The mean value of RA obtained for all treatments was 51.7 % for 

Taracaxum officinale and 28.7% (harvest one), 36.9% (harvest two) for 

Poa annua. These values are somewhat higher than the general values 

quoted by Harper (1977 after J Ogden). He cites values of RE for wild 

annuals of between 15-30% and for herbaceous perennials of between 0-

25% but a review of the currently available literature (Table 3.4.1) 

indicates that several species have RAs outside these limits. The 

annual Polygonum kelloggii (Hickman 1977) has a reproductive allocation 

of 76% while the perennial palm Astrocaryum mexicanum allocates 32% of 

its biomass per year to reproduction (Sarukhan 1980) . Alternatively , 
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'Dable 3.4.1 

RE.VIEW OF REPROIXLTIVE ALLOCATION LI'IERA1URE 

Q.dde to Paper ~es % % Infonmtion on RA metlnd 
Strategy RA SA 

Rlxleral Harper and ()6den ~neclo vulgaris 21.4 RC IRHS 
anruals 1970 26.27 RB HI IR HS 

33.34 HI measured in ca1s IR HS 

Fenner ~neclo vulgaris 33 11 RB I:D but 
(in press) seed collected daily 

Van Andel and Vera ~ sylvatiOJS 21-24 RB IRHS 
1977 RA 

Trivedi and Spergula arvensis 20 RB IRHS Qlli 
Tripathi 1982 

Hf..cknan 197S Iblygomm cascadense SO RB IR IO 

Hf..cknan 19 77 Iblygonun cascadense SS 38-58 RB IR 

Snell arrl furch Glanaes ye e hi rte~ 32 RB IR HS 
197S 

Pitelka lllpinus narus 61 29 RC IRHS 
1977 

Hicknan 1977 Iblygom.rn douglasii 1S RB IR HO 

Hf..cknan 1977 Iblygomm kellogii 6S RB IR 00 

Hf..cknan 1977 Iblygonun mi.n:inun 10 RB IR 00 

Lee and Cavers ~taria glatea 18.7 RB HS 
1981 ~taria verticillata 21.1 

~taria vindis. 37 .1 

K.:Mloo arxi Mlyake ~taria viridis 49.S RB IR 
1983 ~taria glatea 27.S 

Rams and Lovell Veronica persica 1S.1 RB 00 
1980 Veronica agrestis 2S.O 

Veronica hederifolia 13.3 

M::N:Jna ra and Q..dnn ~hicarpun purshii 29 RAIROO 
1977 above last node. Includes 

cleistoganous 
reprcxh.lction 

Gaines et al li!lianthus annus 2S RB IR 
1974 

Jaksic and Erodiur cimtariun 11 RBIRHO 
'1-bntenegro 1979 

Cock 197S ilienopodiun rubrun 47-S4 RB 

69 



Guide to Paper Species % % Infot:rtntion on RA rrethod 
Strategy RA SA 

Ogden 1974 Helianthus anruu~ 14 mE 

Stem and Beech Senecio vulgaris 14-27 RB IR 
1975 Calerd.ll.a 27 

officinalis 
Matricaria 35 
matrianioides 
Cartharu.s tinctorls 13-23 

Harper and Ogden Linum usitatissimum 36 RB 
1970 (linseed) 

Linum usitatissimum 20 RB 
(flax) 
Avena fatua 34-61 RB 
Avena sativa 43-56 RB 
(grain) 
Avena sativa 29-47 
(forage) 

~sert Wi1llam and Hell Chaenactis frennntli 39.1 RB IR HO 
winter 1981 SchiSllls arabiOJS 33.1 
anruals Baileya p1eniradiata 40.9 

Astralagus sab.llorun 32.5 
Crypthantha 
ang1stifolia 41.2 
C. pterocaryo 30.8 
Chaenactis 
caephoclinia S0.6 
Plantago insularis 54.3 

Bell et a1 1979 Baileya p1eniradiata 37 RB IR HO at t:iJre of rrwt 

As tralagus sah.llorun 34 RA 
Schismus arabicus 33 
Oenothera deltoides 28 
Chaenactis carphodinia 49 
Plantago insularls so 
Phacelia crerulata 18 
Cami.ssonia brevi pes 16 

Sa hell an De ridrler e t al Eucaria boveana 38 4 RB HS 
species 1981 Trigonella arabica 60 29 

Medicago polyroorpha 47 18 Reprod.lctive ratio and seed 
Plantago lagopus 40 ratio 
Glauclun comiculatun so 12 
SchiSllls arabicus 48 31 
Hordeun leporlnum 26 11 
Phalarls rnlnor 35 16 
Asphxielus teruifolius 46 32 
Stipa capensis 61 8 

Astragalus cibarius 67 22 
Astragalus utatensis so 24 
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Chide to Paper Species % % Infot'lmtion on RA rrethod 
Strategy RA SA 

Biennial I..ovett.;)oust 1980 S!llfriliun olusatrun 25-39 RB IR HS 

Reinartz 1984 Verhiso.m thapsus 11-23 RB I-D 

ea~u and Wemer Dipsacus sylvestris 27 RB 
1978 

Abraha'rson 1979 Datn!S carota 39 RB IR HO 
Melilotus alba 11 

Ruderal Harris and Lovell Veronica 23.2 RB 
grassland 1980 serpyllifolia 
perennials 

Tripathiand Agropyron repens 0.1~.9 RB IR HS 
Harper 1973 Agropyron canirun 10.9-14.8 

Lambert 1968 Dactylis glaoorata 4.6 RB IR HO 

Gaines et a1 1974 Helianthus 6 RB IR 
grass eratus 
1-elianthus 16 
laeti florus 

Abrahanson 1979 Arisaem atrorubens 39 
Hieraciun 
floribmc:Un 34 

Abrahanson 1975 Rubusohispidus field 18.3 RB 
Rubusohispici.ls 'l«lod 9 Regression 

Bradh.uy and Solidago candensis 9-12 RC IR HS 
Hofstra 1976 

Hawthorn and Plantago rmjor 12-46 RB IR HO 
Cavers 1982 

Linhart 1974 Veronica peregrina 38-43 RB 

Abraha'rson and Solidago nerooralis 49 RB HS 
Gadgil 1973 Solidago speciosa 15-28 

Solidago rugosa 4-10 
Solidago canadensis 25 

Ructeral Raynal 1979 Hieraciun 7.9 4.5 RB IR HS 
prermials florentirun 
+grassland Soule and Werner Potentilla recta 16.5 - RB HS aoove grrund 
perennials 1981 28.4 

Hawthorn and Cavers Plantago rmjor 21 RB IR HO spike 
1978 

Trivedi and Plantago rmjor 12 IR HS 
Tripathi 1982 RB IR flS CRE 

Waite am Hutching> Plantato coronopus 31-47 5-10 RB HO +HS RA? 
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Qrlde to Paper Species % % Infot:Tilltion on RA nethod 
Strategy RA SA 

Bostodc and Benton Achillea mi.llefoliun 2.7 RAIRHS 
1979 Arteni sia \\llgprls 2.3 Allocation of all reprod-

Ci rsiun arvense 15.1 ti ve organs taken as % 
Taraxacum officinale 24.4 of total dry ~ight net 
'fussilago farfara 26.1 prodn. Achillea had 

figure of 21.5% if 
fl~rlng plants alone used 

Ogden 1974 Thssilago farfara 4.7 RB HS 
5.9 RC HS 

Bostodc 1980 Thssilago farfara 31 1 RB IR HO 

Sta.mrt and Carex flacca 52 RB HS rut chose peak 
Thaq>son 1982 Centaurea nigra 17 

Leontodon hispidus 46 
Plantago lanceolata 52.5 
Plantago rredia 34.7 
Poteriun 
s~isorba 17 

Roos and Q.rlnn Andropogon 24-42 RB HO 
1977 scoparius reproductive tissue t o 

l~st node 

Willson and Price Asclepias syrica 21 (3) RB HO fruit RA 
1980 Asclepias 

verticlllata 23 (9.5) Bracketed figs = fla.~er RA 
Asclepias incarnat a 10 (6) 

Holler and Frag:tria virgl.niana 5 RB HS harvest at peak 
Abraharson 1977 

J ur:ik 1983 Frag:tria virginiana 13- 3 Rt£T + RB 
3-21 RB 

Fragaria vesca 3.1-4.7 RMIT 
7.5-10.7 RB 

Perennials Van Andel and Vera Olanaenerion RB IRHS RA 
1977 a.£®1Stifoliun 

Lovett-Doust Oenanthe crocata 8-9 RB IRHS 
1980(b) Conopodiun mjus 7 

Anthriscus 
sylvestris 19.2 
Pastinaca sativa 12.4 

Jolls 1984 Sedun lanceolatun 18.3-38.3 RB IR HO 
57.1-24.3 RB IR HO 
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Qrlde to Paper Species % 
Strategy RA 

Stress Kawaro and Masuia Heloniopsis 1G-25 

tolerant 1980 orientalis 
perennials 
and shrubs Pitelka 1977 lllpirus arboreus 20 

Lupinus varlicolor 18 

Kawano et al 1982 Erythroniun 10.9 
japonicun 

Pitelka et al 1980 Aster acuminatus 3.48 

Kawano and Nagai Alliun victorlalis 2.6 
1975 ssp platyphylh.un 

Cunningjlan et al Larrea tridentata 
1975 

Sarukhan As trocaryun 37 
1980 nexicanm 

Gaines et al 1974 Helianthus hirsutus 2 

RA = Reprod!ctive Allocation 
RB =RA measured using biamss/weight 
RC = RA measured using calories/ energy 

HO = one harvest taken 
HS = sequential harvests taken 

IR = include roots n estimations 

% 
SA 

6 
15 

5.0 

CRE = cru:ie reprcxhctive effort as used by Harper and Ogden 1970 

HI =Harvest index= seed weight 
Total \~ight at llBturity 

RMIT = metabolic costs of reproruction 
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Inforrmtion on RA method 

RB IRHS evergreen 
varies with elevation 

RC IR HS 
RC IR HS 

RBIRHS 
forest herb 

RB IR HO 
forest herb 

RBHS 
CRE 

shrub 
herb 

RB RA/ti.Jm period 
Evergreen 

RBIRHS 
Yearly luiget of dry mtter 
prodn over 120 years 
Iteroparoos 

RBIR 



the annuals Polygonum minimum and Erodium cicutarium may have RAs of 

less than 10% (Hickman 1977) and 11% (Jaksic and Montenegro 1979) 

respectively. 

The high values obtained for Poa and especially Taraxacum are probably 

partly caused by the omi ~io n of any underground structures in 

calculation of the total hiomass. Bostock and Benton (1979) obtain a 

value for Taraxacum officinale of 24.4% when underground biomass was 

included. It is evident from Table 3.4.1 that values of RA tend to be 

higher when underground biomass is omitted. In addition to this 

factor, many estimates of RA perform one harvest at the end of the 

season eg Pitelka et al (1980) or choose the highest value obtained for 

RA from a number of sequential harvests eg Bell et al (1979). 

Reproductive structures were collected over the whole season for both 

Taraxacum officinale and the second harvest of Poa annua. The 

discrepancy of 9% between the values for Poa annua in the first and 

second harvests demonstrates the need for caution when comparing RA 

values obtained by different methods. 

Despite the 3 and 4 fold reductions in weight caused by the low 

nitrogen treatments , RA was not significantly different. There were 

wide variations in RA within the treatments eg the minimum and maximum 

values were: 

Taraxacum 

Poa 1st harvest 

Poa 2nd harvest 

17.6 - 69.3% Range 

4.5 - 44.1% 

5.2 52.4% 

51.7% 

= 39.6% 

= 47.2% 

but this demonstra tes the variability of the populations and cannot be 

related to a treatment effect. Within species ranges of up to 36% have 

been quoted by Soule and Werner (1981). 
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This constancy of the relative biomass allocation to reproduction 

despite large reductions in plant weight is similar to the response 

found by Fenner (in press) for Senecio vulgaris under a range of 

nutrient concentrations. Harper and Ogden (1970) also found that 

Senecio vulgaris showed no significant difference in the proportion of 

energy allocated to seeds despite a 7-fold difference in plant weight. 

In this case stress was applied by reduction of the pot size. A 

similar homeostasis of allocation to sexual reproduction under 

different nutrient conditions occurred in Tussilago farfara (Ogden 

1974). Spergula arvensis and Plantago major (Trivedi and Tripathi 

1982) 1 Senecio sylvaticus, and Plantago coronopus under greenhouse 

conditions (Waite and Hutchings 1982). All of this work (except 

Trivedi and Tripathi 1982) used a general combination of mineral 

nutrients and did not separate the effects of N, P and K. In the 

majority of these cases, where RA remains constant despite 

environmental stress the species under consideration is an annual or a 

ruderal from a typically unpredic table environment. In such species 

the postponement of reproduction to a later date when conditions may be 

more favourable is neither a possible (in the case of annuals) nor 

cost-effective (in the case of ruderals in an unpredictable 

environment) alternative. In these species the maintenance of a fixed 

proportion of biomass in reproduction despite environmental stress is a 

feasible st r a tegy. 
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Alternatively Lovett Doust (1980) found that RA in the biennial 

Smyrnium olusatrum was significantly altered by a low nutrient 

treatment. Again, however the effect of the treatment on plant weight 

was much more significant. Similarly Snell and Burch (1975) found that 

an 8-fold decrease in nutrient levels diminished RA by 50% in the 

annual Chamaesyce hirta. 

3.4.3 The relationship between RA and total biomass 

RA in Taraxacum officinale was positively correlated with total weight 

(P<O.OS) whereas in Poa annua, RA was negatively correlated with total 

weight in the first harvest (P~O.Ol) and there was no evidence of a 

relationship in the second harvest. A positive correlation of RA with 

plant weight was also found in field populations of Plantago coronopus 

(Waite and Hutchings 1982), Verbascum thapsus (Reinartz 1984), Plantago 

insularis and Phacelia crenulata (Bell et al 1979). 

Hickman (1975) found that within different populations of Polygonum 

cascadense there was a positive correlation of RA with total weight but 

between populations there was a negative correlation, the smaller 

plants from the harsher habitats having higher RAs. A negative 

relationship between RA and total biomass was found in Erythronium 

japonicum (Kawano et al 1982) and Fenner (in press) implies that this 

negative correlation of RA with size may explain why many authors have 

discovered a negative relationship between RA and increasing 

successional maturity. 

However, there is some evidence of no relationship between RA and total 

biomass (eg Kawano and Miyake (1983) for 5 congeners of the genus 

Setaria and Hell et al (1979) for 6 species of winter annuals. The 

species with a positive relationship between RA and total biomass eg 
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Plantaso coronopus and Verbascum thapsus are much more similar in 

morphology to Taraxacum officinale than Poa annua with large 

inflorescences arising from a rosette of vegetative leaves. Bell et al 

(1979) suggest that the observed differences in RA between desert 

winter annuals are related to the morphology and possibly the 

physiology of the individual species. Taraxacum officinale can produce 

an indefinite number of flowers, (depending on the availability of 

resources) from the centre of the basal rosette with little change in 

the basic morphology or size of the rosette. However in Poa annua (as 

with other grasses such as Setaria spp each reproductive panicle is 

integrally linked to the vegetative leaves at the base of the culm. An 

increase in reproductive parts automatically entails a corresponding 

increase in vegetative parts so the relationship between the two 

remains constant irrespective of plant size. The importance of plant 

morphology has also been recognised by Armstrong (1982,1984) who 

proposes a theoretical approach to the study of reproductive strategies 

which is based on the constraints imposed by growth form and geometry 

rather than site-specific factors. 

An alternative hypothesis to explain the presence or absence of a 

positive correlation of RA with plant weight in terms of strategy is 

proposed by Waite and Hutchings (1982). In plants with the option of 

having a high RA in favourable years or postponing reproduction until a 

later date if conditions are unfavourable, a weight-related plastic 

allocation strategy is advantageous. Reinartz (1984) suggests that the 

positive relationship between plant size and RA in Verbascum thapsus is 

caused by indeterminate reproductive growth after the leaf, caudex and 

root growth has ceased. The level of RA achieved is thus determined to 

some extent by environmental conditions. 
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As Taraxacum officinale is a perennial with the option to reproduce in 

a following season it would be advantageous to correlate its 

reproductive output with its size at a specific time. However for 

annuals such as Poa annua the maintenance of a high fixed RA regardless 

of environrnental conditions (and the size of the plant) is favoured. 

It is possible that both the constraints of plant morphology and 

perennation strategy may determine the level of RA in a particular 

species, 
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4. THE APPROPRIATE CURRENCY 

4.1 Introduction 

4.1.1 The principle of allocation 

In consideration of the genetical theory of natural selection, Fisher 

(1930) was one of the first to stress the significance of determining 

how natural selection adjusts the partitioning of the energy budgets of 

organisms. He drew attention to the division of resources between the 

gonads and soma. Subsequently, the 'principle of allocation' was 

proposed by Cody (1966) to explain variations in clutch size in birds. 

He suggested that the process of individual development represents a 

'strategic' allocation of resources to competing demands or 'sinks'. 

The resources which Cody suggested were crucial for birds, were time 

and energy. Time and energy (which are in limited supply) were 

expended on the various sinks, such as defence, reproduction or 

maintenance of growth, in order to maximise an organism's fitness. 

Thus the 'principle of allocation' implies that under natural 

selection, organisms optimise the partitioning of the limited resource 

available in a way which maximises fitness. 

Harper (1967) and Harper and Ogden (1970) implicitly accepted this 

principle as applicable to plants. It is assumed that the supply of 

the crucial resource is limited and that the different structures or 

activities are alternatives, so an increase in one means a decrease in 

another (Harper 1977). The proportion of resources which are devoted 

to reproduction as opposed to the development of a competitive growth 

form or defence against predators, has been seen as the character of 

greatest importance when considering plant life history strategy. 
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4.1.2 Which currency? 

Early studies used energy or biomass as a currency by which to gauge 

reproductive allocation. Some studies have included calorimetric 

measurements eg Harper and Ogden (1970) and Ogden (1974). Abrahamson 

and Gadgil (1973) and Hickman and Pitelka (1975) consider that for 

plants, dry weight is an adequate measure of energy allocation and most 

subsequent studies have used dry weight allocation. Jolls (1984) found 

that allocation patterns based on kilojoules of energy and grams of 

biomass in Sedum lanceolatum were not highly correlated and warns 

against the danger of using biomass to represent energy in species that 

change morphologically or physiologically along an environmental 

gradient. Nevertheless, in principle biomass and energy are 

interchangeable if the calorific value of the material being sampled is 

known. However it has recently been suggested (Lovett-Doust 1980, 

Thompson and Stewart 1981, Abrahamson and Caswell 1982) that 

measurements of both biomass and energy may be inappropriate for 

several reasons. 

The principle of allocation assumes a limited pool of resources which 

is not increased in size during the very process of allocation. Cody's 

hypothesis was based on the principle that reproductive parts make no 

energetic or material contribution to their own production. This is 

not the case for plants. There are now several studies showing that 

green fruit and accessory reproductive structures contribute 

carbohydrate to their own formation in native plants (Maun 1974, Bazzaz 

and Carlson 1979, Werk and Ehleringer 1983). Information about the 

partial carbon autonomy of fruits and flow~~in agromomic varieties has 

been available for some time eg Flinn and Pate (1970). 
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In addition to this complication there is evidence that plants normally 

function at a level of photosynthetic activity below that of which they 

are capable (Harper 1977). The activity of the photosynthetic system 

appears to be determined by the demands made by various other organs 

such as meristems or storage structures rather than reproductive organs 

(Kahn and Sagar 1969) and photosynthesis may be limited by the 

availability of water or nutrients (Mooney and Gulman). Studies such 

as those by Lovett-Doust and Harper (1980) and Lovett-Doust (1980) 

indicate that under conditions where carbon is abundant other resources 

such as nitrogen or phosphorus appear to be limiting. Even Harper and 

Ogden (1970)_whilst considering energy allocation suggest that under 

some circumstances mineral availability may be the limiting factor. 

4.1.3 Arguments for the use of mineral allocation 

Thompson and Stewart (1981) have suggested that since reproduction 

requires mineral nutrients but reproductive structures cannot 

contribute to the supply of mineral nutrients, mineral allocation may 

be more crucial than energy allocation. This is supported by evidence 

that plants are often nutrient limited (eg Rodin and Bazilevich 1967 

and Chapin 1980) and that nutrient acquisition is linked to 

reproduction (eg Van Andel and Vera 1977 and Benzing and Davidson 

1979). There are also dynamic movements of nutrients within the 

individual plant during its development (Williams 1955). 

There is much physiological evidence that plants sacrifice 

photosynthesis and growth for the sake of reproduction. Developing 

fruits reduce or halt vegetative growth by monopolising supplies of 

mineral nutrients (Leopold and Kriedemann 1975). In forest trees 

'mast' years of high seed production are followed by years with a 

poorer seed crop and lower growth rates (Harper 1977). This may be due 

to the depletion of mineral resources such as nitrogen and phosphorus. 

81 



Seeds of Fagus sylvatica contain 6 times as much mineral matter per 

gram dry weight as beech wood (Matthews 1963). In some plants 

reproduction is associated with the rapid sene~'ence of leaves {eg 

cereal grains in Chapin 1980) and the appearance of symptoms usually 

associated with mineral deficiency. Wild plants in infertile habitats 

reduce their rates of turnover compared to plants in high nutrient 

environments even though this results in lower photosynthetic rates 

(Chapin 1980). In a polycarpic species, characteristic of infertile 

environments eg Eriophorum vaginatum (Goodman and Perkins 1959) it is 

possible for a maintainence nutrient budget to be continually 

recirculated from old to new tissues and (except for new growth) the 

mineral demand is only that for the seed crop. In monocarpic species 

growing in nutrient deficient habitats it is common to find that the 

plant has no remaining leaves when the inflorescence is formed eg in 

annual grasses on sand dunes (Harper 1977). 

It may be that maximisation of photosynthetic rate is crucial at 

various points in a life cycle other than reproduction but since the 

focus of most allocation studies is on the partitioning of materials at 

reproduction it would seem that mineral allocation provides a plausible 

currency for gauging reproductive allocation. 

4.1.4 Application of mineral allocation 

Having suggested that minerals may be the limiting resource at the 

phase of reproduction in the majority of green plants, the problem 

arises of which particular minerals to measure. Different species may 

require the same qualitative resources (eg NPK) but differ in which 

particular resource limits their reproduction and for which the 

allocation patterns are crucial. 
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If total mineral allocation is taken it may·mask any variation in 

proportional allocation eg Senecio sylvaticus allocated 56.7% P to 

reproductive structures but only 15.8% Ca and 35.5% biomass (Van Andel 

and Vera 1977). The mineral which provides the highest proportion of 

the total allocation to reproductive structures may vary in different 

conditions (Fenner 1985) eg when Senecio sylvaticus was grown under 

less fertile conditions, the element contributing the highest fraction 

of the total changed from P to N. 

The small number of studies which have looked at mineral allocation do 

not seem to have reached any consensus on a crucial limiting mineral, 

Van Andel and Vera (1977) studying Senecio sylvaticus and Chamaenerion 

angustifolium found that no single nutrient paralleled the allocation 

of dry matter but if N, P and K were taken together a good 

approximation was obtained. Benzing and Davidson (1979) found that in 

Tillandsia circinnata patterns of N and P allocation did not follow 

carbon allocation. 

Lovett-Doust (1980) chose to consider the allocation of P alone because 

of its crucial role as a storage element in seeds. The allocation 

patterns of P and biomass in Smyrnium olusatrum were found to be quite 

different and moreover, to be significantly altered by various 

treatments. Abrahamson and Caswell (1982) however, found that although 

the resource allocation patterns of biomass and various chemical 

elements were significantly different, the relative contributions of 

different elements were quite similar and they could not identify a 

best measure of allocation. All of these studies indicate a need for 

further research on the most appropriate currency and the response of 

this currency to nutrient limitation. 



Consideration of mineral element allocation in plants however, should 

be treated with caution since some mineral elements are very mobile 

within the plant during different stages of development (Leopold and 

Kriedemann 1975) and concentrations of various elements in leaves are 

known to vary with the age of the plant. Uptake of certain minerals is 

also known to be affected by the presence or absence of other minerals. 

4.1.5 Alternative currencies 

In an attempt to account for the turnover of plant parts and to 

consider the total energy involved in producing and maintaining plant 

structures, Jurik (1983) developed a model to calculate the carbon 

dioxide costs of producing a biomass of given composition, determine 

the respiratory costs of maintaining that biomass and estimate 

photosynthetic carbon dioxide uptake. His measure of reproductive 

allocation is thus calculated to include the physiological costs of 

producing and maintaining the various reproductive and vegetative 

structures. Again however, in certain circumstances energy may not be 

the limiting factor. 

An alternative approach to reproductive allocation which has been 

adopted recently is to measure the number of structures (Antonovics 

1980) or modules (Tuomi et al 1982, Silvertown and Rabinowitz 1984) 

which are produced under various circumstances. Watson (1984) 

discusses the trade-off between reproduction and growth in a 

determinate plant Eichornia crassipes and concludes that reproductive 

allocation may be limited by meristem availability which is in turn 

limited by the developmental morphology of the ramets. 

Many of the more recent studies of resource allocation have referred to 

the 'costs' of reproductive allocation (in whatever currency they may 
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be constderin_g) e·g Meagher and An tonovics 1982, Sohn and Policansky 

1977, Lovett Doust and Cavers 1982). Bell (1980) argues that the 

measurement of reproductive effort (or allocation') in units of whatever 

currency is irrelevant to the evolution of life h-istories. He 

cons:l!ders that the effort expended by an organism is on!l.y of 

evolutionary significance if it is transformed into units of fitness. 

This reproductive cost can be regarded as the effect of a given 

quantity of pre!lei\t reproduction on the expectation of future survival 

and/or future reproduction. The concept of reproductive cost is 

discussed in Ch 5. 

The following experiment and subsequent anaiysis of nutri:ent 

concentration in the plant tissues was intended to determine whether 

mineral allocation provided a more suitable aLternative, to dry weight 

allocation in R,A studies. 
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4.2 Methods for Analysis of Nutrient Content 

4.2.1 Selection of plants for analysis 

The Taraxacum officinale plants grown in the experiment described in 

Ch3 were selected for analysis of nutrient content. Analysis of these 

plants would mean that the proportional allocation of the 3 nutrients 

(N P and K) in different parts of the plant could be determined. 

Moreover the effect of different levels and types of nutrient stress on 

this proportional allocation could be assessed. 

The analysis was restricted to the T.officinale plants. Poa annua was 

excluded because it had been divided into early and late harvests and 

therefore there were insufficient replicates. In fact, even in 

Taraxacum the plant biomass was so small that individual plants were 

pooled to give a "tray" biomass to provide sufficient plant material 

for chemical analysis. Plants were pooled according to their 

treatment, tray number and flowering status. Thus there were 7 

treatments x 4 'trays x 3 flowering plants and reproductive parts of 

flowering plants). This pooling of plant parts was justified since 

statistical analysis of the data also considered tray values rather 

than individual plants. 

4.2.2 Preparation of samples - grinding and digestion 

Samples were ground in a hammer mill to pass a 5 mm sieve and stored in 

acid-washed plastic vials. Samples stored in this way can be kept for 

several years without a significant change in their mineral composition 

(Ulrich and Hills 1973). An oxidation process is necessary for the 

destruction of organic matter, involving combustion or acid oxidation, 

before a complete elemental analysis can be carried out. Acid 

digestion procedures are generally preferable because there is no 
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volatilisation of elements (eg phosyhorus), they are fairly rapid, and 

more than one nutrient element can be determined from one digest 

solution (Allen 1974). As a consequence of the limited amount of plant 

material available and in an effort to reduce processing time it was 

decided to carry out one acid digest which could be used for all 3 

analyses (ie N, P and K). 

After consideration of the various types of digest which were possible 

it was decided to perform a traditional Kjeldahl digestion. This 

digestion procedure is considered to be the best for nitrogen 

determination since wet oxidation systems containing nitric and/or 

perchloric acid are unsuitable and result in low recovery rates (Allen 

1974). The use of this digestion method also avoided any danger of 

explosion through the use of strong oxidising agents such as perchloric 

acid or hydrogen peroxide. However, the use of this digestion 

procedure means that perhaps not all of the total phosphorus present in 

the samples would be.recovered. Since the object of the experiment was 

to determine proportional allocation rather than quantitative total 

amounts this was not considered to be a great problem. The results 

could be considered as amounts of phosphorus recoverable using a 

Kjeldahl digestion. 

4.2.3 Digestion - principle 

The Kjeldahl method for determining total nitrogen is based on the 

conversion of organic nitrogen to ammonia through digestion and its 

subsequent estimation by distillation and titration. Each aspect of 

the process has been studied by Bradstreet (1965). In the digestion 

procedure the sample is heated with concentrated sulphuric acid in a 

long necked digestion flask. The reaction rate is accelerated by 

adding sodium or potassium sulphate to raise the boiling point and a 
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catalyst containing usually copper, mercury or selenium. The process 

oxidises the nitrogen to ammonium sulphate and this is estimated by 

distillation (Pearson 1970) see 4.2.5. 

4.2.4 Digestion -method 

The method employed to digest the samples w.a 5 based on that used by 

Avery and Bascombe (1974). 

O.Sg of sample was placed in a Tecator digestion tube then 1 salt 

mixture Kjeldahl tablet (Fisons) was added. Each tablet contains 1g 

Na~so~ and O.Sg Selenium. 10ml of concentrated Sulphuric acid (H2so4) 

was pipetted into the flask and the flask was swirled so that no 

particles adhered to the bottom of the tube. The samples were then 

heated overnight using the Tecator 1016 acid digestor with the autostep 

controller set to the following programme. 

1 hour at so oc with a 15 min ramp 

1 11 11 100C 11 11 11 10 11 11 

1 11 11 150 11 11 11 10 11 11 

1 " 11 200 11 11 11 10 " 11 

1 11 11 250 11 11 11 10 11 11 

1 11 11 300 11 11 11 10 11 11 

3 hours 11 350 11 11 11 10 11 11 

The Tecator 1016 acid digestor allows up to 40 samples to be boiled 

while any fumes produced are drawn off by an exhaust system. The 

heating block was controlled by a programmable autostep controller 

which allows the block to be brought up to the required temperature in 

stages. The use of heating blocks is described by Faithful! (1969). 
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The following morning the digested samples were made up to 100 ml with 

distilled water in a volumetric flask. The samples were then stored in 

acid washed and Decon 90-soaked screw top, glass bottles in a fridge. 3 

sets of 40 digestions (including blanks) were carried out. 

4.2.5 Nitrogen - principle 

The Kjeldahl digestion converts organic nitrogen to ammonium nitrogen, 

which after dilution is in an approximately 5% acid solution. The 

classical method for estimating ammonium nitrogen is by distillation. 

There are some calorimetric methods available but they are not 

considered to"be as accurate as distillation (Allen 1974). Use of an 

ammonia electrode was considered (Powers, Van Gent and Townsend 1981) 

but rejected on the grounds that several distillations would have to be 

performed to calibrate the electrode anyway and that the electrode 

which was available was unreliable. 

During the distillation process free ammonia is liberated from the 

diluted digest by steam distillation in the presence of excess alkali 

(sodium hydroxide). The distillate is collected in a receiver 

containing excess boric acid combined with an indicator solution. The 

ammonia is then titrated with standard hydrochloric acid up to a pH of 

4.5. The standard apparatus used for the distillation is a Hoskins 

apparatus shown in fig 4.2.1 (Hoskins 1944). 

4.2.6 Nitrogen - method 

The Hoskins apparatus was prepared by passing steam through the system 

for several minutes. 8 mls of extract and 12 mls of distilled water 

(ie as if the original digest had been made up to 250 ml) were added to 

the inner chamber of the apparatus via the tap funnel (A). The tap 

funnel was rinsed with distilled water. A boric acid/indicator mixture 
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was prepared by adding 25 ml of mixed indicator to 1 litre of 2% H3Bo 3• 

The mixed indicator was prepared by combining O.lg methyl red and 0.2g 

bromo-cresol green and dissolving in 250 ml ethanol. This was adjusted 

to a greyish mid-colour with dilute NaOH or HCI (Ma and Zuazaga 1942). 

5 ml of boric acid/indicator solution was added to a 50ml flask and 

placed in position to receive distillate, with the tip of the condenser 

just below the liquid surface. Sml of !ON NaOH was added to the tap 

funnel and gently let into the chamber followed by a rinsing with 

distilled water. A small amount of liquid was left in the funnel to 

act as an air lock. lOml of distillate was collected and titrated 

against O.OlN HCl, the colour changing from green through colourless to 

a pink end point. The inner chamber was emptied and rinsed after each 

sample. Blanks were carried out using 20ml of distilled water. 

%N = (ml HCl for sample- ml for blank) x 0.175 

sample mass (g) 

4.2.7 Phosphorus- principle 

Although titration and gravimetric methods are available, colorimetry 

is almost always used for determination of phosphorus. Two chromogenic 

systems are favoured, molybdenum blue and the yellow vanadomolybdate 

method. The molybdenum blue method is the most sensitive (Allen 1974). 

In a suitably acidified solution phosphate reacts with molybdate to 

form molybdo-phosphoric acid which is then reduced to the intensely 

coloured molybdenum blue complex and determined spectrophotometrically. 

The details of the chemical reaction are described in Jackson (1958). 

Many reducing agents have been recommended but in this case ascorbic 

acid was used. 
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The spectrophotometer measures the concentration of an element within a 

sample by measuring the transmittance or absorbance of light through 

the sample. The intensity of the colour which develops in the presence 

of the specific element indicates the amount of that element which is 

present. This is compared to a calibration curve which is drawn from 

known standards. 

When light is passed through a solution the ions become excited and a 

particular wavelength is emitted. The peak of an element's scan is 

usually peculiar to that element eg for phosphorus the peak is at 880 

nm. A small amount of sample is placed in a glass cell or cuvette 

alongside a cell containing distilled water. A beam of light is passed 

through both cells and the absorbance or transmittance compared, then 

registered on a scale. 

4.2.8 Phosphorus - method 

The method which was used on the samples is taken from Mackereth, Heron 

and Talling (1978) which was based on a modified Murphy and Riley 

(1962) method. 

All glassware was acid washed and soaked in Decon 90 before use. A 

standard solution was prepared by dissolving a 4.390g of potassium 

dihydrogen phosphate (KH2Po4) in distilled water and making up to 1 

litre. 1 ml of this solution contained lmg P04-P. A working standard 

solution was prepared daily by diluting this solution x 100 so that lml 

contained 19g P. From this solution a rough calibration was obtained. 

At the end of the analysis, when the range of concentrations present in 

the sample was known, a more accurate calibration (Fig 4.2.2) was 

determined. 
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5ml of sample was pipetted into a 250 ml flask and 0.5ml of 

phenolphthalein indicator, was added. 2N Sodium hydroxide solution was 

added until a pink colour appeared, then this colour was discharged 

with 1% sulphuric acid solution. 0.5N sodium hydroxide solution was 

carefully added until the pink colour was just restored. This 

neutralisation step ensured that the pH of the solution was not too low 

to interfere with the subsequent colour development. The acidity in 

this method must be carefully controlled since at low acidity, the 

molybdate itself will give a colour in the absence of phosphate (Alien 

1974). 

8mls of working reagent was added to each flask using an automatic 

dispenser. The working reagent consisted of 5 parts 14% sulphuric acid 

(a), 2 parts of ammonium molybdate solution (b) (30g in 800 ml water), 

2 parts of ascorbic acid solution (c) (5.4g in 100 ml water) and 1 part 

potassium antimonyl tartrate solution (d) (0.68g in 200 ml water). a 

and b were mixed first, then c was added and mixed, followed by d. 

This reagent was mixed daily since the absorbic acid deteriorates in 

the presence of light. The solution was made up to 250ml with 

distilled water and left for exactly 10 minutes for the colour to 

develop. The absorbance of the solution at 800 nm was measured in a 

4cm cell against a blank prepared from distilled water. The instrument 

used was a Pye SP 8-100 ultra violet spectrophotometer. Absorbance 

readings were compared to the calibration graph which was prepared 

using dilutions of the standard solution. Blanks were subtracted where 

necessary. 

Concn of sample = (Cx100) g-1 

wt of sample in g 

Where C= mg of P obtained from graph 



4.2.9 Potassium - principle 

The intense emission line given by potassium in a flame enables very 

low concentrations to be determined by flame photometry - the arc line 

for potassium being 766 nm. Residual acids occasionally have a slight 

effect and for this reason, blanks which had been digested in a similar 

way to samples were used. 

The flame photometer operates by taking up a small amount of sample 

into the system by means of a vacuum pump. This minute amount of 

sample is vapourised and burned in a natural gas flame within the 

instrument. The light emitted from the flame passes through a specific 

filter (appropriate for potassium) and onto a photoelectric cell. 

Depending on the intensity of the colour a reading can be taken from 

the scale. As with the spectrophotometer a calibration must be carried 

out using known standards. 

4.2.10 Potassium - method 

A stock solution of 1000 ppm was prepared by dissolving 1.9068g dry KC1 

in water and making up to 1 litre. Working standards were diluted to 

produce a range between 100 ppm K-0 ppm ~ . Where samples were over this 

range the sample solution was diluted. The K filter was selected on 

the Corning 400 flame photometer and the gas pressure and slit width 

were adjusted. 

A calibration curve was prepared from the range of standards by setting 

the top standard to a suitable large scale deflection and the 0 ppm 

standard to zero. The sample solutions were aspirated into the flame 

and the atomiser and burner were flushed with distilled water in 

between samples. Blank determinations were subtracted where necessary. 
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4.3 Results 

4.3.1 Data analysis 

The normality of the data on nutrient concentrations was tested using 

the normal probability plot correlation coefficient (Ryan et al 1982). 

The values of r which were obtained all lay within the P~O.OS limits 

except the values for nitrogen concentration in the reproductive parts 

of the flowerers. A log transformation was applied and the transformed 

data were used in any subsequent analysis of variance. Analyses of 

variance were carried out using GENSTAT (Alvey, Galwey and Lane 1982) 

which could take account of the Youden square design. All other 

statistical analysis was carried out using Minitab (Ryan et al 1976). 

4.3.2 The effect of plant material on nutrient concentrations 

The concentrations of N, P and K in the Taraxacum plants were very 

different (Table 4.3.1). When the concentrations in the 3 types of 

plant material were averaged potassium had the highest mean 

concentration of 18.6 mg/g, followed by nitrogen at 12 mg/g and lastly 

phosphorus 0.079 mg/g. The mean concentrations of nutrients in the 3 

types of plant material (1. non-flowering plants- NFs; 

2. vegetative parts of flowering plants - VF's; and 3. reproductive 

parts of flowerers - RFs) under the 7 different treatments are shown in 

fig 4.3.1. The mean concentrations of N present in the 3 types of 

plant material were not significantly different (Table 4.3.1). However 

both P and K were present in higher concentrations in the RFs than in 

the VFs. Moreover the concentration of P and Kin the reproductive 

tissue was significantly higher than in the tissue of the non-flowering 

plants. 



Table 4. 3.1 

Mean concentrations of N, P and K and !-tests comparing non-flowerers 
and vegetative•reproductive parts of flowerers 

Nitrogen 

Non-flowerers 

Veg flowerers 

Rep flowerers 

Phosphorus 

Non-flowerers 

Veg flowerers 

Rep flowerers 

Potassimn 

Non flowerers 

Veg flowerers 

Rep flowerers 

mean concn 

mg/g 

12.44 

-T=1.14 
NS x 

- T = 0.21 
NS X 

T = 1. 70 
NS x 

0.073 
- T = 0.42 -~ 

NS 
T -3.49 

seed enrichment 
ratio 

1.01 

1.183 
p = 0.0010 

0.07504] 

0.08878 

17.68] 

15.561 

22.68 

*** 
T = -2.92 J 
p = o.oos 

** 

T = 1. 56 
NS x 

T = 4.67 
p = 0.0000 

*** J 

T = 4.34 
p = 0.0001 

1.45 

SD ** P < 0.01 *** P(0.001 

x = sig using anova 
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Fig 4. 3 .1 Nutrient Concentrations in Taraxacum 
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A two-way anova which took account of both the effect of treatment and 

the effect of type of plant material confirmed that the type of plant 

material which had been analysed had a significant effect on the 

concentrations of nutrients. This effect was least pronounced for N 

•(vR ~ 3.94) and most pronounced K (VR ~ 77.46). For both Nand P the 

concentrations in the NFs were on average lower than the concentrations 

in the VFs but for K the mean concentration in· the non-flowerers was 

higher than in the VFs. 

The mean concentration of all 3 nutrients was higher in the 

reproductive tissue. This higher concentration can be expressed as the 

'seed enrichment ratio' (Benzing and Davidson 1979) or the ratio of the 

concentration in the reproductive parts to the concentration in the 

vegetative parts (Table 4.3.1). 

4.3.3 Nutrient concentration - the effect of treatment 

The two-way anovas in Table 4.3.2 show that treatment had a significant 

effect on P and especially K concentration, but it is evident from Fig 

4.3.1 that the effect of treatment was not consistent. There was also 

a significant interaction between treatment and the type of plant 

material which was analysed in the case of K concentration. ·To explore 

these relationships further, separate one way analyses of variance were 

carried out on each type of plant material. The variance ratios are in 

Table 4.3.3 and the anova tables with standard error of differences in 

Appendix 2. The means obtained from the two-way anova were plotted 

graphically (figs 4.3.2-4.3.4) and where significant (P<O.OS) 

• VR = variance ratio 
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Two-way anovas on concentration and type of plant material 

Nitrogen 

Source 

Treatment 
Type of material 
Treat type 

Phosphorus 

Source 

Treatment 
Type 
Treat type 

Potassium 

Source 

Treat 
Type 
Treat type 

VR 

0.780 
3.945 
1.815 

VR 

6.649 
16.734 

1.527 

VR 

12.372 
77.458 
4.427 

102 

df 

6/12 
2/40 

12/40 

df 

6/12 
2/40 

12/40 

df 

6/12 
2/40 

12/40 

Prob 

NS 
0.05 

NS 

Prob 

0.001 
0.001 

NS 

Prob 

0.001 
0.001 
0.001 

Table 4.3.2 



Summary of variance ratios for nutrient analysis 

Effect of treatment on: 

Non-flowering 
Non-flowering 
Non-flowering 
Flowering veg 

11 n 

" " 

N concn 
P concn 
K concn 
parts N concn 

11 p 11 

11 K 11 

Flowering rep parts N concn 
11 " 11 p If 

n nu Kn 

Total non-flowering N 
11 11 p 
11 11 K 

Total flowering veg N 
11 11 p 

11 K 11 

Total flowering rep N 
11 p 11 

Total plant 

RA in terms of 
untransformed 

RA in terms of 
Asin trans 

K 
N 
p 
K 

N 
p 

K 
Biomass 

N 
p 

K 
Biomass 

Two way RA treat v RE method 
Treat 
RE method 

Treat RE method 

VR 

2.822 
28.269 

2.66 
1. 51 
5.083 
8.974 
0.385 
1.435 

21.789 

6. 771 
32.306 
14.684 
12.692 

7.863 
4.168 
4.864 
3.679 
5.444 
9.887 
5.418 
9.119 

1.143 
1.854 
2.755 
2.868 

1.154 
1.908 
2.82 
2.9 

2.117 
36.375 

2.874 

OF 

6/ 11 (l) 
6/11 (l) 
6/11 ( 1) 
6/11 (1) 
6/ 11 (l) 
6/11 (1) 
6/ 11 (l) 
6/ 11 (1) 
6/ 11 ( 1) 

6/12 
6/ 12 
6/12 
6/11 (l) 
6/11 (1) 
6/ 11 (1) 
6/11 (1) 
6/ 11 (l) 
6/ 11 (1) 
6/11 (l) 
6/ 11 ( 1) 
6/11 (1) 

6/11 (l) 
6/11 (l) 
6/11 (l) 
6/12 

6/ 11 (1) 
6/ 11 (l) 
6/ 11 (l) 
6/12 

6/ 12 
3/60 

18/60 

Table 4.3.3 

PROB 

NS 
p<(Q.OOl 
NS 
NS 
P<.0.01 
P<0.01 
NS 
NS 
P<.O. 00 l 

P<0.01 
P<0.001 
P<0.001 
P<.0.001 
P<.O .01 
P<O.OS 
P<.O .05 
P<O.OS 
P<t.0.01 
P<0.001 
P<O .01 
pc.o.001 

NS 
NS 
NS 
NS 

NS 
NS 
NS just 
NS just 
(3.00 
Pc0.05 

NS 
P<0.001 
P<0.001 

Table 4.3.4 

Correlation coefficients of different methods of measuring RA 

B K p 
K 0.842 
p 0.644 0.664 
N 0.762 0.753 0.769 

All values P-<0.001 103 



differences between the nutrient deficient means and the complete 

nutrient solution mean occurr~Jit is indicated on the graphs. 

The way in which the concentration of N varies with decreasing nutrient 

supply is shown in fig 4.3.2. The anovas show that there was no 

significant treatment effect on N concentration but nevertheless some 

general trends can be observed from the graphs. Tissue N concentration 

generally declined with decreasing supply of both N and P but this 

effect was not statistically significant. In contrast, the 

concentration of N in the NFs and VFs increased sharply in the 20%k 

treatment. The concentration of N in the reproductive tissue was 

generally more constant than in the vegetative tissue. 

There was a highly significant effect of treatment on P concentration 

(P{O.OOl) which is most marked in the NFs (P<O.OOl) and the VFs 

(P(O.Ol) see fig 4.3.3. Decreasing N and K supply caused the 

concentrations of P in the non-flowerers to increase significantly, 

whereas a reduction in the P supply resulted in a significant drop in P 

concentration in both the NFs and VFs. The concentration of P in the 

reproductive tissues was again much less variable although there was an 

indication of a slight increase in concentration at the lowest level of 

N supply. 

The concentration of K in the Taraxacum plants showed the most marked 

and consistent response to treatment (Fig 4.3.4). This effect was most 

marked in the FRs (P(O.OOl) and the FVs (P<OOl). K concentration in 

all 3 types of plant material, declined with decreasing supply of K. 

However K concentration in the RFs and VFs rose significantly with 

decreasing N supply. P supply had no obvious effect on K 

concentration. 104 



Fig 4.3.2 THE EFFECT OF DECREASING NUTRIENT SUPPLY ON N CONCENTRATION 
IN THE NON-FLOWERERS (NF'S), VEGETATIVE PARTS (VF'S) 
AND REPRODUCTIVE PARTS (RF'S) OF THE FLOWERERS 
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Fig 4.3.3 THE EFFECT OF DECREASING NUTRIENT SUPPLY ON P CONCENTRATION 
IN THE NON-FLOWERERS (NF'S), VEGETATIVE PARTS (VF'S) AND 
REPRODUCTIVE PARTS (RF'S) OF THE FLOWERERS 
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Fig 4.3.4 THE EFFECT OF DECREASING NUTRIENT SUPPLY ON K CONCENTRATION 
IN THE NON-FLOWERERS (NF'S), VEGETATIVE PARTS (VF'S) AND 
REPRODUCTIVE PARTS (RF'S) OF THE FLOWERERS 
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4.3.4 The total amount of NPK 

The total amount of NPK per tray was determined by multiplying 

the mean dry weight per tray and the mean nutrient concentration per 

tray. Consequently the pattern of total nutrient content (Fig 4.3.5) 

was very similar to the pattern of biomass allocation seen in Ch 3.3. 

One way anovas showed that treatment had a significant effect on the 

total amount of N, P and K in each type of plant material (Table 

4.3.2). Using the standard error of the differences of the means it 

was possible to calculate which treatments had significantly different 

means from the control and these are indicated on Fig 4.3.5. 

The low levels of all total nutrients in the 50% and 20%N treatments 

reflect the low plant weights achieved under these treatments. 

Significantly lower P amounts were found in the low P treatments and 

significantly lower K amounts were found in the low K treatment. Low 

total amounts of N were found in the vegetative parts of the flowerers 

in the low phosphorus treatments. The total amount of each nutrient in 

the reproductive structures was always significantly lower in the 20%N 

treatment (reflecting low plant weight) but only affected under the 

SOi.N treatment in the case of N allocation. Total allocation of 

nutrients in reproductive structures was not significantly affected by 

any other treatments. 

4.3.5 Reproduction allocation 

Four different methods of measuring reproductive allocation were 

assessed - 1. Biomass allocation, 2. N allocation, 3. P allocation and 

4. K allocation. Fig 4.3.6 shows the mean values for each different 

method under each treatment. The standard error of the difference of 

the overall means (regardless of treatment) of each method were 

obtained from the two way anova in Table 4.3.2 and this enabled 
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comparison of each method. K RA (71%) and P RA (66%) were 

significantly higher than Biomass RA (61%) and N RA (62%). Moreover K 

RA was significantly higher than P RA. The different methods were 

highly correlated with each other (Table 4.3.4). 

Both one way anovas on each separate method and a two way anova on all 

methods showed that treatment had no significant effect on any of the 

ways of measuring RA. Nevertheless it is obvious from fig 4.3.6 and 

fig 4.3.7 that there seems to be a trend towards higher K allocation in 

the low K treatments and a higher P allocation in the lower P 

treatments. Nevertheless there were insufficient replicates to enable 

the null hypothesis to be rejected. 

The two way anova showed that the methods of measuring RA were 

significantly different with a high variance ratio of 36.37. There was 

a significant interaction between method of measuring RA and treatment 

which was probably attributable to the slightly increasing K and P RA 

with decreasing K and P supply. To test the amount of variability 

between methods of measuring RA within each treatment one way anovas 

were carried out on separate treatments (see Table 4.3.5). 

It is evident from this table that whereas in some conditions the 

methods of measuring RA did not differ significantly (eg the 100% 

nutrient solution). In others there was a significant effect (eg the 

20%K treatment). 
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Fig 4.3.7 DIFFERENT METHODS OF MEASURING RA 
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4.4 Discussion 

4.4.1 Concentrations 

The mean concentrations of K (18.6 mg/g) and N (12 mg/g) in the tissue 

of the Taraxacum plants fall well within the ranges quoted in Epstein 

(1972). Ranges of 8.7-20.0 mg/g for Nand 5.2- 47.4 mg/g forK are 

given for 13 species from various environments. The concentration of P 

however (0.08 mg/g) is lower than the given range - 0.9- 3.7 mg/g. A 

P concentration of 0.02 - 0.05 mg/g was found in the heartwood of Pinus 

rigida trees (Woodwell et al 1975) but the flowers contained 2.4 mg/g. 

A perchloric acid digestion is normally recommended for P determination 

(Allen 1974) and the use of the Kjeldahl digestion on the plant 

material may have resulted in low P recovery rates. Absolute 

concentrations however are not necessary when considering the 

proportional allocation of P. A higher concentration of K to N seems 

to be quite common in certain species eg Aster macrophyllus, Coreopsis 

palamata, Sanguinaria canadensis (Gerloff et al 1966), Aster 

acuminatus, Solidago macrophylla (Siccama et al 1970). 

Numerous studies have found higher concentrations of N, P and K in the 

reproductive structures of a variety of mesophytic herbs and arid 

region shrubs eg Pate and Flinn 1973, Van Andel and Vera 1977, Benzing 

and Davidson 1979. Lovett-Doust 1980, Williams and Bell 1981, Ernst 

1983, Fenner 1985. One of the easiest ways of comparing these values 

is to look at the seed enrichment ratios. (Table 4.4.1) 

The SER values obtained for Taraxacum are much lower than those 

obtained by Fenner (1985) and Benzing and Davidson (1979). This 

difference must be partly attributable to the analysis of all 

reproductive structures in Taraxacum whereas Benzing and Davidson 

(1979) and Fenner (1985) analysed seeds for mineral content. 
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Seed Enrichment Ratios 

Taraxacum 

Senecio sylvaticus 
Seeds no roots 
(Fenner 1985) 

T. circinnata 
Seeds includes roots 
(Benzing and Davidson (1979) 

Lupinus albus (fruits) 
L. angustifolius 
includes roots 
(Hocking and Pate 1978) 

Erodium glutinosum 
Phleum arenarium 
includes fruits and leaves 
on soil 
(Rrnst 1981, 1983) 

Reproductive structures 

N 

1.01 

2.7 

2.53-3.23 

3.89 
2.29 

0.993 
2.155 

Plantago insularis 2.53 
(including root) 4.02 
Eschscholnzia glyptosperma 1.47 
includes roots 2.27 
(Williams and Bell 1981? 
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p 

1.183 

5.74 

1.98-2.68 

4.1 
2.1 

2.127 
0.622 

Table 4.4.1 

K 

1.45 

0.35 

1.09-1.7 

2.68 
1.4 

0.542 
0.252 



The values obtained by Williams and Bell (1981) for N concentration 

which considered all reproductive structures are more comparable. 

Moreover it is evident from the Williams and Bell (1981) figures that 

the inclusion of root biomass as part of the 'vegetative' fraction 

tended to increase the SER. Both Benzing and Davidson (1979) and 

Hocking and Pate (1978) included root biomass in their estimates. The 

wide range of SERs for N, P and K in Table 4.4.1 indicate that there is 

much interspecific variation in the reproductive concentration of 

nutrients. 

The high SER of K in Taraxacum is also probably due to the inclusion of 

the scape and pappus in the reproductive fraction. Ernst (1983) found 

that N and P were concentrated in the caryopses of Phleum arenarium 

whereas K was concentrated in the associated reproductive organs such 

as the spikelets and fruit stalks. In Senecio sylvaticus grown on 

unamended soil (Van Andel and Vera 1977) 35.7% of the total K 

allocation was found in the receptacles and bracts, 5.5% in the pappus 

and 11% in the fruits. In Chamaenerion angustifolium the flowers and 

capsules contained 21% of the total K, the pappus 0.6% and the seeds 

0.7%. In contrast, the allocation of N was more constant - 3.6% - 4.7% 

for each part. A possible explanation for the high concentration of K 

in the scape of the Taraxacum plants is that K has an important role as 

an osmotic regulator (Sutcliffe and Baker 1974). High K concentrations 

seem to result in higher osmotic pressure in the seive tubes which 

improved the flow rates and hence turgor pressure (Mengel and Haeder 

1977). This is likely to be particularly important in Taraxacum 

officinale where the scape is hollow and fleshy with abundant, milky 

latex. 
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The mean concentration of N and P in non-flowering plants generally 

remained lower than the concentration in the vegetative parts of the 

flowering plants. This would suggest that insufficient quantities of 

these elements had been accumulated to enable flowering to proceed. In 

contrast however the concentration of K in the non-flowering plants was 

always significantly higher than in the vegetative parts of the 

flowering plants. Hocking and Pate (1978) found that the concentration 

of K in plants of Lupinus albus just before fruiting (8.8 mgl~) was 

more than twice that in the non-reproductive parts at plant maturity 

(4.4 mg/~) whereas the concentration in the reproductive parts (11.8 

mglg) at plant maturity was higher. Similarly Lovett-Doust (1980) 

found that plants of Smyrnium olusatrum which persisted in a vegetative 

condition and failed to flower maintained higher concentrations in the 

vegetative organs. 

It seems that certain plants can internally transfer mineral nutrients 

from one location (eg the above ground vegetative) parts to another (eg 

the reproductive parts) depending on the sites of greatest meristematic 

activity. This property of efficient internal translocation is not 

only related to mineral deficient habitats (Harper 1977) but is also a 

physiological feature of many ruderal species (Chapin 1980). 

4.4.2 The effect of mineral deficiency on mineral concentrations 

A reduction in supply of a specific nutrient was always accompanied by 

a decrease in that nutrient's concentration in the vegetative tissue of 

both flowerers and non-flowerers. This was also the case in the 

reproductive tissue for K concentration. A similar trend was observed 

in the reproductive tissue for N and P concentration but it was not 

significant. 
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This correlation of nutrient supply with nutrient concentration has 

been well documented for crop plants eg Williams 1955, 1961, 

Sadhu et al 1975 a+ b,' Chapin 1980 and tissue analysis is used as an 

indicator of deficiencies in crop plants (Ulrich and Hills 1967). In 

crop plants reduced nutrient availability usually result in an 

increased root: shoot ratio (Chapin 1980). However, the results of 

the increased root: shoot ratio and increased root absorption capacity­

usually don't fully compensate for the reduced nutrient availability. 

Consequently the concentration and total quantity of nutrients absorbed 

generally decrease with decreasing availability (Ulrich and Hills 

1967). In general these changes in concentration tend to be greater in 

the leaves than other organs (Goodall and Gregory 1947). This response 

may be less evident in wild plants (Chapin 1980) because of their 

greater variation in growth rate, less growth response to nutrient 

availability and smaller range in tissue nutrient concentrations. 

Changes in the vegetative concentration of N in response to N supply 

have been noted in Tundra species (Shaver and Chapin 1980), Desert 

Winter Annuals (Williams and Bell 1981), Senecio vulgaris (Fenner 

1985), Tillandsia circinnata Benzing and Davidson (1979) Dactylis 

glomerata (competition experiment) Lambert (1968) and Van Andel and 

Vera 1977. Similar responses to phosphorous supply were found for 

Tundra species (Shaver and Chapin 1980), Eriophorum vaginatum (Tamm 

1954), Fenner (1985), Benzing and Davidson (1979), Van Andel and Vera 

(1977), Lovett Doust (1980) and Ernst (1981) and K supply by Fenner 

(1985), Van Andel and Vera (1977), Goodman and Perkins (1968), Benzing 

and Davidson (1979). However many of these studies use general NPK 

fertilizers eg Fenner (1985) Lovett Doust (1980) or compare plants 

grown in various dilutions of natural soil eg Ernst 1981, Van Andel and 

Vera (1977) or in natural conditions eg Benzing and Davidson (1979) so 
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it is difficult to assess whether the observed changes in concentration 

in specific nutrients are responses to that specific nutrients' 

availability or responses to availability of several nutrients. 

The changes in concentration of nuitrients in the seed were much less 

marked. This maintenance of more stable nutrient concentrations in 

seed regardless of external nutrient supply has been noted by Fenner 

(1985) Lovett Doust (1980) and Benzing and Davidson (1979). However 

Fenner (1985) and Ernst (1981) did find a positive correlation between 

K supply and its concentration in seeds as is indicated in Taraxacum. 

Seed concentration has been shown to be affected by external nutrient 

supply in the case of N by Williams and Bell (1981), Ernst 1983 and 

Schweizer and Reis (1969) and in the case of P by Austin (1966). 

Benzing and Davidson (1979) did find some specimens of Tillandsia 

circinnata from very impoverished situations with low concentrations of 

N P and K. 

The response of nutrient concentrations in Taraxacum to the 

availability of other nutrients was quite varied. One of the most 

·significant changes in concentration associated with nutrient supply 

was an increase in K content in the flowering plants (both vegetative 

and reproductive) with decreasing N supply. This rise in concentration 

with decreasing N was also evident to a lesser degree in the case of P 

concentration. It is obvious (see Ch.3) that the supply of N 

restricted plant growth in both the 50% and 20%N treatments. The 

concentration of N in these plants was therefore below the level giving 

optimal growth or the 'critical concentration'. Under these 

circumstances the reduced growth caused by the N deficiency would 

enable an accumulation of all other nutrients in the plant tissue 

(Ulrich and Hills 1967). This effect may also have been exacerbated by 

119 



an antagoni•stic interaction between K+ and NH4 + ions (Robson and 

Pitman 1983) and N03 and P04 (Bouma 1983). This may also explain the 

rise in N concentration at low levels of K supply and rise in P 

concentration in the non-flowerers at low K supplies. It has been 

known for some time that when more of a particular element is provided, 

its concentration in the plant increases whilst levels of other 

elements may fall eg P decreased from 3200 ppm to 1612 ppm in the ash 

of a grassland sward when an NPK fertiliser was used rather than just 

NP (Sutcliffe and Baker 1974). It is obvious therefore that the 

results of studies which look at nutrient allocation in response to 

general fertilisers should be treated with caution. 

4.4.3 Total amounts of nutrients 

The total quantity of a particular nutrient was strongly influenced by 

the quantity of biomass produced. There was a strong treatment effect 

on total quantities of nutrients which was largely attributable to the 

depression of biomass by the low N treatments. This effect was only 

overcome when treatment had had a marked effect on concentrations. Low 

P and K concentrations caused by low P and K availab;/ities resulted in 

significantly lower total quantities of P and K in the plants in these 

treatments. This effect of biomass on total nutrient contents was also 

noted by Twyford and l~almsley (1974) who found that the total nutrient 

contents in the organs of banana was related to the size of the plant 

organs. Lovett Ooust (1980) argued that since the total amounts of P 

present in the different organs reflected .in part the allocation of 

biomass, a more accurate picture of the processes involved during fruit 

formation could be obtained from consideration of nutrient 

concentrations. 
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Total nutrient content in reproductive parts was again much more 

constant (see also Fenner 1985) and Benzing and Davidson (1979) and 

only showed significant reductions under the 20% N treatment. The only 

exception to this was for N concentration which showed significantly 

lower total amounts in the seeds in both the 20% and 50%N treatments 

(see later discussion of RA). 

4.4.4 Reproductive allocations 

The proportions of N, P and K allocated to reproductive structures in 

Taraxacum are higher than most of the values reported in the available 

literature. See Table 4.4.·z. However, many of these values included 

root biomass and only considered seed allocation in their estimation. 

Had this been undertaken for Taraxacum the values would have been 

lower. The mean N RA of 61% for all reproductive structures is most 

similar to values obtained by \Jilliams and Bell ( 1981) for winter 

desert annuals, Smyrnium olusatrum (Lovett Doust 1980) had a P RA of 

68-74% so 66% for Taraxacum is not excessively high. However the K RA 

of 71% is much higher than most values in Table 4.4.2 although 52.2% 

was recorded by Van Andel and Vera (1977) for all reproductive 

structures in Senecio sylvaticus. It is probable that the majority of 

the K RA in Taraxacum is attributable to large quantities of K in the 

scape as suggested earlier. 
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The different methods of measuring RA gave significantly different 

results. KRA and PRA were significantly higher than BRA and NRA. This 

concurs with the results of Abrahamson and Caswell (1982) who found 

that the patterns of allocation of biomass and nutrients in populations 

of Verbascum thapsus were different. They concluded that biomass 

allocation does not reflect nutrient allocation. Similarly Lovett­

Doust (1980) and Van Andel and Vera (1977) found that the allocation 

patterns of P and N + P respectively were different from those of 

biomass. 

RA (in whichever currency) was not significantly affected by treatment 

despite an apparent trend towards higher P and K allocation in 

deficient supplies of P and K. Van Andel and Vera's (1977) results 

comparing nutrient allocation in Senecio sylvaticus under different 

nutrient availabilities were similarly inconclusive. 

However, Lovett-Doust (1980) found that allocation of P to reproductive 

structures was reduced in a low nutrient treatment and a higher 

fraction was found in the tuberous root system of Smyrnium olusatrum. 

In contrast Fenner (in press) found that with increasing nutrient 

stress a higher proportion of the total quantity of N P and K was 

allocated to seeds. Williams and Bell (1981) found that the reaction 

to nutrient additions in desert winter annuals was species-specific. 

Species which were relatively nitrogen rich under natural conditions 

allocated any additionally available N to reproductive tissues whereas 

species which were nitrogen-deficient under natural conditions 

allocated any additional N to photosynthetic tissues. This suggested 

that under deficient conditions species which were N-poor allocated N 

to reproduction at the expense of the vegetative organs. Spratt and 

Gasser (1970) found that wheat incorporates a higher fraction of its 
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total N pool into grain when N is limiting and Ernst (1983) found that 

Phleum arenarium allocated more P and K to the caryopses with 

increasing nutrient stress. 

The general trend observed in Taraxacum, of increasing the relative P 

and K allocation to reproductive structures with decreasing nutrient 

availability, therefore seems to be a widespread phenomenon. This 

trend is probably partially a consequence of preferential reallocation 

of nutrients within the plant at the time of fruiting. Gregory (1953) 

has shown that in the developing cereal plant over 90% of P and N is 

accumulated before the plant has made 25% growth in dry weight and it 

was earlier noted that there appeared to be some retranslocation, 

particularly of K in Taraxacum. Retranslocation at the reproductive 

stage can involve losses of N, P and K of c.74% from leaves of Lupinus 

albus grown in mineral sufficient conditions (Hocking and Pate 1974). 

In conditions of low mineral supply this translocation 'pull' by the 

reproductive parts would be even stronger. Moreover more nutrients 

would be needed to increase the root:shoot ratio. The fact that 

nutrient RA in Taraxacum does not decline and even shows a tendency to 

increase strengthens Grime's (1977) hypothesis that ruderal plants 

react to stress by growth responses which maximise seed production at 

the expense of a rapid curtailment of vegetative development. 

Nevertheless even under extreme deficiencies there must be a critical 

minimum level of vegetative development in order to maintain the 

photosynthetic apparatus. This may explain why nutrient RA often 

declines in the most extreme (20%) treatments (Table 4.4.2). This is 

particularly true when nitrogen is limited and maintenance of nitrogen 

levels in the leaves may be particularly important for photosynthesis. 

It was noted earlier that total allocation of N was exceptionally lower 
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in the reproductive parts in both the 50% and 20% N deficiency 

treatments. A peak of nutrient RA at moderate levels of nutrient 

stress but a fall under extreme conditions is also evident in the data 

of Van Andel and Vera (1977) on Senecio sylvaticus. Similarly 

Williams (1948) found that when Avena was grown at low, medium and high 

levels of P availability it allocated 72, 82 and 43% of its internal P 

to RA. He surmised that plants grown with excessive P supply derived 

93% of their inflorescence P supply from other plant parts whereas P 

deficient plants only derived 30% from these sources. In the plants 

with excessive P supply a more accessible form of P was obtained from 

the senescent breakdown of other plant parts whilst in the deficient 

plants P was more readily derived from the growth medium. There is 

known to be a close correlation between concentration and 

retranslocation rate from older leaves (Hill et al 1978) and some 

nutrients are less easily reallocated under deficient conditions. The 

fall in RA under extreme nutrient limitation may be a consequence of 

lower levels of reallocation from other plant parts and also the need 

to maintain the critical minimum level of nutrients in the leaves 

necessary for photosynthesis. 

Although the methods of measuring RA were significantly different it 

was obvious from the results that the extent of this difference varied 

from treatment to treatment. Within the control treatment, the 20%N 

treatment and 50%P treatments the difference between methods was not 

significant but within the 20%K and 20%P treatments the difference in 

methods was highly significant. This reflected the higher allocation 

of K and P under these treatments. 

This result has obvious implications for studies of nutrient RA of 

species in different environmental conditions. Abrahamson and Caswell 
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(1982) also found that there were significant nutrient K population 

interactions in Verbascum thapsus and inferred that between population 

trends in biomass allocation did not reflect qualitative trends in 

mineral element allocation. They concluded that it was not safe to 

assume that the allocation of biomass accurately measured the 

allocation of nutrients but could not identify a more appropriate 

currency. Allocation of K to reproductive structures is consistently 

higher than N P and B allocation in Taraxacum but under nutrient 

sufficient conditions this difference is not significant. When grown 

in natural soil Senecio sylvaticus (Van Andel and Vera 1977) had 

greatest RAs with regard to P but in less fertile conditions N was the 

greatest contributor. 

Mineral nutrient RA is to a certain eKtent a function of biomass 

allocation since it is the product of nutrient concentration and dry 

weight. In Taraxacum N P and K RA were highly correlated with biomass 

RA and Abrahamson and Caswell (1982) indicated that although the 

nutrient RA differed in the various populations the relative 

contributions of the different elements were quite similar. Obviously 

nutrient RA does vary under different environmental conditions and the 

variations are element and species-specific. In comparative 

eKperiments where conditions are optimal biomass seems to be a 

reasonable currency since it is to some extent an integration of a 

number of physiological processes and is undoubtedly easier to measure. 
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CHAPTER 5 REPRODUCTIVE COST 

5.1 Introduction 

5.1.1 Why consider reproductive cost 

The concept of a 'cost' associated with reproduction is implicit in 

many allocation studies and has been a basic tenet of life history 

strategy models. Bell (1980) suggested that in consideration of life 

history strategies it is the 'reproductive cost' to the individual 

which is of evolutionary importance rather than the reproductive effort 

or allocation during one specified time period. He argues that 

measuring reproductive allocation in units of whatever currency is 

irrelevant since these units are only of evolutionary significance if 

they are transformed into units of fitness. Only when this 

transformation is performed is the reproductive cost, 'the generally 

deleterious effect of present reproduction on future survival or 

fecundity or both', being measured. 

This argument was also propounded by Sohn and Policansky (1977) when 

considering the relative importance of sexual and asexual reproduction 

in the mayapple, Podophyllum peltatum. They conclude that it is 

necessary to understand how changes in reproductive strategy can alter 

the extinction rates of various genotypes. An estimate of the 

allocation to various plant parts is meaningless. 

The traditional measures of allocation (particularly when applied to 

perennial plants) fail to take account of the trade-offs between 

current reproduction and the residual reproductive value (or chances of 

future survival and reproduction), (Antonovics 1980). Moreover the 

physiological costs of reproduction may themselves be time specific. A 
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single fruit can incur a different cost to a plant depending on the 

stage in the life cycle at which it is produced (Lovett Doust and Eaton 

1982). To facilitate this understanding of the evolutionary process 

one needs an estimate of reproductive cost or the effect of a given 

quantity of present reproduction on the expectation of future survival 

or reproduction. 

5.1.2 The theory of reproductive cost 

Life histories can be regarded as 'sets of age-specific rates of 

reproduction and risks of death' (Law 1979a). Fisher (1930) 

established the basis for the modern demographic theory of life 

histories which has been developed into complex and varied models (see 

Stearns 1976 for review). Such models consider how particular life 

histories will maximise an organism's fitness given that the 

environment imposes certain mortality constraints (eg Bell 1976) or 

causes ~hifts in mortality and fecundity patterns (eg Schaffer 1974). 

That is, they assume that there is a cost inherent in reproduction. 

Organisms in these models are assumed to achieve an optimal 'fitness' 

in their life histories. Fitness can be defined as the rate of 

increase which is attributable to the reproduction occurring during a 

lifetime of variable duration (Bell 1980). It must be remembered that 

fitness is a relative term and can only have meaning in comparison to 

other organisms (Harper 1977). Calow (1978) suggests that the 

definition of fitness in terms of replicative capacity can only hold 

where resources are unlimited. A more subtle definition of fitness is 

in terms of the extent to which a particular trait comes to monopolise 

the resources available to it in a given habitat (Lotka 1922). 

Nevertheless, the majority of life history models assume fitness can be 

regarded as rate of increase. 
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Fisher (1930) proposed that the genetic fitness of a class of organisms 

would be given by the Malthusian parameter r which can be calculated 

from the demographic function 

<>0 

Vo =~ 1x mx e-rx 
X~ I 

Where 1x = probability of living 

mx = fecundity of age x 

to age x 

r = rate of population increase 

e = base of natural logs 

V = reproductive value 

(Antonovics 1980) 

The contribution of any particular age class x to future generations is 

oQ 

Vx "' ~ lt mt e rt 

or the 'reproductive value' at age x. Schaffer (1974, 1979J 1983) and 

others suggest that the optimal phenotype will be that which, by proper 

choice of reproductive allocation or effort at each age x, maximises 

the reproductive value. 

The reproductive value can be partitioned into 2 components (Williams 

1966) ie present progeny and future progeny. 

OD 

~ Vx = mx + -t: =;a;;tf 

lx e -rx 
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where mx = present progeny or present fecundity and the rest is the 

future progeny or residual reproductive value. 

If there is indeed a trade-off between resources allocated to present 

reproduction and those allocated to future reproduction or growth and 

survival we would expect to observe a negative relationship between 

present reproduction and residual reproductive value in practice. 

Unfortunately, the theory of life history models has surpassed the data 

available for testing the assumptions and predictions ofthe models, 

perhaps because of the difficulty of collecting data. The large amount 

of information necessary for evaluating the models has limited their 

application to qualitative questions such as predicting the occurrence 

of iterOfQrousvs semelparous reproduction (Schaffer and Gadgil 1975, 

Schaffer and Schaffer 1977, Law 1979a). The deficiency of appropriate 

data has been pointed out by Law (1979b) and is particularly true for 

data on plant life histories where perhaps the time constraint is the 

limiting factor. This lack of appropriate quantitative data is 

possibly why studies of life history strategies have focussed on 

allocation patterns. However some evidence does exist which indicates 

that there is a relationship between present reproduction and future 

survival1 reproduction and growth. 

5.1.3 Evidence for the existence of a reproductive cost 

When a plant initiates reproduction an investment of considerable 

magnitude has begun. Reproductive structures require an outlay of 

materials and metabolic energy and the diversion of resources to 

reproduction can affect growth and future reproduction. Flowering and 

fruiting are accompanied by decreased growth in many species (Willson 

1983) and because total clutch size commonly increases with size of 

parent, decreased growth means that size-related increases in fecundity 
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are likely to be diminished. Current photosynthate is used in seed 

production of many species such as Hydrophyllum appendiculatum (Morgan 

1971) but stored materials may be used in others (Mooney and Rays 

1973). Reproductive cost therefore may be discernible as an increase 

in mortality, decrease in future reproduction and decrease in 

subsequent size or growth. 

i. Mortality 

In a monocarpic plant the cost of reproduction is death. There is 

some evidence that death in annual plants can be postponed 

indefinitely if reproduction is prevented (Calow 1978). Harper 

(1977) quotes an example where an annual Reseda odorata was 

maintained for several years as a vigorous perennial by removal of 

the flowering primordia. As soon as it was allowed to flower and 

set seed it died. 

The evidence of a link between reproduction and the risks of 

mortality in polycarpic plants is more tenuous. There are several 

cases where high rates of reproduction are associated with short 

lives eg Bocher and Larsen (1958), Langer (1956) and Langer et al 

(1964). The act of reproducing might increase the plant's 

susceptibility to agents of mortality. For several species the 

probability of death is greatest during periods of active growth eg 

3 species of Ranunculus (Sarukhan 1974, and Sarukhan and Harper 

1983). In the grass Phleum pratense Langer (1956), flowering 

tillers had higher mortality rates than non-flowering tillers. Oka 

(1976) found that annual forms of wild and cultivated rice (Oryza 

perennis and Oryza sativa) had a higher juvenile mortality than 

perennial forms. 
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Law (1979b) in a comprehensive study of the costs of reproduction in 

Poa annua found that there was a tendency for reproduction early in 

life to increase the risks of subsequent mortality although this 

tendency disappeared when total reproduction over the whole season 

was considered. Sohn and Policansky (1977) produced a model based 

on data for Podophyllum peltatum which indicated that a decrease in 

future survival was associated with the successful bearing of fruit. 

Data for animals are more comprehensive (see Stearns 1976 for 

review). Murdoch (1966) found that the survival of adult female 

Carabidae from near the end of one breeding season to the start of 

the next was negatively dependent on their breeding success in the 

first season. Similarly the survival rate of individual rotifers 

Asplancha in a clone was negatively related to their average 

fecundity (Snell and King 1977). 

ii. Future reproduction 

Negative correlations of plant fecundity with residual reproductive 

value have been found in Podophyllum peltatum (Sohn and Policansky 

1977) and Poa annua (Law 1979b). The probability that the mayapple 

would be sexual in the future decreases if it successfully bears 

fruit in the current season. This is because the reduction in the 

length of new internodes associated with the production of fruit 

decreases the probability that the next season's shoots will be 

sexual. Families of Poa annua with large numbers of inflorescences 

in the first year have low numbers of inflorescences in the second 

year. 

A characteristic age-associated decrease in reproductive output has 

been reported for many grass species eg Poa pratensis (Evans and 

131 



Canode (1971) and Holcus lanatus (Bocher and Larsen 1958). Stark et 

al (1949) found tharthe ~eed yield of Bromus marginatus declined 

from 1243 kg per hectare to 467, 380 and 319 kg per hectare in 

successive years. 

In years when mango plants, (Mangifera indica) produce a heavy crop 

the tree makes few new vegetative shoots (Harper 1977). Since 

inflorescences are borne on new shoots the tree loses the potential 

for reproduction in the year following a large seed crop. This link 

between reproduction and growth/size and hence subsequent 

reproduction is also found for Chamaelirion luteum by Meagher and 

Antonovics (1982). Flowering in a particular year resulted in a 

reduction in size in the following year and size was correlated with 

inflorescence size, flowering schedules and mortality rates in 

juveniles. The reduction in size was greater in female plants 

implying that the costs of reproduction were greater in female 

plants. It would seem that reproduction has a cost in terms of 

growth and in many species this may be linked with subsequent 

reproduction and risks of mortality. 

iii. Growth/size 

It has been shown· in many plant species eg l~erner {1975), Sohn and 

Policansky (1977) and Bierzychudek (1982) that size plays an 

im~ortant role in determining the physiological fate of an 

individual. If, as previously suggested, size affects the 

probability of future reproduction, then the effect of present 

reproduction on future growth must he critical. 

There is ample qualitative evidence of the existence of trade-offs 

between reproductive and non-reproductiv-e functions eg Leonard 
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1962), which is mainly based on evidence from crop plants such as 

tomatoes. The early quantitative evidence derives from negative 

correlations of annual variation in crop size with annual growth 

increments in trees. Eis et al (1965) found the width of annual 

rings in some conifers was depressed only during the years of cone 

production. Holmsgaard (1956) found that the annual ring width of 

Fagus sylvatica in good mast years (every 6 or 7 years) may be only 

half the average ring width in unaffected years. (For other 

examples see Harper 1977). 

In wild plants the most detailed information is from Law (1979b) and 

Sohn and Policansky (1977). Families of Poa annua which produced 

large numbers of inflorescences in their first year were smaller in 

size in the second year than families which had produced fewer 

inflorescences. In the mayapple the production of fruit was 

approximately equivalent to the production of one new internode. 

Shoots which produced fruit were found to have shorter rhizomes than 

those with flower or fruit failure. In studies on 2 winter annuals, 

Catapodium rigidum and Catapodium marinum Clark (1980) found that 

leaf life expectancy late in the life cycle was significantly 

negatively correlated with caryopsis weight. Early in the life 

cycle, leaf numbers were negatively correlated with caryopsis 

weight. An uncommonly large seed crop in Betula allegheniensis and 

Betula papyrifera resulted in dwarfed foliage, failure to develop 

terminal buds, die back of branches, a reduced growth in height and 

diameter, followed, not surprisingly, by very low levels of 

flowering in subsequent years (Gross 1972). 

The available evidence therefore, does seem to indicate that there 

is a cost associated with reproduction. This cost is often realised 
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by a decrease in growth and subsequent reproduction and an increase 

in risks of mortality. 

5.1.4 Approaches to measuring reproductive cost 

Antonovics ( 1980) suggests that a possible approach to approximat.ill~ 

the trade-offs between present and future reproduction, growth and 

mortality is by field measurements using size rather than age-dependent 

data. This method is particularly relevant in studies of species where 

life histories are determined by size rather than age. Individuals are 

marked in natural populations over successive years and their initial 

size is related to their size and survival the following year as a 

function of their flower and seed production. Antonovics (1980) 

applied this idea to Plantago lanceolata and found that in the 

population under consideration, flowering had little effect on 

subsequent size or mortality, probably because flowering was not 

initiated until the plant had grown to a size where the mortality rate 

was low. The idea was also applied to Chamaelirion luteum (Meagher and 

Antonovics 1982) where size was correlated with inflorescence size, 

flowering schedules and mortality rates in juveniles. 

Experimental manipulations whereby reproductive structures are removed 

at an early stage of development are another possible approach to 

defining reproductive cost. In effect, this method was used in early 

studies of the correlation between vegetative and reproductive growth 

(Leonard 1962); exscision of flowers to improve vegetative growth, 

seed set or prolong flowering periods is a well known horticultural 

technique. 

Antonovics (1980), using data by Caisse (unpub), describes an 

experiment where day length was manipulated to control flowering in 
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genetically identical, cloned individuals of Plantago lanceolata, In 

one set of cloned genotypes flowering was induced and in another 

identical set it was not. In the flowering plants a slight increase in 

leaf growth was followed by a slower production of leaves. An estimate 

that one inflorescence was equivalent to 2.76 leaves was obtained. In 

order to extend this value to a life history, knowledge of the 

contribution of leaves to future survival and growth would be required. 

This approach is also proposed by Silvertown and Rabinowitz (unpub ms) 

who suggest a method of measuring reproductive cost in indeterminate 

plants like the cucumber. Cost is measured in numbers of metamers (in 

this case internodes) produced when flower buds (male, female and both) 

are excised. Salisbury (1942) noted an inverse relationship of 

fruiting and stolon formation in Galeobdolon luteum and of flowering 

and bulbil formation in Allium carinatum. In these two cases costs may 

be assessed in terms of alternat forms of reproduction. 

5.1.5 Difficulties 

The impact of flowering on an individual's future life history in the 

field is confounded by the effects of the environment (Antonovics 

1980). In field studies genetical influences on reproductive 

allocation are not readily separated from environmental influences, In 

order to distinguish the genetic component in the conflict between 

present reproduction and the residual reproductive value it is 

necessary to perform experiments over several seasons on genetically 

identifiable populations. Few experiments of this nature have been 

performed (but see Law, Bradshaw and Putwain 1977), presumably because 

of the difficulty of obtaining and maintaining the requisite plant 

populations. 

135 



A further possible difficulty concerned with the entire concept of 

reproductive cost has been identified by Watson (1984) and Antonovics 

(1980). In some species where photosynthesis and growth is 'sink' 

rather than 'source' limited reproduction may have little cost since 

photosynthesis and or translocation may be limited by the availability 

of sinks (eg reproductive structures or meristems) into which 

photosynthate can be transported, Watson (1984) finds that 

reproduction in Eichornia crassipes is limited by the availability of 

meristems. Examples of 'sink' limited systems have been given by 

Wareing and Patrick (1975). These systems may have evolved where there 

are advantages in limiting plant size so that the plant may not require 

excessive resources such as in seasonally unpredictable or 'stressful' 

habitats. Tuomi et al (1982) suggest that their inability to find a 

reproductive cost in dwarf shoots of Betula pendula may be because 

plants only use excess resources in reproduction. Nevertheless the 

concept of reproductive cost is a useful one, particularly in the case 

of indeterminate plants. 
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5.2 Method - Foxglove 

The aim of the experiment was to determine whether there was a 'cost' 

associated with reproduction in a particular species. The 'cost' of 

reproduction in one year could manifest itself in one of several ways 

in the second year. There might be reduced survival, growth or 

subsequent reproduction which would be proportional to the level of 

reproduction in the first year. It would also be possible to determine 

whether there was any relationship between sexual reproduction and 

vegetative expansion. 

Digitalis purpurea is usually thought to behave as a biennial (Clapham, 

Tutin and Warburg 1959), reproducing in its second year and then dying. 

However under certain circumstances eg when the inflorescence is 

damaged (Harper 1977) it may behave as an iteroparous perennial 

reproducing over several years (Van Baalen and Prins 1983). The growth 

form of this plant with its basal rosette of leaves and flowers 

arranged in a long erect raceme facilited manual excision of a certain 

proportion of flowers. The experiment was designed to show whether the 

level of reproduction in the first year affected the plant's subsequent 

survival or growth. 

At the time of the initation of the experiment (December 1982), there 

was no Digitalis purpurea seed available from wild populations. 

Therefore some 'native' seed was procured from a commercial seed firm 

(The Seed Exchange, Helen McEwen, 44 Albion Road, Sutton, Surrey). 

Since biennial plants usually need to attain a minimum size before 

flowering is initiated (Werner 1975) it was necessary to encourage 

plant growth in the early stages of the experiment. Therefore seeds 

were germinated in seed trays of John Innes compost in a heated 
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greenhouse at Skardon Place at the end of December. They were then 

taken to Rumleigh experimental station on the 24 January and repotted 

in larger polythene pots and left in an unheated greenhouse until they 

were large enough to be potted out. The plants were left outside for a 

few nights prior to being planted out in case there was a vernalisation 

requirement for this particular population (Van Baalen and Prius 1983). 

The plants were planted out in a 4m x 20m rectangular plot on the 13 

March. 

The experimental design (fig 5.2.1) was chosen to minimise any effects 

which might run along or across the rectangular plot, Lengthwise 

environmental effects were particularly important since the plot ran 

down a slope. 80 plants were planted approximately 1m apart in 5, 

4 x 4 Latin squares with 4 treatments. The Latin square designs were 

obtained from Fisher and Yates (1963). Hence there were 20 plants in 

each of 4 treatments and each Latin square contained 16 plants. Colour 

coded and numbered canes were placed beside each plant to identify each 

treatment (fig 5.2.1). 

In treatment A the control, the plants were left to flower normally 

with no removal of flower buds whilst in treatment D all of the flower 

buds were manually excised. The intermediate treatments B and C were 

determined by counting the number of flower initials on several 

immature flower spikes. There were approximately 100 flowers on each 

spike so it was decided to leave c. 50 flowers on treatment B plants 

and c. 20 flowers on treatment C plants. 

Removal of flower buds from the base of the racemes started on June 9 

and was completed on July 11. After this date any mature seed capsules 

from plants in treatments A, B and C were collected, dried at 60°C for 
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24 hours and stored in manilla envelopes. Capsules were removed at 

least twice a week to prevent any loss of seed through capsule 

dehiscence. Ouring the course of the experiment it became obvious that 

some plants were producing basal rosettes and some were producing 

axillary buds on the flowering spike (See fig 5.2.2). Basal rosettes 

were included as part of the primary plant's reproduction and any 

flowering spikes produced from these rosettes were treated in the same 

way as the primary spik~ However any axillary buds were removed as 

they were produced and a note was made of the number of buds that each 

plant produced. 

By September 8 1983 all the mature capsules had been collected and by 

October 27 the last axillary buds were removed. The plants were then 

left over the winter. The diameter of each rosette was measured in 

March 1984 and the remaining above-ground vegetative parts of each 

plant were collected in April 1984. The vegetative parts were dried at 

60°C for 48 hours in an oven and then weigh~don a Oertling TP40 

balance. Seed was extracted from the seed capsules of each plant using 

wire sieves and the weight of the seed and capsules and the number of 

capsules per plant noted. The weight of 20 seeds for 10 plants from 

treatments A and C was also measured on a Sartorius 1201 MP2 balance. 
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Plate 5. 2 . 1 i Experimental Design at Rumle i sh 
ii Production of a Basal Rosette - Di gitali s 
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5.3 Results - Foxgloves 

At the end of the experimental period nine plants had died. Four"of 

these plants were in the control population (c. 100 seed capsules), 

four were in treatment in B (c. 50 seed capsules) and one was in 

treatment C (c. 20 seed capsules). The death of these plants appeared 

to be caused by a fungal infection, some of the affected plants showing 

signs of infection before the end of the flowering season. Botrytis 

cinerea was identified as causing up to 32% mortality in dense stands 

of Digitalis by Van Baalen and Prins (1983) whilst at lower densities 

pre-flowering mortalities were 5-20% per year. 

A summary of the results (ie the means for each treatment for the 

number of capsules, dry~ight of capsules, dry weight of seeds, number 

of axillary buds, diameter of rosette in second year, weight of leaves 

and weight of root in second year) are shown in Table 5.3.1. The 

normal probability plot correlation coefficients (table 5.3.1a) show 

that the majority of variables fell within the 5% probability level for 

the normal distribution, the exceptions being the number of axillary 

buds that each plant produced and the root weight. These two variables 

had slightly positively skewed distributions. A square root 

transformation was applied to the data on number of axillary buds, and 

a log transformation was applied to the root weight data prior to any 

application of analysis of variance methods. 

The relationships between the variables can be seen in the correlation 

matrix in table 5.3.2. It is evident from this table that there are 

some interesting associations between the various parameters. The 

number of capsules produced by each plant can be regarded as a measure 

of the treatment since the maximum number of capsules were produced in 
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Table 5.3.1 

<haracteristics of Foxglove Olta 

Variable Dcywt caps(~) D?'wtc,) M> of lll.an(co,) \o.t lves ~) wt rt 0) x caps~) x seed6) 
Seed Ald.llaty 

All Data· BOOs 

N 80 80 80 75 77 77 50 50 
X 3.29 5.22 34.3 69.75 116.6 .54.1 0.0763 0.078 

SD 2.68 4.53 32.8 8.21 51.3 34.6 0.0020 0.0039 
SE 0.30 0.51 3.7 0.95 5.9 3.9 0.1062 0.1775 

Treallrent A No~% c .. o'J. ~· ~ Q;.p~ 

N 20 20 - 20 20 18 19 19 20 20 
X 100.4 6.70 11.08 9.40 72.06 124.7 55.8 0.066 0.1114 

SD 19.5 1.66 3.06 9.21 7.52 38.8 37.6 0.114 0.0277 
SE 4.4 0.37 0.68 2.06 1.77 8.9 8.9 0.006 0.0062 

Treat:Irent B 20 20 
N 20 20 20 20 18 18 18 0.776 0.120 
X 56.65 4.348 6.77 28.3 69.1 116.7 58.8 0.015 0.0311 so 7.31 0.746 1.78 24.3 11.6 58.3 45.0 0.0033 0.01775 

SE 1.64 0.167 0.40 5.4 2.7 13.7 10.6 

Treallrent C 20 20 20 20 20 20 20 20 20 
N 25.5 2.118 3.029 27.0 69.45 124.2 44.0 0.0844 0.122 x 7.27 0.540 0.786 23.0 6.33 47.4 14.0 0.0161 0.0318 so 1.67 0.121 0.176 5.1 1.42 10.0 3.1 0.00036 0.0071 
SE 

Treallllent 0 
N 20 20 20 20 19 20 20 20 20 x 0 0 0 72.4 68.53 101.1 58.1 0 0 so 0 0 0 31.4 6.76 58.7 36.0 0 0 
SE 0 0 0 7.0 1.55 13.1 8.1 0 0 
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<hrrelation Matrix 

Wt of capsules 

Wt seed 

tb of bJds 

Dl.an 

Wt !vs 

Wt root 

X wt caps 

Xwtseed 

"'"' = P..O.Ol 

"' = Pt.0.5 

Nl of 
capsules 

0.96~ 

0.93fll* 

~.57/lt* 

0.166 

0.117 

0.085 

~.48~* 

~.216 

(0.302) 
(0.232) 

wt of 
capsules 

0.9~ 

0.557A'* 

0.134 

0.112 

0.075 

~.173 

0.010 
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wt of N:> of D1.an wt of 
seed ax1llacy !vs 

~.516 

0.157 ~.121 

0.089- ~.341** 0.558t* 

0.056 ~.012 0.52fft 0.35~* 

~.211 ~.ZSSt ~.145 -0.026 

0.215 0.32/lt* 0.048 ~.024 

wt of 
root 

~.023 

0.003 

Xwt 
caps 

0.64(1t 



treatment A (the control), whereas no capsules were produced in. 

treatment D. Treatments B and C had intermediate numbers of capsules. 

As would be expected, the number of capsules was highly correlated with 

total weight of capsules and total weight of seed but it was also 

significantly negatively correlated with the number of axillary buds 

produced and the mean weight of each capsule (that is the total weight 

of capsules produced/number of capsules per plant), Similarly the 

total weight of capsules and seed produced per plant was negatively 

correlated with the number of axillary buds. The number of axillary 

buds produced per plant was positively correlated with the mean weight 

of each capsule and the mean weight of seed in that capsule. 

The diameter of the rosette in the second year was positively 

correlated with leaf and root weight in the second year and leaf and 

root weight were correlated with each other. The number of axillary 

buds produced was negatively correlated with the weight of leaves. 

To take account of the experimental design and test the effect of 

treatment more rigorously, analyses of variance were carried out using 

GENSTAT (table 5.3.3). These analyses show that the effect of 

treatment is highly significant in the case of number of axillary buds 

produced and the mean weight of capsules, The number of axillary buds 

produced increases from a mean of 9.4 in the control treatment where 

plants were allowed to flower normally, to a mean of 72.4 in the 

treatment where all of the flowers were removed, (The intermediate 

treatments both have mean numbers of c. 28). Concurrently, the mean 

weight of each seed capsule increases from 0.0668g in treatment A to 

0.0844g in treatment C. There is a similar trend in mean seed weight 

but it ls not statistically significant. 
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Th.ble 5.3.3 

Foxgl.ove Anovas Effect of Treatlrent 

1. N> of ax!..ll.ary buds 

Source IF ss 5& M) VR 

Block 4 1004.2 1.23 251.1 
():)! 3 2954.7 3.63 984.9 
Block.Row 15 1154.1 14.20 770.3 
Block.():)! 12 7451.7 9.16 621.0 
Block. Row. ():)1 

Treat 3 46143.5 56.71 15381.2 30.62 
Pesidual 37(5) 18581.7 22.83 502.2 P(O.Ol 

'lbtal 40 64725.2 79.54 1618.1 
Gram 'lbtal 74 87690.0 107.76 

2. Sq rt trans of no of ax!..ll.ary buls 

Block 4 6.069 1.03 1.517 
():)! 3 19.510 3.30 6.503 
Block.lbw 15 89.007 15.06 5.934 
Block. ():)1 12 52.264 8.84 4.355 
Block .lbw.():) 1 

Treat 3 337.573 57.12 1112.524 33.525 
Pesidual 37(5) 124.189 21.01 3.356 

'lbtal 40 461.761 78.13 11.544 P<O.Ol 
Gram 'lbtal 74 628.611 106.37 

3. Ili.aDEter 

Blocks 4 362.98 7.28 90.74 
():)ls 3 64.00 1.28 21.33 
Block.Row 15 908.45 18.23 60.56 
Block.():)! 12 855.79 17.17 71.32 
Block .lbw. ():)1 

Treat 3 161.76 3.25 53.92 0.743 
Pesid 37(5) 2685.62 53.88 72.58 NS 

'lbtal 40 2847.38 57.13 71.18 
Gram 'lbtal 74 5038.54 101.09 

4. ~ ~t of capsules = wt caps/no of caps 

Block 4 0.00071251 4.83 0.00017813 
():)! 3 0.00090038 6.10 0.00030013 
Block.lbw 15 0.00537724 36.44 0.00035848 
Block.():) 1 12 0.00727886 49.33 0.00060657 
Block .lbw.():) 1 

Treat 2( 1) 0.00315827 21.40 0.00157914 16.486 
Pesid 23( 19) 0.00220315 14.93 O.()(XX)9579 

'lbtal 25 0.00536143 36.33 0.00021446 Pc'0.01 
Gram Total 59 0.01963041 133.03 
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4. M:!an wt of seed/capsul.e = wt of seed/no of capsu1es 

Smrce IF ss SSI: M3 VR 

Block 4 0.0037066 6.93 0.0009267 
<bl 3 0.0072031 13.47 0.0024010 
Bl.ock.lbw 15 0.0345325 64.59 0.0023022 
Block.<bl 12 0.0169112 31.63 0.0014093 
Bl.ock.RcM.<bl 

'!I eat 2(1) 0.0013152 2.46 0.0000576 2.037 
Fesid 23( 19) 0.0074244 13.89 0.0003228 

'lbtal 25 0.0087396 16.35 0.0003496 NS 
Granl 'lbtal 59 0.0710930 132.98 

s. lohlg!tt of root 

Block 4 4915 5.51 1229 
<bl 3 3477 3.90 1159 
Block.RI:M 15 15149 16.98 1010 
Block.(bl 12 14920 16.73 1243 
Block.lbw.<hl 

'!Ieat 3 3017 3.38 1006 0.768 
Fesidual 37(5) 48448 54.32 1309 NS 

'lbtal 40 51466 57.70 1287 
Granl Total 74 89926 100.82 

6. log ~ght of root 

Block 4 0.20103 7.29 0.05026 
Col 3 0.11178 4.05 0.03726 
Block.lbw 15 0.35779 12.97 0.02385 
Bl.ock.<hl 12 0.42298 15.34 0.03525 
Block.lbw.(bl 

'!Ieat 3 0.11777 4.27 0.03926 0.920 
Fesid 37(5) 1.57250 57.01 0.04250 NS 

'lbtal 40 1.69028 61.28 0.04226 
Grand Total 74 2.78386 100.93 



To test whether this trend in seed weight per capsule could be 

attributed to an increase in numbers of seeds or an increase in 

individual seed weight, samples of seed were taken from the A and C 

treatments and weighed in the laboratory. Samples of 20 seeds from 10 

plants were collected and weighed on a Sartorious 1201 MP2 balance. 

The means were then tested using a t-test in MINITAB. 

Treatment a 

c 

N 

10 

10 

mean 

0.00167 

0.00191 

sn 

0.000267 

0.000367 

t ~ 1.67 p ~ 0.11 df = 16.4 not significant 

SE 

0.000084 

0.00012 

Again, although there is a trend towards a higher mean weight in the 

treatment where flowering is partially prevented, it is not 

statistically significant. 

A regression analysis of the number of axillary buds on the number of 

capsules was also carried out using GENSTAT. The relationship between 

the two variables was significant and the percentage variance accounted 

for 32.1%. 

YVAR = Axillary buds 

Regression Coefficients 

Constant 

ncaps 

Estimate 

56.19 

-0.4797 

y = 56.19 - 0.4797x 

SE 

4.65 

0.0774 
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5.4 Discussion - Foxgloves 

Manual removal of the flowers in Digitalis purpurea resulted in an 

increase in the number of axillary buds, and this increase was 

proportional to the number of flowers removed. The mean weight of any 

remaining seed capsules also increased proportionally with the number 

of flowers removed. There was also a tendency for the mean weight of 

seed produced per capsule to increase with decreasing number of flowers 

and perhaps a slight tendency for plants with greater numbers of 

flowers to be more susceptible to disease and mortality. 

Although there was a tendency for the plants with larger reproductive 

allocations to be more susceptible to disease, the majority of plants 

survived the winter following flowering. This behaviour can be 

attributed to the production of secondary basal rosettes in the year of 

flowering. The production of these secondary rosettes which allows 

repeated flowering in Digitalis is more common in early successional 

sites where intra and inter-specific competition is low (Van Baalen and 

Prins 1983). The experimental layout at Rumleigh experimental station, 

where plants were situated at least 1m apart, probably simulated an 

early successional site. Under these circumstances Digitalis can be 

regarded as a 'short-lived perennial' (Salisbury 1942). This formation 

of secondary rosettes and repeated flowering is not found in most other 

'biennial' and monocarpic species like Dipsacus sylvestris (Werner 

1977) and Daucus carota (Halt 1972). The Digitalis plants may have 

obtained sufficient resources from their immediate environment to allow 

secondary rosette information which enabled the majority of plants to 

survive another season. A reproductive cost may have been more evident 

if plants had been subject to the competition present in a late 

successional environment. 
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Nevertheless, there was an observed tendency towards greater 

susceptibility to disease in the plants with greater reproductive 

allocations and this can be considered to be an indication of a 

reproductive cost. The probability of death has been related to 

reproduction in several species eg Reseda odorata (Harper 1977), Holcus 

lanatus (Bocher and Larsen 1977), Phleum pratense and Festuca pratensis 

(Langer et al 1964) and Poa annua (Law 1979b). Although it has been 

noted that the act of reproducing might increase the susceptibility of 

a plant to the physical and biotic agents of death (Willson 1983), 

mortality as a result of disease has not been distinguished as a 

specific factor. 

The most significant effect of artificially reducing reproductive 

allocation was an associated increase in the number of axillary buds 

produced by each Digitalis plant. There is a highly significant 

negative correlation between the number of seed capsules produced and 

the number of axillary buds initiated. Although there is much evidence 

of a trade-off between reproductive and non-reproductive functions (see 

5.1), it is questionable whether the production of axillary buds in 

Digitalis should be regarded as a non-reproductive function. If the 

buds had been allowed to develop each would have produced a small 

flower-spike with approximately 10 flowers on it. It can be seen from 

fig 5.4.1 that the production of one axillary bud is roughly equivalent 

to the removal of 2 flowers. Had the axillary buds been allowed to 

develop further the equivalent number of flowers might have been 

greater. 

Perhaps an alternative approach might be to regard these excised buds 

as new metamers (Silvertown and Rabinowitz unpub MS) where each new 

metamer that a plant produces is also, potentially the point of origin for a 
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set of reproductive organs. Silvertown and Rabinowitz (MS) suggest 

that reproductive effort in indeterminate plants might be measured by 

comparing the number of flowering nodes or metamers produced in plants 

in which all the flowers have been removed with plants in which no 

flowers have been removed. Plants in which all the flowers have been 

removed are considered to reach the total potential vegetative size. 

Digitalis purpurea is not an indeterminate plant but the numbers of 

axillary buds can be regarded as numbers of new metamers. 

In Silvertown and Rabinowitz's measure of RE 

RE = (N3 - N4)/N3 

Where N3 = the number of nodes produced when all reproductive organs 

are removed and N4 = the number of flowering nodes produced by the 

control. If this equation is applied to the data for axillary buds a 

ratio of 0.87 is obtained. A RA of 87% seems rather high even for a 

ruderal annual using conventional methods of RA estimation but there 

are no comparable data by which to gauge the validity of the results. 

The fact that the mean weight of individual capsules increased with a 

reduction in the total number of capsules per plant seems to indicate 

that there was a preferential allocation of resources to any remaining 

seed capsules. There was a similar trend in seed weightper individual 

capsule although this difference was not large enough to be 

significant. A test of the individual seed weight in each plant showed 

that there was no significant difference in seed weight between 

treatments. Maun and Cavers (1971) found that the mean weight per seed 

in Rumex crispus was progressively higher as a greater proportion of 

flower whorls were removed. However, ·one possible explanation of the 
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larger capsule and seed per capsule weights was their location on the 

flower spike. In treated plants it was the flowers near to the base of 

the flower spike which were allowed to remain intact (see plate 5.4.1). 

In a normal foxglove raceme, the flowers tend to decline in size as the 

top of the spike is approached. The seed capsules in the lower 

positions on the control plants might also have been larger but the 

inclusion of small seed capsules from the tip of the flower spike would 

make the overall mean capsule weight lower than in treated plants. 

Maun and Cavers (1971) also found that in Rumex crispus the heaviest 

seeds were found on the lowest branches of the panicle. 

The original intention of the experiment was to test whether there was 

a reproductive cost in Digitalis purpurea which was expressed in terms 

of increased subsequent mortality or decreased subsequent growth. 

Despite the fact that there was some slight evidence of increased 

susceptibility to disease, the numbers involved were very small. The 

capacity of Digitalis purpurea to produce secondary basal rosettes 

under certain circumstances which survive the winter, meant that 

reproductive cost in terms of mortality could not be adequately 

assessed. Moreover, the prevention of flowering on the main flowering 

spike in Digitalis resulted in diversion of resources to the production 

of axillary buds (which would have produced flowers themselves) rather 

than to the basal rosette or root. Consequently the specific reaction 

of this particular species confounded the aims of the experiment. ·A 

more appropriate species might have been Verbascum thapsus which does 

not produce secondary basal rosettes although axillary bud production 

might still prove a problem. 

Nevertheless, it was evident that the level of reproductive allocation 

was directly related to the number of axillary buds that were produced. 
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The removal of approximately 2 flowers resulted in the production of 

one axillary bud. Had the axillary buds been allowed to mature they 

would have produced approximately 10 flowers. However it may be that 

adverse environmental factors such as the lower position of axillary 

buds on the stem, smaller size of flowers and their inherent later date 

of anthesis would result in a lower seed output of flowers on axillary 

buds. The eventual seed output of one axillary bud might be equivalent 

to that produced by 2 seed capsules on the main flowering spike but 

this could only be tested by further experimental work. 

In theory reproductive cost iS a more crucial measure that RA of what 

is important to a plant in evolutionary terms. However, it can be 

expressed in many ways in numerous different species and may therefore 

prove as, or even more difficult than, RA to measure and evaluate. 
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Plate 5 .4. 1 i Position of Removed flowers - Digitalis 
ii Experimental Design at Skardon Place 

( ~ ee Secti on II l 
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REPRODUCTIVE COST SECTION II 

5.5 Plantago lanceolata and Taraxacum officinale 

5.5.1 Introduction 

In addition to increased mortality, a cost associated with reproduction 

might be realised in the form of reduced subsequent reproduction ie 

there might be a decline in the residual reproductive value associated 

with the level of past reproduction. An experiment was therefore 

designed to assess whether current level of reproduction has an effect 

on subsequent reproduction. Current reproduction was artificially 

manipulated by removal of a certain proportion of flowers as in the 

Digitalis experiment in Section 5.1. The effect of this manipulation 

on subsequent reproduction was assessed by noting the level of 

reproduction in the year following treatment. 

5.5.2 Method 

Plantago lanceolata and Taraxacum officinale were selected as two 

perennial species with an appropriate growth form. Both have a basal 

rosette of leaves and are scapigerous, which facilitates the removal of 

flowers and the separation of biomass into vegetative and reproductive 

fractions. 

Seed was collected from wild plants in Autumn 1980 and germinated in 

trays of John Innes compost in April 1981. The seedlings were planted 

out when they were large enough to handle on 1 May 1981 at Skardon 

Place near Plymouth Polytechnic. The plot which had been allocated to 

the experiment was cleared and plants were planted in 4, 4x4 Latin 

squares with plants placed 30 cm apart. (See fig 5.5.1 for location of 

the plots). 
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From previous observations of Plantago plants in the field (Wilson 

1980) it was decided that approximately 12 scapes could be expected per 

plant. Taraxacum officinale was thought to produce a roughly similar 

number of scapes per year so identical treatments were applied to each 

species. In treatment A (the control) plants were allowed to flower 

normally. In treatments B and C, 6 and 2 flowers were allowed to 

mature, respectively. Any spikes which were produced over and above 

this number were removed manually by excision of the flower initials as 

they became visible. In treatment D flowering was completely prevented 

by manual excision of the flower initials. Removal of the flower 

initials took place twice a week and commenced in the case of the 

Plantago plants on 26 June. One plot (P4) did not commence flowering 

until 21 July and thereafter grew very slowly since it was located 

under the shade of a tree. In this case it was decided that the 

treatment should be continued throughout the summer of 1982 and the 

results assessed in 1983. Similarly the Taraxacum plants did not 

commence flowering until 13 August 1981 so in all ofthe Taraxacum 

plants treatment was also continued through the summer of 1982. A note 

was made of the number of heads that were removed per plant. Plots 

were regularly weeded to keep them free of weeds and slug pellets and 

'Pepper dust' were applied as required. 

Plantago plants in plots P1, P2 and P3 were left over the winter and 

allowed to flower normally in 1982. These plants were then harvested 

and separated into reproductive, vegetative and root fraction in 

September 1982. These fractions were dried and weighed on an Oertling 

TP40 balance, The number of mature seed heads produced per plant was 

also noted. 
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Treatment commenced again on the remaining Plantago plot on 17 March 

1982 and on all the Taraxacum plots on 30 March. The diameter of each 

Taraxacum rosette w85 noted at this time. All of these plants were 

allowed to flower normally in the summer of 1983. 

Taraxacum produces such dispersive seeds, .sp·c kes 

soon as they were mature. It was decided that an 

However, because 

had to be removed as 

oF 
estimate~ reproductive 

weight in this species would be very time consuming but a record of 

total numbers of flowers produced was made. Numbers of ~pikes. in 

scapigerous species is often highly correlated with reproductive weight 

(Wilson 1980). At the end of the Taraxacum season in July 1983 plants 

were harvested and similarly dried and weighed. The remaining Plantago 

plot was harvested in August 1983. 

5.5.3 Results 

i. Plantago lanceolata 

A summary of the data for Plantago lanceolata is given in table 

5.5.1. All of the variables which were later tested using analysis 

of variance fell within the 0.05 probability limits of the normal 

probability plot correlation coefficient. The correlation 

coefficients in table 5.5.2 show the general relationships between 

the variables. Vegetative, root, reproductive and total weight are 

highly correlated with each other and the number of flowers produced 

in the second year is again highly correlated with these parameters. 

The total numbers of .spi kQs initiated in the first year was 

significantly negatively correlated with the number of spik~ 

allowed to remain intact on the plant. Reproductive allocation was 

significantly positively correlated with total weight, root weight, 

reproductive weight and the number of spike~ produced in the second 

year. 
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'lhble 5.5.l 

9mnary of Plantago ll:lta 

A Veg wt (~) Rt wt (3) lep wt (!3) 1btal wt (9) RE% N> of Fs N>ofFs N> of Fs 
in l'Rl in YR2 :<>. t"fo....,;.c/. 

n l5 l5 l5 l5 15 15 15 15 
X 6.72 10.31 42.1 59.2 61.5 47.4 46.2 47.4 
~d 5.69 11.10 33.4 58.0 65.9 50.0 26.0 50.0 
SD 4.58 5.61 34.6 39.9 21.5 16.8 38.7 16.8 
SE 1.18 1.29 8.9 10.3 5.6 4.3 10.0 4.3 

B 
n 16 16 16 16 16 16 16 16 
X 5.08 12.7 56.3 74.1 64.5 6.0 66.7 104.4 
M:!d 4.70 14.4 22.6 41.3 66.3 6.0 32.5 102.5 
SD 4.17 10.1 60.7 72.5 22.6 o.oo 71.9 36.5 
SE 1.04 2.5 15.2 18.1 5.6 0.00 18.1 9.1 

c 
n 16 16 16 16 16 16 16 16 
X 3.28 l0.92 42.2 56.4 67.1 2.0 54.0 123.5 
M:!d 1.75 8.65 46.l 58.3 74.8 2.0 44.0 113.0 
SD 4.83 8.39 32.2 41.4 20.7 o.o 50.2 50.0 
SE 1.21 2.10 8.0 10.4 5.2 o.o 12.5 l2.5 

D 
n 14 16 16 14 14 16 16 16 
X 5.71 12.36 55.l 77.1 64.1 0 65.2 133.4 
M:!d 6.09 ll.82 54.4 77.3 73.4 0 56.5 124.5 
SD 2.8l 7.47 42.2 51.6 22.4 0 48.2 45.0 
SE 0.75 1.87 10.6 13.8 6.0 0 12.1 11.2 

1btal 
n 61 63 63 6l 6l 63 63 63 
X 5.16 ll.60 49.0 66.5 64.4 13.3 58.2 103.0 
M:!d 4.81 10.62 40.1 58.2 73.7 2.01 41.0 105.0 
SD 4.29 7.86 43.5 52.7 21.3 20.9 53.2 50.7 
SE 0.55 0.99 5.5 6.7 2.7 2.6 6.7 6.4 

'lhble 5.5.2 
O:>rrelatians - Planta&2 

Veg wt Rtwt lep wt NFs Yr I NFs y,. 7 NFs ro ,..,.,od . 
1btal wt 

Rtwt 0.5871<* 
~p wt 0.412k* 0.805** 
NFs X 2 0.513"* 0.832k* 0.92ff"* 
NFs X 1 0.199 -{).050 -{).004 -{).058 
NFs ran -{).185 0.016 0.008 0.119 0.5:30'•* 
1btal wt 0.5141<* 0.873-t* 0.990t* 0.94'71<* -{).004 -{).004 
RE 0.030 0.3671<* 0.653"* 0.5571<* 0.052 -{).107 
0.603"* 

For 60 df 0.05 prob = 0.23-t 
0.01 ,, "' 0.325** 
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Analyses of variance which took account of any environmental effects 

eg the shade of the wall and tree, were computed using GENSTAT. The 

effect of treatment did not have a significant. effect on any of the 

variables except the number of spikes initiated in the first year 

(table 5.5.3). The mean number of .Sfik~s initiated (and allowed to 

flower) in the control treatment was 47.4 whilst the number of 

spikes initiated and removed in treatments B, C and D were 104.4, 

123.5 and 133.4 respectively. This effect was highly significant 

(P<0.01). 

One factor which may account for the lack of treatment effect may be 

the high variability of the Plantago population. This variability 

is often at its lowest in the control population and increases in 

the treated populations eg the standard deviation of numbers of 

spikes' in year 2 in treatment A is 38.7 but in treatments B, C and 

D is 71.9, 50.2 and 48.2 respectively. 

ii. Taraxacum officinale 

A summary of the Taraxacum data is given in table 5.5.4 and the 

correlation coefficients in table 5.5.5. Again, leaf weight, root 

weight and total weight are highly correlated with each other. The 

diameter of the plant rosette at the beginning of the second year is 

correlated with root weight (P<0.05) at the end of the second year. 

The number of ~p;r.es produced in the second year is correlated 

(P~.05) with leaf weight in the second year and also with the 

number of spikg~ initiated in the first year. The number of 

-spik~s initiated in the first year was positively correlated with 

the number of spikes in the second year and leaf, root and total 

weight in the second year. 
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Plantago - Anovas 

Variance ratios for the effect of treatment 
n = 3/30 (3) 

1. Vegetative weight VR= 1.931 
2. Weight of root VR= 0.863 
3. Weight of reproductive matter VR= 1.035 

NS 
NS 
NS 

4. No of spi J.;Qs_ in second year VR= 1.032 NS 

Table 5.5.3 

5. No of 8pikes produced VR= 11.156 P<0.01 
6. RA VR= 1.107 NS 

Effect of treatment on no of sp;~es produced and removed in the first 
year 

Source OF ss SS% MS VR 

Block 3 9829 6.17 3276 
Col 3 1581 0.99 527 
Block.Row 12 17424 10.93 1452 
Block.Row 9 4810 3.02 534 
Block .Row. Col 

Treat 3 66543 41.76 22181 11.156 
Residual 30( 3) 59645 37.43 1988 

Total 33 126188 79.18 3824 

Grand Total 60 159832 100.30 
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Thbl.e 5.5.4 

S1111ary of 'nlrallacun Il:l.ta 

'Trot~ trt~C~ n t 
A NFs NFs leaf lbot 'lbtal Dialeter) NFs 

yr1 yr-2 wt (jl wt Cj) wt Cj) (cm 1efTiltintj 

n 16 16 16 16 16 16 16 
X 60.6 49.2 15.3 34.5 49.8 37.94 60.6 
~ 59.5 41.5 12.9 33.9 44.7 38.50 59.5 
SD 20.6 30.3 12.3 20.6 30.4 5.62 20.6 
SE 5.2 7.6 3.1 5.2 7.6 1.40 5.2 

B 
n 16 16 16 15 15 16 16 
X 6.0 38.6 18.3 39.5 58.5 39.25 45.2 
1-i!d 6.0 27.5 ll.2 39.8 56.8 40.50 41.0 
SD 0.0 23.9 18.6 24.2 36.7 5.09 18.5 
SE o.o 6.0 4.6 6.2 9.5 1.27 4.6 

c 
n 16 16 16 16 16 16 16 
X 2.0 38.9 16.3 36.1 52.4 37.19 54.4 
M!d 2.0 32.5 13.5 33.2 54.2 38.50 40.5 
SD 0.0 31.9 10.8 15.2 21.7 7.88 35.9 
SE o.o 8.0 2.7 3.8 5.4 1.97 9.0 

D 16 16 15 16 15 16 16 
n 0 
X 0 60.1 20.7 36.5 56.6 40.62 69.9 
1-i!d 0 61.0 14.6 33.4 44.0 41.00 54.0 
SD 0 34.5 16.8 13.9 28.9 5.51 39.5 
SE 0 8.6 4.3 3.5 7.5 1.38 9.9 

'lbtal 
n 64 64 63 63 62 64 64 
X 17.2 46.7 17.6 36.6 54.2 38.75 57.6 
1-i!d 4.0 38.0 13.9 36.1 51.2 40.00 50.0 
SD 27.3 31.0 14.7 18.5 29.3 6.12 30.7 
SE 3.4 3.9 1.9 2.3 3.7 0.76 3.8 

Thble 5.5.5 
'nlrallacun - <brrelation Cbefficients 

N:> of flCMS N:> of flCMS leaf wt~) Rt wtCj) DlaiEter (cm) No of 
F's 

p1 yr2 rozm 

N:> of fs 
yr2 0.087 
Leaf wt 0.035 0.2641r 
Rtwt 0.073 ~.223 0.533t* 
DJ. an ~.023 0.081 0.128 0.352** 
N:> of fs 0.153 0.39lp'r:lc 0.661** 0.363t* ~.039 
re. m 

¥r 
'lbtwt 0.065 ~.005 o.~* O.CJ()l;r* 0.29';/r o·s11 

Fbr n = 60 0.05 prob = 0.251' 165 
0.01 prob = 0.3251'* 



A more rigorous test of the effect of treatment was carried out 

using ANOVAs on GENSTAT. Environmental effects could be eliminated 

in this test. The data on vegetative weight were markedly skewed so 

a log transformation was applied to this data before the analysis. 

Table 5.5.6 shows that none of the effects of treatment were 

significant. This is possibly because of the high variability 

inherent in the population eg see standard deviations in table 

5.5.4. Two parameters, the number of ..sp·,kes initiated in the first 

year and the number of spiKes produced in the second year are 

almost significant. The means show that the largest mean number of 

spikes initiated in the first year is in the treatment where all 

spikts were removed but that this trend was not consistent between 

treatments and, because of the high variability of the population, 

was not large enough to be significant. Similarly, the mean number 

of spik~s produced in the second year was highest in the treatment 

where all spikes were removed but again the trend was not 

consistent and the high variability of the population made any 

statistical inferences difficult. 

5.5.4 Discussion 

Reproductive allocation in Plantago lanceolata was 64%. This is 

somewhat higher than the estimate of 20% for Plantago major obtained by 

Hawthorn and Cavers (1978). However estimates of 31-47% have been 

obtained for Plantago coronopus (Waite and Hutchings 1982) and 34.7% 

for Plantago media (Stewart and Thompson 1982). 

It was evident from the means of numbers of 6f.' kQS produced in the 

second year (c.47 in Taraxacum and 58 in Plantago) that the assumption 

that plants in an experimental situation would behave similarly to 

plants in the field was an erroneous one. The conditions in the 
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'll!lrmtacun - anovas 

Effect on trealllent on 

1. leight of veg IIBtter 
2. IDg wt veg IIBtter 
3. ~of root 
4. lll.atE ter 
s. N:> of sri ke.s 
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experimental plot allowed the plants to reach much greater sizes than 

had been anticipated, thus perhaps greater numbers of flowers should 

have been allowed to set seed in the intermediate B and C treatments. 

Moreover plants should have been planted further apart to avoid any 

intraspecific competition in their second year of growth. The diameter 

of Taraxacum officinale plants was c. 40 cm at the beginning of the 

second year and with plants only spaced 30 cm apart intraspecific 

competition was probably a complicating factor by the end of the second 

flowering season. 

The data on Plantago lanceolata show that the greater the number of 

flowers that were removed in the first year the greater the number of 

flowers that were initiated. Thus there was a compensatory mechanism 

in Plantago (similar to the production of axillary buds in Digitalis) 

which prevented any assessment of subsequent reproductive cost. Any 

resources which might have been diverted to reproduction in the second 

year were used in a 3 fold increase in current reproductive effort 

(measured in terms of numbers of flowers initiated). The mean number 

of flowers initiated in the first year in the control population was 47 

whereas in the treatment where flowering was completely prevented it 

was 133. 

This compensatory mechanism is not so evident in the Taraxacum 

population. There is a tendency for the plants in the treatment where 

flowering was prevented to have greater mean numbers of flowering 

initials in the first year, numbers of flowers in the second year, leaf 

weights and diameters but the variability in the population is so great 

that the difference between treatment means is not significant. 
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In Taraxacum the numbers of flowers initiated in the first year is 

highly correlated with the number of flowers in the second year, leaf 

weight, root weight and total weight in the second year. This 

correlation suggests that large, productive plants in the first year 

remained large, productive plants in the second year. The importance 

of individual differences within plant populations has been pointed out 

by Begon (1984). Slight genetic variations in size of relative growth 

rate which are present at the beginning of a growth period are 

exacerbated by density, so that over a period of time the size or 

weight distribution of the population becomes skewed with a few large 

plants and many small plants. Thus plants with an initial slight 

advantage in size become even larger relative to the rest of the 

population. During the second year of the experiment plants of both 

species began to overlap each other and intra-specific competition 

became a possible complicating factor in the experiment. This process 

may partly explain why the variation in both populations is so large. 

This experiment therefore has further emphasised the different 

expressions of reproductive cost that may be present in various species 

and the difficulty of measuring reproductive cost in the field. 

Moreover it has also illustrated the possible importance of individual 

variation in evolutionary ecology which may have been overlooked in 

previous work which has placed its emphasis on the mean rather than the 

variation present within a population. 

169 



CHAPTER 6 COMPARATIVE REPRODUCTIVE ALLOCATION IN GRASSES 

6.1 Introduction 

6.1.1 Strategies and tactics 

An organism's basic life history strategy is determined by its 

genotype. Within that strategy or genotype there are a range of 

possible developmental patterns or tactics which may be adopted under 

different circumstances (Harper and Ogden 1970, Harper 1977). The 

tactic or phenotype to be adopted under specific conditions is selected 

in response to environmental cues (Bradshaw 1965, Harper and Ogden 

1970, Stearns 1976) and where these tactical changes in allocation 

occur it is possible that the phenotypes themselves are adaptive 

(Harper 1977). Bateson (1963) proposed that genetic control might 

prevail when patterns of variation in the environment are predictable 

but phenotypic flexibility should be favoured when unpredictability is 

the rule. 

It is important to realise therefore that variations in reproductive 

allocation may be as a result of variations in strategy and hence 

genetically based, or alternatively as a result of variations in 

tactics which are phenotypic responses to environmental cues. In some 

studies differences in reproductive allocation may be the result of 

both genotypic and phenotypic responses. Phenotypic variations in 

reproductive allocation have been discussed in Ch.3. The present 

chapter is confined to discussion of comparative differences in 

strategic reproductive allocation ie the genetic response. A single 

species may display variations in strategy eg Gadgil and Solbrig (1972) 

identify 4 different 'biotypes' of Taraxacum officinale.Linseed and 

Flax, which are different forms of Linum usitatiss·1·~,. have been 

170 



selected for seed and straw production respectively. In Linseed 

allocation of dry matter to seed is c.36% while in Flax it is c.20% 

(Harper and Ogden 1970). 

The value of comparative experiments where environmental effects can be 

removed or controlled has been stressed by Grime (1965). Unfortunately 

many of the published studies on comparative reproductive allocation do 

not adequately separate the respective effects of strategy and tactics 

on reproductive allocation. Consequently many of the results have to 

be viewed with caution. 

6.1.2 Theory 

Naively, it might appear that the most adaptive allocation pattern is 

one which puts most resources into reproduction since this would seem 

to maximise the contribution to the next generation (Antonovics 1980). 

However, as we have already seen in Ch.S, there is a trade-off between 

present reproduction and future reproduction and survival. In practice 

there is a wide variation in the amounts of resources allocated to 

reproduction and the way in which various organisms adopt different 

reproductive allocation strategies in different environments has been 

the subject of much theoretical debate and practical research. 

The most generally accepted theory concerning life history strategies 

is the concept of r- and K- selection which was initially developed by 

MacArthur and Wilson (1967). Originally r- selection meant selection 

for high population growth in uncrowded populations and K- selection 

referred to selection for competitive ability in crowded populations. 

The original meaning of r- and K- selection has been expanded by 

various authors including Pianka (1970), (1972), Gadgil and Solbrig 

(1972) and Southwood (1977). The expanded concept may suggest that 
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r-selection occurs in habitats where density independent mortality is 

prevalent, ephemeral habitats, and in cases where species allocate a 

large proportion of resources to reproduction whilstK- selection 

occurs in habitats where density dependent mortality is prevalent, 

stable habitats, and in cases where species show low reproductive 

allocation (Parry 1981). Gadgil and Solbrig (1972) suggested that r­

selected genotypes may have a greater reproductive allocation, higher 

birth rate and shorter lifespan thanK- selected genotype. Harper 

(1967) suggested the possibility that colonising species of plants 

would have higher reproductive allocations than plants of mature 

habitats, while Hirshfield and Tinkle (1975) extended this argument to 

predict that semelparous species should show higher reproductive 

efforts than related iteroparous species. In summary, the extended 

concept of r- andK- selection predicts an association of life-history 

traits into 2 groups (Stearns 1977): 

1. r- selection - early age of maturity, large number of young, 

semelparity, no parental-care, a large reproductive effort. 

2. K- selection - delayed reproduction, small number of young, 

iteroparity, parental care an~ a smaller reproductive effort. 

Consequently many of the comparative studies on reproductive allocation 

have tried to relate observed differences in the level of reproductive 

allocation to r- and K- selection. 

Despite the ubiquity of the theory of r- and K- selection, reservations· 

about its general validity have been raised by various authors. 

Stearns (1976) points out that the theory of r- and K- selection 

assumes a deterministic environment. He suggests that in a fluctuating 
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environment with a population near equilibrium, the environment may 

cause high juvenile mortality. In these circumstances populations 

should evolve a smaller reproductive effort and greater longevity. 

This theory has been termed the stochastic model of life history 

evolution as opposed to the deterministic model of r- and K- selection 

(Solbrig 1981). 

Wilbur et al (1974) and Wilbur (1976) maintain that the concept of r­

and K- selection is an oversimplification and that other factors will 

affect life history strategies such as size, dispersal, predation and 

environmental uncertainty. Gadgil and Solhrig (1972) may have implied 

this indirectly when they suggested that r- and K- selection only 

really operates in the context of closely related taxa. The 

differences between species or higher taxa are likely to involve many 

adaptive changes (but see later). Wilbur (1976) confined the use of r­

and K- selection to the original definition based on crowding or 

competition and advocated the concept of a multidimensional selection 

regime. One dimension was envisaged as the continuum from r- to K­

selection and other dimensions could include environmental uncertainty, 

predation etc. 

A further criticism of r- and K- selection, particularly as applied to 

plants has been pointed out by Grubb (1976). In many habitats growth 

rate and reproductive rate are much less important than the ability to 

survive natural stresses. Grime (1977) proposed that stress and 

disturbance may interact to select for patterns of allocation. He 

suggests that to some extent many of the inconsistencies related to the 

extended theory of r- and K- selection can be resolved by recognising 

the distinction between the juvenile and mature phases of life cycles 

(Grime 1979). A 3 strategy model is proposed which can be reconciled 
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with the concept of r- and K- selection (see fig 6.1.1). 

The 3 basic strategies which are recognised are 'ruderal' 'competitive' 

and 'stress tolerant' which can be located on a triangular model 

depicting the relative importance of competition, stress and 

disturbance (see fig 6.1.2). Ruderal plants would be expected to have 

a large proportion of annual production devoted to seeds whilst 

competitive and stress tolerant plants would have smaller proportions 

devoted to seeds. Flowering in stress tolerant plants would tend to be 

delayed and intermitt~nt (Grime 1979). This theory of plant strategies 

has been adopted by some researchers to explain patterns of allocation 

eg Trivedi and Tr.ipathi (1981) but as yet there have been no 

comprehensive studies relating allocation patterns to c- s- and r­

selection. 

6.1.3 Reproductive allocation in different habitats 

There have been numerous and varied studies of reproductive allocation 

in various habitats and many of the conclusions have been conflicting. 

The majority of the published work can be divided into 3 categories: 

i. studies which look at reproductive allocation of entire 

communities in different habitats; 

ii. studies which consider closely related species and relate the 

observed differences in RA to their habitats; 
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Fig 6.1.1 Diagram describing the frequency (f) of ruderal (R), 
competitive (C), and stress-tolerant (~) strategies 
along the r-K continuum. 
(after Grime 1977) 

Fig 6.1.2 l-lodel describins the various equilibria between competition, 
stress, and disturbance in vegetation and the location of 
primary and secondary strategies. Ic, relative importance of 
competition (-); I 5 , relative importance of stress (--.:.-); 
Id, relative importance of disturbance (-----). 
(after Grime 1977) 
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iii. studies which consider populations of a single species in 

different habitats. 

6.1.3.i Community reproductive allocation 

As would be expected from the observed trade-offs between present 

reproduction and future survival and reproduction, community 

reproductive allocation is typically higher in semelparous plants than 

in iteroparous plants, In a community of field species, Abrahamson 

(1979) found the average floral and fruiting RA of annuals (20%) to be 

significantly greater than perennials (12%). Introduced annuals had 

higher RA's than native annuals. Similarly Struik (1965) found that 

the average RA of annuals was higher than perennials in forest (25)9%) 

and in open habitats (28)10%). Primack (1977) found that for 40 

species of Plantago reproductive allocation was on average higher in 

annuals (2.3 mg seed per 10cm2 leaf) than perennials (1.6mg seed per 

10cm2 leaf), An annual Lupinus species was found to have a greater RA 

than 2 perennials (Pitelka 1977). 

However, despite this apparent trend in community RA, Willson (1983) 

notes several examples of individual species RA being 'high' in 

perennials eg 26% in Lupinus arboreus (Pitelka 1977), 35% in Solidago 

speciosa (Abrahamson and Gadgil 1973) and 'low' in annuals eg 10% in 

Polygonum minimum (Hickman 1977) and 5% in Impatiens capensis 

(Abrahamson and Hershey 1977). Some biennials have a high RE eg 27% in 

Dipsacus sylvestris (Caswell and Werner 1978) and 25-35% in Smyrnium 

olusatrum (Lovett-Doust 1980) but in Pastinaca sativa the level of RA 

recorded is 12% (Lovett-Doust 1980b). These individual examples may of 

course be exceptions to the general community 'rule'. 
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In many of these cases the situation may be complicated by the presence 

of various modes of vegetative reproduction in perennials (see 6.1.4). 

In addition to this factor, most eKisting estimates of RA are based on 

the biomass of the reproductive parts as a proportion of the whole 

plant (or sometimes total above ground biomass). Perennials maintain 

at least some of their biomass from year to year. Jurik (1983) has 

suggested that if RA is measured including the metabolic costs of 

production then the absolute differences in the RA of annuals and 

perennials may often be less than has been measured using conventional 

methods. The metabolic costs of production comprise the total energy 

required to produce and maintain plant structures and Jurik (1983) 

estimates these using a predictive model. For perennials then the 

relevant indeK of RA which should be made on an annual basis, is the 

allocation to reproductive parts as a proportion of the annual 

increment in total biomass (Willson 1983). However, in practice very 

few studies use this measure. It can be seen, therefore, that as yet 

the disparity of RA in sernelparous and iteroparous species is not 

clearly defined. 

Given that annuals, at least on the community level, tend to have a 

higher level of RA than perennials, it is perhaps not surprising that 

RA seems to decline from open habitats (which often contain more annual 

species) to closed habitats such as forests (which often contain more 

perennial species). This pattern was found by Struik (1965), Gadgil 

and Solbrig (1972), Newell and Tramer (1977) and Abrahamson (1979). 

Abrahamson (1979) found that the average RA of perennials in an open 

field (12%) was greater than that in the forest (8%). In fact there 

were no annuals present in the forest community. Comparing a l year 

field, a 10 year field and a forest, Newel! and Tramer (1978) found 

that RA in an early successional field (24%) eKceeded that in both the 
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other habitats (5% each). Stewart and Thompson (1982) found a decrease 

in RA from an open quarry to grassland but found an intermediate level 

of RA in woodland. They attributed this apparent anomaly to 

interspecific competition, as did Luftensteiner (1980) who found a 

higher RA in the ground flora species of a woodland than in a nearby 

meadow. In general therefore, studies of RA in communities over 

successional seres tend to confirm the predictions of r- and k­

selection ie average RA in communities of early successional stages 

tends to be higher than average RA of communities in late successional 

stages. 

6.1.3 ii. Reproductive allocation of related species in different 

environments 

Many of the studies of RA which have been used to support the theory of 

r- and k- selection have looked at several closely related species in 

their native habitats. Any observed differences in RA are then related 

to differences in their specific strategies. Some of the earlier 

studies looked at RA in related species over a successional sequence. 

Abrahamson and Gadgil (1973) looked at 4 species of Solidago at a dry 

site, wet site and hardwood site and found that the species found in 

the dry (early successional) site had higher RAs than the species found 

in the hardwood site (late successional). The wet meadow site had 

intermediate values. Two species were found at more than one site and 

in these cases the same general pattern was displayed. RA in 

S.nemoralis (dry)> S.speciosa (dry)) S • .,canadensis (wet)'> S,speciosa 

(wood)) S.rugosa (wet) ) S.rugosa (wood). Similarly Gaines et al 

(1974) found that Helianthus annuus, a species of sunflower 

characteristic of old field sites, had a greater RA than H.grosserratus 

(roadside ditch) Holaetiflorus (prairie) H.hirsi.lf<IS(forest). 
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In contrast with these studies Bradbury and Hofstra (1976) working on 

Solidago canadensis and Werner and Platt (1976) working on other 

Solidago species found no clear gradient of RA across a soil moisture 

gradient. Nevertheless Werner and Platt (1976) did find the total 

weight of seeds per stem was less in the prairie population than in the 

old field population and that seeds were fewer but larger in the 

prairie. 

Latitudinal variations in RA in related species have been investigated 

by McNaughton (1975) in 3 species of Typha. He suggested that 

populations from short growing season locations should be more 

subjected to r- selection and in fact the northern climate specialist, 

T.angustifolia, did have a higher biomass investment in fruit 

production. Perhaps the most comprehensive study of this type was 

conducted by Primack (1979) on 40 species of Plantago. Annual species 

were found to have higher RAs than perennial species and perennial 

'weed' species had higher RAs than perennial 'nonweeds'. Rare species 

had lower RAs and spring annuals had higher RAs than summer annuals. 

However, since the specimens were collected either from field 

populations or herbarium collections it is not certain that there were 

no phenotypic environmental factors in the data. 

Other studies which indicate that there is a discernible variation in 

RA between closely related species which can be interpreted as a 

strategic adaptation to habitat are Pitelka (1977) for 3 Lupinus 

species, Wilbur (1976) for milkweeds, Asclepias species, Lee and Cavers 

(1981) for 2 Rumex species, Hawthorn and Cavers (1978) for 2 Plantago 

species and Benzing and Davidson (1979) for 2 Tillandsia species. 

Solbrig (1981) found that of the several species of Viola studied the 

species with the highest RA is a ubiquitous colonising species and he 

interprets this as evidence of an r- strategy. 
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However, Hickman (1977) found that species of Polygonum did not vary RA 

uniformly along a moisture gradient and warns against incautious 

application of r-and k- selection theory. Similarly Bell et al (1979) 

found that differences in RA of 8 desert winter annuals were species 

specific not site specific. 

6.1.3.iii Reproductive allocation of single species populations in 

different environments 

Genetic habitat-based variation in RA within a single species was first 

identified by Gadgil and Solbrig (1972) for Taraxacum officinale. They 

discovered a greater frequency of a biotype with a high RA in a 

population from an environment subject to high density independent 

mortality. Similarly, Grace and Wetzel (1981) found that biotypes of 

!ypha latifolia found in habitats exposed to high levels of disturbance 

had a higher level of allocation to sexual reproduction. Genetically 

based differences in RA among populations of a single species over an 

environmental gradient have also been found by Abrahamson and Gadgil 

(1973) for Solidago speciosa and S rugosa and by Bostock (1980) for 

Tussilago farfara. Douglas (1981) found that RA increased with 

altitude for Mimulus primuloides and that this difference was 

genetically based. Roos and Quinn (1977) also found some evidence of 

genetic differences in RA in Andropogon scoparius which first increased 

then decreased sexual RA with increasing age of field. Both genetic 

and environmental factors have been found to effect RA in populations 

of Plantago lanceolata growing in central North Carolina (Antonovics 

1980). 

Changes in RA in different environments have also been reported by 

Abrahamson (1975), Whigham (1973), and Kawano and Masuda (1980) but it 

is not known whether these differences are genetically based. In many 
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species a phenotypic, tactical variation in RA in different 

environments has been noted but this variation has disappeared when 

plants have been grown in a homogeneous environment eg Hickman (1975), 

Holler and Abrahamson (1977), Abrahamson and Hershey (1977), Raynal 

(1981), and Reinartz (1984). The reproductive effort of a population 

may also vary over time. Soule and Werner (1981) found differences in 

RA of populations from 3 different habitats in one year but not the 

next and Jaksic and Montenegro (1979) found that resource allocation 

patterns changed from year to year in populations of herbaceous species 

in the Chilean matorral. 

Perhaps it is not surprising that field studies on single species at 

several sites do not necessarily agree with theoretical predictions 

since as Soule and Werner (1981) point out, resource allocation 

patterns in a single species can be extremely variable both in time and 

space. This variability can be both genetic and phenotypic (see Ch.3). 

The theory is based on the optimal adaptive characteristics in a 

population (Hickman 1975, Hirshfield and Tinkle 1975, Werner 1976). 

6.1.4 Changes in vegetative reproductive allocation with habitat 

Previously, only changes in sexual reproductive allocation have been 

considered. In some species, vegetative RA may be an alternative to 

sexual RA and thus complicate any observed patterns. Allocation to 

vegetative RA can be very high eg 48% in Podophyllum peltatum (Sohn and 

Policansky 1977), 26% in Achillea millefolium (Bostock and Benton 1979) 

and 23% in Tussilago farfara (Ogden 1974). lJilliams (1975) predicted 

an emphasis on sexual reproduction and long distance dispersal of 

populations at high density and greater vegetative reproduction at low 

density. 
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In species with both sexual and vegetative reproduction Bradbury and 

Hofstra (1976) and Werner and Platt (1976) found no recognisable shifts 

in RA (of both kinds) over an environmental gradient. However sexual 

RA decreases while vegetative RA remains relatively constant as the 

environment becomes shadier for some herbaceous species. (Struik 1965, 

Abrahamson 1975, Pitelka et al 1980). Similarly Jurik (1983) found 

sexual RA of Fragaria virsiniana and ~vesca decreased in shade but the 

not 
vegetative RA did~show a tendency to vary between sites. Contrary to 

Williams' (1975) predictions, allocation to vegetative propagation in 

Mimulus primuloides changed little with increasing environmental 

harshness (elevation) (Douglas 1981). Also, Bostock (1980) found that 

Tussilaso farfara plants from the most severe habitat studied had a 

higher vegetative and a lower seed RA. 

Pitelka et al (1980) suggest that in Aster acuminatus resources are 

only devoted to sexual reproduction rather than vegetative reproduction 

when extra resources are available. This is similar to the effect 

found in Amphicarpum purshii by McNamara and Quinn (1977) and 

Gymnarrhena micrantha (Zeide 1978) where only larger plants produce 

aerial sexual fruits as opposed to underground asexual fruits which are 

always present. Bostock and Benton (1979) suggest that selection need 

not act in the same direction on seed and vegetative reproduction. In 

their study of 5 perennial composites they suggest that seed and 

vegetative reproduction should be summed to give an estimate of r-ness 

or K-ness. When this was done Tussilaso farfara is the most r-

strategic and Achillea millefolium the most K- strategic. Because this 

distinction corresponds to the likely degrees of disturbance in each 

species' typical habitat they contend that it accords with the 

predictions of r- and K- selection. 



6.1.5 Validity of comparisons 

Because of the wide variety of methods used to determine reproductive 

allocation (see Ch.2) the absolute values of RA obtained for different 

species are difficult to compare. Many studies have used the Harper 

and Ogden (1970) definition of reproductive effort which considers only 

the weight of the propagules themselves. Others have included the 

weight of associated structures eg Hickman 1975. Some have included 

below ground biomass and others have excluded it, 

In the majority of studies no account is taken of the different 

morphologies of the plants which are compared (see Ch·2). The problem 

of differences in morphology of plants can be illustrated by reference 

to some of the data of Stewart and Thompson (1982). They include all 

the component parts necessary to reproduction in their definition of 

RA. Therefore in scapigerous species such as Carex flacca the stem is 

included in the estimate. However, in order to exclude any 

photosynthetic tissue, in the case of species with leaf-bearing stems 

such as Centaurea nigra RA only includes structures above the highest 

leaf. Consequently Carex flacca is estimated as having an RA of c.S1% 

whereas Centaurea nigra has an RA of c.17%. This would seem to be an 

anomaly since the majority of the biomass of Centaurea nigra is 

composed of stems which support the reproductive structures. The 

apparent anomaly is in fact an inevitable consequence of arriving at a 

definition of RA applicable to plants of widely varying morphology. 

A further problem, already briefly alluded to, is that in many field 

studies the differential genetic and environmental effects are not 

separated, Even if a shift in RA is demonstrated the direction of the 

shift may vary with the position of the plant relative to its optimal 

environmental conditions (Soule and Werner 1981). The inadequacy of 
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field data obtained under controlled conditions was first suggested by 

Gadgil and Solbrig (1972) and is emphasised by Thompson and Stewart 

(1981). Measurements made under identical, close to ideal conditions 

are more likely to illustrate the genetically programmed reproductive 

strategies. The results of Harper and Ogden (1970) and Van Andel and 

Vera (1977) indicate that any given population of a species possesses a 

fixed maximum potential RA which is realised under optimal or close to 

optimal conditions. This optimal potential RA is likely to be more 

useful as a predictive, comparative measure. The lack of appropriate 

data means that many of the generalisations forwarded by Harper and 

Ogden (1970) and Harper (1977) have not been proved or disproved 

conclusively. 
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6.2 Method 

6.2.1 Introduction 

The aim of this experiment was to determine the optimal potential 

reproductive allocation for a range of grass species of contrasting 

ecology. As yet there has been no comprehensive study relating 

reproductive allocation to c-, S- and R- strategies. Grime (1974) 

suggested that the ruderal axis in his strategic model might be related 

to reproductive allocation. This hypothesis could be examined by 

comparing the reproductive allocations of species from C-, S- and R­

environments. The case for comparative experiments has been argued by 

Grime (1965, 1984) and Grime and Hunt (1974). They emphasise the need 

for broadly based research which can put the selection forces and 

design constraints which have interacted to determine the current 

ecology of plants into general perspective. Moreover, comparative, 

laboratory based experiments may allow much economy of effort in. 

research designed to recognise the general functional characteristics 

of large numbers of species. 

It was decided that species from different environments should be 

selected--from within the Gramineae. The comparison of species within 

one family allows greater flexibility in terms of possible range of 

habitats than if the comparison is restricted to plants within one 

genus. A comparison of species from different families might lead to 

difficulties in comparing reproductive allocation because of 

differences in plant structure (see Ch.2). Species in the Gramineae 

are relatively similar with respect to their morphology so problems of 

this type are diminished. This family is one of the most prominent 

contributors to the contemporary British flora in terms of both numbers 

of species and biomass (Grime 1984). The Gramineae also exhibits a 
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wide-ranging distribution in terms of habitat although it occurs most 

frequently (relative to other species) in grassland and wasteland 

habitats (Grime, Hodgson and Hunt 1985). A further practical reason 

for choosing the Gramineae as the family for reproductive allocation 

comparison is that a high proportion of annual and perennial grasses 

are capable of germinating immediately after collection, with few pre­

germination requirements (Grime et al 1981). 

6.2.2 Species 

In the summer of 1981 as many different species of Gramineae as 

possible were collected from various habitats in Devon and SE Cornwall 

(see map 6.2.1 and table 6.2.1). There is a deficiency of calcareous 

habitats in Devon and in order to broaden the range of possible 

species, additional species were obtained from collections of seed at 

the Unit of Comparative Ecology (NERC), University of Sheffield. These 

species were Briza media, Avenula pratensis and Koeleria macrantha. To 

obtain an estimate of the ecological amplitude of one particular 

species, seed of Holcus lanatus was collected from 4 different habitats 

ie rough grassland in Plymouth, a hedgerow at Bere Alston, topsoil on 

waste ground near the Polytechnic and moorland on Dartmoor. Seeds were 

stored in manilla envelopes at room temperature until February 1982. 

Unfortunately, lack of greenhouse space meant that not all of the 

collected species could be cultivated. Species selection was carried 

out on the basis of under or over-representation of the habitat, 

germinability and the availability of data for Rmax and morphology 

index (Grime 1979) which would facilitate comparison of the species eg 

Melica uniflora was excluded because of lack of data whereas Elymus 

repens was excluded because it showed very low germinability. Grime et 

al (l9R1) also found that Elymus repens displayed low germination 
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Table 6.2.1 

KEY TO MAP 
No on Species Grid Reference Date 
Map OSGB sheet 202 (1936) 

and 201 

Wasteland and roush 
grassland 

1 Bromus sterilis 289800mE 60100mN 26.7.81 
2 Hordeum murinum 248300mE 55300mN 4.8.81 
3 Lolium perenne 248300mE 55300mN 4.7.81 
4 Arrhenatherum elatius 247800mE 55400mN 4.7.81 
5 Bromus hordaceous 251400mE 54000mN 6.7.81 

261700mE 47200mN 27.7.81 
6 Dactylis glomerata 249000mE 55700mN 26.7.81 
7 Festuca arundinacea 248500mE 55600mN 4.8.81 
8 Poa trivialis 248500mE 54800mN 27.7.81 
9 Poa annua 244200mE 68000mN 24.8.81 

10 Elymus repens 244100mE 67100mN 26.10.81 
11 Holcus lanatus (rough grass) 249000mE 54000mN 29.9.81 
11 Holcuslanatus (waste) 248100mE 67400mN 4.8.81 
12 Agrostis capillaria 250700mE 55400mN 18.8.81 
13 Agrostis stolonifera 244200mE 67000mN 29.9.81 
14 Phalaris canariensis 250600mE 54500mN 18.8.81 

Moorland 

15 Molinia caerulea 262500mE 61500mN 24.9.81 
16 Nardus stricta 262600mE 61500mN 18.8.81 
17 Danthonia decumbens 262600mE 61500mN 19.8.81 
18 Festuca ovina 262600mE 61500mN 21.7.81 
19 Festuca rubra 294300mE 56500mN 8.81 
11 Holcus lanatus 262500mE 61500mN 9.9.81 

Woodland and Hedserow 

20 Festuca gigantea 251200mE 54400mN 18.8.81 
276800mE 61400mN 8.81 

21 Brachypodium sylvaticum 244000mE 51000mN 25.6.81 
276800mE 61400mN 8.81 

22 Bromus ramosus 244500mE 67000mN 29.9.81 
23 Elymus caninus 244400mE 67800mN 29.9.81 
24 Melica unif.lora 244500mE 67000mN 3.8.81 
25 Milium effusum 25150()nE 55700mN 18.8.81 
26 Holcus moll is 25150()nE 55700mN 18.8.81 

24880()nE 66100mN 25.10.81 
244400mE 67000mN 29.9.81 

11 Holcus lanatus 244200mE 68000mN 24.8.81 
(hedgerow) 

Sand dunes 

27 Elymus farctus 266200mE 43700mN 8.81 
28 Vulpia br-o""' clolet 266200mE 43800mN 8.81 



No on Species Grid Reference Date 
Map OSGB sheet 202 ( 1936) 

and 201 

Freshwater 

29 Deschampsia caespitosa 262500mE 61500mN 18.8.81 
30 Glyceria fluitans 279500mE 61700mN 8.81 
31 Phalaris arundinacea 244200mE 68000mN 19.8.81 

Dry calcareous 

32 Trisetum flavescens 250700mE SSOOOmN 18.8.81 
251400mE 54000mN 18.8.81 

33 Poa compressa 251400mE 54000mN 27.7.81 
34 Desmazeria rigida 248300mE 55700mN 21.7.81 

Dry acidic 

35 Aira caryophyllea 244500mE 61100mN 29.7.81 
244000mE 67400mN 6.81 

36 Aira praeco>e 244500mE 61100mN 29.7.81 
37 Deschampsia flexuosa 262400mE 61100mN 18.8.81 

Pasture 

38 Alopecurus pratensis 277500mE 61750mN 4.8.81 
39 Anthoxanthum odoratum 244500mE 67100mN 25.6.81 
40 Phleum pratense 245100mE 68000mN 24.8.81 
41 Poa pratensis 243800mE 67700mN 7.81 
42 Cynosurus cristatus 248300mE 55300mN 28.9.81 

Additional species (not on map) 

43 Briza media Sheffield 1979 
44 Koeleria macrantha Sheffield 1979 
45 Avenula pratensis Sheffield 1979 



rates for up to 6 months after collection. The selected species are 

listed in table 6.2.2. 

6.2.3 Cultivation 

Seeds were germinated on moistened filter paper in petri dishes and 

transferred to 5" pots containing John Innes potting compost when they 

were large enough to handle. Ten seedlings of each species were potted 

out in March 1982 (although not all of the 10 plants survived - see 

results). Those species which had a chilling requirement ie Bromus 

ramosus, Molinia caerulea and Nardus stricta (Grime et al 1981) were 

placed in moist sand in petri dishes in a refrigerator for 3 weeks at a 

temperature of c. 5°C before germination. 

The pots containing the plants were then placed on wooden slats on a 

Dexion framework in an unheated greenhouse at Scardon Place near the 

Polytechnic. The pots were arranged in a randomised block design and 

were re-randomlsed every 2 weeks. The design could therefore be 

regarded as completely random in any subsequent analysis. The plants 

were watered as required - in the summer twice every day. At the 

height of the summer when growth was at its maximum, a general liquid 

fertilizer was applied. It was noted however, that some plants (eg 

specimens of Deschampsia flexuosa) died after this treatment. Small 

amounts of rust appeared on some species eg Holcus lanatus at the 

beginning of the 1983 season and this was treated by applying a Benlate 

fungicide. 

Species which were known to attain a large size eg Deschampsia 

caespitosa and Brachypodium sylvaticum were initially p otted up in 7" 

pots whilst species which appeared to outgrow their 5" pots were 

transferred to 7" pots as necessary (see table 6.2.2). Thus the 
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Table 6.2.2 

Selected seecies 

7" 
pot 

! 1 
; 

; . Aira praecox 

I 2. Aira caryophyllea 
L 3 • Anthoxanthum odoratum -' 4. Elymus caninus 

5. Arrhenatherum elatius 
6. Elymus farctus ,• .L. ______ 

7. Alopecurus prat~nsis 
i 8. Agrostis capillaria 

-· f------ ·--

I 9. Brachypodium sylvaticum ~ 

I 10. Bromus ramosus .... 
·-----· . -

, 
[fc··sroffius -liord:aceous ---

12. Bromus sterilis 
I 13. Briza media 
: 14. Desmazeria rigida 

15. Cynosurus cristatus I 
----r-

16. Dactyli a glomerata ---------- ~ ·I 
" ~ 

17. Deschampsia caespitosa - I 18. Deschampsia !1exuosa ---------------

19. Festuca arundinacea y'. . I 

20. Festuca glgantea ~ I 
21. Festuca ov!na ' 

' 
22. Festuca rubra --- - ' 
23. Glyceria fTuitans 

: 2li. Avenuia praEensls ---------- ... 

: 25. iioriieum murinum --

j26. Hoicus moUis 
1 27. Koeleria macrantfia \ 
128. Lolium --perenne i 

Milium effusum ---- ___ , __ ..._,,I 

·_/_ __ ---· 29. ' 
,..~o. Molinia caerulea 

-- ----· -

31. Phleum pratense 
32. Phalaris arundlnace-a - ----·----- --· 

/ 
--

33. Poa --------- --'--• .,. ---· ·--....-annua ; 
-

34. Poa pratensis 
35. Poa trivialis ' 

--- .... - -·--· 
36. Danthonia de cum bens -- -----------·- 1-- - --
37. Trisetum flavescens 

--
38. VulEia br-o .... oi~es ------------
39. Agrostis stolonifera 

12io. Holcus lanatus _j_grass) ··- ---· ·---~ ----· 
--- .. 

41. Holcus la natus (Hedgerow) 
142. Hol~::~s 1~~-~us (t~!?!'.?.!.U.~-

--- ---~ ------- ·-- ------

143. Holcus lanatus (moorland) 
--------•• -.._,,, T- ,,.._ --- --
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intention was to obtain an estimate of reproductive allocation for 

species which had been grown in optimum conditions. 

6.2.4 Harvesting 

For all species, the panicle and stem were collected above the highest 

leaf on the culm. In immature panicles this was taken to be at the 

first node. In some species, particularly the annuals, flowering 

occurred in a simultaneous flush eg Aira caryophyllea. In these cases 

harvesting of all the panicles was carried out when the majority were 

mature. The remaining vegetative parts were cut off at ground level. 

Ideally, root biomass should also have been collected. However it was 

found that separation of the grass roots from the compost was extremely 

difficult and resulted in much loss of root material. The harvested 

plant parts were then placed in manilla envelopes and dried in an oven 

at 60°C for 48 hours. In the case of other species eg Holcus lanatus 

or Dactylis glomerata, panicles matured individually. If one of these 

plants had flowered by the end of the first season the vegetative 

parts were harvested then ie October 1982. However, if a plant had not 

flowered in the first season it was left until the end of the second 

season ie October 1983 before harvesting of the vegetative parts took 

place. In some species no flowering had occurred at the end of this 

period eg Avenula pratensis, whereas in others eg Briza media only a 

certain proportion of the original 10 plants had flowered. Once dried, 

plant parts were placed in a large polystyrene tray and weighed on a 

Oertling TP40 balance. 
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Plate 6 . 2 . 4 Grasses at Skardon Place 
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6.3 Results 

6.3.1 General characteristics of data 

The flowering behaviour of the different species of Gramineae is shown 

in Table 6.3.1. Twenty plants out of a total 430 did not survive and 

of the remaining plants 4 species failed to flower in the time 

available (Avenula pratensis, Elymus farctus, Festuca rubra and 

Phalaris arundinacea). Eight of the 22 species which flowered and were 

harvested in the first year were annuals (see table 6.3.1). Species 

which showed very low numbers of flowering plants (<35%) were Briza 

media, Deschampsia caespitosa, Milium effusum, Molinia caerulea and 

Agrostis stolonifera. 

The means and standard errors for vegetative weight, reproductive 

weight and reproductive allocation for each species are shown in table 

6.3.2. The means for reproductive weight include values of 0 for those 

plants which did not flower. For those species where the flowering 

rate was less than 100%, the mean reproductive weights for the 

flowering plants alone are given in table 6.3.3. Reproductive 

allocations are based on the values for reproductive weight in table 

6.3.2. The vegetative weights range from a maximum mean of 127.9g in 

Deschampsia caespitosa to a minimum mean of 3.4g in Aira praecox. 

Reproductive weights range from 27.3g in Bromus sterilis to 0.01g in 

Milium effusum and Molinia caerulea. Reproductive allocation expressed 

as the percentage dry weight allocated to reproductive structures 

ranges from 66.3% in Desmazeria rigida to 0.23% in Molinia caerulea and 

0.02% in Milium effusum. Zero values of RA were given to species which 

did not flower. 
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Flowering Behaviour of species Table 6.3.1 

Species No Harv Harv 
Flowerinll' Yr 1 Vr ? 

1. Aira praecox 10/10 /c.. 
2. Aira caryophyllea 10/10 ./ a. 
3. Anthoxanthum odoratum 10/10 ./ 
4. Elymus caninus 10/10 / 
5. Arrhenathenaum elatius 10/10 ..,. 
6. Elymus farctus 0/10 / 
7. Alopecurus pratensis 7/10 / 
8. ~qrostis capillaria 10/10 _/ 
9. Brachvoodium svlvaticum 10/10 / 
10. Bromus ramosus A/A . ./ 

11. Bromus hordaceous 10/10 /a. 
12. Bromus sterilis 10/10 

. ./ "" 
13. Briza media 3/10 ./ 
14. Desmazeria rigida 10/10 /a. 
15. Cynosurus cristatus 10/10 ./ 

16. Dactylis glomerata 1n11n / 
17. Deschampsia caes~itosa 2£10 ./ 
18. Descham~sia flexuosa .6/8 ·-- __ / ___ . _/_ -
19. Festuca arundinacea RIR 
20. Festuca p,igantea qJ l 0 / 
21. Festuca ovina 9/IO ,/ 
22. Festuca rubra o/1 n 7 
23. Glyceria fluitaris 6/10 ,_./ 
24. Avenula pratensis Ol9 ./ 
25. Hordeum murinum 10/10 ./a. 
26. Holcus mollis 6/9 ,/ 

~--·--

27. Koeleria macrantha 7/10 ~ 
28. l..olium oerenn~ 10/10 ./ 
29. Milium effusum 1/10 / 
30. Molinia caerulea 1 I 'i 7-
31. Phleum pratense 10/10 ./ 

-~ ·-· 
32. Phalaris arundinacea 017 v 
33. Poa annua 101 10 ,/ 0.. 

34. Poa pratensis R/1 0 ~-· ___ .,/_ 
35. Poa trivialis 1ri11o / 
36. Danthonia decumbens 5/8 . ./ 
37. Trislttum flo.v:escens lnl1n / 

138. Vulpia ~..-o .._, o; J.es 10/10 / .... ·-· 
139. Agrostis stolonifera ·- __________ :Jf_ 10 ./ 
40. Holcus lanatus - grass 10/10 ./ 
41. - hedgerow 8/9 ./ 

- waste 1/Q ./ 
- moorland 8/10 v 

a = annual 
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Table 6.3.2 

~ of data for each species 

Species N:> ~ SE ~ SE ~ SE ~ SE RMAX 

VC& wt ve~wt ieP.wt Ie~wt RA% RA% Toic.l :) Tolc.f, ) 
(g (3) (g c.J~(j (,jl 9 

A praecoK 1 3.43 0.24 4.24 0.37 54.94 1.42 7.66 0.57 0.87 
A cacypb>llea 2 3.89 0.27 5.07 0.54 55.55 2.03 8.97 0.78 -
A odoratuu 3 ll.6 1.58 1.92 0.50 14.12 2.90 13.52 1.87 0.94 
E cani11118 4 51.22 17.86 17.26 1.11 25.14 1.08 68.47 2.5 
A elatlus 5 44.6 8.6 5.75 1.37 11.40 1.18 50.3 9.5 1.30 
E farctus 6 87.4 17.1 0 0 0 0 8.74 17.1 
A pratensis 7 18.81 1.46 0.566 0.15 3.00 0.82 19.38 1.47 1.29 
A capillaris 8 27.2 4.5 1.94 0.34 8.24 1.62 29.2 4.5 1.36 
B sylvaticuu 9 44.13 3.01 15.81 2.00 25.64 1.86 59.9 4.6 1.35 
B raoosus 10 41.7 5.00 8.02 1.99 16.22 3.34 49.7 5.8 
B raoollis 11 19.34 1.43 19.60 1.79 50.18 1.51 38.94 3.02 -
B sterilis 12 35.10 1.16 27.20 5.0 40.90 4.4 62.3 4.8 
B ned1a 13 18.82 2.71 0.12 0.06 0.56 0.29 18.94 2.72 1.11 
D rigida 14 3.73 0.32 7.25 0.53 66.28 1.32 10.98 0.81 1.60 
C cristatus 15 .10.10 1.55 3.93 0.49 30.5 3.4 14.03 1.87 1.54 
D glao:!rata 16 91.1 8.7 13.89 1.99 13.94 2.00 IOS:O 8.3 1.31 
D caespitosa 17 127.9 24.6 0.368 0.29 1.08 0.98 118..:13 nJE:. 1.45 
D fl~ss 18 10.5 4.7 1.14 0.63 13.6 8.0 11.6 4.7 0.81 
F arundinacea 19 77.4 4.0 6.69 1.41 7.55 1.11 84.1 5.3 
F gigantea 20 25.9 3.6 5.46 1.28 17.0 3.2 31.4 4.1 1.44 
F ov1na. 21 29.5 6.3 1.46 0.48 6.23 2.49 31.0 6.3 1.00 
F rubra 22 55.4 6.3 0 0 0 0 55.4 6.3 1.18 
G fluitans 23 15.84 2.55 0.161 0.083 1.33 0.79 16.0 2.52 1.33 
lw pratense 24 22.6 3.00 0 0 0 0 22.6 3.00 0.75 
H DUrimm 25 28.58 1.05 26.06 2.12 47.11 1.99 54.64 2.73 1.76 
H 010ills 26 16.37 3.02 1.24 0.54 6.15 2.12 17.6 3.5 1.44 
K macrantha 27 15.6 3.2 0.92 0.42 8.3 4.2 16.56 2.99 0.94 
L perenre 28 17.29 2.06 3.95 0.69 18.67 2.59 21.24 2.37 1.30 
M effu.~un 29 34.5 4.6 0.01 0.01 0.02 0.02 34.5 4.6 1.11 
M caerul.ea 30 3.45 0.63 0.01 0.01 0.23 0.23 3.46 0.65 
P pratense 31 26.4 3.5 2.148 0.22 8.70 1.29 28.5 3.5 
p arund1nacea 32 31.2 9.6 0 0 0 0 31.2 9.6 
p aruUJa. 33 7.35 1.20 9.13 1.23 57.5 5.3 16.48 2.02 2.70 
P pratensis 34 22.61 3.07 0.782 0.25 3.61 1.21 23.41 3.16 1.26 
P trivialis 35 15.17 1.69 4.33 0.51 23.43 3.07 19.49 1.81 1.401 
S dea.mbens 36 3.48 0.47 0.266 0.17 5.20 2.63 3.74 0.59 0.60 
T flavescens 37 12.27 1.29 4.07 0.60 25.25 2.41 16.35 1.69 
V ~rQ"' oi.te .r 38 5.61 0.64 8.07 0.81 58.97 2.65 13.67 7.31 
A stolonifera 39 25.7 4.8 0.29 0.238 0.86 0.54 26.0 4.9 1.48 
H I.anatus-grass 40 39.0 6.6 1.84 0.38 6.37 1.8 40.9 6.5 2.01 
H lanatus-hedgercw 41 43.7 U.4 1.484 0.294 4.92 0.97 45.2 ll.2 2.01 
H lanatll.!)-';oBSte 42 59.4 20.2 0.238 0.156 0.61 0.38 59.7 20.2 2.01 
H lanati.IS"1lDDr lanl. 43 46.9 12.2 1.29 0.38 4.16 1.41 4.81 1.21 2.01 

196 



TAILE 6.3.3 

~ behaviour of species 

!i!ans and SD' s of species with less than 100% fl.cM!ring 

Species N leveg~ SE x rep wt SE Discrepancy bel:leen 
RA"/o fla.~ertng (!lowen<J ~ (g) 

be reproductive (flowen·,~ (flo"'e"l"'~ out of lO plants a•!)) plct~t"J 0"1~) w:!ights f'lct,b o~ :i,. 
A pratensis 7 1'1·62 1·'18. 0.806 0.122 0.24 3·76 
B DEdia 3 JI·S6. 0·4-/r 0.4100 0.208 0.29 1·&7 
D caespitosa 2 S4-S5 2.&·4-7 1.84 1.06 1.47 5 1;.2., 
D flexuosa 6 \2·03 6·2.2 1.52 0.79 0.38 18 · I 
F gigantea 9 27· 2.7 3·77 6.07 1.26 0.61 18·q 
Fov:l.na 9 30·3'1 6·92. 1.62 0.51 0.16 c,-n 
Gfluitans 6 I 5· 4-2 2.. .t, 7 0.268 0.123 0.11 2·2./ 
H mills 6 I g 7/ 4-·2.3 1.86 0.68 0.62 q-:2.2 
Kmacrantha 7 /3·2>4- 1.:4-0 1.32 0.54 0.40 I I ·l> 
M caerulea 1 4. ·35 0.05 o.oo 0.04 I · I lj. 
P pratensis 8 ;!2·34- 3-31,. 0.977 0.274 0.19 lt-·51 
D dewnbens 5 4--01,. 0 ·62 0.426 0.265 0.16 8·32 
A stolonifera 3 2.7· o I 10·58 0.97 0.72 0.68 2·88 
H 1an hedge 8 35- ~~ 6-(,5 1.67 0.259 0.19 6·2.3 H lan W'l.Ste 3 3 6 ss 3·01 0.713 0.348 0.475 I -81,. 
H lan lll)()r 8 3&·72 0· 13 1.61 0.41 0.32 5·<0 
Meffusun 1 54--· I 0 0.10 o.oo 0.09 0 ·I (I 

*' Tk-se vo.lo.os use&.;...._F~,. G.I.-2-G.ft..'l. 
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Overall the data had probability plot correlation coefficients of 0.849 

for vegetative weight and 0.866 for reproductive weight. With 410 

individuals under consideration the data are positively skewed, showing 

a greater occurrence of small values and few occurrences of large 

reproductive and vegetative weights. However, at the individual 

species level this skewness is not apparent eg for Aira praecox r = 

0.997 which for an n of 10 falls within the 5% probability level for 

the normal probability plot correlation coefficient. 

6.3.2 Reproductive and vegetative weights 

Mean vegetative weight has been plotted against mean reproductive 

weight for each species in fig 6.3.1. The species located at the 

periphery of each axis had the greatest reproductive and vegetative 

weights eg Dactylis glomerata, Elymus caninus, Bromus sterilis and 

Hordeum murinum. Species near the origin eg Molinia caerulea and 

Sieglingia decumbens had low vegetative and reproductive weights. 

Species in which not all of the individuals flowered would have had 

higher reproductive allocations if just the flowering plants had been 

considered. These species are replotted in fig 6.3.2 showing the 

difference between the two means. The value of this difference is 

listed in table 6.3.3. The general pattern of the species distribution 

is almost unaltered by the use of a 'just flowering plants' mean (the 

maximum difference between means is 1.47g) but it is obvious that some 

species show a greater discrepancy between the two means than others. 

The species where this difference was most pronounced were Deschampsia 

caespitosa, Agrostis stolonifera, Holcus mollis, Festuca gigantea and 

Holcus lanatus (topsoil waste near Poly). All these differences were 

greater than 0.45g. 
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When vegetative ~eight is plotted against reproductive weight for 

individual plants of each species some characteristic patterns of 

distribution are evident (see fig 6.3.3). The species can roughly be 

divided into 9 groups according to their pattern of distribution of 

vegetative and reproductive weights. Table 6.3.4 includes the key to 

the groups in fig 6.3.3. 

Group 1 consists of those species in which there is an obvious positive 

correlation between vegetative weight and reproductive weight. A 

typical example of the pattern shown by this group is displayed by 

Arrhenatherum elatius (fig 6.3.4). Species in group 2 show a similar 

correlation between vegetative and reproductive weights but in these 

species a threshold critical vegetative weight seems to be necessary 

before flowering can occur ie there are no very low vegetative weights. 

The slope of the relationship tends to be less steep. A typical 

representative of this group is Festuca arundinacea where the lowest 

vegetative weight is c. 60g (fig 6.3.5). 

Species in group 3 eg Cynosurus cristatus (fig 6.3.6) show no evidence 

of any relationship between reproductive and vegetative weight but are 

scattered around a central point. Similarly Oanthonia decumbens (fig 

6.3.7) and Molinia caerulea in group 4 show this sort of pattern but 

with much lower weights, whilst members of group 5 eg nactylis 

glomerata (fig 6.3.8) have much greater weights. 

Species in groups 6 and 7 displayed much more variability in their 

reproductive weight than was evident in the other groups. Group 6 eg 

Bromus sterilis (fig 6.3.9) includes species with relatively high 

vegetative weights and very variable reproductive weights. Group 7 eg 

Oesmazeria rigida (fig 6.3.10) contains species with variability in 

reprodutive weights but with much lower vegetative weights. 
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Key to Groups in Figure 6.3.3 

Group 1 
Arrhenatherum elatius 
Holcus mollis 
Anthoxanthum odoratum 

Group 2 
Festuca arundinacea 
Elymus caninus 
Bractypodium sylvaticum 

Group 3 
Cynosurus cristatus 
Lolium perenne 
Poa trivialis 

Group 4 
Danthonia decumbens 
Molinia caerulea 

Group 5 
Dactylis glomerata 
Bromus ramosus 
Festuca gigantea 

Group 6 
Bromus sterilis 
Bromus hordaceous 
Hordeum murinum 

Group 7 
Desmazeria rigida 
Vulpia ciliata 
Poa annua 
Aira caryophyllea 
Aira praecox 

Group 8 
Agrostis capillaria 
Festuca ovina 
Briza media 
Alopecurus pratensis 
Phleum pratense 
Poa pratensis 
Agrostis stolonifera 
Koeleria macrantha 
Deschampsia Flexuosa 
Holcus lanatus (grassland) 
Holcus lanatus (moorland) 
Holcus lanatus (hedgerow) 

Group 9 
Deschampsia caespitosa 
Elymus farctus 
Phalaris arundinacea 
Milium effsum 
Glyceria fluitans 
Avenula pratensis 
Festuca nibra 
Holcus lanatus (waste) 
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Groups 8 and 9 contain species with a wide range of vegetative weights 

and a very low range of reproductive weights. 6qrostis capillaria (fig 

6.3.11) is a typical representative of group a. Reproductive weights 

are much less variable than vegetative weights. In group 9 eg 

Deschampsia caespitosa (fig 6.3.12) vegetative weights can have an 

extremely wide range but often many plants do not flower. If they do 

flower then the reproductive weights attained are very small. 

The fact that one of the populations of Holcus lanatus (Poly waste 

topsoil) was assigned to a different group reflects its different 

behaviour. Only 3 out of the 9 individuals from this population 

flowered and those which did flower had much lower RAs. There is a 

significant (P(0.05) difference between the RA of the 3 flowering 

Holcus lanatus plants from the Poly waste topsoil (mean 1.8%) and the 

Lipson grassland plants (mean 6.4%) and the Bere Alston hedgerow plants 

(mean 4.9%). This would seem to indicate that reproductive allocation 

strategy within a species may vary from one habitat to another. 
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6.4 Discussion 

In general the reproductive behaviour of the various species of 

Gramineae is consistent with that proposed for ruderal, stress-tolerant 

and competitive strategies (Grime 1977). Comparable data on 

reproductive allocation in grasses from other sources are sparse but 

some generalisations can be made. 

The ruderal annuals have a very large proportion of their annual 

production devoted to reproduction (66.3% in Desmazeria rigida - 40.9% 

in Bromus sterilis). All the annual species flowered in the first 

season and in every species every individual flowered. Similar high 

values for reproductive allocation in annual ruderals have been 

reported for Phleum arenarium- 37-44% (Ernst 1981), Setaria viridis 

49-42% and Setaria glauca 27-53% (Kawano and Mlyake 1983) and Avena 

fatua 56-61% (Harper and Ogden 1970). Amphicarpum purshii, an annual 

pioneer species has a reproductive allocation of 29% (McNamara and 

Quinn 1977). 

Stress-tolerant species eg Danthonia decumbens, Briza media and Milium 

effusum showed low levels of reproductive allocation (5.2%, 0.5% and 

0.02% respectively) and often not all of the individuals had flowered 

by the end of the second season. Amongst those species in which a 

proportion failed to flower, Elymus farctus, Avenula pratensis and 

Festuca rubra can be regarded as stress-tolerant. Phalaris arundinacea 

is generally regarded as competitive (Grime 1979). However it may only 

be capable of being competitive in its own specialised wet and 

nutrient-rich habitat. The conditions provided for this species in the 

experiment may not have been suitable and this would provide an 

explanation for its poor performance. 
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The competitive species generally had an intermediate to low 

reproductive allocation eg Arrhenatherum elatius 11.4%, Dactylis 

glomerata 13.9% and Lolium perenne 18.7% reflecting their high 

investment in veg~tative biomass. The flowering behaviour of the 

competitive species was also more consistent. In all the 

aforementioned species every individual flowered. Lambert (1968) found 

a RA of 4-6% in Dactylis glomerata but this value included roots. Root 

biomass was not included in estimates of reproductive allocation in 

this experiment. Low levels of RA in dominant grasses were usual in 

those species characteristic of environments of low to moderate 

productivity eg Molinia caerulea 0.2% and Deschampsia caespitosa 1.1%. 

Tripathi and Harper (1973) found a low RA of 0.1 - 0.9% in a 

rhizomatous competitive ruderal Ell!us repens, where Elymus caninus, a 

tussock grass, had a value of 10.9- 14.8% (including roots). In this 

experiment Elymus caninus had a RA of 25.1% but again this did not 

include root biomass. The perennial caespitose grass Andropogon 

scoparius attained RA values of 24-42% (Roos and Quinn 1977). 

From the evidence above it seems that although reproductive allocation 

can be used as an indication of an extreme ruderal strategy or an 

extreme stress-tolerant strategy, there is a large intermediate region 

between these two poles containing species of widely varying ecology. 

Further information on species characteristics is needed to assess 

plant strategy in this intermediate area. The problem is illustrated 

by reference to Tripathi and Harper's (1973) data on Elymus caninus and 

Elymus repens. The rhizomatous competitive ruderal has a much lower RA 

than Elymus caninus, a tussock grass typically found in shady 

environments. They suggest that this difference is a consequence of 

their different patterns of growth. Elymus repens, 

has a much greater capacity for clonal expansion and Harper (1977) 
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proposes that clonal growth and reproduction by seed may be alternative 

processes. 

Further evidence of the tendency of growth form to influence 

reproductive allocation values can be gained by considering many of the 

species of Gramineae with intermediate RA values. Brachypodium 

sylvaticum, Bromus ramosus and Festuca Sigantea are all species 

characteristic of shaded woodland or hedgerow habitats. In such a 

stressed habitat relatively low RAs would be anticipated. However the 

observed RA values of these tufted perennial species were 25.6%, 16.2% 

and 17.0% respectively. In contrast Holcus mollis, a rhizomatous grass 

also typically found in shaded habitats had a RA value of 6.1%. 

Similarly competitive ruderals with a tufted growth form such as 

Cynosurus cristatus (30.5%), Lolium perenne (18.7%) and Poa trivialis 

(23.4%) had much higher RA values than Rhizomatous or highly 

stoloniferous species like Poa pratensis (3.6%) and Aarostis 

stolonifera (0.8%). 

The plots of reproductive weight against vegetative weight for the 

different species of Gramineae in this experiment show that these two 

parameters may be related to each other in different ways in different 

species, perhaps dependent on plant morphology and structure. The mean 

reproductive allocation for a particular species provides a useful 

general indication of the relationship between vegetative and 

reproductive biomass but within the species there may be further 

tactics which are not evident from consideration of the mean alone. 

Differences in plant morphology and growth rate were taken into account 

by Grime (1974) when he produced a classification of plant strategies 

using Rmax (the maximum potential relative growth rate) as a stress 
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axis and Cl (competitive index) as a competitive axis. He also 

proposed that RA might provide an additional 'ruderal' axis, although 

the importance of reproductive allocation (or effort) in assessing 

plant strategy was first recognised by Harper and Ogden (1970). One of 

the aims of this study was to determine the value of RA as a criterion 

as opposed to (and in conjunction with) Rmax and Cl. With this 

intention an alternative third axis was constructed on the third side 

of Grime's (1974) triangular model (fig 6.4.1). Species were then 

ordinated on this triangle using pairs of this 3 parameters (Rmax, Cl 

and RA) and the results compared. Values for Rmax and Cl were obtained 

from the Unit of Comparative Plant Ecology (NERC), University of 

Sheffield. Unfortunately values for all 3 parameters were not 

available for all of the species of Gramineae, but complete data for 30 

species were available. (Each population of Holcus lanatus is treated 

as a separate species). Data on RA and Cl were available for 41 

species and these species have been plotted on the appropriate 

ordination. The values of RA used in the diagrams and the following 

analyses were those obtained for the flowering plants only since there 

was a possibility that the numbers ot non-flowering plants in the small 

sample might not be representative. 

Fig 6.4.2 shows the conventional triangular model where Rmax is plotted 

against the competitive index. Fig 6.4.3 shows Rmax plotted against RA 

and Fig 6.4.4 shows Cl plotted against RA. Both of the ordinations 

involving RA tend to show an agglomeration of species near the edge of 

the axis due to the large number of species with low or zero RA values. 

Although these graphs give a general indication of the value of each 

parameter it is difficult to judge them objectively. Moreover none of 

the diagrams combine the effect of all 3 criteria. A mathematical 

classification of the species according to various combinations of the 
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3 parameters would provide a less subjective method .of assessing their 

value and also permi!t an integrated classification using a'l:l 3 

parameters. 

Clustan (Wishart 1982) was used to produce agglomerative polythetic 

classifications of the species .us,ing Ward 1 s ( 1963) method. Ward 1 s 

method is considered to be the preferable hierarchical, agglomerative 

method (Wtshart 1982, Everitt 1979). Ward proposed that at any stage 

of the classification procedure, the loss of information which results 

from the grouping of individua'l:s into clusters can be measured by the 

tota'l sum of squared deviations of every point from the mean of the 

cluster to which it belongs. At each step in the analysis the 

combination of every possfble pair of clusters is considered and the 2 

clusters whose fusion results in the, minimum increase in the error sum 

of squares are combined (Everitt 1980). The results can be summarised 

in the form of a dendrogram (figs 6.4.5-9). 

Obviously the most robust classification will be that which includes 

the greatest amount of information. The classification analysis which 

uses all 3 parameters (Rmax, CI and RA) is shown in fig 6.4.5. The 

value of any 2 parameters in creating a classification can be judged 

against this integrated, comprehensive analysis. The main feature of 

this analysis is a division of species into ruderals in clusters 1-5 

and the remaining competitive and stress-tolerant species in clusters 

6-10. The ruderal group is characterised by species with high growth 

rates and reproductive allocations and includes all the annual species. 

The stress-tolerant ruderals Aira praecox and Desmazeria rigida show 

the most similarity. Within this group are a group of perennials 

(cluster 3) which are probably placed in this location because of their 

relatively high Rmax and/or RA values and moderate to low CI 1 s. Poa 
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trivialis and Cynosurus cristatus can be regarded as competitive 

ruderals. ijowever both Festuca gigantea and Brachypodium sylvaticum 

are characteristic of shady environments and their high RA is probably 

a consequence of their tufted growth form, as discussed earlier. 

After this major differentiation of the ruderal species from the 

remaining species the next most significant division separates the 

stress-tolerators in cluster 6 from the remaining species. These 

stress-tolerant plants, Anthoxanthum odoratum, Deschampsia flexuosa, 

Briza media, Festuca ovina, Koeleria macrantha, Avenula pratensis and 

Danthonia decumbens all have relatively low Rmax's, Cl's and RA's. 

Below this division there is a significant separation of the four 

Holcus lanatus populations. It is evident from the sub-clusters that 

the Moorland and Hedgerow populations are the most similar (as would be 

expected from two stress-tolerant populations). In the classification 

using RA and CI for 41 species (fig 6.4.9) the Poly waste population is 

assigned to a different cluster from the other H. lanatus populations. 

This is undoubtedly a consequence of the significantly lower RA in the 

Poly population. A lower RA for a population on waste ground is not 

what would have generally been expected but as the plant was growing on 

dumped topsoil it is possible that it originated from a completely 

different habitat. Different 'biotypes' of a single species from 

different habitats have been found ie Taraxacum officinale (Gadgil and 

Solbrig 1972), !leha latifolia (Grace and Wetzel 1981) and Tussilago 

farfara (Bostock 1980).- The grass Andropogon scoparius also showed 

some evidence of genetically based reduction in sexual RA with 

increasing age of field (Roos and Quinn 1977). 
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Within the remaining 'competitive' species in fig 6.4.5 Phalaris 

arundinacea is recognised as being distinctly dissimilar from the other 

species. This is probably attributable to its very high competitive 

index (7.5), which is the highest Cl in the species under 

consideration. The final separation of the competitive species in 

clusters 7 and 8 does not seem to be based on any obvious strategic 

differences. The species in cluster 7 eg Arrhenatherum elatius, Holcus 

mollis and Deschampsia caespitosa all have Cls greater or equal to 5 

whilst those in cluster 8 eg Millium effusum, Lolium perenne and Poa 

pratensis have Cls less than 5. 

Thus the classification of species obtained using all of the 3 

parameters can be satisfactorily explained in terms of species 

strategy. The few anomalies can be largely attributed to species 

structure and morphology and this area evidently requires further 

investigation. By comparing this comprehensive classification with the 

classifications obtained when one of the parameters is omitted, it is 

possible to determine the importance of each parameter in the 

interpretation of strategy. The most appropriate criteria would be 

those that lost the least amount of information compared with the 

integrated analysis. 

Fig 6.5.6 shows the analysis using RA and Rmax. This classification is 

in fact, very similar to that in fig 6.4.5. The major division is 

again between the ruderals and the remaining species although in this 

case the ruderals are restricted to the annual species. Desmazeria 

rigida, Airs praecox and Hordeum murinum which are all found in similar 

dry, open habitats are most similar. The next major division is 

between the Holcus lanatus populations and the remaining species (when 

Cl was included in the integrated classification stress-tolerant species with 
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very low Cis were more dissimilar than the Holcus lanatus populations). 

This is followed by a division between the stress-tolerating plants in 

clusters 5 and 6 and the remaining competitive species. The 'ruderal 

competitive' group in cluster 9 had previously been included within the 

ruderals (fig 6.4.5) because of their relatively low Cis but with the 

omission of CI as an index they are allotted a 'competitive' position 

with Lolium perenne. Similarly Phalaris arundinacea is not identified 

as being significantly different because of its high CI, and in this 

classification is grouped with the other competitive species. The 

exclusion of CI as a factor also means that because Briza media has a 

slightly higher Rmax and a slightly lower RA than the other stress­

tolerant species in clusters 5 and 6, it is grouped with the 

'competitive' species in cluster 8. Therefore, although this 

classification identifies the same major groups that are present in the 

integrated classification, there are some slight discrepancies at the 

lower levels of the hierarchy. 

Fig 6.4.7 shows the clusters obtained using Rmax and CI, the original 

axes of Grime's (1974) triangular ordination. In contrast with the 

previous 2 classifications, the main division in this analysis 

separates the competitive plants (clusters 7-10) from the remaining 

non-competitive ruderals and stress tolerators (clusters 1-6). The 

ruderal, Poa annua is located within the competitive group since its 

high RA is not taken into account in this analysis. 

With the omission of RA as a criterion the 4 annual species are not 

grouped together (as in the previous classifications) but placed in 

positions dependent on their other characteristics. Hence Poa annua, 

with the highest ruderal Rmax is grouped with the competitive species 

whereas Aira praecox and Desmazeria rigida with the lowest ruderal CI 
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Fig 6.4.7 Dendrogram showing Clusters produced using Rma.x and Cl 
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and Rmax are grouped with the stress-tolerant species. Hordeum 

murinum, with a high Cl and intermediate Rmax is placed in an 

intermediate position with the 'ruderal competitive' plants. 

The analysis based on RA and Cl in fig 6.4.8 is markedly dissimilar to 

the integrated classification in fig 6.4.5. Although the primary 

division separates off 3 ruderal species in cluster 1 ie Aira praecox, 

Desmazeria rigida and Poa annua, Hordeum murinum is omitted from this 

group. Within the remaining species the next division separates off 

the competitive plants in clusters 8-10. Arrhenatherum elatius is 

identified as being significantly different from the other species 

which was not evident in the integrated classification. The remaining 

clusters 2-7 are separated into ruderal competitors (2-4) and stress­

tolerators (5-7). However the inclusion of Agrostis capillaria and~ 

pratensis with the stress-tolerators seems somewhat dubious, and in 

fact the location of species at the lower levels of the hierarchy seems 

quite arbitrary. The effect of the inclusion of additional data on 

other species can be seen in fig 6.4.9. Although the basic structure 

of the classification remains the same, there are some refinements at 

the lower levels (eg Agrostis capillaria and Poa pratensis are included 

with the competitive plants) which makes the classification more 

comprehensible. 

Each of these analyses is creating a classification on the basis of 

certain specified criteria and in terms of these specific criteria that 

classification is appropriate. The decision as to which classification 

is most appropriate remains a subjective one. Any simplification or 

summarisation of a set of data involves rejecting some of the 

information in the original data and the information that is retained 

depends on the chosen classification. A classification which retains 
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little information may be appropriate for a single, narrowly defined 

purpose but is unlikely to be generally useful. The decision as to 

precisely which information it is desirable to retain is a matter of 

opinion and may also vary with the use that is to be made of the 

classification. No classification can contain an infinite number of 

parameters on an infinite number of species and certain criteria should 

be selected on the basis of the amount of information that they impart. 

Reproductive allocation provides a very useful criterion by which plant 

strategy can be assessed. This is particularly true of the ruderal 

strategy and RA appears to be an appropriate index to use to emphasise 

the ruderal element of a plant's strategy. When used in conjunction 

with criteria such as Cl and more especially Rmax it can create a 

.meaningful classification of species which can be explained in terms of 

their ecological strategy. Obviously, of the various combinations of 

the 3 characteristics that were used to classify the data, the most 

satisfactory classification was that which included all 3 

characteristics, Rmax, Cl and RA. However, examination of the 

classifications produced using pairs of characteristics indicated that 

Rmax and RA produced more satisfactory classttications and consequently 

were more appropriate indices than Cl. 

RA and Rmax may be functionally more important in a plant's strategy 

than Cl. Cl is a composite index which takes into account the maximum 

height of the leaf canopy, lateral spread and the estimated maximum 

accumulation of persistent litter. These 3 characteristics are not 

necessarily correlated and two plants may have the same Cl despite 

having quite different morphological attributes. However, height of 

canopy is given a greater weighting since the maximum possible score 

for height of can?PY was arranged to be twice that allowed for either 

lateral spread or litter accumulation. In fact, height of canopy can 
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be a very plastic intraspecific character eg Arrhenatherum elatius 

showed polymorphism with respect to plant height (Mahmoud et al 1975) 

and even Mendel showed that stature could be a single character cross 

in Pisum (Briggs and Walters 1984). In contrast Rmax and RA are likely 

to be relatively fixed genetically since both are likely to represent 

the outcome of many interrelated features of a plant's biology eg Rmax 

represents the result of rate of protein synthesis, root/shoot ratio, 

various allocation patterns including leaf thickness and area, stomatal 

resistance, enzyme activities etc. Thus RA and Rmax are probably 

better indicators of strategy than height, which may be a single gene 

character. It seems possible therefore, that RA and Rmax are of more 

importance to a species in an evolutionary context and that this is why 

they are better indices of plant strategy. 

Additional criteria such as on plant morphology and structure may also 

play an important part in vegetation strategies and the inclusion of 

data on additional species always improves a classification eg compare 

fig 6.4.9 with fig 6.4.7. Obviously further research is necessary 

before a comprehensive classification of plant strategies can be 

attempted but it seems evident that reproductive allocation should be 

an integral element in this classification. 
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CHAPTER 7 - CONCLUSION 

One of the main aims of this thesis has been to address some of the 

conceptual problems related to the question of the best method by which 

to measure reproductive allocation, followed by the application of a 

'best' method to a range of species of differing ecological strategies, 

Throughout the course of investigations into these problems a number of 

themes have frequently recurred. These themes, which are briefly 

summarised below, may be apparent in one or several experiments. 

7.1 The response of RA to stress 

Nutrient stress was selected as a relatively simple stress to apply to 

2 different species Poa annua and Taraxacum officinale. In fact 

despite the 3 and 4 fold reductions in weight caused by a low nitrogen 

treatment neither species displayed a significant reduction in their 

biomass RA (51.7% for Taraxacum officinale and 36.9% for Poa annua) In 

annual or ruderal species like Poa annua and Taraxacum officinale the 

maintenance of a fixed proportion of biomass in reproduction despite 

environmental stress is an appropriate strategy. Had some other stress 

been applied, such as drought or shade, the response of the species may 

have differed, It seems likely that species have evolved appropriate 

responses to certain stresses which have habitually occurred in their 

evolutionary history. 

When potassium and phosphorus were deficient, Taraxacum plants 

displayed an increased reproductive allocation of potassium and 

phosphorus, (Reproductive allocation behaviour in response to nutrient 

limitation may be species-specific (Williams and Bell 1981)), In 

Taraxacum there seemed to be a trend towards preferential allocation of 

K and P to reproductive structures. In ruderal species, therefore, 
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there is a growth response which maximises seed production and seed 

'quality' at the expense of a rapid curtailment in vegetative 

development. Nevertheless, in extremely deficient conditions there 

must be a critical minimum level of vegetative development necessary to 

maintain the photosynthetic apparatus. This is evident in Taraxacum, 

particularly in the N deficient treatment where nutrient RA declines. 

The response of RA to nutrient stress can therefore be both element and 

species specific. However it seems that in general under nutrient 

stress ruderal plants will maintain the proportion of resources devoted 

to reproduction despite reductions in total biomass and total nutrient 

content. 

7.2 The relationship between nutrient and biomass RA 

The nutrient allocation of N, P and K in Taraxacum officinale was found 

to be significantly different from that of biomass. When the mean 

reproductive allocations of all treatments were compared, KRA (71%) and 

PRA (66%) were significantly higher than BRA (51.7%). The high KRA was 

attributed to high concentrations of K in the scape sap. Biomass 

allocation, therefore, did not always reflect nutrient allocation. 

This was similar to the conclusion drawn by Abrahamson and Caswell 

( 1982). 

However, the extent of the difference between the various methods of 

measuring RA varied according to the treatment. In the control the 

difference between the methods was not significant, but in the 20%K and 

20%P treatments the differences were highly significant, reflecting the 

higher allocation of K and P to reproduction in these treatments. 

Consequently, although it seems unwise to assume that the allocation of 

biomass and nutrients is similar, there is no obvious alternative 
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currency which is appropriate in all conditions. The relative 

contributions of biomass and nutrients to reproductive parts are 

qualitatively similar and are highly correlated, In optimal conditions 

biomass seems to be a reasonable currency by which to gauge RA since it 

is basically an integration of a number of physiological processes and 

often reflects the relative allocation of mineral nutrients, Moreover, 

biomass is undoubtedly easier to measure than nutrient allocation. 

7.3 Reproductive cost 

An alternative approach to the measurement of the evolutionary 

consequences .of reproduction was suggested by Bell (1980). He argues 

that units of reproductive allocation are only of evolutionary 

significance if they are transformed into units of fitness. It is the 

cost to the plant of reproducing that it is important. This 

reproductive cost may be realised in terms of reduced future 

reproduction, survival or growth. 

Prevention of flowering in Digitalis by manual excision of flower buds 

resulted in an increase in the number of axillary buds produced which 

was proportional to the number of flowers removed. Although there was 

a slight tendency for plants with higher RAs to be more susceptible to 

disease this was not statistically significant. In fact, this species 

behaved in a way that prevented any realisation of a reproductive cost. 

Any excess resources which may have been available to allow future 

growth were diverted into the production of axillary buds in the 

current season. Moreover, the optimal conditions in the experimental 

site where resources were abundant allowed plants sufficient resources 

to produce overwintering secondary rosettes. Any chance of a 

reproductive cost being observed in terms of reduced survival was 

consequently unlikely. 

236 



Similarly, in Plantago lanceolata removal of flowering buds resulted 

in an increased effort to produce flowering buds in that current year. 

Any resources which might have been diverted to reproduction in the 

second year were used in a 3-fold increase in current reproduction. 

It seems therefore that although reproductive cost may be the more 

crucial measure of what is important to the plant in evolutionary 

terms, it may be very difficult to measure. Reproductive cost can also 

be expressed in numerous different ways in different species. 

7.4 Individual variability and variability in the environment 

The significance of variability in individual behaviour is apparent in 

many of the experiments. In the first experiment on the effect of 

nutrient stress on RA both Poa annua and Taraxacum officinale displayed 

wide variation in their individual reproductive allocation. Similarly 

Taraxacum plants in the reproductive cost experiment in Chapter 5.1 

showed great variability, making any statistically significant 

conclusions impossible. Wide intraspecific variation was also evident 

in the comparative experiment (Chapter 6), increasing the standard 

deviation and reducing the significance of the results. 

The use of conventional statistical techniques based on the population 

mean tends to mask this variability. The importance of individual 

variability has been stressed by Began (1984) and Waite (1985). 

Increase or decrease in variability of RA in response to stress may 

itself be an adaptive strategy. Real (1980) has shown that a maximum 

principle for evolutionary processes based solely upon mean fitness of 

behaviours may, under certain circumstances, be misrepresentative and 

misleading in the analysis of biological systems. 
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The importance of variation in experimental situation was also evident 

in many of the experiments, In the reproductive cost experiment 

Taraxacum plants became much larger than was anticipated from 

observations in the field. This probably resulted in some 

intraspecific competition which may have increased the variability 

observed in the plants. Similarly Digitalis plants frequently die 

after flowering in the field but do not necessarily do so in optimal 

environmental conditions. This variability in behaviour dependent on 

experimental situation emphasises the need for controlled comparative 

experiments as advocated by Grime (1965). 

7.5 The importance of plant morphology 

The importance of plant morphology and structure and its influence on 

RA is evident in many of the experiments, RA measured in terms of 

biomass was positively correlated with total weight in Taraxacum 

whereas in Poa annua RA was negatively correlated with total weight in 

the first harvest and there was no relationship in the second harvest. 

From the available literature it is evident that species which show a 

positive correlation of RA with plant weight tend to have a consistent 

morphology, with large infloresences arising from a central rosette of 

leaves. Taraxacum can produce an indefinite number of flowers (given 

sufficient resources) with little change in the basic morphology or 

size of the rosette whereas in Poa annua any increase in reproductive 

parts automatically entails a corresponding increase in vegetative 

parts so that the relationship between the two remains constant. 

In the final experiment where the value of RA as an ecological 

indicator is assessed the influence of plant morphology on RA is again 

apparent. Differences in plant morphology are used to explain why some 

anomalous species do not appear in the expected classes or categories 



eg tufted perennial species characteristic of stressed environments 

often had higher RAs than expected, whereas rhizomatous or highly 

stoloniferous species often had lower RAs than expected. 

The morphology of a particular species seems to influence the ratio of 

reproductive to vegafative parts, Morphology is taken into account in 

other indicators of ecological strategy such as CI but not in RA. It 

may be that certain types of morphology are more common in certain 

environments and that this may contribute to certain levels of RA being 

more prevalent in particular conditions. 

7.6 RA as an indicator of strategy 

The ultimate aim of this thesis was to conduct a comparative study of 

potential RA in species from different habitats (cf Grime and Hunt 

1975). The general conclusion reached was that biomass allocation was 

an adequate means by which to gauge reproductive allocation. It was 

simpler and required less time and effort than many of the other 

currencies and the experimental evidence indicated that under optimum 

conditions biomass RA could be used in comparative experiments. 

Antonovics (1981) also suggested that in comparative experiments dry 

weight measurements of allocation were adequate. 

When biomass RA was measured in a comparative analysis of different 

species of Gramineae it was obvious that RA can be a useful ecological 

index. In particular, it can be used to emphasise the ruderal element 

of a plant's strategy. In general, the reproductive behaviour of the 

Gramineae was consistent with that proposed for C, S and R strategies 

(Grime 1977). Ruderal species had high RAs (40.9- 66.3%), stress­

tolerant species had low RAs (0.02 - 5.2%) and competitive species had 

intermediate but very variable RAs (15%). RA compared favourably with 
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other indices of strategy (eg RMAX + Cl) when plotted on triangular 

ordinations and used as a classification criterion. 

Ideally, as many characters as possible should be used in 

classification of species strategies. However, in practice a 

compromise is often required and an index which 'loses' the least 

amount of information and is the simplest to measure is often most 

appropriate. The classification which contained the most information 

was the one using Rmax, Cl and RA. On examination of the loss of 

information resulting from the exclusion of one or more of these 

characters it was evident that the classification using both RA.and 

Rmax was most meaningful. Cl is a composite index comprising of a 

number of morphological characteristics and it is argued that RA and 

Rmax may be more important to a species in an evolutionary context and 

are thus better indicators of plant strategy. Obviously RA alone 

cannot entirely describe a plant's strategy, but in conjunction with 

other parameters, particularly Rmax, RA produced a meaningful 

classification of species in terms of their ecological strategy. 
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APPENDIX 1 



Means of Harv one = ie mean wts/tray 

LOGE All data Veg wt Rep wt Total RE ASIN LOG TEN 
Veg wt RE RW 
28 N 28 28 28 28 28 0.28 
0.114 X 1.268 0.344 1.611 22.43 28.07 0.050 
0.174 Med 1.190 0.356 1.576 21.94 27.93 0.076 
0.518 SD 0.648 0.125 o. 716 6.05 4. 23 0.225 
0.098 SE 0.122 0.024 0.135 1.14 0.80 0.043 
1.217 Max 3. '3 78 0.559 3.688 38.98 38.64 0.529 

-0.906 Min 0.404 0.089 0.507 8.41 16.85 -0.394 
0.413 Q3 1.512 0.422 1.912 26.17 30.77 0.179 

-0.190 Q1 0.828 0.266 1.191 18.59 25.511 -0.081 

Veg wt 
TR 1 2 3 4 5 6 7 
N 4 4 4 4 4 4 4 
X 1.350 0.829 0.4527 1.429 1.247 2.20 1.366 
sn 0.144 0.205 0.0753 0.195 0.231 1.03 0.451 
SE 0.072 0.103 0.0377 0.098 0.116 0.51 0.226 

Rep wt 
TR 1 2 3 4 5 6 7 
N 4 4 4 4 4 4 4 
X 0.3515 0.2630 0.1100 0.4140 0.4009 0.448 0.4095 
SD 0.0183 0.0368 0.0175 0.0201 0.102 0.109 0.0513 
SE 0.0091 0.0184 0.0087 0.0100 0.051 0.055 0.0256 

Total wt 
TR 1 2 3 4 5 6 7 
N 4 4 4 4 4 4 4 
X 1.702 1.092 0.5627 1.843 1.656 2.649 1. 776 
SD 0.147 0.211 0.0634 0.201 0.238 0.926 0.453 
SE 0.074 0.106 0.0317 0.100 0.119 0.463 0.226 

RE% 
TR 1 2 3 4 5 6 7 
N 20.75 24.56 19.86 22.64 24.90 20.3 23.99 
X 4 4 4 4 4 4 4 
SD l.B1 4.34 4.36 2.53 6.61 13.2 5.39 
SE 0.91 2.17 2.18 1.26 3.30 6.6 2.7 

ASIN RE 
TR 1 2 3 4 5 6 7 
N 4 4 4 4 4 4 4 
X 27.09 29.64 26.35 28.39 29.80 25.99 29.21 
SD 1.29 2.98 3.26 1. 70 4.29 9.17 3.78 
SE 0.65 1.49 1. 6 '3 0.85 2.14 4.59 1.39 

LOGTEN veg wt 
TR 1 2 3 4 5 6 7 
N 4 4 4 4 4 4 4 
X 0.12B6 -0.090 -0.3483 0.1519 0.0902 0.296 0.120 
SD 0.0461 0.100 0.0675 0.0609 0.0816 0.250 0.132 
SE 0.0231 0.050 0.0337 0.0304 0.0408 0.125 0.066 
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APPENDIX l 

Taragli"' table of means 

Veg Rep Total No RE% ASIN Veg wt wt Wt wt Flows RE NFs N 28 20 28 28 28 28 28 X 0.796 1.333 2.128 6.06 61.49 51.71 1.234 Med 0.767 1.361 2.243 6.00 62.44 52.20 1.374 SD o. 335 0.593 0.870 2.75 7.58 4.46 0.470 SE 0.063 0.112 0.164 0.52 1.43 0.84 0.089 Max 1.429 2.661 3.913 11.33 72.08 58.10 1.884 M in 0.224 0.224 0.448 1.50 44.53 41.86 0.246 

Effect of treatments 

1. Total wt 
TR 1 2 3 4 5 6 7 N 4 4 4 4 4 4 4 X 2.638 1.392 0.596 2.396 2.679 2.527 2.670 SD 0.391 0.192 0.129 0.334 0.336 0.618 0.835 SE 0.196 0.096 0.065 0.167 0.168 0.309 0.417 
2. Veg wt 
TR 1 2 3 4 5 6 7 N 4 4 4 4 4 4 4 X 1.1.11 0.5192 0.2775 0.7350 1.080 0.885 0.942 SD 0.249 0.0658 0.0768 0.0481 0.166 0.286 0.258 SE 0.125 0.0329 0.0384 0.0240 0.083 0.143 0.129 

3. Rep wt 
TR 1 2 3 4 5 6 7 N 4 4 4 4 4 4 4 X 1.50~ o. 873 0.3185 l. 661 1.599 1.642 1. 729 SD 0.381 0.246 0.065 0.291 0.287 0.356 0.629 SE 0.191 0.123 0.0325 0.146 0.143 0.17!3 0.315 

4. No of flowers 
TR 1 2 3 4 5 6 7 N 4 4 4 4 4 4 4 X 6.75 3.B9 2.lf!7 7.262 7.80 7.31 7.21 SD 3.04 1.31 0.625 0.899 2.73 3.10 1. 51 SE 1. 52 0.65 0.312 0.450 1.37 1.55 0.76 

s. RE% 
TR 1 2 3 4 5 6 7 N 4 4 4 4 4 4 4 X 56.R9 61.80 53.60 69.06 59.50 65.31 64.26 SD 9.13 9. 51 4.96 2.73 6.15 3.76 6.04 SE 4.56 4.7~ 2.48 1.36 3.08 1.88 3.02 

6. ASIN RE 
TR 1 2 3 4 5 6 7 N 4 4 4 4 4 4 4 X 49.00 51.92 47.07 56.22 50.51 53.94 53.33 SD 5.29 5.62 2.86 1.69 3.60 2.26 3.60 SE 2.64 2.81 1.43 O.R5 1.80 1.13 1. f!O 
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7. Vet. 

. I 

NFs wt 
TR r 2 l' 4 5 6 7 
iN 4 ~· 4 4 4 4 4 
'X i;469 0.9505 0.2920 t.3880 11._585 1.5}25· il.380 
1SD 0.20·i .O'.QS46 0'•0556 0~0303 !Q.229 0.0825· ·0.364 ,sE. ooi.oo 0'.0423 o;·02·m •0.'0151 0.114 0.0'413· •0,.182 
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Appendix 1 

Taraxacum - non flowerers omitted 

File = Taran Pk 
RE Arcs in All Veg wt Rep wt Total wt NF Data 
79 79 N 79 79 79 79 61.3 51.67 X 0.805 1.3 73 2.179 6.38 64.7 53.54 Med o. 777 1.341 2.223 6.00 15.0 9.31 so 0.417 0.733 0.961 3.56 1.7 1.05 SE 0.047 0.082 0.108 0.40 87.5 69.32 Max 1.796 3.152 4.231 15.00 9.1 17.57 Min 0.105 0.120 0.331 1.00 71.8 57.94 Q3 1.057 1.991 2.B29 9.00 52.5 46.44 Q1 0.453 0.913 1.596 4.00 

Effect of treatments 

1. Total wt 
TR 1 2 3 4 5 6 7 N 11 11 10 14 11 9 13 X 2.873 2.411 0.579 2.380 2.654 2.632 2.630 SD 0.688 o. 292 0.187 0.574 0.810 0.729 0.801 SE 0.207 0.088 0.059 0.153 0.244 0.243 0.222 
2. Veg wt 
TR 1 2 3 4 5 6 7 N 11 ll 10 14 11 9 13 X 1.184 0.504 0.259 0.738 1.038 0.912 0.960 so 0.418 0.141 0.103 0.223 0.424 0.314 0.372 SE 0.126 0.043 0.033 0.060 0.128 0.105 0.103 
3. Rep wt 
TR 1 2 3 4 5 6 7 N 11 11 10 14 11 9 13 X 1.578 0.907 0.320 1.642 1.616 1. 720 1.670 SD 0.616 0.370 0.124 0.548 0.693 0.589 o. 781 SE 0.186 0.112 0.039 0.147 0.209 0.196 0.217 
4. No of flowers 
TR 1 2 3 4 5 6 7 N 11 11 10 14 11 9 13 X 7.64 4.27 2.100 7.29 7. 71 7.89 7.23 so 4.15 1. 90 0.876 2.81 3.77 3.66 3.06 SE 1.25 0.57 0.277 o. 7 5 1.14 1.22 0.85 
5. RE 
TR 1 2 3 4 5 6 7 N 11 11 10 14 11 9 13 X 55.9 61.6 55.2 68.2 60.1 65.0 61.3 so 18.3 18.5 6.4 7 10.2 15.4 8.78 18.1 SE 5.5 5.6 11.0 2.7 4.6 2. 93 5.0 
6. Arcs in RE 
TR 1 2 3 4 5 6 7 N 11 11 10 14 11 9 13 X 48.2 51.8 48.10 55.91 50.8 7 53.82 51.9 so 11.8 11.6 6.47 6.36 9.28 5.17 11.2 SE 3.5 3.5 2.05 1.7 2.8 1. 7 2 3.1 
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7. Veg wt of non-flowerers 
Total 1 2 

N 89 13 13 
X 1.213 1.499 0.950 
SD 0.527 0.287 0.316 
SE 0.056 0.080 0.088 

If use mean tray wt 

X veg wt of 
flowerers SD 
SE 
N 

X veg wt 
Non flowerers SD 
SE 
N 

X Total wt 
Flowerers SD 
SE 
N 

0.796 
0.063 
0.063 

28 

1.234 

0.089 
29 

2.030 

0.14 
28 

3 4 5 6 7 
14 10 13 15 11 
0.279 1.380 1.524 1.564 1.379 
0.121 0.145 0.309 0.218 0.466 
0.032 0.046 0.086 0.056 0.141 
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Table 3.4.6 

Taraxacum - Non flowerers included 

All data Veg wt Rep wt Tot wt RE NFs Arc 
RE 

N 168 168 168 168 168 168 
X 1.021 0.646 1.667 28.8 3.00 24.3 
Med 1.003 0.000 1.588 o.ooo o.oo o.oo 
SO 0.519 0.851 0.901 32.4 4.02 26.6 
SE 0.040 0.066 0.069 2.5 0.31 2.1 
Max 2.044 3.153 4.231 87.5 15.00 69.3 
Min 0.027 o.ooo 0.027 o.oo o.oo o.oo 
Q3 1.455 1.300 2.184 0.643 5.00 5.33 
Q1 0.641 o.ooo 1.096 o.oo o.oo o.oo 

Total wt 
TR 1 2 3 4 5 6 7 
N 24 24 24 24 24 24 24 
X 2.078 1.161 0.404 1.963 2.042 1.965 2.057 
SO 0.014 0.380 0.212 0.669 0.816 0.702 0.914 
SE 0.166 0.078 0.043 0.137 0.167 0.143 0.187 

Veg wt 
TR 1 2 3 4 5 6 7 
N 24 24 24 24 24 24 24 
X 1.355 0.745 0.270 1.005 1.305 1.3 20 1.152 
SO 0.380 0.335 0.112 0.375 0.435 0.409 0.460 
SE 0.078 0.068 0.023 0.077 0.089 0.083 0.094 

Rep wt 
TR 1 2 3 4 5 6 7 
N 24 24 24 24 24 24 24 
X 0.723 0.416 0.134 0.958 0.740 0.645 0.90 
so 0.900 0.522 0.179 0.924 0.941 0.919 1.02 
SE 0.184 0.107 0.0~7 0.189 0.192 0.188 0.21 

NFs 
TR 1 2 3 4 5 6 7 
N 24 24 24 24 24 24 24 
X 3.50 1. 96 0.87 4.25 3.54 2. 96 3.92 
so 4.75 2.51 1.19 -4.09 4.65 4.46 4.29 
SE 0.97 0.51 0.24 4.23 0.95 o. 91 0.88 

RE 
TR 1 2 3 4 5 6 7 
N 24 24 24 24 24 24 24 
X 25.6 28.2 23.0 39.8 27.6 29.4 33.2 
SO 30.9 33.7 28.7 35.2 32.2 32.6 33.9 
SE 6.3 6.9 5.9 7.2 6.6 6.6 6.9 

ARCS IN RE 
TR 1 2 3 4 5 6 7 
N 24 24 24 24 24 24 24 
X 22.1 23.7 20.0 32.6 23.3 20.2 28.1 
so 25.7 27.4 24.6 28.6 26.6 26.8 27.6 
SE 5.3 5.6 5.0 5.8 5.4 5.5 5.6 
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Poa first harvest File "' 'HARV ONE' 

Non-flowering plants omitted Derived from 'Poa n p k' 

Characteristics of all data 

Veg wt Rep wt Total Arcs in Trans 
RE% RE 

N 78 78 78 78 78 
(6 non- (6 non- (6 non-
flowerers) flowerers) flowerers) 

Mean 1.273 22.92 0.341 1.614 28.22 

Median 1.134 22.23 0.329 1.509 28 .1'3 

St Dev 0.315 7.59 0.158 0.869 5.64 

SE mean 0.092 0.86 0.018 0.098 0.64 

Max 5.279 48.43 0.680 5.313 44.10 

Min 0.247 0.62 0.033 0.323 4.52 

Q3 1.515 27.42 0.441 1.886 31.58 

Q1 0.759 19.23 0.249 1.082 26.201 

Appears to be slightly positively skewed 
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Poa first harvest - non flowers omitted 

Effect of treatments 

Total wt 
TR 1 2 3 4 5 6 7 
N 10 11 12 11 11 11 12 
X 1.726 1.067 0.563 1.822 1.674 2. 76 1.776 
SD 0.327 0.228 0.164 0.465 0.369 1. 21 o. 760 
SE 0.103 0.069 0.047 0.140 0.111 0.36 0.219 

Veg wt 
TR 1 2 3 4 5 6 7 Non-flowerers 
N 10 11 12 11 11 11 12 6 
X 1.373 0.803 0.453 1.410 1.257 2.32 1.366 4.74 
SD 0.325 0.215 0.154 0.428 0.308 1. 31 o. 771 0.978 
SE 0.103 0.065 0.045 0.129 0.093 0.40 0.223 0.399 

Carrel v wt and R wt = 0.254 sig at 0.05 

Rep wt 
TR 1 2. 3 4 5 6 7 
N 10 11 12 11 11 11 12 
X 0.353 0.264 0.110 0.412 0.417 0.438 0.410 
SD 0.055 0.073 0.030 0.095 0.142 0.174 0.147 
SE 0.017 0.022 0.009 0.029 0.043 0.053 0.043 

RE% 
X 20.89 25.05 20.49 23.24 24.98 19.8 25.7 5 
SD 3.76 6.43 5.40 5.23 6.88 12.2 9.19 
SE 1.19 1. 94 1.56 1. 58 2.07 3.7 2.65 

Arcs in trans RE 
X 27.10 29 .as 26.72 26.68 29.81 25.22 30.03 
SD 2.81 4.41 3.96 3.63 4.51 9. 72 6.72 
SE 0.89 1.33 1.14 1.09 1.36 2.93 1.94 

Log veg wt 
TR 1 2 3 4 5 6 7 
N 10 11 12 11 11 11 12 
X 0.1286 -0.107 -0.367 0.134 0.0889 0.303 0.079 
SD 0.0890 0.101 0.150 0.117 0.0979 0.249 0.233 
SE 0.0281 0.031 0.043 0.035 0.0295 0.075 0.067 

Log vet wt all data 
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Poa - second harvest 

Non flowerers omitted 

RE% All data Veg wt Rep wt Total Arcs in RE 
78 N 78 78 78 78 
35.7 X 2.294 1.325 3.62 36.11 
37.1 Med 2.324 1.409 4.16 37.50 
13.0 so 0.989 0.703 1.39 8.80 
1.50 SE 0.112 0.080 0.16 1.00 

62.8 Max 5.137 2.530 5.86 52.40 
0.8 Min 0.543 0.034 0.065 5.20 

45.5 Q3 2.882 1.874 4.61 42.40 
27.0 Q1 1.718 0.691 2.74 31.32 

TR 1 2 3 4 5 6 7 
N 11 12 12 12 10 11 10 
X 3.926 2.781 1.120 4.366 4.221 4.689 4.613 
so 0.904 0.760 0.293 0.787 0.378 0.740 0.552 
SE 0.272 0.220 0.085 0.227 0.120 0.223 0.174 

Veg wt 
TR 1 2 3 4 5 6 7 Non Fs 
N 11 12 12 12 10 11 10 6 
X 2.222 1.797 0.733 1. 797 2.580 3.183 2.97 5.165 
so 0.480 0.493 0.136 0.635 0.491 0.696 1.02 0.644 
SE 0.145 0.142 0.039 0.183 0.155 0.210 0.32 0.263 

Rep wt 
TR 1 2 3 4 5 6 7 
N 11 12 12 12 10 11 10 
X 1.704 0.983 0.387 1. 569 1.641 1.506 1.641 
so 0.682 0.421 0.254 0.608 0.367 o. 707 0.654 
SE 0.206 0.122 0.073 0.175 0.116 0.213 0.207 

RE 
X 42.0 34.46 31.6 35.1 39.05 31.6 36.7 
SD 12.6 9.92 16.1 12.8 8.81 13.4 15.7 
SE 3.8 2.86 4.7 3.7 2.79 4.0 5.0 

Arcs in RE 
X 40.21 35.76 33.3 35.92 38.58 33.1 36.4 
SO 7.55 6.05 10.8 8.28 5.21 10.7 11.2 
SE 2.28 1. 7 5 3.1 2.39 1.65 3.2 3.5 
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A X= 42.0 

C X= 31.6 

SDA = 12.6 

SDC = 16.1 

n A= 11 ne = 12 

Variance = 
SD = 

d= ...1J+ 2 
n1 n2 

SD = 2 

2 

Variance = sn2 

Arcs in trans 
40.21 

33.3 

7.55 

10.8 

Variance = 

d = 12.62 + 16.~ - --11 12 

= 14.43 + 21.6 

= 6.002 

t = 40.0 - 31.6 
6.002 

t = 1.733 sig at 0.1 -only just 
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Means of Harv two = ie mean wts/tray 

All Data Veg wt Rep wt Total wt RE ASIN RE 
N 28 28 28 28 28 
X 2.347 1.357 3. 70 36.24 36.89 
Med 2.485 1.487 4.14 35.65 36.66 
SD 0.901 0.573 1.32 7.95 4.86 
SE 0.170 0.108 0.25 1.50 0.92 
Max 4.040 2.320 5.54 53.06 46.76 
M in 0.597 0.149 o. 75 19.68 26.34 
Q3 2.922 1.667 4.59 42.23 40.53 
Q1 1.960 0.935 2.79 32.3 3 34.65 

Prob plot ccr = 0.977 0.984 0.936 

Veg wt 
TR 1 2 3 4 5 6 7 
N 4 4 4 4 4 4 4 
X 2.234 1. 797 0.733 2.796 2.492 3.314 3.0f:i5 
sn 0.229 0.412 0.124 0.271 0.340 0.549 0.678 
SE 0.115 0.206 0.062 0.135 0.170 0.274 o. 339 

Rep wt 
TR 1 2 3 4 5 6 7 
N 4 4 4 4 4 4 4 
X 1. 709 0.983 0.386 1.5690 1.754 1.506 1.588 
SD 0.543 0.256 0.166 0.0956 0.388 0.482 0.449 
SE 0.272 0.128 0.083 0.0478 0.194 0.241 0.224 

Total wt 
TR 1 2 3 4 5 6 7 
N 4 4 4 4 4 4 4 
X 3.943 2.781 1.119 4.365 4.246 4.820 4.652 
SD 0.722 0.579 0.252 0.359 0.208 0.741 0.325 
SE 0.361 0.290 0.126 0.180 0.104 0.370 0.162 

RE 
TR 1 2 3 4 5 6 7 
N 4 4 4 4 4 4 4 
X 42.42 35.37 33.2 36.00 41.22 11.02 34.5 
sn 7.57 '5.87 10.2 1.19 8.16 7.54 10.6 
SE 3.79 2.94 5.1 0.60 4.08 3. 77 5.3 

ASIN RE 
TR 1 2 3 4 5 6 7 
N 4 4 4 4 4 4 4 
X 40.59 36.45 34.97 36.867 39.90 33.73 35.75 
SD 4.45 3.51 6.37 o. 711 4.73 4.69 6.64 
SE 2.23 1. 76 3.18 0.356 2.37 2. 35 3.37 
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TR 1 ,2 3' 4 5 6 7 
Ni 4 4' 4 4, 4 4 :4 
X :o.o296 :-0.2.08 -0.802 .0.350 0.208 :Q.6'82 i0 .• 2}5 
SD: i0.106 o.:231 .00<155 0.1140 o.li88 :o.s7s i0.305 
,SE, 10.'.053 .0.115 0.078 0'.07.0 0~09.4 0.'28:7 !0.1.52 
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Appendi:( 2 

Correlation matrix - nutrient concentrations 

Sig correls n = 27 
.os = .367 * 
.01 = .470 ** 
.001 = .S97 *** 

NFN NFP NFK FVN FVP FVK FRN FRP 
NFP 0.4S2 

* 
NFK 0.198 0.121 
FVN 0.662 0.392 0.029 

*** * 
FVP 0.492 0.732 O.OS8 0.777 

** *** *** 
FVK -0.007 0.323 o.S01 0.317 0.467 

** 
FRN 0.102 0.117 -0.219 0.662 O.SS3 0.27S 

*** ** 
FRP -0.067 O.S48 0.047 0.312 0.600 0.498 0.374 

** *** ** * 
FRK -0.211 0.213 0.284 0.24S 0.441 0.862 0.461 0.648 

* *** * *** 

Correlation matrix - total amount of nutrients 

If N = 27 sig correls 
.os = .367 * 
.o 1 = .470 ** 
.001 = c .S97 *** 

NFN NFP NFK FVN FVP FVK FRN FRP 
NFP 0.821 

*** 
NFK 0.761 0.6S6 

*** *** 
FVN o. 782 0.683 O.S62 

*** *** ** 
FVP 0.664 0.730 0.468 0.888 

*** *** * *** 
FVK 0.339 0.3S6 0.607 O.S09 O.S7l 

*** ** ** 
FRN 0.578 0.590 0.491 0.684 0.642 0.200 

** ** ** *** *** 
FRP 0.421 0.558 0.392 0.588 0.664 0.162 0.845 

* ** * ** *** *** 
FRK 0.468 0.488 0.652 O.S17 O.S38 0.391 0.872 0.836 

* ** *** ** ** * *** *** 
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Mean nutrient concentrations 

Probability correlations 
sig = 943 

NFN 0.951 
NFP 0.949 
NFK 0.994 
FVN 0.930 
FVP 0.939 
FVK 0.993 
FRN 0.835 
FRP 0.933 
FRV 0.938 

Correlations of nutrients concentrations 
Prob 

NFP v NFN 5% 
NFK V NFN NS 
FVN v NFN 1% 
FVP v NFN 1% 

FVN v NFP 5% 
FVP v NFP 1% 
FRP V NFP 1% 

FVK V NFK 1% 

FVP V FVK 5% 
FVP v FVN 1% 

FVK v FVP 5% 
FRN v FVP 1% 
FRP v FVP 1% 
FRK V FVP 5% 

FRK V FVK 5% 
FRK v FVK 1% 
FRP V FRN 5% 
FRK v FRN 5% 

Probability correlations for total nutrients 

NFN 0.978 
NFP 0.980 
NFK 0.964 
FVN 0.991 
FVP 0.981 
FVK 0.959 
FRN 0.987 
FRP 0.979 
FRF 0.986 
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Analysis of variance tables 

Twoway on concentrations 

Nitrogen concentration 

Source of variation DF ss SS% MS VR 

Row stratum 3 6.635 1.04 2.212 
Col stratum 

Treat 6 89.221 13.92 14.87 
Total 

Row col stratum 
Treat 6 97.041 15.14 16.174 0.780 
Residual 12 248.780 38.82 20.7 32 

Total 18 345.822 53.97 19.212 
Row col units stratwn 

FSM 2 25.767 4.02 12.883 3.945 
Treat fsta 12 71.140 11.10 5.928 1.815 

Res id 40( 2) 130.619 20.38 3.265 
Total 54 227.526 35.51 4.213 

Grand total 81 669.203 104.44 

Means Grand mean = 1210 
Treat 1 2 3 4 5 6 7 

12.21 11.83 10.89 12.34 12.34 11.1 14.64 

FSTA 1 2 3 
11.33 12.36 12.60 

FSM 
Treat 

1 11.45 12.06 13.12 SED 
2 10.96 12.45 12.10 Treat = 1.987 
3 10.54 10.66 11.49 Fsta 0.483 
4 ll.92 12.67 12.44 Treat 2.244 
5 9.05 10.90 13.36 Fsta 
6 10.07 11.74 13.14 
7 15.28 16.07 12.5 7 
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P concentration 

Source of variation 

Row stratum 
Col stratum 

Treat 
Total 

Row col strat 
Treat 
Residual 

Total 

Row col units 
Fsta 
Treat Fsta 
Residual 

Total 

Grand total 

GM = 0.0787 

OF 

3 

6 
6 

6 
12 
18 

2 
12 
40(2) 
54 

81 

ss 

0.0010914 

0.0020691 

0.0103653 
0.0031179 
0.0134833 

0.0042645 
0.0023343 
0.0050966 
0.0116954 

SS% 

3.94 

7.47 

37.52 
11.26 
48.67 

15.39 
8.43 

18.40 
42.22 

0.0283392 102.30 

MS 

0.0003638 

0.0003449 

0.0017276 
0.0002598 
0.007491 

0.0021322 
0.0001945 
0.0001274 
0.0002166 

VR 

6.649 

16.734 
1.527 

Treat 1 2 3 4 5 6 7 
0.0776 0.0826 0.0899 0.0791 0.0515 0.0813 0.0887 

FSTA 1 2 3 
0.0730 0.0743 0.0887 

FSTA 
1 
2 
3 
4 
5 
6 
7 

0.0706 
0.0812 
0.0831 
0.0716 
0.0381 
0.0810 
0.0853 

K concentration 

0.0796 
0.0805 
0.0789 
0.0754 
0.0422 
0.0762 
0.0876 

Source of variation 

Row stratum 
Col stratum 

Treat 
Total 

Row col strat 
Treat 
Residual 

Total 

Row col units 
Fsta 
Treat Fsta 
Residual 

Total 
Grand total 

GM = 1867 

DF 

3 

6 
6 

6 
12 
18 

2 

SED 0.0826 
0.0862 
0.1076 
0.0904 
0.0743 
0.0867 
0.0933 

Treat = 0.00703 
Fsta = 0.00302 
Treat = 0.00959 
Fsta 

ss SS% 

18.235 0.68 

361.044 13.48 

963.846 
155.806 

1119.652 

35.98 
5.82 

41.79 

MS 

6.078 

60.174 

160.641 
12.984 
62.203 

12 
40( 2) 
54 

779.592 
264.616 
199.229 

1235.437 
2734.367 

28.80 
9.88 
7.44 

46.11 
102.06 

385.796 
22.051 
4.981 

22.878 
81 

16 

VR 

12.372 

77.458 
4.427 



Treat 1 2 3 4 5 6 7 
18.23 21.78 24.57 20.12 28.03 14.66 13.33 

Fsta 1 2 3 
17.68 15.56 22.78 

Fsta 
Treat 
1 18.26 14.99 21.44 SEDs 
2 20.49 19.76 25.09 Treat 1.573 
3 18.12 24.11 31.48 Fsta 0.596 
4 20.26 17.08 23.03 Treat 2.033 
5 17.76 13.25 23.07 Fsta 
6 14.91 8.34 16.74 
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Anovas on total nutrients/tray 

Non flowerers ie concn x biomass 

N 
Source of variation DF ss SS% MS VR 

Row stratum 3 41.99 3.45 14.00 
Col stratum 

Treat 6 358.46 59.76 
Total 6 

Row col strat 
Treat 6 630.79 51.79 105.07 6. 771 
Res id 12 196.20 15.30 15.52 

Total 18 816.60 67.09 45.37 

Grand total 27 1217.15 100.00 

Means 1 2 3 4 5 6 7 
15.9 10.35 4.23 15.55 14.11 16.6 7 21.62 

SED= 2.978 

p 

Source of variation OF ss SS% MS VR 

Row stratum 3 0.0000972 0.25 0.0000324 
Col stratum 

Treat 6 0.0129816 33.93 0.0021636 
Total 6 

Row col strat 
Treat 6 0.0237124 61.97 0.0039521 32.206 
Res id 12 0.0014725 3.85 0.0001227 

Total 18 0.0251849 65.82 0.0013992 

Grand total 27 0.0382636 100.00 

Means 1 2 3 4 5 6 7 
0.0991 0.0793 0.0311 0.0957 0.0610 0.1313 0.1141 

SED= 0.00837 

K 
Source of variation OF ss SS% MS VR 

Row stratum 3 69.50 3.41 23.17 
Col stratum 

Treat 6 618.50 30.34 103.08 
Total 6 

Row col strat 
Treat 6 1188.39 58.3 198.06 14.684 
Res id 12 161.86 7.94 13.49 

Total 18 1350.25 66.25 75.01 

Grand total 27 2038.24 100.00 

Means 1 2 3 4 5 6 7 
26.81 19.41 6.04 27 .o 1 27.3 7 23.27 21.12 

SED = 2.776 
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Total nutrients 

Veg parts of flowerers 

Source of variation 

Row strat 
Col strat 

Treat 
Total 

Row col strat 
Treat 
Res id 

Total 

Grand total 

Means 1 
12.84 

SED = 153 

p 

2 
7.35 

Source of variation 

Row s tratwn 
Col stratum 

Treat 
Total 

Row col strat 
Treat 
Res id 

Total 

Grand total 

Means 1 
0.0862 

SED =- O.Oll57 

K 

2 
0.0467 

Source of variation 

Row stratum 
Col stratum 

Treat 
Total 

Row col strat 
Treat 
Res id 

Total 

Grand total 

Means 1 
16.08 

SED =- 2.294 

2 
11. t 5 

DF 

3 

6 
6 

6 
11(1) 
17 

26 

DF 

3 

6 

3 
2.94 

ss 

48.984 

111.703 

3l1.817 
45.041 

356.857 

517.544 

ss 

4 
9.18 

0.0023296 

0.0057231 

6 0.0110442 
11( 1) 0.0025752 
17 0.0136194 

26 0.0216721 

SS% 

9.59 

21.86 

61.02 
8.81 

69.84 

101.29 

5 
9.32 

SS% 

11.3 

27.77 

53.59 
12.50 
66.09 

105.16 

3 
0.0241 

4 5 
0.0536 0.0379 

DF 

3 

6 
6 

ss 

42.594 

301.348 

6 230.274 
11( 1) l01.296 
17 331.57 

SS% 

6.42 

45.40 

34.7 
15.26 
49.96 

26 675.512 101.78 

3 
7.23 

4 
12.25 

19 

5 
14.29· 

MS 

16.328 

18.617 

51.9 69 
4.095 

20.992 

6 
9.90 

MS 

0.0007765 

0.0009538 

0.0018407 
0.0002341 
0.0008011 

MS 

6 
0.0673 

14.198 

50.225 

38.379 
9.209 

19.504 

6 
9.99 

VR 

12.692 

7 
14.98 

VR 

7.863 

7 
0.0822 

VR 

4.168 

7 
7.45 



<bru:entrations 

TreatDI!nt 

NFN NFP NFK FVN rvP FVK FRN FlU' FRI.( 

1 X 12.16 0.0742 19.43 12.77 0.0832 16.16 13.82 0.0862 22.61 
SD 2.64 0.0118 2.48 5.35 0.0197 2.44 4.29 0.0167 0.0600 
SE 1.32 0.0059 1.24 2.68 0.0098 1.22 2.15 0.0082 0.304 

2 X 11.11 0.0797 20.41 12.60 0.0790 19.68 12.25 0.0847 25.010 
SD 2.64 0.0107 2.26 3.53 0.0102 3.99 0.0904 0.0149 0.528 
SE 1.32 0.0053 1.13 1.77 0.0051 2.00 0.452 0.0074 0.264 

3 X 10.500 0.0825 18.16 10.62 0.0782 24.15 11.45 0.107 31.52 
SD 0.286 0.0114 3.64 1.69 0.0187 4.14 1.21 0.0217 3.77 
SE 0.143 0.0057 1.82 0.84 0.0094 2.07 0.60 0.0108 1.88 

4 X 11.55 0.0722 19.87 12.30 0.0760 16.70 12.07 0.0910 22.65 
SD 2.23 0.0116 3.27 4.18 0.0112 5.81 1.09 0.0110 1.81 
SE 1.12 0.0058 1.64 2.09 0.0056 2.90 0.54 0.0055 0.90 

5 N 4 4 4 3 3 3 3 3 3 
X 8.84 0.0390 17.70 9.450 0.0390 12.37 11.91 0.071 22.2 
SD 4.06 0.0102 2.48 0.350 0.0166 3.63 1.20 0.0078 10.529 
SE 2.03 0.0051 1.24 0.202 0.0096 2.10 0.70 0.00451 10.306 

6 X 9.89 0.0797 13.475 11.55 0.07500 10.95 12.95 0.0855 18.175 
SD 1.22 0.0113 0.881 1.18 0.00849 3.02 0.639 0.0146 0.854 
SE 0.61 0.0056 0.440 0.59 0.00424 1.51 0.320 0.0073 0.427 

7 X 15.22 0.08350 14.67 16.01 0.0857 8.10 12.51 0.0915 16.50 
SD 1.91 0.00493 2.74 2.40 0.0111 2.45 2.35 0.0101 2.03 
SE 0.95 0.00247 1.37 1.20 0.0055 1.22 1.17 0.0051 1.01 

Overall 11.32 0.073 17.68 12.29 0.07504 15.56 12.44 0.08878 22.68 
M:!ans 
SD 2.85 0.0173 3.43 3.40 0.0184 6.20 1.97 0.01624 4.96 

T-tests (concentrations) 

N:m fl~ring N v Fl~ring veg N T = -1.14 p = 0.26 
Fl~rlng veg N v Fl~rlng R N T= 0.21 p = 0.84 
tbn fl~ring N v Rep N T= 1.70 p = 0.096 

lbn fl~ring P V Veg P T = -o.42 p = 0.67 
lbn flaoerlng P v Rep P T = -3.49 p = 0.001(~ 
Flaoerlng veg P v Rep P T = -2.92 p = 0.00521' 

lbn flaoerlng K v veg K T= 1.56 p = 0.13 
tbn fl~rlng K v Rep K T = -4.34 p = 0.0001 
Fl~rlng veg k v Flow rep K T= -4.67 p = o.oooo 
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Flowering rep parts: P concn 

Source of variation 

Row stratwn 
Col stratwn 

Treat 
Total 

Row col strat 
Treat 
Res id 

Total 

Grand total 

OF 

3 

6 
6 

6 
11(1) 
17 

26 

ss SS% 

0.0007210 10.60 

0.0005173 7.60 

0.0025876 
0.0033064 
0.0058941 

38.04 
48.6 
86.64 

0.0071324 104.85 

MS VR 

0.0002403 

0.0000862 

0.0004313 1.435 
0.0003006 
0.0003467 

Treat means 1 2 3 4 5 6 7 
0.0863 0.0857 

SED = 0.01311 
0.1066 0.0693 0.0913 0.0843 0.0939 

Flowering rep parts: K concn 

Source of variation 

Row stratwn 
Col stratum 

Treat 
Total 

Row col strat 
Treat 
Res id 

Total 

Grand total 

Means 1 
22.20 

SED = 1.474 

2 
24.98 

DF 

3 

6 
6 

6 
11( 1) 
17 

26 

3 
31.39 

ss SS% 

10.869 1.7 

89.118 13.95 

497.066 
41.823 

538.889 

77.81 
6.55 

84.36 

638.877 100.01 

4 
22.98 

5 
22.72 

21 

MS 

3.623 

14.853 

82.844 
3.802 

31.699 

VR 

21.789 

6 
17.89 

7 
16.55 



Treatlllent m w. w. Jlsin RE h!in RE h!in RE RE h!in RE 
N p K N p K Bl.atBSS Bl.anass 

1 X 0.594 0.578 0.6477 50.45 49.57 53.71 56.89 49.00 
SD 0.101 0.106 0.0991 5.88 6.20 5.89 9.13 5.29 
SE 0.051 0.053 0.0495 2.94 3.10 2.94 4.56 2.64 

2 X 0.615 0.631 0.671 51.81 52.74 55.24 61.80 51.92 
SD 0.114 0.113 0.112 6.74 6.76 6.88 9.51 5.62 
SE 0.057 0.056 0.056 3.37 3.38 3.44 4.76 2.81 

3 X 0.552 0.6129 0.6017 48.20 51.56 50.90 53.60 47.07 
SD 0.0813 0.0555 0.0587 4.71 3.28 3.44 4.96 2.86 
SE 0.0407 0.0278 0.0293 2.35 1.64 1.72 2.48 1.43 

4 X 0.6900 0.7275 0.7550 56.30 58.57 60.47 69.06 56.22 
SD 0.0857 0.0329 0.0674 5.24 2.13 4.34 2.73 1.69 
SE 0.0429 0.0165 0.0337 2.62 1.07 2.17 1.36 0.85 

5 N 3 3 3 3 3 3 
X 0.6484 0.7333 0.7275 53.66 59.09 58.65 59.50 50.51 
SD 0.0483 0.0855 0.0640 2.92 5.48 4.22 6.15 3.60 
SE 0.0279 0.0494 0.0369 1.69 3.17 2.44 3.08 1.80 

6 X 0.6790 0.06774 0.7602 55.52 55.51 60.77 65.31 53.94 
SD 0.0368 0.0796 0.0505 2.26 4.90 3.43 3.76 2.26 
SE 0.0184 0.0398 0.0253 1.13 2.45 1.71 1.88 1.13 

7 X 0.5832 0.6565 0.7822 49.84 54.20 62.55 64.26 53.33 
SD 0.0972 0.0731 0.0953 5.64 4.41 6.51 6.04 3.60 
SE 0.0486 0.0365 0.0476 2.82 2.21 3.25 3.02 1.80 

Overall X 0.6226 0.6567 0.7057 5.22 54.29 57.43 61.48 51.71 
~ so 0.0897 0.6896 0.0964 5.31 5.43 6.11 
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Total nutrients 

Reproductive parts of flowerers 

N 
Source of variation DF ss SS% MS VR 

Row stratum 3 20.42 1.30 6.81 
Col stratum 213.55 13.64 35.59 

Treat 6 
Total 6 

Row col strat 
Treat 6 975.3 62.31 162.55 4.864 
Res id 11( 1) 367.6 23.49 33.42 

Total 17 1342.9 85.8 78.99 

Grand total 26 156.86 100.7 5 

Means 1 2 3 4 5 6 7 
21.0 11.3 3.2 19.4 17.4 20.4 22.1 

SED= 4.37 

p 

Source of variation DF ss SS% MS VR 

Row stratum 3 
Col stratum 

0.003969 4.63 0.001323 

Treat 6 0.012918 15.06 0.002153 
Total 6 

Row col strat 
Treat 6 0.04742 55.29 0.007903 3.679 
Res id 11( 1) 0.02363 27.55 0.002148 

Total 17 0.071050 82.84 0.004179 

Grand total 26 0.087936 102.53 

Means 1 2 3 4 5 6 7 
0.1394 0.0842 0.0301 0.1402 0.0919 0.1419 0.1690 

SED= 0.03504 

K 
Source of variation DF ss SS% MS VR 

Row stratum 3 60.68 2.07 20.23 
Col stratum 

Treat 6 616.69 20.99 102.78 
Total 6 

Row col strat 
Treat 6 1694.16 57.67 282.32 5.444 
Res id 11( 1) 570.49 19.42 51.86 

Total 17 2264.65 77.09 133.21 

Grand total 26 2942.02 100.15 

Means 1 2 3 4 5 6 7 
34.4 22.9 9.9 35.3 33.5 29.6 29.5 

SED = 5.44 
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Whole plants 

Source of variation DF ss SS% MS VR 

Row stratum 3 113.25 3.43 37.75 
Col stratum 

Treat 6 498.49 15.11 83.08 Total 6 

Row col strat 
Treat 6 2297.03 69.63 382.84 9.887 Res id 11(1) 425.93 12.91 38.72 Total 17 2722.96 82.54 160.17 

Grand total 26 3334.7 101.9 

Means 1 2 3 4 5 6 7 
33.8 18.6 6.2 28.6 26.7 30.3 37.1 SED = 4.7 

Source of variation DF ss SS% MS VR 

Row stratum 3 0.009735 6.00 0.003245 Col stratum 
Treat 6 0.026050 16.6 0.004342 Total 6 

Row col strat 
Treat 6 0.099124 61.11 0.016521 5.418 Res id 11(1) 0.033541 20.68 0.003049 Total 17 0.132665 81.79 0.007804 

Grand total 26 0.168450 103.85 

Means 1 2 3 4 5 6 7 0.266 0.131 0.054 0.194 0.130 0.209 0.251 SED= 0.0417 

Source of variation DF ss SS% MS VR 

Row stratum 3 157.22 3.35 52.41 
Col stratum 

Treat 6 1242.6 26.48 207.1 Total 6 

Row col strat 
Treat 6 2767.28 58.97 461.2 1 9.119 Res id 11(1) 556.36 11.85 50.58 Total 17 3323.63 70.82 195.51 

Grand total 26 4723.45 100.65 

Means 1 2 3 4 5 6 7 50.4 34.0 17. 1 47.5 47.8 39.6 37.0 SED = 5.38 
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Total nutrients 

NFN NFP NFK FVN FVP FVK FRN FRP FRK 

Treall!Ent 
1 
X 17.62 0.1086 28.45 13.67 0.0915 18.18 20.48 0.01340 33.95 
SD 2•55 0.0184 4.31 3.17 0.0160 4.67 6.15 0.0613 7.89 
SE 1.28 o.oon 2.16 1.58 0.0080 2.34 3.07 0.0307 3.94 

2 
X 10.68 0.0756 19.44 6.57 0.04058 10.28 10.55 0.0764 21.79 
SD 3.40 0.0109 3.29 2.06 0.00272 2.67 2.40 0.0329 5.91 
SE 1.70 0.0055 1.64 1.03 0.00136 1.33 1.20 0.0164 2.96 

3 
X 3.076 0.02427 5.33 3.02 0.0227 6.91 3.589 0.03384 10.09 
SD 0.664 0.00698 1.73 1.27 0.1•16 3.19 0.451 0.00953 2.75 
SE 0.332 0.00349 0.87 0.63 
4 

0.0058 1.60 0.255 0.00477 1.38 

X 16.08 0.1005 27.65 9.04 0.05572 12.25 20.04 0.1494 37.30 
SD 3.49 0.01>79 5.10 3.06 0.00775 4.19 3.97 0.0193 4.51 
SE 1. 74 0.0089 2.55 1.53 0.00387 2.10 1.98 0.0096 2.25 

5 
N 4 4 4 3 3 3 3 3 
X 13.94 0.0616 27.96 10.21 0.0434 13.63 18.77 0.118 35.60 
SD 6.15 0.0173 4.86 2.08 0.0249 6.04 2.57 0.0151 8.53 
SE 3.07 0.0087 2.43 1.20 0.0144 3.49 1.49 0.0087 4.92 

" 6 
X 15.58 0.1251 21.19 10.10 0.0675 9.56 21.31 0.1428 29.64 
SD 2.35 0.0153 1.78 2.82 0.0277 3.64 5.10 0.0472 5.35 
SE 1'.18 0.0076 0.89 1.41 0.0139 1.82 2.55 0.0236 2.68 

7 
X 21.47 0.1160 21.00 14.70 0.081'1 7.38 21.41 0.1594 28.09 
SD 3.78 0.0173 8.33 2.54 0.0246 2.47 7.51 0.0664 8·63 
SE 3.78 0.0173 4.16 1.27 0.0123 1.24 3.76 0.0332 4.32 

Overall 
X 14.06 0.0874 21.57 9.59 0.058 11.08 16.51 0.1155 27.8 
SD 6.71 0.0376 8.69 4.43 0.0282 s.os 7.76 0.0574 10.6 
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Mean total amount of nutrients/tray 

Treatment N p K 

1 X 34.16 0.2255 52.13 
SD 7.23 0.0637 5.84 
SE 3.61 0.0319 2.92 

2 X 17.12 0.1169 32.07 
SD 1.86 0.0312 4.07 
SE 0.93 0.0156 2.04 

3 X 6.61 0.0565 17.00 
SD 1.58 0.0211 5. 7 5 
SE 0.79 0.0106 2.87 

4 X 29.08 0.2051 49.54 
SD 4.34 0.0214 5.67 
SE 2.17 0.0107 2.84 

5 X 28.99 0.1552 49.2 
SD 3.87 0.0385 13.4 
SE 2.23 0.0223 7.7 

6 X 31.41 0.2103 39.19 
SD 7.60 0.0692 8.21 
SE 3.80 0.0346 4.11 

7 X 36.10 0.02404 35.47 
SD 7.95 0.00823 7.31 
SE 3.98 0.0412 3.65 

Overall means 26.1 0.01735 88.9 
11.3 0.0790 13.4 

T-tests total amounts 

NFN v FVN = T = 2.92 p = 0.0054* NFK v FVK = T = 5.5 p = 0.0000* 
NFN v FRN = T = 1.25 p = 0.22 NFK V FRK = T = -2.37 p = 0.022 
FVN v FRN = T = -4.02 p = 0.0002* FVK v FRV = T = -7.39 p = 0.0000* 

NFP v FVP = T = 3.28 p = o. 0019* 
NFP v FRP = T = 2.14 p = 0.038 
FVP v FRP = T = -4.67 p = 0.0000* 
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Anovas on nutrient RAs 

A. untransformed values 

N 
Source of variation OF ss SS% MS VR 

Row stratum 3 0.024338 ll.87 0.008279 
Col stratum 6 0.065264 31.18 0.010877 
Total 6 

Row col strat 
Treat 6 0.045941 21.95 0.007657 1.143 Res id ll( 1) 0.073717 35.22 0.006702 

Total 17 0.119658 57.17 0.007039 

Grand total 26 0.20976 100.22 

Means 1 2 3 4 5 6 7 
0.629 0.605 0.551 0.670 0.651 0.676 0.582 SED = 0.00619 

p 

Source of variation DF ss SS% MS VR 

Row stratum 3 
Col stratum 

0.03942 18.91 0.01314 

Treat 6 0.075559 36.24 0.012593 Total 6 

Row col strat 
Treat 6 O.OSll84 24.55 0.008531 1.854 Res id 11(1) 0.050615 24.28 0.004601 

Total 17 0.101799 48.22 0.005988 

Grand total 26 0.216778 103.97 

Means 1 2 3 4 5 6 7 
0.6ll 0.620 0.607 0.714 0.728 0.677 0.663 SED = 0.0513 

K 
Source of variation OF ss SS% MS VR 

Row stratum 3 0.005655 2.34 0.001885 
Col strat 

Treat 6 0.093707 38.74 0.015618 
Total 6 

Row col strat 
Treat 6 0.087594 36.22 0.014599 2.755 Res id ll( 1) 0.658282 24.10 0.005298 Total 17 0.145876 60.32 0.008581 

Grand total 26 0.245237 101.40 

Means 1 2 3 4 5 6 7 
0.690 0.665 0.593 0.730 0.6990 o. 7 57 0.791 SED= 0.0550 

27 



As in trans RA 

N 
Source of variation DF ss SS% MS VR 

Row stratwn 3 88.15 12.02 29.38 
Col stratwn 

Treat 6 227.82 31.08 37.97 
Total 6 

Row col strat 
Treat 6 161.92 22.09 26.99 1.154 
Res id 11(1) 257.27 35.09 23.39 

Total 17 419.2 57.18 24.66 

Grand total 26 735.16 100.28 

Means 1 2 3 4 5 6 
52.50 51.16 48.00 53.14 53.9 55.35 

SED = 2.656 

p 

Source of variation DF ss SS% MS VR 

Row stratwn 3 142.00 18.54 47.33 
Col strat 

Treat 6 278.28 36.34 46.38 
Total 6 

Tow col strat 
Treat 6 192.34 25.12 32.06 1. 908 
Res id 11( 1) 184.8 24.13 16.8 

Total 17 377.13 49.25 22.18 

Grand total 26 797.4 2 104.14 

Means 1 2 3 4 5 6 7 
51.60 52.06 51.22 57.76 58.78 55.46 54.59 

SED= 3.098 
K 
Source of variation DF ss SS% MS VR 

Row stratwn 3 16.04 1.65 5.35 
Col stratwn 389.56 40.08 64.93 

Treat 6 
Total 6 

Row col strat 
Treat 6 354.57 36.48 59.09 2.82 
Res id 11(1) 230.55 23.72 20.96 

Total 17 585.12 60.20 34.42 

Grand total 26 990.72 101.94 

Means 1 2 3 4 5 6 7 
56.4 7 54.88 50.35 58.90 56.72 60.45 63.11 

SED = 2.461 
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Anovas on concentrations 

Non flowerins: N concn 

Source of variation DF ss SS% 

Row stratum 3 7.304 3.35 
Col stratum 

Treat 6 36.834 16.89 
Total 6 36.834 16.89 

Row col stratum 
Treat 6 113.598 52.08 
Res id 11( 1) 73.802 33.83 

Total 17 187.401 85.91 

Grand total 26 231.539 106.15 

Means 1 2 3 4 5 
11.53 11.16 10.74 11.27 7.61 

Rep = 4 
SED = 1.958 

Non flowerins: P concn 

Source of variation DF ss SS% 

Row stratum 3 0.0002558 3.36 
Col strat 

Treat 6 0.00133770 17.57 
Total 6 

Row col stratum 
Treat 6 0.00666496 87.56 
Res id 22( 1) 0.00·709719 93.24 

Grand total 26 0.00869048 ll4.17 

Mean treat 1 2 3 4 5 
0.0699 

SED Rep = 4 
SED = 0.00474 

0.0838 0.0846 0.0695 0.0351 

30 

MS VR 

2.435 

6.139 
6.139 

18.933 2.822 
6.709 

ll.024 

6 7 
10.22 15.48 

MS 

0.00008519 

0.00022295 

O.OOll1083 
0.00041748 

6 
0.0814 

VR 

28.69 

7 
0.0840 



Non flowering: K concn 

Source of variation DF ss SS% MS VR 

Row stratum 3 5.45 1. 7 5 1. 8'17 
Col stratum 

Treat 6 112.663 36.16 18.777 
Total 6 

Tow col stratum 
Treat 6 116.340 37.34 19.39 2.66 
Res id 11(1) 80.194 25.74 7.290 

Total 17 196.535 63.08 11.561 

Grand total 26 314.647 100.98 

Means 1 2 3 4 5 6 7 
18.63 20.69 18.24 19.73 16.87 14.43 14.93 

SED = 2.041 

Flowering veg parts: N concn 

Source of variation DF ss SS% MS VR 

Row stratum 3 14.89 4.96 4.96 
Col stratum 

Treat 6 35.21 11.7 3 5.87 
Total 6 

Row col strat 
Treat 6 120.29 40.07 10.05 1. 51 
Resid 11( 1) 146.03 48.64 13.28 

Total 17 266.32 88.71 15.67 

Grand total 26 316.43 105.40 

Mean treat 1 2 3 4 5 6 7 
ll.f!9 12.61'1 10 0 l 5 12.66 9.18 11.7 2 16.71 

SED= 2.754 
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Flowerins ves parts: P concn 

Source of variation 

Row stratum 
Col stratum 

Treat 
Total 

Row col strat 
Treat 
Res id 

Total 

Grand total 

DF 

3 

6 
6 

6 
11(1) 
17 

26 

ss SS% 

0.000591 6.74 

0.0019871 22.65 

0.0061391 69.98 
0.0022144 25.24 
0.0083535 95.22 

0.0109316 124.61 

MS VR 

0.000197 

0.0003312 

0.0010232 5.083 
0.0002013 
0.004914 

Mean treat 1 2 3 4 5 6 7 
0.0787 0.0804 0.0770 0.0746 0.0364 0.0762 0.0902 

SED = 0.01073 

Flowerins ves parts: K concn 

Source of variation 

Row stratum 
Col stratum 

Treat 
Total 

Row col strat 
Treat 
Res id 

Total 

Grand total 

Means 1 
13.98 

SED = 2.458 

2 
19.78 

DF 

3 

6 
6 

6 
11( 1) 
17 

26 

3 
23.97 

·Flower ins rep parts: N concn 

Source of variation 

Row stratum 
Col stratum 

Treat 
Total 

Row col strat 
Treat 
Res id 

Total 

Grand total 

Means 1 
13.82 

SED = 1.68 

2 
12.27 

DF 

3 

6 
6 

6 
11(1) 
17 

26 

3 
11.18 

ss 

10.6 

302.40 

569.41 
116.32 
685.74 

998.74 

4 
17.53 

ss 

SS% 

1.06 

30.29 

57.04 
11.65 
68.69 

100.04 

5 
13.65 

SS% 

7.419 7.38 

28.124 27.99 

12.423 
54.312 
16.735 

12.37 
54.06 
66.43 

102.2 78 101.80 

4 
12.49 

32 

5 
12.26 

MS VR 

3.53 

50.4 

94.9 8.974 
10.5 7 
40.34 

6 
11.54 

MS 

2.473 

4.687 

2.070 
4.937 
3.926 

6 
12.40 

7 
8.63 

VR 

0.419 

7 
12.234 



Flowering rep parts: N concn logten trans f 

Source of variation DF ss SS% MS VR 

Row stratum 3 0.006523 6. 73 0.002174 
Col stratum 

Treat 6 0.028192 29.10 0.004699 
Total 6 

Row col strat 
Treat 6 0.010985 11.34 0.001831 0.385 
Re aid 11(1) 0.052338 54.02 0.004758 

Total 17 0.063323 65.36 0.003725 

Grand total 26 0.098038 101.19 

Means 1 2 3 4 5 6 7 
1.127 1.089 1.049 1.094 1.087 1.095 1.083 

SED = 0.0521 
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