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Laurien Lisette van de Weijer
The development and validation of a novel patient-derived 3D meningioma

cell culture model

Abstract

Meningiomas are the most frequent intracranial brain tumours. Current treatment
options of surgery and radiotherapy are sometimes insufficient and effective
systemic therapies remain unestablished. The development of accurate in vitro
systems to model the complexity of meningioma pathology is essential for
predicting drug response and developing novel therapeutics. Therefore, in this
study, | established an easy-to-use in vitro patient-derived meningioma spheroid
model that maintained the morphological and molecular features of the parental
tumours, including tissue histology, the tumour microenvironment, and the
mutational profile. Comprehensive characterisation of the global transcriptomes
of the novel patient-derived spheroids with traditional meningioma monolayer
cultures and parental tissues revealed an enhanced WNotch1-mediated
mesenchymal gene expression signature in the spheroids compared to traditional
2D monolayer cultures. These features were confirmed by the presence of other
mesenchymal traits such as invasion capacity, demonstrating this spheroid
model as the first meningioma 3D culture method capable of studying functional
invasion, and indicating its relevance for studying the molecular mechanisms
associated with invasion and the related oncogenic process of epithelial-to-
mesenchymal transition (EMT). The suitability of this model for use as a tool for
research questions, including pre-clinical drug testing, was demonstrated by
studying the effect of Notch1 shRNA targeting, and by treatment using several

inhibitors. Concomitantly, this proof-of-concept study allowed for the



development of a novel effective combination therapy of MER tyrosine kinase
(MERTK) and histone deacetylase (HDAC) inhibition, which in addition to having
a synergistic inhibitory effect on spheroid viability, also decreased spheroid
proliferation, expression of EMT-associated proteins and spheroid invasion
capacity. Hence, | propose this meningioma spheroid model as novel preclinical
drug screening tool to assess the efficacy of drug compounds targeting EMT and
brain invasion of meningiomas and the combination of HDAC and MERTK

inhibitors as a promising therapeutic strategy.
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1 Introduction

1.1 Background of the study

Meningiomas are the most common primary intracranial brain tumours and
account for approximately 36% of all primary tumours of the central nervous
system (CNS) (1). The World Health Organisation (WHO) classifies meningiomas
into WHO grade | (benign), WHO grade Il (atypical), and WHO grade Il
(anaplastic) (2). WHO grade | meningiomas (80%) have a good prognosis with
an estimated 10-year overall survival of 80-90%, while WHO grade 2 (15-18%)
and grade 3 (2-4%) are more aggressive and have a high risk of recurrency (3,4).
Indeed, 10-year overall survival for high grade meningiomas (grade 2/3) is
estimated as 14-34% (4). There are currently no effective chemotherapeutics that
are routinely offered to patients, and existing treatment options of surgery and
radiotherapy can leave patients with post-operative morbidity, radiation
neurotoxicity and tumour recurrence (1,5,6). Recent comprehensive studies have
identified the genetic background of meningiomas and revealed several disease
causing mutations (NF2, TRAF7, AKT1, KLF4, SMO, POLR2A, PIK3CA,
SMARCE1, SMARCB1) (7-11). However, progress in the development of
therapeutic approaches directly targeting genetically stratified tumours remains

limited.

One of the factors limiting the therapeutic advances of meningiomas is the long-
standing translational gap that exists between preclinical in vitro study results and
clinical trials (12). This is a consequence of the narrow selection of in vitro models
available to accurately model the complexity of meningioma pathogenesis (13) .

The few meningioma immortalized cell lines available , do not maintain the three-

1



dimensional (3D) structure, cellular heterogeneity, and microenvironment of a
tumour, which fundamentally limits their translational power (13). While some of
these disadvantages can be overcome using xenograft mice models, animal
studies are costly and resource-intensive, which limits their potential for high
throughput studies (14). In addition, xenograft models use immunodeficient mice
which impedes immune modelling (15). Fortunately, 3D cell culture technology
has emerged as relevant in vitro experimental tool for tumour modelling. The
advantage of 3D culture models is that they can accurately resemble tissue-
specific architecture including cell-cell, cell-extracellular matrix (ECM) and cell-
microenvironment interactions, and tissue-specific physiological conditions, such
as oxygen, nutrient and metabolic waste gradients (16). Thus, 3D cultures are
superior to monolayers for use in preclinical studies selecting effective drug
targets and therapies. Adopting such models in meningioma research has the
potential to diminish the number of candidate therapeutic compounds that are
inappropriately selected for further investigation. At the start of this study, a 3D
cell culture model for meningiomas hadn’t been established yet. Since then, few
3D cell culture models for meningiomas have been established, but these haven'’t
yet been widely adopted by other research groups (17-20). Moreover, the
established methods are complex and require high expertise. Having an easy-to-
use 3D meningioma in vitro model could provide a valuable study platform for
basic and translational meningioma research. Therefore, this PhD thesis
describes how | developed a novel in vitro 3D meningioma spheroid model and
validated it for use as tool in drug development. Additionally, | show that
meningioma spheroid cultures demonstrate the oncogenic process of epithelial-

to-mesenchymal transition (EMT), which was chosen as process of interest in



proof-of-concept experiments validating the use of this model as tool in in vitro
experimental setups.

The following introduction is a comprehensive literature review of meningioma
biology, current treatment strategies and recent advances in 3D cell culture. In
addition, | discuss the relevance of the EMT process in meningioma biology and

the prospective to target this process.

1.2 Overview of meningiomas

1.2.1 Grading and Origin

Meningiomas are the most common intracranial brain tumours of the CNS, of
which the majority are slow-growing benign lesions. They are stratified by the
WHO into three grades based on histological and molecular characteristics: CNS
WHO grade 1 benign meningiomas, accounting for approximately 80% of cases,
CNS WHO Grade 2 atypical meningiomas, accounting for approximately 18%
and CNS WHO grade 3 anaplastic meningioma, accounting for approximately 1-

3% (21,22).

Meningiomas are formed from the meninges (fig. 1.1A). The meninges consist of
three membranes, the dura mater, the arachnoid mater, and the pia mater, which
cover the brain and spinal cord. Besides providing a physical barrier protecting
the neuronal tissue against physical damage, they are involved in the regulation
of immunological processes and homeostasis maintenance in the cerebrospinal
fluid (CSF) (21). Specifically, meningioma is thought to arise from the web-like
arachnoid layer of the meninges. This layer is enclosed between the dura mater,

situated closest to the skull and vertebrae, and the pia mater, the thinnest and



most apical layer (21). Together, the arachnoid and the pia mater form the
leptomeninges. The arachnoid layer contains arachnoid villi, which are
microscopic villi that protrude through the dura into the sinuses and are essential
for the absorption of CSF (23). The arachnoid villi are structured from several
components, including an endothelial layer, fibrous capsule, arachnoid layer,
arachnoid cap cells and a central core (fig. 1.1B) (24). Arachnoid cap cells are
suggested as the meningioma cell of origin. This is based on their cytological
similarities with meningioma cells; arachnoid cap cells form calcified aggregates
also known as psammoma bodies, which are also observed in meningiomas (25).
Additionally, Kalamarides et al. showed evidence for prostaglandin D2 synthase
(PGDS)-expressing arachnoid cells on arachnoid villi as the meningioma cell of
origin in mice by demonstrating the generation of meningiomas following
inactivation of the common meningioma driver gene Neurofibromatosis 2 (NF2)
(26). Interestingly, features of different meningioma subtypes, ranging from
meningothelial to fibroblastic histology, correspond with the histology of the
various non-neoplastic cells found in arachnoid villi. Albayrak & Black (24)
contradicted the arachnoid cap cell hypothesis and suggested the existence of a
yet unidentified universal stem-like cell that gives rise to the various cells present
in the arachnoid layer. They hypothesized this stem-like cell as the cell of origin
for all different meningioma subtypes. Additionally, they suggested that different
meningioma subtypes originate from different tumour-initiating cells derived from
the various cell types in the arachnoid layer (24). However, both these

hypotheses remain unsolved.
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Figure 1.1 Schematic overview of the meninges

A) The meninges cover the brain and spinal cord with three layers: the dura mater, separated into
the periosteal and meningeal layer at the venous sinus, the arachnoid mater, and the pia mater.
Adapted from what-when-how.com (27) B) Arachnoid villi protrude into the dural sinuses and are
structured from several components: including an endothelial layer, fibrous capsule, arachnoid
layer, and arachnoid cap cells, which are thought to be the meningioma cell of origin. Adapted

from DeMonte et al. (23)

1.2.2 Meningioma history and classification

The term meningioma was first introduced by Harvey Cushing, who used it to
describe a set of tumours of meningeal origin occurring in the brain and spinal
cord in the early 1900s (28). Soon after Cushing first described meningiomas,
attempts were made to divide this heterogenous group of tumours into subtypes
based on histological differences. The first classification included three
subgroups, which further developed into the classification that is now used by the
WHO to stratify meningiomas using both histological and molecular features (fig.
1.2) (28). The 2021 WHO classification defines three grades: WHO grade 1,
typically benign and representing approximately 80% of meningiomas, WHO
grade 2, atypical meningiomas representing ~18% of meningiomas and, the

anaplastic WHO grade 3 meningiomas representing about 1-3% of tumours. This



is further divided into 15 defined meningioma subtypes based on histological
appearance (meningothelial, fibrous, transitional, psammomatous, angiomatous,
microcystic, secretory, lymphoplasmacyte-rich, metaplastic, chordoid, clear cell,
atypical, papillary, rhabdoid and anaplastic). Before 2021, meningioma subtypes
were linked to grade, with 9 subtypes associated with grade 1 tumours, and 3
subtypes for grades 2 and 3. This was changed in the 2021 WHO classification
in which criteria to define tumours grade are now considered independent from
histologic subtype (29). Criteria for atypical WHO grade 2 tumours are a mitotic
activity index of 4-19 mitoses per 10 high power fields (HPF) and/or the presence
of several histo- and cytomorphological features such as increased cellularity,
small cells with a high nucleus to cytoplasmic ratio, prominent nucleoli, sheeting,
and foci of spontaneous necrosis. A tumour with at least 3-5 of these criteria
should be considered WHO grade 2. In addition, brain invasion is a stand-alone
criterion to classify a tumour directly as a WHO grade 2. For grade 3 grading,
these criteria are 20 or more mitoses per 10 HPF, or loss of meningothelial
differentiation (30). The classification system is under continuous revision and
updates are released periodically. Recent papers have used mutations,
methylation profiles, RNA sequencing signatures and proteomics to describe
specific profiles to stratify meningiomas into prognostic groups. The latest version
of the WHO grading included novel molecular signatures as independent criteria
for grade 3 grading (TERT promoter mutation, or homozygous deletion of
CDKNZ2A/B) and mentions methylation profiling of meningiomas as a superior tool
compared to histopathology alone for the identification of patients at high risk of
recurrence. The latter, however, is not yet included in the official grading criteria

but, along with molecular classification based on copy number variation, point



mutations and transcriptomic and proteomic data, is expected to be included in

the next version (2,31).

1.2.3 Location

Meningiomas predominantly occur in the cranial meninges; most commonly in
the parasagittal, convexity and sphenoid regions. Approximately 4.2% occur from
the spinal meninges. Very rarely, meningiomas occur as primary tumours in the
ventricles of the CNS and extracranial organs including the lungs, probably
originating from aberrant arachnoid cells (<1%) (32,33). Interestingly, there is an
association between certain meningioma histological subtypes and location. For
instance, meningothelial meningiomas are often located at the skull base and
spine, while fibroblastic meningiomas tend to occur in the brain convexity. In
addition, higher-grade meningiomas are frequently found at the convexity and
parasagittal locations, and are less common at the skull base (34). Intriguingly,
arachnoid cap cells arise from two distinct origins during embryogenesis based
on their anatomic location. The skull-based layer has a mesodermal origin while
arachnoid cells in the cerebral convexity originate from the neural crest (21,35).
As such, this could be an underlying factor predisposing certain regions to certain

histological subtypes.



GRADE 1 GRADE 2 GRADE 3

Prevalence ~80% ~18% ~1-3%
Demographics
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OR OR
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* Necrosis meningothelial
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ratio OR
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» Architectural TERT promoter
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Clinical outcomes
at 10 years
Overall survival 80%-90% 50%-79% 14%-34%
Progression-free survival 75%-90% 23%-78% 0%

Figure 1.2 WHO classification, diagnostic criteria, and clinical outcomes

Characteristics of meningioma CNS WHO grade | (benign), WHO grade Il (atypical), and WHO
grade llI (malignant), including prevalence, demographics, diagnostic criteria and clinical
outcomes: overall survival (OS) and progression-free survival (PFS). (2,3) Adapted from Bi et al.

(36).

1.2.4 Incidence and risk factors

Approximately 36% of all primary CNS tumour cases, and 53% of benign CNS
tumour cases, are meningiomas (21). They mainly present in elderly patients with
the peak of cases at a median age of 66. Incidence increases with age and unlike
other CNS tumours, incidence rates remain high post-85 years (33). Despite
lower incidence rates at a younger age, in children, meningiomas are usually

malignant and have a higher risk of recurrence (21). In adults, there is a clear



bias towards females with an incidence rate of 2.32 times higher for non-
malignant and 1.12 times higher for malignant meningiomas compared to males,
suggesting a potential role of sex hormones in meningioma development (33).
Although there is no clear evidence reinforcing this hypothesis, a high percentage
of meningiomas were shown to express progesterone receptors (~88%),
oestrogen receptors (~40%), and androgen receptors (~40%) (37). However,
hormone therapy has failed to provide any clinical benefit (21,38). Nevertheless,
meta-analyses have revealed an increased risk of meningiomas following

hormone replacement therapy (21,37).

lonising radiation (IR) is an environmental risk factor for meningioma. Individuals
exposed to ionising radiation have a 6-10 fold higher risk to develop meningioma,
for both low and high-dose IR (21). In addition, patients with radiation-induced
meningiomas have an increased risk of developing high-grade meningiomas as

well as high recurrence rates.

1.2.5 Clinical presentation

Many meningiomas have a slow growth rate and are rarely invasive, causing
them to frequently remain asymptomatic. Consequently, these tumours are often
incidentally discovered during medical investigations (computed tomography
(CT) and magnetic resonance imaging (MRI)) of unrelated symptoms (39,40).
Asymptomatic patients are closely monitored by frequent clinical and radiological
follow-ups to detect tumour growth and the development of symptoms (41).
Symptomatic meningiomas present with a wide range of symptoms, typically

similar to symptoms associated with gradually increasing cranial pressure,



including headaches, seizures, neurological deficits (38). Symptoms are
dependent on the tumour's location, size, and invasive nature towards adjacent

neurological tissues.

1.2.6 Recurrence and survival

The WHO grading system correlates grade with the risk for recurrence and overall
survival (21). WHO grade | meningiomas have an overall survival (OS) of 80-90%
and progression-free survival (PFS) of 75%-90%, WHO grade Il have an OS of
approximately 50-79% and PFS of 23%-78%, and WHO grade Il meningiomas
have an OS of approximately 14-34% and PFS of 0% (3,42). High grade
meningiomas are more aggressive and have a higher recurrence risk. However,
despite their benign nature, approximately 20% of benign meningiomas tend to
recur (30). Atypical grade 2 meningiomas have an approximately 8-fold increased
risk of recurrence and a slight, but significantly increased risk of mortality, over
WHO grade 1 meningiomas (42,43). Anaplastic WHO grade 3 meningiomas
demonstrate the highest risk for recurrence with approximately 50-94% (42,44).
Variable recurrence rates are found between high-grade meningiomas based on
location. High grade meningiomas at the skull base were found to have lower
recurrence rates and better overall prognosis compared to similar tumours at the

convexity (45).

The risk of recurrence is strongly associated with the degree of surgical resection.
This resection is described by the Simpson grade. Simpson grading ranges from
grade 1 to 5, whereby grade 1 indicates total resection and a higher number

indicates the degree of incomplete resection and higher grade is associated with
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an increasing risk of recurrence. For example, WHO grade 1 tumours with any
atypical features are at increased risk of recurrence when Simpson grade 1
resection is not reached (30,43). A study comparing 5-year survival of non-
malignant brain tumours found meningioma as the third lowest, with a 5-year
survival of 88.0%. Survival rates are also influenced by the site of occurrence.
For malignant as well as non-malignant meningioma, the 10-year survival rate
was higher for tumours in the spinal meninges compared to cerebral meninges

(33).

1.3 Meningioma genetic landscape and molecular alterations

Over the last decade, the emergence of high-throughput sequencing techniques,
such as next-generation sequencing (NGS), have elucidated the genetic
landscape and molecular alterations of meningiomas. Genomic analysis has
identified that, compared to other solid tumours, the meningioma genetic

landscape is relatively simple with several common alterations (6,29) (Fig. 1.3).

The most common and well-known genetic alteration associated with
meningioma is the loss of the tumour suppressor gene Neurofibromatosis 2 (NF2;
22912) (5,29,46). NF2 mutations are found in approximately 60% of meningiomas
and occur across all grades (29,47). NF2-mutated meningiomas typically occur
at the brain convexity and are often associated with a transitional or fibroblastic
subtype (6,29). Furthermore, NF2 mutations are largely mutually exclusive with
other frequent mutations, broadly dividing the mutational landscape into NF2 or
non-NF2 mutated meningiomas (5). NF2 encodes for the membrane-
cytoskeleton scaffolding protein, Merlin, which is involved in the regulation of

several important pathways including the mammalian Hippo, PISBK/mTORC1/Akt,
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and mitogenic signalling pathways (5). Germline mutations of NF2 are strongly
associated with the dominantly inherited genetic disorder NF2-related
schwannomatosis (previously termed Neurofibromatosis 2). This disease is
characterised by the presence of multiple tumours of the CNS, including
meningiomas (48). Additionally, an aberration in the NF2 gene is the most

frequent mutation detected in sporadically occurring meningiomas (11).

Other genes that are frequently mutated and associated with meningiomas
include TRAF7 (tumour necrosis factor (TNF) receptor associated factor 7) (7,49),
AKT1 (AKT serine/threonine kinase 1) (7,49), KLF4 (Kruppel-like factor 4) (7,49),
SMO (smoothened) (7,49), POLR2A (RNA polymerase Il) (8), PIK3CA
(phosphatidylinositol-4,5-biphosphate 3-kinase catalytic subunit o) (7,9,49),
BAP1 (BRCA1 associated protein 1) (50,51), SMARCB1 (switch/sucrose
nonfermentable-related matrix-associated actin-dependent regulator of
chromatin  subfamily B member 1) and SMARCE1 (switch/sucrose
nonfermentable-related matrix-associated actin-dependent regulator of
chromatin subfamily E member 1) (10,29,46). TRAF7 is mutated in approximately
a fifth of non-NF2 mutated sporadic meningiomas. TRAF7 mutations are mutually
exclusive from NF2 mutations but are frequently mutated together with AKT1 or
KLF4 (5). AKT1 mutations are found in approximately 10% of non-NF2 mutated
meningiomas and cause AKT1 to be constitutively active independent of its
activation through PI3K signalling. Likewise, mutations in KLF4, which is an
important regulator of proliferation, also result in activation of the protein,
increasing proliferation rates and thus, tumour growth. Even though both AKT1
and KLF4 are frequently co-occurring with TRAF7, they are mutually exclusive of

each other (5). TRAF7, KLF4 and AKT1 mutations are typically found in WHO
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grade 1 tumours. Moreover, TRAF7 and KLF4 mutations are associated with
secretory meningiomas, while AKT1 mutations are frequently found in
meningothelial and transitional meningiomas (6,29). Mutations of SMO, a
member of the sonic hedgehog (SHH) signalling pathway, are exclusively found
in grade 1 meningiomas and typically occur in anterior skull base meningiomas
(5). SMO mutations are commonly found in meningiomas of the meningothelial
subtype (29). Although SMO mutations are relatively rare, 3-6% of non-NF2
mutants, this mutation is one of the few targetable mutations in meningiomas (5).
Another potentially targetable molecular alteration in meningioma is the PIK3CA
mutation, which is found in 4-7% of meningiomas (5). Most PIK3CA mutated
meningiomas occur at the skull base and are associated with meningothelial or
transitional histology (29). Mutations in POLR2A have been identified in
approximately 6% of grade 1 meningiomas and are typically found in anterior skull
based meningiomas of meningothelial subtype (5). BAP1 mutations are
frequently occurring in WHO grade 3 rhabdoid meningiomas, and BAP1 mutation
status has been shown to stratify rhabdoid tumours into aggressive and less
aggressive forms (29). Several mutations in components of the Switch/sucrose
non-fermentable (SWI/SNF) chromatin remodelling complex have been
associated with meningioma formation, particularly high grade meningiomas (5).
For instance, germline SMARCB1 mutations are found in several families with
multiple meningiomas, but also in a small subset of sporadic meningiomas,
usually co-occurring with NF2 mutations. In addition, SMARCE1 mutations,
another member of the SWI/SNF complex, are associated with atypical
meningiomas, particularly clear cell meningiomas (5,29). Furthermore, mutations
in telomerase reverse transcriptase (TERT) gene promoter and CDKNZ2A are very

rare in meningiomas and are associated with aggressiveness and high-grade
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meningiomas. In the definition of the 2021 WHO classification of CNS tumours,
TERT promoter mutations and CDKN2A homozygous deletion have been
included as stand-alone criterium for WHO grade 3 (11). Interestingly, TERT
promoter mutations have only been detected in secondary atypical meningiomas
that progressed from WHO grade 1 primary tumours and have thus been
suggested as a marker to predict recurrence and tumour progression (11,52).
Moreover, in 2002, Perry et al. identified the association between loss of
chromosome 9p21 and malignant progression from grade 2 to grade 3
meningiomas (53). In addition, meningiomas carrying these mutations are
associated with increased recurrence risk and shorter progression time (54).
Furthermore, CDKN2A status, as well as CDKN2B status, was confirmed as
highly prognostic for meningioma grading in a dataset of 528 meningioma

patients with follow-up data (54).
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Figure 1.3 Mutational landscape of meningioma and their associated anatomical location
A) Schematic overview of mutations underlying meningioma: Mutations mutually exclusive with
NF2 are shown in red, mutations associated with NF2 in green and pTERT mutations and
CDKN2A/B homozygous deletion underlying progression to aggressive meningiomas in purple.
Adapted from Robert et al. (55). B) Molecular aberrations and their associated brain regions.

Adapted from Al-Rashed et al. (4).
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1.4 Methylation profiling

The most recent addition to the characterisation of the meningioma genetic
landscape is the identification of six clinically relevant DNA methylation classes
(MC) (11,56). Analysis of DNA methylation data segregated meningiomas in two
epigenetic groups: A and B, which were further divided into MC benign-1, MC
benign-2, MC benign-3, MC intermediate-A, for group A, and into MC
intermediate-B, MC malignant, for group B, resulting in 6 DNA methylation
classes (fig. 1.4) (56). Classification based on methylation classes was found to
more accurately predict WHO grade 1 patients at high risk of disease
progression, and WHO grade 2 patients at lower risk of recurrence and to more
accurately predict PFS compared to the WHO grading system (11,56). For
example, WHO grade 1 patients that were characterised as MC-intermediate had
a worse prognosis compared to patients that had a WHO grade 2 meningioma
but were characterised as MC benign, while grade 1 MC intermediate patients

seemed to have a similar prognosis as WHO grade 2 patients (11).
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Figure 1.4 Methylation classes of meningiomas A) Sahm’s unsupervised hierarchical
clustering of 497 meningioma samples identified two distinct groups of meningiomas: group A
and group B, which were further divided into 4 methylation classes (MC ben-1, MC ben-2, MC
ben-3 and MC int-A) in group A and 2 methylation classes (MC int-B, MC mal) in group B.
abbreviations: MC = methylation class, ben = benign, int = intermediate, mal = malignant. B)
Overview of the six clinically relevant methylation classes and their molecular and clinical

characteristics. Adapted from Sahm et al. (56)

1.5 Meningioma Intra-tumour heterogeneity

Within meningiomas, particularly high-grade 3 meningiomas, distinct genomic
and histological features can be identified within one tumour (57). This is called
intra-tumour heterogeneity. This feature complicates grading based on genomic
characteristics because regional sampling could influence tumour grading.
Furthermore, intra-tumour heterogeneity has been demonstrated to significantly
impact the efficacy of cancer treatments by causing resistance, as therapies only
affect sensitive clones conferring an advantage to insensitive subclones that can
escape therapy (58). A paper studying intra-tumour heterogeneity in
meningiomas compared RNA sequencing data of spatially distinct samples within

meningiomas and characterized gene expression variance in principal
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component space (17). Interestingly, they found that most samples from each
meningioma clustered together but that heterogeneity was evident for high grade
meningiomas. Similar results were obtained when comparing DNA methylation
profiles. Additionally, they assessed heterogeneity within the copy number variant
(CNV) profile of meningiomas and found an increased number of CNVs as well
as increased variance of CNVs per sample in high-grade meningiomas. Using
the data on distribution of CNVs, the authors were able to generate phylogenetic
trees and demonstrate that chromosome alterations are an early event in
meningioma development and underlie transcriptomic and epigenetic signatures
in high-grade meningiomas (17). This feature of high grade meningiomas has
consequences for prognostic models of meningiomas which have been
developed to identify samples at risk for recurrence. Particularly, since most of
these prognostic models have been derived from clinical data taking one sample
per tumour. Furthermore, it suggests that particularly high-grade meningiomas
would benefit from multi-faceted therapy’s such as combination therapy, to target

several subclones within a spatially distinct tumour.

1.6 The immune microenvironment of meningiomas

The tumour immune microenvironment (TIME) comprises all immune
components of a tumour, including immune cells and cytokines. The interaction
between these immune components and the tumour cells significantly impacts
tumour behaviour and has been associated with tumour progression, aggressivity
and therapy resistance (59,60). Unlike other brain tumours, meningiomas are
located outside the blood-brain barrier, making these tumours easily accessible
for infiltrating immune cells (61). Recently, Nassiri et al. suggested a new

molecular classification of meningiomas based on a unified analysis of multiple
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datatypes including genomic, transcriptomic and proteomic datasets and
identified a specific molecular subtype of meningiomas associated with high
immunogenicity, indicating a role for the immune system in meningioma
pathology (62). The TIME of meningiomas is diverse and consists of myeloid
cells, lymphocytes including T-cells (predominantly CD8%), natural killer (NK) cells
and to a lesser extent B-cells and T regulatory (T-reg) cells (61,63). Of these,
macrophages comprise the largest population of infiltrating cells (approximately
18% of all cells in meningioma tissues), and this infiltration has been shown to
increase with tumour grade (64). A study by Proctor et al. showed that ~80% of
these tumour-associated (TA)-macrophages were of the immunosuppressive
pro-tumour M2 subtype (64). Besides macrophages, CD8+ T cells were shown
to represent the largest population of infiltrating lymphocytes in meningiomas
(63). Interestingly, the mutational profile of meningiomas has been correlated to
influence specific immune microenvironmental signatures (61). For example,
WHO grade | meningiomas that harboured NF2 mutations were found to have
higher levels of infiltrating CD163-positive M2 macrophages compared to
meningiomas that were mutated for AKT1 (65). Additionally, meningiomas with
TRAF7 mutations were shown to have increased expression of immune
checkpoint molecules, including programmed death ligand 1 (PD-L1) compared
to non-TRAF7 mutated tumours (66). PD-L1 and its receptor PD-1 are involved
in immune regulation and its upregulation has been associated with evasion of
the immune system in several malignancies. These findings demonstrate the
importance of the immune microenvironment in meningioma pathology and form
the basis of evidence supporting immunotherapy in meningiomas. Indeed, clinical

trials of checkpoint inhibitors are currently under investigation.
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1.7 Treatment strategies

Current treatment strategies for meningiomas are limited to surgical resection and
radiotherapy. However, the expanding knowledge on the molecular landscape of
meningiomas holds promise for the discovery of novel, effective therapeutic
targets. Furthermore, improved classification and stratification could provide
more reliable results on effectiveness in clinical trials on treatments targeting

specific molecular backgrounds (41).

1.7.1 Active surveillance

Small (tumour diameter <3 cm), asymptomatic meningiomas are actively
monitored for tumour growth and symptom development. Patients are evaluated
by MRI 12-monthly intervals after the tumour is first discovered. The European
Association of Neuro-Oncology (EANO) advises that this interval can increase to
annual check-ups if the patient remains asymptomatic. After 5 years, this interval
can be increased. However, if patients develop symptoms or substantial tumour

growth is detected, active therapy is advised (41).

1.7.2 Surgical resection

For symptomatic patients, the primary treatment option is surgical resection (41).
However, surgery is an invasive high-risk intervention. Post-operative
complications such as cerebral haemorrhage, infections, neurological deficits,
and brain oedema can leave patients with life-impacting morbidities (41,47). Risk
factors include patient age and overall fitness, tumour size, location, and
accessibility. In addition to risk factors, clinical symptoms are assessed prior to

surgery (25,41). Although surgical resection is curative for most, particularly
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benign, meningiomas, risk of recurrence is high (25). Risk of recurrence is lowest
when gross total resection (GTR) can be achieved (Simpson grade 1). In the case
of subtotal resection (STR), adjuvant radiotherapy may be given to treat the

residual tumour mass especially in higher grades (41).

1.7.3 Radiotherapy

Radiotherapy is offered as primary therapy to patients that can’t have surgery
due to inaccessibility and/or their proximity to vital structures, or as adjuvant
therapy after surgical resection (6). The purpose of adjuvant radiotherapy is to
lower the risk of recurrence and improve local control of the tumour (6). Adjuvant
radiotherapy is the standard of care therapy for WHO grade 3 meningiomas and
is shown to improve the 5-year progression-free survival (PFS) rates from 28%
to 57% (67). Since radiotherapy has been associated with many side effects,
including alopecia, double vision, headaches, seizures, brain oedema, epilepsy,
neurological deficits and even radio-induced meningiomas, the effectiveness of
adjuvant radiotherapy in WHO grade 2 meningiomas remains controversial.
Especially, in cases of gross total resection (GTR), it remains unclear whether
the benefit of radiotherapy outweighs these side effects (6,67). However,
adjuvant radiotherapy has been shown to improve overall PFS rates of WHO
grade 2 meningiomas after subtotal resection (STR). In WHO grade 1 tumours,
adjuvant radiotherapy is exclusively recommended after STR at low dose
(6,41,67). Different radiotherapy approaches can be offered including
conventional radiotherapy, stereotactic radiosurgery (SRS) and external beam

radiotherapy (EBRT).
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1.7.4 Systemic therapy: traditional chemotherapy and targeted therapy

Systemic therapy for meningiomas is largely experimental and has shown limited
effectiveness in the clinic (6). It is used rarely and on a case-to-case basis,
primarily in patients who can’t be treated with surgery and radiotherapy, often
recurrent or progressive meningiomas (41,67). There is a variety of drugs
approved for the treatment of aggressive meningiomas, including alkylating
agents, tyrosine kinase inhibitors and endocrine drugs, however, the clinical
effectiveness of their use remains disappointing (41). The RNA reductase
inhibitor hydroxyurea (HU) has shown some modest benefits (40). HU is
sometimes used as adjuvant therapy in recurrent or incompletely resected
tumours and although it was found to prevent some patients’ tumours from

progressing, it did not result in decreased tumour size (41,68,69).

The advances that were made in the understanding of the molecular landscape
of meningiomas has identified some promising targets for treatment (40,41).
Currently, there are several targeted compounds being investigated in clinical
trials. For NF2-related meningiomas, a promising trail platform, which was
launched in 2020, is the INTUITT-NF2 (Innovative Trial for Understanding the
Impact of Targeted Therapies in NF2) trial (NCT04374305). This multi-arm phase
2 platform is currently investigating the effectiveness of two tyrosine kinase

inhibitors called Brigatinib and Neratinib.

Another prospective therapy currently in clinical trials is the use of vascular
endothelial growth factor (VEGF) receptor (VEGFR) inhibitors. VEGF is important
for the formation of new blood vessels and is highly expressed in vascularised

meningiomas (11). Furthermore, upregulated mTOR signalling was associated
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with meningiomas, which led to several ongoing clinical trials investigating mTOR
inhibition and inhibition of related downstream signalling components e.g.
PISK/AKT and MEK signalling (11). In addition, the increasing understanding of
the importance of the TIME, has highlighted the use of immunotherapies for the
treatment of meningiomas. As such, immune checkpoint inhibitors are currently

under investigation (6,40,70).

1.7.4.1 TAM receptor family of tyrosine kinases inhibitors

A novel treatment strategy for meningiomas still in the preclinical stage is
targeting the Tyro3, Axl, MERTK (TAM) receptor family of tyrosine kinases
inhibitors. TAM receptors are aberrantly expressed in several cancers (71),
including breast cancer (72), ovarian cancer (73), glioblastoma (74), colorectal
cancer (75), and schwannomas (76) and receptor activation has been associated
with promoting survival, chemoresistance and cell motility (71). Signalling is
activated by ligand binding (e.g. Gas6 and vitamin K-dependent protein S), which
leads to receptor dimerization and autophosphorylation of the receptor. Cancer
cells typically co-express high levels of TAM receptors and their ligands, which
results in auto-signalling (71,77). The downstream cascade that follows is cell-
dependent and can go through the oncogenic MEK/ERK, PISK/AKT, JAK/STAT
or NFkB signalling pathways, as well as anti-apoptotic signalling (77) (fig. 1.5).
Moreover, TAM receptors have been associated with promoting migration and
invasion through the activation of Snail and Slug, which are known to induce
epithelial-to-mesenchymal transition (EMT) (77). Preclinical studies targeting
TAM receptors have shown promising results for several cancers (71,73—75,78).
Apart from targeting cancer cells directly, TAM receptor inhibition also has been

shown to affect the TIME (77,79). Therefore, it is suggested that TAM inhibition
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can concomitantly target the tumour directly, as well as target the TIME (71,79).
Unpublished work by our research group has identified aberrant expression and
activation of all three TAM receptors in meningiomas and investigations into the

role of TAM receptors in meningioma pathology are ongoing.
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Figure 1.5 Schematic diagram of TAM receptor family of tyrosine kinase activation and
downstream signalling pathways TYRO3, AXL and MERTK are activated by ligand binding
(Gas6 and PROS1), and homophilic and/or heterophilic receptor dimerization of two TAM
receptors or with another tyrosine kinase receptor (purple). Receptor activation activates
downstream signalling of oncogenic MEK/ERK, P38, Src, PI3K/AKT, JAK/STAT or NFkB, as well
as anti-apoptotic signalling (BCL2, BCLXL, MCL1, Survivin, BAD) and activation of EMT
transcription factors (Twist, Slug, Snail), leading to proliferation, migration, anti-apoptosis and

survival (60).
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1.7.4.2 HDAC inhibitors

Another novel anti-meningioma therapy still in the preclinical phase, is histone
deacetylase (HDAC) inhibition. HDACs are a group of chromatin remodelers, that
regulate the accessibility of chromatin by modifying histone proteins, as a way of
controlling gene expression. This group of epigenomic modulating enzymes has
been shown to be upregulated in neoplastic cells (80,81). Specifically, HDACs
control gene expression by catalysing the deacetylation of lysine residues from
histones or non-histone proteins (fig. 1.6). Lysine residues carry a positive charge
which is neutralized when it gets acetylated. Removal of the acetyl group
counteracts this neutralisation, which then results in the tight conformation of the
negatively charged DNA to the positively charged lysine residues. This causes a
closed chromatin structure and repression of gene expression (80). These
molecules function together with a group of enzymes called histone
acetyltransferases (HATs), which are responsible for the opposite process.
HDAC inhibitors have been shown to activate the transcription of several genes
through chromatin remodelling, which partly caused their anti-cancer effects (82).
Nevertheless, besides this direct effect on chromatin remodelling, HDAC
inhibition can also directly mediate growth inhibition and apoptosis in cancer cells
by removing acetylation of non-histone proteins (80,82,83). Their potential for the
treatment of meningiomas became apparent from the results of Tatman et al. (84)
that performed a high-throughput screening of epigenetic drug compounds. This
screen revealed that compounds targeting HDACs were most potent to
significantly inhibit meningioma growth, highlighting HDAC inhibitors as
promising therapeutics. In addition, an earlier study using the HDAC inhibitor AR-
42 showed suppression of proliferation and induction in cell-cycle arrest at G2

and apoptosis after AR-42 treatment in primary meningioma cells, which they
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could link to a dose-dependent decrease of phospho-AKT (85). AR-42 is currently
in clinical trials and the moderately positive results of two early-phase clinical
studies in NF2-associated meningiomas were published in 2021. These studies
showed mixed results but with the majority of tumours decreasing in volume (86).
Even though the efficacy of AR-42 was specifically studied in the context of NF2-
mutated meningiomas, the results of Kawamura et al. (81) demonstrated the
sensitivity of the NF2-intact high-grade meningioma cell line IOMM-Lee to HDAC
inhibition. Currently, there are 4 HDAC inhibitors approved by the FDA for
treatment of cutaneous T-cell lymphoma and multiple myeloma. These include
Vorinostat, Romidepsin, Belinostat and Panobinostat and several others are in
ongoing clinical trials, including the pan-HDAC inhibitor Trichostatin-A

(NCT03838926) (87,88).
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Figure 1.6 The mechanism of histone acetylation and histone deacetylation

The chromatin remodelling enzymes HAT and HDAC control gene expression by
catalysing the acetylation (HAT) or deacetylation (HDAC) of lysine residues from
histones, resulting in a change in the lysine charge. This leads to an open or condensed
state of the chromatin turning transcription ON (gene expression) or OFF (gene

repression). Adapted from Hai et. al (89).
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1.7.4.3 Combination therapy

Targeted therapy using a combination of two or more drugs has the potential to
substantially improve the efficacy of treatment (90,91). Indeed, this approach has
proven successful for several cancers and a variety of combinations have been
approved by the FDA (92). The basic principle of combination therapy is that drug
combinations address tumour heterogeneity, by targeting different pathways
and/or proteins while concomitantly interacting in a synergistic or additive manner
(90). In addition, combination therapy can counteract crosstalk and feedback
loops that occur between different pathways (93). A combination of drugs is
synergistic when the total effect of the combination is greater than the sum of the
individual effects of each drug. When the total effect of the combination is equal
to the effect of the sum of the individual effects of each drug they function in an
additive manner. When the total effect of a combination of drugs less than the
sum of the individual effects of each drug, the interaction of the two drugs function
in an antagonistic manner (94). The interaction of the mutual effect of two drugs
can be represented in an isobole graph, in which the doses of the two drugs are
represented on both axes whereby the curve depicts the dose-pairs that, when
combined, achieve the desired effect (e.g. ICso or ECso) (Fig. 1.7) (94). When two
drugs interact synergistically, their therapeutic dose can be lowered to achieve
the same effect as what was needed for monotherapy, or drugs can be
administered in the same as the monotherapy but reach a greater effect. In the
former, the risk of severe toxicity and side effects is reduced, especially when
different pathways are targeted (90). In addition, using combination therapy
reduces the chance of developing resistance since combination therapy is more
effective and already targets multiple signalling pathways, complicating therapy

evasion by recruitment of alternative signalling pathways (90). A newer approach
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in combination therapy also considers the timing of drug administration using one
drug to sensitize cancer cells to another drug. This approach benefits from the
differences between non-cancerous and cancerous cells. For example, treating
cells with a low dose of a DNA-damaging agent will result in G1/G2 cell cycle
arrest in non-cancerous cells. In cancer cells with deregulated cell cycle control,
cell cycle arrest is not induced. This difference can then be exploited by
administering a second drug which only targets cells in mitosis, and thus only

targets cancer cells (90,95).
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Figure 1.7 Isobole graph for drug combination synergism, antagonism and additivism The
interaction of the mutual effect of two drugs can be represented in an isobole graph, in which the
doses of the two drugs are represented on both axes and the curve depicts the dose pairs that,
when combined, achieve the desired effect. The interaction is synergistic (red line), additive
(dashed line), antagonistic (blue), when the total effect of the combination is greater (synergy),
equal (additivism), less (antagonism), than the sum of the individual effect of each drug. Adapted

from Vakil & Trappe (94).

For the treatment of meningiomas, few combination therapies have been tested
in clinical trials. A phase Il clinical trial tested the combination of the VEGF
inhibitor bevacizumab with the mTOR inhibitor everolimus for the treatment of

recurrent and progressive meningiomas of all grades after first-line treatment of
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surgical resection or radiotherapy. Although combination therapy did not result in
any tumour shrinkage, the combination therapy resulted in a prolonged
progression-free survival of 22 months, with a slight advantage for high-grade
tumours compared to WHO grade | tumours (96). However, treatment was
discontinued for four patients due to toxicity, which demonstrated the unsuitability
of this combination strategy for long-term treatment. Another phase Il study using
everolimus in combination with the somatostatin agonist octreotide for the
treatment of progressive meningiomas of all grades revealed effective antitumour
activity in aggressive meningiomas (10 grade Il and 8 grade Il of a total of 20
patients). The median progression-free survival was 6.6 months and long-term

tumour growth control (>2 years) was observed in 3/20 patients (97).

HDAC inhibitors have been shown to synergistically interact with a range of
compounds, which makes them very suitable for use in combination strategies.
Hence, combination therapy of HDAC inhibitors with various anti-cancer agents
has demonstrated promising results in preclinical and clinical anti-cancer studies
(81,98). Indeed, Kawamura et al. (81) demonstrated the potency of HDAC
inhibition in combination with oncolytic herpes simplex virus (oHSV) therapy for
the treatment of malignant meningioma by showing an increased intratumoral
oHSYV replication which controlled the growth of human meningioma xenografts.
Moreover, one of the targeted therapies that have been shown to benefit from
combination with HDAC inhibition in other cancers is the inhibition of receptor
tyrosine kinases (98-101). For meningioma, this combination is not yet studied
although monotherapy of both HDAC inhibition and receptor tyrosine kinases
show promising results, as described in section 1.4.4.1 and 1.4.4.2. Hence, the

avenue of studying a similar combination is discussed in this thesis.
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1.8 Preclinical models for translational meningioma research

Translational cancer research heavily relies on the use of accurate pre-clinical
tumour models to understand the role of genetic alterations and to investigate
their influence on tumour biology, as well as evaluating the toxicity and efficacy
of promising therapeutics. These models, varying from in vivo animal models to
in vitro cell culture models, aim to resemble the function and processes of the
tissue of interest and ultimately lead to experimental discoveries that can be
translated into practical clinical applications (102,103). The lack of sufficient
predictive power of these models remains a large obstacle in the development of
therapies (104). This section will summarise the most common pre-clinical

models and give an overview