
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

04 University of Plymouth Research Theses 01 Research Theses Main Collection

2008

The Interactive Toxicity of

Benzo(a)Pyrene and Ultraviolet

Radiation - an In Vitro Investigation

Lyle, Zoe Jean

http://hdl.handle.net/10026.1/2203

http://dx.doi.org/10.24382/4215

University of Plymouth

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.



The Interactive Toxicity of Benzo(a)Pyrene and 

Ultraviolet Radiation - an In Vitro Investigation. 

by 

Zde Jean Lyie 

A thesis submitted to tlie University of Plymouth 

in partial fulfilment for the degree of 

DOCTOR OF PHILOSOPHY 

School of Biological Sciences 

Faculty of Science 

University of Plymouth 

January 2008 



Univer55lty of Plymouth I 

I Y "qQosss2,aofo _ 

. I 
J 



This copy of the thesis has been supplied on condition that 

anyone who consults it is understood to recognise that its 

copyright rests with its author and that no quotation from 

the thesis and no information derived from it may be 

published without the author's prior consent. 



ABSTRACT 

The Interactive Toxicity of Benzo(a)Pyrene and 

Ultraviolet Radiation - an I n Vitro Investigation. 

The work presented here adopted an in vitro approach with cell 

types from different species (fish: Epithelioma Papillosum 

Cyprini (EPCAl), Rainbow Trout Gonad (RTG-2); mammals: 

Chinese Hamster Ovary (CHO-Kl) , primary human fibroblast 

cells (84BR)) to elucidate the potential genotoxic effects of the 

interaction of the polycyclic aromatic hydrocarbon (PAH), 

benzo(a)pyrene (B(a)P) (0.0, 0 .1 , 1.0 and 3.2 pg ml"*) with 

ultraviolet radiation (UVA/UVB) (typically 25, 50, 100, 200, 500, 

1000, 2000, 4000, 6000, 8000 J m"^). Initially the 

experimental techniques and conditions were optimised and 

validated in the CHO-Kl, EPCAl and RTG-2 cell lines. I t was 

shown that mammalian (CHO-Kl) and fish cells (EPCAl and 

RTG-2) exhibited similar sensitivities to chemicals with different 

modes of action i.e. clastogenic ethyl methansulphonate (EMS) 

(0.0, 0.8, 1.6 and 3.2 mM) and aneugenic colchicine (COL) (0.0, 

0 .1 , 1.0 and 1.8 pg ml"^) following cytotoxicity experiments 

with neutral red retention (NRR). Similarly, using the 

micronucleus assay (Mn) all the cell lines tested showed a 

similar response to EMS and COL and the use of the anti-

kinetochore stain provided a useful approach with which to 

distinguish between clastogenic and aneugenic effects in the 

cell. Following comet assay experiments the importance of 

optimising and validating variables was demonstrated. The 

optimal variables chosen for the comet assay were 20 minutes 

unwinding for fish cells (EPCAl and RTG-2) and 40 minutes 

unwinding time for mammalian cells (CHO-Kl and 84BR) with 

20 minutes electrophoresis for all cell types. Following these 



validation studies, the cytotoxic and genotoxic effects produced 

in cells of aquatic (EPCAl, RTG-2) and mamnrialian (CHO-Kl, 

84BR) origin following treatment with B(a)P and UVR was 

investigated. The incubation of all cells (EPCAl, RTG-2, CHO-

K l ) with B(a)P alone caused limited cytotoxicity (NRR), 

increased DNA damage (comet assay) and altered cellular 

functions that were from aneugenic and clastogenic 

mechanisms (Mn assay). EPCAl, RTG-2 and CHO-Kl cells 

irradiated with UVB displayed a significant increase in 

cytotoxicity (NRR) and DNA damage (comet assay). Cells 

irradiated with UVA (RTG-2, CHO-Kl, 84BR) showed no 

significant increases in cytotoxicity and only CHO-Kl showed 

increased DNA damage (comet assay). There were significant 

increases in cellular alterations (Mn assay) following UVA 

irradiation. All cells (RTG-2, CHO-Kl, 84BR) incubated with 

B(a)P followed by irradiation with UVA showed a synergistically 

increased cytotoxicity (NRR) and DNA damage (comet assay) 

from a 1.2-fold increase up to a 4-fold increase in DNA damage. 

There were also altered cellular mechanisms that may be due 

to both aneugenic and clastogenic mechanisms (Mn assay). 

Oxidative stress as a product of the formation of the hydroxyl 

radical was shown to be a key element in these processes 

(Electron Spin Resonance (ESR)). I t is therefore concluded that 

the genotoxic effects of the PAH B(a)P and UVA irradiation are 

synergistically increased when both insults are experienced in 

combination. This worrying result was observed within both 

fish and mammalian cell types and appeared to be mediated via 

an oxidative stress mechanism which included the formation of 

the hydroxyl radical. 
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(Figure 4.8b). 

Figure 4.9 DNA damage to RTG-2 cells following exposure to 

various doses of UVA (500, 1000, 2000, 4000, 6000 and 8000 J 

m"^). DNA damage was assessed by the % Tail DNA. No UVA 

doses gave % Tail DNA results which were significantly different 

from the control (Mann-Whitney U-test, p > 0.05). N.B. control 

(0 * ) was sham irradiated for the same time period as 8000 J m' 

Figure 4.10 Cell viability assessed through the uptake of neutral 

red dye by RTG-2 cells following pre-treatment with B(a)P for 
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24 hours at various concentrations (0.0, 0.1, 1.0 and 3.2 pg ml' 

)̂ and then exposure to various doses UVB (0 * , 100 and 200 J 

m-2) (Figure 4.10a) or UVA (0 * , 500, 2000 and 4000 J m'^) 

(Figure 4.10b). Cell viability was expressed as a percentage of 

the control absorbance, with the control value being 100 %. 

Significant effects are indicated (*) (NB control (0 * ) for each 

experiment was sham irradiated for the same time as either 

100 or 200 J m-2 UVB or 500, 2000 or 4000 J m'^ UVA). 

Figure 4.11 Median DNA damage to RTG-2 cells following pre

incubation for 24 hours with B(a)P (0.0, 0.1, 1.0 and 3.2 pg ml' 

' ) and exposure to UVB (0 * , 25, 50, 75, 100 and 200 J m'^) 

(Figure 4.11a) or UVA ( 0 * , 500, 1000, 2000, 4000, 6000 and 

8000 J m" )̂ (Figure 4.11b). DNA damage was assessed by the 

% Tail DNA (0* is the sham irradiated control for each 

experiment, and controls were sham irradiated for the same 

time as each UVB or UVA dose). Significant differences (Mann-

Whitney-U test, p<0.001) from the additive B(a)P and 

UVB/UVA irradiated response are indicated ( * ) . 

Figure 4.12 Cell viability assessed through the uptake of neutral 

red dye by RTG-2 cells following pre-treatment with B(a)P at 

various doses (0.1, 1.0 and 3.2 pg ml'^) and then exposure to 

UVA (500 (Figure 4 .12a) , 2000 (Figure 4.12b), or 4000 J m'^ 

(Figure 4.12c). Cells were then incubated for various times (0, 

1, 6, 24 hours) in GM. Significant differences (Mann-Whitney-U 

test, p < 0.05) from the control are indicated (* ) . 

Figure 4.13 The effect of UVA irradiation on RTG-2 cells (Figure 

4.13a) . Figure 4.13b shows the clear DMPO-OH signal after 

UVA irradiation (500 J m" )̂ of the B(a)P treated (3.2 pg ml"^) 

RTG-2 cells. 
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Figure 4.14 Treatment of RTG-2 cells with 3.2 [jg ml"^ B(a)P (24 

hours) followed by UVA (500 J m" )̂ with the addition of 

DETAPAC (Figure 4.14a) , mannitol (which greatly decreased the 

yield of DMPO-OH) (Figure 4.14b). Addition of SOD had little 

effect (Figure 4.14c). Addition of catalase also had a small 

effect (Figure 4.14d). This indicated that the major radical 

product is OH. 

Figure 5.1 Cell viability assessed through the uptake of neutral 

red dye by C H O - K l cells following exposure of cells to 24 hour 

B(a)P at various concentrations (0.0, 0.1, 1.0 and 3.2 pg ml"^). 

Cell viability is expressed as a percentage of the control (% 

control) with the control value being 100 %. Asterisks (*) 

indicate a significant difference from the control (Mann-

Whitney-U test, p < 0.05). 

Figure 5.2 Median DNA damage to C H O - K l cells following 

exposure to 6 hour B(a)P at various concentrations (0.0, 0.1, 

1.0 and 3.2 |jg ml'^) without (Figure 5.2a) exogenous metabolic 

activation (S9) , with S9 (Figure 5.2b) or following exposure to 

24 hour B(a)P (0.0, 0.1, 1.0 and 3.2 \}g ml"^) without S9 

(Figure 5.2c). DNA damage is assessed by the % Tail DNA. 

Data marked with @ are significantly different to the control 

(Mann-Whitney-U test, p < 0.05) or with * are significantly 

different to the control (Mann-Whitney-U test, p < 0.0001). 

Figure 5.3 Median DNA damage to 84BR cells following 

exposure to 24 hour B(a)P at various concentrations (0.00, 

0.05, 0.10, 0.32, 1.00 and 3.20 pg mr^). DNA damage is 

assessed by the % Tail DNA. Data marked with @ are 

significantly different to the control (Mann-Whitney-U test, p < 

0.01) or with * are significantly different to the control (Mann-

Whitney-U test, p < 0.001). 
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Figure 5.4 Cell viability in C H O - K l cells assessed through 

trypan blue and dual stain fluorescence technique (Figure 5.4a) 

or neutral red retention (NRR) assay (Figure 5.4b) following 

exposure to various doses of UVB (0 * , 200, 500, 625, 750, 875 

and 1000 J m'^). Cell viability is expressed as percentage 

viability (%) for trypan blue and dual stain fluorescence assays 

or as a percentage of the control (%) for the NRR assay where 

control values are 100 % . 0* value is sham irradiated (Data 

marked with * are significantly different to the control, Mann-

Whitney-U test, p < 0.01). 

Figure 5.5. Cytotoxicity in C H O - K l and 84BR cells following 

exposure to various doses of UVA ( 0 * , 500, 2000 and 4000 J m" 

^). 0* value is sham irradiated. Cytotoxicity is assessed 

through NRR assay and values are presented as a percentage of 

the control value. Data marked with * ( C H O - K l ) are 

significantly different to the control (Mann-Whitney-U test, p < 

0.05). 

Figure 5.6 DNA damage to C H O - K l cells following exposure to 

various doses of UVB (0 * , 200, 350 and 500 J m'^) (Figure 5.6a) 

or UVA (0 * , 500, 2000 and 4000 J m'^) (Figure 5.6b). DNA 

damage is assessed by the % Tail DNA. All UVB doses tested 

are significantly different (*) (Mann-Whitney-U test, p < 0.0001) 

from the sham irradiated control (0 * ) but not significantly 

different from each other (Mann-Whitney-U test, p > 0.05). 

UVA doses which are significantly different (Mann-Whitney-U 

test, p < 0.01) from the sham irradiated control (@) are 

indicated and all doses are significantly different from each 

other (Mann-Whitney-U test, p < 0.0001). 
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Figure 5.7 DNA damage to 84BR cells following exposure to 

various doses of UVA (0 * , 500, 1000 and 2000 J m'^). DNA 

damage is assessed by the % Tail DNA. There was no 

significant difference (Mann-Whitney-U test, p > 0.05) between 

the sham irradiated control (0 * ) or any of the UVA doses tested. 

Figure 5.8 Cytotoxicity in C H O - K l (Figure 5.8a) and 84BR 

(Figure 5.8b) cells following 24 hours pre-incubatlon with B(a)P 

(0.0, 0.1, 1.0 and 3.2 pg ml"^) and exposure to various doses of 

UVA (0 * , 500, 2000 and 4000 J m'^). o* value is sham 

irradiated for the same time as 4000 J m'^UVA. Cytotoxicity is 

assessed through NRR assay and values are presented as a 

percentage of the control value. All C H O - K l data are 

significantly different (*) to the control (Mann-Whitney-U test, 

p < 0.05) with the exception of 0.1 pg ml'^ interacting with 500 

J m'^ (Mann-Whitney-U test, p > 0.05) whilst all 84BR data are 

significantly different (*) to the control (Mann-Whitney-U test, 

p < 0.05) with the exception of 0.1 pQ nil'^ B(a)P interacting 

with 4000 3 m-2 (Mann-Whitney-U test, p > 0.05) . 

Figure 5.9 DNA damage to C H O - K l cells following pre

incubation for 24 hours with B(a)P (0.0, 0.1, 1,0 and 3.2 pg ml' 

)̂ and exposure to various doses of UVA ( 0 * , 500, 1000 and 

2000 J m"^). DNA damage is assessed by the % Tail DNA. 

Significant differences (Mann-Whitney-U test, p<0.0001) from 

the combined B(a)P and UVA irradiated response are indicated 

( * ) . Plots for B(a)P alone are significantly different to the 

control (Mann-Whitney-U test, p < 0.0001) at all concentrations. 

Figure 5.10 DNA damage to 84BR cells following pre-incubation 

for 24 hours with B(a)P (0.00, 0.05, 0.10, 0.32, 1.00 and 3.20 

pg ml'^) and exposure to various doses of UVA ( 0 * , 500, 1000 

and 2000 J m"^). DNA damage is assessed by the % Tail DNA. 
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Significant differences (Mann-Whitney-U test, p<0.001) from 

the combined B(a)P and UVA irradiated response are indicated 

(* ) . 

Figure 5.11 The effect of UVA (500 J m" )̂ (no B(a)P) (Figure 

5.11a), 24 hours treatment with B(a)P (3.2 pg ml"^) without 

UVA treatment (500 J m" )̂ (Figure 5.11b). Figure 5.11c shows 

B(a)P treated (24 hours) C H O - K l cells after UVA irradiation 

(500 J m-2). 

Figure 5.12 The effect of UVA irradiated (500 J m'^) DMPO 

control (Figure 5.12a) on 84BR cells. Figure 5.12b shows the 

effects of treatment (24 hours) with B(a)P (3.2 pg ml'*) with 

UVA (500 J m" )̂ on free radical formation in 84BR cells. 

Figure 5.13 The effect of mannitol (Figure 5.13b), catalase 

(Figure 5.13c) and superoxide dismutase (Figure 5.13d) on 

cells treated with B(a)P (3.2 pg ml"^) followed by UVA (500 J m" 

^) (Figure 5.13a) on free radical formation. 

Figure 6.1 Simple diagram to illustrate the possible mechanisms 

of DNA damage following exposure to PAH and UV in the cell. 
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ABBREVIATIONS 

AhR Aryl hydrocarbon receptor 

B(a)P Benzo(a)pyrene 

BCC Basal cell carcinoma 

BPDE Benzo(a)pyrene 7,8-diol-9,10-epoxide 

BN Binucleate cell 

84BR Primary human fibroblast cells 

Calcein AM Acetomethoxy derivate of calcein 

C H O - K l Chinese hamster ovary cell line 

CO2 Carbon dioxide 

COL Colchicine 

CPD Cyclobutane pyrimidine dimer 

Cyto B Cytochalasin B 

DAPI 4'6-diamidino-2-phenylindole 

DETAPAC Diethylenetriaminetetraacetic acid 

DMPO 5,5-dimethyl-l-pyrroline-N-oxide 

DMSO Dimethylsulphoxide 

DNA Deoxyribosenucleic acid 

DSB Double strand breaks 

ECso Half maximal effective concentration 

EMEM Eagles minimum essential medium 

EMS Ethyl methanesulphonate 

EPCAl Epithelioma papillosum cyprini cell line 

ESR Electron spin resonance 

EthD III Ethidium homodimer III 
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FBS Fetal bovine serum 

GM Growth medium 

Ham F12 Ham F12 nutrient mixture 

H2O2 Hydrogen peroxide 

K- Kinetochore negative 

K+ Kinetochore positive 

KCI Potassium chloride 

Kow Octanol water partition coefficient 

L-GLUT L-glutamine 

LMP Low melting point agarose 

MEM Minimum essential medium 

Mn Micronucleus 

Mono Mononucleate cell 

NEAA Non-essential amino acids 

NMP Normal melting point agarose 

NRR Neutral red retention assay 

NPB Nucleoplasmic bridges 

OH Hydroxyl radical 

0 2 - Superoxide radical 

8-oHdG 8-0X0-7,8-dihydro-2' -deoxyguanosine 

PBS Phosphate buffered saline 

(6-4) P-P (6-4) photoproduct 

PMio Particulate matter <10 pm in diameter 

RTG-2 Rainbow trout gonad cells 

ROS Reactive oxygen species 

sec Squamous cell carcinoma 
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S C G E Single cell gel electrophoresis ('comet assay' ) 

S S B Single strand breaks 

TRITC Tetramethyl rhodamine iso-thiocyanate 

UVR Ultraviolet radiation 

0* Sham irradiated control 
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CHAPTER I - INTRODUCTION 

1.1 Environmental Pollution 

Human activities have led to increases in environmental pollutants 

that pose both constant and increasing threats to all organisms 

(Lehto e t a / . , 2003; Matsuzawa et aL, 2001). Aquatic and terrestrial 

(including atmospheric) environments form complex and dynamic 

ecosystems, and whilst the aquatic environment provides a sink for 

many natural and anthropogenically derived chemicals (Arfsten e t a / . , 

1996; Barron et a/ . , 2000; Law et a/. , 1997), the terrestrial 

environment contains many pollutants in solid, liquid and gaseous 

form (Danaee et a/ . , 2004; Durant et a/ . , 1996; Onuska, 1989). 

Environmental pollutants may contain mutagens which are physical or 

chemical agents that change the genetic information and they can be 

lethal (Kawanishi e t a / . , 2001; Durant e t a / . , 1996). Some mutations 

may lead to detrimental effects at the population level, such as a loss 

of genetic diversity, and this could lead to serious implications for 

species survival and ecosystem functioning (Anderson et a/ . , 1994; 

Bickham e t a / . , 2000; Dixon e t a / . , 2002; Wurgler & Kramers, 1992) 

and have far reaching consequences for organism health, food 

resources and commercial interest. Polycyclic aromatic hydrocarbons 

(PAHs - sometimes polynuclear aromatic hydrocarbons) are a major 

class of organic contaminants in both aquatic and terrestrial 

environments (Arfsten et a/ . , 1996; Choi & Oris, 2000a) and the work 

reported in this thesis deals with aspects of the toxic effects of the 

commonly found PAH Benzo(a)Pyrene (B(a)P) particularly when in the 

presence of ultraviolet light (UVA and UVB). 

1.2 Polycyclic Aromatic Hydrocarbons (PAHs) 



PAHs are a group of organic molecules made up usually of hydrogen 

and carbon comprising two or more fused benzene rings with 

cyclopentene inclusions or alkyi side-chain substitutions (Neff, 1979). 

PAHs are found throughout the environment (Table 1.1) for example, 

measured concentrations in topsoil have been shown to range from 

8.6 to 3881 pg kg'^ (with an average of 397 pg kg'^) in China (Ping ef 

a/., 2007) or 59 to 1350 ng g'^ in Europe (Wilcke ef a/., 2005). PAHs 

have also been detected in water (Poma et aL, 2002) and whilst 

levels in uncontaminated groundwater may range between 0 to 5 ng 

concentrations in contaminated groundwater may exceed 10 mg 1'̂  

(WHO, 2003). i^ore typical concentration ranges for PAHs in drinking 

water are from 1 ng 1'̂  to 11 mg 1"̂  (WHO, 2003). In sea water 

samples PAH concentrations have been measured from 0.28 to 39.57 

pg (Said & El Agroudy, 2006). PAHs can be found in the 

atmosphere (for example, 456 ng m"^ has been measured in Turkey 

(Tasdemir & Esena, 2007)) attached to dust particles and deposited 

via atmospheric processes (Pekey etal., 2007; Tsapakis et al., 2006). 

The main natural inputs occur as releases from volcanoes and forest 

fires. For example, it was shown that there was a daily downward 

flux of PAHs (7.29 pg m"^ per day) from the eruption of Mount Etna in 

Southern Italy (Stracquadanio ef a/., 2003). Anthropogenic sources 

include cigarette smoke, vehicle exhaust (Kuljukka-Rabb e ta / . , 2001), 

incomplete combustion of coal (Binkova ef a/., 1995), coal tar 

(Carlsten ef a/., 2005; Karlehagen ef a/., 1992), wood and 

agricultural burning, waste incineration (Lee etal., 2002), discharges 

from industrial plants, waste water treatment plants and natural gas 

for industrial and domestic purposes (Binkova & Sram, 2004; Cizmas 

ef a/., 2004; Walker, 2001). PAHs are also used in medicines and in 

dyes, plastics and pesticides, whilst others occur in asphalt for road 

constructions. Aquatic contamination by PAHs is largely caused 

through human activities such as petroleum spills, discharges and 

seepages, industrial and municipal wastewater, urban runoff (for 

example, concentrations of individual PAHs have been measured as 



300-10,000 ng l " \ with the concentrations of most PAHs above 1,000 

ng (Cole e ta / . , 1984)) and atmospheric deposition (Albers, 1995; 

ATSDR, 2004; Sargaonkar, 2006). PAHs are especially present in 

large amounts around industrialised areas (Bojes & Pope, 2007) and 

the offshore oil industry and oil tanker wreckages may contribute to 

localised inputs of PAHs to the aquatic environment (Ho et a/., 1999). 

PAHs are persistent in the environment and it has been demonstrated 

that they may travel long distances through the atmosphere or by 

water currents before falling to the earth through precipitation or 

settling as particles to sediment (Chen et a/., 2006a; Chen et a/., 

2006b; Luo et a/., 2006). The transformation and degradation of 

PAHs in sediments is under the control of complex biological and 

environmental factors. PAH concentrations will vary spatially; surface 

waters may contain quantifiable amounts, whilst direct land surface 

runoff and sediments will contain much higher accumulated levels 

(Kilemade et a/., 2004a; Kilemade et a/., 2004b; Van Dolah et a/., 

2005). For example sediment samples from Casco Bay in Maine 

contained total PAH concentrations ranging from 16 to 20,800 pg kg'^ 

dry weight (Kennicutt et a/., 1994). In oxidized surface sediments, 

salinity, season, temperature, and ambient PAH concentration play a 

major role in the rates of PAH transformation (Shiaris, 1989). There 

is therefore the potential for these settled PAHs to become liberated 

back into the atmosphere, or if contained within terrestrial sediments, 

to leach into the groundwater (ATSDR, 1995). 

PAHs have been identified as one of the major hazards to the marine 

and aquatic environment, and can pose a threat to a variety of 

organisms (Nigro eta / . , 2002). Most of the PAH in surface waters are 

believed to result from atmospheric deposition (Santodonato et a/., 

1981) but it is estimated that PAH inputs to water may be more than 

80,000 t yr"^ (NRCC, 1983). Aromatics with 1- and 2-rings generally 

do not persist in the natural environment, but the larger 3- , 4- , 5-



ring aromatics can (Barron & Ka'aihue, 2001; Pelletier et aL, 1997) 

as the larger compounds are not volatile, have low water solubility 

and are much more difficult to degrade. Higher concentrations of 

PAHs are often found in coastal and estuarine samples and can range 

from 0-10.7 pg 1"̂  (Law et a/., 1997). For larger PAHs, toxicity 

operates intracellularly, with effects directed to DNA or to proteins. 

The aromatic content of petroleum, in particular PAHs, has generally 

been assumed to be the principal determinant of the toxicity of oil to 

aquatic organisms (Pelletier ef a/., 1997). However, parent PAHs 

have no functional groups and are chemically quite unreactive, even 

though they can be oxidised In both the natural environment and 

biochemically. For example, chemical dispersants (surfactants) have 

been widely used as a tool for reducing the impact of oil spills on the 

shoreline and subsequently to marine life and because of oxidative 

processes this may increase the bioaccessible fraction and result in 

enhanced bioaccumulation and/or changes in the metabolism of the 

compound leading to indirect or direct toxicity through the food chain 

(Lemiere et a/., 2004; Wolfe et a/., 2000). Short-term LC50 values 

are generally in excess of 0.1 mg 1"̂  (NRCC, 1983) and chronic no-

observed-effect-concentrations (NOEC) for fish and crustaceans 

exposed to PAH exceed 1 pg 1'̂  (Call e ta / . , 1986; OSPARCOM, 1994). 

For humans in proximity to sources of fossil fuel combustion (for 

example, industrial or motor vehicle emissions) the possibility of 

direct inhalation and absorption through the skin of free and particle 

bound PAH presents a serious health hazard and exposure to these 

potentially mutagenic agents can occur both indoors and outdoors; 

usually as a combined exposure to a complex mixture of mutagenic 

substances (for example, cigarette smoke or the emissions from 

diesel exhausts (Vainio et a/., 1990)) that could be a major 

contributing factor in air pollution-related diseases (Weglarz & Skrok, 

2000). Studies have also shown that people living in urban 

environments that are polluted by heavy traffic emissions exhibit high 



levels of oxidative DNA damage (Avogbe et a/., 2005) and increased 

susceptibility to disease (Becker et a/., 2002; Binkova et aL, 1995; 

Lee et a/., 2002). For instance, exposure to air pollution is linked 

with reduced birth weights, increases in premature births and 

reduced semen quality (Sram et a/., 1996). What is certain is that 

there are demonstrable relationships between increases in urban air 

pollution from traffic emissions and the incident of asthma, especially 

in children (Petroeschevsky et a/., 2001; Thompson et a/., 2001). 

Evidence also suggests that exposure of the foetus to air pollutants in 

pregnancy may increase susceptibility to developing asthma (Hamada 

et a/., 2007) and in one study, the incidence of asthma was positively 

linked to the levels of benzene (Thompson et a/., 2001). Other 

allergic respiratory diseases may be exacerbated by exposure to 

environmental air pollution, such as allergic rhinitis (Vimercati et aL, 

2006) but exposure to air pollution is also linked to more serious 

diseases such as lung cancer (Peluso et at., 2005; Vineis et a/., 2007). 

PAHs are also directly ingested by humans through contaminated 

water, and foodstuffs containing quantities of PAH such as barbequed, 

charcoal-broiled, or smoked products and PAHs may circulate 

systemically as measured through blood and urinary samples (Hara et 

a/., 1997; Perico et a/., 2001; Ruchirawat et a/., 2006). PAH 

exposure risks for humans are estimated to be around lO'* - 10^ 

mg/kg/day for cancer risk (ATSDR, 1995). There is no information 

available regarding lethal exposures to total PAH in humans however, 

a dose-related decrease in survival was noted in hamsters after 60 

weeks of inhalation exposure to 46.5 mg m'^ benzo(a)pyrene for 109 

weeks (Thyssen et a/., 1981). Exposure to indoor pollutants (for 

example from cigarette smoke or coal fires (Merlo et aL, 1998; Qian 

et aL, 2007; Salo et aL, 2004)) may predispose people to more 

serious conditions such as asthma, chronic obstructive pulmonary 

disease (COPD), chronic lung diseases and even cardiovascular 

diseases of the arteries and vasculature when combined with non

specific inflammatory agents. For example, air pollutants often 



contain PMio particles (particulate matter < 10 pm in diameter) that 

may cause acute respiratory effects such as asthma, and elevated 

rates of asthma have been suggested to be due to interactions 

between PMio and nitrogen dioxide (NO2) and elevated levels of 

ozone (O3) (Delfino e ta / . , 2002). 

Table 1.1. Examples of PAH and B(a)P detected globally in air, water 

and sediments. 

Sample Type 

and Location 

Total PAH or B(a)P 

concentrations detected 
Reference 

Freshwater -

Europe 
Total PAH - 23-1285 pg kg"^ Aouadene eta/ . , 2008 

Sediment - UK B(a)P - 3600 pg kg-' demons e ta / . , 1999 

Sediment -

Africa 
Total PAH - 78-25,000 ng g"' Gaspare e ta / . , 2009 

Sediment -

USA 
Total PAH-1500-3000 pg g"^ Ingersoll et a/., 2002 

Air - Europe B(a)P - 2.1 ng m"^ 
Jedrychowski et a/., 

2007 

Seawater - UK Total PAH - 0-10.7 pg I"' Law e ta / . , 1997 

Freshwater -

China 
Total PAH - 107-707 ng g"' Liu e ta / . , 2008 

Sediment -

China 
Total PAH - 189-637 ng g"' Luo et a/., 2006 

Air - Europe B(a)P - 1.1 ng m'^ Menichini e ta / . , 2007 

Air - USA Total PAH - 4.2-160 ng m"^ Naumova eta/ . , 2002 

Sea water - UK Total PAH - < l - 5 0 ng 1"' Readman e ta / . , 1982 

It has been widely demonstrated that once ingested certain PAHs can 

be metabolised to much more carcinogenic compounds within the 

body. Benzo(a)pyrene (B(a)P) (C20H12, CAS Registry: 50-32-8) 

exemplifies this. I t is an archetypal PAH and toxicologically one of 

the best studied and therefore was the PAH of choice for this 



investigation. I t is also a ubiquitous environmental contaminant 

produced by various combustion processes and occurs in cigarette 

smoke, charbroiled foodstuffs and is often a component of PAH based 

air pollution (Boelsterii, 2003). I t has been estimated that the total 

amount of B(a)P produced in the United States is between 300 and 

1,300 metric tons annually (NRC, 1983). Direct inhalation of 

cigarette smoke can contain levels of 0.5-7.8 pg B(a)P per 100 

cigarettes and cigarette smoke environments may contain between 

0.4-760 |jg m^ B(a)P (Guerin et a/., 1992). B(a)P enters the body 

through direct inhalation (affecting the respiratory tract), through 

ingestion (affecting the gastrointestinal tract) and topically via the 

skin. For example, human respiratory exposure to 0.0001 mg m^ 

B(a)P over 6 months to more than 6 year periods caused serious 

effects such as reduced lung functions and throat and chest irritations 

(Gupta e ta / . , 1993). Placental exposure to B(a)P (50 pmol) has been 

shown to stimulate human gonadotropin release by first trimester 

human placental explants in vitro (Barnes & Shurtz-Swirski, 1992) 

suggesting that B(a)P can alter human placental endocrine function 

early in pregnancy. Concentrations of B(a)P in air are estimated to 

be 0.095-0.0435 pg per day, in drinking water as 0.0011 pg per day 

and in food incidental ingestion is estimated at 0.16-1.6 pg per day 

(Santodonato et a/., 1981). B(a)P levels have been estimated from 

several countries in different foodstuffs, for example; margarine (0.2-

6.8 ppb), smoked fish (trace-6.6 ppb), smoked or broiled meats 

(trace-105 ppb), grains and cereals (not detected-60 ppb) and 

vegetables and fruits (from not detected to 24.3 ppb and 29.7 ppb) 

(Santodonato e ta / . , 1981). B(a)P as with all PAH may accumulate in 

the body in the lipids due to the lipophilic properties. B(a)P has low 

water solubility, low vapour pressure and high (6.06) octanol-water 

partition coefficient (Kow) (Mabey et a/., 1982) resulting in its 

partitioning mainly between soil (82 % ) and sediment (17 % ) , with 

approximately 1 % partitioning into water and < 1 % into air, 

suspended sediment and biota (Hattemer-Frey & Travis, 1991). This 



means that as with other 5- ring PAHs, they are found predominantly 

in the particle phase (Zhou et aL, 2005). However, it has been 

estimated that 1-2 tons of B(a)P were released from municipal 

sewage effluents and 0.1-0.4 tons of B(a)P were released from 

petroleum refinery waste waters in the United States in a year 

(Brown & Weiss, 1978). 

I t has been shown that B(a)P is noncovalently associated with 

lipoproteins but not acidic compartments or mitochondria. B(a)P 

enters into cells from plasma lipoproteins (Plant et aL, 1985) and 

biodistribution studies have shown different localisation of B(a)P in 

rat organs and tissues depending on lipoprotein classes. The liver 

and adrenals showed the highest levels of B(a)P when all classes of 

lipoproteins were used, but especially with high-density lipoproteins 

(Panin e ta / . , 1991; Polyakov e ta / . , 1996). B(a)P can exert multiple 

effects in the cell and trigger multiple pathways including covalent 

binding with DNA, activation of the aryl hydrocarbon receptor (AhR) 

and activation of oxidative stress pathways. 

B(a)P biotransformation leads to reactive electrophilic metabolites 

which are able to bind covalently to DNA to form DNA adducts (Abe et 

aL, 1983; Diamond e ta / . , 1980; Durant e ta / . , 1996; Ortiz-Delgado 

et aL, 2007). The enzymatic oxidation and hydrolysis of B(a)P to a 

more water soluble polar form occurs in a multi-step process (Figure 

1.1). B(a)P is firstly oxidised to a 7,8-epoxide and then hydrolysis 

transforms this to trans-7,8-diol-epoxide catalysed by epoxide 

hydrolase. Oxidation forms the 9,10-epoxide that contains an active 

centre which is the carbon atom at the C-10 position. The final 

electrophilic intermediate following this sequence of metabolic 

activation steps is the "ult imate metabolite and carcinogen" B(a)P 

7,8-diol-9,10-epoxide (BPDE). From this point the carcinogenicity of 

B(a)P becomes more apparent as this compound can circulate 

systemically and intercalate and react with DNA at guanine-cytidine 
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(G-C) base pairs creating DNA adducts and causing the modification 

of guanine. The normal base-pairing is G-C (with three hydrogen 

bonds), however the presence of a B(a)P adduct at the N-2 amine 

position of guanine precludes binding via these three hydrogen bonds 

and instead the guanine adduct will pair with adenine, causing a base 

transversion i.e. the major adduct on DNA is B(a)P-N2-dG (Kushman 

ef a/., 2007) and this N2 amine position where the B(a)P adduct is 

covalently bonded interferes with one of the hydrogen bonds, so this 

adduct will only pair with adenine. Therefore, in the next cell cycle 

the adenine (wrong base) will pair with thymine (T) which results in a 

base pair transversion. If this mismatch escapes the cell's repair 

mechanisms then the change becomes permanent and a point 

mutation will arise. This lesion i.e. point mutation may cause DNA 

strand breaks, both single strand and double strand (Mouron ef a/., 

2006; Nwagbara ef a/., 2007). These effects may be irreparable and 

lead to permanent mutations in the cell that will continue to be 

reproduced when the cells replicate (Mouron ef a/., 2006). Mutation 

through B(a)P adducts may have dangerous repercussions possibly 

leading to abnormal growth of the cells and cancer (Mahadevan ef a/., 

2005). However mutation induction is not necessarily deleterious for 

an organism as mutations that occur in inactive regions of the 

genome may have little downstream biological effects but if 

mutations hit a proto-oncogene (abnormal activation or 

overexpression) or a tumour suppressor gene (inactivation) then the 

alteration is potentially carcinogenic (Li ef a/., 2004). As B(a)P 

metabolites can induce G-T transversions (Dong ef a/., 2004) in 

specific codons (the 12^^) of the ras family of proto-oncogenes then 

the gene may possibly be converted into an active oncogene and is 

therefore potentially carcinogenic. Figure 1.1 illustrates the 

bioactivation of B(a)P to the ultimate metabolite and carcinogen, 7,8-

diol-9,10-epoxide (Routledge et aL, 2001). The excreted metabolites 

in bile have been shown to be mutagenic (Chipman etal., 1983) and 



in the long term may interfere with normal organ functions (Mann et 

a/., 1999; Savabieasfahani e ta / . , 1999; Smith e ta / . , 2007). 

Benzo(a)pyrene Benzo(a)pyrene 
7.8 epoxide 

OH 
Benzo(a)pyrene 

7.8 diol 

OH 

Benzo(a)pyrene 
7,8 dio^9.10 

epoxide 

Figure 1.1 Bioactivation of B(a)P to the ultimate metabolite and 

carcinogen, 7,8-diol-9,10-epoxide (Adapted from Boelsterii, 2003). 

The activation of the AhR is considered an important determinant of 

mutagenic potency of chemicals (Cheung et a/., 1993) including PAHs 

(Machala et a/., 2001). For example, the AhR is normally in the 

cytoplasm as a protein complex including heat shock protein 90 

(Hsp90), an immunophilin like molecule known as AhR associated 

protein 9 (ARA9) and chaperone p23 which prevent the AhR from 

binding with DNA and allow ligand binding of the AhR with a 

xenobiotic such as B(a)P (Chen & Perdew, 1994; Kaslauskas et a/., 

1999; Perdew, 1988; Yu et a/., 2008). Once B(a)P has bound to the 

AhR it translocates into the nucleus where a heterodimer is formed 

with the AhR nuclear translocator. This heterodimer binds to 

xenobiotic responsive enhancers that are located proximally to the 

promoter region of specific genes including CYPlAl , CYP1A2 and 

CYPIBI (Chen e ta / . , 2003; Elbekal e ta / . , 2004; Hooven e ta / . , 2005) 

which are enzymes for metabolic activation of B(a)P. B(a)P Is also 

subject to redox cycling following metabolic activation which can 

generate reactive oxygen species that may be involved in stress 

responses. For example, one of the major metabolites is B(a)P-l ,6-

hydroquinone which can be autoxidised to B(a)P-l,6-semiquinone 

and finally to B(a)P-l,6-quinone (Bolton et a/., 2000). The 

electophilic metabolites produced from B(a)P can modify and activate 

10 



a protein complex in the cell which can activate the antioxidant 

response element (ARE)/ electrophilic response element (EpRE)-

binding protein. The ARE/EpRE-binding protein translocates into the 

nucleus and binds to the ARE/EpRE located in the promoter region of 

critical genes concerned with antioxidant and stress responses 

including GST, NQO, ALDH and the heme oxygenase-1 (HO-1) gene 

(Bolton et aL, 2000). Reactive oxygen species have been shown to 

induce oxidative stress (for example, lipid peroxidation) based on in 

vitro studies using fish liver microsomes and a fish cell line (Choi & 

Oris, 2000a; 2000b). It has also been hypothesised that B(a)P acts 

as a photosensitiser when exposed to UVR (Strniste et a/., 1980) and 

the metabolites from B(a)P, in particular BPDE, may also interact with 

UVR to increase the mutation frequencies in the supF gene 

(Routledge e ta / . , 2001). 

1.3 Ultraviolet Radiation (UVR) 

Solar UVR (100-400 nm) is a ubiquitous environmental agent and 

induces acute and chronic reactions in both human and animal skin 

(Ichihashi et aL, 2003). Solar radiation is also a major factor in the 

development of certain types of skin cancer, with the carcinogenic 

properties being linked to the UVR region (200-400 nm) (lARC, 1992; 

Ting et aL, 2003). The nature of carcinogenesis is dependent upon a 

contingency of factors: namely the UV exposure t ime, wavelength, 

frequency and the UV dose received (De Gruijl & Forbes, 1995). UVR 

consists of highly energetic photons that have the potential to 

damage many biological molecules, including DNA. The actual 

absorption of UVR by different biological molecules is highly 

dependent upon wavelength; therefore emphasis is generally given to 

the wavelength dependence of the detrimental effects of UVR. UVR 

wavelengths range between 100 nm and 400 nm and together 

comprise the most energetic region of the optical radiation spectrum 

(Cridland & Saunders, 1994). This range is outside that of visible 
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light (400-700 nm). UVR is conventionally classified into three 

wavelength categories: UVC (<280 nm), UVB (280-315 nm) and UVA 

(315-400 nm) (Figure 1.2). 

Short wavelength UVC is energetically most active and damaging to 

living tissues, but is completely blocked in the upper atmosphere by 

ozone; however, studies have demonstrated its direct mutagenic 

effect on DNA (McLuckie ef a/., 2004). UVB has received the greatest 

attention as the major risk factor in skin carcinogenesis (Thomas-

Ahner ef a/., 2007). Although UVB is partially blocked by ozone it is 

known to induce genotoxicity through DNA damage (Ikehata ef a/., 

2003; Mitchell ef a/., 1999; Morales ef aL, 2003; Tsilimigaki ef aL, 

2003), in particular the formation of cyclobutane pyrimidine dimers 

(CPDs) and (6-4) photoproducts (Figure 1.2) which induce mutations 

in epidermal cells, potentially leading to uncontrolled cellular 

proliferation. The acute effects of UVB on the skin are mainly 

adverse, such as erythema, which if severe enough can cause 

blistering and destruction of the skin layers (including necrosis and 

apoptosis), and immune suppression (Young, 1987; Brash ef aL, 

1996; Nghiem etal., 2001; Norval etal., 2007). 

UVR reaching the earth's surface can range widely due to altitude and 

seasonality. For example in Europe measurements were made 

between 7.39-36.50 M J m"^ day'^ at 3576 m above sea level and 

5.09-29.45 M J m"^ day" ^ at 577 m above sea level between winter 

and summer seasons respectively in each location (Blumthaler ef aL, 

1997). Ozone plays a critical role in absorbing solar UV radiation in 

the upper atmosphere and therefore protecting life on Earth. 

However, stratospheric ozone levels have declined, and evidence has 

long suggested that a loss of ozone would affect the flux of UVB 

levels at the Earth's surface (Calkins & Thordardottir, 1980; Karentz 

& Lutze, 1990; Madronich et al., 1995; Malloy et aL, 1997; Taalas ef 

al., 1997). Therefore, a reduction in ozone would lead to an increase 
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in UVB levels. This increase would not only detrimentally affect man, 

but also agricultural systems, plant and animal ecosystems, and the 

marine environment (Bentham, 1993; de GruijI e ta / . , 2003; Manning 

& Van Tiedemann, 1995; Mayer, 1992). For example, in the aquatic 

environment, many studies have recognised UVR as an environmental 

stressor (e.g. along with water quality or pH (Hatch & Blaustein, 

2000)) that can penetrate through the water column (Hader et a/., 

1995; Kuhn e ta / . , 1999; Wulff et a/., 1999). Biologically significant 

levels of UVR are known to penetrate tens of metres in clear 

freshwater lakes and marine waters which are relatively low in 

productivity (Kuhn eta/ . , 1999) and shallow water sediments (Garcia-

Pichel & Bebout, 1996). For wild populations in clear water high-

altitude lakes there may be considerably higher mortalities in fish 

from exposure to increased UVB (Battini et a/., 2000). Variability in 

cloud cover, water quality, and vertical distribution and displacement 

within mixed layers also affects the flux of UVB radiation penetrating 

the water column (Karentze & Lutze, 1990). For instance, in less 

transparent environments, the damaging effects of UVR may be 

attenuated within the first 30-40 cm (Battini et a/., 2000) and whilst 

it has been demonstrated that dissolved organic matter (DOM) is one 

of the most important factors affecting the attenuation of UVR in 

water (Bracchini et a/., 2004), quantification of surviving cells at 30 

metres has indicated biological responses even at these depths 

(Karentze & Lutze, 1990). Surface solar spectral irradiance has 

shown daily fluctuations intertidally to maximal levels of 670 pW cm"^ 

for UVA and 26 pW cm'^for UVB whilst measurements were 3000 pW 

cm"^ for UVA and 160 pW cm'^ for UVB in an estuarine location 

(Barron et a/., 2000). Total intensities of visible light at the surface 

of the ocean were > 3000 pW cm ^ 4500 pW cm"^ (UVA) and 225 pW 

cm-2 (UVB) (Barron eta / . , 2000). 
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x-ray UVR \ Visible 
\ 
\ 

CPD \ \ 
Hyd \ 
(6-4) P-P 

• \ • \ 
ROS \ 
SSB \ 
DSB \ 
8-HG \ 

Erythemal 

Ozone absorption Transmitted by normal ^ lass 

uvc UVB UVA \ Visible 

Short Long 
Wavelength 

Figure 1.2 The UVR spectrum showing some of the effects of each 

wavelength and a summary of the principle pathways of UVR-induced 

DNA damage. Pathways that produce the most common 

photoproducts at each wavelength are shown. Abbreviations: (6-

4)pp, (6-4) photoproducts; Hyd, pyrimidine hydrates; CPD, 

cyclobutane pyrimidine dimers; SSB, single strand breaks; DSB, 

double strand breaks; PDC, protein-DNA crosslinks; 8-HG, 8-

hydroxyguanine; ROS, reactive oxygen species (adapted from 

Cridland & Saunders, 1994). 
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UVR levels reaching the Earth's surface are monitored by various 

laboratories (Roy et aL, 1995) and although there has been some 

detection and quantification of UVA levels, monitoring has mainly 

focused on fluctuating UVB levels (McKenzie e ta / . , 2007) because it 

is considered to be the most important (and most damaging) 

wavelength as terrestrial UVA levels show little flux (Ilyas et aL, 

1988). Conversely, the overall contribution of the more abundant 

UVA wavelengths (320-400 nm) to the skin is poorly understood. 

UVA radiation comprises the majority of the UVR reaching the Earth's 

surface and moderate exposure to UVA has been linked to the 

induction of oxidising reactions in the body and leads to 

melanogenesis (Yanase et aL, 2001), skin inflammation, especially 

when skin has been exposed to photo-sensitising chemicals that may 

lead to photo-toxicity and photo-allergy (Albes e ta / . , 2004; Burren et 

aL, 1998; Danaee et a/., 2004) and direct mutations in the DNA 

including single strand breaks (Cayrol et a/., 1999), C-T transitions, 

(found at dipyrimidine sites), and CC-TT random substitutions. UVA 

wavelengths are not directly absorbed by DNA however it is now 

known that UVA penetrates into the deeper dermal cells causing ROS 

production (Agar et aL, 2004). Interestingly, recent research has 

shown that CPDs, more typically associated with UVB, were produced 

in significant yield in whole human skin exposed to UVA and 

furthermore, CPD production was greater than production of the 

oxidative lesion, 8-oxo-7,8-dihydro-2'-deoxyguanosine (Mouret et aL, 

2006). 

Skin is an incredibly complex organ, and differs between organisms. 

Human skin can be split into 3 regions, at the bottom there is the 

subcutaneous layer, followed by the dermis, and finally the epidermis 

on the surface. The subcutaneous layer consists of a layer of adipose 

tissue that insulates the body and provides mechanical protection 

against physical shock. This subcutaneous fatty layer is fed by blood 

vessels and nerves that carry nutrients and essential components to 
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the skin. The dermis is the major component of the skin and is 

typically several millimetres thick and is composed of a network of 

connective tissue containing structures such as blood and lymphatic 

vessels, nerve endings, pilosebaceous units (hair follicles and 

sebaceous glands), and sweat glands. This extensive vasculature is 

essential for regulation of body temperature whilst also delivering 

oxygen and nutrients to the tissue and removing toxins and waste 

products. The epidermis is highly complex and is normally described 

as containing four histologically distinct layers which are the stratum 

germinativum on the inner section, the stratum spinosum, stratum 

granulosum and the stratum corneum on the surface. 

Evidence, both experimental and epidemiological, has implicated UVR 

in the induction of both basal cell (BCC) and squamous cell 

carcinomas (SCC) the most common and generally the most easily 

treated forms of cancer (Urbach, 1997). In recent years there has 

been an increase in personal leisure time which has led to an increase 

in outdoor pursuits and holiday time to tropical destinations and with 

this an increase in skin cancer incidence as epidemiological studies 

have shown that tumour incidence correlates positively with 

circumstances that elevate cumulative skin exposure to UV radiation 

(Fears e ta / . , 2002; Tsilimigaki e ta / . , 2003; Whiteman e ta / . , 2001). 

However, even at home or in an office environment there is a risk of 

exposure to UVR which may be emitted by fluorescent and tungsten-

halogen lighting, its effects however are thought to be minimal 

(Swerdlow et a/., 1988). Furthermore, tumours are predominantly 

seen in individuals and ethnic groups with weakly pigmented skin 

(Chuang e ta / . , 1990; Czarnecki & Meehan, 2000). Tumour incidence 

tends to be associated with body surfaces that receive the greatest 

UVR exposure, such as the head and neck (Haenszel, 1963; McCord 

eta/ . , 2000). 
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Malignant melanoma is a highly aggressive cutaneous cancer of 

melanocytes and is of growing concern since it is increasingly 

affecting young adults and is often lethal (Fears ef aL, 2002; 

Ichihashi ef aL, 2003; Phillipson ef aL, 2002; Vitaliano, 1978; 

Whiteman & Green, 1999). Its incidence is increasing faster than any 

non-cutaneous cancer and primarily occurs in pale skinned 

populations (Armstrong & Kricker, 1994; Diepgen & Mahler, 2002), as 

with other types of skin cancers (Armstrong ef aL, 1997). Melanoma 

incidence is associated with skin exposure to UVR (lARC, 1992) and 

suggestions have been made that melanoma risk is related to 

childhood exposure and intermittent UVR exposure as adults 

(Armstrong et aL, 1997; Garland et aL, 1990; Lee & Strickland, 1980; 

Whiteman ef al., 2001). This relationship is more complicated than 

with other skin cancers since it seems to involve intense but 

intermittent exposures to sun which may be related to increased 

global travel to tropical destinations by a larger proportion of the 

population (Agredano et aL, 2006; Rafnsson etal., 2000). Melanoma 

incidence in individuals with outdoor occupations is actually lower 

than for those receiving intermittent exposures (Gallagher ef aL, 

1996; Lee & Strickland, 1980; Linet ef aL, 1995) and melanoma 

incidence is related to latitude (Armstrong, 1984; Whiteman & Green, 

1999). Other factors for melanoma risk include the extent of 

intermittent exposure to the sun, skin type and the numbers of 

dysplastic nevi, which are possible precursors to melanoma (Tucker 

etaL, 1997). 

Fish skin differs most notably from terrestrial vertebrate skin mainly 

where the epidermal layers are in contact with the environment 

(Frenkel et aL, 2000; Hawkes, 1974; Sadovy et aL, 2005; Whitear ef 

al., 1980). The skin of fish shows greater susceptibility to sunburn 

damage than human skin when exposed to UVB because fish skin 

lacks a keratinised outer layer, has dividing cells in all layers of the 

epidermis, and is often lacking in protective epidermal melanin-
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containing cells (Bullock et a/., 1978; Bullock, 1982). Fish are 

covered in scales which are blanketed with epidermal cells and 

interspersed with mucosal cells, an essential part of the fish 

epidermis, providing an immune defence and considerable protection 

against both photoproduct formation and sunburn (Fabacher & Little, 

1985; Meador et a/., 2000). However, the scales can become 

damaged; particularly when fish are under stress conditions (e.g. in 

high population density loads in aquaculture conditions) and stress 

may alter the skin and immune functions (Iger et a/., 1992) leading 

to secondary infections and increased susceptibility to sunburn 

(Fabacher ef a/. 1994; Little and Fabacher, 1994). A study conducted 

in a high altitude farm was able to demonstrate physical damage to 

fish such as focal thickening of the dorsal f in, which progressed to fin 

erosion culminating in necrosis and sloughing of the entire fin 

(Bullock & Coutts, 1985) and photodermal necrosis has been reported 

in simulated and aquaculture conditions (Little & Fabacher, 1994; 

Roberts & Bullock, 1981). Sunburn has been shown in many fish 

species including salmonid fishes such as Rainbow trout 

{Onchorynchus mykiss), Apache trout {Onchorynchus apache) and 

Lahontan cutthroat trout {Onchorynchus clarki henshawi) within 2 

days of exposure, (Little & Fabacher, 1994). UVB may degrade the 

epidermal layer of fish skin, causing the appearance of sunburn cells, 

epidermal hyperplasia, and reducing mucus secretion, sloughing the 

mucus layer (Little & Fabacher, 1994; Sharma e ta / . , 2005). In vivo, 

Kaweewat & Hofer (1997) showed that UVB significantly reduced the 

number of goblet cells In the dorsal epidermis In both cyprinid fish 

and salmonids which may have consequence for non-specific defence 

in immune function (Kaweewat & Hofer, 1997). 

UVR-lnduced stress can reduce Immune system functioning, both 

local and systemic, and immune modulation is induced by both UVA 

and UVB radiation (Jokinen et a/., 2000; Salo et a/., 2000). UVB 

exposure has lead to altered respiratory burst in blood leucocytes and 
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changes in major lymphatic organs (Jokinen et a/., 2000). 

Additionally should radiation levels compromise the Integrity of the 

epidermis, then invasion by a variety of opportunistic pathogens, 

such as Vibrio spp., mycobacterial Infections and fungal pathogens 

{Saprolegnia) (Little & Fabacher, 1994), combined with physical 

damage can cause Inevitable risk of transmission throughout the 

stock. For example, UVB induced epidermal damage can be 

exacerbated by parasitic Invasion due to the epidermis already being 

compromised (Bullock, 1985). In contrast, UVA has produced only 

minor effects In Immune function. These data suggest that UVB 

induced a strong stress response (such as the increase in 

granulocytes, decrease In lymphocytes and elevated plasma Cortisol 

levels) and that UVB may be a modulator of Immune parameters 

(Jokinen et aL, 2000). These deleterious effects may certainly have 

serious implications for the host fish, for the economics of commercial 

fish farms, and for the surrounding environment. 

1.4 Photo-Enhanced Toxicity of PAHs 

Photo-enhanced toxicity Investigates the effects of the environmental 

variable UVR on environmental contaminants such as PAHs (McClosky 

& Oris, 1993; Tllgman Hall & Oris, 1991). For example, a well 

documented case Is the Interaction of arsenlte and UVR, which is 

known to cause impairment of DNA repair enzymes, which In turn 

may lead to enhanced UV mutagenesis (Bau ef a/., 2001 ; Danaee et 

ai., 2004). Often even low levels of solar irradiance are adequate to 

induce photo-enhanced toxicity, suggesting that this may be a 

concern even in habitats with low-UV transparency (Barron et a/., 

2000; Pelletier et a/., 1997). A summary of some studies that have 

investigated the interactive toxicity of PAH and UVR Is presented in 

Table 1.2. The data presented in this table Indicate that PAH and 

UVR can interact to Increase toxicity but the genotoxicity or 

mechanisms underlying any damage have not been elucidated 
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makeing this subject worthy of further study using in vitro models to 

begin to untangle the effects of this interaction. Most PAHs show 

little toxicity below their water solubility concentration (Yamada et a/., 

2003), but even at such low concentrations they may become highly 

toxic through photo-enhanced toxicity (Barron et a/., 2003; Pelletier 

ef a/., 1997; Schirmer et a/., 1997). Photo-enhanced toxicity can 

occur through two mechanisms: photo-modification and photo-

sensitisation (Mallakin et a/., 1999). Photo-modification is the 

mechanism by which UVR causes a structural change to the chemical 

which may be to a more toxic form (Huang ef a/., 1993). Photo-

modification may also occur through the process of photo-

degradation, whereby UVR and microbial action work to degrade the 

PAHs. Guieysse and co-workers (2004) showed that UV treatment 

along with microbial action acts preferentially to degrade larger 4-

and 5-ring PAHs but does not work so well on degrading the smaller 

PAHs, further, they were not able to characterise the photoproducts 

formed. 
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Table 1.2 Summary of some recent studies investigating the 

interactive toxicity of PAH and UVR. 

Model E x p o s u r e 
c o n c e n t r a t i o n s R e s p o n s e R e f e r e n c e 

Pacific herring 
{Clupea pallasi) 
eggs and larvae 

Weathered Alaska 
oil (total PAH 
content: 8 pg 1'*), 
sunlight (4 h, 
1,350 pW cm'^ 
UVA, 14 pW cm*^ 
UVB, 14,900 pW 
cm"^ visible) 

Toxicity of weathered 
oil increased with 
sunlight: 1.5-48-fold 
over control. 
Photoenhanced 
toxicity occurred when 
oil present in larval 
tissue. 

Barron et al. 
2003 

Bluegill sunfish 
{Lepomis 
macrochirus) liver 
microsomes 

Anthracene (0.77, 
1.54, 7.7 pg mr^) 
& solar ultraviolet 
radiation (SUVR) 
(UVA: 8 3 . 7 2 ± 2.2 
pW cm'^ UVB: 7.0 
± 0.35 pW cm'^) 

Photoinduced toxicity 
of anthracene 
manifested in part 
through lipid 
peroxidation. High 
levels of reactive 
oxygen species (ROS) 
produced. 

Choi & Oris, 
2000a 

Topminnow 
{Poedliopsis lucida) 
hepatoma cell line 
(PLHC-1) 

Anthracene: 
(2.16, 4 .33, 8 .65, 
21.6, 
and 43.3 pM) 
& solar ultraviolet 
radiation (SUVR): 
(UVA: 159.55 ± 
5.69 pW cm*^ 
UVB: 
3.83 ± 0.28 pW 
cm*^) 

Pre-exposure of 
anthracene/cell 
culture media to SUVR 
caused photo-
modification and 
reduced the 
phototoxicity of parent 
anthracene compound 
to PLHC-1 

Choi & Oris, 
2003 

Northern pike {Esox 
fucius L.) 

UVB (1.0, 1.8 or 
2.7 kJ m"̂  per 
day) & retene (3, 
9, 30 & 82 pg 1'̂ ) 

Retene ( 9 - 8 2 pg r^) 
induced CYPIA with & 
without UVB. Severe 
skin damage in co-
exposed larvae. 
UVB alone significant 
mortality. 

Hakkinen et 
al., 2004 

Rainbow trout 
{Oncorhynchus 
mykiss) lenses 

Fluoranthene 
(4900 nm), B(a)P 
(265 nm) , 
creosote (70 pg 
ml"*), fluorene 
(128 pM) & UVR 
(UVA 9.27 pmol 
m-2 s"* for 12 
hours. 

Photomodification of 
PAH not 
cataractogenic, 
simultaneous 
exposure to UV and 
PAH - increased mean 
focal length variability 
(FLV) . 

Laycock et 
al., 2000 

In vivo exposure to 
mouse skin 

UVA (40 /50 /100 
kJ m'2) & B(a)P 
(20 /200 /400 
nmol/mouse) 

Synergistic increase in 
genetic damage 8i 
carcinogenic processes 

Saladi et al., 
2003 

Rainbow trout 
{Oncorhynchus 
mykiss) primary gill 
cells (RTgil l -Wl) 

Liquid creosote (1 
g mr^) 
UV (UVB: 53 pW 
cm-2) 

UV enhanced the 
toxicity of creosote. 

Schirmer et 
al., 1999 
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Photo-sensitisation is the postulated mechanism by which UV energy 

is absorbed by the chemical within the organism causing subsequent 

tissue injury; the photo-sensitised chemical (PAH) is excited by light 

energy to a triplet energy state. The energy associated with these 

excited state PAH molecules is released by non-radiative pathways 

and can indirectly generate singlet oxygen (Zhang et a/., 2004) and 

other ROS, such as superoxide and hydroxyl, that may cause tissue 

damage (Choi & Oris, 2000a). The toxicity of PAHs has been shown 

to increase to greater than 1000 times in the presence of UVR in 

numerous laboratory studies (Arfsten et a/., 1996). The combined 

effect of UVR and other environmental factors may result in 

synergistic effects (McLuckie et a/., 2004), leading to increased DNA 

damage. Whilst links have been shown between levels of arsenic 

ingested into the body and seemingly coincidental increases in skin 

cancer, there are suggestions that rates of air pollution increases over 

the recent years are paralleled by increased rates of skin cancer over 

this period (Goldsmith, 1996; Saladi et a/., 2003). The current 

concerns over climate change are also beginning to be reflected by 

increasing research into the effects of UVR on human health and the 

effects of increasing air pollution (Avogbe et at., 2005; Sorensen et 

a/., 2003) causing diseases such as asthma, allergic disorders and 

deaths due to the effects of air pollution as well as the impacts on 

biodiversity and environment. Many studies have concentrated on 

the toxicology of the PAH compounds and UVR (Boese et ai, 1997; 

Huang e ta / . , 1993; Hoist & Giesy, 1989; Okay & Karacik, 2007), but 

have looked only at the toxicity and not investigated the genetic 

impact of the interactions. Other studies have concentrated on the 

impacts of PAH and UVC (McLuckie et a/., 2004) (in the natural 

environment UVC is mainly blocked by ozone) or PAH and UVB (Lean, 

1998). These studies have generally not taken into account UVA, a 

major part of the UVR spectrum and evidence suggests that UVA may 

have an important function in the toxicology of PAHs (Weinstein & 

Diamond, 2006) and that targeted research needs to address this. 
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1.5 The Use of I n Vitro Model Systems in Environmental 
Toxicology 

There Is greater complexity and variability in trying to accurately 

Interpret the results of studies at high levels of organisation due to 

the difficulties In determining cause and effect relationships between 

contaminant changes and varying ecosystem endpolnts (Clements & 

Kiffney, 1994). There Is an ever increasing load of chemicals being 

released Into the aquatic and terrestrial environment (Chen et a/., 

2006b; Wang et a!., 2006) and most chemicals lack adequate 

toxicological data, in most cases causal links between the observed 

abnormalities and the chemical exposure are not established (Lacour 

et a/., 2006). Therefore, the use of a more reductionist and 

mechanistic approach to predict or establish safety factors is essential 

In order to predict effects at higher levels of biological organisation 

(Relchert et a/., 1998). The use of in vitro cell culture conditions 

provides good experimental models to Investigate the toxic potentials 

of PAHs and UV under controlled laboratory conditions (Crews et a/., 

1995; Schirmer e ta / . , 2000; Taylor & Harrison, 1999). 

There is currently tremendous growth In molecular and cellular 

toxicological approaches, mainly attributed to the rapid development 

of quick tests that incorporate the use of in vitro activation systems 

(Landolt & Kocan, 1983; Segner, 1998). The uses of cultured cells 

for toxicological research and screening have been recognised for 

many years in the field of biomedical research (Allen-Hoffman & 

Rheinwald, 1984; Butterworth e ta / . , 1989; Garcon e ta / . , 2006) but it 

has only been in the last few years that in vitro cell culture work Is 

starting to find favour in aquatic and environmental toxicology 

(Castano et a/., 2003). However, although the use of in vitro 

systems as a replacement for in vivo studies is often criticised for 

lacking specificity for the particular system under Investigation, the 

application of in vitro cell culture methodologies for toxicity testing 
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offers a number of scientific, technical and ethical advantages 

(Segner, 1998). 

In vitro methodologies link with the tier-structure approach of 

establishing causative relationships between toxicants and biological 

effects before progressing to in vivo studies. Whilst in vitro studies 

provide Information about the 'Intrinsic' toxic effects of chemicals, the 

in vivo studies provide the 'expressed' toxic effects, taking Into 

account the uptake, metabolism and repair capacity of the organism 

In question. The in vitro approach of using cultured fish cells is 

suitable for the tiered approach of testing aquatic contaminants for 

genotoxicity and cytotoxicity assays (Babich & Borenfreund, 1987; 

Dixon e ta / . , 2002). Although the information obtained from in vitro 

tests is not enough to make predictions at the ecosystem level, 

cellular effect studies are Important because the primary interactions 

between chemicals and biota occurs at the surface of, or within cells 

therefore cellular effects provide an excellent system for establishing 

intrinsic toxic mechanisms and the underlying controls which regulate 

complex systems at the scale of the whole organism (Fent, 2001). In 

vitro tests are often commended for being more sensitive than using 

whole animal systems and they have the advantage of being less 

time-consuming and less expensive. Technically, in vitro tests enable 

rapid screening of large numbers of samples with economy of both 

space and resources. This makes them particularly valuable as a 

means of assessing the effects on living systems of the ever-

increasing loading of man-made chemicals in the environment. There 

is also a good ethical rationale for the use of cultured cells because 

their use significantly reduces the number of animals that are 

sacrificed through in vivo experimentation (Segner, 1998). In vitro 

models, such as the use of cell lines are useful for establishing 

baseline data on potentially toxic agents, and can provide essential 

insight into ecotoxicological processes and play a key role in 

elucidating modes of action (Fent, 2001). When conducting clinical 
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research with carcinogens, it would be unethical to administer 

carcinogenic compounds in clinical trials (Weindling, 2001) as 

procedures must be approved by ethical review, and carried out in an 

approved manner that minimises long term health risks to the subject. 

However, even with approval by an ethics committee, clinical trials 

may go wrong and pose serious risks to the volunteers (ASCO, 2003). 

However, the drawbacks to in vitro testing are numerous. For 

instance, in vitro systems lack the complete defence mechanisms of 

entire organisms and are often chosen on the basis of their 

convenience and availability rather than their relevance to the 

ecosystem under investigation (Landolt & Kocan, 1983). The types of 

in vitro models routinely used are organ perfusion, organ/tissue slices, 

tissue explants, primary cell homogenates and established cell lines. 

In biomedical research, the use of in vitro cell culture systems has 

been utilised effectively for many years (Abe et al., 1983; 

Butterworth et al., 1989), but within environmental toxicological 

research, in vitro systems incorporating cell lines have only been 

recognised as important tools for the last decade (Castano ef al., 

2003; Parry, 2002). Cell lines from aquatic organisms such as 

amphibians and reptiles have been established but have found little 

application in toxicology; however, the use of in vitro systems 

incorporating fish cell lines is of growing importance as a tool in 

aquatic toxicology (Villena, 2003; Pent, 2001; Segner, 1998). 

1.6 The Use of Cell Cultures for In Vitro Studies 

In human skin cancer studies, human keratinocytes are often used to 

investigate the effects of UV radiation on the skin (Marrot et al., 2004; 

Seo ef al., 2002). The epidermis is mainly constituted of 

keratinocytes. Differentiation of keratinocytes defines the 

organisation and distinction between the different layers of the 

epidermis; keratinocytes migrate from the basal layer {stratum 
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germinatum) to the superficial layer {stratum corneum), where they 

differentiate into corneocytes (Baudouin et a/., 2002). Table 1.3 

illustrates a few examples of in vitro techniques and assays used in 

established cell lines from both mammalian and aquatic species. 

In vitro, many cells are anchorage-dependent and require a suitable 

substrate to which they can attach and grow to form a 2-dimensional 

confluent monolayer over the surface. Once seeded, cells undergo a 

series of distinct phases. First, the lag phase, where the cell 

glycocalyx attaches to the substrate; second, the log phase, in which 

there is exponential cellular division and third, the plateau or 

stationary phase, where a confluent monolayer is formed. The 

formation of a confluent monolayer causes 'contact inhibition', as the 

density of the cells reduces cell proliferation. This stage is more 

representative of an in vivo tissue as the cell-cell contact may allow 

expression of specific cell functions. Sub-confluency is therefore 

essential prior to experimentation (Segner, 1998) however, in the 

case of keratinocytes, confluence greater than 70 % may 

permanently alter the cells due to contact inhibition. Table 1.4 

illustrates a variety of experiments using established cell lines 

following exposure to B(a)P and has direct relevance to the work 

reported here. However, the choice of cell line for toxicity testing is a 

factor that can modify the outcome of studies, as certain cell types 

may exhibit specific sensitivities. 
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Table 1.3 Examples of cell culture techniques and assays used to 

investigate the effects of the in vitro exposure to environmental 

contaminants In established cell lines. 

Cel l L ine Or ig in 
T o x i c a n t 

T e s t e d 
E n d p o i n t R e f e r e n c e 

R T L - W l 

Rainbow trout 

(Oncorhynchus 

mykiss) liver 

Nine PAHs 

Induction of 

cytochrome 

P4501A 

Behrens et 

a/ . , 2001 

RTG-2 

Rainbow trout 

{Oncorhynchus 

mykiss) 

Industrial 

effluents 

ATP, NRR, TP, 

CTI 

Castano et 

al., 1994 

AS52 Chinese hamster UVA 

8-oxo-G, gpt, 

endonuclease 

sensitive sites 

Dahle et ai., 

2008 

HaCaT Human UVA ERK 
He et a / . , 

2004 

RTG-2 

Rainbow trout 

{Oncorhynchus 

mykiss) 
EMS Mn, NRR 

Kolpoth et 

a/ . , 1999 

MCF-7 Human 
PAH complex 

mixture 

"P-postlabelling, 

HPLC, western 

blot 

Mahadevan 

et a/ . , 2005 

MRC5 

84BR 

NHEK 

Human UVA S C G E 
Morley et 

ai., 2005 

C H O - K l Chinese hamster Arsenite S C G E , CBMN 
Raissuddin & 

Jha, 2004 

Abbreviations: intracellular ATP content (ATP), 4-chlorophenol ( 4 -CP) , Cytokinesis-
block micronucleus assay (CBMN), 2,4-dinitrophenol (2, -DNP), ethyl methane 
sulphonate (EMS) , extracellular signal regulated kinase (ERK) , guanine 
phosphoribosyl transferase gene (gpt), human keratinocytes (HaCaT) , hydrogen 
peroxide (H2O2), FRAME kenacid blue protein (KBP) , human mammary carcinoma 
derived (MCF-7) , normal fetal lung fibroblasts (MRC5), N-methyl-N'-nitro-N-
nitrosoguanidine (MNNG), nitroquinoline-l-oxide (4NQ0) , normal human epidermal 
keratinocytes (NHEK), neutral red retention (NRR), 7,8-dihydro-8-oxoguanine (8-
oxoG), proteins (TP), rainbow trout liver cells ( R T L - W l ) , single cell gel 
electrophoresis ( S C G E ) , cytotoxicity index value (CTI) 
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Table 1.4 Examples of different endpolnts used to detect cytotoxicity 

and genotoxicity in established cell lines following exposure to B(a)P. 

Cel l l ine C o n c e n t r a t i o n of B ( a ) P E n d p o i n t R e f e r e n c e 

XEM2 
0, 50, 100, 200, 400 and 
700 nM (DMSO added at 
control of 140 pi) (3 h) 

^^P post-labelled DNA adducts Helleberg et 
a/ . , 2001 

RTG-2 
0.0, 5, 10, 15, 20 and 25 
pM in DMSO 
(DMSO < 1 % (v /v ) ) 

Mn 
NRR 

Kolpoth et 
a/ . , 1999 

MCF-7 
313, 1563, 3125, 3750, 
4500, 5625, 6250 and 
7500 ng (Exposed 24 h) ^^P post-labelled DNA adducts 

Kuljukka-
Rabb et a / . , 
2001 

MCF-7 1 pM 

Synchronous fluorescence 
spectrophotometry, p53 protein by 
immunoblotting, thin layer 
chromatography (TLC) , MTT assay , 
ATP quantitation 

Myllynen et 
a/ . , 2007 

RTG-2 
RTL-Wl 

0.94 - 50 pM L-\ LOEC = 
3.74 pM L-* (RTG-2) , 
LOEC = 1.20 pM L * (RTL-
W l ) (2 h) 

S C G E Nehls & 
Segner, 2001 

RTG-2 
0.05, 0.1, 0.5, 1 pg mr^ 
(DMSO 0.01 %) (8, 24, 
48 and 72 h) 

Mn Sanchez et 
a / . , 2000 

RTgill-
W l 

Not specified - B(a)P not 
directly cytotoxic - low 
water solubility 

Alamar blue 
CFDA-AM 
NRR 

Schirmer et 
a/. , 1998 

BF-2 0.5 pg ml'^ (acetone 0.1 
o/o) 

Hydrocarbon -
deoxyribonucleoside adducts, 
B(a)P metabolites 

Smolarek et 
a/ . , 1988 

A549 
MCF-7 

1, 2.5, 5, 10, 20 or 40 pM 
(24, 48 , 72 or 96 h) 

Caspase-3- l ike protease activity, 
internucleosomal DNA 
fragmentation 

Tampio et 
a/. , 2008 

HepG2 150 pM (DMSO 1%) (24 
h) 

S C G E Uhl et a/ . , 
1999 

HELF 2 pmol 1'̂  or 100 pmol 1'̂  Western blot, flow cytometry Ye et a / . , 
2008 

Abbreviations: human lung carcinoma cells (A549) , bluegill fry cells ( B F - 2 ) , 5-
carboxyfluorescein diacetate acetoxymethyl ester (CFDA-AM), genetically 
engineered V79 Chinese hamster fibroblasts (XEM-2) , human breast 
adenocarcinoma cells (MCF-7), Human embryo lung fibroblasts (HELF) , human 
hepatocellular carcinoma cells (HepG2), lowest observed effect concentration/level 
(LOEC) , lung fibroblast cells (V79) , micronucleus (Mn), 3-(4,5-dimethylthrazol-2-
yl)-2,5-diphenyl tetrazolium bromide (MTT), neutral red retention (NRR), rainbow 
trout gill cell line (RTgi l l -Wl) , rainbow trout gonad cell (RTG-2) , rainbow trout liver 
cells ( R T L - W l ) , sister chromatid exchange ( S C E s ) , single cell gel electrophoresis 
( S C G E ) 
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Cell culture concerns the growth of cells under controlled conditions, 

in order to limit variability and to investigate specific effects. Cells 

that are cultured directly from an animal or person are known as 

primary cells but most primary cell cultures have limited lifespan 

(with the exception of some cells derived from tumours). Primary 

cells will only undergo a certain number of population doublings 

before they begin the process of senescence and stop dividing 

although they will generally retain viability (Freshney, 2000). In 

most cell culture studies, an established cell line will be used that has 

acquired the ability to grow indefinitely either through a random 

mutation or by genetic modification. There are numerous well 

established cell lines that are representative of particular cell types. 

However, many established cell lines have lost their original function 

(such as metabolic capability) and therefore need to be supplemented, 

All cells in culture need supplementation with nutrients and 

substances such as serum, amino acids or glutamlne and need to be 

maintained at temperatures appropriate to each cell type (Freshney, 

2000). For this project, three established cell lines were initially 

selected to optimise and validate the first stage of the project: a 

Chinese Hamster Ovary (CHO-Kl) ceil line, an Epithelioma Papillosum 

Cyprini (EPCAl) cell line, and finally a Rainbow Trout Gonad (RTG-2) 

cell line. For later inclusion Into the project, a primary cell type 

human skin fibroblasts (84BR) was incorporated to compare with the 

established cell lines. These cells and the reasons for choosing them 

are discussed below. 

1.6.1 Chinese Hamster Ovary (CHO-Kl) Cell Line 

The CHO-Kl cell line is a fibroblastic-like subclone from a parental 

CHO cell line that was initiated from an ovary biopsy of an adult 

C h i n e s e hamster. I t is well characterised and is commonly used in 

genotoxicity studies (Huynh-Delerme et al., 2003; Raisuddin & 3ha, 
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2004), hence its inclusion in this study. However, this cell line does 

not contain appreciable levels of cytochrome P-450-dependent 

monooxygenase activity, thus an exogenous activation system must 

be introduced when using these cells with chemicals that have 

indirect action (i.e. they require metabolism to express their toxicity) 

(Ellard e ta / . , 1991; Ellard & Parry, 1993). 

1.6.2 Epithelioma Papillosum Cyprini (EPCAl) Cell Line 

Epithelial cells form a barrier between an organism and its 

environment and they are a primary target for environmental 

contaminant related carcinogenesis (Iger et ai., 1992). The EPCAl 

cell line was introduced into this study to investigate the effects of 

PAH on an epithelial system and because it has been previously 

documented for use in environmental toxicology studies (Kammann 

e ta / . , 2001; Ruiz-Leal & George, 2004). The EPCAl cell line is an 

established cell line and is reported to have retained normal levels of 

the ROS-scavenging intracellular thiols, glutathione and 

metallothionein (George et a/., 2000; Wright et a/., 2000), some 

enzymatic activation (Kammann et a/., 2001) and it has been used 

with hepatic microsomal enzymes to activate B(a)P in sediment 

extracts (Kammann e ta / . , 2001). 

1.6.3 Rainbow Trout Gonad (RTG-2) Cell Line 

The RTG-2 cell line is a fibroblastic-like cell line originating from the 

gonads of rainbow trout juveniles. It was originally developed for the 

study of fish viruses (Wolf & Quimby, 1962) but is commonly used to 

investigate a variety of endpoints (Braunbeck & Neumuller, 1996; 

Nicholson, 1971; Tarazona e t a / . , 1993; Walton e t a / . , 1987). The 

RTG-2 cell line is generally maintained at 21 °C, however, the cell line 
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can grow at temperatures between 5 and 26 °C (Mosser e ta / . , 1986). 

The RTG-2 cell line is able to retain at least rudinnentary cytochrome 

P-450-dependent monooxygenase activity and is able to metabolise 

compounds (Castano etai., 1996; Pent, 2001; Segner, 1998). 

1.6.4 Human Skin Fibroblasts (84BR) 

In order to begin investigating the relevance of the interactive toxicity 

of PAH and UV to humans, it was necessary and interesting to 

introduce a primary cell type into the project. For this reason, the 

primary cells 84BR were obtained (Chapter 2, Section 2.2). These 

cells are fibroblastic-like and originate from human epidermal tissue 

and are well characterised in toxicology studies (Alsbeih e ta / . , 1996; 

van den Brule et a/., 2003). 84BR are primary skin cells and only 

remain viable at low passage number for a short t ime, hence their 

inclusion at a more critical and later stage of the project, following 

baseline optimisation and validation of techniques with the more 

robust mammalian cells (CHO-Kl). 

1.7 Toxic Effects at the Cellular Level: Cytotoxicity 

A number of bioassays have been developed for the assessment of 

potentially hazardous chemicals, effluents or sediments to marine and 

freshwater biota (Canty et ai., 2007; Li & Zhang, 2002), and to 

assess the effects of airborne pollutants on humans (Butterworth et 

ai., 1989). I t is usual to select a tier-structured approach, with 

relatively simple bioassays for initial (tier I ) screening of the relative 

toxicity of chemicals, followed by more extensive toxicity 

characterisation on the basis of (sub) chronic and reproduction tests 

(tier I I ) (Fent, 2001). This tiered approach is important for both 

genotoxic and cytotoxic studies. In vitro cytotoxicity bioassays 

utilising cell lines have therefore been suggested as an alternative for 

toxicity ranking of chemicals (Castano e ta / . , 1996). 
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The toxic action of chemicals on cells can be assessed by a variety of 

endpoints, including measures of cell death, viability and functionality, 

morphology, energy metabolism and cell proliferation (Walum et al., 

1990). In vitro research methods to investigate the cytotoxicity of 

chemicals and measures of cell death and cell viability that can be 

easily quantified in 96-well plates via a plate reader have found 

widespread acceptance. Cell death is mediated through apoptosis or 

necrosis and can be estimated by determining the decrease In total 

protein per well using dye-binding assays (for example, kenacid blue 

or crystal violet protein stain). Cell viabilities can be colorlmetrlcally 

or fiuorometrically determined by the abilities of cells to metabolise 

dyes (such as neutral red, tetrazolium salts or fluorescein diacetate) 

(Segner, 1998). The analysis of acute cytotoxicity In fish and 

mammalian cell lines is often assessed through neutral red, MTT 

tetrazolium tests and protein stains (Crallan et al., 2005; Segner, 

1998). 

Cytotoxicity and genotoxicity investigations are equally Important and 

they are interrelated; toxicity of chemicals is known to be one of the 

major confounding factors in the interpretation of the results from 

genotoxicity testing (Mendelshon et al., 1992). Elucidation of any 

associated cytotoxicity of the test chemicals used is therefore 

necessary for validation of the genotoxic studies used in this study. 

In addition to standard cytotoxicity testing, which mainly investigates 

acute toxicity, investigations into apoptosis may give interesting 

insight into mechanisms of action and effects of chemical and UVR 

interactions (Valencia & Kochevar, 2006). Apoptosis is a normal 

physiological process that occurs from embryogenesis through to 

normal tissue maintenance and Is characterised by specific 

morphological features, such as the loss of plasma membrane 

integrity, condensation of the cytoplasm and nucleus and the 

appearance of 'blebbing' within the cell. Knowledge of the 

mechanisms of apoptosis progression or inhibition may lead to 

32 



greater knowledge regarding chemical modes of action, cell repair or 

death; for example, failed apoptosis may indicate the potential for 

tumour development and carcinogenesis. There are many methods 

available to detect apoptosis, and one of the most commonly used 

methods (Annexin V) is explained here. 

1.7.1 Annexin V-FITC Apoptosis Detection 

The loss of plasma membrane integrity is one of the earliest features 

observed during apoptosis. In apoptotic cells, phosphstidylserine (PS) 

is translocated from the inner to the outer membrane, which exposes 

PS to the external environment where it can be detected. Annexin-V 

is a Ca "̂̂  dependent phospholipid-binding protein that has high 

affinity for PS, and therefore binds to it. Annexin-V can be 

conjugated with propidium iodide (PI) to simultaneously detect early 

and late onset of apoptosis, which can be measured over time. PI is 

excluded from the intact membrane of viable cells, but membrane 

compromised apoptotic or necrotic cells will stain positive, therefore, 

detection of the red fluorescing PI will indicate late apoptosis/necrosis. 

1.8 Toxic Effects at the Genetic Level: Genotoxicity 

Genetic toxicology identifies and analyses the action of agents that 

have toxicity specifically directed toward the hereditary components 

of living organisms (Landolt & Kocan, 1983). Genotoxic agents can 

affect the integrity of DNA. The universality of the DNA molecule 

means that an agent, which is genotoxic for one group of organisms, 

is typically genotoxic for others (Landolt & Kocan, 1983). At the 

ecological scale, both chemical and physical agents can produce 

heritable genetic alterations at subtoxic concentrations, therefore 

resulting in altered hereditary characteristics (Landolt & Kocan, 1983). 

This may result in a loss in total genetic diversity at the population 
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level, with potentially damaging implications for the long-term 

survival of the exposed population (Jha, 1998). 

The detection of genotoxicity can occur in two ways; first, at the 

biochemical or molecular level (for example, gene mutations, DNA 

adducts or DNA strand breaks) and second, at a cytogenetical level 

(Including structural and numerical chromosomal aberrations (CAbs), 

sister chromatid exchanges (SCE), or the detection of a 

micronucleus). Ultimately, all these assays are investigating whether 

a chemical or its metabolites induces damage to DNA (Dixon et a/., 

2002). DNA strand breakage is a sensitive indicator of genotoxicity 

and correlates with mutagenic and carcinogenic properties of 

environmental pollutants (Mitchelmore & Chipman, 1998). In this 

study, assays representing both biochemical and molecular 

genotoxicity were chosen to investigate the potential genotoxicity of 

PAH. The detection of strand breaks can be elucidated through 

alkaline single cell gel electrophoresis (SCGE) (also known as the 

comet assay) whilst genetic changes can be produced by mutations to 

the gene, structural chromosomal changes and numerical 

chromosome changes (aneuploidy) and can be detected through the 

micronucleus (Mn) assay. Table 1.3 gives examples of a variety of 

cell lines and their different applications (e.g. comet assay, Mn assay 

etc.) in toxicology. 

1.8.1 Single Cell Gel Electrophoresis (SCGE) 

Single cell gel electrophoresis (SCGE) is a rapid, highly sensitive and 

relatively inexpensive method used to determine DNA damage. DNA 

damage is manifested in the form of single strand breaks (SSBs), 

double strand breaks (DSBs) and alkaline-labile sites (ALS) in 

individual cells (all of which can be induced by alkylating agents, 

intercalating agents and oxidative damage). The comet assay is able 
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to detect DNA damage in all these forms. Ostling and Johanson 

(1984) first introduced the microelectrophoretic technique for 

detecting and directly visualising DNA damage in cells. The method 

was originally applied to irradiated mammalian cells and has 

undergone several technical modifications, the most significant being 

the introduction of alkaline conditions to investigate the occurrence of 

DNA SSBs (Singh et a/., 1988). The technique is sensitive enough to 

measure low levels of DNA damage in a fairly short time and requires 

only a relatively small number of cells. The principle of the assay is 

particularly simple and is usually performed according to the protocol 

of Singh et al. (1988) and also described by Tice et a/. (2000). For 

example, individual cell nuclei that have been previously exposed to a 

potentially genotoxic agent are firstly treated chemically (by pH or 

alkaline unwinding) so that the nuclear material relaxes and unwinds. 

The cells are then microelectrophoresed and stained with a 

fluorescent stain. DNA is negatively charged, therefore during 

electrophoresis the presence of strand breaks allows fragments and 

loops of DNA to migrate towards the anode (Singh et a/., 1988). 

Analysis is conducted with a fluorescence microscope connected to 

image analysis software to standardise the procedure. Many different 

calculated parameters are used to assess the DNA damage: for 

example, the 'percentage tail DNA', or the 'olive tail moment'. The 

percentage tail DNA is a commonly used parameter and is based on 

the fluorescence intensity (Moller, 2006; Olive et al., 1990). The 

'percentage tail DNA' has certain advantages over the 'olive tail 

moment' in the sense that it represents absolute values and could 

help in inter-laboratory comparison (Kumaravel & Jha, 2006). This 

parameter is also being recommended for regulatory use (Burlinson 

et a/., 2007). I t is recommended that between 50 and 100 cells are 

analysed per experimental condition in duplicate (Wiklund & Agurell, 

2003; Cotelle & Ferard, 1999). The disadvantages of the comet 

assay are related to small cell samples (hence it is important to 

analyse a wide range of cells), the time demands of scoring single cell 
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data, and the sensitivity of the assay due to technical variability. All 

of these may lead to misinterpretation of the data. 

The technique can be used for cells cultured in vitro, as well as for 

isolated cells taken directly from an organism after in vivo exposures 

(Tice ef a/., 2000). However, adaptations for optimising different cell 

lines In vitro (or for ex vivo studies) are necessary for each new 

experiment (Cotelle & Ferard, 1999; Tice et a/., 2000) as variation 

occurs between different cell types. Conditions should be optimised 

to show some migration from control cells in order to provide 

information suitable to evaluate intra-laboratory variation (Tice et a/., 

2000). Hydrogen peroxide ( H 2 O 2 ) may be used to optimise the comet 

assay because it is rapid and generates strand breaks through 

oxidative damage (Raisuddin & Jha, 2004). For experiments with the 

comet assay involving indirectly acting genotoxins, the use of an 

exogenous source of metabolism is desirable. The most commonly 

used system is a co-factor-supplemented postmitochondrial fraction 

(S9) prepared from the livers of fish or rodents treated with enzyme-

inducing agents such as Aroclor 1254 (Johnson et a/., 1996; Walton 

et a/., 1988; Walton et a/., 1987) or a combination of phenobarbitone 

and p-naphthoflavone (Johnson et a/., 1996). Studies have 

demonstrated that S9 can be used to activate PAH across cell lines of 

different phylogenetic origin (Walton et a/., 1987) and therefore this 

is the method employed here. The postmitochondrial fraction is 

usually used at concentration ranges from 1-10% (v/v) in the final 

test medium. S9 was not used for periods greater than 6 hours due 

to its cytotoxic potential and its consequent ability to produce false-

positive results due to cytotoxicity. 
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1.8.2 Micronucleus (Mn) Assay 

The binucleate (BN) micronucleus (Mn) assay is a well validated 

nnethod for the detection of micronuclei as a measure of 

chromosomal damage (Fenech & Morley, 1986; Parry ef a/., 2002) to 

investigate any potential genomic instability. Micronuclei are small, 

extranuclear bodies formed during mitosis and occur when 

chromosomal fragments or whole chromosomes fail to segregate and 

become separated from the daughter nuclei. They may be caused 

through exposure to environmental pollutants such as cigarette 

smoke (DeMarini, 2004). Micronuclei are used for the quantification 

of the exposure of cells to chemicals and can be observed in almost 

any cell type; therefore many variations of the assay exist (Tucker & 

Preston, 1996). The Mn assay provides many advantages over other 

cytogenetic assays, such as chromosomal aberrations (CAbs), in the 

speed and ease of analysis, and the non-requirement for cells to be in 

metaphase (Tucker & Preston, 1996). The Mn assay can be suitably 

employed in studies with humans, laboratory animals or cells 

following in vivo or in vitro exposures. 

The Mn assay is assessed through the quantification of the number of 

micronuclei formed in exposed cells (compared to the reference or 

control cells) to investigate the level of damage that has become 

incorporated Into the cell cycle. In order to count micronuclei, it Is 

necessary to identify cells that have divided once. The cytokinesis-

block technique is the most frequently applied methodology, which 

limits cell scoring to cells that have divided once since chemical 

stimulation (Parry et a/., 2002). Cytochalasin B (Cyto B) is an actin 

polymerisation inhibitor, which acts by disrupting the contractile 

filaments. This therefore inhibits cell division thereby giving rise to 

binucleate cells (which indicates the primary dividing cells) easing 

identification of the micronucleus (Surralles et a/., 1994). Binucleate 

cells can be identified by the presence of two nuclei of the same size 
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within the cytoplasm. Cell strains and types may vary in their 

sensitivity to Cyto B but the concentration used is usually reported to 

be between 3 and 6 pg m\'\ although an appropriate concentration 

for the cell type in question should be used (Parry et aL, 2002). 

The two mechanistic factors responsible for the formation of 

micronuclei include clastogenic (chromosomal breakage) and 

aneugenic (spindle disruption) agents (Albertini et a/., 2000; Tucker & 

Preston, 1996). Aneuploidy is associated with both carcinogenesis 

and reproductive failure in humans, and can be detected through the 

presence of micronuclei (Parry et a/., 2002). Until recently there was 

considerable debate concerning the size of the micronuclei and the 

mechanisms that were causing their formation. The basic premise 

assumed that larger micronuclei were formed through spindle 

disruption and would contain whole chromosomes, whilst smaller 

micronuclei would consist of one or more chromosome fragments 

(Tucker & Preston, 1996). Although there may be a relationship 

between the size of a micronucleus and the mechanism of origin, 

without having some way to semi-quantitatively analyse the 

micronuclei it is impossible to know for certain the mechanisms of 

formation. In order to Identify the links between the mechanisms of 

micronuclei formation and how they appear under the microscope, 

two general methods have arisen. The first, identifies either an 

aneugenic and/or clastogenic mechanism for the induction of Mn by 

the absence or presence of kinetochore protein within the Mn (Kirsch 

- Volders et a/., 1997). This technique is based on the association of 

kinetochores with the centromeres and is based on the theory that a 

centric chromosome or centric chromosome fragment in a Mn has 

arisen through an aneugenic mechanism. Anti-kinetochore antibody 

staining Is used to Identify kinetochore proteins that are associated 

with the centromeres of the chromosomes, or to indicate their 

absence from acentric chromosome fragments (Brinkley e ta / . , 1985). 

Secondary antibodies can then be used to amplify the signal of the 
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first bound antibody, and a fluorescent stain, such as DAPI can be 

used to counterstain the background chromosomes for contrast 

(Parry et a/., 2002). The cells are then examined and scored under a 

fluorescence microscope. Hence the second technique uses 

fluorescently labelled centromeric DNA probes to identify centromeres 

because kinetochore damage may be a potential aneugenic 

mechanism (Marshall et aL, 1996; Parry et a/., 2002). The anti-

kinetochore antibody staining technique was used in this study due to 

its relative ease of use and its ability to distinguish between 

clastogenic and aneugenic agents. Ethyl methanesulphonate (EMS) 

was used as a positive control for clastogenic activity, whilst 

colchicine (COL) is a classical aneugen, and was used in this study as 

a positive control for aneugenic activity. 

1.9 Chemical Effects: Oxidative S t ress 

Cellular processes leading to both cytotoxic and genotoxic effects can 

be mediated by reactive oxygen species (ROS). Although oxygen is 

essential for life, it can also diminish the normal function of a cell 

and/or contribute to its destruction. I t is hypothesised that UVA 

induced skin damage is mediated via ROS (Bossi et a/., 2008; 

Valencia & Kochevar, 2006), such as singlet oxygen, the superoxide 

anion, hydrogen peroxide and others. UVA is absorbed by 

chromophores in cells, but other molecules in cells (both endogenous 

compounds (such as haem, cytochromes or porphyrins) or exogenous 

compounds (such as B(a)P or arsenicals)) may also form ROS 

following UVA exposure (McMillan et a/., 2008; Yin et a/., 2008). 

These ROS contribute to 'oxidative stress' a term used to describe an 

excessive amount of ROS in and around the cell, which can cause 

deleterious effects to it (McMillan et a/., 2008; Poulos & Raag, 1992; 

Schlezinger et aL 1999; Shyong et a/., 2003). ROS-induced DNA 

damage can include effects such as base modifications, strand 
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breakage and chromosomal rearrangements. ROS and their products 

can be investigated using electron spin resonance (ESR). This is a 

spectroscopic technique that allows for the detection of free radicals 

and which can also give structural and lifetime information about 

them (free radicals are defined as molecules or atoms possessing one 

or more unpaired electrons (Buettner & Mason, 2003)). ESR depends 

on the fact that every electron has a magnetic moment. The energy 

levels of the magnetic system are influenced by the surrounding 

atoms and by external magnetic fields. Changes amongst these 

levels can be detected by monitoring the power absorbed from an 

alternating magnetic field and comparing these observed transitions 

with model calculations that enable deduction of the features of the 

environment around the moment (Buettner, 1987). For example, in 

the presence of an external magnetic field the electron's magnetic 

moment aligns itself either parallel or anti-parallel to the field, each 

alignment having a specific energy. ESR absorption occurs when the 

irradiation frequency "matches" the energy level separation created 

by the magnetic field. ESR is applied to biological systems because 

although radicals are highly reactive and do not normally occur in 

high concentrations in biology, it is possible to spin-label radicals of 

interest so their lifetime increases and a strong signal is produced 

which can be detected using ESR (Buettner & Mason, 2003). 

Specially-designed non-reactive radical molecules can attach to 

radicals in a biological cell, and EPR spectra can then give information 

on the environment of the spin-trapped radical. Spin trapping 

involves the addition of a diamagnetic radical scavenger (the spin 

trap) to a reaction mixture containing radicals of interest. Reactive 

free radicals add to the scavenger, forming a long-lived paramagnetic 

adduct that is detected through ESR. The presence of an unpaired 

electron means that the radical is considerably more reactive than the 

other chemical species; radicals derived from oxygen have highest 

reactivity. Molecular oxygen ( O 2 ) is effectively a radical that reacts 

with other radical molecules to create a triplet state. Thermodynamic 
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parameters dictate that the diatomic oxygen species will be reduced. 

The four single-electron steps from molecular oxygen to water are 

summarised below in Figure 1.3. ESR enables the identification and 

quantification of these radical species and is routinely used to 

measure radicals such as superoxide, hydroxy! and nitric oxide. 

e-.2H+^ u r\ e-.-OH- .^MJ e-.H+ 
^ O 2 - H2O2 -OH ^ H 2 O 

Molecular Oxygen - Superoxide - Hydrogen Peroxide - Hydroxy! 

Water 

Figure 1.3 Summary of the four electron steps involved in the 

breakdown of molecular oxygen. 

1.10 Aims and Objectives of the Work Reported Here 

The hypothesis of this project was that the interactive toxicity of the 

PAH B(a)P with UVR would cause both a cytotoxic and genotoxic 

response in cells from aquatic and mammalian origins. The combined 

effects of B(a)P and UVB/UVA may cause cytotoxicity through 

reductions in cell viability. Genotoxicity from B(a)P and UVB/UVA 

may occur by increases in DNA damage (strand breakage) and 

cytogenetic effects such as increases in chromosomal damage and 

effects on the cell cycle. I t is also hypothesised that B(a)P and UVA 

will cause oxidative damage in the cell. These effects could well be 

involved in carcinogenesis. The potential effects on the cell from the 

combined insult of B(a)P and UVB/UVA are summarized in Figure 1.4. 
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U V B / U V A -Chromosome 
damage 
-Changes in 
ceil cycle 
-Cytotoxicity Mutation 

Figure 1.4 Diagram of the potential cytotoxic and genotoxic responses 

in the cell following exposure to B(a)P and UVR 

The aim of this project was to elucidate the potential cytotoxic and 

genotoxic effects of B(a)P with UVB/UVA using in vitro techniques 

including cell culture, and a suite of cytotoxicity and genotoxicity 

assays. The specific objectives were twofold: 

1. To optimise and validate the experimental techniques and 

conditions to be used throughout the investigation. 

a) To investigate the relative cytotoxic sensitivities of the cell 

types used and to optimise and validate the comet assay (DNA 

damage including DNA strand breakage) and the micronucleus 

assay (chromosome damage and cell cycle changes). This data 

would ensure further experiments were reliable and 

reproducible. 
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2. To investigate the interactions of B(a)P and UVR and the cytotoxic 

and genotoxic effects produced in cells derived from aquatic or 

mammalian organisms: 

a) To study the potential cytotoxicity and genotoxicity of B(a)P, 

UVB or UVA separately and to explore the possible interactions 

between cells treated with B(a)P and UVB or UVA radiation 

using cytotoxic and genotoxic assays to determine DNA damage, 

chromosome changes or alterations in the cell cycle. 

b) To examine potential oxidative stress from these interactions. 

Hence, ultimately, this project aims to elucidate the effects on the 

chosen cell types of co-exposure to B(a)P and UV radiation. I t also 

aims to advance the standardisation of techniques for use in 

environmental testing and to also introduce some novel techniques to 

complement the research. 
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CHAPTER I I - MATERIALS AND METHODS 

2.1 Sources of Chemicals and Cell Culture Materials 

A list of all cell culture materials and chemicals used (including all 

abbreviations), and their sources is detailed in Appendix 1.1. 

2.2 Sources of Cells 

The School of Biological Sciences, University of Plymouth, supplied 

the Chinese Hamster Ovary (CHO-Kl) , Epithelioma Papillosum CyprinI 

(EPCAl) and Rainbow Trout Gonad (RTG-2) cell lines which were 

originally procured from the European Collection of Cell Culture, 

Wiltshire, UK. These cell lines are well characterised and readily 

available (Van den Brule et a/., 2003; Walton et a/., 1988; Wolf & 

Mann, 1980). The primary human fibroblast cells, 84BR were a gift 

from Cornwall Dermatology Research (CDR), Peninsula Medical 

School, Truro, UK and were originally procured from the European 

Collection of Cell Culture, Wiltshire, UK. 

2.3 Routine Cell Culture 

Confluent cells were subcultured as described by Freshney (2000). 

Cells were maintained in 25 cm^ and 75 cm^ flasks for routine cell 

culture at pH 7.2-7.4. Growth medium (GM) for routine cell culture 

was MEM supplemented with 1 % N E A A and 10 % FBS for the RTG-2 

(Bols & Lee, 1994; Lannan, 1994; Segner, 1998; Wolf & Ahne, 1982) 

and EPCAl cell lines, HAM-F12 supplemented with 10 % FBS for the 

CHO-Kl cell line (Toyooka et a/., 2006), and EMEM supplemented 

with 1 % NEAA, 2 mM L-GLUT and 15 % FBS for the 84BR cells. All 

procedures were carried out under strict aseptic conditions using a 
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laminar flow cabinet (Lamin Air, Model 1.2, Heto-Holten Ltd, Surrey, 

UK). The spent medium was discarded and approximately 5 ml of 

PBS prewash was added to 25 cm^ flasks. The cell monolayer was 

washed with PBS by rotating the flasks, the excess discarded and the 

step repeated to remove traces of serum that would inhibit the 

enzymatic action of the trypsin (or trypsln-versene). One ml of 

trypsin (0.25 % ) was added (CHO-Kl cells) or 1 ml of trypsin (0.25 

% ) was combined with 4 ml of versene (0.05 % ) (RTG-2, EPCAl and 

84BR cells). The flask was then rotated so the trypsin (or trypsin-

versene) completely covered the monolayer and the excess was 

immediately discarded. Disaggregation was observed under an 

inverted stereomicroscope. Fresh medium was added to stop the 

action of the trypsin and the cells resuspended by gently pipetting up 

and down, to create a homogenous suspension. Cell suspensions 

from several flasks were combined and the suspension mixed by 

gentle pipetting. Cells were counted with a haemocytometer. For 

initial subculture of CHO-Kl cells, a split ratio of 1:2 was employed: a 

25 cm^ flask was typically seeded with approximately 5 x lO'* cells ml ' 

\ with cells becoming confluent in approximately 4 days. For routine 

subculture, a split ratio of up to 1:12 was employed. Cells were 

incubated at a temperature of 37 ± 1 °C. For routine subculture of 

RTG-2 or EPCAl cells, a split ratio of 1:3 was employed: a 25 cm^ 

flask was typically set at approximately 5 x 10"* cells ml"^ for the RTG-

2 cell line and a minimum of 1.25 x lO'* cells ml'^ for the EPCAl cell 

line, with cells becoming confluent in approximately 10 days. Cells 

were incubated at a temperature of 21 ± 1 °C in a 5 % C O 2 

atmosphere. For routine subculture of 84BR cells, a split ratio of 1:4 

was employed: a 75 cm^flask was typically set at approximately 1 x 

10^ cells ml"^ with cells becoming confluent in about 10-14 days. 

Cells were incubated at a temperature of 37 ± 1 °C in a 5 % C O 2 

atmosphere. Trypan blue was used to determine cell viability 

(Section 2.4.1). Only cell suspensions that had a viability of >90 % 

were used In experiments. 
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2.4 Cell Viability Studies 

Cell viability was assessed by various assays in order to determine 

cytotoxic events occurring in the cells. Cytotoxicity that does not 

affect particular cell properties may not be accurately represented or 

assessed using some methods; therefore a suite of assays is 

necessary to give a wider insight. 

2.4.1 Trypan Blue 

Standard methodology was followed for using the trypan blue 

exclusion dye, which relies on membrane integrity to distinguish 

between viable or non-viable cells: viable cells can exclude the dye, 

which is able to permeate viable and non-viable cells (this leaves 

non-viable cells stained blue). The advantages of this method are 

that it is a quick and easy technique that gives a rapid result. The 

disadvantage of this method is that the dye does not indicate the way 

that the cells die, for example by either apoptosis or necrosis. Briefly, 

0.5 ml of cell suspension was mixed with 0.5 ml of 0.4 M trypan blue 

solution (Sigma, UK) and incubated at room temperature for 10 

minutes. The visibility of viable (non-stained) and non-viable 

(stained) cells was observed under light microscope and the cells 

counted with a haemocytometer to determine the cell number. 

Percentage viability was calculated as the number of non-stained cells 

divided by the total number of cells. 

2.4.2 Dual-Staining 

Dual staining was conducted with a commercially available kit 

(Viability/Cytotoxicity Assay Kit for Animal Live & Dead Cells, Biotium 

Inc, USA, Cat. No. 30002, Appendix 1.1) which uses a fluorescence 

dual stain, Calcein AM (acetomethoxy derivate of calcein)/EthD I I I 

(ethidium homodimer I I I ) that assesses intracellular esterase activity 
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and plasma membrane integrity (Papadopoulos et al., 1994; Wang et 

al., 1993). Live cells are identified through the presence of 

ubiquitous intracellular esterase activity, determined by the 

enzymatic conversion of the virtually non-fluorescent cell-permeant 

calcein AM to the intensely fluorescent polyanionic dye calcein, which 

is retained within live cells, producing green fluorescence in live cells 

(excitation approximately 495 nm, emission approximately 515 nm). 

EthD-III is excluded by the intact plasma membrane of live cells but 

can enter cells and bind to nucleic acids, which produces a red 

fluorescence in dead cells (excitation approximately 530 nm, emission 

approximately 635 nm). This assay has the advantage of being 

relatively quick to carry out, and provides a more robust method for 

detecting viability as it is more sensitive than traditional methods 

such as trypan blue because it detects two parameters of cell viability; 

plasma membrane activity and intracellular esterase activity. The 

disadvantage of this method is the inability of the assay to distinguish 

between non-viable cells by apoptotic or necrotic mechanisms. Also, 

the determination of cell viability depends on the physical and 

biochemical properties of plasma membrane stability and intracellular 

esterase activity so cytotoxic events that do not affect these cell 

properties may not be accurately reflected through this assay. Cells 

were treated with the test compounds and/or UV light for the 

appropriate time (according to each compound) or to achieve the 

correct dose (for UV) and the assay prepared according to supplied 

protocol. Briefly, a 2 mM EthD-II I stock solution (20 pi) is mixed with 

10 ml of PBS, to give a 4 pM EthD-III solution. This is combined with 

5 pi of the supplied 4 mM calcein AM stock solution. Cells are washed 

with PBS and Calcein AM/EthD-III solution added and the cells 

incubated for 30-45 minutes at room temperature; following which 

the cells are viewed under the fluorescence microscope. Cells were 

counted with a haemocytometer to determine the cell number. 

Percentage viability was calculated as the number of viable cells 

(green fluorescence) divided by the total number of cells. 
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2.4.3 Annexin V-FITC Apoptosis Detection 

A useful apoptotic marker is the translocation of phosphatldylserlne 

(PS) - one of the first events in apoptosis. PS translocation from the 

inner to the outer face of the lipid bilayer membrane relies on cell's 

loss of membrane asymmetry In the early stages of apoptosis. The 

advantages of this assay are the ability to differentiate between 

apoptosis and necrosis as well as to distinguish between early 

apoptosis and late apoptosis (Wilkins et a/., 2002). PS translocation 

was measured using a commercial kit (Annexin V: FITC Apoptosis 

Detection Kit I, BD Biosciences, UK, Cat. No. 556547, Appendix 1.1) 

containing fluorescein-conjugated Annexin-V in conjunction with PI. 

Cells were plated in two-chamber precoated slides (Barloworld 

Scientific Ltd, UK) and incubated for 24 hours in normal growth 

medium under normal growth conditions. Cells were incubated with 

B(a)P for 24 hours, washed twice with PBS prior to Irradiation 

conducted in PBS. Following irradiation, cells were Incubated in 

buffer containing Annexin V (10 pi) and PI (10 pi) for 15 minutes. 

Fluorescence was observed by confocal microscope (Zeiss, UK) using 

488 nm excitation and 530 nm emission for Annexin V-FITC and 580 

nm excitation and 610 nm emission for PI, under 40x oil immersion 

objective. 

2.4.4 Neutral Red Retention (NRR) Assay 

The NRR assay is based on the retention of neutral red In the 

lysosomes of viable cells. Neutral Red (2-amlno-3-methyl-7-

dimethyl-amino-phenazonlumchloride) Is a weakly catlonic supravital 

dye, which can diffuse across the phospholipid membrane and bind to 

anionic sites in the lysosome (Lowe et a/., 1992). Lysosomes are 

recognised target sites for most environmental contaminants, which 

can cause destabilisatlon of the lysosomal membrane. The NRR 
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assay evaluates the lysosomal membrane integrity, which can be 

used as an indicator of exposure to xenobiotics (Babich et a/., 1992; 

Babin & Tarazona, 2005; Nigro et al., 2006; Speilmann et a/., 1998). 

The assay is intended to yield a reasonable indication of the acute 

toxicity of chemical exposure to the cellular system under 

investigation and therefore give an indication of cytotoxicity. The 

NRR assay is a relatively rapid and cost effective procedure, which is 

reliable, sensitive and quantitative. The assay allows for the 

determination of cell viability in monolayer cultures when exposed to 

cytotoxic agents. Only viable cells are able to retain the dye, thus 

chemicals causing membrane damage inhibit the retention of this dye, 

due to destabilisation of the lysosomal membrane (Babich & 

Borenfreund, 1992). I t is therefore possible to assess the degree of 

cell viability through measurement of spectrophotometric absorbency 

of the neutral red dye. 

The method used in this study adapts the protocol of Mori and 

Wakabayashi (2000). Modifications to this assay are detailed in the 

relevant chapters. Briefly, confluent cell monolayers were trypsinised 

and resuspended to give a count of 5 x lO''cells per well (2.5 x 10 ^ 

cells ml'^ in fresh medium containing 10 % FBS). Aliquots of 0.2 ml 

cell suspension were added to each of a 96-well cell culture cluster 

plate (Corning, USA). The outermost wells contained medium only. 

Each experiment contained 6 replicates for each variable and 

experiments were conducted at least twice. Culture plates were 

incubated at 37 ± 1 °C without 5 % C O 2 (CHO-Kl) or with 5 % C O 2 

(84BR), or 20 ± 1 °C in 5 % C O 2 (EPCAl and RTG-2) for 24 hours. 

Control wells contained medium supplemented with 1 % FBS only. 

Cells were exposed for 24 hours to the test compounds, unless stated 

otherwise. Following this period, the medium was withdrawn and 

discarded, the monolayer was washed twice with PBS and the 

medium replaced with 100 pi of medium containing 40 pg ml"^ (0.02 

g of neutral red dissolved in 5 ml PBS, 500 pi aliquot of this solution 
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diluted again in 49.5 ml of MEM) of neutral red. The plate was 

incubated for 3 hours at 37 ± 1 °C to allow for uptake of the neutral 

red stain. Excess neutral red dye was removed and the cells fixed 

with 1 % formal saline containing 1 % CaCb to enhance cell 

attachment to the substrate. Cells were washed twice with PBS to 

remove any traces of unbound neutral red. Extraction of the neutral 

red dye was carried out by adding 200 pi of 1 % acetic acid in 50 % 

ethanol to each well. The plate was left to stand for 15 minutes at 

room temperature, shaken for two seconds and read at 540 nm 

absorbance on a spectrophotometric microplate reader (Optimax, 

Sunnyvale, USA.). Results were expressed as a percentage of the 

control (Babich eta / . , 1988). 

2.5 Single Cell Gel Electrophoresis (comet a s s a y ) 

The comet assay was developed to detect DNA damage in individual 

cells. Cells are embedded in agarose on microscope slides and the 

cell membranes lysed followed by electrophoresis of the DMA and 

subsequent analysis of the damage produced through image analysis 

software. All steps associated with the comet assay are necessarily 

important in order to obtain reliable and reproducible effects. This 

assay was used to detect DNA damage following treatment of the 

cells with test compounds or UVR. The advantages of this assay are 

the relative speed at which the assay can be performed and the rapid 

determination of DNA damage that can be obtained. However, it is a 

non-specific biomarker of genotoxic damage and care needs to be 

taken with the many steps associated with the assay to reduce 

variability in the method. All experiments were carried out at least 

twice giving a minimum of quadruplicate data (each sample slide 

contained duplicate samples and 50 comets were scored in each 

sample area). Buffers and reagents for the comet assay are detailed 

in Appendices 1.1 and 1.2. For comet assay experiments cells were 
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seeded at a density of approximately 4 x 10^ per 25 cm^ culture flask 

for CHO-Kl, RTG-2 and 84BR and 1 x 10^ per 25 cm^ culture flask for 

EPCAl in 8 ml fresh medium to obtain optimal growth conditions for 

each cell type and incubated to obtain 60-80% confluence so that 

cells would not display restricted growth due to contact inhibition. 

Cells were treated with test compounds or UVR as specified in the 

text and then treated as follows. 

2.5.1 Slide Preparation and Lysis 

Frosted ended slides were prepared by coating with molten normal 

melting point (NMP) agarose ( 1 % in PBS) and allowed to set at 30 °C 

for a minimum of 10 minutes. For some experiments, pre-coated 

CometSlides^" (Trevigen, USA) were used. These slides are specially 

treated to promote adherence of low melting point (LMP) agarose and 

are more reliable and easier to use than the time consuming 

traditional slide preparation method of preparing slides with NMP 

agarose base layers. However these CometSlides^" are expensive so 

their use was limited to the later stages of the thesis. The cell 

monolayer was washed twice with PBS, trypsinised and resuspended 

in growth medium, cells were counted and the concentration adjusted 

in medium to ensure approximately 2 x lO'* cells per slide (170 pi). 

Aliquots of 500 pi adjusted cell suspension were transferred to 

centrifuge tubes. Cell suspensions were centrifuged for 3 minutes at 

2000 rpm and the supernatant discarded. Cells were resuspended in 

170 pi LMP agarose and added to the prepared slides to give two 

replicates of 85 pi LMP at either end of the slide. Coverslips were 

added to each replicate and the slides placed at 4 ± 1 °C In the dark 

to set for approximately 5-10 minutes. Coverslips were carefully 

removed from the slides, ensuring no disruption to the agarose, and 

the slides transferred to coplin jars containing chilled lysing solution 

(Appendix 1.2) for 1 hour in the dark at 4 ± 1 *=»C. Following lysis, 

which removes the cellular membranes leaving only the embedded 
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DNA, the slides were rinsed dropwise for 5 minutes with distilled 

water. This step was repeated twice more. 

2.5.2 Alkali (pH>13) Unwinding 

Slides were transferred to lie horizontally in the electrophoresis 

chamber (Pharmacia Biotech GNA 200). Freshly prepared alkaline 

(pH > 13) electrophoresis buffer (2 I buffer stabilised to 4 db 1 ^C) 

(for buffer see Appendix 1.2) was then added. DNA was left to 

unwind in the electrophoresis chamber (Pharmacia Biotech GNA200) 

at 4 ± 1 jn freshly prepared electrophoresis buffer (pH >13) 

stabilised to 4 ± 1 °C, in the dark. The alkali treatment unwinds and 

denatures the DNA and hydrolyses sites of damage. Alkaline 

electrophoresis can detect single strand DNA breaks (SSBs), double 

stranded DNA breaks (DSBs), apurinic sites, apyrimidinic sites and 

alkali labile DNA adducts. 

2.5.3 Electrophoresis 

Electrophoresis was conducted with the same alkaline (pH >13) 

buffer used during alkaline unwinding (Appendix 1.2). The 

electrophoretic conditions of 25 V and 300 mA (BioRad PowerPac 300, 

USA) as developed by Singh et a/. (1988) were employed. DNA is 

negatively charged, therefore during electrophoresis the presence of 

strand breaks allows fragments of DNA to migrate towards the anode 

(Singh et a/., 1988) resulting in the comet formation observed in the 

next step (Section 2.5.4). 

2.5.4 Neutralisation, Staining, Comet Visualisation and Scoring 

Embedded cells were washed 3 times dropwise with neutralisation 

buffer (Appendix 1.2) for approximately 5 minutes each to neutralise 

the alkaline buffer solution used previously. Slides were then allowed 
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to air dry for approximately 5 minutes and immediately exposed to 

cold methanol (100 % ) for 3 minutes to dehydrate and improve 

staining and visualisation. Slides were stored at this stage for later 

reference, or immediately scored. Slides were stained with 40 pi ml"^ 

ethidium bromide (in a fume cupboard with gloves because this 

compound is carcinogenic) which is a fluorescent DNA intercalating 

dye, and coverslips added. Excess stain was blotted away from the 

edges of the slide. For visualisation of DNA damage, a fluorescence 

microscope (Leica, UK) using x20 objective was employed, linked to a 

camera to assess the extent of DNA damage in the cells by measuring 

the percentage of migrated tail DNA (% Tail DNA). This 

measurement includes tail length, width and DNA content and Is 

based on the fluorescence intensity. DNA damage was analysed 

using the Komet 5 (Kinetic Imaging Ltd., Merseyside, UK) image 

analysis software, which calculates the % Tail DNA. Fifty randomly 

selected cells were analysed per replicate, giving a total of 200 scored 

cells per treatment group. All slides including positive and negative 

controls were independently coded before microscopic analysis and 

scored without knowledge of the code to help prevent observer bias 

in scoring. 

2.5.5 Comet Assay with Benzo(a)Pyrene 

Cells at 70-80 % confluency were exposed to various concentrations 

of benzo(a)pyrene (B(a)P) in medium to ensure that the cells were 

still provided with the correct nutrients for growth and uptake of the 

compound. The concentrations of B(a)P were based on those used by 

other workers (Sanchez et a/., 2000) and were set at 0 .1 , 1.0 and 3.2 

pg m r \ A 1 mg ml'^ stock solution of B(a)P was prepared in DMSO 

and then dilutions made in medium containing 1 % FBS, before 

adding to the cell monolayer. The cells were incubated for 6 hours at 

37 ± 1 °C for the mammalian cells and 21 ± 1 °C for the fish cells 

according to the recommendations set out by Tice et a/. (2000). 
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Replicate slides were made for each treatment condition, and the 

protocol as outlined in Sections 2.5.1 to 2.5.4 was followed. The 

results are presented in Sections 5.3.1.2 and 4.3.1.2. 

2.5.6 Metabolic Activation 

Due to the indirect action of B(a)P, this test substance was added to 

the cells both in the presence and absence of an appropriate 

metabolic activation system (S9). Briefly, cells at 70-80 % 

confluency were exposed to various concentrations of B(a)P in 

medium containing S9 - an exogenous metabolic source. It was not 

possible to obtain fish-derived S9 from commercial sources. Aroclor 

1254 induced rat liver homogenate (S9) was obtained from Moltox 

(Moltox Toxicology, Inc, Boone, USA). Ten ml S9 mix contained 0.15 

ml of S-9 homogenate, 0.60 ml o f 'core ' mixture (Appendix 1.2) and 

9.25 ml medium with 1 % FBS. This S9 mixture was then 

immediately dispensed into each fiask with 0 .1 , 1.0 or 3.2 pg ml"^ 

B(a)P. Cells in flasks (containing B(a)P and S9) were then incubated 

for 6 hours at 37 ± l oc for the CHO-Kl cell line and 21 ± 1 °C for 

the fish cells according to the recommendations set out by Tice et al. 

(2000). Replicate slides were made for each treatment condition, 

and the protocol as outlined in Sections 2.5.1 to 2.5.4 was followed. 

The results are presented in Sections 5.3.1.2.1 and 4.3 .2 .1 . 

2.6 Micronucleus (Mn) Assay 

The micronucleus assay is used to detect chromosomal damage and 

is presented here with two staining techniques, Giemsa and anti-

klnetochore antibody staining. The first technique detects crude 

damage but does not differentiate between clastogenic or aneugenic 

mechanisms, whilst the second technique can differentiate between 
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the two types of damage. All experiments were carried out at least 

twice and each experiment contained duplicate flasks for each 

treatment, ensuring quadruplicate data for each treatment group. 

Briefly, confluent cells were trypsinised and seeded into new flasks in 

8 ml growth medium (HAM-F12 for CHO-Kl, MEM for EPCAl and 

RTG-2, EMEM for 84BR) containing 10 % PBS. Cell cultures were 

incubated for 24-48 hours and then treated with test chemicals for 

approximately one cell cycle (24 hours for CHO-Kl and 48 hours for 

EPCAl, RTG-2 and 84BR cells) in 1 % FBS, unless stated otherwise. 

Following this incubation period, cell cultures were washed twice with 

PBS and 8 ml fresh medium added containing Cytochalasin B (Cyto B) 

to inhibit cytokinesis in 10 % FBS and incubated at their optimal 

growth conditions for one cell cycle. Following this second incubation 

period, the cell cultures were washed with PBS, trypsinised and 

resuspended in medium containing 10 % FBS and treated as either 

Section 2.6.1 or 2.6.2 below. 

2.6.1 Giemsa Staining 

The resuspended cells were then centrifuged at 800 rpm for 10 

minutes, the supernatant removed, and approximately 5 ml of cold 

KCI (0.56 % ) added using a vortex mixer to cause the cells to swell 

slightly. Cells were left for 10-20 minutes before being centrifuged at 

800 rpm for 10 minutes. Following this, the supernatant was 

removed, and the cells were resuspended. Five ml of acetic acid (100 

% ) : methanol (100 % ) (1:3) was added at room temperature to fix 

the cells and the cells centrifuged at 800 rpm for 10 minutes. Five ml 

of acetic acid (100 % ) : methanol (100 % ) (1:3) was added at room 

temperature, and the cells left for a minimum of 30 minutes. 

Following this second fixation step, the cells were centrifuged at 800 

rpm for 10 minutes. The supernatant was removed leaving 

approximately 1 ml and the cells were resuspended in this. An 
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aliquot of approximately 20-40 pi was applied carefully to a slide and 

left to air-dry. Slides were stained with 10 % Giemsa stain (to 

distinguish between cytoplasm and nuclear material) for 10 minutes 

in coplin jars, followed by a two-rinse step In distilled water. The 

slides were left to air dry and mounted with DPX Mountant for 

examination under a light microscope to determine the presence of 

micronuclel. 

2.6.2 Antiklnetochore Staining 

A cell count was performed on the resuspended cells to adjust the cell 

concentration to 3 x lO'* cells ml'^ which produces a suitable number 

of cells for visualisation under the microscope. An aliquot of cell 

suspension (0.4 ml for a single cytofunnel, or 0.25 ml for each part of 

a double cytofunnel) was added to each tube of the cytofunnel, 

placed In the cytocentrlfuge (Cytospin; Shandon Southern, Ltd) to 

flatten the cells onto clean slides and spun down onto clean slides at 

900 rpm for 5 min (Ding et a/., 2003). The preparations were then 

fixed In Ice cold methanol for 10 minutes. The slides were then dried 

in the dark for approximately 1 hour to remove traces of methanol. 

The fixed slides were stored at -20 °C in airtight moisture proof 

packaging and scored within 7-10 days using fluorescence microscopy 

as detailed below to detect the presence of kinetochore positive or 

negative micronuclel (Section 2.6.3). 

2.6.3 Immunofluorescence Staining 

Primary antibody (human anti-nuclear antibody, centromere specific) 

was diluted 1:2 in 5 % FBS in PBS, which was kept on ice until use. 

Prepared slides (Section 2.6.2) were washed 3 times, for 5 minutes 

each in PBS. Excess PBS was removed and approximately 100 pi of 

diluted primary antibody pipetted over the cells to localise the 

centromeres present and covered with a glass coverslip. The slides 
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were incubated in a humidified box at 37 °C for approximately 45-60 

minutes. Secondary antibody (anti-human IgG (Fc specific) Cy3 

conjugate) was diluted 1:100 in 5 % FBS in PBS and kept on ice until 

use. Coverslips were removed and slides washed with PBS: 5 

minutes (x3) in glass coplin jars. Excess PBS was removed and 

approximately 100 pi of diluted secondary antibody pipetted over the 

cells and covered with a coverslip. The slides were incubated in a 

humidified box at 37 °C for approximately 45-60 minutes. Coverslips 

were removed and slides washed with PBS: 5 minutes (x3) in glass 

coplin jars, and then air dried in the dark. Slides were stored at 1-10 

°C in a dark box until scoring. Slides were scored blind with DAPI 

(4',6-Diamidino-2-Phenylindole) antifade (0.1 pg ml"^ DAPI in 

antifade) using a fluorescence microscope fitted with DAPI and TRITC 

(Tetramethyl Rhodamine Iso-Thiocyanate) filters. Micronuclei were 

Identified according to Section 2.6.2. A micronucleus was classified 

as either kinetochore-negative or kinetochore-positive by the absence 

or presence of a kinetochore signal within micronuclei, respectively. 

2.6.4 Scoring of Micronuclei 

Micronuclei are identifiable by the following criteria (adapted from 

Albertini et a/., 2000): 

i) Micronuclei present within the cytoplasm 

ii) Micronuclei diameter less than a third the size of the nucleus 

iii) Micronuclei with identical morphology to nucleus 

iv) Micronuclei should not be linked to main nuclei by bridge 

v) Micronuclei may overlap boundaries with the main nuclei 

Micronuclei were scored from a minimum of 1000 cells per slide 

(Section 2.6.1), and only micronuclei contained within binucleate cells 

were scored where possible, according to the requirements of all the 
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above criteria and employing a balanced scoring system, as 

recommended by Albertini et al. (2000) unless stated otherwise. 

Micronuclei linked to the main nucleus ('nucleoplasmic bridges' (NPB)) 

were also noted, for their possible importance in this type of study as 

recommendations for this assay change and criteria becomes more 

unanimously agreed throughout all laboratories (Fenech et ai,, 

2003a). The micronuclei scoring procedure was adapted throughout 

this period of study and the method as a whole is likely to be adapted 

over the course of the thesis to include more features such as 

apoptosis, necrosis and multinucleated cells in line with recent 

recommendations (Fenech e ta / . , 2003b). 

2.7 UVR 

Measurements of UVB (Phillips, UK) and UVA (XX-40 FB, Spectroline, 

USA) lamps were made using a spectroradiometer (Model SR 9910-

V7, Macam Photometries Ltd., UK) provided by the University of 

Plymouth. UVR doses were calculated from the spectral outputs 

received from the spectroradiometer, and dosage times adjusted 

accordingly. UVR doses were based on existing literature and 

adjusted for each experiment as appropriate. Cell exposure to UVR 

was conducted in PBS in all cases to prevent possible confounding 

effects from constituents in the media and cellular exposure was 

conducted as stated for each assay. Cellular exposure to UV was 

conducted in PBS following incubation with either medium alone, or 

B(a)P. 

58 



2.8 Electron Spin Resonance ( E S R ) 

Spin trapping was mostly carried out using the trap 5,5-dimethyl - l -

pyrroline-N-oxide (DMPO) which mainly detects superoxide and 

hydroxyl radicals (giving DMPO-OOH or DMPO-OH adducts, 

respectively). However, in preliminary experiments the spin traps a-
(4-pyridyl- l-oxide)-N-fe/t-butylnitrone (POBN, l-hydroxyethyl radical), 

the small nitroxide probe 2,2,6,6-tetramethyl-4-piperidinol (TMPol, 

singlet oxygen) and 4,5-dihydroxy-m-benzenedisulphonic acid 

disodium salt (Tiron, singlet oxygen) were also used. All chemicals 

were obtained from Sigma-Aldrich UK. 

2.8.1 ESR Measurements 

ESR measurements were made using a Bruker ECS 106 X-band 

spectrometer. Spectra were recorded at room temperature with a 

modulation frequency of 100 kHz and amplitude of 0.1 mT, 

microwave frequency of 9.425 GHz and power level 10 mW, magnetic 

field 335.9 ± 5.0 mT, time constant 0.3 seconds and scan time 168 

seconds. Cells were microcentrifuged to a pellet in medium, the 

medium removed and cells resuspended in ice cold PBS. These 

samples were then contained in 40 mm lengths of 0.8 mm o.d. gas-

permeable teflon tubing (Zeus Industrial Products, USA), which were 

folded in half and held In open ended 4 mm o.d. quartz tubing, and 

were then irradiated on the bench under a UVA lamp (500 J m"^). 

The samples were then placed in the microwave cavity of the 

spectrometer and acquisition of spectra started within 1 minute of the 

end of irradiation (UVA: (XX-40 FB, Spectroline, USA)). When cells 

were examined with ESR, the trypsinised cells were washed 3 times 

with PBS to remove serum and free B(a)P. The cell suspension from 

each 25 ml culture flask was divided into two and the cell pellet from 

each half was resuspended in 50 pi of 250 mM DMPO in PBS prior to 
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irradiation. For preliminary experiments, the spin traps TMPol and 

POBN were both used at a concentration of 50 mM. 

2.9 Statistics 

For comet assay, data were collected from Excel and transferred into 

MINITAB for statistical analysis. The data is non-parametric, 

therefore, the median value was applied to the Mann-Whitney U-test 

to investigate the level of significant difference between the medians 

(p < 0.05) (Morley et a/., 2005). In some cases the data were then 

transferred into SigmaPlot to illustrate as box and whisker plots which 

show the spread of the data. For micronucleus experiments, data 

was presented in tables to show the various examined parameters, 

and the statistical level of significance tested between mean 

micronuclei frequencies with Mann-Whitney U-tests, For NRR assay 

results, the results were tested for significance using Mann-Whitney 

U-tests. 
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CHAPTER I I I - OPTIMISATION AND VALIDATION 

3.1 Introduction 

An important aspect of toxicologlcal Investigations Is the optimisation 

and validation of techniques in order to elucidate the observed 

effects. Assay development is necessary to correctly produce and 

Interpret results, and it is necessary to ensure that variability is kept 

to a minimum. The relative sensitivities of various cell types are 

Important in the development of suitable assays, particularly In 

relation to biomarkers, to sensitively detect the effects of 

environmental pollution. Hence, their use to determine acceptable 

levels of environmental contamination is contingent on knowledge of 

their sensitivities. Cell lines from different tissues and from different 

species of varying origin have been widely used in toxicology studies. 

Because of variations In sensitivity, the choice of cell line can 

drastically affect the observed outcomes, therefore it Is vital to fully 

optimise and validate experiments prior to investigating a test 

substance. In this study, an in vitro approach has been adapted with 

a variety of established cell types from different origins (fish: RTG-2, 

EPCAl; mammals: CHO-Kl, 84BR). This, amongst other things, 

enables comparisons to be made of the different sensitivities between 

these cell types. However, cell types are not the only variable to be 

taken into account in an in vitro study. The assay process may alter 

the outcome and needs to be optimised and validated. 

In the work presented here, comet assay parameters of unwinding 

times and electrophoresis times were initially optimised and validated 

using hydrogen peroxide (H2O2) as a reference chemical to find the 

optimal conditions with which to investigate test chemicals with each 

type of cell. H2O2 was used due to its rapid oxidising activity. The 

clastogenic alkylating agent, ethyl methanesulphonate (EMS) acts 

directly on the cell, via DNA adduct formation and hence EMS was 
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used as a positive control not requiring metabolic activation prior to 

induction of DNA damage in accordance with guidelines described by 

Tice et a/. (2000). EMS is a monofunctional ethylating agent that has 

been found to be mutagenic in a number of systems from viruses to 

mammals and it can react via a mixed SN1/SN2 - type mechanism 

which causes ethylation of cellular, nucleophilic sites in DNA (Sega, 

1984). EMS is not primarily a DNA strand - breaking agent, as it 

does not induce direct scission of the DNA backbone (Singer & 

Grunberger, 1983). 

Other positive controls can be used depending on their function. For 

example, in the cell, microtubules are highly labile structures that are 

sensitive to specific anti-mitotic drugs. Colchicine (COL) is a mitotic 

spindle poison that inhibits the polymerisation of tubulin, therefore 

preventing spindle formation and blocking mitosis. Unlike EMS, the 

target molecule of COL is protein (whereas EMS targets the DNA as 

an alkylating agent). COL has aneugenic properties but only when 

used at low concentrations (high concentrations freeze the cells at 

mitosis) making this a suitable positive control for use in the 

micronucleus assay. 

Both EMS and COL are considered suitable positive controls for use in 

the micronucleus assay (Surrales et a/., 1994). The cytokinesis block 

micronucleus assay (CBMN) (see Section 1.9.2) is considered to be 

more sensitive and precise than the conventional micronucleus assay 

or classical metaphase analysis (Fenech & Morley, 1986) and is often 

used with the actin polymerisation inhibitor Cytochalasin B (Cyto B). 

Cyto B is considered an important baseline variable in determining 

micronuclei frequencies with clastogens (such as EMS) and aneugens 

(such as COL) (Surrales et a/., 1994). Therefore the concentration of 

Cyto B selected is important; if it is too low, it can lead to false 

positive results from multiple cell divisions (Surrales et al., 1994). If 
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it is too high it may act cytotoxically and cause a reduction in cell 

viability (Champion et al., 1995). 

3.1.2 Aims and Objectives 

The aims of the work reported in this chapter were to provide a 

baseline set of data which allowed the optimisation and validation of 

the experimental techniques used subsequently and it was also 

necessary to establish the appropriate conditions to be employed for 

the In vitro investigations using cells from different species. More 

specifically the objectives were: 

a) To investigate the relative sensitivities of the cell types by 

means of the NRR assay. 

b) To optimise the comet assay for use with the CHO-Kl, EPCAl 

and RTG-2 cell lines using different unwinding and 

electrophoresis times and using hydrogen peroxide as a 

reference chemical. This process was not conducted in the 

84BR cells as optimisation data already established in these 

cells was used from Cornwall Dermatology Research (CDR). 

c) To validate the comet assay in the CHO-Kl, EPCAl and RTG-2 

cell lines using EMS as a reference genotoxin and to validate 

the comet assay in 84BR cells using hydrogen peroxide as a 

reference genotoxin. After investigation with these two 

compounds it was found that hydrogen peroxide was just as 

effective at generating a positive response, hence EMS was not 

used in the 84BR cells. 

d) To optimise the Mn assay for the induction of micronuclei and 

the generation of binucleate cells in the CHO-Kl, EPCAl and 

RTG-2 cell lines using different concentrations of Cyto B. After 

investigations with the above cell types a standard 

concentration of Cyto B for mammalian cells (84BR) as 
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recommended in current literature (Antoccia et aL, 1993; Ellard 

et a/., 1991) was used, 

e) To validate the Mn assay for the CHO-Kl, EPCAl and RTG-2 cell 

lines using a reference clastogenic genotoxin (EMS) and then to 

further validate the assay with the known aneugen, colchicine 

(COL), using antikinetochore stain. EMS and COL were used 

with the 84BR cells as positive controls following results f rom 

CHO-Kl cells (Sections 3.3.5.2.1 and 3.3.5.3.1 respectively). 
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3.2 Materials and Methods 

3.2.1 Source of Chemicals, Cell Culture Materials and Cell Culture 

Technique 

A list of all cell culture materials and chemicals used (including all 

abbreviations), and their sources Is detailed In Appendix 1.1. All cell 

culture techniques were detailed in Chapter 2, Sections 2.3.1 and 

2.3.2. 

3.2.2 Cell Viability and Cytotoxicity 

Details of trypan blue, dual-staining and NRR assays were detailed in 

Chapter 2, Sections 2 .4 .1 , 2.4.2 and 2.4.4. The NRR assay was 

validated with EMS. The concentrations of EMS were based on an 

earlier study by Horvathova et a/. (1998) which employed hamster 

V79 cells, and were set at 0.8, 1.6 and 3.2 mM for the purposes of 

this investigation. A I M stock solution of EMS was prepared In 

serum free medium (Busch et a/., 2001) and then serial dilutions to 

0.1 mM made in medium containing 1 % FBS, before adding to the 

cell monolayer. Cells were treated for 24 hours with various 

concentrations of EMS (0.0, 0.8, 1.6 and 3.2 mM) In 96-well plates. 

Wells contained a total of 0.2 ml and 6 replicate wells were used per 

treatment. The NRR assay was conducted as in Chapter 2, Section 

2.4.4. 

3.2.3 Single Cell Gel Electrophoresis (comet assay) 

The comet assay steps were conducted as detailed In Chapter 2, 

Sections 2.5.1 through to 2.5.4. The following modifications were 

made. Alkali (pH > 13) unwinding of DNA was optimised by 

investigating various times - 10, 20, 30 or 40 minutes. Additionally 

electrophoresis of DNA was optimised by investigating various times -
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10, 20, 30 or 40 minutes as detai led below. This process was 

necessary to ensure that the responses of the d i f ferent cell t ypes 

were consistent and to provide the opt imal condit ions for 

invest igat ing and scoring DNA damage In each cell t ype. Comet 

visual isat ion and scoring was conducted as detai led in Chapter 2, 

Section 2.5 .4 . 

3.2.3.1 Comet Assay Opt imisat ion w i th Hydrogen Peroxide (H2O2) 

Hydrogen Peroxide (H2O2) was used as a reference chemical to 

invest igate the effects of d i f fe rent unwinding t imes and 

electrophoresis t imes to f ind the opt imal condi t ions ( i t is necessary to 

show that DNA damage can be produced and detected by a reference 

compound dur ing val idat ion studies) w i th which to invest igate the 

effects of the test chemicals on each type of cel l . C H O - K l , EPCAl 

and RTG-2 cells at 70-80 % conf luency were prepared onto slides as 

detai led in Chapter 2, Section 2 . 5 . 1 . Al iquots of 500 pi cell 

suspension were made in centr i fuge tubes. Cell suspensions were 

exposed to 100 pM H2O2 prepared in PBS for 20 minutes at room 

tempera ture . Cell suspensions were then centr i fuged for 3 minutes 

at 2000 rpm and the pellet mixed w i th 170 pi LMP agarose. This agar 

mix was then added to the slides and left to set at 4 °C for a 

m in imum of 10 minutes. Cells were lysed as in Chapter 2, Sect ion 

2.5.1 and t ransferred to alkali e lectrophoresis buf fer to unwind for 

10, 20 30 or 40 minutes in electrophoresis buf fer (Chapter 2, Section 

2.5.2) in the dark at 4 °C. Following this s tep, cells were subject to 

electrophoresis at 10, 20, 30 or 40 minutes in alkali electrophoresis 

buffer in the dark at 4 °C (Chapter 2 , Section 2 .5 .3) . The protocol as 

out l ined in Chapter 2, Section 2.5.4 was then fo l lowed. 
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3.2.3.2 Val idat ion of the Comet Assay w i th Ethyl Methanesulphonate 

(EMS) 

C H O - K l , EPCAl and RTG-2 cells at 70-80 % confluence were exposed 

to var ious concentrat ions (0 .0 , 0.8, 1.6 and 3.2 mM) of EMS 

(prepared as detai led in Section 3.2.2) in med ium to ensure tha t the 

cells were stil l provided wi th the correct nut r ients for g rowth and 

uptake of the compound. EPCAl and RTG-2 cells were incubated for 

6 hours at 21 ± 1 *=»C in 5 % CO2 whi ls t the CHO-K l cells were 

incubated at 37 ± 1 °C according to the recommendat ions set out by 

Tice e t a/. (2000) . Following t rea tmen t w i th EMS, cells were prepared 

for the comet assay as detai led in Chapter 2 , Section 2 . 5 . 1 . Replicate 

slides were made for each t rea tmen t condi t ion, and the protocol 

detai led in Chapter 2, Sections 2 .5 .1 to 2.5.4 fo l lowed. 

3.2.3.3 Val idat ion of the Comet Assay w i th Hydrogen Peroxide (H2O2) 

84BR cells at 70-80 % conf luence were al iquoted into 500 \j\ cell 

suspensions made in centr i fuge tubes and exposed to var ious 

concentrat ions (0, 10, 50 and 100 pM) of H2O2 for 20 minutes at 

room tempera ture . Cells were prepared onto CometSl ides^" and 

t reated as reported in Chapter 2 , Sections 2 .5 .1 and 2 .5 .2 , fo l lowed 

by unwinding (40 minutes) and electrophoresis (24 m inu tes ) . 

Unwinding and electrophoresis t imes were based on studies w i th this 

cell type reported by Cornwall Dermato logy Research (CDR) (Morley 

etal., 2005) . 

3.2.4 Micronucleus (Mn) Assay 

The micronucleus assay process was fol lowed as detai led in Chapter 

2, Section 2.6 wi th the fol lowing modif icat ions. Ini t ia l ly the 

micronucleus assay was opt imised wi th Cyto B. This was fol lowed by 

val idat ion wi th EMS on a separate occasion. CHO-K l cells were 
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seeded at a density of 4 x 10^ cells ml"^ in 25 cm^ flasks and 

Incubated at 37 ± 1 °C for 24 hours to al low for cell a t tachment to 

the g rowth substrate. EPCAl cells were seeded at a densi ty of 1 x 

10^ cells m l 'S RTG-2 were seeded a t 4 x 10^ cells ml '^ in 25 cm^ 

flasks and cells incubated at thei r o p t i m u m growth tempera tu re of 21 

± 1 °C for 24 hours in 5 % CO2. Cyto B was added at 0 .0 , 1.5, 3.0, 

4.5 and 6.0 pg ml"^ per flask in GM. EMS was added to the cell 

monolayer at var ious concentrat ions (0 .0 , 0 .8, 1.6 and 3.2 mM) 

prepared in med ium as described In Section 3.2.2 before adding to 

the cell monolayer . The flasks were incubated at 37 ± 1 °C for 24 ± 

1 hours ( C H O - K l ) or Incubated at 21 ± 1 °C for 48 ± 1 hours In 5 % 

CO2 (EPCAl and RTG-2). Af ter the exposure period had elapsed, the 

med ium was discarded and the mono layer washed twice w i th PBS. 

Cyto B at opt imal concentrat ion in solvent (DMSO) was added to the 

cells in GM and the CHO-K l f lasks Incubated at 37 ± 1 °C for 24 ± 1 

hours, whi ls t EPCAl and RTG-2 f lasks were Incubated a t 21 ± 1 °C 

for 48 ± 1 hours In 5 % CO2. Af ter 24 ( C H O - K l ) or 48 hours (EPCAl 

and RTG-2) exposure to Cyto B, the cells were removed f rom the 

incubator, and t reated as Chapter 2, Sect ion 2.6.1 (Glemsa s ta in ing) . 

3 .2.4.1 Val idat ion of the Mn Assay using Colchicine and the An t l -

Klnetochore Stain 

Concentrat ions of colchicine (COL) used in this study were fo l lowed 

f rom current l i terature (Jie & Jie, 2001) and set at 0 . 1 , 1.0 and 1.8 

pg ml '^ for va l idat ion. A stock solut ion of COL was prepared at 1 mg 

ml '^ In dist i l led water and di luted to 10 pg ml '^ in med ium to obta in 

the work ing solut ion. Serial d i lut ions were made in med ium 

containing 1 % FBS and added to cell monolayers. Cells were seeded 

as before (Section 3.2.4) and COL was added to the cell mono layer at 

var ious concentrat ions (0 .0 , 0 . 1 , 1.0 and 1.8 pg ml ' ^ ) . The f lasks 

were incubated at 37 ± 1 °C for 24 ± 1 hours for C H O - K l . EPCAl 

and RTG-2 cells were Incubated at 21 ± 1 °C for 48 ± 1 hours In 5 % 
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C02. Af ter the exposure period had elapsed, the med ium was 

discarded and the monolayer washed twice wi th PBS. Cyto B in 

solvent (DMSO) was added to the cells at the opt imised concentrat ion 

for each cell line in GM. C H O - K l cells were incubated a t 37 ± 1 °C 

for 24 ± 1 hours, whi lst EPCAl and RTG-2 cells were incubated at 21 

± 1 <>C for 48 ± 1 hours in 5 % CO2. Af ter 24 (CHO-K l ) or 48 hours 

(EPCAl , RTG-2) exposure to Cyto B, the cells were removed f rom the 

incubator, and t reated as in Chapter 2, Section 2.6.2 and 2 .6 .3 . 

3.2.5 ESR Background Measurements 

ESR measurements were made according to protocol in Chapter 2, 

Section 2 . 8 . 1 . Prel iminary exper iments were made w i thou t adding 

live cells (Section 3.3.7) . 
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3.3 Results 

3.3.1 Assessment of Cell Viabi l i ty w i th Trypan Blue 

Prior to all comet assay exper iments cell v iabi l i ty was assessed using 

t rypan blue exclusion dye. This test relies on membrane integr i ty to 

dist inguish between viable or non-v iable cells. Percentage viabi l i t ies 

were above 90 % in all cases. 

3.3.2 Cytotoxic i ty Using NRR and Dual Stain (Calcein AM/EthD I I I ) 

The dual stain assay using Calcein AM/EthD I I I was carr ied out 

according to the method out l ined in Chapter 2, Section 2.4.2 for 

C H O - K l , EPCAl and RTG-2 cell l ines using various concentrat ions of 

EMS (0 .0 , 0 .8, 1.6, 3.2 and 10.0 mM) and COL (0 .0 , 0 . 1 , 1.0 and 1.8 

pg ml"^). Results for EMS and COL were all over 95 % viabi l i ty (data 

not shown) . The NRR exper iment was used f i rst to val idate the NRR 

assay wi th EMS and second to invest igate any di f ferences between 

the C H O - K l , EPCAl and RTG-2 cell l ines tha t may indicate the i r 

relat ive sensit ivi t ies to the chemicals used. Cells were t reated w i th 

various concentrat ions of EMS (0 .0 , 0.8, 1.6, 3.2 and 10.0 mM) for 

24 hours. NRR results are presented for these cell lines in Figure 3 . 1 . 

The data were normal ised to a percentage ( for example, the average 

of the contro l for EPCAl was 0.95 neutra l red absorbance whi ls t the 

average for 10 mM EMS was 0.79 neutra l red absorbance). C H O - K l 

showed a signif icant di f ference between the control and all EMS doses 

tested (Mann-Whi tney U test , p < 0 .05) . EPCAl cells had no 

signif icant di f ference between the contro l and all EMS doses tested 

(Mann-Whi tney U test , p > 0 .05) except between the contro l and 10 

mM EMS (Mann-Whi tney U test , p < 0 .05) . RTG-2 showed no 

signif icant di f ference between the contro l and EMS doses tested up to 

1.8 mM (Mann-Whi tney U test , p > 0 .05 ) , but there were signi f icant 

dif ferences between the control and 3.2 mM EMS and the control and 
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10 mM EMS (Mann-Whi tney U test , p < 0 .01) . Exposure of all cell 

types to EMS gave no signif icant di f ference between cell l ines (Mann-

Whi tney U test , p > 0 .05) . In all cell l ines, v iabi l i ty was decreased to 

approx imate ly 80 % wi th 10 mM EMS, 

100 t 

C H O - K l 

C H O - K l 
E P C A l RTG-2 

RTG-2 E P C A l 

2 4 6 8 

E M S c o n c e n t r a t i o n ( m M ) 

Figure 3.1 Cell viabi l i ty assessed th rough the uptake of neutral red 

dye by C H O - K l , EPCAl and RTG-2 cells fo l lowing exposure of cells to 

24 hour EMS at various concentrat ions (0 .0 , 0 .8, 1.6, 3.2 and 10.0 

mM) . Cell viabi l i ty is expressed as a percentage of the control (% 

cont ro l ) , w i th the control value being 100 % . Data points are 

represented by 10 replicates. The observed damages at all the EMS 

concentrat ions are indicated as signi f icant ly d i f ferent ( * ) f rom the 

control for CHO-K l ( * ) (Mann-Whi tney U test , p < 0 . 0 5 ) , EPCAl (@) 

(Mann-Whi tney U test , p < 0 . 0 5 ) and RTG-2 C^) (Mann-Whi tney U test , 

p < 0 . 0 1 ) 

3.3.3 Single Cell Gel Electrophoresis (comet assay) 

3 .3 .3 .1 Comet Assay Opt imisat ion 

Prel iminary exper iments were conducted to opt imise the comet 

assay. In order to determine the unwinding and electrophoresis 

t imes for the three cell lines ( C H O - K l , EPCAl , RTG-2) hydrogen 
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peroxide (H2O2) was used as the posit ive control and cells were 

t reated to a concentrat ion of 100 pM H2O2 for 20 minu tes . Various 

unwinding (10 , 20, 30 and 40 minutes) and electrophoresis (10 , 20, 

30 and 40 minutes) t imes were invest igated. DNA damage was 

measured by the percentage tai l DNA (Tail DNA % ) migra ted (Morley 

et a/., 2005) . In order to ident i fy any signif icant di f ferences between 

the unwinding t imes and the electrophoresis t imes wi th in the data the 

non-parametr ic Mann-Whitney U Rank Sum test was per formed using 

MINITAB. 

3 .3 .3 .1 .1 CHO-K l 

In CHO-K l cells it was clear tha t signif icantly greater DNA damage (p 

< 0 .05) was observed in the posit ive contro l groups compared wi th 

the non H2O2 exposed groups (Figure 3 .2) . There was no signif icant 

di f ference between the unwinding t imes for the d i f ferent 

electrophoresis t imes or between the electrophoresis t imes for 

d i f ferent unwinding t imes (p > 0 .05) . Therefore 40 minutes 

unwinding t ime and 20 minutes electrophoresis t i m e , g iv ing a 

background of about 15 % DNA damage was chosen for the durat ion 

of this study. This agreed wi th f indings reported in the l i te ra ture, as 

well as the f indings f rom research in this laboratory on mammal ian 

cell lines (Raissudin & Jha, 2004 ) . From these exper iments it was 

shown that through posit ive contro l exposure to H2O2 increased DNA 

damage could be adequately detected th rough these exper imenta l 

condit ions. The results for the di f ferent unwind ing and 

electrophoresis t imes for the CHO-K l cell line are presented in Figure 

3.2. 
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Figure 3 .2 T h e ef fect of unwind ing t i m e s ( 1 0 , 2 0 , 3 0 a n d 4 0 m i n u t e s ) with 4 0 

( F i g u r e 3 .2 a , b ) , 3 0 (F igure 3 .2 c , d ) , 2 0 ( F i g u r e 3 .2 e , f ) or 10 ( F i g u r e 3 .2 g , h ) 

m i n u t e s e l e c t r o p h o r e s i s t i m e s on the Ta i l DNA ( % ) m i g r a t e d in C H O - K l c e l l s 

fol lowing n e g a t i v e contro l (left plots) o r e x p o s u r e to 20 m i n u t e s H2O2 ( 1 0 0 m M ) 

(r ight p l o t s ) . S ign i f icant d i f f e r e n c e s ( M a n n - W h i t n e y U t e s t , p < 0 . 0 5 ) b e t w e e n the 

H2O2 pos i t ive con t ro ls a n d the c o r r e s p o n d i n g n e g a t i v e cont ro ls a r e ind ica ted ( * ) . 

T h e r e w e r e no s igni f icant d i f f e r e n c e s b e t w e e n the unwind ing t i m e s for d i f ferent 

e l e c t r o p h o r e s i s t i m e s or b e t w e e n t h e e l e c t r o p h o r e s i s t i m e s for d i f ferent u n w i n d i n g 

t i m e s (p > 0 . 0 5 ) . E a c h box r e p r e s e n t s 2 0 0 repl icate ce l ls ( total n = 8 0 0 ) . 
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3.3.3.1.2 EPCAl 

In EPCAl cells there was no signi f icant d i f ference (p > 0 .05) between 

10 and 20 minutes unwinding t imes , therefore 20 minutes unwind ing 

t ime (wi th a background of about 30 % DNA damage) and 20 

minutes electrophoresis t ime was chosen for the durat ion of th is 

study due to the agreement w i th current l i terature on f ish cell lines 

(Nehls & Segner, 2 0 0 1 ; Raisuddin & Jha, 2004 ) . The results repor ted 

here show tha t there is a signi f icant ef fect f rom using H2O2 as a 

posit ive control al lowing this assay to adequately detect DNA damage 

using these exper imental condi t ions. The results for the d i f ferent 

unwinding and electrophoresis t imes for the EPCAl cell line are 

presented in Figure 3.3. 

3.3.3.1.3 RTG-2 

In RTG-2 cells there was no signif icant di f ference (p > 0 .05) shown 

between the unwinding t imes therefore 20 minutes unwinding t ime 

was chosen as it created a background of about 30 % DNA damage 

and 20 minutes electrophoresis t ime was chosen for the durat ion of 

this study due to the agreement w i th cur rent l i terature on f ish cell 

lines (Nehls & Segner, 2 0 0 1 ; Raisuddin & Jha, 2 0 0 4 ) . The 

exper imenta l results showed tha t the posit ive control to H2O2 was 

successful in al lowing the detect ion of DNA damage through the use 

of these exper imenta l condit ions. The results for the d i f ferent 

unwinding and electrophoresis t imes for the RTG-2 cell line are 

presented in Figure 3.4. 
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Figure 3 .3 T h e effect of unwind ing t i m e s ( 1 0 , 2 0 , 3 0 a n d 4 0 m i n u t e s ) with 4 0 

( F i g u r e 3 .3 a , b ) , 30 ( F i g u r e 3 .3 c , d ) , 2 0 ( F i g u r e 3 . 3 e , f ) or 10 ( F i g u r e 3 .3 g , h ) 

m i n u t e s e l e c t r o p h o r e s i s t ime on DNA d a m a g e (Tai l DNA ( % ) ) to E P C A l c e l l s 

fol lowing n e g a t i v e control ( left p lots) o r e x p o s u r e to 20 m i n u t e s H2O2 ( 1 0 0 pM) 

( r ight p l o t s ) . S ign i f icant d i f f e r e n c e s ( M a n n - W h i t n e y U t e s t , p < 0 . 0 5 ) b e t w e e n t h e 

H2O2 posi t ive cont ro ls a n d the c o r r e s p o n d i n g n e g a t i v e cont ro ls a re ind ica ted ( * ) . 

T h e r e w e r e no s igni f icant d i f f e r e n c e s b e t w e e n the unwind ing t i m e s for d i f ferent 

e l e c t r o p h o r e s i s t i m e s or b e t w e e n the e l e c t r o p h o r e s i s t i m e s for d i f ferent 

unwind ing t i m e s ( p > 0 . 0 5 ) . E a c h box r e p r e s e n t s 2 0 0 ce l l s ( total n = 8 0 0 ) . 
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Figure 3 .4 T h e ef fect of unwinding t i m e s ( 1 0 , 2 0 , 3 0 a n d 4 0 m i n u t e s ) wi th 4 0 

( F i g u r e 3 .4 a , b ) , 30 ( F i g u r e 3.4 c , d ) , 2 0 ( F i g u r e 3 .4 e , f ) o r 10 ( F i g u r e 3 .4 g , h ) 

m i n u t e s e l e c t r o p h o r e s i s t ime on m e d i a n D N A d a m a g e to R T G - 2 ce l l s fol lowing 

n e g a t i v e cont ro l ( left p lots) or e x p o s u r e to 2 0 m i n u t e s H2O2 ( 1 0 0 \stA) ( r ight p l o t s ) . 

S ign i f i can t d i f f e r e n c e s ( M a n n - W h i t n e y U t e s t , p < 0 . 0 5 ) b e t w e e n the H2O2 pos i t ive 

con t ro ls a n d the c o r r e s p o n d i n g n e g a t i v e cont ro ls a r e ind ica ted ( * ) . T h e r e w e r e no 

s igni f icant d i f f e r e n c e s b e t w e e n the u n w i n d i n g t i m e s for di f ferent e l e c t r o p h o r e s i s 

t i m e s o r b e t w e e n the e l e c t r o p h o r e s i s t i m e s for d i f ferent unwind ing t i m e s ( p > 0 . 0 5 ) . 

E a c h box r e p r e s e n t s 2 0 0 ce l l s ( total n = 8 0 0 ) . 
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3.3.3.2 Val idat ion of the Comet Assay using Ethyl Methanesulphonate 

(EMS) 

To val idate the comet assay, the ef fect of the known genotoxin EMS 

was Invest igated. All cell lines were exposed to EMS at 

concentrat ions of 0.0, 0 .8, 1.6 and 3.2 mM for 6 hours ( fo l lowing 

recommendat ions set out by Tice et al., 2000) fo l lowing which the 

comet assay was per formed. DNA damage was measured by the Tail 

DNA ( % ) . The non-parametr ic Mann-Whi tney U Rank Sum test was 

performed on the data using MINITAB and p-values indicated a 

signif icant di f ference between the contro l and all EMS concentrat ions 

(Mann-WhItney U test , p < 0.001) for C H O - K l (Figure 3 .5a) , EPCAl 

(Figure 3.5b) and RTG-2 (Figure 3.5c) . There was also a signif icant 

dif ference in response to EMS between the CHO-K l and RTG-2 cell 

lines (Mann-Whi tney U test , p < 0 .001) but no signif icant di f ference 

between RTG-2 and EPCAl cell lines (Mann-WhI tney U test , p > 

0.05) . These results showed that there was a dose-dependent ef fect 

of EMS on DNA damage which was observed in all the cell l ines 

tested. This Indicated tha t EMS was ef fect ive as a posit ive control for 

fur ther exper iments . 
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Figure 3.5 Median DNA damage observed in C H O - K l (Figure 3 .5a) , 

EPCAl (Figure 3.5b) and RTG-2 (Figure 3.5c) cells fo l lowing 6 hour 

exposure to EMS at var ious concentrat ions (0 .0 , 0 .8, 1.6 and 3.2 

mM) . DNA damage is assessed by the Tail DNA (%) migra ted. The 

observed damages at all the EMS concentrat ions are signif icantly 

di f ferent ( * ) f rom the control (Mann-Whi tney U test , p < 0 .001) . 

Each box represents 400 cells ( to ta l n = 1600) . 
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3.3.3.3 Val idat ion of the Comet Assay using Hydrogen Peroxide 

(H2O2) 

To fur ther val idate the comet assay, the effect of H2O2 was 

invest igated at various concentrat ions in 84BR cells. 84BR cells were 

exposed to H202for 20 minutes at var ious concentrat ions (0 , 10, 50 

and 100 | J M ) . A S measured by Tail DNA (%) (Figure 3.6) there was a 

signif icant dose response increase in DNA damage f r om the control 

and all H2O2 concentrat ions tested (Mann-Whi tney U test , p < 0 .0001) 

as well as between all the doses tested (Mann-Whi tney U test , p < 

0 .0001) . 

80 

60 

40 

20 A 

n = 1 6 0 0 

20 40 60 80 100 

[ H , 0 , ] UM 

Figure 3.6 DNA damage to 84BR cells fol lowing exposure to 20 

minutes H202at var ious concentrat ions (0 , 10, 50 and 100 pM). DNA 

damage is assessed by the Tail DNA (%) mig ra ted . The DNA 

damages produced by all the H2O2 concentrat ions were signif icant ly 

d i f ferent ( * ) f rom that of the contro l (Mann-Whi tney U test , p < 

0 .0001) . Each box represents 400 cells ( tota l n = 1 6 0 0 ) . 
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3.3.4 MIcronucleus (Mn) Assay 

3 .3 .4 .1 Opt imisat ion of the Mn Assay w i th Cytochalasin B (Cyto B) . 

Var ious concentrat ions of Cyto B (0 .0 , 1.5, 3.0, 4.5 and 6.0 pg ml"^) 

were tested in all cell lines ( C H O - K l , EPCAl , RTG-2). Cell v iabi l i t ies 

were above 90 % for all Cyto B exposures measured th rough t rypan 

blue unless Indicated otherwise. Cells were manual ly scored using 

Giemsa stain and results are presented in Table 3 . 1 . 

3 .3 .4 .1 .1 CHO-K l 

Results showed that the f requency of binucleate cells increased 

signi f icant ly (Mann-Whi tney U test , p < 0.05) w i th increasing 

concentrat ions of Cyto B to a concentrat ion of 3.0 pg ml"^ (mean of 

653.67 ± 35.08) (which was signif icant ly d i f ferent f rom the contro l 

(Mann-WhItney U test , p < 0 .05 ) ) . At 4.5 pg ml"^ and 6.0 pg ml"^ 

Cyto B the number of binucleate cells dropped sl ightly to a plateau 

but also remained signif icantly d i f ferent f rom the control (Mann-

WhItney U test , p < 0 .05) . Associated wi th this was a gradual 

reduct ion in the frequencies of mononucleate cells observed wi th 

Increasing concentrat ions of Cyto B. There was a small Increase In 

micronuclei f requency seen wi th increasing the Cyto B concentrat ion 

f rom no response seen at 0.0 pg ml '^ Cyto B to a mean of 1.33 ± 

0.58 at a concentrat ion of 6.0 pg ml"^ Cyto B however, th is was not 

signif icant ly d i f ferent f rom the contro l (Mann-Whi tney U test , p > 

0 .05) . In this work , a m a x i m u m generat ion of binucleate cells w i th 

m i n i m u m background micronuclei was produced at 3.0 pg ml"^ Cyto B 

so this concentrat ion was chosen for fu r ther exper iments . This dose 

also produced signif icantly (Mann-WhItney U test , p < 0 .05) more 

binucleate cells f rom the other doses. 
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3.3.4.1.2 EPCAl 

Results for EPCAl cells showed the generat ion of binucleate cells 

increased signif icantly (Mann-Whi tney U test , p < 0.05) w i th 

increasing concentrat ions of Cyto B to a mean of 838.00 ± 9.90 at a 

concentrat ion of 1.5 pg ml"^ Cyto B. The concentrat ion 1.5 pQ rnl'^ 

Cyto B produced signif icantly more (Mann-Whi tney U test , p < 0 .05) 

binucleate cells than the lowest and highest concentrat ions (0.5 or 

6.0 pg ml '^) of Cyto B. Associated w i th the occurrence of binucleate 

cells wi th the addi t ion of Cyto B were sharp reduct ions in 

mononucleate cells (e .g . a mean of 352.5 ± 96 .87 w i th 0.5 pg ml '^ 

Cyto B) f rom the control mononucleated cell occurrence (a mean of 

909.0 ± 94 .75 ) . There was a large increase in micronuclei f requency 

seen wi th increasing Cyto B concentrat ion f rom no observed 

micronuclei at 0.0 pg ml"^ Cyto B to a mean of 11.5 ± 2.12 at a 

concentrat ion of 6.0 pg ml '^ Cyto B tha t was signif icantly d i f ferent 

f rom the control value above 0.5 pg ml"^ Cyto B (Mann-Whi tney U 

test , p < 0 .05) . A max imum generat ion of binucleate cells wi th 

m in imum background micronuclei was produced at 1.5 pg m l " \ so 

this concentrat ion was chosen for fu r the r exper iments w i th this cell 

t ype. 

3.3.4.1.3 RTG-2 

Results for RTG-2 cells showed the generat ion of binucleate cells 

increased signif icantly (Mann-Whi tney U test , p < 0.05) w i th 

increasing concentrat ions of Cyto B to a mean of 636.5 ± 48 .79 (1 .5 

pg ml"^) and a reduct ion in the f requencies of mononucleate cells w i th 

increasing concentrat ion of Cyto B f rom the control (a mean of 980 .5 

± 2.12) to 1.5 pg m r ' (a mean of 469 .5 ± 9.19) (Table 3 .3 ) . 

Frequencies of micronuclei remained low and not signif icant ly 

d i f ferent f rom the control (Mann-Whi tney U test , p > 0 .05) , to a 

m a x i m u m mean observed micronuclei f requency of 1.5 ± 0.71 a t 1.5 
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^jg ml"^ (Mann-Whi tney U test , p > 0 .05) . However , cytotoxic i ty was 

observed through extensive cell de tachment at concentrat ions of 3.0 

\jg ml"^ and above in this cell l ine. Bearing this effect in mind , the 

max imum generat ion of binucleate cells wi th m i n i m u m background 

micronuclei was produced at 1.5 pg ml"^ (s igni f icant ly d i f ferent f r om 

the control and 0.5 pg ml'^ Cyto B) and this concentrat ion was chosen 

for fu r ther exper iments . 
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Table 3.1 Effect of var ious concentrat ions of Cyto B on the mean 

(±SE) number of binucleate cells and micronuclei produced in CHO-

K l , EPCAl and RTG-2 cell lines (n = 33 ,613) using the Giemsa stain. 

Signif icant dif ferences f rom the control are indicated ( * ) (Mann 

Whitney U test , p < 0 .05) . 

C H O - K l Mononucleate cells Binucleate cells Micronuclei 

[Cyto B] (ug m ^ ) 

0.0 946.33 ± 30.01 56.33 ± 25.70 Not observed 

1.5 874.67 ± 11.24 125.33 ± 11.24 0.33 ± 0.58 

3.0 356.33 ± 35.08 653.67 ± 35.08* 1.00 ± 0.00 

4.5 491.33 ± 3.21 508.67 ± 3.21* 1.33 ± 0.58 

6.0 496.67 ± 7.57 503.33 ± 7.57* 1.33 ± 0.58 

E P C A l 
[Cyto B](Mg ml-*) 

0.0 909.0 ± 94.75 97.50 ± 77.07 Not observed 

0.5 352.5 ± 96.87 690.50 ± 71.42* 2.0 ± 2.83 

1.5 236.0 ± 31.11 838.00 ± 9.90* 3.5 ± 0.71 

3.0 198.5 ± 62.93 824.00 ± 21.21* 5.0 ± 2.83 

4.5 207.5 ± 47.38 815.00 ± 53.74* 6.0 ± 1.41 

6.0 299.5 ± 135.06 778.00 ± 49.50* 11.5 ± 2.12* 

RTG-2 
[Cyto B](Mg ml**) 

0.0 980.5 ± 2.12 30.5 ± 2.12 Not observed 

0.5 837.5 ± 17.68 175.0 ± 16.97* Not observed 

1.5 469.5 ± 9.19* 636.5 ± 48.79* 1.5 ± 0.71 
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3.3.4.2 Val idat ion of the Micronucleus Assay w i th EMS 

The effects of various concentrat ions of EMS 0.0, 0 . 1 , 1.0, 1.8 and 

3.2 mM (Giemsa sta in. Table 3.2) or 0.0, 1.8 mM (ant i -k inetochore 

s ta in , Table 3.3) were observed for the C H O - K l , EPCAl and RTG-2 

cells In order to invest igate genomic instabil i ty th rough the act iv i ty of 

this clastogenic compound. 

3 .3 .4 .2 .1 CHO-K l 

The effect of EMS in CHO-K l cells was invest igated using Giemsa to 

detect micronuclei , and using the ant i -k inetochore stain for 

clastogenic and aneugenic ef fects. Results using Giemsa stain 

showed that 1.8 mM EMS caused a signif icant increase (p < 0.05) in 

the frequencies of mean micronuclei seen (7 .00 ± 1.15) f r om 0.0 mM 

EMS. There was no signif icant increase (Mann-Whi tney U test , p > 

0.05) between the control and the o ther EMS doses tested ( 0 . 1 , 1.0 

and 3.2 mM) . The number of micronuclei generated w i th 3.2 mM 

EMS was the same as observed wi th 1.0 mM EMS and the lack of an 

increase in the number o f micronuclei at the highest tested dose 

could be due to excessive damage outside the detect ion range for th is 

assay at this concentrat ion (Table 3 .2) . Results using the an t i -

k inetochore stain (Table 3.3) indicated tha t numbers of 

mononucleate cells reduced sl ight ly and not signi f icant ly (Mann-

Whitney U test , p > 0 .05) wi th in a scoring protocol of 1000 

binucleate cells, f rom a mean of 87.5 ± 7.78 to a mean of 79.0 ± 

5.66 when EMS was appl ied. The frequency of K- micronuclei 

observed increased signif icant ly (Mann-Whi tney U test , p < 0 .05) 

wi th EMS exposure. There were no K+ micronuclei detected in CHO-

K l cells. 
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3.3.4.2.2 EPCAl 

In EPCAl cells the effect of EMS was invest igated using Giemsa to 

detect micronuclei , and using the ant i -k inetochore stain to invest igate 

clastogenic and aneugenic ef fects. Results using the Giemsa stain 

showed that frequencies of micronuclei increased when EMS was 

present. This increase was signi f icant wi th 1.0 mM and 3.2 mM EMS 

(p < 0 .05) . Results using the ant i -k inetochore stain Indicated tha t 

numbers of mononucleate cells increased signif icantly (p < 0 .05) 

wi th in a scoring protocol of 1000 binucleate cells, f rom a mean of 78 

± 8.49 (control) to a mean of 212.5 ± 54.45 when EMS was present. 

The frequency of K- micronuclei observed increased signif icantly (p < 

0.05) to a mean of 6.5 ± 2.12 w i th EMS exposure. There were no K+ 

micronuclei detected in EPCAl cells. 

3.3.4.2.3 RTG-2 

In RTG-2 cells the effect of EMS was invest igated using Giemsa to 

detect micronuclei , and the ant i -k inetochore stain to invest igate 

clastogenic and aneugenic ef fects. Results using the Giemsa stain 

showed that frequencies of micronuclei increased signif icantly (p < 

0.05) f rom 1.67 ± 0.58 in the contro l to 5.00 ± 1.00 (1 .0 mM EMS). 

The frequency of micronuclei at the highest concentrat ion used here 

(4 .00 ± 0.00 micronuclei a t concentrat ion 1.8 mM EMS) was sl ight ly 

lower than the highest f requency seen (5.00 ± 1.00 in 1.0 mM EMS) 

but th is was not a signif icant d i f ference (p > 0 .05) . This f requency 

was lower than seen in Sections 3 .3 .4 .2 .1 and 3.3.4.2.2 for the same 

dose (1 .8 mM EMS) but th is was not signif icantly d i f ferent indicat ing 

tha t an increase in EMS concentrat ion may generate excessive 

damage in these cells tha t is beyond the appropr iate detect ion range 

of the assay and suggest ing tha t RTG-2 cells are more sensit ive to 

the effects of EMS than C H O - K l or EPCAl . Results using the an t i -

k inetochore stain indicated tha t wi th in a scoring protocol of 1000 
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binucleate cells numbers of mononucleate cells reduced sl ight ly (p > 

0 .05) , f rom 80 ± 7.07 to 76 ± 9.90 when EMS was appl ied. The 

frequency of K- micronuclei observed increased signif icant ly (p < 

0.05) wi th EMS exposure. There were no K+ micronuclei detected 

but a signif icant induct ion of K- micronuclei tha t suggest a loss of 

chromosome f ragments (clastogenic mechan ism) . 
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Table 3.2 Effect of various concentrations of EMS on the mean number of micronuclei produced in the CHO-Kl, EPCAl or RTG-2 cell lines using 

the Giemsa stain (n = 56,000). Significant differences are indicated (*) between the tested doses and the control (Mann Whitney U test, p < 

0.05). 

[EMS] (mM) 0.0 0.1 1.0 1.8 3.2 

Cellular Response-CHO-Kl 

Binucleate 1000.0 ± 0.00 1000.0 ± 0.00 1000.0 ± 0.00 1000.0 ± 0.00 1000.0 ± 0.00 

Micronuclei 0.50 ± 0.58 3.00 ± 0.82 4.00 ± 1.83 7.00 ± 1.15* 4.00 ± 3.00 

Cellular Response-EPCAl 

Binucleate 1000.0 ± 0.00 1000.0 ± 0.00 1000.0 ± 0.00 1000.0 ± 0.00 1000.0 ± 0.00 

Micronuclei 1.0 ± 1.41 2.5 ± 0.71 5.0 ± 0.00* 6.5 ± 0.71* 5.5 ± 7.78* 

Cellular Response-RTG-2 

Binucleate 1000.00 ± 0.00 1000.00 ± 0.00 1000.00 ± 0.00 1000.00 ± 0.00 N/A 

Micronuclei 1.67 ± 0.58 1.00 ± 0.00 5.00 ± 1.00* 4.00 ± 0.00 N/A 
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Table 3.3 Effect of various concentrat ions of EMS on the mean 

number of micronuclei produced in the C H O - K l , EPCAl or RTG-2 cell 

lines using the ant i -k inetochore stain (n = 26 ,349) . Signif icant 

dif ferences are indicated ( * ) between the tested dose and the contro l 

(Mann Whitney U test , p < 0 .05) . 

[EMS] (mM) 

Cellular Response-CHO-Kl 

0.0 1.8 

Mononucleate 87.5 ± 7.78 79.0 ± 5.66 

Binucleate 1000.0 ± 0.00 1000.0 ± 0.00 

K+ 1000 Bn cells Not observed Not observed 

K- 1000 Bn cells 0.5 ± 0.71 7.5 ± 0.71* 

Cellular Response-EPCAl 

Mononucleate 78.0 ± 8.49 212.5 ± 54.45 

Binucleate 1000.0 ± 0.00 1000.0 ± 0.00 

K+ 1000 Bn cells Not observed Not observed 

K- 1000 Bn cells 0.5 ± 0.71 6.5 ± 2.12* 

Cellular Response-RTG-2 

Mononucleate 80.0 ± 7.07 76.0 ± 9.90 

Binucleate 1000.0 ± 0.00 1000.0 ± 0.00 

K+ 1000 Bn cells Not observed Not observed 

K- 1000 Bn cells 0.5 ± 0.71 5.5 ± 0.71* 

88 



3.3.4.3 Invest igat ion of Micronuclei Induct ion w i th Colchicine (COL) 

Three cell lines ( C H O - K l , EPCAl , RTG-2) were exposed to COL 

(Section 3.2.3) at var ious concentrat ions (0 .0 , 0 . 1 , 1.0 and 1.8 pg 

ml '^) and the results are presented in Tables 3.4. The effects of COL 

were invest igated using the ant i -k inetochore s ta in , to identi fy any 

clastogenic and /o r aneugenic effects. 

3 .3 .4 .3 .1 CHO-K l 

Results show that for the CHO-K l cell line In the presence of COL, 

numbers of mononucleate cells increased wi th in a scoring protocol of 

1000 binucleate cells, ranging f rom 83 ± 15.56 for the control to 279 

± 19.80 w i th 1.0 |jg ml"^ COL exposure (p < 0 .05) . The results f r o m 

ant i -k inetochore staining show that there is signif icant Increase (p < 

0.05) in the numbers of micronuclei produced fo l lowing C H O - K l 

exposure to COL. Of these induced micronuc le i , there was a smal l 

(but insignif icant (p > 0 .05)) response in K- micronuclei f requency 

f rom the K- control (0.5 ± 0.71) to COL at the lowest concentrat ion 

of 0.1 pg ml '^ (1 .0 ± 0.00 (K- ) ) observed whereby a plateau 

response was then observed for 1.0 pg ml '^ (0 .5 ± 0 .71) and 1.8 pg 

m r \ These results suggest tha t COL has smal l clastogenic act iv i ty , 

however when the K+ micronuclei results are taken Into account, 

there was a large and signif icant Increase (p < 0 .05) in K+ 

mlcronuclei at 0.1 pg ml*^ (12.5 ± 0.71) which then reduced at 1.0 

pg ml '^ (8 .0 ± 1.41) and 1.8 pg ml"^ (7 .0 ± 1.41) respect ively. 

These results suggest tha t COL has signif icant aneugenic act iv i ty at 

all the concentrat ions tested. However, greater insight into the 

act iv i ty of COL appears when looking at the data obtained w i th 

mul t inucleated cells. At the highest concentrat ion of COL that was 

used (1 .8 pg ml"^) there are signif icantly more (p < 0 .05) 

mul t inucleated cells ( f requency of 18.5 ± 2 .12) . 

89 



3.3.4.3.2 EPCAl 

Results show that in the presence of COL the numbers of 

mononucleate cells increase signif icantly (p < 0 .05) wi th in a scoring 

protocol of 1000 binucleate cells, ranging f r om 76.5 ± 23.33 (contro l ) 

to 292 ± 16.97 (1 .8 pg ml"^ COL). These results f rom an t i -

k inetochore staining show that there is smal l but stat ist ical ly 

insignif icant (p > 0.05) response in K- micronuclei f requency f rom the 

K- control (1.0 ± 1.41) and at the lowest concentrat ion of COL (0 .1 

pg mr^ - 1.0 ± 0.00 (K - ) ) . A plateau response is then observed for 

1.0 pg ml"^ and 1.8 pg ml"^ respectively (1 .5 ± 0 .71 ) . There is also a 

large, signif icant (p < 0.05) increase in K+ micronuclei at 0.1 pg ml"^ 

(8.0 ± 0.00) but this declines wi th increasing concentrat ions of COL. 

At the higher concentrat ions of COL (1.0 and 1.8 pg ml"^) there are 

more mul t inuc leated cells ( frequencies of 4 .5 ± 2.12 and 8.5 ± 0 .71 

respect ively) (signif icant ly d i f ferent f rom the contro l (p < 0.05)) than 

those observed wi th the lower concentrat ions of COL and than those 

observed wi th in the contro l group. 

3.3.4.3.3 RTG-2 

Results show that the numbers of mononucleate cells increase 

signif icantly (p < 0.05) wi th in a scoring protocol of 1000 binucleate 

cells, ranging f rom 85 ± 8.49 (0.00 pg ml ' ^ COL) to 300.5 ± 4 .95 

(1.8 pg ml*^ COL). Results f rom ant i -k inetochore staining show tha t 

there is small and stat ist ical ly insignif icant (p > 0 .05) increase in K-

micronuclei f requency f rom the K- control (0 .5 ± 0.71) a t the lowest 

concentrat ion of COL (0 .1 pg ml '^ - 1.0 ± 1.41 (K- ) ) whereby the 

response of micronuclei does not increase as concentrat ions of COL 

increase. For K+ micronucle i , there is a large and signif icant (p < 

0.05) increase in K+ micronuclei at a concentrat ion of 0.1 pg ml"^ 

(8.0 ± 0.00) the f requency of which then decl ines at 1.0 pg ml"^ (5 .5 

± 2.12) and 1.8 pg ml '^ (5.5 ± 0 .71) COL. At the higher 
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concentrat ions of COL (1.8 pg ml '^) there are more mul t inucleated 

cells ( frequency of 6.5 ± 0 . 7 1 ; stat ist ical ly d i f ferent f rom the control 

(p < 0.05)) than observed wi th the lower concentrat ions of COL and 

wi th in the control group. 
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Table 3.4 Effect of various concentrations of COL on the mean number of micronuclei produced in the CHO-Kl, EPCAl and RTG-2 cell lines 

(n=56,592) using the anti-kinetochore stain. Significant differences from the control are indicated (*) (Mann Whitney U test, p < 0.05). 

[COL] (Mg mr^) 0.0 0.1 1.0 1.8 

Cellular Response-CHO-Kl 

Mononucleate 83.0 ± 15.56 139.0 ± 52.33* 279.0 ± 19.80* 253.5 ± 89.80* 

Binucleate 1000.0 ± 0.00 1000.0 ± 0.00 1000.0 ± 0.00 1000.0 ± 0.00 

K+ 1000 Bn cells Not observed 12.5 ± 0.71* 8.0 ± 1.41* 7.0 ± 1.41* 

K-1000 Bn cells 0.5 ± 0.71 1.0 ± 0.00 0.5 ± 0.71 0.5 ± 0.71 

Multinucleate cells Not observed 4.5 ± 2.20* 12.5 ± 3.54* 18.5 ± 2.12* 

Cellular Response-EPCAl 

Mononucleate 76.5 ± 23.33 104.0 ± 1.41* 217.0 ± 32.53* 292.0 ± 16.97* 

Binucleate 1000.0 ± 0.00 1000.0 ± 0.00 1000.0 ± 0.00 1000.0 ± 0.00 

K+ 1000 Bn cells Not observed 8.0 ± 0.00* 6.5 ± 2.12* 5.5 ± 0.71* 

K- 1000 Bn cells 1.0 ± 1.41 1.0 ± 0.00 1.5 ± 0.71 1.5 ± 2.12 

Multinucleate cells Not observed 1.0 ± 0.00 4.5 ± 2.12* 8.5 ± 0.71* 

Cellular Response-RTG-2 

Mononucleate 85.0 ± 8.49 116.5 ± 17.68* 241.0 ± 50.91* 300.5 ± 4.95* 

Binucleate 1000.0 ± 0.00 1000.0 ± 0.00 1000.0 ± 0.00 1000.0 ± 0.00 

K+ 1000 Bn cells Not observed 8.0 ± 0.00* 5.5 ± 2.12* 5.5 ± 0.71* 

K- 1000 Bn cells 0.5 ± 0.71 1.0 ± 1.41 1.0 ± 1.41 0.5 ± 0.71 

Multinucleate cells Not observed 1.5 ± 0.71 3.0 ± 1.41* 6.5 ± 0.71* 
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3.3.5 UVR Background Measurements 

UVR measurements were taken in t r ip l icate at the s tar t of the work 

reported here in order to assess the spectral ou tpu t of the UVB and 

UVA lamps and the UVR chamber. Measurements were taken 

th roughout practical exper imentat ion (Chapter 2, Section 2.7) to 

check UV irradiance levels, whereby any f luctuat ions could be 

modif ied to ensure tha t cells received correct UVR doses. The free 

standing UVB lamp produced a mainly UVB outpu t which also 

cont inued into the UVA wave length , but at great ly reduced intensi ty 

(Figure 3.9a). The UVR chamber produced UVR l ight st rongly in the 

region of visible l ight, at reduced intensi ty in the UVA region and at 

low levels in the UVB region (Figure 3.9a) . The intensi ty of the UVA 

output in the UV cabinet was below 0.05 W m"^ s'^ and would be too 

weak to generate suff ic ient damage to the cells under exper imenta l ly 

realistic condit ions or t imes. Figure 3.9b i l lustrates the ou tpu t of the 

f ree-standing UVA lamp which emi t ted UVA strongly at an intensi ty of 

approximate ly 2.25 W m"^ s T h i s provided a more useful work ing 

output of UVA and was chosen as the UVA source for fu ture 

exper iments. The spectral ou tputs of the l ight sources used are 

i l lustrated below in Figure 3.9. 

93 



0.25 1 

0.20 

0.15 

0.10 

0.05 

0.00 

Figure 3.9a 

•UV cabinet 

- W B lamp 

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o 
^ l O C D O r J I v O C O O M T T i D O D O t M C ^ O O O O l N M \ 0 ( D O < M T T ^ O C O O 

Wavelength (nm) 

Figure 3.9b 
2.5 

0 

r* 

n 2.0 
W 0 
rr 

< 
1.5 

0 

3 
1.0 1.0 

0 

0.5 

0 

0.0 

0 

c c A < 
< < / \ 
en > / / \ UVA output 

ibIe 

- / 

/ 
\ 

\ 

- / 

/ 
\ \ 
\ 
\ 

/ 
J 

\ 
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Wavelength 

Figure 3.9 (a) Mean spectral d is t r ibut ion in the UV cabinet and 

produced by the f ree-standing UVB lamp indicat ing the wavelengths 
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measurements) , (b) Mean spectral d ist r ibut ion of the f ree-standing 

UVA lamp indicat ing the wavelength and wavelength intensi ty emi t ted 

(tr ipl icate meansurements) . 
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3.3.6 Electron Spin Resonance (ESR) Background Measurements 

As wi th most exper imenta l systems the f i rst s tep in using ESR for the 

examinat ion of a part icular radical species is to establish the 

exper imenta l condit ions for ef fect ive sp in- t rapp ing to occur. In this 

study 50 ml of a solut ion of B(a)P in d imethy lsu lphox ide (DMSO) ( 1 

mg ml"^) was added to 0.5 ml of various spin t raps (T i ron, DMPO, 

TMPol, POBN) dissolved in PBS and then exposed to UVA ir radiat ion. 

Tiron (4 ,5 -d ihydroxy- l ,3 -benzene-d isu lphon ic acid d isodium salt) was 

found to be photosensi t ive to UVA and could therefore not be used as 

it gave a false posit ive response for superoxide ( i t is reportedly 

sensit ive to superoxide radical anions only (McRae ef a/., 1982) ) . 

Under i r radiat ion, the spin t rap 5 ,5 -d imethy l - l -py r ro l i ne -N-ox ide 

(DMPO) formed an OH adduct, character ised by a 1 :2 :2 :1 quar tet 

wi th aN = an *̂  =1 .49 mT. However, the DMPO-OH adduct can be 

formed either by direct t rapping of hydroxy l radicals or f rom the 

decomposit ion of the superoxide adduct, DMPO-OOH (Pou et a/., 

1994) . This can produce dif f icult ies w i th in terpre ta t ion of data since 

the source of the hydroxy l radical could be e i ther f rom superoxide or 

hydroxy l . Use of an iron chelator (i.e d ie thy lenet r iaminetet raacet ic 

acid (DETAPAC) (Pou e t a / . , 1994) Section 4 .3 .4 ) is then necessary to 

dist inguish the source of the DMPO-OH adduct by ensur ing tha t t race 

metal impuri t ies (e .g . i ron) were removed. TMPol, a t rap for singlet 

oxygen gave no signal on irradiat ion of the aqueous solut ion but in 

contrast , in a DMSO solut ion of B(a)P and TMPol, an intense 3-l ine 

signal wi th aN = 1.58 mT was observed, indicat ing the format ion of 

singlet oxygen in a non-aqueous env i ronment which is probably due 

to the presence of DMSO. I r radiat ion of an aqueous solut ion of a - (4 -

pyr idyl l -ox ide)-N- ter t - -buty ln i t rone (POBN) contain ing B(a)P showed 

a weak 3x2 signal wi th BN = 1.597 mT and B h = 0.268 mT, which can 

be assigned to POBN-CH3. When ethanol was added to the solut ion, 

i rradiat ion produced a d i f ferent 3x2 signal w i th aw = 1.566 mT and an 

= 0.244 mT, due to P0BN-CH(0H)CH3. These radical adducts (POBN-
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C H b and POBN-CH(OH)CH3) can be ascribed to the reaction of 

hydroxyl radicals wi th DMSO and ethanol respect ively (Buet tner & 

Mason, 2003) ( the addit ion of ethanol can increase the detect ion of 

hydroxyl radicals however ethanol can be damaging when used w i th 

cells) and make the use of this spin t rap unsui table due to the use of 

DMSO in the system used to dissolve B(a)P. On the basis of these 

observat ions DMPO was used in this work (Ell iott ef a/., 1986) 

(Sections 4 .3 .4 and 5.3.4 .4) . 
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3.4 Discussion 

When the dual stain technique was appl ied fo l lowing cel lular exposure 

to EMS or COL no cytotoxic i ty was detected in any of the cell l ines. 

Using the NRR assay, CHO-K l cells showed greater sensit iv i ty than 

the fish cells (EPCAl and RTG-2) to the effects of EMS, w i th all EMS 

concentrat ions signif icantly reducing cell v iabi l i ty indicat ing a 

disrupt ion to lysosomal membrane stabi l i ty . However, in RTG-2 cells 

there was only signif icant cytotox ic i ty g iven at the highest two doses 

(3.2 and 10 mM EMS) and in EPCAl cells only the highest dose tested 

(10 mM EMS) gave a signif icant reduct ion cell v iabi l i ty . There was no 

signif icant di f ference between the responses of the d i f ferent cell l ines 

to the same concentrat ions of EMS; a l though viabi l i ty was reduced at 

the highest EMS dose (10 mM EMS) tested in all cell l ines suggest ing 

that this dose was cytotoxic at this concentrat ion to all cell lines. The 

NRR assay has been successfully applied in ecotoxicological studies to 

various cell lines including RTG-2 cells and pr imary cell lines der ived 

f rom gold f ish skin cells (Reeves et al., 2008 ; Sanchez-Fortun et aL, 

2005) and it is recommended for use w i th regulatory phototox ic i ty 

evaluat ion of chemicals by OECD (Spie lmann et a/., 1998) . The NRR 

results suggested tha t this assay could be used for fu r ther 

exper imentat ion alongside the comet and micronucleus assays to 

establish levels of cytotoxic i ty ( for example , non - specific DNA 

damage Is associated w i th cell death (Tice e t a/., 2000 ; Kwak et a/., 

2001) ) . Therefore, the evidence f rom these exper iments suggests 

that test ing for cell viabi l i ty wi th these assays will ensure tha t 

responses shown f rom exper iments w i th ei ther the comet assay or 

the micronucleus assay would be unl ikely to be due to cytotoxic i ty 

and more likely would occur as a result of genetic damage. 

Ini t ia l ly, the effects of two comet parameters (unwind ing t imes and 

electrophoresis t imes) were Invest igated. The ou tcome of these 

exper iments was a standardised approach to both the unwinding and 
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e l e c t r o p h o r e s i s t i m e p a r a m e t e r s in e x p e r i m e n t s f o r e a c h cel l t y p e 

e m p l o y e d . T i ce et a/. ( 2 0 0 0 ) h a v e i l l u s t r a t e d t h e i m p o r t a n c e o f 

o p t i m i s i n g d i f f e r e n t p a r a m e t e r s f o r t h e spec i f i c ce l l l ine a n d t h a t 

c o m p a r i s o n s a re m a d e b e t w e e n t h e e x t e n t o f DNA m i g r a t i o n in b o t h 

t h e c o n t r o l a n d t h e t r e a t e d cel ls u n d e r d i f f e r e n t u n w i n d i n g t i m e s . 

T h e s e r e c o m m e n d a t i o n s by T ice et aL ( 2 0 0 0 ) s u g g e s t t h a t t h e r e is 

s o m e m i g r a t i o n i n d u c e d f r o m c o n t r o l ce l l s . T h e d a t a r e p o r t e d h e r e 

s h o w t h a t 4 0 m i n u t e s u n w i n d i n g a n d 2 0 m i n u t e s e l e c t r o p h o r e s i s 

(F i gu re 3 . 2 ) w e r e m o s t s u i t a b l e f o r t h e m a m m a l i a n cel l l ine ( C H O -

K l ) , w h i l s t 2 0 m i n u t e s u n w i n d i n g a n d 2 0 m i n u t e s e l e c t r o p h o r e s i s 

w e r e m o s t a p p r o p r i a t e f o r b o t h t h e f i sh ce l l l i nes ( E P C A l a n d R T G - 2 ) 

(F igu res 3 .3 and 3 .4 r e s p e c t i v e l y ) a n d so t h e s e w e r e t h e p a r a m e t e r s 

se lec ted f o r t h e res t o f t h e e x p e r i m e n t a t i o n u n d e r t a k e n . 

Pub l i shed w o r k w i t h h u m a n cel ls s h o w s a w i d e r a n g e o f b o t h t h e 

u n w i n d i n g a n d t h e e l e c t r o p h o r e s i s t i m e s u s e d in t h e c o m e t a s s a y . 

The resu l t s p r e s e n t e d h e r e f o r t h e m a m m a l i a n ce l ls ( C H O - K l ) s h o w 

c o m p a r a b l e u n w i n d i n g a n d e l e c t r o p h o r e s i s t i m e s ( 4 0 m i n u t e s 

u n w i n d i n g a n d 2 0 m i n u t e s e l e c t r o p h o r e s i s ) t o o t h e r w o r k . For 

e x a m p l e , Pouge t et aL ( 2 0 0 0 ) used 4 5 m i n u t e s u n w i n d i n g a n d 2 0 

m i n u t e s e l e c t r o p h o r e s i s t i m e s a n d o t h e r s t u d i e s use l o n g e r u n w i n d i n g 

t i m e s o f up t o 1 h o u r (Bock e t a/ . , 1 9 9 8 ) , w h i l s t o t h e r s use s h o r t e r 

t i m e s such as 2 0 m i n u t e s u n w i n d i n g a n d 15 m i n m i n u t e s 

e l e c t r o p h o r e s i s ( M y l l y p e r k i o et aL, 2 0 0 0 ) . Fish e r y t h r o c y t e s h a v e 

been used in c o m e t assay t e s t i n g u n d e r t h e s a m e t i m e p a r a m e t e r s as 

used in t h i s s t u d y ( 2 0 m i n u t e s u n w i n d i n g a n d 2 0 m i n u t e s 

e l e c t r o p h o r e s i s ) (V i l l a r in i et aL, 1 9 9 8 ) . H o w e v e r , o t h e r w o r k e r s 

us ing b lood s a m p l e s h a v e used 10 m i n u t e s u n w i n d i n g a n d 15 o r 2 0 

m i n u t e s e l e c t r o p h o r e s i s ( A n d r a d e et aL, 2 0 0 4 ) . T h e EPC cel l l ine h a s 

been used f o r g e n o t o x i c i t y t e s t i n g w i t h t h e c o m e t assay in o t h e r 

s tud ies a n d e x p e r i m e n t a l c o n d i t i o n s w e r e c o m p a r a b l e t o t h e o n e s 

r e p o r t e d h e r e . For i n s t a n c e , K a m m a n n et aL ( 2 0 0 1 ) e x p o s e d EPC 

cel ls t o m a r i n e s e d i m e n t s c o n t a i n i n g PAH a n d used 20 m i n u t e s 
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u n w i n d i n g a n d 15 m i n u t e s e l e c t r o p h o r e s i s f o r c o m e t a s s a y t e s t i n g . 

So , t h e u n w i n d i n g a n d e l e c t r o p h o r e s i s t i m e s c h o s e n f o r t h i s w o r k 

h a v e b e e n o p t i m i s e d in t h i s l a b o r a t o r y a n d a r e c o n s i s t e n t w i t h t h o s e 

r e p o r t e d in t h e l i t e r a t u r e . 

Us ing t h i s o p t i m i s e d s y s t e m w i t h EMS g a v e r e s u l t s f r o m t h e c o m e t 

assay t h a t s h o w e d t h a t EMS s i g n i f i c a n t l y i n c r e a s e d DNA d a m a g e in al l 

cel l t y p e s in a c lea r d o s e - r e l a t e d m a n n e r . EMS as we l l as o t h e r , 

r e l a t e d , w e a k l y m u t a g e n i c c o m p o u n d s , s u c h as m e t h y l 

m e t h a n e s u l f o n a t e ( M M S ) ac t t h r o u g h a l k y l a t i o n o f s e v e r a l p o s i t i o n s 

on DNA: t h e N \ N ^ a n d p o s i t i o n o f a d e n i n e ; N \ N^, N ^ a n d 

0 ^ o f g u a n i n e ; t h e N^, IM'' a n d pos i t i on of c y t o s i n e ; a n d t h e N^, 

a n d O"* pos i t i on o f t h y m i n e ( H o r v a t h o v a e f a / . , 1 9 9 8 ) . Base 

m o d i f i c a t i o n by DNA a l k y l a t i o n t h e n causes w e a k e n i n g o f t h e N-

g l ycosy l i c b o n d s w h i c h l eads t o d e p u r i n a t i o n / d e p y r i m i d i n a t i o n a n d 

t h e a p p e a r a n c e o f a l ka l i - l ab i le abas i c s i tes (AP s i t e s ) . AP s i tes m a y 

a lso be f o r m e d as a r e s u l t o f t h e exc i s i on o f s o m e f o r m s o f base 

d a m a g e i n i t i a t ed by spec i f i c DNA g l y c o s y l a s e s . AP s i tes a r e r e m o v e d 

by AP e n d o n u c l e a s e s , w h i c h c l e a v e DNA a d j a c e n t t o AP s i tes a n d 

c r e a t e s ing le s t r a n d b r e a k s ( S S B s ) in DNA ( H o r v a t h o v a e t a / . , 1 9 9 8 ) . 

H o w e v e r , t h e use o f EMS e m p l o y e d in t h i s t h e s i s w a s n o t i n t e n d e d t o 

d i f f e r e n t i a t e a m o n g s t t h e d i f f e r e n t m e c h a n i s m s o f DNA d a m a g e , o r t o 

i n v e s t i g a t e r e p a i r m e c h a n i s m s . For t h i s r e a s o n , t h e i nc rease in DNA 

d a m a g e as s h o w n t h r o u g h i n c r e a s i n g s t r a n d b r e a k s w i t h i n c r e a s i n g 

c o n c e n t r a t i o n s o f EMS, g i v e s o n l y an i n d i c a t i o n o f t h e n a t u r e o f t h e 

i n t e r a c t i o n s b e t w e e n EMS a n d t h e cel l l ines i n v e s t i g a t e d h e r e b u t 

d o e s p r o v i d e a m e a s u r e t o w h i c h t h e leve l o f DNA d a m a g e i n i t i a t e d 

by B (a )P a n d UV ( b o t h s i n g l y a n d t o g e t h e r ) c a n b e c o m p a r e d . 

S i m i l a r l y , In o r d e r t o s i m p l y v a l i d a t e t h e c o m e t assay , w i t h 8 4 B R ce l ls 

H2O2 w a s used a n d s h o w e d a dose r e l a t e d s i g n i f i c a n t i n c r e a s e in DNA 

d a m a g e . 
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T h e C y t o B resu l t s i n d i c a t e d t h a t t h e g r e a t e s t s e n s i t i v i t y is s h o w n by 

t h e E P C A l cel l l ine f o r t h e g e n e r a t i o n o f m i c r o n u c l e i , f o l l o w e d by t h e 

RTG-2 a n d C H O - K l cel l l ines ( i . e . E P C A l > RTG-2 > C H O - K l ) . C y t o 

B a l so a p p e a r e d t o be c y t o t o x i c t o RTG-2 ce l ls a t i n c r e a s e d 

c o n c e n t r a t i o n s . T h e s e resu l t s s u g g e s t t h a t f i sh cel l l ines h a v e g r e a t e r 

s e n s i t i v i t y t o C y t o B t h a n t h e m a m m a l i a n C H O - K l cel l l i ne . T h e 

resu l t s f r o m th i s s t u d y i n d i c a t e t h a t 3 pg m l ' ^ C y t o B is an 

a p p r o p r i a t e c o n c e n t r a t i o n t o use w i t h t h e C H O - K l cel l l i ne w h i l s t a 

l o w e r c o n c e n t r a t i o n o f 1.5 pg ml"^ is m o r e s u i t a b l e f o r t h e f i sh cel l 

l i nes , E P C A l a n d R T G - 2 . T h e c h o s e n c o n c e n t r a t i o n f o r t h e C H O - K l 

cel l l ine is in a g r e e m e n t w i t h p u b l i s h e d l i t e r a t u r e f o r C h i n e s e h a m s t e r 

c u l t u r e s (E l la rd e t a / . , 1 9 9 1 ) , a n d h u m a n f i b r o b l a s t s ( A n t o c c i a e t a / . , 

1 9 9 3 ) . H o w e v e r , w h i l s t t h e r e is cop ious p u b l i s h e d w o r k o n in vivo 

m i c r o n u c l e u s s t u d i e s u s i n g f i sh f o r b i o m o n i t o r i n g s t u d i e s , t h e r e is 

l i t t le i n f o r m a t i o n o r use o f e s t a b l i s h e d f i sh cel l l ines w i t h t h i s a s s a y in 

e c o g e n o t o x i c o l o g i c a l t e s t i n g , a n d t h i s is c u r r e n t l y a u n i q u e i n s t a n c e o f 

us ing f i sh cel ls w i t h t h e CBMN assay . 

Fo l l ow ing o p t i m i s a t i o n o f t h e C B M N a s s a y , EMS w a s u s e d t o v a l i d a t e 

t h e assay us ing G i e m s a s t a i n i n g t o d e t e c t m i c r o n u c l e i f r e q u e n c i e s , 

C H O - K l cel ls g a v e a s i g n i f i c a n t Inc rease in m i c r o n u c l e i f r e q u e n c y up 

t o 1.8 m M EMS b u t no s i g n i f i c a n t d i f f e r e n c e b e t w e e n t h e c o n t r o l a n d 

3 .2 m M EMS. Th is c o u l d be r e l a t e d t o t h e s i g n i f i c a n t d i s r u p t i o n in 

m e m b r a n e s tab i l i t y seen u s i n g t h e NRR assay h o w e v e r , t h i s d a t a w a s 

o b t a i n e d w i t h i n a s c o r i n g p r o t o c o l o f 1 0 0 0 b i n u c l e a t e ce l ls t h e r e f o r e 

a n y d a m a g e d cel ls m a y h a v e d i ed a n d d e t a c h e d b e f o r e d e t e c t i o n 

us ing t h e CBMN assay g i v i n g a l o w e r f r e q u e n c y o f m i c r o n u c l e a t e d 

ce l l s . I n E P C A l ce l ls t h e r e w a s a s i g n i f i c a n t i nc rease in m i c r o n u c l e i in 

al l d o s e s t e s t e d a n d a lso a s i g n i f i c a n t i nc rease in t h e m o n o n u c l e a t e 

ce l ls w i t h EMS. T h e i nc rease in m o n o n u c l e a t e cel ls m a y be d u e t o a 

d e l a y in t h e cel l cyc le d u e t o DNA d a m a g e a n d i n d i c a t e s g e n o m i c 

i ns tab i l i t y ( K a u f m a n n & Pau les , 1 9 9 6 ) . T h e s e resu l t s s u g g e s t t h a t 

t h e g r e a t e s t s e n s i t i v i t y w a s s h o w n by RTG-2 ce l ls t o t h e e f f e c t s o f 
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EMS f o l l o w e d by E P C A l a n d C H O - K l h o w e v e r t h e r e w a s n o s i g n i f i c a n t 

d i f f e r e n c e b e t w e e n t h e m i c r o n u c l e i p r o d u c e d a t t h e s a m e d o s e s . 

Us ing a n t i - k i n e t o c h o r e s t a i n i n g in al l ce l l l ines ( C H O - K l , E P C A l a n d 

R T G - 2 ) t h e r esu l t s f o r t h e EMS e x p o s u r e s i n d i c a t e d t h a t EMS 

s i g n i f i c a n t l y i nc reased t h e f r e q u e n c y o f K- m i c r o n u c l e i w h i c h w a s a 

c l a s t o g e n i c e f f e c t in al l t h r e e cel l l ines b e c a u s e no K + m i c r o n u c l e i 

w e r e d e t e c t e d . T h e r e w a s no s i g n i f i c a n t d i f f e r e n c e b e t w e e n t h e 

r e s p o n s e s o f t h e cel l l ines t e s t e d I n d i c a t i n g t h a t t h i s c o m p o u n d ac t s 

in a b r o a d l y s i m i l a r w a y a c r o s s d i f f e r e n t ce l l t y p e s . C o n s i s t e n t w i t h 

t h e s e d a t a is t h e use o f EMS as a p o s i t i v e c l a s t o g e n i c c o n t r o l in 

p u b l i s h e d l i t e r a t u r e (F r i eau f f e f a / . , 1 9 9 8 ; Ra i sudd in & J h a , 2 0 0 4 ) . 

T h e r e s u l t s f r o m th i s i n v e s t i g a t i o n i n d i c a t e t h a t EMS is a g o o d 

p o s i t i v e c o n t r o l f o r f u r t h e r s t u d i e s in t h e Mn a s s a y , d u e t o i ts 

I n d u c t i o n o f a s t r o n g d o s e - r e l a t e d c l a s t o g e n i c r e s p o n s e in al l cel l 

l i nes . Fo l l ow ing v a l i d a t i o n w i t h EMS, t h e m i c r o n u c l e u s assay w a s a lso 

v a l i d a t e d w i t h COL. T h e s e r e s u l t s i n d i c a t e d a pos i t i ve r e s p o n s e t o 

COL t h a t w a s n o t l i nea r l y d o s e d e p e n d e n t . H i g h e r d o s e s o f COL 

c a u s e d a l o w e r f r e q u e n c y o f m i c r o n u c l e i t h a n t h e l o w e r d o s e s o f COL 

b u t t h e r e w a s a pos i t i ve d o s e d e p e n d e n t i nc rease in m u l t i n u c l e a t e d 

ce l ls o b s e r v e d in all cel l l i nes . COL is we l l k n o w n f o r i t s a n e u g e n i c 

m o d e o f a c t i o n a t low doses ( A n t o c c i a et at., 1 9 9 3 ; S c h m i d et a / . , 

1 9 9 9 ; S c h r i e v e r - S c h w e m m e r e f a / . , 1 9 9 7 ) a n d t h e r e s u l t s p r e s e n t e d 

s h o w e d t h a t COL i n d u c e d t h e h i g h e s t f r e q u e n c y o f m i c r o n u c l e i a t t h e 

l o w e s t d o s e t e s t e d ( 0 . 1 p g m l *^ ) c o m p a r e d t o t h e l a r g e r d o s e s used 

in al l ce l l l i nes . T h e r e w a s no s ta t i s t i ca l l y s i g n i f i c a n t d i f f e r e n c e 

b e t w e e n t h e cel ls l ines in t h e m i c r o n u c l e i t h a t w e r e p r o d u c e d . For 

e x a m p l e , t h e E P C A l resu l t s s h o w e d a l o w e r f r e q u e n c y o f m i c r o n u c l e i 

t h a n t h e C H O - K l ce l ls , b u t a s i m i l a r r e s p o n s e w a s s e e n b e t w e e n t h e 

E P C A l a n d t h e RTG-2 cel ls in al l COL c o n c e n t r a t i o n s b u t t h e s e 

r e s p o n s e s w e r e n o t s ta t i s t i ca l l y d i f f e r e n t . COL has b e e n s h o w n t o 

p r o d u c e a d o s e - r e l a t e d i nc rease in m i c r o n u c l e i in h u m a n f i b r o b l a s t s 

( A n t o c c i a e f a / . , 1 9 9 3 ) w h i l s t Z i j n o e f a/. ( 1 9 9 6 ) r e p o r t e d t h a t 
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t r e a t m e n t s w i t h COL p r o d u c e d a s i g n i f i c a n t i n c r e a s e o f 

m i c r o n u c l e a t e d cel ls on l y a t t h e h i g h e s t d o s e ( 2 0 n g ml "^ ) t e s t e d . 

T h e resu l t s h e r e i nd i ca te t h a t a s i g n i f i c a n t m a j o r i t y o f m i c r o n u c l e i 

i n d u c e d by COL c o n t a i n e d K + s i g n a l s , i n d i c a t i n g t h a t COL h a d a 

m a i n l y a n e u g e n i c e f f ec t a t t h e l o w e s t dose used w h i c h s u g g e s t s t h a t 

t h e o b s e r v e d m i c r o n u c l e i w e r e c r e a t e d f r o m p a r t o r t h e w h o l e 

c h r o m o s o m e . In pa r t i a l a g r e e m e n t w i t h o u r r e s u l t s , J ie & Jie ( 2 0 0 1 ) 

s h o w e d t h a t f o l l o w i n g t r e a t m e n t w i t h C O L a t t h e s a m e 

c o n c e n t r a t i o n as u s e d in t h e s e e x p e r i m e n t s ( 0 . 1 p g m l ' ^ ) 7 4 . 5 % 

o f t h e m i c r o n u c l e i i n d u c e d d i s p l a y e d c e n t r o m e r i c s i g n a l s a n d 

s e v e r a l t e l o m e r i c s i g n a l s , i n d i c a t i n g t h a t m i c r o n u c l e i i n d u c e d b y 

C O L w e r e m a i n l y c o m p o s e d o f w h o l e c h r o m o s o m e s . Y a n g & Cao 

( 2 0 0 0 ) a lso c o n c l u d e d t h a t t h e m a j o r i t y o f C O L - i n d u c e d m i c r o n u c l e i 

c o n t a i n e d w h o l e c h r o m o s o m e s . 

I n a d d i t i o n t o t h e a s s e s s m e n t o f m i c r o n u c l e i , o t h e r p a r a m e t e r s 

( m o n o n u c l e a t e a n d b i n u c l e a t e ce l l i n d u c t i o n ) w e r e i n v e s t i g a t e d . 

T h e r e w a s a s i g n i f i c a n t i n c r e a s e in m o n o n u c l e a t e ce l l s d e t e c t e d in 

a l l ce l l l i nes f o l l o w i n g t r e a t m e n t w i t h C O L . T h i s i nc rease in 

m o n o n u c l e a t e d cel ls m a y be d u e t o a cel l cyc le d e l a y r e s u l t i n g in la te 

c y t o k i n e s i s . For e x a m p l e , cel l c yc le d e l a y s a r e i n d i c a t i v e o f DNA 

d a m a g e r e s p o n s e s t h a t m a y h a v e o c c u r r e d t o p r o v i d e m o r e t i m e f o r 

r e p a i r b e f o r e t h e cr i t i ca l s t a g e s o f DNA r e p l i c a t i o n ( K a u f m a n n & 

Pau les , 1 9 9 6 ) . T h e w o r k r e p o r t e d h e r e s h o w s t h a t a t t h e h i g h e r 

c o n c e n t r a t i o n s o f COL u s e d , t h e r e w e r e l o w e r f r e q u e n c i e s o f 

m i c r o n u c l e a t e d ce l ls , b u t h i g h e r f r e q u e n c i e s o f m u l t i n u c l e a t e d ce l l s . 

A n t o c c i a e t aL ( 1 9 9 3 ) a lso s h o w e d t h a t h i g h e r COL c o n c e n t r a t i o n s 

( 2 . 2 5 X 10"® M) p r o d u c e d h i g h e r f r e q u e n c i e s o f m u l t i n u c l e a t e d ce l ls 

( A n t o c c i a e t aL, 1 9 9 3 ) . COL is a l so used as a s p i n d l e b l o c k i n g a g e n t 

a t h i g h e r doses ( D y b o w s k i , 2 0 0 0 ) a n d i t has b e e n r e p o r t e d t h a t i ts 

c o m b i n e d use w i t h C y t o B c a n r e d u c e b i nuc l ea te ce l l f r e q u e n c i e s w i t h 

t h e a p p e a r a n c e o f t e t r a - a n d p o l y - n u c l e a t e d cel ls ( A n t o c c i a e t aL, 

1 9 9 3 ) . T h e o b s e r v a t i o n s o f p o l y - n u c l e a t e d cel ls h e r e s u g g e s t t h a t i ts 
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use as a p o s i t i v e a n e u g e n s h o u l d be r e s t r i c t e d t o t h e l o w e r d o s e s 

t e s t e d . 

I n c o n c l u s i o n , t h e p r e l i m i n a r y s t u d i e s w i t h t h e Mn a s s a y , p r o v i d e d 

d a t a w h i c h d e m o n s t r a t e t h a t e a c h cel l l ine s h o w s a b r o a d l y s i m i l a r 

r e s p o n s e t o EMS o r COL t r e a t m e n t . A n t i - k i n e t o c h o r e a n t i b o d y 

t r e a t m e n t d e m o n s t r a t e d d i f f e r e n c e s in t h e i n d u c t i o n o f m i c r o n u c l e i -

c o n t a i n i n g c h r o m o s o m e f r a g m e n t s a n d w h o l e c h r o m o s o m e s w i t h 

c h e m i c a l s s u c h as EMS a n d COL. T h e s e p r e l i m i n a r y e x p e r i m e n t s 

s h o w e d t h e Mn assay t o be s u i t a b l e f o r use w i t h c o m p o u n d s s u c h as 

B (a )P a n d UVR t o i n v e s t i g a t e c l a s t o g e n i c a n d a n e u g e n i c m e c h a n i s m s . 

T h e C H O - K l cel l l ine p r o v i d e d a s u i t a b l e m a m m a l i a n m o d e l t o use 

a n d o f t h e t w o f i sh cel l l ines u s e d , t h e RTG-2 cel l l ine is m o r e s u i t a b l e 

f o r use in t h e Mn assay t h a n t h e E P C A l cel l l ine d u e t o i t s l a r g e r cel l 

s ize a n d t h e r e l a t i ve ease o f s t a i n i n g . W i t h r e g a r d t o t h e d i f f e r e n t cel l 

l ines u s e d , i t w a s s h o w n t h a t f o l l o w i n g c y t o t o x i c i t y e x p e r i m e n t s , 

m a m m a l i a n ( C H O - K l ) a n d f i sh ce l ls ( E P C A l a n d R T G - 2 ) e x h i b i t e d 

s i m i l a r sens i t i v i t i e s t o c h e m i c a l s w i t h d i f f e r e n t m o d e s o f a c t i o n i .e. 

c l a s t o g e n i c EMS a n d a n e u g e n i c COL. A f t e r g e n o t o x i c i t y s t u d i e s w i t h 

t h e c o m e t a s s a y , t h e i m p o r t a n c e o f o p t i m i s i n g a n d v a l i d a t i n g 

v a r i a b l e s w a s d e m o n s t r a t e d a n d t h e p a r a m e t e r s c h o s e n w e r e 

c o n s i s t e n t w i t h t h o s e r e p o r t e d in t h e l i t e r a t u r e . I t w a s a lso s h o w n 

w i t h t h e Mn assay t h a t al l t h e cel l l ines e x h i b i t e d a s i m i l a r r e s p o n s e 

t o EMS a n d COL a n d t h e use o f t h e a n t i - k i n e t o c h o r e s t a i n p r o v i d e d an 

a p p r o a c h w i t h w h i c h t o d i s t i n g u i s h b e t w e e n c l a s t o g e n i c a n d 

a n e u g e n i c e f f e c t s in t h e ce l l . T h e f o l l o w i n g t a b l e ( T a b l e 3 . 5 ) d e t a i l s 

t h e a d v a n t a g e s a n d d i s a d v a n t a g e s o f all t h r e e cel l l ines f o r use in t h e 

w o r k r e p o r t e d h e r e . 
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T a b l e 3 .5 S u m m a r y o f t h e a d v a n t a g e s a n d d i s a d v a n t a g e s o f t h e cel l 

l ines C H O - K l , E P C A l a n d RTG-2 in e c o t o x i c o l o g i c a l t e s t i n g f o r t h e 

p u r p o s e s o f t h i s w o r k . 

Cell line Advantages Disadvantages 

C H O - K l 

- Commonly used in genotoxicity 
studies (Huynh-Delerme et a/ . , 
2003; Raisuddin & Jha , 2004) 
-Easy to work with large cells in 

this work, 24 h cell cycle 
- Visually clear in Mn assay in this 
work 
- Widely used in Mn assay (Liu et 
a/., 2005) 

- No metabolic function -
requires an exogenous 
metabolic system (Ellard et 
a/ . , 1991; Ellard & Parry, 
1993) 
- Lower response observed 
for comet assay to B(a)P 
than fish cells in this work 

EPCAl 

- Widely used in environmental 
toxicology studies (Kammen et a/ . , 
2001; Ruiz-Leal & George, 2004) 
- Cells derived from epithelial 
tissue - relevant to interactive 
toxicity work 
- Basic metabolic present (Wright 
e t a / . , 2000) 
- Sensitive response observed for 
the comet assay in this work 

- Transformed cell line 
(papilloma) (Wolf & Mann, 
1980) 
- 48 h cell cycle (Wolf & 
Mann, 1980) 
- Small cells, difficult to 
perform the Mn assay in 
this work due to poor 
staining 

RTG-2 

- Widely used in environmental 
toxicology testing (Castano & 
Becerril, 2004; Nehls 8i Segner, 
2001) 
- Easy to work with in this work as 
they are large cells 
- Basic metabolic function present 
(Castano e t a / . , 1996; Pent, 2001; 
Nehls & Segner, 2001; Segner, 
1998) 
- Established ability to metabolise 
B(a)P (Castano e t a / . , 2000; 
Kolpoth e t a / . , 1999 
- Sensitive response in BOTH 
comet and Mn assay in this work 
- Respond to both aneugenic and 
clastogenic effects of tested 
chemicals (Mn) at similar doses to 
mammalian cells without the 
addition of exogenous metabolic 
activity (Sanchez e t a / . , 2000) 
- Visually clear in Mn assay in this 
work 
- Well characterised for use in Mn 
assay (Kolpoth e t a / . , 1999; 
Sanchez et a/ . , 2000) 

- 48 h cell cycle (Wolf & 
Quimby, 1962) 
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I n p r e p a r a t i o n f o r t h e n e x t s t a g e o f t h e w o r k p l a n n e d , i t w a s 

necessa ry t o e x a m i n e t h e m o s t s u i t a b l e cel l l ines w i t h w h i c h t o 

c o n t i n u e r e s e a r c h f o r t h e s u b s e q u e n t s t u d i e s . W i t h r e g a r d s t o t h e 

f i sh cel l l i nes , i t w a s d e c i d e d t o l i m i t t h e i n v e s t i g a t i o n s i n t o B (a )P a n d 

UV m a i n l y t o t h e RTG-2 cel l l i ne , a n d e x e c u t e o n l y p r e l i m i n a r y 

e x p e r i m e n t s w i t h B ( a ) P t o t h e E P C A l cel l l ine t o a v o i d e x c e s s i v e a n d 

u n n e c e s s a r y r e p e t i t i o n s o f t h e i n v e s t i g a t i o n s . T h e use o f t h e RTG-2 

cel l l ine p r o v i d e s an e x c e l l e n t f o u n d a t i o n f r o m w h i c h t o d e v e l o p a 

t i e r e d a p p r o a c h t o t h e i n v e s t i g a t i o n o f i n t e r a c t i o n s b e t w e e n B ( a ) P 

a n d UVB/UVA. A d d i t i o n a l l y , t h e RTG-2 cel l l ine is c o m m o n l y used in 

e n v i r o n m e n t a l e c o t o x i c o l o g i c a l s t u d i e s ( f o r r e f e r e n c e s see Tab le 3 . 5 ) 

a n d has been o p t i m i s e d a n d v a l i d a t e d w i t h i n t h i s p r o j e c t . T h e C H O -

K l cel l l ine w a s a lso s e l e c t e d t o p r o d u c e base l i ne B ( a ) P a n d UV d a t a 

f o r m a m m a l i a n d a t a , a n d t o e n a b l e c o m p a r i s o n s t o be m a d e w i t h 

d a t a f r o m t h e p r i m a r y h u m a n 8 4 B R cel ls i n t r o d u c e d l a te r in t h e 

p r o j e c t ( C h a p t e r 5 ) . 
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CHAPTER IV - THE INTERACTIVE EFFECTS OF B(a)P AND UVR 
ON CELLS DERIVED FROM AQUATIC ORGANISMS 

4.1 Introduction 

Aqua t i c e n v i r o n m e n t s a re s u b j e c t t o a mass i ve ou t fa l l o f o rgan ic 

po l l u t an t s especia l ly in b u i l t - u p areas (L iu et a/. , 2 0 0 5 ) and o f t hese 

o rgan ic po l l u tan ts PAHs p resen t one of t h e la rges t t h r e a t s t o m a r i n e 

l i fe (Secco et a/., 2 0 0 5 ; V i da l -Ma r t i nez e t a!., 2 0 0 6 ) . W a t e r is ra re ly 

p r i s t ine and o r g a n i s m s m a y be exposed t o low leve ls o f PAH po l l u t i on 

in comp lex m i x t u r e s ( D o n k i n et a/. , 2 0 0 3 ; K i l e m a d e e t a/ . , 2 0 0 4 a ) . 

L o n g - t e r m low level e x p o s u r e s t o PAHs wi l l a l low t h e s e c o m p o u n d s to 

bu i l d -up w i t h i n t i ssues due t o t h e i r l ipophi l ic n a t u r e ; B(a)P me tabo l i t e s 

h a v e been de tec ted in musc le and l i ver e x t r a c t s in f la t f i sh ( G m u r & 

V a r a n a s i , 1982 ) and in b i le a n d l i ver e x t r a c t s f r o m ic ta lu r id ca t f i sh 

(Wi l l e t t e t a/. , 2 0 0 0 ) . A l t h o u g h e x p o s u r e c o n c e n t r a t i o n s m a y n o t be 

l e tha l , PAH a c c u m u l a t i o n in t i ssue m a y reduce i m m u n e f u n c t i o n 

(Hoege r e t a / . , 2 0 0 4 ) o r r e p r o d u c t i v e ab i l i t y ( M o n t e i r o e t a / . , 2 0 0 0 ) , o r 

cause t h e m t o b e c o m e v u l n e r a b l e t o add i t i ona l s t resso rs such as 

t e m p e r a t u r e change . Early l i fe s tages m a y be pa r t i cu la r l y v u l n e r a b l e 

( D i a m o n d e t a/., 2 0 0 6 ) , and d e t r i m e n t a l e f fec ts such as low ha tch 

w e i g h t s , r e ta rded d e v e l o p m e n t , l ower g r o w t h ra tes and inc reased 

suscept ib i l i t y to m o r t a l i t y due t o s t ress have been o b s e r v e d 

(Luchenbach e t a/ . , 2 0 0 3 ) . Exposure t o PAHs has been s h o w n to 

Increase apop to t i c cel l d e a t h in larva l p ink s a l m o n {Oncorhynchus 

gorbuscha) sk in cel ls and g o n a d s ( M a r t y e t a/ . , 1 9 9 7 ) . Chron ic 

e x p o s u r e to PAHs m a y also cause d e f o r m i t i e s , o e d e m a s , reduced 

g r o w t h , s w i m m i n g i m p a i r m e n t and m o r t a l i t y ( B a r r o n e t a/ . , 2 0 0 4 ) . 
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Responses l ike th is wi l l o v e r t i m e reduce t h e ove ra l l f i t ness of t he 

species t h r o u g h popu la t i on dec l ines and mo r t a l i t i e s . 

UVR m a y also cause m a n y d e t r i m e n t a l e f fec ts . I n a q u a c u l t u r e f i sh are 

held in h igh s tock ing dens i t i es , o f t e n in sha l low w a t e r s , w i t h l i t t le o r no 

shade and hence t h e r e is t h e po ten t i a l f o r g r e a t e r e x p o s u r e t o so lar 

rad ia t i on t h a n in t h e w i l d . For i ns tance , m a n y s tud ies h a v e been 

conduc ted on f ish egg a n d la rva l s tages , s h o w i n g t h a t so la r and 

ar t i f ic ia l UVB m a y induce a s t ress response in a f f ec ted i nd i v idua l s , 

such as unusua l l y h igh v e n t i l a t i o n ra tes and i m p a i r e d resp i ra to r y 

con t ro l in la rvae and j u v e n i l e s ( S t e e g e r et a/. , 2 0 0 1 ) . For e x a m p l e , 

so lar and ar t i f ic ia l UVR e x p o s u r e also p roduces DNA d a m a g e ( e . g . h igh 

CPD loads) ( A r m s t r o n g e f a/ . , 2 0 0 2 ; Mal loy e t a/ . , 1 9 9 7 ) , r educed 

fe r t i l i sa t ion success ( i nd i ca ted by i m p a i r e d s p e r m qua l i t y and m o t i l i t y ) 

in sea u rch in la rvae (Au et a / . , 2 0 0 2 ) , loss of pos i t i ve b u o y a n c y in 

pla ice eggs {Pleuronectes platessa) (S teege r et a / . , 2 0 0 1 ) , 

p h o t o h a e m o l y s i s o f e r y t h r o c y t e s ( K u m a r & Josh i , 1 9 9 2 ) , ca ta rac t 

f o r m a t i o n in ra i nbow t r o u t {Onchorynchus mykiss) (Cu l len et a/. , 

1 9 9 4 ) , e m b r y o n i c m a l f o r m a t i o n , such as sp ina l d e f o r m a t i o n s fo r 

Pa tagon ian f r e s h w a t e r f ish Galaxias maculates (Ba t t i n i e t a/ . , 2 0 0 0 ) 

and inh ib i ted s w i m m i n g and d e t r i m e n t a l e f fec ts on d e v e l o p m e n t 

(Penn ing ton & Emie t , 1 9 8 6 ) . UVB i r rad ia t i on can cause w a v e l e n g t h 

d e p e n d e n t mor ta l i t i es to b o t h eggs and e m b r y o n i c s tages in f ish 

(Ba t t i n i e t a/ . , 2 0 0 0 ; Be land e t a/ . , 1 9 9 9 ; Kel ler e t a/ . , 1 9 9 7 ; 

K o u w e n b e r g e t a / . , ( 1 9 9 9 a ) ; Penn ing ton & EmIet , 1 9 8 6 ; S t e e g e r e t a/. , 

2 0 0 1 ) and m o r t a l i t y m a y be d e p e n d e n t on w h e n in t h e l i fe h i s to ry t h e 

o r g a n i s m is exposed t o UVB, f o r e x a m p l e , t h e r e is i nc reased m o r t a l i t y 

obse rved if p la ice eggs {Pleuronectes platessa) a re UVB i r r ad ia ted 

be fo re gas t ru l a t i on ( S t e e g e r e t a/ . , 2 0 0 1 ) . O the r w o r k e r s s h o w e d t h a t 

107 



t h e nnorta l i ty o f cod e m b r y o s f o l l ow ing e x p o s u r e t o UVB w a s sugges ted 

t o have been caused by a d i rec t i n te rac t i on w i t h DNA a n d s t i m u l a t i o n 

o f apop to t i c p a t h w a y s and also f o u n d t h a t t h e eggs had a p h o t o - r e p a i r 

m e c h a n i s m , w h i c h cou ld increase cod egg su rv i va l in UVB exposed 

g r o u p s ( K o u w e n b e r g e t a / . , 1 9 9 9 a ) . 

I n t h e pas t decade , i n te res t has focused on the i n t e r a c t i o n o f UVR and 

PAHs and t h e po ten t ia l fo r t hese i n te rac t i ons t o i nduce m u t a g e n i c i t y . 

UVA has n o t d e m o n s t r a t e d m o r t a l i t y e f f ec t s on i ts o w n (Be land e t al., 

1 9 9 9 ) b u t UVR has been s h o w n t o c o m b i n e w i t h o t h e r e n v i r o n m e n t a l 

fac to rs t h a t m a y resu l t in add i t i ve or syne rg i s t i c e f f ec t s , w h i c h m a y or 

m a y no t lead t o d e t r i m e n t a l resu l ts (Laycock et al., 2 0 0 0 ) . PAHs can 

abso rb UVR ( N e w s t e d 8i G iesy , 1 9 8 7 ) and th i s resu l t s in a un ique 

i n te rac t i on t h a t m a y on t h e one hand enhance t h e i r d e g r a d a t i o n bu t 

o n t h e o t h e r m a y also increase t h e i r t ox i c i t y ( S h e m e r 8t L i n d e n , 2 0 0 7 ; 

We ins te in et al. 1 9 9 7 ) . D e g r a d a t i o n o f PAHs is m a i n l y v ia pho to lys is 

as PAHs abso rb sun l i gh t In t h e v is ib le ( 4 0 0 - 7 6 0 n m ) a n d u l t r av i o l e t 

( 1 0 0 - 4 0 0 n m ) reg ions of t h e e l e c t r o m a g n e t i c s p e c t r u m . H o w e v e r , th is 

a b s o r p t i o n has led t o g r o w i n g ev idence t h a t a t al l b u t t h e m o s t 

e x t r e m e exposu res t h e real haza rd f r o m PAHs to a q u a t i c o r g a n i s m s 

m a y be due t o t he i r p h o t o - e n h a n c e d t ox i c i t y f o l l ow ing e x p o s u r e to the 

UV c o m p o n e n t of l igh t r a t he r t h a n by any d i rec t e f f ec t ( D i a m o n d et al., 

2 0 0 3 ; D i a m o n d e t al., 2 0 0 6 ) . Pho to -enhanced t o x i c i t y has been 

d e m o n s t r a t e d in a range of aqua t i c s y s t e m s and has s h o w n a va r i e t y 

o f e f fec ts a t t h e o r g a n i s m leve l , f r o m a c u t e sk in les ions to 

ca rc inogenes is . For i ns tance , p h o t o i n d u c e d tox i c i t y o f s e d i m e n t -

assoc ia ted PAHs w a s d e m o n s t r a t e d w i t h t h e m a r i n e a m p h l p o d 

Rhepoxynius abronius. Tox ic i t y w a s exp la ined t h r o u g h t h e p h o t o -

ac t i va t i on of p y r e n e and f l u o r a n t h e n e ( S w a r t z e t al., 1 9 9 7 ) . T h e eyes 
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of te leos t f ish have s h o w n sens i t i v i t y t o a c o m b i n a t i o n o f PAH a n d UVR 

in l abo ra to ry t r ia ls wh i ch m a y lead t o ca ta rac t f o r m a t i o n (Laycock e t 

a/ . , 2 0 0 0 ) . We ins te in e t a / . ( 1 9 9 7 ) s h o w e d t h a t in t h e absence o f UVR, 

f l u o r a n t h e n e was no t acu te ly tox ic to j u v e n i l e f a t h e a d m i n n o w s 

{Pimephales pomelas) be low i ts w a t e r so lub i l i t y , b u t b e c a m e tox i c in 

t h e p resence of ar t i f i c ia l UVR. As a c o m p l e m e n t to t h i s r esea rch , 

We ins te in and c o - w o r k e r s p e r f o r m e d a h is to log ica l e x a m i n a t i o n of t he 

gi l l l ame l lae , wh ich revea led t h a t t h e m o d e of ac t i on of p h o t o - i n d u c e d 

f l u o r a n t h e n e tox i c i t y w a s a d i s rup t i on of t h e m u c o s a l cel l m e m b r a n e 

f unc t i on and i n t e g r i t y , wh i ch even tua l l y resu l ted in r e s p i r a t o r y s t ress 

and dea th (We ins te in e t aL, 1 9 9 7 ) . The genera l m e c h a n i s m beh ind 

t h e pho to tox i c i t y of PAHs m a y be d u e t o a pho tosens i t i sa t i on 

m e c h a n i s m w h e r e b y PAHs a c c u m u l a t e in m e m b r a n e s a n d g e n e r a t e 

ROS u p o n exposu re t o UVR caus ing m e m b r a n e d a m a g e (Cho i & Or is , 

2 0 0 0 b ; Zhang e t aL, 2 0 0 4 ) . S tud ies a t t h e ce l lu la r leve l have 

ind ica ted t h a t c o - e x p o s u r e t o PAHs and UVR causes t h e f o r m a t i o n of 

f ree - rad ica ls and o x i d a t i v e s t ress (Choi & Or is , 2 0 0 0 b ; Liu e t a / . , 1 9 9 8 ) 

a l t h o u g h t h e na tu re o f t h e rad ica l spec ies g e n e r a t e d is unce r t a i n 

( Z h a n g e t a / . , 2 0 0 4 ) . 

4 . 1 . 1 A ims and Ob jec t i ves 

The a i m of t h e w o r k repo r ted in th is c h a p t e r was t o i n ves t i ga te t h e 

e f fec ts o f B(a)P, UVB and UVA and t he i r i n te rac t i on t o t w o f i sh cell 

m o d e l s : EPCAl and RTG-2 , u n d e r / n w t r o cond i t i ons . 

The speci f ic ob j ec t i ves w e r e : 

109 



a) To i nves t i ga te the c y t o t o x i c i t y and g e n o t o x i c i t y o f B(a)P in 

EPCAl and RTG-2 cell l ines w i t h and w i t h o u t m e t a b o l i c ac t i va t i on 

(S9 ) in t h e c o m e t assay (DNA d a m a g e ) and t o use t h e Mn assay 

( c h r o m o s o m a l c h a n g e s ) to i nves t i ga te t h e c las togen ic and 

aneugen ic e f f ec t of B(a)P. 

b) To s tudy t h e e f fec ts o f UVB ( E P C A l and RTG-2 ) a n d UVA (RTG-

2) i r rad ia t ion o n cell v i ab i l i t y , DNA d a m a g e ( c o m e t assay ) and 

c h r o m o s o m e d a m a g e / c e l l cyc les ( m i c r o n u c l e u s a s s a y ) . To 

c o m p a r e t h e responses of t he cel l l ines u s e d . 

c) To e x a m i n e t h e cy to tox i c i t y (NRR) and DNA d a m a g e ( c o m e t 

assay) of B(a)P fo l l owed by UVB o r UVA in RTG-2 cel ls and to 

e x a m i n e t h e po ten t i a l i n te rac t i ve t ox i c i t y of B (a )P a n d UVA us ing 

t h e m ic ronuc leus ( M n ) assay (RTG-2 ) to i n ves t i ga te c h r o m o s o m e 

d a m a g e o r cel l cycle changes . To e x p l o r e w h e t h e r o x i d a t i v e 

s t ress is i nvo l ved in t h e i n te rac t i on b e t w e e n B(a )P and UVA 

(RTG-2) us ing ESR. 
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4.2 Materials and Methods 

4 . 2 . 1 Cells and B(a)P Exposure Cond i t i ons 

The EPCAl and RTG-2 cell l ines w e r e c u l t u r e d u n d e r t h e cell cu l tu re 

cond i t i ons set o u t in Chap te r 2 , Sec t ion 2 . 3 . EPCA l a n d RTG-2 cel ls a t 

7 0 - 8 0 % con f luence w e r e exposed to v a r i o u s c o n c e n t r a t i o n s of B(a)P 

( 0 . 0 0 , 0 . 0 5 , 0 . 10 , 0 . 3 2 , 1.00 and 3 .20 pg m l ' ^ ) in m e d i u m con ta in i ng 

1 % FBS (p repa red as s t a ted in C h a p t e r 2 , Sec t ion 2 . 5 . 5 ) . Metabo l ic 

ac t i va t i on of B(a)P w a s c o n d u c t e d as s t a ted in C h a p t e r 2 , Sec t ion 

2 . 5 . 6 . 

4 . 2 . 2 Assays of Cell V iab i l i t y and C y t o t o x i c i t y 

Dua l s ta in ing and A n n e x i n V-FITC apop tos i s d e t e c t i o n w e r e conduc ted 

acco rd ing t o t h e m e t h o d desc r ibed in C h a p t e r 2 , Sec t ions 2 .4 .2 and 

2 . 4 . 3 . Resul ts w e r e exp ressed as a p e r c e n t a g e w h e r e app l i cab le 

excep t in t h e p i lo t s t u d y w i t h A n n e x i n V-F ITC apop tos i s d e t e c t i o n . 

Th is p i lo t s t udy looked a t a basic t i m e course (2 h, 4 h and 6 h post 

i r r ad ia t i on ) fo l l ow ing i r rad ia t i on w i t h 50 J m'^ UVB and w a s t a k e n 

because of t he d i f f i cu l t ies in p repa r i ng cel ls f o r t h e m ic ronuc le i assay 

f o l l ow ing UVB i r rad ia t ion (Sec t i on 4 . 2 . 6 . 2 ) . The resu l t s a re p resen ted 

in F igure 4 .5 (Sec t ion 4 . 3 . 2 . 4 ) . T h e NRR assay w a s car r ied o u t as 

ou t l i ned in Chap te r 2 , Sec t ion 2 .4 .4 w i t h t h e m o d i f i c a t i o n (because of 

t h e g r o w t h r e q u i r e m e n t s of f i sh cel ls) t h a t t h e in i t ia l i ncuba t i on of 

EPCA l and RTG-2 cel ls w a s ca r r i ed o u t a t 2 1 ± 1 °C in a h u m i d 

a t m o s p h e r e in 5 % CO2 f o r 4 8 hou rs . EPCA l a n d RTG-2 cel ls we re 

t r e a t e d w i t h va r ious c o n c e n t r a t i o n s ( 0 . 0 , 0 . 1 , 1.0 and 3.2 pg ml"^) of 

B (a )P fo r 24 hou rs . I r r a d i a t i o n of t h e RTG-2 cel ls w a s c o n d u c t e d in 
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PBS t o va r i ous doses of UVB ( 0 * , 100 a n d 2 0 0 J m"^) o r UVA ( 0 * , 5 0 0 , 

2 0 0 0 and 4 0 0 0 J m"^) and t h e p la tes i m m e d i a t e l y t r a n s f e r r e d o n t o ice 

be fo re process ing w i t h the NRR assay . For u p t a k e o f t h e n e u t r a l r e d , 

t h e p la tes we re incuba ted fo r 3 hou rs a t r o o m t e m p e r a t u r e . Resul ts 

w e r e exp ressed as a pe rcen tage of t h e con t ro l (Bab ich e t aL, 1 9 8 8 ) . 

4 . 2 . 3 C o m e t Assay 

Unless s t a t e d , v iab i l i t y fo r c o m e t assay e x p e r i m e n t s w a s a l w a y s o v e r 

9 0 % in accordance w i t h t h e r e c o m m e n d a t i o n s of T ice e t aL ( 2 0 0 0 ) as 

m e a s u r e d by t r y p a n b lue ( C h a p t e r 2 , Sec t ion 2 .4 .1 ) ( da ta n o t s h o w n ) . 

The c o m e t assay was conduc ted as s t a t e d in t h e p ro toco l in C h a p t e r 2 , 

Sect ions 2 . 5 . 1 to 2 .5 .4 w i t h t h e f o l l ow ing mod i f i ca t i ons based on t h e 

o p t i m i s a t i o n resu l ts in Chap te r 3 , Sec t i on 3 . 3 . 3 . 1 . 2 and 3 . 3 . 3 . 1 . 3 . For 

e x a m p l e , u n w i n d i n g t i m e s for b o t h EPCA l and RTG-2 w a s 2 0 m i n u t e s , 

w i t h 20 m i n u t e s e lec t rophores i s . Rep l i ca te s l ides w e r e m a d e f o r each 

t r e a t m e n t c o n d i t i o n , and e x p e r i m e n t s w e r e c o n d u c t e d in d u p l i c a t e a t 

sepa ra te t i m e s . 

For c o m e t assay e x p e r i m e n t s us ing B (a )P , EPCAl and RTG-2 cel ls a t 

7 0 - 8 0 % con f luence w e r e exposed t o v a r i o u s c o n c e n t r a t i o n s ( 0 . 0 , 0 . 1 , 

1.0 and 3.2 pg m l ' ^ ) of B(a)P in m e d i u m ( p r e p a r e d as s t a t e d in 

Chap te r 2 , Sec t ion 2 . 5 . 5 ) . The cel ls w e r e i ncuba ted fo r 6 hou rs ( w i t h 

and w i t h o u t me tabo l i c ac t i va t i on ( C h a p t e r 2 , Sec t ion 2 . 5 . 6 ) ) o r 24 

hou rs ( w i t h o u t me tabo l i c a c t i v a t i o n ) a t 2 1 ± 1 °C acco rd ing t o t h e 

r e c o m m e n d a t i o n s of Tice e t aL ( 2 0 0 0 ) and t h e n t r e a t e d acco rd i ng t o 

C h a p t e r 2 , Sec t ions 2 .5 .2 to 2 . 5 . 4 . For e x p e r i m e n t s us ing UVR, RTG-2 

and EPCAl cel ls w e r e p repa red o n t o s l ides fo r t h e c o m e t assay and 

exposed to va r i ous doses of UVB ( R T G - 2 : 0 * , 2 5 , 5 0 , 7 5 , 1 0 0 , 2 0 0 , 
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350 and 500 J m ^ E P C A l : 0 * , 2 0 0 , 3 5 0 and 500 J m'^) i nc lud ing a 

s h a m i r rad ia ted con t ro l ( 0 * s h a m i r r ad ia ted fo r t h e s a m e t i m e as 500 J 

m"^ UVB) . RTG-2 cel ls w e r e t r e a t e d w i t h va r i ous doses of UVA ( 0 * , 

500 , 1 0 0 0 , 2 0 0 0 , 4 0 0 0 , 6 0 0 0 o r 8 0 0 0 J m"^) inc lud ing a s h a m 

i r rad ia ted con t ro l ( 0 * s h a m i r rad ia ted fo r t h e s a m e t i m e as 8 0 0 0 J m'^ 

UVA) . For t r e a t m e n t s of i n te rac t i ve t o x i c i t y of B(a)P and UVR, RTG-2 

cel ls a t 7 0 - 8 0 % con f l uence w e r e e x p o s e d t o va r i ous c o n c e n t r a t i o n s 

( 0 . 0 0 , 0 . 0 5 , 0 . 1 0 , 0 . 3 2 , 1.00 and 3 .20 pg m l " ' ) o f B(a)P in m e d i u m for 

24 hou rs ( w i t h o u t me tabo l i c a c t i v a t i o n ) as de ta i led a b o v e . Fo l low ing 

B(a)P t r e a t m e n t , cel ls w e r e w a s h e d t w i c e w i t h PBS, t r y p s i n i s e d and 

resuspended in G M , be fo re be ing p r e p a r e d o n t o C o m e t S l i d e s ^ " and 

t rea ted as de ta i l ed in Chap te r 2 , Sec t ion 2 . 5 . 1 . Fo l lowing t h i s , RTG-2 

cel ls w e r e exposed to va r i ous doses o f UVB ( 0 * , 2 5 , 5 0 , 7 5 , 100 and 

200 J m"2) o r UVA ( 0 * , 2 5 , 50 , 100 a n d 2 0 0 J m"^) t h e n i m m e d i a t e l y 

placed o n ice. Bo th these inc luded a s h a m i r rad ia ted con t ro l ( 0 * s h a m 

i r rad ia ted f o r t h e s a m e t i m e as 2 0 0 J m '^ UVB o r 2 0 0 J m '^ UVA 

respec t i ve l y ) . I m m e d i a t e l y f o l l ow ing i r rad ia t i on s l ides w e r e 

t r ans fe r red t o ch i l led lys ing so lu t i on (Sec t i on 2 .5 .1 ) and p rocessed 

accord ing to Chap te r 2 , Sec t ions 2 .5 .2 t o 2 . 5 . 4 . The UVR sou rces 

used a re de ta i led in Chap te r 2 , Sec t i on 2 .7 . 

4 . 2 . 4 M ic ronuc leus Assay 

For all e x p e r i m e n t s , EPCA l cel ls w e r e seeded a t a dens i t y of 1 x 10^ 

cel ls m r ^ and RTG-2 cel ls w e r e seeded a t a dens i t y o f 4 x 10^ cel ls ml"^ 

in GM b o t h in 25 cm^ f lasks and i ncuba ted a t 2 1 ± 1 °C fo r 4 8 h o u r s in 

5 % CO2. For e x p e r i m e n t s us ing B(a )P , B(a)P was added to t h e cel l 

m o n o l a y e r s a t va r i ous c o n c e n t r a t i o n s ( E P C A l : 0 . 0 , 0 . 1 , 1.0 and 3.2 pg 

m l ' ^ and RTG-2 : 0 . 0 0 , 0 . 0 5 , 0 . 1 0 , 1.00 a n d 3 .20 pg ml"^) p r e p a r e d in 
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medium as described in Chapter 2, Section 2.5.5 and the flasks 

incubated at 21 ± 1 °C for 48 ± 1 hours in 5 % C O 2 . Experiments 

scored 1000 binucleate cells per treatment group, with two treatment 

groups; and the experiments were duplicated. For experiments using 

UVR, RTG-2 cells were seeded in GM at a density of 4 x 10^ cells ml"^ 

in petri dishes in a 5 % C O 2 atmosphere for 48 hours and then were 

washed twice with PBS and treated with various doses of UVA (0* , 25, 

50 and 100 J m'^). For experiments involving interactive toxicity, 

RTG-2 cells were seeded in GM at a density of 4 x 10^ cells ml'^ in petri 

dishes and incubated at 21 ± 1 for 48 hours in 5 % C O 2 . Cells 

were washed twice with PBS and incubated with B(a)P (0.025 ^g rn'"^) 

for 6 hours. Following this incubation period, the cells were washed 

twice with PBS and treated with various doses of UVA (0* , 25, 50 and 

100 J m'^). After the exposure period had elapsed, the medium was 

discarded and the monolayer washed twice with PBS. Cyto B (1.5 pg 

ml"^) in solvent (DMSO) was added to the cells in growth medium and 

the flasks incubated at 21 ± 1 °C for 48 ± 1 hours in 5 % C O 2 . 

Following the exposure periods the cells were then treated as Chapter 

2, Sections 2.6.1, 2.6.2 and 2.6.2.1 for both Giemsa and anti-

kinetochore staining respectively. The UVR source used is detailed in 

Chapter 2, Section 2.7. 

4.2.5 ESR Measurements on B(a)P and UV Treated RTG-2 Cells 

ESR measurements were made according to protocol in Chapter 2, 

Section 2.6.4.1. RTG-2 cells were pre-treated for 24 hours with B(a)P 

(3.2 pg ml"^). Cells from each 25 ml culture flask were trypsinised and 

re-suspended in GM and the cell suspension was divided into two 

before being centrifuged at 800 rpm for 8 minutes. The cell pellet was 
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washed 3 times with PBS to remove serum and free B(a)P and the cell 

pellet from each half was re-suspended in 50 pi of 250 mM DMPO in 

PBS prior to irradiation (UVA: 500 J m"^). The spin traps TMPol and 

POBN were both used at a concentration of 50 mM. The samples were 

then placed in the microwave cavity of the spectrometer and 

acquisition of spectra started within 1 minute of the end of irradiation 

(UVB: (Phillips, UK), UVA: (XX-40 FB, Spectroline, USA)) (Chapter 3, 

Section 3.3.6). 

4.2.6 Statistics 

Each experiment was performed twice and contained duplicate 

treatments. NRR data and comet assay data were collected from Excel 

and transferred into MINITAB software for statistical analysis. Non-

parametric Mann-Whitney U-tests were performed on the data to 

compare the cell responses to the untreated controls. For 

micronucleus experiments, the results are presented as means (±SE) 

tables to show the data and statistical analysis was performed on the 

means. For all tests a significant difference was taken at a p-value of 

p < 0.05. 
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4.3 Results 

4.3.1 The Effects of Benzo(a)Pyrene Alone on Fish Cell Lines ( E P C A l , 

RTG-2) 

4.3.1.1 Cytotoxicity Assays for Benzo(a)Pyrene Effects on Fish Cell 

Lines (EPCAl , RTG-2) 

Trypan blue and dual staining viability assays were conducted as 

described in Chapter 2, Sections 2.4.1 and 2.4.2 respectively. The 

results showed over 90 % percentage cell viability in all control and 

B(a)P treated groups for both viability techniques for both the EPCAl 

and RTG-2 cell lines (results not shown). The NRR assay was 

conducted as described in Chapter 2, Section 2.4.4, with the 

modifications described above in Section 4.2.4. The NRR investigation 

considered B(a)P cytotoxicity in EPCAl and RTG-2 cells. After 

exposure of EPCAl and RTG-2 cells to various B(a)P concentrations 

(0.0, 0.1, 1.0 and 3.2 pg ml"^) for 24 hours the viability of the cells 

was examined using NRR. The results of this assay (Figure 4.1) 

revealed a reduction in cell viability to approximately 90 % for the 

EPCAl cell line at a concentration of 3.2 |jg ml'^ Cell viability was 

reduced to approximately 65 % in the RTG-2 cell line at the highest 

concentration (3.2 [jg ml"^) from the raw data average neutral red 

absorbance of 0.624 (control) to 0.400 (3.2 |jg ml"^). However the 

differences observed in the EPCAl cells were not significantly different 

(p > 0.05) between the control and all doses tested. Neither were 

those in the RTG-2 cells except when exposed to the highest dose of 

B(a)P (p < 0.05) between the control and 3.2 pg ml'^ B(a)P. A 

significant difference was observed between the observations with 
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EPCAl and RTG-2 cells (p < 0.001). This suggests that RTG-2 cells 

exhibit a greater sensitivity to the effects of B(a)P than the EPCAl cells 

in the NRR assay. 
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Figure 4.1 Cell viability assessed through the uptal<e of neutral red dye by EPCAl 

(Figure 4.1a) and RTG-2 cells (Figure 4.1b) following exposure of cells to 24 hour 

B(a)P at various concentrations (0.0, 0.1, 1.0 and 3.2 pQ ml'^). Each data point 

represents 12 replicates for each variable. Cell viability is expressed as a percentage 

of the control (% control), with the control value being 100 %. Asterisk (*) Indicates 

a significant difference from the control in RTG-2 cells (p < 0.05). 
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4.3.1.2 The Comet Assay for Benzo(a)Pyrene Effects on Fish Cell Lines 

(EPCAl , RTG-2) 

The comet assay was used to investigate the effect of various 

concentrations of B(a)P (0.0, 0.1, 1.0 and 3.2 pg ml"^) on DNA 

damage in EPCAl and RTG-2 cells. DNA damage was measured by % 

Tail DNA migrated. Due to the indirect action of this compound (e.g. 

B(a)P requires enzymatic activity to be converted to reactive 

electrophilic metabolites (Section 1.2.1)) an exogenous metabolic 

agent (S9) was used in conjunction with some of the B(a)P exposures, 

up to recommended exposure times (Tice et a/., 2000). EPCAl and 

RTG-2 cells were treated for 6 hours (with or without metabolic 

activation (S9)) , or 24 hours (without S9 ) . 

4.3.1.2.1 The Comet Assay for Benzo(a)Pyrene Effects on the EPCAl 

Cell Line 

In EPCAl cells, the results showed that there was a significant increase 

in DNA damage (p < 0.001) between the control and all exposures for 

B(a)P with and without S9 activation for both the 6 hour (Figures 4.2a 

and 4.2b) and 24 hour (Figure 4.2c) treatments. However, EPCAl 

cells treated for 6 hours with B(a)P used in conjunction with S9 

showed greater DNA damage than cells treated with B(a)P without S9 . 

Cells treated with B(a)P (without S9) showed DNA damage that ranged 

up to 25 % tall DNA, whilst B(a)P treated cells (with S9) showed DNA 

damage that ranged up to approximately 45 %. EPCAl cells treated 

with B(a)P for 6 hours in combination with S9 had no significant 

difference between the tested concentrations (p > 0.05) whilst those 

cells treated with B(a)P without the addition of S9 , showed a 
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significant increase in DNA damage as B(a)P concentration increased 

(p < 0.05). Cells treated with B(a)P and S9 gave significantly higher 

DNA damage than those cells treated with B(a)P without S9 at the 

same concentrations (p < 0.001). When EPCAl cells were treated 

with B(a)P for 24 hours (without S9) , the results gave a clear response 

to B(a)P that was significantly different from the control value (p < 

0.001) and increased DNA damage was significantly related to an 

increase in the B(a)P concentration (p < 0.001). Values here ranged 

from to 45 % for the highest concentration of B(a)P used (3.2 pg ml'^) 
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Figure 4 .2a 
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Figure 4.2 DNA damage to EPCAl cells following exposure to 6 hour B(a)P at 

various concentrations (0.0, 0.1, 1.0 and 3.2 pg mt* )̂ without (Figure 4.2a) 

exogenous metabolic activation (S9) , with S9 (Figure 4.2b) or following 

exposure to 24 hour B(a)P (0.0, 0.1, 1.0 and 3.2 pg ml'^) without S9 (Figure 

4.2c). DNA damage is assessed by the Tail DNA (%). (Data marked with 

*(all concentrations) are significantly different to the control at p < 0.0001). 
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4.3.1.2.2 The Comet Assay for Benzo(a)pyrene Effects on the RTG-2 

Cell Line 

In RTG-2 cells, the results showed that there was a significant 

difference in observable % Tail DNA between the control and all 

exposures for B(a)P concentrations for both the 6 hour (with and 

without S9 activation) (Figures 4.3a and 4.3b respectively) and 24 

hour (without S9) (p < 0.0001) (Figure 4.3c) treatments. RTG-2 cells 

treated for 6 hours with B(a)P (without S9) showed a relatively weak 

response with all concentrations which was significantly different from 

the control (p < 0.0001). There was a range of DNA damage from 10 

% (0.0 pg ml'^) to up to 30 % (1.0 pg ml'^) and DNA damage reached 

a maximum of 22 % at the highest concentration tested (3.2 pg ml"^). 

However, when B(a)P was used in conjunction with S9 the results gave 

a clearly higher dose response (which was significantly higher at each 

concentration than B(a)P without S9 (p < 0.001)), with all tested 

concentrations being significantly different from the control (p < 

0.0001). A range of maximal DNA damage from 30 % (0.1 pg nril"̂ ) 

up to 90 % (3.2 pg ml"^) was observed with B(a)P plus S9. RTG-2 

cells treated with B(a)P for 24 hours (without S9) again showed a clear 

and significant increase in DNA damage (p < 0.001). These results 

(24 hours) gave significantly higher DNA damage than those observed 

for 6 hours (without S9) at all doses (p < 0.001) except 0.1 pg ml"^ 

B(a)P (p > 0.05). However, these results (24 hours) were of a 

significantly lower magnitude of DNA damage than those observed in 

cells treated with B(a)P and S9 for 6 hours (p < 0.05). Values here 

ranged from a maximum of 15 % at the lowest concentration used 

(0.1 pg ml"^), through 30 % (1.0 pg ml"^), to plateau at 35 % for the 

highest concentration used (3.2 pg ml'^). 
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Figure 4.3 DNA damage to EPCAl cells following exposure to 6 hour B(a)P at 

various concentrations (0.0, 0.1, 1.0 and 3.2 pg ml"^) without (Figure 4.3a) 

exogenous metabolic activation (S9) , with S9 (Figure 4.3b) or following 

exposure to 24 hour B(a)P (0.0, 0.1, 1.0 and 3.2 pg ml"*) without 39 (Figure 

4.3c). DNA damage is assessed by the Tail DNA (%). (Data marked with 

*(all concentrations) are significantly different to the control at p < 0.0001). 
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4.3.1.3 The Micronucleus Assay for Benzo(a)pyrene Effects on Fish Cell 

Lines (EPCAl , RTG-2) 

4.3.1.3.1 The Micronucleus Assay for Benzo(a)pyrene Effects on EPCAl 

Cells 

EPCAl cells were exposed to various concentrations of B(a)P (0.0, 0.1, 

1.0 and 3.2 pg ml"^) for 24 hours. The results for EPCAl cells are 

presented in Table 4.1 and 4.2. Results using Giemsa stain show that 

the numbers of mononucleate cells varied slightly within a scoring 

protocol of 1000 binucleate cells, increasing from 96 ± 8.49 (0.0 pg 

ml"^ B(a)P) to 133.5 ± 16.26 (1.0 pg mr^ B(a)P). Numbers of 

mononucleate cells did not appear to vary much between doses from 

113 ± 26.87 (0.0 pg ml"^ B(a)P) to 131.5 ± 4.95 in the highest 

concentration of B(a)P used (3.2 pg ml"^ B(a)P) which was not a 

significant difference (p > 0.05). Micronuclei were manually scored in 

1000 binucleate cells following recommended scoring procedures for 

this assay (Surrales et a/. , 1994) and indicated a weak linear increase 

in the number of micronuclei as the concentration of B(a)P increased 

from 7.0 ± 2.83 (1.0 pg ml"' B(a)P) to 9.5 ± 2.12 (3.2 pg ml' ' B(a)P) 

which were significantly different from the control in all experimental 

concentrations of B(a)P (p < 0.05). There were no nucleoplasmic 

bridges (NPB), multinucleated cells, or cases of multiple micronuclei 

observed for all the experimental doses. 

Following these experiments with Giemsa, the use of anti-kinetochore 

stain was employed to further investigate the action of B(a)P on the 

EPCAl cell line (Table 4.2). Again, it was possible to score 1000 

binucleate cells and the numbers of mononucleate cells displayed a 
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greater Increase than with Giemsa staining, from 111.5 ± 13.44 (0.0 

Mg ml' ' B(a)P) to 234.5 ± 40.31 (3.2 pg m r ' B(a)P) which was 

significantly different (p < 0.05). As before using Giemsa stain, no 

NPB were observed In this cell line at these doses tested. 

Micronuclei were detected by a significant increase (p < 0.05) in both 

mononucleate and binucleate cells, with the majority of K+ micronuclei 

detected within a binucleate cell, giving a strong positive response (p 

< 0.05). MIcronuclel ranged from 5.5 ± 0.71 (0.1 |jg ml"^ B(a)P), 

although the largest total frequency of micronuclei observed within 

binucleate cells was 22 ± 0.00 (3.2 pg ml"' B(a)P) that was 

significantly different from the control (p < 0.05). These frequencies 

were significantly higher (p < 0.05) than observed in the control group 

(1.5 ± 0.71). A much lower frequency of micronuclei was detected 

within mononucleate cells (maximum of 2 ± 1.41 in the concentration 

1.0 pg ml'' B(a)P), this response was barely above the baseline level 

seen In the controls (0.0 ± 0.00) and was not a significant increase (p 

> 0.05). Of the binucleate and mononucleate cells containing a 

micronucleus, a larger proportion of micronuclei were located in the 

B(a)P treated cells within a binucleate cell and of the micronuclei 

detected within a binucleate cell, 14 ± 2.83 (3.2 pg ml ' 'B(a)P) were 

K-i- micronuclei. Indicating a strongly aneugenic mode of action. 

However, as micronuclei were also detected with kinetochore negative 

(K-) signals. It would suggest that B(a)P acts on these cells In both a 

clastogenic and aneugenic way. 
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Table 4.1 Effect of B(a)P on the mean generation of micronuclei (±SE) in the EPCAl cell line using Giemsa or anti-kinetochore 

stain (n = 27,383). No nucleoplasmtc bridges, incidences of 2, 3 or 4+ nuclei or multinucleated cells were observed. Significant 

differences (Mann Whitney U-test p<0.05) for each cellular response from the control are indicated (*). 

[B(a)P] (pg ml-*) 

Cellular Response-Giemsa Stain 

0.0 0.1 1.0 3.2 

Mononucleate 

Binucleate 

Micronucleus/Binucleate 

Cellular Response-
Antikinetochore stain 

Mononucleate 

Binucleate 

Micronucleus/Mononucleate 

Micronucleus/Binucleate 

K+ Mononucleate cells 

K- Mononucleate cells 

K+ Binucleate cells 

K- Binucleate cells 

96.0 ± 8.49 

1000.0 ± 0.00 

Not observed 

111.5 ± 13.44 

1000.0 ± 0.00 

Not observed 

1.5 ± 0.71 

Not observed 

Not observed 

Not observed 

1.5 ± 0.71 

113.0 ± 26.87 

1000.0 ± 0.00 

7.0 ± 2.83* 

140.5 ± 17.68 

1000.0 ± 0.00 

0.5 ± 0.71 

5.5 ± 0.71* 

0.5 ± 0.71 

Not observed 

4.0 ± 1.41 

1.5 ± 2.12 

133.5 ± 16.26 

1000.0 ± 0.00 

7.5 ± 2.12* 

189.0 ± 22.63 

1000.0 ± 0.00 

1.5 ± 0.71 

14.5 ± 6.36* 

1.0 ± 1.41 

0.5 ± 0.71 

10.5 ± 0.71 

4.0 ± 5.66 

131.5 ± 4.95 

1000.0 ± 0.00 

9.5 ± 2.12* 

234.5 ± 40.31* 

1000.0 ± 0.00 

2.0 ± 1.41 

22.0 ± 0.00* 

1.5 ± 0.71 

0.5 ± 0.71 

14.0 ± 2.83 

8.0 ± 2.83 
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4.3.1.3.2 The Micronucleus Assay for Benzo(a)pyrene Effects on RTG-2 

Cells 

RTG-2 cells were exposed to various concentrations of B(a)P (0.00, 

0.05, 0.10, 1.00 and 3.20 pg ml'^) for 24 hours and the Mn assay 

conducted to potential genomic instability produced. The effects of 

B(a)P on micronucleus formation were investigated using the two 

different staining techniques (Giemsa and anti-kinetochore). The 

results for RTG-2 cells are presented in Table 4.2. Results using the 

Giemsa stain show that within a scoring protocol of 1000 binucleate 

cells numbers of mononucleate cells varied widely, increasing from 120 

± 5.66 (0.05 pg mr^ B(a)P) to 445 ± 65.05 (3.2 pg ml"^ B(a)P) which 

was a significant difference (p < 0.05) in all concentrations except 

between the control and 0.05 pg ml"^ B(a)P (p > 0.05). Micronuclei 

were scored in 1000 binucleate cells and indicated a significant (p < 

0.05) increase from base levels in the number of micronuclei as the 

concentration of B(a)P increased, from 7.0 ± 1.41 (0.1 pg ml'^ B(a)P) 

to 14 ± 5.66 (3.2 pg ml"^ B(a)P). However there was no significant 

increase in micronuclei induction following treatment with 0.05 pg ml"^ 

B(a)P (p > 0.05). There were no nucleoplasmic bridges (NPB) or 

cases of multiple micronuclei observed throughout these experimental 

doses. However, multinucleate cells were detected at two treatment 

doses (1.0 pg ml"^ (not a significant increase p > 0.05) and 3.2 pg ml"^ 

B(a)P) to a maximum detected frequency of 2.5 ± 0.71 (3.2 pg ml'^ 

B(a)P) which was a significant increase (p < 0.05). 

Following these experiments with Giemsa, the use of anti-kinetochore 

stain was employed to further investigate the action of B(a)P on the 

RTG-2 cell line. Again, it was possible to score 1000 binucleate cells 
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and the numbers of mononucleate cells observed displayed a smaller 

range than with Giemsa staining, from 114.5 ± 24.75 (0.0 pQ rnl"^ 

B(a)P) to 197 ± 2.83 (3.2 pg ml"^ B(a)P) although this did increase 

with B(a)P exposure in comparison with the control group (p < 0.05) 

except for exposure to 0.05 pg ml"^ B(a)P (p > 0.05). As before using 

Giemsa stain, no NPB were observed in this cell line at these doses 

tested. With anti-kinetochore staining, micronuclei were detected In 

both mononucleate and binucleate cells, with the majority of 

micronuclei detected within a binucleate cell, giving a strong dose-

response (increasing number with increasing B(a)P concentration) 

which was a significant increase (p < 0.05). Micronuclei ranged from 

I. 5 ± 0.71 (0.05 pg ml"^ B(a)P), with no significant increase (p > 0.05) 

at the lowest dose of B(a)P tested (0.05 pg ml'^) although the largest 

frequency of micronuclei observed within binucleate cells was 29 ± 

I I . 31 (3.2 pg ml"^ B(a)P). These frequencies were significantly higher 

(p < 0.05) than observed in the control group (1.5 ± 0.75). A much 

lower and insignificant (p > 0.05) frequency of micronuclei was 

detected within mononucleate cells (0.5 ± 0.71 with the concentration 

3.2 pg ml"^ B(a)P). This response was barely above the baseline level 

seen in the control (no micronuclei observed). Of the binucleate and 

mononucleate cells containing micronuclei, the vast majority of 

micronuclei were located in the B(a)P treated groups and contained a 

K+ signal located within a binucleate cell; of the micronuclei detected 

within a binucleate cell, 27 ± 8.49 (3.2 pg ml"^ B(a)P) were K+ 

micronuclei (p < 0.05), indicating a strongly aneugenic mode of action. 

However, as significant micronuclei (1.0 and 3.2 pg ml"^ B(a)P p < 

0.05) were also detected with K- signals, it would suggest that B(a)P 

acts on these cells in both a clastogenic and aneugenic way. 
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Table 4.2 Effect of various doses of B(a)P on the mean generation (±SE) of micronuclei in the RTG-2 cell line using Giemsa or 

anti-kinetochore stain (n=30,849). There were no incidences of nucleoplasmic bridges, K- mononucleated cells or 2, 3 or 4+ 

nuclei observed. Significant increases (Mann-Whitney U test p<0.05) in cellular responses from the control are indicated (*) . 

[B(a)P] (MQ m ^ ) 
Cellular Response - Giemsa 

0.00 0.05 0.10 1.00 3.20 

Mononucleate 

Binucleate 

Micronucleus/Binucleate 

Multinucleate cells 

Cellular Response - Anti-
kinetochore stain 

Mononucleate 

Binucleate 

Micronucleus/Mononucleate 

Micronucleus/Binucleate 

K+ Mononucleate cells 

K+ Binucleate cells 

K- Binucleate cells 

159.5 ± 10.61 

1000.0 ± 0.00 

Not observed 

Not observed 

114.5 ± 24.75 

1000.0 ± 0.00 

Not observed 

1.5 ± 0.75 

Not observed 

Not observed 

1.5 ± 0.75 

120.0 ± 5.66 139.5 ± 50.20* 322.0 ± 33.94* 445.0 ± 65.05* 

1000.0 ± 0.00 1000.0 ± 0.00 1000.0 ± 0.00 1000.0 ± 0.00 

Not observed 

Not observed 

7.0 ± 1.41* 

Not observed 

5.0 ± 1.41* 

1.0 ± 1.41 

165.0 ± 31.11 131.5 ± 13.44* 144.0 ± 2.83* 

1000.0 ± 0.00 1000.0 ± 0.00 1000.0 ± 0.00 

Not Observed Not observed Not observed 

1.5 ± 0.71 7.0 ± 2.83* 14.5 ± 0.71* 

Not observed Not observed Not observed 

1.0 ± 0.00 2.0 ± 1.41 14.5 ± 0.71* 

0.5 ± 0.71 5.0 ± 4.24* Not observed 

14.0 ± 5.66* 

2.5 ± 0.71* 

197.0 ± 2.83* 

1000.0 ± 0.00 

0.5 ± 0.71 

29.0 ± 11.31* 

0.5 ± 0.71 

27.0 ± 8.49* 

2.0 ± 2.83* 
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In summary, the experiments with B(a)P showed that DNA damage 

was induced in both EPCAl and RTG-2 cells shown by the comet assay 

and the Mn assay. Cell viability was > 90 % in all control groups and 

experimental concentrations of B(a)P for both cell lines using dual 

staining and trypan blue. However, B(a)P showed a significant 

Increase in cytotoxic response (NRR) at the highest concentration 

tested (3.2 pg ml"^ B(a)P) In the RTG-2 cells only. The RTG-2 cells 

gave a significantly higher response in cytotoxicity than the EPCAl 

cells in the NRR assay (p < 0.001). 

Data obtained through use of the comet assay showed that a 

significant increase in DNA damage was induced through exposure to 

B(a)P in comparison with the control groups for cells treated both with 

and without exogenous metabolic action (S9) and for 24 hours 

treatment with B(a)P. There was no significant increase (p > 0.05) in 

DNA damage for B(a)P used without S9 at the same concentrations 

between EPCAl and RTG-2 cells except at 1.0 pg mr^B(a)P (p < 0.05). 

When cells were treated with B(a)P and S9 DNA damage in EPCAl cells 

was significantly higher from RTG-2 cells at the concentration 0.1 pg 

ml'^ B(a)P (p < 0.05) but not between the other concentrations tested 

(p > 0.05). With 24 hours exposure to B(a)P, EPCAl cells gave 

significantly higher DNA damage only at the concentration 3.2 pg ml"^ 

B(a)P (p < 0.01) but not between the other concentrations (p > 0.05). 

These data suggest no broad differences in DNA damage between the 

cell lines tested here following treatment with B(a)P. 

Additionally, experiments using the micronucleus assay showed 

significant increases in micronuclei frequencies and suggested that the 

action of B(a)P was due to both aneugenic and clastogenic 
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mechanisms (Mn assay) in both the fish cell lines due to the significant 

generation of both K+ and K- micronuciei respectively (Tables 4.2 and 

4.4). There was no significant difference (p > 0.05) between the cell 

lines tested for any of the parameters except the RTG-2 cells showed 

significantly higher generation of mononucleate cells than EPCAl using 

Giemsa staining at concentrations 1.0 and 3.2 pg ml"^ B(a)P (p < 0.05). 

These data suggest that RTG-2 cells are more sensitive than EPCAl 

cells in the NRR assay possibly due to differences in lysosomal 

membrane stability (Section 2.4.5). 

4.3.2 The Effects of Solar Radiation (UVR) Alone on Fish Cell Lines 

EPCAl and RTG-2 

4.3.2.1 Cytotoxicity Assays for UVB Effects on the Fish Cell Lines 

EPCAl and RTG-2 

The effects of UVB on cell viability and cytotoxicity were assessed in 

EPCAl and RTG-2 cells. Cell viability was initially assessed with trypan 

blue dye and the dual stain fluorescence dye. In RTG-2 cells, trypan 

blue results showed no loss in cell viability (viability > 98 %) up to 500 

J m'^ UVB after which cell viability was reduced to 75 % at both 625 

and 750 J m"^ UVB. Cell viability dropped to 40 % at a dose of 1000 J 

m'^UVB (Figure 4.4a). In EPCAl cells, trypan blue results showed cell 

viability remained above 90 % at 625 J m"^ UVB, which dropped down 

to 33 % at 1000 J m"^ UVB (Figure 4.4a). There was no significant 

difference between the responses of the two cell lines in this assay (p 

> 0.05). For RTG-2 cells, dual stain fluorescence was also used to 

investigate cell viability. Results showed a decrease in cell viability 

from 94 % at 0* J m"^ UVB to 1 % viability at 1000 J m"^ UVB. Cell 
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viability was reduced to approximately 59 % at 625 J m"^ UVB (Figure 

4.4b). For EPCAl cells, dual stain fluorescence showed cell viability 

remained over 94 % at 500 J m'^ UVB, dropping down to 34.5 % at 

the highest UVB dose of 1000 J m'^ (Figure 4.4b). There was a 

significant difference between the responses of the two cell lines in this 

assay with doses > 500 J m"^ UVB (p < 0.05). Cytotoxicity was also 

investigated through the NRR assay (Figure 4.4c). After exposure of 

EPCAl and RTG-2 cells to various UVB doses (0* , 200, 500, 625, 750, 

875 and 1000 J m'^), the viability of the cells was analysed. In EPCAl 

cells, the results indicate significant differences between the sham 

irradiated control (0*) and all doses tested (p < 0.05). In RTG-2 cells, 

there was no significant difference between the control and 200, 500 J 

m-2 (p > 0.05), whilst in doses of 625 to 1000 J m'^UVB, cell viability 

was reduced significantly (p < 0.001). Additionally there was no 

significant difference (p > 0.05) between the results from the two cell 

lines for the same doses (200 and 500 J m"^ UVB suggesting that RTG-

2 cells are more sensitive than EPCAl cells at UVB doses greater than 

500 J m"^ (Section 4.3.1.1). Trypan blue, dual stain fluorescence and 

NRR results for EPCAl and RTG-2 cells are presented in Figure 4.4. 

The pilot study using Annexin V to investigate apoptosis looked at a 

basic time course (2, 4 and 6 hours post irradiation) following 

irradiation with 50 J m"^ UVB. The results are presented in Figure 4.5 

and suggest that apoptosis is occurring within 6 hours. 
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Figure 4.4 Cell viability assessed through (a) trypan blue, (b) dual stain 
fluorescence or (c) NRR in EPCAl and RTG-2 cells following exposure to UVB 
(0*, 200, 500, 625, 750, 875, 1000 J nD'^). Cell viability is expressed as 
percentage viability (%) (trypan blue and dual stain fluorescence) or as a 
percentage of the control absorbance (NRR) (control values are 100 %) . 
Significant difference (Mann-Whitney U-test) from the control is indicated by 
* (p < 0.05) or ® (p < 0.001). Results are fronn replicate studies. 
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Figure 4.5 Pilot study time course of UVB (50 J m"^ UVB). (a) 2 hours 

post irradiation (b) 4 hours post irradiation and (c) 6 hours post 

irradiation with Annexin V using RTG-2 cells to identify apoptosis or 

necrosis. The figure illustrates the onset of apoptosis at 6 hours post 

irradiation due to the red colouration. 
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4.3.2.2 Cytotoxicity Assays for UVA Effects on a Fish Cell Line (RTG-2) 

Cell viability and the cytotoxicity of various doses of UVA (0* , 500, 

2000 and 4000 J m"^) were tested with trypan blue, dual stain 

fluorescence and NRR assays in RTG-2 cells. Results with trypan blue 

and dual staining were over 98 % viability at all doses for both cell 

types and are not presented here. Using the NRR assay, RTG-2 

showed a cytotoxic response at 2000 J m"^ and 4000 J m"^ UV A (p 

< 0.05). Results for RTG-2 cells are presented in Figure 4.6. 

2000 3000 4000 

UVA dose ( J m ' ) 

Figure 4.6 Cell viability assessed through the uptake of neutral red dye by 

RTG-2 cells following exposure of cells to various doses of UVA ( 0 * , 500, 

2000 and 4000 J nn'^). Cell viability is expressed as a percentage of the 

control absorbance, with the control value being 100 %. Significant 

difference (Mann-Whitney U-test) from the control indicated by (*) in RTG-2 

cells (p < 0.05). 
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4.3.2.3 The Comet Assay for UVR effects on Fish Cell Lines (EPCAl, 

RTG-2) 

4.3.2.3.1 Comet Assay for UVB Effects with the EPCAl Cell Line 

The effect of various doses of UVB (0* , 200, 350 and 500 J m"^) on the 

EPCAl cell line was investigated using the comet assay. The doses 

were selected to investigate the less cytotoxic doses (less than 500 J 

m*^) as measured through trypan blue, dual stain fluorescence and 

NRR assay (Section 4.3.2.1). The comet assay experiments showed a 

significant effect (p < 0.0001) between the sham irradiated control (0*) 

and all UVB doses tested (200, 350 and 500 J m"^). A significant (p < 

0.0001) increase was initially observed between 0* J m'^and 200 and 

350 J m"^ (Figure 4.7). The comet assay response dropped off at the 

highest dose tested (500 J m'^) suggesting a loss of sensitivity in the 

assay at this dose due to excessive DNA damage. 
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Figure 4.7 DNA damage to EPCAl cells (n=1600) following exposure to various doses 

of UVB (0* , 200, 350 and 500 J m"^). DNA damage was assessed by the Tail DNA 

(%). All UVB doses were significantly different (*) to the control (Mann-Whitney U-

test p < 0.0001). N.B. control (0 .0* ) was sham irradiated for the same time period 

as 500 J m 
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4.3.2.3.2 Comet assay for UVB/UVA effects with the RTG-2 cell line 

The effect of various doses of UVB (0* , 200, 350 and 500 J m"^) or 

UVA (0* , 500, 1000, 2000, 4000, 6000 and 8000 J m"^) on the RTG-2 

cell line was investigated using the comet assay. The UVB doses were 

selected to investigate the lower less cytotoxic doses (less than 500 J 

m"^ UVB) as measured through trypan blue, dual stain fluorescence 

and NRR assay in Section 4.3.2.1. The comet assays showed a 

significant effect (p < 0.0001) between the sham irradiated control (0*) 

and all UVB doses tested (0* , 200, 350 and 500 J m"^) (Figure 4.8a). 

There was no clear dose response shown, with a strong increase in 

DNA damage shown initially between 0 J m'^ and 200 J m"^ (p < 

0.0001) which then appeared to steadily plateau at a median value of 

approximately 35 % and is probably due to a loss of sensitivity in this 

assay at these doses. Due to this plateau response to UVB, the dose 

was dropped to investigate DNA damage in RTG-2 cells at UVB doses 

lower then 200 J m'^ (Figure 4.8b). These results clearly demonstrate 

the steady response of the cells from increasing the UVB dose from 0* 

J m'^ through to 100 J m'^. At 200 J m'^ the comet assay response is 

greatly reduced, again suggesting a lack of sensitivity in the comet 

assay due to greatly enhanced DNA damage beyond the detection 

range of the assay. Results indicate a significant increase in DNA 

damage from the control to 25, 50, 75 and 100 J m"^ UVB (p < 

0.0001). Additionally, there was no significant difference in response 

between the EPCAl and RTG-2 cell lines following UVB irradiation (p < 

0.001) suggesting a similar response between the two cell types to 

this insult. This is consistent with the results obtained in Section 

4.3.2.1. (Figure 4.4) which shows no significant difference between the 

cell lines at doses 200 and 500 J m^̂  UVB. 
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Figure 4.8 DNA damage to RTG-2 cells following exposure to various 

doses of UVB (0* , 200, 350 and 500 J m'^) (Figure 4.8a) or (0* , 25, 

50, 75, 100 and 200 J m'^) (Figure 4.8b). DNA damage was assessed 

by the Tail DNA (%). All UVB doses tested were significantly different 

(*) to the control (Mann-Whitney U-test, p < 0.0001). N.B. control 

(0*) was sham irradiated for the same time period as 500 J m'^ 

(Figure 4.8a) or 200 J m'^ (Figure 4.8b). 

With UVA, no significant effect (Mann-Whitney U-test, p > 0.05) was 

shown between the sham irradiated control (0*) and all UVA doses 

tested (500, 1000, 2000, 4000, 6000 and 8000 J m"^). There was no 

clear dose response in median DNA damage shown; however there is a 

wide range of DNA damage indicated by the outliers (Figure 4.9). 
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Figure 4.9 DNA damage to RTG-2 cells following exposure to various doses of UVA 

(500, 1000, 2000, 4000, 6000 and 8000 J m"^). DNA damage was assessed by the 

percentage tail DNA (Tail DNA %) migrated. No UVA doses tested caused DNA 

damage that was significantly different to the control (Mann-Whitney U-test, p > 

0.05). N.B. control (0* ) was sham irradiated for the same time period as 8000 J m" .̂ 

4.3.2.4 The Micronucleus Assay for UVA Effects on RTG-2 Cells 

There was no significant difference shown (Mann-Whitney U-test, p > 

0.05) between the EPCAl and RTG-2 cell lines for NRR assay (Chapter 

3, Section 3.3.2), comet assay response with EMS (Chapter 3, Section 

3.3.4.2), NRR assay with doses < 500 J m"^ UVB (although RTG-2 

showed a significantly more sensitive response with doses greater than 

500 J m'^ UVB) (Section 4.3.2.1) or the comet assay with UVB 

(Section 4.3.2.3). Therefore only the larger RTG-2 cells were used for 

investigation of UVA with the Mn assay which is also in agreement with 

the wide use of this cell line in ecogenotoxicological testing (Chapter 3, 

Table 3.13). Various doses of UVA (0* , 25, 50, 100 and 200 J m"^) 

were tested in RTG-2 cells to investigate the effects of UVA by means 

of the micronucleus assay. The control (0*) was sham irradiated for 
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the same time as 200 J m'^UVA. The effects of UVA on micronucleus 

formation were investigated using two staining techniques (Giemsa 

and anti-kinetochore) to investigate the potential mechanisms of 

action (clastogenic or aneugenic, respectively) following UVA exposure. 

Experiments scored 1000 binucleate cells per treatment group where 

possible, and the experiments were duplicated. The results for RTG-2 

cells are presented in Table 4.3. At a dose of 0* J m'^ UVA it was 

possible to retain the standard protocol employed for the previous 

micronucleus experiments by counting micronuclei within 1000 

binucleate cells (1000 ± 0.00 J m"^). However, as UVA doses were 

introduced, the frequencies of mononucleate cells observed increased 

compared to the control. Hence it was decided to count a total of 

1000 binucleate and mononucleate cells in order to investigate the 

ratio of the two cell types to each other (and therefore if there were 

any significant differences), and to be able to detect as many 

micronuclei as possible in both mononucleate and binucleate cells 

(Fenech ef a/., 2003a; Fenech et a/., 2003b; Rosefort et at., 2004) 

(expanded in Section 4.4.2). The results using Giemsa stain show 

that numbers of mononucleate cells vary widely within a scoring 

protocol of a total of 1000 binucleate and mononucleate cells, ranging 

from 200.5 ± 31.82 (0.00 J m"^) to 451.5 ± 16.34 (200 J m"^) which 

was a significant difference (p < 0.05). The numbers of binucleate 

cells scored also varied with the addition of UVA, from 621 ± 29.70 

(25 J m'^) to 751.5 ± 17.25 (50 J m"^). These doses were significantly 

different from each other (p < 0.05) except between 50 and 100 J m"^ 

UVA (p > 0.05). Micronuclei were scored in mononucleate and 

binucleate cells and indicate a strong dose-responsive increase in the 

total micronuclei induced (p < 0.05). The number of micronuclei in 

mononucleate cells increased as the UVA dose increased and were 
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significantly different from the control (p < 0.05) and each other (p < 

0.05) except for between 100 and 200 J m"^ UVA (p > 0.05). 

Micronuciei were detected in mononucleate cells in the highest 

frequency (10.50 ± 1.91) at the highest dose used (200 J m"^). In 

binucleate cells, the highest frequency of micronuciei was 8.0 ± 0.82 

(100 J m'^), but numbers of micronuciei showed no clear relationship 

to UVA dose. Frequencies of NPB were significantly enhanced in all 

UVA doses compared to the control (p < 0.05), to a maximum 

observed number of 4.75 ± 0.96 (200 J m*^). Equally interesting, 

throughout these experiments many incidences of more than one 

micronucleus observed within the cell was detected at all UVA doses. 

These incidences were mainly limited to appearances of 2 nuclei at a 

frequency of 6.75 ± 0.50 (200 J m"^) which were all significantly 

different from the control (p < 0.05). With an occurrence of three 

micronuciei in the cell, only 50 J m"^ UVA was significantly different 

from the control (p < 0.05). Occurrences of four or more micronuciei 

within a cell were small and limited to 50 J m'^ and 100 J m'^ (0.25 ± 

0.50 for each dose) and not significantly different from the control (p 

> 0.05). Following these experiments, the use of anti-kinetochore 

stain was employed to investigate the mechanisms of action of UVA on 

the RTG-2 cell line. Again, it was not possible to score 1000 binucleate 

cells alone with the addition of UVA because the frequencies of 

mononucleate cells to binucleate cells observed became almost 

indistinguishable by eye, so micronuciei were scored in a total of 1000 

mononucleate and binucleate cells. The numbers of mononucleate 

cells ranged from 197 ± 26.87 (0.0 J m'^) to 695 ± 9.90 (25 J m ^) 

which were significantly different from the control (p < 0.05). There 

were some differences in the numbers of micronuciei observed 

between mononucleate or binucleate cells. In both types of cell, the 
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micronuclei frequencies increased significantly in a dose responsive 

way (p < 0.05). The largest frequency of micronuclei observed within 

a mononucleate cell was 13.5 ± 0.71 (200 J m"^), whilst the highest 

frequency in a binucleate cell was 11 ± 2.83 (100 J m"^) which were 

both significantly different from the control (p < 0.05). Of the cells 

containing micronuclei, a larger proportion of micronuclei detected 

contained a K+ signal but were located in both mononucleate and 

binucleate cells. The greatest frequency of micronuclei was 8.5 ± 0.71 

detected with a K+ signal in a mononucleate cell (200 J m"^). These 

results indicate a strongly aneugenic mode of action. However, as 

micronuclei were also detected significantly (p < 0.05) with K- signals, 

it would suggest that UVA induces both a clastogenic and aneugenic 

response in these cells. 

Although it was possible to show genotoxicity of UVB through using the 

comet assay, it was not possible to generate any Mn data for UVB 

irradiated cells. I t was considered that with the comet assay the cells 

were irradiated and processed immediately for the assay. However to 

generate cells for the Mn assay there is a 48 hour period between 

irradiation with UVB and processing due to the cytokinesis block 

method with Cyto B. At some point after irradiation with UVB the cells 

most probably undergo apoptosis or necrosis. This was considered in 

this pilot study with RTG-2 cells using Annexin V (method detailed in 

Chapter 2, Section 2.4.3) and the results of this pilot study are 

presented in Figure 4.5. These results indicate through a time course 

the onset of apoptosis at 6 hours post Irradiation. These data although 

preliminary would indicate why it was not possible to generate 

micronuclei following exposure to UVB. 
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Table 4.3 Effect of various doses of UVA on the mean generation (±SE) of micronuclei in the RTG-2 cell line (n=23,506) using 

Giemsa or anti-kinetochore stain. There were no multinucleate cells observed. Significant increases (Mann-Whitney U test 

p<0.05) in the cellular responses from the control are indicated (*) . 

UVA dose ( J m'^) 0 * 25 50 100 200 

Cel lular R e s p o n s e - G i e m s a 

Mononucleate 200.5 ± 31.82 390 ± 15.56 333.5 ± 14.36 337.25 ± 35.57 451.5 ± 16.34* 

Binucleate 1000 ± 0.00 621 ± 29.70 751.5 ± 17.25 728 ± 18.81 633.75 ± 6.24* 

Micronucleus/Mononucleate Not observed 1.5 ± 0.71 4.0 ± 0.82* 7.5 ± 1.29* 10.50 ± 1.91* 

Micronucleus/Binucleate 0.5 ± 0.71 3.0 ± 1.41* 5.75 ± 0.96* 8.0 ± 0.82* 4.75 ± 1.71* 

Nucleoplasmic Bridge Not observed 0.5 ± 0.71 2.0 ± 0.8*2 3.0 ± 1.41* 4.75 ± 0.96* 

2 nuclei Not observed 0.5 ± 0.71 2.75 ± 0.50* 4.75 ± 1.71* 6.75 ± 0.50* 

3 nuclei Not observed Not observed 1.75 ± 0.50* 1.5 ± 1.29 1.25 ± 0.96 

4+ nuclei Not observed Not observed 0.25 ± 0.50 0.25 ± 0.50 Not observed 

Cel lular R e s p o n s e - a n t i -
k inetochore stain 
Mononucleate 197.0 ± 26.87 695.0 ± 9.90* 436.0 ± 9.90* 546.0 ± 14.14* 567.5 ± 41.72* 

Binucleate 1000.0 ± 0.00 326.5± 20.51* 584.5± 16.26* 460.5 ± 26.16* 469 ± 22.63* 

Micronucleus/Mononucleate Not observed 0.5 ± 0.71 4.5 ± 0.71* 10.5 ± 0.71* 13.5 ± 0.71* 

Micronucleus/Binucleate 0.5 ± 0.71 2.0 ± 1.41* 9.0 ± 1.41* 11.0 ± 2.83* 10.0 ± 1.41* 

K+ Mononucleate cells Not observed 0.5 ± 0.71 2.5 ± 0.71* 6.5 ± 0.71* 8.5 ± 0.71* 

K- Mononucleate cells Not observed Not observed 2.0 ± 0.00* 4.0 ± 0.00* 5.0 ± 1.41* 

K+ Binucleate cells Not observed 1.5 ± 0.71 5.5 ± 0.71* 6.5 ± 0.71* 5.5 ± 0.71* 

K- Binucleate cells 0.5 ± 0.71 0.5 ± 0.71 3.5 ± 0.71* 4.5 ± 2.12* 4.5 ± 0.71* 
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4.3.3 Interactive Toxicity for B(a)P and UVR effects on Fish Cells 

(EPCAl, RTG-2). 

4.3.3.1 The NRR assay data for the interactive toxicity of B(a)P and 

UVB/UVA effects on RTG-2 cells. 

The NRR assay was conducted as described in Chapter 2, Section 2.4.4, 

with the modifications described above in Section 4.2,4. The 

experiment was designed to examine the interactive cytotoxicity of 

B(a)P (0.0, 0 .1 , 1.0 and 3.2 pg mr^) (Section 4.3.1.1) and UVB (0* , 

100 and 200 J m"^) (Section 4.3.2.1) or UVA (0* , 500, 2000 and 4000 

J m"^) (Section 4.3.2.2) in RTG-2 cells. The results are presented in 

Figure 4.10. RTG-2 cells pre-treated with B(a)P for 24 hours and 

irradiated with UVB (Figure 4.10a) showed no significant reduction in 

cell viability (p > 0.05) for all B(a)P concentrations or UVB doses 

except 3.2 pg ml'^ and 100 J m'^ UVB (p < 0.01). There was no 

significant difference between the responses in cell viability for each 

concentration at each dose (p > 0.05). With UVA, cells treated with 

0.1 pg ml'^ B(a)P and irradiated with 4000 J m'^ UVA showed a 

significant reduction in cell viability to 43 % (4000 J m"^, p < 0.05), 

whilst in cells treated with 1.0 pg ml'S cell viability was reduced down 

to 66 % (500 J m ' 2 ) , 63 % (2000 J m"^) and 35 % (4000 J m ^ ) , which 

were all significant (p < 0.05) (Figure 4.10b). The results of this assay 

also revealed a reduction in cell viability for all UVA doses at a 

concentration of 3.2 pg ml"^ B(a)P down to 60 % (500 J m"^), 59 % 

(2000 J m'^) and 22 % (4000 J m"^), which were all significant (p < 

0.05). The negative control values (sham irradiated for each UVA dose) 

were all 100 %. 
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Figure 4.10 Cell viability assessed through the uptake of neutral red 

dye by RTG-2 cells following pre-treatment with B(a)P for 24 hours at 

various concentrations (0.0, 0 .1 , 1.0 and 3.2 pg ml"^) and then 

exposure to various doses UVB (100 and 200 J m'^) (Figure 4.10a) or 

UVA (500, 2000 and 4000 J m"^) (Figure 4.10b). Cell viability was 

expressed as a percentage of the control absorbance, with the control 

value being 100 %. Significant effects are indicated (*) (Mann 

Whitney U-test, p < 0.05) (IMB control (0*) for each experiment was 
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sham irradiated for the same time as either 100 or 200 J m'^ UVB or 

500, 2000 or 4000 J m'^ UVA). 

4.3.3.2 An Investigation for the Interactive toxicity of B(a)P and 

UVB/UVA In RTG-2 cells employing the comet assay. 

The results of UVB dose on DNA damage (comet assay) was 

Investigated In the RTG-2 cell line. UVB results (Section 4.3.2.2.2) 

showed a strong DNA damage response to UVB with a large increase In 

Tall DNA (%) from the control and 100 and 200 J m"^ UVB. The drop 

off In observed DNA damage with 200 J m'^ UVB appeared indicative of 

loss of sensitivity from the assay. Therefore, Interactive effects of 

B(a)P and UVB were Investigated In RTG-2 cells at various UVB doses 

(0* (sham Irradiated control for the same time as 200 J m'^), 25, 50, 

75, 100 and 200 J m"^) following pre-incubatlon with B(a)P (0.0, 0 .1 , 

1.0 and 3.2 pg ml'^). The results are presented in Figure 4.11. 

Pre-exposure of RTG-2 cells to B(a)P (24 h), followed by exposure of 

cells to 200 J m"^ UVB resulted in an apparent increase in median DNA 

damage when compared to the sham irradiated control (p < 0.0001) 

and to the B(a)P concentrations used (Figure 4.11). However, when 

compared to the Irradiated control (200 J m"^ UVB), there was no 

significant increase (p > 0.05) in median DNA damage following pre-

treatment with 0.1 pg ml"^ and 3.2 pg mi'^ B(a)P + 200 J m"^ UVB 

because this response may have exceeded the range of Insult but 

there was a significant increase in median DNA damage with 1.0 pg 

ml"^ B(a)P + 200 J m*^ UVB (p < 0.05). A similar response was seen 

when cells treated with B(a)P were irradiated with 100 J m"^ UVB. In 

this case, there was an increase in median DNA damage that was 
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significantly different (p < 0.0001) f rom the sham irradiated control 

and all B(a)P concentrations used. However, when compared to 100 J 

m"^ UVB, the damage was significant only at 0.1 pg ml"^ B(a)P (p < 

0. 0001) . 

The effect of Irradiating cells with 75 J m"^ UVB, fol lowing pre-

t reatment with B(a)P was investigated. This result showed that there 

was a significant (p < 0.001) increase in median DNA damage wi th all 

concentrations of B(a)P compared to the sham irradiated control or 75 

J m-2 UVB and all B(a)P and 75 J m"^ UVB doses tested (p < 0.0001) 

1. e. at 75 J m"^ UVB in the presence of B(a)P (all concentrat ions) it was 

observed that there was a significant (p < 0.0001) increase in DNA 

damage from the combined B(a)P and UVB doses when compared to 

B(a)P and UVB. 

An investigation into the effects of 50 J m*^ UVB showed a significant 

increase in DNA damage between the negative controls and the 

interactive doses tested (p < 0.0001) . There was no significant 

difference (p > 0.05) between 50 J m'^ UVB and 50 J m"^ UVB + 0.1 pg 

ml '^ B(a)P, but a significant effect between 50 J m"^ and 50 J m'^UVB 

+ 1.0 pg ml"^ (p < 0.01) and 50 J m'^UVB + 3.2 pg ml " ' (p < 0.001). 

There was a significant increase in DNA damage between B(a)P alone 

at all doses and the interactive UVB and B(a)P doses (p < 0.01) . 

Irradiation of RTG-2 cells with 25 J m'^ UVB following pre- t reatment 

wi th B(a)P showed a significant response between the sham irradiated 

control and all B(a)P and UVB doses tested (p < 0.0001) . There was a 

significant difference between 25 J m"^ UVB and all combined B(a)P 

and UVB doses tested (p < 0.001) . Following pre- t reatment with 
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B(a)P, and irradiation with 25 J m"^ UVB, there was a signif icant 

increase in DNA damage between the B(a)P and combined UVB and 

B(a)P doses (p < 0.001) except for between 3.2 MQ rnl'^ B(a)P and 25 

J m'^ UVB and 3.2 gg ml'^ B(a)P (p > 0.05) suggesting that this is 

exceeding the applicable range for the assay. 

Interact ive effects of B(a)P and UVA were investigated in RTG-2 cells 

at various UVA doses ( 0 * , 500, 1000, 2000, 4000, 6000 and 8000 J m' 

^) following pre-incubation wi th B(a)P (0.00, 0.05, 0.10, 0.32, 1.00 

and 3.20 pg rrii"^) (Figure 4 .11b) . Pre-exposure of RTG-2 cells to 

B(a)P, fol lowed by exposure of cells to 8000 J m"^ UVA resulted in an 

increase in DNA damage at 0.1 pg ml 'S f rom B(a)P alone at this 

concentrat ion, but there was a subsequent plateau in DNA damage 

and a reduction in the measured DNA damage as the B(a)P dose 

increased to 3.2 pg m l T h i s was considered an effect due to 

excessive DNA damage which made the comet assay an inappropriate 

technique. A similar effect was seen with 6000 J m"^ UVA; at a dose of 

3.2 pg ml"^ there appeared to be a reduction in DNA damage, but all 

results were significant (p < 0.01) . When 4000 J m"^ UVA was 

invest igated, there was no signif icant difference seen between the 

control and 4000 J m'^ UVA (p > 0.05) , but when cells were pre-

treated wi th B(a)P, results showed a significant increase in DNA 

damage (p < 0.0001) wi th increasing B(a)P. Similarly, there was no 

significant difference seen between the control and lower UVA doses of 

500, 1000 or 2000 J m'^ UVA (p > 0.05) , but when cells were pre-

treated with B(a)P, results showed a significant increase in DNA 

damage fol lowing UVA irradiat ion (p < 0.0001) at all B(a)P 

concentrations. In all cases, wi th UVA alone, there is no effect on DNA 

damage between the control and all UVA doses tested (p > 0.05) . 
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However, 24 hours pre- t reatment with B(a)P did cause a significant 

increase in DNA damage. In RTG-2 cells pre-treated for 24 hours with 

B(a)P there is a significant increase in DNA damage wi th all UVA doses 

investigated. These data suggest that there is an additive effect f rom 

pre-treating the cells with B(a)P and then exposure to UVA at various 

doses. 
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Figure 4.11 Median DNA damage to RTG-2 cells following pre-incubation for 24 hours 

with B(a)P (0.0, 0.1, 1.0 and 3.2 pQ m r ' ) and exposure to UVB (0 * , 25, 50, 75, 100 

and 200 J m'^) (Figure 4.11a) or UVA (0* , 500, 1000, 2000, 4000, 6000 and 8000 J 

m" )̂ (Figure 4.11b). DNA damage was assessed by the Tail DNA (%) (0 * is the 

sham irradiated control for each experiment, and controls were sham irradiated for 

the same time as each UVB or UVA dose). Significant differences (Mann-Whitney-t; 

test, p<0.001) from the additive B(a)P and UVB/UVA irradiated response are 

indicated ( * ) . 
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4.3.3.3 The NRR assay for the interactive toxicity of (and recovery 

f rom) B ( a ) P and UVA effects on fish cells (RTG-2). 

I t was decided to investigate cell viabil i ty and recovery fol lowing pre-

t reatment with B ( a ) P and exposure to various doses of UVA. Hence, 

B ( a ) P treated RTG-2 cells were irradiated wi th various doses of UVA as 

above (500, 2000 and 4000 J m"^), and then incubated In GM for 0, 1, 

6 or 24 hours. At zero hours post incubation there was no significant 

difference between the sham irradiated control and 500 J m'^ UVA (p 

> 0.05) but a significant difference between the sham irradiated 

control and 2000 or 4000 J m"^ UVA (p < 0.05) . There was a 

significant reduction in cell viabil i ty f rom the sham irradiated control 

and all B ( a ) P and UVA combinations tested (p < 0.05) . At 1 hour 

post- t reatment there was a significant reduction in cell viabil i ty 

between the sham irradiated control and all UVA doses tested (p < 

0.05) . All combinations of B ( a ) P and UVA tested displayed a 

significant reduction in cell viabil i ty (p < 0.05) f rom the same UVA 

doses tested with the exception of 0.1 MQ rnl'^ B ( a ) P and 500 J m"^ 

UVA (p > 0.05). At 6 hours post- incubat ion, there was no significant 

difference between the sham irradiated control and 500 J m'^ UVA (p 

> 0.05) however there was a significant reduction in cell viabil i ty 

between the control and all combinations of B ( a ) P and UVA tested in 

all cases (p < 0.05). With 24 hours incubation in growth medium 

results showed there was no significant effect in cytotoxici ty between 

the control and 4000 J m"^ UVA (p > 0.05) but a signif icant reduction 

in cell viabil i ty (p < 0.05) at all combinations of B ( a ) P and UVA tested 

wi th the exceptions of 0.1 pg ml"^ B ( a ) P + 500 J m'^ UVA where there 

was no significant effect (p > 0.05) which may have been too low an 

effect to measure. Results are presented in Figure 4 .12. 
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Figure 4.12 Cell viability assessed through the uptake of neutral red dye by RTG-2 

cells following pre-treatment with B(a)P at various doses (0.1, 1.0 and 3.2 pg ml'^) 

and then exposure to UVA (500 (Figure 4 .12a) , 2000 (Figure 4.12b), or 4000 J m'^ 

(Figure 4.12c). 0* is UVA dose indicated in specific figures. Cells were then 

incubated for various times (0, 1, 6, 24 hours) in GM. Significant differences (Mann-

Whitney-U test, p < 0.05) from the control are indicated (* ) . 
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4.3.3.4 The micronucleus assay for interactive toxicity for B(a)P and 

UVA effects on fish cells (RTG-2). 

Various doses of UVA ( 0 * , 25, 50 and 100 J m'^) were tested in RTG-2 

cells following their incubation wi th 0.05 pg ml"^ B(a)P to investigate 

possible interactive effects by means of the micronucleus assay. 

Interactive effects on micronucleus format ion were investigated using 

both Giemsa and anti-kinetochore staining techniques to investigate 

the potential mechanisms of action (clastogenic or aneugenic, 

respectively). Experiments scored 1000 binucleate cells per t reatment 

group, or 1000 cells and experiments were duplicated. The results for 

RTG-2 cells are presented in Table 4.4 . In the previous section 

(Section 4.3.1.3.2) there was no significant increase in micronuclei 

induced following incubation wi th 0.05 pg ml'^ B(a)P. Without pre

incubation with 0.05 pg ml"^ B(a)P and at a dose of 0 * J m"^ UVA, it 

was possible to remain wi th the standard protocol employed for the 

previous micronucleus experiments by counting micronuclei within 

1000 binucleate cells. At this concentration level (no pre-incubation 

and 0 * J m"^ UVA), 212 ± 9.90 mononucleate cells were counted 

within 1000 ± 0.00 binucleate cells. However, as UVA doses were 

introduced to the B(a)P pre-incubated cells, the frequencies of 

mononucleate cells visibly increased so it was decided to count a total 

of 1000 binucleate and mononucleate cells in order to investigate the 

ratio of the two cell types to each other, and to be able to detect as 

many micronuclei as possible. 

The results using Giemsa stain show that numbers of mononucleate 

cells vary widely within a scoring protocol of a total of 1000 binucleate 

and mononucleate cells, ranging f rom 656.25 ± 32.48 (0.05 pg ml"^ 

B(a)P + 25 J m -2) to 742.5 ± 39.53 (0.05 pg ml"^ B(a)P + 50 J m'^) 
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which were both significantly di f ferent f rom the control (p < 0.05). 

The numbers of binucleate cells scored also varied with exposure to 

UVA, in this case dropping wi th increasing UVA dose f rom 408.75 ± 

13.89 (0.05 Mg m l ' ' B(a)P + 25 J m'^) to 279.5 ± 37.83 (0.05 pg m r ' 

B(a)P + 50 J m'^) which were both significantly dif ferent f rom the 

control (p < 0.05). Micronuclei scored in mononucleate and binucleate 

cells did not show much variat ion in terms of frequencies of 

micronuclei but both increased signif icantly f rom the control (p < 0.05) 

and in the total frequency induced (p < 0.05) . In mononucleate cells a 

max imum of 9.5 ± 2.65 were detected (0.05 pg m l ' ' B(a)P + 100 J m" 

^ ) . In binucleate cells, there was no observed increase wi th dose (p > 

0.05) and the max imum frequency detected was 11.5 ± 2.65 (0.05 pg 

ml ' B(a)P + 100 J m'^). Along wi th the increase in micronuclei 

observed, there were many incidences of more than one micronucleus 

observed within the cell at all UVA doses. The greatest frequencies 

were detected at the lowest combined doses (0.05 pg ml ' B(a)P + 25) 

although all combinations (0.05 pg ml ' B(a)P + 25, 50 or 100 J m"^) 

were significantly dif ferent f rom the control (p < 0 .05) , wi th the 

highest frequency of 6.0 ± 0.82 (0.05 pg m l " ' B(a)P + 25 J m"^) in 

cells containing 3 micronuclei which was significantly di f ferent f rom the 

control (p < 0.05). Multiple micronuclei were observed at all doses 

and the effects were significantly higher than B(a)P alone for RTG-2 

cells (p < 0.05) but there was no significant difference in the presence 

of mult iple micronuclei between the interactive dose and the UVA dose 

alone (p > 0.05) suggesting that UVA is the more mutagenic agent. 

An increase of NPB was observed at all interactive doses, to a 

max imum observed number of 2.0 ± 0.82 (0.05 pg ml" ' B(a)P + 50 J 

m"^); marginally lower than the response seen to UVA or B(a)P alone 
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in this cell line and not significantly dif ferent f rom the control (p > 

0.05). 

Following these experiments with Giemsa, the use of ant i -k inetochore 

stain was employed to investigate the mechanisms of action of 

interactive toxicity on the RTG-2 cell line (Table 4 .4) . Again, It was 

not possible to score 1000 binucleate cells alone, so micronuclei were 

scored in a total of 1000 mononucleate and binucleate cells. At the 

control dose, 182.5 ± 21.92 mononucleate cells were scored alongside 

1000 binucleate cells. When cells were exposed to B(a)P and UVA the 

numbers of mononucleate cells ranged f rom 560 ± 4.24 (0.05 pg ml'^ 

B(a)P + 50 J m"2) to 688.5 ± 19.09 (0.05 pg ml" ' B(a)P + 100 J m'^) 

which were all significantly di f ferent f rom the control (p < 0 .05) . The 

numbers of binucleate cells did not increase steadily wi th dose but 

ranged f rom 417.5 ± 3.54 (0.05 pg m l " ' B(a)P + 25 J m'^), to 468.5 ± 

4.24 (0.05 pg m l ' ' B(a)P + 50 J m"^) down to 332.0 ± 28.28 (0 .05 pg 

ml ' B(a)P + 100 J m"^) (these data are probably outside the useful 

range of the assay) which were all significantly di f ferent f rom the 

control (p < 0.05) . 

Again, as wi th Giemsa staining, there was little difference in the 

numbers of micronuclei observed in either a mononucleate or a 

binucleate cell. The largest frequency of micronuclei observed wi th in a 

mononucleate cell was 13 ± 2.83 (0.05 pg m l ' ' B(a)P + 100 J m'^), 

whilst 14 ± 1.41 and 14 ± 2.83 were detected within a binucleate cell 

(0.05 pg ml ' B(a)P + 50 J m'^ and 0.05 pg ml ' B(a)P + 100 J m•^ 

respectively). All the micronuclei induced were significantly di f ferent 

f rom the control (p < 0.05). These results are similar to the results 

found with Giemsa staining, but the exposure groups 0.05 pg ml " ' 
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B(a)P + 25 J m'^ and 0.05 pg ml"^ B(a)P + 50 J m"^ again have 

significantly higher induction of micronuclei than the results seen for 

UVA or B(a)P alone hence a synergistic effect is demonstrated (p < 

0.05). Numbers of micronuclei induced were signif icantly di f ferent 

from the control (p < 0.05) and of the cells containing micronucleus, a 

larger proport ion of micronuclei detected contained a K+ signal but 

were located in both mononucleate and binucleate cells. These results 

indicate an aneugenic mode of action. However, as micronuclei were 

also detected wi th K- signals, it would suggest that B(a)P and UVA 

induce both a clastogenic and aneugenic response in RTG-2 cells. 
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Table 4.4 Effect of interactive toxicity following pre-incubation with 0.05 pg ml"^ B(a)P with various doses of UVA on the mean 

generation (±SE) of micronucleus in RTG-2 cells (n=17,445) using Giemsa or anti-kinetochore stain. There were no 

multinucleate cells observed. Significant differences (Mann-Whitney U test p<0.05) from the control are indicated (*) . 

0 .00 Mg ml'^ B ( a ) P 
+ 0 * J m'^ UVA 

0.05 pg ml'^ B ( a ) P 
+ 25 J m'^ UVA 

0.05 pg ml'^ B ( a ) P 
+ 50 3 m"^ UVA 

0.05 pg ml'^ B ( a ) P 
+ 100 J m"^ UVA 

Cel lular R e s p o n s e - G l e m s a 

Mononucleate 212.0 ± 9.90 656.25 ± 32.48* 742.50 ± 39.53* 706.25 ± 25.04* 

Binucleate 1000.0 ± 0.00 408.75 ± 13.89* 279.50 ± 37.83* 355.25 ± 45.22* 

Micronucleus/Mononucleate 0.5 ± 0.71 7.50 ± 1.29* 7.75 ± 0.96* 9.50 ± 2.65* 

Micronucleus/Binucleate Not observed 10.00 ± 1.41* 9.75 ± 0.96* 11.50 ± 2.65* 

Nucleoplasmic Bridge Not observed 1.75 ± 1.26 2.00 ± 0.82 1.50 ± 1.29 

2 nuclei Not observed 5.75 ± 0.96* 4.25 ± 3.50* 2.25 ± 1.71* 

3 nuclei Not observed 6.00 ± 0.82* 3.25 ± 2.06* 4.25 ± 1.71* 

4+ nuclei Not observed 4.25 ± 1.71* 1.00 ± 0.82 2.75 ± 1.71* 

Cel lular R e s p o n s e - a n t l -
k inetochore sta in 
Mononucleate 182.5 ± 21.92 601.0 ± 2.83* 560.0 ± 4.24* 688.5 ± 19.09* 

Binucleate 1000.0 ± 0.00 417.5 ± 3.54* 468.5 ± 4.24* 332.0 ± 28.28* 

Micronucleus/Mononucleate Not observed 6.5 ± 0.71* 7.5 ± 0.71* 13.0 ± 2.83* 

Micronucleus/Binucleate 0.5 ± 0.71 8.5 ± 0.71* 14.0 ± 1.41* 14.0 ± 2.83* 

K+ Mononucleate cells Not observed 2.5 ± 0.71* 5.0 ± 0.00* 8.0 ± 1.41* 

K- Mononucleate cells Not observed 4.0 ± 1.41* 2.5 ± 0.71* 5.0 ± 1.41* 

K+ Binucleate cells Not observed 4.0 ± 1.41* 10.0 ± 1.41* 9.0 ± 1.41* 

K- Binucleate cells 0.5 ± 0.71 4.5 ± 0.71* 3.5 ± 0.71* 5.0 ± 1.41* 
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4.3.4 ESR 

The samples of DMPO, as obtained f rom Sigma contained traces of 

paramagnetic impuri ty which could not readily be removed (for 

example by shaking the DMPO solutions with activated charcoal). 

Since prel iminary experiments confirmed that these trace impurit ies 

were unaffected by B(a)P and/or UVA the background spectra were 

subtracted f rom all experimental spectra presented here. The effect of 

untreated RTG-2 cells in the presence of UVA (500 J m"^) shows an 

insignificant signal (Figure 4.13a) . When RTG-2 cells incubated with 

3.2 pg ml" ' B(a)P (24 hours) (data not shown) were irradiated with 

UVA (500 J m"^) in the presence of the spin trap DMPO (Elliott et a/., 

1986), the major species detectable by ESR is DMPO-OH (Figure 

4.13b) . This supports the interpretat ion that the combination of UVA 

and B(a)P is necessary to produce OH radicals. 

In order to determine whether hydroxyl or superoxide is responsible 

for the observed signal, various agents were used to interfere with the 

production of these species (Thornaiiey & Dodd, 1985) . One mM 

diethylenetr iaminetetraacetic acid (DETAPAC) strongly chelates any 

free iron and inhibits decomposition of H2O2 to OH (Fenton processes) 

after UVA. Figure 4.14a shows the signal f rom B(a)P and UVA treated 

RTG-2 cells that contained DETAPAC and the strong spin adduct 

suggests that a Fenton reaction is not involved. As shown, the spin 

adduct is greatly reduced, strongly suggesting that UVA/B(a)P is 

causing the direct production of hydroxyl radicals. This indicated the 

format ion of either OH or O2" radicals. However, addit ion of either 

mannitol (which readily reacts with OH and competes with DMPO) to 

the B(a)P-treated cells prior to irradiation greatly decreased the yield 
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of DMPO-OH (Figure 4 .14b) . Addit ion of SOD, which converts 

superoxide to H202had l i tt le effect (Figure 4.14c). Addit ion of catalase, 

which converts H2O2 to water, also had a small effect (Figure 4.14d) . 

This indicated that the major radical product is OH, formed directly 

rather than f rom H2O2 and that superoxide is not involved in OH 

production. In the presence of TMPol, B(a)P treated cells showed no 

evidence of the format ion of singlet oxygen on irradiation (Lion et a/., 

1980). Similarly no ESR signal was observed when POBN was used as 

spin t rap, unless 10 % by volume of ethanol was also added, in which 

case the P0BN-CH(0H)CH3 radical was detected (Chapter 3, Section 

3.3.7). This provides fur ther evidence of the format ion of hydroxyl 

radicals. 
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Figure 4.13 The effect of UVA irradiat ion on RTG-2 cells (Figure 4 .13a) . 

Figure 4.13b shows the clear DMPO-OH signal after UVA irradiation 

(500 J m'^) of the B(a)P treated (3.2 pg ml"^) RTG-2 cells. 
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Figure 4.14 Treatment of RTG-2 cells with 3.2 pg ml '^ B(a)P (24 hours) 

followed by UVA (500 J m'^) wi th the addition of DETAPAC (Figure 

4.14a) , mannitol (which greatly decreased the yield of DMPO-OH) 

(Figure 4.14b) . Addit ion of SOD had little effect (Figure 4.14c). 

Addition of catalase also had a small effect (Figure 4 .14d) . This 

indicated that the major radical product is OH. 
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4.4 Discussion 

There are few data published about the combined effects of PAHs such 

as B(a)P and UVA in cellular systems, however there is a wealth of 

data regarding the effects of crude oils (containing PAHs) and their 

phototoxicity with UVA and/or sunlight (Duesterloh et a/. , 2002). For 

example, the use of chemical dispersants in the environment following 

oil spills may accelerate PAH dissolution into the aqueous phase, which 

may increase its bioavailability (Barron et a/., 2003). This increased 

bioavailability causes negative consequences by building up in the 

tissues and in combination with UVA or sunlight damages smaller 

aquatic organisms like herring eggs causing problems such as yolk sac 

oedema (Barron et a/., 2003). This leads to the hypothesis that UVA 

both with and without PAHs may be a significant and causative factor 

in early life stage mortalities in fish (Barron e ta / . , 2003; Duesterloh et 

a/., 2002). In vivo, fish lethality tests have limitations, for example in 

terms of growing economical costs and ethical concerns therefore it is 

increasingly important to explore alternative experimental techniques 

that search for ways to apply the ideals of replacement, reduction and 

refinement (Hutchinson et a/., 2003). The largest reductions in cell 

viability of 10 % and 35 % were observed in EPCAl and RTG-2 cells 

respectively following treatment with 3.2 pg ml'^ B(a)P and suggested 

the RTG-2 cells showed a greater sensitivity than the EPCAl cells, a 

finding that supports those reported elsewhere. For instance, in a 

study with EPC and RTG-2 cells using the NRR assay, RTG-2 cells were 

found to be more suitable for testing estuarine aqueous elutriate 

samples due to their tolerance to osmolality effects (Davoren et a/., 

2005). The different cytotoxic response observed in this work could be 

due to the different enzyme activities in the two cell types as 
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metabolic activation of PAHs (such as B(a)P) have been suggested to 

reduce cell viability in vitro (Babich et al., 1988). Araujo and co

workers (2000) did not observe any cytotoxicity in the RTG-2 cell line 

following 24 hours incubation with B(a)P doses of 0.625 to 20 pg ml"^ 

and suggested that insufficient announts of B(a)P were metabolised to 

give a cytotoxic response. The actual levels of enzymatic activity may 

differ between the cell lines therefore influencing cytotoxic responses 

(Kammann et a/., 2001; Sanchez et al., 2000). For example, a 35 % 

reduction in cell viability in RTG-2 cells was only observed with 10 pg 

ml"^ B(a)P after 144 hours treatment (Araujo et a/., 2000). However, 

Martin-Alguacll and co-workers (1991) found that RTG-2 cells 

metabolised sufficient amounts of B(a)P in 24 hours to reduce cell 

viability (NRR assay) which could explain the greater reduction in cell 

viability in RTG-2 due to a higher enzymatic activity than EPCAl cells. 

RTG-2 cells have been shown to possess CYPIA activity indicated from 

ethoxyresorufin-O-deethylase (EROD) measurements (Nehls & Segner, 

2001). Elevated EROD activities in fish cells have not only indicated 

exposure to PAHs but have been associated with significant biological 

effects (Au et a/., 2004) and significantly correlated to increases in 

lysosome accumulation (Yuen e ta / . , 2006). 

B(a)P also caused increased DNA damage and genomic instability in 

both EPCAl and RTG-2 cells. Greater variability in DNA damage was 

displayed in cells with the use of an exogenous metabolic source (S9) 

than in those cells treated to B(a)P without S9 . Kammann and co

workers (2001) observed that 2.5 ng ml'^ B(a)P caused a significant 

genotoxic effect when used in conjunction with a fish enzyme 

suspension. This concentration is about 100 times less than the lowest 

concentration used in the work here (0.1 pg ml'^) which gave a 
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significant genotoxic effect in both EPCAl and RTG-2 cells. The RTG-2 

cells demonstrated increased DNA damage than that of the EPCAl cells 

to 0.1 |jg ml"^ B(a)P for the 6 hour (with S9) group and to 1.0 pg ml*^ 

B(a)P for the 6 hour (without S9) group. Nehls and Segner (2001) 

investigated the genotoxicity of B(a)P to RTG-2 and RTL-Wl (liver 

epitheloid tissue from rainbow trout) using the comet assay following 2 

hour exposures to various concentrations of B(a)P (0.94-50 pmol 1'̂ ) 

and differences in sensitivity to B(a)P were observed between the two 

cell lines. This was related to EROD activity associated with 

cytochrome P4501A (CYPIA) monooxygenase, which is involved in 

phase I biotransformation of B(a)P to the ultimate carcinogen (Nehls & 

Segner, 2001). The study indicated that the effects of prototype 

CYPIA inducer, 6-naphthoflavone (BNF) were higher with RTL-Wl cells 

than with RTG-2 cells, which could form an Important explanation not 

only for the different responses of these two cell lines, but also for the 

interpretation of results obtained from exposure experiments using 

other established cell lines (Nehls & Segner, 2001). The results 

discussed above indicate the importance of metabolic conversion in 

enhancing the toxicity of B(a)P and point up the variations which can 

exist in PAH metabolisms between cell lines. This has important 

ramifications in relation to the choice of cell lines for PAH-related 

assays and whether these differences are related to cytochrome 

monooxygenase activity is most and requires further study. 

Significant increases in micronuclei were detected in EPCAl and RTG-2 

cells following treatment with B(a)P (except 0.05 pQ ml*^ B(a)P in RTG-

2). Significant frequencies of K+ micronuclei were detected indicating 

an aneugenic mode of action of B(a)P. There were no significant 

differences between the EPCAl and RTG-2 cells in micronuclei 
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induction. In agreement with the results reported here with RTG-2, 

Sanchez and co-workers (2000) detected no micronuclei in RTG-2 cells 

with 0.05 |jg nril'̂  B(a)P but increasing the concentration to 0.5 and 1.0 

\jQ ml"^ B(a)P induced micronuclei (Sanchez et aL, 2000). However, 

they only detected micronuclei with 0.1 |jg ml"^ B(a)P after 72 hours 

treatment (Sanchez et al., 2000) which suggests that our technique 

was more sensitive. In the work presented here diverse nuclear 

abnormalities were not observed in EPCAl or RTG-2 cells following 

exposure to B(a)P. In vivo investigations by other workers have 

shown that B(a)P is a potent inducer of both erythrocytic micronuclei 

and nuclear abnormalities in juvenile sea bass (Gravato 8t Santos, 

2002). However, B(a)P caused significant Increases in mononucleate 

cells In RTG-2 cells which may indicate an alteration In cell cycle and 

along with the positive induction of micronuclei could suggest genomic 

instability. In agreement with the work presented Sanchez and co

workers (2000) concluded that B(a)P increased micronuclei 

frequencies, but significantly delayed cell-cycle progression in RTG-2 

cells. Micronuclei have also been detected in RTG-2 cells following 

exposure to 5-25 pmol B(a)P (Kolpoth et aL, 1999). Using a random 

amplified polymorphic DNA (RAPD) technique a 24 hour treatment with 

0.1 pg ml'^ B(a)P or 0.5 pg ml"^ B(a)P increased instability of the DNA 

In RTG-2 cells (Castano & Becceril, 2004). 

Micronuclei were detected in both mononucleate and binucleate cells 

Indicating that it was valuable to Include the scoring of micronuclei 

within mononucleate cells (as observed previously, Fenech et al., 

2003a) to detect all damaged cells. Research has indicated that 

aneugens (such as COL) may also Induce micronuclei in mononucleate 

cells and additional value is added to the micronucleus assay by 
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scoring mononucleate cells (Rosefort et a/., 2004). By scoring 

micronuclei within both mononucleate and binucleate cells the 

detection of pre-existing DNA damage as well as micronuclei 

expressed during culture as a result of chromosome breaks is enabled 

(Fenech e ta / . , 2003b). 

A significant reduction in cell viability with UVA (> 2000 J m" )̂ in RTG-

2 cells and UVB in EPCAl cells (> 200 J m'^) and RTG-2 cells (> 625 J 

m'^) was observed. Using similar doses of UVR and in agreement with 

the work presented here, O'Reilly and Mothersill (1997) investigated 

the in vitro effects of UVA and UVB on clonogenic survival of a fish cell 

line which was found to be sensitive to UVB (> 200 J m'^) and UVA (> 

3000 J m'^). It has been suggested that cells are stimulated to 

undergo a cell death mechanism such as apoptosis following UVB 

treatment (Nishigaki et a/ . , 1999). UVB has been shown to induce 

apoptosis in medaka fish cells (0CP13) as well as bring about 

morphological changes such as cell shrinkage and a reduction in the 

number of nucleoli at 4 hours post UVB (Nishigaki et a/., 1999). 

Morphological changes were observed in 30-40 % of cells treated with 

200-400 J m'^ UVB (Nishigaki et a/., 1999). In agreement with these 

data, the pilot study using Annexin V with RTG-2 suggested that 

apoptosis was induced 6 hours post UVB irradiation although this 

requires further study to elucidate. 

UVB significantly increased DNA damage in both EPCAl and RTG-2 

cells at all doses tested however, there was no significant increase in 

DNA damage to RTG-2 cells from exposure to UVA. High dose effects 

of UVB made the comet assay difficult creating an apparent reduction 

in DNA damage at the highest UVB dose used (500 J m"̂ ) however this 
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could be a false result due to the assay losing sensitivity through 

extensive DNA damage. For example, Nishigaki and co-workers (1999) 

observed changes in cellular distributions, and distortion to the nuclei 

4 hours post-200 J m"̂  UVB irradiation. 

In the work presented here, reducing the UVB dose gave a clearer 

dose-related response indicating that the damage was not so 

extensive at these doses. This suggests that the damage is so 

extensive at the higher doses of UVB that the DNA fragments are small 

so they disperse making 'comets' undetectable and therefore 

immeasurable. This effect is therefore in part due to a technical effect 

rather than a mechanistic effect. Similarly, Armstrong and co-workers 

(2002) demonstrated that exposure to 2.7 - 5.87 mW m"̂  UVB caused 

extensive DNA fragmentation in larval Japanese medaka {Oryzias 

latipes) and significant necrosis suggesting an inability to 

photoreactivate and therefore repair the DNA damage. 

A positive increase in the frequencies of micronuclei were observed 

following exposure to UVA in RTG-2 cells. This was associated with a 

delayed cell cycle manifested through a reduction in the number of 

cells entering cytokinesis and therefore being detected as binucleate 

cells (thus a significant increase in mononucleate cells was observed). 

A delayed or arrested cell cycle is a general response of cells to DNA 

damage and the detection of mononucleate cells after UVA irradiation 

would indicate significant genotoxic damage. Cell cycle checkpoint 

defects may also cause the formation of micronuclei (Fenech, 2006). 

A larger proportion of micronuclei were detected in mononucleate cells 

showing a clear relationship to UVA dose than in binucleate cells. 

Other workers have produced data which suggests that micronuclei in 
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mononucleate cells may be useful to distinguish clastogenic agents 

from aneugenic agents and increase the sensitivity of the test as 

aneugens are most commonly detected in mononucleate cells 

(Elhajouji et a/., 1998). However there was no clear distinction 

between mononucleate or binucleate cells with relation to K+ 

micronuclei (that would indicate an aneugenic effect). An increase in 

multinucleate cells and nucleoplasmic bridges (NPBs) with UVA dose 

was also observed. The induction of multinucleated cells has been 

reported elsewhere for human cells and was suggested to be due to 

two mechanisms: the fusion of two or more cells shortly after 150 kJ 

m'^ UVA of early Gi cells, or an impairment of cytokinesis causing 

delayed formation of multinucleated cells after UVA irradiation in S and 

G 2 phases (Brathen et a/., 2000). NPBs are indicative of DNA mis-

repair, chromosome rearrangement or telomere end-fusions because 

they are thought to originate from dicentric chromosomes whereby the 

centromeres have been pulled to the opposite poles of the cell at 

anaphase and may break to form micronuclei (Fenech, 2006). These 

data indicate not only the formation of micronuclei following exposure 

to UVA from aneugenic and clastogenic mechanisms but also suggest 

other more complex cellular defects (such as inhibition of DNA 

synthesis (Banrud et a/. , 1995; de Laat et a/. , 1996) that warrant 

further investigation in order to fully elucidate the mechanisms of UVA 

induced DNA and cellular damage. This is one of the first applications 

of anti-kinetochore staining to RTG-2 cells, and the work reported here 

demonstrates that this technique will be a useful tool in aquatic 

ecotoxicology. 

Increased effects on cell systems by PAHs in the presence of UVR are 

expected. For example, the repercussions of photocytotoxicity have 
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been demonstrated in vivo to larval stages of oysters when embryos 

were simultaneously exposed to 5 pg 1'̂  PAH and 6.3 pW cm'^ UVB or 

456.2 pW cm"^ UVA (Lyons et al., 2002) and newt larvae following 

exposure to > 25 ppb B(a)P and 250 pW cm"^ UVA (Fernandez & 

THaridon, 1994). Other studies have shown a significant decrease in 

bacterial bioluminescence from 1, 5, 50 and 100 ppb B(a)P and 1, 5, 

50 and 100 ppb phenanthrene co-exposure followed by 5.8 pW cm'^ 

UVB in developing sea urchins that lead to a significant dose-

dependent decrease in growth rates (Steevens et al., 1999). In the 

work reported here, pre-exposure to B(a)P followed by UVB did not 

show significant reductions in cell viability however, pre-exposure to 

B(a)P followed by UVA showed significant reductions in cell viability in 

all combinations of B(a)P and UVA tested. This has been observed 

elsewhere for example, the photocytotoxiclty of creosote was shown to 

be 35-fold higher than creosote alone which was suggested to be due 

to photomodiflcation of the aromatic hydrocarbons In creosote 

(Schirmer et al., 1999). The potential cellular recovery following pre-

treatment with B(a)P and exposure to various doses of UVA was 

investigated and was of Interest because cells have been shown to 

repair DNA damage following 500 kJ m^̂  UVA (Bock et al., 1998). 

However, results suggested a progressive reduction in cell viability 

over time following treatment with B(a)P and UVA that would imply no 

cellular recovery. Whether this Is related to apoptotic or necrotic 

mechanisms requires further study. 

The effects of UVB alone showed large Increases in DNA damage and 

the interactive effects of B(a)P and higher UVB doses (e.g. 200 and 

100 J m"̂ ) showed a lack of consistent evidence to suggest significant 

Increases In DNA damage compared to the high DNA damage caused 
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by the UVB alone. This was probably due to the detection range of the 

assay being exceeded and the results did not reflect the effects of the 

incorporation of B(a)P into the system. Significant DNA damage was 

observed with UVB > 75 J m"̂  and B(a)P. Some interactions (e.g. 75 J 

m"̂  and 1.0 or 3.2 pg ml"^ B(a)P) indicated a synergistic response. 

However, lower UVB doses (50 and 25 J m"̂ ) with B(a)P suggested 

additive effects. Work of this nature has been performed on human 

cells but not previously on fish cells (Crallan et a/., 2005). For 

example, the addition of Fpg enzyme (which enables the detection of 

oxidised purine bases through the conversion of the DNA base damage 

to SSBs) caused a noticeable increase in the Tail DNA (%) indicating 

the presence of oxidative lesions from the combined exposure to 5 pM 

B(a)P and 100 kJ m"̂  UVB (Crallan et a/., 2005). This data is 

significant to the work reported here, as it made it possible to detect 

small but significant increases in DNA damage, indicating that 

although the precise mechanisms of DNA damage remains unclear, 

additive effects and some synergistic effects are possible with a 

combination of B(a)P and UVB. In vivo, this data has shown relevance 

with studies involving the eye, for example an investigation using the 

comet assay showed that exposure of bovine retinal pigment epithelial 

(RPE) cells to 100 pM B(a)P rendered them more susceptible to DNA 

damage induced by 0.09 J cm'^ UVB (Patton et a/., 2002) suggesting 

that the repair enzyme systems might be overwhelmed, which may 

have consequence for fish held in high stocking densities in shallow 

polluted waters such as some aquaculture facilities. 

In the work presented here a range of exposures to B(a)P all 

significantly increased DNA damage when cells were then exposed to 

UVA. B(a)P concentration dependent increases in DNA damage were 
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observed when cells were pre-exposed with B(a)P followed by UVA < 

6000 J m"̂  and results suggested a synergistic effect from B(a)P or 

UVA alone. Whilst pre-exposure with B(a)P followed by either 8000 or 

6000 J m'^ UVA caused a significant increase in DNA damage there was 

no B(a)P concentration related response seen and some of the data 

was confounded by the effects of large amounts of damage making the 

comet assay inappropriate or small amounts of damage making the 

signal to noise ratio too small. Evidence in environmental studies 

points to the phototoxic components of oil specifically being 3-5 ring 

PAHs which would include B(a)P (Barron & Ka'aihue, 2001). The data 

presented here indicate that even low doses of B(a)P are capable of 

inducing a significant increase in DNA damage under a range of UVA 

doses. In the field the risks of tissue accumulation of PAHs such as 

B(a)P depend on factors such as food web accumulation as well as the 

solubility limited physical bioavailability of the PAH (Barron e ta / . , 2003; 

Moermond et a/., 2007; Verweij et a/., 2004). Nevertheless the 

synergisms between B(a)P and UVA suggest that small amounts of 

PAHs may well have a profound impact on ecosystem health. 

Significant increases in micronuclei frequencies were observed that 

were higher than either UVA or B(a)P alone. Only the highest 

combination (0.05 |jg ml"^ B(a)P + 100 2 m'^) tested did not show this 

effect from B(a)P or UVA which could be due to exceeding the useful 

damage range for measurements. Significant increases in 

mononucleated cells following combined exposure as well as increases 

in nuclear abnormalities such as NPBs and poly-nucleated cells in RTG-

2 were observed following exposure to B(a)P and UVA. These data 

suggested considerable changes in the cell cycle from combined 

exposures. Interesting results were also seen from the increases in 
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multiple micronuclei from the lowest B(a)P and UVA combination used 

which could signify a heritable and possibly unstable mutation. There 

is no published literature for established fish cell lines comparable to 

these data with regard to cell cycle delays and nuclear abnormalities 

following treatment with B(a)P and UVA. However, in vivo studies 

have assessed nuclear abnormalities such as blebbed, notched or 

lobed nuclei in minnow erythrocytes (Ayllon 8t Garcia-Vasquez, 2000) 

and in peripheral erythrocytes following treatment with effluents from 

a petroleum refinery (Cavas 8i Ergene-Gozukara, 2005). As 

demonstrated in the work presented factors other than micronuclei 

(e.g. nuclear abnormalities or cell cycle alterations) give useful 

indications to the precise nature of responses to toxicity exposure. For 

example, Cavas and Ergene-Gozukara (2005) showed that measuring 

both micronuclei and nuclear abnormalities increased the sensitivity of 

the micronucleus test system. Additionally, anti-kinetochore staining 

showed that the interaction between B(a)P and UVA acts both 

aneugenically and clastogenically (micronuclei were detected with both 

K+ and K- signals respectively) suggesting a loss of both whole 

chromosomes and chromosomal fragments. The RTG-2 cell line has 

been used in ecotoxicological screening for environmental pollutants in 

combination with other techniques (Castano et al., 2000; Kolpoth et 

al., 1999; Raisuddin & Jha, 2004) but the use of anti-kinetochore 

staining has not been previously applied to fish cell lines for use in 

assessing the genotoxicity of PAHs and/or UVR. From the data 

reported here RTG-2 cells are a good tool for ecotoxicological testing 

with the micronucleus assay and anti-kinetochore staining. 

The major radical formed from co-exposure to B(a)P and UVA was 

shown to be hydroxyl ( OH). The DMPO-OH spin adduct decays with 
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time (Finkelstein et al., 1982), most likely because it is metabolised by 

the cells and, in fact, later samples, which were no doubt less viable, 

gave a larger spin adduct signal. DMPO-OH can be formed by 

trapping OH radicals, formed directly or from H2O2 via the Fenton 

reaction. In contrast, if superoxide was produced in the system, it 

would have been initially trapped as DMPO-OOH, but would then 

rapidly decay to DMPO-OH, so the appearance of the DMPO-OH signal 

is not unequivocal proof of direct formation of OH In the B(a)P/UVA 

system. Further experiments supported that this radical was being 

formed directly. A variety of agents (DETAPAC, mannitol, superoxide 

dismutase, catalase) was used to see whether or not they would be 

able to determine the ROS produced. Results showed that ROS were 

not produced via Fenton processes or from superoxide. These data 

suggested that oxidative stress is a major part of the DNA damage 

involved in the interaction between B(a)P and UVA. ESR has not been 

employed previously to the production of ROS from PAHs or UVR in 

fish cell lines. 

These data confirmed the mutagenicity of B(a)P to EPCAl and RTG-2 

cells through reductions In cell viability. Increased DNA damage and 

altered cellular functions that were from aneugenic and clastogenic 

mechanisms. Irradiation with UVB caused significant reductions in cell 

viability (potentially involving apoptosis) and Increased DNA damage in 

EPCAl and RTG-2. However, RTG-2 cells irradiated with UVA showed 

no significant reductions in cell viability or increased DNA damage but 

significant Increases in cell cycle function and cellular abnormalities. 

Incubation with B(a)P followed by irradiation with UVA synergistically 

reduced cell viability, increased DNA damage and altered cellular 

mechanisms that may be due to both aneugenic and clastogenic 
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mechanisms. Oxidative activity for the direct formation of hydroxyl 

radical was shown to be a key element in these processes. 
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CHAPTER V - THE INTERACTIVE EFFECTS OF B(a)P AND UVR ON 
CELLS DERIVED FROM MAMMALIAN ORGANISMS 

5.1 Introduction 

Exposure to chemical mutagens is generally assumed to be the major 

cause of cellular mutation (Allen-Hoffman & Rheinwald, 1984; Durant et 

at., 1996; Durant et al., 1999); however, increased or excessive 

exposure to UVR is well known to induce direct acute and chronic 

reactions in both human and animal skin (Ichihashi et al., 2003; Seite et 

a/., 2006b). In humans sun behaviour is complex and often linked to 

particular societies. In Caucasian populations people with Type I skin 

type (very fair, burns easily) are at greater risk of developing sun 

related skin damage but may be more likely to take precautions in the 

sun as opposed to people with Type IV skin (tans easily, rarely burns) 

who may take more risks in the sun (Thieden etal., 2005). For example, 

in Europeans, risk behaviour outside the beach in northern Europe, gave 

a median value of 2.5 solar erythemal doses (SED; 1 SED equates to 

100 J m"̂  normalised to 298 nm) per day (ranging from 0.3-15.8 SEDs 

per day) compared to risk behaviour at the beach which gave a median 

value of 4.6 SEDs per day (ranging between 0.3-25.9 SEDs per day) 

(Thieden et al., 2004). In southern Europe, compared with the beach in 

northern Europe, the daily UVR doses were almost double (6.9 SEDs per 

day; ranging from 0.4-32.6 SEDs per day), with adolescents receiving 

11.0 SEDs per day (ranging from 4.1-18.3 SEDs per day) and children 

receiving 44 % of their total measured dose at the beach (Thieden et al., 

2004). UVA is known to induce alterations in immune functioning, 

increase pigmentation and cause other aspects of photoaging 

(Fourtanier et al., 2008; Moyal & Fourtanier, 2002; Moyal & Fourtanier, 

2008; Nghiem et al., 2001; Seite et al., 2006b). For example, 3.4 J cm^ 

of UV-solar simulated radiation (290-400 nm) may induce acute 
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alterations of erythema, induction of SCC in the epidermis, nuclear 

accumulation of p53, and thymine dimers in the skin (Seite et a/., 

2006a). UVR has the potential to damage many biological targets and 

genotoxicity can be induced through DNA damage (Ikehata e t a / . , 2003; 

Morales e ta / . , 2003; Tsilimigaki e ta / . , 2003), by interactions with other 

components of the cell (lordanov et a/. , 2002) and also when 

photosensitising chemicals are present (Danaee et a/., 2004; Lim & 

Stern 2005; Vander et a/. , 2001; Young et at., 1990). Onset of 

carcinogenesis may also be stimulated by viruses and evidence has 

suggested that infection with certain human papillomavirus groups may 

have enhanced the rates of SCC because the virus acted as a cofactor 

(Ateenyi-Agaba et a/., 2004). The therapeutic use of coal tars in many 

dermatitic disorders has been implicated in the development of skin 

cancer when combined with UVR (Pion et a/., 1995) which has been 

attributed to the high PAH content in coal tars. PAHs are ubiquitous in 

urban air pollution and vehicle exhaust emissions contain particulate 

matter including PAHs (Durant et a/. , 1996; Liu et a/., 2005). PAH 

concentrations in air may range from < 1 ng m"̂  in a rural environment 

to 1-10 ng m"̂  in urban areas, whilst some occupational environments 

may have PAH concentrations > 1000 ng m'^ (Grimmer, 1983). Four-

to six-ring PAHs (including B(a)P) in aerosol particles have a major size 

range peak at 1.1 |jm and PAHs associated with the particles within this 

size range are easily transported through the upper respiratory tract 

into the bronchioles and alveoli of the lungs where they can pose a 

direct adverse health impact (Zhou et a/., 2005). These products can 

circulate around the body and they can be detected in skin, hair and 

urine (Zhang et a/., 2007). The toxicity of some PAHs has been 

demonstrated to increase in the presence of UVA causing cytotoxic and 

genotoxic responses (Besaratinia & Pfeifer, 2003; Crallan et a/., 2005; 

Ekunwe et a/., 2005; Zheng et a/., 2004). For example, concommitant 

exposure to 0.75, 2.00, or 5.00 pM fluoranthene with 6.1 ± 0.07 J m"̂  
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UVA caused a significant increase in DNA damage and cytotoxicity in 

HaCaT (human keratinocyte) cells (Zheng et al., 2004). An 

understanding of the effects of combinations of insults such as PAHs and 

sunlight may be key in interpreting the huge epidemiological database 

which has built up on skin cancer and its causes. 

5.1.1 Aims and Objectives 

The aim of this chapter was to investigate the effects of B(a)P and UVR 

separately and their interactions in two mammalian cell models: CHO-Kl 

and 84BR, under in vitro conditions. The specific objectives were: 

a) To investigate the cytotoxicity of B(a)P (CHO-K l ) , UVB (CHO-Kl ) 

or UVA (CHO-Kl and 84BR) and the potential interactive 

cytotoxicity of B(a)P and UVA using the NRR assay (CHO-Kl and 

84BR). 

b) To examine the DNA damage or chromosomal changes caused by 

B(a)P (CHO-Kl (with and without metabolic activation (S9) in the 

comet assay) and 84BR), UVB (CHO-Kl ) or UVA (CHO-Kl and 

84BR) using genotoxicity assays. 

c) To explore the possible interactions between B(a)P exposed CHO-

K l cells and UVB or UVA radiation using genotoxic assays (comet 

and micronucleus assays) to examine potential DNA damage or 

cellular changes including clastogenic or aneugenic effects and to 

use a primary human cell type (84BR) to further investigate these 

effects and to consider possible similarities or differences between 

it and CHO-Kl cells. 

d) To examine potential oxidative stress from these interactions in 

CHO-Kl and 84BR cells using ESR. 
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5.2 Materials and Methods 

5.2.1 Cells and B(a)P Exposure Conditions 

The CHO-Kl cell line and 84BR cells were cultured under the cell culture 

conditions set out in Chapter 2, Section 2.3. CHO-Kl and 84BR cells at 

70-80 % confluence were exposed to various concentrations of B(a)P 

(0.00, 0.05, 0.10, 0.32, 1.00 and 3.20 MQ rnl"^) in medium containing 1 

% FBS (prepared as stated in Chapter 2, Section 2.5.5). Metabolic 

activation of B(a)P was conducted as stated in Chapter 2, Section 2.5.6. 

5.2.2 Assays of Cell Viability and Cytotoxicity 

To assess cell viability prior to comet experiments, trypan blue was used 

as described in Chapter 2, Section 2.4.1. Dual staining and Annexin V-

FITC Apoptosis Detection were conducted according to the methods in 

Chapter 2, Sections 2.4.2 to 2.4.3. Results were expressed as a 

percentage where applicable. The NRR assay was conducted as stated 

in Chapter 2, Section 2.4.4. C H O - K l cells were exposed to various 

concentrations of B(a)P (0.0, 0.1, 1.0 and 3.2 [jg ml'^) or UVB doses (0 * , 

200, 500, 625, 750, 875 and 1000 J m"^). CHO-Kl and 84BR cells were 

also exposed to various doses of UVA (0* , 500, 1000 and 4000 J m'^) or 

B(a)P (0.0, 0.1, 1.0 and 3.2 pg ml"') and UVA (0* , 500, 1000 and 4000 

J m"^). Results were expressed as a percentage of the control (Babich 

e ta / . , 1988). 

5.2.3 Comet Assay 

Unless stated, cell viability for comet assay experiments was always 

over 90 % in accordance with the recommendations of Tice et al. (2000) 

as measured by trypan blue (Chapter 2, Section 2.4.1). The comet 
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assay was conducted as stated in the protocol in Chapter 2, Sections 

2.5.1 to 2.5.4 with the nnodifications determined through optimisation in 

Chapter 3. For example, unwinding times and electrophoresis times for 

CHO-Kl cells were 40 minutes and 20 minutes, respectively. Only cells 

at 70-80 % confluence were used, replicate slides were made for each 

treatment condition, and experiments were conducted in duplicate. The 

UVR sources used are detailed in Chapter 2, Section 2.7. For 

experiments using B(a)P, CHO-K l and 84BR cells were exposed to 

various concentrations of B(a)P (0.0, 0.1, 1.0 and 3.2 pQ rnl"^) in 

medium (Chapter 2, Section 2.5.5). The cells were incubated for 6 

hours (with and without metabolic activation (Chapter 2, Section 2.5.6)) 

or 24 hours (without metabolic activation) at 37 ± 1 °C according to the 

recommendations set out by Tice et a/. (2000). For experiments using 

UVR, CHO-Kl cells were prepared onto slides (Chapter 2, Section 2.5.1) 

and exposed to various doses of UVB (0* , 200, 350 and 500 J m'^). The 

comet assay protocol was then adhered to (Chapter 2, Section 2.5) with 

the following modifications. Immediately following irradiation, slides 

were transferred to chilled lysing solution (Section 2.5.1) and processed 

(Chapter 2, Sections 2.5.2 to 2.5.4). For experiments to Investigate 

interactive toxicity, CHO-Kl and 84BR cells were exposed to various 

concentrations (0.00, 0.05, 0.10, 0.32, 1.00 and 3.20 pg ml"^) of B(a)P 

in medium for 24 hours (without metabolic activation) (Chapter 2, 

Section 2.5.5) and prepared onto CometSlides^*^ (Chapter 2, Section 

2.5.1). Following this, CHO-Kl and 84BR cells were exposed to various 

doses of UVA (0* , 25, 50, 100 and 200 J m'^), then Immediately placed 

on ice. Slides were transferred to chilled lysing solution (Chapter 2, 

Section 2.5.1) and processed according to Chapter 2, Sections 2.5.2 to 

2.5.4. 
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5.2.4 Micronucleus Assay 

CHO-Kl cells were seeded at a density of 4 x 10^ cells ml"^ in growth 

medium in 25 cm^ flasks for B(a)P experiments or Petri dishes for UVA 

or interactive toxicity experiments and incubated at 37 ± 1 ®C for 24 

hours. 84BR cells were seeded at a density of 1 x 10^ cells ml'^ in 

growth medium in 25 cm^ flasks for B(a)P experiments or Petri dishes 

for UVA or interactive toxicity experiments and incubated at 37 ± 1 °C 

for 48 hours in 5 % C O 2 . B(a)P was added to the CHO-K l cell 

monolayer at various concentrations (0.000, 0.025, 0.100, 1,000 and 

3.200 |jg ml"^), and to the 84BR cells at 0.00 and 0.05 MQ nnl'̂  prepared 

in medium as described in Chapter 2, Section 2.5.5. Cells were 

Incubated at 37 ± 1 °C for 24 ± 1 hours (CHO-Kl ) or 48 ± 1 hours in 5 

% C O 2 (84BR). After the exposure period had elapsed, the medium was 

discarded and the monolayer washed twice with PBS. Cyto B (3 pg ml'^) 

in solvent (DMSO) was added to the cells in growth medium and the 

flasks incubated at 37 ± 1 <>C for 24 ± 1 hours (CHO-Kl ) and 48 ± 1 

hours in 5 % C O 2 (84BR). For UVA investigations, cells were washed 

twice with PBS and treated with various doses of UVA (0 * , 25, 50 and 

100 J m"^). Cyto B (3 pg ml"^) in solvent (DMSO) was immediately 

added to the cells in GM following irradiation and the dishes incubated at 

37 ± 1 °C for 24 ± 1 hours (CHO-Kl ) or 48 hours in 5 % C O 2 (84BR 

cells). For experiments into interactive toxicity, cells were washed twice 

with PBS and incubated with B(a)P (0.025 pg ml'^) for 6 hours, washed 

twice with PBS and treated with various doses of UVA (0* , 25, 50 and 

100 J m"^). Cyto B (3 pg ml'^) in solvent (DMSO) was immediately 

added to the cells with growth medium and the dishes incubated at 37 ± 

1 ^C for 24 ± 1 hours (CHO-Kl ) and 48 hours in 5 % C O 2 (84BR). 

Following these incubation periods and treatments, the cells were 

removed from the incubator, and treated as Chapter 2, Sections 2.6.1 to 

2.6.2.1 for Giemsa and anti-kinetochore staining. 
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5.2.5 ESR Measurements on B(a)P and UVR Treated Cells (CHO-K l , 

84BR) 

ESR measurennents were made according to the protocol in Chapter 2, 

Section 2.6.4.1. CHO-Kl and 84BR cells were treated for 24 hours with 

B(a)P (3.2 pg ml'^). Cells from each 25 ml culture flask were 

trypsinised and re-suspended in GM and the cell suspension was divided 

into two before being centrifuged at 800 rpm for 8 minutes. The cell 

pellet was washed 3 times with PBS to remove serum and free B(a)P 

and the cell pellet from each half was re-suspended in 50 M' of 250 mM 

DMPO in PBS prior to irradiation. The spin traps TMPol and POBN were 

both used at a concentration of 50 mM. The samples were then placed 

in the microwave cavity of the spectrometer and acquisition of spectra 

started within 1 minute of the end of irradiation (UVB: (Phillips, UK), 

UVA: (XX-40 FB, Spectroline, USA)). 

5.2.6 Statistics 

For comet assay data, the data were collected from Excel and 

transferred into MINITAB for statistical analysis. Comet assay data was 

non-parametric, therefore, the median was used for comparisons. 

Mann-Whitney U tests were performed on the data to investigate the 

level of significant difference between the medians. The data was then 

transferred into SigmaPlot to make box and whisker plots. For 

micronucleus experiments, the results are presented in tables and 

Mann-Whitney U tests performed on the data to investigate the level of 

significant difference between the medians. 
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5.3 Results 

5.3.1 The Effects of B(a)P Alone on Mammalian Cell Lines CHO-K l and 

84BR. 

These experiments were designed to investigate the baseline effects of 

the PAH B(a)P on mammalian cells (CHO-Kl , 84BR). The effects of 

B(a)P were assessed through a suite of assays; NRR, comet and 

micronucleus, and a study with ESR in CHO-Kl cells. The effects of 

B(a)P were also investigated in 84BR cells, using the comet assay and 

the micronucleus assay, for comparison purposes with data obtained 

from studies with B(a)P and UVR. Interactive toxicity (i.e. B(a)P and 

UVR) was also investigated in both cell types using ESR. Results are 

presented below (Sections 5.3.1.1 to 5.3.4.4). 

5.3.1.1 The NRR Cytotoxicity Assay for B(a)P Effects on the CHO-K l Cell 

Line. 

Initially, B(a)P cytotoxicity was investigated for CHO-Kl cells using the 

NRR assay to assess cell viability through the retention of neutral red 

dye in the lysosomes. After exposure of CHO-Kl cells to B(a)P for 24 

hours at various concentrations (0.0, 0.1, 1.0 and 3.2 |jg ml'^) the 

viability of the cells was examined. Results indicated that 0.1 and 1.0 

pg ml'^ B(a)P reduced cell viability to approximately 96 % (p > 0.05) 

and 88 % (p > 0.05) respectively (no significant differences). B(a)P at 

3.2 pg ml'^ reduced cell viability to approximately 68 % (p < 0.05). 

Results for this assay are presented in Figure 5.1. 
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Figure 5.1 Cell viability assessed through the uptake of neutral red dye 

by CHO-Kl cells following exposure of cells to 24 hour B(a)P at various 

concentrations (0.0, 0.1, 1.0 and 3.2 |jg ml"^). Cell viability is 

expressed as a percentage of the control (% control) with the control 

value being 100 %. Asterisks (*) indicate a significant difference from 

the control (Mann-Whitney U test, p < 0.05). 

5.3.1.2 The Comet Assay for B(a)P Effects on Mammalian Cell Lines 

(CHO-Kl and 84BR). 

5.3.1.2.1 CHO-Kl 

The comet assay was performed after treating CHO-K l cells for 6 hours 

(with or without metabolic activation (S9)) or 24 hours (without S9) 

with B(a)P (0.0, 0.1, 1.0 and 3.2 pg ml"^). DNA damage was measured 

by the % Tail DNA. Percentage tail DNA revealed that DNA was not 

significantly (p > 0.05) damaged following 6 hour exposure to 0.1 |jg 

ml"^ B(a)P without exogenous metabolic activation (S9) (Figure 5.2a). 

However, there was significant (p < 0.05) DNA damage to cells following 

6 hours exposure to 1.0 and 3.2 pg ml'^ B(a)P (without S9) (Figure 

5.2a). Results showed that there was a significant difference (p < 0.05) 
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between the control and all exposures for the B(a)P group with S9 

(Figure 5.2a), with a higher significance (p < 0.0001) than the group 

without S9 , although the S9 exposures displayed no dose response 

(Figure 5.2b). For CHO-Kl cell exposed to B(a)P for 24 hours (without 

S9) , there a dose-response was shown, and a significant difference from 

the control (p < 0.0001) shown for all tested concentrations (Figure 

5.2c). 

5.3.1.2.2 84BR 

The comet assay was performed after treating 84BR cells for 24 hours 

(without S9 exogenous metabolic activation) with B(a)P (0.00, 0.05, 

0.10, 0.32, 1.00 and 3.20 pg ml'^). DNA damage was measured as the 

% Tail DNA. Percentage Tail DNA revealed that DNA was not 

significantly damaged (p > 0.05) following 24 hour exposure to 0.05 pg 

ml"^ B(a)P. There was significant DNA damage (p < 0.001) to cells 

following 24 hours exposure to 0.1, 1.0 and 3.2 pg ml'^ B(a)P, and 

significant DNA damage (p < 0.01) to cells treated with 0.32 pg ml"^ 

B(a)P. The results for 84BR cells are presented in Figure 5.3. 
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Figure 5.2 Median DNA d a m a g e to C H O - K l ce l ls following e x p o s u r e to 6 hour B ( a ) P at 

var ious concent ra t ions ( 0 . 0 , 0 . 1 , 1.0 and 3 .2 pQ m'"^) without (F igure 5 . 2 a ) e x o g e n o u s 

metabol ic act ivat ion ( S 9 ) , with S 9 (Figure 5 ,2b) or following e x p o s u r e to 24 hour B ( a ) P 

( 0 . 0 , 0 . 1 , 1.0 and 3.2 pQ mr^) without S 9 (F igure 5 . 2 c ) . Data m a r k e d with a r e 

signif icantly different to the control (Mann-Whi tney U tes t , p < 0 . 0 5 ) or with * a r e 

signif icantly different to the control (Mann-Whi tney U tes t , p < 0 . 0 0 0 1 ) . 
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Figure 5.3 Median DNA damage to 84BR cells following exposure to 24 

hour B(a)P at various concentrations (0.00, 0.05, 0.10, 0.32, 1.00 and 

3.20 pg ml"^). DNA damage is assessed by the % Tail DNA. Data 

marked with ^ are significantly different to the control (Mann-Whitney U 

test, p < 0.01) or with * are significantly different to the control (Mann-

Whitney U test, p < 0.001). 

5.3.1.3 The Micronucleus Assay for B(a)P Effects on Cell Lines CHO-K l 

and 84BR. 

5.3.1.3.1 CHO-Kl 

Various concentrations of B(a)P were tested (0.00, 0.05, 0.10, 1.00 and 

3.20 pg ml'^) in CHO-Kl cells to investigate genomic instability by 

means of the micronucleus assay. The effects of B(a)P on micronuclei 

formation were examined using two different staining techniques to 

investigate the potential mechanisms of action following B(a)P exposure. 
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One thousand binucleate cells were scored per treatment group in each 

experiment, and the experiments were carried out in duplicate. The 

results for CHO-Kl cells are presented in Table 5.1. Results from 

Giemsa staining showed that numbers of mononucleate cells vary 

slightly within a scoring protocol of 1000 binucleate cells, ranging from 

127.5 ± 10.61 (0.05 pg ml"^) to 208 ± 16.97 (0.00 pg ml"^) and all 

treatment groups were significantly lower than the control (p < 0.05). 

Micronuclei were manually scored in 1000 binucleate cells and indicated 

a weak increase in the number of micronuclei as the concentration of 

B(a)P increased to a maximum of 7.0 ± 1.41 at the highest 

concentration used (3.20 pg ml"^) which was significantly different from 

the control (p < 0.05). Associated with this increase was a slight 

enhancement of multinucleated cells and the maximum number of 

multinucleated cells seen here was 2.0 ± 2.83 (3.20 pg ml'^); which was 

significantly different from the control (p < 0.05). There were no 

nucleoplasmic bridges (NPB) observed throughout these experiments 

and few incidences of more than one micronucleus being observed 

within the cell (0.05 pg ml"^). 

Using the anti-kinetochore stain, 1000 binucleate cells were scored and 

the numbers of mononucleate cells ranged from 90.5 ± 4.95 (0.00 pg 

ml"^) to 199.5 ± 2.12 (3.20 pg ml"^). All treatment groups were 

significantly different from the control (p < 0.05). As before using 

Giemsa stain, no NPB were observed in this cell line using this stain. 

There was a significant increase (p < 0.05) in total induced micronuclei 

following exposure to all concentrations of B(a)P. The majority of 

micronuclei were detected within a binucleate cell (3.20 pg ml'^ B(a)P 

gave an average of 29.5 ± 2.12 micronuclei), but were also detected 

within mononucleate cells, for example 1.5 ± 0.71 micronuclei at 1.00 

pg mr^ B(a)P and 2.0 ± 1.41 at 3.20 pg ml'^ B(a)P. 
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5.3.1.3.2 84BR 

B(a)P (0.00, 0.05 |jg ml'^) was tested with 84BR cells to investigate the 

effect of B(a)P alone at these doses, prior to testing interactive effects 

with UVA by means of the micronucleus assay, thus all doses used with 

CHO-Kl were not tested in these cells. As before, the effects of B(a)P 

on micronucleus formation were examined using two different staining 

techniques (Giemsa and anti-kinetochore antibody) to investigate the 

responses following B(a)P exposure. Experiments scored 1000 

binucleate cells per treatment group, and were duplicated in separate 

experiments. The results for 84BR cells are presented in Table 5.2. 

Results from the Giemsa stain showed that numbers of mononucleate 

cells varied slightly within a scoring protocol of 1000 binucleate cells, 

ranging from 147.5 ± 13.44 (0.00 pg ml"^) down to 138 ± 9.90 (0.05 \JQ 

ml'^) which was not a significant difference (p > 0.05). Micronuclei were 

scored in 1000 binucleate cells, but mononucleate cells containing 

micronuclei were also counted. Results indicated a weak increase in the 

number of micronuclei with the addition of 0.05 pg ml"^ B(a)P into the 

system to 1.0 ± 0.00 micronuclei in mononucleate cells and to 0.5 ± 

0.71 micronucleus in binucleate cells but neither of these results was 

significantly different to the control (p > 0.05). There were no NPB or 

multinucleated cells observed throughout these experiments and no 

incidence of more than one micronucleus observed within the cell. 

Using anti-kinetochore antibody, 1000 binucleate cells were scored and 

the numbers of mononucleate cells ranged from 129 ± 16.97 (0.00 pg 

ml'^) to 162 ± 4.24 (0.05 pg ml*^). No micronuclei were observed 

within a mononucleate cell, and only 1.0 ± 0.00 micronuclei was 

detected within a binucleate cell containing a K+ signal, again indicating 

an aneugenic mode of action for this chromosomal effect, even at this 

low dose, although none of these results were significantly different 

from the control (p > 0.05). 
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Table 5.1 Effect of var ious concentrat ions of B(a)P (0 .00 , 0 .05 , 0 .10 , 1.00 and 3.20 pg mr» ) on the mean generat ion ( ± S E ) of 

micronuclei in the C H O - K l cell line ( n = 3 2 , 0 6 4 ) using G i e m s a or ant i -kinetochore sta in . There were no nucleoplasmic bridges or 

incidences of 2 or 4 + nuclei . Significant dif ferences (Mann-Whitney U-test p < 0 . 0 5 ) from the control are indicated ( * ) . 

[B(a)P3 0.00 |jg ml" 0 .05 pg nil"^ 0.10 pg ml'* 1.00 pg ml** 3.20 pg ml'* 

Mononucleate 208 .0 ± 16.97 127.5 ± 1 0 . 6 1 * 161.0 ± 5 . 6 6 * 1 6 0 . 0 ± 7 4 . 2 3 * 141.5 ± 1 7 . 6 8 * 

Binucleate 1000.0 ± 0 .00 1000.0 ± 0.00 1000.0 ± 0.00 1000.0 ± 0.00 1000.0 ± 0.00 

Micronucleus/Binucleate 2.0 ± 1.41 1.0 ± 1.41 2.5 ± 0.71 3.5 ± 1 .10* 7.0 ± 1 .41 * 

3 nuclei Not observed 0.5 ± 0.71 Not observed Not observed Not observed 

Multinucleate cel ls Not observed Not observed 0.5 ± 0.71 2.0 ± 0 . 9 4 * 2.0 ± 2 . 8 3 * 

C e l l u l a r R e s p o n s e - a n t i -
I c i n e t o c h o r e s t a i n 

Mononucleate 9 0 . 5 ± 4 .95 141.0 ± 1 5 . 5 6 * 1 2 0 . 5 ± 2 3 . 3 3 * 178.0 ± 7 . 0 7 * 199.5 ± 2 . 1 2 * 

Binucleate 1000.0 ± 0 .00 1000.0 ± 0.00 1000.0 ± 0.00 1000.0 ± 0.00 1000.0 ± 0 .00 

Micronucleus/Mononucleate Not observed Not Observed Not observed 1.5 ± 0.71 2.0 ± 1.41 

Micronucleus/Binucleate 2.0 ± 1.41 0.5 ± 0.71 8 .5 ± 3 . 5 4 * 19.5 ± 6 . 3 6 * 29 .5 ± 2 . 1 2 * 

K-i- Mononucleate Not observed Not observed Not observed 1.5 ± 0.71 1.5 ± 2.12 

K- Mononucleate Not observed Not observed Not observed Not observed 0.5 ± 0.71 

K + Binucleate Not observed Not observed 8.0 ± 2 . 8 3 * 17.5 ± 3 . 5 4 * 28.0 ± 4 . 2 4 * 

K- Binucleate 2.0 ± 1.41 0.5 ± 0.71 0.5 ± 0.71 2.5 ± 3.54 1.5 ± 2 .12 

189 



Table 5.2 Effect of B ( a ) P ( 0 . 0 0 a n d 0 . 0 5 pg mr^) on the genera t ion of micronucle i in 

8 4 B R cel ls ( n = 1 3 , 7 3 0 ) using G i e m s a or ant i -k ine tochore s t a i n . T h e r e w e r e no 

nuc leop lasmic br idges, inc idences of 2 or 3 nuc le i , mul t inuc leate ce l l s or micronucle i in 

mononuc lea te cel ls detected using an t i -k ine tochore s ta in . 

[ B ( a ) P ] 0 . 0 0 |jg ml '* 0 . 0 5 pg mr* 

C e l l u l a r R e s p o n s e - G i e m s a s t a i n 

Mononucleate 1 4 7 . 5 ± 13 .44 1 3 8 . 0 ± 9 .90 

Binucleate 1 0 0 0 . 0 ± 0 .00 1 0 0 0 . 0 ± 0 .00 

Micronucleus /Mononucleate Not o b s e r v e d 1.0 ± 0 .00 

Micronuc leus /B inuc lea te 0 .5 ± 0.71 0 .5 ± 0.71 

C e l l u l a r R e s p o n s e - a n t i -
k i n e t o c h o r e s t a i n 

Mononucleate 129 .0 ± 16 .97 1 6 2 . 0 ± 4 . 2 4 

B inuc leate 1 0 0 0 . 0 ± 0 .00 1 0 0 0 . 0 ± 0 .00 

Micronuc leus /B inuc lea te Not o b s e r v e d 1.0 ± 0 .00 

K + B inuc lea te cel ls Not o b s e r v e d 1.0 ± 0 .00 

5.3.2 The Effects of UVR on the CHO-K l and 84BR Cell Lines. 

5.3.2.1 The Effects of UVB (CHO-Kl ) and UVA (CHO-Kl and 84BR) on 

Cell Viability. 

The effects on cell viability and the cytotoxicity effects of UVB were 

assessed in CHO-Kl cells. Cell viability was initially assessed with 

trypan blue dye (Figure 5.4a). Results showed no loss in cell viability 

which remained at 100 % up to 750 J m"̂  UVB where cell viability 

dropped off to 70 %. Cell viability dropped to 45 % at 1000 J m'^ uVB 

and 50 % at 875 J m"̂  UVB. Dual stain fluorescence was also used to 

investigate viability. Results of dual staining showed a dose-dependent 

decrease In cell viability from 100 % at 0.0 J m'^ UVB to 20 % viability 

at 1000 J m '^UVB. Cell viability was reduced to approximately 50 % at 

625 J m*̂  UVB (Figure 5.4a). Using the NRR assay, exposure of CHO-Kl 
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cells to various UVB doses (0* , 200, 500, 625, 750, 875 and 1000 J m'^), 

indicated significant differences between the sham irradiated control (0* ) 

and all doses tested (p < 0.01), Doses above 500 2 m"̂  reduced cell 

viability to less than 50 %, with 200 J m'^ reducing viability to 

approximately 80 %. NRR results for the CHO-Kl cells are presented in 

Figure 5.4b. 

Following these experiments with UVB, cell viability and the cytotoxicity 

of various doses of UVA (0* , 500, 2000 and 4000 J m" )̂ were tested 

with trypan blue, dual stain fluorescence and NRR assays in CHO-Kl and 

84BR cells. Results with trypan blue and dual staining were over 97 % 

viability at all doses for both cell types and are not presented here. 

Results of the NRR assay show little difference between the cell types 

and little reduction in cell viability. There was no significant difference 

between the control and 500 J m"^(p > 0.05) in CHO-Kl cells. CHO-Kl 

viability was reduced significantly at 2000 J m"̂  (p = 0.046, p < 0.05) 

and also dropped to 84 % (p < 0.05) at 4000 J m"̂ . Cell viability in 

84BR cells was above 90 % and there was no significant difference (p > 

0.05) between the control and in all UVA doses tested. Results for CHO-

K l and 84BR cells are presented in Figure 5.5. 
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Figure 5.4. Cell viability in CHO-K l cells assessed through trypan blue 

and dual stain fluorescence technique (Figure 5.4a) or neutral red 

retention (NRR) assay (Figure 5.4b) following exposure to various doses 

of UVB (0* , 200, 500, 625, 750, 875 and 1000 J m'^). Cell viability is 

expressed as percentage viability (%) for trypan blue and dual stain 

fluorescence assays or as a percentage of the control (%) for the NRR 

assay where control values are 100 %. 0* value is sham irradiated 

(Data marked with * are significantly different to the control, Mann-

Whitney U test, p < 0.01). 
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Figure 5.5. Cell viability In CHO-Kl and 84BR cells following exposure to 

various doses of UVA (0* , 500, 2000 and 4000 J m'^). 0* value is shann 

irradiated. Cell viability is assessed through NRR assay and values are 

presented as a percentage of the control value. Data marked with * 

(CHO-Kl ) are significantly different to the control (Mann-Whitney U test, 

p < 0.05). 

5.3.2.2 The Comet Assay for UVR Effects on CHO-Kl (UVB and UVA) 

and 84BR (UVA) Cells. 

Following the cytotoxicity studies, experiments were carried out on the 

CHO-Kl cell line to investigate the genotoxic effect of UVB (0* , 200, 350 

and 500 J m'^) using the comet assay on the lower less cytotoxic UVB 

doses as measured through trypan blue, dual stain fluorescence and 

NRR assay in Section 5.3.2.1 or UVA (0 * , 500, 2000 and 4000 J m"^). 

The comet assay experiments showed a significant effect (p < 0.0001) 

between the sham irradiated control (0* ) and all UVB doses tested (200, 

350 and 500 J m"̂ ) (Figure 5.6a). There was no clear dose response 

shown, with a significant increase initially between 0* J m'^ and 200 J m" 

^ from a median of 6 % (0* ) to a median value of 27 % (200 J m" )̂ and 
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then a linear response in the level of DNA damage observed to a median 

of 30 % (500 J m"^). There w a s no significant difference in the median 

DNA damage caused between any of the UVB doses tested (p > 0 .05 ) . 

Following the responses to UVB, the dose w a s dropped to investigate 

DMA damage at UVB doses lower then 200 J m'^ and investigated in the 

R T G - 2 cell line (Chapter 4, Section 4 . 3 . 2 . 2 ) . For UVA, there w a s a 

significant increase (p < 0 .01) in DNA d a m a g e between the s h a m 

irradiated control ( 0 * ) and 2000 and 4 0 0 0 J m"^ UVA and all d o s e s 

tested increased dose dependency (p < 0 . 0 0 0 1 ) with increasing UVA 

(Figure 5.10) in C H O - K l cells (Figure 5 .6b) . In 84BR cells there w a s no 

significant increase (p > 0 .05) in DNA damage between the s h a m 

irradiated control ( 0 * ) and all UVA doses tested ( 0 * , 500 , 2000 and 

4000 J m"^) with no dose dependent response (p > 0 .05 ) with increasing 

UVA (Figure 5 .7) . 
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Figure 5.6 DNA damage to C H O - K l cells following exposure to var ious 

doses of UVB ( 0 * , 200 , 350 and 500 J m'^) (Figure 5 .6a) or UVA ( 0 * , 

500 , 2000 and 4000 J m'^) (Figure 5 .6b) . DNA damage is a s s e s s e d by 

the % Tail DNA. All UVB doses tested are significantly different ( * ) 

(Mann-Whitney U test , p < 0 .0001) from the s h a m Irradiated control ( 0 * ) 

but not significantly different from each other (Mann-Whitney U test , p 

> 0 .05 ) . UVA doses which are significantly different (Mann-Whitney U 

test , p < 0 .01) from the s h a m irradiated control {^ ) are indicated and all 

doses are significantly different from each other (Mann-Whitney U test , 

p < 0 .0001 ) . 
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Figure 5.7 DNA damage to 84BR cells following exposure to var ious 

doses of UVA ( 0 * , 500 , 1000 and 2000 J m"^). DNA damage is a s s e s s e d 

by the % Tail DNA. There was no significant difference (Mann-Whitney 

U test , p > 0 .05) between the s h a m Irradiated control ( 0 * ) or any of the 

UVA doses tested . 

5.3.3 The Micronucleus Assay for UVA effects on Mammalian Cells C H O -

K l and 84BR. 

5.3.3.1 C H O - K l 

Various doses of UVA ( 0 * , 25 , 50, 100 and 200 J m'^) were used to 

irradiate C H O - K l cells in order to investigate the subsequent occurrence 

of genomic instability as evaluated by m e a n s of the micronucleus a s s a y . 

Exper iments scored at least 1000 cells per t reatment group, and the 

exper iments were duplicated. The results for C H O - K l cells are 

presented in Table 5 .3 . The results from using the G i e m s a stain showed 

that numbers of mononucleate cells varied widely within a scoring 

protocol of a total of 1000 binucleate and mononucleate cel ls , ranging 
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from 205 ± 9 .90 ( 0 * J m'^) to 527 .25 ± 9 7 . 0 6 (100 J m"^) and for all 

exposure groups, the frequencies of mononucleate cells were 

significantly different from the control value (p < 0 .05 ) . The numbers of 

binucleate cells scored also varied with exposure to UVA, from 1000 ± 

0.00 ( 0 * J m"2) to 636 .5 ± 21 .92 (25 J m'^). All exposure groups tested 

were significantly different from the control (p < 0 .05 ) . 

Micronuclei were scored in mononucleate and binucleate cells and scores 

indicate a large and significant increase in the number of micronuclei in 

both mononucleate and binucleate cells as the UVA dose increases (p < 

0 .05 ) . Associated with this increase is an interesting enhancement of 

NPB at all UVA doses , to a max imum observed number of 6.0 ± 2 .45 

(100 J m"^) which was significantly different from the control (p < 0 .05 ) . 

Equally interesting, throughout these exper iments were the many 

incidences of more than one micronucleus which were observed within 

cells at all UVA doses . T h e s e incidences ranged from 0.5 ± 0.71 (25 J 

m"^) which was not a significant increase from the control (p > 0 .05) to 

a 7.0 ± 4 .08 frequency of 2 nuclei (100 J m*^) which w a s a significant 

increase from the control (p < 0 .05 ) . T h e r e w a s also a significant 

increase (p < 0 .05) in the frequency of 2 nuclei at the highest dose 

tested (200 J m"^). Occurrences of four or more micronuclei within a 

cell were limited to 100 J m"^ and 200 J m"^ (2 .25 ± 1.71 and 2 .5 ± 

2.08 respect ively) and were not significantly different from the control 

(p > 0 .05 ) . Using the anti -kinetochore antibody, micronuclei were 

scored in a total of 1000 mononucleate and binucleate cel ls due to the 

observed increased frequency in mononucleate cel ls . The numbers of 

mononucleate cells ranged from 200 .5 ± 4 .95 ( 0 * J m^^) to 4 2 0 . 5 ± 

7.78 (50 J m"^) which were significantly different from the control (p < 

0 .05 ) . The numbers of binucleate cells scored also varied with the 

addition of UVA, from 1000 ± 0.00 ( 0 * J m"^) to 588 .5 ± 13.44 (50 J m* 

^) and all exposure groups tested were significantly different from the 
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control (p < 0 .05 ) . There was not a significant difference in the 

numbers of micronuclei observed in either a mononucleate or a 

binucleate cell (p > 0 .05 ) . T h e largest f requency of micronuclei 

observed within a mononucleate cell w a s 11 ± 1.41 (200 J m"^), whilst 

10 ± 1.41 were detected within a binucleate cell (100 J m"^). There w a s 

no significant difference in the induction of micronuclei following 25 J m' 

2 UVA (p > 0 .05 ) , but the other doses tested were all significantly 

different from the control (p < 0 .05 ) in both mononucleate and 

binucleate cel ls. Of the cells containing micronuclei , a larger proportion 

of micronuclei were detected that contained a K + signal (p < 0.05) but 

these were located in both mononucleate and binucleate cells indicating 

a strongly aneugenic mode of action. However , a s micronuclei were 

also detected with K- signals in significant f requencies (p < 0 .05) , it 

would suggest that UVA induces both a c lastogenic and aneugenic 

response in these cells. 
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Table 5.3 Effect of various doses of UVA on the mean generation 

Giemsa or anti-kinetochore stain. There were no multinucleate cells 

from the control are indicated (*). 

(±SE) of micronuclei in the CHO-Kl cell line (n=28,444) using 

observed. Significant differences (Mann-Whitney U test p<0.05) 

UVA dose ( J m'^) 0 * 25 SO 100 200 

Cel lular R e s p o n s e - G i e m s a 

Mononucleate 205.0 ± 9.90 381.5 ± 20.51* 429.00 ± 16.21* 527.25 ± 97.06* 467.50 ± 29.00* 

Binucleate 1000.0 ± 0.00 636.5 ± 21.92* 636 ± 17.68* 495 .00±106.08* 601.00 ± 28.65* 

Micronucleus/Mononucleate 0.5 ± 0.71 1.5 ± 0.71 4.00 ± 0.82* 6.25 ± 1.71* 11.75 ± 2.06* 

Micronucleus/Binucleate 0.5 ± 0.71 2.5 ± 0.71* 5.00 ± 0.82* 9.50 ± 3.00* 7.50 ± 1.00* 

Nucleoplasmic Bridge Not observed 0.5 ± 0.71 1.25 ± 0.96 6.00 ± 2.45* 4.00 ± 2.94* 

2 nuclei Not observed 0.5 ± 0.71 2.25 ± 0.96 7.00 ± 4.08* 4.25 ± 2.22* 

3 nuclei Not observed 0.5 ± 0.71 2.25 ± 1.26 4.50 ± 5.20* 1.50 ± 1.91 

4+ nuclei Not observed Not observed Not observed 2.25 ± 1.71 2.50 ± 2.08 

Cel lular R e s p o n s e - a n t i -
k inetochore sta in 
Mononucleate 200.5 ± 4.95 380.0 ± 22.63* 420.5 ± 7.78* 390.5 ± 9.19* 333.0 ± 18.38* 

Binucleate 1000.0 ± 0.00 641.5 ± 13.44* 588.5 ± 13.44* 645.0 ± 18.38* 673.0 ± 15.56* 

Micronucleus/Mononucleate 0.5 ± 0.71 1.5 ± 0.71 5.5 ± 0.71* 7.5 ± 0.71* 11.0 ± 1.41* 

Micronucleus/Blnucleate Not observed 2.5 ± 0.71 5.0 ± 1.41* 10.0 ± 1.41* 6.5 ± 0.71* 

K+ Mononucleate cells Not observed 1.0 ± 0.00 2.5 ± 0.71* 5.5 ± 0.71* 7.0 ± 1.41* 

K- Mononucleate cells 0.5 ± 0.71 0.5 ± 0.71 3.0 ± 1.41* 2.0 ± 0.00* 4.0 ± 0.00* 

K+ Binucleate cells Not observed 1.5 ± 0.71 3.5 ± 0.71* 6.0 ± 1.41* 4.0 ± 0.00* 

K- Binucleate cells Not observed 1.0 ± 0.00 1.5 ± 0.71 3.5 ± 0.71* 2.5 ± 0.71* 
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5.3.3.2 84BR 

A systematical ly increasing ser ies of doses of UVA ( 0 * , 25 , 50 , 100 and 

200 J m'^) were used to irradiate 84BR cells in order to investigate any 

consequent genomic instability as identified by the micronucleus a s s a y . 

The effects of UVA on micronucleus formation were investigated using 

both G iemsa and anti -kinetochore staining techniques to investigate the 

potential m e c h a n i s m s of action (clastogenic or aneugenic , respect ively) 

following UVA exposure . Exper iments scored at least 1000 cells per 

treatment group, and the exper iments were duplicated. The results for 

84BR cells are presented in Table 5.4. T h e results using G iemsa stain 

showed that numbers of mononucleate cells varied widely within a 

scoring protocol of a total of 1000 binucleate and mononucleate cel ls , 

ranging from 196 ± 28 .28 ( 0 * J m'^) to 4 9 6 ± 14 .76 (200 J m"^) which 

was a significant difference from the control value (p < 0 .05) . T h e 

numbers of binucleate cells scored also varied significantly (p < 0 .05 ) 

with the addition of UVA, from 1000 ± 0.00 ( 0 * J m"^) to 735 .5 ± 21.61 

(50 J m"^). Micronuclei were scored in mononucleate and binucleate 

cells and indicated a strong and significant increase in the number of 

micronuclei in both mononucleate and binucleate cells and in the total 

frequencies of micronuclei induced as the UVA dose increases (p < 0 .05 ) . 

Associated with this increase is an interesting e n h a n c e m e n t of NPB in all 

UVA doses (except for exposure to 25 J m*^ UVA which was not a 

significant response: p > 0 .05 ) , to a m a x i m u m observed number of 4 .0 

± 3.37 at the max imum UVA dose used (200 J m"^) which w a s a 

significant difference from the control value (p < 0 .05) . Throughout 

these exper iments many incidences of more than one micronucleus were 

observed within the cell at all UVA doses . T h e s e incidences ranged from 

0.25 ± 0.50 (50 J m"^) which was not significantly different to the 

control (p > 0 .05) to a 4 .25 ± 1.71 frequency of 2 nuclei (100 J m"^) 

which was a significant difference from the control value (p < 0 .05 ) . 
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Occurrences of four or more micronuclei within a cell were limited to 50 

J m 1 0 0 J m-2 and 200 J m'^ (0 .25 ± 0.50 (p > 0 . 0 5 ) , 2 .25 ± 2.06 (p 

< 0 .05) and 1.25 ± 1.50 (p > 0 .05 ) respect ively) . T h e r e w a s only one 

incidence of multinucleated cells observed of 0 .25 ± 0.50 (100 J m'^) 

which was not significant (p > 0 .05 ) . 

Using the anti-kinetochore staining technique, micronuclei were scored 

in a minimum of 1000 mononucleate and binucleate cells per t reatment 

group and exper iments were duplicated. The numbers of mononucleate 

cells ranged from 193.5 ± 23 .33 ( 0 * J m'^) to 532 .5 ± 4 .95 at the 

highest UVA dose used (200 J m'^) which was a significant difference 

from the control va lue (p < 0 . 0 5 ) . Frequencies of binucleate cel ls 

ranged from 629 .5 ± 9 .19 at 25 J m•^ down to 4 9 5 ± 8.49 at the 

highest dose used (200 J m'^) which was a significantly less than the 

control value (p < 0 .05 ) . There w a s no significant difference in the 

numbers of micronuclei observed in either a mononucleate or a 

binucleate cell and the total micronuclei induced were significantly 

higher than the control value in all concentrat ions tested (p < 0 .05 ) . 

The largest frequency of micronuclei observed within a mononucleate 

cell was 12.5 ± 2 .12 (200 J m'^), whilst 10 .5 ± 2 .12 micronuclei were 

detected within a binucleate cell (100 J m"^) which were all significantly 

higher than the control (p < 0 .05 ) . Of the cells containing micronuclei , 

a larger and significant proportion (p < 0 .05 ) of micronuclei detected 

contained a K+ signal but were located in both mononucleate and 

binucleate cel ls. T h e s e results indicate a strongly aneugenic mode of 

action. However , a s micronuclei were also detected in significant 

frequencies (p < 0 .05) with K- signals, it would suggest that UVA 

induces both a clastogenic and aneugenic response in these cel ls. 
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Table 5.4 Effect of various doses of UVA on the mean generation (±SE) of micronuclei in 84BR cells using Giemsa or anti-

kinetochore stain (n=42,318). Significant differences (l^ann-Whitney U test p<0.05) from the control are indicated (*) . 

UVA dose (J m'^) 0 * 25 SO 100 200 

Cel lular R e s p o n s e -
G i e m s a 
Mononucleate 196.0 ± 28.28 387.0 ± 12.73* 344.50 ± 26.46* 448.75 ± 24.13* 496.00 ± 14.76* 

Binucleate 1000.0 ± 21.61 633.5 ± 12.02* 735.50 ± 21.61* 617.50 ± 15.63* 584.75 ± 62.91* 

Micronucleus/Mononucleate Not observed 2.5 ± 0.71 4.25 ± 1.26* 5.50 ± 1.29* 10.00 ± 2.16* 

Micronucleus/Binucleate Not observed 1.5 ± 0.71 5.00 ± 0.82* 8.75 ± 2.22* 7.50 ± 1.29* 

Nucleoptasmic Bridge Not observed 0.5 ± 0.71 2.25 ± 0.50 3.00 ± 1.41 4.00 ± 3.37* 

2 nuclei Not observed 0.5 ± 0.71 2.25 ± 1.71 4.25 ± 1.71* 2.75 ± 0.96 

3 nuclei Not observed Not observed 1.25 ± 0.96 1.50 ± 1.29 2.50 ± 1.91 

4+ nuclei Not observed Not observed 0.25 ± 0.50 2.25 ± 2.06 1.25 ± 1.50 

Multinucleate cells Not observed Not observed Not observed 0.25 ± 0.50 Not observed 

Cel lular R e s p o n s e - a n t l -
k lnetochore s ta in 

Mononucleate 193.5 ± 23.33 389.5 ± 3.54* 391.5 ± 9.19* 442.5 ± 20.51* 532.5 ± 4.95* 

Binucleate 1000.0 ± 0.00 629.5 ± 9.19* 625.0 ± 1.41* 584.5 ± 7.78* 495.0 ± 8.49* 

Micronucleus/Mononucleate Not observed 1.5 ± 0.71 4.0 ± 1.41* 9.0 ± 1.41* 12.5 ± 2.12* 

Micronucleus/Binucleate 0.5 ± 0.71 3.5 ± 0.71* 5.5 ± 0.71* 10.5 ± 2.12* 8.0 ± 1.41* 

K+ Mononucleate cells Not observed 1.0 ± 0.00 2.5 ± 0.71 6.0 ± 1.41* 7.5 ± 0.71* 

K- Mononucleate cells Not observed 0.5 ± 0.71 1.5 ± 0.71 3.0 ± 0.00* 5.0 ± 1.41* 

K+ Binucleate cells Not observed 2.5 ± 0.71 3.5 ± 0.71* 6.5 ± 2.12* 4.5 ± 0.71* 

K- Binucleate cells 0.5 ± 0.71 1.0 ± 0.00 2.0 ± 0.00 4.0 ± 0.00* 3.5 ± 0.71* 
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5.3.4 Interactive Toxicity for B(a)P and UVA Effects on Mammalian Cel ls 

( C H O - K l , 8 4 B R ) . 

5.3.4.1 The NRR Assay for Assess ing the Interact ive Cytotoxicity of 

B(a)P and UVA in the Mammalian Cel ls C H O - K l and 8 4 B R . 

The cytotoxicity of interactions between B(a)P and UVA w a s a s s e s s e d for 

C H O - K l and 84BR cells through the NRR a s s a y . After exposure of C H O -

K l or 84BR cells for 24 hours to var ious concentrat ions of B(a)P (0 .0 , 

0 .1 , 1.0 and 3.2 pg ml'^) and then var ious UVA d o s e s ( 0 * , 500 , 2000 

and 4000 J m'^) the viability of the cells w a s a n a l y s e d . C H O - K l cells 

showed a small reduction in cell viability at all concentrat ions of B(a )P 

interacting with 500 J m"^, which w a s significant in the two highest 

B(a )P concentrat ions, reducing cell viability down to 89 % (1 .0 |jg ml 

p < 0 .05) and 84 % (p < 0 .05) at the highest B (a )P dose used (3 .2 |jg 

ml'^) (Figure 5 .8a ) . B(a)P concentrat ions with higher UVA (2000 and 

4000 J m"^) caused a greater interactive effect, and reduced cell viability 

significantly at all combinations (p < 0 .05 ) . Exposure to the highest 

dose of B (a )P (3 .2 pg mi"^) interacting with 2 0 0 0 and 4 0 0 0 J m'^ UVA 

resulting in 68 % (p < 0 .05) and 50 % (p < 0 .05) cell viability 

respectively (Figure 5 .8a ) . In 84BR cel ls , cell viability w a s significantly 

reduced at all B(a )P and UVA combinations (p < 0 .05 ) except for 0.1 pg 

ml"^ B (a )P interacting with 4 0 0 0 J m'^(p > 0 .05 ) . Viability w a s reduced 

to 40 % (p < 0 .05) in the highest combined exposure (3 .2 pg ml"^ + 

4000 J m'^) (Figure 5 .8b) . The results of the NRR a s s a y were used to 

select suitable doses for use in comet a s s a y exper iments ; UVA doses 

could be selected on the basis of observed cytotoxicity. Those d o s e s 

that reduced viability to less than 60 % were omitted from the 

experiment (3 .2 pg ml'^ + 4 0 0 0 J m'^). 
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Figure 5.8 Cytotoxicity In C H O - K l (Figure 5.8a) and 84BR (Figure 5.8b) cells following 

24 hours pre-incubation with B(a)P (0.0, 0.1, 1.0 and 3.2 pg ml'*) and exposure to 

various doses of UVA (0 * , 500, 2000 and 4000 J m'^). 0 * value is sham irradiated for 

the same time as 4000 J m'^ UVA. Cytotoxicity is assessed through NRR assay and 

values are presented as a percentage of the control value. All C H O - K l data are 

significantly different (*) to the control (Mann-Whitney U test, p < 0.05) with the 

exception of 0.1 pg mr* interacting with 500 J m'^ (Mann-Whitney U test, p > 0,05) 

whilst alt 84BR data are significantly different (*) to the control (Mann-Whitney U test, 

p < 0.05) with the exception of 0.1 gg ml * B(a)P interacting with 4000 J m'^ (Mann-

Whitney U test, p > 0.05). 
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5.3.4.2 The Comet Assay for A s s e s s m e n t of the Interact ive Toxicity 

Between B(a)P and UVA in the Mammalian Cel ls C H O - K l and 84BR. 

Following the cytotoxicity exper iments (Sect ion 5 .3 .4 .1 ) UVA doses were 

selected (500 , 1000 and 2000 J m"^) for use in comet a s s a y exper iments . 

The comet a s s a y was performed after treating C H O - K l for 24 hours with 

B(a)P (0 .0 , 0 .1 , 1.0, 2.0 and 3.2 pg ml"^), and 8 4 B R cells for 24 hours 

with B(a)P (0 .00 , 0 .05 , 0 .10, 0 .32 , 1.00 and 3.20 pQ m r * ) , and 

subsequent exposure to UVA ( 0 * , 500 , 1000 and 2000 J m"^). Cell 

viability w a s a s s e s s e d prior to all comet a s s a y exper iments with trypan 

blue dye and cell viability w a s over 90 % in all c a s e s (data not shown) . 

DNA damage was measured as the % Tail DNA. 

5.3.4.2.1 C H O - K l 

Results for C H O - K l cells showed a gradual increase in DNA damage a s 

exposure to UVA was increased with the appearance of a plateau 

response with increasing concentrat ions of B (a )P (Figure 5 .9 ) . Median 

values of % Tail DNA for C H O - K l cells are max imised at 2000 J m'^ with 

B(a)P , at va lues between 34 % (3 .2 pg ml"^ B(a )P and 2000 J m'^ UVA) 

and 37 % (0.1 pg ml'^ B(a)P and 2000 J m ^ UVA) . All results of 

interactive toxicity between B(a)P and UVA showed a significant increase 

from the control (p < 0 .0001 ) . 
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Figure 5.9 DNA damage to C H O - K l cells following pre-incubatlon for 24 

hours with B(a)P (0 .0 , 0 .1 , 1.0 and 3.2 pg ml"^) and exposure to var ious 

doses of UVA ( 0 * , 500 , 1000 and 2000 J m"^). DNA damage is a s s e s s e d 

by the % Tail DNA. Significant differences (Mann-Whitney-U test , 

p<0 .0001 ) from the combined B(a)P and UVA irradiated response are 

indicated ( * ) . Plots for B(a )P alone are significantly different to the 

control (Mann-Whitney U test , p < 0 .0001 ) at all concentrat ions. 

5 .3 .4 .2 .2 84BR 

84BR cells pre-treated with B(a)P for 24 hours before UVA exposure 

showed a statistically significant Increase (p < 0 .001) in DNA damage 

above the damage seen with B(a)P alone (Figure 5 .10 ) . There w a s no 

significant difference between the controls or UVA treated cells (p > 

0 .05 ) , but damage was significant in cells treated with B(a)P and 

exposure to UVA (p < 0 .001 ) . The greatest damage was observed at 

the combined highest doses received by the cells (1 .0 and 3.2 pg ml"^ + 

2000 J m"^), with the s a m e level of damage seen at the next highest 

dose (3 .2 pg ml"^ + 1000 J m'^), here DNA damage reached 100 % (p < 

0 .0001 ) . At combinations of 1.0 and 3.2 pg ml"^ + 2000 J m'^and 3.2 

pg ml'^ + 1000 J m"^, cells became too damaged to score , in some c a s e s , 
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it was not possible to score the damage , so DNA d a m a g e w a s m e a s u r e d 

as 100 % . 
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Figure 5.10 DNA damage to 84BR cells following pre-incubation for 24 

hours with B(a )P ( 0 . 0 0 , 0 .05 , 0 .10 , 0 .32 , 1.00 and 3.20 pg mr^) and 

exposure to var ious doses of UVA ( 0 * , 500 , 1000 and 2000 J m"^). DNA 

damage is a s s e s s e d by the % Tail DNA. Significant differences (Mann-

Whitney-U test , p < 0 . 0 0 1 ) from the combined B(a)P and UVA irradiated 

response are indicated ( * ) . 

5 .3.4.3 The Micronucleus Assay for Interact ive Toxicity of B (a )P and UVA 

Effects on the Mammalian Cel ls C H O - K l and 8 4 B R . 

5.3.4.3.1 C H O - K l 

Various doses of UVA ( 0 * , 2 5 , 50 and 100 J m'^) were tested in C H O - K l 

cells following their incubation with 0.05 pg ml'^ B(a )P to investigate 

interactive effects by m e a n s of the micronucleus a s s a y . As previously, 

interactive effects on micronucleus formation were examined using both 
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G i e m s a and anti -kinetochore staining techniques to investigate the 

potential mechan isms of action (clastogenic or aneugenic , respect ive ly) . 

Exper iments scored 1000 binucleate cells per t reatment group, and the 

exper iments were duplicated. The results for C H O - K l cells a re 

presented In Table 5 .5 . With no pre-incubation with 0 .05 pg ml"^ B (a )P 

and a dose of 0 * J m'^ UVA, it w a s possible to remain with the standard 

protocol employed for the previous micronucleus exper iments by 

counting micronuclei within 1000 binucleate cel ls . At this dose level , 

205 .5 ± 12.02 mononucleate cells were counted within 1000 ± 0 .00 

binucleate cells. However, a s UVA doses were introduced to the B(a )P 

pre- incubated cells a total of 1000 binucleate and mononucleate cells 

were scored In order to investigate the ratio of the two cell types to each 

other and to be able to detect a s many micronuclei as possible. T h e 

results from using G iemsa stain show that numbers of mononucleate 

cells vary widely within a scoring protocol of a total of 1000 binucleate 

and mononucleate cel ls , appearing to range dose responsively from 

533 .5 ± 34 .45 (0 .05 pg mr^ B(a)P + 25 J m"^), through 644 .75 ± 35 .77 

(0 .05 pg mr^ B(a)P + 50 J m'^) to 725 .5 ± 32.91 (0 .05 pg ml"' B(a)P -i-

100 J m"^) which were all significantly different from the control (p < 

0 .05 ) . T h e s e increases in mononucleate cells from combined exposure 

were significantly higher than with UVA alone (p < 0 .05 ) . T h e numbers 

of binucleate cells scored also varied with exposure to UVA dropping 

proportionately with increasing UVA dose from 510 .5 ± 7.51 binucleate 

cells (0 .05 pg ml"^ B(a)P H- 25 J m"^), through to 4 0 2 . 2 5 ± 62 .97 

b inudeate cells ( 0 .05 pg ml"^ B(a)P + 50 J m'^), to 3 3 2 . 7 5 ± 4 6 . 3 6 

(0 .05 pg ml"^ B(a)P + 100 J m'^) which were all significantly different 

from the control (p < 0 .05 ) . Micronuclei were scored in mononucleate 

and binucleate cells and indicate a significant increase in the total 

number of micronuclei induced (p < 0 .05 ) and also in both 

mononucleate and binucleate cells to a max imum of 12 .25 ± 1.26 

(mononucleate cel ls: 0 .05 pg ml'^ B(a)P + 100 J m"^) and 12 .75 ± 2 .06 
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(binucleate cel ls: 0 .05 pg ml"^ B(a )P + 100 J m'^) a s the UVA dose 

increases . T h e s e responses are a significant increase (p < 0 .05 ) in total 

micronuclei from either UVA or B(a )P alone in the C H O - K l cell line and 

all combined doses tested demonstrated a synergist ic effect from the 

combination of B(a)P and UVA. Along with the increase in micronuclei 

observed , there were many incidences of two micronuclei observed 

within a cell at all UVA doses . T h e s e incidences ranged from 1.75 ± 

0.50 (0 .05 pg ml"^ B(a)P + 25 J m"^) to a 9.0 ± 1.41 frequency of 2 

nuclei (0 .05 pg ml'^ B(a)P + 100 J m"^) which were all significantly 

different from the control (p < 0 .05 ) . There was a significant increase 

in the frequency of three micronuclei detected in the cell at all 

interactive doses tested, w h e r e a s with four or more micronuclei , only 

the dose 0 .05 pg ml'^ B(a)P + 25 J m'^ produced significantly more 

micronuclei (p < 0 .05) . Multiple micronuclei were observed at all doses 

and the effects in t reatment groups 0 .05 pg ml"^ B(a)P -H 25 J m'^ and 

0 .05 pg ml'^ B(a)P + 50 J m'^were significantly higher than the multiple 

micronuclei observed in either UVA alone or B(a )P alone in C H O - K l cells 

(p < 0 .05 ) . As with the effects seen in C H O - K l cells following UVA 

irradiation alone, an increase of NPB was observed at all interactive 

d o s e s , to a max imum observed number of 4.0 ± 0 .82 ( 0 . 0 5 pg ml'^ 

B(a )P + 100 J m'^) but only d o s e s 0 .05 pg ml"^ B(a )P + 2 5 J m'^ and 

0 .05 pg ml"^ B(a)P + 100 J m"^ gave a significant increase from the 

control (p < 0 .05) . This response appears marginally lower than the 

response seen for UVA alone or B(a )P alone in this cell line but there is 

no significant difference (p > 0 .05 ) in the induction of NPB by a 

combined dose of B(a )P and UVA. U s e of the ant i -k inetochore stain w a s 

employed to investigate the m e c h a n i s m s of action of interactive toxicity 

to the C H O - K l cell line. Again, due to the observed increases in 

mononucleate cel ls, micronuclei were scored in a total of 1000 

mononucleate and binucleate cel ls. At the control dose , 182 .5 ± 26 .16 

mononucleate cells were scored alongside 1000 binucleate cel ls. With 
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interactive toxicity, the numbers of mononucleate cells ranged from 464 

± 15.56 (0.05 pg ml'^ B(a)P + 25 J m'^) to 722.5 ± 14.85 (0.05 pQ m r ' 

B(a)P + 100 J m"^) which was significantly higher than the control value 

(p < 0.05). The numbers of binucleate cells scored also varied with the 

addition of UVA, in this case dropping proportionately with increasing 

UVA dose from 556.5 ± 7.78 binucleate cells (0.05 M Q ml'^ B(a)P + 25 J 
m"^), through to 413.0 ± 16.97 binucleate cells (0.05 |jg ml'^ B(a)P + 

50 J m"^), to 300.5 ± 4.95 (0.05 pg ml'^ B(a)P + 100 J m'^) which were 

all significantly different from the control (p < 0.05). These figures are 

similar to the Giemsa stained cells. Again there was little difference in 

the numbers of micronudei observed in either a mononucleate or a 

binucleate cell and the results indicate a significant increase in the 

number of total micronuclei induced (p < 0.05). The largest frequency 

of micronuclei observed within a mononucleate cell was 12.5 ± 0.71 

(0.05 pg mr^ B(a)P + 100 J m"^), whilst 12.5 ± 2.12 were detected 

within a binucleate cell (0.05 pg ml"^ B(a)P + 100 J m"^) and all of the 

results were significantly higher than the control value (p < 0.05). 

These results are similar to the results found with using Giemsa staining, 

but again the induction of total micronuclei using anti-kinetochore 

staining was significantly higher than the micronuclei results seen for 

UVA or B(a)P alone (p < 0.05). Of the cells containing a micronucleus, 

a significantly larger proportion of micronuclei detected contained a K+ 

signal but were located in both mononucleate and binucleate cells (p < 

0.05). These results indicate a strongly aneugenic mode of action. 

However, as micronuclei were also detected with significantly increased 

(p < 0.05) K- signals, it would suggest that B(a)P and UVA induce both 

a clastogenic and aneugenic response in CHO-Kl cells. 
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Table 5.5 Effect of interactive toxicity following pre-incubation with 0.05 pg mr* B(a)P with various doses of UVA ( 0 * , 25, 

50 and 100 J m'^) on the mean (±SE) generation of micronuclei in CHO-Kl cells (n=34,949) using Giemsa or ant i -

kinetochore stain. There were no multinucleate cells observed. Significant differences (Mann-Whitney U test p<0.05) 

f rom the control are indicated ( * ) . 

Dose 
0.00 Mg ml'^ B ( a ) P 

+ 0 * J m'^ UVA 
0.05 pg ml'^ B ( a ) P 

+ 25 J m"^ UVA 
0.05 pg rn\'^ B ( a ) P 

+ 50 J m-^ UVA 
0.05 pg ml'^ B ( a ) P 

+ 100 J m'* UVA 

Cel lular R e s p o n s e - G l e m s a 
stain 
Mononucleate 205.5 ± 12.02 533.50 ± 34.45* 644.75 ± 35 .77* 725.50 ± 3 2 . 9 1 * 

Binucleate 1000.0 ± 0.00 510.50 ± 7 . 5 1 * 402.25 ± 62 .97* 332.75 ± 46 .36* 

Micronucleus/Mononucleate Not observed 8.25 ± 0 .96* 9.75 ± 2 .87* 12.25 ± 1.26* 

Micronucleus/Binucleate Not observed 11.25 ± 0 .96* 10.00 ± 2 .94* 12.75 ± 2 .06* 

Nucleoplasmic Bridge Not observed 2.25 ± 0 .50* 2.00 ± 1.41 4.00 ± 0 .82* 

2 nuclei Not observed 7.75 ± 0.96* 9.75 ± 0 .96* 9.00 ± 1 .41* 

3 nuclei Not observed 5.50 ± 1.73* 6.25 ± 1.89* 7.75 ± 1 .71* 

4 + nuclei Not observed 6.75 ± 0 .96* 1.75 ± 0.50 2.25 ± 0.96 

Cellular R e s p o n s e - a n t i -
k inetochore sta in 
Mononucleate 182.5 ± 26.16 464.0 ± 15.56* 643.5 ± 43 .13* 722.5 ± 14.85* 

Binucleate 1000.0 ± 0.00 556.5 ± 7 .78* 413.0 ± 16.97* 300.5 ± 4 .95* 

Micronucleus/Mononucleate 0.5 ± 0.71 7.0 ± 1 .41* 8.5 ± 2 .12* 12.5 ± 0 . 7 1 * 

Micronucleus/Binucleate 0.5 ± 0.71 10.5 ± 0 . 7 1 * 11.5 ± 0 . 7 1 * 12.5 ± 2 .12* 

K+ Mononucleate cells Not observed 4.5 ± 0 . 7 1 * 6.0 ± 1 .41* 6.0 ± 1 .41* 

K- Mononucleate cells 0.5 ± 0.71 2.5 ± 0.71 2.5 ± 0.71 6.5 ± 0 . 7 1 * 

K+ Binucleate cells Not observed 8.0 ± 1 .41* 8.5 ± 0 . 7 1 * 8.0 ± 1 .41* 

K- Binucleate cells 0.5 ± 0.71 2.5 ± 0.71 3.0 ± 0 .00* 4.5 ± 0 . 7 1 * 
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5.3.4.3.2 84BR 

Various doses of UVA (0* , 25, 50 and 100 J m"^) were used to irradiate 

84BR cells following their incubation with 0.05 pg ml'^ B(a)P In order to 

investigate interactive effects by means of the micronucleus assay using 

both Giemsa and anti-kinetochore staining techniques to investigate the 

potential mechanisms of action (clastogenic or aneugenic, respectively). 

Experiments scored 1000 binucleate cells per treatment group, and the 

experiments were duplicated. The results for 84BR cells are presented 

in Table 5.6. With no pre-incubation with 0.05 pg ml"^ B(a)P and at a 

dose of 0* J m"^ UVA, 230 ± 62.23 mononucleate cells were counted 

within 1000 ± 0.00 binucleate cells. However, when UVA doses were 

used to irradiate the B(a)P pre-incubated cells the results showed that 

numbers of mononucleate cells varied widely within a scoring protocol of 

a total of 1000 binucleate and mononucleate cells, appearing to range 

from 624.25 ± 16.46 (0.05 pg ml"^ B(a)P + 25 J m"^), through 646.75 ± 

48.69 (0.05 |jg ml"^ B(a)P + 50 J m'^) to 554 ± 114.47 (0.05 pg ml"^ 

B(a)P + 100 J m'^) in mononucleate cells, and these results were all 

significantly higher than the control (p < 0.05). These increases in 

mononucleate cells from the combined exposure were significantly 

higher than with UVA alone (p < 0.05) except at one combination 

(0.025 pg mr^ B(a)P + 100 J m ^ UVA) (p > 0.05). In binucleate cells, 

there was again a significant reduction in the frequencies of binucleate 

cells scored (p < 0.05). Similarly, the numbers of binucleate cells 

scored varied with the irradiation of UVA, again showing no pattern with 

increasing UVA dose from 426.75 ± 24.19 (0.05 pg ml"^ B(a)P + 25 J m' 

2 ) , through 395.25 ± 49.22 (0.05 pg ml"' B(a)P + 50 J m'^), to 509.75 

± 81.99 (0.05 pg ml"^ B(a)P + 100 J m'^). Micronuclei scored in 

mononucleate and binucleate cells indicated a significant (p < 0.05) 

increase in the number of total micronuclei in both mononucleate and 

binucleate cells and a maximum of 10.25 ± 2.63 in mononucleate cells 
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(0.05 pg ml'^ B(a)P + 100 J m'^), which is slightly lower than the 

frequency observed for CHO-Kl cells. In binucleate cells, the maximum 

frequency seen was 12.25 ± 1.71 (0.05 pg ml"^ B(a)P + 100 J m'^) 

which was similar to the CHO-Kl response at this dose. These total 

responses in micronuclei induction are significantly greater (p < 0.05) 

than the responses from exposure to either UVA or B(a)P alone. 

Incidences of more than one micronucleus observed within the cell were 

detected at all doses, although these effects were not dissimilar from 

UVA or B(a)P alone for 84BR cells there was only a significant increase 

in the production of multiple micronuclei with combined dose 0.05 \jg 

ml"^ B(a)P + 25 J m"^ (p < 0.05). Frequencies of multiple micronuclei 

ranged from 1.25 ± 0.50 (0.05 pg mr^ B(a)P + 100 J m"^) with 4 or 

more micronuclei (no doses were significantly different from the control 

p > 0.05) to a 3.75 ± 1.50 frequency (0.05 pg ml"^ B(a)P + 50 J m"^) 

which was significantly different from the control (p < 0.05). With the 

Incidence of 2 micronuclei only the lowest combined dose produced a 

significant increase (p < 0.05). Frequencies of NPB were observed at all 

interactive doses and were only significantly increased (p < 0.05) from 

the control at the highest combined doses (0.05 pg ml"^ B(a)P + 50 J m" 

^and 0.05 pg ml"^ B(a)P + 100 J m'^) to a maximum observed number 

of 3.75 ± 1.71 (0.05 pg ml"^ B(a)P + 50 J m"^), although there was no 

significant difference (p > 0.05) at these doses there was a significant 

increase in NPB induction at the lowest combined dose (0.05 pg ml'^ 

B(a)P + 25 J m"^) when compared to both UVA and B(a)P alone (p < 

0.05). However, there was no significant difference (p > 0.05) between 

IMPB induction and UVA alone for the highest doses tested (0.05 pg ml"^ 

B(a)P + 50 or 100 J m'^) but these highest doses were significantly 

different from B(a)P alone (p < 0.05). From using the ant-kinetochore 

antibody micronuclei were scored in a total of 1000 mononucleate and 

binucleate cells. At the control dose, 129 ± 2.83 mononucleate cells 

were scored alongside 1000 binucleate cells. The numbers of 
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mononucleate cells showed little range with the maximunn frequency 

observed at 610 ± 45.25 (0.05 \jg m\'^ B(a)P + 100 J m"^); figures that 

were sinnilar to the Giemsa stained cells but all were significantly higher 

than the control (p < 0.05). With the binucleate cells, there was a 

significant decrease (p < 0.05) from the control in the frequencies of 

cells detected. Again there was little difference in the frequencies of 

total micronuclei observed in both mononucleate or binucleate cells and 

all the doses tested induced a significant increase in micronuclei (p < 

0.05), The largest frequency of micronuclei observed within a 

mononucleate cell was 10.5 ± 0.71 (0.05 M Q rnl'^ B(a)P + 100 J m'^), 

whilst 14 ± 1.41 were detected within a binucleate cell (0.05 |jg ml"^ 

B(a)P + 100 J m'^) and all these doses were significantly different from 

the control (p < 0.05). These results are similar to the results found 

with Giemsa staining, however, the results of the total combined doses 

(0.05 |jg ml"^ B(a)P + 25, 50 or 100 J m'^) are significantly higher (p < 

0,05) than the corresponding results for UVA or B(a)P alone. Of the 

cells containing a micronucleus, a significantly (p < 0.05) larger 

proportion of micronuclei were detected that contained a K+ signal but 

were located in both mononucleate and binucleate cells. These results 

indicate a strongly aneugenic mode of action following interactive 

toxicity. However, as micronuclei were also detected in significant 

frequencies with K- signals, it would suggest that B(a)P and UVA induce 

both a clastogenic and aneugenic response in 84BR cells. 
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Table 5.6 Effect of interactive toxicity following pre-incubation with 0.05 pg m''^ B(a)P with various doses of UVA ( 0 * , 25, 

50 and 100 J m"^) on the mean (±SE) generation of micronuclei in 84BR cells (n=34,392) using Giemsa or ant i -

kinetochore stain. There were no multinucleate cells observed. Significant differences (Mann-Whitney U test p<0.05) 

from the control are indicated ( * ) . 

Dose 
0.00 Mg ml'^ B ( a ) P 

+ 0 * J m"^ UVA 
0.05 MQ ml'^ B ( a ) P 

+ 25 J m"^ UVA 
0.05 Mg nil'^ B ( a ) P 

+ 50 3 m'^ UVA 
0.05 MQ ml'^ B ( a ) P 

+ 100 J m*^ UVA 

Cel lular R e s p o n s e - G i e m s a 
sta in 
Mononucleate 230.0 ± 62.23 624.25 ± 16.46* 646.75 ± 48 .69* 554.00 ± 114.47* 

Binucleate 1000.0 ± 0.00 426.75 ± 24 .19* 395.25 ± 49 .22* 509.75 ± 81 .99* 

Micronucleus/Mononucleate Not observed 6.50 ± 1.29* 7.25 ± 0 .96* 10.25 ± 2 .63* 

Micronucleus/Binucleate Not observed 8.75 ± 1 .71* 8.75 ± 0 .96* 12.25 ± 1 .71* 

Nucleoplasmic Bridge Not observed 3.00 ± 1.63* 3.75 ± 1 .71* 3.50 ± 1.29* 

2 nuclei Not observed 3.75 ± 2 .06* 2.50 ± 2.08 2.00 ± 1.63 

3 nuclei Not observed 3.00 ± 2.45* 3.75 ± 1.50* 1.50 ± 1.29 

4 + nuclei Not observed 2.75 ± 3.20 2.00 ± 1.83 1.25 ± 0.50 

Cellular R e s p o n s e - a n t i -
k inetochore sta in 
Mononucleate 129.0 ± 2.83 601.0 ± 5.66* 574.0 ± 16.97* 610.0 ± 45 .25* 

Binucleate 1000.0 ± 0.00 408.0 ± 1 1 . 3 1 * 467.0 ± 43 .84* 424.5 ± 38 .89* 

Micronucleus/Mononucleate Not observed 5.5 ± 0 . 7 1 * 7.5 ± 2 .12* 10.5 ± 0 . 7 1 * 

Micronucleus/Binucleate 0.5 ± 0.71 6.5 ± 0 . 7 1 * 8.5 ± 2 .12* 14.0 ± 1 .41* 

K+ Mononucleate cells Not observed 3.5 ± 0 . 7 1 * 4.5 ± 2 .12* 6.0 ± 0 .00* 

K- Mononucleate cells Not observed 2.0 ± 0.00 3.0 ± 0.00 4.5 ± 0 . 7 1 * 

K+ Binucleate cells Not observed 4.5 ± 0 . 7 1 * 5.0 ± 1 .41* 9.5 ± 2 .12* 

K- Binucleate cells 0.5 ± 0.71 2.0 ± 0.00 3.5 ± 0.71 4.5 ± 0 . 7 1 * 
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5.3.4.4 ESR 

The effects of B(a)P and UVA both alone and in combination were 

investigated using ESR. Background spectra (presented in Chapter 4, 

Section 4.3.4) were subtracted from all experimental spectra presented 

here. Figure 5.11 shows the effects of UVA irradiation (500 J m"^) 

(Figure 5.11a) or B(a)P (24 hours) (3.2 pg ml'^) without UVA irradiation 

(500 J m"^) in CHO-Kl cells and demonstrates no significant signals 

(Figure 5.11b). CHO-Kl cells treated with 3.2 pg mr^ B(a)P (24 hours) 

and irradiated with UVA (500 J m'^) in the presence of DMPO gave an 

intense signal of DMPO-OH, which was not observed with untreated cells 

(Figure 5.11c). 84BR cells treated with 3.2 pg ml'^ B(a)P (24 hours) 

and irradiated with UVA (500 J m"^) in the presence of DMPO gave an 

intense signal of DMPO-OH (Figure 5.12b), which was not observed with 

untreated cells (Figure 5.12a). Agents (mannitol, SOD, catalase) were 

incorporated into the CHO-Kl system (Figures 5.13b to 5.13d 

respectively) on cells treated for 24 hours with B(a)P (3.2 pg ml"^) 

followed by UVA (500 J m'^) (Figure 5.13a). The reduction produced by 

mannitol (Figure 5.13b) is what one would expect from competition for 

hydroxyl, whilst SOD (converts superoxide to hydrogen peroxide) had 

no significant effect. Catalase (converts H 2 O 2 to water) reduced the 

signal but may be competing for hydroxyl. If the catalase was 

destroying H 2 O 2 to prevent secondary hydroxyl formation the reduction 

expected may have been greater than that observed. Results obtained 

with TMPol and POBN (data not shown) were similar to those obtained 

with RTG-2 cells (Chapter 3, Section 3.3.7 and Chapter 4, Section 4.3.5). 

It can be concluded that the presence of B(a)P in cells causes direct 

formation of hydroxyl radicals on exposure to UVA. 
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Figure 5.11 The effect of UVA (500 J m'^) (no B(a)P) (Figure 5.11a), 24 

hours treatment with B(a)P (3.2 pg ml'^) without UVA treatment (500 J 

m"^) (Figure 5.11b). Figure 5.11c shows B(a)P treated (24 hours) CHO-

K l cells after UVA irradiation (500 J m"^). 

218 



I-10-31 

Figure 5.12a 

mT 

15 

f > l * r » m . C \ W l N E P P \ D * T A ' * a 3 7 2 7 * 0 . « 

Figure 5.12b 

mT 

Figure 5.12 The effect of UVA irradiated (500 J m'^) DMPO control 

(Figure 5.12a) on 84BR cells. Figure 5.12b shows the effects of 

treatment (24 hours) with B(a)P (3.2 pg ml"^) with UVA (500 J m'^) on 

free radical formation in 84BR cells. 
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Figure 5.13 The effect of mannitol (Figure 5.13b), catalase (Figure 5.13c) 

and superoxide dismutase (Figure 5.13d) on cells treated with B(a)P 

(3.2 pg ml'^) followed by UVA (500 J m"^) (Figure 5.13a) on free radical 

formation. 
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5.4 Discussion 

Over the past few decades there has been an increase in interest in the 

harmful effects of UVR to human skin and UVR is implicated in aging 

(Ma ef al., 2001; Wlaschek et al., 2001), sunburn and skin 

carcinogenesis (Kowalczuk ef a/., 2006). However, there is little 

evidence into the effects of UVR in conjunction with other environmental 

contaminants in mammalian models and human skin. The effects of 

B(a)P and UVR were investigated separately and together using in vitro 

models. CHO-Kl cells lack the enzymes necessary to metabolise certain 

xenobiotics (including B(a)P) so other workers have tried to address this 

problem by using exogenous metabolic activation systems (such as 

Arochlor 1254 (an S9 simulator)) or by using cells with inherent 

metabolic capability (Babich eta / . , 1988). However, B(a)P reduced cell 

viability to approximately 68 % in CHO-Kl cells at a concentration of 3.2 

pg ml'^ B(a)P in the work presented here. In agreement with our 

findings, other researchers used a hepatocellular tumour cell line 

(HepG2) and exposed these cells to B(a)P at concentrations ranging 

from 0.05 to 5.00 pg ml'^ for 1, 2 or 3 days. They observed cytotoxicity 

after 1 day (24 hours) of exposure to concentrations 2.00 and 5.00 pg 

ml"^ with cell survival reduced by 35 % (Babich eta / . , 1988). Kiefer and 

co-workers (1988) observed maximum cytotoxicity in metabolically 

capable human lung tumour cells (NCI-H322) with 5-10 pM B(a)P and 

suggested the cytotoxicity was related to the metabolites produced as 

the cytotoxicity of anti-7,8-dihydroxy-7,8-dihydrobenzo(a)pyrene (7,8-

diol-BP) was greater than B(a)P which was greater than 3-

hydroxybenzo(a)pyrene (3-OH-BP) (Kiefer e ta / . , 1988). 

Commercially available S9 was used to activate B(a)P to its metabolites 

in CHO-Kl cells which follows the experiences of previous workers 

(Johnson et a/., 1996) who have used both human and rat 59 to 

222 



activate a range of pro-mutagens (including B(a)P: 20 - 300 pM) in CHO 

cells. B(a)P caused significant increases in DNA damage to CHO-Kl with 

median tail DNA damage of 7 % with and without S9) and 10 % in 84BR 

cells (without S9). DNA damage ranged up to 40 % with the additional 

use of 59 in CHO-Kl cells. These observations are consistent with 

results from other workers. The increased mutagenicity of B(a)P in the 

presence of exogenous metabolic activation probably involves an AhR 

inducible CYPlAl-dependent pathway (Annas et a/., 2000). PAHs are 

known to induce the CYPIA pathway by ligand binding at the cytosolic 

Ah-receptor which is associated with other proteins (Whitlock, 1990) but 

Annas and co-workers (2000) demonstrated that whilst 10 pM B(a)P 

was shown to induce significant DNA damage in human umbilical vein 

endothelial cells (HUVEC) without an exogenous metabolic activation 

system, more extensive damage was observed from cells that had been 

pre-treated with p-naphthoflavone (BNF) a well known AhR agonist 

which induces cytochrome P-450 (CYP) enzymes. This binding may 

increase the mutagenic effects of B(a)P such as those reported here. 

Machala and co-workers (2001), investigated the activation of aryl 

hydrocarbon receptor (AhR) by a range of PAH, determined by the 

chemical-activated luciferase expression (CALUX) assay. Using the rat 

hepatoma H411E cell line they demonstrated that AhR-mediated 

metabolism of PAHs could significantly contribute to their mutagenic 

effects (Machala et aL, 2001). These results suggest possible 

mechanisms by which increased DNA damage is observed when an 

exogenous metabolic agent (59) is incorporated into the system with 

CHO-Kl cells. There may be deleterious effects of using exogenous 

metabolic activation. A study using HepG2 cells exposed to 2 or 3 days 

B(a)P in the presence of Arochlor 1254 showed only 10 % survival due 

to the increased metabolic activity (Babich et a/., 1988). However, it is 

also possible that this 10 % survival could be due to toxicity from long 

term exposure to the 59 exogenous metabolic system which is not 
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recommended for long term exposures (Kirsch-Volders et al., 2003). To 

overcome the difficulties of using exogenous metabolising agents (such 

as Arochlor 1254) studies including in vivo systems (Garry et al., 2003) 

or cell lines containing inherent metabolic activation (e.g. human 

bronchoalveolar cells (Jiang et a!., 2006) and the 84BR cells used here) 

may provide a simpler system for the detection of genotoxins dependent 

on metabolic activation (Dagher e ta / . , 2005) to prevent any deleterious 

effects from the incorporation of an exogenous metabolic agent (Babich 

eta/ . , 1988; Kirsch-Volders eta/ . , 2003). 

Weak but significant increases in the induction of micronuclei were 

indicated in CHO-Kl and 84BR cells following treatment with B(a)P. The 

mode of action of B(a)P appeared to be influenced through aneugenic 

mechanisms because a significant majority of micronuclei displayed a 

kinetochore positive signal - indicating a loss of whole chromosomes. 

The majority of micronuclei were detected within a binucleate cell; 

however, micronuclei (both K+ and K-) were also detected within 

mononucleate cells indicating that it is valuable to include scoring of 

micronuclei within mononucleate cells in agreement with current 

literature (Fenech et a/., 2003) to detect all damaged cells, such as 

those that have already expressed DNA damage before they were put 

into culture with Cyto B. Scoring micronuclei with both mononucleate 

and binucleate cells enables the detection of pre-existing DNA damage 

as well as micronuclei expressed during culture as a result of 

chromosome breaks from the test compound (Fenech eta/ . , 2003). The 

consequences of aneugenic and clastogenic activity may have serious 

implications (Kamiguchi 8t Tateno, 2002) such as the accumulation of 

DNA adducts (Lee et ai., 2002) or inhibiting the progression of meiotic 

divisions in human spermatozoa (Georgellis et a/., 1990). These data 

are important as they highlight the mutagenicity of B(a)P not only to 

somatic cells, but also to the gametes, having potentially significant 
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consequences for reproduction. Environmental studies using cultured 

human lymphocytes have demonstrated the induction of aneugenic 

activity from extracts of diesel exhaust particulates (Odagiri et al., 1994) 

that contain PAH compounds such as B(a)P. 

UVB caused a significant reduction in cell viability with all UVB doses in 

CHO-Kl cells. In agreement with the work presented here, a dose-

related decrease in cell survival from exposure to 60, 120 or 180 J m"^ 

UVB was observed in lymphocytes (Keulers et ai, 1998) whilst 125 kJ 

m'^ UVB reduced clonogenic survival to 37 % in human breast cancer 

(MCF-7) cells (Koch-Paiz et a/., 2004). UVB has been shown to induce 

apoptosis in a variety of mammalian cell lines, demonstrated through 

changes in cellular morphology, phosphatidylserine (PS) exposure, 

oligonucleosomal DNA fragmentation and generation of hypochrome 

nuclei (Hagenhofer et a/., 1998). Conversely, the effects of UVA showed 

no reductions in cell viability in 84BR but reduced cell viability in CHO-

K l cells at the higher doses tested. Molecular studies have been carried 

out by other workers that indicate malfunctioning of the cellular 

apparatus following UVA radiation. He and co-workers (2004) 

demonstrated that 4 - 32 J m'^ UVA induced delayed and sustained 

extracellular signal-related kinase (ERK) activation that was epidermal 

growth factor receptor (EGFR) kinase activity dependent, but 

phospholipase C (PLC)/calcium/protein kinase C (PKC) mediated. This 

delayed and sustained activation serves to provide a survival signal for 

HaCaT keratinocytes. ERK is an important suppressive regulator of 

apoptosis, so activation of the ERK pathway would play a vital role in 

providing a survival signal to allow cells to escape from apoptosis and 

therefore increase the potential for a malignant transformation and 

tumourogenesis in vivo following UVA exposure (He et a/., 2004) and 

would require further investigation to elucidate. 
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UVB and UVA doses tested caused significant increases in DNA damage 

in CHO-Kl cells but there was no dose related response to UVB which 

may have been due to extensive damage at higher doses that 

overloaded the assay system. However, there was a significant and 

dose related increase in DNA damage in response to UVA suggesting 

that these two types of radiation may instigate di f ferent types of DNA 

damage. For example, the repair kinetics of UVA- and UVB-induced 

DNA damage have been shown to differ f rom each other, which would 

implicate the induction of di f ferent types of DNA lesions by UVA and UVB 

(Lehmann et aL, 1998). UVA (5 J m"^) induced effects on DNA were 

shown to have been related to radical mediated strand breaks and DNA 

lesions which form alkali-labile sites whilst the effects of UVB (15 mJ cm ' 

^) mainly occurred as a consequence of excision repair-related strand 

breaks (Lehmann e t a / . , 1998). Horikawa-Miura and co-workers (2007) 

suggested DNA damage-dependent and independent pathways for the 

induction of cell death fol lowing UVB irradiat ion. Human embryonic 

f ibroblast-l ike cells (HE49) Irradiated with 240 J m^^ UVB generated 

equivalent amounts of DNA photoproducts and induced more clonogenic 

cell death, apoptosis, mitochondrial cytochrome C release and 

intracellular oxidative stress (Horikawa-Miura et al., 2007) . This would 

suggest biochemical pathways link the DNA damage and the associated 

reductions in cell viabil ity observed in the work presented here. 

UVA instigated genomic instabil i ty in both the CHO-Kl cell line and 84BR 

cells. This was shown through an inherited mutat ion on the 

chromosomal apparatus demonstrated through the signif icant induction 

of micronuclei. UVA has been shown to have an effect on genomic 

metabolism through alterations in cell cycle kinetics (de Laat et aL, 1996; 

Kowalczuk et al., 2006). In the work reported here, UVA (25 - 200 J m' 

^) caused a positive increase in the frequencies of micronuclei and 

altered cell cycle kinetics (a delayed cell cycle shown by the significantly 
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altered frequencies of mononucleated cells in both cell types (Fenech et 

al., 2003a; Fenech et al., 2003b; Rosefort et a/., 2004) ) . In part ial 

agreement with these f indings, Kowalczuk and co-workers (2006) 

showed that UVA slowed the cell cycle through the S phase in human 

melanocytes and arrested mal ignant melanoma cells in G l indicating 

that UVA is able to induce strong cell cycle delays and considerably 

affect genomic metabol ism or inhibit DNA synthesis (de Laat et al., 

1996). UVA (0-600 kJ m'^) and UVB (0-80 J m"^) have also been found 

to inhibit proliferation of mammal ian cells in a f luence-dependent 

manner due to a temporary accumulat ion of cells in the S phase of the 

cell cycle (Banrud et a/., 1995). This is consistent wi th the delayed cell 

cycle observed in the micronucleus assay reported here. The existence 

of two or more nuclei in the cell in significant frequencies was 

demonstrated in the work presented here. In agreement, Banrud and 

co-workers (1995) showed that af ter exposure to 200 - 500 kJ m'^UVA 

a large proportion of mammal ian V79 cells were polyploid, with two or 

more nuclei. 

Nucleoplasmic bridges (NPB) were observed throughout the scoring 

procedure in both CHO-Kl and 84BR cells and increased wi th increasing 

UVA dose. NPBs are suggested to form when the centromeres of 

dicentric chromosomes are pulled to opposite poles at anaphase and 

these abnormalit ies are detectable through the cytokinesis block 

micronucleus assay (CBMN) because cytokinesis is inhibited allowing the 

nuclear membrane to form around the binucleate daughter cells. They 

have been shown to be important biomarkers of DNA damage, 

chromosomal rearrangement, chromosomal breakage and translocation 

events, and can be identif ied wi thout an ant ik inetochore staining 

procedure (Fenech & Crott, 2002; Thomas e t a / . , 2003) . Shorrocks and 

co-workers (2004) demonstrated that although cells containing BRCAl 

mutat ions had an abnormal cell cycle in response to 1 x 10^ J m"^ UVA 
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(a defective G l / S checkpoint) genomic instabil ity was not implicated as 

there was no corresponding increase in micronuclei as their data 

indicated that UVA-induced damage was repaired but remained error-

prone (Shorrocks et a/., 2004) . However, the work presented here 

supports the occurrence of genomic instabil ity fol lowing UVA radiation 

due to the alterations in cell cycle, cellular abnormalit ies (NPB) and the 

corresponding increase in micronuclei. 

Combined exposure to B(a)P and UVA significantly reduced the cell 

viabil ity in CHO-Kl and 84BR cells. In CHO-Kl cells an approximately 

10 % greater reduction in cell viabil i ty was seen f rom either B(a)P or 

UVA alone when cells were treated to B(a)P and 2000 J m"^ UVA. This 

effect increased to at least 20 % greater reduction in cell viabi l i ty with 

cells treated with B(a)P and 4000 J m'^ UVA f rom either B(a)P or UVA 

alone. These results suggest an addit ive effect on the reduction in cell 

viabil ity in CHO-K l . In 84BR cells, the reduction in cell viabi l i ty was 

greater than that seen with CHO-Kl with reductions in cell viabil i ty of up 

to 40 % from UVA. These results suggest a synergistic effect on the 

reduction in cell viabil ity in 84BR cells. Similarly, s imultaneous 

t reatment of human keratinocytes (HaCaT) with 1 |jg ml '^ pyrene and 

3.9 J cm"^ UVA resulted in a significant inhibit ion of cell prol i feration 

(Ekunwe et a/., 2005) whilst exposure to 5 pM B(a)P and 1 kJ m"^ UVA 

caused a dramatic reduction in cell viabil i ty in human keratinocytes 

(Crallan et a/., 2005) which was greater than the effects of either B(a)P 

or UVA independently. 

Addit ionally, the work presented here showed a signif icant increase in 

DNA damage from the combined exposure to B(a)P and UVA in both 

CHO-Kl cells and 84BR cells which suggests a synergistic effect f rom 

B(a)P or UVA alone. Zheng and co-workers (2004) demonstrated a 

dose responsive increase in DNA damage measured by the comet assay 
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f rom the interaction of f luoranthene (0 .1 - 5 pM) and 6.1 J cm"^ UVA 

radiation in HaCaT cells. Zheng and co-workers (2004) supports similar 

f indings as the work presented here, in that the DNA damage detected 

by the comet assay was associated wi th some cytotoxic i ty, implicating 

that the DNA damage observed could be a consequence of cellular 

toxicity mechanisms. Furthermore, other workers have shown that 

DSBs were generated following co-exposure to 10'^ M B(a)P and 1 J m"^ 

UVA in CHO-Kl cells and indicated again the relationship between DSBs 

and cytotoxici ty (Toyooka et aL, 2004) . In support of our f inding of a 

synergistic effect, Crallan and co-workers (2005) demonstrated that 

exposure to 5 pM B(a)P followed by 1 kJ m'^ UVA caused a significant 

increase in DNA damage (up to 35 % ) measured by the percentage tai l 

DNA which was greater than either B(a)P or UVA alone (approximately 9 

% and 10 % respectively). In vivo, combined B(a)P and UVA exposure 

has been shown to cause genetic damage that accumulated wi th t ime ; 

BPDE-DNA adducts increased to approximately twice the level of B(a)P 

plus UVA whilst nuclear p53 expression increased, in conjunct ion wi th a 

parallel increase in 8-OHdG format ion which was 300 % higher than 

B(a)P plus UVA (Saladi et a/., 2003) . Notably, accumulat ions in DNA 

damage may be related to inherited mutat ions. 

There were considerable increases in the frequencies of total micronudei , 

mult iple micronuclei and NPBs induced in both cell types (CHO-K l and 

84BR) used in this study f rom exposure to B(a)P fol lowed by UVA. 

These increases were significantly higher than with B(a)P alone or UVA 

alone in all cases and often greater than B(a)P (alone) plus UVA (alone). 

These data may be indications of genomic instabil i ty caused by B(a)P 

followed by UVA in CHO-Kl and 84BR cells. There were substantial 

increases in micronuclei in mononucleated cells, and these contained 

both K+ and K- signals. A possible delayed cell cycle effect f rom 

combined exposure to B(a)P and UVA was demonstrated through the 

229 



significant increase in mononucleated cells. Although this was also 

shown wi th UVA t reatment these increases f rom combined exposure 

were appreciably higher than wi th UVA alone. This is relevant as it 

demonstrates that the combination of B(a)P and UVA is an important 

factor in the increased genotoxic effects observed. Cell cycle delays 

have been demonstrated in human melanocytes and mal ignant 

melanoma cells when treated with UVA (Kowalczuk e t a / . , 2006) as well 

as in the work presented here wi th both CHO-K l and 84BR cells. I f the 

delay of progression through the cell cycle is inhibited before the critical 

stages of DNA replication, there may be an increase in spontaneous or 

induced gene mutat ion or chromosomal aberrat ion contr ibut ing to 

genomic instabil i ty (Kaufmann & Paules, 1996). These data are an 

important contr ibution to the concept that in association wi th a delayed 

cell cycle, there are nuclear anomalies that may contr ibute to genomic 

instabil i ty in both CHO-Kl and 84BR cells (such as mult iple micronuclei 

and NPBs). 

Invest igat ions into oxidative damage showed that when CHO-Kl and 

84BR cells were incubated with B(a)P and then irradiated wi th UVA (in 

the presence of the spin trap DMPO), the major product was DMPO-OH. 

These data indicate the format ion of ei ther OH or O2" radicals and 

suggest oxidative damage. When mannitol (which readily compete wi th 

DMPO or OH) was added to the B(a)P t reated CHO-Kl cells, prior to 

UVA irradiat ion, the yield of DMPO-OH was greatly decreased. Addit ion 

of catalase, which converts H2O2 to H2O, had a small effect whi lst 

addit ion of SOD, which converts superoxide indirectly to hydrogen 

peroxide radicals also had little effect. This indicates that the major 

radical product f rom the co-exposure of B(a)P and UVA is OH, which is 

formed directly, rather than f rom H2O2, and that superoxide is not 

involved. The responses of the CHO-Kl and 84BR cells were generally 

indistinguishable from each other when cells were treated with B(a)P 
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and UVA. Shyong and co-workers (2003) treated cells with general ROS 

scavengers including catalase and observed signif icantly decreased H2O2 

production f rom cells treated with 5 |jg ml '^ B(a)P plus 10 kJ m"^ UVA, 

whereas scavengers of superoxide anion (O2') , hydroxyl radicals ( OH) 

and singlet oxygen CO2) had minimal effects. They concluded that 

B(a)P synergistically enhanced the production of H2O2 in cultured cells 

by UVA (Shyong et a/., 2003) . Gao and co-workers (2005) also 

suggested synergy between BPDE and UVA to produce ROS which in 

turn damage DNA. They used ROS scavengers and showed singlet 

oxygen and superoxide radical anion was involved in 8-OHdG format ion 

(Gao e t a / . , 2005) . Their f indings agree wi th the findings reported here 

which suggest that ROS are produced in response to UVA fol lowing 

t reatment with B(a)P. Toyooka and co-workers (2004) demonstrated 

that exposure to B(a)P followed by UVA radiation synergistically induced 

oxidative DNA damage in CHO-Kl cells but were unable to identify the 

radical species involved. This thesis suggests that OH is directly 

produced and is (to the best of our knowledge) a novel f inding. 

The results f rom this ESR study have significance as to date there has 

been no clear indication of the ROS species formed when PAHs and UVA 

interact in cellular systems. There have been reports that superoxide 

anion was the principal ROS produced by B(a)P and UVA (Liu e t a/,, 

1998) but our data suggests that OH is produced directly. Ibuki and 

co-workers (2002) postulated that whereas hydroxyl radical and 

superoxide anion radical scavengers showed no effect, singlet oxygen 

quenchers significantly inhibited the format ion of 8-OHdG f rom 

combined B(a)P and UVA exposure in human skin f ibroblasts. The 

format ion of 8-OHdG in DNA is signif icant as wi thout proper repair, GC-

TA transversions can occur (Feig e t a/., 1994). However, this would 

suggest that 8-OHdG is a product of singlet oxygen whereas the work 

presented here in the cell types investigated suggests that singlet 
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oxygen is not involved. Kim and co-workers (2005) proposed that B(a)P 

could directly induce DNA adducts in the presence of l ight (370-750 n m ) , 

and that these DNA adducts could induce oxidat ive DNA damage. In 

partial agreement with these results ( the work here looked at UVA 

specifically) the work presented here showed the induction of both DNA 

damage (comet, micronucleus assays) and oxidative damage (ESR) 

following B(a)P and UVA t reatment in both CHO-Kl and 84BR cells. 

Interest ingly, whilst CHO-K l are not able to metabolise B(a)P, a strong 

DMPO-OH signal was generated giving a synergistic effect when cells 

were irradiated with UVA. This signal is sl ightly larger than seen wi th 

84BR cells under the same condit ions. Kim and co-workers (2005) 

proposed that B(a)P could be directly photoactivated to a mutagenic 

form. They suggested that a photoactivated form of B(a)P could bind to 

DNA resulting in a bulky lesion that would behave as a powerful 

photosensitiser to generate mutagenic oxidative damage (Kim et a/., 

2005). This is supported by the synergistic effect observed in the comet 

assay in CHO-Kl cells. These reported data highlighted the broad range 

of effects that mixed environmental stressors can have on cells and this 

may affect risk assessment strategies for environmental pol lutant 

exposure which are more complex than if a simple exposure to one type 

of mutagen was involved (Koch-Paiz e t a / . , 2004) . 

These studies and the work reported here confirms that B(a)P is an 

important mutagen in the environment which induces genotoxic damage 

through DNA strand breakage and aneugenic mechanisms, although its 

direct cytotoxicity is l imited. UVB demonstrated considerable effects on 

cell viabil ity and caused significant DNA damage, whilst UVA caused 

litt le effect on cell viabi l i ty, l imi ted DNA damage but signif icant increases 

in cellular alterations were observed in both cell types. CHO-Kl and 

84BR cells incubated with B(a)P followed by irradiation with UVA showed 

reductions in cell viabi l i ty, increases in DNA damage and altered cellular 
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mechanisms that may be due to both aneugenic and clastogenic 

mechanisms. This may make these effects more carcinogenic if 

inherited without repair as the cells survive the insult. Oxidative effects 

were observed that were shown to be a product of the hydroxyl radical 

(ESR). Exposure to combined B(a)P and UVA insult produced effects 

which were generally signif icantly greater than those produced by B(a)P 

and UVA independently. 
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CHAPTER VI - GENERAL DISCUSSION 

The interactive toxicity of B(a)P and UVR was investigated in cell types 

of di f ferent phylogenetic origin ( f ish: EPCAl and RTG-2 and mammal ian : 

CHO-Kl and 84BR). From these results it may be valuable to compare 

the way in which the cell types reacted by generating a synthesis of the 

data. This can be done quant i tat ively and conceptually in order to 

st imulate new discoveries that could lead to future research and fur ther 

hypothesis. The data chosen for comparison is the interactive toxici ty of 

B(a)P and UVA using RTG-2, CHO-K l and 84BR cells wi th the NRR, 

comet and micronucleus assays and is presented in Table 6 . 1 . These 

data have been chosen because the purpose of the work presented here 

was to investigate the combined effect of B(a)P and UVA through 

various cytotoxic and genotoxic assays. The EC50 is added to the table 

as a general comparison between the cell types as it refers to the 

concentration which induces a response halfway between the baseline 

and max imum. Other data concerning the individual aspects of B(a)P or 

UVR have already been covered in detail in previous chapters and does 

not provide any added benefit to the investigation here. 
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Table 6.1 Comparison between the RTG-2, CHO-K l and 84BR cells using 

NRR, Comet or Mn assays for the interactive toxici ty of B(a)P and UVA. 

(* indicates that the DNA damage was too great to score, therefore 100 

% DNA damage was measured). No noteworthy differences between 

the RTG-2, CHO-Kl or 84BR cells were detected for the comet or 

micronucleus assay. 
R T G - 2 C H O - K l 8 4 B R 

B ( a ) P + UVA 

NRR (ECso) 
0.1+4000 3.2+4000 3.2+4000 

Comet a s s a y 

(o/o Tai l DNA) 

0.1 MQ mr^ B(a)P + 500 J m'^ UVA 10 17 15 

1.0 mr* B(a)P + 500 J m-^ UVA 19 28 28 

3.2 pg mr^ B(a)P + 500 J UVA 37 28 28 

0.1 |jg mr^ B(a)P + 1000 J m-̂  UVA 22 25 14 

1.0 pg mr^ B(a)P + 1000 J nT^ UVA 39 27 12 

3.2 pg mr^ B(a)P + 1000 J m'^ UVA 44 19 100* 

0.1 pg nrir* B(a)P + 2000 J m''' UVA 20 38 28 

1.0 pg mr* B(a)P + 2000 J m"̂  UVA 36 34 100* 

3.2 |jg mr^ B(a)P + 2000 J m-̂  UVA 45 34 100* 

Micronuc leus A s s a y ( m e a n micronucle i 

per 1 0 0 0 b inuc lea te c e l l s ) us ing ant i -

k ine tochore s ta in 

0.05 pg mr^ B(a)P + 25 J m''= UVA 8.5 10.5 6.5 

0.05 pg mr^ B(a)P + 50 J m*^ UVA 14 11.5 8.5 

0.05 pg mr^ B(a)P + 100 J m-^ UVA 14 12.5 14 

From the table it can be seen that when comparing the cell groups an 

interesting pattern emerges where cell types reacted in a very similar 

way. For example, the ECso value was 0.1 + 4000 J m'^ for RTG-2 cells 

and 3.2 + 4000 J m'^for CHO-Kl and 84BR cells. The lower ECso for the 

RTG-2 cells suggests a greater sensit ivity of these cells to this combined 

insult when investigating cytotoxici ty. Basal cytotoxici ty reflects 
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adverse effects on cell structures and processes that are intrinsic to 

virtually all cells. Most cell systems should show a similar response, and 

also respond similarly when toxici ty is measured by various viabil i ty 

criteria (Babich & Borenfreund, 1 9 9 1 ; Babich et a/., 1991). The 

differential sensitivities of fish and mammal ian cells have been 

suggested (Ahmed e t a/., 1993; Castano & Gomez-Lechon, 2005; 

Raissudin & Jha, 2004) but these have mainly concerned genotoxicity 

assays. However there was no significant difference (Kruskal-Wall is, p 

> 0.05) between the median values in the RTG-2, CHO-Kl or 84BR cells 

for each B(a)P + UVA group in the comet assay data, or the mean 

micronuclei produced in the work presented here suggesting a similar 

effect of DNA damage across the dif ferent cell types to the combined 

genotoxic effect of B(a)P and UVA. Fish cells have been shown to have 

a low DNA repair capacity compared to mammal ian cells, and they may 

therefore appear to be more sensitive to DNA damage (Ahmed et a/., 

1993; Willett e t a/., 2001) . Other workers have reported an increased 

sensitivity of the RTG-2 cell line using the comet and micronucleus 

assays (Raissudin & Jha, 2004) . The generalisation that fish cells are 

more sensitive than mammal ian cells may need to be addressed in 

greater detail as this may not be applicable for all cytotoxic and 

genotoxic assays, and may also depend on the nature of the 

environmental contaminant being investigated. 

The work presented here suggests that all cells react to B(a)P and UVA 

in a similar way as never previously documented wi th other research 

and possesses interesting avenues for fur ther research. However when 

compared wi th some l i terature sources the results are contradictory (e.g. 

Ahmed et a/., 1993; Raissudin 8i Jha, 2004). This can be explained 

through technical l imitat ions of the experiments used in this work and 

also with regard to the use of cultured cells. In order to clarify the 
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'knowledge gap' between our differing results specific follow up 

experiments could include the fol lowing. 

1) Technical l imitat ions: 

• The NRR assay is a well established assay for looking at cell 

viabil i ty but it does not di f ferent iate between the mechanism of 

cytotoxicity (e.g. necrosis or apoptosis) so a progression to this 

could be the detection of caspase activity and phosphatidylserine 

(PS) translocation to indicate apoptosis (Valencia and Kochevar, 

2006) . 

• Similarly, the use of the comet assay could be expanded by 

incorporating the use of Fapy-DNA glycosylase enzyme incubation 

to detect oxidised purines and therefore oxidat ive DNA damage 

(Crallen e t a / . , 2005). 

• With regards to the micronucleus assay it became apparent that 

there is no strict standardised protocol for the scoring of 

micronuclei that is adopted wor ldwide, al though steps are being 

taken to rectify this (Kirsh-Volders et a/., 2003) . The data 

presented investigated the production of micronuclei f irst (as 

recommended) in binucleated cells (Chapter 3) and second (as 

cellular responses altered) via a scoring practice of incorporat ing 

both the use of mononucleate and binucleate cells and other 

nuclear abnormalit ies (Chapters 4 and 5) . This assay was fur ther 

developed in the work presented here by examining parameters 

such as monunucleated cells and NPBs to increase the sensit ivity 

of the system (Fenech e t a / . , 2003b) . This data has been valuable 

in understanding the cellular changes occurring and increasing the 

sensit ivity of the micronucleus assay as demonstrated. Other 

methods of automation may also increase the robustness of this 

assay (Varga e t a / . , 2004) . 
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• The use of ESR was investigated wi th RTG-2 and CHO-K l cells and 

results suggested direct format ion of hydroxyl radicals. The 

generation of OH by B(a)P and UVA radiation may play an 

important part in oxidative DNA damage in cultured and pr imary 

cells. To continue this work, fur ther research into other 

parameters of oxidative stress would be of value to investigate 

such as lipid peroxidat ion, glutathione or respiratory burst. The 

use of PCR to investigate gene expression would be a valuable 

continuation. Other avenues of interest include investigation into 

interleukins, apoptosis, phagocytosis or inf lammatory changes to 

explore alterations in immune funct ion. These would be an 

important addit ion to the work presented here, but this kind of 

research is expensive to conduct. 

2) Limitations with regard the use of cultured cells: 

• The use of primary cells has gained interest, but some primary cell 

systems have shown high levels of variabi l i ty, and the conclusion 

is that cell lines appear to produce more reproducible responses 

(Scholz & Segner, 1999). The purposes of using the pr imary cell 

84BR was to take the research to the next ' t ier ' and begin to 

investigate the combined effects of B(a)P and UVR to a cell type 

that potentially had an increased sensit ivity and robustness 

(Morley et a/., 2005) . I t also maintained many metabolic 

functions that are often lost when working with established cell 

cultures. Although similar results were obtained (comet and 

micronucleus assays) through using the cultured cell lines as wi th 

the pr imary cells (84BR) extensive use of pr imary cells would be a 

positive progression to this work (e.g. by incorporating the effects 

of immune function which may or may not be related to the 

oxidative stress already shown in this work) as this would enable a 
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more realistic interpretat ion of effects fur ther up the biological and 

ecological hierarchy (Moore e t a / . , 2004) . 

• The use of fish cells as a biomonitor ing tool is of growing interest 

(Nehls & Segner, 2005) and the data presented here using ant i -

kinetochore staining and ESR is novel in its approach with its use 

of RTG-2 fish cells. The more practical handling of some fish cells 

(such as the 48 hour cell cycle, rudimentary cytochrome P-450-

dependent monooxygenase activit ies and incubation at room 

temperature) means they would be a better alternative for 

replacing fish in bioassays than using mammal ian cells (Castano & 

Gomez-Lechon, 2005) and as shown in this project, similar results 

would be gained f rom their use in ecotoxicology as wi th 

mammal ian cells. 

• The RTG-2 cell line would be a particularly useful tool to be 

adopted in future studies looking at biomonitor ing in conjunction 

with in vivo practices (Castano e t a / . , 2003; Sanchez-Fortun e t a / . , 

2005). 

The findings of this research provide many opportunit ies for future novel 

avenues of research. The original hypothesis for this thesis was tha t 

B(a)P and UVR causes cytotoxicity and genotoxicity in fish and 

mammal ian cells and the results of these studies showed that sequential 

exposure to B(a)P and UVA produced a synergistic enhancement of DNA 

damage, which was also represented by reductions in cell viabi l i ty, 

increases in DNA damage, changes in cell cycle and increases in 

chromosomal damage as well as oxidat ive damage via the hydroxyl 

radical. The mechanism of this enhancement is however still unclear. 

B(a)P may induce bulky adducts when l ight (Kim et a/., 2005) or as 

presented in this work when UVA is present, inducing DNA damage as 

B(a)P absorption is in the UVA and visible l ight spectrum and has been 

previously shown to be photomutagenic (Van et a/., 2004) . Therefore 
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B(a)P or its metabolites may become activated by UVA to cause DNA 

damage. There is now the opportuni ty for fu ture research to set a 

revised or new hypothesis. Possible research that can be extended f rom 

this paper have already been suggested but mainly concern the 

extension of the assays already used and greater detailed research into 

the up or down regulation of various key genes and fur ther investigation 

into the effects of oxidative stress on genomic stabil i ty. A concise 

project would be able to concentrate on one particular cell type and 

delve deeper into the mechanisms causing cell mutat ion fol lowing 

t reatment with B(a)P and UVA as the work presented here demonstrates 

that this combined insult affects cells ubiquitously. 

In conclusion the authors study was successful in answering the 

questions posed within the limits of the techniques used and valuable 

patterns have emerged. This work opens opportunit ies into fur ther 

research on interactive toxici ty. The widespread occurrence of PAHs 

subject all exposed living cells to potential genotoxic stress and the 

knock-on effects of this insult combined wi th UVA appears to exacerbate 

the damage through direct and indirect mechanisms. The effects of 

combined exposure to B(a)P and UVA radiation involve oxidative stress, 

and cause inherited genomic instabil i ty which may account for the onset 

of carcinogenesis, as the mutat ions observed may be unstable yet not 

lethal. The consequences of this study are far-reaching and extend into 

many environmental areas, be they marine based, or involved in 

regulation of air pol lut ion. 
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Appendix 1.1 

Cel l Cu l ture Mater ia ls and E x p e r i m e n t a l C h e m i c a l s for A s s a y s 

Cel l cu l ture Mater ia ls 

R e a g e n t Suppl ie r CAT No 

Foetal Bovine Serum Gibco 10186-151 
Ham F12 nutrient mixture Gibco 21765-037 
Eagles Minimum Essential Medium (EMEM) Gibco 31095-029 
L-glutamine Gibco 25030-024 
Minimum Essential Medium (MEM) Gibco 31095-029 

With Earles Salts, L-Glutamine 
Minimum Essential Medium (MEM) Gibco 51200-038 

With Earles Salts, without L-Glutamine, without phenol red 
Phosphate Buffered Saline (PBS) Gibco 14190-086 

Without Ca or Mg 
Trypsin solution (0.25 %) Gibco 25050-014 
Versene 1:5000 Gibco 15040-033 

List of Exper imenta l C h e m i c a l s for A s s a y s 

R e a g e n t Suppl ier C A S No 

Benzo(a)pyrene (B(a)P) Sigma 80-05-7 
Colchicine (COL) Sigma C-9754 
Hydrogen Peroxide (H2O2) 
Methansulfonic Acid Ethyl Ester (EMS) 

Fisher Chemicals H/1800/15 
Sigma 

L is t of R e a g e n t s for the Neutra l R e d Retent ion A s s a y ( N R R ) 

M-0880 

R e a g e n t Suppl ie r C A S No 

Acetic Acid Sigma 64-19-7 
Calcium Chloride (CaCb) Sigma 10043-52-4 
Ethanol Sigma 64-17-5 
Neutral Red Sigma 553-24-2 

L is t of R e a g e n t s for the S ing le Cel l gel E l e c t r o p h o r e s i s ( 'Comet A s s a y ' ) 

R e a g e n t Suppl ie r C A S No 

Dimethylsulfoxide (DMSO) Fisher Chemicals D-4121 
0.5 M Ethylenediamine Tetraacetic Acid (EDTA), Sigma E-7889 

disodium salt 
Ethidium Bromide Sigma E-1510 
Low Melting Point Agarose (LMP) Sigma A-9414 
Normal Melting Point Agarose (NMP) Sigma A-7174 
Potassium Chloride (KCI) Sigma P-9541 
Sodium Chloride (NaCI) Sigma S-3014 
Sodium Hydroxide (NaOH) BDH 102524X 
NazEDTA Sigma E-1644 
N-Lauryl-Sarcosine Sigma L-5125 
Tris-Acetate Sigma T-1258 
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TRIS base 
TRITON-X-100 
Trypan Blue Solution (0.4 % ) 

S 9 act ivat ion s y s t e m 

NADPH Regensys ^A' 
NADPH Regensys ,B ' 
Aroclor 1254-lnduced S9 

Sigma 
Sigma 
Sigma 

Y-1503 
T-8787 
T-8154 

Moltox, Inc 1-0060-200-5 
Moltox, Inc 1-0060-201-5L 
Moltox Inc 11-101 

List of R e a g e n t s for the Micronucleus A s s a y 

R e a g e n t 

Acetic Acid glacial 100 % 
Buffer Tablets pH 6.8 
Cytochalasin B 
DPX Mountant, Dibutyl phthalate 
Formaldehyde (37 % - Formalin) 
Giemsa Stain Solution 
Methanol 
Potassium Chloride (KCI) 

Human antinuclear antibody, centromere specific 
Anti-Human IgG (Fc Specific) Cy3 conjugate 
DAPI antifade (0.1 pQ rr\\'^ DAP! in antifade) 

Supp l ie r 

BDH 
BDH 
Aldrich 
BDH 
Sigma 
BDH 
Fisher 
Sigma 

C A S No 

27013BV 
362242D 

1493-96-2 
360294H 

F-1635 
350865P 

M/3950/17 
P-9541 

Antibodies Inc. USA, 15-134 
Sigma C2571 
Appligene Oncor S1373-3 

Dual S ta in ing 

Name 

Viability/Cytotoxicity Assay Kit for Animal Live & Dead 

Annex in V - F I T C Apoptos is Detect ion 

Name 
Annexin V:FITC Apoptosis Detection Kit I 

Suppl ie r C a t No 
Cells Biotium Inc, USA 30002 

Suppl ie r 
BD Biosciences 

C a t No 
556547 
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Appendix 1.2 
Prepara t ion of buf fers a n d s o l u t i o n s 

S 9 Metabol ic Act ivat ion S y s t e m ( S 9 ) 

S 9 H o m o g e n a t e 

S 9 Homogenate aliquot (in 0.154 M K G ) into 1 ml vials and store at -70 

S 9 Core 
NADPH Regensys'A'contains glucose-6-phosphate, MgCl2/KCI in 0.1 M phosphate 
buffer, pH 7.4. 153 mg NADP NADPH Regensys 'B') added to 1 ml sterile distilled 
water and added to Regensys 'A'. Aliquot this into 5 ml vials and store at -20 **C. 
P repara t ion : 
This must be prepared immediately prior to use. 
Mix: 
0.15 ml S9 homogenate 
0.60 ml S9 core 

9.25 ml medium containing 1 % FBS and chemical under investigation (e.g. B(a)P) 

This is added to the cell cultures and incubated for no longer than 3-6 hours. 

C o m e t A s s a y 
LMP agarose: 0.5 % in PBS 
NMP agarose: 1 % in PBS 

Lysing Solution (per 1 L ) : NaCI (2.5 M), NajEDTA (100 mM), Tris Base (10 mM), N-
Lauryl-sarcosine (1 % ) , pH 10 in distilled water 

TRITON-X (1 %) and DMSO (10 %) added immediately prior to use. 

Electrophoresis Buffer (2 L) : NaOH (1 M), EDTA (200 mM) in distilled water pH > 13 

Neutralisation Buffer (1 L) : Tris Base (0.4 M) In distilled water pH 7.5 

Ethidium Bromide: 1/100 dilution in distilled water 

Micronuc leus A s s a y 

Cytochalasin B : Cytochalasin B 100 pg ml'* in DMSO 

Potassium Chloride (KCI): 0.56 % KCI in distilled water 

Fixative: 1:4 acetic acid: methanol 

Giemsa Stain: 10 % Giemsa in Giemsa Buffer pH 6.8 
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