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Monte Carlo generation of localised particle trajectories

Ivan Ahumada∗

Instituto de F́ısica y Matemáticas,
Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México.

James P. Edwards†

Centre for Mathematical Sciences, University of Plymouth, Plymouth, PL4 8AA, UK

We introduce modifications to Monte Carlo simulations of the Feynman path integral that improve
sampling of localised interactions. The new algorithms generate trajectories in simple background
potentials designed to concentrate them about the interaction region, reminiscent of importance
sampling. This improves statistical sampling of the system and overcomes a long-time “undersam-
pling problem” caused by the spatial diffusion inherent in Brownian motion. We prove the validity of
our approach using previous analytic work on the distribution of values of the Wilson line over path
integral trajectories and illustrate the improvements on some simple quantum mechanical systems.

I. INTRODUCTION

The (Feynman) propagator is of fundamental impor-
tance in quantum mechanics, as the integral kernel of the

time evolution operator, Û(T ), in configuration space.
Expressing this operator in the position basis,

{∣∣x〉} nor-

malised to
〈
x
∣∣y〉 = δD(x− y),

Û(T ) =
∫
dDx

∫
dDy K(y, x;T )

∣∣y〉〈x∣∣ , (1)

introduces the kernel as the matrix elements

K(y, x;T ) :=
〈
y
∣∣Û(T )∣∣x〉 −→

〈
y
∣∣e−iĤT

∣∣x〉 , (T ⩾ 0) (2)

(assuming a static Hamiltonian, Ĥ). As is well-known,
obtaining the kernel is equivalent to solving the system,
yet this can be analytically challenging unless the system
is particularly simple or enjoys special symmetries.

This article presents improved numerical algorithms
for estimating the kernel using the “Worldline Monte
Carlo” (WMC) technique. In the imaginary time for-
malism K(y, x;T ) can be found from the path integral
over trajectories propagating from x to y in time T :

K(y, x;T ) =

∫ x(T )=y

x(0)=x

Dx(τ) e−
∫ T
0

dτ
[

mẋ2

2 +V (x(τ))
]
, (3)

with V (x) the potential defined canonically according to

Ĥ = p̂2

2m + V (x̂). The WMC approach goes back to early
work on bound states in [1–5], but its adaptation [6–12] to
simulations based on the worldline formalism of quantum
field theory [13–16] and to processes in background fields
[17, 18], the Casimir effect [19–25] and propagators in
flat and curved space [26–28], as well as fermionic models
[29], has established a powerful and universal approach
to estimating path integrals.
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However, as discussed below, WMC suffers a late time
(i.e. large T ) loss of precision. This “undersampling”

problem, caused by the
√
T spatial growth of Brownian

motion trajectories, leads to poor sampling of localised
potentials. This has been a limiting factor for precise es-
timations of the propagator. Here we modify the WMC
algorithms that generate trajectories to control this dif-
fusion, concentrating them about the support of V (x).
Naturally this causes a bias in the WMC simulations,

as trajectories no longer diffuse correctly. We provide
two methods (analytic and numerical) to remove this bias
by modifying the Gaussian weight on particle velocities.
We not only recover the desired sampling of the quantum
system, but simulations based on this approach no longer
suffer from undersampling and hence improve the large
time estimation of the kernel, since they better sample
the potential. We immediately obtain order of magnitude
improvements in estimations of ground state energies.
The two methods can be summarised as follows. De-

noting v ≡ v[x] :=
∫ T

0
V (x(τ))dτ (the integral of the

potential along the trajectory x), the WMC simulation
estimates the expectation value of this Wilson line from

NL trajectories (
M.C.
= indicates Monte Carlo estimate):

K(y, x;T )
M.C.
= K0(y, x;T )

1

NL

∑NL

i=1
vi∼℘(v)

e−vi , (4)

where the samples, vi, follow the distribution℘(v|y, x;T )
described below, inherited from the free particle Gaus-
sian weight on velocities [30], and K0 is the free particle
kernel. Instead we generate trajectories in a background
potential, U , with distribution on the {vi} now given by
℘

U . Our analytic approach relies on a compensating fac-

tor, F (v) ≡ ℘(v)
℘U (v) with which

K(y, x;T )
M.C.
= K0(y, x;T )

1

NL

∑NL

i=1
vU
i ∼℘U (v)

e−vU
i

F (vUi )
(5)

is a correct Monte Carlo estimation of the kernel when
the {vUi } follow ℘U (v).
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Finding the compensating factor is non-trivial in gen-
eral1, so in the second, universally applicable numerical
approach, the background can be compensated by a po-
tential subtraction, whereby the Wilson line variable be-

comes ν ≡ ν[x] :=
∫ T

0
dτ

[
V (x(τ))−U(x(τ))

]
, with values

distributed as ν ∼ ℘Ū (ν). We will prove equivalence of

K(y, x;T )
M.C.
= KU (y, x;T )

1

NL

∑NL

i=1
νi∼℘Ū (ν)

e−νi , (6)

where KU is the kernel in the potential U alone.
We begin in section II with an outline of the WMC ap-

proach, emphasising the late time undersampling prob-
lem. We then analyse the distributions on the Wilson
line variables in section III, leading to our new numerical
algorithms (pseudocode is in Appendix A). There and
in section IV we describe how to compensate for these
modifications. We illustrate their application in V by es-
timating ground state energies for some simple systems.

II. WORLDLINE NUMERICS

The main idea of WMC was proposed in [1–3] and cor-
responds to replacing the continuous integral over trajec-

tories in (3) by a finite sum
∫

Dx(τ) → 1
NL

∑NL

i=1 over NL

paths (originally closed “loops”) {xi(τ)}NL
i=1. To evaluate

the Wilson line, we further discretise these trajectories in
τ , so xi(τ) → {xi(τk)}NP

k=1 becomes a set ofNP points (we
do not discretise the target space). Numerical implemen-
tation rescales to the dimensionless variable u := τ

T and
expands about the straight line between the endpoints
using unit trajectories, q(u),

x(τ) = x+ (y − x)u+

√
T

m
q(u) , (7)

thus arriving at (a normalised expectation value, ⟨1⟩ = 1)

K(y, x;T )

K0(y, x;T )
=

〈
e−T

∫ 1
0
duV (x(u))

〉
M.C.
=

1

NL

NL∑
i=1

e
− T

NP

∑NP
k=1 V (xi(uk)) , (8)

where the fluctuations qi = q(ui) with ui = i
NP

should
have a Gaussian distribution on velocities

P[q(u)] ∝ e−
1
2

∫ 1
0
du q̇2 −→ e−

NP
2

∑NP
k=1(qk−qk−1)

2

, (9)

and satisfy Dirichlet boundary conditions (DBC), q0 =
0 = qNP

. We thereby identify the discretised Wilson line

variables as vi := v[xi] =
T
NP

∑NP

k=1 V (xi(uk)).

1 Section II B derives the distributions as integral transforms of a
kernel: their determination equates to solving the system [30].

Application of worldline numerics in field theory ex-
ploits the first quantised worldline approach based on
path integrals over relativistic point particles. Indeed,
these methods were adapted to non-relativistic quantum
mechanics (which we focus on here) only recently, numer-
ically in [26, 28] and analytically – for the same type of
localised potential studied here – in [30, 31] (also [32]).
Trajectories distributed according to (9) can be gener-

ated directly with various algorithms [20, 27]. It is impor-
tant that they are not rejection-based, as Metropolis-type
algorithms are. Instead, a direct sampling of the distri-
butions implies that all trajectories generated contribute
to the estimation of physical quantities (alternative al-
gorithms based on thermalisation also exist [2, 3, 6, 7]).
Crucially, the modified algorithms proposed in this work
preserve this property, in that the effects of generating
trajectories in background potentials are “subtracted”
without any accept / reject step.

A. Undersampling problem

References [11, 26] show that the
√
T spatial growth

of trajectories – see (7) – causes late time diffusion away
from regions that dominate estimation of the potential
in (8). For systems with energies bounded from below,
the spectral decomposition provides the asymptotics

K(y, x;T )
T→∞∼ ψ0(y)ψ

⋆
0(x)e

−TE0 , (10)

where E0 is the ground state energy and ψn(x) :=
〈
x
∣∣Ψn

〉
are energy eigenfunctions. Undersampling is shown for
the harmonic oscillator in Fig 1: larger values of V (x)
are sampled for large T , underestimating log(K(y, x;T ))
which deviates markedly from the linearity expected from
(10). This spoils estimation of E0 as the asymptotic gra-
dient E0 = − limT→∞

∂
∂T log(K(y, x;T )).

One cause of undersampling is that the Gaussian
weight on velocities in (9) lacks information on the poten-
tial, V (x). Here, we propose new algorithms that gen-
erate trajectories in background potentials rather than
as free particles, tuned to favour trajectories that better
sample the system in question. To overcome the bias this
induces, we must examine the distribution of the Wilson
line variable, v, for trajectories following (9).

B. Path averaged potential

In [30], motivated by [17], one of the authors began sys-
tematic studies of the statistical distribution on values of
the Wilson line variable. This “Path Averaged Potential”
(PAP) is defined via a constrained path integral,

℘̄(v|y, x;T ) :=
∫ x(T )=y

x(0)=x

Dx(τ) δ
(
v−v[x])

)
e−

∫ T
0

dτ mẋ2

2 , (11)

normalised to define ℘(v|y, x;T ) = ℘̄(v|y,x;T )
K0(y,x;T ) .
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FIG. 1. An illustrative WMC estimation of the kernel, K, for
the harmonic oscillator using NL = 25000 trajectories and
Np = 5000 points. Undersampling is manifest in the late
time deviation from linearity as predicted by (10).

This distribution on the space of trajectories describes
the path integral contribution of paths with a fixed value,
v, of the Wilson line variable and defines an invertible
integral transform of the kernel:

K(y, x;T ) =

∫ ∞

−∞
dv ℘̄(v|y, x;T )e−v ,

℘̄(v|y, x;T ) = 1

2π

∫ ∞

−∞
dz eivzK̃(y, x;T, z) , (12)

where in K̃(y, x;T, z) we continue V (x) → izV (x). An
example of this distribution for the harmonic oscillator
is in Figure 2, with a numerical sampling using WMC.

Identification of the distribution on v is crucial for the
analysis in this work, mapping between configuration
space and a complementary “Wilson line space,” from
which values of v are drawn.

III. WILSON LINE STATISTICS

Equation (12) shows that good Monte Carlo sampling
equates with drawing values of v[x] from the appropri-
ate ℘(v). Moreover, smaller values of v tend to con-
tribute more to the formation of the kernel in (12), yet
this small-v tail was shown in [26] to be sampled poorly.
This suggests a strategy to mitigate undersampling: we
developed algorithms that generate trajectories in back-
ground potentials, U(x), taken to be a harmonic oscilla-
tor, UΩ(x) =

1
2mΩ2

ix
2
i , or a linear potential, Uκ = κixi,

designed respectively for approximately symmetric po-
tentials and for potentials with spatially skewed domi-
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Analytic prediction

FIG. 2. The distribution ℘(v|0, 0, 40) for a harmonic oscil-
lator (m = 1, ω = 1) sampled with NL = 106 trajectories.
The histogram of sampled values of v[x] is shown against the
analytic result (blue solid line), with good agreement.

nant features. Thus we change (9) to

P[q(u)] ∝ exp
(
−

∫ 1

0

du
[ q̇2
2

+ T 2U
(√ T

m
q(u)

)])
(13)

(this is sufficient for UΩ and Uκ since boundary terms
in x(τ) can be absorbed by shifting q(τ)). Then, for
symmetric, localised potentials, V (x), we superimpose a
harmonic oscillator background centered at the poten-
tial’s minimum, that favours trajectories in this region;
for potentials with skewed features (we will call them
“one-side dominated” potentials), the linear background
encourages trajectories towards smaller values of V (x),
providing the largest contributions to the path integral.
We must point out that a harmonic background was

used in heat kernel simulations on curved space in [28];
however, in contrast to their “regulating mass” valid for
small propagation times, we interpret the modification as
a genuine background potential and, crucially, show how
to compensate for the bias induced by such backgrounds.

A. Monte Carlo distributions

We present the newly developed algorithms that pro-
duce discretised trajectories, {xΩi } and {xκi }, according
to (13) in the appendix. In the main text we focus on
the statistical distributions followed by the Wilson line
variable in the presence of these backgrounds.
As it stands, a WMC simulation with trajectories gen-

erated according to (13) produces samples of the modified
Wilson line variable, denoted by {vΩi } and {vκi }. These
will of course follow different distributions, vΩ ∼ ℘Ω(v

Ω)
and vκ ∼ ℘κ(v

κ). Such simulations would make incor-
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rect Monte Carlo estimations, respectively

K0

〈
e−

∫ T
0

V (x(τ))dτ
〉
Ω

M.C.
=

K0

NL

∑NL

i=1
vΩ
i ∼℘Ω(v)

e−vΩ
i (14)

M.C.
= K0

∫ ∞

−∞
℘

Ω(v) e
−vdv , (15)

K0

〈
e−

∫ T
0

V (x(τ))dτ
〉
κ

M.C.
=

K0

NL

∑NL

i=1
vκ
i ∼℘κ(v)

e−vκ
i (16)

M.C.
= K0

∫ ∞

−∞
℘

κ(v) e
−vdv , (17)

where we suppress unimportant arguments to functions.
The notation ⟨· · · ⟩Ω and ⟨· · · ⟩κ indicate expectation val-
ues calculated in the appropriate background:

⟨· · · ⟩• :=
1

K•

∫
Dx(τ) · · · e−

∫ T
0

dτ
[

mẋ2

2 +U•(x)
]
, (18)

normalised by the kernel in the presence of the back-
ground (i.e with · · · → 1). Likewise, the distributions on
the values of the Wilson line are accordingly

℘•(v) =
〈
δ
(
v − v[x]dτ

)〉
• . (19)

Hence we must compensate for the effect of the back-
ground on the spatial distribution of the trajectories.

From (15-17) follows an immediate solution: assum-
ing we can identify functions F (v) and G(v) such that
℘

Ω(v) ≡ F (v)℘(v) and ℘κ(v) ≡ G(v)℘(v), the follow-
ing should be faithful Monte Carlo simulations:

K0

NL

∑NL

i=1
vΩ
i ∼℘Ω(v)

e−vΩ
i

F (vΩi )

M.C.
= K0

∫ ∞

−∞
℘(v)e−vdv = KV , (20)

K0

NL

∑NL

i=1
vκ
i ∼℘κ(v)

e−vκ
i

G(vκi )

M.C.
= K0

∫ ∞

−∞
℘(v)e−vdv = KV . (21)

We prove these claims for harmonic oscillator and linear
backgrounds in the following section.

1. Analytic distributions

Here explicit calculations are presented in both back-
ground potentials for some simple systems that allow us
to justify (20) and (21). To allow analytic determination
of the relevant distributions we treat the harmonic oscil-
lator (V (x) = 1

2mω
2x2) in the background UΩ and the

linear potential (V (x) = kx) in the background Uκ, in
one dimensional quantum mechanics for simplicity.

By emulating the steps in [30], it is straightforward to

obtain the multiplicative relations for these systems2,

℘
Ω(v|y, x;T ) =

√
sinh(ΩT )

ΩT
e−

Ω2

ω2 v℘(v|y, x;T ) , (22)

℘
κ(v|y, x;T ) = ℘

(
v +

κkT 3

12m

∣∣y, x;T )
= e

κT
2 (x+y)−κ2T3

24 e−
κ
k v℘(v|y, x;T ) , (23)

which identify the compensation factors F (v) =√
sinh(ΩT )

ΩT e−
Ω2

ω2 v and G(v) = e
κT
2 (x+y)−κ2T3

24 e−
κ
k v.

To verify that the compensation factor F (vΩi ) is cor-
rect, interpret the modified sum in (20) as a transforma-
tion on the {vΩi }. Then it can be written

K0

NL

∑NL

i=1
vΩ
i ∼℘Ω(v)

e−vΩ
i

F (vΩi )
≡ K0

NL

∑NL

i=1
v′
i∼℘

′(v)

e−v′
i , (24)

where we have defined a new set of Wilson line variables
{v′i} := {vΩi + log(F (vΩi ))}. This modified average is a
Monte Carlo estimation of the following integral:

K0

NL

∑NL

i=1
v′
i∼℘

′(v)

e−v′
i

M.C.
= K0

∫ ∞

−∞
℘′(v)e−vdv, (25)

with a new distribution, ℘′, inherited from ℘Ω. Elemen-
tary probability theory gives

℘′(v) = ℘Ω

((
v − log

√
sinh(ΩT )

ΩT

) ω2

ω2 − Ω2

) ω2

ω2 − Ω2
.

(26)
To see that this is the correct distribution we use it in

(25) changing variables to
(
v − log

√
sinh(ΩT )

ΩT

)
ω2

ω2−Ω2 for

K0

NL

∑NL

i=1
v′
i∼℘

′(v)

e−v′
i

M.C.
= K0

∫ ∞

−∞
℘

Ω(v)e
−v

√
ΩT

sinh(ΩT )
e

Ω2

ω2 dv

= K0

∫ ∞

−∞
℘(v)e−vdv = KV , (27)

using (22), as required.
We verify the compensation factor G(vκi ) analogously,

treating the sum in (21) as a transformation on the {vκi }.
So we write the sum as

K0

NL

∑NL

i=1
vκ
i ∼℘κ(v)

e−vκ
i

G(vκi )
≡ K0

NL

∑NL

i=1
v′′
i ∼℘′′(v)

e−v′′
i , (28)

where now {v′′i } := {vκi + log(G(vκi ))}. This average is a
Monte Carlo estimation of an integral:

K0

NL

∑NL

i=1
v′′
i ∼℘′(v)

e−v′′
i

M.C.
= K0

∫ ∞

−∞
℘′′(v)e−vdv, (29)

2 Explicit formulae for the PAPs of these potentials are given in
the Supplementary Material [33], following [30].
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FIG. 3. WMC estimate of the kernel K(0, 0;T ) for the har-
monic oscillator (ω = 1, NL = 25000, Np = 5000, Ω = 0.75)
using free particle (fp) paths and trajectories generated in a
quadratic background potential (qbp), compensated via (20).

with a new distribution, ℘′′, induced by ℘κ:

℘′′(v) = ℘κ

( k

k − κ

[
v +

κT

2

(κT 2

12
− (x+ y)

)]) ∣∣∣∣ k

k − κ

∣∣∣∣ .
(30)

Substituting into (29) with a change of variables to
k

k−κ

[
v + κt

2 (
κt2

12 − (x + y))
]
and the help of (23) proves

that (28) recovers a correct estimation of the propagator.

2. Numerical sampling and discussion

In figures 3 and 4 we compare illustrative WMC es-
timates of the kernel with and without a background
potential (henceforth we set m = 1 throughout). The
compensation factors ensure that the kernel is correctly
reproduced for short times, agreeing both with previ-
ous estimations and the known analytic results. Note,
however, that the simulations in background potentials
extend the time interval in which the analytic result is
reproduced by at least an order of magnitude.

The numerical simulations also provide data on the
distributions of values of the Wilson line variables in the
backgrounds. They directly verify the relations (22) and
(23) for trajectories generated in the backgrounds, and of
the “shifted” distributions (26) and (30) after compen-
sation as in (20) and (21). The results of this analysis
can be found in the Supplementary Material [33]. They
validate the algorithms in Appendix A and the analytic
determination of the adjusted PAPs given in (26) and
(30).

Analysis of these results reveals how undersampling
is overcome. The background potentials influence the
spatial distribution of trajectories to concentrates them

0 5 10 15 20 25 30
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100
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200

250

ln
(K

)
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Numerical estimation (lbp) NL = 25000

Analytic result

FIG. 4. WMC estimate of the kernel K(0, 0;T ) for the linear
potential (k = 0.5, NL = 25000, Np = 5000, κ = 0.48) using
free particle (fp) trajectories and trajectories generated in a
linear background potential(lbp), compensated via (21).

about the regions where the Wilson lines, e−v[x], pro-
vide significant contributions to estimation of the path
integral. This is reflected in the modifications to the dis-
tribution, ℘(v), from trajectories generated by the new
algorithms: smaller values of v become more likely (see
Supplementary Material [33]) which improves the sam-
pling of the potential. The systematic bias incurred by
modifying the distribution on the v[x] is removed by the
compensating factors in the Monte Carlo estimate.
The method has proven versatile to changes in the pa-

rameters of the systems under study (we discuss this in
the next section). However, it is apparent that the com-
pensating factor will only be obtainable for especially
simple systems (see (22-23)). Even in backgrounds with
the same functional form as the potential, say UV (x) ≡
µV (x) so that (22-23) are replaced by the general result

℘
µV (v|y, x;T ) =

K0(y, x;T )

KµV (y, x;T )
e−µv℘(v|y, x;T ) , (31)

it will be likely that (a) the PAP ℘(v|y, x;T ) is unknown
for this system and / or (b) it is non-trivial to generate
trajectories in said background. Hence, a more universal
approach was developed, outlined in the next section.

IV. COMPENSATING POTENTIAL

We present a method that exploits our ability to gen-
erate trajectories in quadratic or linear backgrounds (see
Appendix A) for application to any physical potential,
V (x). Here, the compensation for the background poten-
tials is done numerically, evading the need to determine
the PAP analytically as in the previous section.
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As outlined in Appendix A, generating trajectories
in the backgrounds UΩ or Uκ is formally equivalent to
adding an unwanted term to the free particle action, lead-
ing to the incorrect estimations in (15) and (17). Clearly,
the desired action can be restored by subtracting the un-
wanted term by hand:

KV = KΩ

〈
e−

∫ T
0

dτ
[
V (x(τ))− 1

2mΩ2x(τ)2
]〉

Ω
(32)

KV = Kκ

〈
e−

∫ T
0

dτ
[
V (x(τ))−κx(τ)

]〉
κ
, (33)

where the new normalisation factors take into account
the background potentials. Then, simulations will pro-
vide Monte Carlo estimations of the kernel via

KV
M.C.
= KΩ

∑NL

i=1
νΩ
i ∼℘̃(v)

e−νΩ
i

M.C.
= KΩ

∫ ∞

−∞
℘̃(v) e−vdv (34)

and the analogous relation

Kκ
M.C.
= Kκ

∑NL

i=1
νκ
i ∼℘̂(v)

e−νκ
i

M.C.
= Kκ

∫ ∞

−∞
℘̂(v) e−vdv . (35)

It remains to determine the new PAP, taking into account
the subtracted potential in the action.

A. Wilson Line distributions

The distribution on the νΩ is given by constraining
values of the line integral of the “effective potential”
on trajectories in the harmonic oscillator background,
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FIG. 5. WMC estimate of K(0, 0;T ) for the harmonic oscil-
lator (ω = 1, NL = 25000, Np = 5000, Ω = 0.75) using fp
trajectories and a qbp, with the potential subtraction (32).

℘̃(v) =
〈
δ
(
v − ν[x]

)〉
Ω
, which we determined to be

℘̃(v) =
ω2

ω2 − Ω2
℘

Ω

( ω2

ω2 − Ω2
v
)

(36)

=

√
sinh(Ωt)

Ωt

ω2

ω2 − Ω2
e
− Ω2

ω2−Ω2 v℘
( ω2

ω2 − Ω2
v
)
. (37)

With this we can show that (34) indeed gives a correct
Monte Carlo estimation by changing the integration vari-

able to v′ = ω2

ω2−Ω2 v, yielding

KΩ

∫ ∞

−∞
℘̃(v) e−vdv = KΩ

K0

KΩ

∫ ∞

−∞
℘(v′) e−v′

dv′ = KV ,

(38)
as desired.
Similarly, we calculate how the νκ are distributed

through the constrained path integral taking the linear

background into account: ℘̂(v) =
〈
δ
(
v − ν[x]

)〉
κ
, giving

℘̂(v) =
k

k − κ
℘

κ

( k

k − κ
v
)

(39)

= e
κT
2 (x+y)−κ2T3

24
k

k − κ
e−

κ
k−κ v℘

( k

k − κ
v
)
. (40)

After changing variables to v′ = k
k−κv, (40) proves that

(35) is a faithful Monte Carlo estimation of the kernel.
WMC simulations were carried out to confirm the pre-

dictions of the above analysis. In particular, the modified
PAPs in (37) and (40) were sampled by probing the val-
ues of the Wilson line variable for trajectories produced in
the backgrounds. We present results of this sampling in
the Supplementary Material [33], which confirm the the-
oretical determination presented above. Here we instead
focus on showing the improvement in the estimation of
the propagator for the quantum systems, overcoming the

0 5 10 15 20 25 30 35 40
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)
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Numerical estimation (lbp) NL = 25000

Analytic result

FIG. 6. WMC estimate of K(0, 0;T ) for the linear potential
(k = 0.5, NL = 25000, Np = 5000, κ = 0.48) with fp trajecto-
ries and a lbp, compensated with potential subtraction (33).
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undersampling problem that limited previous work. As a
first step, we estimated the kernel for the same potentials
(i.e. harmonic oscillator and linear potential) as for the
analytic approach of the previous subsection. This allows
us to confirm that the subtraction in the action gives a
comparable improvement in precision that extends the
range of times for which the simulations provide good
estimates of the kernel – see figures 5 and 6.

A natural question is whether the undersampling prob-
lem reappears, albeit for larger transition times. Indeed,
for a fixed value of the background parameters (Ω and
κ), a deviation from linearity can eventually occur. It is
still associated to the growth in the spatial extent of the
trajectories driven by the Gaussian distribution on veloc-
ities overcoming the confining effect of the background
potentials. But it can easily be mitigated by simply in-
creasing the value of Ω or κ as appropriate for the system
under study. Doing so strengthens the background po-
tential and ensures that it continues to compensate for
the diffusion of trajectories. This takes advantage of the
fact that the error induced by discretising the Riemann
integral of the compensating potential is much smaller
than that caused by discretising the path integral over
trajectories.

V. APPLICATIONS

So far, we have focussed on confirming the theoreti-
cal advances of earlier sections, using especially simple
systems and related, analytically convenient background
potentials. In this section we analyse some less trivial
quantum systems (where sufficient analytic knowledge
still exists) to test the proposed method: the Pöschl-
Teller “reflectionless potential,” the absolute value po-
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)
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Analytic result

FIG. 7. WMC estimate of the kernelK(0, 0;T ) for the Pöschl-
Teller potential (λ = 1, α = 1, NL = 25000, Np = 5000, Ω =
0.75) using fp trajectories and qbp with potential subtraction.

tential and a system with a cubic memory kernel. In
the symmetric cases, WMC trajectories are generated in
a harmonic background centered about the minimum of
the potential, and the potential subtraction scheme is ap-
plied; for the cubic memory kernel system, we generate
the trajectories in a linear background centered at the
origin in order to favour trajectories exploring the nega-
tive real axis.
We briefly comment on errors in the proceeding simula-

tions. As outlined by [6, 7, 26], for NL sufficiently larger
than NP the statistical error from the path integral dis-
cretisation dominates the systematic error in calculating
the (Riemann) integral of the potential along the trajec-
tories. Then the error in the estimation of the kernel is
well approximated by the standard error in the mean of
values of the Wilson line. The percentage error in the
simulations below was found to be of order 2-4% (unless
otherwise stated) – such small error bars have been sup-
pressed for clarity. Autocorrelation is avoided by using
an independent set of trajectories for each value T .

A. Estimating the propagator and ground state
energies

The propagator for the modified Pöschl-Teller poten-

tial, Vλ(x) = − α2

2m
λ(λ+1)

cosh2(αx)
, is known in closed form [34].

We simulate this for coupling α = 1 and with λ = 1
bound state (making it most susceptible to the undersam-
pling problem), using a harmonic oscillator background
with centre x = 0. Since the PAP is unknown for this
system, a compensating factor cannot be determined an-
alytically, so we rely on the potential subtraction scheme.
Figure 7 compares our results using the algorithms re-
ported here favourably to those in [26].
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FIG. 8. WMC estimate of the kernel K(0, 0;T ) for a cubic
memory kernel (µ = 0.025, NL = 25000, Np = 5000, κ = 0.1)
using fp and lbp trajectories (potential subtraction).
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The background potential is seen to overcome the un-
dersampling problem, allowing simulations up to transi-
tion times at least 8 times greater. Then, using (10), we
estimate the ground state energy through a linear fit to
the propagator for t ∈ [5, 50]. We find E0 = −0.50004391
compared to the analytic result E0 = −0.5, which rep-
resents an order of magnitude increase in precision over
previous WMC estimations.

We treat the the absolute value potential, defined by
Vκ(x) = κ|x|, in the Supplementary Material [33], report-
ing simply the final estimation of the ground state energy
for parameters m = 1, κ = 0.5 here. We find an estima-
tion E0 = 0.50939336 for a linear fit to the propagator in
the range T ∈ [5, 30] (analytic result: E0 = 0.509397 . . .).
Finally, to demonstrate the use of a linear background,

we consider a system with a cubic memory kernel [34],

such that S[x] =
∫ T

0
dτ

[
m ẋ2

2 − µ
( ∫ T

0
dτ x(τ)

)3]
with µ

constant. This provides a linear asymmetry but with
a cubic nonlinearity. The propagator can be found in
closed form as (we take x = y = 0 for convenience)

K(0, 0;T ) =
2

T 2

(√3

µ

) 1
3

Ai
[ 4

T 6

(√3

µ

) 4
3
]
e

16
T9µ2 , (41)

where Ai is the Airy function. For µ > 0 the path in-
tegral is strongly weighted by trajectories in the region
x > 0, where the potential is largest. As for the linear
potential, however, Monte Carlo estimation of the ker-
nel suffers severe undersampling due to the sum in (4)
being dominated by a small number of trajectories for

which
∫ T

0
dτ x(τ) is excessively large. This can be seen

in the simulations using free particles (fp) in Figure 8. In
this case, then, we use a linear background to encourage
trajectories towards more negative values of x.

Although Figure 8 clearly shows that the estimation of
the propagator is substantially improved, especially for
smaller values of T , in this case we found greater insta-
bility in the predictions obtained with the background
potential method as T increases, due to favouring tra-
jectories in a lower-importance region in order to avoid
undersampling. Indeed, here for T < 15 the percentage
error is O(10%), but varies from 5% to 20% for larger
values of T. As demonstrated in [26], this instability can
be partially overcome by (a) increasing NL and (b) aver-
aging over a suitable number of repeated simulations. It
can also be reduced by adaptively varying the value of κ
as the transition time increases. The instabilities found
for this system are intended to be clarified in future work.

VI. CONCLUSION

In this article we have presented two methods for im-
proving Monte Carlo simulations of the quantum me-
chanical propagator, along with accompanying algo-
rithms (in Appendix A) that generate point particle tra-
jectories in appropriate background potentials. We have
confirmed the correctness of these Monte Carlo estimates,

both analytically and numerically, and shown how they
overcome an undersampling problem that has previously
hindered simulation of the Schrödinger kernel for large
transition times, thereby limiting the precision of esti-
mations of physical quantities such as energy levels.
The methods reported here allow us to extend the

range of transition times accessible to simulations by an
order of magnitude, consequently improving estimations
of the ground state energies of the systems under study,
again by an order of magnitude. We expect that these
methods will be widely applicable to more general sys-
tems, including singular potentials [26], for (spatially de-
pendent) electromagnetic fields [6] or in curved space [28].
Note that this work also clarifies why the “regulating

mass” in [28] had a minimal effect on their numerical
results. There, a small α (see (A4)) was used at short

times, corresponding to ΩT ≪ 1 and Ω2

ω2 v ≪ 1. For these
parameters, F (v) ≈ 1 so that ℘Ω(v) → ℘(Ω) and the
Monte Carlo estimation remains approximately faithful.
We have verified that even the free particle propagator
can be simulated for the first time with the algorithms
proposed here, by using potential subtraction in either
background for an otherwise non-interacting system.
The extension of this work to relativistic particle tra-

jectories relates, via the worldline formalism, to study-
ing the propagator (open worldlines) or effective action
(closed trajectories) for quantum fields. In this context,
the formation of bound states can be examined by con-
sidering a multi-particle interacting system. Such inter-
particle interactions are often highly localised, or even
singular, where the importance sampling presented here
would be of considerable benefit for accelerating the con-
vergence of numerical simulations. Of course the inclu-
sion of spin degrees of freedom is an important aspect
of numerical simulations. In the case of a magnetic mo-
ment coupling to a magnetic field, for instance, we would
aim to incorporate information about the spatial varia-
tion of the magnetic field to achieve a similar importance
sampling of this interaction, as demonstrated here for
spatially localised potentials.
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Appendix A: Monte Carlo algorithms

In this appendix we present the numerical algorithms
for generating trajectories in quadratic and linear back-
grounds. The method is based on discretising (13) for
UΩ and Uκ and diagonalising the result.

1. Harmonic oscillator background

An algorithm was introduced in [28] to generate tra-
jectories with a regularising “mass term” (quadratic in
the field x). Denoting by Y the sum in the exponent of
(9), [28] considered the modification:

Y → Y (α) =

Np∑
k=1

[(qk − qk−1)
2 + αq2k] , α > 0 . (A1)

This can be (non-orthogonally) diagonalised by:

Y (α) =

Np−1∑
k=1

C
(α)
Np−kq̄

2
k , (A2)

with the identification

q̄k = qk − 1

C
(α)
Np−k

qk−1 , k = 1, 2, . . . , Np − 1 , (A3)

and with C
(α)
k = C

(α)
1 − 1

C
(α)
k−1

(C
(α)
1 = 2 + α). In this

work we instead interpret the αq2k term in Y (α) as provid-
ing a genuine background potential, UΩ = 1

2mΩ2x2, that
concentrates trajectories about its minimum. The fre-
quency of this harmonic potential is related to the mass
parameter in the continuum limit by

α =
Ω2T 2

N2
p

. (A4)

Then the corresponding algorithm reads as follows:

1. Generate Np − 2 vectors ωi, i = 1, 2, . . . , Np − 1,
distributed according to P(ωi) ∝ exp(−ω2

i ).

2. Compute unit vectors q̄i =
√

2

NpC
(α)
Np−i

ωi−1, for

i = 1, 2, . . . , Np − 1.

3. Construct the unit loop according to

q1 = q̄1,

qi = q̄i +
1

C
(α)
Np−i

qi−1, i = 2, 3, . . . , Np − 1 . (A5)

4. Repeat the process NL times.

We describe in the main text how to compensate for the
unwanted bias caused by this modification to trajectories.

2. Linear background

For one-side dominated potentials, it is instead
favourable to produce trajectories in a linear background
potential, so we let

Y → Y (β) =

Np∑
k=1

[(qk − qk−1)
2 + 2βqk] , β > 0 . (A6)

This time the diagonalisation is achieved by

Y (β) =

Np−1∑
k=1

C
(β)
Np−k q̄

2
k −

Np−1∑
k=1

β2
k

C
(β)
k

. (A7)

where

q̄k = qk − 1

C
(β)
Np−k

(
qk−1 − βNp−k

)
, k = 1, 2, . . . , Np − 1 ,

with C
(β)
k = k+1

k and βk = k+1
2 β. The final sum in (A7)

can be evaluated to give

Np−1∑
k=1

βk

C
(β)
k

=
β2

12
Np(Np + 1)(Np − 1) . (A8)

In the continuum limit, the linear term in Y (β) corre-
sponds to a potential Uκ(x) = κx where

β =
κ

m

T 2

N2
P

, (A9)

and the sum in equation (A8) tends to κ2T 3

24m . The numer-
ical algorithm for this background follows the previous

one with C
(α)
k → C

(β)
k , except that step 3 becomes:

3. Construct the unit loop according to

q1 = q̄1,

qi = q̄i +
1

C
(β)
Np−i

(
qi−1 −

√
m

t
βNp−i

)
, i = 2, 3, . . . , Np − 1 .

(A10)

Again, the bias induced by the presence of the back-
ground is removed by the procedures described in the
main text.
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