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Abstract — A new method to numerically evalu-

ate Shannon’s lower bound is presented in this pa-

per. This new method is based on the Incomplete

Beta function and permits the exact evaluation of the

Sphere Packing Bound for a large range of code sizes,

rates and probability of error. Comparisons with cur-

rent standards (DVB–RCS, DVB–S2 and 3GPP) are

also presented and discussed. It is shown that cur-

rent standard coding schemes are about 0.6dB from

the Shannon Limit corrected for Binary Signalling.

I. Introduction

The classic lower bound on Probability of codeword error
was developed by Shannon[1]. This presented lower and
upper bounds on the probability of codeword error for a
spherical block code with equal energy, a certain average
energy or an upper bounded value of energy per code-
word. Of interest is the equal energy case and the lower
bound on probability of codeword error. The exact value
of the lower bound was explored and due to numerical
instability and computation time only block lengths of a
few hundreds were computed exactly (see [2, 3] and ref-
erences therein). In this paper we use a new numerical
method to compute this lower bound. We also present
the lower bound for some standard coding schemes[4–6],
and some improvements to these standards.

II. Computing The Sphere Packing Bound

A. Problem Formulation (as told by Shannon)

Shannon estimates the probability of error
Pe(M,n,

√

P/N) for the best code of length n con-
taining M codewords each of power P and perturbed
by noise of variance N . The number of codewords M
for the codes of interest is 2k where k is the number of
information bits and n is the number of codeword bits.
The ratio P/N is equal to 2REb/No, where R is code
rate and Eb/No is the energy per information bit and the
factor 2 comes from the output of a matched receiver.

The sphere packing bound formulation has M points
over an n dimensional sphere, with all points at a dis-
tance of

√
nP from the origin. For decoding purposes,

the (n− 1) hyperplanes which bisects the line connecting
any two codewords forms a polyhedra (in fact pyramids)
with the apex at the origin. The probability of error is
the probability that the noise will move a point from the
codeword location to an area outside the polyhedra. If
the ith polyhedra has solid angle Ωi (Ωi is the area cut
out by the pyramid on the n dimensional spherical sur-
face). The ith pyramid can be replaced by a cone centred

at the origin with care taken such that the solid angles are
the same. This deformation causes an increase in Pe as
moving the area to create a cone of the same solid angle
results in moving smaller elements into the cone (increas-
ing the Pe). A bound on the probability of error can then
be found as

Pe ≥ 1

M

M
∑

i=1

Q∗(Ωi) (1)

where Ωi is the solid angle of the ith pyramid and Q∗(Ωi)
is the probability of a point being carried outside a sur-
rounding cone of solid angle Ωi. If Ω0 is the solid angle
of an n dimensional sphere, then

M
∑

i=1

Ωi = Ω0

The bound above can be further simplified by replacing
Ωi with the average Ω0

M and thus

Pe ≥ 1

M

M
∑

i=1

Q∗(Ωi) = Q∗

(

Ω0

M

)

∴ Pe ≥ Q∗

(

Ω0

M

)

(2)

This Pe is Shannon’s fundamental Lower Bound, and
it is expressed in terms of half–cone angles θ rather than
solid angles Ω. Defining Q(θ) as the probability of being
carried out of a half–cone angle θ, and θ1 corresponds to
Ω0/M ; then

Pe ≥ Q(θ1) (3)

B. Code Rate as a Function of the Cone Angle

The cone angle θ1 is such that the solid angle of the cone
is 1/M = 2−k times the full solid angle of a sphere. The
solid angle of a cone with half angle θ can be computed
as Ω(θ)

Ω(θ1) =
(n − 1)π(n−1)/2

Γ
(

n+1
2

)

∫ θ1

0

(sin θ)n−2dθ (4)

and M times this should equal the surface area of an
n dimensional sphere of radius r (Sn(r))

Sn(r) =
nπn/2rn−1

Γ(n/2 + 1)
(5)

Thus for a sphere of unit radius (r = 1), the ratio of the
solid angle of the cone and the solid angle of the sphere



is related to the number of messages as

1

M
=

Ω(θ1)

Sn(r)

=
(n − 1)

n

1√
π

Γ(n
2 + 1)

Γ
(

n+1
2

)

∫ θ1

0

(sin θ)n−2dθ

For binary codes this results in

∫ θ1

0

(sin θ)n−2dθ =

√
π

2k

n

(n − 1)

Γ
(

n+1
2

)

Γ(n
2 + 1)

Now the integral above can be computed using the
relationships[7] page 149.

∫

sin2p x dx =
1

22p

(

2p

p

)

x +

(−1)p

22p−1

p−1
∑

k=0

(−1)k

(

2p

k

)

×

sin(2p − 2k)x

2p − 2k
(6)

∫

sin2q+1 x dx =
(−1)q+1

22q

q
∑

k=0

(−1)k

(

2q + 1

k

)

×

cos(2q + 1 − 2k)x

2q + 1 − 2k
(7)

where p = n/2 − 1 and q = (n − 3)/2 and both p and q
are integers.

These expressions can be used to evaluate the angle θ1

given an (n, k) code.

C. Lower Bound on Probability of Codeword Error

The lower bound Q(θ1) is computed using a spherical
Gaussian distribution which is equivalent to a noncentral
t-distribution. The noncentral t-distribution is defined
using z, δ and x where z and x are Gaussian (N(0, 1))
and δ is a constant. The distribution states that the ratio
of (z + δ) to the rms of f other random variable does not
exceed t. Thus denoting this probability as P (f, δ, t) we
have

P (f, δ, t) = Pr







z + δ
√

1
f

∑f
i=1(xi)2

≤ t







(8)

This is a spherical Gaussian distribution with unit vari-
ance about a point δ from the origin in f + 1 dimen-
sional space. The probability P (f, δ, t) is the probabil-
ity of being outside a cone from the origin having the
line segment to the centre of the distribution as axis.
Shannon showed that f = n − 1, δ =

√

n2REb/No and
t =

√
f cot(θ) =

√
n − 1 cot(θ)[1]. Thus we get the rela-

tionship between the probability of error and the param-
eters of the code and system as

Q(θ) = P

(

n − 1,
√

n

√

P

N
,
√

n − 1 cot(θ)

)

(9)

The density function of the spherical Gaussian distri-
bution is given in [8] as

f(t) =
ff/2e−δ2/2

√
πΓ(f/2)

∞
∑

j=0

[

δj2j/2

j!
Γ((f + j + 1)/2) ×

tj(f + t2)−(f+j+1)/2

]

(10)

and using this can be shown that the cumulative density
function of this can be evaluated using the incomplete
beta function[9, 10].

P (f, δ, t) = 1 − 1

2
e−δ2/2

∞
∑

j=0

[

(δ/
√

2)j

Γ
(

j
2 + 1

) ×

Ix

(

f

2
,
j + 1

2

)]

(11)

with, x = f/(f + t2) (12)

and, Ix(c, d) =
Γ(c + d)

Γ(c)Γ(d)

∫ x

0

tc−1(1 − t)d−1dt (13)

(13) has positive terms and the computation of the proba-
bility of error becomes the evaluation of a truncated sum.

P (f, δ, t) = 1 − 1

2
e−δ2/2

N
∑

j=0

[

(δ/
√

2)j

Γ
(

j
2 + 1

) ×

Ix

(

f

2
,
j + 1

2

)]

+ ERROR (14)

The truncated sum results in an error which can be
shown to be

|ERROR| ≤ 1

2
(1 + δ

√
2)[1 − Poi(N, 2δ2)] (15)

where Poi(N, 2δ2) is a Poisson probability[10]. In this
paper N is large enough such that the computed proba-
bility of error computed to double precision accuracy is
unchanged.

Thus the computed probability of error can be defined
as

P (f, δ, t) = 1 − 1

2
e−δ2/2

N
∑

j=0

[

(δ/
√

2)j

Γ
(

j
2 + 1

) ×

Ix

(

f

2
,
j + 1

2

)]

(16)

If we define the sum in (16) as

SUM =

2N+1
∑

j=0

TjGj (17)

where

Tj =
(δ/

√
2)j

Γ
(

j
2 + 1

) , and Gj = Ix

(

f

2
,
j + 1

2

)

,

2



with x =
f

f + t2

Also, defining

Di = T2i, and Ei = T2i+1, (18)

Then,

SUM =
2N+1
∑

j=0

TjGj

=

N
∑

i=0

T2iG2i + T2i+1G2i+1

=

N
∑

i=0

DiG2i + EiG2i+1 (19)

All the terms of the summation above can be evaluated
recursively. Defining λ = δ2/2

D0 = 1, E0 = δ
√

2/π,

Di = (λ/i)Di−1, Ei = (λ/(i + 1/2))Ei−1

Defining
B(i) = Ix(b, a + i),

and applying the identity

Ix(d, c + 1) = Ix(d, c) + C(c, d)xd(1 − x)c,

with

C(c, d) =
Γ(c + d)

Γ(c + 1)Γ(d)
,

we get

B(i) = Ix(b, a + i)

= Ix(b, a + i − 1) + C(a + i − 1, b)xb(1 − x)a+i−1

= B(i − 1) + S(i − 1)

where,

S(i) = C(a + i, b)xb(1 − x)a+i

=
Γ(a + b + i)

Γ(a + i + 1)Γ(b)
xb(1 − x)a+i

= (1 − x)
a + b + i − 1

a + i
S(i − 1)

By setting

B(i) = G2i = Ix(f/2, i + 1/2), and

BB(i) = G2i+1 = Ix(f/2, i + 1)

(19) can then be written as

SUM =

N
∑

i=0

[DiB(i) + EiBB(i)] (20)

with all four terms computed recursively.
A Logarithmic version of this algorithm is given in ta-

ble 1
This algorithm can be used to evaluate the exact sphere

packing lower bound for k of thousands and arbitrary rate
codes.

1. Input
f = n − 1,
δ =

√
n
√

2REb/No,
t =

√
n − 1 cot(θ), and

N

2. Evaluate
λ = δ2/2, and
x = f/(f + t)

3. Evaluate
B = ln Ix(f/2, 1/2),
BB = ln Ix(f/2, 1),
D = 0,
E = ln(δ

√

2/π),
S = ln 2 + ln Γ((f + 1)/2) − ln Γ(f/2) − ln(

√
π) +

(f/2) ln(x) + (1/2) ln(1 − x),
SS = ln Γ(1+f/2)−ln Γ(f/2)+(f/2) ln(x)+ln(1−
x), and
SUM = logsum(D + B,E + BB)
where ln Ix(a) is the Log Incomplete Beta Function
ln Γ(a) is the Log Gamma function and
logsum(a, b) = ln(ea + eb) = a + ln(1 + eb−a)
assuming a > b.

4. For each i = 1, 2, · · · , N
B = logsum(B,S)
BB = logsum(BB,SS)
D = ln(λ) + D − ln(i)
E = ln(λ) + E − ln(i + 0.5)
SUM = logsum(logsum(SUM,D + B), E + BB)
S = ln(1 − x) + ln(f + 2i − 1) − ln(1 + 2i) + S
SS = ln(1 − x) + ln(f + 2i) − ln(2 + 2i) + SS

5. Return probability of error 1 − e(−λ+SUM+ln(0.5))

Tab. 1: Logarithmic Version of Algorithm to Compute (9)

D. Correction for Binary Transmission
Wideband Binary Gaussian Channels are known to have a
loss due to binary transmission[11]. This loss comes from
equating the capacity of the two–input Gaussian channel
to the results from information theory.

The capacity of a Gaussian Channel with α =
√

2(REb)/No in nats/symbol is given by

C(α) = α2 − 1√
2π

∫

∞

−∞

e−y2/2 log cosh(α2 + αy)dy (21)

and a bit error probability of p is achievable if
(

log(2)

log(e)
R

)

(1 − H(p)) ≤ C(α) (22)

with H(p) = −p ln(p) − (1 − p) ln(1 − p) the natural en-

tropy function and R in bits/symbol and the factor log(2)
log(e)

converts the bits/symbol to nats/symbol.
The capacity for non–binary signalling is given by

C∞ =
1

2
loge(1 + 2(REb)/No) (23)
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and using this we can compute the Eb/No required by
non–binary signalling. The difference between these two
values of Eb/No gives the loss for binary signalling. The
Eb/No difference and its dependence on code rate for low
error rates (below 10−4) is shown in the figure below.
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Fig. 1: Loss Due to Code Rate on Binary Channel

The sphere packing bound needs to be corrected for the
loss due to binary signalling, to apply it to the simulations
and the results that we have. This correction is done as
an offset to Eb/No as computed by the procedure above.

III. Results

As an example, we have calculated the Shannon limit
for the following standard codes: the MPG size
(3008, 1504, 19) DVB-RCS turbo code, the (64800, 32400)
DVB-S2 Hughes Network Systems LDPC and the
(1152, 384) 3GPP turbo code. The performance of the
DVB-RCS code is shown in Figure 2, together with
the Sphere Packing Bound corresponding to code sizes
(3008,1504) and the correction for binary signalling. The
performance of an improved turbo code (3008, 1504, 25)
using the same component codes and a code matched in-
terleaver is also shown in this figure. It can be seen that
the DVB-RCS turbo code is about 0.7 dB away from the
Sphere Packing Bound and 0.5 dB away from the bound
corrected for binary signalling for Pe ≥ 10−4. However,
for Pe < 10−4, the DVB-RCS code performance shows a
pronounced error floor due to the relatively low minimum
distance dmin = 19 and high multiplicity aw=19 = 376.
This is due to the interleaver construction technique. We
have designed a code matched interleaver for the same
component codes and code size which results in a turbo
code with dmin = 25 with multiplicity aw=25 = 30. This
code has no error floor down to a probability of error
Pe = 10−6 and for this range of probabilities is 0.5 dB
from the sphere packing bound corrected for binary sig-
nalling.

Figure3 shows the Sphere Packing Bound and the sim-
ulated performance of the (1152, 384) 3GPP code. This
code has a lower rate and as a consequence the binary

signalling correction is smaller. Two curves are presented
for this code: the basic iterative decoding curve and the
performance with improved iterative decoding using the
RVCM technique presented in [12–14]. It can be seen
that this code is around 0.6 dB from the Sphere Packing
Bound corrected for binary signalling.

The DVB-S2 code performance shown in Figure 4 is
much longer block length than the previous examples.
However, it is interesting to note that this code is also
around 0.6 dB away from the corrected Sphere Packing
Bound.
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Fig. 2: DVB-RCS BPSK (3008, 1504) LDPC
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Fig. 3: 3GPP BPSK (1152, 384) Turbo Code
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Fig. 4: DVB-S2 QPSK (64800, 32400) LDPC

IV. Conclusions

This paper has presented a new method for computing
Shannon’s Sphere Packing Bound based on using the In-
complete Beta Function. This new method enables the
evaluation of the bound exactly for large values of k and
n. The calculation has been illustrated for different code
rates and sizes corresponding to several standards such
as DVB–RCS, DVB–S2 and 3GPP. We have noticed that
regardless of code size and code rate the performance is
about 0.6dB from the corrected Shannon Lower Bound
at a codeword error rate of 10−6.
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