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 We present an inverted pendulum design using readily available V-slot rail components and 

3D printing to construct custom parts. To enable the examination of different pendulum 

characteristics, we constructed three pendulum poles of different lengths. We implemented 

a brake mechanism to modify sliding friction resistance and built a paddle that can be 

attached to the ends of the pendulum poles. A testing rig was also developed to consistently 

apply disturbances by tapping the pendulum pole, characterizing balancing performance. 

We perform a comprehensive analysis of the behavior and control of the pendulum. This 

begins by considering its dynamics, including the nonlinear differential equation that 

describes the system, its linearization, and its representation in the s-domain. The primary 

focus of this work is the development of two distinct control modes for the pendulum: a 

velocity control mode, designed to balance the pendulum while the cart is in motion, and a 

position control mode, aimed at maintaining the pendulum cart at a specific location. For 

this, we derived two different state space models: one for implementing the velocity control 

mode and another for the position control mode. In the position control mode, integral action 

applied to the cart position ensures that the inverted pendulum remains balanced and 

maintains its desired position on the rail. For both models, linear observer-based state 

feedback controllers were implemented. The control laws are designed as linear quadratic 

regulators (LQR), and the systems are simulated in MATLAB. To actuate the physical 

pendulum system, a stepper motor was used, and its controller was assembled in a DIN rail 

panel to simplify the integration of all necessary components. We examined how the 

optimized performance, achieved with the medium-length pendulum pole, translates to poles 

of other lengths. Our findings reveal distinct behavioral differences between the control 

modes. 
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1. Introduction   

1.1. Declaration 

This paper represents a substantial extension of work originally 

presented at the 2022 International Conference on System Science 

and Engineering (ICSSE) [1]. The differences with the previous 

publication are that here we now include the ability to change the 

physical pendulum’s mechanical characteristics, provide a more 

rigorous system analysis, build a custom testing rig, and improve 

upon previous system identification and testing procedures. 

1.2. Overview 

An inverted pendulum is a mechanical system comprising a 

rigid pole, with a pivot at one end that is located on a mobile cart. 

The challenge of building an inverted pendulum is that, in its 

inverted upright configuration, it represents a marginally an 

unstable system. The task is to maintain the system in this 

inherently unstable upright position, even in the presence of minor 

disturbances such as a gentle tap. Achieving this balance requires 

the implementation of a control strategy. The control mechanism 

must continuously measure the angular displacement of the 

pendulum from the vertical and correspondingly manipulate the 

cart's position to counteract any deviations. 

1.3. Previous work 

The inverted pendulum is widely recognized as one of several 

classical problems in the field of control engineering that is 

enlightening to study [2]. It has been used as a benchmark in 

robotics and control theory for almost the last 100 years and is 

often chosen to test and evaluate new control methods [3]. This 

preference arises because pendulum balancing represents behavior 
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relevant to a wide range of theoretical challenges and practical 

applications [4,5].  

One prominent example of these behaviors is the inverted 

pendulum's manifestation as a simple non-linear dynamic system, 

characterized by stable and unstable equilibrium points. During the 

dynamic transition from a downward to an upright position, the 

pendulum exhibits nonlinearity, primarily arising from how the 

pendulum angle affects the applied torque due to the pendulum's 

weight [6]. In addition, it represents a system for which it is crucial 

to achieve stability at the upright position in the presence of 

disturbances, which can only be achieved by moving the cart 

appropriately along its rail [7].  

James Kerr Roberge was one of the first researchers to describe 

an inverted pendulum [6]. Since then, many inverted pendulum 

designs and their variants have been constructed and studied, 

including ones aimed at teaching and research [8,9], mobile 

designs [10,11], pendulums mounted on drones [12], as well as 

rotary designs [13,14].  

Derivations of the dynamics of inverted pendulums and their 

simulation have been carried out by many researchers, for example 

[15]. Many different approaches to control have also been 

investigated. These include PID and classical approaches to 

control in the s-domain [16,17], state feedback control [1,18], and 

Lyapunov-based controller design [19], and comparisons have 

been made between different controllers [20]. Machine Learning 

(ML) approaches are becoming an increasingly successful way to 

deal with hard control problems. They mark a change from 

designing controllers based on explicit mathematical models 

derived from physics to more empirical methodologies that are 

essentially data driven [21]. ML approaches make use of 

reinforcement learning (RL) based on Q-Learning [22], Policy 

Iteration [23], and Deep Q-Networks [24]. The PILCO RL 

algorithm is especially data efficient, since it builds and makes use 

of a probabilistic model of the task dynamics as it learns to balance 

the pendulum [25]. Further ML approaches involve neural 

networks [26,27] and genetic algorithms [28,29]. Hybrid methods 

using control engineering approaches and neural network 

techniques have also been investigated [30]. Researchers often 

compare different control approaches [31]. More complex two-

link inverted pendulums have also been studied by several 

researchers and implemented using a range of control techniques 

[32]. Other researchers have even investigated the use of 

reinforcement learning to control a pendulum with three links [33]. 

The inverted pendulum also forms a basis for understanding 

simple balancing robots [34–36]. There is also increasing interest 

in the construction of legged and humanoid robots[37,38], in 

which control of balance plays an important role [39–41].   

Falls in the elderly are a common health issue worldwide and 

consequently understanding the mechanisms of how humans 

maintain balance whilst standing is an area of much research [42–

45]. The inverted pendulum has also been used to model and 

understand this process [44–52]. More recent work has also 

included the use of experiments with robotic manipulanda to 

investigate how humans can balance items with their hands [53–

56]. 

Given the significance of the inverted pendulum in the field of 

control engineering, inverted pendulum theory finds extensive 

applications across diverse fields, including robotics, aerospace 

systems, marine systems, flexible systems, mobile systems, and 

locomotive systems [57–59]. The characteristics of the inverted 

pendulum make it well-suited for modelling a multitude of 

practical scenarios, highlighting its significance and profound 

influence across various industries. 

 

Figure 1. Schematic diagram showing main pendulum components. 

2. Mechanical design of the Inverted Pendulum 

2.1. Extension of previous work 

The current inverted pendulum design expands upon our 

previous publication [1], in several important ways. We made 

modifications to the mechanical components of the pendulum 

system, enabling us to alter its physical characteristics and now 

utilize a range of pendulum configurations, with changes in 

pendulum length (635mm, 335mm, 233mm), viscous damping 

(adding a paddle to the pole), and friction (compression of a brake 

on the pendulum pole).  

2.2. Inverted pendulum components 

Here we build an inverted pendulum system consisting of a 

pole pivoted at one end on a cart that moves on a linear track 

actuated by a stepper motor, which can be balanced in its inverted 

position by observing the pole angle and controlling cart 

movement. Our design comprises several distinct component 

parts, illustrated in Figure 1.  

The pendulum assembly is composed of several distinct 

components. These include a v-groove aluminum profile track and 

a cart unit that supports the inverted pendulum, moving along the 

track on a wheeled cart. Additionally, a stepper motor unit propels 

the cart via a timing belt from one end of the track, while a passive 

idler pulley supports the belt at the opposite end. The motor and 

pulley mechanisms are securely affixed to the aluminum profile 

structure using T-nuts. This design not only offers the flexibility to 

easily remove and replace these parts with similar components but 

also simplifies the process of tensioning the drive belt. 

2.3. Track 

The mechanical design integrated a V-slot profile to realize the 

pendulum track. This streamlined construction since it enabled the 

use of readily available accessories. These included a stepper 

motor mounting plate, an idler pulley mechanism, as well as gantry 

plates.  
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2.4. Cart 

A 4-wheeled gantry plate formed the basis of the cart 

mechanism. During balancing operation, it traversed the V-slot 

aluminum track along its sides as needed to balance the pendulum 

pole. Wheel clearances were adjusted so the cart remained securely 

on the track without excessive wobbling, while also avoiding 

undue friction. 

A thick flat PLA+ 3D-printed rectangular sheet with mounting 

holes was affixed to the gantry plate. This served as the support for 

both a ball bearing race and an encoder unit, which held and 

facilitated the rotation of a shaft. This shaft, in turn, held the 

pendulum pole, allowing it to swing freely. The incremental 

encoder measured the pole's angular deviation from the vertical 

position, as depicted in Figure 2. 

 

Figure 2: 3D-printed pendulum cart incorporating an encoder and an inertial 

measurement unit (IMU). A flat-topped table can be attached to the end of the 

pendulum to support objects on its surface. 

2.5. Shaft friction adjustment 

Normally, the rotation of the pendulum shaft is resisted by a 

low level of friction, arising from the bearing and the incremental 

encoder. To increase the amount of friction and examine its effect 

on pendulum behavior, a spring-loaded braking assembly was 

constructed (Figure 3). This consisted of a semicircular brake pad 

section made of PLA+ that could be pressed against the pendulum 

rotary shaft using a compression spring, thereby hindering its 

rotation. By fully withdrawing the brake, it was also possible to 

remove its effect completely. 

2.6. Standard pendulum pole 

The standard pendulum pole consists of a pole crafted from a 

brass segment, selected for its easy machinability and high density. 

One end of the pole was threaded to securely screw into an 

attachment component connected to the main shaft, ensuring a 

sturdy attachment as depicted in Figure 2. This led to an overall 

pendulum length of 335mm. While a relatively short pole increases 

the balancing challenge, necessitating quicker cart reactions due to 

the system's elevated natural frequency, it yields several benefits. 

A compact pole is not only more manageable but also ensures 

increased safety by minimizing accidental impact risks. Moreover, 

it provides characteristics that better match other systems, like 

smaller balancing robots [60]. 

2.7. Additional pendulum poles 

An easy way to alter the fundamental characteristics of the 

pendulum is to change the length of the pole. To do so, two 

additional pendulum poles were built (Figure 4). These poles 

consisted of 8mm diameter stainless steel poles, leading to 

pendulum lengths of 222mm and 635mm. Since they were only 

required for intermittent use, no screw attachment was used, 

thereby facilitating construction. Instead, they were simply 

clamped at their endpoint into another attachment component 

connected to the main shaft. 

 

Figure 3: Shaft friction adjustment mechanism for the pendulum cart, designed to 

alter the sliding friction around the pendulum's rotational axis. 

2.8. Pendulum pole end attachments 

To provide a platform for placing objects, and to shield its 

endpoint for safety reasons, a round disc was 3D printed from 

PLA+ and slid onto the end of the pendulum pole, where it was 

held in place by friction. 

To offer a means to change the viscous air resistance 

experienced by the pendulum pole as it swung, the round disc at 

the endpoint of the pole could be replaced with a paddle (Figure 

5). The paddle consisted of a 5mm thick square measuring 100mm 
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by 100mm and was 3D printed from PLA+. It slid onto the end of 

the pole via a central mounting hole and was again held in place 

by friction. By rotating the paddle 90°, it was possible to adjust the 

amount of viscous resistance the pendulum pole experienced from 

a low to a high value. 

 

Figure 4: Three different pendulum poles were utilized to evaluate the controller's 

sensitivity to changes in pendulum length. 

2.9. Stepper motor actuation 

The motor drive assembly includes an aluminum plate, situated 

on the profile rail, which serves as firm support for a NEMA23 

stepper motor. The motor is securely affixed to the plate using 

bolts. The motor is connected to a drive pulley at its front, and an 

encoder is mounted on the rear end of its shaft. This enables 

accurate measurement of the cart's position, although it is only 

needed to analyze the pendulum’s behavior and is not involved in 

the balancing process (see Figure 6). 

To operate the stepper motor, an A4988 stepper controller is 

employed, driven from an Arduino Mega 2560 R3 

Microcontroller. The latter is programmed in C++ and provides 

precise control of the pendulum cart along the linear rail.  

2.10. Belt 

A pulley and belt mechanism are used to convert the motor's 

rotary motion into linear movement, thereby appropriately driving 

the cart along its rail. The cart traverses its designated rails using a 

GT2 timing belt, which is typically used in 3D printers. The belt, 

affixed to the cart using steel clamps, spans almost the entire length 

of the track. The stepper motor, located at one end of the track, has 

a 60-tooth GT2 motor pulley secured to its shaft. A passive idler 

pulley is situated at the opposite end of the track. Ball bearings, 

integrated into the idler pulley, minimize frictional resistance, 

ensuring smooth operation even under the stress of high belt 

tension. Adjusting the precise location of the idler provides an easy 

means to modify belt tension. 

  

Figure 5: The pendulum paddle can be rotated, thus adjusting the viscous drag due 

to air resistance from low to high values. 

 

 

Figure 6: Stepper motor actuation, showing the drive pulley and a custom-made 

3D-printed encoder mount at the motor's rear. 

2.11. Inertial Measurement Unit 

To support future developments of the pendulum system, a 

cost-effective 6-DOF accelerometer/gyro (MPU-6050) was 

strategically mounted to a 3D-printed support on the pendulum 

pole, aligning it with the pendulum shaft's rotational axis. This 

configuration presents an alternative method to measure the pole's 

angular displacement. The pendulum shaft's rotation revolves 

around the MPU-6050's y-axis. When in the inverted 
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configuration, its x-axis points downward, and the pole points 

upwards along its negative x-axis, with its z-axis horizontal (Figure 

2). 

2.12. Modular adjustable pendulum design 

The utilization of modular construction within the system 

ensures that the parameters governing the behavior of the inverted 

pendulum can easily be adjusted or reconfigured. Such adaptability 

can prove useful in educational contexts. With minimal 

adjustments to the apparatus, diverse tasks can be allocated to 

distinct student cohorts, each tackling a specific control problem. 

For instance, the pole's length, an essential aspect of the system's 

dynamics, can be altered by substituting the pole with another of a 

different length. Adaptability extends further to the motor unit. For 

example, stepper motor drive could be exchanged with actuation 

employing a BLDC motor, a modification that would support force 

control, as opposed to velocity control, of the pendulum system. 

2.13. 3D printing  

The components for the pendulum cart were designed using 

AutoCAD Fusion 360. This software also facilitated the 

conversion of the designs into STL format files, which is a critical 

step for additive manufacturing. The mechanical parts were then 

fabricated using PLA+ material on a Creality 6SE 3D printer. It is 

noteworthy to mention that although tougher plastics could further 

enhance the durability of the design, PLA+ was chosen for its ease 

of printing and cost-effectiveness. 

2.14. Pendulum Stand 

Operating the pendulum necessitates mounting the track at an 

elevation that ensures unobstructed swinging of the pole. We 

designed a custom-engineered support stand using aluminum 

profiles to secure the pendulum system (refer to Figure 7). This 

stand offers a robust yet lightweight construction that facilitates 

easy transportation. 

The support stand comprises two support pillars, fabricated 

from aluminum profile. These pillars are anchored at their base 

with additional lengths of aluminum profile, and 3D printed feet 

are used at each end to provide stable support. The top of each 

pillar is fitted with a 3D-printed bracket, tailor-made to 

accommodate the aluminum v-rail. To enhance the rigidity of the 

structure and to increase its resistance to mechanical stress, 

diagonal aluminum profile sections are incorporated, to brace the 

assembly. This results in a rigid structure, minimizing potential 

vibrations or displacements that could affect the system's 

performance.  

3. Mechanical tapper for performance evaluation 

3.1. Testing balancing systems 

Monteleone and his team [61] presented a methodology to 

evaluate the balance resilience of robots, utilizing unique 

performance indicators and a custom-made testbed. Through 

extensive testing on a humanoid robot, their study demonstrated 

the method's effectiveness in designing more robust robotic 

systems. 

 

Figure 7. Pendulum mounted on its stand: The structure uses diagonal bracing to 

increase its rigidity. 

3.2. Tapper components 

In the same vein, to conduct tests across various pendulum 

conditions, including different pendulum lengths, friction, and 

damping levels, as well as different control laws, and to compare 

the results, it was necessary to disturb the pendulum pole 

consistently. To achieve this, a tapping mechanism was 

constructed (Figure 8). 

We built and used a testing rig to deliver repeatable 

disturbances to the pendulum pole whilst balancing, to examine the 

recovery and robustness of control. This could be carried out 

during balancing whilst the cart was either static or moving. 

3.3. Finger-spring mechanism 

The primary component of this tapping mechanism is the 

'tapper finger,' which is mounted onto a baseplate. This mounting 

baseplate for the tapping mechanism is attached to a cart that can 

be maneuvered up and down a V-groove rail track by means of a 

stepper motor. 

The finger is composed of a stainless-steel pole inserted in a 

PLA+ holder, which pivots around a rotary axis located 3 cm from 

its lower end. Two sets of springs are connected at the endpoint of 

the holder and at the base on either side, pulling in opposite 

directions. When the finger is in its undisturbed equilibrium 

position, these springs ensure that it maintains a 0° orientation. 

This finger-spring assembly forms an underdamped second-

order system. Its behavior, particularly the overshoot following 

appropriate excitation, serves as an effective method to strike the 

pendulum pole. To generate a movement suitable for producing a 

tap, it is necessary to displace the lower end of the finger from its 

equilibrium position around its pivot and then release it suddenly. 

This action results in a rapid movement: the finger travels back 

through its equilibrium position and out the other side, which 

enables it to impact the pendulum pole and then quickly withdraw. 

Using this tapping mechanism, it is important to note that the 

pendulum pole must be positioned at an appropriate distance from 
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the tapping finger before operation commences, to prevent 

multiple impacts. At the tap, energy is transferred from the finger 

to the pendulum pole, and if the distance to the target pendulum 

pole is set correctly, it ensures that the finger only strikes once and 

then retreats without making further contact. 

3.4. Finger actuation 

Although it would be possible to manually displace the lower 

end of the tapping pole and release it by hand, we incorporated an 

RC servomechanism into the design to achieve this action 

automatically and more consistently. The RC servo first displaces 

the finger from its equilibrium position. Then, owing to the cam 

mechanism's design, it releases the finger suddenly as it passes the 

end point. This action consequently results in a rapid underdamped 

second-order trajectory of the end of the tapper finger, ideal for 

exciting the pendulum pole. 

 

Figure 8. 3D-printed tapping mechanism. Two sets of springs are configured to pull 

the bottom of the tapping pole to the left and right, thereby establishing a neutral 
equilibrium position at 0° as depicted. An RC servo is positioned to travel 180°, 

engaging and then releasing the rear of the tapping mechanism. This action, assisted 

by the tension of simultaneously contracted springs, causes the pole to swing in an 
under-damped motion, with overshoot delivering an appropriate tap to the 

pendulum pole. All custom parts were designed using AutoCAD Fusion 360 and 

printed with PLA+ material. 

To achieve a consistent tap, it is essential to maintain a constant 

distance between the tapping pole and the pendulum pole and to 

ensure that the tap occurs at the same location during each trial. 

This consistency is achieved by visually aligning the tapping finger 

with the pendulum pole before a tap is initiated. 

3.5. Tapper cart 

In the inverted pendulum position control mode, the pendulum 

cart remains stationary, simplifying the process of tapping its pole. 

However, in the velocity control mode, the cart moves along the 

rail while balancing. The goal was to create a tapping mechanism 

suitable for both velocity and position modes, necessitating the 

ability of the tapping mechanism to track the pendulum cart's 

movement by employing an additional cart. This capability ensures 

taps can be delivered effectively, even while the pendulum cart is 

in motion. To achieve necessary synchronization, the tapping 

mechanism's cart is propelled along a separate V-groove aluminum 

profile track, using a stepper motor that receives the same control 

signal as the pendulum cart's stepper motor. 

 

Figure 9. Schematic of the tapping mechanism mounted on its adjustable stand, 

showing all its main components.  

3.6. Adjustable height tapper stand 

The upper track of the tapper mechanism was mounted to the 

side of the support pillars, allowing for adjustable height of the 

tapper, as illustrated in Figures 9 and 10. 

.  

Figure 10. Side view of the adjustable mechanical tapper assembly. The cart 

supporting the tapping mechanism can be driven left and right to synchronize with 
the pendulum cart. The cart is mounted on a rail that can be slid up and down the 

outer stand legs, and then fastened firmly in place with screws, enabling adjustment 

of the height at which tapping occurs. 

4. Analysis of pendulum dynamics 

4.1. Mathematical analysis 

We performed a comprehensive analysis of the pendulum's 

dynamics, including the nonlinear differential equation, its 

linearization, and s-domain representation. This provided a 

theoretical foundation for our practical implementation. 

4.2. Equilibrium positions 
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A pendulum exhibits two distinct equilibrium points. In the 

stable equilibrium state, the pendulum hangs downward, 

functioning like a traditional pendulum, similar to those in 

pendulum clocks. At this stable equilibrium point, if the pendulum 

is slightly displaced, it will begin to oscillate back and forth with a 

characteristic frequency determined by its dynamic properties. 

Factors such as damping in the joints and air resistance lead to a 

gradual decrease in oscillation amplitude over time. Eventually, 

the pendulum will stop moving and return to a stationary state at 

its equilibrium position. In contrast, an unstable equilibrium occurs 

when the pendulum is delicately balanced upright on its pivot 

point. 

4.3. Analysis of non-linear pendulum dynamics  

If sliding friction is neglected, the kinematics of an inverted 

pendulum can be characterized by the following non-linear 

differential equation: 

(𝐼 + 𝑚𝑙2)
𝑑2𝜃

𝑑𝑡2
+ 𝜇

𝑑𝜃

𝑑𝑡
= 𝑚𝑔𝑙 sin 𝜃 + 𝑚𝑙

𝑑2𝑥𝑃

𝑑𝑡2
cos 𝜃 (1) 

Here, the terms represent the following:  

θ: Angle of the pendulum pole to the vertical axis 

μ: Coefficient of viscosity 

m: Mass of the pendulum 

I: The Moment of Inertia (MoI) of the pendulum pole about its 

center of mass 

l: Distance from the pivot point to the pendulum pole’s center 

of mass (typically half the length of the pole) 

xp: Displacement of the pivot 

Although exponential decay due to viscous resistance is often 

assumed to be the primary cause of oscillatory decay in second-

order systems like the pendulum, it is known that sliding friction 

leads to a linear decay of oscillatory amplitude [62–65]. To 

account for sliding friction, we can also write 

(𝐼 + 𝑚𝑙2)
𝑑2𝜃

𝑑𝑡2 + 𝜇
𝑑𝜃

𝑑𝑡
+ 𝑓𝑠𝑖𝑔𝑛 (

𝑑𝜃

𝑑𝑡
) = 𝑚𝑔𝑙 sin 𝜃 + 𝑚𝑙

𝑑2𝑥𝑃

𝑑𝑡2 cos 𝜃 (2) 

In this context, an additional friction term exists, scaled by the 

coefficient f, which is dependent on the sign of the angular 

velocity. The presence of this sign term complicates formal 

analysis; therefore, we initially disregard the effects of friction. 

We observe that the provided kinematic description suffices for 

deriving control, assuming reliance solely on the cart's velocity as 

the control input. Additionally, it's worth noting that force control, 

a common approach in numerous inverted pendulum 

implementations [66], would necessitate an extra equation to 

accurately capture the dynamics of the cart's force. 

Refactoring Eqn. (1) with the highest-order differential term on 

the left-hand side, yields: 

𝑑2𝜃

𝑑𝑡2 = −
𝜇

(𝐼 + 𝑚𝑙2)

𝑑𝜃

𝑑𝑡
+

𝑚𝑔𝑙

(𝐼 + 𝑚𝑙2)
sin 𝜃 +

𝑚𝑙

(𝐼 + 𝑚𝑙2)

𝑑2𝑥𝑃

𝑑𝑡2 cos 𝜃 (3) 

We now write: 

𝑑2𝑥𝑃

𝑑𝑡2
=

𝑑𝑣𝑐

𝑑𝑡
(4) 

We will now represent the constant terms using coefficients as 

follows: 

𝑎1 =
𝜇

(𝐼 + 𝑚𝑙2)
(5)

𝑎2 =
−𝑚𝑔𝑙

(𝐼 + 𝑚𝑙2)
(6)

𝑏0 =
𝑚𝑙

(𝐼 + 𝑚𝑙2)
(7)

 

This leads to the equation for dynamics: 

𝑑2𝜃

𝑑𝑡2
= −𝑎1

𝑑𝜃

𝑑𝑡
− 𝑎2 sin 𝜃 + 𝑏0

𝑑𝑣𝑐

𝑑𝑡
cos 𝜃 (8) 

To express the system in state space form as two first-order 

differential equations, selecting the first state x1 is straightforward 

since it represents the pendulum angle, denoted as θ: 

𝑥1 = 𝜃 (9)
 

 

⇒ 𝑥̇1 =
𝑑𝜃

𝑑𝑡
(10)

 
 

We now write the second state variable x2 as: 
 

𝑥2 =
𝑑𝜃

𝑑𝑡
− 𝑏0𝑣𝑐 cos 𝜃 (11) 

Re-arranging Eqn. (11) gives: 

⇒
𝑑𝜃

𝑑𝑡
= 𝑥2 + 𝑏0𝑣𝑐 cos 𝜃 (12) 

⇒ 𝑥̇1 = 𝑥2 + 𝑏0𝑣𝑐 cos 𝑥1 (13) 

Differentiating Eqn. (12) with respect to time and using the 

product rule to the right-hand side terms 

⇒
𝑑2𝜃

𝑑𝑡2
= 𝑥̇2 + 𝑏0

𝑑𝑣𝑐

𝑑𝑡
cos 𝜃 − 𝑏0𝑣𝑐 sin 𝜃 (14) 

⇒
𝑑2𝜃

𝑑𝑡2
= 𝑥̇2 + 𝑏0

𝑑𝑣𝑐

𝑑𝑡
cos 𝑥1 − 𝑏0𝑣𝑐 sin 𝑥1 (15) 

Substituting the Equations (12, 15) into Eqn. (8) and replacing 

angle terms with state variables 

⇒ 𝑥̇2 + 𝑏0

𝑑𝑣𝑐

𝑑𝑡
cos 𝑥1 − 𝑏0𝑣𝑐 sin 𝑥1 = −𝑎1(𝑥2 + 𝑏0𝑣𝑐 cos 𝑥1)

−𝑎2 sin 𝑥1 + 𝑏0

𝑑𝑣𝑐

𝑑𝑡
cos 𝑥1 (16)

 

⇒ 𝑥̇2 − 𝑏0𝑣𝑐 sin 𝑥1 = −𝑎1(𝑥2 + 𝑏0𝑣𝑐 cos 𝑥1) − 𝑎2 sin 𝑥1 (17) 

⇒ 𝑥̇2 = −𝑎1(𝑥2 + 𝑏0𝑣𝑐 cos 𝑥1) − 𝑎2 sin 𝑥1 + 𝑏0𝑣𝑐 sin 𝑥1 (18) 
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This leads to the following expression: 

⇒ 𝑥̇2 = −𝑎1𝑥2 − 𝑎2 sin 𝑥1 + (𝑏0 sin 𝑥1 − 𝑎1𝑏0 cos 𝑥1)𝑣𝑐 (19) 

The two equations (13) and (19) can be used in a non-linear 

simulation of the pendulum system. 

5. Linearizing the non-linear system  

5.1. Equilibrium  

We now extend the mathematical analysis to derive the 

linearized state space model by calculating and evaluating the 

system's Jacobian around equilibrium positions. To linearize the 

nonlinear differential equation description of the pendulum around 

its equilibrium points, we first need to identify their locations. 

Equilibrium occurs when the control input is zero, and the state 

derivatives are also zero. That is 

𝑥̇1 = 𝑥2 + 𝑏0𝑣𝑐 cos 𝑥1 = 0 (20) 

𝑥̇2 = −𝑎1𝑥2 − 𝑎2 sin 𝑥1 + (𝑏0 sin 𝑥1 − 𝑎1𝑏0 cos 𝑥1)𝑣𝑐 = 0 (21) 

Since control velocity is zero at the equilibrium points, we see 

that 𝑥2 = 0 and: 

𝑥̇2 = −𝑎1𝑥2 − 𝑎2 sin 𝑥1 = 0 (22) 

From Eqn. (22) we see that: 

−𝑎2 sin 𝑥1 = 0 (23) 

⇒ 𝑥1 = {0, 𝜋} (24) 

Thus, the system has an equilibrium in an inverted 

configuration at 0 radians and a non-inverted configuration at π 

radians. To linearize the system at these equilibrium points, we 

need to calculate the Jacobian of the system, denoted as 𝐽𝐴, with 

respect to the system state, and evaluate it at those points. We first 

express the two state equations as functions: 

𝑓1 = 𝑥2 + 𝑏0𝑣𝑐 cos 𝑥1 (25) 

𝑓2 = −𝑎1𝑥2 − 𝑎2 sin 𝑥1 + (𝑏0 sin 𝑥1 − 𝑎1𝑏0 cos 𝑥1)𝑣𝑐 (26) 

We then calculate the partial derivatives of these two functions 

with respect to the state variables: 

𝜕𝑓1
𝜕𝑥1

= −𝑏0𝑣𝑐 sin 𝑥1 (27) 

𝜕𝑓1
𝜕𝑥2

= 1 (28) 

𝜕𝑓2

𝜕𝑥1

= −𝑎2 cos 𝑥1 + (𝑏0 cos 𝑥1 + 𝑎1𝑏0 sin 𝑥1)𝑣𝑐 (29) 

𝜕𝑓2

𝜕𝑥2

= −𝑎1 + (𝑏0 cos 𝑥1 + 𝑎1𝑏0 sin 𝑥1)𝑣𝑐 (30) 

5.2. Jacobian in matrix form 

This leads to the Jacobian matrix: 

𝐽𝐴 = [
−𝑏0𝑣𝑐 sin 𝑥1 1

−𝑎2 cos 𝑥1 + (𝑏0 cos 𝑥1 + 𝑎1𝑏0 sin 𝑥1)𝑣𝑐 −𝑎1 + (𝑏0 cos 𝑥1 + 𝑎1𝑏0 sin 𝑥1)𝑣𝑐

] (31) 

We now evaluate this matrix at the equilibria points when 

control is zero. For the inverted configuration equilibrium at 0 

radians, we have 

𝐽𝐴[𝑥1 = 0] = [
0 1

−𝑎2 −𝑎1

] (32) 

For the non-inverted configuration equilibrium at 𝜋 radians we 

have 

𝐽𝐴[𝑥1 = 𝜋] = [
0 1

𝑎2 −𝑎1

] (33) 

We now need to linearize the control of the system. To do so, 

we calculate the Jacobian of the control, denoted as 𝐽𝐵, with respect 

to the control input. This involves calculating the partial 

derivatives of the two system functions with respect to the control 

input. 

𝜕𝑓1
𝜕𝑣c

= 𝑏0 cos 𝑥1 (34) 

𝜕𝑓2

𝜕𝑣c

= 𝑏0 sin 𝑥1 − 𝑎1𝑏0 cos 𝑥1 (35) 

⇒ 𝐽𝐵 = [
𝑏0 cos 𝑥1

𝑏0 sin 𝑥1 − 𝑎1𝑏0 cos 𝑥1

] (36) 

Evaluating this matrix for the equilibrium at 0 and π radians we 

have 

𝐽𝐵[𝑥1 = 0] = [
𝑏0

−𝑎1𝑏0

] (37) 

𝐽𝐵[𝑥1 = 𝜋] = [
−𝑏0

𝑎1𝑏0

] (38) 

The linearized system in state space notation takes the form: 

𝑋̇ = 𝐴𝑋 + 𝐵𝑈 (39)
 

𝑌 = 𝐶𝑋 + 𝐷𝑈 (40)
 

From Equations (33, 37), we can write the linearized system 

for the inverted configuration at 0 radians in matrix form as: 

[
𝑥̇1

𝑥̇2

] = [
0 1

−𝑎2 −𝑎1

] [
𝑥1

𝑥2

] + [
𝑏0

−𝑎1𝑏0

] 𝑣𝑐 (41) 
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Since we require the state space model to generate an output 

corresponding to the pendulum angle θ, its output equation is 

therefore: 

𝑌 = [1 0] [
𝑥1

𝑥2

] (42) 

5.3. Linearized ODE 

Multiplying out the matrix Equations (41, 42), we see that we 

have two linear equations. For the first state, we have: 

𝑥̇1 = 𝑥2 + 𝑏0𝑣𝑐 (43) 

⟹ 𝑥2 = 𝑥̇1 − 𝑏0𝑣𝑐 (44) 

⟹ 𝑥2̇ = 𝑥̈1 − 𝑏0

𝑑𝑣𝑐

𝑑𝑡
(45) 

For the second state, we have: 

𝑥̇2 = −𝑎2𝑥1 − 𝑎1𝑥2 − 𝑎1𝑏0𝑣𝑐 (46) 

⟹ 𝑥̈1 − 𝑏0

𝑑𝑣𝑐

𝑑𝑡
= −𝑎2𝑥1 − 𝑎1𝑥2 − 𝑎1𝑏0𝑣𝑐 (47) 

Substituting back in 𝑥1, 𝑥̇1, 𝑥̈1 and 𝑥2 from Eqn. (12) 

⟹
𝑑2𝜃

𝑑𝑡2
− 𝑏0

𝑑𝑣𝑐

𝑑𝑡
= −𝑎2𝜃 − 𝑎1 (

𝑑𝜃

𝑑𝑡
− 𝑏0𝑣𝑐  ) − 𝑎1𝑏0𝑣𝑐 (48) 

⟹
𝑑2𝜃

𝑑𝑡2
= −𝑎2𝜃 − 𝑎1

𝑑𝜃

𝑑𝑡
+ 𝑏0

𝑑𝑣𝑐

𝑑𝑡
(49) 

5.4. System eigenvalues and stability 

The eigenvalues (λ) of the system matrix A represent the 

behavior of the pendulum system. These eigenvalues are related to 

the poles in the transfer function. The eigenvalues, denoted as λ, of 

matrix 𝐴  can be determined by solving the following matrix 

equation, involving the calculation of the determinant, where 𝐼 is 

the identity matrix: 

|(𝐴 − 𝜆𝐼)| = 0 (50) 

If all eigenvalues have a negative real part, the system will be 

stable. Conversely, if any eigenvalue has a positive real part, the 

system will be unstable. It is also important to note that if the real 

part of an eigenvalue is zero, then the system is marginally stable, 

existing on the boundary of stability, neither conclusively stable 

nor unstable. Complex eigenvalues typically lead to oscillatory 

behavior, especially if they have a non-zero real part.  

To incorporate feedback control into this system, the system 

must use a feedback mechanism. One approach involves utilizing 

full state feedback, as depicted in Figure 11. In this figure, the 

matrix K represents the gain of the state feedback, while R(t) 

denotes a reference input. If the reference input is zero, the state 

feedback can be described by the following expression: 

U = −KX (51) 

 

Figure 11. Signal flow graph of a plant under direct full-state feedback control: 

The red line delineates the feedback path, which includes multiplication by the 

feedback gain, denoted by K. Additionally, a feedforward gain term, represented 

by 𝑁̅, is introduced to improve tracking of the reference input. 

Substituting the state space system equations (39) and (40) into 

this expression leads to the modified state space equations, which 

represent the system dynamics under the influence of the feedback 

mechanism.

𝑋̇ = 𝐴𝑋 + 𝐵𝑈 = (𝐴 − 𝐵𝐾)𝑋 (52) 

𝑌 = 𝐶𝑋 + 𝐷𝑈 = (𝐶 − 𝐷𝐾)𝑋 (53) 

Implementing state feedback alters the system dynamics 

leading to a new expression for the state derivative. This alteration 

involves not just multiplying the state by matrix A, but rather by 

(A−BK). Consequently, the eigenvalues (λ) of the full state 

feedback system can be determined by solving the updated 

characteristic equation: 

|(𝐴 − 𝐵𝐾 − 𝜆𝐼)| = 0 (54) 

Consequently, by modifying the gain matrix K, we can 

manipulate the location of the system's eigenvalues. The method 

for calculating K is discussed in Section 7. 

5.5. Using a Luenberger observer 

Many procedures in control design assume that the full state 

vector is available. However, this is often not the case, as in our 

pendulum design. In such circumstances, we can use an observer 

to estimate the full state using a linear plant model. The Luenberger 

observer computes the state estimate according to the differential 

equation: 

𝑋̂
.

= 𝐴𝑋̂ + 𝐵𝑈 + 𝐿(𝑌 − 𝐶𝑋̂) (55) 

The observer uses the state space matrices A and B to provide 

a linear model of the plant. In our case, we determine the observer 

gains, denoted as L, using MATLAB. Similar to the state feedback 

gain, the Luenberger observer gain vector L must be chosen such 

that all the eigenvalues of the observer system, as solutions to the 

characteristic equation, possess appropriate negative real values. 

The signal flow graph for the Luenberger observer is shown in 

Figure 12. The system’s eigenvalues satisfy the following 

characteristic equation: 

|(𝐴 − 𝐿𝐶 − 𝜆𝐼)| = 0 (56) 

The calculation of L is discussed in Section 7. 
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Figure 12. Estimation of plant state using a Luenberger observer. The observer, 

which simulates the real dynamics of the inverted pendulum, generates an 

estimated state, denoted as 𝑋̅. This estimated state serves as a proxy for the actual 

system state, labeled X, some of which may be unobservable. The signal Y(t) is 

employed to correct the state estimate. 

6. Augmenting the state space model 

6.1. Adding cart positional state 

To enable control of both the cart's position and the balancing 

of the pole, we introduce an additional state variable x3 to explicitly 

represent the cart's position. We can relate the cart position to the 

control velocity input, since: 

𝑥̇3 = 𝑣𝑐  (57) 

The linearized system dynamics are then represented by a 3x3 

matrix, that includes the new positional state variable. The updated 

matrix equation is: 

[

𝑥̇1

𝑥̇2

𝑥̇3

] = [
0 1 0

−𝑎2 −𝑎1 0
0 0 0

] [

𝑥1

𝑥2

𝑥3

] + [

𝑏0

−𝑎1𝑏0

1

] 𝑣𝑐 (58) 

The output equation remains similar to before, but with an 

appended  coefficient of zero in the C matrix: 

⇒ 𝑌 = [1 0 0] [

𝑥1

𝑥2

𝑥3

] (59) 

We can compute the numeric values of the matrices using 

MATLAB. See Figure 13 for the udpated state feedback controller 

signal flow graph schematic. 

6.2. Adding integral action 

We can further improve cart position performance and reduce 

its steady-state error by adding integral action on the cart position 

(see Figure 14). To incorporate integral action, a state is devised 

within the controller to compute the integral of the positional error 

signal. This is then used as a feedback term, as denoted by the red 

path on the schematic. Therefore, to achieve integral feedback, we 

simply augment a state-space system by adding another state Z, 

whereby the state Z is the integral of the error between the desired 

output refp (representing a reference input for cart position) and 

actual output Y. Thus, the standard state-space equation: 

[𝑋̇] = [𝐴𝑋 + 𝐵𝑈] (60) 

Becomes: 

[𝑋̇
𝑍̇
] = [

𝐴𝑋 + 𝐵𝑈
𝑌 − refp

] (61) 

Where the output is given by: 

Y = CX + DU (62) 

 

Figure 13. Adding a state for cart position provides a means to control cart 

position. 

State feedback control is now generated from the state X and 

also from the state Z. That is: 

U = −KX − K𝑍Z (63) 

Thus, to add integral action to the state-space model of the cart 

position-augmented pendulum, and use the cart position to 

generate error integrated over time, we further augment the system 

matrices given in Eq. (58). We add a fourth state, x4, to represent 

the integrated cart position error.  

[
 
 
 
 
 
 
𝑥̇1

𝑥̇2

𝑥̇3

𝑥̇4]
 
 
 
 
 
 

=

[
 
 
 
 
 
 

0 1 0 0

−𝑎2 −𝑎1 0 0

0 0 0 0

0 0 1 0]
 
 
 
 
 
 

[
 
 
 
 
 
 
𝑥1

𝑥2

𝑥3

𝑥4]
 
 
 
 
 
 

+

[
 
 
 
 
 
 

𝑏0

−𝑎1𝑏0

1

0 ]
 
 
 
 
 
 

𝑣𝑐 (64) 

y = [1 0 0 0]

[
 
 
 
 
 
 
𝑥1

𝑥2

𝑥3

𝑥4]
 
 
 
 
 
 

(65) 
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Notice that here we update the integral state by selecting the 

position state x3 to generate the (Y− refp) term used for integral 

action. For this model, we assume the reference position, refp, is 

zero.  

 

Figure 14. Illustration of integral error feedback within the system. This 

mechanism reduces steady-state positional error of the cart by comparing the 

reference setpoint with the estimated cart position, integrating the positional error, 

and using it in the feedback path. 

7. Designing state feedback controllers 

7.1. Determining feedback gain  

In our pendulum design, a linear full state feedback controller 

is employed to balance the inverted pendulum. This method 

enables the maintenance of balance, even in the presence of noise 

and disturbances. Implementing this controller requires obtaining 

K, the feedback gain vector. 

Various strategies can be used to find K. One method is to use 

pole placement, whereby we calculate K in order to achieve what 

we consider to be a good choice of poles for the system when it is 

operating under full state feedback control. Alternatively, the gain 

K can be found by formulating gain calculation as an optimization 

problem, where we specify an objective function indicative of 

what we consider desirable performance should be. In this work, 

we adopted the latter optimal control approach. Specifically, we 

find the gain K utilizing the MATLAB lqr command (which 

designs a linear quadratic regulator). 

7.2. Velocity control mode 

To design an optimal controller to balance the inverted 

pendulum using velocity as the control input, we need to consider 

the linear 2 state model given by the equations (41) and (42). To 

build an appropriate cost function for the optimization, suitable 

values were implemented along the leading diagonal of the 2x2 Q 

matrix to penalize non-zero system states. In addition, a suitable 

value is used in the 1x1 R matrix to penalize the control input.  

Penalization of the state serves a crucial function: It ensures 

that the system approaches its target value. Within the scope of this 

design, it assists in keeping the pendulum’s angle close to zero, 

facilitating effective balancing. In contrast, penalizing control with 

R serves to reduce the speed of the cart. The penalization values 

were determined  through experimentation. 

Q = [
1 0

0 0
] (66)  

R = 1 (67)  

7.3. Position control mode 

To implement the control of the cart position as well as 

balancing the pendulum pole, we make use of the 4-state system 

that incorporates integral action. The linear state space system is 

described by equations (64) and (65). The diagonal entries of the 

4x4 Q matrix, along with the single scalar value in the R matrix, 

were defined to aptly penalize state and control. The penalization 

values in Q and R were found by trial and error. 

Q =

[
 
 
 
 
 
 
1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 20]
 
 
 
 
 
 

(68)  

R = 1 (69)  

To concurrently accomplish pendulum balancing as well as 

control of the cart position, we applied a larger penalty on state x4 

(which represents the integral of positional error), whereas state x3 

(which represents cart position) received a penalty term of zero. 

7.4. Designing the Luenberger observer 

To determine the Luenberger gain L, we again employed the 

MATLAB lqr command. We refrained from using the observer to 

predict the cart's velocity or position since estimating these is 

straightforward, given that velocity is directly used as the control 

signal. 

As with the determination of state feedback controller gains, 

the leading diagonal entries of the 2x2 Q matrix and the single 

value in the R matrix were selected to penalize the system states 

and the control action, respectively. Suitable parameter values for 

these matrices were ascertained through trial and error. 

Q = [
1 0

0 0
] (70)

 

 

R = 1 (71)  

7.5. Gain scheduling 

Transitioning between velocity control of the pendulum and 

position control of the pendulum was realized by selecting their 

respective system gain K and pre-processing term 𝑁 (as discussed 

later and presented in Table 2). We note that resetting the integral 

error state to zero was necessary each time the controller was 

switched from velocity to position mode, to ensure processing 

started with a zero positional error. 

In position control mode, we make use of integral action. In 
this case, the reference position input can have a zero value to 
preserve the cart's current position on the track.  

During the velocity control of the cart, the velocity of the cart 
is required to track the reference input. To ensure this takes place 
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the controller requires an appropriate feedforward pre-emphasis 
term, denoted as 𝑁: 

𝑁 = −[C(A − BK)−1 B]−1 (72) 

For velocity control, we note that  𝑁 has a value of 1 (that is, a 
gain of unity). Thus, the reference input directly sets the cart 
velocity. This is achieved by a slight update to the calculation of 
the control signal, which now incorporates a non-zero reference 
input, referred to as 'ref': 

U = −KX + 𝑁ref (73) 

8. Laplace Analysis of the Inverted Pendulum Dynamics 

8.1. System transfer function 

Laplace analysis can provide useful insights into system 

behaviour. Neglecting the non-linear effect of friction, the 

linearized  differential equation that describes the  pendulum can 

be expressed as: 

(𝐼 + 𝑚𝑙2)
𝑑2𝜃

𝑑𝑡2
+ 𝜇

𝑑𝜃

𝑑𝑡
= 𝑚𝑔𝑙𝜃 + 𝑚𝑙

𝑑2𝑥𝑃

𝑑𝑡2
(74) 

Applying the Laplace transform, and assuming initial 

conditions of zero we have: 

(𝐼 + 𝑚𝑙2)𝑠2Φ(𝑠) + 𝜇𝑠Φ(𝑠) = 𝑚𝑔𝑙Φ(𝑠) + 𝑚𝑙𝑠2𝑋𝑃(𝑠) (75) 

⟹ ((𝐼 + 𝑚𝑙2)𝑠2 + 𝜇𝑠 − 𝑚𝑔𝑙)Φ(𝑠) = 𝑚𝑙𝑠2𝑋𝑃(𝑠) (76) 

This leads to the s-domain transfer function relating output pole 

angle Φ(𝑠) to cart position 𝑋𝑃(𝑠): 

⟹
Φ(𝑠)

𝑋𝑃(𝑠)
=

𝑠2𝑚𝑙

((𝐼 + 𝑚𝑙2)𝑠2 + 𝜇𝑠 − 𝑚𝑔𝑙)
(77) 

We now rearrange terms in the denominator and use the 

relationship V(𝑠) = 𝑠𝑋𝑃(𝑠). This leads to the expression relating 

output pole angle Φ(𝑠) to cart velocity V(𝑠): 

⟹
Φ(𝑠)

V(𝑠)
=

𝑠𝑚𝑙
(𝐼 + 𝑚𝑙2)

(𝑠2 + 𝑠
𝜇

(𝐼 + 𝑚𝑙2)
−

𝑚𝑔𝑙
(𝐼 + 𝑚𝑙2)

)
(78) 

8.2. 2nd order canonical form 

Comparing the expression with the second-order canonical 

form, we can identify the coefficients and characteristics of the 

system. This comparison allows us to further analyze the dynamics 

of the inverted pendulum and gain deeper insights into its behavior 

and control requirements. 

𝑠𝑘

(𝑠2 + 2𝜉𝜔𝑛𝑠 − 𝜔𝑛
2)

⟺

𝑠𝑚𝑙
(𝐼 + 𝑚𝑙2)

(𝑠2 + 𝑠
𝜇

(𝐼 + 𝑚𝑙2)
−

𝑚𝑔𝑙
(𝐼 + 𝑚𝑙2)

)
(79) 

Here, k represents a simple gain factor. Upon examining the 

given expression, we find that it allows us to determine the natural 

frequency of the system as follows: 

𝜔𝑛=√
𝑚𝑔𝑙

(𝐼 + 𝑚𝑙2)
(80) 

Given that angular frequency (𝜔𝑛) is related to frequency (𝑓𝑛) 

in cycles per second through the relationship 𝜔𝑛 =  2𝜋𝑓𝑛 we can 

write the expression: 

𝑓𝑛=

1

2𝜋
√

𝑚𝑔𝑙

(𝐼 + 𝑚𝑙2)
(81) 

Similarly, by inspection, we can write down an expression for 

the damping ratio of the system: 

𝜉 =

𝜇
(𝐼 + 𝑚𝑙2)

2𝜔𝑛

(82) 

9. Numeric integration to implement real-time control  

9.1. Euler integration 

To implement real-time state feedback control, some form of 

numerical integration is needed. Such integration can often be 

carried out satisfactorily on a digital computer using Euler's 

methods. Forward Euler integration works by incrementally 

calculating contributions to the integral that arise from the 

differential term. 

The basic idea is as follows. Consider a function y=f(x) such 

that when x=x0 then y=y0. This is illustrated in Figure 15. As we 

increase the value of x by Δx we reach a point where x1=x0+Δx 

and similarly this increases y by Δy reaching the value y1=y0+Δy. 

Therefore: 

(𝑥1, 𝑦1) = (𝑥0 + ∆𝑥,  𝑦0 + ∆𝑦) (83) 

The gradient of the curve at (x0, y0) is the tangent at this point. 

From Figure 15, it is seen that the gradient at this point can be 

approximated by the ratio of a small change in y divided by a small 

change in x: 

𝑑𝑦

𝑑𝑥
|(𝑥0, 𝑦0) ≈

Δ𝑦

Δ𝑥
(84) 

This is only strictly true in the limit where Δx tends to zero. In 

practical numerical methods, this limit is approximated by 

choosing a sufficiently small Δx. We also see that we can use this 

relationship to iteratively estimate y1 from y0 by replacing the Δy 

term by two very close and successive y values: 

𝑑𝑦

𝑑𝑥
|(𝑥0, 𝑦0) ≈

(𝑦1 − 𝑦0)

Δ𝑥
(85) 

Re-arranging this equation and writing Δx as step size h gives: 
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𝑦1 = 𝑦0 + ℎ
𝑑𝑦

𝑑𝑥
|(𝑥0, 𝑦0) (86) 

Writing the x-axis in terms of a time variable t, the gradient is 

given by: 

𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦) (87) 

And initial conditions are given by: 

𝑓(𝑡0, 𝑦) = 𝑦0 (88) 

We then obtain the recurrence relation for step n: 

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑡𝑛, 𝑦𝑛) (89) 

Where t is time, at initial time to the output is y0, at future time 

t(n+1) the output is y(n+1), and h is the step size. This expression can 

be used to iteratively find the next estimate of y1 if we know xo and 

the gradient at (x0, y0). This approach provides a method for 

integrating the differential term, which is generally satisfactory if 

a sufficiently small temporal step size, h, is used. This method is 

easily extended to vector form to perform the integration stage 

needed in state space models. 

 

Figure 15. The gradient dy/dx of a curve y=f(x) can be locally approximated at the 

point (x0,y0) as the ratio of a small change in the value of y to a corresponding 

small change in the value of x. 

9.2. Higher order numerical integration  

Euler integration is the simplest fixed-step numerical method 

that can be adopted. However, other more complex integration 

rules can also be used. These include the midpoint, trapezoidal, and 

Runge-Kutta methods, which, though requiring more 

computational steps in the estimation of the integral, offer higher 

accuracy. Additional methods utilize dynamic selection of step 

size, such as the ode45 function in MATLAB. See [67] for a 

discussion of these methods. 

Here, we use MATLAB's ode45 for simulations of the 

uncontrolled stable pendulum configuration. We use Euler 

Integration to model the controlled pendulum because of the 

method's simplicity and its ease of implementation on a 

microcontroller, especially considering its low computational 

requirements. 

10. System identification 

10.1. Large angle pendulum oscillatory behavior 

Approximately estimating observable parameters of a 

pendulum, such as length and weight, can be done with relative 

ease. However, assessing other parameters is considerably more 

challenging, and in some cases, impossible, solely based on 

observations of the static mechanical system. To accurately 

determine values for viscous and sliding friction, it is necessary to 

conduct measurements during pendulum movement. 

To examine the large-angle oscillatory behavior of the 

pendulum, we raised it from its resting, vertically hanging (non-

inverted) position to a horizontal alignment, corresponding to an 

angle of approximately 90°, before releasing it. The pendulum then 

oscillated until viscous damping and friction gradually brought it 

to a standstill in its vertical, non-inverted position. 

 

Figure 16. Pendulum large angle oscillation decay over time for three pendulum 

lengths. Data captured using an incremental encoder.  Top row: No added viscosity 

or friction for short, medium, and long pole lengths. Middle row: Effect of added 
friction for short, medium, and long pole lengths (SF, MF, and LF, respectively).  

Lower row: Effect of added viscosity for short, medium, and long pole lengths (SV, 

MV, and LV, respectively). 

10.2. Data logging 

To examine the pendulum's oscillation decay over time, we 

collected time-stamped pole angle data from its shaft encoder as 

the pendulum swung. In addition, the pendulum cart position was 

recorded using readings from the encoder mounted on the rear of 

the cart drive stepper motor. The data were gathered using a 

program running on an Arduino Mega, which transmitted the time 

and angular measurements to a host PC equipped with Microsoft 

Excel. The Excel program was used to record the data at a 25Hz 

rate and save it to the hard disk in Excel file format. Subsequently, 

the data were imported into MATLAB for analysis. This allowed 

http://www.astesj.com/


L. Álvarez-Hidalgo et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 6, 120-143 (2023) 

www.astesj.com     133 

for the generation of a plot depicting the pendulum’s decaying 

oscillations under various conditions, as well as further analyses. 

The mechanical pendulum system features three 

interchangeable poles, and for each pole, the level of friction could 

be adjusted from low to high. Similarly, the viscous damping could 

be altered from low to high by manipulating the wind resistance 

experienced by the paddle mechanism. This configuration led to a 

total of 9 different experimental conditions. 

Figure 16 top row shows the temporal response waveforms for 

the undamped cases with no added friction for all three pendulum 

lengths, plotted on the same scale. It is observed that a longer 

pendulum length significantly increases the time required for the 

pendulum angle to decay to zero. Figure 16 middle and lower rows 

illustrate the responses of pendulums of three different lengths 

with additional friction and additional viscosity introduced, 

respectively. It is apparent that incorporating viscosity into the 

system accentuates the exponential decay. However, it is 

noteworthy that when friction is the dominant factor, the decay is 

linear rather than exponential. 

                      Tapper mechanism                  Hand tapping 

 

Figure 17. Testing the consistency of the tapping mechanism. Mean and standard 

deviation of the pendulum angular response averaged over 8 trials are shown using 

the tapper mechanism and hand excitations of the pendulum pole. 

10.3. Small angle pendulum oscillatory behavior 

The primary interest of this study is the examination of the 

balancing behavior of the pendulum system in its inverted 

configuration; therefore, large angle behavior is not of particular 

relevance. In a balancing configuration, the pendulum pole is 

maintained close to its unstable equilibrium position by the 

controller. In this case, the angular deviation from the 0° position 

is small, which is also essential for the validity of the linear 

approximation made in the observer model. Therefore, to estimate 

the parameters of the linear model accurately, it is necessary to 

examine the pendulum operation at small angles of deflection and 

to perform system identification for all pendulum parameters 

under these conditions. To generate consistent excitation to the 

pendulum, we utilized a mechanical RC servo tapping mechanism. 

11. Using the tapping mechanism 

11.1. Evaluating tapper consistency 

To evaluate the consistency of the tapping mechanism's 

operation, we conducted tests on the medium pendulum pole 

without added friction or viscosity. Figure 17 illustrates that the 

tapper provides very consistent excitation of the pendulum, 

particularly when compared to the variability typically observed 

with manual tapping by hand. 

11.2. Excitation of non-inverted pendulums 

We examined the pendulums in their normal, stable, hanging-

down mode to characterize the effects of the tapping. Figure 18 

illustrate the responses of pendulums of different lengths driven by 

the tapper mechanism, both with and without added friction and 

viscosity. In comparison to the large angle oscillation tests, it is 

noteworthy that at small angles, the paddle has only a minor effect, 

and additional friction more rapidly damps out pendulum 

oscillation. 

 

Figure 18: Pendulum small angle oscillation decay over time. Top row: No added 
viscosity or friction. Middle row: Effect of added friction for short, medium, and 

long pole lengths (SF, MF, and LF, respectively). Lower row: Effect of added 

viscosity for short, medium, and long pole lengths (SV, MV, and LV, 

respectively). 

11.3. Estimating pendulum parameters 

We performed grey-box system identification of the physical 

pendulum mechanism to identify parameters of viscous and static 

friction, and to fine-tune others, including pendulum length, 

weight, and moment of inertia. 

To fit the small angle pendulum response data, we focused on 

six of the nine configurations: the three pole lengths both with and 

without added viscosity. This fitting was accomplished with a 

simulation of its nonlinear dynamics, employing an optimization 

procedure using the MATLAB fmincon function. We discarded 

the configurations with extra friction due to the dramatic impact it 

had on the system’s behavior, which resulted in a limited amount 

of useful temporal data. This procedure optimized the mass, 
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effective pole length, pole moment of inertia, sliding friction, and 

viscous friction parameters of the pendulum system. 

We designed an objective function that minimized the sum of 

squared distances between the predicted oscillations and the 

measured data. To align the simulation with the measured data for 

comparison, we first trimmed the measured data to begin at its first 

positive peak in the pendulum's oscillation. The pendulum's 

angular velocity at this point is zero, and its corresponding angle 

was used to set the initial angular state in the non-linear simulation 

of the pendulum, based on Eqn. (2), that includes both viscosity 

and friction. This was carried out using the MATLAB ode45 solve. 

 

Figure 19. Running optimization to fit the measured response of the medium-

length non-inverted pendulum without additional viscosity or friction. Top plot 

shows the predicted response based on an initial rough guess. Middle plot shows 
the estimated response after running the optimization algorithm without including 

the friction term. Lower plot shows the estimated response when the friction term 

is present. It is evident that accounting for friction leads to a significantly better 

fit. 

We initialized the simulation parameters based on direct 

measurements of pendulum pole length and mass. Initially, we 

estimated the values of the friction and viscosity parameters 

through a process of trial and error, which was aided by careful 

observation of the simulated responses. During the fitting 

procedure, we allowed the optimization algorithm to refine all 

parameter values. However, it was necessary to constrain the 

parameter solutions to prevent fits that deviated substantially from 

the known ground truth values for mass and pendulum length. To 

this end, the mass and length were constrained to values between 

0.9 and 1.1 times their measured values. The other parameters, for 

which we had less grounded certainty, were allowed to vary from 

0.1 to 10 times their initial estimated values. 

Table 1. Physical Measurements of the three different pendulums and estimated 

values found by system identification. Values marked with 'F' represent estimates 

with friction included in the second-order nonlinear differential equation model of 
the pendulum. The bold values represent estimates made when only a viscous 

damping term is present. 

 Short Pendulum Medium Pendulum Long Pendulum 

Normal Viscous Normal Viscous Normal Viscous 

 

Measured 

Length to 

CoG 
[m] 

 

0.233/2 = 0.117 0.335/2 = 0.168 0.635/2 = 0.318 

 

Measured 

Weight 
[Kg] 

 

0.174 0.226 0.336 

 

Estimated 

Half-length to 

CoG 
[m] 

 

0.116(F) 

0.106 

0.117(F) 

0.105 

0.167(F) 

0.149 

0.164(F) 

0.149 

0.322(F) 

0.317 

0.308(F) 

0.316 

 

Estimated 

Weight 
[Kg] 

 

0.178(F) 

0.158 

0.174(F) 

0.157 

0.207(F) 

0.207 

0.202(F) 

0.207 

0.341(F) 

0.338 

0.327(F)x 

0.338 

 

Estimated 

MoI 
[Kg-m2] 

 

8.97e-04(F) 

9.02e-04 

8.47e-04(F) 

8.83e-04 

0.0024v 

0.0027 

0.0024(F) 

0.0027 

0.0142(F) 

0.0144 

0.0147(F) 

0.0146 

 

Estimated 

Viscosity 
[N-m-s/rad] 

 

2.21e-04(F) 

9.90e-04 

2.22e-04(F) 

1.00e-03 

3.36e-04(F) 

1.00e-04 

2.35e-04(F) 

1.00e-04 

2.22e-04(F) 

0.0038 

5.20e-04(F) 

0.0048 

 

Estimated 

Friction 
[N/Rads-1] 

 

5.05e-04(F) 

n/a 

6.16e-04(F) 

n/a 

3.07e-04(F) 

n/a 

3.87e-04(F) 

n/a 

3.87e-04(F) 

n/a 

5.46e-04(F) 

n/a 

Figure 19 shows the results of using system identification to fit 

model parameters to the measured data for the medium-length, 

low-friction, low-viscosity pendulum condition. The initial guess, 

which incorporated insufficient damping, is shown in Figure 19 

top plot. A reasonably good fit is achieved by fitting the model 

with only viscous damping, as demonstrated in Figure 19 middle 
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plot. An even better fit is obtained when the model also includes 

sliding friction, depicted in Figure 19 1ower plot. 

For each pendulum length, measured and estimated values 

were obtained, both with and without friction, leading to a total of 

six conditions. These conditions are presented in Table 1. The 

corresponding (no-friction) state space matrices and Luenberger 

gain L are shown in Table 2. The computed state feedback 

controller system gains K and reference pre-scaling factor 𝑁, are 

shown in Table 3. 

11.4. Reality check using canonical form 

To provide a ballpark estimate of the main parameters of the 

three pendulums in their low-damping modes, each pendulum was 

first nudged using the tapper mechanism and then allowed to sway 

freely, eventually settling into its stable position, as depicted in 

Figure 20. Measured values are shown in Table 4. 

Table 2. Values of the state-space matrix and Luenberger observer gain, presented 

in MATLAB syntax. 

Parameter Value 

A [0  1  0  0; 41.4440 − 0.1692  0  0; 0  0  0  0; 0  0  1  0;] 

B [44.2247; −0.7147; 1; 0;] 

C [1 0 0 0] 

L [12.7461  80.7319] 

Table 3. Computed state feedback control K gains and 𝑁̅ values used for the two 

control mode (in MATLAB syntax). 

Control 1zModes K Gain 𝐍̅ 

Position Control [5.0514 0.7587; −4.4412; −4.4721;] 0 

Velocity Control [  3.2478; 0.4734; 0; 0; ] 1 

Table 4. Measured decay and nearest integer number of cycles as a function of 
time for all three pendulum lengths in undamped conditions. The values in 

brackets were found by the system identification procedure. 

 Short 

Pendulum 

Medium 

Pendulum 

Long 

Pendulum 

Measured Maximum 

Time [s] 
13.50 27.0 54.8 

Measured 50% Decay 

Time [s] 
5.99 12.15 26.2 

Measured 50% Decay 

Cycles [integer count] 
7 12 19 

Observable frequency of 

oscillation fd 

[Hz] 

1.17 Hz 

(1.25 Hz) 

0.99 Hz 

(1.03) 

0.73 Hz 

(0.74 Hz) 

Estimated damping ratio 

ζ  

0.016 

(0.024) 

0.0091 

(0.011) 

0.0057 

(0.0084) 

We used Equations (80 and 81) to calculate the corresponding 

natural frequencies, which were essentially the same as the 

damped frequencies due to the very small damping ratio. These 

values aligned well (within 10%) with those obtained through 

system identification, confirming the appropriateness of the values 

found by the fitting procedure. We calculated the damping ratio 

from the decay to 50% in a time 𝑡50 using the equation: 

ζ =
−ln (0.5)

𝜔𝑛𝑡50

(90) 

From Table 4 it can be seen that the system identification yielded 

similar values. 

 

Figure 20. Approximate estimation of the canonical parameters for the pendulum 

system by observing the frequency of oscillation and the amplitude decay to 50% 

of the initial value. Plots are shown here for the short, medium, and long-length 

pendulums (with no extra damping), respectively. 

12. MATLAB SFC controller simulations 

12.1. Simulating the pendulum 

In MATLAB, we simulated the pendulum balancing using both 

velocity and position controllers. This involved the deployment of 

a non-linear state space model to simulate the pendulum plant. 

Additionally, a linear model was implemented for Luenberger 

observer full state feedback control. 

Following initial design of the two inverted pendulum 

controllers, they underwent iterative tuning and testing within 

MATLAB simulations. This methodology included assessing the 

behavior and stability of the inverted pendulum in response to cart 

movement and simulated impacts to the pole while it was balanced 

in its inverted position. Simulations carried out in both velocity 

control and position control modes, also involve modifying the 

reference input to maneuver the cart velocity or position. 

12.2. Reference tracking 

Simulated results of velocity tracking are shown in Figure 21 

left column. The cart nearly achieved the reference velocity using 
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a feedforward velocity command applied directly to it. In this 

scenario, feedback control of the cart's velocity was not utilized. 

As a result, the tracking was not entirely accurate; this is partly 

because the feedback control required for stabilizing the balance 

tends to counteract the cart's movement. 

Simulated results of position tracking are presented in Figure 

21 right column. Utilizing integral action to correct the cart's 

position error proved effective for tracking the desired cart 

position. However, the response to the target location was not 

immediate, with a noticeable delay before the cart aligned with the 

desired position. 

12.3. Recovery from impulsive disturbance 

To simulate kick disturbances, we manipulated the state of the 

pendulum to mimic the effect of an elastic collision with another 

hard object. This involved setting the pendulum’s angular state (x1) 

to zero and its second state (x2), which comprises an angular 

velocity component and a control input term, to a small positive 

value. The results of this simulation are shown in Figure 22. 

 

Figure 21. The pendulum angle and cart position are depicted in response to the 

cart movement, driven by changes in the cart position reference setpoint. Left 

column: MATLAB simulation of the pendulum with velocity control. The 

pendulum angle and cart position are shown in response to moving the cart, driven 

by changes in the velocity reference input. Right column: MATLAB simulation of 

the pendulum under position control of the cart with integral action on cart 

positional error.  

The left column of Figure 22 shows the response of the inverted 

pendulum to an impulsive disturbance while operating in velocity 

control mode. It demonstrates a successful recovery to the initial 

pole deviation from the vertical position. However, it is notable 

that the cart position shifts and does not return to its initial starting 

position. 

The right column of Figure 22 shows the behavior of the 

inverted pendulum to the same disturbance while operating in 

position control mode. Again it can be seen that a good recovery 

to the initial pole deviation from the vertical orientation is 

achieved. However, although the cart initially drives away from its 

initial location, is slowly moves back after a few seconds. 

13. DIN Rail Panel Construction 

13.1. Connections to controller 

A DIN rail panel was tailor-made to control the inverted 

pendulum system. Figures 23 and 24 show the connectors and their 

corresponding wiring diagrams. The controller interface, located 

at the top of the panel enclosure, features a female USB-B port. 

This port connects the Arduino Mega 2560, located inside the 

controller assembly, to an external computer, which is used for 

software development and relaying control commands. 

The panel features seven female D-connectors. The interfaces 

are configured to connect with four stepper motors, an I²C device, 

an SPI device, and two encoders. The use of these D-connectors 

allows for easy and quick connection of the panel to the inverted 

pendulum apparatus or other equipment. 

 

Figure 22. The pendulum angle and cart position are depicted in response to a 

simulated tap. Left column: MATLAB simulation of the pendulum with velocity 

control. The pendulum angle and cart position are shown in response to a 40 deg/s 
initial velocity disturbance. Right column: MATLAB simulation of the pendulum 

under position control of the cart, with integral action on cart positional error.  

 

Figure 23. View of the actual controller panel cover, which was designed in 

Autodesk Fusion 360 and then 3D printed. 
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Special care was taken in the wiring of the plugs for each 

attached component, and they were configured with a unique 

connection pattern. This design feature serves to prevent accidental 

inappropriate connections that could result in electrical damage. 

The primary focus was on the power pin assignments, ensuring 

their isolation from other signal inputs and outputs. This safeguard 

ensures that potential connection errors will not result in 

component damage. 

13.2. Panel internal layout 

The controller panel’s internal layout comprises three specific 

DIN rails, as depicted in Figure 25, which shows a photograph of 

the assembled unit. It consists of a microcontroller rail, a rail for 

motor drivers and power converters, and a power supply rail. 

Additionally, wiring conduit was strategically placed to manage 

the cabling in a tidy manner. This arrangement not only enhanced 

the orderly appearance but also reduced the risk of unintended 

cable contact with other components or causing interference. 

 

Figure 24. Rear view of soldered D-Sub connections on the male plugs (left-hand 

column) and the female sockets (right-hand column) mounted on the panel. The 
top row shows the Inter-Integrated Circuit (I²C) pinout, the second row is for Serial 

Peripheral Interface (SPI), the third row is dedicated to stepper motors, and the 

bottom row is configured for encoders 

13.3. Panel DIN rail components 

In the selection of panel components, preference was given to 

components equipped with rear mounts for DIN rail attachment. 

For other components, custom 3D printed support structures were 

made and fitted with clips to attach them to the DIN rails. The 

power rail within the controller panel was compartmentalized into 

three principal sections: 

1. An AC circuit breaker section that is responsible for 

regulating overcurrent conditions and interrupting the 

main supply. 

2. A region featuring a PULS Dimension DIN rail power 

supply, which delivers 24 volts at 5A, and meets the 

voltage and current prerequisites of the system. 

3. A region containing three discrete DC circuit breakers, to 

permit individual disconnection of each control 

component. This feature provides additional protection 

against potential damage due to short circuits. 

13.4. Stepper motor drivers 

The power converter and motor driver rails were engineered to 

facilitate the operation of up to four stepper motors, each capable 

of being directly interfaced with the control panel's motor driver 

rail. The motor driver rail featured two 3D-printed carriers, each 

housing a pair of A4988 stepper motor drivers. These motor 

drivers were powered by a 24-volt supply operating on mains 

power. 

 

Figure 25. View displaying the internal layout of the controller panel, which is 

partitioned into distinct sections for power management, motor control, and 

microcontroller functions. 

The A4988 driver offers eight distinct micro-stepping 

resolutions, providing flexibility in stepper motor control. For this 

project, we employed a one-fourth step resolution for all motors. 

To realize the one-fourth step resolution setting on the expansion 

board, the DIL switches were configured appropriately. The 

A4988 driver can operate within a voltage range of 8V to 35V and 

can deliver a current ranging from 1.5A to 2.2A. A potentiometer 

is incorporated into the driver breakout board, enabling hands-on 

fine-tuning of the current supplied to the stepper motor. To 
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determine the current limit, Ilim, it's essential to gauge the reference 

voltage (Vref) on the potentiometer and apply the given formula to 

compute its desired value: 

𝐼𝑙𝑖𝑚 = 2𝑉𝑟𝑒𝑓 (90) 

This facilitates precise control over the motor current, 

optimizing performance and efficiency. Our adjustment of the 

current limit was a critical step to ensure the proper functioning of 

our NEMA23 stepper motors. A current limit of 1.5A was 

determined to be ideal for this specific application. Exceeding this 

current threshold may damage both the motors and the drivers. 

Conversely, setting the current below 1.5A could compromise the 

motors' operation, raising the likelihood of stalling. Thus, 

appropriate calibration is paramount to ensure good performance 

while safeguarding the components from potential harm. 

 

Figure 26. DIN Rail holder for the A4988 Driver Module. This setup mounts two 
stepper motor controller breakout boards onto a DIN rail. Notably, it includes a 

cooling fan to ensure the controllers remain at optimal temperatures and prevent 

overheating. 

 

Figure 27. Pinouts for the Arduino Mega 2560. The connections are configured to 

control up to three stepper motors and communicate with peripherals via the I²C 

and SPI data buses. 

To prevent overheating of the motor drivers, the incorporation 

of a cooling solution was essential. A pair of compact DC axial 

fans were positioned above them to prevent thermal damage to the 

chips. These fans required a supply voltage of 12V, which was 

furnished through a Buck converter operating from the 24V power 

line (refer to Figure 26). This setup ensured that the motor drivers 

stayed at a safe temperature during operation, enhancing both their 

performance and longevity. 

At the heart of the controller panel, on the microcontroller rail, 

the Arduino Mega 2560 is prominently featured. Selected for its 

robust I/O capabilities, it offers 54 digital input/output pins, 

including 15 suitable for PWM, 256KB of flash memory, and a 

clock speed of 16MHz (refer to Figures 27 and 28). The Arduino 

Mega facilitates seamless communication with the host PC, 

aligning perfectly with the project's requirements. 

 

Figure 28. Arduino Mega 2560 pinout connections used for reading the system’s 

two encoders. 

14. Software Implementation in Arduino 

14.1. Arduino software overview 

Control over the pendulum was overseen by the Arduino Mega, 

which was employed to implement a state feedback controller 

function within its primary polling loop. During the polling 

operation, the control process begins by reading the encoder to 

ascertain the pendulum pole's angle relative to the vertical. For the 

state feedback controller to operate, it required the pendulum 

system's full state. Since only the angle was directly available, the 

second state was estimated using a Luenberger observer. Using the 

full state estimate, the control command was generated by 

multiplying it with the specified feedback gain. Based on the 

measured angle, the feedback controller then calculated the stepper 

motor velocity control signal. This signal produced an output pulse 

train, driving the stepper motor and allowing the cart to move at 

the ideal speed to maintain balance. State updates were computed 

utilizing Euler integration. 

14.2. Arduino command menu 

Within the polling cycle, the system processes and interprets 
incoming commands received through the serial interface. The 
suite of accessible commands encompasses the following: 
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• Activate control: Starts balancing when the pendulum is 
brought up to an inverted configuration. 

• Deactivate control. 

• Display help menu: View controller parameters. 

14.3. Main Arduino loop pseudocode  

The pseudocode for the main Arduino poll loop is shown 

below. This makes use of function calls the can reset the encoder, 

calculate the motor command, and drive the stepper motor. The 

loop is continuously run to control the system, ensuring that the 

pendulum maintains its desired position or follows a certain 

trajectory. In addition, there are command responses from calls to 

the menu system so that the program can be operated from a serial 

monitor over a USB connection. 

Main Arduino Poll loop  

 

Result: Balances pendulum on track 

 

Initialization of SFC parameters and flags 

 

while program running do 

 

 Call the menu object for input commands, act accordingly 

Read time  

Read pendulum pole angle 

Read reference value 

Call SFC function to compute control u 

Generate stepper control pulses to  

Drive stepper motor 

 

 

 

 

 

end    

   

14.4. Pseudocode to implement SFC  

The state feedback controller is implemented as a C++ class. 

Its constructor sets up the parameters for the state space model, as 

well as the SFC gain K and the Luenberger gain L. A SFC function 

is called with the current time and the measured pendulum pole 

position. It returns the control value U, which is subsequently used 

to set the rotational velocity of the stepper motor and drive the 

pendulum cart. 

State Feedback Controller 
 

 

Result: state feedback control variable u 

 

Initialization state space matrices A, B, C 

Initialization SFC gain K 

Initialization Luenberger gain L 

Initialization state estimate;  𝑋̂ = [0; 0; 0; 0]; 

 

while balancing pendulum do 

 

 Read reference value ref 

 

 Read pendulum output angle y 

 

 Calculate time step: h. = time - lastTime  

 

 Update last time:  lastTime = time 

 

 Calculate control:  u = - K𝑋̂ + ref * 𝑁   
 

 Calculate Output prediction error: yErr = y – C𝑋̂ 

 

 Calculate 1st pendulum state derivative: 

𝑋̂
.

(0) = A[0][0] * 𝑋̂[0] + A[0][1] * 𝑋̂[1] + B[0] * u + 

L[0] * yErr 

 

 Calculate 2nd pendulum state derivative: 

𝑋̂
.

(1) = A[1][0] * 𝑋̂[0] + A[1][1] * 𝑋̂[1] + B[1] * u + 

L[1] * yErr 

 

 Calculate 3rd cart position state derivative: 

𝑋̂
.

(2) =  B[2] * u 

 

 Calculate 4th integral position error state derivative: 

𝑋̂
.

(3) =  𝑋̂(2) =  B[2] – ref 

 

 Perform Euler integration: 

𝑋̂ = 𝑋̂ + h𝑋̂ 

 

 Return u 

 

end    

15. Experimental results 

15.1. Online demonstration videos 

Viewers can watch the inverted pendulum operations, 

including various tests, on the YouTube channel 'Robotics, Control 

and Machine Learning'. All related videos are grouped under the 

'ASTESJ Inverted Pendulum' playlist. Please follow the provided 

link for direct access to these videos: 

https://youtu.be/pvF0Zhs501U?si=P7vknbwL11tvBksE 

15.2. Perturbation tests 

We use a straightforward approach to assess control law 

performance by simultaneously monitoring the cart's position and 

the pendulum's angle during minor system disturbances. We obtain 

these measurements using encoders on the cart's stepper motor and 

at the pendulum's axis for angle measurement. During the balance 

test, disturbances are introduced by systematically applying an 

impulse to the pendulum using a tapping mechanism. 

Experiments were conducted in both position and velocity 

control modes, varying the pole length from shorter to longer 

dimensions. These tests demonstrated the system’s ability to 

maintain stability, even when subjected to additional loads altering 

its dynamic characteristics. Video demonstrations of these 

experiments can be found on YouTube, as per the link provided 

above. 
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15.3. Position mode results 

Figure 29 shows the results of the test conducted in position 

control mode. The pendulum was initially stabilized and held 

stationary in a balanced position. Following the disturbance, 

immediate and noticeable changes occurred in both the pendulum 

angle and the cart's position. The pendulum angle plot showed 

minor fluctuations around zero. The motor encoder data revealed 

that the cart moved quickly to restore balance in the system and 

then gradually returned to its original position. This behavior, 

referring to the cart's movement and pendulum stabilization, is also 

evident in the YouTube videos. 

During tests with the long-length pole, we observed a small 

oscillation of the cart, even in the absence of disturbance. This 

oscillation likely stems from a significant mismatch between the 

long-length pole's parameters and those of the medium-length 

pole, for which the controller was originally designed. Based on 

these observations, modifying the control law appears necessary to 

effectively manage the pendulum's behavior with its increased 

length. 

 

Figure 29. Responses of real, physically position-controlled inverted pendulums 

(using integral action on cart position) to impulsive disturbances delivered by the 

tapping mechanism. Results are for all three pendulum lengths in their low 
damping configurations. The solid blue line represents the mean response 

averaged across eight aligned recordings, and the light blue shading indicates the 

corresponding standard deviation.  

15.4. Velocity mode results 

The pendulum's performance was closely examined while 

operating under velocity control, as illustrated in Figure 30. The 

velocity control operation was initiated via the keyboard on the 

main PC. Users could select a cart velocity, resulting in the cart 

moving as specified in both left and right directions. 

To further evaluate the system's resilience against knocks, 

representing impulsive disturbances, we conducted an additional 

test. In this test, the pole was gently tapped while the velocity was 

set to zero. In all instances, the pendulum system demonstrated 

notable stability and effectiveness in mitigating the disturbance. 

Compared to the position control mode, disturbances in the 

velocity control mode led to uncompensated cart movements, 

particularly for the short pendulum, as shown in the lowest row of 

Figure 30. Again, this behavior is also apparent in the YouTube 

videos. This is also worth noting that using a longer pole again 

resulted in a modest reduction in performance in velocity control 

mode, with some cart oscillations observed after the impulsive 

disturbance. However, this effect was less pronounced than in 

position control mode. 

 

Figure 30. Responses of  real, physically velocity-controlled inverted pendulums 

to impulsive disturbances delivered by the tapping mechanism. Results are for all 
three pendulum lengths in their low damping configurations. The solid blue line 

represents the mean response averaged across eight aligned recordings, and the 

light blue shading indicates the corresponding standard deviation.  

16. Discussion 

16.1. Summary 

In this study, we demonstrated the design, implementation, 

analysis, simulation, and testing of an inverted pendulum. The 

mechanical system was built utilizing V-slot rail components and 

custom 3D printed parts. 
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Novel features of this work included: 

1. The construction of a physical pendulum in which the pole 

length, viscosity, and resistive friction could be easily 

modified. 

2. The construction of a testing rig, designed to apply 

consistent taps to the pendulum pole, to evaluate its 

reaction to impulsive disturbances. 

3. Use of system identification to investigate and quantify the 

pendulum’s uncontrolled dynamics as the physical 

characteristics of the pendulum system were changed.  

4. The design of two linear controllers, based on observer-

based full state feedback control modes, supporting either 

velocity or position control of the pendulum cart while 

balancing the pendulum pole. 

5. Performance testing to investigate the pendulum’s 

controlled dynamics as its physical characteristics were 

changed.  

16.2. Uncontrolled pendulum oscillations 

We first investigated the behavior of the pendulum in its stable 

downward inverted configurations. This was done for all three test 

pendulum pole lengths, as well as under conditions of both high 

and low static friction and high and low viscous damping. We 

examined the pendulum's free oscillations following an initial 

large angle displacement of approximately 90°, and also after 

initial small angle displacements of about 5°, caused by taps from 

the tapping mechanism. As expected, increasing the pole length 

reduced the oscillatory frequency of the pendulum. 

Increasing viscosity using the paddle mechanism significantly 

reduced the decay time of oscillations in the large angle case. In 

this scenario, the added viscous resistance dominated the 

pendulum's oscillatory decay, resulting in an exponential reduction 

in amplitude over time. However, in the small angle condition, 

where static sliding friction was a significant source of decay, the 

paddle had minimal effect. This was evidenced by a more linear 

decay of oscillatory amplitude. 

When we increased static friction equally in both the large and 

small angle cases, the effects differed. In the large angle case, this 

increase led to a noticeable, albeit modestly more linear, decay of 

oscillations. Conversely, in the small angle condition, the same 

level of friction had a dramatic effect, rapidly decelerating 

oscillations and bringing them to a standstill within just a few 

cycles. 

These observations indicate that the viscous resistance from the 

paddle is better represented by the square of the movement velocity 

than by the linear model commonly used in mathematical 

modeling. This is particularly true since the paddle's effect is 

significant only during faster movements. Furthermore, at small 

amplitudes, where the effect of gravity acting on the pole produces 

minimal torque, any substantial static frictional resistance can 

dominate the damping behavior. 

16.3. System identification 

To estimate the pendulums' parameters, we applied a system 

identification procedure to the small angle dataset. This data best 

represents the small angle condition occurring during the 

balancing of the inverted pendulum. We used optimization to fit 

the predicted pendulum damped oscillatory decay waveform with 

data recorded from the pendulum in different configurations. We 

noted that including a friction term in the mathematical model of 

the non-inverted pendulum was necessary in this process. This 

addition accounts for the linear aspect of decay and achieves a 

good fit. The fitting procedure enabled the estimation of the 

viscous and static friction terms, as well as an updated estimate of 

the effective pendulum pole length, mass, and moment of inertia. 

16.4. Controlled pendulum results 

We undertook a sequence of system tests, starting with the 

standard pendulum pole length for which the controllers were 

developed. We then investigated how the stabilized pendulum pole 

responded to light taps from the tapper mechanism, creating 

impulses. This testing was carried out in both velocity and position 

control modes. In velocity mode, the cart could be driven with a 

feedforward velocity command to move left or right while 

maintaining balance. In position control mode, which operates 

with integral action on the cart's position, the control system 

maintains the pendulum's cart at a specified location. We observed 

distinct behavioral differences between the two control modes. 

Unsurprisingly, velocity control, unconcerned with cart 

position, responded to disturbances to the pendulum pole with 

balancing movements of the cart, typically causing a positional 

shift. In position control mode, a disturbance similarly resulted in 

balancing movement, but the cart gradually returned to its initial 

position. 

Since the cart's movement velocity is limited, any disturbance 

requiring faster movement would naturally result in a loss of 

balance. This limitation also affects the balancing robustness in 

velocity control mode. If the cart is already moving in one 

direction, its capacity for additional corrective velocity in that 

direction is restricted. 

16.5. Transfer of controller operation to other pole lengths 

To assess controller performance, we conducted balancing 

system tests using both shorter and longer pendulum pole lengths, 

comparing them to the standard length for which the controllers 

were developed. We found that the controllers operated well with 

the shorter length pendulum pole. However, with the longer 

pendulum pole, we observed some oscillatory behavior of the cart, 

particularly in position control mode. Despite this, the inverted 

pendulum balance was still maintained. 

We note that the gains for both controller modes, derived from 

the Linear Quadratic Regulator (LQR) design process, were based 

solely on experimentation with the standard pendulum. Naturally, 

there remains a strong likelihood that more optimal controllers for 

both modes could exist, particularly if they were specifically 

designed for these varying pendulum lengths. 

16.6. Future work 

In the current study, we examined the effects of a relatively 

low-intensity, fixed impulsive disturbance on pendulums using a 

tapper mechanism. We utilized this setup to assess how the 

pendulums responded as their characteristics were altered and to 

observe the behaviors of velocity and position control. These tests 

did not result in a loss of balance; rather, they only evaluated the 

reactions necessary to maintain equilibrium. It would be 

enlightening to apply a wider range of impulse intensities and 

compare the behaviors related to loss of balance across the various 

conditions and controllers examined in this study. The existing 
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tapper mechanism could not be easily adjusted to provide a range 

of impulse intensities. For future research, constructing a tapper 

device that employs a motor to drive the tapper rod would be a 

valuable exercise, allowing for precise control over the impulse 

intensity. 

Currently, we have examined the behavior of two different 

state feedback controller architectures for balancing a pendulum. 

Many other control approaches exist, and a comparison with 

methods such as PID (Proportional-Integral-Derivative) [16,17],  

and reinforcement learning [22–24], would be informative. 

The inverted pendulum has been valuable in understanding 

human balance while standing [44–52]. Future studies within the 

framework of our pendulum system could further explore and 

model human behavior in such tasks. These studies could 

investigate factors that constrain human performance, including 

sensory feedback latency, noise in the control and sensory systems, 

as well as the force, stiffness, and speed of movement 

characteristics of muscles [68]. Such issues could be readily 

incorporated into the MATLAB simulations as well as real-time 

control of the physical pendulum system. 
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