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Abstract 11 

A growing body of research is demonstrating the potential of Fourier-Transform Infrared 12 

spectroscopy (FT-IR) to identify and differentiate morphologically similar pollen taxa. The 13 

Poaceae (grass) family is a large and complex with morphologically similar pollen grains. It 14 

is not possible to use traditional light microscopy to differentiate Poaceae species, or genus, 15 

based on pollen morphological characteristics. This research presents a study of five species 16 

from the Poaceae family found across a wide variety of different moorland vegetation 17 

communities, to test the extent to which FT-IR microspectroscopy can be used to separate 18 

and identify these species and develop statistical approaches for the analyses of these data.  19 

Moorland grasses are of particular importance to assess conservation status and baselines in 20 

fragile and scarce vegetation communities, whose vegetation composition in the past remains 21 

cryptic owing to low taxonomic resolution. Non-differentiated and second derivative spectra 22 

were combined with Principal Component Analysis (PCA) and Hierarchical Cluster Analysis 23 

(HCA) to determine whether species had different chemical compositions and would cluster. 24 

Decision trees and random forest were used to classify each species and demonstrated 100 % 25 
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successful classification rate. This success demonstrates that using FT-IR microspectroscopy 26 

alongside spectral pre-processing and multivariate analysis can successfully identify and 27 

separate these moorland Poaceae species and has the clear potential to improve taxonomic 28 

resolution and classification of fossil pollen records. This will improve our understanding of 29 

how past land-use practice has shaped upland communities, provide more detailed 30 

ecologically-relevant palaeoecological information, and be utilised for the restoration and 31 

conservation of upland habitats. 32 

Keywords: Pollen, Sporopollenin, FT-IR, Poaceae, Random forest 33 

34 
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1. Introduction  35 

Palynological research allows the reconstruction of past vegetation and environments to 36 

understand human impact and the development of a cultural landscape through time, creating 37 

insight into the response of ecosystems to anthropogenic impacts (Gaillard, et al., 2008). 38 

Semi-natural habitats such as moorlands, with diverse plant communities, are home to unique 39 

bird and insect species (Holden, et al., 2007). Palaeoecological research can aid in 40 

understanding of key long-term drivers causing changes in moorland vegetation community 41 

composition, and how different management regimes might be implemented to restore or 42 

maintain healthy environments (McCarroll, et al., 2017). Vegetation community composition 43 

and change may be a result of factors such as grazing or burning regimes and other 44 

management practices (Rowney, et al., 2023), or an indirect consequence of impacts such as 45 

twentieth-century nitrogen deposition that may have offered a competitive advantage to 46 

certain species in these nutrient-poor environments (Tomassen, et al., 2004). Palaeoecological 47 

data helps us understand how the landscape may have been of cultural significance to 48 

prehistoric communities (Davies & Bunting, 2010), and for conservation and restoration of  49 

blanket bogs and moorlands, such as Calluna vulgaris-dominated moorlands (Birks, 1996).  50 

The application of palaeoecological methods to important conservation and 51 

management questions depends on the correct and detailed identification of the plant species 52 

comprising the vegetation communities of interest. Different research studies rely on the 53 

taxonomic resolution of pollen identification (Julier, et al., 2016) to increase the accuracy of 54 

their datasets. However, issues arise when pollen grains are indistinguishable using 55 

conventional light microscopy. Some morphologically similar taxa cannot be identified below 56 

family level, as there are no visible characteristics that allow them to be separated. This is a 57 

particular problem for Poaceae, a large and complex family whose pollen grains are 58 

morphologically indistinguishable through standard light microscopy. This results in coarse 59 
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taxonomic descriptions and resolution (Zimmerman, et al., 2016) which can lead to a loss of 60 

information and imprecise identification. Reliance on light microscopy thus presents 61 

limitations to the successful application of pollen analysis within upland contexts, where 62 

Poaceae pollen may represent more than 75 % of the pollen identified (Fyfe et al 2018). This 63 

leads to unanswered conservation and management questions particularly surrounding 64 

present day degraded mires and moorlands, where the long-term effects of animal grazing 65 

and land management practices on grassland communities are not fully recognised 66 

(Chambers, 2022). As an example, the conservation status of Molinia caerulea in 67 

environmentally sensitive areas has long been a subject of debate, with recent dominance 68 

linked to increased atmospheric nitrogen deposition, or different forms of more recent 69 

management practice (Chambers, et al., 1999). It has proved impossible to resolve the status 70 

of Molinia caerulea via light microscopy alone, and remains challenging even with the use of 71 

macrofossil analysis (the identification of grasses via their epidermis) as crucial features are 72 

not well preserved (Chambers, et al., 2013).  73 

Research has demonstrated the successful use of Fourier-Transform Infra-Red 74 

spectroscopy (FT-IR) to identify and differentiate morphologically similar pollen taxa (Julier, 75 

et al., 2016), although the approach remains limited owing to the number of taxa for which 76 

measurements have been made. Infrared spectroscopy provides precise signatures of the 77 

biochemical composition of pollen (Zimmerman, et al., 2016). Pollen contains varying 78 

concentrations of specific lipids, proteins, carbohydrates and sporopollenin which are 79 

individual to each taxon, resulting from different dominant chemical functional groups in 80 

surface molecules due to their vibrational modes. These can all be identified using FT-IR 81 

spectroscopy, creating a spectrum consisting of numerous peak intensities (either 82 

transmittance or absorbance) (Kohler, et al., 2020). Furthermore, the use of FT-IR 83 

microspectroscopy (combination of FT-IR and microscopy) allows for focused measurements 84 
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on individual and clustered bioparticles, which can also be considered as a powerful tool for 85 

the characterisation of pollen grains.  86 

Evidence of FT-IR’s ability to identify and separate morphologically similar taxon can 87 

be seen in Julier et al. (2016), where 12 grass taxa from 8 subfamilies were identified across 88 

the grass phylogeny down to subfamily level, with an 80 % success rate. Jardine et al. (2019) 89 

classified eight domesticated and wild grasses based on the chemical signature of the pollen 90 

grains, achieving a 95% classification success rate when paired with k-nearest neighbour 91 

classification and leave-one-out cross validation. Zimmerman et al (2016) used FTIR 92 

microspectroscopy to classify singular pollen grains which included an optimising technique 93 

to prevent Mie-type scattering with a 95 % success rate, thus enabling better taxonomic 94 

resolution and classification. For wider context, Steemans et al (2010) used FT-IR 95 

microspectroscopy to demonstrate that cryptospores have similar spectra to that of trilete 96 

spores, which are composed of sporopollenin and characterised by “absorption bands from 97 

aliphatic C–H in methylene (CH2) and methyl (CH3) groups, aromatic (C=C and C–H) 98 

groups and C=O groups of carboxylic acids”. Fraser et al (2012) analysed geologically 99 

unaltered sporopollenin from Pennsylvanian (310 million yr before present) cave deposits 100 

and demonstrated a strong chemical resemblance to extant relatives. Further comparisons 101 

indicated that the sporopollenin structure was similar across broader phylogenetic groups, 102 

with Fraser et al (2012) suggesting that “land plant sporopollenin structure had remained 103 

stable since embryophytes invaded land”.  Depciuch et al (2018) selected six Betula species 104 

to examine their chemical and morphological composition using FTIR. Their data showed 105 

that FTIR microspectroscopy could separate and manually characterise each individual 106 

chemical composition from most of the six Betula species, indicating that the technique can 107 

also identify morphologically similar tree taxa.  108 
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Whilst these studies have demonstrated the potential to distinguish morphologically similar 109 

pollen taxa, including Poaceae, more research is needed before such approaches can be 110 

considered suitable for application to the fossil pollen record to address questions relating to 111 

vegetation composition and change in moorland ecosystems.  Firstly, it is necessary to 112 

demonstrate that key species can be separated, and to develop reference libraries for those 113 

species, and second, to develop classification approaches that can draw on reference libraries 114 

to automate the identification on unknown pollen grains.  The aims of this research are 115 

therefore: 1) to test the extent to which FT-IR microspectroscopy can be used to separate the 116 

pollen of morphologically-similar moorland grasses; and 2) to assess the application of 117 

techniques including multivariate analysis and Random forest machine learning to determine 118 

species classification and separation. 119 

  120 
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2. Methods 121 

 122 

2.1 Sample collection and preparation 123 

Five grass species were identified as important constituents of upland grassland 124 

communities in the UK, and chosen for analysis: Agrostis capillaris, Anthoxanthum 125 

odoratum, Deschampsia cespitosa, Festuca ovina, and Molinia caerulea. Four of the five 126 

species are widely distributed across the Northern Hemisphere, with the fifth (Molinia 127 

caerulea L.) abundant across Europe. The species are found across a wide variety of different 128 

moorland vegetation communities (Rodwell, 1998) . Fresh plant material for each species 129 

was collected from Northumberland, across four different locations (Figure 1). The Agrostis 130 

samples were not identified in the field beyond genus level, thus it is unclear which species 131 

were included in the sample. One bulk sample per specie was created by extracting four 132 

anthers from individual plant heads using tweezers, and delicately removing the pollen onto 133 

one half of a diamond anvil using a needle and scalpel. Pollen grains were compressed 134 

between the two halves of the anvil and then examined to see which half had the most sample 135 

on. 136 

 137 

Figure 1: Map of sample collection sites (Google Earth, 2023) 138 
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2.2 Chemical Analysis 139 

Individual bulk samples were examined using a Hyperion 1000 IR-enabled 140 

microscope with a 15x objective lens and liquid nitrogen-cooled MCT detector in absorbance 141 

mode, linked to a Bruker Vertex 70 (Bruker, Billerica, MA, USA) FT-IR bench unit. Fifty 142 

scans per bulk sample were taken with a background scan before the first scan and after every 143 

10th. Optimal scan rate and resolution (cm-1) were determined by preliminary method 144 

development (SM1), each scan consisted of 256 scans averaged with a resolution of 4 cm-1. 145 

Spectra were recorded between 4000 – 500 cm-1 and scaled using Bruker OPUS vers.4 146 

software (Bruker, Billerica, MA, USA) for visual inspection.  147 

 148 

2.3 Spectral pre-processing 149 

In vibrational spectroscopy, spectroscopic data is generally pre-processed for data 150 

analysis (Kohler, et al., 2020).  Pre-processing corrects the spectra by removing interfering 151 

atmospheric and instrumental effects. Due to the size and morphology of the samples, 152 

differences in the chemical compositions cannot be identified without pre-processing 153 

(Bassan, et al., 2010). Influential factors such as temperature, pressure and humidity can 154 

cause baseline drift (Yu, et al., 2013), affecting the overall accuracy of data analysis and 155 

classification. Therefore, baseline correction is used to set all baselines to zero absorption. 156 

The Extended Multiplicative Signal Correction (EMSC) model is regularly used in 157 

vibrational spectroscopy as a model-based pre-processing technique (Afseth & Kohler, 2012), 158 

aiding in correcting Mie scattering and peak positioning in FT-IR microspectroscopy 159 

(Bassan, et al., 2010). The model also allows for a reference spectrum to be included to aid 160 

baseline correction (Jardine, et al., 2021), with all corrected spectra resulting with the same 161 

baseline as the average (Afseth & Kohler, 2012). Raw spectra was baseline and EMSC 162 

corrected using the baseline (Liland, et al., 2010) and EMSC package (Martens & Stark, 163 
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1991; Liland, 2021) in R v.4.2.2 (R Core Team, 2022) with the mean spectrum of the dataset 164 

being used as the reference spectrum. 165 

Derivatives of spectra can offer richer chemical information compared to raw spectra, 166 

as baseline effects are minimised while suppressed chemical signals are improved (Kohler, et 167 

al., 2020). Following the recommendations from Kohler et al. (2020), the raw spectral data 168 

was differentiated into second derivatives and EMSC performed afterwards. Derivatives of 169 

spectra can enhance noise (Jardine, et al., 2021); therefore, second derivative spectra were 170 

subject to Savitzky-Golay smoothing (window size of 15, polynomial of 2 and first degree) 171 

using the EMSC package (Martens & Stark, 1991) (Liland, 2021) in R v.4.2.2 (R Core Team, 172 

2022). Savitsky-Golay smoothing is an algorithm that estimates a spectrum by polynomial 173 

least-square fit, and defines a moving window which smooths the spectrum or derivated 174 

spectrum (Zimmerman & Kohler, 2013; Kohler, et al., 2020). Both the polynomial and the 175 

window size can influence the deviated curve, and ultimately the resulting spectrum and 176 

multivariate analysis. OriginLabs (OriginLab, Northampton, MA, USA) was used to plot the 177 

spectra.  178 

2.4 Visual investigation and data analysis 179 

The mean and standard deviation of the non-differentiated spectra was calculated for 180 

each species using R v. 4.2.2 (R Core Team, 2022), and plotted for visual investigation 181 

(Figure 1) following Jardine’s (2021) R script. Key absorption bands were chosen from 182 

previous research on sporopollenin chemistry and FT-IR Poaceae classification (Table 2) 183 

(Julier, et al., 2016; Jardine, et al., 2019; Kendel & Zimmermann, 2020; Zimmerman & 184 

Kohler, 2014; Steemans, et al., 2010; Fraser, et al., 2013; Fraser, et al., 2012; Watson, et al., 185 

2007; Zimmerman, et al., 2017) for comparison against the average spectra (Figure 2 and 186 

SM3.1). Some absorption bands (e.g., the -OH band at 3300 cm-1 and the CH2 bands at 2925 187 

and 2825 cm-1) were omitted from data analysis as the bands offered no individual 188 
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classification information.  Data analysis was conducted on both the non-differentiated and 189 

second derivative data in the spectral region of 1800-600 cm-1 in R v. 4.2.2 (R Core Team, 190 

2022), where the biochemical signatures between species were compared and explored. For 191 

further investigation, the mean spectrum for each species were converted into their second 192 

derivatives.  193 

Packages vegan (Oksanen, et al., 2020), dendextend (Galili, 2015) and circlize (Gu, 194 

2014) were used to perform hierarchical cluster analysis (HCA) (dendrogram) and principal 195 

component analysis (PCA) in R v. 4.2.2 (R Core Team, 2022) to visualise the non-196 

differentiated and second derivative data. HCA and PCA were calculated using Euclidian 197 

distance to measure between-object distances, and classified samples into groups 198 

(Schumacker, 2016). Clear anomalies seen within the PCA were removed from the working 199 

dataset. PCA results and sample scores for each individual sample were extracted and plotted 200 

to visualise PC1 and PC2.  201 

Loadings vectors for PC1 and PC2 were extracted to determine the importance of 202 

each absorbance band on each axis. A decision tree was created in Rstudio (Rstudio, 2020) 203 

using packages rpart (Therneau & Akinson, 2022) and rpart.plot (Milborrow, 2022) to 204 

identify and compare which specific wavenumbers were driving the species separation. The 205 

algorithm produces ‘if-then’ rules based on features in the dataset, resulting in a decision and 206 

outcome prediction. Rules were extracted to obtain the wavenumbers and absorbance units, 207 

then cross-checked with the original dataset to ensure the if-then rules were correct. The 208 

dataset was then split into training (80 %) and test (20 %) data, with the training dataset used 209 

to determine whether the wavenumbers used for the if-then rules varied every time a tree was 210 

created. A decision tree was run 100 times to ensure repeatability and rules were extracted. 211 

Comparisons between the original and trained decision tree were made, investigating which 212 
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variables were repeatedly used throughout the whole tree, and which were used regularly for 213 

the first broad split. Final comparisons were made against the PCA loading plots.  214 

Using one decision tree for classification purposes can result in high variability and 215 

overfitting; therefore, Random forest (RF) was chosen to classify the non-differentiated 216 

dataset. RF is a supervised machine-learning algorithm using the collective wisdom of 217 

multiple decision trees to develop classification and regression models (Breiman, 2001). 218 

Classification trees are constructed by creating rules and decision points using training data 219 

that includes each sample’s features.  Samples move throughout each decision point until the 220 

terminal node is reached and classified. The trained model can then be used to predict classes 221 

of samples using the features alone. The ensemble method bagging can be used to reduce 222 

variance for more accurate predictions by setting the parameter mtry to the number of 223 

predictor variables (wavenumbers) within the dataset.   Package randomForest (Wiener & 224 

Liaw, 2002) and the training dataset was used to produce and train the RF algorithm, with 225 

bagging being implemented with the argument mtry = 622. A confusion matrix using test data 226 

was produced to determine prediction accuracy, while variable importance indicated which 227 

variables (wavenumbers) would cause a greater loss in accuracy if excluded (Mean Decrease 228 

Accuracy), and which variables were most important in contributing to the homogeneity of 229 

the nodes, based off the mean decrease in Gini coefficient (MeanDecreaseGini).  230 

Variable importance can be useful for variable reduction, where higher ranking 231 

variable can be used to build simpler models (Liaw & Wiener, 2002) while others that score 232 

lower are removed. By using variable importance measures, classification error rates can be 233 

kept at a similar level if low or reduced by only including important variables. Important 234 

variables were selected by running a RF loop within R  v. 4.2.2 (R Core Team, 2022) and 235 

extracting the MeanDecreaseAccuracy (MDA) values. As mtry’s default is the square root of 236 

total variables for a classification model, the top 24 important variables for each data frame 237 
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were selected and combined into one data frame. A total of 240 variables were rearranged in 238 

ascending order from most important to least important, with the top 24 being selected again 239 

and replotted onto a dotchart. The MDA data was transformed into a boxplot to investigate 240 

which wavenumbers had greater within and between species variation. RF was re-run again 241 

with the refined dataset, a confusion matrix using test data was also produced to determine 242 

prediction accuracy. To test whether the simplified model could classify unlabelled samples, 243 

species labels were removed from the test data and predicted through a confusion matrix 244 

again.  245 

 All R coding and additional figures can be found in the supplementary document SM2 246 

and SM3.  247 
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3. Results 248 

 249 

 FT-IR spectra of the five different Poaceae species (Figure 2 and SM3.1) exhibited 250 

the characteristic absorbance peaks that have been reported in pollen studies using FT-IR 251 

spectroscopy (Table 2) (Julier, et al., 2016; Jardine, et al., 2019; Kendel & Zimmermann, 252 

2020; Zimmerman & Kohler, 2014; Steemans, et al., 2010; Fraser, et al., 2013; Fraser, et al., 253 

2012; Watson, et al., 2007; Zimmerman, et al., 2017). They presented similar vibrational 254 

bands, with a broad -OH stretch at 3500-3000 cm-1, asymmetric CH2 stretches at 2925 and 255 

2845 cm-1, C=C stretch at ~1600 cm-1 and C-OH and C-O-C stretches at ~1040 cm-1 present 256 

in all spectra. Each spectrum signal represents vibrational modes of proteins, lipids, 257 

carbohydrates and sporopollenin (Zimmerman, et al., 2017; Zimmerman & Kohler, 2014; 258 

Jardine, et al., 2019; Bağcıoğlu, et al., 2015; Zimmerman, et al., 2015). Protein signals are 259 

represented at 1650 cm-1 (secondary amide I C=O stretch) and ~1550 cm-1 (amide II N-H 260 

deformation and C−N stretching) ; lipids at 2925 cm-1 (asymmetric CH2 stretch), 2845 cm-1 261 

(asymmetric CH2 stretch), 1740-1710 cm-1 (C=O stretch), 1460-1450 cm-1 (CH2 deformation) 262 

and 1400 cm-1 and carbohydrates between 1200-1000 cm-1 (C-O, C-OH and C-O-C 263 

stretches). Sporopollenin can be associated with bands at ~1600 cm-1 (aromatic C=C stretch), 264 

~1515 cm-1 (aromatic C=C stretch), 1161 cm-1 (C-O stretch) and between ~900-800 cm-1 (C-265 

H bend); and amino acids at 1375 cm-1 (symmetric CH3 bend) and 1325 cm-1
 (C-N bend). 266 

Variance across the spectra is obscure but can be seen with some shading in bands within the 267 

fingerprint region. For further investigation, spectral data between 1800-600 cm-1 was used to 268 

calculate the second derivatives for each specie (SM3.2).  269 

 Second derivative spectra (SM3.2) revealed that while there is similarity across all 270 

five spectra, most structural change happened between 1800-1400 cm-1, where signals 271 

associated with protein and lipids are identified, and 1200-1000 cm-1, where signals 272 

associated with carbohydrates are identified. Broad absorbance bands have been suppressed,  273 
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 274 

Figure 2 (A): Stacked mean pre-processed FTIR spectra of the five chosen grass species for 275 

the present study. (B) Fingerprint absorbance region of the FTIR spectra for each of the 276 

grass species (1800-600 cm-1). Shaded areas show ± standard deviation about the mean. 277 

 278 

while peaks and shoulders have been enhanced. All species exhibit a strong downturned C=O 279 

peak at 1740cm-1, this peak is present in the non-derivative spectra (Figure 2 and SM3.1), but 280 

is more characteristic of a shoulder/weak peak. Peaks that are related to secondary structures 281 

of proteins (1700-1600cm-1) are present across the five species, and all exhibit a C=O stretch 282 

at ~1650 cm-1  (amide I). Agrostis, Deschampsia cespitosa and Festuca ovina have an 283 

aromatic C=C stretch at 1600 cm-1, while Anthoxanthum odoratum and Molinia caerulea 284 

display a C=O stretch at 1630cm-1.  Agrostis, Anthoxanthum odoratum and Festuca ovina 285 

display downturned symmetric peak at 1550 cm-1 (amide II N-H deformation 286 

and C−N stretching) and all exhibit peaks at ~1465cm-1 (CH2 deformation). Agrostis, 287 
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Deschampsia cespitosa and Festuca ovina present downturned strong peaks at ~1105 cm-1 288 

(C-O-C stretch), whereas Anthoxanthum odoratum and Molinia caerulea’s peak exhibits a 289 

slightly broad suppressed peak. Absorption bands related to sporopollenin at ~1515 cm-1 and 290 

~1165 cm-1 are more pronounced as second derivatives in SM3.2 than Figure 2, with most 291 

species apart from Anthoxanthum odoratum and Molinia caerulea exhibiting medium to 292 

strong peaks at ~1060 cm-1. 293 

 294 

Figure 3: (A): Non differentiated PCA and loading plots (C & E); (B) Second derivative 295 

(Savitsky-Golay smoothed) and loading plots (D & F). 296 

The first two components of the PCA of the non-differentiated spectra (Figure 3A) accounted 297 

for 91 % of the variation, with PC1 contributing 73 % and PC2 contributing 18 %. There are 298 
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clear within-taxon groups spread out across the ordination space, although Molinia caerulea 299 

is spread further across both PC1 and PC2. Agrostis capillaris is evenly separated but is not 300 

overlapping any other species, while Deschampsia cespitosa and Festuca ovina have 301 

clustered together at the bottom. PC1 loading plot (Figure 3C) displays clear separation 302 

between the protein and carbohydrate region. PC1 has high positive loadings across the 303 

protein region (1700-1500cm-1) and high negative loadings in the lipid region (1750-1700cm-304 

1) and carbohydrate region (1200-900 cm-1). Bands relating to sporopollenins at 1605, 1515, 305 

1171, 853, and 833 cm-1 (Bağcıoğlu, et al., 2015) have positive loadings overall. PC2 loading 306 

plot (Figure 3E) has high positive loadings in the lipid region (1750-1730 cm-1), low positive 307 

loadings in the secondary amide II region (1570-1515 cm-1), high negative loadings in the 308 

secondary amide I region (1700-1600 cm-1) and carbohydrate region (1200-1000 cm-1). Low 309 

and high positive loadings at ~1500 cm-1 and ~1165 cm-1 are indicative of sporopollenin.   310 

 The first two components of the PCA of the second derivative spectra (Figure 3B) 311 

accounted for 67% of the variation, with PC1 contributing 51% and PC2 contributing 24%. 312 

Within taxon groupings are tighter with less overall spread across the ordination space. 313 

Agrostis is still separated but the majority of the data has clustered towards the top near 314 

Festuca ovina. PC1 loading plot (Figure 3D) exhibits more pronounced peaks, with high 315 

positive and negative secondary amide I region (1700-1600 cm-1). Peaks related to the 316 

secondary amide II region (1570-1515 cm-1) and carbohydrate region (1200 –900 cm-1) have 317 

low positive loadings, and sporopollenin at ~1600 cm-1, ~1500 cm-1 and 1161 cm-1 have low 318 

negative loadings. PC2 loading plot (Figure 3F) exhibits stronger negative loadings within 319 

the secondary amide II region (1570-1515 cm-1) region and carbohydrate region (1200–900 320 

cm-1). An asymmetric stretch within the lipid’s region (1750-1730 cm-1) has high positive 321 

loadings, with peaks relating to sporopollenin at ~1600 cm-1 and ~1161 cm-1 having more 322 

prominent negative loadings.   323 
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The HCA for the non-differentiated data was split into five clusters (SM3.3). The first 324 

division of the dendrogram separated Molinia caerulea from all other species; when five 325 

clusters are chosen the Molinia separates further into two groups. Anthoxanthum odoratum 326 

forms a distinct group while different species such as Agrostis and Festuca ovina, were 327 

classified together. HCA for second derivative data (SM3.4) was split into five clusters again 328 

and shows clear within-taxon groupings for all species. While Agrostis is not a single 329 

coherent cluster, it has fallen into two distinct areas and has tighter clustering overall which is 330 

exhibited in the PCA as well (Figure 3B).  331 

 332 

Figure 4: (A) Classification tree of pre-processed data, top decimals of terminal nodes 333 

represent successful classification, with bottom percentage indicating how many samples 334 

have been classified into that node. (B) Histogram of extracted wavenumbers used as 335 

decision rules and the frequency of appearance throughout the entire tree. (C) Histogram of 336 

extracted wavenumbers used as the first split rule for each tree and the frequency of 337 

appearance.   338 
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 339 

A decision tree for the pre-processed data had five terminal nodes (Figure 4A) with 340 

four predictors that overtook all other variables and were used as classification rules. Rules 341 

were cross checked with data set to ensure the algorithm was classifying correctly. All 342 

samples had 100 % successful classification indicated by the “1.00” and correct percentage at 343 

each terminal node. Figure 4B exhibits the top ten wavenumbers used by the looped decision 344 

tree model as classification rules by measuring the frequency of appearance. 1693.4306 cm-1 345 

and 1745.50649 cm-1 are within the top four, while 883.36129 cm-1 and 1155.31313 cm-1 has 346 

moved down to fifth and sixth. The majority of wavenumbers featured within the top ten are 347 

between 1800-1600 cm-1 and 1200-800 cm-1, suggesting that absorbance bands found within 348 

the lipid (1750-1730 cm-1), secondary amide I (1700-1600 cm-1) and carbohydrate (1200-349 

800cm-1) regions drive the discrepancy between the grass species. Figure 4C displays the top 350 

5 extracted wavenumbers used as the first split rule for each tree and the frequency of 351 

appearance, with 1693.4306 cm-1, 1739.72028 cm-1, 678.91523 cm-1 and 883.36129 cm-1 352 

within the top four.   353 

 354 

Random forest (RF) classification performance was evaluated based on the training 355 

and test prediction accuracy (SM3.5) and out of bag estimate error rate (OOB). OOB is a 356 

method used for measuring the prediction error of machine learning models that use bagging. 357 

For the training and test dataset, the OOB was 0 % with 100 % accuracy. Figure 5 depicts the 358 

top 24 wavenumbers from the looped MeanDecreaseAccuracy (MDA) results. 1641.35472 359 

cm-1 was identified as the most important, with roughly seven observations (samples) being 360 

misclassified if removed from the dataset. The top 24 variables were transformed into box 361 

plots (SM3.6) to investigate how the wavenumbers and corresponding spectral data differed 362 

between each species. Agrostis had the greatest within species variation at 1641.35472 cm-1, 363 
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1461.98223 cm-1 and 1450.40981 cm-1, indicating peaks varied more within the proteins and 364 

lipids region. Wavenumbers with the greatest between species variation were seen within the 365 

protein and lipids region, e.g, Anthoxanthum odoratum and Molinia caerulea had a 0.35 366 

difference at 1641.35472 cm-1 and 1467.76844 cm-1. The refined RF model had an error rate 367 

of 0%, therefore species names were removed from test data and the trained RF model was 368 

applied.  Predicted names were compared against true species names (SM3.7) and showed 369 

100 % prediction accuracy. 370 

 371 

 372 

Figure 5: randomForest variable importance plot of the top 24 selected variables using the 373 

entire dataset to train the algorithm 374 

  375 
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4. Discussion 376 

The combination of visual investigations (Figure 2 and SM3.2) (Table 2) and data 377 

analysis (Figure 3, Figure 4, Figure 5, SM3.3, SM3.4 and SM3.6) of the non-differentiated 378 

and second derivative FT-IR spectra above demonstrates that using FT-IR microspectroscopy 379 

can successfully identify and separate morphologically similar moorland grass species (Table 380 

1). While the spectra present similar vibrational bands between species, the spectra 381 

themselves exhibit many of the same distinctive absorbance bands demonstrated in previous 382 

pollen studies employing FT-IR spectroscopy (Table 2) (Julier, et al., 2016; Jardine, et al., 383 

2019; Zimmerman & Kohler, 2014; Kendel & Zimmermann, 2020; Steemans, et al., 2010; 384 

Fraser, et al., 2012; Fraser, et al., 2013; Watson, et al., 2007; Zimmerman, et al., 2017). Table 385 

2 showed that most variance across the non-differentiated spectra was within the fingerprint 386 

region, with most structural changes observed between 1800-1600 cm-1 and 1200-1000 cm-1. 387 

This suggested that the moorland grass species could be separated based on the pollen grains’ 388 

protein and carbohydrate chemical composition. Second derivatives of the data (SM3.2) 389 

indicated variations in the secondary amide I structures of proteins (1700-1600 cm-1), 390 

secondary amide II (1570-1515 cm-1) and carbohydrate regions 1200-1000 cm-1. 391 

Characteristics bands of sporopollenin were also more pronounced at 1600 cm-1, ~1515 cm-1 392 

and ~1160 cm-1 with varying absorbance for each species. While visual investigations could 393 

determine some differences between species, more subtle chemical differences were harder to 394 

detect.    395 

Following the data analysis, sections of spectra between 4000-1800 cm-1 were 396 

removed as they offered no varying chemical information, while the fingerprint region was 397 

extended to 1800-600 cm-1 as previous literature has demonstrated that lipids found at 1730 398 

cm-1 can vary between species (Fraser, et al., 2012; Jardine, et al., 2019; Julier, et al., 2016; 399 

Zimmerman, et al., 2017). The PCA score plots for non-differentiated and second derivative 400 
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spectra (Figure 3A and 3B) have clear within-taxon groupings and wider dispersion of some 401 

species across the ordination space. Agrostis has separated out into two separate clusters, 402 

while the other species exhibit tighter clustering, particularly when subjected to pre-403 

processing. This suggested (i) variability between the scans from possible differences 404 

between background scans or (ii) that the PCA has identified two different Agrostis species. 405 

There are four species of Agrostis that are commonly found in British moorland and 406 

heathland communities: A. curtisii, A. capillaris, A. stolonifera and A. canina (Rodwell 407 

1991). The Agrostis samples were not identified in the field beyond genus level, and it is thus 408 

unclear which species were scanned. The separation of Agrostis sp. from other grasses via 409 

multivariate analyses is a possible positive outcome, although it is clear that this genus and 410 

background scans needs further detailed investigation at the species level. 411 

Score plots for non-differentiated spectra (Figure 3A) show that Anthoxanthum 412 

odoratum and Molinia caerulea have mostly positive score values for PC1, indicating that 413 

these species have similar chemical composition, while Festuca ovina, Deschampsia 414 

cespitosa and Agrostis have negative scores. Loading plots for the non-differentiated spectra 415 

(Figure 3C and 3E) highlight that PC1 separation is driven by lipid-based (1750-1730 cm1), 416 

protein-based (1700-1500 cm-1) and carbohydrate-based (1200-1000 cm-1) chemical 417 

compositions of the individual species, while PC2 is driven by protein-based (1700-1500 cm-418 

1) and carbohydrate-based (1200-1000 cm-1) chemical compositions. The second derivative 419 

PCA (Figure 3B) exhibited tighter within-taxon groupings compared to Figure 3A, with 420 

Anthoxanthum odoratum, Festuca ovina and one group of Agrostis having more positive 421 

score values for PC1, but Anthoxanthum odoratum has negative score values for PC2. 422 

Loading plots for the second derivative spectra (Figure 3D and Figure 3F) are more 423 

distingushed compared to the non-differentiated loading plots (Figure 3C and 3E) with strong 424 

peaks  between the protein (1700-1500 cm-1) and carbohydrate regions (1200-800 cm-1). 425 
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Loading plots for PC1 (Figure 3D)  indicate separation is driven by protein-based (1700-1500 426 

cm-1) and carbohydrate-based chemical compositions (1200-1000 cm-1) of species, while PC2 427 

is driven by the lipid-based (1750-1730 cm-1), secondary amide I region (1700-1600 cm-1) 428 

and particulary carbohydrate-based (1200-1000 cm-1) chemical compositions found at ~1090 429 

cm-1.  430 

Each of these key regions represent different signatures for biochemicals or nutrients 431 

found within pollen. Within the lipids region, triglycerides are characterised by a strong C=O 432 

stretch at 1745 cm-1, a weaker stretch at ~1460 cm-1 (Bağcıoğlu, et al., 2015), and 433 

phospholipids between 1160-1150 cm-1; gluten and chitin compounds are characterised in the 434 

protein region by two broad bands at 1650 cm-1 (secondary amide I: C = O stretch) and 1550 435 

cm-1 (secondary amide II: N-H deformation and C-N stretching) (Zimmerman, et al., 2015); 436 

and some carbohydrates, such as cellulose at 1107 cm-1, 1055 cm-1 and 1028 cm-1 and 437 

amylose at 1076 cm-1 and 995 cm-1 (Bağcıoğlu, et al., 2015). Combining the non-438 

differentiated and second derivative loading plots results determined that the most variation 439 

was found in the cellulose and amylose content between species, with gluten and triglyceride 440 

content also influencing separation as well. 441 

The resulting HCAs for both non differentiated and second derivative spectra (SM3.3 442 

and 3.4) exhibit tight clustering of species, with Anthoxanthum odoratum, Deschampsia 443 

cespitosa and Molinia caerulea being exclusively clustered into individual groups. While 444 

Agrostis is not a single coherent cluster, it has fallen into two distinct areas and has tighter 445 

clustering overall. The results correlate well with the PCAs (Figure 3A and 3B) and exhibit 446 

low variance and better separation amongst species. Molinia caerulea across both HCAs 447 

(SM3.3 and 3.4) exhibits tight clustering; however, the non-differentiated HCA (SM 3.3) 448 

clusters Molinia into one group but with two distinct branches. The replicate scans that are 449 

seen in the smaller group of the scaled Molinia caerulea (SM 3.3) are between 0-9 and 45-49, 450 
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indicating that the first and last few scans taken have more variance compared to the scans 451 

taken in between. This could be a result of background correction issues or instrument 452 

variation; therefore, investigations surrounding these factors would be benefitical in the 453 

future. 454 

The non-differentiated PCA (Figure 3B) and the HCA (SM3.4) see clear separate 455 

within-taxon groupings when data is subject to the EMSC method. Pre-processing the data 456 

using EMSC has benefitted the species separation overall. As the species’ chemical 457 

information is very similar between 1800-600 cm-1, using EMSC normalises the variations 458 

found within spectra, such as scaling, baselines, and replicate variation (Liland, 2021). This 459 

aids multivariate analysis and the overall within-taxon groupings by reducing noise and 460 

scattering that had likely resulted from atmospheric effects. While data analysis of the raw 461 

spectra exhibits positive results, classification of the species can be optimised when spectral 462 

data is subject to pre-processing. 463 

Non-differentiated spectral data between 1800-600 cm-1 was used for machine 464 

learning classification. Using a decision tree (Figure 4A) and extracting the rules using a 465 

looped model (Figure 4B and 4C)  determined which variables (wavenumbers) and 466 

corresponding absorbance bands were driving the discrepancy and classification of each grass 467 

species, with wavenumbers featured between 1800-1600 cm-1 and 1200-800 cm-1 within the 468 

top ten and 1693.4306 cm-1 and 1155.31313 cm-1 within the top four. When compared to the 469 

non-differentiated PCA loading plots (Figure 3D and 3F), species plotting more positively on 470 

PC1 and PC2 had higher variance in absorbance bands found in similar regions as those used 471 

as rules in the decision tree. This also coincedes with the differing chemical composition of 472 

lipids and carbohydrates content  found within pollen, with triglycerides represented in the 473 

top four wavenumbers at 1741 cm-1  and 1745 cm-1 and phospholipids in the top 10 at 1153 474 

cm-1, 1149 cm-1 and 1151 cm-1.  475 
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Using random forest (RF) (Donges, 2023) achieved 100% successful classification 476 

and prediction accuracy for the pre-processed data respectively. While the decision tree 477 

(Figure 4A) had 100% successful classification, it is prone to overfitting, something of which 478 

RF overcomes by bootstrapping samples (Petkovic, et al., 2018). While RF has classed each 479 

species using a randomised algorithm, it has not separated the two potential Agrostis species 480 

exhibited in the PCAs (Figure 3B). Therefore, it would be beneficial to investigate whether 481 

RF can class different species from the same genus, instead of the same family. 482 

MeanDecreaseAccuracy (MDA) plot (Figure 5) highlighted wavenumbers between 1800-483 

1600 cm-1, 1500-1400 cm-1 and 1200-800 cm-1, suggesting that the wavenumbers found 484 

within the lipid (1750-1730 cm-1), secondary amide I (1700-1600 cm-1), carbohydrate (1200-485 

900cm-1) and aromatic ring (800-600 cm-1) regions have stronger influence on the RF 486 

classification than the rest of the dataset. By transforming the MDA data into a boxplot 487 

(SM3.6), it revealed Agrostis had greater within species variation within the protein 488 

(1691.35472cm-1) and lipids (1461.98223 and 1450.981 cm-1) region, this was also found 489 

between species. While the combined decision tree rules (Figure 4B) and RF’s MDA plot 490 

(Figure 5) display similar but different wavenumbers, they are different machine learning 491 

techniques that are classifying the grass spectra successfully overall. By refining the data set 492 

used to train RF, classification accuracy was optimised and OOB error continued to stay at 493 

0%. Furthermore, a 100% successful prediction (SM3.7) was also achieved when labels were 494 

removed from the test data set, suggesting that the specific 24 variables included in the 495 

overall model are driving the discrepancy between species. Optimising and using a machine 496 

learning technique that has managed to separate samples into their correct species 497 

successfully, demonstrates that FT-IR spectra can be used to separate and classify 498 

morphologically similar grass species if paired with multivariate data analysis. 499 
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While this research has shown that moorland grasses can be differentiated, the results 500 

are based on modern pollen material from one region. Pollen grain composition can differ 501 

ecologically by being exposed to different temperatures, humidity, light, and nutrients 502 

(Zimmerman, et al., 2017; Pacini & Franchi, 2020); therefore, future research on these 503 

species should be focused on investigating spatial and environmental variation found within 504 

the spectra. While the results demonstrate random forest can be used as a classifier and the 505 

optimised, the variable importance indicated that proteins, lipids and mostly carbohydrates 506 

were used to classify each species. Modern pollen contains internal material such as 507 

cytoplasm and intine (Julier, et al., 2016), therefore the signal for each of the species above 508 

represents the whole pollen grain and not just the sporopollenin. Though this information is 509 

beneficial for modern pollen, it is not as useful for classifying unknown fossil material and 510 

requires further work to optimise techniques for this type of sample. Research comparing 511 

modern and fossil pollen have indicated that peaks found at ~1740 cm-1 (C=O stretch within 512 

the lipids region), ~1650 cm-1 (amide I within the proteins region) and ~1550 cm-1 (secondary 513 

amide II within the protein region) in modern pollen were absent in fossil pollen,  likely 514 

resulting from degradation within the peatbog and the loss of pollenkit and intines (Wang, et 515 

al., 2023). Fossil pollen or pollen samples that have been chemically processed may lose non-516 

sporopollenin pollen components (Julier, et al., 2016), therefore making modern spectral 517 

information less efficient for classification. Sporopollenins are robust grain wall biopolymers 518 

based off of phenylpropanoids such as p-coumaric, ferulic and sinapic acids (Zimmerman, 519 

2010; Bağcıoğlu, et al., 2015), their chemical signatures have provided information on the 520 

past and the possibility to identify fossil pollen (Fraser, et al., 2012; Lomax, et al., 2012; 521 

Fraser, et al., 2013; Jardine, et al., 2021). Thus, there is an opportunity for further research 522 

conducting replicate measurements across different species and taxonomic groups has been 523 

recommended  (Jardine, et al., 2021), therefore future investigations surrounding the species 524 
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above should focus more on the sporopollenin chemistry to aid in better classification at 525 

genus and species level. 526 

  527 
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5. Conclusions 528 

This study demonstrated that using FT-IR microspectroscopy alongside spectral pre-529 

processing and multivariate analysis can successfully identify and separate morphologically 530 

similar pollen taxa, specifically four species and one genus from the Poaceae family that are 531 

common across moorland communities. Using a pre-processing method, further multivariate 532 

analysis on the spectral data and optimising a machine learning algorithm has led to a 100% 533 

successful classificaton rate of species overall. This has the clear potential to improve 534 

taxonomic resolution and classification of fossil pollen records, particularly as grasses can 535 

represent up to 75% of pollen identified in moorland and upland pollen sequences. Applying 536 

an improved taxonomic resolution will improve our understanding of how past land-use 537 

practice has shaped upland communities, enable the provision of much more detailed 538 

ecologically-relevant palaeoecological information, and can be utilised for the restoration and 539 

conservation of upland habitats. Whilst this study has demonstrated the potential of FT-IR 540 

microspectroscopy for moorland grass identification, the next steps in this frontier will be to 541 

develop spectra from species across a wider spatial range (particularly the Agrostis species, as 542 

shown in this study), to investigate species sporopollenin chemistry through single grain 543 

analysis, and to further develop the statistical approaches that will enable the routine 544 

separation of the FT-IR spectra.  545 

  546 
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Tables  705 

Table 1: Sample name, location of collection and correlating legend 706 

 707 

 708 

 709 

 710 

 711 

 712 

Table 2: Observed chemical absorption bands for each species. Interpretation key: “(as)” = 713 

asymmetric stretch, “(s)” = symmetric stretch, “(b)” = bending, “(d)” = deformation, “sh” = 714 

shoulder, + signs = intensity of absorbance, “/” = absence of band and “~” = varying band 715 

position.   716 

   717 

Sample name Location Legend 

Agrostis Holywell Pond A 

Anthoxanthum odoratum Holywell Pond A 

Deschampsia  cespitosa Whitelee Moor D 

Festuca ovina Whitelee Moor C 

Molinia caerulea Milburn B 

Group Wavenumber 

(cm-1) 

Agrostis   Anthoxanthum 

odoratum  

Deschampsia 

cespitosa 

Festuca 

ovina 

Molinia 

caerulea 

-OH 3500-3000 +++ ++ ++ ++ ++ 

CH2 (as) 2925 ++ + + + ++ 

  2845 + + + + + 

C=O 1740-1710 + sh + + + 

C=O (amide I) 1650 ++ ++ + ++ + 

C=C ~1600 sh / / sh / 

N-H(b/d) (amide II) ~1550 sh + / sh / 

C=C ~1515 / / 1517 (sh) / 1517 (sh) 

CH2(d) 1460-1450 sh / / sh sh 

  ~1400 + + / sh / 

CH3 (s)(b) 1375 sh / sh / + 

C-N(b) ~1325 / sh / / Sh 

C-O ~1260 + + + + + 

C-OH/C-O-C 1160 + sh + + + 

  ~1040 ++ ++ ++ ++ ++ 

C-H(b)  ~900 sh sh / / sh 

  ~800 / sh / / / 

  ~750 / sh / / sh 

  ~700 / / / / / 
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SM1: Parameter Experiment 718 

Laura Scoble a, Simon J. Ussher a, Mark F. Fitzsimons a, Lauren Ansell b, Matthew Craven b, 719 

Ralph M. Fyfe a  720 

a School of Geography, Earth and Environmental Sciences, University of Plymouth, 721 

Plymouth, PL4 8AA, UK. 722 

b School of Engineering, Computing and Mathematics, University of Plymouth, Plymouth, 723 

PL4 8AA, UK. 724 

1. Introduction 725 

A previous critical literature review demonstrated inconsistencies in how FT-IR 726 

microspectroscopy had been applied across different studies, in particular the parameters used 727 

to generate spectra (particularly the scan rate and resolution).  To address the impact of this 728 

inconsistency and address a knowledge gap in identifying the best approach, experiments 729 

were undertaken using replicate measurements from a single bulk sample from Molinia 730 

caerulea.  This section presents the results from this methodological experimentation and 731 

suggests recommendations for standardised practice. 732 

Two experiments were conducted, the first focussed on scan rate and the second on resolution 733 

(cm-1). The set-up variable was five different scan rates (16,32,64,128 and 256) and three 734 

resolutions (2, 4 and 8cm-1). 735 

  736 
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2. Methods 737 

2.1 Sample preparation 738 

Fresh Molinia caerulea was collected from Northumbria Wildlife Trust, UK and used 739 

to create a bulk sample. Pollen grains were obtained by extracting four anthers from 740 

individual heads using tweezers and delicately scrapped out onto one half of a diamond anvil 741 

slide using a needle and scalpel. Pollen grains were compressed between the two halves of 742 

the anvil and then examined to see which half had the most sample.  743 

2.2 Chemical Analysis 744 

The Bruker Vertex 70 FT-IR bench unit with infrared microscopy on the Hyperion 745 

1000 was used to take ten replicate scans for each different parameter per experiment. 746 

Spectra recording was conducted between 4000 – 500 cm-1 and generated using Bruker 747 

OPUS vers.4 software. Scans were exported as .csv files and manipulated within R v. 3.1.4 748 

(Team, 2022). Packages ggplot2 (Wickham, 2016)  and tidyr (Wickham & Girlich, 2022) 749 

were used to plot spectra. Average spectra were created to plot the second derivatives in 750 

Origin (OriginLab, Northampton, MA, USA); for the purpose of these results, a smoother 751 

was not used.  752 

2.3 Data Analysis 753 

Data analysis was conducted on both scan rate and resolution data in R v.3.1.4 (Team, 754 

2022), and focused on a specific wavenumber (scan rate and resolution: 1654 cm-1) to 755 

compare and evaluate whether there was a significant statistical difference between each 756 

parameter. Mean absorbance units were calculated for each and plotted onto a boxplot for 757 

visual analysis. Null hypothesis stated (H0): all mean values were equal; the alternative 758 

hypothesis stated (H1): not all mean values were equal. If all mean values were equal then 759 

there was no significant difference between the scan rates/resolution and changing the 760 
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number didn’t influence the overall spectrum. However, if all mean values weren’t equal then 761 

it was concluded that there was a significant difference between the scan rates/resolution, 762 

which indicated that changing the number influenced the overall spectrum. 763 

 A one-way ANOVA model was used to determine whether the mean values across 764 

each parameter were equal (P = <0.05), which provided quantification of whether increasing 765 

scan rate/resolution was significant and affected the overall spectrum. Tukey honestly 766 

significant difference (HSD) test was performed for pairwise comparison between means. A 767 

confidence level of 95% (>0.05) was used, the p adj value (p-value) indicated whether there 768 

was a statistically significant difference between each pair or not. TukeyHSD test results 769 

were then manipulated, packages dplyr (Wickham, et al., 2023), multcomp (Hothorn, et al., 770 

2008), emmeans (Lenth, 2023) and stringr (Wickham, 2022) was used to plot the data as a 771 

Compact Letter Display boxplot. 772 

Full parameter methodology flowchart can be seen below (Figure SM1). 773 

  774 
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 777 
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 780 
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 787 
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 789 

 790 

 791 

 792 

 793 

 794 

  795 

Figure SMI.1: Parameter methodology flowchart 

(Scoble, 2023) 
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3. Results 796 

3.1 Scan rate 797 

Five different scan rates are presented in Figure SM1.2: 16 (A), 32 (B), 64 (C), 128 798 

(D) and 256 cm-1 (E) of Molinia caerulea. Lower scan rate numbers (A, B, C) exhibit higher 799 

scattering and noise, whereas the higher scan rates (D and E) are more detailed and smoother 800 

(Figure SM1.3). The broad -OH stretch (3300cm-1) has reduced noise exhibited in D and E, 801 

with the asymmetric CH2 (2923 and 2854cm-1) stretch exhibiting peak separation compared 802 

to the shouldering seen in A, B and C. The fingerprint region has a stronger level of 803 

absorbance in D and E, with C-O stretch (1163 and 1041cm-1) becoming more pronounced as 804 

the scan rate increases. 805 

 806 Figure SM1.2: 10 replicate scans of scan rate 16 (A),32 (B),64 

(C),128 (D) and 256 (E) of Molinia caerulea, averaged and plotted 

using R. 
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 822 

 823 

3.1.2 Second Derivative 824 

Figure SM1.4 presents second order derivatives of the scan rates, providing greater 825 

signal enhancement for chemical bands. There are similarities amongst all the scan rates, with 826 

key functional groups being present throughout and resolved peaks pointing downwards. As 827 

the scan rate increases the noise exhibited before at the -OH stretch (3300cm-1) reduces, with 828 

the broad band becoming nearly fully suppressed to baseline. Sharper upturned peaks 829 

between 1700-1500cm-1 (C=O and C=C stretch) can be seen throughout Figure SM1.4 with 830 

D and E having more distinct separation between 1250-1000cm-1 (C-O). The use of second 831 

Figure SM1.3: Scattering of -OH peak at 3350 cm-1 at different scan 

rates: 16 (A),32 (B),64 (C),128 (D) and 256 (E) of Molinia 

caerulea. 
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order derivatives has highlighted a new peak shown at roughly 2400 cm-1, indicative of a 832 

weak C≡N nitrile. Downturned peaks at roughly 900, 800 and 700 cm-1 are more 833 

recognisable as aromatic rings and can be associated with sporopollenin bands. 834 

 835 

. 836 

 837 

3.1.3 Data Analysis 838 

Mean absorbance unit values for each scan rate were calculated by selecting a specific 839 

wavenumber from the fingerprint region (1654cm-1) and tabulating the corresponding 840 

absorbance units for each replicate scan. The variable absorbance unit value depended on the 841 

variable scan rate; therefore, absorbance unit was treated as the dependant variable and the 842 

scan rate as the independent variable.  843 

 844 

 845 

Figure SM1.4: Second derivates of scan rates 16 (A),32 (B),64 

(C),128 (D) and 256 (E) of Molinia caerulea. 
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 846 

 847 

Figure SM1.5 shows box plots of the five scan rates and the mean absorbance unit 848 

values. There is a noticeable increase in absorbance unit mean value as the scan rate is 849 

increased to 64, then gradually decreases to 128 and then increases again at 256. 32 and 128 850 

have the same mean value (1.31), suggesting there is no difference between both scan rates. 851 

16 has a short boxplot with longer whiskers, indicating a wide distribution of data compared 852 

to 32, 128 and 256. 32 exhibits a thin box plot and wider scattering, with two outliers at 1.320 853 

and one at 1.316. 64 has the widest box plot with scattered data, indicating variance within 854 

absorbance unit values for 1654cm-1. 128 exhibits tight clustering with a thin box plot, 855 

indicating less variance within the data compared to between scan rate groups. 256 has the 856 

highest mean value (1.36) and a thin box plot with tight clustering, most of the data points are 857 

plotted around the mean.  858 

An ANOVA test was run to determine whether the mean values were significantly 859 

different from one another, working on the H0 hypothesis that all mean values were equal, 860 

indicating there was no significant difference between scan rates. The p-value was 861 

“1.503903e-40” (1.503903 × 10-40) which was <0.05, concluding that the mean values were 862 

significantly different from one another. A Tukey Honestly Significant Difference 863 

Figure SM1.5: Boxplot of scan rate mean 

absorbance unit values. 

Scan Rate 
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(TukeyHSD) test was used for pairwise comparisons. All pairs apart from 128-32 had a p adj 864 

value of “0.0e+00”, which was <0.05%, indicating that there was a significant difference 865 

between each scan rate. 128-32 had a p-adj value of “0.8971323”, which was >0.05, 866 

indicating no significant difference between 32 and 128. A Compact Letter Display (CLD) 867 

method was used to clarify the ANOVA and Tukey test output (Figure SM1.6). 868 

 869 

 870 

Each scan rate had a specific lowercase letter and indicated that there is a statistically 871 

significant difference between all pairs of scan rates except 128-32. Therefore, null 872 

hypothesis (H0) is rejected and alternative (H1) is used concluding that changing the scan rate 873 

has an overall effect on the spectrum. 874 

 875 

 876 

 877 

Figure SM1.6: Compact Letter Display (CLD) Boxplot of scan rate numbers, 

lowercase letters indicate significant difference between scan rate numbers 
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3.2 Resolution 878 

Below are three different resolutions (Figure SM1.7): 2cm-1 (F), 4cm-1 (G) and 8cm-1 879 

(H) using a scan rate of 256.  F displays a noisy spectrum with a non-linear spectral line. 880 

Bands are well defined, but some appear to be sharp instead of broad because of the excess 881 

noise, e.g., -OH stretch (3300(cm-1). The fingerprint region has some recognisable bands, 882 

however, the C=C shouldering at roughly 1500cm-1 is challenging to identify. G has 883 

considerably less noise across the spectrum. Peaks and shoulders can be clearly differentiated 884 

as the spectral line looks more linear. The start of the spectrum is closer to the baseline and 885 

more distinguishable. H has a non-linear spectral line with weak absorbance. Bands are 886 

challenging to identify, especially within the fingerprint region, e.g. the anti-symmetric CH2 887 

bend (1433cm-1) and symmetric CH3 bend (1373cm-1). At the very end of the spectrum, the 888 

peaks dip below 0 absorbance.  889 

 890 

 891 

Figure SM1.7:10 replicate scans of resolution 2 (F), 4 (G) and 

8cm-1(H) of Molinia caerulea, averaged and plotted using R. 
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3.2.1 Second derivatives 892 

 Figure SM1.8 presents second derivatives for the resolutions (cm-1). All three have 893 

very different absorbances, with F having the strongest and noisiest spectrum. F exhibits full 894 

supression of the -OH stretch (3300 cm-1), asymmetric CH2 stretch (2923 and 2854 cm-1) and 895 

the C-O stretch (1163 and 1041 cm-1). More obscure peaks cannot be identified as the 896 

spectrum is compacted. G exhibits a familiar spectrum with resolved peaks pointing 897 

downwards and a more defined fingerprint region.  Strong C=C bands at roughly 1600cm-1 898 

and C-O stretches between 1100-1000cm-1 are presented. Upward peaks can be seen between 899 

1700-1600 cm-1 and 1200-1100 cm-1, indicative of a C=O and C-O stretch, respectively. 900 

Noise is still present at the beginning of the spectrum but not as strong. H has wider spacing 901 

between peaks, and very strong peaks. Resolved peaks have a strong negative absorbance 902 

with the asymmetric CH2 stretch (2854 cm-1) measured at -0.0008. More pronounced 903 

upturned peaks are exhibited between 1400-1250cm-1, which could be indicative of 904 

symmetric CH3 stretch. 905 

 906 Figure SM1.8: second derivatives of resolution 2 (F), 4 

(G) and 8cm-1(H) of Molinia caerulea 
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3.1.3 Data analysis 907 

Mean absorbance unit values for each resolution (cm-1) were calculated by selecting a 908 

specific wavenumber (1654 cm-1) and tabulating the corresponding absorbance units for each 909 

replicate scan. The variable absorbance unit value depends on the variable resolution; 910 

therefore, absorbance unit is treated as the dependant variable and the resolution as the 911 

independent variable. 912 

 913 

 914 

Figure SM1.9 shows box plots of the three resolution numbers and the mean 915 

absorbance unit values. There is a subtle increase in absorbance unit value as the resolution is 916 

increased, until a rapid decrease between 4cm-1 and 8cm-1. 2cm-1 and 4cm-1 exhibit tight 917 

clustering of data with thin box plots, indicating less variance within. 8cm-1 has the lowest 918 

mean value of 0.16 and clustering dispersion is more spread out indicating more variance in 919 

the data. 920 

An ANOVA test was run to determine whether the mean values were significantly 921 

different from one another. The p-value of the resolutions was “3.763198e-55” (3.763198× 922 

10-55) which is <0.05, concluding that the mean values are significantly different from one 923 

Figure SM1.9: Boxplot of resolution mean 

absorbance unit value. 
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another. A Tukey Honestly Significant Difference (TukeyHSD) test was used for pairwise 924 

comparisons All pairs apart from 4-2 (7.7e-06) had a p adj value of “0.0e+00” which is 925 

<0.05%, indicating that there is a significant difference between each pair of resolutions (cm-926 

1). A Compact Letter Display (CLD) method was used to clarify the ANOVA and Tukey test 927 

output (Figure SM1.10). 928 

.  929 

 930 

Each resolution (cm-1) has a specific lowercase letter, and indicates that there is a 931 

statistically significant difference between all pairs. Therefore, null hypothesis (H0) is 932 

rejected and alternative (H1) is used concluding that changing the resolution (cm-1) has an 933 

overall effect on the spectrum. 934 

  935 

Figure SM1.10: Boxplot of resolution (cm-1) numbers, lowercase letters 

indicate significant difference between resolution (cm-) numbers 
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4. Discussion 936 

Most analytical studies operationally define measurement parameters such as scan 937 

rate and resolution (Barra, et al., 2021), or base it on the suppliers’ recommendations. 938 

Software such as Bruker OPUS spectroscopy provides spectrum acquisition for numerous 939 

analytical instruments, e.g Bruker Hyperion 1000 FT-IR Microscope. This includes scan rate 940 

and resolution measurement parameters but provides no in-depth explanation as to why these 941 

specific parameters have been chosen. Research surrounding FT-IR microspectroscopy pollen 942 

identification suggest the optimal parameters are 256 scan rate and 4cm-1 resolution (Julier, et 943 

al., 2016) (Jardine, et al., 2019). However, as discussed in chapter 7’s systematic review, 944 

there were inconsistencies in how the scan rate and resolution had been used to generate 945 

spectrum using FTIR microspectroscopy. To address the knowledge gap, experiments were 946 

undertaken on scan rate and resolution using ten replicate measurements from a bulk sample 947 

and from a single species (Molinia caerulea) to find the optimal parameters.  948 

When analysing organic material, scan rates are crucial; the higher the scan rate, the 949 

more scans are performed. After 50 scans, the spectrum acquisition noticeably improves, with 950 

influential absorption bands becoming more prominent in the "fingerprint region." As shown 951 

in Figure SM1.2 and Figure SM1.3’s comparison of the scan rates, 256 (E) has less noise and 952 

scattering. It exhibits a smooth spectrum with prominent peaks, essential for analysing 953 

functional groups for identification. While 64 (C) and 128 (D) exhibit a smooth spectrum in 954 

comparison to 16 (A) and 32 (B), 256 (E) offers additional detailing, such as pronounced 955 

shouldering and easier functional group recognition.  956 

Figure SM1.4 presents the conversion of scan rate spectra into second derivatives. 957 

Second derivatives aid in chemical band interpretation, as it can resolve overlapping analyte 958 

signals by enhancing the signals within vibrational spectra (Kohler, et al., 2020). There were 959 

similarities across all five scan rates with resolved broad peaks pointing downwards. As scan 960 
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rate increases, there is a gradual reduction in noise and sharp peaks before the -OH stretch 961 

(3300cm-1). Upturned peaks separate out clearer in 128 (D) and 256 (E) compared to 16 (A), 962 

32 (B), and 64 (C) between 1700-1500cm-1 and 1250-1000cm-1. Comparing this to Figure 963 

SM1.2, 128 (D) and 256 (E) have more pronounced peaks at roughly 1650cm-1 (C=C) and 964 

shouldering between 1150-1000cm-1 (C-O). A new peak at roughly 2300cm-1 appeared within 965 

the second order derivatives, this could be indicative of a weak C≡N stretch as the peak was 966 

obscured across Figure SM1.2.  967 

Resolution is considered as “the ability to separate two spectral lines that are very 968 

close in wavelength or frequency” (Schlindwein, 2020). If two IR absorption bands are 969 

similar, the resolving power must be increased to separate them. Typically, the type of 970 

material being analysed determines the resolution number. Since the absorption bands are 971 

narrow for gases, the vibration of the atoms is measured at a wavelength of 0.2 to 0.5 cm-1. 972 

As solids and liquids have wide absorption bands, choosing a value lower than 2cm-1 would 973 

not provide any more information (Schlindwein, 2020).  974 

Figure SM1.7 exhibits the resolution spectra and demonstrates that there is greater 975 

noise with a non-linear spectral line when the number is reduced to 2cm-1 (F). Noise can be 976 

decreased by scanning the sample immediately after the background scan. Lowering the 977 

resolution lengthens the time between scans, increasing the likelihood of noise. A background 978 

scan would have to be conducted more frequently if 2cm-1 resolution was used, making this 979 

less time efficient. Absorption bands are well defined, but some appear sharp instead of 980 

broad, e.g, -OH stretch (3300(cm-1). Across the fingerprint region, bands are distinguished, 981 

however, the C=C shouldering at roughly 1500cm-1 is challenging to identify. Comparing this 982 

to 4cm-1 (G), the spectral line is deemed linear as there is a reduction in noise. Peaks and 983 

shoulders can be clearly differentiated, and the start of the spectrum is closer to baseline. 984 

8cm-1 (H) has a non-linear spectral line with weak absorbance. Increasing the resolution 985 
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shortens the time between scans, decreasing the degree of fineness obtained (Ota, 2007). 986 

Chemical signals are difficult to identify especially within the fingerprint region, e.g the anti-987 

symmetric CH2 bend (1433 cm-1) and symmetric CH3 bend (1373 cm-1). At the very end of 988 

the spectrum the peaks dip below 0 absorbance. If this was seen across the other resolution 989 

spectra, this could be indicative that the background scan was taken incorrectly or the ATR 990 

cell wasn’t cleaned sufficiently beforehand. However, as the negative absorbance is only 991 

present in 8cm-1 (H) fingerprint region, it is highly probable that this is a result of the lack of 992 

resolving power and detail.  993 

When stacking and comparing the spectra (Figure SM1.11), it is visually clear that 4 994 

cm-1 resolution (red) compared to 2 cm-1 provides a smooth spectrum with negligible noise 995 

between 4000-3500cm-1, the -OH peak at 3300cm-1, and the fingerprint region. When 996 

compared to 8cm-1 resolution (blue), the spectrum is barely distinguishable.  997 

 998 

 999 

Figure SM1.8 presents the conversion of resolution spectra into second order 1000 

derivatives. All three have very different strengths of absorbance, with 2cm-1 (F) having the 1001 

strongest and noisiest spectrum. As stated previously, increasing the resolution increases the 1002 

likelihood of noise. One way to decrease noise would be to use a smoothing algorithm such 1003 

as the Savitzky-Golay. This multifunctional pre-processing algorithm can be used for noise-1004 

Figure SM1.11: Average scans of resolution 2,4 and 8cm-1 

of Molinia caerulea. 
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reduction through the function of smoothing (Savitzky & Golay, 1964). It defines a moving 1005 

window which smooths out the spectrum, increasing the window size causes the smoothing 1006 

intensity to intensify. However, this can lead to loss of valuable chemical information and 1007 

analyte signals (Kohler, et al., 2020). Figure SM1.12 is an example of using the Savitzky-1008 

Golay smoothing feature on 4cm-1 (G) second order derivative (black). A window size of 9 1009 

(red) and 17 (green) was used with a polynomial of 2. 1010 

 1011 

 1012 

Across Figure SM1.8 and SM1.12, 4cm-1 (G) exhibits a familiar spectrum with 1013 

resolved peaks pointing downwards and a more defined fingerprint region. It has a greater 1014 

level of detail compared to 8cm-1 (H), but not an excess where the spectrum becomes noisy 1015 

and hard to interpret as seen in 2cm-1 (F). Comparing line plots (Figure 8.13 (a/b)), the 1016 

second order derivative spectral line (black) is noisy whereas the two SG lines (red)(green) 1017 

display distinct peaks. SG9 (red) presents strong downturned resolved C=C bands at roughly 1018 

1600cm-1 and C-O stretches between 1100-1000cm-1. Noise is still present at the beginning of 1019 

Figure SM1.12: Multiple line plot (a) and stacked line plot (b) of resolution 4cm-1 (G) second order 

derivative (black), Savitzky-Golay (SG) smoothing – window size 9 (red) and size 17 (green). 
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the spectrum but not as strong The -OH stretch (3300cm-1) has been slightly suppressed but is 1020 

still identifiable, whereas SG17 (green) has suppressed it more intensively. This suppression 1021 

is a clear example of loss of chemical information as a direct result of a larger window size. 1022 

While SG17 (green) has over-suppressed resolved peaks, the fingerprint region has excellent 1023 

separation between upturned peaks. Peaks can be identified between 1700-1600cm-1 and 1024 

1200-1100-1, indicative of C=O and C-O stretches. The application of the Savitzky-Golay 1025 

algorithm across IR spectra can be beneficial if absorbance bands are difficult to distinguish. 1026 

However, users must be cautious when choosing a window size as this could lead to an over 1027 

supression of analyte signal and ultimately loss of chemical information. 1028 

Data analysis of both scan rate and resolution indicated that there is a statistically 1029 

significant difference when the numbers are changed. Increasing the scan rate saw an overall 1030 

increase in the mean absorbance values, clustering of data also became more compact with 1031 

less range (Figure SM1.5). The linear model (p-value: 2.2e-16) and ANOVA (p-value: 1032 

1.503903e-40) tests output indicated that there was a significant difference between the scan 1033 

rates mean values (p-value: <0.05).  Tukey test and CLD method (Figure SM1.6) was used to 1034 

clarify these outputs by comparing pairs, determining that all pairs of scan rates apart from 1035 

128-32 were significantly different as the p-adj was <0.05. 128-32 had a p-adj value of 1036 

“0.8971323”, concluding that this pair is not significantly different. Therefore, the null 1037 

hypothesis (H0) is rejected, and the alternative (H1) is used, signifying that increasing the scan 1038 

rate makes a significant difference in the overall spectrum. When comparing 16, 64, and 256 1039 

to determine which scan rate offers the best consistency and less variance, 256 has the 1040 

thinnest box plot with tighter clustering of data. Along with less range compared to 16 and 1041 

64, this indicates less variance within 256’s dataset compared to variance between groups.  1042 

Changing the resolution (cm-1) exhibited similar results (Figure SM1.9). While the 1043 

difference between 2cm-1 (1.35) and 4cm-1 (1.36) mean absorbance values wasn’t visually 1044 
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significant, 8cm-1 saw a rapid decline to 0.16. Clustering also became less compact as the 1045 

resolution was increased from 4cm-1 to 8cm-1, suggesting data became more variable within 1046 

the group. The linear model (p-value: 2.2e-16) and ANOVA (p-value: 3.763198e-55) tests 1047 

output indicated there was significant difference between the resolution mean values (p-1048 

value: <0.05). Tukey test and CLD method was used for pairwise comparisons, determining 1049 

that all resolution pairs were significantly different from one another as the p-adj values were 1050 

<0.05 (Figure SM1.10).  Therefore, the null hypothesis (H0) is rejected, and the alternative 1051 

(H1) is used, signifying that increasing the resolution significantly affects the overall 1052 

spectrum. However, 8cm-1 sees wider variance (Figure SM1.9) and loss of chemical 1053 

information (Figure SM1.7), whereas 2cm-1 has tight clustering (Figure SM1.9) but an 1054 

incredibly noisy spectrum making identification difficult (Figure SM1.8F). 4cm-1 has tight 1055 

clustering, a thin boxplot (Figure SM1.9) and identifiable peaks (Figure SM1.7 and SM1.8G), 1056 

indicating less variance within the dataset and better consistency compared to the other two 1057 

resolutions. 1058 

 1059 

  1060 
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5. Conclusion 1061 

When altered, scan rate and resolution can affect the generated average spectrum. 1062 

Understanding what the optimal parameters are for FT-IR pollen analysis will ultimately lead 1063 

to a more successful identification of functional groups and classification. Scan rate is crucial 1064 

as the more scans taken improves the spectrum acquisition, while increasing the resolution 1065 

aids in separating two similar absorption IR bands. The combined systematic review, 1066 

laboratory experiments and data analysis meant a comparison could be made between the 1067 

analytical methods and chosen parameters against the results above. Overall, 256 scan rate 1068 

and 4cm-1 resolution are the best parameters for pollen identification. The only published 1069 

study that uses these parameters is Jardine et al (2019). 256 has reduced noise and scattering, 1070 

exhibiting a smooth spectrum with prominent peaks - essential for analysing functional 1071 

groups and identifying morphologically indistinct pollen families. 4cm-1 provides enough 1072 

separation for IR absorption bands to be identifiable with minimal noise. To build reference 1073 

libraries of spectra that can be shared and used by other researchers, the scan rate and 1074 

resolution should be standardised using these parameters.   1075 

  1076 



57 

 

5. Bibliography 1077 

Barra, I. et al., 2021. Optimizing setup of scan number in FTIR spectroscopy using the 1078 

moment distance index and PLS regression: application to soil spectroscopy. Scientific 1079 

Reports, Volume 11, p. 13558. 1080 

Hothorn, T., Bretz, F. & Westfall, P., 2008. Simultaneous Inference in General Parametric 1081 

Models. Biometrical Journal, 50(3), pp. 346-363. 1082 

Jardine, E. P. et al., 2019. Chemotaxonomy of domesticated grasses: a pathway to 1083 

understanding the origins of agriculture. Micropalaeontol, Volume 38, pp. 83-95. 1084 

Julier, C. M. A. et al., 2016. Chemotaxonomy as a tool for interpreting the cryptic diversity of 1085 

Poaceae pollen. Review of Palaeobotany and Palynology, Volume 235, pp. 140-147. 1086 

Kohler, A. et al., 2020. Model-Based Pre-Processing in Vibrational Spectroscopy. In: 1087 

Comprehensive Chemometrics. s.l.:Elsevier, pp. 83-100. 1088 

Lenth, R., 2023. emmeans: Estimated Marginal Means, aka Least-Squares Means. [Online]  1089 

Available at: https://CRAN.R-project.org/package=emmeans 1090 

[Accessed 17 March 2023]. 1091 

Ota, H., 2007. Resolution and Aperture. FTIR Talk Letter Vol.8, October, pp. 02-07. 1092 

Savitzky, A. & Golay, M. J. E., 1964. Smoothing and Differentiation of Data by Simplified 1093 

Least Squares Procedures. Anal. Chem, p. 36. 1094 

Schlindwein, H. S., 2020. About Spectral Resolution in FT-IR Spectroscopy. [Online]  1095 

Available at: https://www.opticsblog.bruker.com/guide-to-spectral-resolution-in-ft-ir/ 1096 

[Accessed 13 January 2023]. 1097 

Scoble, L., 2023. Parameter flowchart. Plymouth: s.n. 1098 

Team, R. C., 2022. R: a language and environment for statistical computing.. Vienna: R 1099 

Foundation for Statistical Computing. 1100 

Wickham, H., 2016. ggplot2: Elegant Graphics for Data Analysis., New York: Springer-1101 

Verlag. 1102 

Wickham, H., 2022. stringr: Simple, Consistent Wrappers for Common String Operations. 1103 

[Online]  1104 

Available at: https://CRAN.R-project.org/package=stringr 1105 

[Accessed 17 March 2023]. 1106 

Wickham, H. et al., 2023. dplyr: A Grammar of Data Manipulation. R Package 1.1.0. 1107 

[Online]  1108 

Available at: https://CRAN.R-project.org/package=dplyr 1109 

[Accessed 15 March 2023]. 1110 



58 

 

Wickham, H. & Girlich, M., 2022. tidyr: Tidy Messy Data. [Online]  1111 

Available at: https://CRAN.R-project.org/package=tidyr 1112 

[Accessed 13 January 2023]. 1113 

 1114 

  1115 



59 

 

############################################ 1116 

##    Scoble, L (2023) R script for                              ## 1117 

##    pre-processing spectral data, data analysis         ##  1118 

##    and classification.                                               ## 1119 

############################################ 1120 

Table of Contents  1121 

Set up: 2 1122 

Baseline, EMSC correction and 2nd Derivative: 4 1123 

Plot non-differentiated spectra following parts of Jardine (2021) R script: 7 1124 

PCA Analysis: 11 1125 

HCA Plot: 14 1126 

Decision Trees: 16 1127 

randomForest: 23 1128 

MDA wavenumber boxplot: 31 1129 

References: 34 1130 

 1131 

                                    1132 

 1133 

                            1134 

  1135 
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########################################################### 1136 

## Set up working directory and load libraries                                        ## 1137 

## Scoble, L and Fyfe, R, (2023)                                                             ## 1138 

########################################################### 1139 

 1140 

setwd("D:\\ALL DATA2\\baseline work") 1141 

 1142 

library(corrplot) 1143 

library(caret) 1144 

library(tidyverse) 1145 

library(class) 1146 

library(prospectr) 1147 

library(ggplot2) 1148 

library(grid) 1149 

library(baseline) 1150 

library(EMSC) 1151 

library(vegan) 1152 

library(dendextend) 1153 

library(circlize) 1154 

library(ape) 1155 

library(RColorBrewer) 1156 

library(randomForest) 1157 

library(dplyr) 1158 

library(tree) 1159 

library(caTools) 1160 

library(tidyverse) 1161 

library(readr) 1162 

library(rpart) 1163 

library(rpart.plot) 1164 

library(reshape2) 1165 

 1166 

 1167 

 1168 

 1169 
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## stick all scans together                                                             1170 

## requires individual files with a .dtp extension                         1171 

 1172 

 1173 

#list all files (with .dpt extension) 1174 

file.list <- list.files(pattern = "\\.dpt$") #only lists dpt files 1175 

#make empty dataframe 1176 

df <- read.csv(file.list[1], header = F) 1177 

df <- rbind(c("wavelength","Agrostis"), df) 1178 

 1179 

#loop across all files and stick together into single file 1180 

count = 1 1181 

 1182 

for(i in file.list){ 1183 

  print(paste("count =", count, i)) #flag for progress 1184 

  #read in individual file 1185 

  dat <- read.csv(i, header = F) 1186 

  #extract sample code from filename 1187 

  sample <- gsub(".dpt", "", i)  1188 

  #append the data to the dataframe 1189 

  dat <- rbind(c("wavelength",  sample), dat) 1190 

  df <- cbind(df, dat[,2]) 1191 

   1192 

  count = count + 1 1193 

} 1194 

 1195 

#prepare the combined file for export 1196 

df <- df[,-2] #drops col 2 (duplicate data) 1197 

colnames(df) <- df[1,] #define column names as sample names 1198 

df <- df[-1,] #drop top row (the un-needed names) 1199 

 1200 

#export to csv format 1201 

write.csv(df, "all.data.scans.final.csv", row.names = F) 1202 

1203 
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######################################################## 1204 

## Baseline, EMSC correction and 2nd Derivative                           ## 1205 

## Scoble, L (2023)                                                                            ##    1206 

######################################################## 1207 

 1208 

##### Read data in ##### 1209 

Species_data <- read.csv("all.data.scans.final.csv", check.names = F) 1210 

Species_data <- data.frame(t(Species_data)) 1211 

colnames(Species_data) <- Species_data[1,] 1212 

Species_data <- Species_data[-1,] 1213 

 1214 

##### Non-differentiated spectra ##### 1215 

 1216 

# Baseline correction  1217 

species.baseline <- baseline(as.matrix(Species_data), method = "modpolyfit", deg = 2) 1218 

species.corrected <- data.frame(species.baseline@corrected) 1219 

colnames(species.corrected) <- colnames(Species_data) 1220 

species.corrected <- as.data.frame(species.corrected,  1221 

                                   row.names = rownames(Species_data)) 1222 

 1223 

# EMSC correction of baseline corrected data  1224 

Species.emsc1 <- EMSC(species.corrected, degree = 3, 1225 

                     reference = colMeans(species.corrected)) 1226 

 1227 

 1228 

emsc.corrected1 <- data.frame(t(Species.emsc1$corrected)) 1229 

 1230 

# Write file  1231 

write.csv(emsc.corrected1, "all.data.emsc.baseline.final.csv", row.names = T) 1232 

 1233 

 1234 

 1235 

 1236 

 1237 
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##### Second derivative of original data ##### 1238 

Species.derivtwo <- savitzkyGolay(Species_data, p = 2, w = 15, m = 2) 1239 

 1240 

Species.derivtwo <- as.data.frame(Species.derivtwo, row.names = rownames(Species_data)) 1241 

 1242 

# EMSC correction of second derivative data  1243 

Species.deriv.emsc <- EMSC(Species.derivtwo, degree = 1, 1244 

                         reference = colMeans(Species.derivtwo)) 1245 

 1246 

Species.deriv.emsc <- Species.deriv.emsc$corrected 1247 

 1248 

# Write file  1249 

Species.deriv.emsc.pca <- data.frame(Species.deriv.emsc) 1250 

names(Species.deriv.emsc)<-sapply(str_remove_all(colnames(Species.deriv.emsc),"X"),"[") 1251 

 1252 

write.csv(Species.deriv.emsc.pca, "Species.deriv.emsc.final.csv") 1253 

 1254 

 1255 

##### Prepare derivative file for OriginLabs ##### 1256 

 1257 

# Remove row names into column 1258 

Species.deriv.emsco  <- cbind(rownames(Species.deriv.emsc.pca), 1259 

data.frame(Species.deriv.emsc.pca, row.names = NULL)) 1260 

 1261 

# Create new short names 1262 

Species <- c(rep("Agros", 51), 1263 

             rep("Antho", 51), 1264 

             rep("Desch", 51), 1265 

             rep("Festu", 50), 1266 

             rep("Molin", 50)) 1267 

 1268 

#Factorise 1269 

Species <- as.factor(Species) 1270 

 1271 
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#Bind the two together 1272 

Species.deriv.emsco <- cbind(Species, Species.deriv.emsco) 1273 

 1274 

#Remove the sample labels 1275 

Species.deriv.emsco <- Species.deriv.emsco[,-2] 1276 

 1277 

names(Species.deriv.emsco)<-1278 

sapply(str_remove_all(colnames(Species.deriv.emsco),"X"),"[") 1279 

 1280 

# Average of each species 1281 

Species.derivo.means <- aggregate(Species.deriv.emsco[,2:1749], 1282 

                                 by = list(Species), 1283 

                                 FUN = mean) 1284 

rownames(Species.derivo.means) <- Species.derivo.means[,1] 1285 

Species.derivo.means <- Species.derivo.means[,-1] 1286 

 1287 

# Write file 1288 

Species.derivo.means <- data.frame(t(Species.derivo.means)) 1289 

write.csv(Species.derivo.means, "Origin.means.emsc.all.final.csv") 1290 

 1291 

 1292 

  1293 
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######################################### 1294 

##  Plot non-differentiated spectra                       ## 1295 

##  following parts of Jardine (2021)                   ## 1296 

##  R script.                                                          ## 1297 

## Scoble, L (2023)                                              ## 1298 

######################################### 1299 

 1300 

# Read in file 1301 

Ad1 <- read.csv("all.data.emsc.baseline.final.csv", check.names = F, row.names = 1) 1302 

Ad1 <- data.frame(t(Ad1)) 1303 

names(Ad1)<-sapply(str_remove_all(colnames(Ad1),"X"),"[") 1304 

Ad2 <- Ad1 1305 

Ad1 <- Ad1[1:253,] 1306 

str(Ad1) 1307 

 1308 

# Remove row names into column 1309 

Ad1 <- cbind(rownames(Ad1), data.frame(Ad1, row.names = NULL)) 1310 

 1311 

# Create new short names 1312 

Species <- c(rep("Agros", 51), 1313 

             rep("Antho", 51), 1314 

             rep("Desch", 51), 1315 

             rep("Festu", 50), 1316 

             rep("Molin", 50)) 1317 

 1318 

#Factorise 1319 

Species <- as.factor(Species) 1320 

 1321 

#Bind the two together 1322 

Ad1 <- cbind(Species, Ad1) 1323 

 1324 

#Remove the sample labels 1325 

Ad1 <- Ad1[,-2] 1326 

 1327 
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##### Mean and Standard Deviation ##### 1328 

grass.means <- aggregate(Ad2, 1329 

               by = list(Species), 1330 

              FUN = mean) 1331 

 1332 

rownames(grass.means) <- grass.means[,1] 1333 

grass.means <- grass.means[,-1] 1334 

 1335 

grass.sd <- aggregate(Ad2, 1336 

            by = list(Species), 1337 

           FUN = sd) 1338 

rownames(grass.sd) <- grass.sd[,1] 1339 

grass.sd <- grass.sd[,-1] 1340 

 1341 

#### For Origin Plots ##### 1342 

grass.means <- data.frame(t(grass.means)) 1343 

write.csv(grass.means, "Grass.means.origin.csv") 1344 

 1345 

##### Plot Data ##### 1346 

grass.means <- data.frame(t(grass.means)) 1347 

# Full spectra (first plot only) 1348 

par(mfrow = c(1,2), mar = c(3,2,1,0) + 0.01) 1349 

 1350 

#fingerprint region (second plot only) 1351 

par(mar = c(3, 1, 1, 3) + 0.01) 1352 

 1353 

col <- brewer.pal(5, "Dark2") 1354 

 1355 

# Select colours from RColorBrewer 1356 

speciescol  <- c("#1B9E77","#D95F02", "#7570B3", "#E7298A", "#66A61E") 1357 

 1358 

yvals <- seq(from = 4.5, to = 0.05, length.out = 5) 1359 

 1360 

wavenumber <- (gsub("X","",colnames(Ad1[,2:1763]))) 1361 
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wavenumber <- as.numeric(wavenumber) 1362 

 1363 

length(wavenumber) 1364 

length(grass.means[1,]) 1365 

# Change xlim value for second plot (1800-600) 1366 

plot(wavenumber, grass.means[1,], las = 1, 1367 

     type = "n", xlim = c(1800, 600), ylim = c(0, 6), 1368 

     xlab = "", ylab = "", 1369 

     yaxt = "n", xaxt = "n") 1370 

 1371 

for(i in 5:1) { 1372 

  col.e <- col2rgb(speciescol[i]) 1373 

  polygon(c(wavenumber, rev(wavenumber)), 1374 

          c(grass.means[i,]+yvals[i]+grass.sd[i,], 1375 

            rev(grass.means[i,]+yvals[i]-grass.sd[i,])), 1376 

          col = rgb(col.e[1], col.e[2], col.e[3], alpha = 80, maxColorValue = 255), 1377 

          border = NA) 1378 

 1379 

for(i in 5:1) { 1380 

  lines(wavenumber, grass.means[i,]+yvals[i], 1381 

        col = speciescol[i]) 1382 

 1383 

}} 1384 

   1385 

axis(1, lwd = 0, lwd.ticks = 2, tcl = 0.3, 1386 

     mgp = c(1.5, 0.2, 0), 1387 

     las = 1) 1388 

mtext(expression("Wavenumber cm"^-1), side = 1, line = 1) 1389 

 1390 

# For first plot only 1391 

mtext("Relative Intensity", side = 2, line = 0.6, las = 0) 1392 

# For second plot only 1393 

legend.names <- cbind.data.frame(row.names(grass.means), grass.means) 1394 

#make and populate a new column with a short species name 1395 
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legend.names$spec <- substr(legend.names$`row.names(grass.means)`, 1,6) 1396 

 1397 

legend.names$spec <- as.character(legend.names$spec) 1398 

leg.txt <- unique(legend.names$spec) 1399 

 1400 

legend("right", inset = c(-0.25, 0), leg.txt, pch = 19, cex = 0.65, 1401 

       col = col, xpd = TRUE, bty = "n") 1402 

1403 
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##### ############################ 1404 

## Fyfe, R and Scoble, L (2023)           ## 1405 

## PCA Analysis                                   ## 1406 

################################# 1407 

 1408 

# Non differentiated spectra 1409 

dfbaseemsc <- read.csv("all.data.emsc.baseline.final.csv", check.names = F, row.names = 1) 1410 

dfbaseemsc <- data.frame(t(dfbaseemsc)) 1411 

names(dfbaseemsc)<-sapply(str_remove_all(colnames(dfbaseemsc),"X"),"[") 1412 

 1413 

# Truncate  1414 

dfbaseemsc1 <- dfbaseemsc[1141:ncol(dfbaseemsc)] 1415 

 1416 

# Remove anomalies  1417 

dfbaseemsc2 <- dfbaseemsc1[-c(17, 18, 19, 90, 91, 92, 93, 95, 96, 97, 98, 99),] 1418 

 1419 

#Rename to make easier for plot 1420 

df.trunc <- dfbaseemsc2 1421 

 1422 

 1423 

##### Second Derivative Spectra (all data) ##### 1424 

 1425 

df.trunc1 <- read.csv("Species.deriv.emsc.final.csv", check.names = F, row.names = 1) 1426 

 1427 

# Truncate (134 instead of 1141 so data starts at same wavenumber) 1428 

df.trunc2 <- df.trunc1[1134:ncol(df.trunc1)] 1429 

df.trunc2 <- df.trunc2[-c(17, 18, 19, 90, 91, 92, 93, 95, 96, 97, 98, 99),] 1430 

names(df.trunc2)<-sapply(str_remove_all(colnames(df.trunc2),"X"),"[") 1431 

 1432 

##### Plot PCA, replace df.trunc with df.trunc2 for second plot ##### 1433 

dfsmoo.pca <- prcomp(df.trunc) 1434 

dfsmoo.pca.scores <- as.data.frame(dfsmoo.pca$x) 1435 

dfsmoo.pca.scores <- cbind.data.frame(row.names(df.trunc), dfsmoo.pca.scores[,1:5]) 1436 

summary(dfsmoo.pca) 1437 
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#make and populate a new column with a short species name 1438 

dfsmoo.pca.scores$spec <- substr(dfsmoo.pca.scores$`row.names(df.trunc)`, 1,6) 1439 

 1440 

#make a colour code for each species using short species names 1441 

groups <- cbind.data.frame(unique(dfsmoo.pca.scores$spec),  1442 

                           seq(1, length(unique(dfsmoo.pca.scores$spec)), by = 1)) 1443 

colnames(groups) <- c("spec", "group") 1444 

#join the colour codes to the PCA result file 1445 

dfsmoo.pca.scores <- merge(dfsmoo.pca.scores, groups, by = "spec")  1446 

 1447 

col <- brewer.pal(5, "Dark2") 1448 

 1449 

dfsmoo.pca.scores$group <- as.factor(dfsmoo.pca.scores$group) 1450 

 1451 

par(xpd = FALSE, mfrow = c(1,1), mar = c(5, 5, 5, 7), cex = 0.5, adj = 0.5, tck = 0.01) 1452 

 1453 

 1454 

plot(dfsmoo.pca.scores$PC1, dfsmoo.pca.scores$PC2, group = dfsmoo.pca.scores$groups,  1455 

     col = c("#1B9E77","#D95F02", "#7570B3", "#E7298A", 1456 

"#66A61E")[as.factor(dfsmoo.pca.scores$group)], 1457 

     pch = 19, cex = 1.5, asp = 1, cex.axis = 1.5, xlab = "PC1 (74%)", ylab = "PC2 (18%)", 1458 

cex.lab = 1.5)  1459 

abline(h = 0, col = "grey") 1460 

abline(v = 0, col = "grey") 1461 

 1462 

 1463 

# Second derivative plot only 1464 

dfsmoo.pca.scores$spec <- as.character(dfsmoo.pca.scores$spec) 1465 

leg.txt <- unique(dfsmoo.pca.scores$spec) 1466 

 1467 

legend("right", inset = c(-0.15, 0), leg.txt, pch = 19, cex = 1.5, 1468 

       col = col, xpd = TRUE, bty = "n") 1469 

 1470 

 1471 
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##### Loading Plots - Run for each PCA plot ##### 1472 

loadings <- as.data.frame(dfsmoo.pca$rotation)[1:2] 1473 

 1474 

scale <- min(max(abs(dfsmoo.pca.scores$PC1))/max(abs(loadings$PC1)), 1475 

             max(abs(dfsmoo.pca.scores$PC2))/max(abs(loadings$PC2))) * 0.8 1476 

 1477 

 1478 

#extract the wavenumbers as numbers from rotation 1479 

wavenumbers <- as.numeric(rownames(dfsmoo.pca$rotation))  1480 

 1481 

#extracts the first column (PCA1). Change [,1] to [,2] for PCA2 etc. 1482 

PC1loading <- as.data.frame(loadings[,1])   1483 

PC2loading <- as.data.frame(loadings[,2])  1484 

 1485 

#writes the wavenumbers to the PCA1loadings object 1486 

PC1loading$wavenumber <- wavenumbers 1487 

PC2loading$wavenumber <- wavenumbers 1488 

 1489 

colnames(PC1loading) <- c("loading", "wavenumber") 1490 

colnames(PC2loading) <- c("loading", "wavenumber") 1491 

 1492 

 1493 

#switch PC1loadings to PC2 for other plot 1494 

plot(PC1loading$loading ~ PC1loading$wavenumber, type = "l", 1495 

     xlim = c(1800,600), xlab = "Wavenumber", ylab = "PC1 Loadings", cex.axis = 1.5, 1496 

     cex.lab = 1.5) 1497 

#2nd deriv line 1498 

abline(h = 0, col = "black") 1499 

 1500 

# Write files for loadings 1501 

 1502 

write.csv(PC1loading, "PC1Loading.csv") 1503 

write.csv(PC2loading, "PC2Loading.csv") 1504 

 1505 
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##################################### 1506 

## Fyfe, R and Scoble, L (2023)                  ## 1507 

## HCA Plot - Repeat For Each Set             ##  1508 

## of Data (df.trunc/df.trunc2)                     ## 1509 

##################################### 1510 

 1511 

 1512 

diss <- dist(df.trunc2, method = "euclidean") 1513 

 1514 

# Cluster analysis 1515 

cluster <- as.dendrogram(hclust(diss))   1516 

 1517 

# Set plotting margins and font size for the general plots 1518 

par(cex=0.5, mar=c(5, 8, 4, 1)) 1519 

 1520 

# c=Choose number of clusters, 5 separates the main species 1521 

 1522 

k = 5  1523 

 1524 

# Set up plotting colours 1525 

cluster <- cluster %>% 1526 

  color_branches(k = k) %>% 1527 

  color_labels(k = k) 1528 

 1529 

# Plot circular dendrogram 1530 

circlize_dendrogram(cluster) 1531 

 1532 

# Export the cluster numbers assigned to samples 1533 

cuts <- cbind.data.frame(rownames(df.trunc), cutree(cluster, k = k)) 1534 

colnames(cuts) <- c("sample", "cluster_number") 1535 

write.csv(cuts, "cluster.groups.by.sample.diff.final.csv", row.names = F) 1536 

 1537 

 1538 

 1539 
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# ITOL file 1540 

my_tree <- as.phylo(cluster) 1541 

 1542 

write.tree(phy = my_tree, file = "Treefinal.diff.newick") 1543 

 1544 

 1545 

  1546 
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##################################### 1547 

## Scoble, L (2023)                                      ## 1548 

## Decision Trees and randomForest           ## 1549 

##################################### 1550 

 1551 

##### PART 1 - Decision trees: Extracting rpart rules which show which wavenumbers  1552 

# are causing discrepancies between species - then compare to PCA loading plots ##### 1553 

 1554 

# Read in file 1555 

d <- read.table("all.data.emsc.baseline.final.csv", sep = ",", header = T, row.names = 1) 1556 

d <- data.frame(t(d)) 1557 

names(d)<-sapply(str_remove_all(colnames(d),"X"),"[") 1558 

 1559 

# Truncate spectra  1560 

d <- d[,1141:ncol(d)] 1561 

 1562 

d <- d[1:253,] 1563 

str(d) 1564 

d <- cbind(rownames(d), data.frame(d, row.names = NULL)) 1565 

 1566 

 1567 

# Make column with short specie names 1568 

Species <- c(rep("Agros", 51), 1569 

             rep("Antho", 51), 1570 

             rep("Desch", 51), 1571 

             rep("Festu", 50), 1572 

             rep("Molin", 50)) 1573 

 1574 

# Factorise 1575 

Species <- as.factor(Species) 1576 

 1577 

# Bind the two together 1578 

d <- cbind(Species, d) 1579 

 1580 
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# Remove the sample labels 1581 

d <- d[,-2] 1582 

 1583 

 1584 

summary(d$Species) 1585 

set.seed(2) 1586 

 1587 

##### First decision (classification) tree using all data ##### 1588 

fit <- rpart(Species ~., data = d, method = "class") 1589 

par(mar = c(2, 4, 4, 4)) 1590 

par(mfrow = c(1,1)) 1591 

 1592 

# Plot classification tree 1593 

plot(fit) 1594 

text(fit, cex = 0.9, xpd = TRUE) 1595 

 1596 

# Use rplot for more better visuals (legend position may need to be changed) 1597 

rplot <- rpart.plot(fit, type = 4, extra = "auto", clip.right.labs = FALSE, 1598 

                    legend.x = 0.85, legend.y = 1, legend.cex = 1.3, 1599 

                    cex = 0.8) 1600 

 1601 

 1602 

# Extract the rules that the algorithm uses to build tree and splits 1603 

# This is to look at what wavenumbers are driving the discrepancy between 1604 

# species 1605 

 1606 

# Digits = 3 to get an extra decimal place (easier to refer to the data) 1607 

rpart.rules(fit) 1608 

rules <- rpart.rules(fit, digit = 3) 1609 

 1610 

# Remove columns that aren't relevant  1611 

rules <- rules[,-2] 1612 

rules <- rules[,-2] 1613 

rules <- rules[,-5] 1614 
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rules <- rules[,-8] 1615 

rules <- rules[,-11] 1616 

 1617 

# Change colnames (Less than, Equal to, Greater than (L/E/G), Absorbance units (Au)) 1618 

colnames(rules) <- c("Species", "Wavenumber1", "L/E/G", "Au", "Wavenumber2", 1619 

                     "L/E/G", "Au", "wavenumber3", "L/E/G", "Au",  1620 

                     "wavenumber4", "L/E/G", "Au") 1621 

 1622 

# Write csv 1623 

write.csv(rules, "rpart.wavenumber.rules.final.csv") 1624 

 1625 

# Find wavenumbers in original dataset to cross check rules 1626 

WN1 <- d %>% dplyr::select(X1693.4306) 1627 

WN2 <- d %>% dplyr::select(X883.36129) 1628 

WN3 <- d %>% dplyr::select(X1745.50649) 1629 

WN4 <- d %>% dplyr::select(X1151.45566) 1630 

 1631 

cross_check <- cbind(Species, WN1, WN2, WN3, WN4) 1632 

 1633 

colnames(cross_check) <- gsub("X","",colnames(cross_check[,1:5])) 1634 

 1635 

write.csv(cross_check, "Cross_check_wavenumbers.final.csv") 1636 

 1637 

##### Looped Variance ##### 1638 

 1639 

##### Split the data and run decision tree 100 times in a loop ##### 1640 

# Will the same four wavenumbers still be prominent or will splitting the data 1641 

# create more variance. 1642 

set.seed(2) 1643 

tree_lengths <- data.frame() 1644 

 1645 

for(i in 1:100) { 1646 

  train <- sample(nrow(d), 0.8*nrow(d)) 1647 

  training_data <- d[train,] 1648 



77 

 

  dim(training_data) 1649 

  summary(training_data$Species) 1650 

   1651 

  testing_data <- d[-train, ] 1652 

  dim(testing_data) 1653 

  summary(testing_data$Species) 1654 

   1655 

  tree_i <- rpart(Species ~ ., data = training_data, method = "class") 1656 

  wavesum <- tree_i$frame$var 1657 

  tree_lengths <- rbind(tree_lengths, wavesum) 1658 

  names(tree_lengths) <- NULL 1659 

} 1660 

 1661 

par(mfrow = c(1,1)) 1662 

par(mar = c(2, 4, 4, 2)) 1663 

rpart.plot(tree_i, type = 4, extra = 104, clip.right.labs = FALSE, digits = 2,  1664 

           round = 0, legend.x = 0.85, legend.y = 1, legend.cex = 1, 1665 

           cex = 0.7) 1666 

 1667 

 1668 

# Pull one tree from loop to look at rules 1669 

# digits = 3 to get an extra decimal place (easier to refer to the data) 1670 

rpart.rules(tree_i) 1671 

rules_one <- rpart.rules(tree_i, digit = 3) 1672 

 1673 

# Remove columns that aren't relevant  1674 

rules_one <- rules_one[,-2] 1675 

rules_one <- rules_one[,-2] 1676 

rules_one <- rules_one[,-5] 1677 

rules_one <- rules_one[,-8] 1678 

rules_one <- rules_one[,-11] 1679 

 1680 

#change colnames (Less than, Equal to, Greater than (L/E/G), Absorbance units (Au)) 1681 

colnames(rules_one) <- c("Species", "Wavenumber1", "L/E/G", "Au", "Wavenumber2", 1682 
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                         "L/E/G", "Au", "wavenumber3", "L/E/G", "Au",  1683 

                         "wavenumber4", "L/E/G", "Au" ) 1684 

# What does the new set of rules for split data show compared to the previous? 1685 

write.csv(rules_one, "rpart_wavenumbers_rules_loop.final.csv") 1686 

 1687 

WN5 <- d %>% dplyr::select(X1693.4306) 1688 

WN6 <- d %>% dplyr::select(X883.36129) 1689 

WN7 <- d %>% dplyr::select(X1745.50649) 1690 

WN8 <- d %>% dplyr::select(X1155.31313) 1691 

 1692 

cross_check1 <- cbind(Species, WN5, WN6, WN7, WN8) 1693 

 1694 

 1695 

colnames(cross_check1) <- gsub("X","",colnames(cross_check1[,1:5])) 1696 

 1697 

write.csv(cross_check, "Cross_check_wavenumbers_loop.csv") 1698 

 1699 

# Clean up the tree_lengths data frame to only have wave numbers present 1700 

 1701 

tree_lengths <- tree_lengths[,-9] 1702 

tree_lengths <- tree_lengths[,-8] 1703 

 1704 

tree_lengths <- as.data.frame(apply(tree_lengths, 2, function(x) { 1705 

  x <- gsub("X", "", x) 1706 

})) 1707 

tree_lengths <- as.data.frame(apply(tree_lengths, 2, function(x) { 1708 

  x <- gsub("<leaf>", "0", x) 1709 

})) 1710 

 1711 

# Convert to num 1712 

tree_lengths <- type.convert(tree_lengths, as.is = TRUE) 1713 

 1714 

 1715 

tree_lengths2 <- melt(tree_lengths, id.vars = c("V1", "V2", "V3", "V4", "V5", "V6", "V7")) 1716 
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 1717 

 1718 

# Place all wavenumbers into one column 1719 

tree_lengths2 <- reshape(tree_lengths, direction = "long", sep = "", varying = 1:7) 1720 

 1721 

# Remove time column 1722 

tree_lengths2 <- tree_lengths2[,-1] 1723 

table <- table(tree_lengths2$V) 1724 

table <- as.data.frame(table) 1725 

 1726 

# Remove zero (first row) as not relevant  1727 

table <- table[-1,] 1728 

 1729 

# Arrange table so Freq is descending from largest to smallest 1730 

table2 <- table %>% 1731 

  arrange(desc(Freq)) 1732 

 1733 

# What is table showing and how does that compare to fit and also the PCA loadings 1734 

 1735 

# Plot histogram 1736 

table2 <- table2[1:10,] 1737 

table3 <- as.data.frame(table2) 1738 

 1739 

par(mfrow = c(1,1)) 1740 

par(mar = c(2, 4, 4, 4)) 1741 

ggplot(table3, aes(x = reorder(Var1, -Freq), y = Freq, fill = rules)) +  1742 

  geom_histogram(stat = "Identity", colour = "darkblue", fill = "lightblue") + 1743 

  labs(x = "Wavenumber", y = "Frequency of Appearence") + 1744 

  theme(panel.grid = element_blank(), strip.text.y = element_blank(),  1745 

        axis.text.x = element_text(angle = 50, vjust = 1, hjust = 1, size = 11, face = "bold", 1746 

        colour = "black"), axis.title.x = element_text(size = 15), axis.title.y = element_text(size 1747 

= 14), 1748 

        axis.text.y = element_text(size = 11, face = "bold", colour = "black"),  1749 

        panel.background = element_blank()) 1750 



80 

 

 1751 

# Write csv for table 1752 

write.csv(table3, "Final.table.loop.freq.csv") 1753 

 1754 

###### Repeat for first wavenumber split ##### 1755 

set.seed(2) 1756 

tree_lengths <- data.frame() 1757 

 1758 

for(i in 1:100) { 1759 

  train <- sample(nrow(d), 0.8*nrow(d)) 1760 

  training_data <- d[train,] 1761 

  dim(training_data) 1762 

  summary(training_data$Species) 1763 

   1764 

  testing_data <- d[-train, ] 1765 

  dim(testing_data) 1766 

  summary(testing_data$Species) 1767 

   1768 

  tree_i <- rpart(Species ~ ., data = training_data, method = "class") 1769 

  wavesum <- tree_i$frame$var[1] 1770 

  tree_lengths <- rbind(tree_lengths, wavesum) 1771 

  names(tree_lengths) <- NULL 1772 

} 1773 

 1774 

tree_lengths <- as.data.frame(apply(tree_lengths, 1, function(x) { 1775 

  x <- gsub("X", "", x) 1776 

})) 1777 

colnames(tree_lengths) <- "wavenumber" 1778 

 1779 

tree_lengths2 <- tree_lengths %>% group_by(tree_lengths$wavenumber) %>%  1780 

  count(sort = TRUE) 1781 

tree_lengths2 <- tree_lengths2[1:6,] 1782 

 1783 

 1784 
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 1785 

ggplot(tree_lengths2, aes(x = reorder(`tree_lengths$wavenumber`, -n), y = n, fill = rules)) +  1786 

  geom_histogram(stat = "Identity", colour = "darkblue", fill = "lightblue") + 1787 

  labs(x = "Wavenumber", y = "Frequency of Appearence") + 1788 

  theme(panel.grid = element_blank(), strip.text.y = element_blank(),  1789 

        axis.text.x = element_text(angle = 50, vjust = 1, hjust = 1, size = 11, face = "bold", 1790 

                                   colour = "black"), axis.title.x = element_text(size = 15), axis.title.y = 1791 

element_text(size = 14), 1792 

        axis.text.y = element_text(size = 11, face = "bold", colour = "black"),  1793 

        panel.background = element_blank()) 1794 

 1795 

 1796 

#  Write csv for table 1797 

write.csv(tree_lengths2,"first.wavenumber.rule.split.csv") 1798 

 1799 

##### Part 2 - RandomForest ##################### 1800 

## Classification using RandomForest                         ## 1801 

## Build model using randomForest and training data ##  1802 

############################################# 1803 

 1804 

# Bagged trees 1805 

set.seed(2) 1806 

train <- sample(nrow(d), 0.8*nrow(d)) 1807 

training_data <- d[train,] 1808 

dim(training_data) 1809 

summary(training_data$Species) 1810 

 1811 

testing_data <- d[-train, ] 1812 

dim(testing_data) 1813 

summary(testing_data$Species) 1814 

 1815 

set.seed(2) 1816 

bag.RF <- randomForest(Species ~ ., data = training_data, mtry = 622, ntree = 100, 1817 

                       importance = TRUE, proximity = TRUE, do.trace = TRUE) 1818 
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 1819 

bag.RF 1820 

#Look at error matrix 1821 

plot(bag.RF) 1822 

print(bag.RF) 1823 

 1824 

#Predict to see if trained forest will accurately predict test data 1825 

bag.tree <- predict(bag.RF, testing_data, type = "class") 1826 

tab <- table(bag.tree, testing_data$Species) 1827 

tab 1828 

 1829 

write.csv(tab, "prediction.RF.final.csv") 1830 

(tab[1,5] + tab[5,1] / sum(tab)) 1831 

 1832 

#Plot the Variable importance 1833 

par(mfrow = c(1,1), mar = c(2,2,1,2)) 1834 

varImpPlot(bag.RF, 1835 

           n.var = 24, 1836 

           type = 1, 1837 

           sort = TRUE, 1838 

           main = "Variable Importance Plot") 1839 

 1840 

##### Looped randomForest for MDA investigations ##### 1841 

 1842 

set.seed(2) 1843 

# Make an empty list of 10 1844 

ls <- list() 1845 

n = 10 1846 

datalist = list() 1847 

# Pre-allocate for slightly more efficiency 1848 

datalist = vector("list", length = n) 1849 

 1850 

 1851 

 1852 
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# Run loop  1853 

for(i in 1:10) { 1854 

   1855 

  importance.tree <- randomForest(Species ~ ., d, ntree = 150, mtry = 24, importance = 1856 

TRUE) 1857 

  plot(importance.tree) 1858 

  wavesum <- importance.tree$importance[,6, drop = FALSE] 1859 

  datalist[[i]] <- cbind(rownames(wavesum), data.frame(wavesum, row.names = NULL)) 1860 

  colnames(datalist[[i]]) <- c("Wavenumber", "MeanDecreaseAccuracy") 1861 

   1862 

     1863 

    for (i in 1:length(datalist)) { 1864 

    assign(paste0("datalist", i), as.data.frame(datalist[[i]]))} 1865 

} 1866 

 1867 

#repeat for each datalist 1868 

datalist1 <- datalist1 %>% 1869 

  arrange(desc(MeanDecreaseAccuracy)) 1870 

 1871 

 1872 

# Cbind all dataframes together 1873 

dataframeall <- cbind.data.frame(datalist1, datalist2, datalist3, datalist4, 1874 

                                 datalist5, datalist6, datalist7, datalist8, 1875 

                                 datalist9, datalist10) 1876 

# Convert to numeric 1877 

dataframeall <- type.convert(dataframeall, as.is = TRUE) 1878 

 1879 

# Trim rows to only have the top 24 (24 is the square root of 622) 1880 

dataframeall <- dataframeall[1:24,] 1881 

 1882 

# Rename column names 1883 

colnames(dataframeall) <- c("V1", "V2", "V3", "V4", "V5", "V6", "V7", "V8", "V9", "V10", 1884 

                            "V11", "V12", "V13", "V14", "V15", "V16", "V17", "V18", "V19", "V20") 1885 

 1886 
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# Split into Wavenumber and MDA 1887 

dataframewavenumber <- data.frame(dataframeall[, c(1, 3, 5, 7, 9, 11, 13, 15, 17, 19)]) 1888 

dataframeMDA <- data.frame(dataframeall[, c(2, 4, 6, 8, 10, 12, 14, 16, 18, 20)]) 1889 

 1890 

# Rename column names 1891 

colnames(dataframewavenumber) <- c("V1", "V2", "V3", "V4", "V5", "V6", "V7", "V8", 1892 

"V9", "V10") 1893 

 1894 

# Place all wavenumbers into one column 1895 

dataframewavenumber1 <- melt(dataframewavenumber, id.vars = c("V1", "V2", "V3", "V4", 1896 

"V5", 1897 

                                                              "V6", "V7", "V8", "V9", "V10")) 1898 

 1899 

dataframewavenumber1  <- reshape(dataframewavenumber1 , direction = "long", 1900 

                                 sep = "", varying = 1:10) 1901 

 1902 

# Rename column names 1903 

colnames(dataframeMDA) <- c("V1", "V2", "V3", "V4", "V5", "V6", "V7", "V8", 1904 

                            "V9", "V10") 1905 

 1906 

# Place all MDA into one column 1907 

dataframeMDA1 <- melt(dataframeMDA, id.vars = c("V1", "V2", "V3", "V4", 1908 

                                                "V5","V6", "V7", "V8", "V9", "V10")) 1909 

 1910 

dataframewaveMDA1  <- reshape(dataframeMDA1 , direction = "long", 1911 

                              sep = "", varying = 1:10) 1912 

 1913 

# Combine the Wavenumber and MDA column from each dataframe 1914 

combinedWNMDA <- cbind.data.frame(dataframewavenumber1$V, 1915 

dataframewaveMDA1$V) 1916 

 1917 

# Rename  1918 

colnames(combinedWNMDA) <- c("Wavenumber", "MDA") 1919 

 1920 
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# Remove "X" character 1921 

combinedWNMDA <- as.data.frame(apply(combinedWNMDA, 2, function(x) { 1922 

  x <- gsub("X", "", x) })) 1923 

 1924 

# Convert to numeric 1925 

combinedWNMDA <- type.convert(combinedWNMDA, as.is = TRUE) 1926 

 1927 

 1928 

# Arrange in descending order of MDA numbers 1929 

combinedWNMDA <- combinedWNMDA %>% 1930 

  arrange(desc(MDA)) 1931 

 1932 

# Select only top 24 of all dataframes combined 1933 

table <- combinedWNMDA[1:24,] 1934 

table2 <- as.data.frame(table) 1935 

table2 <- table2 %>% arrange(MDA) 1936 

 1937 

 1938 

par(mar = c(3, 1 , 0 ,1)) 1939 

 1940 

# Plot dotcharts 1941 

dotchart(table2$MDA, table2$Wavenumber, xlim = range(table2$MDA), 1942 

         xlab = "MeanDecreaseAccuracy", mgp=c(2,1,.5), las=1, cex = 0.9) 1943 

 1944 

 1945 

#### Run Rf using isolated variables ##### 1946 

table2$Wavenumber 1947 

set.seed(2) 1948 

isolated <- d %>% dplyr::select(Species, X1691.50187, X1676.07197, 1949 

                                X1641.35472, X1467.76844, X1461.98223, X1450.40981,  1950 

                                X1134.09703, X1072.37747, X1068.51999,  X866.00267,  X858.28772,  1951 

                                X821.64173, X819.71299, X815.85552, X800.42563, X794.63942,  1952 

                                X786.92447, X727.13364, X688.55891,  X632.62556, X626.83935,  1953 

                                X622.98187,  X613.33819,  X607.55198) 1954 
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 1955 

train <- sample(nrow(isolated), 0.8*nrow(isolated)) 1956 

training_data1 <- isolated[train,] 1957 

dim(training_data1) 1958 

summary(training_data1$Species) 1959 

 1960 

testing_data1 <- isolated[-train, ] 1961 

dim(testing_data1) 1962 

summary(testing_data1$Species) 1963 

 1964 

 1965 

set.seed(2) 1966 

isolated.rf <- randomForest(Species ~ ., data = training_data1, ntree = 100,  1967 

                            importance = TRUE, proximity = TRUE, do.trace = TRUE) 1968 

 1969 

isolated.rf 1970 

#Look at error matrix 1971 

plot(isolated.rf) 1972 

print(isolated.rf) 1973 

 1974 

#Predict test data 1975 

bag.tree <- predict(isolated.rf, testing_data, type = "class") 1976 

tab <- table(bag.tree, testing_data$Species) 1977 

tab 1978 

 1979 

write.csv(tab, "prediction.RF.isolated.csv") 1980 

(tab[1,5] + tab[5,1] / sum(tab)) 1981 

 1982 

 1983 

 1984 

 1985 

 1986 

 1987 

 1988 



87 

 

#Plot the Variable importance 1989 

par(mar = c(3, 1 , 1 ,1)) 1990 

varImpPlot(isolated.rf, 1991 

           type = 1, 1992 

           sort = TRUE, 1993 

           main = "Variable Importance Plot", 1994 

           cex = 0.75) 1995 

 1996 

 1997 

# Run with all isolated data 1998 

set.seed(2) 1999 

isolated.rf1 <- randomForest(Species ~ ., data = isolated, ntree = 100,  2000 

                             importance = TRUE, proximity = TRUE, do.trace = TRUE) 2001 

 2002 

isolated.rf1 2003 

#Look at error matrix 2004 

plot(isolated.rf1) 2005 

print(isolated.rf1) 2006 

 2007 

#Plot the Variable importance 2008 

par(mar = c(4, 1 , 1 ,1)) 2009 

varImpPlot(isolated.rf1, 2010 

           type = 1, 2011 

           sort = TRUE, 2012 

           main = "Variable Importance Plot") 2013 

 2014 

par(mar = c(3, 3, 1, 3)) 2015 

 2016 

 2017 

 2018 

 2019 

 2020 

 2021 

 2022 
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# Plot final dotchart 2023 

# All data  2024 

varImpPlot(isolated.rf1, 2025 

           type = 1, 2026 

           sort = TRUE, 2027 

           main = "Variable Importance Plot", 2028 

           cex = 0.75, 2029 

           mgp=c(2,1,.5)) 2030 

 2031 

#See if trained data can predict unlabelled test data 2032 

#make copy of testing_data 2033 

testing_data1 <- testing_data 2034 

 2035 

# Actual Species names 2036 

Species_1 <- testing_data1[1] 2037 

 2038 

#Remove the sample labels 2039 

testing_data1 <- testing_data1[,-1] 2040 

 2041 

#Unlabel data 2042 

new_data <- data.frame(testing_data1[,-1]) 2043 

 2044 

#Predict for accuracy 2045 

new_data$predictedlabel <- predict(isolated.rf, new_data) 2046 

new_data$predictedlabel 2047 

Predicted <- as.character(new_data$predictedlabel) 2048 

Actual <- as.character(testing_data1$Species) 2049 

 2050 

#Cbind the predicted labels with the known species labels from test data 2051 

new_data1 <- as.data.frame(cbind(Predicted, Species_1)) 2052 

 2053 

#View results as csv 2054 

write.csv(new_data1, "prediciton_name_data_isolated_final.csv") 2055 

 2056 
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############################################# 2057 

## Plot MDA wavenumbers with relative intensity     ## 2058 

## as a boxplot                                                             ## 2059 

## Scoble, L (2023)                                                     ## 2060 

############################################ 2061 

 2062 

 2063 

impdf <- data.frame(importance(isolated.rf1)) 2064 

 2065 

#Remove X from dataframe 2066 

rownames(impdf) <-  (gsub("X","",rownames(impdf[1:7]))) 2067 

 2068 

impdf <- cbind(rownames(impdf), data.frame(impdf, row.names = NULL)) 2069 

 2070 

# Convert to numeric 2071 

impdf <- type.convert(impdf, as.is = TRUE) 2072 

impdf <- impdf[,-8] 2073 

 2074 

# Arrange data in desc of MDA 2075 

impdf  <- impdf  %>% 2076 

  arrange(desc(MeanDecreaseAccuracy)) 2077 

impdf <- impdf[,-7] 2078 

 2079 

#Prepare dataframe for boxplot 2080 

impdf <- data.frame(t(impdf)) 2081 

colnames(impdf) <- impdf[1,] 2082 

impdf <- impdf[-1,] 2083 

impdf <- cbind(rownames(impdf), data.frame(impdf, row.names = NULL)) 2084 

 2085 

 2086 

 2087 

 2088 

 2089 

 2090 
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# Create new Species labels 2091 

Species <- c(rep("Agros", 1), 2092 

             rep("Antho", 1), 2093 

             rep("Desch", 1), 2094 

             rep("Festu", 1), 2095 

             rep("Molin", 1)) 2096 

 2097 

# Factorise 2098 

Species <- as.factor(Species) 2099 

 2100 

# Bind the two together 2101 

impdf <- cbind(Species, impdf) 2102 

 2103 

# Remove the sample labels 2104 

impdf <- impdf[,-2] 2105 

 2106 

colnames(impdf) <- (gsub("X","",colnames(impdf))) 2107 

 2108 

#Melt all data together 2109 

melt <- melt(impdf) 2110 

 2111 

#Plot boxplot of MDA as x axis  2112 

p <- ggplot(melt, aes(factor(variable), value, fill = Species))  2113 

p + geom_boxplot() + facet_wrap(~variable, scale="free") + 2114 

  theme(axis.text.x  = element_blank()) 2115 

 2116 

 2117 

 2118 

 2119 

 2120 

 2121 

 2122 

 2123 

 2124 
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#boxplot of wavenumbers in order of MDA dotchart 2125 

colnames(impdf) 2126 

varimporder <- d %>% dplyr::select(Species, X1641.35472, X786.92447, X622.98187, 2127 

                                   X1676.07197, X727.13364, X1450.40981, 2128 

                                  X1072.37747, X1691.50187, X1467.76844,  2129 

                                   X1134.09703, X794.63942, X688.55891,  X1461.98223, 2130 

                                   X800.42563,  X866.00267,  X821.64173,  X819.71299, 2131 

                                    X626.83935,  X613.33819,  X815.85552,  X632.62556, 2132 

                                   X858.28772,  X1068.51999, X607.55198) 2133 

 2134 

colnames(varimporder) <- (gsub("X","",colnames(varimporder))) 2135 

 2136 

#melt all the data together 2137 

melt <- melt(varimporder) 2138 

boxplot(melt, value ~ variable) 2139 

 2140 

p <- ggplot(melt, aes(factor(variable), value, fill = Species))  2141 

p + geom_boxplot() + facet_wrap(~variable, scale="free") + 2142 

  labs(x = "Wavenumber", y = "Relative Intensity") + 2143 

theme(axis.text.x  = element_blank()) 2144 

  2145 
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Supplementary Material SM3 2152 

 2153 

SM3.1 Non-Differentiated Grass Species  Averaged Spectra With Peak Numbers   2154 

 2155 

SM3.1.1 Agrostis 2156 

Figure SM3.1.1: Averaged FT-IR spectra of Agrostis with peak numbers included. 2157 

 2158 

 2159 

 2160 

3.1.2 Anthoxanthum odoratum 2161 

Figure SM3.1.2: Averaged FT-IR spectra of Anthoxanthum odoratum with peak numbers included. 2162 
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3.1.3 Deschampsia cespitosa 2163 

 Figure SM3.1.3: Averaged FT-IR spectra of Deschampsia cespitosa with peak numbers included. 2164 

 2165 

 2166 

3.1.4 Festuca ovina  2167 

Figure SM3.1.4: Averaged FT-IR spectra of Festuca ovina with peak numbers included. 2168 

 2169 

 2170 
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3.1.5 Molinia caerulea 2171 

Figure SM3.1.5: Averaged FT-IR spectra of Molinia caerulea with peak numbers included. 2172 

 2173 

 2174 

 2175 

 2176 

 2177 

 2178 

 2179 

 2180 

 2181 

 2182 

 2183 

 2184 

 2185 

 2186 

 2187 

 2188 

 2189 

 2190 

 2191 
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SM3.2 Second derivatives of averaged grass spectra 2192 

 2193 

Figure SM3.2: Averaged Savitzky-Golay smoothed, second derivative FT-IR spectra of the five 2194 

moorland grass species (Agrostis is genus).   2195 
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 2196 

SM3.3: HCA of non-differentiated spectra 2197 

 2198 

Figure SM3.3: Hierarchical cluster analysis (HCA) of the five moorland grass species using non-2199 

differentiated FT-IR spectral data. Colours represent each cluster (five clusters). 2200 

 2201 

 2202 
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SM3.4: HCA of second derivative spectra 2203 

Figure SM3.4: Hierarchical cluster analysis (HCA) of the five moorland grass species using FT-IR 2204 

Savitzky Golay smoothed, second derivative spectral data. Colours represent each cluster (five 2205 

clusters). 2206 
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SM3.5: Confusion matrix of bagged randomForest model 2207 

Table SM3.5: Confusion matrix of bagged randomForest model, rows are actual values, and columns 2208 

are predicted.  2209 

 2210 

 2211 

 2212 

 2213 

SM3.6: Boxplots of top 24 wavenumbers identified by randomForest variable 2214 

importance measure (MeanDecreaseAccuracy) 2215 

 Figure SM3.6: Boxplots of the top 24 important wavenumbers identified by looped 2216 

randomForest model. Y- axis is relative intensity, and x – axis is species boxplots 2217 

(colourcoded), plot visually describes within and between species variation. 2218 

 2219 

 2220 

 2221 

 2222 

 2223 

Agros Antho Desch Festu Molin

Agros 8 0 0 0 0

Antho 0 8 0 0 0

Desch 0 0 16 0 0

Festu 0 0 0 12 0

Molin 0 0 0 0 7

Wavenumber (cm-1) 
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SM3.7: Confusion matrix of refined randomForest model 2224 

Figure SM3.7: Confusion matrix of refined randomForest model, rows are actual values, and columns 2225 

are predicted 2226 

 2227 

 2228 

Agros Antho Desch Festu Molin

Agros 8 0 0 0 0

Antho 0 8 0 0 0

Desch 0 0 16 0 0

Festu 0 0 0 12 0

Molin 0 0 0 0 7


