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People living with mobility-limiting conditions such as Parkinson’s disease can 
struggle to physically complete intended tasks. Intent-sensing technology can 
measure and even predict these intended tasks, such that assistive technology 
could help a user to safely complete them. In prior research, algorithmic systems 
have been proposed, developed and tested for measuring user intent through 
a Probabilistic Sensor Network, allowing multiple sensors to be  dynamically 
combined in a modular fashion. A time-segmented deep-learning system has 
also been presented to predict intent continuously. This study combines these 
principles, and so proposes, develops and tests a novel algorithm for multi-modal 
intent sensing, combining measurements from IMU sensors with those from a 
microphone and interpreting the outputs using time-segmented deep learning. It 
is tested on a new data set consisting of a mix of non-disabled control volunteers 
and participants with Parkinson’s disease, and used to classify three activities of 
daily living as quickly and accurately as possible. Results showed intent could 
be determined with an accuracy of 97.4% within 0.5  s of inception of the idea 
to act, which subsequently improved monotonically to a maximum of 99.9918% 
over the course of the activity. This evidence supports the conclusion that intent 
sensing is viable as a potential input for assistive medical devices.
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1. Introduction

Parkinson’s disease is a neurodegenerative disease resulting in, among other symptoms, a 
gradual impairment of the patient’s mobility and quality of life (1). However, it often does not 
initially severely impair patients’ cognitive functions (2), meaning people living with it can 
report that they find themselves no longer physically able to complete tasks they might still 
mentally intend to do (3). Assistive technologies, such as tremor-suppressing wearables (4) or 
motion supporting exoskeletons (5), can help people complete tasks that they previously were 
unable to.
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The loss of physical control caused by the disease, while still 
maintaining cognitive functions and therefore action intent, makes 
Parkinson’s disease patients an ideal target group for intent sensing – 
the prediction and measurement of what it is that a user wants to do 
(6). This paper proposes that intent sensing could be a useful input for 
control of assistive devices to help those living with Parkinson’s disease 
maintain their quality of life. It has been shown in previous studies to 
be an effective tool for the control of upper limb orthoses which assist 
motion (7), and provide intelligent attitude-adjustment for smart 
wheelchairs (8). These technologies can be applied for the support of 
patients with Parkinson’s disease, highlighting the potential developing 
intent technology for helping those with this condition.

It has been established in prior work (9) that intent sensing must 
be  performed continuously over time, predicting an upcoming 
activity, detecting the activity’s onset, and monitoring the activity as it 
takes place and inferring its task goal. It was shown that the accuracy 
of intent prediction increases monotonically over time – predicting an 
activity before it starts is intuitively far more difficult than classifying 
it after it has been completed. An effective intent-sensing system 
should predict possible upcoming activities in advance, and then 
refine these predictions as the activity begins and progresses.

To minimise risk and maximise compliance (10), intent prediction 
should be performed non-invasively (unless the patient already has an 
implanted device). Information that can be used for prediction can 
be obtained from a range of sensors. Measurements from wearable 
and non-wearable sensors can be individually classified using deep 
learning (9), before being combined as a probabilistic sensor network 
to accurately determine user intent.

To ensure robustness and independence between sensors, multiple 
sensing modalities should be  used (11). Many possible sensing 
modalities have been explored for intent, including electromyography 
(EMG), electroencephalography (EEG) and gaze-tracking (6). This 
study, however, will focus on motion data from Inertial Measurement 
Units (IMUs) and audio data from a microphone, as these modalities 
are representative of what might be found in typical consumer devices 
such as smart-watches and smart-phones (12), and are included in 
currently available wearable Parkinson’s disease-monitoring devices 
such as the Kinesia 360 (13).

Prior work has shown that there are many benefits to constructing 
an intent-sensing Probabilistic Sensor Network (14) using a modular 
method. They allow sensors to be freely added and removed from the 
network as they become available, without any retraining being 
required. This enables the possibility of a system where a user can 
move around a smart environment and take advantage of any wearable 
and non-wearable sensors they may encounter at any given time to 
always produce the most accurate prediction of intent.

Modular methods have also been shown to be far more robust to 
sensor unavailability, due to causes such as failure or, in the case of 
wearable sensors such as Surface EMG, sensor lift-off (11).

The benefit of modularity that this study will focus on, however, 
is the ability to add sensors to a network without increasing the 
complexity of the learned models, and therefore without requiring an 
exponentially increasing amount of data to properly train them.

To elaborate – if each sensor provides 18 features, and there are 
six sensors, as in this study, then combining all the features from all 
the sensors to train a single classifier requires learning of a model in 
108 dimensions. Attempting to do this with only a small amount of 
training data will lead to overfitting, as separating data in that many 

dimensions is very easy for a classifier to do “by chance,” without 
learning any actual pattern that will reoccur for data that is not part of 
the training set.

This study, however, proposes to instead train one deep-learning 
classifier for each of the six sensors. With this approach, each classifier 
learned is only 18-dimensional, requiring much less training data to 
avoid overfitting. However, the same number of training data points 
are available as there were for the 108-dimensional classifier; it is 
simply the number of features that are reduced. As such, six much 
more effective classifiers are able to be learned, without discarding any 
of the features which may contain relevant information. The 
predictions from each of these classifiers can then be combined as part 
of a Probabilistic Sensor Network.

A similar benefit is also gained by time-segmenting the data used 
for the deep learning classifier, reducing the complexity of the learned 
classifiers and increasing the number of available data points for 
training, and therefore increasing the overall accuracy of the classifiers. 
In this study, the system will be modular in both sensors and time.

The objective of this study is to utilise deep-learning-driven, time-
segmented classification algorithms to develop a system to determine 
user intent through six sensors across two sensing environments, and 
to quantify its performance. The work also aims to show the potential 
of an intent sensing system that is agnostic to the kind of user (abled 
or disabled). The study will determine the accuracy of the intent 
prediction for both patients and controls at the early stages of 
the activity.

2. Methods

2.1. Data collection

This study uses a novel Parkinson’s disease-based data set (15). 
Data in this study came from a set of 34 volunteers, 15 of whom had 
Parkinson’s disease and 19 of whom did not. Demographic 
information on both the control and patient groups is shown in 
Table 1, and disease progression information for the patient group is 
shown in Table 2, including the original 1987 Unified Parkinson’s 
Disease Rating Scale (UPDRS) (16) and the Hohen and Yahr 
Stage (17).

All volunteers signed an informed consent form and ethical 
approval for the study was obtained from the NRES Committee South 
West (REC reference 13/SW/0287). The data collection was performed 
by research nurses, who supervised the participants throughout 
the process.

Initially, the participants stood in a calibration pose, with their 
arms by their sides, with this data recorded for standardization. The 

TABLE 1 Number of participants, age (mean and standard deviation) and 
sex for the patient and control groups.

Patients Control Total

Number of 

participants

15 19 34

Age 67 ± 9 64 ± 10 65 ± 9

Sex 10 Male, 5 Female 11 Male, 8 Female 21 Male, 13 

Female
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participants then performed three standard activities of daily living 
(ADLs) based on those utilised in the Motor Activity Log, as tested in 
previous studies (18, 19) – unlocking and opening a door, buttoning 
and unbuttoning a cardigan, and making toast. Each activity was 
repeated three times, without a break.

The participants each wore five Xsens IMU three-axis nine-
channel IMUs (MTx, Xsens Technologies B. V., Enschede, 
Netherlands). These were secured to the participants’ lower and upper 
arms (both left and right), and to their head (Figure 1). A 44.1 khz 
microphone on a nearby laptop (Lenovo Thinkpad X1, Dynamic 
Range 95 dB, Signal-to-Noise Ratio 19 dB) was also used to record 
audio throughout the activity.

During the activities, the participant was engaged in conversation 
by the supervising research nurses, but were asked not to talk about 
the activity they were performing. This engagement was aimed at 
making the motor behaviour more natural and to better represent 
activities of daily living in which cognitive loading is increased due to 
the application of multitasking.

Each IMU provided X, Y, and Z axis data for the magnetometer, 
gyroscope and accelerometer, along with a 3×3 rotation matrix 
provided by the XSens software, all at 50 Hz. The microphone 
positioned in front of the participant provided a 44.1 kHz .wav 
audio signal.

2.2. Processing

The raw 3-axis data from each IMU sensing modality was rotated 
by the inverse of the mean rotation matrix collected during calibration, 

to correct for any misalignments in the axes of each sensor. The sensor 
data was then multiplied by a random rotation for each trial, to 
prevent the system from being able to use the participant’s starting 
direction to determine their intent. All data analysis was done using 
Matlab (MathWorks, Inc., Natick, Massachussetts, United States).

The audio data from the microphone was segmented into groups 
of 882 samples – 1 group of samples for every single sample from the 
IMU sensors. This was then processed using a Hamming Window 
(20) of length 882, followed by Matlab’s AudioFeatureExtractor 
function to determine the first 18 Mel-Frequency Cepstral Coefficients 
(MFCCs), which are representations of the power spectrum of the 
sound (21), for each group. Standard numbers of MFCCs used in 
similar studies vary between 13 and 25 (22). The number 18 was 
chosen here in order to match the number of features contributed 
from each IMU sensor, to ensure the system does not initially weight 
any one sensor more heavily than the others (weights will 
be determined and refined during training).

No speech analysis processing was performed, so the system did 
not attempt to determine the words said during conversation with the 
supervising nurse, as speech would not be a reliable feature in a real-
world scenario where the subject is on their own. Instead, only 
information about the general nature of the sound, such as power and 
frequencies, is used – it was anticipated that this would allow detection 
of events such as the sound of the key turning in the lock, or the buzz 
of the toaster operating, to more accurately determine the activity.

2.3. Deep learning

Time-segmented deep learning was employed to classify the 
intent as quickly and as accurately as possible. Each trial was divided 
into time windows of width 500 ms, each with an overlap of 250 ms, 
enabling a maximum learned pattern length of 250 ms (approximately 
equal to typical human reaction time (23)). Each time-window was 
taken as a separate, 108-feature sample for training. Long-Short Term 
Memory (LSTM) neural networks (24) were trained for each 
individual sensor, and for all six sensors together. These were trained 
over 50 epochs (selected experimentally to minimise overfitting and 
training time), with 15 hidden units, a learn rate of 0.001 and a mini-
batch size of 512. Layers consisted of a 108-feature Sequence Input 
Layer, a single Bidirectional LSTM Layer, a Fully Connected Layer, a 
Softmax Layer and a Classification Layer. In total, 298.758 min of data 
were included in the dataset.

Leave-one-out cross-validation was used, such that all the trials 
for one subject at a time were withheld as a testing set, with the other 
thirty-three subjects used for training. This was repeated 34 times so 
that each subject was withheld once, with the results averaged across 
the set of repeats. To prepare for use in the weighted methods, 
elaborated on in Section 2.4, this training set was randomly subdivided 
into a Classifier Learning Set and a Confusion Matrix Learning Set, 
with half the subjects being included in the former and half in the 
latter. This was necessary in order to train the LSTM networks for each 
sensor and then assess their performance both for each sensor and at 
each time-step, with the results being used to weight the sensor 
contributions in testing.

A majority voting method was also used which assumed that all 
sensors and time steps had equal weight – this meant that the full 
training set could be used to learn the classifier, effectively doubling 

TABLE 2 Disease progression information for the patient group, including 
duration in years since diagnosis, Unified Parkinson’s Disease Rating 
Scale (UPDRS) and Hohen and Yahr stage.

Disease duration (years) 5 ± 3

UPDRS 44 ± 19

Hohen and Yahr stage 2 ± 0.5

All metrics include mean and standard deviation.

FIGURE 1

An anonymised participant wearing all five IMU sensors – on the 
upper left (UL) and right (UR) arm, the lower left (LL) and right (LR) 
arm, and the head (He).
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the size of the training set, at the cost of not being able to have weights 
specific for each of the sensors.

2.4. Modular method

At every time step, each sensor made a prediction using the time-
segmented deep-learning method. All the predictions from each 
sensor at all preceding time steps were then combined. The two 
weighted methods used Bayes’ Rule, with their contributions 
effectively being weighted according to the confusion matrices 
obtained during training. This produced a probability for each of the 
three possible intents – the intent with the maximum probability was 
then selected.
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P(E) is the prior probability of a particular intent being true, and 
P(E′) is the prior probability of that intent not being true – in this 
study, the prior was assumed to be uniform, making P(E) 1/3 and 
P(E′) 2/3. P(E│V) is the probability of that intent being true given the 
set of sensor values currently being measured. P(V│E) is the 
probability of measuring the current sensor values given that the 
intent being considered is true. Assuming probabilistic independence 
between the individual sensors, this can be  approximated as the 
product of the probabilities of each individual sensor. P(V│E′) is the 
probability of measuring the current sensor values given that the 
intent being considered is not true.

A majority voting method was also tested, effectively giving all 
sensors and time-steps equal weight. While the loss of the 
weightings obviously inhibits the ability of the network to 
incorporate any sensor, no subsets are required within the training 
set, as there are no confusion matrices to be learned – therefore, a 
majority voting system will be trained on twice as much data as the 
weighted methods.

In order to determine how much of the change in accuracy (when 
using a majority method) comes simply from the access to the larger 
training set, a majority voting method where half of the training set is 
discarded is also tested, in order to make it comparable to the 
weighted methods.

2.5. Non-modular method

To provide a comparison, a non-modular method was also used, 
where the features from all six sensors were included in one single 
LSTM network. This was also time-segmented.

2.6. Comparison

To determine how well the system compares to the theoretically 
possible accuracies, the naïve model from Russell and Bergmann (14) 
was used with the confusion matrices obtained during training in 
order to predict an upper bound for the accuracy of the resultant 
classifier during testing. The measured accuracy was compared to this 

upper bound to determine how close performance is to the 
theoretical maximum.

In this case, the equation for the naïve model is simply:

 P B P S S S P S S S( ) = ∪ ∪…∪( ) = − ∩ ∩…∩( )1 2 6 1 2 61  (2)

2.7. Monotonic test

As an approximately monotonic increase in accuracy over time is 
required for an effective intent-sensing system, a Spearman’s Rank test 
was again applied, quantifying to what extent this requirement was 
fulfilled by each method.

Where R Pi( ) and R Ti( )  are the ranks of each (i-th) sample in 
accuracy and time, respectively, and n is the number of samples, this 
was calculated using:
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(3)

This value is always between −1 and 1, where 1 describes a 
completely monotonically increasing pattern and − 1 describes a 
perfectly monotonically decreasing pattern. A value of 0 would 
indicate no monotonic relationship was present (25).

3. Results

Measuring sensor network accuracy using the four time 
segmentation methods for a system with modular sensors, and for a 
system with combined sensors, produced Figure 2. Both sets contain 
data from both the patient and control groups.

The method with the highest accuracy for both of these, at all time 
steps, was majority voting, where the classifiers were trained on the 
full data set, but no weightings were used, in both sensors and time. 
This reached a maximum of 0.999918 for the modular method, and 
0.957516 for the combined method.

To investigate the extent of the benefit that majority voting gains 
by training on twice as much data, a comparison of the majority 
voting method trained on the full data set vs. trained on half the data 
set is shown in Figure  3. Both sets contain patient, as well as 
non-patient data.

Both methods showed a higher mean performance with the full 
data set than with the half data, with a larger difference in the 
combined method than the modular method.

As the majority voting method resulted in the highest accuracy 
for both methods, it was then used to compare the modular method 
(sensors) to the non-modular method (sensors), with results shown 
in Figure 4.

The modular method showed both higher accuracy and lower 
variance than the combined method. The Spearman’s Rank Coefficient 
of the modular method was 0.89, and for the non-modular, combined 
method, 0.62.

Comparing the accuracy of the modular and non-modular 
methods across the patient and control groups produced the results 
shown in Figure 5.
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The accuracy of the modular method was consistently high 
in both groups, rapidly approaching 1. The combined method 
had a larger variance, and lower maximum accuracy in 
both groups.

The performance of the majority voting (time), modular method 
(sensors) network was then compared to the performance of each 
individual sensor. This is shown in Figure 6.

The highest accuracy sensor was IMU 3 in the first 9.5 s, overtaken 
by IMU 1 for the remaining time. The lowest accuracy sensor was the 
audio at all time steps.

The theoretical maximum accuracy predicted by the Naïve Model 
was initially 0.999996 at 0.5 s, which is almost 1. The performance of 
the modular network method began close to this, at ~0.974. and 
reached a maximum of 0.999918 within the first 16 s.

FIGURE 2

Accuracy vs. time for the modular sensor method and the combined sensor method, using the four different time-segmentation techniques applied 
across multiple sensing modalities.

FIGURE 3

Accuracy vs. time for the modular sensor method and the combined sensor method, combined over time using the majority voting methods with the 
full and half data sets.
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4. Discussion

4.1. Analysis of results

Using the majority voting time-segmented method, trained on the 
full data set, the modular system was able to classify user intent to an 
accuracy of 97.4% within only 0.5 s of the inception of the idea to act. This 
is exceptionally high accuracy, out-performing all previous intent-sensing 
studies and strongly supporting a modular-sensor, time-segmented deep 
learning approach for intent classification. While intent is a different goal 
to activity recognition, these accuracy levels are comparable to those from 
similar studies, but are achieved in a much faster time (26, 27). This 

accuracy increased approximately monotonically, with a Spearman’s Rank 
Coefficient of 0.89, and 16 s after activity inception reached an accuracy 
of 99.9918%, meaning the system was able to correctly classify almost 
every trial for every subject by this point.

By comparison, the non-modular, combined method achieved a 
mean accuracy of only 87.0% in the first 0.5 s, increasing to a maximum 
of 95.8% after 20.5 s – far lower than the mean accuracy of the modular 
method. In addition, the Spearman’s Rank Coefficient for this was a 
lower value of 0.62, suggesting that not only was the accuracy of the 
non-modular method lower, but it also did not nearly as effectively 
satisfy the requirement of accuracy increasing monotonically over time.

Figure  6 showed the individual performance of the sensors 
compared to the overall performance of the modular network. The 
IMU sensors each showed higher accuracy than the audio. However, 
the inclusion of the audio modality had the major benefit of it being 
totally probabilistically independent from the IMU measurements. 
While the IMUs were located at different sites, they were all 
constrained by the probability of the sensing environment. A lower 
bound for this is P A1 0 987( ) = . , the highest accuracy recorded by any 
of the individual IMU sensors. The highest recorded accuracy for the 
audio sensor, and therefore the lower bound for the environment 
probability of audio was P A2 0 866( ) = . . However, as they are both 
entirely different sensing environments, the overall network is 
constrained by neither of these limits, and thus outperforms all the 
individual sensors, and is able to approach 1.

The majority voting method trained on the full data set was once again 
shown to be  the best-performing of the time-segmentation methods 
trialled. Figures 2, 3 show that this contrast is due to the difference in size 
of training set, as artificially withholding half of the training set for the 
majority voting method, in order to make it comparable to the weighted 
methods, results in very similar recorded accuracies.

The exceptionally high performance of the modular method was 
observed in both the patient group and the control group, though a 
100.00% (to two decimal places) classification accuracy was achieved 

FIGURE 4

Accuracy vs. time for the modular and non-modular methods, with 
error shown.

FIGURE 5

A comparison of accuracy between the modular and combined methods for the patient and control groups, with the central 95% confidence interval 
plotted for both.
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8 s later in the patient group than in the control group. This aligned 
with expectations, as large variations have been observed in the 
physical activity of patients with Parkinson’s disease (28), suggesting 
that this would make classifying the patient group harder than 
classifying the control group.

Even with this difference, the accuracy of classification in the 
patient group was still very high, strongly supporting intent sensing 
as a viable method for interpreting user activity. This opens up 
possibilities for a number of possible clinical applications to support 
those with Parkinson’s disease, such as assistive exoskeleton 
technology, which could predict users’ intentions and provide motor 
support in achieving their task goals that they might not otherwise 
be able to complete themselves. Alternatively, intent sensing systems 
could predict activities which might be considered high risk, and 
rapidly alert carers of the increased possibility of danger to the 
patient. Intent could also be used as an input for human-computer 
interfaces, providing more intuitive control to patients over devices 
which could allow them to communicate and maintain their quality 
of life as the disease progresses.

The high accuracy in both groups shows the modular intent 
sensing method as a case example for inclusive design, with ability to 
apply such a system for both disabled and non-disabled users. 
Responding to user diversity with appropriate performance across the 
full range of potential users will bring benefits, such as scalability of 
technology. An inclusive design approach also provides additional 
advantages related to desirability and user satisfaction even if their 
own physical and/or cognitive ability is changing (29).

4.2. Limitations of the study

Caution should be taken in the interpretation of these results, as 
only 3 ADL classes were considered (unlocking and opening a door, 
buttoning and unbuttoning a cardigan, and making toast). The class 
prediction is likely to change as more activities are considered – a 
larger number of classes will lead to a reduced classification 
accuracy (30).

Additionally, the size of the data set is limited. A future study 
could be performed with hundreds of participants, increasing the 
training and testing accuracies and potentially reducing the advantage 
gained by the majority voting system by using the full data set.

Furthermore, while the wearable IMU system should be applicable 
in many real-world scenarios, there may be implementation issues 
with the microphone, the accuracy of which may vary dramatically 
when used outdoors, or in noisy environments. However, previous 
studies have shown the proposed sensor fusion algorithm to be robust 
to sensor dropout (9, 11), meaning that if large amounts of noise are 
identified, it should be possible to dynamically remove the microphone 
input from the system. This may also be of benefit if there is any issue 
with the IMU sensors, such as interfering vibrations from heavy 
machinery, or a technical fault.

It should also be  noted that the activities themselves, while 
performed without constraints, were using the exact same objects for 
all volunteers. It has been shown that small changes in objects could 
lead to different motor patterns (31). Further work is needed to 
determine the accuracy of this approach in truly free living conditions. 
Nonetheless, the high accuracy found in this study is promising.

5. Conclusion

This study introduces a novel holistic multi-modal intent sensing 
system. A continuously-updating system was able to predict a user’s 
intent almost immediately after activity inception, and to continue 
refining that prediction as time passed. This was done using a modular 
network of sensors, including two entirely unrelated sensing 
environments, that might realistically be available to a patient. The 
system was shown to be highly effective in both the patient and control 
group, demonstrating it as an effective example of inclusive design.

The results shown in the study highlight intent-sensing as an 
achievable, highly accurate method of classifying what a user is trying 
to do, with potential applications in the assessment and support of 
those with Parkinson’s disease, and throughout many other fields of 
inclusive design within science and technology.
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