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The presence of strong electromagnetic fields adds huge complexity to QED Feynman diagrams,
such that new methods are required to calculate higher-loop and higher-multiplicity scattering ampli-
tudes. Here we use the worldline formalism to present ‘Master Formulae’ for all tree level amplitudes
of two massive particles and an arbitrary number of photons, in a plane wave background, in both
scalar and spinor QED. The plane wave is treated without approximation throughout, meaning in
particular that our formulae are valid in the strong-field regime of current theoretical and experi-
mental interest. We check our results against literature expressions obtainable at low multiplicity
via direct Feynman diagram calculations.

I. INTRODUCTION

Strong fields can generate nonlinear and non-perturbative effects in particle interactions. Strong electromagnetic
fields may be generated terrestrially by several means, including by ultra-intense lasers [1, 2]. QED processes in the
presence of these fields acquire an intensity-dependence characterised by a coupling which typically exceeds unity,
and which must therefore be treated without recourse to perturbation theory. Several upcoming experiments aim to
observe nonlinear effects in the scattering of electrons [3–5] and photons [6, 7] on intense lasers.

The standard theory approach to ‘strong field QED’ is based on the Furry expansion, or background field perturba-
tion theory. The strong (e.g. laser) field is described as a fixed background, the coupling of which to matter is treated
exactly. Interactions between particles scattering on this background are then treated in perturbation theory as usual,
see [8] for a recent review. There are however several topics in strong field QED which require the development of
new theoretical methods.

First, the majority of progress to date has been made for the special, highly symmetric laser model of a plane wave
background, for which the Furry expansion can be practically realised. It is a long-standing challenge to account
analytically for realistic pulse geometry, and the new phenomenology this brings [8]. Second, while plane wave results
can be extended to realistic fields via local approximations (e.g. [9–11]), and so implemented in numerical codes,
those codes must still be benchmarked against theory. This has been performed for first-order (i.e. low multiplicity)
processes, but benchmarking higher-order processes is made challenging by, in part, a lack of analytic results; the
state-of-the-art in the plane wave model is, at tree level, only four -point scattering. Third, if we consider higher loop
corrections, it has been conjectured [12–14] that at very high background field strengths the loop expansion must
be resummed in order to provide reliable physical predictions (at least in the low frequency, ‘constant crossed field’
limit). Doing so is a formidable challenge [15–17].

To attack these problems one can use approximations that do not rely on weak coupling [18], develop exactly solvable
models which capture some physics of interest [19], or use alternative methods to simplify Furry-picture quantities.
One potential method is the worldline formalism, which casts QFT in terms of path integrals over relativistic point
particle trajectories. Its roots can be traced back to Feynman [20, 21], though its use as a serious alternative to the
standard QFT formalism was first advocated by Strassler [22], following [23, 24]. One of the main advantages of the
worldline approach is that it automatically sums over all Feynman diagrams which contribute at fixed multiplicity and
loop order, thus greatly simplifying the combinatorics which comes with higher numbers of scatterers and/or loops.

The worldline formalism was initially developed for one-loop (and then higher loop) processes in vacuum and in
background fields, and a common output of the approach is ‘Master Formulae’; these are all -multiplicity formulae for
correlation functions of a chosen set of fields, at fixed loop order. Such Master Formulae, which would be extremely
challenging to reproduce using Feynman diagrams, have been obtained for processes in vacuum [22, 25, 26], in constant
electromagnetic backgrounds [27–32] and in plane wave backgrounds [33, 34]. The worldline approach has also been
applied to the calculation of effective actions in background fields via numerical implementations [35], the Casimir
effect [36], vacuum birefringence [37], tadpole corrections [38–40], and nonlinear Breit-Wheeler pair production [41]. A
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FIG. 1. We consider tree level scattering amplitudes of 2 massive charges and N photons, as illustrated on the right (for
scalar QED). The double line represents the presence of a plane wave background, the coupling to which is treated exactly.
Amplitudes are obtained by LSZ reduction of the corresponding correlation functions. In the worldline approach, a natural
starting pointing is the partially amputated correlator, or ‘dressed propagator’, in which the photons are already reduced out,
but the matter fields are not. This is illustrated on the left. Thus LSZ reduction is still required for the external matter lines.

long-standing focus of the approach has been the investigation of non-perturbative effects via worldline instantons [42–
48]. For reviews see [49, 50].

Only recently has much attention been paid to worldline Master Formulae for processes with external matter lines,
or processes at tree level [51–56]. Furthermore, while external photon lines typically appear in the worldline formalism
already LSZ-amputated, matter lines do not, and it has not yet been fully established how one should perform the
required LSZ amputation which turns correlation functions into amplitudes.

We fill in some missing pieces of this puzzle in this paper, which is organised as follows. In Sect. II we construct
worldline Master Formulae for all tree level N + 2-point correlation functions describing the emission of N photons
from a massive particle in a background plane wave, in both scalar and spinor QED. In Sect. III we turn to the
LSZ amputation of the master formula, converting it into an all-multiplicity formula for the corresponding N -photon
emission/absorption amplitudes from a massive particle in a plane wave background. Example calculations in which
we compare with known literature results at low multiplicity are presented in Sect. IV. We conclude in Sect. V. The
appendices contain additional checks on our results.

Conventions: We set ℏ = c = 1. We work throughout in Minkowski space with lightfront coordiantes, so that
ds2 = dx+dx− − dx⊥dx⊥ where x⊥ = (x1, x2) are the ‘transverse’ directions. We introduce a null vector nµ which
projects onto the ‘lightfront time’ direction, that is n · x = x+. The covariant derivative is Dµ = ∂µ + ieAµ.

II. MASTER FORMULAE FOR 2 +N–POINT TREE LEVEL CORRELATORS IN PLANE WAVE
BACKGROUNDS

The goal of this section is to write down and evaluate the worldline path integral Master Formulae for tree level
correlation functions of N photons and two charged particles in the presence of a plane wave background, valid for
arbitrary N . We will do this in both scalar and spinor QED.

Our plane wave background may be described by the potential eAµ(x) = aµ(x
+) = δ⊥

µa⊥(x
+), a transverse function

of lightfront time x+. We may always choose a⊥(−∞) = 0, but then a⊥(∞) =: a∞⊥ is in general non-zero (and carries
an electromagnetic memory effect [57–59].). The corresponding field strength is fµν(x

+) = nµa
′
ν(x

+) − nνa′µ(x+),
where a prime denotes an x+-derivative.

A. Scalar QED

In the Master Formulae we derive in this section, the N external photons will be LSZ-amputated, but the matter
lines not, and thus our correlation functions carry spacetime indices x and x′, as well as a dependence on the N photon
momenta {ki} and polarisations {εi}. We hide the latter dependencies, denoting the partially reduced correlators, or

‘dressed propagators’ as they are called in the worldline literature, by Dx′x
N ; see Fig. 1. We take all photons to be

outgoing ; other configurations are trivially obtained by sending k → −k.
The worldline representation of such correlation functions is given in terms of a path integral over relativistic

point particle trajectories, denoted xµ(τ) with τ the proper time of the trajectory. The trajectories obey Dirichlet
boundary conditions xµ(T ) = x′µ, xµ(0) = xµ, corresponding to the spacetime dependence of the dressed propagator.
The trajectories have length T , which is ultimately also integrated out, respecting reparameterisation invariance of
the path integral [60, 61]. To write down this path integral, we start from the worldline action that minimally couples
a relativistic point particle to an arbitrary gauge field Aµ, namely

SWL[x(τ), A] = −
∫ T

0

dτ
[ ẋ2
4

+ eA(x(τ)) · ẋ(τ)
]
, (1)
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where over-dots denote proper time derivatives, and where the unusual normalisation of the kinetic term has become
standard in the worldline literature, so we preserve it here. SWL enters the path integral for the scalar field propagator,
call it Dx′x, via

Dx′x =

∫ ∞

0

dT e−im
2T

∫ x(T )=x′

x(0)=x

Dx(τ) eiSWL[x(τ),A] . (2)

Note that Aµ is not integrated over, rather it appears as a given field – it is well known (see, for example [62]) that
correlation functions with N external photons in vacuum can be extracted from (2) by fixing Aµ to be a sum over
asymptotic photon wavefunctions with momenta ki and polarisations εi:

Aµ(x)→ Aγµ(x) =

N∑
i=1

εµ ie
iki·x , (3)

and then expanding the dressed propagator (2) to multi-linear order in the polarisation vectors. The additional
complication here is the presence of the background gauge potential in (6). This is however easily included; we
simply split the gauge field into a semi-classical part representing the plane wave background and a ‘quantised’ part
representing scattering photons:

eAµ(x)→ aµ(x) + eAγµ(x) . (4)

Inserting this into (2) and expanding to multi-linear order, the path integral to be performed is

Dx′x
N = (−ie)N

∫ ∞

0

dT e−im
2T

∫ x(T )=x′

x(0)=x

Dx(τ) eiSB[x(τ),a]
N∏
i=1

V x
′x[εi, ki] , (5)

in which the weight is now given by the reduced action

SB[x(τ), a] = −
∫ T

0

dτ
[ ẋ2
4

+ a(x(τ)) · ẋ(τ)
]
, (6)

while the N external photons appear (following the expansion to multi-linear order) through the vertex functions

V x
′x[ε, k] :=

∫ T

0

dτ ε · ẋ(τ) eik·x(τ) . (7)

(We leave implicit a causal and IR convergence factor exp(−ϵT ) under the dT integral in (5).)
Our task is to evaluate the integrals in (5). Let us first consider the xµ integrals, and in particular the Dirichlet

BCs. To deal with these we follow the standard procedure used for the evaluation of such integrals in vacuum, and
expand xµ(τ) into a straight line trajectory and a fluctuation q(τ) according to

xµ(τ) = xµ + zµ
τ

T
+ qµ(τ) , zµ := x′µ − xµ . (8)

The fluctuation must satisfy the homogeneous Dirichlet BCs q(0) = q(T ) = 0 (with measure Dx(τ)→ Dq(τ)). For the
analogue problem in vacuum (a(x+)→ 0) the path integral is Gaussian in qµ and can thus be computed analytically1.
Here, however, the fluctuation appears inside the background field a(x+(τ)) = a(x+ + z+τ/T + q+), and this has an
arbitrary functional form. At first glance this seems to destroy the Gaussianity of the path integral, and prohibit its
evaluation. However, it has been shown for one-loop photon-scattering processes (meaning no external matter lines,
and a path integral with periodic rather than Dirichlet BCs) that the properties of the plane wave background mean
the integral is still effectively Gaussian [33, 37]. It is thus crucial to demonstrate that the hidden Gaussianity of the
path integral is also present here.

To do so we follow the approach of [34], introducing a Lagrange multiplier χ(τ) and auxiliary field ξ(τ) into the
path integral through the equality

e−i
∫
dτ a(x+(τ))·q̇ = e−i

∫
dτ a(x++z+ τ

T +q+)·q̇ =

∫
DξDχ ei

∫
dτ

[
χ(ξ−q+)−a(x++z+ τ

T +ξ)·q̇
]
. (9)

1 This is also the case for a constant background in Fock-Schwinger gauge [54].
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These auxiliary integrals render that over q(τ) to be Gaussian. The crucial point, as we show below, is that after
evaluating the q-integral, the remaining integrals over ξ and χ can still be evaluated, for a plane wave background.
We now compute the fluctuation integral. As is usual in this ‘string-inspired’ approach, it is convenient to manipulate

the vertex operators as follows. We exponentiate the polarisation-dependent factor, so that it appears linearly in an
exponent in the operator, with the understanding that the result should later be expanded to linear order in (each
of) the εi, so we write

V x
′x[ε, k]→

∫ T

0

dτ eik·x+ε·ẋ
∣∣∣
lin. ε

. (10)

The result of this is that all dependence on the particle trajectory x(τ), or rather the fluctuation q(τ) to be integrated
out, now appears linearly under the path integral. The integrals to be evaluated are now

Dx′x
N = (−ie)N

∫ ∞

0

dT e−im
2T−i z2

4T

N∏
i=1

∫ T

0

dτi e

N∑
j=1

ikj ·(x+z
τj
T )+εj · z

T

∫
DξDχ

∫ q(T )=0

q(0)=0

Dq(τ) ei
∫
dτ [− q̇2

4 −J ·q]
∣∣∣
lin. ε1...εN

,

in which J µ(τ) is an effective (operator valued) source

J µ(τ) := aµ(x+ + z+τ/T + ξ)
d

dτ
+ χ(τ)nµ + i

N∑
i=1

(
ikµi − εµi

d

dτ

)
δ(τ − τi) , (11)

Since the fluctuation integral is now Gaussian, it is easily computed in terms of the worldline Green’s function ∆(τi, τj),
that is the inverse of 2d2/dτ2 with Dirichlet BCs, which is found to be

∆ij := ∆(τi, τj) =
1

2
|τi − τj | −

1

2
(τi + τj) +

τiτj
T

. (12)

It is easily checked that Dirichlet BCs hold: ∆(0, τi) = ∆(T, τi) = ∆(τj , 0) = ∆(τj , T ) = 0. With this, the fluctuation
integral becomes∫ q(T )=0

q(0)=0

Dq(τ) ei
∫ T
0

dτ [− q̇2

4 −J ·q] = −i(4πT )−2 exp

[
− i

∫ T

0

dτidτj Jµ(τi)∆ijJ µ(τj)
]
. (13)

This defines the fundamental contraction for the fluctuation variable,

⟨qµ(τ)qν(τ ′)⟩ = 2iηµν∆(τ, τ ′) , (14)

and the free path integral normalisation is recovered by setting J = 0. To proceed, we wish to write out the exponent
in (13) explicitly. Note, though, that ∆ij is not proper time-translation invariant due to the boundary conditions [51],
hence left and right proper time-derivatives must be distinguished. We denote these as follows:

•∆ij :=
d

dτi
∆ij , ∆•

ij :=
d

dτj
∆ij ,

••∆ij :=
d2

dτ2i
∆ij , etc. (15)

With this, we write out the exponent of (13), using that the background is transverse and on-shell (n · a = 0 and
n2 = 0) to simplify. We find, writing ai ≡ a(x+ + z+τi/τ + ξ(τi)),∫

J ·∆ · J =

∫
dτidτj ai · aj•∆•

ij + 2i

N∑
j=1

∫
dτi (

•∆•
ij ai · εj + i•∆ijai · kj)

+ 2i

N∑
j=1

∫
dτi χi[∆

•
ijε

+

j + i∆ijk
+

j ]−
N∑

i,j=1

[•∆•
ijεi · εj + 2i•∆ijεi · kj −∆ijki · kj ] . (16)

The trivial dependence on χ means that this field can now be integrated out, yielding a δ-functional:∫
DξDχ e

i
∫
dτ χ

[
ξ−2i

∑N
j=1(∆

•
ττj

ε+j +i∆ττj
k+j )

]
=

∫
Dξ δ

[
ξ(τ)− 2

N∑
j=1

(i∆•
ττjε

+

j −∆ττjk
+

j )
]
. (17)
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This δ-functional has the effect of shifting the argument of the background field, such that from here on we have

aµi ≡ aµ(τi) ≡ aµ
(
x+ + z+

τi
T

+ 2

N∑
j=1

[
−∆ijk

+

j + i∆•
ijε

+

j

])
. (18)

The dynamical fluctuation is thus replaced by a coupling of the plane wave to the N scattering photons [33, 37]. This
is particular to plane wave backgrounds because (a) for n2 ̸= 0 equation (16) picks up a contribution quadratic in χ,
whilst (b) for n · a ̸= 0 there is an additional term linear in χ that depends on the background; instead of (18) one
would have obtained via (17) only an implicit equation for aµ.

All remaining background-dependent terms in (17) may be expressed in terms of just two worldline structures,
namely the worldline average and the periodic integral

⟨⟨f⟩⟩ := T−1

∫ T

0

dτ f(τ) , Iµ(τ) :=

∫ τ

0

dτ ′
[
aµ(τ

′)− ⟨⟨aµ⟩⟩
]
, (19)

respectively. These would have to be computed for a given background once the functional form of aµ has been fixed.
At this stage the path integral has (at least formally) been computed. Gathering everything together we obtain our
Master Formulae for the N -photon dressed propagator

Dx′x
N = i(−e)N

∫ ∞

0

dT (4iπT )−2e−i
z2

4T

N∏
i=1

∫ T

0

dτi

e−iM
2(a)T P̄x′x(ε1, . . . εN ) e−iz·⟨⟨a⟩⟩+i

∑N
j=1(x+

z
T τj−2I(τj))·kj−i

∑N
i,j=1 ∆ijki·kj

∣∣∣
lin. ε1...εN

,

(20)

in which M2(a) := m2 − ⟨⟨a2⟩⟩+ ⟨⟨a⟩⟩2 is analogous to the Kibble ‘mass’ [63] which typically appears in pulsed plane

waves [64], while P̄x′x is defined by

P̄x′x(ε1, . . . εN ) := iNe
∑N

i=1 εi·
z
T +2

∑N
i=1(⟨⟨a⟩⟩−ai)·εi+i

∑N
i,j=1[2i

•∆ijεi·kj+εi·εk•∆•
ij ] . (21)

We emphasise that this Master Formula holds for any multiplicity N ≥ 0; it would be extremely challenging to obtain
this starting from the Feynman rules. Evaluating in specific cases we can check against the literature; for N = 0, for
example, we recover a one-parameter (proper-time) representation of the scalar Volkov propagator:

Dx′x
0 = ie−iz·⟨⟨a⟩⟩

∫ ∞

0

dT (4iπT )−2e−iM
2(a)T e−i

z2

4T . (22)

Observe that in this case aµ(τ) ≡ aµ
(
x++ z+ τ

T

)
so that, changing variables to u = τ

T , the worldline average becomes
T–independent and can be taken outside the T -integral. It may be written as a spacetime average (see [37]),

⟨⟨aµ⟩⟩ =
∫ 1

0

du aµ
(
x+ + z+u

)
=

1

x′+ − x+

∫ x′+

x+

dy aµ(y) ≡ ⟨aµ⟩ , (23)

and as such M2(a) = m2 − ⟨a2⟩+ ⟨a⟩2 now corresponds exactly to the Kibble mass.
Equation (22) is equivalent to the standard momentum-integral representation of the Volkov propagator, and offers

a concise version of the position space propagator in [65, 66]. For N = 1 we recover the (2-scalar 1-photon) three
point function, and so on. Since the correlators themselves are not of immediate interest, we will present these checks
later, implicitly, as part of our checks on the corresponding formula for scattering amplitudes.
The actual computation of the dressed propagator (and, later, the amplitudes) is greatly simplified by observing

that we can choose the gauge n · ε = ε+ = 0. This removes the polarisation vectors from the argument of aµ, and
thus extraction of the multi-linear piece of (24) reduces to the expansion of P̄(ε1, . . . εN ) alone. We adopt this gauge
from here on in order to present the simplest possible expressions and also match to the strong field QED literature,
where this gauge is common. Doing so, then, we can write the Master Formula in this gauge as

Dx′x
N = i(−e)N

∫ ∞

0

dT (4iπT )−2e−i
z2

4T

N∏
i=1

∫ T

0

dτi e
−iM2(a)T P̄x′x

N e−iz·⟨⟨a⟩⟩+i
∑N

i=1(x+
z
T τi−2I(τi))·ki−i

∑N
i,j=1 ∆ijki·kj ,

(24)
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where the polynomial P̄x′x
N is defined by the expansion of the polarisation-dependent terms to multi-linear order:

P̄x′x
N := iNe

∑N
i=1 εi·

z
T +2

∑N
i=1(⟨⟨a⟩⟩−ai)·εi+i

∑N
i,j=1[2i

•∆ijεi·kj+•∆•
ijεi·εj ]

∣∣∣
lin. ε1...εN

. (25)

These polynomials generalise those defined for closed worldlines in vacuum (PN ) in [49], for open lines in vacuum
(P̄N ) in [31], and for the closed loop in a background field (PN ) in [33] (in position space for the time being). For
convenience let us write out the first few terms:

P̄x′x
0 = 1 , (26)

P̄x′x
1 = i

[ z
T

+ 2(⟨⟨a⟩⟩ − a1)− 2•∆11k1

]
· ε1 , (27)

P̄x′x
2 = −

[ z
T

+ 2(⟨⟨a⟩⟩ − a1)− 2•∆11k1 − 2•∆12k2

]
· ε1

×
[ z
T

+ 2(⟨⟨a⟩⟩ − a2)− 2•∆21k1 − 2•∆22k2

]
· ε2 − 2i•∆12

•ε1 · ε2 . (28)

B. Spinor QED

We now turn to the computation of the analogous N -photon dressed propagators in spinor QED, denoting these by
Sx′x
N . Due to the spin degrees of freedom this is a Dirac matrix-valued function, but we suppress the corresponding

indices for brevity. Referring the reader to [51, 67] for details, we begin by writing down the analogue of the
‘propagator’ (2) in an arbitrary background, but now accounting for the spin of the fermion:

Sx′x =
(
− i /Dx′ −m

)
Kx′x(a) (29)

Kx′x(a) =

∫ ∞

0

dT e−im
2T

∫ x(T )=x′

x(0)=x

Dx(τ) eiSWL[x(τ),A] 2−
D
2 symb−1

∮
A/P

Dψ(τ) eiS̃WL[ψ(τ),x(τ),A] (30)

S̃WL[ψ(τ), x(τ), A] =

∫ T

0

dτ
[ i
2
ψ · ψ̇ + ie

(
ψ(τ) + η

)
· F (x(τ)) ·

(
ψ(τ) + η

)]
. (31)

The kernel Kx′x contains an integral over relativistic particle trajectories, as for the scalar case, and also a path
integral over Grassmann–valued fields ψ(τ), obeying anti-periodic (A/P) BCs ψ(0) = −ψ(T ). These represent the
spin degrees of freedom of the fermion and are minimally coupled to A through its field strength F (x(τ)) appearing

in the action S̃WL. An additional Grassmann variable η also appears; the Dirac matrix structure of the propagator is
produced by acting on this variable by the (inverse of) the symbolic map, defined by

symb
{
γ[µ1γµ2 ...γµn]

}
= (−i

√
2)nηµ1ηµ2 . . . ηµn . (32)

This map converts between antisymmetric combinations of Dirac matrices (a combinatorial factor of 1/n! factor is
assumed) and products of Grassmann variables η. Use of the symbol map avoids lengthy Dirac-matrix algebra as it
automatically produces the kernel in the (even sub-algebra of the) Clifford basis of the Dirac algebra. Note that all
η-dependence in (34) or any of our expressions vanishes after evaluation of the inverse map; it is therefore pragmatic
to state once and for all the results relevant to us in (3+1)-dimensions as

symb−1
{
1
}
= I4 symb−1

{
ηµην

}
= −1

2
γ[µγν] = −1

4
[γµ, γν ]

symb−1
{
ηµηνηαηβ

}
=

1

4!

[
{γ[µγν], γ[αγβ]} − {γ[µγα], γ[νγβ]}+ {γ[µγβ], γ[νγα]}

]
= iγ5ϵ

µναβ . (33)

Now, taking A as in (3) to introduce both our background plane wave and the N external photons, we expand (29)
to multi-linear order in the photon polarisations to obtain the N -photon dressed propagator

Sx′x
N = (−i/∂x′ + /a(x′+)−m)Kx′x

N (a) + e /A
γ
(x′)Kx′x

N−1(a) , (34)

Kx′x
N (a) = (−ie)N

∫ ∞

0

dT e−im
2T

∫ x(T )=x′

x(0)=x

Dx(τ) eiSB[x(τ),a] 2−
D
2 symb−1

∮
A/P

Dψ(τ) eiS̃B[ψ(τ),x(τ),a]
N∏
i=1

V x
′x

η [εi, ki] ,
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where S̃B[ψ(τ), x(τ), a] is given by replacing eF (x(τ)) in S̃WL[ψ(τ), x(τ), A] with f(x(τ)). In the ‘N -photon kernel’

Kx′x
N (a), the proper time and bosonic integrals are the same as in the scalar case – these represent the orbital degrees

of freedom which remain unchanged. In the so-called subleading term involving Kx′x
N−1, for each term in the sum in

/A
γ
(x′) we remove the corresponding photon from the kernel to maintain the projection onto the multi-linear sector.

Finally, writing f̃iµν = kiµεiν − kiνεiµ for the linearised field strength associated with the ith photon, the vertex
operator is now given by

V x
′x

η [εi, ki] :=

∫ T

0

dτ
[
εi · ẋ(τi) +

(
ψ(τi) + η

)
· f̃i ·

(
ψ(τi) + η

)]
eiki·x(τi) , (35)

in which the second term represents the spin coupling of the external photons to the particle trajectories.
Despite the obvious added complexity from the spin coupling to the photon fields, we stress that the same hidden

Gaussianity is present here as in the scalar case. Consider again the path integral over xµ; we treat it as we did
above, introducing auxiliary fields to yield a Gaussian path integral in the fluctuation qµ. While there is now an
additional dependence on the background fµν introduced by the spin factor, this behaves in the same way as above
when integrating out the auxiliary fields, i.e. f in the spin factor is ultimately evaluated at a shifted argument,

fµνi ≡ fµν(τi) ≡ fµν
(
x+ + z+

τi
T
− 2

N∑
j=1

∆ijk
+

j

)
, (36)

just for aµ earlier (recall we have gauged ε+i = 0 for conveniences). In short, and as is natural, the only real difference
compared to the scalar case lies in the evaluation of the Grassmann path integral, which is the focus of the remainder
of this section.

Observe that the vertex operators (35) introduce factors of ψη(τ) ≡ (ψ(τ)+η) under the Grassmann integral. This
motivates us to introduce the following functions,

Wη(f̃i1 ; . . . ; f̃iS ) :=
〈
ψη(τi1) · f̃i1 · ψη(τi1) . . . ψη(τiS ) · f̃iS · ψη(τiS )

〉
(37)

= 2−
D
2

∮
A/P

Dψ(τ)ψη(τi1) · f̃i1 · ψη(τi1) . . . ψη(τiS ) · f̃iS · ψη(τiS ) ei
∫ T
0

dτ
[

i
2ψ·ψ̇+iψη(τ)·f(τ)·ψη(τ)

]
, (38)

which generalise the expectation values of the spin-part of the vertex operator introduced in vacuum (W (f̃i1 ; . . . ; f̃iS )

on the loop in [49] and Wη(f̃i1 ; . . . ; f̃iS ) for open lines in [51]) and for one-loop amplitudes in the plane wave back-

ground (W(f̃i1 ; . . . ; f̃iS ) in [33]). We generate the insertions under the path integral by derivatives w.r.t. a fictitious
Grassmann source θ (anti-commuting with ψ and η), from which follows

Wη(f̃i1 ; . . . ; f̃iS ) =
δ

δθi1
· f̃i1 ·

δ

δθi1
· · · δ

δθiS
· f̃iS ·

δ

δθiS
2−

D
2

∮
A/P

Dψ(τ) ei
∫ T
0

dτ [ i2ψ·ψ̇+iψη·f ·ψη+iθ·ψη]

∣∣∣∣
θ=0

, (39)

and the corresponding spin factor is produced through

Spin(f̃i1 ; . . . ; f̃iS ) := symb−1 Wη(f̃i1 ; . . . ; f̃iS ) . (40)

To compute the integral in (39) we require the (spinor) worldline propagator in the field, Gµν(τ, τ ′). This will define
the fundamental contraction between the Grassmann fields,〈

ψµ(τ)ψν(τ ′)
〉
=

1

2
Gµν(τ, τ ′) . (41)

From the quadratic part of the operator appearing in the path integral action, G must obey(1
2
ηµσ

d

dτ
+ fµσ(τ)

)
Gσν(τ, τ ′) = ηµ

ν δ(τ − τ ′) , (42)

as well as anti-periodic boundary conditions G(0, τ ′) = −G(T, τ ′) and G(τ, 0) = −G(τ, T ). Observe that G has the
anti-symmetric property Gµν(τ, τ ′) = −Gνµ(τ ′, τ). The general homogeneous solution of (42) for arbitrary f(τ) is
written conveniently in terms of an auxiliary function O(τ, τ ′), which takes care of the ordering of τ and τ ′, defined by

O(τ, τ ′) = P⋆ e−2
∫ τ
τ′ dσf(σ) , (43)
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where Θ is the Heaviside step function, P⋆ ≡ P⋆(τ, τ ′) = Θ(τ − τ ′)P +Θ(τ ′ − τ)P̄ with P (P̄) denoting (anti-)path
ordering in proper time and we have made use of a matrix form for the Lorentz indices (with respect to which
O is orthogonal). With the homogeneous solution, we can then find the general solution to (42) with appropriate
anti-periodic boundary conditions as

G(τ, τ ′) = sgn(τ − τ ′)O(τ, τ ′) +O(τ, 0)1−O(T, 0)
1 +O(T, 0)O(0, τ

′) , (44)

However, there are notable simplifications in our particular case that f is a plane wave because, as is well known, the
field strength is then nilpotent of order three. Further, f evaluated at different τ commute. The Green function thus
reduces to2

G(τ, τ ′) = e−2
∫ τ
τ′ dσ f(σ)

[
sgn(τ − τ ′) + tanh

(∫ T

0

dσ f(σ)
)]

(45)

= sgn(τ − τ ′)
[
1− 2

∫ τ

τ ′
dσ f(σ) + 2

(∫ τ

τ ′
dσ f(σ)

)2]
+ T ⟨⟨f⟩⟩

[
1− 2

∫ τ

τ ′
dσ f(σ)

]
. (46)

Equipped with the Green function, we compute the integral in (39) by completing the square, using the shift

ψ̃(τ) = ψ(τ) +
∫
dτ ′G(τ, τ ′) · (f(τ ′) · η + 1

2θ(τ
′)) The integral over ψ̃ then generates the determinant Det( 12

d
dτ + f)

(for anti-periodic boundary conditions) which because of the nilpotency of f simply gives a factor of 2
D
2 , being the

number of degrees of freedom of the fermion in D (even) space-time dimensions (this should be contrasted with the
constant field case, where the normalisation picks up a non-trivial field dependence [27, 29]).

Gathering all of the above together, the Grassmann integral as defined in (39) becomes

Wη(f̃i1 ; . . . ; f̃iS ) =
δ

δθi1
·f̃i1 ·

δ

δθi1
· · · δ

δθiS
·f̃iS ·

δ

δθiS
e−

∫ T
0

dτ [η·f(τ)·η+θ(τ)·η]−
∫ T
0

dτdτ ′[η·f(τ)·G(τ,τ ′)·θ(τ ′)+ 1
4 θ(τ)·G(τ,τ ′)·θ(τ ′)]

∣∣∣
θ=0

.

(47)
The Grassmann path integral is therefore formally computed. In particular,

Wη(∅) = e−
∫ T
0
dτ η·f(τ)·η , (48)

Wη(f̃i1) =
{
− 1

2 tr[f̃(τi1) ·G(τi1 , τi1)] + η ·GT(τi1) · f̃(τi1) ·G(τi1) · η
}
e−

∫ T
0
dτ η·f(τ)·η , (49)

Wη(f̃i1 ; f̃i2) =

{[
− 1

2 tr[f̃(τi2) ·G(τi2 , τi2)] + η ·GT(τi2) · f̃(τi2) ·G(τi2) · η
]
×

[
τi2 → τi1

]
− 1

2 tr[f̃(τi1) ·G(τi1 , τi2) · f̃(τi2) ·G(τi2 , τi1)]

+ 2η ·GT(τi2) · f̃(τi2) ·G(τi2 , τi1) · f̃(τi1) ·G(τi1) · η
}
e−

∫ T
0
dτ η·f(τ)·η , (50)

where Gµν(τi) := ηµν −
∫ T
0
dτ [G(τi, τ) · f(τ)]µν and T denotes the transpose in Lorentz indices – in particular we have

GT
µν(τi) = ηµν −

∫ T
0
dτ [f(τ) ·G(τ, τi)]µν .

Putting all of this together, the N -photon dressed propagator can be written in a ‘spin-orbit decomposition’ by
summing over assignation of the N external photons to either the spin or bosonic part of the vertex [33], as follows:

Sx′x
N = (−i/∂x′ + /a(x′+)−m)Kx′x

N (a) + e /A
γ
(x′)Kx′x

N−1(a) , (51)

Kx′x
N (a) =

N∑
S=0

∑
{i1:iS}

K{i1:iS}x′x
NS (a) , (52)

K{i1:iS}x′x
NS (a) = i(−e)N

∫ ∞

0

dT (4πiT )−2 e−iM
2(a)T−i z2

4T −iz·⟨⟨a⟩⟩

×
N∏
i=1

∫ T

0

dτi Spin(f̃i1 ; . . . ; f̃iS ) P̄
{i1:iS}x′x
NS ei

∑N
i=1

[
x+ z

T τi−2I(τi)
]
·ki−i

∑N
i,j=1 ∆ijki·kj . (53)

2 This is an alternative way of writing the Green function given in equation (45) of [33], with the advantage of being manifestly gauge
invariant. There Gµν was written in terms of periodic integrals of the derivative of a(τ) which made its anti-periodicity easier to see.
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The sum on the second line runs over the allocation of S, out of the N , photons to the spin part of the vertex operator,
V x

′x
η , which subsequently appear in Spin(f̃i1 ; . . . ; f̃iS ). Then the remaining N − S photons appear in the polynomial

P̄
{i1:iS}x′x
NS , defined by

P̄
{i1:iS}x′x
NS := iN−Se

∑N
i=1 εi·

z
T +2

∑N
i=1

[
(⟨⟨a⟩⟩−ai)·εi

]
+i

∑N
i,j=1

[
εi·εk•∆•

ij+2i•∆ijεi·kj
]∣∣∣εi1 ...εiS=0

εiS+1
...εiN

. (54)

where the notation on the far right means that the polarisation vectors εi1 to εiS should be put to zero before
the remaining expression is expanded to multi-linear order in the εiS+1

to εiN . These polynomials generalise those

introduced in vacuum (P̄
{i1;iS}
NS ) in [51] and satisfy

P̄
{}x′x
N0 = P̄x′x

N , P̄
{1:N}x′x
NN = 1 . (55)

Again, these are position space expressions, but below we shall transform to momentum space for the purpose
of evaluating scattering amplitudes. Although this Master Formula appears lengthy, it is important to emphasise
that it represents a formal evaluation of the path integral for an arbitrary number of photons inserted along the
background-dressed propagator, conveniently split into contributions from the vertex function representing orbital

interactions (in P̄
{i1:iS}x′x
NS ) and spin interactions (in Spin(f̃i1 ; . . . ; f̃iS )). All of these insertions are integrated along

the particle trajectories, so that the Master Formula represents a sum over all Feynman diagrams contributing to the
dressed propagator that differ by permutation of the external photons. Obtaining such a formula from the standard
formalism (Furry picture, say) of strong field QED would be a significantly more complicated task.

For completeness, we note that the N = 0 case provides a worldline representation of the well-known Volkov
propagator as a one-parameter integral

Sx′x = i
(
− i(/∂x′ + i/a(x′+))−m

)
e−iz·⟨a⟩

∫ ∞

0

dT (4πiT )−2e−iM
2(a)T−i z2

4T + T

z+

[
/n/a(x′+)+/a(x+)/n

]
, (56)

where we used Spin(/0) = 1 + T
2 γ · ⟨f⟩ · γ = 1 + T /n⟨/a′⟩, computed the integral in the average explicitly and re-

exponentiated using /n
2 = 0. This is again equivalent to other representations of the Volkov propagator [8, 65, 66].

III. LSZ FOR SCATTERING AMPLITUDES

The objective of this section is to take the Master Formulae for the dressed propagators Dx′x
N and Sx

′x
N above and

produce from them equivalent Master Formulae for (2-scalar) N -photon scattering amplitudes (for N ⩾ 1). To do so
we must perform LSZ reduction on the two massive, external legs of the dressed propagators.

In previous worldline literature, amputation was often done ‘by-hand’, by obtaining the N -point correlation func-
tions in momentum space and then – once the proper-time integral had been computed – removing external legs
with the appropriate inverse matter propagators [51, 52]. Only then could the external particles be taken on-shell
– the proper-time integral produces the pole structure of the correlation functions with respect to external matter
legs and so is divergent in the on-shell limit. This is a notable example where the Feynman diagram prescription to
omit external propagators had appeared less trivial from a worldline perspective. Recently, however, [68, 69] showed
how amputation can be achieved under the proper-time integral for scalar matter legs, with the inverse propagators
simply modifying the bounds on the proper-time and parameter integrals. This exposes the on-shell residue of the
correlation functions without the need to carry out amputation by hand. We will here generalise this approach to
spinor theories, and also show it is unspoiled by the plane-wave background.

To perform LSZ we draw the external legs out to asymptotic times and Fourier transform. Alternatively, we can
Fourier transform to momentum space and find the residues of the dressed propagator as the momenta are taken onto
the mass-shell. Starting with scalar QED, the amplitude takes the form

Ap
′p
N = − lim

p′2,p2→m2

∫
d4x′d4x ei(p

′+a∞)·x′−ip·x [(∂x′ + ia∞)2 +m2
][
∂2x +m2

]
Dx′x
N , (57)

= lim
p′2,p2→m2

−(p′2 −m2)(p2 −m2)Dp̃
′p
N , (58)

where in the second line we defined p̃′ = p+ a∞ and introduced the momentum-space propagator Dp
′p
N , defined by

Dp
′p
N :=

∫
d4x′d4x eip

′·x′−ip·xDx′x
N . (59)
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The expression (57) is (almost) textbook-standard LSZ in position space but to compensate for the fact that our
potential becomes pure gauge in the far future, the on-shell, outgoing momentum p′ in the Fourier kernel is shifted

to p̃′ = p′ + a∞ [57, 63]. The expression (58) makes it clear that the amplitude Ap
′p
N is the residue of Dp̃

′p
N at on-shell

momenta. In our conventions Ap
′p
N describes N -photon emission from a particle traversing the plane wave. Absorption

and pair-production/annihilation amplitudes are of course obtained by crossing.
Similarly for the spinor case, starting from the master formula for the dressed propagator (51), we can extract the

spin-polarised amplitudeMp′p
Ns′s as

Mp′p
Ns′s = i lim

p′2,p2→m2

∫
d4x′d4x eip̃

′·x′−ip·xūs′(p
′)(i/∂x′ − /a∞ −m)Sx′x

N (−i
←−
/∂ x −m)us(p) , (60)

in which ūs′(p
′) and us(p) are free Dirac spinors. We now proceed to perform the LSZ reduction explicitly, starting

with scalar QED.

A. Scalar QED

We begin by evaluating the momentum-space propagator via direct Fourier transform of the Master Formula (24):

Dp̃
′p
N =

∫
d4x′d4x eip̃

′·x′−ip·xDx′x
N . (61)

The integrals over x′⊥,− and x⊥,− generate3, as in the vacuum case, four δ-functions, explicitly δ3⊥,−
(
p̃′ +K − p

)
δ(x+−

x′+ + 2g+ + 2p′+T ), where we write K =
∑N
i=1 ki to compactify notation. The first three δ-functions describe the

(expected) conservation of lightfront three-momentum in the plane wave background. The final δ-function allows
us to trivially perform e.g. the x′+ integral, so that we can replace x′+ → x+ + 2g+ + 2p′+T in what remains; in
particular, the classical trajectory on which the gauge field depends throughout Dx′x

N , as in (18), is modified to, where

g ≡ g({τi}) :=
∑N
i=1(kiτi − iϵi),

x+

cl(τ) = x+ + g+ + (p′ + p)+τ −
N∑
i=1

k+

i |τ − τi| . (62)

Thus we can do all but one of the Fourier integrals, which eventually yield

Dp̃
′p
N = (−ie)N (2π)3δ3⊥,−

(
p̃′ +K − p

) ∫ ∞

0

dT ei(p
′2−m2+i0+)T

∫ ∞

−∞
dx+ ei(p

′
++K+−p+)x+

(63)

×
N∏
i=1

∫ T

0

dτi e−2ig·⟨⟨a⟩⟩−2iTp′·⟨⟨δa⟩⟩+iT ⟨⟨δa2⟩⟩−2i
∑N

i=1[ki·I(τi)−iεi·I
′(τi)]

× e
ig·(2p̃′+K)−i

∑N
i,j=1

( |τi−τj |
2 ki·kj−i sign(τi−τj)εi·kj+δ(τi−τj)εi·εj

)∣∣∣
lin. ε1...εN

,

in which we have defined δa(x+) := a(x+) − a∞ and a(τ) ≡ a(x+

cl(τ)). Note that in the vacuum limit aµ → 0 we
can carry out the x̂+ integral to complete the conservation of 4-momentum and so recover one version of the Master
Formula given in [51] and [27].

To convert (63) into a master formula for the amplitudes, we have to perform LSZ on each massive scalar leg (these
are produced by the parameter and proper time integrals). To do so we observe that (58) has, using (63), the following
form, writing down only the relevant structures:

−i(p′2 −m2 + i0+)

∫ ∞

0

dT ei(p
′2−m2+i0+)TF (T ) . (64)

3 To evaluate similar integrals in the existing literature it was found to be convenient to change variables to endpoint centre of mass and
relative separation (z). However, for our later LSZ amputation of the external legs it is more useful to integrate separately with respect
to the endpoint coordinates.
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The on-shell limit p2 → m2 − i0+ therefore returns the residue of the mass-shell pole of the function defined by the
integral. To isolate this pole we proceed as in [68–70] where LSZ was considered for, e.g., the N -graviton-dressed
propagator in vacuum4. We integrate by parts (off-shell) in order to expose the residue, as so:

−i(p′2 −m2 + i0+)

∫ ∞

0

dT ei(p
′2−m2+i0+)TF (T ) = F (0) +

∫ ∞

0

dT ei(p
′2−m2+i0+)T d

dT
F (T ) . (65)

We can now take p′
2 → m2 and 0+ → 0 (in either order), upon which the integral becomes exact, and we have

lim
p′2→m2

−i(p′2 −m2 + i0+)

∫ ∞

0

dT ei(p
′2−m2+i0+)TF (T ) = F (∞) . (66)

Ultimately, then, performing the first amputation on (63) is equivalent to dropping the integral over proper time T
and its accompanying mass-shell exponent, and taking the limit T →∞ of what remains (this is the same argument
as in vacuum, which we comment on further after performing the second amputation, below). We thus find

lim
p′2→m2

−i(p′2 −m2 + i0+)Dp
′p
N = (−ie)N (2π)3δ3⊥,−(p̃

′ +K − p)
∫ ∞

−∞
dx+ei(p

′
++K+−p+)x+

N∏
i=1

∫ ∞

0

dτi (67)

e
−i

∫ ∞
0

[2p′·δa(τ)−δa2(τ)]dτ−2i
N∑

i=1
[
∫ τi
0 ki·a(τ)dτ−iεi·a(τi)]+ig·(2p̃′+K)−i

N∑
i,j=1

(
|τi−τj |

2 ki·kj−i sgn(τi−τj)εi·kj+δ(τi−τj)εi·εj)
∣∣∣∣
lin. εi...εN

.

We note that all terms with worldline averages have ultimately been replaced with (convergent) integrals over R+.
This was the advantage of having computed the Fourier integrals with respect to the individual endpoints as discussed
above. Equation (67) is the one-side amputated propagator.

Turning to the amputation with respect to p, at this stage it is advantageous to introduce the mean and deviation
proper time variables as follows:

τ0 :=
1

N

N∑
i=1

τi , τ̄i := τi − τ0 . (68)

The reason for this change of variable is that it allows us to re-express (67) in a form which renders the second LSZ
amputation immediate. To achieve this, we first rewrite the proper time integrals appearing in (67) in terms of the
new variables as (note the factor of 1

N in the δ-function is missing in (3.18) of [69])

N∏
i=1

∫ ∞

0

dτi =

∫ ∞

−∞
dτ0

N∏
i=1

∫ ∞

−∞
dτ̄i δ

( N∑
j=1

τ̄j
N

)
, (69)

We also make a change of variable for the x+-integration, x̄+ := x+ + (p′ + p+K)+τ0 + g+({τ̄i}), and it is convenient
to change variables in all dτ integrals from τ to τ̄ := τ − τ0, such that the background gauge field now appears as

a(τ̄) ≡ a
(
x̄+ + (p′ + p)+ τ̄ −

N∑
i=1

k+

i |τ̄ − τ̄i|
)
. (70)

In terms of the shifted variables {x̄+, τ0, τ̄i}, the once-amputated propagator (67) takes the form

(−ie)N (2π)3δ⊥,−(p̃
′ +K − p)

∫ ∞

−∞
dx̄+ ei(K+p′−p)+x̄+

∫ ∞

0

dτ0 e
i(p2−m2)τ0

∫ ∞

−∞

N∏
i=1

dτ̄i δ

( N∑
i=1

τ̄i
N

)
G(τ0) , (71)

in which the function appearing in the factor is

G(τ0) = e
−i(2p′+a∞)·a∞τ0−i

∫ ∞
−τ0

dτ̄ [2p′·δa(τ̄)−δa2(τ̄)]−2i
∑N

i=1[
∫ τ̄i
−τ0

dτ̄ ki·a(τ̄)−iεi·a(τ̄i)] (72)

× e
i(p̃′+p)·g−i

∑N
i,j=1

( |τ̄i−τ̄j |
2 ki·kj−i sgn(τ̄i−τ̄j)εi·kj+δ(τ̄i−τ̄j)εi·εj

)
.

∣∣∣∣
lin. ε1,...εN

4 We note in passing that the same ‘trick’ is useful in exposing the connection between gauge invariance and infra-red behaviour of
amplitudes in background plane waves [71]
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Note that the factor −i(2p′ + a∞) · a∞τ0 in the exponential diverges in the τ0 → ∞ limit, but can be absorbed into

the Volkov-like term, also divergent in the same limit, to yield the convergent factor −i
∫ 0

−τ0 [2p̃
′ · a(τ̄) − a2(τ̄)]dτ̄ −

i
∫∞
0

[2p′ · δa(τ̄) − δa2(τ̄)]dτ̄ . After this rearrangement, one finds that the dependence on {p2 −m2, τ0} in (71)–(72)

exactly mirrors the dependence on {p′2 −m2, T} in the original expression, before the first amputation. Thus we can
simply repeat the previous LSZ argument but applied to {p2 −m2, τ0} in order to extract the pole at the incoming
mass-shell; effectively this removes the integral over τ0 and takes τ0 →∞ in the remainder, yielding our final master
formula for the 2-scalar N -photon scattering amplitudes:

Ap
′p
N = (−ie)N (2π)3δ⊥,−(p̃

′ +K − p)
∫ ∞

−∞
dx+ei(K+p′−p)+x+

∫ ∞

−∞

N∏
i=1

dτi δ

( N∑
j=1

τj
N

)
× e−i

∫ 0
−∞[2p̃′·a(τ)−a2(τ)]dτ−i

∫ ∞
0

[2p′·δa(τ)−δa2(τ)]dτ−2i
∑N

i=1[
∫ τi
−∞ ki·a(τ)dτ−iεi·a(τi)]

× ei(p̃′+p)·g−i
∑N

i,j=1

( |τi−τj |
2 ki·kj−i sgn(τi−τj)εi·kj+δ(τi−τj)εi·εj

)∣∣∣∣
lin. ε

, (73)

where a(τ) is as in (70), and we have simply relabelled x̄+ → x+, and τ̄ , τ̄i → τ, τi.

There are several features of this all-orders formula worth discussing. First, as a consistency check, it is straightfor-
ward to check that in the vacuum limit (a→ 0) the x+ integral can again be performed and one recovers the known
results in [54, 69, 72]. Second, similarly to [69], a short set of rules summarises the LSZ reduction. The first three

are shared with the vacuum case [69]: (i) drop the T integral, (ii) insert δ(
∑N
j=1 τj/N) and (iii) take the dτi and dτ

integrals over R. Here, beyond the vacuum case, there are additional rules: iv) drop all worldline averages and (v)

‘introduce’ the divergent factor
∫ 0

−∞−2ip̃′ · a∞dτ into the exponential, which ensures that the proper-time integral
is convergent in the asymptotic past – we stress that this ‘by hand’ addition only occurs at the level of these rules, it
emerges naturally as part of LSZ reduction, as described above.

Third, the change in integration range for the dτi-integrals can be understood as manifesting the fact that Ap
′p
N is

an asymptotic quantity, while the purpose of δ(
∑N
j=1 τj/N) is to ‘gauge’ the proper-time translational symmetry of

the system. Clearly neither of these features should be particular to any choice of background that tends to at most
a constant asymptotically, and indeed they are the same in our plane wave background as in vacuum.

Finally, we observe that x+

cl(τ) in (70) solves the classical worldline equation of motion with the boundary conditions
1
4 ẋ

+(−∞) = p− and 1
4 ẋ

+(∞) = p′−. It is natural for this solution to appear in the amplitudes because, although it
may not be obvious, the stated boundary conditions are (particular components of) those in play for the momentum
space propagator, from which the amplitude is constructed. We will show this in the following subsection, in which
we briefly digress from the master formula in order to investigate how the Volkov wavefunctions arise from worldline
path integrals.

B. Mixed boundary conditions and the Volkov wavefunction

Before moving on to the spinor case, we remark that one can, in fact, compute the momentum-space propagator
without going explicitly via the position-space representation. Returning to the original expression (5) for Dx′x

N , we
immediately perform the Fourier transform (59). Now, the exponent p′ · x′ − p · x in the Fourier kernel is, under the
path integral, the same as p′ ·x(T )−p ·x(0), and the spacetime integrals d4x′d4x can be interpreted as d4x(T )d4x(0).
Hence, taking the Fourier transform of (5) is equivalent to performing a path integral with a free boundary, i.e. no
apparent restriction on the endpoints of the worldline. There is though an alternative, but equivalent, perspective;
consider the change of the total action, δS, under the variations of the endpoints of the worldline, x(0)→ x(0) + δx0
and x(T )→ x(T ) + δxT :

δS ≡ δSB + δ
(
p′.x(T )− p.x(0)

)
=

[
1

2
ẋ(0) + a(x(0))− p

]
· δx0 −

[
1

2
ẋ(T ) + a(x(T ))− p′

]
· δxT (74)

Integrating over δxT and δx0 therefore returns delta functions which impose the vanishing of the terms in square
brackets of (74); these are Robin boundary conditions which relate the worldline end-point momenta ẋ to the end-
point positions x and the external asymptotic momenta. It follows that the momentum-space propagator can be
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computed alternatively from the path integral expression

Dp
′p
N = (−ie)N

∫ ∞

0

dT e−im
2T

∫ ẋ(T )2+a(x(T ))=2p′

ẋ(0)+2a(x(0))=2p

Dx(τ) eiSB[x(τ)]
N∏
i=1

V [εi ki] . (75)

In the previous section we carried out the Fourier transform of Dx′x
N literally, to obtain Dp

′p
N . Expression (75) shows

a more ‘direct’ approach to deriving the master formula in (63), through a modification of the boundary conditions
on the path integral. This fits in more naturally with the ‘worldline philosophy’ of incorporating all information
into the worldline path integral. Note that evaluation of (74) requires a worldline propagator with different boundary
conditions. Indeed, this helps explain a puzzle arising in [26] (Section 3, footnote 3), where a version of the momentum
space Master Formula was given that involves a Green function with mixed boundary conditions: by expanding about
a suitable reference trajectory, (75) can be cast into a path integral for the fluctuation variable that must satisfy the
mixed boundary conditions q̇(0) = 0 = q(T ).
This discussion prompts us to study the propagator DxpN with mixed boundary conditions which, examining (75),

is given by the integral

DxpN = (−ie)N
∫ ∞

0

dT e−im
2T

∫ x(T )=x

ẋ(0)+2a(x(0))=2p

Dx(τ) eiSB[x(τ)]
N∏
i=1

V [εi ki] . (76)

To see the significance of the mixed propagator, consider the case N = 0, that is the tree level two-point function for
the scalar field, with mixed boundary conditions. In Feynman diagram language, this is just an external leg, Fourier
transformed at one end. Taking the momentum at this end onto the mass-shell, i.e. performing LSZ reduction, we
must recover the scalar Volkov wavefunctions. These are solutions of the Klein-Gordon equation in a plane wave
background which reduce to e±ip.x in the asymptotic past/future and thus represent incoming and outgoing particles
in scattering amplitudes.

To confirm this, we first compute the path integral in (76) for N = 0 (we drop the product of vertex operators).
We do not dwell on this step; the entire integral turns out, unsuprisingly given the nature of the Volkov solutions
and hidden Gaussianity of the worldline path integral, to be equal to its semi-classical value exp[iScl(T )], i.e. the
exponential of the classical action evaluated on the classical path obeying the mixed boundary conditions, which is

Scl(T ) = (p2 −m2 + i0+)T − p · x−
∫ x+

x+−4p−T

ds
2p · a(s)− a2(s)

4p−
. (77)

The final step is to take p2 → m2 and identify the on-shell residue via

lim
p2→m2

−i(p2 −m2 + i0+)

∫ ∞

0

dT e−im
2T eiScl(T ) . (78)

Of course it is clear from the preceding calculations how to proceed; we perform the same manipulations as for the
master formula, in particular taking the T →∞ limit, immediately finding

lim
p2→m2

−i(p2 −m2)Dxp = exp

[
− ip · x− i

∫ x+

−∞
ds

2p · a(s)− a(s)2
4p−

]
≡ φin

p (x). (79)

The right-hand side is precisely the incoming scalar Volkov wavefunction φin
p (x) which reduces to e−ip·x in the

asymptotic past. A similar amputation of the propagator Dpx0 (where the boundary conditions are swapped) yields

the outgoing Volkov wavefunctions, i.e. those which reduce to e+ip̃
′·x in the asymptotic future. Of course the same

procedure can be applied to the spinor propagator, wherein the path integral with mixed boundary conditions produces
the spinor Volkov wavefunctions. Worldline path integrals analogous to (76), with mixed boundary conditions, have
also been used before, in a similar context, to recover the exact solutions of the Klein-Gordon equation in a constant
external electromagnetic field [73]. For numerical studies of open line instantons see [41].

C. Spinor QED

Turning to LSZ reduction in spinor QED, we proceed from (60), writing Sx′x
N in terms of the kernels appearing in

(51) and evaluating the /∂x′ , /∂x derivatives (using integration by parts) in (60) to find

Mp′p
Ns′s = i lim

p′2,p2→m2

∫
d4x′d4x eip̃

′·x′−ip·xūs′(p
′)(/p

′ −m)
{
(−/p′+δ/a(x′+)−m)Kx′x

N + e

N∑
i=1

/εie
iki·x′ Kx′x

N−1

}
(/p−m)us(p) .

(80)
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Next, following [52] we use the on-shell relation ūs′(p
′)(/p

′ +m)−1 = ūs′(p
′)(2m)−1, (which is allowed since it does

not remove the associated pole, or affect the final expression), and likewise for (/p+m)−1us(p) to find

Mp′p
Ns′s = i lim

p′2,p2→m2

1

2m

∫
d4x′d4x eip̃

′·x′−ip·x ūs′(p
′)(p′2 −m2)

{[
−1+ 1

2m
δ/a(x′+))

]
Kx′x
N

+
e

2m

N∑
i=1

/εie
iki·x′ Kx′x

N−1

}
(p2 −m2)us(p) . (81)

Due to the worldline approach being based on the second order formalism of QED, the exponent under the proper time
integral of the spinor amplitude contains the same terms as for the scalar amplitude – in particular the parameter and
proper time integrals produce (free) scalar propagators. Hence it suffices to revise the scalar case for this argument.
The difference lies in the spin factor of the kernel, the subleading contibutions (those proportional to KN−1), and
the δa(x+′) factor from the covariant derivative. However the differences do not impede processing the T , and later
τ0, proper time integrals as for scalars. The result is that the LSZ amputation is realised in precisely the same way,
by taking T, τ0 → ∞ as in equations (64)–(69). Moreover, after taking the Fourier transform, the conservation of
momenta enforced by δ(x+ − x′+ + 2g+ + 2p′+T ) sends

a(x′+)→ a
(
2Tp′+ + x+ + 2g+

)
. (82)

The LSZ truncation projects onto asymptotic late time, taking a(x′+) → a∞ when T → ∞, cancelling the field
dependent term in square brackets of (81). One may then express (81) in terms of the momentum space kernel

Mp′p
Ns′s = i lim

p′2,p2→m2

1

2m
ūs′(p

′)(p′2 −m2)
{
−Kp̃

′p
N +

e

2m

N∑
i=1

/εiK
(p̃′+ki)p
N−1

}
(p2 −m2)us(p) . (83)

Now we address the subleading terms. These are seen to have poles not in the required mass-shell p′2 −m2, but
rather in ((p′ + ki)

2 −m2). Contributions involving these shifted poles hence vanish after taking the on-shell limit of
(p′2 −m2)/((p′ + ki)

2 −m2). This is a remarkable generalisation of the vacuum case [52]. We can be more precise

with how this cancellation comes about. In the kernel of the subleading terms, K(p̃′+ki)p
N−1 , one must first remove an

εi and ki, and then replace a∞ with a∞ + ki in (73). This operation leaves p̃′ +K invariant, but it does affect the
term

∫∞
0
dτ p′ · δa(τ), which was convergent as τ →∞, but now produces a rapidly oscillating phase; noting that the

proper time integral calculates the Laplace transform of the function F (T ) in (64), the Abelian final value theorem
can be invoked to confirm that the subleading contributions must vanish.

Since the manipulations are similar to the scalar case, let us simply record the spinor amplitude in its final form as

Mp′p
Ns′s =

N∑
S=1

∑
{i1:iS}

M{i1:iS}p′p
NSs′s (84)

M{i1:iS}p′p
NSs′s = (−ie)N (2π)3δ⊥,−(p̃

′ +K − p)
∫ ∞

−∞
dx+ei(K+p′−p)+x+

∫ ∞

−∞

N∏
i=1

dτi δ

( N∑
j=1

τj
N

)
(85)

× e−i
∫ 0
−∞

[
2p̃′·a(τ)−a2(τ)

]
dτ−i

∫ ∞
0

[
2p′·δa(τ)−δa2(τ)

]
dτ−2i

∑N
i=1

[∫ τi
−∞ ki·a(τ)dτ−iεi·a(τi)

]
× ei(p̃′+p)·g−i

∑N
i,j=1

( |τi−τj |
2 ki·kj−i sgn(τi−τj)εi·kj+δ(τi−τj)εi·εj

)∣∣∣∣εi1 ...εiS=0

εiS+1
...εiN

× 1

2m
ūs′(p

′)Spin(f̃i1:iS )us(p) .

After LSZ reduction, the argument of the exponential in the spin factor, (47), takes the following form

−
∫ ∞

−∞
dτ [η · f · η + θ · η]−

∫ ∞

−∞
dτ

∫ ∞

−∞
dτ ′

[
η · f(τ) ·G(τ, τ ′) · θ(τ ′) + 1

4θ(τ) ·G(τ, τ ′) · θ(τ ′)
]
; (86)

the worldline average in the fermion Green function is also now understood to be T ⟨⟨f⟩⟩ =
∫∞
−∞ dτf(τ). Also, the

background gauge potential, a, and field strength, f , are understood to be functions of the classical solution x+

cl(τ)
as shown in (70). Finally, the sums in the first line of (84) are – as usual – over the assignation of S photons out of
N to the spin part of the vertex operator.
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IV. EXAMPLES

In this section we provide checks on our amplitude Master Formulae (73) and (84), showing by comparison with
the existing literature that they are consistent with results expected from Furry picture perturbation theory.

A. N = 1, nonlinear Compton scattering in scalar QED

The case N = 1 describes single photon emission from a (scalar) electron in a plane wave background, which is
the well-studied process of ‘nonlinear Compton scattering’. In this case, several parts of the Master Formulae (73)
simplify immediately. First, the delta function fixes τ1 = 0. Next, the gauge field is evaluated as

a(τ) =

{
a(x+ + 2p+τ) , τ < 0

a(x+ + 2p′+τ) , τ > 0 .
(87)

This form facilitates an easy conversion of integrals over proper time τ to integrals over lightfront time x+, which are
expected in the standard formalism (see also [37]). Specifically, we can conveniently treat the positive and negative τ
regions separately. The field-dependent terms in the exponent of the master formula then reduce to

− i
∫ 0

−∞
dτ [2p̃′ · a(τ)− a2(τ)]− i

∫ ∞

0

dτ [2p′ · δa(τ)− δa2(τ)]− 2i

∫ 0

−∞
dτ k1 · a(τ) (88)

= −i
∫ x+

−∞
ds+

2p · a(s+)− a2(s+)
2p+

− i
∫ ∞

x+

ds+
2p′ · δa(s+)− δa2(s+)

2p′+
, (89)

in which we simply inserted (87) and used momentum conservation in the transverse directions to eliminate k1 in
favour of p′ and p. With this, expanding (73) for N = 1 to linear order in ε1, and using the Fourier representation of
the momentum conserving δ-functions shows that the amplitude is equivalent to

Ap
′p

1 = −ie
∫

d4x
{
p̃′µ + pµ − 2aµ(x

+)
}
εµ1e

ik1.xφout
p′ (x)φin

p (x) , (90)

where φin
p is the incoming scalar Volkov wavefuncion of (79) while φout

p′ is the outgoing wavefunction,

φout
p′ (x) = eip̃

′·x exp

[
−i

∫ ∞

x+

ds+
2p′ · δa(s+)− δa2(s+)

2p′+

]
. (91)

Expression (90) is precisely the expected result for nonlinear Compton scattering in scalar QED, providing a positive
check on our master formula.

We stress that the method we employed above to process the worldline integrals was meant only to allow direct
comparison with existing results. It is not the approach we wish to take in future work; instead, we will use the
worldline representation to deal directly with the τ -integrals. Since the major advantages of the worldline approach
include that (a) one does not have to split amplitudes into sectors according to permutations of external legs, and (b)
internal momentum integrals are recast in terms of the proper time integral, we expect this to provide some advantage
over the standard formalism, at least in various physical limits of interest. This will be discussed elsewhere.

B. N = 1, nonlinear Compton scattering in spinor QED

Let us now confirm the N = 1 case for spinor QED, which requires expanding the Master Formula (84) to linear
order in ε1. Since the field dependence of the exponent in for spinor QED contains that of scalar QED one may write
the resulting amplitude using the scalar Volkov wavefunctions, (91), as

Mp′p
1s′s = −ie

1

2m

∫
d4x eik1·xφout

p′ (x)φin
p (x)ūs′(p

′)
[
(p̃′ + p− 2a(x+)) · ε1Spin(∅) + Spin(f̃1)

]
us(p) , (92)

requiring only the evaluation of the spin factor (we have again used the Fourier representation of the δ-functions).
Before embarking upon the comparison to the standard formalism, we should emphasise that the approach outlined
here, namely writing in terms of spacetime averages with steps to follow, is necessary to make the connection to
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the perturbative Furry picture with Volkov wavefunctions. However, this would be inefficient for practical worldline
calculations.

The spin factors are determined using (48) and (49) under the LSZ reduction (86) and the inverse symbol map, (33).
Because of the nilpotency of f one has, under the inverse symbol map, exp(−

∫∞
−∞dτ η · f · η) = 1 −

∫∞
−∞dτη · f · η,

and therefore the factor without photon insertion is readily determined to be

Spin(∅) =
[
1− 1

2p′+
/nδ/a(x+)

][
1 +

1

2p+
/n/a(x+)

]
, (93)

where we have already transformed the parameter integral to a spacetime average and computed its value. This is
simply the Dirac matrix structure necessary to construct the spinor Volkov wavefunctions.

Let us next treat the single photon spin factor, Spin(f̃1). Beginning with the Grassmann integral with one photon
insertion, provided in (49) we apply the inverse symbolic map in (33) and realise the LSZ reduction according to (86).
The various worldline averages are then transformed into their corresponding spacetime averages as was done in the
N = 1 scalar case, to find

Spin(f̃1) = −
1

2
[/k1, /ε1] + k+1 ε1 ·

(
−δa(x

+)

2p′+
+
a(x+)

2p+

)
+ ε1 ·

(δa(x+)
2p′+

+
a(x+)

2p+

)1
2
[/k1, /n]

+ k+1
1

2

[
/ε1,

δ/a(x+)

2p′+
+
/a(x+)

2p+

]
+
[
k1 ·

(δa(x+)
2p′+

+
a(x+)

2p+

)
+ 2k+1

(δa(x+)
2p′+

· a(x
+)

2p+

)]
/n/ε1

+
2k+1

2p′+2p+
ε1 ·

[
a(x+)δ/a(x+) + δa(x+)/a(x+)

]
/n+ (k1 + a∞)µε1νnα

(δa(x+)
2p′+

− a(x+)

2p+

)
β
iγ5ϵ

µναβ . (94)

Next, we express the photon momentum, k1, in terms of the electron momenta and asymptotic value of the background

field. For the +,⊥ components we can use momentum conservation, k+,⊥1 = (p− p̃′)+,⊥. The k−1 component requires
us to carry out an an integration by parts with respect to x+. We illustrate this step, to be applied to the various /k1
terms in (94), with the following manipulation:∫

d4x eik1·xkµ1φ
out
p′ (x)φin

p (x) =

∫
d4x eik1·x

[(2p · a(x+)− a(x+)2
2p+

−2p′ · δa(x+)− δa(x+)2
2p′+

)
nµ+pµ−p̃′µ

]
φout
p′ (x)φin

p (x) ,

(95)
In fact, if additional factors of a(x+) appear under the above integral, in turns out that the additional derivatives
produced by integrating by parts always contract away. Therefore (95) can be used throughout (94). Moreover,
applying the above procedure to k1 in the γ5 term of (94), one can see that in effect kµ1 → pµ − p̃′µ, since the two nµ

contract to zero against the Levi-Civita tensor. In fact the only term in which the nµ part of (95) survives after these
replacements is the first term on the RHS of (94).

Last, since we are taking the on-shell limit we may use the Dirac equation for the sandwiching spinors so as to send
their corresponding /p and /p

′ to m, anti-commutating where necessary. Again, illustrating this step with the γ5 term
in (94) we rewrite γ5 in terms of products of four matrices using (33). After acting on the spinor solutions at most
three matrices will remain. After this process, the γ5 term, as it appears in the amplitude (92), becomes

(k1 + a∞)µε1νnα

(δa(x+)
2p′+

−a(x
+)

2p+

)
β
iγ5ϵ

µναβ = (p+ + p′+)
1

2

[δ/a(x+)
2p′+

− /a(x+)

2p+
, /ε1

]
+ (p+ p′) · ε1/n

(δ/a(x+)
2p′+

− /a(x+)

2p+

)
+ (p+ p′) ·

(δa(x+)
2p′+

− a(x+)

2p+

)
/ε1/n−m

{
/ε1, /n

(δ/a(x+)
2p′+

− /a(x+)

2p+

)}
. (96)

Using the above steps to replace kµ1 in the remaining terms of (94), after some algebra one may gather terms to find
that

ūs′(p
′)
{
(p̃′+p−2a(x+)) ·ε1Spin(∅)+Spin(f̃1)

}
us(p) = 2mūs′(p

′)
{
/ε1−

1

2p′+
/nδ/a(x+)/ε1+

1

2p+
/ε1/n/a(x

+)
}
us(p) , (97)

and hence

Mp′p
1s′s = −ie

∫
d4x eik·xΨout

p′,s′(x)/ε1Ψ
in
p,s(x) , (98)

where we have used the spinor Volkov wavefunctions, which read

Ψin
p,s(x) =

[
1 +

1

2p+
/n/a(x+)

]
us(p)φ

in
p (x) , (99)

Ψout
p′,s′(x) = ūs′(p

′)
[
1− 1

2p′+
/nδ/a(x+)

]
φout
p′ (x) . (100)
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This successfully verifies that the worldline approach reproduces the known amplitude for the N = 1 process.

C. N = 2, double nonlinear Compton scattering in scalar QED

To complete our discussion of the relevant structures in scalar QED we must also consider the case N = 2, where
the so-called seagull vertex (the four-point scalar-photon-photon-scalar vertex) first appears. We will describe the
way this works briefly here, as the calculations proceed largely as for N = 1, leaving the details for the Appendix.
Expanding (73), there are now two τ -integrals, with one, say τ2, fixed by the worldline delta function in (73), and the
other, say τ1, remaining. The mapping onto Feynman diagrams is most natural: the contributions from τ1 > 0 and
τ1 < 0 recover one each of the expected contributions from the two diagrams with two 3-point vertices, with τ1 being
mapped to the lightfront time of one vertex. The seagull contribution is picked up from the term in (73) which goes
like ε1 · ε2; this comes with a delta function with support at exactly τ1 = 0, hence leaving only a single unevaluated
integral, as expected. The full calculation is presented in Appendix A.

V. CONCLUSIONS

We have presented worldline Master Formulae for all-multiplicity tree level scattering amplitudes of 2 massive
charged particles and N photons, in a plane wave background, in both scalar and spinor QED. The background
field may have arbitrary strength and functional profile, and is treated without approximation throughout. This
is particularly relevant as the target application of our results is to laser-matter interactions in the high intensity
regime where the field is characterised by a dimensionless strength (the coupling to matter) larger than unity, and
hence must be treated without recourse to perturbation theory.

Our Master Formulae have been derived using the worldline approach to quantum field theory. While several
previous publications have derived wordline Master Formulae for various correlation functions in vacuum, or even at
higher loop level in background fields, our focus here has been on scattering amplitudes involving external matter. As
such it was necessary to identify the worldline description of LSZ reduction in a plane wave background. We found
this to be a fairly direct generalisation of the known worldline prescription for LSZ amplitudes in vacuum [68, 69].
A second notable generalisation from known results in vacuum holds for the spinor case: namely that in the second
order formalism, which implies a split into ‘leading’ and ‘subleading’ terms, only the former survives the on-shell limit
once the LSZ prescription is imposed. Furthermore, the background field dependent part of this leading term also
drops out in the asymptotic limit. This allows for a large number of terms to be discarded (and in the vacuum case
allowed for the gauge invariance of the amplitudes to be manifest).

We have checked our results against the existing literature, which contains only low -multiplicity amplitudes derived
using Feynman rules. Explicitly, these are the cases N = 1 and N = 2, or single and double nonlinear Compton
scattering. Moving beyond scattering amplitudes, we have also seen how to recover off-shell quantities, in particular
the scalar and spinor correlation functions dressed by the background and the Volkov wavefunctions, from worldline
path integrals. The latter is a particularly interesting case as it exposes the relevance of mixed boundary conditions;
the relevant path integrals carry Dirichlet conditions at one limit, representing the local spacetime argument of the
wavefunction, and Robin boundary conditions at the other limit, encoding the asymptotic momentum characterising
the Volkov solution.

It is fair to say that the Master Formulae for amplitudes we have derived here still require, for a chosen number
of photons N , some processing in order to extract all their physical content. In future work we will pursue methods
of evaluating the remaining proper time integrals in an efficient manner, or in an approximate manner relevant to
interesting physical regimes. Here, benefit should be gained by not breaking the parameter integrals into ordered
sectors corresponding to photon permutations, which will maximally exploit the calculational efficiency. Constructing
observables from our amplitudes at N > 2 (which are lacking in the literature) will help to benchmark numerical
codes which approximate multi-photon processes using sequential single-photon emissions. It would be revealing to
compare our expressions with the compact all-multiplicity results of [74, 75]. We also plan to generalise our results
to higher loop orders, in order to pursue the Ritus-Narozhny conjecture on the behaviour of loop corrections at very
high intensity, see [8, 14] for reviews.
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Appendix A: Master formula check for N = 2

In this appendix we confirm that the master formula (73) correctly reproduces, at N = 2, the amplitude for ‘double
nonlinear Compton scattering’ [76, 77] in scalar QED, that is the emission of two photons from a particle in a plane
wave background. (By crossing symmetry this is directly related to the amplitude for the Compton effect in the
background.) Recall that in scalar QED, the standard approach would require evaluation of three separate Feynman
diagrams – conveniently combined into one calculation on the worldline – one of which contains the four-point seagull
vertex.

Starting from (73) with N = 2, the LSZ factor δ(τ1/2+ τ2/2) means that we have only one non-trivial proper-time
integral, over, say, τ1. It is convenient to split this integral into three pieces and analyse each separately; we split the
integration range into −∞ < τ1 < 0−, 0− < τ1 < 0+ and 0+ < τ1 < ∞, and refer henceforth to the corresponding

contribution to the amplitudes as Ap
′p

2− , Ap
′p

2δ and Ap
′p

2+ , respectively.

1. τ1 ∈ (0,∞)

When τ1 > 0, the field-independent terms in the exponential of (73) reduce to

i(p̃′ + p) · (k1 − k2)τ1 + ε1 · (p̃′ + p− k2) + ε2 · (p̃′ + p+ k1)− 2iτ1k1 · k2 + i
(
K+ + p′+ − p+

)
x+ . (A1)

The gauge field at the interaction points ±τ1 (indicating the insertion point of photon with momentum k1) takes the
values

a(τ1) = a(x+ + τ1(2p
′+ + k+

1 − k+

2 ) , (A2)

a(−τ1) = a(x+ − τ1(2p+ + k+

1 − k+

2 ) . (A3)

This motivates us to make the change of variable x+ → x+− τ1(2p++k+

1 −k+

2 ), such that the field-independent terms
(A1) transform to

T0 ≡ i
(
4(p+ + k1+)q

+ − 2q2⊥ − 2m2 + i0+
)
τ1 + ε1 · (2p̃′ + k1) + ε2 · (p̃′ + p+ k1) + i

(
K+ + p′+ − p+

)
x+ (A4)

− i(2p′ + a∞)a∞τ1 ,

where we have defined q = p− k2 and used the fact the momenta are on-shell to simplify. We shall shortly need the
last term −i(2p′ + a∞)a∞τ1 to simplify some of the field dependent terms. Before going into that, we return to the
exponent of (73) and note that the following field-dependent term is already sufficiently simplified.

T1 ≡ −2
N∑
i=1

εi · a(τi)→ −2ε1 · a(x+)− 2ε2 · a(x+ + 4q+τ1) . (A5)

The rest of the field-dependent terms combine with −i(2p′ + a∞)a∞τ1 from (A4) to yield

T2−i(2p′ + a∞)a∞τ1 ≡ (A6)

− 2i

N∑
i=1

∫ τi

−∞
dτki · a(τ)− i

∫ 0

−∞
dτ [2p̃′ · a(τ)− a2(τ)]− i

∫ ∞

0

dτ [2p′ · δa(τ)− δa2(τ)]− i(2p′ + a∞) · a∞τ1

= −2i
N∑
i=1

∫ τi

−∞
dτ ki · a(τ)− i

∫ τ1

−∞
dτ [2p̃′ · a(τ)− a2(τ)]− i

∫ ∞

τ1

dτ [2p′ · δa(τ)− δa2(τ)] .

We now use the dependence of aµ(xcl(τ) on the classical solution to transform the proper-time integrals into space-time
integrals and simplify the above terms as

− 2i

N∑
i=1

∫ τi

−∞
dτ ki · a(τ)− i

∫ τ1

−∞
dτ [2p̃′ · a(τ)− a2(τ)]− i

∫ ∞

τ1

dτ [2p′ · δa(τ)− δa2(τ)] (A7)

= −i
∫ x+

−∞

2p.a(s)− a2(s)
2p+

ds− i
∫ x++4q+τ1

x+

ds
2q · a(s)− a2(s)

2q+
− i

∫ ∞

x++4q+τ1

ds
2p′ · δa(s)− δa2(s)

2p′+
, (A8)
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where we have used momentum conservation to replace p̃⊥ +K⊥ with p⊥, and p̃⊥ + k1⊥ with q⊥. The contribution

Ap
′p

2+ to the amplitude from τ1 > 0 can then be written as

Ap
′p

2+ = 2(−ie)2(2π)3δ⊥,− (p̃′ +K − p)
∫ ∞

−∞
dx+

∫ ∞

0

dτ1 eT0+T1+T2
∣∣
lin. ε

(A9)

We are now going to show that the right hand side of the above expression is equivalent to one of the three Feynman
diagram contributions to double nonlinear Compton, namely that containing two 3-point vertices in which photon k1
is emitted on the outgoing leg. The Feynman rules give this contribution as

(−ie)2
∫
d4x′d4x eik1·x

′
[
φout
p′ (x′) (ε1·

↔
Dx′)G(x′, x)(ε2·

↔
Dx)φ

in
p (x)

]
eik2·x , (A10)

where D denotes the background-covariant derivative and G(x′, x) = Dx′x
0 is the scalar particle propagator in the

plane wave background (the double arrow indicates the right−left alternating derivative). We then observe that this
is equivalent to∫

d4x′d4xφout
p′ (x′ − iε1) eik1·x

′−2ε1·a(x′)G(x′ + iε1, x− iε2) eik2·x−2ε2·a(x) φin
p (x+ iε2)

∣∣∣∣
lin. ε1...εN

. (A11)

Taking this expression, we start by using the Fourier representation of G(x′, x) to rewrite it as∫
d4x′ d4xφout

p′ (x′ − iε1) eik1·x
′−2ε1·a(x′)G(x′ + iε1, x− iε2) eik2·x−2ε2·a(x) φin

p (x+ iε2) (A12)

=

∫
d4r

(2π)4
d4x′ d4xφout

p′ (x′ − iε1) eik1·x
′−2ε1·a(x′) ie

−ir·(x′−x+iε1+iε2)−i
∫ x′+
x+

2r·a(s)−a2(s)
4r−

ds

r2 −m2 + i0+
eik2·x−2ε2·a(x) φin

p (x+ iε2)

We can easily evaluate the x′−,⊥, x−,⊥ and r−,⊥ integrals and rewrite the propagator denominator using a standard
Schwinger proper-time integral to obtain

(2π)3δ⊥,−(p̃
′ +K − p)ep·ϵ1+q.ε2

∫ ∞

−∞
dx′+ ei(p++k1+−r+)x′+−2ε1·a(x′+)e

−i
∫ ∞
x′+

2p′·δa(s)−δa2(s)

2p+
ds

(A13)

× 2

∫ ∞

−∞
dx+e−2ε2·a(x+)e−ix

+q+

∫ ∞

0

dτ1

∫
dr+
2π

eir+(x+−x′++4q+τ1)e−2iτ1[q2⊥+m2−i0+]

× e
−i

∫ x′+
x+ ds

2q·a(s)−a2(s)

2q+
−i

∫ x+

−∞ds
2p·a(s)−a2(s)

2p+ .

The r+ integral can now be evaluated to give 2πδ(x+−x′++8q−τ1). The remaining x′+ integral is therefore trivialised
and effects the replacement x′+ → x+ + 8q−τ1. Taking the multi-linear limit, one recovers precisely the right hand
side of (A9) as promised.

2. τ1 ∈ (−∞, 0−)

For τ1 < 0, one recovers the Feynman diagram contribution in which photon k2 is emitted from the outgoing leg.

The proof of this follows exactly the same steps as for Ap
′p

2+ above. Hence we simply state that

Ap
′p

2− = (−ie)2
∫
d4x′d4x eik2·x

[
φout
p′ (x′) (ε2·

↔
Dx′)G(x′, x)(ε1·

↔
Dx)φ

in
p (x)

]
eik1·x . (A14)

3. τ1 ∈ (0−, 0+)

In this range, the field-independent term in the exponent of (73) going like δ(τ1)ϵ1 · ϵ2 cannot be neglected. Noting
that this term is already linear in both ϵ1 and ϵ2, the corresponding contribution to the amplitude is immediately
seen to be proportional to the τ1 → 0 and ϵ1,2 → 0 limit of the integrand of the proper-time integral:

Ap
′p

2δ = −2(−ie)2(2π)3δ⊥,− (p̃′ +K − p) (A15)

×
∫ ∞

−∞
dx+(iε1 · ε2)e+i(K+p′−p)

+
x+−i

∫ 0
−∞[2p̃′·a(τ)−a2(τ)]dτ−i

∫ ∞
0

[2p′·δa(τ)−δa2(τ)]dτ−2i
∫ 0
−∞K·a(τ)dτ
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By inspection, this is equivalent to

Ap
′p

2δ = −2i(−ie)2ε1 · ε2
∫
d4x ei(k1+k2)·xφout

p′ (x)φin
p (x) , (A16)

which is indeed the seagull vertex contribution to double nonlinear Compton scattering. Summing (A9), (A14) and
(A16) recovers the full amplitude.
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