
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

Faculty of Science and Engineering School of Engineering, Computing and Mathematics

2023-09-05

ETHERSTWEB An Ethereum-Based

Distributed Application for User

Information Trustworthiness Verification

Koa, C-G

https://pearl.plymouth.ac.uk/handle/10026.1/21767

10.15379/ijmst.v10i1.1819

International Journal of Membrane Science and Technology

Cosmos Scholars Publishing House

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.

ETHERSTWEB – An Ethereum-Based Distributed Application for
User Information Trustworthiness Verification

Chong-Gee Koa1 , Swee-Huay Heng 2 and Ji-Jian Chin 3
1 Faculty of Information Science and Technology, Multimedia University, 75450, Melaka, Malaysia

2 School of Engineering, Computing and Mathematics (Faculty of Science and Engineering), University
of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom

Abstract. Fake news and misinformation are prevalent on the Internet in this day and age. The
popularity of social media such as Facebook, Instagram, TikTok has encouraged the people to share news
or information over Internet without knowing whether it is a truth or fake information. The outbreak of
COVID-19 affected the social activities of all levels of society as people were asked to stay at home to
self-quarantine. It indirectly encourages the growth of the social activities online. Even though COVID-
19 is no longer a big threat to the world, people already used to rely on the Internet for the daily activities.
Therefore, the trustworthy of the information on the Internet is getting crucial. ETHERST is a blockchain-
based PKI that implemented rewarding and punishment mechanism using Ethereum ECR-20 token
named PKIToken to improve the trustworthiness of information published by the blockchain nodes. In
this paper, we implement an Ethereum-based distributed application (dapp) that allowed the community
members to act on trusting and untrusting on information provided by any of the members. With the
ETHERST framework as the backend, the ETHERSTWEB is equipped with the rewarding and
punishment mechanism to keep the community from misusing the trusting and untrusting action to
maintain the trustworthiness of information of a member. With the PKIToken amount level implemented
in the backend, it provides an index to the trustworthiness of a member in the community. It has the
advantages over the existing rating or review systems that are commonly implemented in many traditional
web applications.

Keywords: blockchain, Ethereum, ETHERST

1. Introduction

The Internet has become saturated with misinformation and fake news. Social media platforms like
Facebook, Instagram, and TikTok have contributed to this problem by encouraging people to share
information without verifying its accuracy (Aldwairi & Alwahedi, 2018). The COVID-19 pandemic
forced people to stay at home and practise social distancing, leading to an increase in online social
activities (De’, Pandey, & Pal, 2020). Although the pandemic is no longer a major threat, people have
grown accustomed to relying on the Internet for daily activities. As a result, the trustworthiness of online
information has become increasingly important.

ETHERST (Koa, Heng, & Chin, 2021) is a blockchain-based PKI that implements a reward and
punishment mechanism. Blockchain technology is popular due to its features of immutability,
trustworthiness, distributed and decentralisation, therefore, it is an excellent candidate to be implemented

 Corresponding author. E-mail address: cyberkoa@gmail.com
 Corresponding author. E-mail address: shheng@mmu.edu.my
 Corresponding author. E-mail address: ji-jian.chin@plymouth.ac.uk

as a backend framework to improve the information trustworthiness by the community members of an
Internet application.

In this paper, we introduce ETHERWEB, a Web 3.0 decentralised application (dapp), which is
integrated with features to allow application users to verify the user information accuracy. In the next
section, we look into the problem of fake data and inaccurate information about users in existing web
applications, using e-commerce as an example to elaborate on how it can be a frustrating experience for
users.

1.1. Organisation of the paper

The rest of the paper is organised as follows. We discuss the online fake news and information issues in
Section 2. Next, in Section 3, we review the existing research on fake news and information issues and
the proposed blockchain solutions. In the subsequent Section 4, we briefly explain the blockchain-based
PKI framework named ETHERST that will be used as the backend of our decentralised application
presented in this paper. We outline the development stack of the ETHERSTWEB and the steps for
building and deploying it to the Internet in Section 5. The features and screenshots of ETHERSTWEB are
presented in Section 6. In the same section, we also briefly explain on the integration of ETHERST with
ETHERSTWEB. Finally, in Section 7, we conclude the paper with a discussion on possible future work
on ETHERSTWEB and a summary of the work.

2. Information accuracy and trustworthiness in Internet applications

Web application users are coming from all over the place. There are some web applications that allow
users to interact and form a virtual community. Misinformation such as fake news or wrong information
about a product can be spread through the virtual community via web application. For example,
marketplace applications like e-commerce applications have a community comprising merchants and
buyers. When buyers want to purchase an item from a merchant, they will review the profile of the
merchant. The existing e-commerce applications normally will provide a review subsystem that allows
buyers to leave comments and ratings on the transactions done between a buyer and the merchant. A good
merchant normally will have a good review and rating or reputation. Buyers will base on this information
to evaluate the trustworthiness of the merchant. However, with only this review and rating system, a
dishonest merchant can generate fake transactions and fake buyers to improve the "trustworthiness".

In order to avoid such fake actions, we first need to have a verification process for each user
regardless of merchants or buyers. If the verification process needs to be carried out by the e-commerce
application company, that will incur a high cost to the company. In fact, the verification processes can be
distributed to community members using a different approach from the existing review and rating system.

Another example involves the spread of fake news, which can occur through blogs or virtual
communities on social networking applications. When users share unverified news on their social
network platforms, the individuals in their network lack a reliable means to assess the authenticity of the
news and the credibility of the user sharing it. Similar to the case with e-commerce applications we
discussed earlier, a verification process is essential, and implementing distributed verification processes
can offer a solution to this problem.

In this paper, we recommend the integration of blockchain technology in the distribution of
verification processes by community members. Blockchain technology is a technology introduced by
Satoshi Nakamoto (Nakamoto, 2008), well-known for its features of decentralisation, traceability,
immutability, and currency properties. We believe it is the best option to tackle the issue of the
trustworthiness of the information about the users in internet applications. Consequently, ETHERST (Koa
et al., 2021), a blockchain-based public key infrastructure has been used as the backend in the dapp that
we would like to propose in this paper.

3. Fake information online and the blockchain solutions

The fake information online problem has been studied by researchers for many years either from the
aspect of sociology or information technology. For instance, Vicario et al. (2016) discussed the spreading
of misinformation online. The focus of their studies was from the aspect of sociology on how users
consume information pertaining to two separate narratives: scientific news and conspiracy theories. In the
aspect of information technology, some blockchain solutions have been proposed since 2019. Qayyum et
al. (2019) proposed a blockchain framework that allows news publisher to publish their news on
Ethereum. In the proposal, publishers need to enrol themselves on the blockchain network before
publishing the news.

In 2020, TRUSTD, a proposal introduced by Jaroucheh et al.(2020), used blockchain and collective
signature technology that allows community users to judge the credibility of the content published by
content writers. Each content will be given a credibility score using a customised consensus algorithm in
the form of a dynamic weighted-ranking evaluation score in their proposal.

ProBlock (Sengupta, Nagpal, Mehrotra, & Srivastava, 2021), another blockchain solution with a
weighted majority voting model named Probit, which incorporates into blockchain through a modified
version of Proof of Trust (PoT) consensus (Bahri & Girdzijauskas, 2018). In Probit voting model, users
are divided into several classes and different classes of users were given a different weight in the
computation of voting scores. when news is added to the blockchain, the users can cast a vote on the
news. The final vote score is calculated with statistical methods. At the end of their proposal, a
comparison analysis of Probit model with a standard mean model was presented.

Dhall, Dwivedi, Pal, and Srivastava (2021) used another type of approach, by using blockchain and
keyed watermarking-based framework for social media/messaging platforms to stamp the online content
to mark it as genuine to curb the spreading of fake news. Besides, the framework also observes the
blockchain transactions and analyses the density and checks the frequency of the forwarding of original
content.

The fake news problems still attract the attention of researchers in 2022. In the research for solving
the fake news problem by Wahane and Patil (2022), they pointed out that most of the current research has
focused only on theoretical frameworks, methodologies and prototypes for the use of blockchain
technology. There is still a wide gap between the features of current blockchain-based proposals and the
requirements of organisations, companies and online platforms (Wahane & Patil, 2022).

From our observation, the current blockchain-based solutions mainly focus on fake news and content
verification. Those proposals still suffered from the Sybil attack (Douceur, 2002) because the content
writer can create multiple fake accounts or identities to join the voting process which affects the result of
the computation. We believe that everything should start with the content writer and publisher’s
trustworthiness.

4. ETHERST - The information trusting and untrusting framework

ETHERST was invented by Koa et al. (2021) as a new type of blockchain-based public key infrastructure
(PKI) that implements a reward and punishment mechanism on top of the conventional distributed public
key infrastructure. It is implemented on Ethereum which is a special type of blockchain proposed by
Vitalik Buterin (Buterin, 2013). ETHERST uses the capability of Ethereum that allows a set of
programming codes to run on top of Ethereum and the set of programming codes called "smart contract".
The smart contract allows developers to build dynamic logic that can utilise the features of blockchain
technology. ETHERST consists of two smart contracts:

 PKIToken smart contract;
 ETHERST smart contract.

PKIToken is an ERC-20 token (ERC-20, 2021) that is implemented by ETHERST, as a medium to
reward and punish the nodes based on their good and bad actions in the ETHERST network. ETHERST
smart contract is where the core logic of ETHERST blockchain-based PKI resides. ETHERST allows
users to create data in the blockchain network and sign it with their private key to claim that the data or
information is created and published originally by them in the community. Meanwhile, the users can also
revoke the signature that they have signed on a particular data. In addition to the conventional distributed
PKI such as Web of Trust (WoT) (Ryabitsev, 2014), ETHERST provides functionalities to allow users to
act to "trust" and "untrust" signed data. When users joined ETHERST, they will be pre-allocated with
some PKIToken, they can use them to trust and untrust the signed data of other users. There is an
algorithm behind the ETHERST to increase and reduce PKIToken owned by the users based on their trust
and untrust actions. Figure 1 shows the scenarios of untrusting in ETHERST to demonstrate the algorithm
of untrust. Besides, in the ETHERST smart contract, there is some logic that can prevent the Sybil attack
by delaying the "trust" and "untrust" actions per node with an internal algorithm as depicted in Figure 2.
Every user has its own delay period T initialed by ETHERST. The subsequent action of "trust" or
"untrust" from a user will be failed if the action is within their delay period T. The value of T will be
increased if the subsequent action of "trust" or "untrust" is earlier than the delay period to prevent a
dishonest user from keep trusting self-created fake users or keep untrusting the other users. With the
features that come with ETHERST, we utilise it as an information trustworthiness backend framework for
ETHERSTWEB that we are going to present in the following sections.

Fig. 1: ETHERST version 2.0: Untrust a node. When the 5th untrust happened, a punishment will be triggered. All

the untrustors will receive an amount 10 PKIToken from the user who has been untrusted (Koa et al., 2021).

5. Development and deployment of dapp

In this section, we are going to explain the development stack and deployment steps for ETHERSTWEB.
To initiate the development of decentralised applications, the first step is to install a development
framework. TruffleSuite (TruffleSuite, 2020), a globally recognised protocol suite, serves this purpose by
functioning as both a testing framework and a communication medium with blockchain through the
Ethereum Virtual Machine (EVM). TruffleSuite streamlines a developer’s job by offering a toolset that
compiles smart contracts into machine language, deploys them on public or private Ethereum networks,
connects them to other contracts, and manages their binary code. With TruffleSuite’s automated contract
testing, developers can quickly build applications while locally simulating the Ethereum network on their
computers. enabling the execution of transactions without incurring actual costs.

Fig. 2: ETHERST - Incremental delay between actions to prevent Sybil attack.

The second step in developing decentralised applications involves writing the smart contract using
programming languages such as Solidity. Solidity is an object-oriented, high-level language used for
developing smart contract source code that runs on the EVM, and it has syntax similar to JavaScript. It
offers benefits of an object-oriented like inheritance and libraries that enable the creation of reusable code
that can be called from various smart contracts. Writing a smart contract can be done using numerous
tools, including a simple text editor, but one of the most commonly used is Visual Studio Code (VS
Code). The developer writes the code for the smart contract using Solidity programming language and
then compiles it into "EVM bytecode" so that the Ethereum Virtual Machine can understand it. Besides,
web3.py or any web3 library is required for code development, as the code will act as an interface
between the frontend application and the Ethereum blockchain. The code’s Application Binary Interface
(ABI), which contains all the functions and features of the smart contract, is another critical element that
enables interaction with the deployed smart contract in JSON format. This JSON format can be generated
by the Solidity compiler once the smart contract code is built and compiled.

The third step to building the decentralised application is to develop the frontend application that
interacts with the interface program developed in the second step. There are a few types of frontend
applications that can be developed, web, mobile or desktop applications. For example, the decentralised
application proposed in this paper, ETHERSTWEB, is a web application developed in Python
programming language with Django framework (Foundation, 2005). Django web framework is a popular

open-source web framework with the features of rapid development, security, fully loaded, scalable and
versatile.

The fourth step in developing decentralised applications involves deploying the smart contract to a
test network and conducting tests. Ganache which is known for its user-friendliness is used as the
development test network. Ganache is bundled with TruffleSuite, essentially a personal blockchain that
runs locally on a computer and is specifically designed for Ethereum development. By automatically
configuring all the network settings and generating ten accounts, each holding 100 ETH, along with their
corresponding mnemonics, Ganache enables the simulation of the vast Ethereum network. This feature
allows developers to test smart contract operations and analyse account balances and transaction costs,
facilitating experimentation with the balances of the ten accounts to simulate how the smart contract will
function. As a result, developers can test the smart contract without incurring any costs and with much
faster transaction execution speeds compared to those of the mainnet and public testnets such as Ropsten
or Kovan.

The final step in developing a decentralised application is to deploy the entire application on the
Ethereum mainnet, making it publicly available. However, before deployment, the application needs to be
compiled and the developer must have the currency of Ethereum, Ethers in their account. The reason
Ethers are needed is because deploying smart contract is a transaction in Ethereum and each transaction
required a gas fee which needs to be paid in Ethers. Infura (Infura, 2016), a gateway and web3 provider,
can be used to obtain Ethers and transfer the local executable to the main Ethereum network. Once
deployed, the contract account address in the frontend part of the application must be updated, and the
frontend must be deployed on a server or P2P network for fully decentralised. Monitoring the application
after deployment can be done using blockchain explorers such as Etherscan, which is an analytical
platform for public data on Ethereum. Etherscan allows real-time monitoring of transactions, blocks,
wallet addresses, smart contracts, NFTs, and more. Figure 3, as seen below, by using ETHERSTWEB as
an example, summarises all the steps required to develop and deploy an Ethereum decentralised
application and shows some of the tools used for the development and deployment. The application was
developed following the aforementioned methodology. The architecture of the application comprises
three main Ethereum dapp layers:

 Application: This layer comprises the user interface and business logic that interacts with the
smart contract. Communication with the Ethereum network is facilitated through an API, and the
user interface may take the form of either a web application or a mobile application.

 Smart contract: The logic and rules of the dapp are defined in this layer, where smart contract code
is written in Solidity programming language and deployed on the Ethereum network.
Subsequently, the Ethereum Virtual Machine (EVM) executes the deployed smart contracts.

 Ethereum network: The layer comprises nodes that operate the Ethereum software and validate
transactions, forming a distributed network responsible for maintaining the blockchain’s integrity.

Fig. 3: Steps to implement ETHERSTWEB.

6. Using ETHERSTWEB for profile validation by community

To demonstrate the usage of ETHERSTWEB, we first landed at the home page of it as shown in Figure 4,
we start with registering a user account. Figure 5 shows the sign-up page for ETHERSTWEB. Users need
to input their username, email as well as password together with reconfirming password in order to
successfully sign up. Whenever a user signs up successfully, ETHERSTWEB will create an account on
the Ethereum blockchain which is also known as the wallet. At the same time, ETHERST will provide 50
PKIToken as an initial balance for the PKIToken which is needed for trusting and untrusting actions. To
demonstrate the whole process, we start to register a user with the username "good".

Fig. 4: Home page of ETHERSTWEB.

Fig. 5: Signup page of ETHERSTWEB.

After signing up, the user "good" will be redirected to the dashboard page where there are a few
buttons to allow to link to other pages. Besides, the dashboard page will also show the PKIToken balance
of the user as presented in Figure 6. All newly registered users will be allocated 50 PKIToken as the
initial balance arranged by the ETHERST framework.

Fig. 6: User’s Dashboard page in ETHERSTWEB.

From the dashboard page, user "good" is able to enter the profile page to update the profile data, once
he confirms the data is correctly entered, he can "sign" on his own profile data by clicking the "sign"
button as depicted in Figure 7 to certify the information provided is genuine. However, whether the
information is real or fake is still unknown. Whenever a profile data is created, the frontend will make a

call to the function "createAttribute" in ETHERST smart contract and create corresponding data inside
blockchain. Meanwhile, the "sign" action in frontend will call the function "signAttribute" function in
ETHERST smart contract.

Fig. 7: User’s own profile page in ETHERSTWEB.

Once data is "signed", it is opened to the community to "trust" or "untrust" to certify the
trustworthiness of this data. As shown in Figure 8, the user "good" opens the profile page of user
"testabc", all the attributes are already signed, therefore, they are opened to the community to act to
"trust" or "untrust". The community members can opt not to "trust" or "untrust" if they are unsure. In
contrast, they can "trust" or "untrust" it if they really confirm data is real or is a fake information.

Fig. 8: Other user’s attributes which opened for trust or untrust action.

If user "good" chooses to "trust" on the email attribute of user "testabc", ETHERSTWEB will make a
call "trustSignature" on EHTHERST smart contract. ETHERST will run the internal algorithm and
evaluate. A trusted attribute will be displayed as "TRUSTED" under the column INFO while an untrusted
attribute will be shown as "UNTRUSTED" as depicted in Figure 9.

Fig. 9: Other user's attributes which are already trusted and untrusted.

The column "Community Trust?" is a column that shows the result returned by ETHERST based on
the internal algorithm whether this attribute is "trusted" or "untrusted" by the community members. A
value of "–" means the ETHERST still does not have enough "trust" or "untrust" actions to compute the
trustworthiness of this attribute.

Figure 10 shows the attributes of user "test1", and the attribute "email" is already "TRUSTED" by the
community.

Fig. 10: An attribute already trusted by the community.

The community members can use the value in the column "Community Trust?" to evaluate the other
users. In the case of an e-commerce application, buyers can review and evaluate the merchants with the
community trusting results on their profile attributes, for example, "company name", or business
behaviour attributes like "chat responsiveness" and "packing quality" which come from the review and
rating subsystem. It will save the buyers from spending a lot of time to find out the trustworthiness of the
information about the merchant to evaluate whether to deal with the merchant.

7. Conclusions and potential future work

In a nutshell, false information floods the Internet nowadays and some false information can create chaos
in our harmonious society. The authority is spending a lot of resources validating the information and
censoring them to keep people from fake news and wrong information. The Internet is built by the
community and for the community. The proposed ETHERSTWEB, let the community members help in
combating false news and inaccurate information. By incorporating the ETHERSTWEB features, we
encourage the community members to do self-protection and guard the accuracy of the information.
Indirectly, it will increase people’s awareness of the impact of fake news and information on society.

ETHERSTWEB is currently developed as a Django project instead of a Django app. One of the
improvements that can be done is to develop it as a reusable Django app, that is pluggable to any other
Django projects to have the built-in information trustworthiness management by community members. It
can also be developed as a microservice component in a microservice architecture (Liu et al., 2020) and it
can be used to extend any existing application functionality regardless of the programming language or
framework used. Finally, the source code of ETHERSTWEB can be found on GitHub, and it is released
under the MIT license and can be accessed at https://github.com/cyberkoa-mmu/etherstweb.

8. Acknowledgements

This work was supported by the Multimedia University’s GRA scheme and the Telekom Malaysia
Research & Development Grant (RDTC/221045).

9. References

Aldwairi, M., & Alwahedi, A. (2018). Detecting fake news in social media networks. Procedia Computer
Science, 141, 215-222. Retrieved from
https://www.sciencedirect.com/science/article/pii/S1877050918318210 (The 9th International Conference
on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN-2018) / The 8th International
Conference on Current and Future Trends of Information and Communication Technologies in Healthcare
(ICTH-2018)/ Affiliated Workshops) doi: https://doi.org/10.1016/j.procs.2018.10.171

Bahri, L., & Girdzijauskas, S. (2018). When trust saves energy: A reference framework for proof of trust
(pot) blockchains. In Companion proceedings of the the web conference 2018 (p. 1165–1169). Republic
and Canton of Geneva, CHE: International World Wide Web Conferences Steering Committee. Retrieved
from https://doi.org/10.1145/3184558.3191553 doi: 10.1145/3184558.3191553

Buterin, V. (2013). Ethereum: A next-generation smart contract and decentralized application platform.

De’, R., Pandey, N., & Pal, A. (2020). Impact of digital surge during covid-19 pandemic: A viewpoint on
research and practice. International Journal of Information Management, 55, 102171. Retrieved from
https://www.sciencedirect.com/science/article/pii/S0268401220309622 (Impact of COVID-19 Pandemic
on Information Management Research and Practice: Editorial Perspectives) doi:
https://doi.org/10.1016/j.ijinfomgt.2020.102171

Dhall, S., Dwivedi, A. D., Pal, S. K., & Srivastava, G. (2021, nov). Blockchain-based framework for
reducing fake or vicious news spread on social media/messaging platforms. ACM Trans. Asian Low-
Resour. Lang. Inf. Process., 21(1). Retrieved from https://doi.org/10.1145/3467019 doi: 10.1145/3467019

Douceur, J. R. (2002). The sybil attack. In P. Druschel, F. Kaashoek, & A. Rowstron (Eds.), Peer-to peer
systems (pp. 251–260). Berlin, Heidelberg: Springer Berlin Heidelberg.

ERC-20. (2021, June). Eip-20: Erc-20 token standard. Retrieved from https://eips.ethereum.org/EIPS/eip-
20

Foundation, D. S. (2005). Django. Computer software. Retrieved from https://www.djangoproject.com/

Infura. (2016). Infura. Online. Retrieved from https://infura.io/

Jaroucheh, Z., Alissa, M., Buchanan, W. J., & Liu, X. (2020). Trustd: Combat fake content using
blockchain and collective signature technologies. In 2020 ieee 44th annual computers, software, and
applications conference (compsac) (p. 1235-1240). doi: 10.1109/COMPSAC48688.2020.00-87

Koa, C.-G., Heng, S.-H., & Chin, J.-J. (2021). Etherst: Ethereum-based public key infrastructure identity
management with a reward-and-punishment mechanism. Symmetry, 13(9). Retrieved from
https://www.mdpi.com/2073-8994/13/9/1640 doi: 10.3390/sym13091640

Liu, G., Huang, B., Liang, Z., Qin, M., Zhou, H., & Li, Z. (2020). Microservices: architecture, container,
and challenges. In 2020 ieee 20th international conference on software quality, reliability and security
companion (qrs-c) (p. 629-635). doi: 10.1109/QRS-C51114.2020.00107

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system.

https://doi.org/10.1145/3467019
https://www.sciencedirect.com/science/article/pii/S0268401220309622
https://www.sciencedirect.com/science/article/pii/S1877050918318210

Qayyum, A., Qadir, J., Janjua, M., & Sher, F. (2019, jul). Using blockchain to rein in the new post-truth
world and check the spread of fake news. IT Professional, 21(04), 16-24.
doi:10.1109/MITP.2019.2910503

Ryabitsev, K. (2014, February). Pgp web of trust: Core concepts behind trusted communication.

Sengupta, E., Nagpal, R., Mehrotra, D., & Srivastava, G. (2021). Problock: a novel approach for fake
news detection. Cluster Computing, 24(4), 3779–3795. Retrieved from https://doi.org/10.1007/s10586-
021-03361-w

TruffleSuite. (Oct. 2020). Trufflesuite: Sweet tools for smart contracts. Retrieved from
https://www.trufflesuite.com

Vicario, M. D., Bessi, A., Zollo, F., Petroni, F., Scala, A., Caldarelli, G., Quattrociocchi, W. (2016). The
spreading of misinformation online. Proceedings of the National Academy of Sciences, 113(3), 554-559.
Retrieved from https://www.pnas.org/doi/abs/10.1073/pnas.1517441113 doi: 10.1073/pnas.1517441113

Wahane, A., & Patil, B. (2022). Blockchains to curb fake news in an online world. In 2022 international
conference for advancement in technology (iconat) (p. 1-6). doi: 10.1109/ICONAT53423.2022.9725933

https://doi.org/

