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Abstract: This paper reported the effect of high temperature on the electro-mechanical behavior
of carbon nanotube (CNT) reinforced epoxy composites. CNT/epoxy composites were fabricated
by dispersing CNTs in the epoxy matrix using a solution casting method. Electrical conductivity
measurements obtained for the CNT/epoxy composites indicated a steadily increasing directly
proportional relationship with CNT concentration with a percolation threshold at 0.25 wt %, reaching
a maximum of up to 0.01 S/m at 2.00 wt % CNTs. The electro-mechanical behavior of CNT/epoxy
composites were investigated at a room temperature under the static and cyclic compressive loadings,
resulting that the change in resistance of CNT/epoxy composites was reduced as increasing CNT
concentration with good repeatability. This is due to well-networked CNTs conducting pathways
created within the solid epoxy matrix observed by scanning electron microscopy. Temperature
significantly affects the electro-mechanical behavior of CNT/epoxy composites. In particular,
the electro-mechanical behavior of CNT/epoxy composites below the glass transition temperature
showed the similar trend with those at room temperature, whereas the electro-mechanical behavior
of CNT/epoxy composites above the glass transition temperature showed an opposite change in
resistance with poor repeatability due to unstable CNT network in epoxy matrix.

Keywords: carbon nanotubes; epoxy; electrical-mechanical behavior; self-sensing; glass
transition temperature

1. Introduction

In recent years, carbon nanotubes (CNTs) have attracted considerable interest for many industrial
applications [1–3]. CNTs possess excellent mechanical, electrical, electronic, optical, chemical and
thermal properties, which, when combine with their very high aspect ratio and large surface area,
have made them an excellent candidate for smart composite materials [4–7]. In this context, CNT
reinforced composite materials have been investigated for smart composite applications such as for
gas detection [8], structural integrity self–sensing [9] and actuators [10]. Unlike conventional materials,
CNT reinforced composites have many advantages such as being relatively light in weight, having
good corrosion resistance and waterproofing, and with the potential for self-sensing applications.
For example, Ku-Herrera et al. [11] studied the strain sensitivity of nanocomposites containing a small
amount of CNTs. They found that the mechanical properties of the nanocomposite were improved
during compression testing reaching a maximum value, in terms of gauge factor, at 0.3 wt % of CNT
content. Ayatollahi et al. [12] investigated the effect of CNT concentration on the mechanical and
electrical properties of CNTs/epoxy nanocomposite. They found that both of the mechanical and
electrical properties were improved especially for a 1.0 wt % CNTs.
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The strain sensing capability of CNT nanocomposites is considered to be a key requirement for
future structural health monitoring techniques and applications. To overcome these problems and
requirements, some studies have tried to develop novel self-sensing nanocomposites for these types
of applications [13–17]. Bouhamed et al. [6] fabricated a CNT/epoxy nanocomposite and focused on
the behavior of the nanocomposite under strain applications. The results showed a higher changing
in resistance happen at low CNTs concentration and the strain sensitivity at this content was 14.19.
In addition, Dinh et al. [18] investigated the behavior of adding CNTs to epoxy when fabricating a
self-sensing nanocomposite structure. They found that for an applied and stepped changed cyclic
pressure, the electrical resistance of the structure increased with increasing pressure and decreased with
decreasing pressure. During room temperature, testing the nanocomposite structure remained stable
and showed excellent reproducible results. Shen et al. [7] studied changes in electrical resistance of
self-sensing CNTs in epoxy nanocomposite during compression testing. They observed that when the
compression load increased the electrical resistance of the nanocomposite decreased, thus, indicating
that it exhibited a measurable piezoresistive effect.

The effect of temperature on CNT reinforced composites has been studied for different
filler-resin composites. Gojny and Schulte [19] investigated the effect of multi-walled CNTs on the
thermo-mechanical properties of MWCNT/epoxy composites and found that increasing concentrations
of MWCNTs as well as functionalizing MWNCTs leads to an increase of the glass transition temperature
with higher interfacial interaction between the CNT and the polymer matrix. Godara et al. [20] reported
that CNT reinforced epoxy/carbon fiber composites showed significant decrease in thermal expansion
and increase in fracture toughness Mode-1. However, although previous researchers have investigated
material properties of CNT reinforced composites, they did not consider the effect of glass transition
temperature on the electro-mechanical behavior of CNT reinforced composite materials, which is
critical parameter for real structural health monitoring application, and is described here for the first
time. This omission leaves a gap in our understanding of the phenomena, since we know that when
the temperature increases, the stiffness of the combined matrix and CNTs is likely to decrease due to its
nature of polymer. Under these conditions, the electrical resistance of the CNTs themselves may also
change due to unstable CNT network. The extent of these changes remains largely unknown. Therefore,
in this study, we investigated the temperature dependence of the electro-mechanical behavior of
CNT/epoxy composites.

2. Materials and Methods

A filler material used for the CNT/epoxy composite was high purity (>95.0 wt %) and chemical
vapor deposition grown multi-walled carbon nanotubes from US Research Nanomaterials Inc. (Houston,
TX, USA). The average diameter and length of CNTs were 4–10 nm and 50 µm, respectively. A low
viscosity epoxy resin type (IN2 Epoxy Infusion Resin) combined with a hardener (AT30 slow) were
obtained from Easy Composite (Stoke-on-Trent, UK). The viscosity of the matrix resin was 200–450 mPas
and a pot life was 80–100 min at a room temperature. The solvent used for dispersion of CNTs was
high purity of acetone (> 95%) supplied by Acros Organics Ltd (Loughborough, UK).

The CNT/epoxy composites were fabricated by uniformly dispersing the CNTs in the epoxy matrix
as described in authors’ previous studies [21–23]. Firstly, various concentrations of the CNTs (0–2.5 wt
%) were weighed out and mixed in 60 mL of acetone in a beaker. A high intensity and high frequency
horn-type ultrasonicator (BR-20MT-10L, 1000 W) was used to ensure full and uniform dispersion of
the CNTs in the epoxy resin. This approach was used to negate the van der Waals forces that exist
between the CNTs and which tend to make them clump together. In this study, the ultrasonicator
operated in an ice bath in the pulsed mode (45 s on and 15 s off) for 30 min to minimize any overheating
effect. Following sonication of the CNTs, a weighed amount of epoxy resin was added to the mixture
and dispersed again using the ultrasonicator for another 5 minutes. The fully dispersed mixture was
then placed in an oven at 70 ◦C for 24 h to evaporate the acetone. Once evaporation was completed,
the hardener (AT30) was added, with a mix ratio of 100:30, and thoroughly mixed for a further 5 min.



Materials 2020, 13, 259 3 of 10

The mixture was then degassed for 20 min in a vacuum chamber to remove any damaging air bubbles
from the mixture. The mixture produced in this way was then cast in a mold to produce the desired
specimen configuration needed for testing. Finally, the mixture was cured 24 h at room temperature
and then for a further 24 h post cure at 60 ◦C to ensure the full completion of the cure process. All
samples were cut into 25 mm diameter cylinder with 20 mm in height for the electro-mechanical
response of CNT/epoxy composites.

A fracture surface of the specimen was observed using a scanning electron microscope (JEOL
JSM-7001F, Tokyo, Japan) at 30 kV to assess the dispersion of CNTs in the matrix. The samples were
coated with a thin gold film using sputter coating (QUORUM-Q150TES, Laughton, UK) for 10 min. For
the electrical conductivity, two different multimeters (Keithley 6517B for high resistance and Keithley
2700 for nominal resistance) was used to record resistance. To minimize measurement errors due to
the contact resistance between the tip of test probe, both electrodes of the specimen was painted with
high purity silver, eliminating an issue for the contact resistance to use two-probe method. Two-probe
method was applied for the measurement of the electrical resistance for our specimens because of
simple experiment. The electrical conductivity (σ) of samples was calculated using Equation (1).

σ =
L

AR
(1)

where R is the electrical resistance of the sample, A and L are a cross-sectional area and the length of
the samples, respectively. The compression testing of the specimens was carried out using a universal
testing machine (Instron 5582, Norwood, MA, USA). In order to investigate the effect of temperature on
the electromechanical behavior of the specimens, the static and cyclic compressive loading was applied
to the specimens at a displacement control of 0.5 mm/min. Temperature was controlled by placing the
specimens in a heater box, as shown in Figure 1. Prior to testing, the specimens were hold for 1 h for
uniform temperature distribution. During the static and cyclic loading, the change in resistance of the
specimens was recorded using Keithley 2700 with 7700 data acquisition (DAQ) system.
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Figure 1. Electro-thermo-mechanical test set-up.

3. Results

Figure 2a showed the electrical conductivity for the CNT/epoxy nanocomposites as a function of
CNT concentrations. Pure epoxy is non-conductive materials with 1 × 10−14 S/m. A significant increase
in the electrical conductivity was observed when the concentration of CNTs increased from 0.2 wt % to
0.5 wt %, indicating a percolation threshold. Thereafter, the electrical conductivity gradually increased
up to 2.5 wt % CNTs. The percolation threshold, i.e., the minimum CNT content in the matrix after
which no significant change in the electrical conductivity is observed, occurred at around 0.25 wt
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% CNTs. The observed increased in electrical conductivity of the CNT/epoxy composite is due to a
well-developed CNT network structure (conducting pathways) created within the matrix material as
shown in Figure 3. The effectiveness of electron transfer between the CNTs is very highly dependent
on this CNTs spacing distance. In this study, the maximum electrical conductivity of CNT/epoxy
composite reached was 5.25 × 10−2 S/m at 2.5 wt % CNTs. The experimental data were also analyzed
using a percolation theory, σ = σ0(p− pc)

t, σ0 is a parameter depending on the electrical conductivity
of CNT, p is the volume fraction of CNTs, pc is the volume fraction corresponding to the percolation
threshold, t is the critical exponent, as shown in Figure 2b, where pc and t are 2.34 and 2.0, respectively.
Note that the value of t obtained proves that the CNT networks are deformed as a three-dimensional
aspect inside the nanocomposite matrix.
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Figure 3. Scanning electron microscope (SEM) images of (a) pristine epoxy and (b) CNT/epoxy
composite (2.0 wt %).

The electro-mechanical response of CNT/epoxy composites was investigated under both static
and cyclic compressive loadings. Figure 4a showed the change in resistance of CNT/epoxy composites
under the static compressive loadings at room temperature. It can be clearly seen that the resistance of
all specimens decreased with increasing compressive loading with nonlinear behavior. Additionally,
the piezo-resistive behavior of CNT/epoxy composites is similar to that observed by Yin et al. [24],
which significantly depends on CNT concentration. A higher CNT content lead to a smaller resistance
change during the compressive loadings. This could be due to the fact that increasing CNTs
concentration reduces the inter-particle distance between adjacent CNTs, thus allowing the potential for
greater possible contact between them under that compressive loading. Figure 4b,c showed the change
in resistance of the CNT/epoxy composites under cyclic compressive loadings within elastic region at
the room temperature. The resistance changes for the specimen showed excellent correspondence with
the changes in the applied compressive strain. It was also observed that CNT/epoxy composite with
higher CNT concentration provides lower strain sensitivity under the cyclic compressive loadings.

Temperature generally affects the materials properties of CNT reinforced composite [25–27].
Figure 5 showed the influence of temperature on the change in resistance of CNT/epoxy composites at
rest. All CNT/epoxy composites presented a positive temperature coefficient, where the resistance of
all samples increased at elevated temperature. The positive temperature coefficient for CNT/epoxy
composites can be explained by the rearrangement of CNT network brought about by the volumetric
expansion of epoxy matrix as the temperature rises. It can be noted that the change, with temperature,
in the normalized resistance for the sample with the highest CNT concentration is smaller than for the
low CNT. This behavior can be associated with the better stability of CNT network structure, associated
with the higher CNTs concentrations, facilitating better electron transfer through the inter-particle
channels [28].

Although there has been much research on the effect of temperature on electrical properties of
carbon nanotube reinforced composites at rest, there has been no research on the electro-mechanical
behavior of those materials under the different temperatures. Therefore, we studied the
electro-mechanical behavior of CNT/epoxy composite with 65 ◦C of the glass transition temperature [29]
under static as well as cyclic compressive loadings. Figure 6a showed the change in resistance of
1.0 wt % CNT/epoxy composites under the static compressive loading at various temperatures. It was
observed that the resistance behavior of samples varies with applied temperature. The specimens
exposed to 20–60 ◦C showed the similar electro-mechanical behavior during the static compressive
loading, whereas the specimen with 70 ◦C showed significant reduction in resistance compared to
those with 20–60 ◦C and the specimen with 80 ◦C showed the increase in resistance which is an
opposite trend with the samples with 20–60 ◦C. Figure 6b showed the electro-mechanical behavior
of CNT/epoxy composites under the cyclic compressive loadings. For specimens tested between
20–60 ◦C, the resistance change observed remained remarkably consistent in nature during the cyclic
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compressive loadings. However, above this temperature range, those tested in 70 and 80 ◦C exhibited
a different resistance response with poor repeatability, which is not applicable for repeatable sensing
application. Considering their glass transition temperature (Tg) of 65 ◦C, Tg significantly affects the
electro-mechanical response of CNT/epoxy composites. It can be speculated, shown in the Figure 7,
that the irreversible volumetric change of CNT/epoxy composite due to Tg would increase in the
inter-distance between CNTs and thus regenerate CNT network, destroying conductive pathways and
thus increasing resistance under the compressive loadings.
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4. Conclusions

The present study investigated the electro-mechanical behavior of carbon nanotube reinforced
epoxy composites at various temperature. It was found that temperature significantly affects the
electro-mechanical behavior of CNT/epoxy composites. In particular, the CNT/epoxy composites
exposed to above glass transition temperature showed an opposite and unrepeatable electro-mechanical
behavior under the compressive loadings compared to those exposed to below glass transition
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