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I. PATH AVERAGED POTENTIALS

Here we report the functional forms of the path averaged potential first studied in [1]. For the linear potential,
V (x) = kx, the PAP can be determined analytically and is Gaussian,
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Note that
∫∞
∞ dv ℘(v|y, x;T ) = 1 and that ℘(v|y, x;T ) satisfies the boundary conditions limT→0

℘(v|y, x;T ) =
limk→0

℘(v|y, x;T ) = δ(v), which is the free particle limit.
A spectral representation of the PAP for the harmonic oscillator, V (x) = 1

2mω
2x2, is given (for x = y = 0, sufficient

for this work) in their equation (33) which we can simplify a small amount to
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8v and the Kα are the modified Bessel functions of the second kind. The series converges
very rapidly and can be truncated at n as small as 10 without sacrificing precision. This function satisfies the
same normalisation and boundary condition in the limit of vanishing coupling, ω. Both functions can therefore be
interpreted as probability distributions for the Wilson line variable, v, on the space of Brownian motion trajectories.
They measure the relative contribution to the path integral of trajectories whose Wilson line variable evaluates to a
the given value, v. The kernel is obtained by integrating this over v with Gaussian weight (see Main Text).

As described in the Main Text, a good sampling of the path integral equates to generating trajectories such that
the values of their associated Wilson lines sample well the ℘ appropriate to the system. Much of the work in the
main text is completed in this “v-space” which provides insight in a similar way to how Fourier (momentum) space
can complement working in position space.

A. Numerical analysis of trajectories and distributions

The distributions (1) and (2) were corroborated numerically in [1, 2]. Here we provide analogous numerical con-
firmation of the “shifted distributions” denoted by ℘Ω(v) and ℘κ(v) in section III of the Main Text – see equations
(22-23). These also allow us to obtain the distributions ℘′(v) and ℘′′(v) satisfied by the shifted variables, {v′i}
and {v′′i } in the Main Text – equations (26) and (30). The shifted distributions can be found by using the Fourier
representation of the δ-function or by noting that the constraint ensures that
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We begin by showing how the spatial distribution of trajectories changes when the background potentials are
present, using simulations in two dimensional quantum mechanics for illustrative convenience. The harmonic oscillator
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FIG. 1. Comparison of trajectories generated using standard WMC (left panel) and including background potentials. Middle
panel: UΩ(x) = 1

2
mΩ2x2 for Ω = 0.25 (upper-most dashdotted green line), Ω = 0.75 (central dashed blue line) and Ω = 1.25

(left-most solid red line), m = 1 and T = 20. Right panel: for Uκ(x) = κx we used κ = 0.15 (right-most dashdotted green line),
κ = 0.45 (central dashed blue line) and κ = 0.8 (far left solid red line), m = 1 and T = 25. Free trajectories were generated
with m = 1 at T = 30. All simulations used Np = 2048 points per loop for each plot. The influence of the backgrounds on the
spatial extent of trajectories is clear (note the differing scales on the axes).
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FIG. 2. Numerical corroboration of the shifted distributions ℘Ω(v) for Ω = 0.75 and m = 1, ω = 1, T = 40, and ℘κ(v) for
κ = 0.45, and m = 1, k = 0.5, T = 15, using NL = 106 trajectories. The blue solid lines represent the analytical results from
the Main Text. The small deviations are statistical fluctuations that can be reduced by increasing NL and NP .

background should concentrate trajectories about its minimum, here taken to be the origin. The linear background
(with respect to one dimension, x say) will be seen to push trajectories towards smaller values of x. In Figure 1 we
contrast trajectories generated with standard WMC (no background) and in the presence of the harmonic oscillator
and linear potentials using the algorithms provided in Appendix A of the Main Text.

The effect of the adjusted spatial growth of the trajectories on values taken by the Wilson line variables can be seen
in Figures 2–3, where we show numerical estimation of the distributions on these values against the analytically deter-
mined distributions. The numerical estimation is carried out by generating a number, NL, of trajectories according
to the algorithms provided in Appendix A of the Main Text, which produce a set of values {vi}NL

i=1 of the Wilson line
variables of each trajectory. These are then placed into bins to form a density-histogram, which is compared against
the functions determined analytically in the Main Text.

The figures show that the Wilson line variables are providing good samples of the PAP in question, which confirm
the correctness of the algorithms for generating trajectories reported in the Main Text. Moreover, comparing these to
the “un-shifted” PAP (denoted ℘(v) for both systems), it is apparent that the modified distributions favour smaller
values of v. Now, since the kernel is constructed according to equation (12), trajectories with smaller v dominate
its determination. Hence it can be seen that the background is simply concentrating the trajectories to regions that
better sample the potential of the systems (in the spirit of importance sampling). As proved in the Main Text, the
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FIG. 3. Numerical corroboration of the shifted distributions ℘′(v), for Ω = 0.75 and m = 1, ω = 1, T = 80, and ℘′′(v), for
κ = 0.45, and m = 1, k = 0.5, T = 20, using NL = 106 trajectories. The blue solid lines represent the analytical results from
the Main Text.

bias from doing this is removed by the compensation factors which ensure a faithful reconstruction of the propagator,
but by having favoured trajectories that better sample the potential, the undersampling problem is mitigated.

1. Compensating potentials

For systems where the PAP is not known in closed form (e.g. when (12) of the Main Text cannot be evaluated
analytically), the compensation factors that ensure the kernel is correctly recovered are unknown. However, the Main
Text shows how the bias introduced by the modified algorithms can be removed by subtracting the effects of the
background potential directly in the path integral. Figure 4 demonstrates the numerical sampling of the distributions
℘̃(v) and ℘̂(v) defined in the Main Text, which are distributions on the Wilson line variable for the modified potential.
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FIG. 4. Numerical corroboration of the shifted distributions ℘̃(v) for Ω = 0.75 and m = 1, ω = 1, T = 60, and ℘̂(v) for
κ = 0.45, and m = 1, k = 0.5, T = 25, using NL = 106 trajectories. The blue solid lines represent the analytical results from
the Main Text.
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FIG. 5. Estimation of the propagator for the absolute value potential, with κ = 0.5, and m = 1, Ω = 0.75, using NL = 25000
trajectories generated in a harmonic oscillator background with the potential subtraction method (navy) and Np = 5000 points
per loop. The blue solid line represent the analytical result based on truncating the spectral representation. The red line with
triangles is a estimation using free trajectories.

II. APPLICATIONS

We provide additional information on numerical simulation for the absolute value potential, Vκ(x) = κ|x|. In
this case the propagator is not known in closed form, but its spectral representation can be determined from the
Hamiltonian’s eigenfunctions and energy eigenvalues (the Green function for this system is given in [3]). The eigen-

functions are Airy “Ai” functions, defined for x > 0 as Ψn(x) = cn Ai
(
(2mk)

1
3

(
x − En

k

))
extended symmetrically

(anti-symmetrically) for n even (odd). Their energies are written in terms of zeros of the Airy function and its
derivative:

− En =
( k2

2m

) 1
3

{
σ̃n+2

2
n even

σ̄n+1
2

n odd
, (4)

where the σ̄n denote the zeros of Ai and the σ̃n are the zeros of its derivative, Ai′ (all lying along the negative real
axis). The normalisation constants, cn, can be calculated numerically. Truncating the spectral representation provides
a good estimate of the kernel for moderate values of propagation time and, in the limit of large times, the ground

state, energy E0 = −
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, dominates according to the asymptotic formula in equation (10) of

the Main Text.
This system was simulated using a harmonic oscillator background (Ω = 0.75), fixing m = 1, κ = 0.5, for which the

ground state energy is E0 = 0.509396 . . .). This numerical determination of the kernel is shown in Fig 5. Through
the linear fit [shown on the graph!] for T ∈ [5, 30], the energy is estimated to be E0 = 0.50939336.
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