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A B S T R A C T   

It is becoming increasingly recognised that contaminants are not isolated in their threats to the aquatic envi-
ronment, with recent shifts towards studying the effects of chemical mixtures. In this study, adult marine mussels 
(Mytilus galloprovincialis) were exposed to two aqueous concentrations of the essential trace metal, Cu (5 and 32 
μg L− 1), and the non-essential metal, Pb (5 and 25 μg L− 1), both individually and in binary mixtures. After a 14- 
day exposure, metal accumulation was determined in the digestive gland, gill and mantle tissues by inductively 
coupled plasma-mass spectrometry following acid digestion, and a number of biochemical, neurotoxic and 
physiological markers were assessed. These included measurements of DNA damage using comet assay, total 
glutathione concentration, acetylcholinesterase (AChE) activity and clearance rate. Metal accumulation was 
greater in the digestive gland and gill than in the mantle, and based on computed free ion concentrations, was 
greater for Pb than for Cu. Copper exhibited an inhibitory effect on Pb accumulation but Pb did not appear to 
affect Cu accumulation. Comet assay results revealed DNA damage (i.e., genotoxic effects) in all treatments but 
differences between the exposures were not significant (p > 0.05), and there were no significant differences in 
AChE activities between treatments. The most distinctive impacts were a reduction in clearance rate resulting 
from the higher concentration of Cu, with and without Pb, and an increase in glutathione in the gill resulting 
from the higher concentration of Cu without Pb. Multivariate analysis facilitated the development of a con-
ceptual model based on the current findings and previously published data on the toxicity and intracellular 
behaviour of Cu and Pb that will assist in the advancement of regulations and guidelines regarding multiple 
metal contaminants in the environment.   

1. Introduction 

Although there is a large body of literature examining the accumu-
lation of and impacts of individual metals on marine invertebrates (e.g., 
Dallinger 1994; Rainbow 1997; Al-Subiai et al. 2011; Dallas et al. 2013; 
Cole et al. 2014; Chadwick and Bury 2023), environmental contami-
nants occur in combination forming complex mixtures (Jha, 2004). The 
type and concentration of these contaminants are unique to an 
ecosystem and are affected by human population, local geology and 
anthropogenic impacts (Ali et al., 2019). Interactions between two or 
more contaminants have been observed to induce different biological 
responses compared to single contaminant exposures and these re-
sponses can either be antagonistic, additive or synergistic. For instance, 

lower concentrations of arsenic (As) and cadmium (Cd) were found to 
express antagonistic effects on survival, accumulation, ion regulation 
and locomotion in the freshwater amphipod, Gammarus pulex, while 
higher concentrations resulted in additive effects (Vellinger et al., 
2013). In a recent study employing the freshwater mussel (Villosa iris), 
growth appeared to respond additively to exposures of copper (Cu), 
nickel (Ni) and zinc (Zn) (Timpano et al., 2022). 

The mechanisms of metal-metal combinations acting on marine in-
vertebrates have not been fully characterised. Studies of mixtures of Cu 
and lead (Pb), for example, are often limited to their accumulation in 
target organisms (Debelius et al., 2009; García-Navarro et al., 2017; 
Marquez et al., 2018). Recently, however, Morais et al. (2023) showed 
that mercury (Hg), cobalt (Co) and nickel (Ni) enhanced biochemical 
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alterations and induction of oxidative stress in the marine mussel, 
Mytilus galloprovincialis, when added in combination compared with 
individually. Such findings highlight the importance of studying the 
accumulation and sub-lethal biological effects of contaminants in com-
bination and demonstrate the limitations of applying existing models to 
predict the toxicity of mixtures of metals. 

Accordingly, the present study exposes M. galloprovincialis, as a 
species of ecological and economic importance, to high and low con-
centrations of the essential trace metal, Cu, and the non-essential metal, 
Pb, both alone and in binary mixtures. The aims were to explore the 
individual and combined impacts of these metals on specific accumu-
lation (digestive gland, gill and mantle) and determine end-points 
indicative of different levels of biological organisation (i.e., DNA, en-
zymes, physiology). Copper and Pb are common contaminants of coastal 
marine ecosystems because of their multiple anthropogenic sources, 
such as marine paints, landfill leachate, fossil fuel combustion and 
mining waste (Wilson and Pyatt, 2007; Turner, 2010; Chiarelli and 
Roccheri, 2014; Richir and Gobert, 2016; Cruz et al., 2019). Moreover, 
both metals are accumulated in marine mussels in direct proportion to 
exposure concentrations (Sánchez-Marín et al., 2014; Cai and Wang, 
2019). We also employ multivariate analysis (MVA), including cluster 
analysis and principal component analysis (PCA), to integrate 
multi-biomarker data into a mechanistic explanatory framework 
(Moore et al., 2021). Pathobiological modelling is an essential meth-
odology for the derivation of explanatory frameworks that facilitate the 
development of a predictive capacity for estimating outcomes or risk 
associated with particular disease processes and stressful treatments 
(Moore, 2010; Moore et al., 2021; Sforzini et al., 2018). Previous studies 
on mussels and earthworms have shown that there is a strong relation-
ship between lysosomal membrane stability (LMS), as an indicator of 
cellular health, and the responses of numerous cellular stress biomarkers 
(Moore et al., 2006, 2021; Sforzini et al., 2014, 2017, 2018). 

2. Methods 

2.1. Chemicals and animal collection 

All chemicals and reagents used in the study were purchased from 
Merck Life Science UK Ltd, VWR International Ltd USA or Fisher Sci-
entific UK Ltd. M. galloprovincialis were collected from Trebarwith 
Strand, North Cornwall (latitude 50 38′ 41″ N, longitude 4 45′ 43.5″ W), 
and in the laboratory mussels were acclimatised in 75 L plastic tanks 
with 50 L of filtered seawater (1 µM pore size; salinity ~ 34; pH ~ 8.0) 
for two weeks at 15 ◦C and over 12 h light:12 h dark cycles. During 
acclimation, M. galloprovincialis were fed three times a week with Iso-
chyrsis galbana algae (~1.05 x 106 cells mL− 1, Reed mariculture, 
Campbell, CA, USA), with a complete water change performed 2 h after 
each feed. 

2.2. Exposures 

Acclimatised mussels were transferred to 2 L glass beakers (two in-
dividuals per beaker) with 1.8 L of filtered seawater 24 h prior to 
exposure. Ten mussels, in the size range 50–60 mm, were exposed to one 
of nine treatment groups for a period of 14 d at 15.1 ± 0.1 ◦C, with 
feeding (Isochyrsis galbana, cell density = 2 × 106 mL− 1) and a water 
(and metal) change performed daily. Treatments consisted of a seawater 
control, and Cu added at a “low” concentration (5 μg L− 1) and a “high” 
concentration (32 μg L− 1) and prepared from a solution of CuSO4, and 
Pb added at a “low” concentration (5 μg L− 1) and a “high” concentration 
(25 μg L− 1) and prepared from a solution of Pb(NO3)2. Metals were 
added both singularly and in binary mixtures and resulting concentra-
tions in the exposures were designed to encompass the range of aqueous 
metal concentrations encountered in anthropogenically-impacted 
coastal waters. Thus, coastal concentrations of Cu range from 0.7 to 
6.1 µg L− 1 (Van Veen et al., 2002; Pearson et al., 2017), and the Water 

Framework Directive (WFD) environmental quality standard (EQS) for 
Cu is 3.76 µg L− 1, with amendments based on the concentration of 
dissolved organic carbon (DOC) (DEFRA, 2014). However, higher con-
centrations can occur in regions directly affected by boating activities 
(Turner, 2010; Chadwick and Bury, 2023). Concentrations of Pb in 
coastal waters are generally below 1.25 μg L− 1 (Langston et al., 2003) 
and are not considered detrimental to the health of marine organisms 
(European Commission, 2013). However, concentrations higher than 12 
μg L− 1 have been observed in highly polluted areas (Meng et al., 2008). 

2.3. Analysis of Cu and Pb concentrations in water and tissue 

In triplicate, water samples of 1 mL were taken on days 1, 3, 9 and 
13. Samples were diluted five-fold with 2 % HNO3 and spiked with 40 μg 
L− 1 of indium and iridium as internal standards. The digestive gland, gill 
and mantle were dissected from nine out of ten individuals at the end of 
the exposure and tissue of the same type was pooled together to make 
three replicates per treatment. Samples were freeze-dried before 20 to 
50 mg were digested, along with a certified oyster reference material 
(NIST 1566b), in 70 % HNO3 at 70 ◦C for ~ 4 h. Digests were diluted 
five-fold with distilled water and spiked with indium and iridium as 
above. Diluted water samples, tissue digests and procedural blanks were 
analysed in triplicate using a X-series II inductively-coupled plasma 
mass spectrometry (ICP-MS, Thermo Fisher Scientific Inc., Waltham, 
MA, USA) that had been calibrated with matrix-matched standards. 

2.4. Determination of DNA strand breaks using the comet assay 

Determination of DNA strand breaks using single cell gel electro-
phoresis (comet assay) was conducted as described in Jha et al. (2005). 
Briefly, haemolymph from ten mussels in each treatment was extracted 
and centrifuged at 3000 rpm for 2 min. The resulting pellet was resus-
pended in low melting point agarose (0.75 % in phosphate saline buffer) 
and pipetted in duplicate onto a pre-coated slide (1.5 % normal melting 
point agarose in tris-acetate-EDTA). After setting at 4 ◦C, slides were 
immersed in lysis buffer (2.5 M NaCl, 100 mM EDTA, 10 mM Tris base, 1 
% N-lauryl-sarcosine, 1 % Triton X-100, 10 % DMSO; pH adjusted to 10 
with NaOH) for 1 h. Following lysis, cell were left in electrophoresis 
buffer (1 mM EDTA, 0.3 M NaOH; pH 13) to allow DNA to denature for 
20 min. Electrophoresis was then conducted for 20 min at ~1 V cm− 1. 
Slides were placed in neutralisation buffer (0.4 Tris-HCL; pH 7) for 10 
min, rinsed with distilled H2O and left to dry at room temperature. Cells 
were stained with ethidium bromide (20 μg mL− 1) and scored using an 
epifluorescent microscope (DMR; Leica Microsystems, Milton Keynes, 
UK). One hundred cells per slide were quantified using Comet IV im-
aging software (Perceptive Imaging, Bury St Edmunds, UK), with% tail 
DNA (tail intensity) considered the most reliable measure of DNA 
damage (Kumaravel and Jha, 2006). 

2.5. Measurement of total glutathione 

Total glutathione activity was based on the cyclic reduction assay of 
Owens and Belcher (1965) with alterations. Digestive gland and gill 
from three out of ten M. galloprovincialis per treatment group remaining 
after dissection and digestion (see above) were homogenised (x520D, 
Bennett Scientific Ltd, Devon, UK) with RIPA buffer (50 mM Tris–HCl, 
150 mM NaCl, 0.1 % sodium dodecyl sulphate, 0.5 % sodium deoxy-
cholate, 1 % Triton X100; pH 7.4) and resulting supernatants were 
stored at − 80 ◦C until use. Thawed samples were diluted with assay 
buffer (100 mM potassium phosphate, 5 mM EDTA; pH 7.5) and mixed 
with an equal volume of buffered DTNB (100 mM potassium phosphate, 
5 mM EDTA, 10 mM DTNB pH 7.5) and placed on ice. Sample aliquots of 
40 μL were transferred to a 96 well plate, along with 210 μL aliquots of 
glutathione reductase solution (0.6 U, Sigma G-3664 from Saccharo-
myces cerevisiae, in assay buffer). After equilibration for 1 min, the re-
action was started by adding 60 μL aliquots of NADPH (1 mM, Melford, 
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Ipswich, UK in assay buffer) and the absorbence recorded at 412 nm 
over 20 min using a plate reader (VersaMax Microplate reader USA, 
SoftMax Pro 5.4). Each run contained a blank buffer and a standard (20 
μM reduced glutathione) and samples were measured in triplicate and 
results expressed as total glutathione in μmol mg− 1. 

2.6. Determination of neurotoxicity using acetylcholinesterase activity 

The acetylcholinesterase activity was assessed in the haemolymph of 
ten M. galloprovincialis per treatment, with protein content estimated 
using the Micro BCA™ Protein assay (ThermoFisher Scientific) accord-
ing to the manufacturer’s instructions. Twenty µL of haemolymph and 
240 µL of buffered dithiobis (2-nitro-benzoic acid) (0.01 M DTNB in 0.1 
M potassium phosphate; pH 8) were added into individual wells on a 96 
well plate. After 5 min at room temperature, 40 µL of acetylthiocholine 
iodine (final concentration 7.47 µM) was added to each well and 
absorbence immediately read at 412 nm for 15 min (VersaMax Micro-
plate Reader USA, SoftMax Pro 5.4). 

2.7. Determination of clearance rate 

Clearance rate of M. galloprovincialis, as a proxy for “scope for 
growth” (Liu et al., 2011), was conducted as described in Canty et al. 
(2009). Briefly, individuals were placed into 400 mL beakers with 300 
mL of filtered seawater at 15 ◦C. Magnetic bars were added and beakers 
were placed on 15-point magnetic stirrers (RO 15 power, Kika-Werke 
GmbH & Co, Germany). After a 10 min acclimation period, 500 μL of 
Isochyrsis algal solution was added to each beaker to produce a con-
centration of ~12,000–15,000 cells mL− 1. Water samples were taken 
directly preceding the transfer of algae (t0) and at t = 20 min, and algal 
concentrations were determined using a Beckman Z2 Coulter Particle 
Size and Count Analyser (Beakman Coulter, Brea, CA, USA). Clearance 
rate (CR; L h− 1) was calculated using the following equation: 

CR = V(logeC0 − logeCt)/t  

where V is the volume of water (L), t is time (min), and C0 and Ct are the 
algae concentrations at t0 and t. 

2.8. Metal speciation calculations 

The equilibrium inorganic speciation of Cu and Pb in the different 
exposures was computed using Visual MINTEQ 3.1 and the default sta-
bility constants in its database and activity coefficients calculated with 
the Debye-Hückel equation. Temperature and pH were fixed at 15 ◦C 
and 8.0, respectively, and a salinity of 34 was made up of concentrations 
of the major ions (Na+, K+, Ca2+, Mg2+, Cl− , SO4

2− ) in proportion to their 
relative abundance in average seawater. 

2.9. Statistical analysis 

All statistical analyses were performed using the software, R (RStu-
dio, R 3.4.3 GUI 1.70 El Capitan build, https://www.rproject.org/), 

except for the MVA detailed below. All data were checked for normality 
(Shapiro-Wilk test, Q-Q plot) and Grubbs test was used to identify out-
liers. ANOVA was performed along with Tukey’s post hoc test if 
normality assumptions were met, and the Kruskal-Wallis test was used if 
assumptions were not met. Post hoc pairwise comparison tests for 
nonparametric data were either Tukey and Kramar (Nemenyi) for 
complete equal data sets or a Tukey Kramar (Conover) for where n was 
different between treatments. Level of significance for all tests was set at 
p < 0.05 (*) and data were presented as mean ± standard deviation, 
unless otherwise stated. 

2.10. Multivariate analysis 

Data collected from the comet assay, total glutathione, AChE activity 
and clearance rates were analysed using non-parametric MVA software, 
PRIMER v 6.1.5 (PRIMER-e Ltd., U. Auckland, New Zealand; Clarke, 
1999). Data were log transformed [logn (1 + x)] and standardised to the 
same scale. Principal component analysis (PCA), hierarchical cluster 
analysis and non-metric multi-dimensional scaling analysis, derived 
from Euclidean distance similarity matrices, were used to visualise dis-
similarities between sample groups. The results were tested for signifi-
cant differences between treatments using analysis of similarity 
(ANOSIM), a non-parametric equivalent of parametric analysis of vari-
ance. The biota and/or environmental (BIO-ENV) matching routine uses 
Spearman’s rank correlations to compare a fixed matrix of similarities to 
a variable that tests all possible variable combinations. With this sta-
tistical test, patterns are connected between the effects of the biomarkers 
with the treatment groups, thus identifying potential “influential 
biomarkers”. 

3. Results 

3.1. Aqueous metal concentrations 

The measured (total) concentrations of Cu and Pb in the aqueous 
phase of the exposures are shown in Table 1, where L and H refer to the 
low and high concentrations of added metal, respectively. The control 
samples had concentrations of Cu and Pb that reflected concentrations in 
the coastal waters used in the exposures. In all treatments, measured 
concentrations of both Cu and Pb (alone and in binary mixtures) were 
within 20 % of nominal concentrations and as recommended by the 
OECD (1992). 

Also shown in Table 1 are the percentages of free, ionic Cu (Cu2+) 
and Pb (Pb2+), in each exposure based on inorganic speciation compu-
tations (i.e., ignoring any organic ligands present). These percentages, 
coupled with measured concentrations, have also been used to estimate 
the concentrations of free, and therefore bioavailable, Cu and Pb in the 
exposures. The data reveal that the concentrations of free Cu or Pb are 
not simply a function of their total concentrations but that there is 
competition between the metals for certain inorganic ligands. Thus, 
while the percentage of free Cu is about 10 in the absence of added Pb, 
when the latter is added at the higher concentration, the percentage of 

Table 1 
Measured aqueous concentrations of Cu and Pb in the different treatment groups exposed to M. galloprovincialis for 14 d, along with calculated percentages and 
concentrations of free Cu and Pb (L = low, H = high). Errors are one standard deviation about the mean of three measurements.   

Cu, µg L− 1 % Cu2+ Cu2+, µg L− 1 Pb, µg L− 1 % Pb2+ Pb2+, µg L− 1 

Control 3.26 ± 0.14 9.47 0.31±0.01 0.85 ± 0.15 0.52 0.004±0.001 
CuL 7.37 ± 0.17 9.84 0.73±0.02 0.93 ± 0.16 0.27 0.002±0.000 
CuH 30.67 ± 0.94 10.11 3.10±0.10 1.10 ± 0.21 0.08 0.001±0.000 
PbL 4.00 ± 0.23 7.26 0.29±0.02 5.32 ± 0.56 2.07 0.11±0.01 
PbH 4.14 ± 0.12 3.70 0.15±0.01 23.76 ± 0.26 4.55 1.08±0.01 
CuL+PbL 7.61 ± 0.56 8.53 0.65±0.05 4.93 ± 0.40 1.18 0.06±0.00 
CuL+PbH 7.89 ± 0.59 5.44 0.43±0.03 22.55 ± 0.55 3.33 0.75±0.02 
CuH+PbL 31.19 ± 1.61 9.67 3.02±0.16 5.77 ± 0.51 0.38 0.02±0.00 
CuH+PbH 29.61 ± 0.56 8.23 2.44±0.05 23.35 ± 0.31 1.39 0.32±0.00  
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free Cu is reduced to as low as 3.7. The percentage of free Pb is about 2 
and 4.5 when lower and higher concentrations are introduced, but 
corresponding percentages are progressively reduced when increasing 
concentrations of Cu are added. Clearly, these effects and interactions 
must be factored into any observed biological responses below. 

3.2. Copper and lead accumulation in tissue 

Concentrations of Cu and Pb in the control and exposed mussels are 
shown in Fig. 1. The control mussels had mean concentrations of Cu in 
the digestive gland, gill and mantle of M. galloprovincialis of about 21.4 
µg g− 1, 9.1 µg g− 1 and 4.2 µg g− 1, respectively. Concentrations in the 
lower exposure of Cu, with or without added Pb, were not statistically 
different to the corresponding controls. However, concentrations in the 
higher exposure of Cu, with and without added Pb, were significantly 
higher than the controls for each tissue type, with the gill and digestive 
gland subject to greatest accumulation. 

The control mussels had mean concentrations of Pb in the digestive 
gland (2.3 µg g− 1), gill (5.9 µg g− 1) and mantle (2.8 µg g− 1) that were 
significantly lower than corresponding concentrations found in all 
treatments where Pb had been added. As with Cu, the digestive gland 
and gill accumulated greater concentrations of Pb than the mantle. In 

the absence of added Cu and when Cu was added at the lower concen-
tration, Pb exhibited a concentratrion-dependant accumulation in each 
tissue type. The higher concentration of Cu, however, resulted in a 
reduction in accumulation of Pb when added at the higher concentration 
and compared with its accumulation in the absence of Cu. The latter 
observation is consistent with the free ion calculations shown in Table 1; 
namely, a reduction in the concentration of bioavailable Pb from 1.08 μg 
L− 1 (in the absence of added Cu) to 0.32 μg L− 1 (in the presence of the 
higher concentration of added Cu). 

In order to examine and compare accumulation of Cu and Pb by 
M. galloprovincialis, accumulation factors, AFs (L kg− 1), shown in 
Table 2, were calculated for each tissue type and for both total and free 
metal concentrations. Thus, AFtot represents the ratio of mean concen-
tration in tissue (μg kg− 1, and derived from Fig. 1) relative to mean 
measured concentration in the seawater medium (μg L− 1, and given in 
Table 1), and AFfree represents the ratio of mean concentration in tissue 
(as above) relative to mean calculated concentration of free metal in 
seawater (μg L− 1, and shown in Table 1). Values of AFtot range from a 
few hundred to about 105 L kg− 1 and, overall, confirm that accumula-
tion is greater in the digestive gland and gill than the mantle for both 
metals. 

Fig. 1. The concentration of (a) Cu and (b) Pb in the digestive gland, gill and mantle of M. galloprovincialis after the 14-d exposures to different Cu and Pb con-
centrations (L = low, H = high). Error bars are one standard deviation about the mean of three measurements and asterisks denote significant differences to the 
corresponding controls. 
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3.3. DNA damage, glutathione concentration, neurotoxic effects and 
clearance rate 

The percentage comet tail intensity (DNA damage) in the exposures 
is shown in Fig. 2a. DNA damage was lower in the control than in all 
treatment groups exposed to added Cu and Pb and either singularly or in 
combination. M. galloprovincialis exposed to the combination of Cu and 
Pb at the highest concentrations exhibited DNA damage that was 

significantly greater than that for the higher Pb concentrations when 
added singularly but not the higher Cu concentration added singularly. 
In contrast, neurotoxic effects, determined using the AChE activity in 
haemolymph, exhibited no significant differences between the control 
and any treatment in which Cu and/or Pb had been added (Fig. 2b). 

The GSH activity of the digestive gland and gill in M. galloprovincialis 
exposed to different concentrations and combinations of Cu and Pb is 
shown in Fig. 2c and d, respectively. In the digestive glands, activities 
were variable across the treatments, and concentrations were signifi-
cantly greater than the control only when Cu and Pb had been added 
together and at the lower and higher concentrations, respectively. In the 
gills, GSH concentrations were significantly higher than the control only 
when Cu had been added at its higher concentration. 

Clearance rate results, shown in Fig. 3, reveal a highly significant 
reduction compared with the control whenever Cu was added at the 
higher concentration, and both in the absence and presence of added Pb. 
Added Pb by itself, however, did not result in a significant reduction of 
CR compared with the control. 

3.4. Multivariate analysis 

The MVA used only the comet and clearance data as the acetylcho-
linesterase activity was not affected by any of the treatments (Fig. 2b) 
and samples for glutathione analysis were limited to three animals per 
treatment. Investigation of the biomarker data using ANOSIM gave a 
global significance of R = 0.352 (p < 0.001, n = 90) for all treatments, 
while pairwise analysis showed significant differences between the 
controls and low Cu (p < 0.006, n = 10), as well as all high Cu treatments 
(p < 0.001, n = 10). High Cu treatment (both singularly and in 

Table 2 
Mean accumulation factors for total Cu and Pb and free Cu and Pb in tissue of 
M. galloprovincialis in the different treatments.   

AFtot, L kg− 1 (1000s) AFfree, L kg− 1 (1000s) 

metal, exposure dig. gland gill mantle dig. gland gill mantle 

Cu       
Control 6.6 2.8 1.3 69.4 29.4 13.6 
CuL 3.6 2.2 0.5 36.1 22.8 5.3 
CuH 8.2 13.9 0.9 81.1 137.9 8.6 
CuL+PbL 4.0 2.5 0.6 46.7 29.4 7.0 
CuL+PbH 3.2 1.8 0.5 58.4 32.8 8.4 
CuH+PbL 9.3 11.2 1.4 95.7 115.9 14.9 
CuH+PbH 13.5 10.8 1.3 164.4 131.6 15.4 
Pb       
Control 2.8 7.0 3.3 527.2 1339 622.7 
PbL 24.3 20.1 3.3 1176 974.1 158.0 
PbH 84.8 37.8 6.3 417.5 185.9 31.1 
CuL+PbL 3.2 1.9 0.4 1310.0 782.8 144.5 
CuL+PbH 28.6 42.6 9.9 187.5 279.6 64.7 
CuH+PbL 4.5 4.1 1.7 4573 4196 1728 
CuH+PbH 10.0 9.8 6.4 178.1 174.0 113.1  

Fig. 2. The effect of 14-d exposure of Cu and Pb to M. galloprovincialis on (a) DNA damage, represented as % tail DNA, (b) enzyme activity of acetylcholinesterase per 
mg of protein, and glutathione activity per mg of protein of (c) the digestive gland and (d) gill. Different letters indicate significance differences between treatments 
(p < 0.05). Error bars are one standard deviation about the mean of ten ((a) and (b)) or three ((c) and (d)) individuals. 
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combination) were significantly different from all Pb and low Cu 
treatments and their combined treatments (p < 0.001, n = 10). However, 
low and high Pb in combination with low Cu were not significantly 
different from the controls, perhaps indicating an antagonistic effect 
that is probably due to the DNA damage component (as indicated in 
Fig. 2a). The high Cu and low Pb and high Cu and high Pb treatments 
were not significantly different (ANOSIM; Fig. 4a) while clearance rate 
was found to be significantly inversely correlated with DNA damage (r 
= − 0.211, p < 0.05, = 90, two-tailed). 

PCA, combined with cluster analysis, showed that all experimental 

treatments with the high concentration of Cu (with and without added 
Pb) were both visually distinct from (red clusters) and statistically 
different to the control sample (70 % of control values within the green 
cluster; Fig. 4a), and that high Cu in combination was distinct from 
higher Cu added singly (ANOSIM, p < 0.05, n = 10). Overall, the first 
principal component (PC1) captured 60.5 % variation in the data and 
the second principal component (PC2) explained an additional 39.5 % 
(Fig. 4). The clearance rate and comet assay were both correlated with 
the first and second principal components (p < 0.001, n = 90, two-tailed; 
Fig. 4a). PCA bubble plots for clearance rate and comet assay values 

Fig. 3. The effect of 14-d exposure of Cu and Pb to M. galloprovincialis on clearance rate. Different letters indicate significance differences between treatments (p <
0.05). Error bars are one standard deviation about the mean of ten measurements. 

Fig. 4. (a) PCA and superimposed cluster analysis of comet assay in haemocytes, acetylcholinesterase activity in the haemolymph and clearance rate, with 
superimposed hierarchical cluster analysis. The Euclidean distance of the cluster boundaries (dark blue dotted ovoids) is 1.6, and the % variation captured by the first 
and second principal components (PC1 and PC2) is shown on the plot. The vector for each of the biomarkers is also indicated within the solid-line blue circle. 
Correlations with PC1 and PC2 are shown together with the BIO-ENV Spearman rank correlations for the combined and single biomarkers. (b) PCA bubble plot for 
clearance rate (as an indicator of physiological status) showing decreasing values with increased stress (towards the right-hand side). (c) PCA bubble plot for DNA 
damage (comet assay) showing increasing values with increasing stress (towards the right-hand side). 

C. Crowther et al.                                                                                                                                                                                                                               



Aquatic Toxicology 265 (2023) 106741

7

show decreasing values and increasing DNA damage with increasing 
stress, respectively (Fig. 4b and c). 

The BIO-ENV routine for various combinations of biomarkers indi-
cated that clearance rate and comet were both significant biomarkers (rs 
= 0.622 for comet, p < 0.001; and rs = 0.693 for clearance, p < 0.001; n 
= 90) for determining the outcome of the MVAs when mussels were 
exposed to Cu and Pb, singularly and in combination (Fig. 4a). 

4. Discussion 

Qualitatively, our results regarding the accumulation of Cu and Pb 
by M. galloprovincialis are in agreement with those of García-Navarro 
et al. (2017) who found that Cu and Pb added in binary mixtures or 
ternary mixtures (with Cd, and albeit at higher concentrations) accu-
mulated to the greatest extent in the digestive gland amongst the soft 
tissues studied. Our AFs also confirm that the uptake of Cu appears to be 
largely unaffected by the presence of Pb while the uptake of Pb appears 
to be inhibited by the presence of Cu, with both effects most evident 
when higher concentrations of the metals are added (Cu = 32 μg L− 1, Pb 
= 25 μg L− 1). Because the calculated fractions of free Pb are smaller than 
the corresponding calculated fractions of free Cu, values of AFfree are 
always greater for Pb than for Cu; in many cases, the discrepancies are 
between one and two orders of magnitude. Although we ignored any 
complexation of Cu and Pb by organic ligands in natural seawater, 
meaning that the fractions of computed free Cu and Pb may have been 
underestimated, the results of Table 2 suggest that, overall, Pb2+ has a 
greater propensity for accumulation by M. galloprovincialis than Cu2+. 
The speciation calculations in Table 1 also suggest that any inhibitory 
effects of Cu on Pb accumulation are at least partly the result of shifts in 
speciation as the metals compete for available inorganic ligands in 
seawater. These observations are qualitatively consistent with the 
findings reported by Chen et al. (2010) regarding the competitive uptake 
of Cu and Pb by the freshwater, unicellular green alga, Chlamydomonas 
reinhardtii. Here, binding constants for biological uptake sites were 
greater for Pb than Cu and, over part (but not the entirety) of the con-
centration range studied, increasing Cu concentrations resulted in 
decreasing Pb uptake but Pb appeared to have little competitive effect 
on Cu uptake. 

There was no clear effect of Cu or Pb on AChE activity levels in 
M. galloprovincialis (Fig. 2b), although gill tissue may have been a more 
suitable tissue in this respect as it has higher levels of AChE (Perić and 
Petrović, 2011). We note that Cu has been reported to decrease in ac-
tivity in the crab, Carcinus maenas, but only at concentrations that were 
orders of magnitude greater than those employed in the present study 
(Elumalai et al., 2002). The combined highest treatment (32 μg L− 1 Cu 
+ 25 μg L− 1 Pb) resulted in the greatest DNA damage, but the variability 
of the results do not allow us to establish whether the effects of Cu and 
Pb were additive or non-additive. We are unaware of any studies that 
indicate the induction of DNA damage by a low concentration combi-
nation of contaminants in adult M. galloprovincialis. However, in 
M. galloprovincialis embryos exposed to a mixture of Cu and Ag 
increased, additively and through oxidative stress, DNA damage 
compared to a control and singularly exposed embryos (Boukadida 
et al., 2019). In contrast, Cd and benzo[a]pyrene in combination 
decreased the DNA damage to the freshwater mussel, Dreissena poly-
morpha, compared with singular exposures (Vincent-Hubert et al., 
2011). These discrepancies and uncertainties further highlight the 
requirement for more studies on the mechanisms involved in and 
induced by contaminant mixtures in the natural environment. 

Glutathione has a number of known protective roles in organisms, 
including acting as an antioxidant defence and a Cu chelator, which may 
be impacted by exposure to individual metals (Richetti et al., 2011; 
Abarikwu et al., 2017). Moreover, it has been found that at many lo-
cations in the natural environment, antioxidant defences increased at 
polluted sites (Cole et al., 2014; Chen et al., 2015; Abarikwu et al., 2017; 
Defo et al., 2018). The effects of Cu and Pb on glutathione in the 

digestive gland of M. galloprovincialis were inconclusive, but the higher 
concentration of Cu alone resulted in a clear increase in glutathione in 
the gill (Fig. 3) and this was inversely correlated with clearance rate. 

Perić and Burić (2019) also observed an increase in glutathione in 
M. galloprovincialis gills exposed to similar levels of Cu that were not 
apparent when 5 μg L− 1 of the organophosphorus pesticide, chlorpyri-
fos, was introduced with the metal. An increase of glutathione in 
response to Cu could be an indication that there is a need for an 
oxidative response, with addition of an extra contaminant resulting in 
glutathione being used for detoxification (Figueroa et al., 2020). There is 
clearly a need for further detailed investigation of anti-oxidant protec-
tion processes in both gills and the digestive gland. This would neces-
sitate assessing the overall role of the antioxidant enzymes like 
superoxide dismutase, catalase and glutathione peroxidase to counteract 
the formation of reactive oxygen species responsible for oxidative stress 
(Power and Sheehan, 1996). More generally, these observations support 
suggestions that the gills of mussels are more sensitive organs than the 
digestive gland to metal contaminants, at least following initial exposure 
(Butrimavičienė et al., 2019). 

The feeding rate of many aquatic organisms is affected by metabolic 
changes induced by exposure to contaminants, including metals 
(Sopinka et al., 2010; Moghimi et al., 2018; Vasconcelos et al., 2022), 
with such behavioural effects often providing an indicator of the 
harmful effects of contaminants in the environment (Sardo and Soares, 
2010). All of the exposures to M. galloprovincialis containing the highest 
Cu concentration (32 μg L− 1), and including those in the presence of 
added Pb, exhibited a significant reduction in clearance rate compared 
with the control (Fig. 2c). Similar results were found when M. edulis 
were exposed to 18, 32 and 50 μg L− 1 of Cu (Al-Subiai et al., 2011). By 
contrast, Pb itself had no measurable impact on clearance rate in our 
exposures (Fig. 2c). These observations suggest that M. galloprovincialis 
could be reallocating energy to detoxification processes, and specifically 
those involved in detoxifying Cu but not Pb. 

MVA is the first step for developing predictive models for the health 
of mussels (Moore, 2010; Moore et al., 2021; Sforzini et al., 2014) and 
can be used as a tool for integrating biomarker data into a “health status 
space”. The observations in this study support previous assertions that 
PCA can assist interpretation of multiple biomarker responses to envi-
ronmental stressors (Sforzini et al., 2017; 2018; Moore et al., 2021). The 
only biomarker, however, that can be used directly as an indicator of 
physiological health status is clearance rate, as it can be used as a proxy 
for scope for growth (van der Veer et al., 2006; Barillé et al., 2011). In 
the present study, clearance rate and comet assay for DNA damage were 
both highly significantly correlated with PC1 and PC2, and clearance 
rate and DNA damage, as inputs into the MVA, were both found to be 
influential biomarkers using the BIO-ENV routine (Fig. 4). The inference 
is that PC1 and PC2 for the two selected biomarkers (clearance rate and 
DNA damage) can be used as indicators of adverse effects status, as has 
been shown in previous investigations (Moore et al., 2021). Further-
more, DNA damage measured with the comet assay is likely indicative of 
oxidative cellular damage, and oxidative stress induced by the high Cu 
concentration is the most probable factor contributing to overall phys-
iological dysfunction (Moore et al., 2020, 2021). 

It must be emphasised that the use of PCA in this way only indicates 
associations and not mechanistic or causal links. In order to effectively 
model causative processes, PCA needs to be combined with directed 
mechanistic networks, comprising the cellular physiological and path-
ophysiological interactions within a complex dynamic system (Moore, 
2010; Moore et al., 2021). 

Given the strong correlation between PC1 and clearance rate and the 
known mechanistic links between feeding, physiological scope for 
growth and lysosomal function (i.e., endocytosis and intracellular 
digestion) as effective measures of health status, a preliminary concep-
tual model has been developed based on the current findings and pre-
viously published data on the cellular behaviour of copper and lead 
(Fig. 5; Moore et al., 2006, 2007; Gu et al., 2019). Copper will largely be 
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taken up by endocytosis of Cu bound to food particles in the digestive 
gland and accumulates in the lysosomal compartment where it is asso-
ciated with cytosolic and lysosomal metallothionein (Moore et al., 
2007). High Cu exposure will result in lysosomal overload and mem-
brane damage with resultant release of intra-lysosomal iron that gen-
erates reactive oxygen species (ROS) and leads to oxidative stress 
(Moore et al., 2007, 2021; Myers et al., 1993; Rizzollo et al., 2021). Lead 
is largely bound to glutathione in the cytosol but may also block the 
fusion of autophagosomes with secondary lysosomes (Gu et al., 2019; 
Fig. 5). By blocking this fusion of the vacuolar lysosomal system, Pb may 
potentially disrupt the normal autophagic recycling of redundant and 
damaged cellular components (e.g., oxidatively damaged membranes 
and proteins). There is, however, no evidence in this investigation that 
Pb is exacerbating copper toxicity, as might be expected from enhanced 
dysfunction of the autophagic process (Fig. 4). 

An increase in DNA damage may have a link to the decrease of 
clearance rate in mussels exposed to Cu. Such a connection has previ-
ously been demonstrated in mussels exposed to the pharmaceutical 
compound, cyclophosphamide (Canty et al., 2009). The mechanisms 
underpinning this link are currently unknown, but oxidative stress is 

probably a significant factor, as clearance rate and DNA damage were 
both shown to be influential biomarkers by the BIO-ENV routine. 
However, given that behavioural effects on ciliary action for feeding are 
probably directly controlled by the nervous system, it is now emerging 
that neurotoxicity is a frequent effect of genotoxic and chemothera-
peutic agents (Canty et al., 2009; Kisby et al., 2006; Rzeski et al., 2004). 

Although there are no known studies that have investigated a 
possible link between Pb and the behavioural and genotoxic parameters 
in aquatic invertebrates, previous singular exposures of Cu to mussels 
(M. edulis) have shown a correlation between clearance rate and DNA 
damage (Canty et al., 2009; Al-Subiai et al., 2011). Furthermore, Cu 
exposed to mussels (M. edulis) also indicated that there was a correlation 
between DNA damage (comet assay) and the glutathione concentration 
in the adductor muscle (Al-Subiai et al., 2011). These biomarkers indi-
cate a potential for a predictive approach to the exposure of Cu and Pb, 
either alone or in combination. However, because of the sparse number 
of biomarkers in the present study, and the very limited sample size for 
glutathione (n = 3), more patho-biological endpoints are needed to form 
a robust network for the impact of binary mixtures on mussels. 

Fig. 5. Conceptual model for the intracellular behaviour of Cu and Pb in mussel digestive gland columnar epithelial cells (i.e., digestive cells) based on current and 
previously published data (Moore et al., 2006, 2007; Gu et al., 2019). Copper, and perhaps Pb, will be taken up bound to food particles. Lead may also be taken up by 
diffusion across the cell membrane. Copper binds to metallothionein and is transferred to the lysosomal compartment, where accumulation will result in lysosomal 
overload, lysosomal membrane damage, release of lipofuscin bound iron and resultant generation of reactive oxygen species and oxidative stress. MT – metal-
lothionein; GSH – reduced glutathione; ROS – reactive oxygen species. 
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5. Conclusions 

Mixtures of contaminants have the potential to exert antagonistic, 
synergistic and additive effects on exposed organisms. With respect to 
the marine mussel, M. galloprovincialis, Cu and Pb, added singularly and 
in combination, were accumulated to greater extents in the gill and 
digestive gland than in the mantle, but, based on free ionic concentra-
tions, the accumulation of Pb was greater than that of Cu. However, 
while Cu was observed to act antagonistically towards Pb uptake, the 
presence of Pb did not appear to inhibit the uptake of Cu, effects we 
attribute to the greater range of membrane transporters available to the 
essential metal. Despite these interactions, however, the most significant 
impacts on M. galloprovincialis (a reduction in clearance rate and in-
crease in glutathione activity) were observed when Cu was added 
without Pb. Clearance rate, as an indicator of physiological status, was 
also found to be significantly and inversely correlated with DNA damage 
using data from all experimental treatments, suggesting that an increase 
in DNA damage may have either a direct or indirect impact on physio-
logical status. Although the precise mechanisms behind these links are 
currently unknown, MVA and PCA have facilitated the development of a 
preliminary conceptual model for behaviour and toxicity. 

This study highlights that single contaminant exposures at environ-
mentally relevant concentrations cannot always predict outcomes when 
contaminants co-exist. Further studies are required to elucidate the 
chemical and biological mechanisms involved in multiple contaminant 
exposures and to modify and inform guidelines and regulations. 
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Perić, L., Burić, P., 2019. The effect of copper and chlorpyrifos co-exposure on 
biomarkers in the marine mussel Mytilus galloprovincialis. Chemosphere 225, 
126–134. https://doi.org/10.1016/j.chemosphere.2019.03.003. 
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