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ABSTRACT 

Members of the meiobenthos have been used extensively to detenmine the effects of 
anthropogenic perturbation in marine systems (Coull & Chandler, 1992). Despite this, the 
meiofauna has been virtually excluded from freshwater pollution monitoring. This thesis 
aimed to address this research caveat, by evaluating the potential of stream meiofauna for 
monitoring metal-contamination. Meiofaunal communities were sampled from streams in 
SW England representing a gradient in metal contamination. Environmental variables in 
these streams were also measured to identify the important forcing agents structuring the 
stream benthos. Multivariate techniques demonstrated Cu, either alone or in combination 
with other environmental variables was of most importance in correlations with the 
composition of meiofaunal communities. Comparison with the macrofaunal data 
demonstrated that both components of the benthos responded in a similar way to metal 
contamination, although the meiofauna also highlighted other differences in water 
chemistry. The combination of meiofauna, macrofauna and temporary meiofauna in a 
combined metazoan community analysis gave the best discrimination of sites. Detection of 
metal-contamination was retained in meiofaunal data aggregated to the family level. 

The abundances of the harpacticoid copepod Bryocamptus zschokkei were consistently 
important in contributing to between-site differences in community structure. The 
harpacticoid, therefore was selected as an ecologically-relevant freshwater toxicity test for 
Cu. Laboratory experiments demonstrated that Cu had toxic effects on the survival and 
reproduction of Bryocamptus zschokkei. Although acute toxicity tests gave more rapid 
results, these effects on survival occurred at a higher Cu concentration than those in the 
chronic tests. Sub-lethal concentrations of Cu led to a reduction in the numbers of offspring 
per brood Animals with pre-exposure to chronic concentrations of Cu exhibited greater 
tolerance to this metal. 

In conclusion, more information may be gained by including the meiofauna, alongside the 
macrofauna, when monitoring the impact of contaminants on freshwater systems. To 
reduce the effort of processing samples it appears family level data could be used to detect 
metal-contamination. The novel use of B. zschokkei in laboratory tests, where it showed 
lethal and sub-lethal responses to Cu, demonstrated that this species may have much 
potential as an ecologically-relevant freshwater bioassay organism for this metal. The 
advantages of using meiofaunal species such as B. zschokkei as toxicity test organisms are 
discussed. 
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C H A P T E R 1 

General Introduction 



The principal objective of this thesis was to evaluate the use of the freshwater meiofauna 

for assessing the biological impact of metal contamination in streams in south west England. 

To achieve this objective the meiofaunal communities in metal-contaminated streams were 

described and correlations between stream meiofaunal and macrofaunal communities and 

metal contamination in the field were compared. In addition, the potential of the 

harpacticoid copepod Bryocaniptus zschokkei as a toxicity test organism for predicting the 

effects of Cu on the stream benthos was evaluated. As a prelude to these studies this 

chapter reviews the current knowledge of the effects of metals on stream biota, discusses 

the different approaches taken to assess water quality and considers the potential 

advantages of stream meiofauna as a monitor of trace metal contamination. 

1.1 The influence of trace metal contamiimtion on stream ecosystems 

1.1.1 Biological effects 

Trace metals are released continuously into freshwater ecosystems from natural processes 

such as the weathering of rocks and volcanoes (Kelly, 1988). At low concentrations, some 

trace metals [e.g. copper (Cu), zinc (Zn) and iron (Fe)] are essential for biological 

processes. For example, Cu is an important component of many metalloenzymes and 

respiratory pigments (Rebel et al., 1997). Increased concentration of metals has occurred in 

many river systems throughout the world in the last century due to industrial processes such 

as the processing of metal ores. This elevation of metal concentrations in running waters 

has had a profound and adverse effect on the biota (Kelly, 1988). As metals are 

conservative pollutants their impact will have long-term consequences on the aquatic 

environment. Aquatic organisms exposed to elevated trace metal concentrations often 

accumulate metals directly from the water or via their food (Abel, 1996). In some cases, 

where carnivores at the top of the food chain obtain their pollutant burden from ingestion, 

the potential exists for considerable biomagnification of the trace metal (Mason, 1996). As 



well as an increase in the concentration of metals measured in stream biota, many studies 

have demonstrated that large alterations to the structure of stream communities occur at 

high metal concentrations in the water (Winner et ai, 1980; Leland et al, 1989; Clement, 

1994; Gower et ai, 1994). Metal-contaminated streams often have a lower species richness 

and a lower abundance of biota compared with streams that are uncontaminated by trace 

metals. Exposure of many stream species to elevated trace metal concentrations in the 

laboratory results in mortality, lower fecundity or a decrease in the rate of development of 

the individual (Abel, 1996); such effects wi l l , ultimately, cause a reduction in population 

size. In contrast, some species appear to tolerate high metal concentrations [e,g. many 

species of Plecoptera (Kelly, 1988)] and these species replace the more sensitive species in 

metal-contaminated streams. This tolerance may occur by a decrease in the uptake of the 

metal by the organism, by an increase in its excretion, or by an increase in the production 

of substances, such as metallothionein, which binds with the metal rendering it biologically 

unavailable (Abel, 1996). 

Changes in the abundance and distribution of species, however, may not necessarily result 

from the direct effect of metal contamination. Rather, these changes may result from 

indirect trace metal effect (e.g. through the effect of the metal on other species). The effect 

of the metal on a species may be accentuated, or attenuated, depending upon the nature of 

interspecific relationships which exist in the environment. A reduction in the population 

size of a superior competitor may allow the population of a lesser competitor but a species 

more tolerant to the contaminant to increase. For example, after exposure to Cu of mixed 

cultures of Daphnia pulex and Daphnia magna, the population size of the previously 

dominant, D. pulex, was reduced and the more Cu tolerant cladoceran D. magna dominated 

(Leblanc, 1985). In another study, the vulnerability of two species of net-spinning 

caddisflies (Chimarra sp. and Hydropsyche morosa) to predaiion by the stonefiy 



Paragnetina media was significantly greater in experimental streams dosed with copper 

than in control streams (Clements et aL, 1989). 

There can also be a large amount of intraspecific variation of resistance to metal toxicity. 

Previous exposure of individuals to low metal concentrations can increase their metal 

tolerance, either through acclimatisation effects (where exposure to low concentrations of 

metals confer increased resistance to subsequent high-dose exposure) or through genetic 

adaptation (where the selection of tolerant individuals within a population has occurred 

through exposure). Physiological acclimation of individuals of Gammarus pulex to 

cadmium after pre-exposure to sub-lethal concentrations of cadmium and zinc in the 

laboratory was reported by Stuhlbacher and Maltby (1992). An example of genetic 

adaptation was shown by Brown (1977a) who reported that individuals of the isopod 

crustacean Asellus meridanus from metal-polluted streams were more resistant to Cu and 

lead than individuals from clean streams. This resistance persisted in to the F2 generation 

after Asellus meridanus was reared in clean water, demonstrating that the resistance to Cu 

had a genetic basis. Different life stages within ones species can also vary in their 

susceptibility to the toxic effects of metals; generally, the early life stages are often more 

vulnerable to toxicity than are the later stages. For example, the toxicity of Cu decreased in 

the midge larvae Chironomus tentans in successive developmental stages (Gauss ei al., 

1985). 

1.1.2 Metal bioavailability 

In aquatic systems, trace metals are rarely encountered in isolation, and hence, it is often 

difficult to determine which metals, i f any, are of primary importance in influencing 

components of the biota. Further complications arise due to the fact that there may be 

interactive effects amongst metals and the toxicity of any one metal can be influenced by 



the presence of others. Three types of interactions amongst trace metals have been 

observed. Firstly, there may be an additive effect, whereby the combined effect of the 

metals is equal to the sum of the individual metal toxicities. For example, the avoidance 

behaviour of the ohgochaetes Tubifex tubifex and Limnodrilus hoffmeisteh in laboratory 

trials increased in proportion to the combined effects of sub-lethal doses of Cu and Zn 

(McMurty, 1984). Secondly, a synergistic interaction may occur, whereby the combined 

effect of the metals is more than the sum of individual metal effects. For example, 'more-

than-additionaP toxicity was reported by Borgman (1980) for the combined effect of Zn 

and eirsenic on the biomass production rates of natural assemblages of freshwater copepods. 

Finally, the metals may interfere with each other leading to an antagonistic effect, where by 

the combined effect of the metals is less than the sum of the individual metal effects. This 

type of effect was found for the combined lethal effect of Zn and Cd on the freshwater 

prawn Paratya lasmaniensis (Thorp & Lake, 1973/ 

The bioavailability and, hence, the toxicity of trace metals to aquatic organisms is also 

affected by their chemical form (specialion). The 96-h LC50 values for the fathead minnow, 

Pimephales promelus, for Cu ranged over two to three orders of magnitude depending on 

the copper species (Pagenhopf ei al., 1974). The cupric ion was most toxic, followed by 

copper (II) hydroxide. Copper carbonate, copper bicarbonate and copper (I) hydroxide 

contributed little to the toxic action of Cu (Pagenhopf et a/., 1974). Speciation is influenced 

by environmental variables and it is important that those variables which cause speciation 

are measured alongside the trace metals. The modification of metal toxicity by pH is, 

perhaps, one of the most well-cited examples of this topic. The toxicity of metals increases 

generally as the pH decreases (as high acidity brings many metals into solution) (Gerhardt, 

1993). For example, at low pH, Al is in a soluble monomeric form (Hall et a/., 1987), 

which is highly toxic to invertebrates and fish (Ormerod e/ al., 1987). In some cases. 



however, a decrease in pH can have a mitigating effect on metal toxicity (due to H+ ions 

interfering with the uptake of metal ions) (Campbell & Stokes, 1985). This latter 

occurrence has been cited frequently for copper and zinc toxicity to fish (Howarth & 

Sprague, 1978; Cusimano et al, 1986) and invertebrates (Borgman 1983), 

Dissolved organic matter and water hardness have important influences on metal 

speciation. Dissolved organic matter (humic and fulvic acids) has a high affinity with 

metals and its presence is important for complexing Cu in freshwaters (Spear & Pierce, 

1979). Mantoura et al. (1978) found 90% of the Cu in fresh water was complexed by 

humic ligands. Once metal ions have formed complexes with these organic agents, they are 

generally unavailable to aquatic organisms. For example, the toxic action of monomeric Al 

on the stream benlhic macroinvertebrate community structure in streams in Sweden was 

appreciably reduced by chelation with DOM (Kullberg, 1992). This reported modification 

of the stream community may also have been influenced by pH, as the amount of metals in 

humic complexes reduce under acidic conditions in streams (Kullberg, 1992). In waters of 

high hardness, metal ions form inorganic complexes which are of a low toxicity. Copper 

was four to six times more toxic to Gammarus pulex in soft than in hard water 

(Stephenson, 1983), and Howarth & Sprague (1978) demonstrated that the lethal toxicity of 

Cu to the rainbow trout, Salmo gairdnerii, decreased with increasing hardness. 

The physical variables of flow and temperature will also influence the impact of metal 

contamination on the biota. At present, the exact relationship between metal concentrations 

and discharge is unclear, although some workers have recorded increased metal 

concentrations after periods of high flow, due to the greater scouring action resuspending 

bottom sediments (Williams ei al., 1973; Brown, 1977b). Conversely, a decrease in 

dissolved metal concentrations occurred, due to dilution of the metals, at high flows 



(Johnson & Thornton, 1987). With increases in temperature, the time taken for organisms 

to react to a given metal concentration generally reduces. The properties of the metal itself 

may be altered, resulting in an increase in its soluble, bioavailable phase (Newman & 

Mcintosh, 1991), whilst an influence on the rate of metabolic processes may increase the 

uptake of the metal. 

1.1.3 Direct effects of environmental variables (other than trace metals) on the stream 

biota 

When assessing the impacts of trace metals on stream communities, it is important to 

understand that physicochemical variables other than the metals themselves can also have a 

profound effect on stream biota. The effects of pH on streams have been documented 

extensively (Steinberg & Wright, 1994). Field and laboratory experiments have established 

an increase in mortality of stream benthic invertebrates with increasing acidity (Burton et 

al., 1985; Willoughby & Mappin, 1988). This mortality has implications for the diversity 

of stream invertebrates (Wealherly & Ormerod, 1987; Rundle & Hildrew, 1990). Water 

hardness has also been linked to the community structure and composition of stream 

macroinvertebrate communities, and higher diversities are found in streams of high water 

hardness (Ormerod & Edwards, 1987/ 

There is a wealth of literature on the effect of flow on stream biota and its role in shaping 

community structure (Hildrew & Giller, 1995; Allan, 1995). Temperature has a profound 

influence on stream biota by affecting the rate of development and timing of their life 

cycles (Allan, 1995). (Refer to Chapters 2 and 3 for more detailed discussion of the effects 

of environmental variables on stream biota.) 



1.2 The use of stream biota for monitoring water quality 

1.2.1 Community structure as a monitoring tool 

Using the biota as a monitor of water quality is often preferable to using chemical 

measurements alone, as changes in the abundance and presence of biota wi l l occur as a 

result of episodic contamination events and low-ievel contamination. Thereby, the biota 

reflect the total conditions found in the stream over a period of time. The ideal approach to 

assessing ecosystem health is to use the biota at the community level (Rosenberg & Resh, 

1992). The response of the community integrates the effects of competition, plant-

herbivore and predator-prey interactions, and the influence of environmental variables. 

Ideally, the entire aquatic community should be studied to assess water quality. This 

approach is, however, impractical as it requires a large degree of expertise and a great deal 

of time. Therefore, regulators usually focus on one particular component of the ecosystem. 

Benthic macroinvertebrates are the most commonly-used group of organisms to assess 

stream water quality and they have many attributes which make them suitable monitoring 

tools (Rosenberg & Resh, 1992). Firstly, they are ubiquitous and, therefore, can be affected 

by environmental perturbations in many different types of freshwater systems. Secondly, 

macroinvertebrates are relatively sedentary and, therefore, respond to the integrated 

environmental conditions of the local area. Thirdly, they represent a diverse range of 

trophic levels and feeding types and, hence, offer a spectrum of responses to 

contamination. The probability that at least some of these organisms will react to a 

particular change in environmental conditions is, therefore, high. Finally, sampling is also 

relatively easy and only simple, inexpensive equipment is required for collection. 

1.2.2.1 Univariate measures of community response 

Different techniques have been used to assess between-site differences in invertebrate 

community structure. Univariate measures, such as diversity and biotic indices, have been 



implemented frequently to monitor freshwater systems (Cairns et al, 1968; Wilhm & 

Dorris, 1968; Norris et a/., 1982; Roline, 1988; Camargo, 1993; Schmidtz & Nadel, 1995; 

Joshi et al, 1995). This high use of univariate methods probably stems from the fact that 

they are expressed in a single mathematical expression, thereby, allowing a value 

judgement to be placed on the community. With such diversity indices, a low diversity is 

supposedly indicative of high contamination. Biological information is lost, however, when 

using diversity indices, as species do not retain their identities in the calculations and the 

differing levels of tolerance among taxa is ignored. The response of diversity indices to 

contamination is also not necessarily monotonic and, in some cases, moderate pollution 

increases the abundance and diversity of biota (Pindar & Farr, 1987). Biotic indices were 

developed to retain information on relative species tolerances. Most of the biotic indices 

currently under use were developed to measure organic pollution. In their simplest form, 

these indices are ratios of tolerant to sensitive species; for example, the 'Asellus : 

Gammarus' index developed by Watton & Hawkes (1984). Most biotic indices involve 

assigning each species a value depending on its sensitivity to a particular pollutant, and rely 

solely on presence and absence data or on weighting the species present according to their 

abundance. One of the first indices, the Trent Biotic Index (TBI), was developed in the 

UK, originally for use in the Trent River Authority area (Woodweis, 1964). In the TBI, 

rankings of sites or systems were made according to the presence or absence of six groups 

of key organisms. In Scotland, a variation of the TBI (Chandler's Biotic Score) was 

developed and involved dividing the fauna into key indicator groups, but required 

quantitative data and a higher degree of taxonomic expertise (Chandler, 1970). In 1979, the 

Biological Monitoring Working Party (BMWP) score was introduced as a standardised 

biotic system for assessing biological quality of rivers (ISO, 1979). This index requires 

family-level identification, which saves time, reduces the variability due to 

misidentification and allows a wider geographical application. Finally, to avoid the score 



being influenced disproportionately by the presence/absence of particular taxa, depending 

on the sampling effort, the BMWP score can be divided by the number of scoring taxa in 

the sample to give an average score per taxon (ASPT) (Armitage et al., 1983). 

As the TBI, Chandler and BMWP indices were developed specifically to measure 

responses to organic pollution they may be unsuitable for detecting other forms of 

pollution. Organisms considered to be intolerant of organic pollution are sometimes very 

tolerant to specific toxicants and vice versa. Using acute toxicity tests, Slooff (1983) 

compared the relative tolerances (lethal responses) of 12 invertebrates from various 

taxonomic groups to 15 chemicals (including both metals and organic compounds) and a 

mixture of organics concentrated from River Rhine water. The results of the bioassays 

demonstrated that the toxicity of chemicals to invertebrates varies widely with the test 

species and that the tolerances of macroinvertebrates are species-specific. 

At present, there are no biotic indices in common use for forms of pollution other than 

organic. Some information, however, exists on the tolerance of benthic macroinvertebrates 

to trace metals, with a decrease in metal tolerance generally occurring fi-om chironomids, 

through caddis flies and stoneflies, to mayflies (Winner et al., 1980; Clements et al, 1988). 

This scheme is highly generalised and exceptions to this pattern have been found. For 

example, tanytarsinid chironomids, were as sensitive to metals as mayflies in experimental 

streams and field biomonitoring at the Clinch River (USA) (Clements et al., 1988, 1989). 

An Index of Community Sensitivity (ICS), based on sensitivity and relative abundance of 

dominant taxa, was, however, developed for the Clinch River system (Clements et al., 

1992). The ICS was highly sensitive to metals and distinguished clean and impacted sites 

within the study area, although, it was advised that the index should be restricted to local 

use, as the sensitivity values were obtained from a single set of experiments, exposing a 

10 



specific community of benthic invertebrates to Cu for ten days. Other regions, containing 

very different species assemblages, may respond differently and further surveys are 

required to assess the response of invertebrate communities in other streams (Clements et 

al., 1989). Another difficulty of using a biotic index to monitor trace metal contamination 

in streams is that metal effluent is often a mixture of metals that wi l l result in a complex 

response. Finding a consistent gradient in response to metal contamination is, therefore, 

difficult. Factors, such as substratum composition, flow regime and nutrient concentrations 

are also likely to influence invertebrate distribution, and would potentially confound 

investigations of the effects of metals on stream fauna (LaPoint et al., 1984). One way of 

identifying the contribution of these variables to faunal distribution is by using multivariate 

analysis (Resh & Jackson , 1992). 

1.2.2.2 Multivariate analyses 

With the advancement of information technology, sophisticated multivariate statistical 

approaches 2ire being used more frequently for the biological assessment of water quality 

(Norris & Georges, 1993; Rutt et al., 1993; Cower et al., 1994). Multivariate techniques 

have the advantage that they take into account the identity of each species, not just the 

distribution of individuals amongst species. So, unlike diversity indices, subtle changes in 

species composition across sites are not missed by the need to summarise the combined 

characters of the site as a single value. As multivariate measures contain more biological 

information, they are often more sensitive and better ai discrimination between sites of 

differing levels of pollution than univariate measures (Norris et al., 1982; Warwick & 

Clarke, 1991; Ferryman, 1996). Cao et ai (1996) compared the abilities of biotic indices, 

and multivariate and diversity measures to detect the change of the macroinvertebrate 

community along a gradient of pollution caused by sewage effiuent in the River Trent 

system. These authors found that multivariate analyses clearly illustrated differences in 
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community structure along the pollution gradient, whereas none of the biotic indices were 

sensitive over the whole range of water quality (Cao et al., 1996); neither the Simpson's, 

Shannon's or the Evenness Indices demonstrated the effects of pollution on 

macroinvertebrate communities, whilst the Margalefs index was depressed only at heavily 

polluted sites (as was species richness) (Cao et al., 1996). 

Multivariate statistical techniques have also been used in the development of predictive 

models for assessing water quality. In Britain, the River InVertebrate Prediction And 

Classification Scheme (RIVPACS) is an example of one such model. It was developed by 

the Institute of Freshwater Ecology in collaboration with the water industries (Wright et al., 

1984), and is based on a survey of invertebrates and physicochemistry at 438 'pristine' 

streams. TWINSPAN (Hil l , 1979) classification was used to classify the running waters on 

the basis of their macroinvertebrate fauna. Multiple discriminant analysis was then used to 

identify a number of key factors which influenced the observed pattern of distribution of 

the taxa. It was, thereby, possible to predict the probability with which a given species or 

family wi l l be captured at a particular site using environmental data. The predicted target 

assemblage of macroinvertebrates can be used to generate expected BMWP or ASPT 

scores against which to assess the results of field surveys. The RIVPACS is now in use by 

the Environment Agency to assist in the analysis and interpretation of survey data. 

1.3 Single species as monitoring tools 

Although the best assessment of the effect of a contaminant on the biota is by direct 

monitoring of the community, there are many cases where this is not possible. Regulators 

are often required to predict the effects of metals (and other anthropogenic inputs) on a 

freshwater system prior to the introduction of the chemical. For example, compliance with 

a toxicity standard may be a legal requirement to obtain consent to discharge an effluent, 
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while identification of the more toxic components of complex effluents may be necessary 

in order to improve treatment processes. As the effects of thousands of compounds and 

effluents require screening, risk assessment predictions need to be quick, easy and 

inexpensive. Thus, single species toxicity tests on several, or even just one organism, 

provide a means of assessing the toxicity of chemicals before they are discharged into 

freshwater systems. A major assumption with these toxicity tests is that the response of the 

organism used is indicative of the response of the resident aquatic biota in the receiving 

water. 

1.3.1 Choice of test organism 

Many of the early toxicity tests were undertaken on fish (Lloyd, 1972), mainly because fish 

attracted public and political interest. It soon became apparent, however, that water quality 

standards set using fish were inappropriate for protecting more sensitive species in the 

system and, hence the 'ecological integrity' of ecosystems. Thus, interest developed in 

performing tests on other components of the community, including invertebrates. 

Important criteria in the choice of test organism, were recommended by the U.S. 

Environmental Protection Agency (USEPA, 1979), included that the organism should: 

1) represent an ecologically or economically important group, 

2) be widely available, 

3) be easily maintained, 

4) be sensitive to chemicals, 

5) have a response that is easily identifiable, 

6) have a response that is comparable to those of indigenous species, and 

7) have a well known physiology, taxonomy and ecology. 
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Few, i f any species, meet all these criteria and the choice of organisms used in bioassays 

has been heavily criticised (Cairns & Pratts, 1989; Gray, 1989; Maltby & Calow, 1989). 

Test organisms are often chosen primarily because of their availability and robustness in 

laboratory cultures, rather than their ability to indicate subtle ecological consequences of 

contamination (Gray, 1989). This is, in part, due to the necessity of having validated, 

standardised test procedures that allow a comparison between laboratories, which has often 

limited the choice of organisms to groups such as cladocerans (e.g. Daphnia) and fathead 

minnows {Pimephales promelus). A comparison of toxicity data from different laboratories 

may require a fixed procedure, but standardisation is overly restrictive in predicting the 

effects of a chemical on the community in a specific receiving system. For example, 

Daphnia spp. would not be the appropriate species to predict the effects of contaminants on 

freshwater streams, as this genus is planktonic and usually does not occur in flowing waters 

(Fitter & Manuel, 1995). Although bioassays should ideally be rapid, simple and 

inexpensive, one of the main criterion should, perhaps, be that the species used is 

ecologically relevant to the system under study (See Chapter 5). 

1.3.2 Sub-lethal versus lethal toxicity tests 

Another criticism of many bioassays has been the predominance of lethal rather than sub­

lethal toxicity tests (Birge & Black, 1985; Richardson & Martin, 1994; Forbes & Forbes, 

1994). Maltby & Calow (1989) found that from 1979 to 1987, 80% of toxicity tests used 

survival as a criterion of toxicity. The response of field populations, however. Is likely to 

first occur at sub-lethal concentrations of contamination. Any toxic effect on the 

physiology or behaviour of organisms is of significance i f it affects growth, reproduction, 

mortality or dispersal; factors which will influence the abundance and distribution of the 

species. Thus, sublethal responses to a pollutant, such as physiological responses [for 

example, changes in respiration rate of oligochaetes (Chapman, 1987)], behavioural 
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responses [such as grazing rates of the esluarine harpacticoid Schizopera knabeni (Lotufo, 

1997)], and changes in growth rates [for example, the effect of Cu on the growth of 

Tubifex tubifex (Wiederholm et al., 1987)], have been used to detect the effects of 

contaminants. I f an ultimate aim is to predict the effects of contaminants on the population 

dynamics of individual species, perhaps the best criteria is to look at the chronic effects on 

development and reproduction together with survivorship values, as these variables 

characterise the most ecologically relevant sub lethal endpoints (Transpurger & Drews, 

1996). 

Even so, the measure of response in sub-lethal toxicity tests may be time consuming and it 

is important to develop, and evaluate, rapid methods for measuring sub-lethal toxicity. 

Analysis of the results of many partial and complete life-cycle tests demonstrated that, in 

the majority of cases, the early life stages are the most sensitive stage (Macek & Sleigh, 

1977; McK-im, 1977). The 'no observable effect' concentration, based on the embryo-larval 

stages, generally lies very close to the value obtained when the whole life cycle is 

considered (Macek & Sleigh, 1977; McICim, 1977). Thus, rapid and cost-effective 

alternatives to established chronic toxicity tests have focused on the development of test 

methods using sensitive early life stages (Mount & Norberg, 1984; Norberg & Mount, 

1985). Caution using these tests is still required, however, as there are concerns that 

relatively short-term exposure durations may not reflect accurately biological effects due to 

prolonged exposure to toxicants (Suter, 1990; Chapter 5). 

1.3.3 Linking different levels of biological organisation 

In recent years, there has been a growing concern over the lack of laboratory-lo-field 

verification of toxicity tests by regulators (Cairns & Pratt, 1989; Maltby & Calow, 1989; 

Richardson & Martin, 1994). The results of studies that have tried to verify the predictions 
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made in the laboratory with effects in the field have shown that, in some cases, 

extrapolation fi-om bioassays in the laboratory to the field are accurate, whereas in other 

cases they are misleading (Caims & Pratt, 1989). An alternative approach suggested by 

Gray (1989), was to select ecologically sensitive species objectively from a pollution 

gradient. 

1.4 Stream meiofauna: description and potential as biomonitors 

Stream meiofauna are defined as those animals which pass through a 500 ^im mesh sieve 

and are retained on a 63 jim sieve (Giere, 1993). Typically, stream meiofaunal 

communities are dominated by harpacticoid and cyclopoid copepods, nematodes and 

rotifers; cladocerans, ostracods, hydrachnellid and halacarid mites, tardigrads and 

gastrotrichs may also be abundant, although the proportions and abundances of these taxa 

vary (Palmer, 1990; Rundle & Hildrew, 1990; Rundle & Ormerod, 1991; Suren, 1992; 

Borchardt & Bott, 1995). Many surveys of the stream benthos, however, have failed to 

acknowledge the significance of the meiofauna due to the mesh o f most sampling nets 

being too coarse to retain animals of their size. Stream meiofauna were also considered, 

until recently, as interstitial species of the hyporheic region £ind meiofauna found in the 

epibenthos were thought to be chance encounters of these interstitial species (Ham, 1982; 

Shiozowa, 1985). Thus, knowledge of the biology of freshwater meiofauna has been 

obtained mostly through groundwater and lentic studies. Only of late have quantitative 

studies of the distribution of the stream meiobenthos taken place. Even so, the meiofauna 

of streams is diverse and abundant. For example, of the 194 species of fish and benthic 

invertebrates recorded in surveys of streams in southern England a third were found to be 

microarthropods and these are only a small component of the meiofauna (Townsend et al., 

1983; Rundle& Hildrew, 1990). 
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Figure 1.1 Stream meiofauna: A) Order Harpacticoidea (Length = 0.2-2.5 mm), B) Order 
Cyclopoidea (Length =0.5-3 mm), C ) Class Ciadocera (Length = 0.3-1.3 mm), D) Class 
Ostracoda (Length = 0.2-7 nun), E ) Phylum Nematoda (Length = 1-3 mm), F) Family 
Hydrachnellae (Length = 0.5-2 mm), G) Family Halacaridae (Length = 0.2-1 mm). 
(Figure adapted from Fitter & Manuel, 1995) 
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The microcrustaceans are particularly abundant in running waters. For example, more 

microcruslaceans, were found within a stream bed than within the plankton of a nearby 

mountain lake in Colorado (Pennak & Ward, 1986). Of the microcrustaceans, harpacticoid 

and cyclopoid copepods are often the dominant groups in the stream benthos. Stream 

harpacticoid copepods are highly adapted for burrowing within the interstitial environment, 

and have thin, rather linear bodies, minute legs and short, non-protruding appendages, 

whilst uniform segmentation makes them highly flexible (Fig. I . I ) . At first harpacticoids 

were thought to feed on the detritus within the sediment, however, recent marine studies 

have shown some harpacticoids selectively graze on single food particles (diatom cells, 

bacteria and protozoans) (Marcotte 1983) and it appears that this may also to be the case 

for stream harpacticoids (Perlmutter & Meyer, 1991). Most cyclopoid copepods live 

epibenthically or among macrophytes (Giere, 1993), Besides being smaller than planktonic 

cyclopoids, many also have fewer eggs (Fig. 1.1) and some have even lost the typical egg 

sacs, carrying their eggs on long filaments (e.g. Speocyclops and Graeieriella) (Giere, 

1993). Most stream cyclopoids are predacious carnivores. 

Cladoceran and ostracod crustaceans can also be abundant in streams. Most benthic 

cladocerans never exceed 1 mm body length unlike the planktonic cladocerans which often 

exceed this meiobenthic size. Meiobenthic cladocerans dig through the sediment using 

their large, muscular antennae and thoracic appendages (Fig. 1.1) and feed on algae and 

detrital particles. Meiobenthic ostracods, also adapted for burrowing within the sediment, 

have shells which are laterally compressed, or ventrally flattened, while they have strong 

legs armed with claw-like setae used to burrow through the sediment. They also have a 

complex of spinneret glands on the second antennae that can release adhesive fibres from 

openings in long setae; these fibres can be used to cling onto particles. Oslracods feed on 

the bacteria and detritus within the sediment. 
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Aquatic mites also frequent the stream benthos (Fig 1.1). The larval phase o f hydrachnellid 

mites are parasites o f adult insects. Halacarid mites are adapted to l i fe in exposed and 

agitated coarse substrata, wi th their roundish bodies armoured wi th solid plates and their 

legs pressed to the body in depressions o f the cuticle. Both groups o f mites are carnivorous 

with piercing mouthparls. Nematodes (Fig 1.1) can also reach high abundances in streams 

(Palmer, 1990). They are able to move through the sediment by characteristic dorso-ventral 

wriggling movements. Most nematode species specialise on one type o f food wi th their 

mouthparts being adapted to deal wi th specific food items. 

Thus, stream meiofauna species have several features that enable them to cope wi th high 

flows found in streams. Meiofaunal communities are disturbed by sudden floods, but 

faunal reduction is compensated for relatively rapidly ( in a few weeks) possibly through 

transport from regions higher up the river, but also f rom the refiige areas represented by 

debris accumulation (Giere, 1993). Recent investigations have demonstrated that 

meiofaunal distribution is linked to stream physicochemistry. Flow, temperature and p H , 

amongst other factors are important in determining stream meiofaunal community structure 

(see Chapter 3 for further discussion). 

Although the presence o f lotic meiofauna has been recorded only occasionally, their high 

densities (e.g. Zul l in i & Ricci, 1980; Shiozawa, 1985) and high production values 

(O'Doherty, 1985) imply that these animals contribute significantly to energy dynamics in 

streams. The detritivorous harpaclicoid copepod, Attheyella illinoisensis, has been shown 

to efTectively remove accumulated organic material, fungi and bacteria f rom detritus and 

can enhance production in deiritally-associated bacteria (Perlmutter & Meyer, 1991). Thus, 

harpacticoids may alter substantially the quality o f detritus, influencing the rate o f its 
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consumption by larger stream invertebrates. In such a way, harpacticoids may play a 

significant role in the detrital dynamics o f streams. Furthermore, meiofaunal taxa such as 

copepods and nematodes have no emergent stages and, consequently, most carbon 

assimilated and not respired by these animals w i l l remain in the stream, unlike most 

macroinvertebrate insects which leave the stream on becoming adults. Thus, the meiofauna 

is likely to have a significant role in stream ecosystem functioning (Meyer et al., 1988; 

Rundle, 1988) and may be important in lotic food webs as consumers o f detritus and 

microbes, contributing to the transfer o f energy f rom microbes to macrofauna (Lancaster & 

Robertson, 1995). Meiofauna may also be important prey o f many stream biota, and have 

frequently been found to be present in the diet o f fish such as cyprinids and salmonids 

(Rundle & Hildrew, 1992) and predatory invertebrates such as caddis f l ies, alderflies and 

tanypoid chironomids (Hildrew et al., 1985; Lancaster and Robertson, 1995). 

In marine ecosystems, there is growing interest in using the benthic meiofauna as a monitor 

o f pollution (Moore & Bett, 1989; Coull & Chandler, 1992). As wi th the macrofauna, the 

meiofauna are ubiquitous, sedentary, relatively easy to sample, and represent a diverse 

range o f trophic levels and feeding types (Section 1.2.1). Marine meiofaunal communities 

are sensitive to a wide range o f contaminants including organic pollut ion (Keller, 1985; 

Sanduli & de Nicola, 1991), crude oils (Kontogiannis & Bamett, 1973; Ustach, 1979). 

trace metals (Hoppeneit & Sperling, 1977; Brand el al., 1986) and pesticides (Bengtsson, 

1978; Bengtsson & Bergstrom, 1987). Several advantages o f using marine meiofauna, 

rather than macrofauna, as monitors o f contamination has been suggested and these may 

apply also to the freshwater meiofauna (Heip, 1980; Hicks, 1991; Warwick, 1993). Firstly, 

meiofaunal species have short generation cycles and rapid growth rates, thus, measurable 

structural changes in the community w i l l be measurable in a shorter time than 

macroinvertebraies. Secondly, meiofaunal species remain in the benthos throughout their 

20 



entire l i fe cycles and are, therefore, closely linked to the dynamics o f this environment. 

Many stream macrofauna species, on the other hand, have a terrestrial adult stage which 

results in episodic recruitment to the stream benthos being dependent on factors other than 

those wi th in the locality o f the benthos. Finally, the meiobenthic fauna has an intimate 

association, and dependency, on the sedimentary environment. As the sediment is the sink 

for many contaminants, the meiobenthos are impacted directly by the long-term 

consequences o f contamination. 

Recently, studies o f the effects o f contaminants on the marine benthos have included both 

the macrofauna and meiofauna (Read ei ai, 1983; Austen et ai, 1989; Somerfield et al., 

1995). By including the meiofauna, a more comprehensive comparison between sites can 

be made due to the more diverse assemblage o f organisms (Newell et a/., 1990a). 

Meiofauna and macrofauna represent two distinct components o f the benthos, wi th a 

number o f differentiating features beside size (e.g. they have short generation times and 

usually complete their entire l ife cycle in the benthos). Therefore, macrofaunal and 

meiofaunal communities may respond differently to contamination, and studies have found 

this to be the case (Austen et al., 1989; Somerfield et al., 1994). (Refer to Chapter 4 for a 

more detailed comparison o f the responses o f macrofaunal and meiofaunal communities to 

pollution.) 

Evidence suggests that the freshwater meiofaunal community structure has potential as a 

monitor o f anthropogenic inputs. For example, the meiobenthos responded in a comparable 

way to the macrobenthos when exposed to industrial and municipal effluents in Lake 

Vanajavesi, southern Finland (Kansanin, 1981). The diversity o f both faunal components 

increased downstream o f the point source o f industrial discharge (Kansanin, 1981). The 

hyporheic meiobenthos o f a small German mountain stream was influenced by a discharge 
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o f domestic and brewery effluent (Pieper, 1976). In the vicini ty o f the outfal l , the fauna was 

impoverished, but at downstream stations, the normal community composition was 

restored (Pieper, 1976). Stream meiofaunal communities responded to the effects o f 

acidification, and very distinct communities were found at sites o f different pH in streams 

in mid-Wales (Rundle & Hildrew, 1990) and in the Ashdown Forest, England (Rundle & 

Ormerod, 1991). Lower abundances o f some meiofaunal groups (e.g. harpacticoid 

copepods) appeared to be linked to higher levels o f A I in the streams in mid-Wales (Rundle 

& Ormerod, 1991), suggesting that some stream meiofaunal species are sensitive lo 

elevated concentrations o f this metal. 

Stream meiofauna may also show potential as toxicity test organisms. Freshwater 

nematodes are increasingly being used as toxicity test organisms using lethal, sub-lethal 

and genetic endpoints (Samiloff, 1987; Bongers & Van de Haar, 1990; Transpurger et a/., 

1995). Marine nematodes and copepods have also been used frequently as toxicity test 

organisms, and are highly sensitive to contaminants (Coull & Chandler, 1992). For 

example, the marine copepod Tisbe battagliai, was more sensitive to Cu and hexavaleni 

chromium than the standard toxicity test organism, the mysid crustacean Mysidopsis bahia. 

(Hutchinson et al., 1994). The high fecundity, fast development rates and short generation 

times also make meiofauna excellent potential test organisms for assessing contaminant 

effects on reproduction. Results o f these tests are obtained quickly and cost effectively, and 

sub-lethal endpoints are more sensitive indicators o f toxicity than mortality (Lotufo, 1997; 

Will iams, 1997). 
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1.5 Outline of the thesis 

It is apparent that freshwater meiofauna may have potential as a biomonitor o f water 

quality. Within this context this thesis aims to investigate the potential o f meiofauna at the 

community and individual level as a monitor o f metal-contamination. Chapter 2 describes 

the physicochemistry o f twelve sites in streams representing a gradient o f Cu 

contamination. The environmental variables in these streams were measured to identify the 

important forcing agents structuring the meiofaunal community. In Chapter 3 the 

meiofaunal communities found in these streams are described and multivariate analyses 

were used to establish whether differences in metal concentrations or other environmental 

variables explained the inter-site differences in meiofaunal communities. In Chapter 4 

correlations between subsets o f the benthic invertebrate community and environmental 

variables are compared across a metal contamination gradient, wi th a view to using these 

faunal components as monitors o f metal contamination. Univariate measures, the Index o f 

Multivariate dispersion and higher taxonomic levels than species, for both macrofaunal and 

meiofaunal communities, were also used to examine the pattern o f perceived impact 

(Chapter 4). 

The harpacticoid copepod Bryocamptus zschokkei was sensitive to the subtle differences in 

Cu contamination measured at the sites representing a gradient o f metal contamination 

(Chapter 3). It was, thereby, selected as a potential toxicity test organism for Cu. Chapter 5 

describes laboratory experiments assessing the toxic effects o f Cu on the survival, 

development and fecundity o f B. zschokkei. The acute toxic effects o f Cu on individuals 

from contaminated and reference sites were compared to assess whether f ield populations 

had developed tolerance to Cu (Chapter 5). Chapter 6 provides a general discussion o f the 

potential o f meiofauna at the community and individual level as a monitor o f metal 

contamination. Where appropriate, recommendations are made for future research. 
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C H A P T E R 2 

Stream physicochemistry 
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2.1 Introduction 

It is well established that the composition o f stream communities is influenced strongly by 

physical and chemical factors (Al lan, 1995). O f the physical variables, water velocity has 

been identified as one o f the most significant influences on meio- and macrobenthic 

communities in running waters. Previous studies have shown that f l o w causes a patchy 

distribution in the abundance o f stream macroinvertebrates (Hildrew & Giller, 1994), while 

Palmer (1990) reported a reduced abundance o f meiofaunal oligochaetes, rotifers and 

copepods after floods in a North American creek. Temperature is another highly influential 

variable which impacts on stream communities. For example, seasonal variation in 

temperature is critical to the successful completion o f the l ife cycle o f aquatic organisms, 

affecting the t iming o f hatching and the rate o f growth (Hynes, 1970). Many studies that 

have shown high temperatures w i l l increase the rate o f development o f stream biota (Allan, 

1995), resulting in increased abundances o f the fauna. 

Stream chemistry is also an important factor shaping benthic communities. Ormerod & 

Edwards (1987) recorded higher numbers o f macrofaunal species in streams o f high rather 

than low water hardness. Increased concentrations o f dissolved organic carbon (DOC) have 

a direct effect on primary production and, therefore, on the abundance and diversity o f the 

benthic community (Allan, 1995). Stream chemistry, which has been altered due to 

anthropogenic inputs, often has the most dramatic impact on stream biota. For example, 

naturally acidic streams seem to be less affected than those acidified by atmospheric 

acidification (Allan, 1995). The deleterious effect o f acidic stream waters is primarily in 

terms o f reducing the number o f species and individuals o f both the macrofaunai 

(Weatherly & Ormerod, 1987) and meiofaunal communities (Rundle & Hildrew, 1990). O f 

the other anthropogenic inputs which have had impacts on stream biota, trace metal 

contamination is one o f the most severe. Field studies have shown that trace metal 
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contamination often reduces the abundance and species richness o f stream 

macroinvertebrates, and changes the proportional abundance o f different groups (Wi l l i s , 

1985; Clements et ai, 1988; Kiflfney & Clements, 1994). There is little information 

available on the effect o f trace metal pollution on stream meiofauna (Chapter 3). 

In the case o f aquatic ecosystems impacted by trace metals, water toxicity w i l l depend not 

only upon the concentrations and combinations o f the trace metals present, but also on the 

interactions o f metals wi th other environmental variables that may influence metal toxicity 

(Chapter 1). Therefore, in the present study, it was considered important to measure these 

environmental variables. As the meiofauna tend to live interstilially, metal concentrations 

in the interstitial waters were measured at each site as other workers have reported 

differences in water chemistry between surface and interstitial waters (Pennak, 1988). It 

was also important to measure temporal changes in environmental factors and metal 

concentrations (Will iams, et ai, 1973; Brown, 1977b), as seasonal changes in river flow 

can, for example, lead to a decrease in dissolved metal concentrations by dilution (Johnson 

& Thornton, 1988). Conversely, high f lows may increase metal concentrations by the 

greater scouring action o f bottom sediments (Wil l iams et al., 1973; Brown, 1977b). 

The main aim o f this chapter was to document the physicochemistry o f the sites selected to 

investigate relationships between meiofaunal communities and trace metals. Comparisons 

between interstitial and surface water concentrations were made for metals and DOC 

concentrations. Overall trends in physicochemistry among sites were also investigated 

using the ordination technique Principal Component Analysis (PCA). 
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2.2 Study area and sampling sites 

The study cirea incorporated the streams of the south-east comer o f Bodmin Moor, south­

west England (Fig. 2.1). A l l streams were fast flowing, first order tributaries typical o f 

Cornwall's narrow, moorland ridge. As a result o f geological processes, pockets o f melals, 

chiefly t in cind copper ores, have been deposited in this region (Dines, 1956). In particular, 

there are several lodes o f tin (Sn) and copper (Cu) in close association, and these run 

parallel in an east-west direction; some lodes o f lead (Pb) and zinc (Zn) run in a north-

south direction (Fig. 2.1). Intensive mining activity in the 19th and ecu-ly 20th Centuries 

(Shambrook, 1986) led to an extensive network o f underground workings, and an increase 

in the surface area o f contact between metal ores and ground water. Hence, the drainage 

water in the study area is vulnerable to contamination f r o m groundwater and surface 

runoff. As the area has never become a major population centre ( N R A , 1994), it has not 

been subject to other sources o f environmental contamination. Hence, the effects o f trace 

metals on stream biota have not been compounded by interaction wi th other forms o f 

contamination, making it an ideal location for identifying the effects o f trace metals on 

su-eam benthic communities. 

Sampling sites were located on tributary streams o f the Rivers Lynher [Darley Brook (D) , 

Upton Cross stream (U) , Longridge tributary (L) , Berriowbridge tributary (B) , Rilla M i l l 

tributary (R) and Trebartha tributary (T)] and Seaton (S) (Fig. 2.2). These sites were chosen 

as their chemistry and macroinvertebrate communities have been monitored previously 

(e.g. Gower et al, 1994). The tributaries o f the Rivers Lynher and Seaton have a long 

history o f trace metal contamination f rom mine drainage and, init ially, were the subject o f 

several studies on water quality. South West Water (1984) recorded elevated Cu levels in 

Darley Brook, Upton Cross stream and Longridge tributary, and high Zn concentrations in 
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Figure 2.1 Principal lodes in south-west England. Note the lodes o f copper, lead and zinc in the south-east comer o f Bodmin Moor where streams were 
sampled (From Dines, 1956). 



the Upton Cross stream. Following these initial findings. Darlington (1987) measured high 

concentrations o f Cu in Darley Brook and reported decreasing Cu concentrations further 

downstream. Finally, Gower et al. (1994) reported high concentrations o f Cu, Zn, A l and 

Fe in many o f the stream tributaries o f the Rivers Lynher and Seaton, and showed that Cu 

was highly correlated wi th macroinvertebrate community structure. 

As Cu was shown to be an important variable shaping biotic communities (Gower et al., 

1994), this trace metal was chosen as the major water chemistry gradient against which to 

gauge meiofaunal community response. Ten sites, selected along a copper gradient 

included highly contaminated sites (U2, L4, S8 and D5) below adit portals, sites o f 

intermediate contamination ( D l , S9, U3 and L I ) some distance f rom the mine adits, and 

sites with no obvious source o f contamination (R2 and B2) (Fig. 2.2). These sites were 

sampled during the spring and autumn. In the summer, two additional sites were included 

to increase the resolution o f the gradient in Cu contamination. These were a "high quality" 

RIVPAC site ( T l ) , classified as a biological class A site in 1990 ( N R A , 1994), and a site 

(D3) with intermediate Cu concentrations (Fig. 2.2). 

2.3 Materials and methods 

2.3.1 Collection of water samples 

Surface water samples were taken in November 1994, May and August 1995, and January 

1996, and interstitial samples in August and November 1995, and January and May 1996. 

A l l samples were taken within one week o f sampling the stream biota. A l each site, on each 

sampling occasion, two 50 ml samples each o f surface and interstitial water were collected 

in acid-washed propylene bottles; one sample was for metal analysis, the other was for 

DOC analysis. 
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Interstitial water was obtained using a centrifuge tube (length=100 mm; depth=15 mm) with 

a lid inserted into the sediment two weeks prior to sampling (Plate 2.1). In winter (January, 

1996), two tubes were placed at each site as a precaution against their possible loss due to 

high f low rates. The two test tubes used in winter provided the additional advantage o f 

giving some idea o f the variation in the method o f sampling interstitial metal concentrations. 

Each tube contained six holes (each o f 5 mm diameter), three holes on each side; the holes 

were positioned so that water was sampled at 20, 40 and 60 mm depth in the sediment. 

Water was drawn f rom the tube using a hand pump (Plate 2.1 A) . In the field, interstitial and 

surface water samples were filtered through a 0.45 | im Mill ipore membrane filter. Any 

metals passing through this filter are considered available for uptake by the biota (Wilson, 

1976). Water samples for metal analysis were acidified in 5% spectrosol grade nitric acid to 

ensure the metal ions remained in solution (Smith, 1973). A l l equipment used for sample 

collection and storage was washed in 5% nitric acid and distilled deionized water. 

2.3.2 Metal analysis 

Concentrations o f Cu, Zn, Fe, A l , Ca and M g were measured using a GBC 902 flame 

atomic absorption spectrophotometer. For each metal, a fine mist o f sample is sprayed into 

a flame where atomization occurs. The resulting metal atoms are excited by a hollow 

cathode lamp (specific to each metal) and by absorbing energy allow a transition from the 

ground state to a higher energy level. The amount o f energy absorbed is related to the 

concentration o f the metal. The limits o f detection for Cu, Zn, A l , Fe, Ca and M g found 

when using the flame atomic absorption spectrophotometer were 3 ng 1"', 0.8 ng 1"', 30 |.ig 1" 

\ 6 ng \ ' \ \ ng r' and 3 ng 1'', respectively. The detection limit being defined as the value 

that can be detected with a 95 % confidence level. Ca and M g form stable compounds with 

anions such as phosphate, which hinder the formation o f atoms. This was overcome by 

adding an excess o f potassium chloride (10,000 mg 1"'), which causes the interfering anion 

32 



to form a compound with the potassium, thereby, releasing Ca and M g . Concentrations o f 

Ca and M g in surface water samples were used to calculate total water hardness for each 

site using the equation: 

Hardness = (Ca • 2.50) + ( M g * 4.12) 

where all concentrations are in mg 1'* (Gower et al., 1994). 

2.3.3 D O C Analysis 

Non-acidified water samples were stored at 4°C for up to one week in acid-washed 

propylene bottles prior to measurement. DOC concentrations were measured using a 

S H I M A D Z U Total Organic Carbon Analyser 5000. 

2.3.4 Measurement of other physicochemical variables 

Field measurements o f other environmental variables, made at the same times as the surface 

water samples included one measurement o f each variable taken per visit. A Phox 2E meter 

was used to measure pH, and a H A N N A H I 8633 meter to measure conductivity and 

temperature. Measurements were taken by placing the probes 2 cm under the surface in a 

slow f lowing region o f the stream. 

A single measurement o f stream discharge was made in November 1995, and January, May 

and August 1996 using a modified version o f the area-velocity method developed by 

Lancaster & Hildrew (1993). A random point was chosen along a line bisecting the stream 

channel longitudinally, and the water depth (d), stream width (w) and near bed current 

velocity (m s"') were measured at this point and at two equidistant points either side. 

Measurements were taken 3 cm above the stream bed using a Valeport current meter. This 

procedure was repeated at two other random points along the transect and discharge was 

calculated (m^ s ' ) by multiplying the mean current velocity by stream area (d * w) . 
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2.3.5. Statistical analyses 

Due to the right skewed nature o f all the environmental data (apart f r om pH), a log ( n + l ) 

transformation was applied. Principal Components Analysis (PCA) was used to display (as 

two dimensional ordinations) inter-site differences in environmental variables for individual 

seasons and all seasons combined (Clarke & Warwick, 1994a). Principal components are 

linear combinations o f the original variables, with there being as many principal components 

as there are variables. The degree to which the two-dimensional PCA succeeded in 

representing the data was shown by the percentage o f total variance explained by the first 

two principal components. The biggest differences between sites takes place along the first 

principal component axis (PCI ) (the axis which maximises the variance o f points projected 

perpendicular onto i t ) . The second principal axis, perpendicular to P C I , was chosen to 

maximise the variance o f points. The contribution o f an environmental variable to PCI and 

PC2 is indicated by its coefficient in the linear combination o f variables making up the PC. It 

was important to normalise all the PC axes due to the mix o f measurement scales used for 

the environmental variables (e.g. |.ig 1'*, m'^s'', yiS cm"'), otherwise, points on the ordination 

could be made to appear closer, simply by a change o f scale on one o f the axes. Data were 

normalised by subtracting the environmental variable for each site by the mean across sites 

and then dividing by the Standard Deviation across sites to give a correlation-based PCA 

(Clarke & Warwick, 1994a). This procedure equalised the variance o f samples along all the 

environmental axes, so that all the environmental variables were, potentially, o f equal 

importance in determining the principal components. 

Lower triangular Euclidean distance matrices relating to the ordination for environmental 

variables for individual seasons and all seasons combined were constructed from the original 

data using the PRIMER program CLUSTER. The Euclidean distance is the natural distance 
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between any two points in space. The Euclidean distance between the jih and the ^th sample 

(djk) is calculated using the equation: 

where yij is the /th variable in theyth sample. Similarly yik represents the /"th variable in the 

kth sample. ^ is the sum of all variables. To verify whether sites were separated in a 

comparable way in each season. Spearman Rank correlations (p) between the corresponding 

elements of each pair of the Euclidean distance matrices for environmental variables were 

computed using the PRIMER program RELATE. The significance of the correlation 

determined by using a Monte Carlo permutation procedure (Clarke & Warwick, 1994b). 

Relationships between site differences in the environmental variables in all seasons and 

between surface and interstitial water samples in August 1995 and January 1996 , were 

assessed using product moment correlation coefficients derived from linear regression 

analyses (Devore iS: Peck, 1990). 
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2.4 Results 

2.4.1 Trace Metals 

The twelve sites represented a clear gradient in surface and interstitial Cu concentrations, 

with mean surface water and interstitial concentrations ranging from 10-766 ^g l ' and 7-

1820 \ ' \ respectively, across the sites (Table 2.1; Fig. 2.3). The highest concentrations of 

Cu were found at sites downstream of adit portals (U2, L4, S8 and D5) and lowest Cu 

concentrations were measured at sites where there was no obvious input source of metals 

( T l , R2, B2). There was a wide range in the concentrations of the other metals in both the 

surface and interstitial waters (Table 2.1 & 2.2). Highest Zn concentrations were found at 

sites located downstream of the adit portals, with exceptionally high maximum surface and 

interstitial Zn concentrations at U2 (Table 2.1). At other sites, mean Zn concentrations 

ranged from 52-374 and 81-377 ^g f ' in the surface and interstitial waters, respectively. 

Concentrations of surface Fe were highest at U2 and L4, and mean surface concentration of 

Fe found at the other sites ranged from 51-140 jig 1'* (Table 2.2). The concentration of 

interstitial Fe was highest at R2, U2 and L4 and the mean interstitial concentration of Fe 

found at the other sites ranged from 113-264|ig 1"'. Concentrations of surface and interstitial 

Al were highest at L4 and S8 (Table 2.2). The mean surface and interstitial concentrations 

of Al found at other sites ranged from 118-474 and 152-821 ^ig AJ, respectively. 

Interstitial Cu and Zn concentrations in August 1995 and January 1996 showed strong 

correlations (p<0.05) with those measured in surface waters samples taken at these limes 

(Fig. 2.4; Table 2.4). Iron interstitial and surface water concentrations correlated 

significantly in January 1996 and aluminium interstitial and surface water concentrations 

correlated significantly in August 1995 (Table 2.4). There was, however, no significant 

correlation between summer interstitial and surface water Fe concentrations and winter 

interstitial and surface water Al concentrations (Table 2.4). 
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Figure 2.3. Mean surface water Cu concentrations (jig I" ) at the twelve sites located 
on the tributaries of the Rivers Lynher and Seaton. Sites are arranged in order of Cu 
concentration to demonstrate the trend (n = 4 for each site, vertical bars = + 1 SD). 
See Figure 2.2 for location of each site. 
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Table 2.1 Mean and maximum concentrations {\ig I*') of Cu and Zn at the twelve sites used in the surve>'s (sites T l and D3 were only used in the summer survey). 
See Figure 2.2 for location of each site. (Interstitial and surface water measurements not directly comparable). 

Site Copper (MK I*) Zinc (ue 
Surface Water Interstitial Water Surface Water Interstitial Water 

Mean Maximum Mean Maximum Mean Maximum Mean Maximum 

T l 10 17 9 20 101 156 160 271 

R2 13 20 40 62 119 175 160 199 

B2 22 37 24 47 115 246 112 151 

L I 40 62 290 649 89 163 229 317 

U3 71 116 117 167 124 272 98 129 

S9 92 144 362 479 52 80 81 92 

Dl 128 247 185 252 63 106 101 239 

U2 203 302 423 490 874 1121 955 1083 

D3 283 352 651 1183 343 458 190 296 

U 582 602 345 618 273 420 216 444 

S8 736 1205 1820 1890 374 424 377 446 

D5 766 928 1286 1763 217 313 226 329 



Tabic 2.2 Mean and maximum concentrations (ng I'') of Al and Fe at the twelve sites used in the surveys (sites T l and D3 were only used in the summer survey). 
Sec Figure 2.2 for location of each site (Interstitial and surface water measurements not directly comparable). 

Site Aluminium (Mfil-^) Iron (nK 1"*) 
Surface Interstitial Surface Interstitial 

Mean Maximum Mean Maximum Mean Maximum Mean Maximum 

T l 402 713 152 354 157 193 131 140 

R2 118 187 821 1693 139 186 757 1705 

B2 243 413 578 677 94 109 264 581 

L I 457 520 449 602 132 184 200 252 

U3 404 440 380 630 140 337 211 492 

S9 330 347 533 538 79 101 132 136 

Dl 305 386 438 890 51 98 193 364 

U2 474 938 469 1229 396 780 487 1146 

D3 402 534 388 549 108 136 113 201 

U 1084 1615 1109 1559 212 599 709 1492 

S8 893 1280 1084 1740 76 86 142 180 

D5 245 346 571 917 66 85 118 296 



Table 2.3 Matrix of product moment correlation coefficients between mean surface metal concentrations 
from the twelve sites (•* P<0.001, * P<0.05). 

Cu Max 
Cu 

Zn Max Zn Fe Max Fe Al Max Al 

Max 
Cu 

0.995** 

Zinc 0.577 0.551 

Max 
Zn 

0.376 0.484 0.820" 

Ke -0,127 -0.174 0.554 0.603* 

Max 
Ke 

-0.109 0.475 0.475 0.547 0.928 

Al 0.524 0.522 0.415 0.394 0.281 0.370 

Max 
Al 

0.332 0.590 0.590 0.590 0.418 0.455 0.953** 
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Figure 2.4 Relationship between metal concentrations in surface (s) and interstitial (/) 
water samples taken in August 1995 and Winter 1996 (regression equations fitted by least 
squares regression technique shown in brackets). A) Cu [logCu/ = 0.886(logCu5) + 0.488, 
R2=0 7261: Zn Hoc 7.n7 = 0 629nogZru) + 0.814, R'=0.509]; 
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Using the regression equation derived from summer and winter interstitial and surface water 

data (Fig 2.4), higher Cu concentrations would be expected in the interstitial than the 

surface water. For example i f surface Cu concentrations were 100 ^g I'^Cu the expected 

interstitial Cu concentration would be 182 pg I'V However, there appears to be little 

difference in the concentration of Zn found in the interstitial and surface water. For 

example, i f Zn surface water concentrations were 100 ^g 1'' the expected concentration of 

Zn in the interstitial water would be 117pg 1"'. 

Table 2.4 Product moment correlation values between interstitial and surface water conccnlraiions of A) Cu 
and Zn and B) Fe and Al in summer and winier (*• p<0.05). 
A) 

Copper Zinc 

Summer Winter Summer Winter 

0.784** 0.777** 0.659** 0.779** 

B) 

Iron Aluminium 

Summer Winter Summer Winter 

0.597 0.669** 0.694** -0.080 

2.3.2 Other environmental Variables 

Annual mean values of other environmental variables are shown in Table 2.5. Temperature 

ranged from 10.2-11.2 °C across sites, and the mean pH ranged from 6.0-6.8, except L4 

which was highly acidic and had a mean pH of 4.8 (Table 2.5). Total water hardness was 

highest at sites R2 and B2 (Table 2.5) and ranged from 24.1-35.8 CaCOs 1"' al other sites. 

Conductivity was relatively low at all sites, ranging from 80 |.iS cm'' at B2 to 203 [xS cm ' at 

R2, and discharge was highest at the downstream sites ( T l , D l and L I ) (Table 2.5). 
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Table 2.5 Mean values of environmental variables at the twelve sites used in the surveys (see Appendix 1 for range of values). Sites T l and D3 were only 
used in the summer survey. See Figure 2.2 for site locations (Interstitial and sutface DOC measurements are not directly comparable) 

Site pH Conductivity 
{\iS cm-\ 

25°C) 

Hardness 
(mg CaCOj! - ' ) 

Discharge 
(m's') 

Maximum 
Discharge 
(m's-') 

Temperature f C ) Surface 
DOC 

(mg !-') 

Interstitial 
DOC 

(mg 1-') 

T l 6.8 159 24.1 0.097 0.236 10.2 11.5 8.5 

R2 6.6 203 105.6 0.009 0.017 10.8 7.9 5.9 

B2 6.0 80 71.6 0.040 0.060 10.5 12.0 11.3 

LI 6.7 180 35.8 0.146 0.200 11.0 8.5 8.6 

U3 6.0 108 24.4 0.057 0.0 75 10.7 5.9 3.8 

Dl 6.6 151 31.9 0.189 0.261 11.0 6.1 5.1 

S9 6.4 134 29.4 0.008 0.021 10.4 5.9 5.0 

U2 6.3 122 27.2 0.065 0.094 11.2 5.2 4.4 

D3 6.6 no 26.0 0.009 0.01! 11.1 4.3 3.7 

L4 4.8 127 29.6 0.008 0.015 10.8 5.3 3.9 

S8 6.0 141 30.3 0.082 0.125 11.1 5.3 3.5 

D5 6.2 116 24.1 0.025 0.039 11.2 5.2 3.2 



The mean discharge at the other sites ranged from 0.008 to 0.082 m^ s"V The pattern of 

DOC concentrations across sites was opposite to that for Cu. Sites of low metal 

concentrations (R2, B2, T l and L I ) had DOC concentrations ranging from 7.9-12 mg l ' in 

the surface waters and from 5.9-11.3 mg 1'* in the interstitial waters; DOC concentrations in 

highly contaminated sites ranged from 4.3-6.1 mg 1"' in the surface water and from 3.2-5.1 

mg r* in the interstitial water. A positive correlation was evident between interstitial and 

surface DOC concentrations in summer (r=0.926, p=0.001) (Fig. 2.5), but not winter 

(r=0.162, p=0.633). Surface water Cu and DOC concentrations were also correlated with 

temperature and negative correlations were found between mean surface water AJ 

concentrations and water hardness (Table 2.6). 

2.3.3 Temporal Variation 

Of the environmental variables, only temperature showed a clear seasonal pattern (Fig. 2.6), 

with the water temperature being lowest in winter and highest in summer at all sites. Even 

so, seasonal temperature differences were small and ranged from 7.9-9.4°C (winter) and 

11.1-12.9°C (summer). Lowest discharge values were consistently measured in the summer 

(Appendix I ) , although, no seasonal pattern in discharge was found for spring, autumn and 

winter. There was no seasonal pattern in metal variability, but the variation in metal 

concentrations measured in the four seasons was high at some sites (Appendix I , Fig. 2.7). 
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Table 2.6 Matrix of product moment correlation coefficients between mean values of physicochcmical 
variables from twelve sites (** p<0.01, • p<0.05). 

Conductivity Hardness PII DOC Temperature Discharge Maximum 
Discharge 

Cu -0.278 -0.536 -0.504 -0.830* ' 0.692* -0.175 -0.381 

Maximum Cu -0.277 -0.549 -0.467 -0.841 0.692* -0.102 -0.341 

Zn -0.264 -0.239 -0.337 -0.517 0.464 -0.285 -0.384 

Maximum Zn -0.379 -0.210 -O.40I -0.442 0.432 -0.277 -0.425 

Fe 0.045 -0.025 -0.245 0.015 -0.170 -0.211 0.006 

Maximum Fe 0.012 -0.131 -0.429 -0.133 -0.090 -0.266 -0.124 

Al -0.114 -0.616* -0.552 -0.307 0.014 0.136 0.213 

Maximum Al -0.580 -0.161 -O.500 -0.245 0.005 0.111 0.084 

Conductivity 0.188 0.409 0.107 -0.067 0.282 0.316 

Hardness 0.083 0.488 -0.158 -0.179 -0.278 

Fli 0.266 -0.044 0.378 0.404 

DOC -0.736** 0.254 0.433 

Temperature 0.021 -0.542 

Disctiarge 0.411 
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Figure 2.5 Relationship between DOC concentrations in surface (s) and 
interstitial (/) water in summer (logDOC/ = 0.759(logDOCj) + 0.425, 
R2=0.855). 
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Figure 2.6 Seasonal variation in temperature. Each point represents a single 
measurement taken that season. Sites are arranged in order of Cu 
concentration. See Figure 2.2 for the location of the sites. 
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The PCA of the mean values of the four seasonal measurements combined, demonstrated a 

general pattern of increasing metal contamination from left to right on the first PC axis with 

the five most contaminated sites separated distinctly from the rest (Fig. 2.8A). The variables 

contributing most to the separation of the sites on axis one (PCI) were Cu and Al 

(increasing from left to right) and DOC (increasing from right to left) (Table 2.7). The 

second axis represented increasing conductivity, pH and discharge (increasing from top to 

bottom). These first two principal components accounting for 59.1 % o f the variation. 

The PCA ordinations for spring, summer, autumn and winter also separated sites of high 

metal contamination from other sites (Fig. 2.8 B-E). Again, Cu was consistently important 

in contributing to the separation of sites in each of the four seasons. Zinc, Al and DOC were 

also important in discriminating between sites along axis one in autumn and spring; winter 

and autumn, and summer, respectively. For the second axis the environmental variables 

most important in contributing to the separation of sites were hardness and conductivity in 

autumn, temperature and discharge in spring, hardness in summer, and hardness and 

discharge in winter. 

Thus, despite the temporal variation found for some environmental variables, principal 

components analysis demonstrated that physicochemical data separated sites in a consistent 

seasonal pattern (Fig. 2.8). This consistent pattern was confirmed by significant (p<0.05) 

correlations between the Euclidean distance matrices of environmental variables for each 

season, and between the Euclidean distance matrices of environmental variables for each 

season and the matrix of mean environmental variables (Table 2.8). 
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Figure 2.7 Seasonal Cu concentrations in surface waters. Each point represents a 
single measurement taken that sea .̂on. Sites are arranged in order of Cu 
concentration. See Figure 2.2 for the location of sites. 
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Figure 2.8 Correlation based PCA of twelve sites on the tributaries of the Rivers Lynher and Seaton in: 
A) combined seasons, B) spring, C) summer, D) autumn and E) winter. The five most heavily 
contaminated sites are in bold. Site S9 was omined from summer and autumn environmental data 
analysis, and T l from winter data analysis as some measurements could not be taken at these sites due to 
no flow or high flow. 
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Table. 2.7 Eigen vectors for PCI and PC2 (coefTicienls in the linear combinations of variables making up PCs) for the autumn, spring, summer and winter environmental data (excluding 
interstitial measurements). Variables that contribute highest to the PCs are shown in bold. Data set excludes T l data in the winter, and S9 data in the summer and autumn as some 
measurements could not be taken at these sites either due to high flow or no flow (Appendix I). 

Variable Combined Autumn Spring Summer Winter 

PCI PC2 PCI PC2 PCI PC2 PCI PC2 PCI PC2 

% Variation Explained hy PCs 39.8 19.3 31.6 22.0 31.1 22.1 36.7 22.4 29,5 23.0 

Copper 0.448 0.109 0.492 0.073 0.495 0.032 0.487 -0.009 0.496 0.105 

Zinc 0.362 -0.127 0.411 0.317 0.414 -0.034 0.352 -0.390 0.275 0.086 

Aluminium 0.400 -0.041 0.162 0.052 0.397 0.300 0.251 0.150 0.400 0.369 

Iron 0.173 -0.294 0.032 -0.152 0.130 •0.174 0.060 -0.562 0.212 -0.319 

Hardness -0.377 0.198 0.074 0.604 -0.363 0.344 -0.173 0.480 -0.113 0.590 

Conductivity -0.087 0.446 -0.267 0.563 -0.195 0.268 -0.321 0.205 •0.306 0.359 

DOC -0.402 -0.213 -0.476 0.182 -0.238 -0.254 -0.447 0.187 -0.378 0.215 

PH -0.311 0.454 -0.367 0.037 -0.389 0.378 •0.351 -0.201 -0.381 0.144 

Temperature 0.265 0.318 0.135 0.382 0.154 0.511 0.339 -0.158 0.269 0.195 

Discharge 0.000 0.542 -0.325 0.078 -0.086 0.467 -0.032 0.368 -0.077 0.402 



Table 2 8 Matrix of pairwise Spearman's Rank Correlation coefficients between Euclidean distance matrices 
of environmental data. Data from S9 and T I excluded as some measurements could not be taken at these sites 
due to no flow in the summer and high flow in the winter respectively (Appendix I) (*p<0.05). 

Combined Spring Summer Autumn 

Spring 0.917* 

Summer 0.637* 0.642* 

Autumn 0.713* 0.681* 0.571* 

Winter 0.700* 0.687* 0.380* 0.609* 
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2.6 Discussion 

PhysicochemicaJ measurements confirmed that the twelve sites chosen for this study 

represented a wide range of trace metal concentrations. The concentration of metaJs found 

at the sites was related to the types of ores drained (Shambrook, 1986). and to the amount 

of dilution and chemistry of the streams (Darlington, 1987), High concentrations o f Cu and 

Zn were measured at ail sites located downstream of the adit portals (U2, L4. S8, D5). Of 

these sites, L4 and U2 had higher Fe concentrations than S8 and D5. Upton Cross stream 

drains a lode that is rich in chalcopyrite (a mineral ore of high Fe content) (Shambrook, 

1986). which explains the high Fe concentration at U2. The higher pH conditions at U2 

compared with L4 were also conducive to the formation of iron hydroxide precipitate 

(Smith, 1973) (Plate 2.2). Iron hydroxide precipitate is a strong adsorption agent of copper 

(Johnson & Thornton, 1987), explaining the low concentration of dissolved Cu at U2 

compared with L4, S8 and D5. The surface and interstitial waters of sites S8 and L4 

contained very high concentrations of AJ, and the acidic waters at L4 are likely to release 

monomeric Al (Hall e( a/.. 1987). Concentrations of Cu and AJ decreased rapidly 

downstream of the adit portals in Darley Brook (D3, D l ) and in the Longridge tributary 

( L I ) , with the two tributaries joining these streams increasing the dilution. Downstream of 

the adit, the pH increased and may have led to the formation of a Cu-Al precipitate 

(Darlington, 1987). At D5, this Cu-Al precipitate (Plate 2.3) may make this site 

unfavourable physically, as well as chemically, for benlhic fauna. Gower et al. (1994) 

recorded similar patterns of contamination for Cu, Zn and AJ at these sites. Therefore, it 

appears that the diflference in water quality of the sites is relatively constant over time and 

the input of trace metals into the system is causing a persistent chemical change. 

At all sites, the Cu and Zn concentrations (range 10-766 and 52-874 ng \'\ respectively) 

were higher than those considered to be ^natural' concentrations for running water. 
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Plate 2.2. Site U2: Note the red / brown iron hydroxide precipitate on the surface of stones 
/ cobbles. 





Plate 2.3 Site D5: Note grey / green copper-aluminium precipitate covering stones / cobbles 
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Turekian (1971) quoted 'typical' stream values of 7 |.ig l ' (Cu) and 20 | ig 1* (Zn). In 

uncontaminated streams. Moore & Ramamoorthy (1984) cited 0.5 - I.O ng Cu l ' and 0.5 -

15 Zn | ig r* as being the typical values for Cu in uncontaminated sites. At all sites, Cu and 

Zn concentrations exceeded the levels regarded as acceptable by the EC Freshwater Fish 

Directive and the UK Environmental Quality Standards (EQS) (NRA, 1994). Due to such 

high Cu and Zn concentrations, all sites (except R2 and T l ) were classified as being of poor 

water quality using the standards set by the National Rivers Authority in their River 

Ecosystem Use Classification scheme (NRA, 1994). Thus, toxic effects on the benthos may 

be occurring at all sites demonstrating the difficulty of finding 'true control' sites in this 

region of extensive mining activity. 

Higher interstitial concentrations of Cu, compared with surface waters, were recorded at 

some sites. Adsorption of metals onto particulates (Nienke & Leek, 1982) and increases in 

pH leading to precipitation (Jennet & Foil, 1979) are known to result in metals 

accumulating in the sediment of running waters. Dariington (1987) reported that Cu 

concentrations in the sediment of Darley brook were more than twice that found in the 

surface water. Chemical changes in the sediment may cause increased concentration of 

bioavailable metals. For example. Whitman & Clark (1984) found that the mean pH of 

surface water of 6.0 decreased to 5.5 at a depth of 10 cm in a small stream in Texas. Hence, 

the invertebrates inhabiting interstitial waters (e.g. many meiofaunal species) may be 

exposed to very different water chemistry conditions, including higher concentrations of 

trace metals, than surface water measurements indicate. Further investigations are required 

into the spatial variation of chemical variables, including metal concentrations, in the 

interstitial environment before any definite conclusions can be made of the relationship 

between surface and interstitial waters. The large difference in the concentration of metals 

found in the two interstitial samples taken at some sites in winter, suggests metal 
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contamination is patchy and this may influence the distribution o f invertebrates on a finer 

scale. The large variation in the four interstitial metal concentrations between seasons may 

be due to the high spatial variation of interstitial metal concentrations. 

There are suggestions in the literature (Howarth & Sprague, 1978; Mantoura et al., 1978; 

Borgman, 1983) of a link between trace metal ions and other environmental variables in 

aquatic systems. The strong negative correlation between Cu and DOC concentrations in 

surface and interstitial stream water reported in this study supports the findings of Gower et 

al. (1994). Gower etal. (1994) explained this relationship by suggesting that Cu complexed 

with fijlvic and humic acids, resulting in the ultimate removal of DOM from the water. 

Humic and ftilvic acids are known to be the most important complexing agents in fresh 

water (Mantoura et al., 1978). Therefore, there is likely to be an increase in the 

concentration of organic Cu complexes at sites with high DOC concentrations and these 

complexes are thought to be less toxic to organisms than the free ion form (Spear & Pierce, 

1979). Temperature was also correlated positively with copper concentrations and 

negatively with DOC. The small variation in temperatures (10.2-11.2 °C) between sites, 

however, suggests that these correlations were probably coincidental. As the streams 

originate from groundwater running through hard granite rock, low conductivities and low 

water hardness were measured at all sites. Thus, in these streams, toxicity of the metals may 

be considered as particularly pronounced due to the poor buffering capacity of the water. 

Water temperature was the only environmental variable that showed a consistent seasonal 

pattern, with highest temperatures in the summer and lowest in the winter. Even though 

these temperature differences were small they may be of significance to the benthos, as 

previous studies have recorded that slight temperature changes have a significant impact on 

the timing of hatching and the rate of development of many species resulting in temporal 
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changes in their abundance (Hynes, 1970). Some workers have recorded seasonal trends in 

stream discharge (Brown, 1977b; Palmer, 1990). No seasonal trend was recorded in this 

study apart from discharge values which were consistently lowest in the summer at each 

site. Changes in flow are unpredictable, making their effects on the stream system difficult 

to measure. At the three sites located on Darley Brook, low summer flows corresponded 

with low Cu concentrations. This is in agreement with Darlington (1987) (in Darley Brook) 

who demonstrated that Cu concentrations were correlated positively with discharge. It was 

suggested that higher concentrations of Cu in the other seasons was due to underground 

chambers filling up with water and siphoning of contaminated water into the stream 

(Darlington, 1987). This correlation did not occur with the other streams (Appendix I), 

highlighting the complexity of the effect of flow on metal levels, the converse effect being 

high flows diluting the metal concentrations in the water. 

To establish differences in physicochemistry between sites, many workers have analysed 

environmental data using principal components analysis (PCA) (Somerfield et al., 1994; 

Zitko, 1994; Rundle & Attrill, 1995). PCA has been found to be particularly useftjl in 

studies on systems contaminated by trace metals. For example, Somerfield et al. (1994) 

clearly separated creeks of the Fal Estuary by their sediment metal concentrations using 

PCA. As with many other studies (Somerfield et al., 1994; Olsgard & Gray, 1995; Rundle 

& Attrill, 1995; Antonietti & Sartore, 1996) principal component analysis in the present 

study aided the visualisation of the separation of sites according to their physicochemistry. 

The main variables separating sites consistently being Cu, Zn and DOC in all four seasons. 

Thus, to find environmental variables which best explain differences in faunal community 

structure across sites, the PCA of averaged values of environmental data can be used, with 

confidence, as a basis against which groupings of biological data can be compared. 
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C H A P T E R 3 

The meiofaunal communities of metal-

contaminated streams in south-west England 
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3.1 Introduction 

A key issue in ecology is an understanding of how environmental variables influence the 

distribution and abundance of organisms. In freshwater ecology, the early emphasis on 

research on the effects of physicochemistry on individual species (Hynes, 1970) has been 

superseded by studies o f the effects on whole communities (Hildrew & Giller, 1995). 

Investigations into how various environmental factors influence the structure of species 

assemblages have been aided by the development of powerful multivariate statistical 

techniques. Using these techniques, several workers have isolated the environmental 

variables important in determining the macroinvertebrate community structure in British 

rivers (Townsend et a/., 1983; Wright e( al, 1994). Recently, environmental factors 

influential in determining meiofaunal community structure have also been identified 

(Palmer, 1990; Rundle & Hildrew, 1990; Suren, 1992). Of these factors, flow was shown 

to be a particularly important variable, altering the composition of lotic meiofaunal 

communities (Palmer, 1990; Rundle & Hildrew, 1990). Robertson et al. (1995) 

demonstrated that epibenthic meiofaunal taxa such as cyclopoid copepods, cladocerans and 

ostracods were more abundant in slow-flowing reaches compared with fast-flowing reaches 

of a small stream in southern England. In contrast, interstitial harpaclicoid copepods 

showed no significant differences in their abundances between reaches with different flow 

regimes (Robertson et ai, 1995). Studies of meiofaunal communities in North America by 

Palmer (1990) and Shiozowa (1985) also demonstrated clear differences in flow tolerances 

among cyclopoid copepod species. In both of these studies, the cyclopoid Paracyclops 

fimbriatus was associated with regions of fast current, whereas the cyclopoids Eitcyclops 

serrulatus and Acanthocyclops vernalis were associated with areas of slow flow (Palmer, 

1990; Shiozowa, 1985). 
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Temperature is another major physical variable important in influencing meiofaunal 

community structure. In a survey o f the meiofaunal communities o f stony streams in the 

Ashdown Forest (southern England), the distribution and abundances of the three most 

common harpacticoid species, Atheyella crassa, Bryocamptus zschokkei and Bryocamptus 

echinatuSy were correlated positively with temperature (Rundle & Hildrew, 1990). A small 

rise of a few degrees of temperature leads to these three species developing more rapidly 

(Sarvala, 1979; O'Doherty, 1985). Increased development wi l l , in turn, result in a higher 

number of generations produced within a set time, thereby, influencing the productivity of 

these populations. 

As well as clear links between meiofaunal communities and physical variables, meiofaunal 

community composition is influenced by water chemistry. The effect of water chemistry on 

community structure is usually most pronounced where extreme gradients in the former 

occur, due either to variation in the geology within a catchment area or as a result of 

anthropogenic inputs (Allan, 1995). Fryer (1980) was one of the first workers to 

demonstrate that freshwater meiofaunal communities were influenced by water chemistry. 

His survey of microcrusiaceans from seventy water bodies in three different areas (the 

Island of Rhum, north-east Yorkshire and the Yorkshire Permines) demonstrated low 

species diversity at sites of high acidity (Fryer, 1980). More recently, studies have 

confirmed the correlation between pH and the distribution and abundance of stream 

meiofauna in streams of southern England and mid-Wales (Rundle & Hildrew, 1990; 

Rundle & Ormerod, 1991). Inter-site patterns in species composition in these two regions, 

and the environmental variables best explaining these patterns, were investigated using 

multivariate statistical techniques. In both regions, acidic sites had distinctive, species-poor 

meiofaunal communities, although some species of cyclopoid copepods were tolerant of 

lowpH (Rundle & Ormerod, 1991). 

61 



Although no previous study has focused on lotic meiofaunal communities in metal-

contaminated streams, there is some evidence to suggest that certain trace metals may 

influence stream meiofauna. Rundle & Ormerod (1991) demonstrated a negative 

correlation between A l and the abundance of harpacticoid copepods in streams in mid-

Wales. Hummon ei al. (1989) recorded reduced abundances of meiofaunal laxa and altered 

community composition in streams in south-eastern Ohio polluted by acid mine drainage 

and trace metals. Unfortunately, a non-carbonate conductivity value, rather than metal 

concentrations, was used to indicate the level of contamination in the latter study and laxa 

were recorded to phyla only. Further involvement of the influence of trace metals on the 

microcrustacea was proposed by Fryer (1993). He observed that several species of 

microcrustaceans experienced physiological difficulties in standing waters in Yorkshire 

compared with microcrustacean species in water bodies with comparable acidities on the 

island of Rhum. He suggested that the difference was due to the extra stress related to the 

presence of trace metals at the Yorkshire sites; this hypothesis, however was not tested 

(Fryer, 1993). Thus, the relationship between trace metal concentrations and stream 

meiofaunal species assemblages has yet to be investigated rigorously. This chapter 

addresses this research caveat by investigating the meiofaunal communities of streams 

known to be contaminated by trace metals (Chapter 2). The main aims were to describe the 

stream meiofaunal communities (in three seasons) al sites representing a wide range of 

metal concentrations, and to apply multivariate analyses to establish whether differences in 

metal concentrations, or other environmental variables, (Chapter 2) correlated with inter-

site differences in meiofaunal communities. 
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3.2 Materials and methods 

3.2.1 Meiofauna sampling 

Meiofaunal samples were collected from sites R2, B2, L I , U3, S9, D l , U2, L4, S8 and D5 

in autumn (21st-25th November 1994) and spring (17th-24th April 1995), and from sites 

T l , R2, B2, L I , U3, D l , U2, D3, S8 and D5 in summer (8th-17th August 1995) (refer to 

Figure 2.2 for the location of the sites). Samples could not be taken at S9 and L4 in summer 

due to these sites drying out. Despite this, the use of additional sites (T l and D3) allowed 

the comparison of meiofaunal communities over a wide range of Cu concentrations in this 

season. No winter samples were taken as previous work had demonstrated that meiofaunal 

abundances were too low to provide adequate discrimination among sites in temperate 

streams during this season (Rundle & Hildrew, 1990; Rundle & Ormerod, 1991). Five 

Surber samples (Area = 0.0225 m"̂ . Mesh size = 100 ^im) were taken from a stony riffle 

region at each site. Previous studies had shown that the meiofauna was more abundant 

amongst macrophytes than within the bare substratum of streams (Rundle & Ormerod, 

1991; Suren, 1992). The density of macrophyte cover, however, was variable at sites used 

in the present study. Therefore, to standardise samples across sites, areas with an absence of 

macrophytes and with a substratum of a mixture of pebbles ( 2-6 cm ) and gravel (< 2 cm), 

were targeted. The sampling procedure was based on the method used by Surber (1970). 

The base of the sampler was wedged into the substratum, and pebbles and gravel to a depth 

of about 5 cm were disturbed for 1-2 mins, washing all animals into the net. 

In the field, samples were transferred to pots (volume = 500 ml) containing approximately 

100 ml of stream water. Samples were returned to the laboratory, preserved in 4% neutral 

buffered formalin, and passed through 500 |im and 63 (im sieves to separate the macrofauna 

and large debris from the meiofauna. Meiofauna retained on the 63 | im sieve were extracted 

from the mineral debris by floatation, using colloidal silica solution (Ludox TM) with a 
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specific gravity of 1.15. Samples were poured into 125 ml beakers which were filled to the 125 

ml level with Ludox T M solution to allow floatation of organisms. Samples were stirred 

vigorously and allowed to settle for 1 h. The top fraction, containing the meiofauna, was then 

poured over a 63 ^m sieve and stored in alcohol. This process was repeated three times for each 

sample using the same Ludox solution. 

Copepods, cladocerans, ostracods and mites were mounted on microscope slides using 

Aquamount (Gurr BDH), and identified under a compound microscope (200-400 times 

magnification) with conventional bright field illumination. Cyclopoid copepods were 

dissected initially by separating the anterior part of the animal (i.e. from the third thoracic 

segment) under a binocular microscope to reveal the fif^h leg, a key identification feature 

(Plate 3.1). Other groups, except for nematodes, were identified without dissection, and 

were identified to species (using the keys listed in Appendix I I ) and counted. 

3.2.3 Statistical analyses 

3.2.3.1 Environmental variables 

Annual mean values of the environmental variables (Tables 2.1 and 2.5) were used in the 

analyses. Mean values from replicate seasonal data provide a robust comparison between 

sites by accounting for seasonal variability (Rundle & Hildrew, 1990). 

3.2.3.2 ' P R I M E R ' 

Multivariate statistical techniques in the computer software package PRIMER (Plymouth 

Routines in Multivariate Ecological Research) were used to investigate changes in 

meiofaunal community structure across sites. The PRIMER package contains programs 

which allow community data to be displayed visually (CLUSTER and MDS), enable 

identification of the environmental variables that best explain community patterns 

(BIOENV) and identify individual species that contribute most to differences in community 
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structure (SIMPER). Prior to analysis, data were double square root transformed to reduce 

the influence of dominant species. The procedures used are detailed below. 

Bray curtis similarity matrix - The starting point for many clustering and ordination 

techniques is the concept of similarity between the abundances of species found at all pairs 

of sites. In the present study, the similarity (S) in community structure between all pairs of 

sites was measured using absolute numbers of mean meiofaunal abundances (i.e. data not 

standardised) to give a Bray-Curtis similarity coefficient between the range S=0 (for total 

dissimilarity) to S=100 (for total similarity). The Bray-Curtis similarity coefficient (Bray & 

Curtis, 1957) is a commonly-used similarity coefficient in ecological studies (Clarke & 

Warwick, 1994a). 

Similarity coefficients between the jih and kth samples (Sy*) are calculated using the 

equation: 

where y^ represents the /th species in theyth sample (/=l,2,...,p; y=l,2,. . . , //)- Similarly 

represents the /th species in the kxh sample. | ... | represents the absolute value of the 

difference (the sign is ignored) and 2 »s the sum of all species. Computation is simple. 

Similarity is not affected by species which are absent from both site-pairs, whilst all species 

contribute to the similarity of sites, though the commoner species are generally given 

greater weighting than rarer ones. These similarity coefficients, calculated between every 

pair of samples, were set out in a conventional lower triangular similarity matrix (Clarke & 

Warwick, 1994a) (Fig. 3.1 A). 
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Figure 3.1. A) Stages in a multivariate analysis based on similarity coeffiecients. B) The 
BIOENV procedure - selection of an abiotic variable subset maximizing rank correlation (p) 
between biotic and abiotic (dis)similarity matrices (From Clarke & Warwick, 1994a). 
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'ANOSIM' - Significant differences in species composition between sites were assessed 

using ANOSIM (Clarke & Green, 1988; Clarke, 1993). Firstly, to test whether site 

differences were worthy of flirther examination, a global test statistic (R) was calculated 

based on the differences in average rank dissimilarity among replicate samples within and 

between groups using the equation: 

R= irB-nv)/{M/2) 

where r^/ is defined as the average of all rank similarities among replicates within sites, re 

is the average of rank similarities arising from all pairs of replicates between sites and M= 

n(n-\)l2 where n is the total number of sites. 

Thus, i f R=\, all replicates within sites were more similar to each other than any replicates 

from different sites. Whereas, i f /?=0, there was on average no difference in the similarities 

between and within sites. In order to test whether this value is significant, site replicates 

were repeatedly and randomly reallocated to different groups, and the test statistic 'R' 

calculated for each of these random combinations. ANOSIM then determined whether the 

original test statistic was significantly different from the test statistic derived from the 

repeated random groupings. If the global R value indicates there are site differences worth 

examining 'somewhere', specific pairs of sites can be compared. Pairwise tests were 

performed using the same test procedure as described above. 

' C L U S T E R ' - The CLUSTER program determines 'groupings' of samples such that 

samples within a group are more similar than samples in different groups (Fig. 3.1 A). The 

present study used a hierarchical agglomerate clustering technique (Clarke & Warwick, 

1994a). The matrix of pairwise similarity, created from Bray-Curtis similarity coefficients 

(S), was used to successively 'fuse' the averaged meiofaunal abundances at sites into 
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groups, starling with communities with the highest mutual similarity, then gradually 

lowering the similarities at which groups are fused until there was only one single cluster. 

Similarities between fused groups were determined using group-average linking, that is by 

using the average of the similarities of pairs of sites from the two groups. This average 

similarity was weighted by the number of sites in each group. For example, the similarity 

between a group of one site (SI) and a group of three sites (S2, S3 and S4) would be 

[S(l,2&3&4) = [[S(l,2)+S(l,3)+S(l,4)]/3]. 

Multi-dimensional scaling (MDS) - Cluster analysis is not the optimal way to display data 

i f there is a steady gradient in community structure across sites in response to strong 

envirormiental forcing. Even for data which are strongly grouped, an ordination plot will 

allow the relationship between points to be displayed more informatively, as the percentage 

similarity of samples can only be viewed in one dimension with a dendogram (Fig. 3.1 A). 

The ordination technique used was non-metric multidimensional scaling (MDS) (Kxuskal 

& Wish, 1978) as it is conceptually simple and flexible, making few assumptions about the 

form of the data or the inter-relationship of the sites unlike ordination techniques such as 

DECORANA (Hill , 1979) and PCA. 

Initially, MDS reduces the similarity matrix to rank form, as absolute similarity values are 

essentially arbitrary. For example, it cannot be said that the similarity of the community at 

R2 to 82 is 1.5 times that of R2 to L I . It is just that R2 is relatively more similar to 82 than 

L I . The regression relationship between distance of ordination points and dissimilarity 

between site pairs was used to evaluate stress (the scatter around the regression line) for 

changes in the position of points on the ordination plot. Points were moved to new 

positions which looked like they would decrease the stress most rapidly. Thus, this 

complex iterative procedure refined successively the position of the points until the 
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species composition. The MDS program produced a stress value which indicated how well 

the two dimensional ordination preserved the site relationships. A stress of <0.05 indicates 

ordinations were excellent representations with no misinterpretation of site relationships, a 

stress of <0.1 represented a good ordination with no real risk of misinterpretation, a stress 

of <0.2 indicated a still useable picture although there is a potential for misinterpretation, 

and a stress of >0.2 indicated plots are likely to be misinterpreted (Clarke & Warwick, 

1994a). 

' B I O E N V - The BIOENV program was used to identify the environmental ordinations 

that best matched faunistic ordinations (Clarke & Ainsworth, 1993). Rank correlations 

(weighted Spearman rank correlation coefficients) between similarity matrices derived from 

all the possible subsets of averaged transformed environmental variables, and the similarity 

matrices derived from the averaged transformed biotic data, were calculated until the 

combination of variables which gave the highest rank correlation was found (Fig. 3 .1 B). 

'SEMPER' - The 'exploratory analysis' SIMPER (Clarke, 1993) was used to gain insight 

into the species most responsible for site groupings (chosen subjectively). In this case, 

groups were chosen using the site groupings observed using the CLUSTER analysis. 

Initially, the average dissimilarity between all inter-group sites was examined (i.e. every site 

in group A was paired with every site in group B). The average dissimilarity was then 

broken down to contributions of individual species and each species contribution examined. 

Species which were good at discriminating pairs of group clusters were identified as those 

which consistently contributed to inter-comparisons between all sites in the two groups. 

3.2.3.3 Multiple regression 

A stepwise multiple regression analysis was carried out to investigate relationships between 

physicochemical variables and the abundance o f key species found to be important in 
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explaining community patterns (i.e. those identified by SIMPER to be important 

discriminatory species). 

3.2.3.4 Univariate measures 

Correlation between Cu and meiofaunal species richness, and the abundance of major 

groups, was examined using the product moment correlation coefificient (Devore & Peck, 

1990). 
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3.3 Results 

3.3.1 General patterns in species occurrence and abundance 

Twenty-four meiofaunal species were identified from the sites sampled on the tributaries of 

the Rivers Lynher and Seaton (Table 3.1). Hydrachnellid mites and cyclopoid copepods 

were the most species rich groups (each with seven species), whereas harpacticoid and 

cyclopoid copepods and nematodes were the numerically dominant groups (Table 3.2). 

Total meiofaunal abundances, and those of individual groups were highest at most sites in 

summer. The only exception was the nematodes, whose abundances were lowest in the 

summer and generally highest in the autumn (Table 3.1). 

The number of sites where each species occurred, and their distribution with respect to 

metal contamination (indicated by the range of Cu concentrations they inhabited) are 

shown in Table 3.1. Of the three harpacticoid species (family Canthocamptidae), the two 

most abundant, Bryocaniptus zschokkei and Bryocamptus praegeri (Plate 3.2), were 

restricted to sites with Cu concentrations of 5 - 182 |ag P' (Table 3.1). Of the cyclopoid 

species, only Paracyclops fimbriatus, Diacyclops langiiidoides and Eticyclops serndatns 

were widespread. Graeteriella wiisetiger (Plate 3.2), only recorded twice before in the UK 

[North Wales and Oxford (Gurney, 1936)], was limited to U3 and D l , and was found only 

in autumn. Most of the seven hydrachnellid mites were found in the summer; only one 

species, Feliria niinuta (Plate 3.3), was sampled in autumn and spring. Four species of 

halacarid mite were found, with Porohalacarus alpinus restricted to sites of high Cu 

concentrations. The other halacarid species, Lobohalacraus weberi (Plate 3.3), 

Soldanellonyx nionardi and Linwohalacrcnis wakeri were found mainly at sites of low Cu 

concentration. Only one species of ostracod [Candona Candida (Plate 3.3)] and two species 

of cladoceran, [Alona quadrangular is (Plate 3.3) and Chydoris sphaericiis] were found, 

and these were restricted to sites of low Cu concentration (Table 3.1). 
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Table 3.1 List of meiofaunal species identified from ten sites on the tributaries of the Rivers Lynher and 
Seaton sampled in spring, summer and autumn. Frequency of occurrence in each season and ihe range of 
surface Cu concentrations in which animals were present are also given. 

Species Occurrence (No. of sites) Cu range 
(fig I *) 

Spring Summer Autumn 
P H Y L U M C R U S T A C E A 
C L A S S Copepoda 
O R D E R Harpactlcoida 

Bryocamptus zschokkei 6 7 7 5-182 
Bryocamptus praegeri 3 4 7 5-182 
Bryocamptus pygmaeus 4 I 7 13-1205 

O R D E R Cyclopoida 
Paracyclops fimbriatus 2 6 9 5-1205 
Eucyclops serrulatus 2 4 6 52-829 
Diacyclops languidoides 8 8 10 5-928 
Diacyclops bisetosus 4 5 3 144-766 
Speocyclops demetiensis 1 3 3 23-203 
Graeteriella unisetiger 0 0 2 49-!12 
Acanthocyclops vernalis 0 2 0 23-92 

C L A S S Branchiopoda 
O R D E R Cladocera 

Alona quadrangularis 1 I 2 23-112 
Chydoris sphaericus 0 0 1 92 

C L A S S Ostracoda 
Candona Candida 4 2 2 23-112 

P H Y L U M A R T H R O P O D A 
C L A S S Arachnida 
O R D E R Acarina 
F A M I L Y Hydrachnellae 

Feltria minuta 4 4 3 11-182 
Hygrobates sp. 5 0 0 5-47 
Torrenticola sp. 2 0 0 5-23 
A tract ides sp. i 0 0 235 
Sperchon sp. I 0 0 5 
Hydrachnellae sp.a 3 0 0 5-235 
Hydrachnellae sp.b 3 0 0 5-23 

F A M I L Y Halacarldae 
Lobohalacarus weberi 2 1 5 13-588 
Soldanellonyx monardi i 1 2 9-588 
Limnohalacarus wakerii I 0 2 11-49 
Porohalacariis alpinus 0 3 2 566-1205 

P H Y L U M NEMATODA 10 10 10 5-1205 
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Table 3.2 Mean abundance ( x ) (± ISE; n= 10) of meiofaunal groups found at ten sites on the tributaries of 
the Rivers Lynher and Seaton in spring, summer and autumn. 

Taxa 
Spring Summer Autumn 

X SE X SE X SE 

Harpacticoida 257 (394) 3726 (6118) 1066 (2019) 
Cyclopoida 91 (99) 442 (529) 221 (138) 
Cladocera 2 (S) 36 (115) 5 (8) 
Ostracoda 7 (9) 59 (64) 4 Oi) 
Hydracbnellae IS (32) 180 (284) 8 (19) 
Halacaridae 5 (25) 39 (55) 24 03) 
Nematoda 539 (691) 207 (193) 868 (1253) 
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Plate 3.2 A Male Bryocamptus praegeh^ (Copepoda: Harpacticoida). Note prehensile 
antennules modified for holding on to the female during copulation. Female Graetehella 
unisetiger (Copepoda: Cyclopoida) B thorax; C abdoman. Arrow points to large triangular 
operculum- a key identification feature of this species. 
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Plate 3.3 A Adult halacarid mite Lobohalacarus weberi, a species important in 
distinguishing LA (a site of low pH and high Al) from other sites of high metal 
concnetrations; B Adult hydrachnellid mite Feltria minuta\ C Cladoceran Alom 
quadrcmgidahs', D Os\x?sx>A Candona Candida. B, C and D were only found at sites of low 
metal concentrations. 
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3.3.2 General patterns in comniunit>' composition and seasonality 

ANOSIM demonstrated that the composition of meiofaunal communities was significantly 

different at a high proportion of sites throughout the year (Table 3.3). In other words, 

distinctive meiofaunal communities were found at sites of differing metal concentrations. 

Table 3.3 Results of pairwise lests from 1-way ANOSIM, showing significance (p) of differences in 
community structure between sites for fourth root, transformed meiofaunal data in spring, summer and 
autumn at ten sites on tributaries of the Rivers Lynher and Seaton. Communities not significantly different 
from each other are shown in bold. 

R2 B2 L I U3 S9 Dl U2 L4 S8 

Sprin g (Global R = 0.521) 

B2 0.01 

L I 0.03 0.01 

U3 0.01 0.01 0.11 

S9 0.01 0.01 0.01 0.01 

Dl 0.01 0.01 0.01 0.01 0.01 

U2 0.01 0.01 0.01 0.0! 0.01 0.06 

L4 0.01 0.01 0.02 0.03 0.01 0.01 0.08 

S8 0.01 0.01 0.09 0.01 0.01 0.09 0.10 0.19 

D5 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Autumn (Global R = 0.657) 

B2 0.01 

L I 0.01 0.01 

U3 0.01 0.01 0.01 

S9 0.01 0.01 0.05 0.01 

D l 0.01 0.01 0.02 0.01 0.01 

U2 0.01 0.01 0.03 0.56 0.01 0.01 

L4 0.01 0.01 0.01 0.02 0.01 0.01 0.07 

S8 0.01 0.01 0.01 0.01 0.01 0.01 0.42 0.01 

D5 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

T l R2 B2 L I U3 Dl U2 D3 S8 

Summer(Global R = 0.825) 

R2 0.02 

B2 0.01 0.01 

L I 0.01 0.01 0.01 

U3 0.01 0.01 0.01 0.01 

D l 0.01 0.03 0.01 0.01 0.01 

U2 0.01 0.01 0.01 0.01 0.01 0.02 

D3 0.01 0.01 0.01 0.01 0.01 0.01 0.05 

S8 0.01 0.01 0.01 0.01 0.01 0.01 0.29 0.01 

D5 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 
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In spring, summer and autumn, multidimensional scaling ordinations o f averaged meiofaunal 

abundances showed a clear separation of sites by their meiofaunal community structure. 

Communities at sites of low metal contamination (i.e. T l , R2, B2, L I ) were very different 

from those found at contaminated sites (i.e. L4, S8. D5) (Figs 3.2-3.4). (Refer to Table 2.1 

for the concentrations of metals found at these sites). 

Although sites with high and low metal concentrations were clearly separated in every 

season, there were still seasonal differences in community patterns, as demonstrated by 

weak or insignificant correlations between seasonal meiofaunal patterns (Table 3.4). 

Tabic 3.4 Matrix of pairwise Spearman's Rank Correlations coefficient (p) between similarity matrices 
derived from averaged fourth root transformed meiofaunal abundance data in spring, summer and autumn 
(* p<0.05). 

Spring Summer 

Summer 

Autumn 

0.381 * 

0.140 0.381 

These seasonal differences in community patterns were due to some sites showing large 

variation in their seasonal composition. The MDS ordinations visually display these seasonal 

differences in meiofaunal community patterns. In spring, the community at U2 was clearly 

separated from the other sites at the 50% similarity level (Fig. 3.2). In autumn, the 

community at L4 was delineated from all others at the 55% similarity level (Fig. 3.4), whilst 

in summer, communities clustered into two distinct groups at the 30% similarity level (Fig. 

3.3). Groupings of sites from the three seasons were later used in SIMPER analysis to 
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Figure 3.2. a) Dendogram and b) Multidimensional ordination of double square root 
transformed mean meiofaunal abundances at ten sites on Rivers Lynher and Seaton in 
spring. See Figure 2.2. for site locations. Sites grouped at the 50 % similarity level (i.e. 
groups A and B) for SIMPER analysis. Stress value <0.1 indicates the 2-dimensionaI 
ordination is a good representation of site relationships. 
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Figure 3.3. A) Dendogram and B) Multidimensional ordination of double sqaure root 
transformed meiofaunal abundances found at ten sites on the Rivers Lynher and Seaton 
in summer. See Figure 2.2. for site locations. Sites grouped at the 30% similarity level 
(i.e. groups A and B) for SIMPER analysis. Stress value<0.1 indicates the 2-dimensional 
ordination is a gocxi representation of site relationships. 
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Figure 3,4. a) Dendogram and b) Multidimensional ordination of double square root 
transformed mean meiofaunal abundances at ten sites on Rivers Lynher and Seaton 
in autumn. See Figure 2.2 for site locations. Sites grouped at the 55% similarity level 
(i.e. groups A, B and C) for SIMPER analysis. Stress values <0.1 indicates the 2-
dimensional ordination is a good representation of the site relationships. 
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investigate the species which were important in contributing to the separation of sites by 

their community structure. 

3,3.3 Relationships between community composition and environmental variables 

BIOENV analysis demonstrated that Cu was the best single variable explaining inter-site 

differences in meiofaunal community structure in all seasons (spring r=0.38, summer r=0.64, 

autumn r=0.58) (Table 3.5). Even so, highest correlations in each season involved Cu in 

combination with other variables. Autumn meiofaunal community patterns correlated best 

with Cu and A l , spring communities with Cu and Zn and summer communities with Cu, Zn, 

DOC and pH (Table 3.5). 

Figures 3.5-3.7 show the MDS ordinations of meiofaunal community patterns where site 

names had been overiaid with symbols proportional in size to the value of key variables, to 

allow the relationship between important variables and community structure to be 

visualised. Inter-site differences in meiofaunal community structure can be distinguished 

clearly in terms of Cu levels in both summer and autumn. The relationship between Cu 

concentrations and the meiofaunal community structure was less clear in spring compared 

with the other seasons (Fig. 3.5). The two distinct groupings of communities in summer 

were also clearly separated by differences in their DOC and Zn concentrations. In autumn, 

the separation of the community at L4 (see Section 3.3.2) appeared to be linked with the 

low pH and high Al concentrations at this site, whilst, in spring, the separation of the 

community at U2 (see Section 3.3.2) appeared to be related to high Zn concentrations. 
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Table 3.5 Combinations of variables giving the highest rank correlations between biotic and abiotic 
similarity matrices using BIOENV analyses (lower correlations omitted). Highest correlations are 
shown in bold. 

Best Variable Combinations 

M E I O F A U N A 

Spring 

1 Cu Zn 
0.383 0.248 

2 Cu , Zn Cu, Fe Zn, DOC 
0.501 0.475 0.328 

3 Cu, Zn, Fe Cu, Zn, DOC Cu, Fe, DOC 
0.456 0.445 0.444 

Summer 

1 Cu 
0.640 

2 Cu, Zn Cu, DOC 
0.622 0.618 

3 Cu, Zn, DOC 
0.660 

4 Cu , Zn, DOC, pH Cu, Zn, DOC. 
0.661 Temperature 

0.617 
Autumn 

I Cu 
0.529 

2 Cu, Al Cu, pH 
0.653 0.566 

3 Cu, Al, pH Cu, Al, Discharge Cu, Al, Hardness 
0.589 0.563 0.535 
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Figure 3.5 Multidimensional scaling ordination for fourth root transformed 
averaged meiofaunal abundances in spring A) sites names, and site names 
overlaid with circles proportional to the concentration of B) DOC, C) Zn and 
D) Cu 
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Figure 3.6. Mutidimensional scaling ordinations for fourth root transformed averaged 
meiofaunal abundances in summer: A ) site names; and site names overlaid with circles 
proportional to the concentrations of B) Cu, C) DOC and D) Zn. 
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Figure 3.7. Multidimensional scaling ordinations for fourth root transformed averaged 
meiofaunal abundances in autumn: A) site names; and site names overlaid with circles 
proportional to the concentration of B) AJ, C) Cu and D) pH. 
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3.3.4 Contribution of species in community analyses 

SIMPER analyses of meiofaunal abundance data allowed the examination of species which 

were important in contributing to the dissimilarity between communities at sites of high 

metal concentrations [CLUSTER group B (Figs 3.2-3.4)], and communities at sites of low 

metal concentrations [CLUSTER Group A (Figs 3.2-3.4)]. Multiple regression analysis 

identified the environmental variables that best explained the distribution of these key 

species (Table 3.6). 

In both spring, summer and autumn Bryocamptus zschokkei was the species that 

contributed most to the dissimilarity between communities of high and low metal 

contamination (Tables 3.6 and 3.7). In all three seasons, sites with high metal 

concentrations (Group B) were characterised by lower abundances of the harpacticoids 

Bryocamptus zschokkei and Bryocamptus praegeri compared with sites of low 

concentrations (Group A) (Tables 3.6 and 3.7). In spring and summer, metal-contaminated 

sites were characterised by an absence of the hydrachnellid mite Feltha minuta and high 

abundances of the cyclopoid D. languidoides. Low abundances of nematodes were 

consistent in distinguishing sites of high from low Cu concentrations in spring and autumn, 

while low abundances of the cyclopoid Paracyclops fimbriatus were important in separating 

sites of high contamination from those of low contamination in summer and autumn. In 

summer, low abundances of the hydrachnellid mites, and low abundances of the cyclopoid 

Eucyclops serrulatus, also distinguished sites of high metal concentrations. Finally in 

autumn, the presence of the halacarid mite Porohalacarus alpinus, and low abundances of 

the harpacticoid Bryocamptus pygmaeus, characterised sites of low from high Cu 

concentrations. 
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Table 3.6 Summary of similarity terms (SIMPER) analysis. Differences (< and >) in average abundances (m' 
)̂ of species contributing to dissimilarities between sites of low Cu concentrations (A) and sites of high Cu 

concentrations (B) and the separation of U2 from uncontaminated and contaminated site- groups in spring 
defined from C L U S T E R analysis for a) spring and b) summer. The % contribution of each species to the 
dissimilarity between groups by their community structure is shown in italics. A cut-off at a cumulative % 
dissimilarity of 70% was applied (i.e. species listed contributed to 70% of the dissimilarity between groups in 
their site community stnicture). 

a) 

Species A B A U2 B 

Bryocamptus zschokkei 375 > 

21.9% 
0 375 > 

25.1% 
0 

Diacyclops languidoides 36 < 

J 0.5% 
142 36 > 

13.3% 
0 < 142 

41.8% 

Bryocamptus praegeri 47 < 

7.3% 
0 

Diacyclops bisetosus 13 < 

6.8% 
25 0 < 9 

13.5% 

Feltria minuta 30 > 

9.9% 
0 30 > 

11.6% 
0 

Nematodes 779 > 

10.7% 
23 779 > 

18.3% 
18 < 231 

14.7% 

Group A=R2,B2,LUS9,DI,U3 (% similarity-54.5%); U2; Group B= =L4,S8,D5 (% similarity=58.7%) 

b) 

Species A B 

Bryocamptus zschokkei 6118 > 

20.0% 
4 

Bryocamptus praegeri 1325 > 

9.2% 
0 

Paracyctops fimbriatus 195 > 

6.3% 
31 

Diacyclops bisetosus 0 < 

6.3% 
48 

Eucyclops serrulatus 220 > 

6.1% 
137 

Diacyclops languidoides 50 < 

5.6% 
126 

Hygrobates sp. 97 > 

15.2% 
2 

Hydrachnellae sp.a 126 > 

14.9% 
0 

Feltria minuta 50 > 

14.8% 
0 

Group A=R2,B2,LI,U3 ,T1 (% similarity=54.6%); Group B=DI,U2,S8,D5.D3 (% similarity=52.0%) 
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Table 3.7 Summary of similarity terms (SIMPER) analysis. Differences (< and >) in average abundances (m' 
)̂ of autumn species contributing to dissimilarities between sites of low Cu concentrations (A) and high Cu 

concentrations (B) groups of sites and the separation of L4 from contaminated and uncontaminated sites-
groups defined from C L U S T E R analysis. The % contribution of each species to the dissimilarity between 
groups by their community structure is shown in italics. A cut-off at a cumulative % dissimilarity of 70% was 
applied (i.e. species listed contributed to 70% of the dissimilarity between groups in terms of site community 
structure). 

Species A B A L4 B 

Bryocamptus zschokkei 839 > 0 839 > 

19.7% 
0 

Bryocamptus praegeri 648 > 

N.2% 
0 647 > 

15.3% 
0 

Eucyctops serrulaius 32 < 

8.6% 
209 32 > 

6.6% 
0 < 

19.5% 
209 

Diacyclops languidoides 39 < 

7.4% 
267 

Diacyclops bisetosus 10 < 

8.2% 
36 > 

13.8% 
0 

Soldanellonyx monardi 3 < 

6.6% 
9 

Lobohalacariis weberi 27 > 

12.8% 
0 

Porohalacarus alpinus 0 < 

8.9% 
35 0 < 

12.6% 
36 

Nematodes 1154 > 

8.0% 
213 1154 > 

6.2% 
178 

Paracyciops fimbriatus 57 > 

7.5% 
4 62 > 

11.4% 
4 

Group A = R2, 82, S9,L1,U3,D1,U2 (% similarity = 63.5%); Group B=S8,D5 (% similarity = 64.9 %). 
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The importance of metal concentrations in relation to species abundances was confirmed by 

multiple regression analyses (Table 3.8). Copper was the most important variable explaining 

inter-site variation in the abundance of most species. There were negative correlations 

between Cu and the abundance of the copepods B. zschokkei, B. praegeri and hydrachnellid 

mites. Positive correlations occurred between Cu and Diacyclops langiiidoides, and 

Porohalacants alpinus abundances (Fig. 3.8). However, variables other than Cu were also 

important in explaining species distributions. The spring abundance of B. praegeri was 

positively correlated with DOC concentrations. Temperature and AJ best explained the 

spring distribution of Feliria mhiuta. The abundance of this hydrachnellid mite correlated 

negatively with these variables. A negative relationship existed between high Zn 

concentrations and autumn and spring nematode abundances. Autumn and summer 

Eucyclops serrtilatus abundances were negatively related to water hardness and pH, 

respectively. Autumn Bryocamptus pygniaeus abundances correlated positively with Al 

concentrations (Table 3.8). Summer Paracyclops fimbriatus correlated negatively with Al 

and Zn concentrations. 

SIMPER analyses were used also to reveal the species important in distinguishing the 

community at L4 and U2 from the communities of other sites in autumn and spring, 

respectively (Tables 3.6 and 3.7). In spring, U2 was separated from the other groupings by 

an absence of all meiofauna groups apart from nematodes. As with other sites of high metal 

contamination, L4 differed from uncontaminated sites due to an absence of harpacticoids 

and a low abundance of nematodes. Site L4 also differed from uncontaminated sites due to 

a higher abundance of D. langnidoides, D. bisetosits and the halacarid mite, Soldanellonyx 

monardi. The absence of E. serrulatus, and the presence of Lobohalacarus weberi and D. 

bisetosus, were important in isolating L4 from other sites of high metal concentrations. 
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Tabic 3.8 Results of stepwise mulipic regression analysis on species found by SIMPER to be important in conuibuting to inter-site differences in community suucture in spring, summer 
and autumn. Only species that demonstrated significant correlations with an environmental variable are shown. 

Species Variable 
Autumn 

Cumulative % Relationship Variable 
Spring 

Cumulative % Relationship Variable 
Summer 

Cumulative % Relationship 

HARPACTICOIDA 
Hryocamptus zschokkei Cu 93.5 Negative Cu 89.0 Negative Cu 94.6 Negative 
Hryocamptus praegeri Cu 89.6 Negative DOC 89.4 Positive Cu 91.7 Negative 
liryocamptus pygmaeus Al 34.1 Positive 

C Y C L O P O I D A 
Paracyclops fimhriatus Al 24.9 Negative 

Zn 53.0 Negative 
(Interstitial) 

Diacyclops languidoides Fe 48.2 Negative pH 55.2 Negative 
Cu 76.1 Positive Conductivity 75.7 Negative 

* Diacyclops hisctosus Fe 29. Negative Cu 72.8 Positive 
Conductivity 46.3 Negative 

Eucylops serrulatits Hardness 47.4 Negative PH 49.9 Negative 

H Y D R A C H N E L L A E 
Feltria minuta Temperature 45 Negative Cu 48.6 Negative 

Al 85.3 Negative Hardness 69.8 Positive 
Ilygr abates Conductivity 35.6 Positive 

Cu 55.4 Negative 
Hydruchncllac S|>. A PH 27.3 Positive Hydruchncllac S|>. A 

Cu 45.9 Negative 

H A L A C A R I D A E 
Porohalacarus alpinus Cu 40.4 Positive 

NEMATODA Zn 35.7 Negative : Zn 24.9 Negative 
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Figure 3.8 Relationship between abundances of A) Bryocamptus zschokkei, 
B) Bryocamptus praegeri and C) Diacyclops languidoides and the 
environmental variable shown to explain most o f their distribution using 
multiple regression (i.e. copper) in autumn (n=5 for each site; vertical bars = 
+ 1SD). Sites are arranged in order of increasing value of Cu. 
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3.3.5 Univariate measures 

Despite inter-site differences in community structure correlating with Cu in all seasons, the 

relationship between Cu and the univariate measure of species richness was less clear. In 

summer, there was a significant negative correlation between total meiofaunal species 

richness and Cu (r = -0.822, F=12.46, p<0.05), although no such trend was evident for 

other seasons (r=-0.376. F=2.76, p>0.1 for spring; r=-0.319, F-0.69, p>0.1 for autumn) 

(Fig. 3.9). Indeed, autumnal meiofaunal diversities were highest at sites of intermediate Cu 

concentrations. 

Differences in total meiofaunal abundances amongst sites were largest in autumn and 

summer, and there were highly significant negative correlations between total abundance 

and Cu concentration in autumn (r=-0.834, F=7.32, p<0.05) and summer (r=-0.880, 

F=28.02, p<0.05). Spring meiofaunal abundances did not correlate significantly with Cu 

(i^-0.413, F=2.94, p>0.1). The correlation between meiofaunal abundance and Cu was due 

mainly to sites of high Cu concentrations having a low abundance of harpacticoids (a 

dominant group at sites of low Cu concentrations) (Fig. 3.10). The other two dominant 

groups (cyclopoids and nematodes) demonstrated no clear trend of abundances in relation 

to increases in Cu concentrations. 
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are arranged in order of increasing Cu concentration. 
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Figure 3.10 Mean abundances of harpacticoids, cyclopoids and nematodes in 
A) spring, B) summer and C) autumn at ten sites on tributaries of the Rivers 
Lynher and Seaton (n=5 for each site; vertical bars = + 1 SD). See Figure 2.2 
for site locations. Sites arranged in order of increasing Cu concentration. 
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3.4 Discussion 

3.4.1 Links between meiofaunal community structure and environmental variables in 

metal-contaminated streams 

This chapter has demonstrated, for the first time, clear relationships between the 

concentrations of trace metals and the composition of lotic meiofaunal communities using 

multivariate analyses. In all. seasons, BIOENV analyses implicated Cu as an important 

variable explaining inter-site differences in meiofaunal community structure, with 

communities at sites of low Cu concentrations being very different from those of high Cu 

concentrations. Although there is a lack of literature on the effect of Cu on the freshwater 

meiobenthos, the high toxicity of Cu to other aquatic biota is well established. Many 

studies have shown Cu to be a major determinant of stream macroinvertebrate structure 

(Leland et al, 1989; Kiffney & Clements, 1994). Winner et al (1980) demonstrated that 

the macroinvertebrate community in a stream contaminated with relatively high, and 

variable, concentrations of Cu, Cr and Zn was comparable with that in a experimental 

stream receiving a low, but constant, concentration of Cu, suggesting Cu was the metal 

most influential in structuring the natural community. Evidence that meiofaunal 

communities are influenced by Cu has been reported also in the marine environment. 

Somerfield et al. (1994) recorded nematode diversity and changes in nematode community 

structure in a metal-contaminated estuarine system to be closely correlated with metal 

levels. Austen et al. (1994) also demonstrated an effect of elevated levels of Cu on an 

estuarine meiofaunal community structure by dosing communities with various 

concentrations of Cu in microcosm experiments. The meiobenthic community in the 

mesocosms treated with Cu was significantly different from the controls (Austen et al., 

1994). 
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In their survey of metal contaminated streams (including sites used in the present survey), 

Gower et al. (1994) found that AI, dissolved organic matter and pH appeared to play a 

major role in determining macrofaunal community structure. The present study 

demonstrated that the meiofauna apeared to be influenced by these variables. Inter-site 

variation in Cu in combination with the variables Zn (spring), Zn, DOC, pH (summer), and 

Al (autumn) best explained the differences in community structure across sites. 

Previous studies have demonstrated that aluminium was importsmt in determining stream 

invertebrate community structure (Ormerod et al., 1987; Wade et al., 1989; Run et ai. 

1990; Gower et a/., 1994), including the stream meiofaunal community (Rundle & 

Ormerod, 1991). Rundle & Ormerod (1991) showed that the total numbers of 

microcrustaceans and harpacticoid copepods were less abundant at sites of high compared 

with low Al concentrations. The influence of Zn on stream macro invertebrate communities 

is to reduce species richness, reduce abundance and to shift community composition from 

sensitive to tolerant species (Clements, 1988; Willis, 1988). Laboratory studies have also 

shown that high Zn concentrations have a toxic effect on marine copepods and nematodes 

(Couli & Chandler, 1992). From the present study, it appears that high concentrations of Zn 

may also have a deleterious effect on freshwater copepods and nematodes. BIOENV 

analyses implicated Zn as an important variable explaining spring and summer meiofaunal 

community patterns, while Zn was the variable that best explained inter-site variation in 

nematode abundances. 

Other environmental variables have an ameliorating elTect on metal toxicity (i.e. pH and 

DOC) (Campbell & Stokes, 1985; Kullberg, 1992). The importance of the effect of pH on 

stream meiofaunal community structure has already been reported (Rundle & Hildrew, 
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1991; Rundle & Ormerod, 1992), with species richness and density of the meiofauna being 

reduced at acidic sites, whilst acid-sensitive species were replaced by tolerant ones. Under 

acidic conditions, the toxicity of metals is enhanced by their release from particles into 

soluble more toxic forms (Campbell & Stokes, 1985). This effect may explain the high Al 

concentrations found at the most acidic site in the present study. 

Al some sites, high concentrations of DOC may have had an ameliorating effect on metal 

toxicity. DOC concentration was highly negatively correlated with Cu concentrations (See 

Chapter 2), and it is likely that at sites of high DOC, Cu had formed complexes resulting in 

a reduction of the toxic free ion form of the Cu at these sites (Spear & Pierce, 1979). For 

example, Austen et al. (1994) found the meiofaunal community of estuarine mud to be less 

affected by Cu and Zn than a community from estuarine sand, and attributed this to Cu 

binding to the high levels of organic chelaters in the former sample. 

3.4.2 Seasonal differences in meiofaunal communities in metal-contaminated streams 

Although inter-site differences in meiofaunal community structure were clearly linked to 

Cu in all three seasons, the importance of the other variables were only highlighted at 

certain limes of the year. In autumn, Al was implicated as an important variable 

determining community structure, mainly at L4 (a site of high Al concentrations and low 

pH). Autumnal Al concentrations at L4, however, were no different than those measured in 

spring (Chapter 2). In spring, the community at U2 was separated from the others due to an 

absence of all meiofauna except for nematodes. High flows, or high Zn concentrations, 

occurred at U2 at the lime of sampling (Appendix I) and either Zn or flow may be 

responsible for the absence of microcruslaceans. 
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The seasonal pattern of abundance of the major meiofaunal groups measured in these 

metal-contaminated streams was similar to that demonstrated by previous studies of 

meiofauna of streams in the UK (Robertson, 1990; Rundle, 1990; Rundle, 1993) and in 

North America (Shiozowa, 1985; Palmer, 1990). Highest abundances of copepods, 

cladocerans, ostracods and hydrachnellid mites were recorded in summer, whilst lowest 

abundances were found in spring. This pattern can be explained by several hypotheses. 

Firstly, low flow occurring during the summer months may provide favourable conditions 

for population growth, whereas in spring, animals are frequently washed away during 

spates. For example, Palmer (1990) found a significant decrease in the abundance of 

benthic copepods, and an increased number of drifting copepods, after spring rainstorms. 

Secondly, elevated temperatures during the summer may lead to higher abundances in 

some meiofaunal groups such as harpacticoids and cyclopoids due to the shortening of their 

developmental limes (Sarvala, 1979; O'Doherty, 1985). In contrast to other meiofauna, 

nematode abundances were lower in summer compared with spring and autumn. 

Nematodes may not be so vulnerable to erosion as other groups due to their interstitial 

habitats and this would allow them to increase in numbers when the other groups are in low 

densities. Low abundances in summer may reflect some influence other than 

physicochemistry; for example, increased predation pressure at this lime. A seasonal survey 

of meiofaunal abundances in Goose Creek (Virginia) also demonstrated stream nematode 

abundances to be highest in spring (Palmer, 1990), although nematode abundances in an 

Italian stream (Zullini & Ricci, 1980) and in a creek in Pennsylvania (USA) (Boll & 

Kaplan, 1989) showed no seasonal pattern. Further studies are, therefore, required to 

explain and understand the different seasonal patterns in the abundance of nematodes. 
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3.4.3 A comparison with meiofaunal communities in other regions 

This study focused on streams in an area where trace metal contamination of fi-eshwater is 

widespread and metal concentrations exceed the recorrmiended U K Environmental Quality 

Standards for Cu (NRA, 1994). These universally elevated Cu concentrations may explain 

the low diversities of meiofauna recorded here compared with previous studies of stony 

streams in the UK. Only 24 species of microarthropods were found in the twelve sites used 

in this study, whilst Rundle & Hildrew (1990) identified seventy-two species of 

microarthropods (excluding ostracods) in their seasonal survey of ten stony streams in the 

Ashdown forest, (southern England). In a survey of thirteen sites in upland streams in mid-

Wales, Rundle & Ormerod (1991) recorded twenty-seven microcrustacean species. The 

lower diversities of meiofauna recorded in the tributaries of the Rivers Lynher and Seaton 

relative to the two previously published extensive surveys was attributable mainly to a 

lower number of species of harpacticoid copepods, hydrachnellid mites, ostracods and 

cladocerans. In south-west England, streams drain systems of base poor geology, resulting 

in relatively low water hardness, such systems are usually associated with species-poor 

benthic macroinvertebrate communities (Egglishaw & Morgan, 1965; Ormerod & 

Edwards, 1987). Therefore, the low diversity in the streams of the tributaries of the Rivers 

Lynher and Seaton may simply be a reflection of the low stream invertebrate diversity in 

the South-West. 

Despite the diversities of microarthropods in the stream tributaries of the Rivers Lynher 

and Seaton being lower than those reported for other regions in the UK (Rundle & 

Hildrew, 1990; Rundle & Ormerod, 1991), similar meiofaunai groups were numerically 

dominant in both cases (i.e. harpacticoid and cyclopoid copepods). In the present study, 

nematodes were dominant at sites, irrespective of levels of metal concentrations. Suren 

(1992) also found nematodes and copepods to be the most abundant permanent meiofauna 
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in two gravel streams in New Zealand, with ostracods, and aquatic mites contributing a 

small proportion to the total invertebrate assemblage. In the USA, nematodes and copepods 

were also found to be abundant in studies of lotic meiofauna in Virginia (Palmer, 1990), 

Pennsylvania (Borchardt & Bolt, 1995) and Ohio (Hummon et al., 1989). The latter study 

(Ohio) included streams polluted by acid mine drainage, which were dominated by either 

nematodes or rotifers. The average total meiofaunal densities recorded in the lotic systems 

sampled in North America were between ten and 100 times higher than those recorded in 

streams in the UK. This difference may be explained by differences in substratum. In the 

American streams, the substratum was predominantly fine sediment, whereas other studies 

were from streams with coarser (stony) substrata. Sediment structure attains a dominant 

role in meiobenlhic ecology. As many meiobenthic animals can exploit the interstitial 

environment of sandy substrates the proportion and distribution of finer sediment particles 

will influence the degree of accessibility (Giere et al. , 1988). 

3.4.4 Indirect effects of trace metals on meiofaunal community structure 

Differences in meiofaunal community structure observed across the metal gradient may 

not be the result of just a direct toxic effect. A decline in the quality of food resources may 

be responsible for population declines of some taxa. For example, Leiand & Carter (1985) 

reported declines of primary production in creeks exposed to elevated levels of Cu, and 

heterotropic microbes (bacteria and fungi) have also been shown to be influenced by mine 

effluent discharge, resulting in reduced decomposition rates (Carpenter et al., 1983; Maltby 

& Booth, 1983). Trace metals inhibit both the growth and sporulation of aquatic fijngi 

(Duddridge & Wainwright, 1980; Abel & Barlocher, 1984). The resultant reduced 

decomposition rate of leaf litter due to the lower heleroptrophic activity may also explain 

the lower concentrations of DOC found at sites of high Cu concentration in the present 

study. As many species of meiofauna are bacteriophores and algivores (Perlmutter & 
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Meyer, 1991; Borchadt & Bott, 1995), lower supplies of these food sources are likely to 

have a significant impact on their community structure. 

Sites of high metal concentrations were not significantly less diverse than sites of low 

metal concentrations. Instead, community structure differed due to metal-tolerant species 

replacing sensitive species at sites of high metal concentrations. Metals are likely to be 

affecting predator-prey and competitive interactions occurring within the benthos, allowing 

tolerant species to increase in abundance due to the removal of a predator or a competitor. 

In autunan, species richness was highest at sites of intermediate contamination, which 

conroborates many marine studies demonstrating highest meiofaunal diversities at sites of 

moderate pollution (Hockin, 1983; PlaU & Lambshead, 1985; Hodda & Nicholas, 1986; 

Moore & Pearson, 1987), Huston (1979) hypothesised that diversities are highest where 

some limited environmental disturbance prevented dominance by one, or a few, species. 

Thus, further work is required on the effect of metals on predator-prey and competitive 

interactions to explain the response of the meiofaunal community to metals. 

3.4.5 Links between environmental variables and specific meiofaunal groups in metal-

contaminated streams 

In the present study, the abundances of the two harpacticoids Bryocamptus zschokkei and 

B. praegeri (the dominant species at sites of low contamination) showed strong negative 

correlations with Cu concentration. Harpacticoids are burrowing interstitial species and, as 

Cu levels were found to be higher in the interstitial environment then in surface waters 

(Chapter 2), harpacticoids may be more sensitive to high metal concentrations than 

epibenthic meiofauna. In the marine environment, Van Damme et al. (1984) found a lower 

abundance of benthic harpacticoids in a metal-contaminated estuary compared with one of 

low contamination, although no other macrofaunal or meiofaunal element was affected. It 
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was concluded that this effect was due to Cu, as Cu was persistently present at levels which 

affected egg production and development of harpacticoids in bioassays (Van Damme ef a/., 

1984). It was also suggested thai harpaclicoids might be good indicators of Cu 

contamination due to their apparent high sensitivity (Van Damme et al, 1984). This 

present study also suggests that harpacticoids, particularly Bryocamptus zschokkei and 

Bryocamptus praegrei, may have a role as indicators of Cu contamination. 

Unlike harpacticoids, some species of cyclopoid copepod appeared to be highly tolerant of 

high metal concentration. For example, there were strong positive correlations between the 

abundances of Diacyclops languidoides and Diacyclops bisetosus with interstitial Cu 

concentrations in spring. Many species of cyclopoids (including D. languidoides) have also 

been found to be abundant at acidic sites (Rundle & Hildrew, 1990). This tolerance of 

cyclopoids to extreme chemical conditions may lead to higher abundances at sites where 

competition is low and predators are scarce. Caution is required, however, in assuming that 

this tolerance applies to all cyclopoid species, as the cyclopoid Paracyclops fimbriatus 

appeared to be sensitive lo Cu contamination. 

Hydrachnellid miles were restricted to sites with low meial concentrations, and abundances 

of Feltria minuta were important in separating sites of low and high Cu concentrations. In 

spring, however, the abundance of F. minuta was negatively correlated with temperature 

and Al concentrations, whilst in autumn, Cu and hardness best explained its distribution. 

Despite these correlations with physicochemistry, biological factors are also likely to affect 

hydrachnellid mite distribution. The majority of hydrachnellid miles are predatory, and 

most of their larval stages are known to be parasitic on aquatic insects and inseci larvae 

(Gledhill, 1985). It has been suggested that the distribution of these mites is limited by the 

distribution of their prey (Rundle & Hildrew, 1990). In the present study, the nymphs of 
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hydrachnellid mites, other than Feltria minuta (e.g. Hygrobates sp. and Torrenticola sp.), 

were most abundant at sites L I and T l (Appendix II), sites of high discharge. Previous 

studies have shown the hydrachnellid mites Hygrobates sp. and Torrenticola sp. to be 

associated with fast-flowing waters (Viets, 1936; Rundle & Hildrew, 1990). The 

association of hydrachnellid mites with their hosts may also explain the large abundance of 

nymphs present in the summer in the present study. In most cases, the parasitic larval stage 

will be feeding on airborne insects and, therefore, their return to the water may be when the 

host lays its eggs, or after the death of the host, and this is most likely to occur in spring or 

early summer (Rundle, 1990). 

Halacarid mites were restricted mainly to sites of low Cu concentration, however, 

Porohalacarus alpinus was notable for being found only at sites of high Cu concentrations. 

It is important to note that halacarid mites are generally carnivorous (Green & Macquety, 

1987), and Lobohalacarus weberi preys on nematodes and oligochaetes (Teschner, 1963). 

Thus, as with the hydrachnellid mites, halacarid species may be restricted by the 

occurrence of their prey. 

Alona quadrangidaris and Chydoris sphaericus were the only two cladocerans found in the 

stream tributaries of the Rivers Lynher and Seaton, and both species were restricted to sites 

of low Cu contamination. The sensitivity of C. sphaericus to Cu is in agreement with 

Kovisto et al (1992) who demonstrated that long-term exposure of this species to Cu 

resulted in a reduction in the rate of population growth. Alona quadrangular is was found 

only at sites of high discharge (Appendix II) and this corroborates a study by Rundle and 

Hildrew (1990) which found maximum discharge best explained the distribution of A. 

quadrangularis in streams in the Ashdown Forest. 
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Variation in nematode densities were best explained by Zn concentrations; with nematodes 

being more abundant at low Zn concentration in spring and summer. Marine nematodes are 

also sensitive to Zn in toxicity tests (Coull & Chandler, 1992). In spring, nematodes were 

the only taxon found al U2, a site of high Zn contamination. The tolerance of some 

nematode species to high levels of Zn is in agreement with studies by Somerfield et al. 

(1994) and Austen et al. (1994), who found nematodes at very high concentration of Zn 

and Cu. There may be differences in the tolerance of individual species of nematode. 

Newell et al. (1990a) reported that freshwater nematodes from the same genus had 

different degrees of tolerance to Ti02 waste. Thus, future identification of nematodes is 

likely to reveal a difference in the resistance of nematodes to Zn toxicity. 

Conclusion 

In summary, metals (particularly Cu) were of overriding importance in determining the 

inter-site differences in the stream meiofaunal community structure in the present study. 

Differences in site community structure did not reflect lower species richness at 

contaminated sites, but were due, primarily, to the replacement of sensitive species by Cu 

tolerant species at sites of high Cu concentrations. Despite the apparent influence of other 

variables on stream meiofauna, the structure of the meiofaunal community clearly reflected 

the gradient in Cu concentrations at the sites surveyed. These results suggest that 

meiofaunal community structure has potential as a monitor of changes in Cu contamination 

in streams. 
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C H A P T E R 4 

Comparison of stream meiofaunal and 

macrofaunal community structure across a metal 

contamination gradient 
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4.1 Introduction 

Whereas macroinvertebrates have been used extensively to monitor the quality of freshwater 

systems (Rosenberg & Resh, 1992; Mason, 1996), meiofaunal communities have been 

virtually excluded from freshwater pollution monitoring. The exclusion of the meiofauna 

from traditional monitoring programmes stems from the fact that this faunal component has 

only very recently been shown to constitute a significant component of the stream benthos 

(Chapter 1). The limited information available, however, clearly indicates that freshwater 

meiofaunal communities are influenced by anthropogenic inputs. For example, the 

meiofaunal assemblages of acidic streams surveyed in mid-Wales and southern England 

differed from circum-neutral streams (Rundle & Hildrew, 1990; Rundle & Ormerod, 1991). 

The distinct species composition in streams of different chemistry suggests that the stream 

meiofauna has the potential to be a biomonitor of contamination. Further support for this 

suggestion comes from the marine environment, where meiofaunal communities have been 

used successfully to detect anthropogenic disturbances (Moore & Bett, 1989). Somerfield et 

ai (1994) examined the meiofaunal community structure in a highly-polluted estuary, and 

demonstrated that the diversity and community structure of the nematodes was closely 

correlated with trace metal concentrations. In an estuary contaminated with Zn, Cu and Pb, 

reduced diversity of meiofauna was also recorded even though there was no alteration of 

the macrofaunal community (Van Damme et al., 1984). The latter study demonstrates 

clearly that the extent of contamination may be underestimated when only using one faunal 

component. 

As yet, no comparison of the effect of metal contamination on the meiofaunal and 

macrofaunal communities of freshwater ecosystems has been made. If there is a comparable 

response of different faunal components to contaminants, this gives confidence to the 
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generality of the effect of a pollution event on ecosystems (Warwick, 1993). Similar 

meiofaunal and macrofaunal community responses were recorded across sites of different 

pH in streams in southem England (Townsend et a/, 1983; Rundle & Hildrew, 1990), while 

marine meiofaunal and macrofaunal communities appeared to change, in a comparable way, 

across a gradient of trace metal contamination in an estuary in south-west England (Bryan 

& Gibbs, 1983; Somerfield e/a/., 1994). 

As the meiofauna and macrofauna are ecologically distinct components of the benthos 

(Warwick, 1984). they may also respond to metal contamination in a different way. Studies 

that have compared directly the effect of disturbance on marine meiofauna and macrofauna 

have shown that including both components provides a more comprehensive understanding 

of the impact of pollution. Somerfield et al (1994) compared community structure of 

macrofauna and nematodes along a marine transect through a dredging disposal site and 

related the community structure to a range of environmental variables. The nematodes were 

more sensitive to the sediment structure and the ongoing disposal of dredging at the site 

than the macrofauna, whereas the macrofauna was more sensitive to concentrations of trace 

metals and longer-term events at the site than the nematodes (Somerfield et ai, 1994). In 

another marine study, which examined the impact of sewage enrichment on an intertidal 

sandy shore in summer and autumn, the macrofauna and meiofauna responded to the 

sewage enrichment in the vicinity of the sewage outfall, however, the summer macrofaunal 

community appeared disturbed throughout the area (Austen et aL, 1989). It was concluded 

that the macrofaunal community may have been disturbed by human digging for shellfish 

occurring in summer. Previous work has shown that the marine meiofauna, unlike the 

macrofauna, is hardly aff"ected by physical sediment reworking (Thistle. 1980; Sherman & 

Coull, 1980; Sherman et al., 1983). Some caution must be taken, therefore, if only one 
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component of the fauna is used to assess the impact of disturbance on the rest of the 

community. 

Another possible caveat using only the macrofauna in freshwater pollution monitoring is the 

exclusion of their smaller life-history stages during sampling. Current methods of 

monitoring stream macroinvertebrates use a standard net mesh size of 0.8-1.0 mm. A large 

proportion of macrofaunal individuals pass through this mesh size range (a large fraction 

also passes through a 0.5 mm sieve and are classed as temporary meiofauna). To date, no 

study has included these smaller individuals when measuring the community response of 

freshwater systems to contamination. By excluding this component of the fauna, it may be 

argued that the whole community response has not been assessed. Moreover, the inclusion 

of these smaller life stages may allow contamination to be detected at lower concentrations 

of chemical input as the former often have greater sensitivity to pollution compared vAih the 

adult stages (Diamond a/.. 1992; Kiffney & Clements. 1994; Leiand a/.. 1989). 

To increase cost effectiveness, monitoring of fresh water using stream macroinvertebrates is 

often undertaken using identification to a taxonomic level higher than species (i.e. family) 

(e.g. Furse et aL, 1981; Armitage et al., 1983; Rutt el al., 1990; Rutt et al., 1993). 

Moreover, measures of response used are often simplistic, and univariate diversity 

measures, or biotic indices, are preferred to multivariate approaches (Rosenberg & Resh, 

1992), under the premise that the former are easier to interpret (see Chapter 1). Previous 

studies of macroinvertebrate communities, however, have shown that multivariate 

techniques are the most sensitive analytical method for the detection of contamination in 

freshwater and marine systems (Norris et al., 1982; Warwick & Clarke, 1991; Cao et al., 

1996; Perryman, 1996). Recent studies of the impact of pollutants on marine systems has 
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led to the development of a multivariate index for the detection of anthropogenic inputs 

(Warwick & Clarke. 1993a). 

The aim of this chapter was to examine which components of the stream benthic community 

responded most directly to trace metal contamination. To achieve this objective, various 

faunal components [i.e. macrofauna, meiofauna, total macrofauna (including temporary 

meiofauna) and total metazoa (macrofauna, meiofauna and temporary meiofauna)], sampled 

across sites representing a metal gradient, were correlated with environmental variables 

measured at these sites using multivariate analyses. Higher macrofaunal and meiofaunal 

taxonomic levels than species, univariate measures and the Index of Multivariate dispersion 

were also used to examine the pattern of perceived impact. 
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4.2 Materials and methods 

4.2.1 Meiofaunal an macrofaunal sampling 

Meiofauna was obtained from samples collected at sites R2. B2. L I . U3, S9. D l . U2, L4, 

S8 and D5 in autumn (21st-25th November 1994) and spring (17th-24th April 1995) as 

described in Chapter 3. Macrofauna, and temporary meiofauna, were also obtained from 

these samples. Macrofauna was removed and identified from material retained on a 500 ^m 

sieve, whilst the temporary meiofauna comprised the macroinvertebrates that passed 

through a 500 ^m sieve. Ail individuals, apart from chironomids and oligochaetes. were 

identified to species (using the keys listed in Appendix I I ) , enumerated and a data matrix 

constructed for the entire metazoan community across sites. 

4.2.2 Environmental variables 

Annual mean values of the environmental variables (Chapter 2) were used in the analyses. 

Mean values from replicate seasonal data have been used previously to provide a robust 

comparison between sites (Rundle & Hildrew, 1990). 

4.2.3 Statistical analyses 

4.2.3.1 Comparison of patterns between difTerent community subsets 

Ranked lower triangular similarity matrices (Bray Curtis Similarity matrices) were 

constructed for meiofaunal, macrofaunal, total macrofaunal (i.e. macrofauna and temporary 

meiofauna) and total metazoan data for spring and autumn (Chapter 3). As the fauna varied 

in abundance within samples from single to thousands of individuals, a fourth root 

transformation was applied to reduce the influence of dominant species on the analyses. The 

PRIMER program CLUSTER was used to determine 'groupings' of averaged site 

communities in such a way that communities within a group were more similar than 

communities in different groups (Chapter 3). For each subset, multidimensional scaling 
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ordinations were used to display, visually, inter-site differences in averaged faunal 

abundances [Kruskal & Wish, 1978; Clarke & Green. 1988 (Chapter 3)]. 

To compare the discrimination between sites based upon macrofaunal and meiofaunal 

communities, similarity matrices of averaged macrofaunal (i.e. not including temporary 

meiofauna) and averaged meiofaunal (i.e. permanent meiofauna) data were compared using 

the PRIMER program RELATE. Spearman's Rank correlation coefficients (p) between the 

corresponding elements of each pair of matrices were computed and the significance o f the 

correlation was determined using a Monte Carlo permutation procedure (Clarke & 

Warwick, 1994). The similarities percentage procedure (SIMPER) for each season (Clarke, 

1993; Chapter 3) was used to identify the macrofaunal and meiofaunal species important in 

contributing to the dissimilarities in site groupings derived from the CLUSTER analysis. 

To test for significant differences in the community structure between sites, one-way 

ANOSIM permutation tests (Clarke & Green, 1988; Clarke, 1993, Chapter 3), were used. 

These tests investigated the discriminatory power of separate community subsets 

(macrofauna. meiofauna, total macrofauna and total metazoa) in distinguishing between site 

differences in metal concentrations . 

4.2.3.2 Relating faunistic and environmental data 

The separation of sites, based upon their community structure, was related to inter-site 

differences in trace metal concentrations in two ways. Firstly, similarity matrices for 

averaged faunistic data were compared with the lower triangular Euclidean matrix from a 

correlation-based PCA of metal data using RELATE (Clarke & Warwick, 1994; Chapter 3). 

The PCA of metal data was different from the PCA used in Chapter 2 as it included only 

those sites used to sample meio- and macro-benthic communities in spring and autumn. 
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Secondly, the relationships between community data and different combinations of 

environmental variables were investigated using the BIOENV procedure (Clarke & 

Ainsworth, 1993; Chapter 3). 

4.2.3.3 Analysis of varying levels oftaxonomic organisation 

To investigate whether the discriminatory powers of the data were retained at higher 

taxonomic levels, macrofaunal and meiofaunal (species) data were aggregated to the level of 

genus, family and phylum using the PRIMER program AGGREG. The RELATE program 

(PRIMER) was then used to compute Spearman Rank correlations (p) between similarity 

matrices generated for each taxonomic level. The significance of the correlation was 

determined using the Monte Cario permutation procedure (Clarke & Warwick, 1994). 

Spearman Rank correlations (p) were calculated also for inter-faunal matrices at the 

different taxonomic levels and the dissimilarity matrix for metal data. 

4.2.3.4 Univariate measures 

Two diversity indices, Shannon-Weiner (H') (logio) and eveness (Pielou's J) (iogio), were 

calculated for the macrofauna and meiofauna in spring and autumn using the PRIMER 

program DIVERSE. Significant differences between sites were tested using 1-way 

ANOVA, followed by a multiple range test (Fisher's least significant different process). 

4.2.3.5 Index of Multivariate Dispersion 

An Index of Multiple Dispersion (using the PRIMER program MVDISP) (Warwick & 

Clarke, 1993) was calculated to determine the variability of replicate faunal samples at each 

site. Increased variability amongst replicates, in terms of their species abundances and 

identities with increased levels of perturbation, were measured previously in four marine 

communities (Warwick & Clarke, 1993). The Index of Multiple Dispersion may serve, 
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therefore, as a method of placing a value on community changes in response to pollution, 

displayed by multivariate analyses. 
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4.3 Results 

4.3.1 Comparison of meio- and macrofaunal community patterns across a gradient of 

metal contamination 

In each season, the MDS ordinations of macrofaunal and meiofaunal communities for the 

ten sites showed similar patterns (Fig. 4.1). At sites of low Cu concentrations (e.g. R2, B2, 

L I ) , communities were separated clearly from those at sites o f high Cu concentrations (e.g. 

L4, S8, D5). These similarities were confirmed by the significant correlations between the 

similarity matrices underlying spring and autumn macro- and meiofaunal community 

patterns (Table 4.1). Hence, both faunal communities distinguished sites o f differing metal 

concentrations in a similar way. Spring and autumn similarity matrices correlated 

significantly for the macrofaunal communities, but there was no significant correlation 

between meiofaunal communities in the two seasons. This latter result was probably 

explained by the highly distinctive meiofaunal communities at U2 and L4 in spring and 

autumn, respectively (Section 3.3.4; Fig. 4.1). 

Table 4.1 Matrix of painvise Speannan's Rank Correlation Coefficients (p) between similarity matrices 
derived fi-om averaged transformed macrofaunal and meiofaunal abundance data (* p<0.05) for ten sites on 
the Rivers Lynher and Seaton. 

Macrofauna 
(Spring) 

Macrofauna 
(Autumn) 

Meiofauna 
(Autumn) 

Meiofauna (Spring) 0.425* 0.140 
Meiofauna (Autumn) 0.540* 
Macrofauna (Spring) 0.500* 
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Figure 4.1 MDS ordinations of mean abundances of A) spring macrofauna, B) spring 
meiofauna, C) autumn macrofauna and D) autumn meiofauna at ten sites on the 
Rivers Lynher and Sealon. Stress values indicate how well the 2-dimensionaI picture 
summarises the relationship between site communities. Arrows indicate location of 
sites listed. 
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In each season, SIMPER analyses demonstrated that the macrofaunal communities at sites 

of low Cu concentrations (i.e. R2, B2, L I , U3, S9, D l ) were characterised by high 

abundances of oligochaetes, dipterans (e.g. chironomids), several species of Plecoptera 

(e.g. Chloroperla torrentiwii) and Trichoplera (e.g. Hydropsyche sUtalai), the flatworm 

Polycelis felina and the mayfly Baetis rhodani (Table 4.2). At uncontaminated sites, spring 

and autumn meiofaunal communities were characterised by high abundances of the 

harpacticoids Bryocamptus zschokkei and Bryocamptus praegeri, and the presence o f the 

mite Feltria minuta\ these species were absent from contaminated sites (Chapter 3). In 

contrast, the cyclopoid Diacyclops langiddoides was abundant at sites with high metal 

concentrations. 

ANOSIM demonstrated that the meiofaunal data discriminated between sites better than 

the macrofaunal data in autumn (Table 4.3). In spring, however, the macrofauna 

discriminated better between sites than the meiofauna (Table 4.3). For spring and autumn 

samples, discrimination amongst sites for total macrofaunal data was better than for the 

macrofauna (i.e. the discriminatory power of macrofaunal data was improved by the 

addition of temporary meiofauna). The best discriminatory power was found for the total 

metazoan data (Table 4.3). 
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Table 4.2 Summary of similarity terms from SIMPER analysis for a) spring and b) autumn macrofaunal 
communities. Differences {< and >) in average abundances (m*̂ ) of species contributing to dissimilarities 
between sites of low Cu concentrations (A) and high Cu concentrations (B) groups defined by C L U S T E R 
analysis are shown. The % contribution of each species to the dissimilarity between groups by their 
community structure is shown in italics. A cut-off at a cumulative % dissimilarity of 70% was applied (i.e 
species listed contributed to 70% of the dissimilarity between groups in terms of site community structure), 

a) 

A B 
Oligochaeta 124 > 

7.6% 
5 

Baeiis rhodani 270 > 0 

Amphinemura sulcicoUis 85 > 

9.9% 
0 

Ceratopognidae 25 > 

8.5% 
0 

Chloroperla torretUium 53 > 

8.5 
2 

Chironomidae 404 > 

7.8% 
66 

Hydropsyche siltalai 23 > 

5.2% 
0 

Polycelis felina 44 > 

5.1% 
4 

Group A = R2, B2, L I , U3, S9, D l , L4 (% similarity = = 33.7); Group B = U2, S8, D5 (% similarity = 43.0) 

b) 

A B 
Oligochaeta 661 > 

9.6% 
67 

Amphinemtira sulcicoUis 196 > 

8.2% 
4 

Baetis rhodani 43 > 
7 

0 

Pedicia rivosa 16 

f 
5% 

> 
7.0% 

0 

Pltagocata vitta 13 < 

6.2% 
62 

Plectronentia conspersa 156 > 

5.9% 
0 

Polycelis felina 50 > 

5.6% 
0 

Dicranata sp. 4 > 

4.8% 
9 

Chironomidae 49 > 

4.6% 
29 

Leuctra inermis 39 > 

3.9% 
0 

Hydropsyche siltalai 3 > 

3.3% 
0 

Rhyacophilia dorsalis 4 > 

3.1% 
0 

Group A = R2, B2, L I , S9, U3, Dl (% similarity = 54.5); Group B = U2, L4, S8, D5 (% similarity = 58.7) 
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Table 4.3. Results of painvise tests from I-way ANOSIM for fourth root transformed macrofaunal, meiofaunal, total macrofaunal and total metazoan data. Pairwise tests in which 
differences between sites that were not significant are listed; the fewer of these non- significant differences the better the discrimination between sites. 

Macrofauna Mciofauna Total Macrofauna Total Mctazoa 
Sites R p Sites R P Sites R p Sites R p 

Autumn (global R = 0.616) Autumn (global R = = 0.657) Autumn (global R = 0.737) Autumn (global R = 0.824) 

LI,U3 0.180 0.10 U3,U2 -0.210 0.056 L4,88 0.072 0.24 
LI,D1 -0.092 0.67 U2,L4 0.180 0.071 
U3,S9 0.032 0.36 U2,S8 0.024 0.421 
U3,D1 0.180 0.12 

Z U3.U2 -0.028 0.59 
S9,D1 0.272 0.10 
S9.U2 0.004 0.41 

Spring (global R ° 0.604) Spring (global R = 0.516) Spring (global R = 0.650) Spring (global R = 0.719) 

R2,B2 0.068 0.310 R2,B2 0.232 0.087 R2,B2 0.248 0,087 S9,U2 -0.152 0.857 
S9,U2 0.056 0.286 R2,U3 0.152 0.087 

S9,U2 -0.152 0.857 

S 9 . U O.IIO 0.159 S9,U2 0.080 0.690 
L4,S8 0.192 0.111 S 9 , U 0.094 0.230 
U,D5 0.294 0.079 S9,S8 -0.020 0.508 

S9,D5 0.180 0.079 
U2,L4 0.028 0.310 
U2,S8 -0.120 0.786 
U2,D5 -0.016 0.286 
U,S8 0.052 0.325 

0.196 0.079 
S8JD5 0.048 0.466 



PCA ordinations of the trace metal data demonstrated three main site clusters (R2 and B2; 

L I , S9, D l and U3; and S8 and D5) from left to right along axis one (PCI) (Fig. 4.2A). 

These clusters reflected increasing Cu, Zn and A l concentrations (Table 4.4). Sites L4 and 

U2 were separated from the other sites, on axis two, due to their high concentrations of Fe 

(Table 4.4). 

Table 4.4 Eigen vectors for PCI and PC2 for PCA ordination of metal data (excluding interstitial values). 
(Coefficients in the linear combination of variables making up PCs.) 

PCI 
Eigen Vectors 

PC2 

% Variation Explained by PC 55.0% 87.7% 

Cu 0.529 -0.490 

Zn 0.569 0.332 

Al 0.551 -0.292 

Fe 0.306 0.752 
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F i g u r e 4.2 Ordination by A) PCA of trace metal variables, and by MDS of mean 
abundances of B) macrofaunal, C ) meiofauna!, D) total macrofaunal and E ) total metazoan 
data at ten sites on the tributaries of the rivers Lynher and Seaton in spring. Stress values 
indicate how well the 2-dimensional picture summarises the relationship between 
communities. Arrows indicate location of sites listed. 
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For spring and autumn, the MDS configurations of the different faunal components 

conformed very closely with the PCA configuration for trace metal data (Figs 4.2 & 4.3). 

At sites of low Cu concentrations (e.g. R2 and B2), communities were very different from 

those at sites of high Cu concentrations (88 and D5) for all faunal subsets. This conformity 

was supported by correlations (Spearman rank) between similarity matrices for community 

data and the Euclidean distance matrix derived from the metal variables (Table 4.5). There 

were strong correlations between the trace metal data and similarity matrices for spring 

meiofaunal and spring total metazoan data (p<0.01) (Table 4.5). The similarity matrix for 

spring and autumn total macrofaunal and macrofaunal data, also correlated with the matrix 

for metal data (p<0.05). Other correlations between the faunal and metal data were close to 

being significant at P<0.05 (Table 4.5). 

Tabic 4.5 Spearman rank correlation coefTicients (p) between the Euclidean distance mairi.\ derived from 
the metal variables and similarity matrices derived from the averaged transformed bioiic data in spring and 
autumn. 

SprinR Autumn 
P P P P 

Macrofauna 0.359 0.019 0.452 0.007 

Meiofauna 0.484 0.004 0.305 0.058 

Total 
Macrofauna 

0.301 0.028 0.346 0.046 

Total 
Mctazoa 

0.541 0.001 0.328 0.053 
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Figure 4.3 Ordination by A) PCA of trace metal variables, and by MDS of mean 
abundances of B ) macrofaunal, C) meiofaunal, D ) total macrofaunal and E ) total metazoan 
data at ten sites on the tributaries of the rivers |Lynher and Seaton in autumn. Stress values 
indicate how well the 2-dimensional picture summarises the relationship between 
communities. Arrows indicate location of sites listed. 
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In both seasons, BIOENV demonstrated that Cu was the best single variable explaining 

inter-site differences for all the community subsets, except for the autiimn macrofauna 

which correlated best with DOC concentration (Tables 4.6 and 4.7). In spring, the 

correlation with Cu was higher for macrofauna than meiofauna, whereas in autumn, the 

best correlation with Cu was with meiofauna rather than macrofauna. In each season, 

however, the best correlations with Cu were with the total metazoa in spring, and total 

macrofauna in autumn. For each community subset, the highest correlations involved Cu in 

combination with other variables. In autumn, the meiofaunai, total macrofaunal and total 

metazoan community structures correlated best with Cu and A l , while the macrofaunal data 

correlated best with a combination o f the four variables, Cu, Zn, DOC and discharge. In 

spring, Cu and Zn, either together or in combination with other variables, were the most 

important variables explaining patterns in the community structure of all data sets. 
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Table 4.6 Summary of results from BIOENV. Combinations of variables giving the highest rank 
correlations between biotic and abiotic similarity matrices in spring. Faunal data fourth root 
transformed, abiotic variables log (I+N) transformed. Best correlations are shown in bold. Lower 
correlations omitted from the table. 

Best Variable Combinations (Spring) 

Macrofauna 
1 Cu 

0.453 
2 Cu, Zn 

0.483 
3 Cu, Zn, Al 

0.532 
4 Cu. Zn,Al, D O C 

0.549 

Meiofauna 
1 Cu Zn 1 

0.383 0.248 

2 Cu, Zn Cu, Fe 
0.501 0.475 

3 Cu, Zn, Fe Cu, Zn, DOC 
0.486 0.445 

4 Cu, Zn, Fe, DOC 
0.472 

Total Macrofauna 
1 Cu 

0.453 
3 Cu, Zn, DOC Cu, Zn, Hardness 

0.532 0.515 

4 Cu, Zn, Al, 
Conductivity 
0.549 

Total Metazoa 
1 Cu 

0.545 
2 Cu, Zn 

0.588 
3 Cu , Zn, DOC Cu, Fe, 

0.604 DOC 
0.567 
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Table 4.7 Summary of results from BIOENV. Combinations of variables giving the highest rank correlations 
between biotic and abiotic similarity matrices in autumn. Faunal data fourth root transformed, abiotic 
variables log (l+N) transformed. Best correlations are shown in bold. Lower correlations omitted from the 
table. 

Best Variable Combinations (Autumn) 

IMacrofauna 
1 DOC Cu 

0.532 0.512 

2 Cu, DOC 
0.515 

3 Cu, Al, DOC Cu, DOC, Discharge 
0.527 0.521 

4 Cu , Zn, DOC, 
Discharge 
0.565 

Meiofauna 
1 Cu 

0.592 
2 C u , Al Cu, pH 

0.653 0.575 

3 Cu, Al, pH 
0.653 

Total Macrofauna 
! Cu 

0.679 
2 C u , Al 

0.788 
3 Cu, Al, Hardness Cu, Al, pH 

0.692 0.661 

Total Metazoa 
1 Cu 

0.656 
2 Cu , Al 

0.730 
3 Cu, Al, Hardness Cu, Al, pH 

0.697 0.648 
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4.3.3 Community analyses using diflerent taxonomic levels 

Macro- and meiofaunal data sets aggregated into groupings of genus, family and phyla 

gave a very similar separation of sites as those when species data were used (Figs 4.4 and 

4.5). The similarity matrices were correlated significantly for all taxonomic levels apart for 

the meiofaunal phyla in autumn (Table 4.8). The separation of site U 2 fi-om other sites, 

based upon the spring meiofaunal community, was particularly marked at the phylum level, 

due to the fact that the Nematoda was the only phylum present at U 2 in spring (Fig. 4.4). 

Table 4.8 Pairwise Spearman's Rank Correlation coefTicients between similarity matrices derived from 
average transformed meiofaunal and macrofaunal species abundance data aggregated to a range of 
taxonomic levels. * p < 0.001, by a permutation lest. 

Autumn Meiofauna Species Genus Family 
Genus 
Family 
Phylum 

0.835* 
0.526* 
0.254 

0.687* 
0.254 0.713* 

Spring Meiofauna Species Genus Family 
Genus 
Family 
Phylum 

0.909* 
0.884* 
0.799* 

0.933* 
0.834* 0.879* 

Autumn Macrofauna Species Genus Family 
Genus 
Family 
Phylum 

0.990* 
0.895* 
0.656* 

0.883* 
0.623* 0.786* 

Spring Macrofauna Species Genus Family 
Genus 
Family 
Phylum 

1.0* 
0.995* 
0.725* 

0.994* 
0.723* 0.730* 

As faunal data were aggregated to higher taxonomic levels, the correlations between the 

matrix for the trace metal data, and the matrices for autumn and spring macrofauna and 

autumn meiofauna decreased (Table 4.9). Despite this decrease, the spring macrofaunal data 

still correlated with the metal data to the family level, and the autumn macrofaunal data 

correlated with the metal data to the generic level. The high correlation between spring 

meiofauna and the metal data also decreased when aggregated to the family level 
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Figure 4.4. MDS ordinations for averaged transformed autumn and spring 
meiofauna aggregated to A) species, B) genera, C ) families and D) phyla. Stress 
value indicates how well the 2-dimensional picture summarises the relationship 
between site communties. Arrows indicate locations of sites listed. 
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Figure 4.5 MDS ordinations for averaged transformed autumn and spring 
macrofaunal data aggregated to A ) species, B) genera, C ) family, D) phyla. 
Stress values indicate how well the 2-dimensional picture summarises the 
relationship between site communities. Arrows indicate location of sites 
listed. 
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(Table 4.9). The highest correlation between the matrices for spring meiofauna and metal 

data, however, was found at the phylum level, due to these two data sets both clearly 

separating U2 from the other sites. At the phylum level, the community at U2 was clearly 

separated from the others due to an absence of all meiofaunal groups, except nematodes, at 

the site in spring (Fig. 4.4). The trace metal data distinguished U2 from the other data sets 

due to high Zn and Fe levels at this site. 

Table 4.9 Spearman rank correlation coefficients (p) between ihe Euclidean distance matrix derived from 
the metal variables and similarity matrices derived from spring and autumn transformed biotic data 
aggregated to a range of taxonomic levels. 

Autumn Snrinp 
Macrofauna Mciofauna Macrofauna Mciofauna 
P P P P P P P P 

Species 0.452 0.060 0.305 0.063 0.305 0.014 0.484 0.004 
Genus 0.467 0.04 0.247 0.10 0.247 0.025 0.348 0.027 
Family 0.235 0.123 0.250 0.108 0.250 0.02 0.338 0.04 
Phylum 0.093 0.30 0.127 0.24 0.127 0.11 0.528 0.004 

When the spring and autumn meio- and macrofaunal data were aggregated to higher 

taxonomic levels, more pairs of sites were not significantly different and values of the 

A N O S I M statistic (R) in the global tests for differences between sites decreased (Tables 

4.10 & 4.11). Thus, data aggregated to higher taxa above the species levels discriminated 

fewer sites. 
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Table 4.10 Results of pairwise tests from one-way ANOSIM in which p>0.05 for spring and autumn 
meiofauna data aggregated to species, genera, family and phyla. Painvise tests in which differences between 
sites that were not significant are listed; the fewer of these non-significant differences the better the 
discrimination between sites. 

MEIOFAUNA 

sites 
Autumn 

R sites 
Spring 

R 

Species global R =0.657 
L1.U3 0.180 
L l . D l -0.092 
U3. S9 0.032 
U3,D1 0.180 
U3, U2 -0.028 
89. D l 0.272 
S9. U2 0.004 

Genus (global R =0.604) 
R2. B2 0.300 
L1,S9 0.280 
L l . D l 0.000 
U3.S9 0.016 
U3, U2 0.072 
U3.L4 0.200 
S9, U2 0.040 

0.103 
0.667 
0.365 
0.119 
0.587 
0.095 
0.413 

0.071 
0.071 
0.429 
0.476 
0.246 
0.095 
0.341 

Species (global R = 0.582) 
R2.82 0.068 
S9. U2 0.072 
S9. L4 0.082 
L4. S8 0.236 
L4. D5 0.304 

Genus (global R = 0.518) 
R2.82 -0.008 
82. U3 0.188 
S9. U2 0.000 
S9. L4 0.086 
D1.S8 0.248 
U2. L4 0.324 
L4.S8 0.192 
L4. D5 0.332 
R2.82 -0.172 

0.310 
0.286 
0.206 
0.087 
0.071 

0.437 
0.103 
0.524 
0.175 
0.079 
0.071 
0.111 
0.063 
0.889 

Family (global R = 0565) 
L L U 3 
L1.U2 
U3.S9 
U3,U2 
U3. L4 
S9. U2 
S9.L4 
U2.L4 
L4,S8 

0.208 
0.184 
0.072 
0.068 
0.252 
-0.008 
0.240 
0.136 
0.236 

0.079 
0.087 
0.246 
0.230 
0.103 
0.508 
0.119 
0.111 
0.111 

Family (global R = 0.527) 
R2. U3 0.228 
82. U3 0.212 
S9. U2 0.000 
S9. L4 0.086 
DI.S8 0.248 
U2. U 0.324 
L4, S8 0.332 

0,063 
0.111 
0.524 
0.175 
0.063 
0.071 
0.063 

Phylum (global R = 0505) Phylum (global R = 0.434) 

L1.U3 
L1,L4 
U3,S9 
U3.U2 
U3.L4 
U3.S8 
S9. U2 
S9.L4 
S9. D5 
U2.L4 
U2.D5 
L4, D5 

0.348 
0.428 
-0.154 
-0.104 
-0.116 
0.304 
-0.068 
-0.192 
0.336 
-0.072 
0.156 
0.336 

0.071 
0.056 
0.889 
0.905 
0.730 
0.071 
0.675 
0.952 
0.063 
0.722 
0.143 
0.071 

R2. B2 
R2. U3 
B2, U3 
S9. U2 
S9.L4 
D1,S8 
U2.L4 
L4. D5 

-0.032 
0.060 
-0.052 
0.000 
-0.050 
0.272 
0.252 
0.218 

0.532 
0.310 
0.587 
0.524 
0.571 
0.071 
0.071 
0.095 
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Table 4.11 Results of pairwise tests from one-way ANOSIM in which p>O,05 for spring and autuimi 
macrofauna data aggregated to species, genera, family and phyla. Pairwise tests in which differences 
between sites that were not significant are listed; the fewer of these non-significant differences the better the 
discrimination between sites. 

sites 
Autumn 

R P 

MEIOFAUNA 

sites 
Spring 

R P 

Species global R = 0.657 Species (global R = 0.521) 
U3, U2 0.210 0.056 LI .U3 0.130 0.111 
U 2 , U 0.180 0.071 L I , S8 0.509 0.095 
U2. S8 0.024 0.421 D1,U2 0.308 0.063 

D1,S8 0.455 0.095 
Genus (global R -=0.653) U2, L4 0.308 0.079 
U3, U2 0.210 0.056 U2, S8 -0.400 1 
U2, U 0.180 0.071 L4. S8 0.245 0.190 
U2, S8 0.024 0.421 

Genus (global R = 0.316) 
R2. B2 0.238 0.071 

Family (global R = 0.645) R2,U3 0.136 0.143 
U3. U2 0.170 0.151 R2.L4 0.172 0.095 
U3, U 0.122 0.190 S9, U2 -0.092 0.738 
U 2 , U 0.172 0.151 S9,L4 0.048 0.317 
U2, S8 0.046 0.333 S9. S8 -0.052 0.508 

S9. D5 0.128 0.111 
Phylum (global R = 0.557) D1.U2 0.244 0.071 
L1,D1 0.348 0.071 U2, L4 -0.062 0.667 
L1.U2 0.292 0.103 
U3, Dl 0.004 0.373 
U3, U2 -0.018 0.444 Family (global R = 0321) 
U 3 , U 0.172 0.103 R2, B2 0.238 0.071 
S9, U2 0.204 0.103 R2. U3 0.136 0.143 
D l , U2 -0.064 0.063 R2, L4 0.172 0.095 
D1,S8 0.296 0.635 S9, U2 -0.092 0.738 
U2, S8 0.214 0.056 S 9 , U 0.048 0.317 

S9. S8 -0.052 0.508 
S9, D5 0.128 0.111 
D1,U2 0.244 0.071 
U 2 , U -0.062 0.667 
U2, S8 -0.094 0.714 

Phylum (global R = 0.353) 
R2, B2 0.204 0.079 
R2, S9 0.252 0.095 
R2, Dl 0.228 0.087 
R2, L4 -0.004 0.437 
82, U3 0.108 0.143 
L l , D l -0.080 0.690 
S9. U2 -0.104 0.786 
S9,L4 -0.042 0.595 
S9. S8 -0.076 0.730 
S9. D5 0.176 0.111 
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4.3.4 Univariate measures 

The overall power of univariate diversities to distinguish between macrofaunal communities 

at sites of different metal concentrations was lower than that identified using multivariate 

measures. For the autumn macrofauna, eveness measures did not vary significantly between 

sites (F= 2.04, p<0.078) (Table 4.12). Even though the spring and autumn meiofauna, and 

spring macrofauna, eveness measures showed significant variation between sites, there was 

no clear relationship with copper concentration (Fig. 4.6). For all data sets, variation in 

Shannon-Weiner diversity was highly significant across sites (Table 4,12). Both spring and 

autumn macrofaunal diversities were lower at sites of high C u concentrations compared 

with sites of low Cu concentrations (Fig. 4.7). Highest diversities of autumn meiofauna 

were found at sites of intermediate contamination (Fig. 4.7). Although the spring 

meiofaunal diversities tended to be lower at sites of high Cu concentration, there was no 

clear trend. 
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Figure 4.6 Shannon-Weiner diversity for A ) spring macrofauna; B) spring 
meiofauna, C ) autumn macrofauna and D) autumn meiofauna from the 
Rivers Lynher and Seaton (n=5 for each site; vertical bars = +1SD). See 
Figure 2.2 for the location of sites. Sites are arrangeci in order of increasing 
Cu concentration. 
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Table 4.12 F-raiios and significant levels for one-way ANOVA tests for differences in Shannon-Weiner diversity H* and eveness, J. The F-ratio is the ratio of variability in 
the site means to the variability among replicates within each site. The number of pairs of sites found to be not significantly different out of 100 possible pairs (insignificant 
pairs) are also shown. 

Uni%'ariatc 

measures 

Autumn mncrofaunn Spring macrofauna Autumn meiofauna Spring mciofauna 

Insignificant 
pairs 

Insignificant 
pairs 

Insignificant F 
2^ 

insignificant 
pairs 

J 

7.06 

2.04 

<0.01 23 

0.078 32 

13.09 <0.01 19 

2.55 0.0374 37 

4.91 <0.01 26 

9.31 <0,0I 25 

6.42 <0.01 26 

2.94 0.0178 28 
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Figure 4.7 Eveness (Pielou's J) for A ) spring macrofauna; B ) spring 
meiofauna, C ) autumn macrofauna and D) autumn meiofauna from the 
Rivers Lynher and Seaton (n=5 for each site; vertical bars = +1SD). See 
Figure 2.2. for the location of sites. Sites are arranged in order of increasing 
Cu concentration. 
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4,3.5 Index of Multivariate Dispersion 

The values of dispersion for spring and autumn macrofauna and meiofauna did not indicate 

increased variability at sites of high Cu concentrations compared with sites of low Cu 

concentrations (Table 4.13). Thus, the variability, in terms of dispersion, is not consistent 

with the metal gradient. 

Table 4.13 Relative Index of Multivariate Dispersion for ten sites on the tributaries of the Rivers Lynher 
and Seaton. Sites are arranged in order of Cu concentrations. 

Spring Autumn 

Sites Mciofauna Macrofauna Mciofauna Macrofauna 
R2 1.07 1.31 0.30 0,64 
B2 0.99 1.02 0.50 0.31 
L I 0.87 0.80 1.43 0.88 
U3 1.02 0.77 1.67 1.64 
S9 1.31 0.95 1.26 0.98 
D l 0.45 0.86 1.18 1.07 
U2 0.72 1.21 1.28 1.43 
L4 1.33 1.48 1.17 1.28 
S8 1.30 0.79 0.48 1.03 
D5 0.93 0.81 0.74 0.74 
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4.4 Discussion 

4.4.1 Comparison of meio- and macrofaunal community patterns 

This chapter has demonstrated significant correlations between meiofaunal and 

macrofaunal community structures across sites representing a gradient in trace metal 

concentrations. Both fauna) components reflected inter-site differences in metal 

concentration in a similar way in both spring and autumn. Detailed analyses of the four 

subsets of the metazoan community (i.e. macrofauna, meiofauna, total macrofauna and 

total metazoans) confirmed that the metal gradient correlated strongly with community 

patterns across taxonomic groups. The similarity matrices underlying all faunal data sets 

correlated, weakly, with the P C A ordination for metal data, although the strongest 

correlations were found with the spring meiofauna and total melazoa. Copper, either alone 

or in combination with other environmental variables, also correlated with the community 

structures of all four subsets. 

One major benefit of including the meiofauna in marine monitoring programmes has been 

to obtain a full understanding of the effects of contaminants on benthic communities, as the 

meiofaunal component does not necessarily respond in the same way as the macrofaunal 

component (Austen el al., 1989; Somerfield el al, 1995). The same may be true for 

freshwater systems. Although macrofauna and meiofauna reflected inter-site differences in 

metal concentrations in a similar way in the present study, distinctive meiofaunal 

communities were also found at U2 and L4 in spring and autumn respectively. The 

macrofaunal communities in these seasons did not separate out these two sites. The distinct 

autumn meiofaunal community at L4 was associated with high Al and low pH conditions at 

this site, whilst the absence of all meiofauna, except for nematodes in spring, highlighted 

the exceptionally high levels of Zn at U2 in this season (Chapter 3). The spring meiofaunal 

and the total metazoan community (the latter which included the meiofauna) also 

158 



correlated better with the trace metal data than the macrofaunal components. This was 

likely due to the P C A for metal data also separating U2 from other sites due to the high Fe 

at U2. 

Despite the broadly similar response to metal contamination across the different 

components of the community, the present study revealed differences in the extent to which 

faunal subsets discriminated between sites of different metal concentrations (i.e. the 

number of site pairs shown by A N O S I M to have significantly different communities). In 

addition, there were differences in the correlation value between different faunal subset 

community patterns and Cu concentrations. Notably, improved discrimination between 

sites and highest correlations with Cu concentrations occurred when the temporary 

meiofauna was included with the macrofauna, or the entire benthic invertebrate community 

was used. The resulting higher diversity of animals at sites, when using the entire benthic 

invertebrate community, is likely to lead to better site separation (Newell et ai, 1990b). 

Temporary meiofauna represents a large proportion of macrofauna individuals (Appendix 

II), so the improved resolution caused by their inclusion may be due entirely to higher 

abundances leading to a clearer trend. The improved discrimination may also be due to a 

higher sensitivity amongst smaller instars. Other studies suggest this may be the case. For 

example, the 96 h LC50 for Chironomus lentans larvae to Cu was between 12 and 27 times 

higher for first instar compared with the fourth instar larvae (Gauss et a/., 1985). An 

increased effect of Cu on the recruitment of insect populations to a perennial stream in 

California was demonstrated by Leiand et ai. (1989), when the dosing coincided with a 

major hatch, or at a time when there were normally high densities of early instars. Higher 

sensitivity of smaller instars could be due to larger surface:volume ratios, higher initial 

lipid content or a greater weight-specific metabolism, all of which could facilitate uptake of 

the contaminant (Powlesland & George, 1986). 
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In the autumn samples, the meiofauna discriminated between sites, and correlated with C u 

concentrations, better than the macrofauna. The macrofaunal community pattern appeared 

to be influenced by variables other than metals (e.g. D O C and discharge) to a greater 

degree than the meiofauna. In spring, on the other hand, there was poorer discrimination of 

sites, and a lower correlation with Cu, by the meiofaunal community compared with the 

macrofaunal community. This difference was likely to be due to low meiofaunal 

abundances in spring, resulting in less defined inter-site differences in community 

structure. Rundle (1990) also recorded a distinction between meiofaunal communit}' 

structure at acidic and neutral sites in all seasons except winter, when low meiofaunal 

abundances made the pattern unclear. Despite the fact that the meiofauna was not always 

the best faunal component in discriminating between sites, the inclusion of as many fauna! 

components as possible appears to be needed to detect the more subtle effects of Cu on 

benthic communities. 

4,4.2 Taxonomic levels 

A major criticism of using communities for water quality assessment is that the processing 

and identification of samples can be very time consuming and, therefore, expensive, 

especially if species-level identification is required. This drawback is particularly relevant 

for the meiofauna, as their identification is often a laborious procedure that necessitates 

mounting the animals onto slides and considerable taxonomic expertise to discriminate to 

species. The present study demonstrated that sites were separated in a similar way when the 

macrofaunal and meiofaunal data were aggregated into species, genus, family and phylum. 

This was the case for all fauna except for the autumn meiofaunal data set which correlated 

to the family level but not to the phylum level. Rundle & Attrill (1995) also showed that 

the influence of pH on stream meiofaunal community structure could be detected after data 
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were aggregated to genus and family level. In the marine enviromnenl, the lower 

discriminatory power of meiofaunal data, compared with macrofaunal data, has also been 

reported, when data were aggregated to higher taxonomic levels (Warwick et al., 1990; 

Somerfield & Clarke, 1995). Despite this, aggregations to family level would reduce the 

time and expertise required considerably, as the identification could be performed using a 

stereo microscope without the necessity of mounting specimens. Spring meiofaunal and 

macrofaunal and autumn macrofaunal data, also correlated with the P C A for metal data 

after aggregation to higher taxonomic levels. Furthermore, the highest correlation of the 

spring meiofaunal data with the metal data was found at the phyla level, with both the 

faunal and metal data sets clearly separating.U2 from the other sites. Other studies have 

also shown the response of a pollution event to be even more 'clear-cut' at the higher 

taxonomic level than the species level (Dauvin, 1984; Warwick, 1988a, b). Warwick 

(1993) suggested that, as species are normally adapted to a narrow range of environmental 

variables, species replacements will occur from site to site due to changes in natural 

environmental variables. The proportions of higher taxa, however, may not be altered by 

natural environmental variables. Thus, if there is a degree of coherence among species 

within these higher taxa with respect to their response to perturbation, the response will be 

more evident above the natural environmental noise. In the present study there was an 

absence of all meiofauna, except Nematoda, at U2, apparently in response to the high Zn 

levels at this site. 

Another criticism of community-based surveys is that they are only useful for detecting 

local pollution disturbance and are not applicable on a regional or global scale. This 

problem has been overcome by aggregating to a higher taxonomic level than species. For 

example, Rundle & Atlrill (1995) examined the influence of pH on stream meiofauna in 

streams in southern England and Wales, and found that regional differences in community 
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stnjcture at the species level tended to override the influence of pH. At the family level, 

however, there was a gradient of community separation from acidified sites in southern 

England to streams draining coniferous plantations in Wales to less acidic streams in both 

regions (Rundle & Attrill, 1995). Therefore, the smaller regional differences in community 

structure at family level appeared to lead to some convergence in the biological response of 

geographically isolated streams to pH. Similarly, the effects of trace metals on stream 

meiofaunal communities in the region used in the present study may be comparable with 

other regions only if aggregated to higher taxonomic levels. 

Another problem when monitoring with communities is assessing the degree to which a 

community al a contaminated site has been disturbed in relation to other sites. Warwick & 

Clarke (1993) aggregated marine macrofaunal data to phylum level from several case 

studies involving various types of disturbance, to overcome species differences in 

geographically-separate communities. These authors demonstrated that this meta-analysis 

of marine macrobenthic data could be used to place marine benthic communities along a 

gradient of disturbance providing a template against which the extent of disturbance at 

other sites could be assessed. In a similar way, a template of the effects of metals on stream 

meiofaunal communities may be built up after further regional studies on the effects of 

metals on meiofauna. This would allow water msmagers to evaluate water quality by 

comparing the meiofaunal communities in their region with the template. The sites 

categorised as the most disturbed by Warwick & Clarke (1993), however, were influenced 

by organic pollutants and further studies are required to investigate whether disturbance 

due to elevated trace metal concentrations on meiofaunal communities would cause the 

same effect across regions. 
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Caution is required when using higher taxonomic levels to identify community responses 

to contamination. In the current study, the ability of the faunal data to discriminate between 

sites of different trace metal contamination decreased as the macrofaunal and meiofaunal 

abundances were aggregated to higher taxonomic levels. This is in agreement with a study 

comparing the ability of macrofaunal species data to ordinate and classify 268 unpolluted 

running water sites in Great Britain compared with family data (Furse et al., 1984). 

Although there was a strong correlation between species and family level responses to the 

same environmental gradients (Furse et al., 1984), species-level data gained more reliable 

categorisation of running waters by their physicochemistry (i.e. higher between-siie 

variation). Species data sets contain a higher information content (i.e number of taxa) and 

have more precise environmental requirements (Furse et aL, 1984). Hence, higher 

taxonomic levels may not be sufficiently robust for detecting subtle differences in stream 

contamination levels. 

4.4.3 Univariate measures and the Index of Multivariate Dispersion 

There has been some debate in the literature as to the utility of univariate measures in 

detecting contamination in aquatic systems (Sheehan, 1984; Metcalfe, 1989; Cairns & 

Pratt, 1993). The assumption made is that more species occur at unimpacted than impacted 

ecosystems, and that the total number of individuals is distributed more evenly amongst the 

species in unimpacted than impacted systems (Cao et al., 1994). In some cases, univariate 

measures have been used successfully to identify disturbed communities (lower diversity 

indicating high stress) (Sheehan, 1984; Norris & Georges, 1993). Conversely, diversity can 

increase at sites of higher contamination (Piatt & Lambshead, 1985; Moore & Pearson, 

1986). In the present study, Shannon-Weiner diversity indices indicated that macrofaunal 

diversity was lowest at sites of high metal concentrations, irrespective of season. Although 

lower numbers of meiofaunal species were found in spring, the highest diversities of 
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meiofauna were found at sites of inlermediale metal concentralion in autumn. This 

difference in the response of macrofaunal and meiofaunal diversities to disturbance was 

also shown by Somerfield et al. (1995) in their study of the effect of dredging disposal on 

the marine benthos. Lower diversities of copepods and macrofauna were found at sites 

impacted by dredging but copepod data did not reveal any clear pattern. Despite these 

differences in faunal patterns when using univariate measures, multivariate methods 

demonstrated that the pattern in copepod community structure correlated significantly with 

that shown by other components of the benthos (Somerfield et ai, 1995). Macrofaunal and 

meiofaunal community patterns, in the present study, also correlated despite the differing 

response of their faunal diversity to metal contamination. 

Another criticism of univariate measures has been their apparent lack of sensitivity to 

detect slight or moderate pollution (Beckett, 1978; Pindar & Farr, 1987; Barton, 1992; 

Olsgard & Gray, 1995). The present study supports this criticism. The multivariate 

methods used here were more sensitive and more discriminatory in detecting changes in 

trace metal contamination than the univariate measures. This was not unexpected in view 

of the greater information included in multivariate analyses techniques. As with marine 

systems (Warwick & Clarke, 1991), multivariate measures may be a more powerful 

analytical tool for monitoring freshwater systems than univariate measures. Multivariate 

techniques provide comparable and sensitive results whether using the macrofauna or the 

meiofauna. Even so, an index, which places a value on the extent of the stress placed on 

the community, is still required. For both macrofaunal and meiofaunal communities, the 

Index of Multivariate Dispersion failed to distinguish sites of high Cu concentrations from 

sites of low Cu concentrations in this study. The variability of types of species and 

abundances amongst replicates did not increase at perturbed compared with unperturbed 

sites. 
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Conclusion 

In summary, the correlation between meiofaunal community structure and trace metal 

contamination was similar to that of the macrofaunal community. Including the meiofauna 

and the temporary meiofauna in the analysis provided a better discrimination of sites of 

different metal concentrations and a better correlation with Cu concentrations. The 

meiofaunal community highlighted differences in the water chemistry that were not 

detected by the macrofaunal community. Aggregation of meiofaunal and macrofaunal data 

to higher taxonomic levels allowed the detection of the trace metal gradient. Thus, the ease 

of monitoring using meiofauna may be improved considerably by identifying to taxonomic 

levels higher than species, without loss of sensitivity. For meiofaunal and macrofaunal 

communities, univariate measures, and the index of multiple dispersion, were poor 

discriminators of sites of different metal concentrations. The implications regarding the 

potential of using the meiofaunal community as a monitoring tool in streams are discussed 

further in Chapter 6. 
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C H A P T E R 5 

Lethal and sub-lethal responses of Biyocamptus 

zschokkei to Cu 
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5.1 Introduction 

Although monitoring pollutants using communities provides a fully integrated response of 

the benthos to pollutants (Chapter 1), this approach has been criticised because it is labour 

intensive and because pollution-induced changes at the community level are apparent only 

when the damage has already been done (Mackay et al, 1989). Thus, regulators prefer to 

use single-species toxicity tests that can be undertaken quickly and which use the responses 

of the biota to predict the effects of chemicals on the receiving waters. Many thousands of 

chemicals are being developed and these require evaluating prior to their release into the 

freshwater environment, therefore, rapid, predictive, inexpensive tests are needed to assess 

the effects of these inputs. From a systems viewpoint, effects of a pollutant at the 

ecosystem level cannot be predicted easily from studies conducted on its component parts 

(Buikema & Voshell, 1992). Even so, single-species tests are likely to be the most popular 

method of predicting the effect of toxic substances on the ecosystem for the foreseeable 

future. 

Most toxicity tests commonly employed to assess the health of aquatic systems use the 

survival of the test animal as the measured response (test endpoint) (Maltby & Calow, 

1989). Although this response is quickly and easily identified in acute lethal toxicity tests, 

measuring mortality may not be the best approach, as many studies have shown that 

contaminants have sub-lethal effects (i.e. on physiology, reproduction, growth and 

behaviour) at concentrations lower than that which cause lethal effects (Chapter 1; Abel, 

1996). Sub-lethal endpoints may, therefore, provide an early warning of deleterious 

contaminants. In particular, alterations to reproduction and development have been shown, 

in laboratory experiments, ultimately to alter population size [e.g. for the marine copepod 

Tisbe furcata (Bechmann, 1994) and the mysid Mysidopsis bahia (Gentile e( ai, 1982)]. 

147 



The choice of organism used in toxicity tests is also critical when attempting to extrapolate 

laboratory tests to the field (Cairns & Pratt, 1987). Traditionally, test organisms have been 

chosen primarily because of their availability and robustness in laboratory cultures, rather 

than their ecological relevance (Gray, 1989). For example, standardised test procedures, 

developed for use by regulatory agencies to predict the effects of effluents, have focused on 

tests that are quick and economical, using animals of known stock and acclimation history 

(Buikema & Voshell, 1992). This bias has limited the test species to mainly cladocerans 

(mostly Daphnia spp.) and fathead minnows (Buikema & Voshell, 1992). An alternative 

approach, suggested recently (Gray, 1989), is to select species known to be sensitive to 

specific pollution gradients, thereby, reflecting more accurately the response of the 

community to contaminants. 

In the marine environment, the meiobenthos has aroused interest as suitable organisms for 

measuring contamination. Meiobenthic species have comparatively short life cycles, and 

require minimal space and equipment, allowing relative ease of laboratory culture (Chapter 

1). Harpacticoid copepods have received particular attention as potential toxicity lest 

organisms and, of the 68 toxicity tests using meiofauna (Coull & Chandler, 1992), 57% 

were conducted on this order of copepods. The development of laboratory culturing 

techniques has allowed the use of several harpacticoid species in chronic toxicity testing. 

Measured responses, evaluating the effects of toxicants on reproductive parameters in 

harpacticoids, have included brood size (Ustach, 1979), total number of offspring 

(Bengtsson & Bergstrom, 1987; Williams, 1997), naupliar survival (Dalla Venezia et a/., 

1980), post-embryonic development (LeDean & Devineau, 1987; Williams, 1997), changes 

in population size (Hoppenheit & Sperling, 1977; Brand, 1986) and the use of life tables 

(Bechmann, 1994; Williams, 1997). 
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In the survey of stream meiofaunal communities across a gradient of metal contamination 

(Chapter 3), the abundance of the harpacticoid copepod Bryocamptus zschokkei correlated 

negatively with Cu concentrations. Bryocamptus zschokkei was consistently important in 

contributing to between site differences in community structure (Chapter 3). Thus, based 

on these field measurements, B. zschokkei was selected for further study as a potential 

sensitive toxicity test organism of Cu in freshwater systems. 

Bryocamptus zschokkei has several attributes that make it a potentially good bioassay 

organism. It is abundant all year (Rundle, 1993), hence individuals are always present to 

initiate laboratory cultures. It is present in North America and Europe (Gumey, 1932; 

Dussart, 1967; 0*Doherty, 1985; Fryer, 1993), allowing its use in a wide geographical area. 

It has a relatively short life cycle (O'Doherty, 1985), allowing sub-lethal measures (e.g. the 

number of offspring produced) to be assessed quickly. It has direct benthic development 

(eggs are carried in a brood sac), facilitating the study of all stages of its life cycle. Its 

benthic development also allows the possibility of using it as a sediment toxicity test 

organism. 

Evidence that stream chemistry influences the abundance of B. zschokkei through changes 

in fecundity was established by Rundle (1993) who found more B. zschokkei bearing eggs 

at sites of high than low pH. Bryocamptus zschokkei may also play an important role in the 

detrital dynamics of head water streams. Previously, stream harpacticoids have been shown 

to be important consumers of bacteria (Perlmutter & Meyer, 1991). As such, they may 

influence substantially the quality of detritus available for stream macro in vertebrate 

consumption. The absence of B. zschokkei from streams may, therefore, have a significant 

effect on stream dynamics. 
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The aim of this chapter was to examine the potential of zschokkei as a toxicity test 

organism for detecting Cu effects on streams. The effects of Cu on the survival, 

development and fecundity of B. zschokkei were measured in the laboratory. The acute 

toxic effects of Cu on individuals from contaminated and reference (control) sites were also 

compared, to assess whether field populations develop tolerance to Cu. 
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5.2 Materials and methods 

5.2.1 Collection of animals 

Copepods were obtained from kick samples collected at R2 (Fig. 2.2) in April 1996 (for 

sub-lethal toxicity tests) and in May 1996 (for acute toxicity tests). As the metal 

concentrations at site R2 were low (Tables 2.1 and 2.2), it was a suitable site for obtaining 

animals that had not been exposed previously to high metal concentrations. High 

abundances of Bryocamptus zschokkei could also be found throughout the year at R2 

(Appendix II). Samples were returned to the laboratory within 2 h of collection, and passed 

through 500 |im and 125 |im mesh sieves. The fraction retained on a 125 |im sieve was 

elutriated three times to separate organic matter (i.e. detritus and copepods) from mineral 

particles. Ovigerous females, and copulating pairs of harpacticoids (Plate 5.1). were 

removed from the detritus in a petri dish under a stereo microscope (20x) using a Pasteur 

pipette. Individual Bryocamptits zschokkei were separated from the other harpacticoid 

species {Bryocamptus praegeri), under a magnification of 20x, using differences in the 

arrangement of the furcal setae; B. praegeri has divergent setae, whereas those of B. 

zschokkei are parallel (Plate 5.2). 

5.2.2 Preparation of test solutions 

Exposure solutions were prepared using stream water collected from R2 (control site) in 

April 1996, and filtered through 0.45 |im nitro-cellulose filter paper (Whatman Ltd.). This 

filtering process removed the protozoans, algae, fiingi and other metazoans (Vijverberg, 

1989). Test concentration solutions, made by adding the required volume of CuNOa 

(Spectrosol) to filtered stream water, were stored in propylene plastic bottles until use. 
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Plate 5.1 A) Bryocamptus praegeri, pair. The male holds on to the fiircal rami of the female 
using modified antennules; B) Ovigerous female Bryocamptiis zschokkei. (egg sac is 
highlighted by arrow). 



B 

l O O p r n 
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Plate 5.2 A) Female Bryocamptits zschokkeii. B) Female Bryocamptus praegeri, (arrow 
indicates the divergent fiircal setae of B. praegeri, a key feature that distinguishes this 
species from B. zschokkei). 
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5.2.3 Experimental procedures 

5.2.3.1 Acute toxicity tests 

Ovigerous females only were used in the acute toxicity tests as they were identified easily by 

the presence of a brood sac and provided a standard life-history starting point. Seven Cu 

test solutions were used (0, 56, 100. 180. 320, 560 and 1000 ^g 1"* Cu), chosen as they 

represented the range of Cu concentrations measured at sites used in the survey of 

meiofaunal communities (Table 2.1). Thereby, the effects of Cu recorded in the laboratory 

could be related to the inter-site differences in the abundance of B. zschokkei observed in 

the field (Chapter 6). 

Experimental test 'vessels* consisted of tissue culture wells (volume = 10 ml), each 

containing 5 ml of test solution and a single copepod. Each well was one of 12 in a multi-

well, polystyrene tissue culture plate with a closely-fitting lid. Ten copepods were tested at 

each Cu concentration. Mortality, measured afler 24, 48, 72 and 96 h, was defined as the 

absence of movement by the copepod afler agitation of the test solution by stirring. As 

exposure concentrations were set in a geometric pattern, with the same number of 

individuals exposed to each concentration. LCso values could be calculated at different time 

intervals by the moving average angle method (Stephan, 1977). This method is used 

commonly in toxicity tests (Williams, 1997). The conductivity, pH, and concentrations of 

DOC. Ca, Mg and Cu in combined replicates of each test solution were measured within 24 

h of the trials (Appendix III). 
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5.2.3.2 Sub-lethal toxicity tests 

Culture techniques for obtaining test organisms - Female B. zschokkei produce broods 

continuously, of\en from a single insemination, and the number of offspring produced varies 

depending on the age of the female (O'Doherty, 1986). To ensure that fecundity was 

assessed from brood one, and that females were of the same age and had identical mating 

histories, sub-lethal tests were performed on newly-mated copepod pairs. These animals 

were obtained in the following way. Firstly, mating pairs (or ovigerous females) were 

collected from site R2 and placed in groups of five in wells of a polystyrene tissue culture 

plate (Fig. 5.1a). The wells contained 5 ml of filtered stream water. Pairs were identified 

easily as the male harpacticoid holds onto the female with specially modified antennules 

(Plate 5.1). Previously, conditioned leaves (i.e. leaves obtained from streams) have been 

used successfully in laboratory feeding trials and growth experiments using harpacticoids 

(O'Doherty, 1985; Perimutter & Meyer, 1991). Therefore. leaf discs (0.5 cm diameter) 

were cut from beech leaves using the end of an acid-washed glass test tube and used as a 

food source for the copepods in the present study. The beech leaves, collected from the 

stream bed at R2, were in a comparable state of decay. Trials with an alternative food (the 

alga Chiorella sp.) were also carried out, however, these were unsuccessful, and all animals 

aborted their broods within a week and died within two weeks. Experimental units were 

maintained in the dark at 15°C. After a few days, eggs began to hatch. Nauplii obtained 

from mating pairs were transferred randomly in groups of 5-10 to new cells containing 5 ml 

of control water (Fig. 5.1b). To prevent microbial build up, and to renew test solution 

concentrations, 3 ml of water was replaced every three days. After 20-30 days, development 

to the adult stage had occurred and mating pairs had formed (Fig. 5.1c). 
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a) 50 Mating Pairs / Ovigerous Females 
from R2 

control water + leaf disc 

b) 
i 

Nauplii (Brood 2) 

Nauplii (Brood 1) 
Development Expt. 
(See Fig. 5.2) 

60 groups of 5-JO nauplii transferred to 5 ml control water + leaf disc 

c) 

d) 15 pi-s. 

Mating Paii-s 
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Cu + leaf disc Cu + leaf disc Cu + leaf disc Cu + leaf disc 

^ i i I 
Brood 1 

leaf disc 

Brood 1 e) Brood 1 
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Brood 1 
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Brood 3 Brood 3 Brood 3 Brood 3 Brood 3 

Figure 5.1, Flow chart of methodolog>' used to investigate the efTect of Cu on the 
reproduction of ^. zschokkei. 
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Table S.I The conceniraUon (^g 1 of Cu in the test soluUon used for the sub-lethal toxicity test 
(values arc the concentrations of 15 combined replicates of 5 ml of test soIuUon). 

Prepared Cu Initial measured 
concentration Cu concentration 

Measured 
Cu concentration 7 
days from preparation 
Gcaf disc absent) 

Measured 
Cu concentration 
7 days from preparation 
(leaf disc present) 

0 6.32 6.13 2.92 

20 31.2 24.9 1.30 

50 50.1 45.6 5.47 

100 96.7 97.6 15.21 

Fecundity - At the onset of mating, pairs were transferred to a cell (volume = 10 ml) 

containing a leaf disc and 5 ml of test solution. As Cu concentrations decreased i f a leaf disc 

was present in the test solutions, presumably due to the leaf adsorbing Cu, leaf discs were 

placed in the test solution for 48 h before being placed in a cell with the animals. This 

procedure allowed the toxicant to come into equilibrium with the discs (Naylor et a/., 

1989). Five concentrations of Cu (0. 20, 50. 100 and 150 | ig 1"̂ ) were used (Table 5.1; Fig. 

5. Id). These concentrations represented concentrations at which Bryocamptus zschokkei 

was present in the field (Table 3.1). To prevent microbial build up in the water, and to 

renew test solution concentrations, 3 ml o f the test solution were replaced every three days. 

Fifteen replicate pairs were exposed singly to each Cu concentration for sixty days. This 

exposure time was chosen to assess the effects o f Cu on more than one brood o f offspring 

within the time available for the experiment. Experiments were carried out in the dark at 

15°C. Initially, animals were observed daily using a stereo microscope with fibre optic 

illumination and the time taken for brood one nauplii to hatch was recorded (Fig. 5.1e). Five 

days after the first nauplii hatched, the mating pairs were moved to a new well to ensure 

that broods were isolated. The times to the production of the second and third broods were 
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also recorded (Fig. 5.If) , with mating pairs again being removed once hatched. Offspring 

that reached the aduU stage during the experiment were moved to new wells so that their 

offspring did not contribute to the total number of surviving offspring. Several measures of 

fecundity were obtained from these trials, including: 

1) the total number o f surviving offspring, 

2) the total number of surviving nauplii, copepodids and reproductive adults 

(adults). 

3) the number o f surviving nauplii, copepodids and adults in each brood, and 

4) the time taken for the production o f each brood. 

Development and survival of immature life stages - The effects o f Cu on the survival and 

development o f immature life stages were investigated using 24 h-old nauplii, and stage one 

copepodids. These were taken randomly from the second brood of the first generation 

animals (Fig. 5.2a). Groups of ten individual nauplii and copepodids were placed in cells 

(volume = 5 ml) containing 3 ml of test solution (0, 20, 50, 100 and 150 \xg 1*') and a leaf 

disc; the latter had been exposed previously to the test solution for 48 h (Fig. 5.2b). Copper 

concentrations were chosen to represent the Cu levels where B. zschokkei was present in 

the field. Two ml of the test solution was replaced every three days, again, to prevent 

microbial build up and to renew the test solution Cu concentrations. Initially, ten groups 

were to be exposed to each treatment, however, difficulties with obtaining enough animals 

from the second brood of the first generation, led to the number of groups per treatment 

ranging from six to nine. Observations were made daily, and the percentage survival and 

time taken to develop to the first copepodid stage (for nauplii) and reproductive adult (for 
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a) 50 Mating paii*s/ 
Ovigerous females 

from R2 

b) 

control 
water + 
leaf disc 

24 hour 
Nauplii 
(Brood 2) Surx'ival 4& Development 

of Early Life-stages 
Experiment 
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Copepodids 
(Brood 2) 

I I I I I I I I I I 
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0 0.02 0.05 0.1 0.15 
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0 0.02 0.05 0.1 0.15 

Figui-e 5.2 Flow chart of melhodology used to investigate the effect of Cu on the sur\'ival 
and development of early life stages of Bryocamptus zschokkeL 
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copepodids) were recorded. Developmental time was taken as the time for 50% of surviving 

individuals to progress to the next life stage. 

5.2.3.3 Tolerance 

To investigate whether the Cu tolerance of animals collected from the metal-contaminated 

site (U2) was higher than that for individuals taken from uncontaminated sites, LCso values 

for animals from site U2 were calculated using the method described in Section 5.2.3.1. 

LCso tests were also performed on animals taken from a site on the River Yealm (OS 61° 5' 

N 60° 8' W), where there was no mining, or any other obvious source o f contamination and 

the surface water Cu concentration measured 16 |ag P' Cu (summer). This concentration 

was comparable to that recorded al R2 (13 jig l ' Cu). Therefore, the River Yealm site 

provided a measure of variability o f the toxic effect of Cu on two populations of copepods 

taken from different sites of similar water chemistry (see Appendix I I I for measurements of 

pH, conductivity, hardness and DOC taken at the River Yealm, U2 and R2). 

5.2.4 Statistical analyses 

The effects of Cu on the development times, and the number of surviving Bryocamptus 

zschokkei offspring, were determined using one-way ANOVA. The test was followed by a 

multiple range test (Fisher*s least significant different process) to test for significant 

differences between pairs of treatments. Data that failed to meet the assumptions for 

analysis of variance (normal distribution and equal variances) were analysed using the non-

parametric Kruskal-Wallis technique, followed by the Mann-Whitney test to identify 

significant differences between treatment pairs (Daniel, 1990). The data for percentage 

survival of different life stages were transformed using arc sine square root transformation 

prior to analysis, so that the data conformed to the assumption of homogeneity of variances. 
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5.3 Results 

5.3.1 Acute toxicity test 

Acute toxicity tests demonstrated- that Cu had a direct toxic effect on the survival o f 

ovigerous female Bryocamptus zschokkei collected at R2 (Fig. 5.3). At low Cu 

concentrations (up to 180 | ig 1"' Cu), more than 70% of the copepods survived after 96 h of 

exposure. At Cu concentrations higher than 180 pg 1** Cu. harpacticoid mortality increased 

with length o f exposure until 72 h (Table 5.2, Fig. 5.3). The 72 h and 96 h LC50 value for 

B, zschokkei collected at the site were identical (290 \ig 1"̂  Cu) (Table 5.2). 

Table 5.2 LCjo values for Cu for ovigerous female Bryocamptus zschokkei taken from sites R2. U2 and the 
River Yealm. LC50 values were calculated using the moving average angle method (Stephan, 1977). 

Site Time (h) LC50 for Cu in ^g 1*' 
(95% confidence intervals) 

R2 24 700 (570-940) 

48 400 (290-600) 

72 290 (210-410) 

96 290 (210-410) 

U2 24 800 (700-920) 

48 680 (570-840) 

72 680 (570-840) 

96 660 (540-870) 

Yealm 24 511 (411-667) 

48 448 (358-569) 

72 424 (336-534) 

96 313 (236-413) 
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Figure 5.3 Toxicity curves for ovigerous female Bryocamptus zschokkei 
exposed to various Cu concentrations. Animals collected from site R2 (see 
Fig. 2.2 for site locations). 
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5.3.2 Sub-lethal toxicity tests 

5.3.2.1 Effects on fecundity 

Although some females produced egg sacs at 150 \xg f ' Cu, no eggs hatched at this 

concentration (Fig. 5.4), due to the females dying within 11 days o f exposure to Cu. Some 

females in other treatments failed to produce any broods in other treatments (Fig. 5.4). As 

there was no clear difference between 0 and 100 pg I*' Cu treatments for the percentage of 

females failing to produce broods, these females were excluded from fijrther analyses. This 

reduced the variability in the number o f surviving offspring within a treatment, and allowed 

differences between treatments to be viewed more clearly. There was no clear relationship 

between Cu concentration and the total number o f broods produced per female for 0 and 

100 pg Cu treatments, although the percentage o f females producing a third brood 

decreased between Cu concentrations of 0 and 50 ^g Cu (Fig. 5.4). 
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Figure 5.4 Brood Production: percentage females producing one, two and three 
broods at different Cu concentrations. 
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The fecundity o f B. zschokkei was affected significantly at the high Cu concentrations. 

Significantly lower total numbers o f surviving offspring were produced at 100 | ig 1'* Cu 

compared with the control (Fisher's least significant different process, p<0.05) (Fig. 5.5). 

There were also significant differences in the numbers o f all three life stages (i.e. adults, 

copepodids and nauplii) at the end o f the experiment. The mean number o f offspring 

produced, in each case, at 100 pg 1'* Cu was significantly lower than the number produced 

by females in the control (Fig. 5.5). Fewer offspring (though not significantly so) were 

produced by females exposed to 20 and 50 ^ig Cu compared with the control. In each 

case, this reduced total number of offspring was due to the reduced numbers within broods, 

rather than to the number of broods produced as there was no significant difference between 

the mean number of broods produced per female amongst treatments after 60 days (Fig. 

5.6A). 

To assess whether there was a temporal component to the effect of Cu on fecundity, the 

offspring data for each brood were analysed separately. For all life stages present in brood 

two and three, there were fewer surviving offspring in the Cu solutions compared to the 

control, although the only significant differences were between the treatments at 100 pig I*' 

Cu and the control (Fig. 5.6). For brood two, the number o f surviving copepodids and total 

offspring was significantly reduced at 100 | ig 1* Cu compared with the control (Fisher's 

least significant different process, p<0.05). For brood three, significantly fewer nauplii were 

recorded at 100 pg 1"' Cu compared to the control (Fisher's least significant different 

process, p<0.05) (Fig. 5.6). A significantly lower number of adult offspring was also found 

at 100 | ig 1* Cu compared to the control in brood one (Fisher's least significant different 

process, p<0.05) (Fig. 5.6). There was, however, no apparent relationship with Cu for the 

number of surviving copepodids in brood one (Fig. 5.6). 
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Figure 5.5 Offspring Production: the mean number of A) total surviving 
offspring and B) surviving adults, copepodids and nauplii present per female 
60 days after parent pairing. Females that did not contribute to the surviving 
offspring have been excluded. Significant difference (* p < 0.05; (*) p < 0.1) 
compared with 0 ng f ' Cu. (n = 15 for each concentration, vertical bars = + 1 
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Compared to copepod pairs in the control and 20, 50 and 100 ^g 1"' Cu test solutions, pairs 

exposed to 150 | ig f* Cu took significantly longer than control animals to produce their first 

brood [11.1 days (± SD) compared with 5 days (± SD) (Fishers least significant difference 

process p<0.05)] (Fig. 5.7). The time interval between broods o f animals exposed to other 

Cu concentrations were not significantly different (range 4.6-5.79, 14.1-19 and 8.33-13.25 

days for brood one, two and three, respectively). 

5.3.2.2 Effects on survival and development of immature life stages 

The times taken for eggs to hatch were not affected significantly by Cu (Fig. 5.8). In the 

experiment assessing, the survival and development of nauplii and stage one copepodids, 

there were 100% mortalities of nauplii and stage one copepodids in 150 j jg 1"* Cu. Hence, 

all subsequent analyses of naupliar and copepodid survival and development were restricted 

to the O-lOO ng r* Cu treatments. No significant differences between remaining treatments 

were found for the time to develop and the survival of nauplii and copepodids to the stage 

one copepodid and the reproductive adult stage, respectively (Fig. 5.8). Total development 

time (i.e. from egg to ovigerous female) o f copepods ranged from 37-44 days, regardless of 

the treatment to which they were exposed. 

5.3.3 Tolerance 

The 96 h LCjo value for individuals o f B. zschokkei fi-om U2 (660 \xg 1'* Cu) was 

approximately twice that for animals taken from the control sites R2 (290 | ig I'*) and the 

River Yealm (313 îg 1* Cu) (Table 5.2, Fig. 5.9). Differences in 96 h LC50 values could not 

be statistically evaluated but, based on the confidence interval data, show the LC50 96 h 

value for U2 (range 540-870 ng 1* Cu) was consistently different fi-om that for R2 and the 

River Yealm (range 210-410 and 236-413 pg f* Cu, respectively). This suggests that 
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animals from U2 were more tolerant o f high concentrations of Cu than animal from R2 and 

the River Yealm. 
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Figure. 5.7 Brood development:- time taken between: A) pairing and the 
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third broods, for Bryocamptus zschokkei exposed to different concentrations 
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Figure 5,9 Toxicity curves for ovigerous female Bryocamptus zschokkei 
exposed to various concentrations of Cu. Animals collected from A ) site U2, 
B) site R2 and C) the River Yealm. 
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5.4 Discussion 

5.4.1 Lethal effects 

Acme toxicity tests demonstrated a clear lethal effect of Cu on Bryocamptus zschokkei, 

with 50% mortality of ovigerous females occurring after 96 h at Cu concentrations of 290 

|ig r ' . LC50 values for Cu for other species o f freshwater invertebrates allow some 

comparison of these results with other (Table 5.3). Such comparisons must be treated with 

caution, however, as differences in the hardness, DOC and pH of treatment water will 

affect the toxicity of Cu to freshwater biota (Meador, 1991; Jin ei al., 1991; Winner & 

Owen, 1991) and these differ in the publications cited. It should be noted also that in the 

present study, Cu concentrations at the end of toxicity tests were lower than the initial 

concentration (Appendix III). To ensure a constant exposure concenlration of Cu 

throughout the experiment, animals could have been transferred daily to new test solutions, 

although this may have caused the animals additional stress. Alternatively, a flow-through 

system could have been used, although these systems are expensive and may not be 

practical. Despite these difficulties, the LCso value for Bryocamptus zschokkei is an order 

of magnitude higher than that for Daphnia pulex, suggesting that the cladoceran is more 

sensitive to Cu than the copepod (Table 5.3). This is in agreement with research on other 

copepods, such as the plankionic cyclopoid copepod Cyclops, which was more tolerant of 

Cu than Daphnia spp (Badouin & Scoppa, 1974; Mcintosh & ICeveren, 1974) (Table 5.3). 

As daphnids are predominantly found in still waters (Fitter & Manuel, 1994) they were not 

present in the streams used in the present study, and cannot be used to predict the effect of 

contaminants on stream communities. Furthermore, although many studies have aimed to 

identify the most sensitive species, under the assumption that by protecting this species, all 

other species will be protected. This may not be the best approach. Cairns (1986) has 

argued thai the most sensitive species may be markedly more sensitive than all other 

species in the 
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Tabic 5.3 Effect of Cu on aquatic invertebrates expressed as LC50. Unless stated otherwise hardness and alkalinity expressed as mg r' CaCOj. Table adapted from Kelly (1988). 

Species Life stage Test Conditions Metal Salt 
Added 

Response 
Criteria 

Metal Concentration 
( h e ! ' ) 

Daphnia pulex 
Cyclops sp. 

Mulliaged 
Multiaged 

Static 
Hardness 112-157 
pH 8.0-10.1 

CuSO-, 96-h LC50 
96-h LC50 

28 
>225 

Mcintosh and Keveren (1974) 
Badouin&Scoppa(1974) 

Cyclops abyssorum prealpinus 
Eudiaptomus padanus padanus 
Daphnia hyalina 

Adult Static 
Hardness 0.6 meq l ' 
pH7.2 

CUCI2 48-h LC50 
48-h LC50 
48-h LC50 

2500 
500 
5 

Gammarus fasciatus Multiaged Static 
Hardness 206 
pH 7.75 

CUSO4 .48-h LC50 210 Judy (1979) 

Asellus meridianus Static River Hayle 
Hardness 25 R. Gannel 

R. Bradwell 

CUSO4 48-h LC50 
48-h LC50 

1650, 1700, 250 
1900 
1200 

Brown (1977a) 

Tuhifex tubifex Static 
Hardness 34.2. pH 7.2 
Hardness 261,pH 7.32 

CuSO^ 48-h LC50 
48-h LC50 

210 
890 

Brkovic-Popovic and Popovic (1977 

Naissp. 
Chironomous sp. 

Static 
Hardness 

CuS04 96-h LC50 
96-h LC50 

90 
30 

Rehwoldt etal (1973) 



community, perhaps by many orders o f magnitude. Thereby, regulatory agencies may 

impose actions that incur unnecessary costs for the protection o f a single species that may 

not even be present in the system under concern. Test species with intermediate, or low, 

sensitivity to contaminants may also be used to rank highly contaminated sites, where more 

sensitive animals would fail to detect differences (Transpurger & Drew, 1996). Thus, above 

all other criteria, the species chosen as a toxicity test organism should be relevant to the 

system that requires protection. In streams, Bryoccmipius zschokkei ftilfils this role. 

As the Cu concentrations in the streams used in the present study all exceeded the 

recommended UK Environmental Quality Standards for Cu (NRA, 1994), species more 

sensitive to Cu may be found in other areas. For example, there were many species of 

harpacticoids present in streams in mid-Wales and the Ashdown Forest (e.g. Atheyella 

crassa, Canthocampius staphyliims and Bryocamptus echinatns) (Rundle & Hildrew, 1990; 

Rundle & Ormerod, 1991) that were not present in the streams in the south west study site, 

and any of these may be more sensitive than 5. zschokkei to Cu. Despite this, B. zschokkei 

can be considered a good toxicity test organism for predicting the effect of increasing Cu 

levels on the meiofaunal communities at sites where Cu concentrations are already high. The 

harpacticoid was consistently important in explaining between site differences in meiofaunal 

community structure (Chapter 3). 

A lethal effect (at 150 [ig l ' Cu) was observed on mating pairs of B. zschokkei in sub-lethal 

experiments, with all the pairs dying within eleven days o f Cu exposure. This result 

demonstrated one of the failings o f the LCso approach in that acute exposure is not 

necessarily indicative of the effects of chronic exposure with which the fauna of polluted 

waters is more commonly exposed. The L C 5 0 value was designed as a measure that could be 

used to compare the toxicity of different chemicals or to compare the toxic effect of a 
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chemical on one species relative to another (Abel. 1996). The median value was selected 

because it is the most statistically reliable measure. The time endpoint is selected for 

convenience, although it may also be limited by the fact that the animals used are usually 

starved. Many investigations o f lethal toxicity have been criticised for not continuing 

experiments for long enough to establish the lethal threshold (a concentration so low that it 

wall never cause the death of half the animals). For example, Sprague (1969) found that, of 

375 publications measuring lethal toxicity, only 211 showed a lethal threshold within four to 

seven days. Thus, it may have been appropriate, in the present study, to have prolonged the 

time of exposure in L C 5 0 tests, whilst also feeding the animals during the experiment. 

Another general failing o f acute toxicity tests may be with the choice o f life-history stage. 

Using ovigerous female B. zschokkei allows a standard life-history starting point, but other 

life-history stages may be more sensitive to Cu. From the experiment investigating the 

survival and development of early life stages, there were indications that the naupliar stage 

o f B. zschokkei was more sensitive to Cu concentrations than indicated by the L C 3 0 for 

ovigerous females. A lower (though not significant) percentage o f nauplii reached the first 

copepodid stage when exposed to 100 | ig 1* Cu compared to the control. Other studies of 

marine meiobenthic copepods have also found, consistently, that the naupliar stage was the 

most sensitive life stage to heavy metals (Verriopoulos & Moraitou-Apostolopoulou, 1982; 

Verriopoulos & Hardouvelis, 1988; O'Brien, et ai, 1988; Hutchinson, et ai 1994). 

Verriopoulos & Moraitou-Apostolopoulou (1982) suggested that the older life-history 

stages are more resistant due to their thicker cuticles reducing the entry o f metals into the 

copepod body. The regulation of metal ions is also less effective in young invertebrates than 

adults (Bryan & Hummerstone, 1971) and it appears that the formation of the mechanism of 

detoxification may not yet be fiilly developed in young life-history stages (Bernard & Lane. 

1961; Bryan, 1974). Further work is required on the relative sensitivities o f the different life 
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stages, as the effects on these early life-history stages may have large implications for the 

population dynamics of B. zschokkeL 

5.4.2 Sub-Iethal effects 

5.4.2.1 Fecundity 

The present study demonstrated that the total number of offspring produced 60 days after 

parent pairing was significantly lower at 100 ^g 1* Cu compared to the control. Fewer 

offspring (though not significantly so) were also produced by females exposed to 20 and 50 

Hg r ' Cu than the controls. In comparison, no mortality o f B, zschokkei was observed at 100 

|ig Cu after 96 h in the acute toxicity tests. Thus, fecundity appears to be a more sensitive 

measure of Cu toxicity to B. zschokkei than the L C 5 0 - Several ecotoxicological studies with 

marine meiofauna have showed sub-lethal effects o f toxicants (e.g. offspring production) at 

concentrations lower than those which cause mortality (see review by Coull & Chandler, 

1992). The copper concentration for the lowest 96 h L C 5 0 for nauplii and adult female Tisbe 

battagliai was 11 times higher than the concentration shown to have no observable effect 

on reproduction and survival after eight days o f Cu exposure (Hutchinson et a/., 1994). 

Sub-lethal concentrations of copper caused a reduction in the number of oflFspring produced 

by Tisbe holothuriae (Moraitou-Apostolopoulou et aL, 1983). These sub-lethal effects may, 

ultimately, confer an effect on population size. Between 0 and 100 ^g 1** Cu. there was no 

significant effect of Cu on the brood interval, although the time taken for the first brood to 

be produced was significantly longer at 150 ^g 1* Cu than for the control. Therefore, the 

reduced fecundity at higher Cu concentrations was due to a lower number of offspring per 

brood rather than a reduction in brood production. 

Some caution is required when interpreting the results of the number of surviving offspring 

produced by successive broods in the present study. Earlier broods were exposed longer to 
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the treatment solution than later ones, which may explain why a lower number o f surviving 

offspring was evident at all stages for brood two and three but not for brood one, when 

compared to the control. Williams (1997) excluded the first brood from analyses in his study 

on the effects of pentachlorophenol on the reproduction of the harpacticoid Tisbe battaglia. 

In this case, it was argued that the production of the first brood would have been 

influenced by the previous culture regime from where the ovigerous females were taken. 

The lack of effect on brood one in the present experiment may, therefore, be due to the 

shorter length of exposure of the adults to the test solution prior to the production of this 

brood. This suggests offspring production may be influenced by parent fitness prior to the 

production of broods. Therefore, to cleariy detect the effect o f different treatments on 

offspring production, brood one could be excluded. Alternatively, the lack o f effect on this 

first brood may be considered as part of the effect of exposing a B. zschokkei population to 

Cu. and, therefore, perhaps the brood should be included for realism. 

A drawback of using sub-lethal responses, rather than acute toxic measures, is the time 

taken (60 days) to reach the test endpoint. As the present study showed Cu to have a 

significant effect on all three broods, on at least one of the life stages v/ithin each brood, it 

may not be necessary for the test to run for 60 days for an effect to become evident. To 

reduce further the time needed to obtain the test endpoint for sub-lethal effects on B. 

zschokkei, parameters (i.e. biomarkers) indicative of the effects of Cu on offspring could be 

used (i.e. the critical life-stage bioassay). This approach requires an understanding of the 

mechanisms underpinning a reduction in the number of offspring. Thus, the entire life cycle 

requires investigating, so that measures which are indicative o f effect on the population may 

be identified. An effect on the early life-history stages was evident in the present study, with 

a significantly lower number of nauplii found in the third brood at 100 ^g I * Cu than for the 

control. The apparent decrease in naupiii survival at 100 ^g I * Cu compared to the control, 
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in the experiment investigating the effects of Cu on the survival and development o f the 

early life stages, also suggests an effect of Cu on this early life stage. No effect o f Cu on the 

survival of copepodids was observed in this latter experiment. The effect of Cu on the 

reproduction of B. zschokkei may also be explained by the effect of the metal on parent 

fitness (i.e. a decrease in the number of viable eggs produced by females or a delayment in 

egg production). The delay in the appearance of the first brood in females exposed to 150 

^ig r* Cu certainly suggests an effect on the reproductive status o f the female at high Cu 

concentrations, but no effect at 0-100 pg 1* when other sub-lethal effects occurring. The 

effect of Cu on the percentage of eggs hatching still requires investigating to verify whether 

Cu is affecting parent fitness in this way. 

5.4.2.2 Development 

Whereas studies on marine copepods have reported development of immature life stages to 

be affected by metal toxicity (D'Agostino 8c Finney, 1974; Moraitou-Apostolopoulou et al., 

1983), the development rates of the nauplii and copepodids of B. zschokkei were not 

affected by Cu. The presence of the leaf disc in the cells used in the B. zschokkei 

experiments, however, made observations of nauplii and copepodids difficult. Nauplii 

obtained from the second brood of the first generation, used to initiate the experiment 

following the survival and development of nauplii and copepodids. may have been older 

than 24 h ( i f they were missed during a daily inspection o f a cell). Thus, in some cases, the 

development time may have been underestimated. There was also a lack of effect on the 

time taken for the first brood to be produced and nauplii to hatch at Cu concentrations 

between 0 and 100 (ig I * Cu. This may have been due to measurements being taken only a 

few days af^er the parents were exposed to the treatment, when the effect of exposure may 

not yet have been apparent. I f the parents had been exposed to Cu for longer, they may 

have become more stressed leading to an effect on development o f these early life stages. 
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Further investigations are required, therefore, to confirm that Cu was not having an effect 

on embryonic and post-embryonic development. 

5.4.3 Linking efTects on individuals and populations 

Sub-lethal endpoints may be more sensitive than lethal endpoints but their relevance to 

population dynamics still requires validation. Evidence that sub-lethal effects of metals do 

ultimately reduce population size after prolonged exposure has been demonstrated 

previously for copepods. For example, Verripoulos & Hardouvelis (1988) exposed the 

copepod Tisbe holoihuriae to three sub-lethal concentrations of Zn (0.07, 0.01 and 0.007 

ppm) for four subsequent generations. An effect on population dynamics was observed at 

concentrations of 0.07 and 0.01 ppm Zn, however, at 0.07 ppm Zn, no effect was observed 

on the first generation. These latter animals could not produce a second generation, mainly 

due to the lower number of egg sacs produced and the lower percentage of animals 

producing egg sacs. For 0.01 ppm Zn, the effect was not observed until the fourth 

generation, with the percentage of animals producing egg sacs decreasing significantly from 

generation to generation. Further work exposing B. zschokkei to sub-lethal concentrations 

of Cu over a number of generations is required to reveal whether there is an effect on 

population growth. 

Complete life-cycle tests, where cohorts of the test organism are exposed from biah to 

death, have also been used successfully to highlight the effects of the toxicant on specific 

life stages of numerous invertebrates. Biological information can then be used to calculate 

population parameters such as intrinsic rate of natural growth (r„,) (Daniels & Allen, 1981 

for marine copepods; Gentile e/a/., 1982 for mysid shrimps; Janssen et ai, 1993 fi^r rotifers; 

Meyer ei £//., 1987 for cladocerans). The intrinsic rate of increase integrates age-specific 

survival and reproduction (age at first reproduction, reproductive frequency, brood size and 
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reproductive period), thereby, providing a more ecologically relevant criterion than separate 

measures of survival and reproduction. The results of life table experiments on Tisbe 

furcata exposed to 0.9 | i M Cu demonstrated that significant negative effects on 

demographic parameters (total production of nauplii, life span and reproductive period for 

fertile females), and a reduction in the percentage of fertile females, led to a 6 1 % reduction 

of r̂ n (Bechmann, 1994). As B. zschokkei has been found to live as long as 370 days 

(O'Doherty, 1985), shorter exposure durations than from birth to death could be used to 

estimate r„; (Allan & Daniels, 1982; Daniels & Allan, 1982; Meyer et a/.. 1987). 

It should be noted also that there was a wide variation in the number of surviving offspring 

produced by individual females in the fecundity experiments. These high levels of variability 

may have masked the effects of Cu. For example, there was a low number of surviving 

copepodid offspring for copepods exposed to 50 and 100 ^ig f ' Cu compared with 0 and 20 

Hg 1"' Cu; these differences were not significant due to the high variation amongst 

individuals. High variability in measures of survival and reproduction have also been 

reported for other microcrustaceans such as the harpacticoids Tisbe holothuriae (Williams, 

1997), Tisbe furcata (Bechmann, 1994), and the cladocerans Daphnia magna (Martinez-

Jeronimo et a/., 1994) and Bosmina longirostris (Koivisto and Ketola., 1995). 

Standardised procedures using Daphnia spp. as a test organism involve the selection of 

animals of limited genetic heterogeneity, an approach that has been advised to minimise the 

variation in individual response (Baird et a/., 1989). This approach has been criticised 

(Forbes & Depledge, 1992), however, as biological variability is an important component of 

a population's ecological and evolutionary response to pollution stress (Forbes & Forbes, 

1994). Even so, it is important to be aware that even in test solutions where the number of 

offspring produced were not significantly lower than the control, an effect on the population 

may eventually occur. Exposure of Tisbe fitrcata to 0.5 \.\M Cu resulted in an effect on 
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demographic parameters, which even though they were non-significant, led to a 10% 

reduction o f r^ (Bechmann, 1994). Williams (1997) demonstrated that Tisbe holothuriae 

exposed to concentrations o f PCP, that did not result in a significant effect on offspring 

production, still contributed to a high percentage reduction in the intrinsic growth rate 

calculated for the population. 

Finally, the effect of pollutants such as trace metal levels on populations in the field can 

occur through several mechanisms including alterations to biotic interactions. These 

mechanisms also need to be understood i f effects in the laboratory are to be related to the 

field (Chapter 6.). 

5.4,4 Tolerance 

One important factor to consider when predicting the effects of trace metals, such as Cu, on 

species in the field, is whether pre-exposure o f populations has led to some degree of 

tolerance. Some evidence for tolerance was found in this study. The LCso value for B. 

zschokkei individuals from site LJ2. a stream with high Cu concentrations, was clearly higher 

than that for individuals from streams with low Cu concentrations (R2 and the River 

Yealm). Hence, individuals from the population at U2 appeared to show some tolerance to 

acute levels of Cu compared to animals fi-om sites of low Cu concentration. Numerous 

marine and freshwater studies have shown that crustaceans from metal-contaminated sites 

are less susceptible to metals than animals from clean sites (see review by Klerks & Weis, 

1987). Tolerance can be due to either physiological acclimation or genetic adaptation. 

Physiological acclimation of Gammanis pulex individuals to cadmium after pre-exposure to 

sub-lethal concentrations of cadmium and zinc in the laboratory has been reported by 

Stuhlbacher and Maltby (1992). In the latter case, increased cadmium tolerance in acute 

toxicity tests was shown to be associated with an increase in the body concentration of a 
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metallothionein-like protein, to which the metals bound. This resulted in the metals being 

sequestered in a less toxic form. Genetic adaptation of Aselhis mehdianus to lead was 

shown by Brown (1977a). Isopods from contaminated sites were more tolerant than those 

from uncontaminated sites and this persisted into the F2 generation after animals had been 

reared in clean water. It would be illuminating to elucidate whether the resistance of B. 

zschokkei to copper has a genetic basis or is due to physiological acclimation. This could be 

accomplished by rearing B, zschokkei from contaminated and uncontaminated sites in clean 

water and repeating exposure experiments on the F2 generation. 

Evidence that the acquired tolerance of copepods to metals has a subsequent effect on 

population dynamics has been demonstrated by several workers. Moraitou-Apostolopoulou 

et ai (1983) followed the effect of exposure to sub-lethal concentrations of Cu on the 

marine benthic harpacticoid copepod Tisbe holothuriae over five generations. A prolonged 

exposure of Cu resulted in the sub-lethal effect of increased maturation time to be less 

pronounced fi-om the F3 generation (Moraitou-Apostolopoulou etai, 1983). The sub-lethal 

effect of Cd and Zn on populations of Tisbe holothuriae were also shown to be 

counteracted by an acclimation process over the generations by Hoppenheit (1977) and 

Verriopoulus and Hardouvelis (1988), respectively. 

5.4.5 Possible improvements in the experimental procedure 

The experimental protocols developed in this chapter used conditioned beech leaves as a 

food source following methods described by O'Doherty (1985). It was, however, difficult 

to standardise the amount of food provided for the animals using a leaf disc as the degree of 

decay and the density of bacteria on these leaves were likely to be variable. Differences in 

the quality and quantity of food may have been partly the reason for the high variability in 

the number of offspring produced by animals exposed to the same test concentration. 
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Furthermore, the number of surviving offspring had to be assessed at the end of the 

experiment rather than counting the number of nauplii which hatched out, as it was difficult 

and highly time consuming to find the animals while a leaf disc was present. 

As previous workers have shown the quality and quantity o f food provided can have a 

significant effect on the lethal and sub-lethal toxicity of chemicals to biota, it is important 

that, i f B. zschokkei is to be used as a toxicity test organism in the future, the food source 

must be standardised. Perimutter & Meyer (1991) demonstrated that the stream 

harpacticoid Auheyella was feeding on bacteria living on birch leaves. Bengtsson (1978) 

also used a bacterial culture to successfully feed the estuarine benthic harpacticoid Nitocra 

spinipes during experiments assessing the effect of metal toxicity on reproduction. Thus, the 

isolation and culture of freshwater bacteria as an appropriate natural food source for B. 

zschokkei may help standardisation. Without the presence of the leaf disc, observations of 

the copepods would also be made easier. Improvements in the methodology would, thereby, 

allow direct measurements of the number of offspring produced rather than measuring the 

number of surviving offspring produced over a period of time. 

As most toxic pollutants of aquatic systems have a strong affinity for particulate matter they 

are often associated with sediments [note the higher interstitial concentrations of metals 

compared to surface water concentrations found in this study (Chapter 2)]. Thus, to provide 

a greater degree of environmental realism, and increase the ability to predict environmental 

effects, there has been a growing interest in developing sediment toxicity tests (Transpurger 

& Drews. 1996). As B. zschokkei is an interstitial species it may also have potential to be 

developed as a toxicity test organism for assessing the effects of contaminants associated 

with the sediment. 
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5.4.6 Conclusion 

In summary, this chapter demonstrated that Cu had toxic effects on the survival and 

reproduction of Bryocampius zschokkei. Acute toxicity tests gave a rapid result, although, 

the effects on survival occurred at a higher Cu concentration than that found in the chronic 

tests. Sub-lethal concentrations o f Cu resulted in the harpacticoids producing fewer 

offspring, though the time taken to give the measured response was lengthy. Improvements 

in the methodology, and further experimental work, are required to find quick, sub-lethal, 

measurable responses indicative of changes in the population growth of B. zschokkei. 

Animals already exposed to chronic concentrations o f Cu exhibited greater tolerance to Cu. 

Thus, one factor that is important to consider when predicting the effects o f metals on a 

system is the previous exposure of the populations to the toxicant. Other factors that need 

to be considered i f toxicity tests using B. zschokkei are to be used to predict the effects of 

Cu on stream communities in the field are discussed in Chapter 6. 
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CHAPTER 6 

General discussion and conclusions 
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The primary objective of this thesis was to assess the use of lotic meiofauna for monitoring 

metal contamination at the individual and community level of biological organisation. In 

this concluding chapter, the potential benefits of including stream meiofaunal communities 

in monitoring programmes are evaluated. Possible techniques for overcoming some of the 

difficulties encountered when working with this component of the stream fauna are 

discussed. The use of both lethal and sub-lethal responses of the harpacticoid copepod 

Bryocamptus zschokkei as indicators of Cu toxicity are also appraised as are the potential 

advantages of using this harpacticoid copepod as a toxicity test organism. 

6.1 The potential use of meiofaunal communities to monitor metal contamination 

The survey of meiofaunal communities in metal-contaminated streams presented in 

Chapter 3 demonstrated a clear relationship between community structure and Cu 

concentrations. Subsequent analyses demonstrated that the correlation between meiofaunal 

community structure and trace metal contamination was similar to that of the macrofaunal 

community (Chapter 4). Thus, the information gained from using the meiofaunal 

community may be of equal value to that from using macrofaunal community structure for 

monitoring metals and other pollutants. Although further validation work is required before 

meiofaunal communities could practically be used by regulatory bodies, meiofauna exhibit 

a number of advantages that may make their inclusion in monitoring programmes 

worthwhile. Firstly, more information may be gained by including the meiofauna, 

alongside macrofauna, when monitoring the impact of contaminants on freshwater systems. 

The inclusion of both macrofauna and meiofauna in environmental impact surveys has 

been advocated in marine systems as meiofauna have been found to provide additional 

information on the effects of pollutants (Austen et al., 1989; Somerfield et al., 1995). In the 

present study, there was a distinct meiofaunal community at L4 in autumn associated with 

high Al and low pH conditions at this site, while the absence of ail meiofauna, except for 
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nematodes in spring, highlighted the exceptionally high levels of Zn at U2 in this season. 

These site difTerences in chemistry were not highlighted by the macrofaunal community. 

The inclusion of the temporary meiofauna with the macrofauna, or the use of the entire 

metazoan community (i.e. meiofauna macrofauna and temporary meiofauna) when 

assessing the impact of metal contamination, also improved the discrimination between 

sites of varying metal contamination (Chapter 4). Thus, the use of the entire metazoan 

community may be useful in detecting more subtle differences in contamination among 

sites. 

Stream meiofauna may have other potential advantages for pollution monitoring not 

mentioned in this study. The shorter generation times of meiofauna and their intimate 

association with the sediment suggests that meiofauna may respond more rapidly and have 

greater sensitivity to pollution inputs than many macrofauna (Warwick, 1993). These 

attributes led Moore & Pearson (1987) to suggest that meiofauna might play an important 

role in the detection of subtle alterations to ecosystems due to chronic pollution. Meiofauna 

may serve as a sensitive tool either to ascertain the spatial extent of the impact of a 

pollution source, or as an early warning of community change in response to anthropogenic 

disturbance. In the present study, Cu concentrations at all the sites exceeded the 

recommended UK Environmental Quality Standards for Cu (NRA, 1994), therefore, flirther 

survey work is required to investigate whether meiofaunal community structure is altered at 

lower metal concentrations than that affecting macrofauna. Stream microcosms or transfer 

experiments could also be undertaken to investigate the short-term response of meiofauna 

to elevated metal levels, thereby, assessing whether the response of meiofaunal 

communities to metal contamination is more rapid than that of the macrofauna. 
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Difficulties that have been encountered using benthic macroinvertebrate communities as 

monitors are also likely to apply to meiofauna. The high cost of monitoring at the species 

level, due to time-consuming sampling and processing, is a constraint of particular 

relevance to meiofauna, which often require the preparation of permanent mounts for 

identification under high power magnification. The taxonomy of meiofauna is also 

considered difficult and keys are lacking for some groups (e.g. Nematoda). This study, 

however, demonstrated that meiofaunal communities at higher taxonomic levels, such as 

fgmiily, still clearly illuminated the change of community structure along the metal gradient. 

Thus, identification to a higher taxonomic level may be adequate when detecting 

contamination, which will reduce the effort of processing samples and the risk of 

misidentifications. 

Perhaps the ideal approach, i f meiofauna were to be used on a widespread basis by 

regulatory bodies, is the generation of an index of contamination. Diversity measures and 

the index of multivariate dispersion, however, were poor discriminators of sites of different 

metal concentrations (Chapter 4). Another method is to use biotic indices (Chapter 1). 

Biotic indices summarise the information in a way that can be understood by decision 

managers and the concerned public, giving an indication of contamination levels. A very 

simple biotic index using the ratio of nematodes to copepod densities (N:C ratio) was 

suggested by Raeffaeli & Mason (1981) to detect organic pollution in the marine 

environment. The present study demonstrated that the sensitivities of cyclopoids and 

harpacticoid copepods differed, with the cyclopoids being generally more tolerant of metal 

contamination (Chapter 3). Thus, a similar ratio based on the sensitivity of harpacticoids, 

and the tolerance of cyclopoids to metals could be used to delect metal contamination in 

freshwater systems. However, the use of such ratios may be rather crude and the marine 

N:C ratio provoked much criticism when published, in that the influence of sediment grain 
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size and other environmental factors on individual species did not allow the index to be 

apphed universally (Boucher, 1980; Coull et al, 1981; Lambshead, 1984; Huys et al., 

1992). Modifications that took into account various feeding types and habitat adaptations 

of nematodes and copepods were used to improve the validity and general applicability of 

this index (Warwick, 1981; Raeffaeli, 1987). A similar difficulty might arise with the use 

of a copepod index. Despite the general tolerance of cyclopoids to high metal 

concentrations, some species of cyclopoids were sensitive to elevated metal concentrations 

(Chapter 3). Thus, although such an index might be successful at assessing contamination 

for these sites it may not be useful in other regions where different species of copepods are 

present. 

Once more is known about individual stream meiofaunal tolerances to metals, a more 

sophisticated scoring system of tolerant and intolerant groups could be designed. However, 

the difficulties encountered in distinguishing the effect of metal contamination on stream 

macroinvertebrates, from the influence of other environmental factors (e.g. Gower et al., 

1994), and the confounding effect of mixtures of metals, may also apply to meiofauna. 

Finally, i f stream meiofaunal communities are to be used in routine monitoring, a better 

knowledge of the types of communities to be expected at uncontaminated streams is 

required to provide a baseline against which pollution effects can be gauged. A system akin 

to RIVPACS (Chapter 1), where the degree to which observed fauna deviates away from a 

predicted fauna is used as an indication of disturbance at a site, would then allow 

potentially stressed sites to be pinpointed. 
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In summary, the advantages of using meiofaunal communities in monitoring are:-

1) They provide additional ecological information (as shown by the present study). 

2) Their inclusion with macrofauna provides a better discrimination of sites of different 

contamination levels (as shown by the present study). 

3) They are ubiquitous. 

4) Their short generation times may result in a more rapid response to contamination. 

5) They have an intimate association with the sediment. 

Disadvantages of using meiofaunai communities are:-

1) The identification of meiofauna is perceived as difficult. 

2) Sample processing is time consuming, 

3) No score has been designed for rapid assessment in freshwaters. 

6.2 The potential of Bryocamptiis zschokkei as a toxicity test organism 

This thesis has presented the first evaluation of a freshwater benthic copepod, the 

harpacticoid Bryocamptus zschokkei, as a toxicity test organism. This organism was chosen 

as it was of high ecological relevance in terms of its response to Cu contamination; B. 

zschokkei was both sensitive to Cu and reflected changes occurring in the meiofaunal 

community structure in response to Cu in the field (Chapter 3). SIMPER analyses 

demonstrated that the abundance of Bryocamptus zschokkei also contributed highly to the 

separation of sites by the total metazoan community structure in spring and autumn (Fig. 

6.1). Thus, field data suggested that it might be an ideal toxicity lest organism for 

predicting the long-term effects of Cu on the stream benthic community. 

190 



D) 

o 
• • 

• 

0 

Figure 6.1. MDS ordinations of autumn total metazoan data overlaid with circles 
proportional to A) Cu concentrations and B) Bryocamptus zschokkei abundances; 
and MDS ordinations of: spring total metazoan data overlaid with circles 
proportional in diameter to C) Cu concentrations £md D) Bryocamptus zschokkei 
abundances. 
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Although Bryocamptus zschokkei was sensitive to Cu contamination in the field, a 

comparison of the LC50 values for Cu for B. zschokkei with the LC50 values for other 

freshwater invertebrates demonstrated that other animals had a greater sensitivity to Cu 

(Chapter 5). Even so, the main criterion for choosing a predictive test organism should be 

that the test organism reflects changes in the community structure. Therefore, B. zschokkei 

should still be considered as a useful organism for protecting a system where Cu levels are 

already elevated. 

As has been found for many other toxicit>' test organisms (Abel, 1996), Cu had an effect on 

the fecundity of B. zschokkei at lower concentration than those which caused mortality. A 

significantly lower number of offspring was produced at 100 ^ig 1"' Cu compared to the 

control, whilst the LC50 96 h value for ovigerous female B. zschokkei was 240 jig f 'Cu . 

This reduction in the number of offspring produced by B. zschokkei exposed to Cu was an 

easily identifiable response. Even so, while the death of an organism is an unequivocal 

toxic action, the biological significance of sub-lethal toxic effects is frequently difficult to 

assess. Verification is required that responses at the individual level actually results in an 

adverse effect on the population. Too often studies fail to attempt to link 'biomarkers' to 

adverse effects at higher levels of biological organisation (Munkittrick & McCarty, 1995). 

The link between individual and population response in B. zschokkei could be achieved, 

either by comparing effects of Cu on fecundity to the effects of Cu on the population in the 

laboratory, or by using a complete life-cycle study to identify responses that can be related 

to the intrinsic rale of growth of the population. Although the short generation times of B. 

zschokkei allowed sub-lethal measures to be assessed relatively quickly sub-lethal 

responses were still relatively lime consuming compared to acute measures. In the present 

study, the number of offspring produced by B. zschokkei was not recorded until after 60 

days compared with the 96 hour exposure of B. zschokkei to Cu. The duration and scale of 
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experiments could be considerably reduced by identifying the most sensitive part of the life 

cycle. Results from the present study corroborated those from many others (Abel, 1996) in 

that the effect on the early life stage appeared to be the most critical with lower (though not 

significant) numbers of nauplii surviving to the copepodid stage when exposed to 100 |ig 1" 

' Cu compared with the control. There was also a significantly lower number of nauplii 

found in the third brood at 100 jig 1"' Cu compared with the control, although this may have 

been due to an effect on parent fitness. 

The direct benthic development of Bryocamptus zschokkei facilitated the study of all stages 

of the life cycle, however, the presence of the leaf disc in sub-lethal experiments made it 

difficult, and highly time consuming, to find animals. Thus, improvements of the culturing 

methodology of the harpacticoid are required. As stated in Chapter 5, the isolation and 

culture of freshwater bacteria as an appropriate natural food source for B. zschokkei would 

make observations of the copepods easier while allowing standardisation of the food 

source. 

It is important that the effects of toxicants at the individual level in the laboratory are 

related to the effects at the community level in the field i f the responses of Bryocamptus 

zschokkei in the laboratory are to be used to predict the effects of Cu on the rest of the 

stream biota. As the study measured the impact of metal contamination on meiofaunal 

communities in the field, the Cu concentrations that induced a response in B. zschokkei in 

the laboratory could be compared with the Cu concentration measured at sites where a 

lower B. zschokkei abundance and an altered community structure were recorded. 

Figure 6.2 shows the abundance of B. zschokkei recorded at sites of various Cu 

concentrations in autumn. It is evident that lower abundances of B. zschokkei than that 
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found at the control sites were found at sites where surface water Cu concentrations were 

lower than 100 |ig 1*'. At L I (mean Cu concentration of 40 |ig I"') B. zschokkei abundances 

were consistently lower than that found at R2 in spring, summer and autumn (Chapter 3). 

The stream communit>' structure was also altered at sites of a lower Cu concentration than 

predicted by either the lethal or sub-lelhai responses of B. zschokkei to Cu in the laboratory. 

At sites where Cu concentrations were lower than 100 |ig 1"', the metazoan community was 

significantly different from the community at R2 (Chapter 4). For example, in spring, 

summer and autumn the metazoan community at L I (mean Cu concentration 40 jig l ' ) was 

significantly different from R2. 
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Figure 6.2 The mean abundance of Bryocamptus zschokkei found at sites of different 
Cu concentrations in autumn. The data is overlaid with a moving average trendline 
which smooths fluctuations in the data and shows the trend more clearly. 

A comparison of the Cu concentrations that induced a response in B. zschokkei in the 

laboratory with the Cu concentration measured at sites where a lower B. zschokkei 

abundance and an altered community structure were recorded are summarised in Figure 

6.3. Clearly, a lower abundance of R zschokkei and an alteration of the benthic community 

structure compared with 'unconlaminaled' waters, occurred at lower Cu concentrations in 

the field than predicted by the lethal and sub-lethal toxicity tests. As Parkhurst (1995) 
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Figure 6,3 Bryocamptus zschokkei as an indicator of Cu contamination in the field 
and the lab. - A) MDS ordination of autumn total metazoan data overlaid with 
circles proportional to Cu concentrations; B) the mean abundance of B, zschokkei 
found at sites of different Cu concentrations in autumn; C) the mean number of 
offspring present per female B. zschokkei 60 days after parent pairing; D) toxicity 
curve for ovigerous female B. zschokkei exposed to various Cu concentrations for 
96 hours. 
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noted, however, determining correspondence is not the same thing as validating a 

prediction. An understanding of the additional biolic and abiotic modifying factors 

associated with toxicants in the field is required to be able to link effects on individual 

toxicity test organisms in the laboratory to effects on the stream biota in the field. 

Established laboratory toxicity test procedures rarely take into account the many 

environmental and biotic factors which will also influence the toxicity of metals on the 

biota of the receiving waters (Chapter 1). It is unlikely that Cu will be acting in isolation 

but that other metals wil l also be involved. Environmental factors other than metals will 

also beinfluencing the abundance of B. zschokkei, either directly or by affecting the 

bioavailability of Cu [e.g. DOC, temperature and food quality (Chapter 3; O'Doherty, 

1986)]. The concentration of pollutants in receiving waters are also rarely constant, as 

demonstrated by the variable metal concentrations measured in four seasons in the stream 

tributaries of the Rivers Lynher and Seaton (Chapter 2). The rate at which a pollutant is 

introduced into the receiving waters also plays an important role in governing the 

community response (Smith et al., 1979), and a higher community resilience is expected 

where the change is gradual rather than sudden, as populations may have had time to 

acquire tolerance. The sub-lethal effects of Cd and Zn on populations of Tisbe holothnriae 

were shown to be counteracted by an acclimation process over several generations 

(Hoppenheit, 1977; Verriopoulus & Hardouvelis, 1988). Experiments using B. zschokkei 

may demonstrate similar increased resilience of the population to sub-lethal Cu 

concentration over generations. 

In the present study, the acute toxicity of Cu to individuals o{ Bryocamptus zschokkei from 

a population at a contaminated site was found to be lower than its effect on those animals 

taken from a control site (R2). It appeared, therefore, that pre-exposure to Cu led to the 
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development of metal tolerance in B. zschokkei. This illustrates another general problem 

with toxicity tests, i f the pre-exposure of the field population to a contaminant has not been 

considered a more severe effect on a population may be predicted from toxicity tests. It is, 

therefore, important that previous metal exposure of the population of B, zschokkei in the 

receiving waters is considered when predicting the effects of metals. To elucidate whether 

the resistance of B. zschokkei to Cu has a genetic basis or is due to physiological 

acclimation, B. zschokkei could be reared from contaminated and unconiaminated sites in 

clean water and then exposure experiments repeated to assess whether tolerance is retained 

in the F2 generation. 

In the field, predation and competition factors will also be influencing the B. zschokkei 

population structure. The influence of such biotic factors are as yet unknown for the 

majority of lotic meiofauna. The lack of knowledge of the consequences of the indirect 

effects of predation and competition are perhaps the biggest difficulty in linking levels 

when predicting the effects on community structure from effects at the population level. 

Further work manipulating densities of key species in mesocosms and natural systems is 

required to understand these competitive and predator-prey interactions. 

Thus, even though there was an ecological basis to the choice of using B. zschokkei as a 

toxicity test organism for Cu, there are still many major caveats in linking effects of 

contaminants in the laboratory to field effects. Improvements to the culturing methodology 

of B. zschokkei are also still required to facilitate the assessment of the sub-lethal response 

of the harpacticoid to contaminants. Even so, B. zschokkei still has many attributes which 

make it a potentially useful toxicity test organism. It is relatively easy to culture and 

requires minimal space. Furthermore, its short generation times and direct benthic 

development facilitate the study of the effects of contaminants on its reproduction and 

197 



development. These attributes have aroused interest from ZENECA Limited (Brixham 

Environmental Laboratory) and investigations into the effects of oestrogenic compounds on 

this harpacticoid are at present in progress with further development of its use as a toxicity 

test organism. Finally, as an interstitial species, B, zschokkei may have potential as a 

toxicity test organism for assessing the effects of contaminants associated with the 

sediment. Toxicity analysis of the sediment is particularly important as most toxic 

pollutants of aquatic systems have a strong affinity for particulate material and eventually 

become associated with the sediment. 

In summary, the advantages of using B. zschokkei as a toxicity test organism are :-

1) The harpacticoid is an ecologically-relevant toxicity test organism of streams. 

2) It has an identifiable sub-lethal response to metals (as shown by the present study). 

3) It has a short life cycle. 

4) It has direct benthic development. 

5) It requires minimal space and equipment. 

6) It has potential as a sediment toxicity lest organism. 

Disadvantages of using B. zschokkei as a toxicity lest organism are:-

1) It has relatively low sensitivity to Cu (as shown by the present study). 

2) Its sub-lethal responses are still relatively time consuming to measure. 

3) It is time consuming to locate animals in culture vessels using the present methodology. 

4) Comparatively low B. zschokkei population abundances occurred at Cu concentrations in 

the field than indicated by responses of B. zschokkei exposed to Cu in the lab. suggesting 

the relevance of the latter may not be high. 
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5) There is a lack of knowledge of the additional abiotic and biotic factors influencing B. 

zschokkei in the field. 

6.6 CONCLUSIONS 

Stream meiofaunal communities as monitors of heavy metal contamination 

The correlation between meiofaunal community structure and trace metal contamination 

was similar to that of the macrofaunal community. Cu was the single variable best 

explaining inter-site differences for both communities. Even so, the meiofaunal community 

highlighted differences in water chemistry that were not detected by the macrofaunal 

community. The combination of meiofauna, macrofauna and temporary meiofauna in a 

combined metazoan data set improved the discrimination of sites of different metal 

concentrations. The detection of the gradient in metal contamination using meiofaunal 

community data aggregated to the family level data may reduce the effort of processing 

samples. 

The harpacticoid copepod, BryocamptHS zschokkei as a toxicity test organism of 

copper 

Bryocamptus zschokkei shows potential as an ecologically-relevant toxicity test organism 

of streams for Cu, being both sensitive to Cu whilst changes in its abundance in the field 

reflect the differences between site community structure. However, the concentrations of 

Cu foimd to effect survival and reproduction in the laboratory were lower than the 

concentration that appeared to effect B. zschokkei populations or community structure in 

the field. Despite this, the harpacticoid is an ecologically-relevant toxicity test organism of 

streams and short generation limes and direct benthic development facilitate the study of 

the effects of contaminants on its reproduction and development. 
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CHAPTER 6 

General discussion and conclusions 
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The primary objective of this thesis was to assess the use of lotic meiofauna for monitoring 

metal contamination at the individual and community level of biological organisation. In 

this concluding chapter, the potential benefits of including stream meiofaunal communities 

in monitoring programmes are evaluated. Possible techniques for overcoming some of the 

difficulties encountered when working with this component of the stream fauna are 

discussed. The use of both lethal and sub-lethal responses of the harpacticoid copepod 

Bryocamptus zschokkei as indicators of Cu toxicity are also appraised as are the potential 

advantages of using this harpacticoid copepod as a toxicity test organism. 

6.1 The potential use of mciofaunal communities to monitor metal contamination 

The survey of meiofaunal communities in metal-contaminated streams presented in 

Chapter 3 demonstrated a clear relationship between community structure and Cu 

concentrations. Subsequent analyses demonstrated that the correlation between meiofaunal 

community structure and trace metal contamination was similar to that of the macrofaunal 

community (Chapter 4). Thus, the information gained from using the meiofaunal 

community may be of equal value to that from using macrofaunal community structure for 

monitoring metals and other pollutants. Although further validation work is required before 

meiofaunal communities could practically be used by regulatory bodies, meiofauna exhibit 

a number of advantages that may make their inclusion in monitoring programmes 

worthwhile. Firstly, more information may be gained by including the meiofauna, 

alongside macrofauna, when monitoring the impact of contaminants on freshwater systems. 

The inclusion of both macrofauna and meiofauna in environmental impact surveys has 

been advocated in marine systems as meiofauna have been found to provide additional 

information on the effects of pollutants (Austen et al., 1989; Somerfield et al., 1995). In the 

present study, there was a distinct meiofaunal community at L4 in autumn associated with 

high Al and low pH conditions at this site, while the absence of all meiofauna, except for 
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Appendix I 
Metal concentrations (^g 1**) for twelve sites on the tributaries of 
the Rivers Lynher and Seaton in spring (sp) and summer (su)1995, 
autumn (au) 1994 and winter (wi)1996 and the mean (x ) and 
standard deviation (sd) of the four values ( * no value) 

A) Copper 
Surface Intcrsttlial 

Sp Su Au Wi X rd Sp Su Au Wi X sd 
TI 7 0 17 16 10 8 6 0 20 • 9 10 
R2 20 5 18 11 13 7 44 22 34 62 40 17 
B2 13 11 26 37 22 12 16 3 31 47 24 19 
S9 39 • 144 94 92 52 246 « • 479 362 165 
L I 26 23 49 62 40 19 156 262 94 649 290 249 
U3 32 47 70 116 71 32 86 76 142 167 118 44 
Dl 104 48 112 247 128 85 152 92 232 242 185 77 
U2 182 149 ISO 302 203 68 389 411 490 406 424 45 
D3 278 235 352 307 293 49 562 1183 576 284 651 379 
L4 588 573 563 602 S82 17 101 101 618 563 346 283 
S8 574 1205 687 478 736 324 1823 1787 1783 1890 1821 50 
DS 742 566 829 928 766 153 1763 882 1622 878 12S6 473 

B> Zinc 
Surfnce Interstitial 

Sp Su Au \\1 • A' sd Sp Su Au WI X sd 
T l 56 68 123 156 • 101 47 97 113 271 • 160 96 
R2 78 74 175 148 119 50 158 167 114 199 159 35 
B2 134 31 48 246 115 98 123 40 151 134 112 50 
89 80 • 25 52 52 28 92 • • 71 81 15 
L I 54 46 95 163 89 54 172 152 277 317 229 80 
U3 no 272 49 65 124 102 96 129 70 96 98 24 
Dl 45 18 84 106 63 39 52 24 91 239 101 96 
U2 1121 773 742 860 874 172 1083 800 869 1069 9S5 142 
D3 368 415 458 133 344 J 45 296 61 278 125 190 115 
L4 209 269 420 197 274 103 192 58 444 173 217 163 
S8 227 423 421 424 374 98 396 417 446 248 377 88 
D5 186 119 313 250 217 83 201 126 329 247 226 85 
C) Iron 

Surface interstitial 
Sp Su Au WI X sd Sp Su Au WI X sd 

T I 175 151 107 193 157 37 136 116 140 • 131 13 
R2 IS6 130 84 186 139 43 867 297 157 1705 757 703 
B2 88 83 97 109 94 n 176 69 581 229 264 222 
S9 76 • 59 101 79 21 136 • « 128 132 5 
L I 163 91 89 184 132 49 236 252 97 217 200 70 
U3 102 77 43 337 140 134 176 93 86 492 212 191 
Dl 45 30 32 98 51 32 232 41 134 364 193 138 
U2 286 212 304 780 396 259 478 127 196 1146 487 465 
D3 136 115 58 124 108 35 156 201 44 50 113 78 
L4 76 85 90 599 212 258 98 87 1492 1160 709 725 
58 68 78 86 73 76 8 156 114 180 119 142 31 
DS 76 78 25 85 66 28 67 31 80 296 118 120 
D) Aluminium 

Surface Interstitial 
Sp Su Au wi jf sd Sp Su Au WI X sd 

T I 437 308 460 402 402 67 56 354 46 • 152 175 
lU 102 187 103 80 118 47 967 460 163 1693 821 670 
B2 236 413 169 152 243 H9 621 569 444 677 578 99 
S9 314 • 347 329 330 17 538 * • 528 533 7 
L I 478 466 365 520 457 66 569 582 43 602 449 271 
U3 375 364 440 438 404 40 372 476 40 630 380 250 
Dl 286 266 280 386 305 55 436 327 101 890 439 332 
U2 536 186 236 938 474 346 421 136 88 1229 469 528 
D3 389 286 534 398 402 102 479 549 119 407 389 189 
L4 1023 1002 697 1615 1084 384 1321 422 1138 1559 1110 490 
S8 865 1280 745 683 893 269 1062 1740 1194 343 1085 575 
DS 256 346 90 289 245 no 562 272 534 917 571 365 
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Physicochemical variables for twelve sites on the tributaries of the Rivers Lynher 
and Seaton in spring and summer 1995. autumn 1994 and winter 1996 and the 
mean (x) and standard deviation (sd) of these four values ( * no value). 

A) pH 
Spring Summer Autumn Winter X sd 

T l 6.4 6.8 6.4 7.4 6.8 0.47 
R2 6.0 6.8 6.3 7.4 6.6 0.61 
B2 5.2 5.8 6.0 6.8 6.0 0.66 
L I 6.4 6.8 6.1 7.3 6.7 0.52 
U3 5.4 5.8 5.7 6.9 6.0 0.66 
S9 5.8 * 5.8 7.6 6.4 1.04 
D l 6.2 6.5 6.3 7.4 6.6 0.55 
U2 5.6 6.0 6.0 7.4 6.3 0.79 
D3 6.0 6.8 6.3 7.1 6.6 0.49 
L4 4.4 5.6 4.8 5.6 4.8 0.60 
S8 5.6 5.8 5.7 7.0 6.0 0.66 
D5 5.7 6.6 5.9 6.6 6.2 0.47 

B) Conductivity (^S cm') 

Spring Summer Autumn Winter X sJ 
T l 148 172 186 128 159 26 
R2 203 172 262 173 203 42 
B2 83 62 106 69 80 19 
L I 201 160 207 153 180 28 
U3 117 81 140 94 108 26 
S9 133 * 173 97 134 38 
D l 158 126 191 130 151 30 
U2 132 92 160 103 122 31 
D3 113 101 116 111 110 7 
L4 149 101 154 105 127 28 
S8 155 122 170 117 141 26 
D5 140 121 102 101 116 18 

C) Hardness (mg C a C O j 1'*) 

Spring Summer Autumn Winter X sd 
T l 28 13 35 36 28 IS 
R2 323 11 56 33 106 22 
B2 215 34 14 23 72 10 
L I 27 13 40 63 36 25 
U3 12 19 23 44 24 14 
S9 14 * 28 47 29 13 
Dl 20 38 26 43 32 9 
U2 13 18 28 50 27 16 
D3 29 32 26 30 29 3 
L4 13 30 40 36 30 5 
S8 17 15 58 32 30 21 
D5 21 20 23 30 24 5 

D) Discharge (m s ) 
Spring Summer Autumn Winter JC sd 

T l 0.060 0.015 0.078 0.236 0.097 0.096 
R2 0.010 0.000 0.017 0.008 0.009 0.007 
B2 0.051 0.007 0.060 0.040 0.040 0.023 
L I 0.200 0.023 0.187 0.176 0.146 0.083 
U3 0.075 0.024 0.056 0.074 0.057 0.024 
S9 0.000 0.000 0.011 0.021 0.008 0.010 
Dl 0.186 0.063 0.248 0.261 0.189 0.091 
U2 0.094 0.033 0.051 0.082 0.065 0.028 
D3 0.009 0.007 0.008 0.011 0.009 0.002 
L4 0.012 0.000 0.007 0.015 0.008 0.006 
S8 0.093 0.030 0.078 0.125 0.082 0.039 
D5 0.034 0.001 0.039 0.025 0.025 0.017 
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Physicochemical variables for twelve sites on the tributaries of the rivers Lynher and 
Seaton in spring and summer 1995, autumn 1994 and winter 1996 and the mean (x ) 
and standard deviation (sd) of the four values ( • no value). 

A) 
Temperature 

B) Interstitial 
D O C (mg I ') 

Q Surface 
D O C (mg I 

spring Summer Autumn wmter X sd 

T l 11 U . l 10.6 7.9 10.2 1.5 
R2 10 12.3 11.9 8.8 10.8 1.6 
B2 10.6 11.5 11.3 8.6 10.5 1.3 
L I 11.2 12.3 11.8 8.8 11.0 1.6 
U3 10.5 12 11.1 9.2 10.7 1.2 
S9 10.4 * 11.7 8.5 10.2 1.6 
D l 10.6 12.3 11.8 9.2 11.0 1.4 
U2 11.1 12.6 11.5 9.4 11.2 1.3 
D3 11.1 12.4 11.6 9.1 11.1 1.4 
L4 10.1 12.3 11.8 8.8 10.8 1.6 
S8 11.4 12.6 11.7 8.5 11.1 1.8 
D5 11.5 12.6 11.9 8.6 11.2 1.8 

Spring Summer Autumn Winter X sd 

T l * 8.6 8.5 8.5 0.1 
R2 7.4 3.3 5.5 7.2 5.9 1.9 
B2 31.4 4.9 3.5 5.1 n . 3 13.5 
LI 9.0 9.0 7.5 9.0 8.6 0.75 
U3 4.1 3.7 2.9 4.6 3.8 0.72 
89 5.7 * 3.8 5.6 5.0 1.07 
01 6.6 4.7 4.4 4.5 5.1 1.04 
U2 7.8 2.4 2.5 4.8 4.4 2.54 
D3 4.1 2.2 3.2 5.3 3.7 1.32 
L4 4.1 2.6 3.0 6.0 3.9 1.52 
S8 4.0 2.2 2.6 5.5 3.5 1.5 
D5 3.8 2.1 2.5 4.2 3.2 1.5 

Spring Summer Autumn Winter X sd 

T l 7.6 14.6 8.8 15.2 11.5 3.9 
R2 7.4 9.2 6.7 8.5 7.9 l.I 
B2 15.2 11.9 4.2 16.7 12.0 5.6 
L I 9.0 12.8 6.8 5.4 8.5 3.2 
U3 4.1 7.0 2.8 9.6 5.9 3.0 
S9 5.7 * 2.9 9.3 5.9 3.2 
Dl 6.1 7.2 4.0 7.3 6.1 1.5 
U2 7.8 5.3 2.7 5.1 5.2 2.1 
D3 3.8 5.5 3.4 4.6 4.3 0.9 
L4 4.1 5.5 4.2 7.4 5.3 1.5 
S8 4.0 5.3 2.4 9.5 5.3 3.0 
D5 4.8 5.3 3.9 6.8 5.2 1.2 
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A P P E N D I X 1 

Replicate interstitial samples (11 and 12) taken in winter. * = no value 

R2 

B2 

L I 

U3 

S9 

U2 

D3 

U 

S8 

D5 

T l 

11 
34 

35 

870 

* 

479 

* 

263 

461 

Copper 
12 
90 

59 

427 

167 

* 

406 

305 

665 

1890 

878 

Mean 
62 

47 

649 

167 

479 

406 

284 

563 

1890 

878 

I I 

257 

170 

114 

131 

143 

Zinc 
12 

140 

98 

520 

96 

71 

1069 

120 

203 

248 

247 

Mean 
199 

134 

317 

96 

71 

1069 

125 

173 

248 

247 

Aluminium 
I I 12 Mean 
130 

240 

583 

415 

2693 

3256 

1115 

620 

630 

528 

1229 

400 

422 

343 

917 

1693 

677 

602 

630 

528 

1229 

407 

1559 

343 

917 

I I 

3233 

89 

293 

68 

440 

Iron 
12 

178 

370 

217 

492 

128 

1146 

31 

1879 

119 

296 

Mean 
1705 

229 

255 

492 

128 

1146 

50 

1160 

119 

296 



APPENDIX II Mean abundances of meiofaunal species (m'̂ ) at ten sites on the tributaries of the Rivers Lynher and Seaton in spring 1995. 

R2 B2 L I U3 S9 Dl lJ2 u S8 D5 

Bryocamptus zschokkei 933 667 551 18 44 36 0 0 0 0 
Bryocampttts praegeri 44 169 71 0 0 0 0 0 0 0 
Bryocamptus pygmaeus 0 0 9 0 9 0 0 9 9 0 
Paracyclops ftmbriatiis ' 80 0 0 0 18 0 0 0 0 0 
Eucyciops serruiatus 0 0 0 0 9 0 0 0 98 0 
Diacyclops languidoides 9 9 80 0 36 80 0 44 142 240 
Diacychps bisetostis 0 9 9 0 0 0 0 0 18 9 
Speocyclops demetiensis 0 0 0 0 0 0 0 0 27 0 
GraderieUa unisctigcr 0 0 0 0 0 0 0 0 0 0 
Alona quadrangularis 0 0 18 0 0 0 0 0 0 0 
Chydoris sphaericus 0 0 0 0 0 0 0 0 0 0 
Candonidae 9 18 36 0 0 0 0 0 9 0 
Feltria minuia 53 98 0 9 18 0 0 0 0 0 
Lobohalacarus weberi 0 9 9 0 0 0 0 0 0 0 
Soldaneilonyx monardi 0 0 27 0 0 0 0 0 0 0 
Limnohalacarus wackeri 0 0 9 0 0 0 0 0 0 0 
Porohalacarus alpinus 0 0 0 0 0 0 0 0 0 0 
Nematodes 2249 329 533 62 1129 373 IS 89 569 36 
D^t^Sirf 3377 1307 1351 89 1262 489 18 142 871 284 
SPECIES RICHNESS 7 8 11 3 7 3 1 3 7 3 



APPENDIX n 
Mean abundances of meiofaunal species (m*) at ten sites on the tributaries of the River Lynher 
and Seaton in summer 1995. 

11 R2 B2 L I U l U2 U i b8 U5 
kSryocamptus zschokkci 8221 3666 5706 40U0 'mi 11 0 0 0 y 
Bryocamptus praegeri 2222 967 98 9 0 0 0 0 0 0 
BryocampUts pygmaeus 0 0 0 0 0 22 0 0 0 0 
Paracyclops Jimbriatus 0 111 62 53 747 144 0 0 0 9 
Eiicyclops serrulatiis 0 0 9 0 1093 0 329 0 356 0 
Diacyclops languidoides 9 78 0 169 0 44 107 427 18 36 
Dlacyclops bisetosus 0 0 0 0 0 11 71 116 9 36 
Speocyclops demetiensis 0 0 0 0 0 178 53 9 0 0 
Graeterieila unisetiger 0 0 0 0 0 0 0 0 0 0 
Acanthocyclops vernalts 0 0 0 142 2154 0 0 0 0 0 
Alona quadrangularis 0 0 0 700 0 0 0 0 0 0 
Chydoris sphaericus 0 0 0 0 0 0 0 0 0 0 
Candonidae 27 67 302 0 0 0 9 0 0 0 
Lobobalacarus weberi 0 0 0 0 0 0 0 0 0 0 
Soldanetlonyx monardi 0 0 0 0 0 0 0 0 0 0 
IJntnohalacarus wackeri 0 0 0 0 0 0 0 0 0 0 
Porohalacarus alpimis 116 100 0 0 0 0 0 0 0 0 
Feltria minuta 0 0 0 0 0 0 9 0 53 36 
Hygrobates sp. 151 22 0 222 18 0 0 0 0 0 
Tonenticola sp. 116 0 0 36 0 0 0 0 0 0 
Atractides sp. 0 0 0 0 0 0 0 9 0 0 
Sperchon sp. 9 0 0 0 0 0 0 0 0 0 
Hydrachnellae sp A 9 11 0 0 0 0 0 9 0 0 
HydrachneUae sp B 160 0 36 196 0 0 0 0 0 0 
Nematodes 551 133 36 427 320 178 36 9 71 595 
DtNSiiY 11591 5155 624H 5953 7193 5H9 613 57« 507 720 
SPECIES RICHNESS 11 9 7 10 6 6 7 7 5 6 



APPENDIX n Mean abundances of meiofaunal species (m"̂ ) at ten sites on the tributaries of the Rivers Lynher and Seaton in autumn 1994. 

R2 B2 L I U3 S9 Dl U2 L4 S8 DS 

Bryocamptus zschokkei 2444 2444 516 213 62 89 107 0 0 0 
Bryocamptus praegeri 0 44 27 0 18 53 36 53 27 0 
Bryocamptus pygmacus 3680 693 36 18 27 62 18 0 0 0 
Pariacyciops fimbriatiis 27 53 36 53 36 116 80 62 9 0 
Eucyclops serrulatus 0 0 0 80 71 53 18 0 27 391 
Diacyclop languidoides 9 27 27 9 71 89 44 267 160 80 
Diacyclops bisctosus 0 0 0 9 0 62 0 36 0 0 
Speocyclops dcmeticnsis 0 0 27 36 0 0 124 0 0 0 
GractericUa unisetiger 0 0 9 0 0 18 0 0 0 0 
Alona qiiadrangularis 0 0 9 0 0 18 0 0 0 0 
Chydoris sphacricus 0 0 0 0 IS 0 0 0 0 0 
Candonidae 0 0 27 0 0 9 0 0 0 0 
Feitria minuta 0 62 0 0 9 0 9 0 0 0 
Lobohalacarus webcri 0 9 44 18 9 0 0 27 0 0 
Soldanetlonyx monardi 0 0 0 0 18 0 0 9 0 0 
Limnohalacarus wackeri 0 9 27 0 0 0 0 0 0 0 
Porohalacarus alp'mus 0 0 0 0 0 0 0 0 62 9 
Nematodes 453 453 284 187 3591 2826 284 178 400 27 
DENSITY 6613 3795 1067 622 3928 3395 720 631 684 507 
SPECIES RICHNESS 5 9 12 9 11 11 9 7 6 4 



APPENDIX n Mean abundances of macrofaunal species (m"̂ ) at ten sites on the tributaries of (he rivers Lynher and Seaton in spring 1995. 

K2 112 S9 L I U3 LI U2 L4 S8 D5 
Lettctra nigra 0 0 0 0 0 0 0 0 0 0 
Letictra mermis 0 0 0 18 0 0 0 0 0 0 
L^ucfra hippopiis 0 124 0 0 0 0 0 0 0 0 
Leuctra fiuca 0 0 0 0 0 0 0 0 0 0 
Isoperia grammarica 18 9 0 0 0 0 0 0 0 0 
Amphinemnra sitlcollis 44 53 240 89 0 0 0 0 0 0 
Nemoura erratica 0 0 .0 0 0 0 0 0 0 0 
Protonemiira meyeri 0 9 18 0 0 0 0 0 0 0 
Semiirella pictetii 0 0 0 0 0 0 0 0 0 0 
Isogenits nubecula 0 0 0 0 0 0 0 0 0 0 
Chloroperia torrentium 27 142 44 53 0 0 0 0 0 0 
Baetis rliodani 524 240 18 542 0 27 0 0 0 0 
RJiilhrogena semicolorata 53 9 0 0 0 0 6 0 0 0 
Hydropiyche sUtalai 44 44 0 27 0 0 0 0 0 0 
Hydropsydte petUiddtda 0 0 0 0 0 0 0 0 0 0 
Rhyacophila donalis 0 0 0 9 0 36 0 0 0 9 
Ptectrocnemia conspena 0 0 0 0 0 0 0 0 0 0 
Potomophytax cinculatus 0 9 0 44 0 0 0 0 0 0 
Tinodes sp. 9 0 0 0 0 0 0 0 0 0 
Phagocata vUta 0 0 9 0 0 27 9 18 27 0 
Polycelis fclina 160 62 0 0 18 0 0 0 0 0 
Simuliiim omatum 0 18 0 9 0 0 0 0 0 0 
Dicranota sp. 9 18 62 36 0 18 0 9 0 0 
Chironomidae 9S 418 489 204 107 809 62 89 53 18 
Oiigochaeta 80 426 0 116 0 0 0 27 0 0 
LimnUts volkmari 0 0 0 0 0 0 0 0 0 0 
Gyrinus sp 0 0 0 0 0 0 0 0 0 0 
Pisidmm obtitsata 0 0 0 0 0 0 0 0 0 0 
Asellttt aquaticus 0 0 0 0 0 0 0 0 0 0 
Sotoneda sp. 9 0 0 0 0 0 0 0 0 0 
DENSITY 1075 1582 880 1147 124 915 71 142 80 27 
SPECIES RICHNESS 12 14 7 11 2 5 2 4 2 2 



APPENDIX II Mean abundances of macrofaunal species (m"̂ ) at ten sites on the tributaries of the Rivers Lynher and Seaton in autumn 1994. 
K2 B2 S9 LI U3 Dl U2 L4 88 D5 

Leuctra nigra 62 178 0 0 0 0 0 0 0 0 
Leiietra mermis 44 169 0 0 18 0 0 0 0 0 
LeiiOra hippopus 53 0 9 0 0 0 0 0 0 0 
Isoperla grammatico 142 649 329 9 44 0 9 0 9 0 
Amphinemura sulcicollis 124 9 0 0 0 0 0 0 0 0 
Sanotira erral'tca 267 516 0 0 151 0 0 0 0 0 
Chloroperla torrentmm 0 44 0 0 0 0 0 0 0 0 
Protonemura meyeri 0 178 9 0 0 0 0 0 0 0 
hogenia nubecula 0 9 0 0 0 0 0 0 0 0 
Leuctra ftaca 0 0 0 0 0 0 0 9 0 0 
Nemureita pictetii 116 0 53 9 0 80 0 0 0 0 
Baetis rhodanx 151 0 0 0. 0 0 0 0 0 . 0 
Rhilhrogena temicolorata 160 0 0 0 0 0 0 0 0 0 
Hydropsydie sUtalat 0 0 0 9 0 9 0 0 0 0 
Hydropsyche pellucidula 0 0 18 0 0 9 0 0 0 0 
RhyacopUila donalis 0 0 0 0 0 0 9 0 9 0 
Ptectrocnemia conspersa 0 62 0 0 0 0 0 0 0 0 
Potomophylax cutgularus 124 0 0 9 0 0 0 0 0 0 
Tinodes 3 p. 0 0 36 0 36 9 18 44 187 0 
Phagocata vitta 258 0 9 0 27 9 0 0 0 0 
Polycelis felina 27 0 0 0 0 0 9 0 0 0 
Simul'uim omatum 27 0 0 0 0 0 18 9 9 0 
Dicranota sp. 0 0 0 0 0 0 9 0 0 0 
CuUcoides sp. 18 0 53 9 9 9 0 0 0 0 
Pedida rivosa 240 0 27 0 18 9 62 9 27 18 
Chironomidae 2853 382 0 27 702 0 36 231 0 0 
Oligochaeta 0 0 0 18 0 0 0 0 0 0 
Limniui volckmari 0 0 0 0 9 0 0 0 0 0 
GyruiHs sp 9 0 0 0 0 0 0 0 0 0 
PisidUtm obtusata 9 0 0 0 0 0 0 0 0 0 
Asellits aquaticus 0 0 0 0 0 0 0 0 0 0 
Noctonecta sp. 0 0 0 0 0 0 0 0 0 0 
DENStTY 4684 2195 542 89 1013 133 169 302 240 18 
SPECIES RICHNESS IS 10 9 7 9 7 8 5 5 1 



APPENDIX I I Mean abundances of temporary meiofaunal species (m"̂ ) at ten sites on the tributaries of the Rivers Lynher and Seaton in spring. 

R2 B2 89 LI U3 Dl U2 L4 S8 DS 
Leitctra nigra 0 0 9 9 0 9 0 0 0 0 
Leuctra mermis 0 0 0 0 0 0 0 0 0 0 
Leitctra hippoptis 0 0 0 0 0 0 0 0 0 0 
Isoperln grammatica 9 0 0 0 0 0 0 0 0 0 
Amphmemura stilcicollis 89 0 9 36 0 0 0 0 0 0 
S'emoura erratica 0 0 0 0 0 0 0 0 0 0. 
Ottoroperla torrentitim 0 0 0 0 0 0 0 0 0 0 
Protonemura meyeri 0 0 0 0 0 0 0 0 0 0 
Isogeniis niibeatia 0 0 0 0 0 0 0 0 0 0 
Leuctra fitsca 0 0 0 0 0 0 0 0 0 0 
Semuretla pictetii 0 0 0 0 0 0 0 0 0 0 
Baetis rhodani 44 35 18 80 18 0 0 0 0 0 
RJiUhrogenn semicotorata 0 0 0 0 0 0 0 0 0 0 
Hydropsydie sUtalai 0 0 0 0 0 0 0 0 0 0 
Nydropsyche petlttculula 0 0 0 0 0 0 0 0 0 0 
RhyacopU 'da dorsalis 0 0 0 0 0 0 0 0 0 0 
Plectrocnemia conspma 0 0 0 0 0 0 0 0 0 0 
Potomophylax sp 0 0 0 0 0 0 0 0 0 0 
Tinodes sp. 0 0 0 0 0 0 9 0 0 0 
Phagocata vitta 0 0 0 0 0 0 0 0 0 0 
Polycetis feluta 0 0 0 0 0 0 9 0 18 0 
Simidium ornatum 18 160 9 338 18 9 18 178 0 0 
Dicranota sp. 18 0 9 89 0 9 0 0 0 0 
Culicoides sp. 0 0 0 0 0 0 0 0 0 0 
Pcdicut rivosa 0 0 0 0 0 0 0 0 0 0 
Chironomidae 978 827 169 809 133 560 169 453 267 453 
Oligodiaeta 293 36 0 133 9 0 0 53 0 0 
Limniiu volkmari 0 0 0 0 0 0 0 0 0 0 
Gyr'miis sp 0 0 0 9 0 0 0 0 0 0 
Pisiduim obttaata 0 0 0 0 0 0 0 0 0 0 
Aseiliu aquaticus 0 0 0 0 0 0 0 0 0 0 
Notoneeta 0 0 0 0 0 0 0 0 0 0 
DENSITY 
SPECIES RICHNESS 

1449 
7 

1057 
4 

222 
6 

1502 
8 

178 
4 

587 
4 

204 
4 

684 
3 

284 
2 

453 
1 



APPENDIX M Mean abundances of temporary meiofaunal species (m'̂ ) at ten sites on the tributaries of the Rivers Lynher and Seaton in autumn 1994. 

K2 U2 S9 LI U3 Dl U2 \A S8 D5 
Leiictra nigra 0 0 0 0 0 0 0 0 0 0 
I^uctra inermis 0 0 0 0 0 0 0 0 0 0 
Leuctra hippopns 0 0 0 0 0 0 0 0 0 0 
fsoperia grammatica 0 0 0 0 0 0 0 0 0 0 
Amphinemura stilcicoUis 18 0 18 36 0 0 0 0 0 0 
f^emotiro errotica 0 0 0 0 0 53 0 0 0 9 
Chtoroperta torrensUim 36 89 0 36 62 27 18 0 0 0 
Protonemttra meyeri 0 9 0 0 0 0 0 0 0 0 
Isogattts nubeaila 0 0 0 0 0 0 0 0 0 0 
Leuctra ftuca 0 0 0 0 0 0 0 0 0 0 
Nemitrelia pidetii 0 0 0 0 0 0 0 0 0 0 
Baetis rhodani 98 0 0 . 44 9 27 27 0 .0. 0 
Rhithrogena semieotorata 9 0 0 0 0 0 0 0 0 0 
Hydropsydte sUialai 0 0 0 0 0 0 0 0 0 0 
Hydropsydte peUudditla 0 0 0 0 0 0 0 0 0 0 
RJiyacopliUa donalis 9 9 0 0 0 9 0 0 0 0 
PtectToaiemia conspersa 0 0 0 0 0 0 0 0 0 9 
Potomophytax cingulatits 0 0 0 0 0 0 0 0 0 0 
Tinodes sp. 44 0 0 18 0 0 0 0 0 0 
Phagocata vista 0 0 9 0 0 27 18 18 9 0 
PolyceUs fetina 27 0 0 0 0 0 0 0 0 0 
Simuliiim ornattim 18 18 18 18 0 0 0 0 9 9 
DUranota sp. 9 9 27 9 0 9 18 0 9 0 
Citlicoides sp. 0 0 0 0 0 0 0 0 0 0 
Pedicia rivosa 0 0 0 0 0 0 0 0 0 0 
Chironomidae 1364 480 151 418 98 116 267 27 53 9 
Oligodtaeta 1324 533 160 649 142 391 71 196 18 0 
IJmnuu voldimari 0 0 0 0 0 0 0 0 0 0 
Gyrinia sp 0 0 0 0 0 0 0 0 0 0 
Pisidhim obtiaata 0 0 0 0 0 0 0 0 0 0 
DENSITY 31S5 1147 382 1227 311 658 418 240 98 36 
SPECIES RICHNESS 11 7 6 8 4 8 6 3 5 4 



APPENDIX I I I 

The chemistry of the test solutions Bryocamptus zschokkei were exposed to in the acute 
toxicity tests (Measurements were taken at the end of the toxicity tests) 

R2 U2 YEALM 

0 56 100 180 320 560 1000 

pH 7.4 7.4 7.4 7.3 7.3 7.4 7.3 6.3 6.4 

Conductivity 159 166 170 171 171 186 193 122 59 

Cu (^g 1') 0 24 26 67 72 371 983 203 16 

Hardness (mg 1'*) 36 33 31 30 35 31 33 27 160 

DOC(mg 1') 6.92 7.04 6.70 6.33 5.05 2.80 3.85 5.2 8.01 
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APPENDIX IV 

Results of suh-lcthal tests for a.sscssing the effect of Cu on the fecundity and devclonmcnt of Brvocampius zschokkei 
a) Fecundity at control concentration (0 ̂ ig I * Cu) 

Date Date Date of Brood Brood Brood Brood Brood Brood Brood Brood Brood Brood Brood Brood 3 Total Total Total Tota 
Paired eggs. first 1(N) 1(C) 1(A) 1 2(N) 2(C) 2(A) 2 3(N) 3(C) 3(A) (Total) (N) (Q (A) off-

nauplii (Total) (Total) 
(A) 

spri 
I 28.04 01.05 07.05 0 0 8 8 0 30 16 46 22 53 0 75 22 83 24 106 
2 29.04 05.05 12.05 0 13 1 14 0 23 0 26 16 9 0 25 16 45 1 62 
3 30.04 08.05 14.05 0 2 0 2 0 12 0 12 12 7 0 19 12 21 0 33 
4 01.05 05.05 10.05 0 15 6 21 0 2 0 2 0 0 0 0 0 17 6 23 
5 02.05 10.05 12.05 0 16 9 25 0 34 6 34 7 1 0 8 7 51 9 67 
6 03.05 10.05 20.05 0 0 5 5 0 6 0 6 15 20 0 35 15 26 5 46 
7 05.05 09.05 17.05 0 2 6 8 9 44 2 55 0 0 0 0 9 46 8 63 
8 05.05 08.05 17.05 0 8 4 12 0 2t 0 21 8 28 0 36 8 57 4 69 
9 05.05 08.05 14.05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 
0 
52 10 08.05 16.05 23.05 0 12 0 12 7 33 0 40 0 0 0 0 7 45 

0 
0 

0 
52 

11 02.05 06.05 17.05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 
0 
0 
0 

12 04.05 08.05 20.05 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 

0 
0 

0 
1 
0 
0 
0 

13 05.05 09.05 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 
0 

0 
0 

0 
1 
0 
0 
0 

14 0605 14.05 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 

0 
0 

0 
1 
0 
0 
0 15 01.05 08.05 13.05 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 
0 

0 
0 

0 
1 
0 
0 
0 

\ 0 4.6 2.6 11.9 1.07 13.67 1.2 26.6 5.33 7.87 0 22 6.4 26.1 03.8 34.8 
sd 0 6.27 3.36 7.38 15.11 15.7 4.13 18.4 7.54 15.11 0 24.6 7.26 26.8 6.4 34.4 



b) Fecundity at 20 1'* Cu concentration. 

Date Date Date of Brood Brood Brood Brood Brood Brood Brood Brood Brood Brood Brood Brood 3 Total Total Total Total 
Paired eggs. first 

nauplii 
1(N) 1(C) 1(A) 1 

(Total) 
2(N) 2(C) 2(A) 2 

(Total) 
3(N) 3(C) 3(A) (Total) (N) (Q (A) off-

sprinR 
1 30.04 07.05 1305 0 6 7 13 0 38 0 38 11 65 0 76 U 109 7 127 
2 01.05 06.05 12.05 0 13 11 21 0 12 0 12 0 3 0 3 0 28 11 39 
3 01.05 08.05 14.05 0 12 0 12 0 15 0 15 4 8 0 12 4 35 0 39 
4 03.05 10.05 14.05 0 10 0 10 7 10 0 17 0 0 0 0 7 20 0 27 
5 05.05 06.05 19.05 0 26 0 26 0 28 0 28 0 0 0 0 0 54 0 54 
6 05.05 12.05 28.05 0 20 0 20 I 3 0 4 0 0 0 0 1 23 0 24 
7 05.05 10.05 17.05 0 16 2 18 0 23 0 23 11 5 0 16 11 44 2 57 
8 06.05 04.05 28.05 0 16 0 16 0 9 0 9 0 0 0 0 0 25 0 25 
9 06.05 07.05 13.05 0 30 0 30 0 6 0 6 0 0 0 0 0 36 0 36 
10 06.05 02.05 19.05 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 
11 07.05 05.05 21.05 0 0 0 0 10 4 0 14 0 0 0 0 10 4 0 14 
12 08.05 04.05 21.05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
13 30.04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
14 02.05 09.05 21.05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
15 02.05 10.05 13.05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
X 0 11.07 1.33 15.4 1.2 9.87 0 15.1 1.73 5.4 0 9.73 3.43 28.2 1.33 29.5 
sd 0 9.84 3.24 9.74 3.03 11.7 0 11 3.9 16.7 0 22.4 4.47 28.6 3.24 33.5 



c) Fecundity at 50 \ig I * C u concentration 

Date Date Date Brood Brood Brood Brood Brood Brood Brood Brood Brood Brood Brood Brood Total Total Tot Total 

Paired of First 1(N) 1(C) 1(A) 1 2(N) 2(C) 2(A) 2 3(N) 3 ( Q 3(A) 3 (N) (Q al Off-Paired 
EECS Nauplii 

1(N) 1(C) 
(Total) (Total) (Total) , , springy 

1 30.04 03.05 19.05 0 7 0 7 0 9 0 9 0 2 0 2 0 18 0 18 

2 30.04 03.05 14.05 0 10 0 10 0 0 0 0 0 1 0 1 0 11 0 11 

3 30.04 05.05 12.05 0 5 10 15 0 25 0 25 0 0 0 0 0 30 10 40 

4 02.05 09.05 17.05 0 12 3 15 0 47 0 47 0 0 0 0 0 59 3 62 

5 05.05 14.05 19.05 0 0 0 0 0 14 8 22 12 5 0 17 12 19 8 39 

6 05.05 08.05 14.05 0 11 0 11 0 15 0 15 8 13 0 21 8 39 0 47 

7 05.05 10.05 16.05 0 32 0 32 0 13 0 13 0 0 0 0 0 45 0 45 

8 05.05 13.05 19.05 0 1 0 I 0 23 0 23 0 0 0 0 0 24 0 24 

9 06.05 12.05 23.05 0 4 0 4 3 11 0 14 0 0 0 0 3 15 0 18 

10 06.05 12.05 19.05 0 2 0 2 10 16 0 26 0 0 0 0 10 1 8 0 28 

11 29.04 05.05 * 0 32 2 34 0 0 0 0 0 0 0 0 0 32 2 34 
0 

12 29.04 03.05 12.05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

34 
0 

13 07.05 19.05 28.05 0 12 0 12 1 0 0 I 0 0 0 0 1 1 2 0 13 

14 30.04 * * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

15 06.05 10.05 23.05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
X 0 8.53 1 11.9 0.93 11.53 0.533 16.25 1.33 1.4 0 3.42 22.43 23.22 1.64 25.3 

sd 0 10.6 2.65 11 2.63 13.1 2.07 13.6 3.60 3.48 0 7.36 4.2 16.7 3.27 19.0 



d) Fecundity at 100 I * Cii concentration 

Date Date Date Brood Brood Brood Brood 1 Brood Brood Brood Brood Broo Broo Broo Brood Total Total Total Total 
Paired First 

Eggs 
First 

Nnupli 
i 

1(N) 1(C) 1(A) (Total) 2(N) 2(C) 2(A) 2 
(Total) 

d3 
(N) 

d3 
(C) 

d3 
(A) 

3 
(Total) 

(N) (Q (A) Off­
spring 

1 30.04 09.05 17.05 0 12 0 12 0 19 0 19 0 3 0 3 0 34 0 34 
2 01.05 01.05 19.05 0 4 4 8 0 15 0 15 2 4 0 6 2 23 4 29 
3 02.05 06.05 13.05 0 4 0 4 0 5 0 5 0 0 0 0 0 9 0 9 
4 05.05 09.05 14.05 0 14 0 14 0 6 0 6 0 0 0 0 0 20 0 20 
5 05.05 10.05 17.05 0 3 0 3 0 21 0 21 0 0 0 0 0 24 0 24 
6 07.05 12.05 19.05 0 2 1 3 0 2 0 2 10 3 0 13 10 7 1 18 
7 06.05 12.05 20.05 0 7 0 7 2 3 0 5 0 0 0 0 2 10 0 12 
8 02.05 09.05 15.05 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 
9 05.05 08.05 25.05 0 11 0 11 0 0 0 0 0 0 0 0 0 11 0 11 

10 08.05 08.05 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
11 07.05 12.05 19.05 0 3 0 3 0 2 0 2 10 3 0 13 10 8 0 18 
12 07.05 09.05 16.05 0 4 0 4 0 4 2 6 I 1 0 2 1 9 2 12 
13 29.04 07.05 10.05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
14 30.04 02.05 07.05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
15 30.04 09.05 12.05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

X 0 5.82 0.45 6.27 0.18 7 0.18 7.36 3.45 7.6 0 3.45 2.08 13 0.59 15.6 
sd 0 4.56 1.21 4.47 0.603 7.63 0.603 7.49 3 7.2 0 5.08 3.78 10.1 1.24 10.3 



Percentage survix-al and development time of a) stage one nauplii (nl) to stage one copepodids 
(CI) and b) stage one copepodids (CI) to the reproductive adult stage 

20 ^ g l 1 50 ^gl * 100 ^g r* 
% Survival Development % Survival Development % Survival Development % Survival Development 

Time Time Time Time 
(Cl-A) (Cl-A) (Cl-A) (Cl-A) 

90 12 90 13 50 7 60 8 
40 11 70 9 30 11 40 7 
10 4 60 16 50 10 30 15 
30 6 40 9 50 3 60 17 
60 14 30 9 40 9 10 2 

• 80 7 60 . 7 40 7 20 6 
90 12 80 10 
40 7 

jc = 51.7 x = 9 jc = 60 x = 10.25 X = 48.6 X =8.14 X =36.7 X =9.17 
sd = 30.6 sd = 3.9 sd = 22.7 sd =3.15 sd = 15.7 sd = 2.73 sd = 20.7 sd=5.71 

b) 
20 Mgl -1 50 ̂ gr" 100 Jig r' 

% Sumval Development % Survival Development % Sur\'ival Development % Survival Development 
Time Time Time Time 

(Cl-A) (Cl-A) (Cl-A) (Cl-A) 
90 18 80 23 40 14 90 22 
80 18 80 23 70 19 40 19 
60 21 80 23 60 18 70 24 
30 18 10 18 30 19 40 14 
70 18 60 18 70 19 70 14 
50 16 70 18 40 13 100 20 
40 20 80 13 90 13 
40 20 70 21 

50 16 
x = 57.5 X = 18.6 X = 65.7 X = 19.4 X = 51.7 X =17 X = 68.9 X = 18.1 
sd = 21.2 sd = 1.6 sd = 25.7 sd =3.78 sd = 17.2 sd = 2.76 sd = 22.0 sd = 3.98 
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