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Clay-rich flocculated suspended sediments are an important constituent of
estuarine and coastal systems globally. They are responsible for the host,
movement and deposition of a variety of pollutants, contaminants and
sediment itself. Accurate modelling of the movement of these sediments is
crucial for a number of industries including fisheries, aquaculture, shipping and
waste management. This requires an accurate and reliable measurements of the
physical properties of flocs and their behaviour. Porosity is a key element in floc
structures, and this research provides updated 3D quantified porosity and pore
space morphological data in relation to influences on floc settling behaviour. We
report the questionable relationship between floc size and settling velocity, and
explore alternative influences such as floc composition, porosity and pore
morphology. These outcomes suggest that a shift in focus from floc size to a
combination of factors is necessitated to understand the complex movement
behaviour of flocculated suspended sediments.
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1 Introduction

Flocculated suspended cohesive sediments (flocs) occur globally, occupying a vital role in
determining transport, storage and deposition of contaminants and pollutants including, but
not limited to, emerging contaminants such as microplastics (Winterwerp, 1998; Maggi,
2005; Manning et al., 2007; Soulsby et al., 2013; Ho et al., 2022). Flocs are complex, low-
density, fragile aggregates of biological and mineralogical material, and typically represent
the majority of suspended particulate matter in fine sediment dominant systems (Droppo,
2001; Burd and Jackson, 2009). Understanding their behaviour is therefore a vital aspect of
sediment research, to enable sustainable management of the relevant aquatic ecosystems and
environments (Wheatland et al., 2017; Wheatland et al., 2020; Spencer et al., 2021).

Conventionally, due to the fragile nature of their structures, floc porosity values are
inferred through indirect methods such as 2D size and settling velocity assuming spherical
shape (Droppo, 2004; Hsu and Liu, 2010; Amarasinghe et al., 2015; Fromant et al., 2017).
This inference of porosity is often determined through use of settling velocity and floc
density calculations, (Krishnappan et al., 1999; Manning et al., 2007; Hsu and Liu, 2010), due
to the heterogenous nature of flocs making measurement of porosity directly difficult using
conventional techniques (Ho et al., 2022). However, recent advances in direct quantification
approaches have facilitated 3D observation and measurement of floc porosity and pore
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spaces (Lawrence et al., 2022; Lawrence et al., 2023). This direct
quantification approach overcomes the need to indirectly infer
porosity properties in flocs, instead facilitating the direct 3D
quantification of floc porosity (Lawrence et al., 2022). These new
data not only quantify bulk porosity directly in flocs, but additional
3D pore space and pore network data are available.

X-ray CT techniques similar to those developed for use in this
project have been applied to other materials to measure porosity
(Desbois et al., 2009; Hemes et al., 2015; Zhu et al., 2020; Zhu et al.,
2021), however the unconsolidated, watered structure of cohesive
flocculated sediments means that these techniques cannot be applied
in this scenario.

Floc settling velocity measurement is long established by use of
settling columns such as LabSFLOC-2 (Manning, 2006; Manning
et al., 2007; Manning et al., 2011; Ye et al., 2018). Conventionally, the
measurement of floc settling rate is undertaken manually, tracking
populations of flocs through the settling column camera view, using
movement between frames and assumed floc density as calculating
inputs for their settling rate (Manning and Dyer, 1999; Manning,
2004; Manning et al., 2007). Updates in the measurement and
analysis of floc settling rate are presented here, facilitating swifter
processing and quantification by use of semi-automation, enabling
less strenuous production of larger datasets.

As a result of the development of these data collection,
processing, and analysis strategies, it is now possible to link
directly measured floc porosity data to floc functional behaviour.
The objectives of this article are to examine the relationships that
floc size, composition, porosity and pore space morphology have
with floc settling velocity when these parameters are measured
directly in 3D volumes.

2 Materials and methods

The materials and methods can be divided into several sub-
sections, addressing: the sampling of source sediments; collection
and processing of 2D settling data using the LabSFLOC-2 system
(Manning, 2006); and collection and processing of 3D floc structure
and porosity data using newly established protocols (Lawrence et al.,
2022; Lawrence et al., 2023).

2.1 Source sediment sampling

The natural sediment was collected from Thames estuary
mudflats, and the flocs subsequently formed using an annular
flume, immediately prior to LabSFLOC experimentation using
artificial seawater (Sigma Sea Salts) at 34 gL-1 salinity. Three
artificial sediments were created, using bentonite clay powder, DI
water and xanthan gum at several concentrations (0.01%, 2%, 5%) as
a proxy for (standard, high, extremely high) EPS presence (Du et al.,
2010; Nouha et al., 2018). The use of xanthan gum is established as a
reliable approach for use as a proxy for natural EPS in previous
experimental studies (Fitzherbert and Wheatland, 2015; Wheatland
et al., 2017; Spencer et al., 2021). The sediments were mixed using an
annular flume for 11 days, using on/off cycles to represent tidal
conditions (Fitzherbert and Wheatland, 2015), and sampled
immediately prior to LabSFLOC experimentation.

2.2 Settling data collection

The LabSFLOC-2 (Manning, 2006) system, modified with a
plankton chamber for sample collection, was used to generate settling
velocity data for the 4 floc populations. The LabSFLOC-2 system was
used according to standard operation, where video recording of the
settling floc population is saved to a laptop using FlyCapture software
(Manning et al., 2011; Systems, 2019). After settling, the flocs in the
plankton chamber at the base of the column were collected for 3D
sampling. The raw video files were subjected to a largely automated
workflow to collect settling velocity data for large populations, avoiding
the time-consuming manual method that is conventionally used
(Manning et al., 2007; Manning et al., 2011). The workflow is split
into 5 distinct stages: formatting the. avi movie files; semi-automated
segmentation using Trainable Weka (Arganda-Carreras et al., 2017);
quantification of 2D floc parameters using ImageJ particle analyzer
(Abràmoff et al., 2004); quantification of floc settling velocity using
TrackMate (Tinevez et al., 2017); and finally the combination of the
results of steps 3 and 4 to produce a coherent excel sheet. This produces a
dataset of 100s–1000s of flocs from each settling experiment, each
assigned a settling velocity, Feret diameter and unique ID for analysis.

2.3 3D structure and porosity data collection

After collection, the plankton chamber samples were divided
and subjected to the preparation for μCT scanning as detailed in
Fitzherbert and Wheatland (2015) producing 3D floc quantification
data, outlined in (Lawrence et al., 2022; Lawrence et al., 2023). Data
for the four different floc compositions was produced for analysis
concerning 3D floc size, porosity, and pore space characteristics
(diameter, tortuosity, connectivity). 2D Feret diameter was also
collected for each floc sample, to facilitate comparison and
combination of 2D and 3D datasets.

2.4 Processing and analyses

Due to the 2D Feret diameter measurements collected in the
settling velocity column data, and the time-consuming nature of
producing the 3D datasets, binning of Feret diameter floc size was
required to carry out analyses. These bins were assigned broadly as
micro-flocs (<160 μm) and macro-flocs (>160 μm) (Manning et al.,
2010), and further divided into 25th and 75th percentiles for micro-
flocs and 25th, 50th and 75th percentiles formacro-flocs. 30 flocs in each
sub-division were included, totaling 150 flocs per composition type,
600 overall. It is not possible to directly match a floc in the settling
velocity dataset and the 3D dataset, therefore overall populations
separated by floc type, and sub-populations of flocs by Feret diameter
bin, were used for analyses. These bins were chosen as categorization
was required to compare new data with pre-existing work, and having
assessed the distribution of flocs the bins were assigned.

3 Results

By utilising a combination of 2D and 3D datasets, it is possible
to assess the relationship between a variety of floc structural
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elements (size, composition, porosity, pore space morphology) and
floc settling velocity. Not all volumes that were analyzed in 3D
were visualized, which is a separate process, but Figure 1 presents
an overall view of a natural sediment floc and its bulk pore space
in 3D.

3.1 Floc size

Figure 2 depicts a dataset of floc Feret diameter plotted against
floc settling velocity in natural sediment samples. There is no clear
relationship evident, but there are ‘bands’ of data that could group
the flocs by another metric or factor, such as porosity or
composition. The ‘bands’ are predominantly centered
immediately above and below 2000 micron/s settling velocity,
with another small band of flocs at around 4,000 micron/s.

Table 1 contains data that directly compares micro- (<160 μm)
and macro-(>160 μm) floc settling velocity data. Here, the clear
outcome is that macro-flocs settle slower than micro-flocs, albeit the
macro-floc data is derived from a far smaller sample size. Figure 3
contradicts this, where floc size is plotted as directly measured 3D
volume, showing that larger volume flocs bear higher settling
velocity values than the smaller flocs. This relationship plateaus
once flocs reach ~200,000 micron3, with a ‘terminal settling velocity’
of approximately 2,200–2,400 micron/s.

3.2 Floc composition

Figure 4 expands on the data shown in Figure 1 (natural floc
Feret diameter vs. settling velocity) to include several artificial floc
samples with varying xanthan gum concentration, as a proxy for EPS
presence in the flocs. This plot reiterates the lack of relationship
between floc Feret diameter and floc settling velocity, instead
offering a ‘banding’ effect at different settling velocity values. It is
important to note the logarithmic Y-axis here, that more widely
differentiates the floc ‘bands’ based on settling velocity. The natural
flocs are banded at the highest settling velocity, followed by the high
xanthan gum samples, with the medium xanthan gum samples
occupying the lowest settling velocities but with the least closely
‘banded’ appearance. The low xanthan gum samples are the most
similar to the natural flocs in terms of ‘EPS’ concentration, but do

FIGURE 1
3D rendering of natural sediment floc (top panel) with it’s
associated bulk porosity volume (lower panel), created using directly
segmented floc and pore volume and visualized using Drishti (Limaye,
2012).

FIGURE 2
Scatter plot of floc Feret diameter vs. floc settling velocity in natural sediment samples. This plot suggests no substantial relationship between floc
size and floc settling velocity, but there are ‘bands’ of flocs grouped by another factor.
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TABLE 1 Table comparing settling velocity metrics between micro- and macro-flocs from a natural sediment sample. The micro-floc settling velocity mean and
median values are lower than the macro-floc values.

Floc Settling Velocity Statistic (μm/s-1) Micro-flocs (<160 microns) Macro-flocs (>160 microns)

Mean 814 285

Median 406 229

Range 8,605 2,721

Interquartile Range 1,167 125

Flocs n 2,759 389

FIGURE 3
Plot of volumetric floc size (micron3) plotted against floc settling velocity in natural sediment samples. Error bars are included to represent standard
deviation within each plot point data group.

FIGURE 4
Scatter plot of floc Feret diameter vs. floc settling velocity, grouped by floc composition. This plot suggests no substantial relationship between floc
size and settling velocity, but banding is present according to floc composition.
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not band with the natural flocs, implying some other contributing
factor, or factors, to determine settling rate.

3.3 Porosity and pore space morphology

Figure 5 presents 3D volumetric quantified porosity and pore
space morphology relationships with floc settling velocity in natural
sediment samples. Floc porosity appears to bear a positive
relationship with settling velocity, although standard deviation is
high in the lower porosity sample groups. Settling velocity decreases
with larger pore diameters in this data. Broadly, higher tortuosity
values are associated with lower settling velocities, but there is no
linear relationship present. In terms of connectivity, which is a proxy
for pore network ‘complexity’ in that higher numbers mean greater
branches per node, there is no clear relationship, aside from very low
connectivity values associating with lower settling velocities.

4 Discussion

4.1 Floc size and settling velocity

The settling velocity data plotted against floc size yielded no
substantial relationship when either floc Feret diameter (Figure 2) or
volumetric floc size (Figure 3) was used. This indicates another
responsible factor or factors influencing settling behaviour.
However, there are some signals to be discussed from the floc size
and settling velocity datasets.

Figure 1 shows a banding effect in the data, suggesting that some
factor is controlling floc settling velocity that is common amongst groups
of flocs within the overall population, it’s not completely random.
Figure 3 indicates that larger flocs in general settle faster than smaller
flocs but this relationship is not linear andmost largerflocs have a similar
mean settling rate. The data in Figure 2 and Table 1, where Feret
diameter is used, offers a limited indication ofmacro-flocs settling slower
than micro-flocs, which contradicts the general understanding in the
literature (Maggi, 2007;Manning et al., 2007; Liu et al., 2019). Contrarily,
when 3D-measured floc volume is used as a size metric, the relationship
appears as usually reported, where macro-flocs settle more quickly,
despite the relationship being non-linear and plateaued. This further
expands on the ideas introduced in Lawrence et al. (2022), where Feret
diameter is suggested to be an unreliable indicator of 3D floc size. There
is a reduction in settling rate variability when floc size increases in these
datasets, which indicates a structural influence within growing flocs that
stabilizes settling behaviors (Spencer et al., 2021).

4.2 Floc composition and settling velocity

Previous studies indicate that floc size and settling velocity
demonstrate a positive relationship (Mietta et al., 2009; Manning
et al., 2011; Soulsby et al., 2013), however when broadly categorized
into micro- and macro-flocs, it is evident that the macro-floc settling
velocities were lower than in micro-flocs. The data in Figure 4 offer
an alternative influence, where settling velocities are banded by floc
xanthan gum content (EPS proxy). This suggests that floc
composition, rather than size, is the most important factor in

FIGURE 5
A selection of plots showing the relationship between floc porosity (A), pore diameter (B), pore tortuosity (C), and pore connectivity (D) and floc
settling velocity in natural sediment samples.
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determining settling velocity. It is important to note that 2 of the
artificial sediments contain very high, unrealistic, levels of xanthan
gum (as proxy) compared to typical estuarine flocculated suspended
sediments. However, they do offer an extreme high end to test how
EPS influence can affect settling behaviors.

In the literature, there are several references to a negative
relationship between EPS content and settling velocity (Pang
et al., 2018; Cao et al., 2019), with increased levels of EPS
typically reducing the density of the sediment and reducing
settling rates (Greiser and Wurpts, 2008). However, there are also
indications that the negative effect of EPS-induced reductions in
density on settling velocity is countered by the positive effect of EPS-
induced increased aggregation and floc stability on settling velocity
(Droppo, 2001; Tan et al., 2012; Burger et al., 2017). Alternatively,
Jin et al. (2003) found settling velocity was statistically independent
of EPS content. Increased overall organic content (often occurring
simultaneously with increased EPS content) has been shown to have
a stronger influence (Lee, et al., 2017), with Blake et al. (2009)
reporting an increase in settling velocities in burnt aggregates when
compared to non-burnt aggregates of the same EPS content. This
implies that other organic factors have a more meaningful influence
on settling velocity than EPS content alone. This observation is
supported by data in this project, as there is no clear linear
relationship between xanthan gum content and settling velocity.
The lowest xanthan gum flocs (and the natural flocs) tend to have
narrower ranges in settling velocity values, indicating that floc
populations with lower EPS content are more consistent in terms
of settling rate. This could be as a result of lower variability in floc
shape or structure which are affected by EPS ‘stringy-ness’, and so
could floc shape be a highly influential factor in settling behavior?
3D floc shape analysis is possible using the segmentation and
quantification methods introduced in Lawrence et al. (2023), so
this aspect should be explored in future research.

4.3 Porosity and pore morphology and
settling velocity

From the panels of Figure 5, it is possible to assess the varying
levels of influence that porosity and pore morphology have on
settling velocity in flocs. There is a weak positive relationship
present between total floc porosity and settling velocity (panel a).
The relationship between porosity and settling velocity is complex,
high porosity represents effective density approaching water density
(Mikkelsen et al., 2007; Kinoshita et al., 2017) and higher levels of
advective through-flow based drag reduction (Droppo, 2001; Khelifa
and Hill, 2006; Vahedi and Gorczyca, 2012; Zhang and Zhang,
2015), with these aspects counteracting as effects, producing an end-
result settling rate that is a balanced outcome of the factors involved.
The advective flow conditions are determined by pore morphology,
so it is useful to be able to quantify these parameters for
analysis here.

Larger pore diameters are associated with a lower settling velocity.
This is perhaps a counter-intuitive outcome when discussing advective
through-flow, but a substantial number of the pores measured in this
study were hydraulically ‘closed-off’ to the outside water column (Yang
et al., 2006; Ewing et al., 2010; Yong et al., 2014). Essentially, making the
floc surface smoother and reducing turbulence caused by the in/outflow

of water from the pores. This would cause the flocs with typically larger
pores to experience more interruption to settling, thus reducing settling
velocity. There is no relationship of note in terms of pore connectivity. It
is important to highlight that this measure of pore network connectivity
is a proxy for pore network ‘complexity’, where higher values mean
higher numbers of branches per node. The lack of relationship with
settling velocity makes some sense, as it would take a high proportion of
through-flow in the floc for network complexity to have a significant
impact. The one observation that stands out in panel c, is that very low
connectivity values correspond to very low settling velocities. This can
be explained by very simplistic networks occupying far smaller spaces,
and having little-to no advective potential (Rosenzweig et al., 2013; Li
et al., 2019; Li et al., 2020). In terms of pore tortuosity, panel d shows a
fairly strong sign that higher tortuosity values are associated with lower
settling velocities. This is to be expected, as more tortuous pores provide
greater resistance to advective flow, even in large, open pore spaces,
through increased turbulence. This turbulence can also unbalance the
floc during settling, causing rotation and longer settling pathways,
reducing settling velocity (Strom and Keyvani, 2011; Zhu, 2019;
Moruzzi et al., 2020).

All of these porosity and pore morphological factors can be related
to the shape and composition of the floc itself, which further indicates
that floc structure is an important focus for future research into effects
on settling behaviour. This outcome further demonstrates why it is
important to quantify floc porosity using direct methods, rather than by
inference using indirect approaches, e.g., density. This heterogeneous
structure-based challenge in investigating floc behaviour is overcome by
our approach that avoids the use of inference.

4.4 Concluding comments

Conventional notions about floc size influencing settling velocity
can be questioned, with influences from floc composition, porosity
and pore morphology offering a wider suite of influencing factors in
floc behaviour. These new parameters require further investigation,
but there is substantial opportunity to explore flocs and their
associated porosity in 3D and these techniques can assist in
analysis. Regarding application of these findings, this test case
project has provided the proof that the measurement is possible,
but more experimental work is needed to investigate varying floc
compositions and environments. The ability to directly quantify
porosity and pore space parameters provides new opportunities to
model floc behaviour (Gu et al., 2019), flipping the approach by no
longer determining structure from behaviour, but exploring
behaviour as a consequence of observed structure.
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