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Abstract

Background and Objectives

The genetic basis of Parkinson disease (PD) motor progression is largely unknown. Previous
studies of the genetics of PD progression have included small cohorts and shown a limited overlap
with genetic PD risk factors from case-control studies. Here, we have studied genomic variation
associated with PD motor severity and early-stage progression in large longitudinal cohorts to
help to define the biology of PD progression and potential new drug targets.

Methods

We performed a GWAS meta-analysis of early PD motor severity and progression up to 3 years
from study entry. We used linear mixed-effect models with additive effects, corrected for age at
diagnosis, sex, and the first S genetic principal components to assess variability in axial, limb, and
total Movement Disorder Society—Unified Parkinson’s Disease Rating Scale (MDS-UPDRS)
IIT scores.

Results

We included 3,572 unrelated European ancestry patients with PD from S observational cohorts
and 1 drug trial. The average AAO was 62.6 years (SD = 9.83), and 63% of participants were
male. We found an average increase in the total MDS-UPDRS III score of 2.3 points/year. We
identified an association between PD axial motor progression and variation at the GJAS locus at
1q12 (B =-0.25, SE = 0.04, p = 3.4¢~'°). Exploration of the regulation of gene expression in the
region (cis-expression quantitative trait loci [eQTL] analysis) showed that the lead variant was
associated with expression of ACP6, a lysophosphatidic acid phosphatase that regulates mi-
tochondrial lipid biosynthesis (cis-eQTL p-values in blood and brain RNA expression data sets:
<10™"* in eQTLGen and 10~ in PsychEncode).

Discussion

Our study highlights the potential role of mitochondrial lipid homeostasis in the progression
of PD, which may be important in establishing new drug targets that might modify disease
progression.
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Glossary

eQTL = expression quantitative trait loci; GD = Gaucher disease; GWA = genome-wide association; LD = linkage
disequilibrium; LMM:s = linear mixed-effect models; MDS-UPDRS = Movement Disorder Society—Unified Parkinson’s Disease
Rating Scale; PD = Parkinson disease; QC = quality control; TSS = transcription start site; WGS = whole genome sequencing.

Introduction

Parkinson disease (PD) is a progressive neurodegenerative
disorder with motor and nonmotor symptoms, clinically
manifesting with rigidity, postural instability, and slowness of
movement (bradykinesia). The motor deficits are linked to the
loss of dopaminergic (DA) neurons in the substantia nigra pars
compacta, their projection to the striatum, and the accumula-
tion of alpha-synuclein aggregates in Lewy bodies in the nigral
and other neurons."

PD is heterogeneous in its progression and onset. The pre-
dominant motor phenotype is influenced by age at onset, with
tremor being more prominent in older patients, and the risk of
dystonia at presentation increasing in younger individuals.”
With respect to progression, younger patients tend to have a
slower rate of motor progression as measured using the
Movement Disorder Society—Unified Parkinson’s Disease
Rating Scale (MDS-UPDRS) and Hoehn and Yahr assess-
ments.? Functional imaging studies have also shown a slower
rate of decline in the loss of nigrostriatal terminals in early
onset compared with late-onset pD.*

To date, most PD genetic studies have focused on the risk of
developing PD.” Relatively little is known about the genetic
factors that contribute to variation in the onset and progression
of motor and nonmotor symptoms. Studies of PD age at onset
have shown that the genetic determinants of age at onset are
different to the genetic factors determining case-control status,
with the MAPT and GCH-1 loci associated with disease risk but
not age at onset.”® With respect to common variability
explaining differences in disease progression, Iwaki et al? per-
formed a GWAS looking at 25 different outcome measures in a
meta-analysis of 12 longitudinal cohorts, including mortality,
dementia, disease severity, and patient disability. They reported
an association between an intronic variant in SLC44A1, a mi-
tochondrial choline transporter, and motor progression,
reflected by reaching a Hoehn and Yahr score higher or equal
than 3 (HY3). A more recent study'® took a different approach
using a principal components (PC)-based measure that
combined multiple assessments for composite motor and
cognitive progression. They found a novel association between
ATP8B2 and PC-based motor progression in a gene-based
analysis.

These studies suggest that pathways specifically related to the
progression of PD can be understood from genotype/phenotype
analysis, which may ultimately lead to the development of new
disease-modifying therapies. We modeled the early stages of
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motor Parkinson disease, using the total score from the MDS-
UPDRS part 111, a validated scale recommended for clinical trials
to measure both response to levodopa treatment and the rate of
change over time."" We have also derived and analyzed separate
axial and limb motor stages from the scale, as they may relate in
part to distinct pathology.'> We have used a genome-wide as-
sociation (GWA) approach to define genetic determinants as-
sociated with variation in motor progression and severity,
identifying genetic variation that is significantly associated with
change in the MDS-UPDRS, the primary outcome measure for
many clinical PD trials. Finally, we have performed functional
annotation and fine-mapping to understand how the nominated
genetic variants are associated with the regulation of gene ex-
pression and the underlying biology of PD motor traits.

Methods

The workflow for all methods applied in the manuscript is
available on a Zenodo repository (doi.org/ 10.5281/zenodo.
7258985).

Study Design and Quality Control at the Sample
and Genetic Level

We studied 6 observational and interventional longitudinal PD
cohorts with either genotyping or whole genome sequencing
(WGS) data available, totaling 4,971 patients (eTable 1, links.
Iww.com/NXG/A624). We selected cohorts which included
longitudinal MDS-UPDRS part III assessments from the MDS-
UPDRS" and applied quality control (QC) at the clinical data
level (eFigure 1). To study the motor progression of PD, we
derived limb and axial phenotypes from the MDS-UPDRS part
IIT scale based on previously accepted definitions."® In addition,
we used the MDS-UPDRS III total score as an overall measure of
PD motor state (eTable 2). We included data up to 36 months
from the baseline visit, within longitudinal observational and
therapeutic cohorts, as we had high rates of data completion up
to 36 months. Imputation of patients’ missing motor outcomes
was performed when possible'* (eMethods; eTable 3).

We applied genetic QC at the sample and variant level followed
by imputation in the Michigan Imputation Server (RRID:SCR_
017579)" and postimputation QC (eMethods; eFigure 1, links.
Iww.com/NXG/A624). Table 1 summarizes the demographics
of the data after QC.

Previous studies have reported that levodopa improves motor
state examination and may possibly slow disease progression.'®
Because the motor improvement is noticeable a few hours after
treatment, and affects the MDS-UPDRS measure, we have
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functional annotation data (RRID:SCR_017521; version 13.8).%¢
We used LocusZoom (RRID:SCR_009257; version 0.12)27 to
display the linkage disequilibrium (LD) structure of a given locus
against the locus lead SNP, as well as the protein coding genes and
rRNAs nearby.

Standard Protocol Approvals, Registrations,
and Patient Consents

Each participant provided written informed consent for partici-
pation. TPD has multicenter research ethics approval from the
West of Scotland Research Ethics Committee: IRAS 70980,
MREC 11/AL/0163 (ClinicalTrials.gov, NCT02881099).
OPDC has multicenter research ethics approval from the
South Central Oxford Research Ethics Committee 16/SC/0108.
PD STAT has been approved by the North East-Newcastle
and North Tyneside 2 Research Ethics Committee (Clinical-
Trials.gov NCT02787590). The DIGPD study was sponsored
by Assistance Publique Hopitaux de Paris, approved by
French regulatory authorities and an ethics committee and
conducted according to good clinical practices (Clinical-
Trials.gov NCT01564992).

Data Availability

We have made our summary statistics available (doi.org/10.5281/
zenodo.7257484). TPD data are available on access request from
trackingparkinsons.org.uk/about-1/data/. The PDBP and PPMI
data were accessed from Accelerating Medicines Partnership:
Parkinson’s Disease (AMP-PD), and data are available on regis-
tration at amp-pd.org/. OPDC data are available on request from
the Dementias Platform UK (portal.dementiasplatform.uk/Ap-
ply). DIGPD data are available on request to the principal in-
vestigator (JC Corvol, Assistance Publique Hopitaux de Paris;
clinicaltrials.gov/ct2/show/NCT01564992). PD STAT is avail-
able on request to the principal investigator (C Carroll, Plymouth
University, penctu.psmd.plymouth.ac.uk/pdstat/#:~ :text=PD%
20STAT%20%2D%20Simvastatin%20as%20a,brain%20from%
20injury%200r%20loss). HapMap phase 3 data (HapMap3) is
available for download at ftp://ftp.ncbinlm.nih.gov/hapmap/.
Cis-QTL data were obtained from eQTLGen (eqtlgen.org/cis-
eqtlshtml) and PsychENCODE (resource.psychencode.org).
MetaBrain cis-eQTL data can be accessed on access request form
(metabrain.nl/cis-eqtlshtml). eQTL data from eQTL catalog
can be ftp-accessed (ebiac.uk/eqtl/Data_access/). FANTOMS
CAGE-seq and Nott brain cell type-specific enhancer-promoter
interactome data were accessed through echolocatoR (github.
com/RajLabMSSM/ echolocatoR).

Code Availability

Code used in the analysis is available from github.com/
AMCalejandro/EMPD (doi.org/10.5281/zenodo.725898S).
Analysis was performed using open-source tools as described
in the Methods section.

Results

We explored the overall rate of change in MDS-UPDRS part I1I
total, limb, and axial scores (Table 1). There was variation

Neurology: Genetics | Volume 9, Number 5 | October 2023

across studies. We specifically studied the amount of change for
the motor measures in each study by comparing the final score
with the baseline score, divided by the baseline score, for MDS-
UPDRS-total, axial, and limb. We found that the axial score rate
of change was the highest in TPD, OPDC, PD STAT, and
PDBP. The limb rate of change was the highest in PPMI and
DIGPD. PD STAT and PDBP had a lower rate of changes,
which may be due either to longer disease duration or to se-
lection effects related to the inclusion of “benign” PD in pa-
tients with longer disease duration. We assessed this by fitting
an LMM using data from TPD and found a significant in-
teraction between time and disease duration related to MDS-
UPDRS total progression (= —0.11, SE = 0.04, p = 0.01).
Longer disease duration was associated with a lower total rate
of change in MDS-UPDRS, which appears to be nonlinear with
extended disease durations. Overall, we confirmed that the
MDS-UPDRS-derived measures increased, reflecting wors-
ening motor impairment, from study entry up to 3 years
(Figure 1). The MDS-UPDRS part III total yearly rate of
change ranged between 2.37 and 3.01 points/year, which is
consistent with previous reports.28

Our power calculation showed that the current LMM was well
powered to detect high effect sizes (f >0.2) for a wide range of
different MAFs, with a limit for variants with an allele frequency
<1% (eFigure 5, links.Iww.com/NXG/A624). We performed a
GWAS on each cohort to study PD motor progression and
meta-analyzed results separately using a genomic control to
correct the test statistics of those cohorts that had genomic

inflation (A > 1 & A < 1.2) (eTable 4).

We evaluated disease progression and disease severity models for
total, limb, and axial progression. We did not find any significant
genetic association with the PD limb motor progression or se-
verity. For axial motor progression, we found 1 haplotype block
that reached genome-wide significance (GJAS in chromosome 1)
(Figure 2A; eFigure 6, linkslww.com/NXG/A624). This asso-
ciation was also found, at a lower significance level, with the MDS-
UPDRS part III total. Given that there was no association with
PD limb motor progression and severity, this relates to the in-
clusion of axial components in the overall MDS-UPDRS-III total
score. Although the lead variant in the GJAS locus was not cap-
tured in the PPMI WGS data, we found proxy variants that were
present in all cohorts. The lead proxy variant was rs12037169 (B
=-025SE=004,p = 3.93¢7'%) (Table 2). The association test
statistic and directionality of each of these variants was consis-
tently replicated across cohorts (eTable S; Figure 2B).

To test whether levodopa was a major confounder of our study
of motor progression, we corrected the patient motor scores
using an equation described in eMethods (links.Iww.com/
NXG/A624) that best predicted the effect of levodopa dose on
MDS-UPDRS part III total over time to correct the motor scores
by levodopa usage. To weight the effect of levodopa usage on the
limb and axial motor states, we used data from Tracking Par-
kinson’s Levodopa challenge® with MDS-UPDRS part III
scores recorded before and after treatment and used these

Neurology.org/NG
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Figure 1 MDS-UPDRS Ill Motor Scores Trajectories
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The bars represent the SD of the average motor scores.

weights to correct the motor scores by levodopa usage. We did
not find significant changes either in the SNPs significance level
or the direction of effects. In addition, rs120371169 remained
significantly associated with axial motor progression (eTable S).

Hoehn and Yahr (HY), a measure of a patient’s disability,
measures motor progression including loss of balance and
provides an alternative measure to the axial score from MDS-
UPDRS part IIl. To further validate the GWS association
linked to PD axial motor progression, we ran the disease pro-
gression statistical model to study the contribution of SNPs to
motor changes over time using HY as our longitudinal out-
come. We found an LD block approaching genome-wide sig-
nificance within GJAS locus, the same locus found to be
significantly associated with axial motor progression (eFigure 7,
links.Iww.com/NXG/A624). The lead variant was rs36005900
(B = —0.08, SE = 0.0078, p = 5.7¢”’). We found the di-
rectionality of the effects to be the same as in the axial motor
progression GWAS. In addition, rs36005900 is in LD with the
lead variant reported in the same locus for MDS-UPDRS III
axial motor progression (D’ = 0.8, R” = 0.6).

We then investigated whether there were independently as-
sociated SNPs at the GJAS locus. We did not find any signal
other than the lead SNP in the selection procedure under a
conditional and stepwise selection approach using GCTA-

Neurology.org/NG

CQOJO. Under a single causal variant assumption, we then
performed statistical fine-mapping. We did not resolve con-
sensus SNPs (a SNP nominated to be causal by 2 different fine-
mapping tools) at the GJAS locus. We found a total of 12 SNPs
with support for causality of changes in motor axial progression,
nominated from at least 1 fine-mapping tool (eTable 6, links.
Iww.com/NXG/A624). We did not find an overlap between
the GJAS locus haplotype block and regulatory marks from

functional annotation data sets described in eMethods.

We also explored eQTLs data sets through the FUMA plat-
form. We found that many of the GWAS-significant SNPs
within the GJAS locus were significant cis-eQTLs for ACP6, in
PsychEncode, and eQTLGen. In particular, we found that the
lead variant was a significant eQTL in PsychEncode, and
eQTLGen, and also rs12037169, the proxy significant variant
found in all cohorts, was a significant cis-eQTL in eQTLGen
(eTable 7, links.lww.com/NXG/A624). We then performed a
colocalization analysis to evaluate whether there was colocali-
zation between the GWAS axial progression results and eQTL
GWAS for gene expression at the GJAS locus (eMethods). We
used cis-eQTL data from eQTLGen and Metabrain cortex
tissue cis-eQTLs data sets and performed a colocalization test
for any gene within 1 Mb from the GJAS lead SNP. We did
not find direct colocalization evidence for any gene, including
ACP6. We found PPH3 (indicating separate significant
October 2023
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Figure 2 GWAS Meta-analysis of Motor Axial Progression
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. cance threshold p-value = 5e°. The LD block that
DIGPD -0.34 (-0.53;-0.15) reached genome-wide significance on chromosome
PDSTAT -0.30 (-1.6; 1.07) = 1 is on the GJA5 locus. Each dot corresponds to the
. p-value of the conditional likelihood interaction
PDBP 0.02 (-0.2;0.23) — term between SNP and time (SNP*time). (B) Forest
plots for proxy variant rs12037169 within GJA5 locus
under the GWAS meta-analysis using disease pro-
Summary -0.25 (-0.33; -0.17) - gression model gor the axial outcome (# = 40.1;
" y T T ' h 1X°=9.64,df=5,p=0.10),
10 05 0.0 05 10 Cochran Q test: x“=9.64, df = 5, p = 0.10), annotated

Effect size and CI

by study, effect size, and the corresponding 95%
confidence interval.

associations for GWAS and eQTL analysis) to be the highest
for the ACP6 gene using default SNP priors (eQTLGen = 0.98,
MetaBrain = 0.88). The PPH3 remained the highest for these 2
genes (PPH3 > 0.8), after we adjusted the priors according to
the number of overlapping SNPs (eMethods).

In a separate analysis, we also studied the genome-wide effect
that SNPs had on average changes of limb and axial motor
states using the disease severity model (see eMethods, links.

Iww.com/NXG/A624). We did not find any haplotype block
that reached genome-wide significance. However, there were 2
distinct signals approaching genome-wide significance associ-
ated with changes in the average axial motor scores (MADI1L1
in chromosome 7 and LINC00S11 in chromosome 17)
(eFigure 8A). The lead SNP in MADILI was rs4721411 (Beta
=0.54,SE=0.11, p = 1.6e”’), and the lead variant in the long
noncoding RNA LINC00511 was rs36082764 (Beta = —0.62,
SE=0.11,p = 6.3¢*) (Table 2). We found the association test

Table 2 Lead SNPs on the Disease Progression and Severity GWASs

rsiD Chr Pos A1 A2 MAF Beta SE p Value Nearest gene Distance (Kb) Type of variant Model

rs6593808 1 147219250 A G 023 -028 0.04 1.35e7'° GA5 0 Intergenic Disease progression
rs12037169 1 147248057 A G 025 -025 0.04 3.93e7'° GA5 0 Intergenic Disease progression
rs4073509 2 192611013 C T 002 052 010 2127 AC098872.3 47,137 Intergenic Disease progression
rs117239007 13 30550016 C T 0.01 068 014 471e”’  LINCO0544 25,390 Intergenic Disease progression
rs36082764 17 70330179 T C 042 -0.62 0.11 6.34e®  LINCOO511 0 ncRNA_intronic Disease severity
rs4721411 7 2153071 T C 040 053 010 1.66e’ MADILT 0 Intronic Disease severity
rs10939702 4 10096692 T G 045 057 012 8.10e”7  WDRT 0 Intronic Disease severity
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statistic and directionality of each of these variants to be con-
sistently replicated across cohorts (eTable S, eFigure 8, Band C).
Subsequent fine-mapping on both loci resolved rs3778978 in
MADILI locus as the causal SNP and a list of 3 SNPs at the
LINCO00511 locus (rs7213651, 157218929, rs12950478) as the
potential trait causing SNPs, narrowing down the spectrum of
variants to be targeted in further in vivo and in vitro analyses
(eTable 6). We found that the MADILI fine-mapped causal
variant and the lead SNP overlapped with an active enhancer
mark, and this region was predicted to interact with a TSS,
supporting an effect of the GWAS-nominated variants in regu-
lating the expression of MADILI (eFigure 9). For LINC00S11,
we found an anchored chromatin loop from the GWAS LD
block in LINC00S11 to a region where the neuronal SOX9 active
promoter is found, suggesting that mutations in this distal reg-
ulatory region may alter SOX9 expression in neurons specifically

(eFigure 10).

We explored eQTL databases from FUMA. We found the lead
variant in MADIL1 as well as the fine-mapped nominated causal
variant to be a significant cis-eQTL in BIOS and eQTLGen
(eTable 8, linkslww.com/NXG/A624). We then performed a
colocalization analysis to evaluate whether there is a shared causal
variant between the 2 traits (eMethods). We did not find direct
colocalization evidence for any gene within £1 Mb from the
GWAS lead SNPs. There was no cis-eQTL data available for
SOX9. In the MADILI locus, the posterior probability H3
(PPH3) (association with both phenotypic and expression traits,
but distinct causal variants) was the highest (PPH3 in MADILI:
eQTLGen = 097, MetaBrain = 0.98, PsychENCODE = 0.75).

To understand how ACP6, MADILI, and SOX9 might con-
tribute to Parkinson disease motor function, we have de-
scribed their biological function based on previous research
(eResults, links.Iww.com/NXG/A624).

Discussion

To understand the biology of motor progression in PD, we
performed a large well-powered GWAS of PD motor pro-
gression. We have found 1 haplotype block at the GJAS locus
that is significantly associated with axial PD motor progression.
This association was consistently replicated across individual
cohorts included in our motor progression GWAS meta-
analysis and was replicated in an analysis of H/Y supporting our
findings. Further exploration of the GWAS significant signals in
eQTL databases suggests that the GWAS hits may control the
expression of ACP6, an enzyme that regulates lipid metabolism
in mitochondria.*® Changes in ACP6 concentrations are found
in Gaucher disease (GD), although there is no clear link be-
tween ACP6 levels in and GD progression. ACP6 has a high
astrocyte specificity,”’ and mitochondrial dysfunction has been
widely associated with PD etiology.*”

We used the MDS-UPDRS III (PD motor examination) scale,
a sensitive measure of motor progression over time which has

Neurology.org/NG

been widely studied in observational and interventional studies
of PD. A study of patients with untreated de novo PD in the
PPMI study, followed up for S years to assess the progression of
MDS-UPDRS, showed a linear increase of 2.4 points per year
in MDS-UPDRS part III total score.”® In this study, we ob-
served a similar yearly rate of change for the total MDS-UPDRS
score across the studies we included in our analysis (2.3 points/
year on average) (Table 1). We have used linear mixed-effect
models to investigate the common genetic variability associated
with the severity and progression of distinct PD motor aspects.
This concept may be consistent with PD subtype studies having
a differential motor severity and progression.”>>* Another as-
pect of this differential approach to PD symptomatology is that
limb and axial PD motor components may have a different
cellular and pathophysiologic basis, with axial and limb motor
symptoms related to cholinergic and dopaminergic dysfunc-
tion, respectively.39’40

We corrected all models by AAO and sex and PCs as con-
founding variables. We performed a fixed effects meta-analysis as
opposed to a pooled analysis to further account for between
cohorts heterogeneity, as cohorts we included had different in-
clusion and exclusion criteria and were either genotyped with
different microarrays or whole genome sequenced. Our results
are not confounded by levodopa response, as defined in our
sensitivity analysis (eFigure 1, eTable 1, links.lww.com/NXG/
A624). In this data set, we have identified common genetic var-
iability which determines axial, but not limb motor progression.

The lack of association between common genomic variation
and the MDS-UPDRS limb subscale could be due to a com-
bination of limited power and the levodopa effect in early
disease. A study reported that measures of mobility, tremor,
gait, and posture were consistent and reliable measures of PD
progression.*’ Because these measures are well represented in
the axial score (except for tremor), this may be better powered
to assess progression. Moreover, the limb signs may be more
sensitive to levodopa use than the axial signs, making it possible
that true genetic associations with limb motor progression were
masked. Finally, we found the individual cohorts with the
largest sample size had a higher axial rate of change compared
with the limb rate of change (Table 1). A separate GWAS meta-
analysis assessing the PD genetic contribution to the disease
motor severity and subsequent functional annotation identified
MADILI and SOX9 as candidate genes associated with PD
axial motor severity. Nevertheless, these potential associations
did not reach genome-wide significance, and further analysis in
distinct PD cohorts is needed for validation.

Strengths of our study include the large sample size and rep-
lication of our results across cohorts and across different
measures of axial motor progression. Potential limitations of
our identification of ACP6 as the relevant gene at the GJAS
locus include the lack of colocalization between the phenotype
and expression GWAS, although these analyses are currently
limited by the sample size of eQTL data sets and the lack of cell-
specific gene expression data.
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We hypothesize that expression of ACP6 is important in the
function in cell groups relevant to axial progression in PD in-
cluding the pedunculopontine nucleus and that therapies di-
rected toward mitochondrial lipid metabolism may be relevant to
the disease modification. Further replication in independent
cohorts genotyped in the global Parkinson’s genetics program
(GP2.org) will help to determine the importance of this region,
and further analysis of this biochemical pathway may provide

new insights into the pathogenesis of PD progression.
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