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ARTICLE
Genetic meta-analysis of levodopa induced dyskinesia in

Parkinson’s disease

Alejandro Martinez-Carrasco ®">*%, Raquel Real (">, Michael Lawton @, Hirotaka Iwaki>®, Manuela M. X. Tan@’, Lesley Wu'23,
Nigel M. Williams @?, Camille Carroll®'°, Michele T. M. Hu'""'?, Donald G. Grosset'?, John Hardy®'*'>1¢1718 Mina Ryten @®'9%°,

Tom Foltynie®', Yoav Ben-Shlomo®, Maryam Shoai*'*'® and Huw R. Morris ('™

The genetic basis of levodopa-induced-dyskinesia (LiD) is poorly understood, and there have been few well-powered genome-wide
studies. We performed a genome-wide survival meta-analyses to study the effect of genetic variation on the development of LiD in
five separate longitudinal cohorts, and meta-analysed the results. We included 2784 PD patients, of whom 14.6% developed LiD.
We found female sex (HR = 1.35, SE=0.11, P=0.007) and younger age at onset (HR=1.8, SE=0.14, P=2 x 10~°) increased the
probability of developing LiD. We identified three genetic loci significantly associated with time-to-LiD onset. rs72673189 on
chromosome 1 (HR=2.77, SE=0.18, P=1.53 x 10 %) located at the LRP8 locus, rs189093213 on chromosome 4 (HR = 3.06,
SE=0.19, P=2.81x10"°) in the non-coding RNA LINC02353 locus, and rs180924818 on chromosome 16 (HR = 3.13, SE = 0.20,
P=6.27 x 10~°) in the XYLT1 locus. Based on a functional annotation analysis on chromosome 1, we determined that changes in
DNAJB4 gene expression, close to LRP8, are an additional potential cause of increased susceptibility to LiD. Baseline anxiety status
was significantly associated with LiD (OR = 1.14, SE = 0.03, P= 7.4 x 10~°). Finally, we performed a candidate variant analysis of
previously reported loci, and found that genetic variability in ANKKT (rs1800497, HR = 1.27, SE = 0.09, P = 8.89 x 10—3) and BDNF
(rs6265, HR = 1.21, SE = 0.10, P=4.95 x 102) loci were significantly associated with time to LiD in our large meta-analysis.
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INTRODUCTION

Parkinson'’s disease (PD) is a common neurodegenerative disorder,
characterised by the loss of dopaminergic neurons in the
substantia nigra pars compacta. The development of levodopa
induced dyskinesia (LiD) is a major clinical problem for PD patients
and multiple pharmacological and neurosurgical approaches have
been developed to try to prevent, attenuate or treat LiD.
Dopamine is lost from the nigrostriatal pathway, which manifests
as bradykinesia, muscular rigidity, rest tremor and postural
instability’2. There are several symptomatic treatments for PD
motor symptoms, with the metabolic precursor of dopamine,
levodopa, being the ‘gold standard’ drug. Levodopa improves

patients experience levodopa-related motor complications, such
as wearing off, dystonia and dyskinesia®.

The prevalence of LiD varies across academic- and industry-led
studies, averaging at around 20-40% after 4 years of levodopa
treatment. There are two major LiD subtypes: peak-dose
dyskinesia, which occur during the therapeutic window of
levodopa treatment, and diphasic dyskinesia, which present at
the start and end of a dose cycle®.

Levodopa treatment is necessary for LiD development, but
there are likely to be several other mediating factors®. Based on
research in animal models, it is hypothesised that pulsatile
delivery of oral levodopa, presynaptic nigrostriatal degeneration
and intact striatal neurons are needed for the development of

motor function as measured by the Unified Parkinson’s Disease
Rating Scale (UPDRS) or the more recent MDS-UPDRS, widely used
standard clinical assessments to evaluate the motor state in PD
patients®>. A comparison of an early levodopa treated group
against a delayed treated group showed no difference in the rate
of motor progression, suggesting that levodopa itself is not
disease modifying or disease accelerating®. One of the major
drawbacks of long-term levodopa treatment is that many PD

LiD®. Major risk factors for the development of LiD include young
age at onset (AAO), female sex, low body weight, disease severity,
disease duration and treatment duration (from the initiation of
levodopa) as well as the total dose of levodopa’®. Disease
duration and treatment duration are closely related and delayed
start study designs have evaluated the effect of delaying the
initiation of levodopa, showing an association between longer
delay and a decreased risk of LiD®. There is increasing evidence to
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Table 1. Cohort summary statistics.

Cohort PD Follow No.(%) No.(%) No.(%) Time to AAO, years AAB, years Disease duration at MDS-UPDRS part Levodopa dose
patients  up, LiD left- male midpoint (mean +sd) (mean *sd) baseline from onset, Il at baseline at baseline
Post-QC  years censored event years (mean = sd) (mean = sd) (mean =+ sd)
(n) (mean + sd)

Tracking 1478 7.5 177 (12) 16 (1) 945 (64.23) 7.47 (2.18) 64.43 (9.16) 67.29 (9) 2.86 (1.58) 22.36 (11.69) 217 (197)

Parkinson’s

OPDC 705 9.0 92 (13) 8(0.8) 451 (64) 7.87 (2.87) 64.35 (9.47) 67.21 (9.26) 2.85 (1.70) 26.27 (10.82) 280 (205)

PPMI 283 9.0 82 (21) 0 (0) 259 (66) 8.28 (2.27) 60.16 (9.93) 62.08 (9.78) 1.92 (1.30) 21.38 (9.10) 0 (0)

PD STAT 77 2.0 10(13) 449 48 (62) 8.77 (2.83) 57.23 (8.7) 64.84 (9.24) 7.61 (1.73) 28.86 (11.61) NA

PDBP 241 5.0 33(14) 16 (6) 149 (62) 5.93 (2.66) NA 64.58 (9.3) 2.85 (2.51) 209 (11.11) 414 (207)

No. (%) of LiD. This is the percentage with respect to (n).

No.(%) male. This is the percentage of males with respect to (n).
MDS-UPDRS part lll (mean + sd). MDS-UPDRS part lll total at baseline.

No. (%) of left-censored. This is the percentage of left-censored patients with respect to (n).

suggest that genetics plays a role in the susceptibility to LiD. Rare
variants in genes such as PRKN, PINKI1, and DJ-1 have been
reported to be associated with higher rates of dyskinesia'®'?,
although patients with autosomal recessive PD usually have early
onset disease, which is in itself a risk factor for LiD. A study which
corrected for age and disease duration variability did not replicate
the findings of a higher LiD susceptibility among PARK2 mutation
carriers'3.

Common variation may also influence the risk of developing
LiD. Variation at the DRD2, COMT, MAOA, BDNF, SLC6A3 and
ADORA2A loci have all been reported to influence the risk of
developing LiD'#23, Recently, an exome-wide association study of
LiD in PD found that variants in MAD2L2 and MAP7 loci were
associated with LiD, and replicated the association of the opioid
receptor gene OPRM1?*, Due to the high heterogeneity in the
genetic determinants that regulate LiD, validation in large cohorts
is needed.

Here, we investigated the genetic determinants of LiD by
performing a meta-analysis of genome-wide survival to LiD in five
different cohorts, and assessed previously reported loci. We also
performed functional genetic annotation to better understand the
nominated loci. Lastly, we have investigated the predictive power
of a polygenic risk score (PRS), and explored baseline clinical
features that were significantly associated with the development
of LiD in PD using a stepwise regression approach.

RESULTS

Cohort clinical features and prevalence

Across all cohorts (n = 2784 PD patients), the incidence of LiD was
14% (Table 1), except in the PPMI cohort where it was 21%. This is
consistent with the effect of age at onset on LiD?>~?’, given that
PPMI is a de novo study that recruited younger patients. We did
not exclude any patient from the PPMI cohort due to left-
censoring. We explored the effect of demographic and clinical
factors previously reported to be associated with LiD. We merged
baseline clinical data from all the cohorts. We found that patients
with younger PD AAO (grouped as people with age at onset
higher than 50 years and lower or equal than 50 years), had a
higher probability of developing LiD than older patients along the
time interval from disease onset to study end (HR= 1.8, SE=0.14,
P=2x107") (data excluding PDBP as AAO was not available).
Female PD patients showed a consistent increase in the
probability of developing LiD during a 12.5 years time interval
(eFig. 2a, b). Body mass index (BMI) was available in PPMI and
Tracking Parkinson’s, and smoking status data was available in the
Tracking Parkinson’s cohort only. We did not find a significant
increase in the probability of developing dyskinesia either for PD
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patients with low baseline BMI nor for PD smokers at baseline
(eFig. 2¢, d).

Power analysis

We performed a power analysis to estimate the power to find a
genetic association between time-to-LiD and genome-wide SNPs
with the current sample size and LiD event rate, and to evaluate
how this varied with a range of genotype hazard ratios and AFs.
We were well-powered (80% power) to detect genetic variants
associated with the development of LiD with a HR equal or higher
than 2 and a minor allele frequency(MAF) as low as 0.01 (eFig. 3a).
In addition, we performed a simulation to show as the sample size
increases, the power to detect rarer associations improves. As we
increased the simulated sample size to 18,000, we achieved 80%
power for genetic variants with a MAF lower than 0.01, and with a
HR lower than 2 (eFig. 3b).

Time-to-LiD GWAS

We ran time-to-LiD GWAS independently for each cohort, using
the first appearance of LiD as the outcome. We confirmed that
there was no genomic inflation in any cohort-specific GWAS
(eTable 3). We identified three loci significantly associated with
time-to-LiD onset in the meta-analysis of the adjusted model on
chromosome 1, chromosome 16 and chromosome 4 (Fig. 1). The
most significant SNPs at each loci were rs72673189, rs189093213,
rs180924818. rs72673189 (HR=2.77, SE=0.18, P=1.53x1079)
in chromosome 1, is a variant in the third intron of the LRP8 gene.
rs189093213 (HR=3.06, SE=0.19, P=2.81x 107 in chromo-
some 4 was found in the non-coding RNA LINC02353 (PCDH7
1.2Mb  downstream). rs180924818 (HR=3,13, SE=0.20,
P=6.27%x10"° in chromosome 16 was found very close
(0.15 Mb upstream) to the 3'-UTR of the XYLT7 protein coding
gene in a non-coding region of the genome (Table 2). The
direction of the effects was consistent and replicated across the
meta-analysed cohorts in which the SNPs were present (Fig. 2). To
visually represent the survival probability of patients carrying the
lead SNP on each locus we found in our meta-analysis, we
extracted per cohort patients’ genotypes and showed the
difference in the probability of LiD between carriers and non
carriers through Kaplan-Meier curves (Fig. 3).

Sensitivity analysis

The three variants found to significantly increase LiD susceptibility
in the adjusted model approach remained associated in the basic
model including only known confounders (eTable 4). We found
the correlation of the SNP metrics between the basic and the
adjusted model to be high (eFig. 4). This indicated that adding
additional predictors based on baseline variation increased the
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Fig. 1 LiD GWSS meta-analysis Manhattan plot. The GWSS was conducted using a Cox proportional hazards model in each cohort

separately, and results were meta-analysed. Red dots indicate the variant with the lowest P value at each genome-wide significant genetic
locus. Genome-wide significance was set at 5x 1078 and is indicated by the red dashed line.

Table 2. Independent significant SNPs with a P value lower than 1e-7.
CHR BP SNP MAF BETA HR SE  SNP P-value in the SNP P-value in the Number of Nearest gene Function
Adjusted model Basic model SNPs

4 32435284 rs189093213 0.02 1.12 3.06 0.19 1.673e-09 6.15e-08 3 LINC02353 ncRNA
intergenic

16 17044975 rs180924818 0.03 1.14 3.13 0.2 6.265e-09 8.20e-08 3 XYLT1 intergenic

1 53778300 rs72673189 0.03 1.02 277 0.18 1.527e-08 2.65e-08 LRP8 intronic

1 168645690 rs79432789 0.05 0.77 2.16 0.14 7.037e-08 2.47e-06 4 DPT intergenic

1 39646765 rs71642678 0.01 161 5 0.3 8.555e-08 1.89e-07 12 MACF1 intronic

1 80950480 rs12133858 0.04 0.76 2.14 0.14 8.692e-08 1.01e-06 48 RP11-115A15 intergenic

9 22664277 rs77115593 0.02 1.26 3.52 0.24 9.192e-08 4.37e-07 1 LINC02551 ncRNA
intronic

14 22020490 rs139943801 0.03 1 2.72 0.19 9.522e-08 2.63e-07 1 RBBP4P5 intergenic

power to detect SNP-outcome associations, presumably by
explaining other sources of variance in the model, and that there
was no source of confounding given by disease duration and
severity measures (suggested by the high correlation in the SNP
metrics).

Using data from Tracking Parkinson’s only, we investigated
whether these associations could be confounded by levodopa
dose or the disease stage at the LiD event time point. For each of
the genome-wide significant SNPs, we repeated the CPH analysis
adjusting for levodopa dose or disease stage as measured by
MDS-UPDRS part Il at the first visit when the LiD threshold was
reached or at the last available visit for patients who did not
develop LiD during the study length. We did not find a change
either in the hazard ratio or the test-statistics that could suggest
an unaccounted source of confounding (eTable 4). Finally,
excluding PDBP from the meta-analysis did significantly change
the lead SNP’s hazard ratio and significance levels eTable 5).

Functional annotation

We performed fine-mapping using ABF, SuSiE, FINEMAP, and
Polyfun-SuSiE as described in Methods and found Consensus SNPs
on each CPH GWAS nominated loci (eTable 6). We found the lead
SNP at each locus to be Consensus SNPs, which are those selected

Published in partnership with the Parkinson’s Foundation

by at least two different fine-mapping tools. We plotted each locus
found to have at least one variant significantly associated with
time to reach LiD against brain cell type-specific epigenomic data.
We found that the lead (and fine-mapped SNP) at the LRP8 locus
belonged to a neuronal specific chromatin accessible region,
which is a target region for DNA-associated proteins, as measured
with the ATAC-seq and CHIP-seq (H3K27ac and H3K4me3) assays
(Fig. 4). We also found this SNP to be part of a neuronal specific
enhancer-promoter interaction within LRP8, as defined by PLAC-
seq (Fig. 4). This implies that this specific LRP8 intronic signal is an
active neuronal enhancer of the LRP8 expression, forming an
anchored chromatin loop recruiting the transcription machinery
to the LRP8 transcription start site. In addition, we found
suggestive evidence that the lead SNP lies in a transcription
factor binding site (TFBS), as defined by the ENCODE project (eFig.
5). Similarly, we found that some of the fine-mapped SNPs
(including the lead SNP) in the XYLTT locus were forming
chromatin loops towards the XYLTT promoter, as measured by
the PLAC-seq assay, suggesting that regulation of this gene
associated with susceptibility to LiD (eFig. 6). We found this region
to also overlap with TFBS marks (eFig. 7). We did not find any
functional regulatory marks at the LINC02353 locus.

Next, we performed colocalization analysis in all genes within 1 Mb
from lead SNPs with P < 1x 107, We found suggestive support for

npj Parkinson’s Disease (2023) 128
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Fig. 2 Forest plots of lead genetic associated variants. a LRP8 rs72673189 variant (2=0 ; Q: x> =0.24, df =3, P=1.53e-08). b LINC02353
rs189093213 variant (12 =21.4 ;Q: x> = 5.09, df =4, P=1.67e-09). ¢ XYLT1 rs180924818 variant (2= 0; x> =0.77, df =2, P =6.27e-09). 2= |2
Index of heterogeneity HR Hazard ratio, P P value, Q Cochran’s Cochran’s Q test of heterogeneity, df degrees of freedom.
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interval (Cl).

colocalization between the LiID GWAS meta-analysis signals and
ci-eQTL data from Metabrain Cortex (PP H4 > 0.7 on the unadjusted
colocalization analysis; PP H4 > 0.5 on the colocalization analysis after
adjusting the priors based on the number of overlapping SNPs in the
locus of interest) for the DNAJB4 gene on chromosome 1 (eTable 7).
We did not find evidence of colocalization in the XYLT1, LRP8 nor the
non-coding RNA loci.

A few loci approaching genome-wide significance GWS in
chromosome 1, were in proximity with DNAJB4. Therefore, we
decided to investigate if the single causal variant assumption

npj Parkinson’s Disease (2023) 128

holds in the DNAJB4 locus, necessary to validate the colocalization
signal in DNAJB4. We ran GCTA-COJO under stepwise and
conditional model selection procedures. We filtered all SNPs
within the DNAJB4 locus that were used to perform the
colocalization analysis and that matched the AMP-PD reference
panel (4590 out of 4840 SNPs included in the colocalization
analysis). After performing the stepwise selection procedure
assuming complete linkage equilibrium between SNPs that are
more than 10 Mb from each other, and setting a collinearity cutoff
of 0.9, only the lead SNP in the locus retained nominal significance

Published in partnership with the Parkinson’s Foundation
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coloured in red as LD (given by R2) increases, and blue as the LD decreases. In the fine-mapping track, we highlight the SNPs with the highest
posterior probabilities for each fine-mapping tool (ABF, FINEMAP, SUSIE, POLYFUN_SUSIE). In addition, we highlight in yellow the Consensus
SNP with the highest mean Posterior Probability (mean). In the cell type specific regulatory element marks, the first four rows are the density
marks (y-axis) from ATAC-seq assay (in pink), and CHIP-seq assays (H3K27ac in blue, and H3K4me3 in cyan), in astrocytes, microglia, neurons,
and oligodendrocytes. The next four rows are the distal anchored chromatin loops (black curves). We see how, only in neurons, there is a

chromatin loop forming from the LRP8 GWS and the fine-mapped consensus variant towards the LRP8 promoter (purple).
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(rs278853, MAF =0.26, beta= 040, se=0.08, P=4.07x1079).
Similarly, running an association analysis on each of the 4590 SNPs
conditioning on the lead variant (rs278853) did not show any of
these SNPs to be nominally significantly associated, confirming
the single causal variant assumption and that the results obtained
with coloc on the DNAJB4 locus were unbiased. Lastly, to
understand whether the DNAJB4 signal was independent of the
GWS LRP8 locus signal, we ran an analysis conditioning on the
genome-wide significant LRP8 SNP (rs72673189). We found that
rs278853 remained nominally associated (P=4.40x 107°), indi-
cating these two signals were independently associated with the
risk of developing LiD.

Candidate variant analysis

We determined whether previously reported variants in the LiD
literature (from LiDPD) had an impact on the time to LiD (eTable
8). We found ANNKT and BDNF variants to be nominally
significantly associated (P<0.05) with the time to dyskinesia.
Nonetheless, ANNK1 or BDNF variants did not reach the
significance threshold after applying Bonferroni correction accord-
ing to the number of SNPs tested (P<2x 1073).

LRP8, also known as Apolipoprotein E Receptor 2 (ApoER2), is
part of the low-density lipoprotein receptor family?. In addition,
using western blot analysis based LRP8 knockout mice models,
have shown that LRP8 knockout increases the phosphorylation
level of the microtubule-stabilising protein tau (MAPT)?°.A
previous retrospective study including 855 caucasian PD patients
found a suggestive association between the H1b MAPT haplotype
and a higher likelihood of dyskinesia at an initial visit>°. In the case
of XYLT1, a previous study has found a regulatory effect of a XYLT1
variant on the mRNA levels of GBA in the substantia nigra and
cortex’!. We investigated whether MAPT variants (rs1800547;
rs242562; rs3785883; rs2435207) were associated with the time to
LiD. In addition, we explored whether APOE and GBA variants
increased the risk to develop LiD*2. We did not find an association
between time to LiD and APOE variants rs429358 and rs7412, or
GBA rs2230288 variant (E326K), or MAPT rs1800547, rs242562,
rs3785883, rs2435207 variants.

In addition, we explored genetic associations from PINK1, DJ-1,
and PRKN intergenic variants. Whereas we did not find any genetic
variant associated with time to LiD on the PINK1 locus, we found
26 DJ-1 intergenic variants on the with a P value<0.05
(rs1641433611 lead SNP; HR=1.84, SE=0.2, P=4x10"%.
Similarly, we found 162 intergenic variants with a P value < 0.05
in the PRKN locus (rs113276175 lead SNP; HR=1.84, SE=0.2,
P=4x10"% (eTable 9).

PRS is capable of distinguishing patients that develop LiD
We nominated a total of 67 independent SNPs to compute the
PRS in the Tracking Parkinson’s cohort (eTable 10). We then
validated the proposed SNP set on the OPDC cohort by measuring
the ability to distinguish LiD PD patients. We found that genetic
data as summarised by PRS, without any other clinical or
demographic data, could accurately distinguish PD patients that
developed LiD at 10 years from disease onset in two separate
cohorts: Tracking Parkinson’s (AUC 83.9) and OPDC (AUC 87.8)
(eFig. 8). At 10 years from PD onset, we found that 16% of patients
had LiD in the Tracking Parkinson’ cohort, and 18% of patients had
LiD in the OPDC cohort. Class imbalance can lead to inaccurate
evaluation of classifiers. Therefore, we also computed precision
recall curves (PROC) as large class imbalance can lead to biassed
ROC curves when assessing the performance of a classifier. We
found the PROC AUC to be lower in both TPD (AUC = 54.49) and
OPDC (AUC = 33.24) (eFig. 9).
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Stepwise regression approach to determine baseline
predictors of LiD development

We used Tracking Parkinson’s data at baseline in a stepwise
regression approach using a logistic model. We then filtered out
from the final model predictors that were not significantly associated
after applying Bonferroni correction (P<0.05/ 502 =1x 1077

In addition to the PRS, which was significantly associated with a
increase of the odds of LD (OR=96294, SE=0.7,
P=1.07 x 10739, we found that anxiety at baseline (as measured
by the Leeds Anxiety and Depression Scale33) was significantly
associated with a increase of the odds of LiD (OR = 1.14, SE = 0.03,
P=74x107%. We also explored clinical features previously
reported as being associated with an increased or decreased LiD
risk. Sex, AAO, and 5 principal components (PCs) were added in
the base model of the stepwise regression approach. Consistent
with previous studies as well as with our CPH model highlighted
above, younger AAO increased the LiD odds (OR = 2.41, SE = 0.04,
P=4x1073). However, sex was not found to be significantly
associated in our final model including PRS and Leeds anxiety
status.

Neither smoking status nor BMI were selected on the stepwise
regression approach, consistent with what we found when we
individually explored known LiD risk factors (eFig. 2). Interestingly,
we also found that PD family history was selected on the stepwise
regression analysis, and was nominally significantly associated
with an increase in the odds of LiD (OR=1.62, SE=0.14,
P=69x107%.

Finally, we attempted to replicate the association between
dyskinesia state and anxiety using State-Trait Anxiety Inventory>*
available in PPMI. We did not find the Trait Anxiety Score to be
significantly associated with LiD patients in PPMI (OR = —0.03,
SE=0.04, P=0.44).

Patients with LiD have an average higher cognitive scoring

We assessed the cognitive status of LiD patients because of the
association between the LRP8 nominated locus and APOE. We
explored whether the cognitive state differed between patients
developing LiD and patients who did not develop LiD during the
study length using the Wilcoxon rank sum non-parametric test
with continuity correction, as we observed the data was not
normally distributed. In addition, we also looked into differences
in the MDS-UPDRS part Ill scores between the two groups, using
the unpaired two samples t-test to compare the mean of two
independent groups. We compared the LiD group (N=172)
against the non-LiD PD group (N = 1318) using data from Tracking
Parkinson'’s alone as it is the largest deeply phenotyped cohort we
had available. We did not find differences in the average MDS-
UPDRS part lll total score, either at baseline nor at the visit when
patients first developed LiD (or the last available visit in cases who
did not develop LiD) (eTable 11). However, PD patients who did
not develop LiD through the study had a significantly lower MoCA
score on average at baseline, as well as at the final visit
(eTable 11).

DISCUSSION

We have performed an untargeted genome-wide study to define
genetic variants associated with the time-to-LiD in PD, using a CPH
model under a genetic additive effect and analysed the effect of
genetic and baseline clinical variation on the development of LiD.
We found genome-wide significant associations with the time-to-
develop LiD at the LRP8, LINC02353 and XYLTI loci. These
associations were replicated across all the cohorts included in
the meta-analysis. We also performed a candidate gene analysis,
exploring genetic variants reported to be associated with LiD risk
in our large GWAS meta-analysis. We found that genetic variability
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in BDNF and ANKK2, were nominally associated with LiD. We did
not replicate any other variant associated with LiD risk (eTable 8).

LRP8, also known as ApoER2, is a cell surface receptor part of
the low-density lipoprotein receptor-family. Its expression is
enriched in brain tissues such as the neocortex, cerebellum,
hippocampus and olfactory bulb?®. LRP8, together with VLDLR, is a
mediator of the Reelin pathway, which contributes to develop-
ment of the central nervous system as well as to facilitate neuronal
migration®>3%, LID develop in the context of ongoing neuronal
loss, and synaptic/signalling changes related to dopamine
therapy. Our finding suggests the changes in the Reelin pathway
and neural development / plasticity may be important in the
development of LID.

In addition, the LRP8 protein stabilises MAPT and it has been
shown that knocking out LRP8 in mice increases tau phosphoryla-
tion?°. Post-hoc functional annotation analysis revealed a chro-
matin loop between an enhancer within LRP8 third intron (where
the lead variant was found) and the LRP8 promoter, thus providing
functional support for LRP8 as the causal gene at this locus. In
addition, a colocalization analysis, looking at all genes within
+1 Mb from all GWAS variants with P value < 1x 10”7 revealed a
second association in chromosome 1 with the DNAJB4 gene.
Conditional analysis further confirmed that both regions were in
linkage equilibrium, hence both LRP8 and DNAJB4 were indepen-
dently associated with the time-to-LiD. We also found a similar
event of distal regulation in the XYLTT locus, although the
chromatin loop did not perfectly match with the GWAS signals,
making the functional annotation analysis inconclusive. Moreover,
we found that the two GWAS nominated signals overlapped with
Transcription Factor Binding Sites marks from the ENCODE project,
adding further support for the transcription machinery being
recruited in the GWAS loci and regulating both genes expression
after forming the enhancer-promoter distal chromatin loops.
Nevertheless, whereas we found a chromatin loop suggesting
regulation of XYLT7 and LRP8 gene expression, we did not find
statistical support for gene regulation based on the colocalization
Bayesian framework.

The three nominated protein coding genes have been
previously reported to be functionally associated with putative
PD genes, which may provide an insight into the development of
LiD. LRP8 encodes the low-density lipoprotein receptor-related
protein 8, and it has been found to be associated with APOE. In
addition, the LRP8 protein stabilises MAPT and it has been shown
that knocking out LRP8 in mice increases tau phosphorylatlon?®.
DNAJB4 gene encodes a molecular chaperone tumour suppressor,
and member of the heat shock protein-40 family. Mutations in the
DNAJ family protein have been reported to cause or increase the
risk of several neurological disorders, including Parkinson'’s
disease®”. XYLT1 encodes a xylosyltransferase enzyme which takes
part in the biosynthesis of glycosaminoglycan chains. A previous
study has found a regulatory effect of a XYLTT variant on the
mRNA levels of GBA in the substantia nigra and cortex®'. We did
not find support for colocalization with eQTLs nor evidence
suggestive of epigenetic regulation of genes in the LINC02353
locus. PCDH7, the nearest gene coding protein gene, encodes a
protein with an extracellular domain containing 7 cadherin
repeats. This gene has been described as a potential PD
biomarker?®,

At an individual patient level, treatment strategies including
levodopa and non-levodopa therapies, and the use of deep brain
stimulation are determined by the emergence of motor complica-
tions including LID. The ability to develop a predictive algorithm
to enhance clinical care would improve the outlook for PD
treatment. Here, we have shown that both clinical and genetic
variables have the potential to have a high predictive value for the
development of LID. This will need to be validated in further
cohorts and we hypothesise that the integration of further ‘omics
data (e.g. RNA and proteomics), using machine learning may lead
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to the definition of an accurate predictive model for defining PD
patients at risk of developing dyskinesia.

We have analysed a large dataset with detailed clinical, drug
exposure and genetic data. We have carefully tested for
confounding by PD age at onset, sex, population structure and
shown that our results are free of confounding effects as well as
demonstrating they are consistent across cohorts. Because the
dose of levodopa may be a major confounder in our study, we
tested the effects of adjusting for levodopa dose on a sensitivity
analysis, and found that the lead SNPs on LRP8, LINC02353 and
XYLTT1 loci remained significantly associated with the outcome,
concluding that levodopa treatment was not a confounder in our
study design. Likewise, adjusting for the MDS-UPDRS part Il total
score at the time of LiD development did not change the
significance levels of the lead SNPs, suggesting that our findings
were not confounded by motor severity or progression.

Although this is a large study there are limitations based on
sample size. According to our sample calculation, we would be
80% powered to detect associations with the LiD phenotype from
variants with a MAF of 0.01 when we reached a sample size of
18,000 patients. In addition, our results are limited to individuals of
European ancestry and we have not explored whether there is a
shared common genetic variability associated with changes in LiD
survival across different ancestries. Expanding this analysis to PD
genetic datasets with deeply phenotypic data available from
initiatives such as the Global Parkinson’s Genetic Programme
(GP2) will give us new insight into the genetics of PD LiD patients
as well as serve as a valuable resource for validation of findings°.

MDS-UPDRS 4.1 is a simple but widely used measured which
documents the appearance of LiD. Potentially, more detailed
scales such as the Unified Dyskinesia Rating Scale*® would provide
a more accurate measure of the extent and impact of LiD, which
would improve future GWAS.

Overall, we have found new evidence of common genetic
variability associated with the time-to-LiD. We have been able to
map genes at nearby risk loci, as well as provide fine mapping
support of potential causal variants for LiD trait. Likewise, we hope
to help design personalised medicine strategies that prevent PD
patients developing dyskinesia according to their genetic burden
which could be tested with the proposed PRS in this study.
Similarly, we hope to help understand the molecular pathways
that lead to LiD. Targeting nominated genes might allow the
development of LiD treatment strategies. Further investigation
regarding the overlap between anxiety GWAS and our GWAS
might help understanding common causal pathways between the
two conditions. Understanding shared mechanisms will help us
prevent medication adverse events affecting non-targeted path-
ways and to fine-tune current treatments.

METHODS

The source code with all materials and methods are available on
GitHub  (https://github.com/AMCalejandro/LID-CPH.git;  https://
doi.org/10.5281/zen0od0.8139563). The README explains each
step of the workflow to conduct the analysis and a link to each
relevant pipeline or protocol.

Patients data and LiD definition

We accessed clinical and genetic data from the Tracking
Parkinson’s (Tracking Parkinson’s)*!, Oxford Parkinson’s Disease
Centre Discovery Cohort (OPDC)*’, Parkinson’s Progression
Markers Initiative (PPMI)*3, Parkinson’s Disease Biomarkers Pro-
gramme (PDBP)**, and simvastatin as a neuroprotective treatment
for PD trial (PD-STAT)* studies (eTable 1). Each subject provided
written informed consent for participation according to the
Declaration of Helsinki and all cohort studies were approved by
the relevant ethics committee.
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We carried out clinical data QC on each cohort independently
(eFig. 1). Levodopa is necessary for PD patients to develop LiD®,
therefore we excluded those who were not exposed to
levodopa. In addition, we removed patients who had a disease
duration at study entry of more than 10 years from disease
onset, patients without longitudinal data (patients with less
than two clinical records available), and those with missing
genotype data.

We defined PD patients as having dyskinesia if they reached an
MDS-UPDRS item 4.1 score equal to or higher than two which is
equivalent to a range of 26-50% of the waking time with
dyskinesia, and the first appearance of LiD was defined as the
event time. Patients were excluded if they had dyskinesia at study
entry, as time to the development of dyskinesia could not be
established.

Genotype data quality control and imputation

To perform quality control (QC) at both the sample and genotype
levels before and after imputation of genotyping data, we used
PLINK v1.9 (RRID:SCR_001757; https://www.cog-genomics.org/
plink/1.9/)%.

Sample level QC. We used X chromosome genotype data to
check for sex discordance between the genotypic and phenotypic
sex. We excluded individuals who were missing more than 5% of
genotypes. Samples with excess or reduced heterozygosity in
autosomes (defined as + 4 standard deviations (SD) away from the
mean heterozygosity rate within each cohort) were also excluded,
as it can indicate contamination or increased homozygosity,
respectively. We removed related individuals. Using GCTA soft-
ware (version 1.93.0 beta for Linux; https://yanglab.westlake.
edu.cn/software/gcta/#Overview)*’, we created a relationship
matrix from pruned genotypes, and we filtered out individuals
which had a similarity score higher than 0.125, equivalent to 1st
degree relatives. Population stratification is a major confounder in
genetic association studies due to differences in allele frequencies
between ethnicity groups. We therefore excluded individuals of
non-European ancestry by performing principal component
analysis using the HapMap reference panel (Release number 3;
ftp://ftp.ncbi.nim.nih.gov/hapmap/)*®. Individuals who were 6 SD
away from the Northern and Western European ancestry (CEU)
sample mean for any of the first 10 PCs were considered ancestry
outliers and removed.

Variant QC. We removed variants that had a missing rate higher
than 0.05, variants with a MAF of less than 0.01, and variants in
which missing calls were not randomly distributed, by testing
whether missingness status could be predicted from genotype
calls at the two adjacent variants. We excluded variants that
deviated from Hardy-Weinberg equilibrium (HWE), as extreme
HWE deviations can be indicative of genotyping errors
(P<1x10719%,

Imputation and post-imputation QC. We ran the Will Rayner tool
(Version 4.2.10; https://www.well.ox.ac.uk/~wrayner/tools/) for
further quality checks against the Haplotype Reference Con-
sortium (HRC) (GRCh37/hg19) panel (version r1.1 2016; http://
www.haplotype-reference-consortium.org/site).  Likewise, we
updated strand, position, and reference / alternate allele assign-
ment, as well as removed A/T and G/C SNPs if MAF > 0.4, SNPs
with allele frequency difference >0.2 compared to the reference
panel, and SNPs not present in the HRC Panel®°. We then imputed
each QCed cohort in the Michigan Imputation Server
(RRID:SCR_017579; https://imputationserver.sph.umich.edu)”’
using Minimac4 (version 1.0.0; RRID:SCR_009292 https://genome.
sph.umich.edu/wiki/Minimac4 version 1.0.0) and Eagle2 (v2.4;
RRID:SCR_017262) with 20-Mb chunk sizes used to estimate
haplotype phasing. We used the HRC panel as the reference panel
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of individuals of predominantly European ancestry for imputation.
Once the data was imputed, we filtered out variants with a Rsq
score <0.7, to preserve only the variants imputed with high
confidence. Finally, we removed variants with missingness rate
>5% and MAF < 1%.

Whole-genome sequencing data

The PDBP and PPMI cohorts included in this study were whole-
genome sequenced using lllumina HiSeq X Ten Sequencer. More
information can be found in https://ida.loni.usc.edu/login.jsp. WGS
data was QCed using the same pipeline as the array-based data.

Statistical analyses

We used the R programming language to perform all the statistical
analysis (R Project for Statistical Computing, RRID:SCR_001905;
version 4.1.3; https://www.R-project.org/).

We studied the association between genome-wide genetic
variants and time to develop dyskinesia from self-reported age at
PD motor onset with Cox proportional hazard (CPH) regression
models under a genetic additive model, using the ‘survival' R
package (version 3.3-1; RRID:SCR_021137; https://cran.r-
project.org/web/packages/survival/survival.pdf). All tests were
two-tailed. To investigate the power to detect an association
under a Cox regression model with the current sample size, as well
as to perform a simulation on the relationship between power and
allele frequency (AF), SNP hazard ratios (HR), and sample size, we
used the R package survSNP (version 0.25; https:/cran.r-
project.org/web/packages/survSNP/index.html).

We ran time-to-LiD GWAS in each cohort separately, adjusting
by AAO (or age at diagnosis in the cohorts where AAO was not
available), sex, and first 5 PCs, using as our outcome the midpoint
between the visit the threshold was met and the previous time
point. Because the precise time patients first developed dyskinesia
happens between the visit in which dyskinesia were first recorded
and the previous visit, we set the time to develop dyskinesia as
the midpoint between the last visit with no LiD and the first visit
with LiD. We set age at motor onset as the start point to measure
time to develop LiD. Patients who did not develop LiD at the end
of the study or at the time of withdrawal were right-censored. For
patients that withdrew from the study and that did not have the
withdrawal time available, we set the censoring time as
the midpoint between the last visit patients attended clinic and
the next scheduled visit.

Multiple studies indicate that the risk of dyskinesia relates to
disease severity. To improve the power to detect a genetic
association, we explored the goodness-of-fit of the model in each
cohort independently after adding the following baseline
covariates, which provide surrogate measures of disease severity
and dopaminergic denervation at baseline: levodopa or LEDD
dose, disease duration from onset to baseline assessment and
baseline motor score as measured by MDS-UPDRS part lll. For each
cohort, we selected the model which provided the most accurate
prediction of LiD based on the Akaike Information Criteria (AIC).
We used the resulting model as the main model in our analysis.
We summarised the nominated set of covariates in each cohort
(eTable 2). We verified that the proportional hazards assumption
held true by assessing the independence between scaled
Schoenfeld residuals and time through the cox.zph function from
the ‘survival' package. Schoenfeld residuals are obtained by
subtracting the individuals’ covariate values at the time ‘t' and the
corresponding risk-weighted average of covariates among all
those that are at risk at the time ‘t. Then, they are scaled by
performing a variance-weighted transformation. A non-significant
relationship between the scaled residuals and time reveals
proportionality of the hazards in the model.

We used METAL software (version released on the 2011-03-
25; RRID:SCR_002013; https://genome.sph.umich.edu/wiki/
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METAL_Documentation) for meta-analysis of genome wide
association summary statistics, with a fixed effects model
weighted by B coefficients and the inverse of the standard
errors®2°3, We applied a genomic control correction to the
cohort-specific summary statistics by computing the inflation of
the test statistic,c and then applying the genomic control
correction to the standard errors. We chose a meta-analysis
over a merged analysis because of the heterogeneity in the
inclusion and exclusion criteria across the clinical cohorts, as
well as differences in the genotyping approaches (eTable 1). We
applied a post meta-analysis QC step to remove genetic
variants that were present in less than 3 out of 5 cohorts, with
less than 1000 variants, as well as variants with high MAF
heterogeneity across the cohorts (MAF > 0.15). In addition, we
accounted for high heterogeneous variants by removing those
with a signifiant Cochran’s Q test as well as those with an 12
index higher than 80%.

Statistical significance was assessed at the conservative thresh-
old of P=5x10"8 derived from a Bonferroni correction
accounting for the number of independent tests and the linkage
disequilibrium (LD) structure of the genome®*,

We proved that the model met the proportional hazard
assumption after including significant SNPs using the cox.zph
function from the ‘survival' package. We evaluated whether
signals were replicated across different cohorts with the R
package ‘forestplot’ (version 2.0.1; https://CRAN.R-project.org/
package=forestplot).

Sensitivity analyses

To validate the genome wide significance findings, we performed
four sensitivity analyses to discard the associations we found in our
analysis were confounded. The first sensitivity analysis was designed
to compare the basic and adjusted models. We tested whether high
deviations in the SNP estimates and P-values arose after accounting
for disease severity and dopaminergic denervation at baseline by
measuring the correlation between the basic and adjusted GWAS
meta-analyses. Next, we performed two separate sensitivity analyses
to test whether either levodopa dose or the PD motor severity (as
measured by MDS-UPDRS part lll) at the time point where LiD were
first documented, were confounding our findings. We performed this
sensitivity analysis in Tracking Parkinson’s, the largest dataset. We
performed a CPH GWAS on the Tracking Parkinson’s cohort adjusting
by: a) known confounders, b) known confounders -+ motor severity
(as measured by MDS-UPDRS part lll) c) known confounders +
levodopa dose. We compared the SNP metrics from the three
models for the lead SNPs on the loci that reached genome-wide
significance on the time-to-LiD GWAS meta-analysis. Lastly, because
the PDBP cohort did not have age at onset available and we used
AAD in the CPH model, we reran the time-to-LiD GWAS meta-analysis
excluding PDBP to confirm that this cohort was not inflating the SNP
test-statistics.

Post-GWAS analyses

We used the ‘echolocatoR’ R package (v 0.2.2; https://github.com/
RajLabMSSM/echolocatoR) as a wrapper to perform fine-mapping
which allows us to nominate causal variants for further study. In
particular, we used the ABF approach through the ‘coloc’ R
package, FINEMAP software in Unix (v v1.3; http//
www.christianbenner.com/), the ‘susieR” R package (v 0.11.92;
https://cran.r-project.org/web/packages/susieR/index.html), and
Polyfun-SuSiE(V1.0; https://github.com/omerwe/polyfun)>>=°. We
produced the 95% Probability Credible Set (CSgse,), which is the
minimum set of SNPs that contains all causal SNPs with 95%
probability. We reported the consensus SNPs at each locus, i.e.
those that were included in the 95 CSgsy, Of at least two fine-
mapping tools, therefore increasing the confidence in the
nominated causal SNPs. We reported the Posterior Probability
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(PP) as the mean PP across all fine-mapping tools. To account for
SNP LD at each region, we used the precomputed LD matrix from
the UK Biobank (https://alkesgroup.broadinstitute.org/UKBB_LD/)®°.

To evaluate the potential effect of SNPs on candidate loci on the
control of gene expression we also used echolocatoR as a wrapper
to access brain cell type-specific epigenetic marks from Nott and
colleagues®’®? (Data accessed using echolocatoR v 0.2.2). We
mapped each locus to cell type-specific chromatin immunopre-
cipitation sequencing (ChIP-seq) results generated by quantifying
H3K4me3 and H3K27ac epigenetic modifications, Assay for
Transposase-Accessible Chromatin using sequencing (ATAC-seq)
results, and Proximity Ligation-Assisted ChIP-Seq (PLAC-Seq)
results, to detect and quantify chromatin contacts anchored at
genomic regions. In addition, we also mapped such loci to cell-
type specific TFBS marks on Chip-seq experiments from the
ENCODE project (RRID:SCR_006793; data accessed from echolo-
catoR R package v 0.2.2)5"2, This dataset contains 690 Chip-seq
datasets representing 161 unique regulatory factors and spanning
91 human cell types. We used echolocatoR to query the ENCODE
Uniform TFBS and retrieve the top four cell types with the highest
probability density function for the top five regulatory elements.

To investigate whether there were several independently
associated SNPs at each GWAS nominated locus, we performed
a conditional and stepwise selection procedure with GCTA-COJO
(version 1.93.0 beta for Linux; https://yanglab.westlake.edu.cn/
software/gcta/#Overview)*’. We used the Accelerating Medicines
Partnership: Parkinson’s Disease (AMP-PD, v.2.5)% data
(n=10,418) as the reference panel to estimate the correlation
between SNPs. The reference sample was subjected to the same
QC steps as described above, needed to get unbiased LD
estimates®,

We used the ‘coloc’ R package (version 5.1.0; https://cran.r-
project.org/web/packages/colocr/index.html) to perform colocali-
zation analysis between the SNPs associated with progression to
LiD and SNPs defining gene expression in the region. We used cis-
eQTL data from MetaBrain cortex tissue®® (N = 6,601 individuals)
and blood cis-eQTLs from eQTLGen (N = 31,684)%°. We evaluated
all genes within £1 Mb from the lead variants with a P<1x 1077
at each GWAS locus®. Coloc makes use of Bayesian inference to
compute the posterior probability (PP) of five different hypothesis:
No association with either trait (H0); Association with the LiD trait
but not the eQTL trait (H1); Association with the eQTL trait but not
the LiD trait (H2); Association with both traits, but the causal
variant is distinct (H3); and the that there is a shared causal variant
associated with both traits (H4). Each PP hypothesis lies between 0
and 1 and a high PPH4 (PPH4 > 0.8) is considered as evidence of
colocalization between two traits tested, meaning the GWAS
variant causes changes in specific gene expression. We ran coloc
using default p;=1x10"% p,=1x10"% and p;,=1x10">
priors (p; and p, are the prior probability that any random SNP
in the region is associated with trait 1 and 2, respectively, while
P12 is the prior probability that any random SNP in the region is
associated with both traits). However, it is worth noting that the
prior for H3 hypothesis (association with both phenotypic and
expression traits, but distinct causal variants) is = n(n — 1)p1.p2,
which scales with the square of n, resulting in H3 becoming more
likely than H4 as the number of overlapping SNPs in the region
increases’. Therefore, we adjusted the priors to account for the
high number of overlapping SNPs (p; =3x 107>, p,=3x 107>,
and p;, =5x1077)8

We used Functional Mapping and Annotation of Genome Wide
Association Studies (FUMA) (RRID:SCR_017521; version 1.3.8; https://
fuma.ctglab.nl/) to further characterise the nominated loci by
querying GWAS Catalogue to retrieve uncharacterised GWAS loci
SNPs in our meta-analysis and to get positional mapping information
based on MAGMAS’. We used a threshold of P<1 x 107° to
nominate tag SNPs. Additional SNPs that were in high LD with tag

npj Parkinson’s Disease (2023) 128


https://genome.sph.umich.edu/wiki/METAL_Documentation
https://cran.r-project.org/package=forestplot
https://cran.r-project.org/package=forestplot
https://github.com/RajLabMSSM/echolocatoR
https://github.com/RajLabMSSM/echolocatoR
http://www.christianbenner.com/
http://www.christianbenner.com/
https://cran.r-project.org/web/packages/susieR/index.html
https://github.com/omerwe/polyfun
https://alkesgroup.broadinstitute.org/UKBB_LD/
https://yanglab.westlake.edu.cn/software/gcta/#Overview
https://yanglab.westlake.edu.cn/software/gcta/#Overview
https://cran.r-project.org/web/packages/colocr/index.html
https://cran.r-project.org/web/packages/colocr/index.html
https://fuma.ctglab.nl/
https://fuma.ctglab.nl/

npj

A. Martinez-Carrasco et al.

10

SNPs were inferred using European samples 1kg Phase3 reference
panel (with r2 > 0.6 and independent from each other with r2 < 0.6).

Candidate gene analysis

In order to validate variants that have been reported in previous
studies to be associated with time-to-LiD or LiD risk, we accessed
the LiDPD website (Date accessed: 12/01/2023; http://
LiDpd.eurac.edu/) and downloaded a list of curated variants from
the literature. We explored these in our time-to-LiD GWAS meta-
analysis®®.

LiD prediction modelling

We used PRSice software (version 2; RRID:SCR_017057) to compute a
polygenic risk score (PRS) using the summary statistics of our time-to-
LiD meta-analysis as base data and the Tracking Parkinson’s cohort as
target data. We chose the Tracking Parkinson’s cohort as it is the
single largest cohort, which reduces the standard error (SE) of the
PRS estimates, leading to more confident estimates. We then
replicated the association of the nominated SNPs composing the PRS
in the second largest cohort we had access to, OPDC, resembling a
discovery/replication study design, although in this case the OPDC
data had contributed to the LID PRS.

We set a threshold of P<1x 107° to nominate GWAS variants
that make up the PRS. We selected independent SNPs by
clumping within +250 Kb from the index SNPs (the most
significant SNP on a Kb window). We used the SNP betas as the
estimated to compute the PRS from. Sex, standardised AAO, and
the first 5 PCs were added as covariates to the PRS estimation
process. To compute the LD estimates, we used the imputed
cohorts from which we calculated the PRS, as they were large
enough to provide accurate LD estimates (N > 500). To validate the
PRS as an instrument to distinguish between PD patients with and
without LiD, we derived time-dependent ROC curves, under the
assumption that different PRS loads might cause changes to time-
to-LiD onset. We used the Inverse Probability of Censoring
Weighting estimation of Cumulative/Dynamic time-dependent
ROC curve from the ‘timeROC’ R package (version 0.4; https://
cran.r-project.org/web/packages/timeROC/index.html). To com-
pute the weights, we used the Kaplan-Meier estimator of the
censoring distribution.

Next, we used a stepwise logistic regression model with an in-
house script using the ‘stats’ R base package (version 4.2.2; https://
search.r-project.org/R/refmans/stats/html/00Index.html) to find
whether any baseline clinical variable was significantly associated
with LiD status. We used data from the Tracking Parkinson’s
cohort, as it is deeply phenotypically characterised (number of
baseline covariates =702). After removing variables with high
missingness rate (missing rate >10%) or categorical variables with
only one level, we defined a total of 502 baseline features
(including the PRS) (eData 1). Then, we created a base logistic
regression model (adjusted for sex the first 5 PCs and standardised
AAO). At each step of the stepwise regression approach, we
refitted the base model with each of the baseline predictors
individually, and selected the model with the variable that
decreased AIC the most. We ran the model until no variable
further decreased the AIC, or until the AIC score was equal to 1.
Once the model was fitted, we selected only those predictors that
were significantly associated with the binary outcome, applying
the conservative Bonferroni correction accounting for the number
of predictors assessed. We set the significance threshold as 0.05 /
502 =1 x 10~* To account for class imbalance in the evaluation of
classifiers, we computed precision recall curves using the ‘PRROC’
R package (version 1.3.1; https://cran.r-project.org/web/packages/
PRROC/index.html).
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DATA AVAILABILITY

GWAS summary statistics are publicly available in the Zenodo ASAP data repository
(https://doi.org/10.5281/zenodo.7795604). Supplementary Figures and Tables are
available in the Zenodo ASAP data repository (https://zenodo.org/record/
7802755#.ZC2RAnbMK38). TPD data are available upon access request from https://
www.trackingparkinsons.org.uk/about-1/data/. The PDBP and PPMI data was
accessed from Accelerating Medicines Partnership: Parkinson’s Disease (AMP-PD)
and data are available upon registration at https://www.amp-pd.org/. OPDC data are
available upon request from the Dementias Platform UK (https:/
portal.dementiasplatform.uk/Apply). PD-STAT is available upon request to the
principal investigator (C Carroll, Plymouth University, https://
penctu.psmd.plymouth.ac.uk/pdstat/#:~:text=PD%20STAT%20%2D%20Simvastatin%
20as%20a,brain%20from%20injury%200r%20loss.). HapMap phase 3 data (HapMap3)
is available for download at ftp://ftp.ncbi.nim.nih.gov/hapmap/. Cis-QTL eQTLGen
data was downloaded from (https://www.eqtlgen.org/cis-eqtls.html). MetaBrain cis-
eQTL data can be accessed upon access request form (https://www.metabrain.nl/cis-
eqtlshtml). eQTL data from eQTL catalogue can be ftp-accessed (https://
www.ebi.ac.uk/eqtl/Data_access/). ENCODE TFBS marks and Nott brain cell type-
specific enhancer-promoter interactome data were accessed through echolocatoR
(https://github.com/RajLabMSSM/echolocatoR).

CODE AVAILABILITY

All the code has been made publicly available on GitHub (https://github.com/
AMCalejandro/LID-CPH.git) https://doi.org/10.5281/zenodo.8139563) Analyses were
performed using open-source tools as described in the Methods section.
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