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Abstract 

Background Transplantation represents the optimal treatment for many patients with end-

stage kidney disease. When a kidney donor is available to a waitlisted patient, clinicians 

responsible for the care of the potential recipient must make the decision to accept or decline 

the offer based upon complex and variable information about the donor, the recipient and the 

transplant process. A clinical prediction model may be able to support clinicians in their 

decision-making. The Kidney Donor Risk Index (KDRI) was developed in the United States to 

predict graft failure following kidney transplantation. The survival process following 

transplantation consists of semi-competing events where death precludes graft failure, but not 

vice-versa. 

Methods We externally validated the KDRI in the UK kidney transplant population, and 

assessed whether validation under a semi-competing risks framework impacted predictive 

performance. Additionally, we explored whether the KDRI requires updating. We included 

20,035 adult recipients of first, deceased donor, single, kidney-only transplants between 

January 1st 2004 and December 31st 2018 collected by the UK Transplant Registry and held 

by NHS Blood and Transplant. The outcomes of interest were one- and five-year graft failure 

following transplantation. In light of the semi-competing events, recipient death was handled 

in two ways: censoring patients at the time of death, and modelling death as a competing 

event. Cox proportional hazard models were used to validate the KDRI when censoring graft 

failure by  death, and cause-specific Cox models were used to account for death as a 

competing event. 

Results The KDRI underestimated event probabilities for those at higher risk of graft failure. 

For five-year graft failure discrimination was poorer in the semi-competing risks model (0.625, 

95% CI: 0.611 to 0.640;0.607, 95% CI: 0.589 to 0.625), but predictions were more accurate 

(Brier score 0.117, 95% CI:0.112 to 0.121; 0.114, 95% CI:0.109 to 0.118). Calibration plots 

were similar regardless of whether death was modelled as a competing event or not. Updating 

the KDRI worsened calibration, but marginally improved discrimination. 
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Conclusions Predictive performance for one-year graft failure was similar between death-

censored and competing event graft failure, but differences appeared when predicting five-

year graft failure. The updated index did not have superior performance and we conclude that 

updating the KDRI in the present form is not required. 

 

Keywords: survival analysis; time-to-event model; competing events; risk prediction; external 

validation; kidney transplantation 
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Introduction 

For many patients with end-stage kidney disease, transplantation represents the optimal 

treatment. The demand for deceased donor kidneys in the United Kingdom (UK) greatly 

outweighs availability (1). It is therefore essential to maximise the number of successful 

transplants in order to reduce the number of recipients returning to the transplant waiting list 

or dialysis. A prediction model may provide support to clinicians charged with deciding whether 

to accept the offer of a donor kidney for an individual patient. Such models can incorporate a 

large number of donor, recipient, and transplant related factors to produce personalised risk 

predictions. 

In the United States (US) the Kidney Donor Risk Index (KDRI), proposed by Rao et al. (2), is 

used as part of the allocation process for deceased donor kidneys to those awaiting a kidney 

transplant. It was originally developed to predict graft failure in first-time, kidney-only, adult 

transplants with the intention of being used as a decision-making tool at the time of a donor 

kidney offer. The risk index uses 13 donor-related parameters that would be known by the 

clinician at the time of the offer including age, height, weight, and history of hypertension and 

diabetes.  

The scientific and clinical practices underpinning the delivery of transplantation services have 

evolved over time. Further variation exists between different units and countries. As such, 

prediction models developed in a particular country may not be reliably applicable to 

populations in other countries in the future. It is therefore essential to externally validate 

proposed prediction models when considering their use in different populations and to revisit 

these validations over time (3-5).  

We sought to validate the predictive performance of the KDRI in the UK kidney transplantation 

population. In our systematic review (6), we found that the KDRI has been validated in different 

populations across the globe (7-15). In the UK, Watson et al. (14) assessed the performance 

in transplants performed between 2000 and 2007. The KDRI showed moderate discrimination 



 
 

5 
 

in predicting the earliest of graft failure and death (C-index 0.63). The calibration has not 

previously been assessed in the UK kidney transplant population. 

The survival process following transplantation consists of semi-competing events, where a 

terminal event precludes the observation of a non-terminal event, but not vice-versa. 

Specifically, in the context of kidney transplant survival outcomes, once a patient has died, we 

can no longer observe whether they experience graft failure. However, if a patient suffered 

graft failure then we could still observe their death. In the existing literature on prediction 

models for graft failure, death is often not treated as a competing event, rather graft failure is 

censored by death or they are combined to predict a composite event.  

The original KDRI defined graft failure as the earliest of graft failure or death. Predicting a 

composite outcome assumes that predictors have the same effect on both outcomes of 

interest (16) and, in doing so, researchers shift the attention from the primary clinical endpoint 

of the proposed prediction model to one that may not be of clinical interest. Censoring the 

primary event of interest by the competing event violates the assumption of non-informative 

censoring typically used in standard time-to-event methods and can lead to bias in the 

cumulative incidence estimator, such that the sum of the individual event estimators exceeds 

the estimator of the composite event (17, 18). Recent work has also noted the importance of 

accounting for competing events in external validation studies as well as in model 

development (19, 20).  

The aim of this study was to externally validate the KDRI in the UK kidney transplantation adult 

population. Additionally, we aimed to explore whether modelling death as a competing event, 

rather than censoring recipients at the time of death, influences the predictive performance of 

the KDRI. Furthermore, we assessed whether updating the KDRI was required to improve 

predictions for graft failure. 
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Methods 

This study was reported in accordance with the Transparent Reporting of a multivariable 

prediction model for Individual Prognosis or Diagnosis (TRIPOD) statement (21). 

Source of data 

This was a cohort study based on registry database collected by the UK Transplant Registry 

(UKTR) and held by NHS Blood and Transplant (NHSBT). Recipients were transplanted in the 

United Kingdom between January 1st 2004 and December 31st 2018. Recipients were 

followed-up until March 31st 2021. 

Participants 

Adult recipients (aged 18 years and above) of a first, deceased donor, single, kidney-only 

transplant were included. Where recipients have had multiple transplants within the study 

period, only their first one was used for analysis. Recipients of en-bloc, or multiple organ 

transplants (such as combined kidney and pancreas transplants) were not included.  

Outcomes 

We assessed the performance of the KDRI for predicting graft failure one year and five years 

following kidney transplantation. Graft failure was defined as the time from transplantation until 

either return to dialysis or re-transplantation. In light of the semi-competing events, recipient 

death was handled in two ways: censoring patients at the time of death, and modelling death 

as a competing event. The original KDRI was intended to predict graft failure, however, the 

model was developed to predict a composite outcome of time to the earliest of death or graft 

failure.  

Missing data 

Recipients with both event time and indicator missing were excluded from analysis. Missing 

values for donor height, weight, ethnicity, history of hypertension, history of diabetes, cause 

of death (cerebrovascular accident or not), creatinine value, and Hepatitis C virus status were 
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imputed using multiple imputation with chained equations (22), assuming that the data were 

missing at random. None of the donors were missing age or type (deceased cardiac or 

deceased brain donor). Hence, these variables were not imputed but were included in the 

imputation model, along with the Aalen-Johansen estimates for the cumulative hazard. 

Continuous variables were imputed using predictive mean matching to ensure that implausible 

values were not imputed, such as negative values for height and weight.  

12.78% of the patients had incomplete information for calculating the KDRI, therefore we 

determined at least thirteen imputed data sets were required (23). Fifteen imputed data sets 

were generated. For continuous variables, imputations were checked by comparing the 

distributions between imputed data sets. For binary and categorical variables, we checked 

whether the counts were similar between imputations (see Supplementary Material).  

Parameter estimates and model performance measures, along with the associated standard 

errors, were pooled across the imputed data sets according to Rubin’s rules (24). These 

pooled estimates and standard errors were used to construct 95% confidence intervals using 

the 97.5th quantile of the t-distribution.   

Sample size 

The suitability of the sample size was determined according to the methods of Riley et al. (25). 

While the sample size for this study was fixed (20,035 recipients), we also explored the mean 

standard error of the calibration slope for a range of sample sizes. These, along with further 

details on the sample size calculation, can be found in the Supplementary Material.  

In the development article (2) the KDRI was split into quintiles, and Kaplan-Meier curves of 

the probability of graft survival were reported for each. We read the survival probabilities for 

the minimum and maximum quantiles and explored the sample size required for survival 

probabilities within that range. For one-year graft failure, we considered survival probabilities 

0.875, 0.901, 0.927, and 0.953, and for five-year graft failure 0.635, 0.697, 0.760, and 0.822.  
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For one- and five-year graft failure, the mean standard error for the calibration slope varied 

between 0.053 and 0.092, and 0.036 and 0.051, respectively for the survival probabilities 

under consideration (Table 1). We deemed these to be acceptable.   

Summary statistics 

Median time to graft failure was calculated using the Kaplan-Meier method, whereby the 

median time is given by the time at which the probability of survival is 0.5. Median follow-up 

times were calculated using the reverse Kaplan-Meier method. This is similar to the Kaplan-

Meier method except the censoring indicator is treated as an event indicator.  

Model performance 

Discrimination 

Discrimination measures the rank separation between those who experience the outcome of 

interest and those who do not. For example, a model that discriminates well will predict a 

higher risk for a recipient that experiences graft failure than one who does not.  

The discrimination was assessed using the time-dependent area under receiver operating 

characteristic curve (AUC) (27). Values typically range between 0.5 and 1, where 1 indicates 

perfect discrimination and 0.5 shows that predictions are as accurate as flipping a coin. 

Calibration 

Calibration is used to measure the agreement between observed and predicted risks. Here 

we used the observed event proportion as a proxy for observed risk. As some patients were 

censored prior to the event time horizon, it was not possible to calculate the observed event 

proportion. To overcome this we used a jack-knife approach to calculate pseudo-observations, 

which were then used as proxy measures of event indicators for censored patients (28).  

Calibration plots using pseudo-observations with local weighted regression smoothing were 

assessed in each imputed dataset. For models that are well calibrated the smoothed curve 

lies on the diagonal line that runs through the origin.  
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Further, we calculated the calibration slope, where a value equal to one indicates perfect 

calibration. A calibration slope less than 1 suggests that predictions are too high for recipients 

with high event probabilities and too low for those with low probabilities. Conversely, a 

calibration slope greater than 1 suggests that recipients with high observed risk are under-

estimated, and those with low observed risk are over-estimated. The calibration slope was 

calculated using a generalised linear model with pseudo-observations as the outcome and the 

complementary log-log transformed predicted risks as both an offset and covariate . The 

coefficient of the transformed risks indicates how far the calibration slope differs from 1, thus 

the calibration slope is given by summing these two values.  

Given that the baseline survival value for one- and five-years following transplantation were 

not reported in the original article, it was calculated within the UKTR data. Consequently, the 

calibration may appear more optimistic since the baseline cumulative incidence, which is 

required to calculate the absolute risk of graft failure, was estimated in the same cohort.  

Overall prediction accuracy 

The Brier score measures prediction error by estimating the squared difference between the 

event indicator and estimated risk (30). Values closer to zero indicate a more accurate 

prediction model. 

Validation of the KDRI 

The KDRI (2) can be calculated using 
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KDRI = exp{−0.0194I[age < 18yr](age − 18yr) + 0.0128(age − 40)

+ 0.0107I[age > 50](age − 50) −
0.0464(height − 170)

10

−
0.0199I[weight < 80](weight − 80)

5

+ 0.1790I[ethnicityAfricanAmerican]

+ 0.1260I[historyofhypertension] + 0.1300I[historyofdiabetes]

+ 0.0881I[causeofdeathcerebrovascularaccident(CVA)]

+ 0.2200(creatinine − 1) − 0.2090I[creatinine > 1.5](creatinine − 1.5)

+ 0.2400I[HepatitisCvirus(HCV)positive]

+ 0.1330I[deceasedcardiacdonor(DCD)]}, 

where I[. ] is an indicator function which is equal to 1 if the criteria in [.] are satisfied and 0 

otherwise. The KDRI originally derived by Rao et al. also considered transplant related 

factors, such as cold ischaemic time, human leukocyte antigen mismatch, and whether it 

was an en-bloc or double kidney transplant. In practice, only the donor related factors are 

used to calculate the KDRI (31). With this in mind, we validated the donor-only KDRI. 

For each recipient, we calculated the linear predictor of the KDRI, by applying the natural 

logarithm to the index. Cox proportional hazards models (32) were used to assess the 

performance of the KDRI for predicting death-censored graft failure. In the presence of 

competing events, the Cox model can lead to biased risk estimation. As alternatives, 

researchers typically use either the cause-specific Cox (33) or the Fine-Gray model (34). The 

Fine-Gray model is often preferred when the goal is prediction rather than association (35). 

However, in some instances, it is possible for the sum of patient-specific event probabilities, 

which should be constrained between zero and one, to exceed one (36). Therefore, we used 

the cause-specific Cox models to validate the KDRI when accounting for death as a competing 

event. 

Updating the KDRI 
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To assess whether the KDRI required updating, we re-estimated the coefficients used in the 

original index. For the KDRI to be applicable in the UK cohort we substituted African American 

ethnicity for Black ethnic origin. Variables were centred in the same way that they were in the 

original KDRI, and no further variable selection was undertaken. We re-estimated the 

coefficients by censoring graft failure at the time of death using a Cox proportional hazards 

model, and accounting for death as a competing event using a cause-specific Cox model.  

The coefficients were re-estimated in each of the 15 imputed datasets, and the performance 

of those updated models were individually assessed. The re-estimated coefficients and 

performance measures were then pooled according to Rubin’s rules.  

When updating the KDRI we assessed the predictive performance in the same group of 

recipients that were used to update the KDRI. This will naturally produce optimistic results. To 

account for optimism in the numerical summaries of predictive performance we used Harrell’s 

bias correction method (37), with 100 bootstrap samples. Calibration plots have not been 

adjusted for optimism and thus represent the apparent calibration. 

Software 

Multiple imputation was performed using Stata/MP 16.1 (38). All other analyses were 

conducted in R 4.1.2 (39). 

Results 

Summary statistics 

In total 20,134 deceased donor single kidney-only recipients who received a transplant 

between January 1st 2004 and December 31st 2018 in the UK were eligible for inclusion (Figure 

1). Eleven of the recipients had missing time-to-event information for both graft failure and 

death, and 88 missing for graft failure only. Therefore 20,035 transplants were included in our 

analysis. 
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The end of the follow-up period was March 31st 2021. The median follow-up time was 5.96 

years and maximum follow-up time 17.05 years. The minimum probability of survival for graft 

failure  and for death was both above 0.5 , hence we did not observe the median survival time 

for either outcome in this study. At the end of the follow-up period 13,724 (68.50%) recipients 

were alive with a functioning graft. 2,675 (13.35%) recipients experienced graft failure only, 

and 904 (4.51%) died following graft failure. 2,732 (13.64%) recipients died with a functioning 

graft (Figure 1).  

By the end of the first year following transplantation 1,050 (5.24%) recipients had experienced 

graft failure only, and 186 (0.93%) died following graft failure. A total of 497 (2.48%) recipients 

had died with a functioning graft. By five years, 1,936 (9.66%) recipients experienced graft 

failure alone, and 456 (2.28%) died following graft failure. 1,509 (7.53%) transplant recipients 

died with a functioning graft. 

A summary of the donor characteristics used to calculate the KDRI, including the number of 

missing values, is presented in Table 2, and a summary of recipient characteristics can be 

found in the Supplementary Material. Donors were aged between one and 85 years old, where 

626 (3.13%) were younger than 18 years of age and 10,925 (54.53%) were older than 50. 

10,646 (53.14%) donors weighed less than 80kg. Creatinine was greater than 1.5mg/dl for 

1,720 (8.59%) donors. 

No values were missing for donor age and type of donor. 1,688 (8.43%) donors had missing 

values for creatinine, the most of any variables required for calculating the KDRI. 2,560 

(12.78%) were missing at least one value required to calculate the KDRI.  

The distribution of the KDRI in the original article by Rao et al. (2) was similar in shape to that 

of the transplants included in this analysis (Figure 2). However, median KDRI values were 

higher in the UK cohort; 1.32 compared with 1.05 in the US cohort used to develop the index. 

External validation of the KDRI 

One-year graft failure 
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The KDRI discriminated moderately well for predicting one-year graft failure. The time-

dependent AUC was  0.607 (95% CI: 0.589 to 0.625) and  0.610 (95% CI: 0.592 to 0.628) with 

and without accounting for competing events, respectively (Table 3). 

Calibration plots and slopes were similar when modelling graft failure while censoring for death 

and death as a competing event (Figure 3a, Figure 3b). The KDRI was well calibrated for 

recipients with predicted risks less than 10%, but calibration was worse for those with 

predicted risk above this value. Only 1,100 (5.5%) were at a higher risk than 10%, and for 

those the KDRI underestimated the risk of graft failure. Calibration slopes were, respectively, 

1.074 (95% CI: 0.878 to 1.271) and 1.075 (95% CI: 0.877 to 1.272) for predicting death-

censored and competing event graft failure.  

Predictive accuracy was the same regardless of whether death was handled as a competing 

event or not with reported Brier scores equal to 0.058 for both types of outcomes. 

Five-year graft failure 

Five years following kidney transplantation the time-dependent AUC was slightly lower when 

predicting graft failure with death as a competing event (0.611, 95% CI: 0.597 to 0.625) as 

opposed to censoring at the time of death (0.625, 95% CI: 0.611 to 0.640). 

Using calibration plots, predicted risks using the KDRI were generally similar to the observed 

proportion of recipients who experienced graft failure (Figure 4a, Figure 4b). Calibration was 

poorest for those at higher risk of graft failure. The risk of graft failure was underestimated for 

recipients at a higher risk. The calibration slopes were 0.964 (95% CI: 0.827 to 1.100) when 

censoring recipients at the time of death, and  0.979 (95% CI: 0.835 to 1.123) when modelling 

death as a competing event. 

Predictions were less accurate for five-year compared with one-year graft failure. Brier scores 

differed for death-censored and competing event graft failure (0.117,95% CI: 0.112 to 0.121; 

and 0.114, 95% CI: 0.109 to 0.118 respectively). 
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Updating the KDRI 

To update the KDRI, we re-estimated the coefficients used in the original index in the UK 

kidney transplant population. No additional predictors were considered. In the updated 

models, the estimates were similar regardless of whether death was modelled as a competing 

event or not (Table 4). Confidence intervals for the effect of ethnicity were much wider than in 

the original index, likely because only 1.11% of donors were of Black ethnic origin.  

The effect of age for those under 18 and over 50 years, and height were not found to be 

associated with graft failure. Additionally, donor ethnicity, and donor HCV status were not 

significantly associated with graft survival.  

One-year graft failure 

Discrimination was similar for predicting death-censored graft failure (time-dependent AUC 

0.614) and graft failure with death as a competing event (time-dependent AUC 0.608) (Table 

5).  

Calibration slopes were 1.096 when censoring at the time of death, and 1.068when modelling 

death as a competing event. Calibration plots were similar for both types of graft failure and 

clearly showed that low risks were over-estimated and high risks were under-estimated (Figure 

3c, Figure 3d).   

There was no difference in prediction accuracy whether accounting for death as a competing 

event or not, with Brier scores equal to 0.058 for both cases. 

Five-year graft failure 

Discrimination was lower when modelling graft failure with death as a competing event (time-

dependent AUC 0.629 and 0.614, respectively) for the updated index (Table 5). 
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We found calibration slopes were 1.016 for death-censored graft failure and 1.002 when 

modelling death as a competing event. The calibration plots (Figure 4c, Figure 4d) showed 

miscalibration for recipients at the highest and lowest predicted risks, and 95% confidence 

intervals were much wider at the tails of the curve. 

Prediction accuracy was slightly improved when modelling death as a competing event 

compared to censoring at the time of death with Brier scores equal to 0.114 and 0.117, 

respectively. 

Discussion 

Principal findings 

In external validation the KDRI had moderate discrimination and was generally well calibrated 

for predicting graft failure one year and five years following kidney transplantation. For 

predicting one-year graft failure discrimination, calibration and predictive accuracy did not 

differ depending on how death prior to graft failure was handled. Discrimination was higher for 

predicting five-year graft failure. Predictions were more accurate for early graft failure 

compared to those at five years following transplantation.  

Calibration slopes indicated miscalibration in the KDRI, however, the corresponding 95% 

confidence intervals were wide. In calibration plots for both outcomes, miscalibration was 

mainly driven by recipients at higher risk, where the event probabilities were generally 

underestimated. However, it should be noted that the baseline survival was not reported in the 

original article and as such has been estimated within the same cohort as is being validated. 

Therefore, the calibration of the KDRI in the UK kidney transplant population may be more 

optimistic.  

Updating the KDRI in the UK kidney transplant population yielded similar coefficients, but 

some prognostic factors were no longer associated with graft failure. Given that the coefficient 
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estimates did not differ between the Cox and the cause-specific Cox models, it is unsurprising 

that there was little difference between the predictive performance of those models.  

Strengths and limitations 

To our knowledge, this is the first study to assess the performance of the KDRI under a semi-

competing risks framework for first, deceased donor, single, kidney-only, and adult 

transplants. Our work included all eligible kidney transplants that occurred in the UK during 

the study period, with a long follow-up period. The KDRI was previously validated in the UK 

by Watson et al. (14) using information on kidney transplants that occurred between 2000 and 

2007. Therefore, our work serves to assess whether the KDRI is still relevant in the UK kidney 

transplant population.  

The baseline survivor function was recalibrated for our cohort; therefore, calibration may seem 

more optimistic in this external validation of the KDRI. From the current analyses we cannot 

comment on the clinical utility of the index in the UK kidney transplant population. Further work 

is required to determine whether the KDRI is clinically relevant in practice. 

Few recipients experienced a competing event (died with a functioning graft), which may 

explain why little difference was found in predictive performance when considering death as a 

competing event and censoring graft failure at the time of death. There is a lack of guidance 

concerning under what situation ignoring the competing risk elements can impact the 

performance of the prediction models. Externally validating and updating a model under the 

competing risk framework serves as a sensitivity analysis to evaluate the developed models 

which ignore the competing risk elements. Future work could explore to what extent the 

proportion of non-terminal events censored by the terminal events impacts the predictive 

performance. This can potentially lead to recommendations for practice for when  it is 

necessary to account for competing events, and when traditional methods, such as the Cox 

proportional hazards model, might suffice.  
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Results in context 

The KDRI only considers donor-related variables to predict graft failure in the recipient of the 

kidney transplant. Additional donor variables may improve predictive performance. The 

Maryland Aggregate Pathology Index (MAPI) (40), for example, utilises information gathered 

from biopsies of donor kidneys, and has shown higher discrimination in internal and external 

validation (9, 41). Such additional information may be able to improve performance. However, 

it may not be practical in a decision-making tool since, in the UK, this information may not be 

known at the time of the offer of a donor kidney. Additionally, utilising information about the 

recipient and the transplant process, or other existing indices which incorporate these 

variables, could also improve predictions.  

A validation study in the US (9) evaluated the predictive performance of the KDRI two years 

following transplantation and showed poor discrimination with time-dependent AUC equal to 

0.45. External validation in Australia and New Zealand (15) reported C-index 0.63 (95% CI: 

0.60 to 0.65) for predicting death-censored graft failure. In Canada the KDRI showed moderate 

discrimination with C-index equal to 0.59 (13). The KDRI was previously validated using data 

from kidney transplants performed in the UK between 2000 and 2007 (14), and reported a C-

index of 0.63.  

Zhong et al. (42) also assessed whether the original KDRI required updating using information 

on kidney transplants performed between 2000 and 2016 in the US. Their updated index 

showed marginally higher discrimination than the original KDRI (original KDRI C-index 0.651; 

updated KDRI C-index 0.652), however the calibration was not assessed. This study also 

determined that there is little to be gained in updating the KDRI. 

Conclusions 

The Kidney Donor Risk Index, originally developed in the US population, showed moderate 

predictive performance overall in our external validation in the UK kidney transplant 

population. The use of a semi-competing risks framework made a slight difference when 
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predicting five-year graft failure compared to censoring for death. The updated index had 

slightly improved discrimination but was poorly calibrated for those with the highest and lowest 

risk of graft failure. Therefore, we conclude that updating the KDRI in the present form is not 

required.  
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Tables 

 

 

 

Table 1: Mean standard error of calibration slope from simulation study of size 500, 
assuming a sample size of 2,000. The linear predictor was assumed to follow Log-
Norm(log(1.05), 0. 42487). 

Survival 

probability 

Event time 

distribution rate 

Mean calibration slope 

standard error 

1-year graft failure 

0.875 0.118 0.053 

0.901 0.092 0.061 

0.927 0.067 0.074 

0.953 0.042 0.092 

5-year graft failure 

0.635 0.083 0.036 

0.697 0.065 0.039 

0.760 0.049 0.044 

0.822 0.035 0.051 
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Table 2: Characteristics of donor patients in the UK kidney transplant population between 

January 1st 2004 and December 31st 2018. Numerical summaries of variables used to 

calculate the Kidney Donor Risk Index, including number (and percentage) of missing values. 

Variable Mean [SD] or N (%) Missing (%) 

Age, years 49.91 [15.44] 0 (0) 

Height, cm 170.29 [10.80] 269 (1.34) 

Weight, kg 77.96 [17.77] 130 (0.65) 

Ethnicity  63 (0.31) 

Asian 372 (1.86)  

Black 222 (1.11)  

Chinese/Oriental 56 (0.28)  

Mixed 148 (0.74)  

Other 160 (0.80)  

White 19,014 (94.90)  

History of hypertension  716 (3.57) 

Yes 5,296 (26.43)  

No 14,023 (69.99)  

History of diabetes  527 (2.63) 

Yes 1,275 (6.36)  

No 18,233 (91.01)  

Cause of death  161 (0.80) 

CVA 741 (3.70)  

Not CVA 19,133 (95.50)  

Creatinine, mg/dl 0.95 [0.60] 1,688 (8.43) 

HCV test result  63 (0.32) 

Positive 21 (0.10)  

Negative 19,951 (99.58)  

Donor type  0 (0) 

DCD 7,517 (37.52)  

DBD 12,518 (62.48)  

CVA: cerebrovascular accident; HCV: hepatitis C virus; DCD: deceased 

cardiac donor; DBD: deceased brain donor. 
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Table 3: Numerical summary of performance of the original Kidney Donor Risk Index for predicting graft failure one year and five years 
following transplantation while censoring for death and modelling death as a competing event. T-D AUC: time-dependent area under receiver 
operating curve; CI: confidence interval. 

 

Censoring at the time of death 
Accounting for death as competing 

event 

One-year graft failure   

T-D AUC  

(95% CI) 

0.610 

(0.592, 0.628) 

0.607 

(0.589, 0.625) 

Calibration slope  

(95% CI) 

1.074 

(0.878, 1.271) 

1.074 

(0.877, 1.272) 

Brier Score  

(95% CI) 

0.058 

(0.055, 0.062) 

0.058 

(0.054, 0.061) 

   

Five-year graft failure   

T-D AUC  

(95% CI) 

0.625 

(0.611, 0.640) 

0.611 

(0.597, 0.625) 

Calibration slope 

(95% CI) 

0.964 

(0.827, 1.100) 

0.979 

(0.835, 1.123) 
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Brier Score  

(95% CI) 

0.117 

(0.112, 0.121) 

0.114 

(0.109, 0.118) 
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Table 4: Coefficients of the variables used to calculate the Kidney Donor Risk Index from the original development, the updated Cox 
proportional hazards model and the updated cause-specific Cox model. Variables are centred as they were in the original publication. 

Variable Original 
Updated 

(Cox model) 

Updated 

(Cause-specific Cox model) 

Age-18; for donors under 

18 years 

-0.019 

(-0.031, -0.010) 

-0.032 

(-0.096, 0.033) 

-0.031 

(-0.095, 0.033) 

Age-40, years 0.013 

(0.011, 0.015) 

0.016 

(0.009, 0.024) 

0.016 

(0.009, 0.024) 

Age-50; for donors over 

50 years 

0.011 

(0.005, 0.016) 

0.003 

(-0.010, 0.016) 

0.003 

(-0.010, 0.016) 

Height per 10cm increase -0.046 

(-0.062, -0.031) 

-0.034 

(-0.093, 0.026) 

-0.034 

(-0.093, 0.026) 

Weight per 5kg increase; 

for donors below 80kg 

-0.020 

(-0.031, -0.010) 

-0.035 

(-0.068, -0.002) 

-0.035 

(-0.068, -0.002) 

Ethnicity    

 Not Black ethnic 

origin 
Reference 

 Black ethnic origin 0.179 

(0.122, 0.239) 

0.409 

(-0.017, 0.835) 

0.405 

(-0.021, 0.832) 

History of hypertension    

 No Reference 
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 Yes 0.126 

(0.077, 0.174) 

0.256 

(0.135, 0.378) 

0.255 

(0.133, 0.376) 

History of diabetes    

 No Reference 

 Yes 0.130 

(0.039, 0.215) 

0.154 

(-0.050, 0.358) 

0.153 

(-0.051, 0.357) 

Cause of death CVA    

 No Reference 

 Yes 0.088 

(0.039, 0.131) 

-0.035 

(-0.308, 0.238) 

-0.036 

(-0.309, 0.237) 

Creatinine-1, mg/dl 0.220 

(0.157, 0.285) 

0.395 

(0.205, 0.586) 

0.395 

(0.204, 0.586) 

Creatinine-1; for donors 

with creatinine > 1.5, 

mg/dl 

-0.209 

(-0.301, -0.117) 

-0.500 

(-0.819, -0.182) 

-0.500 

(-0.818, -0.181) 

HCV    

 Negative Reference 

 Positive 0.240 

(0.122, 0.358) 

0.233 

(-1.286, 1.751) 

0.234 

(-1.284, 1.753) 

Donor type    

 DBD Reference 
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 DCD 0.133 

(0.020, 0.247) 

0.113 

(0.005, 0.221) 

0.112 

(0.004, 0.220) 

CVA: cerebrovascular accident; DBD: deceased brain donor; DCD: deceased cardiac donor. 
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Table 5: Numerical summary of performance of the updated Kidney Donor Risk Index for predicting graft failure one year and five years 
following transplantation while censoring for death and modelling death as a competing event. T-D AUC: time-dependent area under receiver 
operating curve. 

 

Censoring at the time of death 
Accounting for death as competing 

event 

One-year graft failure   

T-D AUC  

(Optimism) 

0.614 

(-0.00015) 

0.608 

(0.00252) 

Calibration slope  

(Optimism) 

1.096 

(-0.00049) 

1.068 

(0.02812) 

Brier Score  

(Optimism) 

0.058 

(-0.00004) 

0.058 

(-0.00007) 

   

Five-year graft failure   

T-D AUC  

(Optimism) 

0.629 

(-0.00019) 

0.612 

(0.00254) 

Calibration slope 

(Optimism) 

1.016 

(-0.00133) 

1.002 

(0.02911) 

Brier Score  

(Optimism) 

0.117 

(0.00006) 

0.114 

(-0.00010) 
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Figures 

 

 

Figure 1: Flowchart of eligible transplant recipients for inclusion in analyses. GF: graft failure. 
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Figure 2: Distribution of the original Kidney Donor Risk Index in UK kidney transplantation 

population. 
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Figure 3: Calibration plots for the original and updated KDRI for predicting 1-year graft failure. 

The left panels show graft failure censoring at the time of death, and the right panels treat 

death as a competing event. Below each plot is a histogram of predicted risks. The dashed 

red line indicates perfect calibration. 
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Figure 4: Calibration plots for the original and updated KDRI for predicting 5-year graft failure. 

The left panels show graft failure censoring at the time of death, and the right panels treat 

death as a competing event. Below each plot is a histogram of predicted risks. The dashed 

red line indicates perfect calibration. 

 


