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1. Introduction
The central part of the Cenozoic Andes, located at the convergent margin where the oceanic Nazca plate subducts 
beneath the continental South American Plate, provide a natural laboratory to study strain localization processes 
in a non-collisional mountain belt and its neighboring regions (Burchfiel, 1980). Spanning a length of 6,000 km, 
this mountain range exhibits varying characteristics, including segments with and without arc magmatism and 
the development of fold-and-thrust belts (FTBs) with different structural styles and degrees of shortening (Jordan 
et al., 1983a; Jordan et al., 1983b). In the southern Central Andes (SCA, 27°–40°S), the mechanisms responsible 
for the observed variability in the foreland deformation patterns have been the subject of debate, with two proposed 
end-member models. The first one is related to the effect of the subduction of a subhorizontal oceanic plate 
between 27° and 33°S in a segment known as the Pampean flat slab (Figure 1a, Barazangi & Isacks, 1976, 1979; 

Abstract The southern Central Andes (SCA, 27°–40°S) exhibit a complex deformation pattern that is 
influenced by multiple factors, including the present-day dip angle of the subducting oceanic Nazca plate 
and the influence of inherited heterogeneities in the continental South American plate. This study employs 
a data-driven geodynamic workflow to assess the role of various forcing factors in determining upper-plate 
strain localization, both above the flat slab and the steeper segment to the south. These include the dip angle of 
the Nazca plate, the mechanically weak sedimentary basins, the thickness and composition of the continental 
crust, the strength of the subduction interface, and the plate velocities. Our modeling results predict two main 
deformation modes: (a) pure-shear shortening in the broken foreland above the flat-slab segment and eastward 
propagation of deformation, and (b) simple-shear shortening restricted to the eastern margin of the Andean 
fold-and-thrust belt above the steep-slab segment. While the convergence velocity and the frictional strength 
of the subduction interface primarily control the intensity of the deformation, inherited heterogeneities tend to 
localize deformation, and weak sediments leads to intensified surface deformation. Thicker crust and surface 
topography also influences strain localization by transferring stress to the eastern orogenic front. Above the flat-
slab segment deformation migrates eastward, which is facilitated by enhanced interface coupling. The transition 
between the steep and sub-horizontal subduction segments is characterized by a diffuse transpressional shear 
zone, likely controlled by the change in dip geometry of the Nazca plate, and the presence of inherited faults 
and weak sedimentary basins.

Plain Language Summary The deformation patterns in the southern part of the Central Andes, 
where the oceanic Nazca plate subducts beneath the continental South American Plate, exhibit great variability 
both along and across the mountain range and the adjacent regions. However, the extent to which each plate 
contributes to these patterns remains a topic of ongoing discussion. In this study, we use a computer code 
to numerically simulate the forces that act on specified areas of the mountain belt (stresses) and resulting 
deformation (strain), by incorporating the present-day plate geometry, temperature, and composition into our 
workflow. This enables us to quantify the relative contribution of each plate to observable deformation patterns, 
including variations in the dip angle of the oceanic plate and the influence of mechanically weak discontinuities 
within the continental plate that were inherited from previous tectonic processes.
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Ramos & Scientific, 2002). In this model, the flattening of the slab produces a bulldozing effect oriented to the 
keel of the continental lithosphere, where shear stresses are transmitted from the subduction zone interface at 
the trench to the eastern edge of the flat-slab segment (e.g., Gutscher, 2018; Horton, 2018; Jordan et al., 1984; 
Martinod et al., 2010; Ramos & Folguera, 2009). The second mechanism involves compressional reactivation of 
pre-existing crustal faults inherited from previous tectonic regimes that act as zones of weakness, promoting strain 
localization (Cristallini & Ramos, 2000; Giambiagi et al., 2014; Kley & Monaldi, 1998; Lossada et al., 2017; 
Mescua et al., 2014; Mon & Salfity, 1995), similar to the inverted Cretaceous extensional province of the Santa 
Bárbara System of Argentina farther north (Mon & Salfity, 1995). Other factors contributing to strain localization 
in the upper-plate are crustal-scale heterogeneities in this plate, including compositional and thickness variations 
(Barrionuevo et  al.,  2021; Gerbault et  al.,  2009; Giambiagi et  al.,  2022; Liu et  al.,  2022; Rodriguez Piceda, 
Scheck-Wenderoth, Bott, et al., 2022; Rodriguez Piceda, Scheck-Wenderoth, Cacace, et al., 2022). Assessing the 
relative contribution of these various factors to strain localization in the SCA is crucial to better understand plate 
interaction and deformation processes at non-collisional convergent plate margins.

Flat subduction is a geodynamic process that occurs at approximately 10% of active convergent margins (Gutscher 
et al., 2000). In the SCA, supporting evidence for the existence of the Pampean flat slab includes the sub-horizontal 
distribution of seismicity far away from the plate margin (Barazangi & Isacks, 1976, 1979) and a gap in volcanic activ-
ity that has existed since the late Miocene (Isacks & Barazangi, 1977; Jordan, Isacks, Ramos, & Allmendinger, 1983; 
Jordan, Isacks, & Ramos, 1983). It has been proposed that slab flattening may be caused by the subduction of 
buoyant ridges or oceanic plateaus (Espurt et al., 2008; Gutscher et al., 2000), but more recent thermo-mechanical 
modeling work suggests that the present-day thickness of the oceanic crust is not sufficient to sustain this dip 
geometry over long distances (Schellart, 2020; Schellart & Strak, 2021). Other authors have proposed that a short 
slab (∼300 km length) may potentially be related to slab break-off (Gao et al., 2021), resulting in a decrease of the 
slab-pull force, late-stage eclogitization of oceanic crust, and ultimately flat subduction (Dai et al., 2020; Gerya 
et al., 2009; Liu & Currie, 2016; Van Hunen et al., 2002). Alternatively, the westward drift of the continental plate 
(Schellart & Strak, 2021) may have facilitated hydration of the mantle wedge (Manea & Gurnis, 2007) and would 
have caused a suction effect of the mantle wedge, thereby promoting the flattening of the slab.

In the SCA, the Pampean flat slab is associated with the subduction of the Juan-Fernandez Ridge (JFR) bathym-
etric high (Figure 1; Bello-González et al., 2018; Gutscher et al., 2000; Kley, 1999; Yáñez et al., 2001). Due to 
the oblique subduction and reconstructed shape of the ridge, the Pampean flat slab is thought to have migrated 
from ∼20°S to its present-day position at ∼32°S within the last 35 Ma (Yáñez et al., 2001). The tectono-magmatic 
evolution of the orogen was significantly influenced by this process, as evidenced by the increase of shortening 
magnitude following the migration of the flat slab (Dickinson & Snyder, 1978; Haines et al., 2001; Jordan & 
Allmendinger,  1986; Jordan, Isacks, Ramos, & Allmendinger,  1983; Jordan, Isacks, & Ramos,  1983; Kay & 
Mpodozis, 2002; Oncken et al., 2006, 2012; Pilger, 1981; Ramos & Scientific, 2002).

The deformation style in the SCA foreland exhibits significant variability along strike. Above the flat slab segment, 
the Precordillera fold-and-thrust belt along the eastern flank of the orogen displays mixed deformation character-
istics with thin-skinned deformation over a westward-dipping décollement (Allmendinger & Judge, 2014; Zapata 
& Allmendinger, 1996) and crustal thickening in basement sectors below (Figure 1b, Gans et al., 2011; Giambiagi 
et al., 2011; Zapata & Allmendinger, 1996). East of the Precordillera follows the thick-skinned broken foreland of the 
reverse-faulted Sierras Pampeanas morphotectonic province between 27° and 33°S (Figure 1b, Jordan, Isacks, Ramos, 
& Allmendinger, 1983; Jordan, Isacks, & Ramos, 1983; Ramos & Scientific, 2002). Via a region between 33° and 
36°S where both thick-skinned and thin-skinned deformation styles coexist the foreland transitions into predominant 
thin-skinned deformation south of ∼36°S (Figures 1c and 1d, Fuentes et al., 2016; Giambiagi et al., 2012; Jordan & 
Allmendinger, 1986; Manceda & Figueroa, 1995) while the basement remains mostly undeformed (Figure 1d). In 
this transition, the San Rafael region exhibits thick-skinned deformation (Heredia et al., 2016), whereas the Cerrilla-
das Pedemontanas region displays thin-skinned deformation (Figure 1c, Ahumada & Costa, 2009).

In this study, we aim at quantifying the relative importance of the key contributors to strain localization in the upper 
plate of the SCA and their influence on different foreland deformation styles. We used data-driven geodynamic 
modeling to simulate rapid strain localization within the lithosphere of the SCA, incorporating the current 3D 
structural, density, and thermal configuration of the oceanic and continental plates (Rodriguez Piceda et al., 2021; 
Rodriguez Piceda, Scheck-Wenderoth, Bott, et  al.,  2022). In our analysis, we distinguish between shallow and 
deep-seated contributors that affect the deformation of the crust or the entire lithosphere, respectively. At the surface, 
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we consider the effect of topography, and the strength and spatial distribution of mechanically weak sedimentary 
rocks. The latter factor is primarily a function of the existence of individual sedimentary basins that developed during 
Mesozoic extensional processes (Barredo & Sharkov, 2012; Franzese et al., 2003; Uliana et al., 1989); the normal 
faults that once bounded these sedimentary basins were subsequently reactivated during Cenozoic Andean compres-
sion (Fennell et al., 2019; Mpodozis & Kay, 1990; Uliana et al., 1995). Low frictional strength of unconsolidated sedi-
ments or poorly lithified sedimentary rocks may favor strain localization and thin-skinned deformation (Allmendinger 
et al., 1997; Allmendinger & Gubbels, 1996; Babeyko & Sobolev, 2005; Kley, 1999; Liu et al., 2022). Therefore, by 
including sedimentary basins in our model, we examined the role of crustal-scale heterogeneities. At greater depths, 
strain localization can be affected by lithospheric-scale heterogeneities, such as discrete suture zones that developed 
during the amalgamation of Paleozoic terranes (e.g., Ramos, 2010). Other crustal-scale heterogeneities are volumetric 
discontinuities associated with inherited variations in the composition and/or thickness of the layers of the continental 
lithosphere (i.e., crystalline crust and lithospheric mantle), which reflect the tectono-magmatic evolution of different 
sectors within the orogen and its foreland (Ibarra et al., 2018, 2019; Liu et al., 2022; Rodriguez Piceda et al., 2021; 
Tassara & Echaurren, 2012; Tassara et al., 2006). Combined, these structural and geometric parameters may influence 
lithospheric strength and the localization of deformation (Barrionuevo et al., 2021; Giambiagi et al., 2012; Horton 
et al., 2016, 2022; Lossada et al., 2017; Marot et al., 2014; Ramos & Folguera, 2009; Ramos & Scientific, 2002). 
Ultimately, our analysis sheds new light on the long-standing debate concerning the role and degree of influence of 
flat-slab geometry and inherited crustal-scale heterogeneities on deformation styles in orogenic forelands.

2. Methods
2.1. Governing Equations

We used the finite-element code ASPECT (Advanced Solver for Problems in Earth's ConvecTion, version 2.3.0-
pre, Bangerth et al., 2021; Heister et al., 2017; Kronbichler et al., 2012; Rose et al., 2017) to simulate brittle and 

Figure 1. Structural cross sections and map of the Southern Central Andes. (a) topography and bathymetry of the model area based on ETOPO1 global relief model 
(Amante & Eakins, 2009), indicating the modeling area with greater resolution (black rectangle) and the borders of the morphotectonic provinces (modified from 
Rodriguez Piceda et al., 2021) color-coded by the dominant style of deformation. The white-dashed rectangle outlines the extent of the gravity-constrained structural 
model (Rodriguez Piceda et al., 2021). Red triangles depict volcanic edifices with Holocene to Quaternary volcanic activity (Global GIS: volcanoes of the world; 
volcano basic data, 2003). Depth contours of the top slab from Slab2 (Hayes et al., 2018) are shown in white lines. Dashed black lines in the oceanic domain delimit 
the Juan Fernandez Ridge (JFR). Oceanic and continental plate velocities are indicated by white arrows (Becker et al., 2015; Sdrolias & Müller, 2006). Abbreviations 
of main morphotectonic provinces: CB: Cuyo basin, CC: Coastal Cordillera, CP: Cerrilladas Pedemontanas, ESP: Eastern Sierras Pampeanas, NB: Neuquén basin; P: 
Payenia, PC: Principal Cordillera (LR: La Ramada fold-thrust belt, Ac: Aconcagua fold-thrust belt, Ml: Malargüe fold-thust belt), FC: Frontal Cordillera, FA: forearc, 
PrC: Precordillera, SR: San Rafael Block, TrB: Triassic basins, WSP: Western Sierras Pampeanas, EAB: Extra-Andean basins. (b) Transect between 30 and 31°S 
(modified from Gans et al., 2011; Lossada et al., 2017; Ramos & Scientific, 2002; Stalder et al., 2020) (c) Transect at 33.4°S (modified from Barrionuevo et al., 2021). 
(d) Transect at 36°S (modified from Barrionuevo et al., 2021). Abbreviations of lithospheric and asthenospheric units: UC: upper crust, LC: lower crust, ML: mantle 
lithosphere, Ast: asthenosphere. Light-brown colored area indicates crustal regions with pronounced deformation. (e) schematic diagram of thick-skinned deformation. 
(f) schematic diagram of thin-skinned deformation.
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ductile deformation. This code solves for conservation of the momentum (Equation 1), mass (Equation 2) and 
energy (Equation 3). In addition, the advection and reaction equation depicts the transportation of compositional 
fields along the velocity field (Equation 4):

∇ ⋅ 𝒖𝒖 = 0, (1)

−∇ ⋅ (2𝜂𝜂έ) + ∇𝑃𝑃 = 𝜌𝜌𝜌𝜌𝜌 (2)

 (3)

𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕
+ 𝒖𝒖 ⋅ ∇𝜕𝜕𝑖𝑖 = 𝑞𝑞𝑖𝑖, (4)

Where 𝐴𝐴 έ =
1

2
⋅ (∇𝒖𝒖 + (∇𝒖𝒖)

𝑇𝑇  , is the deviatoric strain rate tensor; ,  and  are the 
velocity, pressure and thermal fields, respectively. 𝐴𝐴 𝐴𝐴 is the acceleration of gravity, 𝐴𝐴 𝐴𝐴𝑝𝑝 is the heat capacity, 𝐴𝐴 𝐴𝐴 is the 
density,  is the reference density (see Equation 5), 𝐴𝐴 𝐴𝐴 is the thermal conductivity, 𝐴𝐴 𝐴𝐴 is the thermal expansivity, 𝐴𝐴 𝐴𝐴 is 
the viscosity, 𝐴𝐴 𝐴𝐴  is time, 𝐴𝐴 𝐴𝐴𝑖𝑖 is the composition, and 𝐴𝐴 𝐴𝐴𝑖𝑖 is the reaction rate. The energy equation (Equation 3) includes 
shear heating and adiabatic heating, while the contribution of radiogenic heating to the temperatures is already 
included in the initial thermal condition.

To simulate realistic densities, we used the equation of state of Murnaghan (1944, Equation 5) which takes into 
account pressure, although the latter is neglected in the mass-conservation conversion equation (Equation 2). 
This assumption can be considered as an acceptable approximation since in subduction models compressibility is 
considered to have a negligible effect on the subduction dynamics (Fraters, 2015).

𝜌𝜌𝑓𝑓 = 𝜌𝜌ref i

(

1 +

(

𝑃𝑃 −

(

𝛼𝛼𝑖𝑖

𝛽𝛽𝑖𝑖

)

(𝑇𝑇 − 𝑇𝑇ref )

)

𝑘𝑘𝑖𝑖𝛽𝛽𝑖𝑖

)

1

𝑘𝑘𝑖𝑖
, (5)

𝐴𝐴 𝐴𝐴𝑓𝑓 and 𝐴𝐴 𝐴𝐴ref i are the final and reference density for each composition at reference temperature (Tref = 293 K) and 
surface pressures. P is the total pressure, 𝐴𝐴 𝐴𝐴𝑖𝑖 is the thermal expansivity, 𝐴𝐴 𝐴𝐴𝑖𝑖 is the isothermal compressibility and 𝐴𝐴 𝐴𝐴𝑖𝑖 
is the isothermal bulk-modulus pressure derivative.

The dominant mechanism of deformation depends on the yield stress, which is equivalent to the maximum devia-
toric stress that a rock is able to withstand without experiencing permanent deformation in steady-state (Goetze & 
Evans, 1979). When the second invariant of the deviatoric stress is higher than the yield stress, the plastic (brittle) 
deformation is described by the Drucker-Prager criterion (Equation 6).

in 3D ∶ 𝜎𝜎𝜎𝜎 =
6C ⋅ cosΦ

√

3(3 − sinΦ)

+
6P ⋅ sinΦ

√

3(3 − sinΦ)

, (6)

where C, P and ϕ hold for the cohesion, pressure, and the internal friction angle (radians), respectively. Addi-
tionally, we included a linear plastic strain softening for the crustal layers which depends on the integrated strain 
accumulation (Table S1 in Supporting Information S1), however mostly ineffective because of the short model 
time (Figure S1 in Supporting Information S1). The effective plastic viscosity (Equation 7) is given by:

𝜂𝜂 =
𝜎𝜎𝜎𝜎

2έ
, (7)

Where 𝐴𝐴 έ is the square root of second invariant of the strain rate. When the second invariant of the deviatoric stress 
is lower that the yield stress, viscous (ductile) deformation is simulated by harmonic averaging of dislocation and 
diffusion-creep mechanisms (Equation 8, Glerum et al., 2018):

𝜂𝜂dif f |disl = 0.5𝐴𝐴

(

−
1

𝑛𝑛

)

dif f |disl
𝑑𝑑𝑚𝑚

έ

1.− 𝑛𝑛

𝑛𝑛 exp

(

𝑄𝑄dif f |disl + 𝑃𝑃 ⋅ 𝑉𝑉dif f |disl

𝑛𝑛𝑛𝑛𝑛𝑛

)

, (8)

where 𝐴𝐴 𝐴𝐴 is the prefactor rescaled from uniaxial experiments, 𝐴𝐴 𝐴𝐴 is the stress exponent, 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 are the grain size 
and grain size exponent, 𝐴𝐴 𝐴𝐴 is the energy of activation, 𝐴𝐴 𝐴𝐴  is the volume of activation, 𝐴𝐴 𝐴𝐴  the pressure, 𝐴𝐴 𝐴𝐴 the gas 
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constant, and 𝐴𝐴 𝐴𝐴  the temperature. Dislocation creep is grain-size independent, therefore the term 𝐴𝐴 𝐴𝐴𝑚𝑚 is removed 
from Equation 8 for 𝐴𝐴 𝐴𝐴disl . Symbols and units of the parameters used in the equations are summarized in Table S2 
in Supporting Information S1.

The material and temperature fields used as input were defined on the basis of 3D lithospheric-scale models 
of the SCA (Rodriguez Piceda et  al., 2021; Rodriguez Piceda, Scheck-Wenderoth, Bott, et  al., 2022) and are 
described along with the mechanical properties corresponding to the lithospheric layers in Section 2.2. Since each 
conservation equation is solved together using the continuity equation, the deformation takes the appearance of 
shear zones in numerical geodynamic modeling. Therefore, highly deformed areas potentially represent highly 
“faulted areas.”

2.2. Model Setup

The geometries of the lithospheric layers were adopted from the 3D structural model of Rodriguez Piceda 
et al. (2021). This model is built upon the integration of geophysical and geological data and models, including 
the gravity field, and covers a region of 700 km × 1,100 km × 200 km (Figure 1). Eight layers constituting the 
model were defined based on the principal density contrasts in the lithosphere (1–2) oceanic and continen-
tal sediments (“sediments,” Figure 2a); (c) upper continental crystalline crust (“upper crust,” Figure  2c); (d) 
lower continental crystalline crust (“lower crust,” Figure 2d); (e) continental lithospheric mantle (“continental 
mantle,” Figure 2f); (f) oceanic crust; (g) oceanic lithospheric mantle (“oceanic mantle”), and (h) asthenospheric 
mantle. For the geodynamic simulations, two main modifications were introduced to change the original model of 
Rodriguez Piceda et al. (2021). First, the model was extended 200 km in depth, 500 km in the E-W direction, and 
200 km in the N-S direction. The resulting box model is 1,700 × 1,700 × 400 km, with a central area of interest of 
600 × 600 × 400 km (Figure 3a). Second, we introduced an interface representing the lithosphere-asthenosphere 
boundary (LAB) in the continental plate based on the thermal LAB model of Hamza and Vieira (2012). The main 
features of the model are depicted (Figure 2) in terms of the: (a) thickness of sediments; (b) thickness of the conti-
nental crust; (c) thickness of the upper crust; (d) thickness of the lower crust; (e) Moho depth, and (f) LAB depth.

We defined the initial temperature field as deduced from the 3D thermal model of the SCA of Rodriguez Piceda, 
Scheck-Wenderoth, Bott, et al. (2022), over the same area defined by the structural model of Rodriguez Piceda 
et al. (2021). Temperatures were derived from the conversion of S-wave tomography (Assumpção et al., 2013) 
together with steady-state conductive modeling, and were additionally validated by borehole temperatures and 
surface heat flow data (Rodriguez Piceda, Scheck-Wenderoth, Bott, et al., 2022). One caveat of this model is 
related to the determination of the thermal structure of the oceanic slab through the conversion of S-wave tomog-
raphy to temperature. The lack of seismic tomography resolution (0.5° longitudinally and 25 km in depth) does 
not allow us to properly resolve the oceanic plate thermal state, which results in relatively high temperatures in 
comparison to the temperatures predicted by numerical solutions (van Keken et al., 2019; Wada & Wang, 2009). 
For this reason, we have assigned a conductive geotherm between 273 and 1573 K from the top to the base of the 
oceanic plate as initial condition.

The thermomechanical properties of each model unit were assigned according to its lithological composition 
(Rodriguez Piceda et al., 2021; Rodriguez Piceda, Scheck-Wenderoth, Bott, et al., 2022). These lithologies were 
inferred from the comparison between gravity-constrained densities (Rodriguez Piceda et al., 2021) and mean 
P-wave velocities (Araneda et al., 2003; Contreras-Reyes et al., 2008; Marot et al., 2014; Pesicek et al., 2012; 
Scarfi & Barbieri, 2019), combined with rock-properties compiled from literature (Brocher, 2005; Christensen 
& Mooney, 1995; Sobolev & Babeyko, 1994) and other seismic properties (Alvarado et  al.,  2007; Ammirati 
et al., 2013, 2015, 2018; Gilbert et al., 2006; Wagner et al., 2005). The reference density for each composition was 
recalculated to ensure that: (a) the estimated final density of each composition (i.e., after correcting for pressure 
and temperature, Equation 5, Table S1, Figure S2 in Supporting Information S1), is in the range of the density 
predicted by the structural model of Rodriguez Piceda et al. (2021), and (b) the resulting topography does not 
deviate substantially from the present-day topography (Text S1 in Supporting Information S1 and Figure 1). The 
thermal properties used in the initial thermal field are from published average values for the lithology of each 
model unit (see references in Rodriguez Piceda, Scheck-Wenderoth, Bott, et al., 2022).

We assigned rheological properties to each of the eight compositions that define the model: dry olivine (Hirth 
& Kohlstedt, 2004, H&K2004) to the oceanic mantle lithosphere (3,321 kg/m³), diabase (Mackwell et al., 1998, 

 19449194, 2023, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023T

C
007765 by H

elm
holtz-Z

entrum
 Potsdam

 G
FZ

, W
iley O

nline L
ibrary on [01/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Tectonics

PONS ET AL.

10.1029/2023TC007765

6 of 27

Figure 2. Layer thickness and depth map of the SCA. Main structural features of the SCA lithosphere from the model of Rodriguez Piceda et al. (2021). (a) sediment 
thickness; (b) total crystalline crustal thickness; (c) upper continental crustal thickness; (d) lower continental crustal thickness; (e) Moho depth and (f) LAB depth taken 
from Hamza and Vieira (2012). The black rectangle shows the most refined model area.
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Figure 3. Model setup. (a) 3d model geometry, mesh refinement with areas of higher resolution and temperature. (b) 2D 
W-E cross section along with location indicated in (a), showing boundary and initial conditions, refinement of the interface, 
composition of the lithospheric layers, and temperature. Tpot indicates the mantle potential temperature and FA the forearc 
domain. (c–e) yield strength (black line) and temperature (red line) profiles of the upper plate at: (c) flat-slab. (d) shallow 
slab. (e) steep slab derived from the thermal model of Rodriguez Piceda, Scheck-Wenderoth, Bott, et al. (2022).
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Mck1998) to the lower crust (3,129 kg/m³), wet olivine (Hirth & Kohlstedt, 2004) to the continental mantle lith-
osphere (3,388 kg/m³), wet quartzite (Gleason & Tullis, 1995, G&T1995) to the upper crust (2,812 kg/m³), the 
oceanic and continental sedimentary layer (2,300 and 2,400 kg/m³), and wet olivine (Hirth & Kohlstedt, 2004) to 
the upper asthenospheric mantle to represent the hydrated mantle wedge.

For the oceanic crust (2,857 kg/m³), we prescribed a weak quartzite rheology (Ranalli, 1997) to simulate the 
visco-plastic behavior of a quartz-dominated “mélange,” which is characteristic of the subduction interface 
(Gerbault et al., 2009; Muldashev & Sobolev, 2020; Sobolev et al., 2006), with a relatively low friction coeffi-
cient of 0.015. This setup produces an appropriate maximum shear stress of 20–40 MPa (Lamb & Davis, 2003; 
Sobolev et al., 2006; G. Yáñez & Cembrano, 2004), depending on the temperature and the dip of the oceanic plate 
(Figure S3 in Supporting Information S1).

For the plastic regime, we set a cohesion of 40 MPa and a friction angle of 30° to the mantle layers. The short 
model runtime prevents the layers from weakening by accumulating plastic strain, thus we assigned a weak plastic 
rheology to the sedimentary layer (i.e., a friction angle of 3° and a cohesion of 2 MPa). The minimum viscosity 
was set to 1e19 Pas during the first 100 ka of model run, to dampen any excessive velocities that could result 
from the isostatic equilibrium of the expanded model areas (Figure S4 in Supporting Information S1). Once the 
model reached isostatic equilibrium, the minimum viscosity was changed to 2.5e18 Pas in order to more accu-
rately represent the range of values estimated for subduction zones (Figure S5 in Supporting Information S1), 
including low viscosities representative of the hydrated mantle wedge corner (Hirth & Kohlstedt, 2003). Yield 
strength profiles representative of the different subduction segments are shown in Figures 3d and 3e. Here, we 
refer to the second invariant of the square root of the deviatoric strain rate in the plastic and viscous domains as 
plastic strain rate and viscous strain rate for the visualization, respectively. We used adaptive mesh refinement 
(Figures 3a and 3b) to resolve the central, outer domains and subduction interface, with a resolution of ∼6km and 
∼12.5 km and ∼3 km, respectively. We ran the model simulation for ∼250 ka while applying velocities of 5 cm/
yr and 1 cm/yr to the oceanic and continental plates, respectively (Sdrolias & Müller, 2006), whereas the left 
and right asthenosphere borders were left open. Since the lithospheric and structural model implemented in our 
geodynamic model is already near equilibrium in a steady-state stress regime, only minor isostatic adjustments 
are needed for the extended areas introduced in this study (Figures S4, S6, S7 in Supporting Information S1). 
It takes 100,000 years to reach equilibrium in these additional areas. Prescribed velocities were applied at the 
eastern and western boundaries, perpendicular to the trench, thus deformation localized at the surface within a 
relatively short period of less than 150,000 years (Figure S7 in Supporting Information S1). Similar time settings 
were employed in previous studies to obtain quasi-instantaneous solutions (Glerum et al., 2020, 2021; Ibarra 
et al., 2019). We prescribed an equivalent volume outflow to the bottom boundary equal to the prescribed inflow 
from the plate velocity (Figure 3a). At the northern and southern boundaries, free-slip conditions were applied 
(Figure 3a). We used the advantages of the ASPECT code by prescribing a dynamically deformable mesh in 
order to simulate present-day topography. In particular, the model topography is uplifted and advected using the 
ASPECT-FastScape coupling (Bovy, 2021; Braun & Willett, 2013; Neuharth et al., 2021).

First, we computed the reference model (S1) using the parametrization discussed above (Section 2.2). Subse-
quently, we ran a series of models (S2, S3, S4 and S5, Table 1) with varying multiple parameters to investigate 
the relative contribution of key factors with respect to the strain localization in the upper plate.

3. Modeling Results
3.1. Reference Model (S1)

Reference model S1 is built upon known values for plate convergence, subduction-interface friction coefficient, 
sediment strength, and present-day topography (see Methods section and Table S1 in Supporting Informa-
tion S1). Plastic deformation within the model, resulting in the generation of shear zones (faults), is equivalent to 
brittle deformation. From south to north, deformation migrates to the east, with strain localizing in the southern 
part, while in the northern part it is distributed over multiple faults with a length of 200–400 km and a depth of 
40–50 km (Figures 4 and 5). This shift is related to a transition between two distinct foreland shortening modes: 
simple and pure shear modes (Figure 5). Pure-shear shortening involves uniform vertical thickening of the crust, 
resulting in distributed deformation characterized by multiple steep faults within the crystalline basement (thick-
skin deformation style). In the model, this occurs where high plastic strain is disconnected from high viscous 
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strain beneath (Figure 5a). Simple-shear shortening produces asymmetric crustal thickening, often involving the 
underthrusting of the foreland lithosphere beneath the orogenic lithosphere along a shallow décollement. This 
shortening is associated with a thin-skin deformation style, where the sedimentary cover is deformed while the 
basement is relatively less deformed. The term “less deformed” (also seen in the literature, e.g., Dahlen, 1990; 
Lacombe & Bellahsen,  2016; Pfiffner,  2017) refers to the involvement of fewer basement faults in the thin-
skin style, although it corresponds to a greater amount of shortening compared to the thick-skin style. In the 
model, the existence of a pure-shear shortening mechanism is identified when regions of high plastic strain in the 
upper crust connect at depth with areas of high viscous strain in the lower crust, forming an asymmetric shear 
zone (Figures 5c and 5d). The resulting surface strain-rate field indicates three distinct north-to-south oriented 
branches (Figure 4a) characterized by a distinct shortening mode:

1.  A Western branch (75°–73°W, 29°–39°S), which corresponds to the trench. Here, both plates are decoupled by 
the weak subduction interface, where most of the deformation localizes along a N-S elongated (∼1,000 km) 
and 60 to 80-km-deep area (Figures 4a and 5a–5c). Conversely, the crust of the adjacent cold and mechani-
cally strong forearc is virtually undeformed.

2.  An Eastern branch (60°–65°W, 27°–41°S), where deformation localizes in front of the flat slab by pure-shear 
shortening, as well as along regions that spatially correlate with pre-Andean basement hetereogeneities related 
to the amalgamation of terranes during the formation of Gondwana, such as the Transbrazilian Lineament 
(Fairhead & Maus, 2003; Ramos, 2010). In the south, deformation localizes within smaller structures that 
straddle the Rio de la Plata craton. The N-S extent of this area is 1,600 km and the depth is 50 km (Figures 4a 
and 5a–5c).

3.  A Central branch (65°–70°W, 31°–41°S), which comprises the orogen and the adjacent foreland. Strain distri-
bution varies from north to south. In the flat-slab segment, the strain localizes at the eastern front of the orogen 

Tested parameters Name Variation

Friction coefficient of the subduction interface (μint) S2a μint = 0.005

S2b μint = 0.035

S2c μint = 0.05

S2d μint = 0.07

Sediment strength (internal friction angle Φ and 
cohesion C)

S3a Φ = 30°,C = 20 MPa

S3b Φ = 30°, C = 2 MPa

S3c Φ = 15°, C = 20 MPa

S3d Φ = 3°, C = 20 MPa

Variation of topography and boundary velocity (no 
initial topography prescribed)

S4a Free surface (advection of topography allowed), 
with boundary velocity

S4b Free surface (advection of topography allowed), 
with no boundary velocity

S4c Free slip (no advection of topography allowed), 
with boundary velocity

S4d Free slip (no advection of topography allowed), 
with no boundary velocity

Velocities of the subducting plate (SP) and the 
overriding plate (OP)

S5a SP = 0 cm/yr

OP = 1 cm/yr (Absolute velocity orthogonal to the 
trench)

S5b SP = 5 cm/yr (Absolute velocity orthogonal to the 
trench)

OP = 0 cm/yr

S5c SP = 6 cm/yr OP = 0 cm/yr (Convergence velocity)

S5d SP = 0 cm/yr

OP = 6 cm/yr (Convergence velocity)

Table 1 
Model Variations With Respect to the Reference Model

 19449194, 2023, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023T

C
007765 by H

elm
holtz-Z

entrum
 Potsdam

 G
FZ

, W
iley O

nline L
ibrary on [01/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Tectonics

PONS ET AL.

10.1029/2023TC007765

10 of 27

and intensifies southward and the foreland crust is almost undeformed. In the shallow-slab segment, the strain 
distributes in the foreland over multiple oblique or en-échelon, crustal-scale structures that connect to the 
Eastern branch and which are associated with pure-shear shortening. The N-S extent of this region is 600 km 
(Figure 4a), and the depth of the structures is between 40 and 45 km (Figure 5b). In the steep-slab segment, 
strain localizes in front of the orogen and in the foreland by simple-shear shortening over a structure that is 
600 km long in N-S direction (Figure 4a) and at a depth of ∼80 km (Figure 5c).

On a lithospheric scale, these three branches interact spatially. The Sierras Pampeanas morphotectonic prov-
ince appears as a large-scale transpressional dextral shear zone that accommodates deformation via en-échelon 
structures associated with the uplift of isolated basement blocks (Figure S7 in Supporting Information S1). The 
deformation at the borders of these uplifts is accommodated by diffuse dextral strike-slip deformation as well as 
rigid block rotation (Figure S7 in Supporting Information S1).

We also distinguish that the deformation localizes differently along the three slab segments of the subducting 
Nazca Plate (Figure 5): the flat segment (27° to 32°S, 1,000–1,400 km model width-coordinates), the shallow 
segment (32° to 35°S, a 600–1,000 km model width coordinates), and the steep segment (35° to 41°S, 0–600 km 
model width coordinates). The E-W-oriented cross sections across the reference model (Figure 5) illustrate how 
plastic (brittle) and viscous deformation is accommodated in the continental plate along the segments with differ-
ent slab geometry (Figures 5a–5c), and how stresses are distributed within the plates (Figures 5d–5f, Figures 
S8–S12 in Supporting Information S1). Above the steep segment, the upper plate is characterized by simple-shear 
shortening at the front of the orogenic thrust wedge (Figure 5c, Figure S10 in Supporting Information S1). Above 
the shallow subduction segment, the model predicts a mixture of simple and pure-shear shortening (Figure 5b, 

Figure 4. Surface-strain rate of the reference model. (a) Strain rate superposed with compiled faults (Broens & Pereira, 2005; Costa et al., 2020; Eisermann et al., 2021; 
Folguera & Zárate, 2011; García, 2001; Giambiagi et al., 2003; Jensen, 2018; Litvak et al., 2018; Martínez et al., 2017; Martino et al., 2016; Meeßen et al., 2018; 
Melnick et al., 2020; Moscoso & Mpodozis, 1988; Olivar et al., 2018; Riesner et al., 2018). (b) Close-up of the Sierras Pampeanas morphotectonic province and 
extensional faults and terrane sutures in red (Ramos et al., 2002; Wimpenny, 2022). Green structures indicate uplifted Sierras Pampeanas ranges. White lines are 
isobaths of the top of the subducting oceanic plate. Red triangles indicate the position of known volcanic edifices. Major structures and morphotectonic provinces are 
highlighted by different colors in the legend.
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Figure 5. Representative cross sections of the subduction segments for the reference model after 250 kyr of simulation time (see location in Figure 1): Strain rate (a–c) 
and stress (d–f). (a–d) Flat-slab (31°S). (b–e) Shallow slab (33°S) and (c–f) Steep slab (36°S). In panels (a–c) white lines are interpreted faults, yellow lines show the 
depth of the brittle-ductile transition (BDT), and dark lines indicate isotherms. Panels (d–f) black lines indicate the interpreted faults, arrows indicate the sense of the 
velocity for the crust.
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Figure S11 in Supporting Information S1). No significant deformation occurs above the flat-slab segment, while 
pure-shear deformation takes place at its eastern edge (Figure 5a).

The greatest horizontal stress is transmitted efficiently throughout the continental plate to weak regions where 
the deformation localizes (Figures 5d–5f, Figures S9–S12 in Supporting Information S1). In the flat-slab section 
(Figure 5a, Figure S11 in Supporting Information S1), deformation takes place more than ∼700 km away from 
the trench and is localized over a 200-km-wide band in the eastern broken foreland of the Sierras Pampeanas. 
The model predicts local plastic deformation (Figure  5a) on top of the colder flat-slab segment at 100  km 
depth (Figure 5c, Figure S12 in Supporting Information S1), which also correlates with the bending of the slab 
(Figures 5a and 5d). Horizontal stresses of >200 MPa are generated locally in the continental crust and in the 
colder lithospheric mantle of the forearc, where the brittle-ductile transition (BDT) is deeper and where the 
deviatoric stress is locally more than 300 MPa (Figure S13 in Supporting Information S1). Consequently, hori-
zontal stresses are not sufficiently large to cause significant deformation. The thick and warmer orogen shows 
no significant deformation despite being weaker, which is illustrated by the shallower BDT (Figure 5a). On top 
of the flat-slab segment, the greatest horizontal stress is mainly generated by the subducting plate as shown 
by the eastward-pointing velocity vectors (Figure 5d, Figure S6 in Supporting Information S1). The horizontal 
stresses also build up within the cold and strong lithospheric mantle of the foreland (Figure S12 in Supporting 
Information S1). Despite the presence of a weak sedimentary basin at the surface, deformation does not localize, 
and stresses are transmitted eastward from the base of the upper crust to the eastern Sierras Pampeanas. Finally, 
crustal shortening results in a stress drop in the eastern Sierras Pampeanas, and the polarity of the velocity field 
switches from east to west in the reference model (Model S1), indicating that velocity is now determined by the 
upper plate (Figure 5d, Figure S6 in Supporting Information S1).

In the shallow-slab section (Figure  5b), the plastic and viscous strain rates merge in front of the orogen (at 
∼800 km model coordinates) to form a deep shear zone dominated by simple-shear shortening. In the foreland, 
the deformation distributes over multiple faulted areas along a wide area, with rigid crustal blocks characterized 
by a shallower BDT. Similar to the previous section, in the shallow slab section deformation terminates in the 
transition with the cratonic domain and is characterized by a thick-skinned style, which results from pure-shear 
shortening. The horizontal stress also builds up locally in the cold forearc (>∼200 MPa; Figure 5e, Figure S11 
in Supporting Information S1), where the greater mechanical strength of the rocks prevents failure and causes 
a transmission of stresses toward the orogen. Additionally, the horizontal stress builds up in the lower crust and 
is partially transmitted to the eastern Sierras Pampeanas. Strain localizes at the orogenic front by simple-shear 
shortening and is accommodated by pure-shear shortening in the foreland and at the transition with the cratonic 
domain. This interpretation arises from the symmetry observed in the strained area and the fact that it experiences 
exclusively high plastic strain rates. In the steep-slab section, the deformation strongly localizes in front of the 
orogen (∼800 km model length; Figure 5c, Figure S10 in Supporting Information S1).

3.2. Model Variations

In this section, we tested the relative contribution of four key parameters on the resulting surface strain-rate 
distribution: (a) the friction coefficient at the oceanic plate interface; (b) the strength of continental sediments; 
(c) the topography; and (d) the velocity applied to the model boundaries. The friction coefficient at the oceanic 
plate interface is varied between 0.005 and 0.05 (Models S2a–c) in agreement with the models of the long-term 
evolution of the Central Andes (Gerbault et al., 2009; Sobolev & Babeyko, 2005; Sobolev et al., 2006). The 
internal friction angle (Φ) and cohesion (C) of the sediments is varied from 3° to 30° (friction coefficient 0.05 to 
0.5) and from 2 to 20 MPa, respectively (Figure 6 and Figure S14 in Supporting Information S1, Models S3a–d). 
In addition, we tested the effect of topography on the strain distribution by removing the topographic relief in the 
initial configuration with and without applied velocities at the boundaries (Figure 6 and Figure S14 in Supporting 
Information S1, Models S4a–d). Finally, the oceanic and continental plate velocities are varied between 0 and 
6 cm/yr, covering the range of possible velocities over the last ∼20 Ma (Figure 6 and Figure S14 in Supporting 
Information S1, Models S5a–d). Table 1 summarizes the alternative model runs and Figure S14 in Supporting 
Information S1 shows the strain rate distribution of the various alternative models. In order to discuss the relative 
effect of each key parameter on the strain localization we computed the residual surface strain rate between the 
model variant and the reference model (Figure 6). To estimate the variation in strain localization in the trench, 
and the flat, shallow, and steep subduction segments, we subdivided the surface of each model into domains 
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Figure 6.
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corresponding to these segments. For each domain, we calculated an average of the surface strain rate using the 
root mean square. Finally, we calculated the relative change between the domains of the model variants and of the 
reference model. Thus, we obtained a summary of the relative percentage of contribution of each key parameter to 
the reference model for each domain (Figure 7). Note that for a similar force budget between the reference model 
and the model variants we would expect that if the strain localizes further in one of the branches (Section 3.1), 
it may decrease in another one to keep a shortening balance. However, because part of the deformation might be 
redistributed outside of the area of interest or be partitioned over the latitude, the sum of the relative percentage 
of deformation of each domain (Figure 7) might not be equal to 0%.

3.2.1. Models With Variable Slab-Interface Friction (S2a–d)

The greatest differences between the reference and alternative models related to the slab interface friction occurs 
along the trench (Figure 6 and Figure S14 in Supporting Information S1). With low slab interface friction (S2a; 
Figure  6a), the strain strongly localizes more at the trench (×18 or +994%, Figure  7). Less strain localizes 
within the overriding plate (−27% to −54%), including the orogen and the back-arc. Conversely, higher inter-
plate friction (S3b–c; Figures 6b–6d) translates into lower strain localization at the trench (−92% to 97%), and 
slightly higher overriding plate deformation (+6%, Figure 7). Therefore, for these short-timescale simulations 
the increase of friction at the interface results in similar intensity of upper-plate deformation with respect to the 
reference Model  S1.

3.2.2. Strength of Continental Sediments (S3a–d)

Modifying sediment strength results in a significant change in strain-rate distribution. Weaker sediments lead 
to a higher degree of strain localization adjacent to the orogen and the foreland basins (S3a–d, Figures 6e–6h). 
A decrease in the internal friction angle (S3c and S3d, Figures 6f and 6h) decreases the strength significantly 
more than a decrease in their cohesion (S3b and S1, Figures 6g and 4), promoting the compressional reactiva-
tion of foreland structures. However, near the surface, the effect of friction becomes negligible and sediment 
strength depends mainly on cohesion (Section 2.1, Equation 6). Consequently, for the same sediment cohesion 
but different frictions, strain localization at the surface may vary due to the variation of strength of sediments at 
deeper locations. With high friction and cohesion (S3a, Figure 6e), the strain rate in the foreland appears to be 
more diffuse and less localized (−35% and −40%), causing strain to localize closer to the orogen and the trench 

Figure 6. Residual strain-rate distribution obtained by subtracting the reference model S1 to the model variants. (a–d) Models with variable friction coefficients (f) at 
the subduction interface. (e–h) Models with alternative strength (Φ internal friction angle, and C cohesion) of the sedimentary layer. (e) S3a, Φ = 30°, C = 20 MPa. (i–l) 
Models without prescribing initial topography. (m–p) Models with variations of prescribed velocities in the subducting (SP) and overriding (OP) plates. For a detailed 
description of each model variant, see Table 1. Black rectangle is the resolved area; dark line indicates the boundaries of the morphotectonic provinces, red triangles 
denote position of volcanic edifices. Sub-squares delimit the deformational domains (i.e., trench, flat subduction, shallow subduction and steep subduction) used to 
compute the strain-rate differences between the reference and model variants shown in Figure 7. Blue and red colors indicate smaller or higher rate of deformation than 
in the reference model, respectively.

Figure 7. Relative surface strain-rate difference between the reference and the model variants. Relative change of strain rate in percentage 
𝐴𝐴 [έRMS(area) − έRMSref(area)] ∕ έRMSref(area) ∗ 100 with respect to the reference model in each deformation domain for each model variant.
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(+220%) compared to the reference model (Figure 7). With weaker continental sediments, the major component 
of deformation switches from the orogen interior outward to the eastern front of the mountain belt. Overall, 
stronger sediments result in more active shallow deformation near the trench and in the orogen above the flat slab 
(S3a, 423%), and less pronounced deformation in the foreland above the shallower and steeper segments (∼-40%, 
Figure 7).

3.2.3. Models With Topography Variations (S4a–d)

By initializing the model without present-day topography, we aim to look at the effect of internal forces related to 
the density and thickness configuration of the layers in the overriding plate. In models S4a and S4b, we allow for 
the topography to evolve with and without plate velocities, respectively (Figures 6i and 6j). S4a exhibits a strain-
rate distribution similar to S1 (cf. Figure 6a), but with higher strain localization at the trench and in the orogen 
above the flat-slab (+25 and 38%, Figure 7). In S4b, although no horizontal velocity is prescribed, the strain rate 
is higher in the orogen above the flat slab (+30%) and lower elsewhere. To investigate the effect of topography 
on the strain distribution, we ran two alternative models inhibiting topographic growth, that is, with and without 
plate velocities (Models S4b–c; Figures 6j–6l). In the model with plate velocities (S4c) the strain rate is higher at 
the trench and the orogen on top of the flat slab (+128 and 101%), and it is more diffuse and lower in the foreland 
of the shallow and steep-subduction domains (−23% and −36%). Without plate velocities (S4d), the strain rate 
only localizes in a narrow corridor along the orogen and otherwise decreases elsewhere.

3.2.4. Velocity Boundary Conditions (S5a–d)

Varying the prescribed boundary velocity allows us to determine the contribution of each plate to the intensity 
of strain localization in the overriding plate. In model S5a (Figure 6m), where velocities are only prescribed to 
the overriding plate (1 cm yr −1; Figure 6m), the intensity of deformation in the foreland is lower by 58%–83% in 
all domains compared to model S1 (Figure 7) because the deformation slightly localizes at the trench in specific 
places. In model S5b, where the overriding plate does not advance trenchward, the deformation decreases every-
where by 15%–30%, likely because the strain efficiently localizes in the orogen and the foreland (Figure 6n). 
Models S5c and S5d (Figures 6n and 6o) show that a deformation intensity similar to the reference model can be 
reached if the total convergence velocity is applied to either the lower or the upper plates. Overall, a fast conver-
gence rate controls the intensity of the deformation and its localization. In these models, the contribution of the 
subducting plate velocity seems more important than that of the overriding plate, although a fast overriding-plate 
velocity (S5d) can lead to similar degree of deformation as in the reference model. The strain-rate distribution 
in the overriding plate does not depend on the side of the prescribed velocity. The models that prescribe velocity 
from the west with the subducting plate (S5c) or from the east with the overriding upper plate (S5d), show similar 
structures and patterns (Figures 6o and 6p).

3.2.5. Relative Contribution and Importance of Each Factor

By analyzing the maximum deviations in strain localization between the reference model (S1) and the model vari-
ants, we can determine the relative importance of each factor in controlling the distribution of strain rates within 
the overriding plate in Sierras Pampeanas (Figure 7). This study reveals that the strength of continental sediments 
(S3a–d) and the friction coefficient of the subduction interface (S2a–d) are in the range of the parameters tested, 
and are most important for localizing deformation at the surface of our models.

The maximum deviation in rate of strain localization at the trench is 994%, which occurs for S2a, indicates that a 
low friction coefficient at the subduction interface leads to the greatest degree of strain localization at the trench. 
The deviations decrease as the friction coefficient increases, with S2b, S2c, and S2d showing maximum devia-
tions of −97% or less.

The maximum deviation in rate of strain localization in the flat segment of the overriding plate is 423%, which 
occurs for S3a, indicating that stronger continental sediments lead to higher strain rate at the trench. The devi-
ations decrease as the strength of continental sediments decreases, with S3d showing a maximum deviation of 
157%, the trench accommodates less deformation. Among the models with topography variations (S4), S4c 
shows the highest maximum deviation of 38%, indicating that the presence of topography related to the orogen 
likely plays a significant role in transmitting the stress in the flat segment.

The maximum deviation in strain rate in the shallow-slab segment of the overriding plate is −36% for S3c, indi-
cating that weaker continental sediments lead to a higher degree of strain localization in this area. The deviations 
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increase as the strength of continental sediments increases, with S3a showing a maximum deviation of −35%. 
Among the models with topography variations (S4), S4a shows the greatest maximum deviation of −25%, indi-
cating that in this case topography plays a significant role in localizing deformation in the shallow portion of the 
Sierras Pampeanas foreland.

4. Discussion
To analyze the roles of inherited heterogeneities in the continental plate and oceanic plate geometry regarding 
deformation characteristics in the upper plate we assess the relative contribution of overriding plate strength with 
respect to strain localization along-strike. We first compare the distribution of modeled strain-rate patterns with 
mapped structures (Section 4.1). Next, we discuss each of the tested key factors and how they affect the stress 
distribution in our model, and their contribution toward strain localization. In this context, we discuss the role of 
shallow and deep-seated structures (i.e., sediment strength, topography, and the thermal state and thickness of 
the lithosphere, Section 4.2, Figure 8). Finally, we examine the effect of slab geometry (flat, shallow, and steep) 
regarding the distribution and style of deformation in the foreland (Section 4.3).

4.1. Correlation With Mapped Structures

Our modeling results can be compared with mapped surface faults. Although we do not implement faults in 
the models explicitly, sediment accumulation is partly associated with their activity. In the investigated area, 
Mesozoic deposits are controlled by normal-fault bounded, extensional basins, while Cenozoic reverse faults 

Figure 8. Schematic 3D diagram with relevant forcing factors (in bold) and inherited structures that can affect strain 
localization and the foreland deformation style in the Sierras Pampeanas.
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cause sediment accumulation at their footwalls. Therefore, sediment strength and pre-existing faults related to a 
paleo-tectonic kinematic regime may strongly affect the location of deformation, which explains why structures 
resulting from the strain-rate pattern of the reference model are spatially well-correlated with exposed faults 
(Figures 4a and 4b). In particular, the strain-rate distribution in the reference model correlates with Quaternary 
faults located at the front of the orogen in the thrust belts and uplifted blocks of the foreland (e.g., Malargue FTB, 
San Rafael Block), at the borders of the basins (e.g., Cuyo Basin), and within intermontane basins bounded by 
faults uplifting the Sierras Pampeanas basement blocks. In some cases, inherited pre-Andean structures have been 
reactivated that were associated with the amalgamation of Paleozoic crustal terranes at the western margin of 
Gondwana (Introcaso & Ruiz, 2001; Ortiz et al., 2021; Vietor & Echtler, 2006). For instance, modeled faults asso-
ciated with the Desaguadero-Bermejo lineament (29°–32°S) close to the Sierra Valle Fértil in the western Sierras 
Pampeanas (Figure 4b, Introcaso & Ruiz, 2001) are associated with structures related to the Ordovician collision 
of the Cuyania and Pampia terranes (Ramos, 2010). This strike-slip fault was reactivated during the Neogene 
(Introcaso & Ruiz, 2001). The model also predicts the reactivation of the Transbrazilian lineament (TBL), a major 
Proterozoic transpressive shear zone that borders the thicker mantle lithosphere of the Rio de la Plata craton 
(Figure 4b, Cordani et al., 2013; Casquet et al., 2018). In contrast, the forearc across all subduction segments is 
subjected to a low degree of deformation and acts as a rigid body (Hackney et al., 2006; Tassara, 2005; Tassara & 
Yáñez, 2003), although previous studies have shown that the forearc experienced a certain degree of Quaternary 
transpressional deformation (González et al., 2003; Melnick et al., 2006; Regard et al., 2010). The previously 
observed forearc deformation is controlled by the long-term weakening associated with strain partitioning that is 
caused by oblique plate convergence (Eisermann et al., 2021; Melnick et al., 2006; Rosenau et al., 2006), which 
is not considered in our model. Other regions that exhibit a low degree of deformation include the foreland above 
the flat-slab segment (Figure 5a) and the back-arc in the steep-slab segment (Figure 5c). In the latter case, most 
of the deformation is related to pre-Neogene structures (e.g., Folguera & Zárate, 2009).

4.2. Upper-Plate Control on Strain Localization

The strength of the overriding plate controls strain localization and results from variations in both brittle and 
viscous strength (Babeyko et al., 2006; Jammes & Huismans, 2012; Liu et al., 2022; Mouthereau et al., 2013). 
Several processes may weaken the overriding plate and influence the localization of deformation (e.g., Gerbault 
et al., 2009). In our study we distinguished between shallow and deep-seated contributors, depending on their 
control on the frictional and viscous strength, respectively.

An important component of the stress is transmitted through the frictional regime (Figure  5), thus shallow 
contributors can significantly affect strain localization through frictional weakening. The variations in frictional 
strength are related to the tectonic history of the region and are modulated by several features. These include 
sediment strength relative to the underlying structures (Babeyko et al., 2006; Erdős et al., 2015; Liu et al., 2022; 
Mescua et al., 2016), the presence of inherited (pre-Andean) faults and fabrics and their orientation with respect 
to the convergence direction (Allmendinger et al., 1983; Kley, 1999; Kley & Monaldi, 2002), and topography 
(Chen & Molnar, 1983; Liu et al., 2022; Mareschal & Jaupart, 2011; Molnar & Tapponnier, 1975; Stüwe, 2007). 
In turn, the deep-seated contributors are those affecting the thermal state of the crust and the lithospheric mantle, 
and thus, viscous strength. Spatial variations in viscous strength are influenced by the thickness and compo-
sition of  the crust and lithospheric mantle, and these characteristics are governed by the geological history of 
a region (e.g., Alvarado et al., 2007; Gerbault et al., 2002, 2003, 2009; Marot et al., 2014; Rodriguez Piceda, 
Scheck-Wenderoth, Cacace, et al., 2022). The extent to which shallow and deep-seated contributors interact and 
affect the strength of the overriding plate in the SCA, is discussed in the following sections and summarized in 
Figure 9.

4.2.1. Shallow Structures

Previous studies have highlighted the important role of the thickness and strength of sediments in shallow strain 
localization (Babeyko et al., 2006; Erdős et al., 2015; Liu et al., 2022; Mescua et al., 2016). In the Central Andes 
(∼24°S), the presence of thick, mechanically weak Palaeozoic sediments in the foreland spatially correlates 
with a southward change of deformational style from thin-skinned to thick-skinned deformation, which marks 
the transition between the Subandean FTB and the broken foreland province of the Santa Barbara System of 
northwestern Argentina (Allmendinger et al., 1983; McGroder et al., 2015; Pearson et al., 2013). The results of 
numerical models addressing the tectonic style in that region have shown that a low friction coefficient of the 
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sediments (<0.05) promotes asymmetric deformation, a simple-shear and thin-skinned deformation style, which 
may constitute a necessary condition to initiate foreland underthrusting of the Brazilian Shield (Liu et al., 2022; 
Pons et al., 2022; Sobolev et al., 2006). Additionally, Ibarra et al. (2019) proposed that deformation tends to local-
ize within the areas with large lateral variations of crustal strength, such as the foreland where a thick sedimentary 
layer is present. In line with these studies, our new results in the southern Central Andes show that the distribution 
of sediments inherited from past tectonic events largely controls shallow strain localization (Figures 2d, 6–9 and 
Figures S14a–S14c in Supporting Information S1). Sediments tend to accumulate at the footwall of the faults 
or close to uplifted basement blocks. In addition, some of these depocenters had already formed during Palaeo-
zoic mountain building and Mesozoic extension, which could also have weakened the basement rocks (Mescua 
et al., 2016). In our model, efficient simple-shear shortening is favored by the thick sedimentary layer of the 
foreland basin, which generates a detachment fault connecting areas characterized by plastic (brittle) and viscous 
strain rates in the upper and lower crust, respectively (Figure 5). This is comparable to the existence of a shear 
zone at mid to lower crustal levels in the western Principal Cordillera proposed by previous work based on active 
seismicity (Farías et al., 2010) and numerical modeling (Gerbault et al., 2009). In case that such a connection is 
not possible, shortening is accommodated by pure shear and deformation distributes along multiple symmetrical 
faults (Figure 5). Model variations S3a–d show that weaker sediments are required to localize the deformation 
along specific discrete faults and structures (e.g., at the borders of the uplifted basement blocks; Figure 6 and 
Figure S14c in Supporting Information S1). Conversely, strong sediments (e.g., Model S3a) with a small strength 
contrast with respect to the upper crust lead to the formation of a broad, diffuse shear zone in the foreland above 
the flat-slab segment (Figures 6e–6h).

An additional factor that is proposed to exert major control on strain localization is topography (Figure 9). In 
the orogen, the gravitational potential energy constitutes an important resistive force to orogenic growth (Chen 
& Molnar, 1983; Liu et al., 2022; Mareschal & Jaupart, 2011; Molnar & Tapponnier, 1975; Stüwe, 2007). If 
horizontal forces are not sufficiently strong to overcome gravitational stresses exerted by the growing topography 
in the orogen, the horizontal stresses migrate laterally to the periphery of the orogen and strain localizes in the 
foreland. This effect is highlighted in Model S4c (Figure 6k), where no topography is allowed to grow, thus the 
deformation is less efficiently transmitted and localized in the weak areas of the foreland. Topography can also 

Figure 9. Summary of the main contributors to strain localization in the southern Central Andes indicates a north-south-directed switch from deep to shallow-seated 
factors.
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exert an indirect effect on the localization of deformation when the bounding faults of the foreland basement 
blocks and adjacent sediment depocenters are taken into account, which explains the localization of deformation 
as discussed above. In the alternative models without initial topography (Model S4a, Figure 6i) or where no 
topography is allowed to grow (Model S4c, Figure 6k), the removal of the orogenic load fosters strain localization 
in the orogen. Additionally, the models without prescribed velocities (Models S4b, Figures 6j and 6i) indicate 
that a low portion of the strain rate in the modeled northern part of the orogen could result from a dynamic effect 
related to flow in the asthenospheric mantle.

4.2.2. Effect of Deep-Seated Inherited Structures

The viscous strength of the continental crust and mantle lithosphere strongly depends on their composition, inherited 
thickness, and their thermal state because of the strong influence of temperature on viscosity (Anikiev et al., 2020; 
Burov, 2011; Ibarra et al., 2021; Rodriguez Piceda, Scheck-Wenderoth, Cacace, et al., 2022; Sippel et al., 2017). In the 
orogen, higher temperatures decrease the depth of the brittle-ductile transition favoring viscous deformation and crus-
tal flow which may facilitate the connection with the plastically deforming foreland sediments, ultimately promoting 
simple-shear deformation (Figure 9, Liu et al., 2022). Additionally, for an orogenic crust of more than 60 km thick-
ness, simple shear is almost always the preferred mode of foreland deformation (Liu et al., 2022). In contrast, a cold, 
rigid lithosphere can act as an indenter by transmitting horizontal stresses to its front, localizing the deformation at 
the transition between strong and weak domains (Figure 9), as shown by previous studies at the Chilean margin (e.g., 
Gerbault et al., 2009; Ibarra et al., 2021; Rodriguez Piceda, Scheck-Wenderoth, Cacace, et al., 2022).

The lithospheric thermal field in the SCA is the result of the contributions from the compositional and thickness 
configuration of the lithospheric layers and the basal lithospheric heat flow (Rodriguez Piceda, Scheck-Wenderoth, 
Bott, et al., 2022; Tassara et al., 2006). The crustal thermal field mainly depends on the volumetric radiogenic heat 
production of the upper crust, whereas the thermal field of the mantle is strongly perturbed by the cooling effect of the 
subducting slab, which changes as a function of the slab dip and geometry (Rodriguez Piceda, Scheck-Wenderoth, 
Bott, et al., 2022). In the northern part of the orogen, the effect of the thick felsic radiogenic crust (Figure 2) over-
prints the cooling effect of the flat slab (Rodriguez Piceda, Scheck-Wenderoth, Bott, et al., 2022). Therefore, the 
northern part of the orogen would be expected to deform actively, which contradicts our model results and the lack 
of observed seismicity in the area (ISC catalog, Rodriguez Piceda, Scheck-Wenderoth, Cacace, et al., 2022; Figure 
S15 in Supporting Information S1). To explain this apparent contradiction (i.e., no deformation of the upper plate), 
an additional mechanism must be invoked, which is further discussed in Section 4.3. The lithosphere in the north-
ern foreland is characterized by a thinner radiogenic upper crust (Figure 2) which does not overprint the cooling 
effect of the flat-slab, thus resulting in a colder and stronger lithosphere. This strengthening allows for an efficient 
stress transmission from the oceanic plate to the continental plate between western and eastern domains above 
the flat-slab segment (Figure 9). Additionally, the strong, thick cratonic domain (Figure 2f) promotes an efficient 
transmission of stresses to the west. Consequently, the deformation localizes at the eastern edge of the broken 
foreland where the most pronounced lateral gradient of lithospheric strength occurs (Figure 5a and Figure S8 in 
Supporting Information S1). Finally, the deformation is intensified by the overlying weak sediments.

Other deep-seated lithospheric processes, such as eclogitization of the crust and delamination of the lithospheric 
mantle, which are not considered in our models, could also weaken the overriding plate and facilitate strain locali-
zation (Babeyko et al., 2006; Sobolev et al., 2006). However, in the region of the southern Central Andes analyzed 
here, there is no evidence of delamination and extensive eclogitization below the western Sierras Pampeanas 
and the Precordillera (Alvarado et  al.,  2007,  2009; Ammirati et  al.,  2013,  2015,  2018; Gilbert et  al.,  2006; 
Marot et al., 2014). Thick, warm orogenic crust (>∼45 km) can also be subjected to intracrustal convection and 
partial melting, further weakening the overriding plate (Babeyko et al., 2006). Nevertheless, these weakening 
processes are not active in the study area since such thickness values are only attained above the flat-slab segment 
(Assumpção et al., 2013; Rodriguez Piceda et al., 2021; Tassara et al., 2006). In this region, the low basal heat 
flow prevents such an effect (Barazangi & Isacks, 1976; Jordan, Isacks, Ramos, & Allmendinger, 1983; Jordan, 
Isacks, Ramos, & Allmendinger, 1983; Jordan, Isacks, & Ramos, 1983; Ramos & Folguera, 2009).

4.3. Lower-Plate Control on Strain Localization

In the SCA, the role of the flat-slab on the tectonic stress regime and the localization of deformation in the upper 
plate is a matter of ongoing debate (Folguera et al., 2009; Gutscher, 2018; Gutscher et al., 2000; Horton, 2018; 
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Jordan, Isacks, Ramos, & Allmendinger, 1983; Jordan, Isacks, Ramos, & Allmendinger, 1983; Jordan, Isacks, & 
Ramos, 1983; Martinod et al., 2020). Eastward-directed compression in the southern Central Andes is thought 
to be driven by basal shear stresses related to the underlying flat-slab (Gutscher et  al.,  2000). Additionally, 
the passage of the flat-slab weakens the overriding plate mechanically by scraping the continental lithospheric 
mantle, (“bulldozed mantle-keel” model, Axen et al., 2018; Liu & Currie, 2016; Gutscher, 2018) and thermally 
by exposing the remaining lithosphere to the warmer asthenosphere (Isacks, 1988). More recent studies, however, 
have emphasized that the stress regime of the overriding plate is probably more influenced by the velocity differ-
ence between the overriding plate and the trench rather than by the subduction angle (Faccenna et al., 2017, 2021; 
Lallemand et al., 2008). The velocity of trench retreat can be perturbed by a rapid change in the subduction angle, 
which can be caused by the interaction between the slab and the mantle transition zone (Briaud et al., 2020; 
Cerpa et al., 2015; Čížková & Bina, 2013; Pons et al., 2022). The absolute motion of the South American plate 
prescribed in model S1 is considered to be the driving force of the Andean orogeny (Husson et al., 2008; Martinod 
et al., 2010; Sobolev & Babeyko, 2005); nevertheless, when viewed at shorter geological timescales, model vari-
ants such as model S5b–d, illustrate that a similar strain rate as in model S1 can be achieved with a different 
redistribution of plate velocities while maintaining a similar convergence rate (Figures 6 and 7). This implies that 
at shorter timescales, the convergence rate is potentially more important than absolute plate velocity.

In our simulations, the subduction angle of the oceanic slab also controls the distribution of strain localization 
in the upper plate (Figure  9). The flat slab propagates stresses eastward causing shortening to take place in 
front of the flat slab, as proposed by the “bulldozed mantle-keel” models (“slab bulldozing,” Axen et al., 2018; 
Gutscher,  2018). Strain localization could be favored by inherited crustal-scale structures such as the Trans-
brazilian lineament in the SCA (see Section 4.2.1). Conversely, the cratonic domain also transmits horizontal 
stresses westward across the continental plate and amplifies the intensity of deformation (Figure 5). Interestingly, 
our results predict almost no deformation in the upper plate overlying the flat-slab segment (27°–33°S). This is 
consistent with limited seismic activity observed in the orogenic domain overlying the flat-slab segment (Figure 
S14 in Supporting Information S1). In line with previous work (e.g., Gerbault et al., 2009; Martinod et al., 2010; 
Van Hunen et al., 2002), we suggest that this is the result of upper-plate strengthening at these latitudes due to 
cooling as discussed above (cf. Section 4.2.2) and caused by an underplating effect of the oceanic slab at the 
base of the continental lithosphere. The notion that the upper plate is shielded from deformation in the flat-slab 
segment is also supported by the decrease in shortening in the Precordillera at 30°S at approximately 9 Ma, 
following the arrival of the Juan Fernandez Ridge at 12  Ma (Allmendinger & Judge,  2014; Bello-González 
et al., 2018; Yáñez et al., 2001).

The colder subduction interface along the flat-slab segment (Figure 5a) also contributes to an increase in the 
coupling between the plates, locally reaching reach shear stresses >35 MPa at 45 km depth along the flat-subduction 
segment (Figure S15 in Supporting Information S1). Moreover, the low temperatures of the subduction interface 
combined with its low frictional strength could deepen the BDT of this discontinuity to 100 km depth (Figure 5a). 
The shear stresses at the plate interface decrease southward, which is supported by the increased thickness of the 
trench-fill sediments south of 33°S (Bangs & Cande, 1997; Völker et al., 2013). A comparison with the average 
shear stress at the plate interface suggested by Lamb and Davis (2003; Figure S3 in Supporting Information S1) 
shows that our reference model (f = 0.015) may underestimate the shear stress at the flat-slab interface, whereas 
model S2d (f = 0.07) may overestimate it.

In contrast to the flat-slab segment, deformation in the steep-slab segment (36°–40°S) localizes along the front 
of the orogen (Figures 3a and 4c), which shows that deformation cannot be efficiently propagated to the east-
ern domain if the oceanic slab is steeply dipping. Furthermore, the transition between the steep and flat-slab 
geometry requires an intermediary shallow segment (32°–36°S). Above this segment a large crustal shear zone 
develops in the broken foreland that results from the offset of strain localization between the flat and steep 
slabs. In such a scenario deformation takes place via multiple faults that bound the basement ranges of the Sier-
ras Pampeanas (31°S, Figure 5d), and the strain localization along these faults is enhanced by the presence of 
weak sediments (Models S2, Figures 6a–6d). From a dynamic point of view, we suggest that the shallowing of 
the slab generates crustal contraction prior to slab flattening in response to a large transpressive shear zone in 
the  southern Sierras  Pampeanas. Accordingly, deformation could be accommodated by a combination of block 
rotation and strike-slip deformation at the borders of the uplifted basement blocks. This mechanism, which we 
informally name "flat-slab conveyor,” likely been active in other subduction zones with flat-slab segments, such 
as in Mexico, where slab flattening and tractional coupling drove Neogene clockwise rotation of the Chiapas 

 19449194, 2023, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023T

C
007765 by H

elm
holtz-Z

entrum
 Potsdam

 G
FZ

, W
iley O

nline L
ibrary on [01/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Tectonics

PONS ET AL.

10.1029/2023TC007765

21 of 27

Massif (Molina-Garza et al., 2020) or in the Cretaceous-Eocene Laramide flat slab where large-scale rotations 
of the Chortis (Honduras) block at the southern termination of the flat slab were identified (Molina-Garza 
et al., 2019).

5. Conclusions
Using 3D data-driven geodynamic subduction modeling, we analyzed the relative contribution of subducting 
plate geometry and structural inheritance of the overriding plate on present-day strain localization in the southern 
Central Andes between 27° and 41°S, which corresponds to the transition between the flat to steep subduction 
segments in South America. First, the models confirm the results from previous studies showing that the flat 
slab controls upper-plate deformation in the northern part of the SCA by cooling and further strengthening 
the overriding plate, protecting the plate from pronounced deformation (Liu et  al.,  2021; Rodriguez Piceda, 
Scheck-Wenderoth, Cacace, et al., 2022). Consequently, deformation propagates toward the eastern edge by flat-
slab bulldozing (Axen et al., 2018; Gutscher, 2018). A broad, complex shear zone develops with multiple faults 
at the transition from flat to steep-slab subduction, resembling the thin-skinned to thick-skinned transition seen 
at these latitudes.

The inherited structures in the overriding plate amplifies strain localization between the flat and steep-slab 
subduction segments in a multi-faceted way. (a) The distribution of sedimentary rocks can serve as an indicator 
of major fault distribution, as depocenters tend to form at the footwalls of these faults. Consequently, the presence 
of shallow, weak inherited faults associated with weak sediments can significantly amplify surface deformation 
in the foreland. In fact, the intensity of deformation can increase fourfold (˜221%) when these faults are present 
compared to a situation where sediments are as strong as the upper crust in our models. (b) Surface topogra-
phy plays a crucial role in strain localization within the orogen by transmitting horizontal stresses toward the 
foreland. Conversely, when high topography is absent, there is a notable increase in strain localization of over 
40%, primarily in the orogen located above the flat slab. However, high topography has a limited influence in 
the foreland of the transition zone between 31° and 36°S and is not as significant above the steep slab. (c) In the 
timescales considered in this study, the thickness of the continental crust also plays a significant role in regulat-
ing the temperature within the crust, primarily through radiogenic heating. This, in turn, influences the depth of 
the BDT. When the felsic crust is thicker, the BDT tends to be shallower. The models confirm previous studies 
showing that a shallow BDT promotes the formation of deep-seated, asymmetric décollements and facilitates 
simple-shear shortening in fold-and-thrust belts (Babeyko & Sobolev, 2005; Gerbault et al., 2009). On the other 
hand, a thinner upper continental crust results in a deeper BDT, as observed in the Sierras Pampeanas. This 
deeper BDT promotes the activity of multiple symmetric faults and facilitates distributed pure-shear shorten-
ing. (d) The presence of inherited crustal-scale fault zones, such as the TBL located within the transition to the 
cratonic domain, may be preferentially reactivated and localize deformation as seen in the north-eastern Sierras 
Pampeanas (60°–65°W, 27°–31°S).

In our study, we have also compared the effects of using in the models absolute and relative plate motions on the 
localization of deformation in the upper plate. We show that there is no significant difference between the two 
approaches at the timescales considered in the models. Whether we consider the absolute motion of the plates or 
the relative motion between them, the localization of deformation in the upper plate remains similar, suggesting 
that the choice between absolute plate motion and relative plate motion may not have a substantial impact on the 
localization of deformation within the upper plate.

Data Availability Statement
The input files to reproduce the results of this paper are available at the following link https://doi.org/10.5880/
GFZ.2.5.2023.001 (Pons et al., 2023). Figures in the paper were made with Paraview and Illustrator. The color 
scales were taken from Crameri (2018) (https://doi.org/10.5281/zenodo.5501399).
Code availability: The ASPECT code is open source (Bangerth et  al.,  2021). The models were run with the 
ASPECT version 2.3.0-pre built with the 9.2.0 version of Deal.ii. We have modified the main ASPECT branch 
to implement new custom plugins necessary for the model set up and the postprocessing, which are described in 
Pons et al. (2023).
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