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Abstract IP Multimedia Subsystem (IMS) is becoming the prevailing candidate for managing future 

mobile multimedia communications, including critical communications such as public safety, 

emergency professionals and corporate networks. IMS security and privacy has gained much attention 

in the few last years. The review of recent IMS security activities stresses the inclusion of intermediate 

nodes in the media path of secured communications as an open issue. This paper presents an end-to-

middle-to-end solution which enables the usage of IMS media plane elements such as recorders, 

transcoders and novel cross-ciphering functions in a secure way. The proposed solution, which is fully 

compliant with IMS, includes the network architecture, the signaling plane for session signaling and 

key management, and the media-plane security characteristics. Experimental results demonstrate that 

the proposed solution can provide media interoperability (both transcoding and cross-ciphering) with a 

cost of 17% overhead to a standard IMS call setup in the signaling plane. 
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1 Introduction 

The forthcoming deployment of 4th Generation (4G) networks is revolutionizing the way that mobile 

communication networks will be provisioned, moving from the traditional circuit-switched approach to 

an all-IP based communication environment. Currently, Long Term Evolution (LTE) is becoming the 

prevalent network technology which is selected by mobile network operators worldwide for the 

implementation of future mobile communications [31]. LTE was introduced by the 3rd Generation 

Partnership Project (3GPP) in its Release 8 and provides evolved capabilities in terms of network 

performance, mobility management and security mechanisms. However, LTE does not intrinsically 

comprise the use of any communication establishment protocol to process calls (e.g. call setups), 

resulting it has to rely upon other protocols to manage the call establishment in the signaling plane.  

Otherwise, it would only provide a seamless mobile IP connectivity to end users. 

Although any Over-The-Top (OTT) solution may enable IP-based communications over LTE, IP 

Multimedia Subsystem (IMS) has become the prevailing candidate for 4G commercial-grade network-

operated multimedia services [23]. IMS defines a whole session management layer over heterogeneous 

networks, including Session Initiation Protocol (SIP)-based procedures for the end-to-end negotiation 

of the session characteristics [1]. Regardless of IMS technology independence, the end-to-end 

negotiated parameters may be propagated to the underlying network infrastructures in order to make 

use of their capabilities such as security or Quality of Service (QoS). This is the case of LTE, which 

defines the proper management of IMS traffic over specific Evolved Packet System (EPS) Bearers. 

IMS understands LTE as an IP-enabled access network and is able to make use of LTE enhanced 

transport capabilities in a per-session basis. 

IMS security and privacy has been a challenging topic and has received a significant amount of 

attention during the last few years [32, 22]. Although IMS benefits from specific security and privacy 

mechanisms in the LTE air interface and core infrastructure [16], additional IMS-level mechanisms are 

required especially in multi-domain communications. In order to secure an IMS enabled 

communication channel, two areas must be analyzed: the signaling plane and the media plane.  

1.1 IMS signaling plane security 

For the signaling plane security, the 3GPP standardized IMS security is governed by [2] and [4] which 

define the mechanisms to protect the SIP messages between the endpoints of both inter and intra 
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domain communications in terms of confidentiality, integrity and authentication. Since the early 3GPP 

Release 5, both documents are regularly updated with enhanced security mechanisms. In order to 

ensure the IMS signaling plane security, IMS Authentication and Key Agreement (AKA) is used for 

mutual authentication and for agreeing confidentiality and integrity keys between the User Equipment 

(UE) and the Proxy Call Session Control Function (P-CSCF). The security of SIP messages is then 

implemented based on Transport Layer Security (TLS) with the agreed keys. 

The security of the IMS signaling plane is critical because it is utilized not only to avoid impersonation 

and Denial of Service (DoS) attacks, but also to protect the privacy of the communication in terms of 

participating identities, network addresses, etc. Furthermore, recent legislations in Next Generation 

(NG) emergency communications (e.g. the U.S. NG 911, the European NG112 and the Australian 

national emergency warning system (NEWS)) enforce the automatic location of callers within the SIP 

header fields [28, 7]. If the SIP message is not secured, the caller’s privacy will be compromised. 

Therefore, the security of the IMS signaling plane becomes even more critical than ever.  

The security of the SIP signaling has been thoroughly analyzed by the research community as a major 

concern of IMS infrastructures. Although extensive surveys analyze the vulnerabilities of SIP and 

general Voice over IP (VoIP) solutions [22, 18], only those that apply to IMS infrastructures are 

considered in this paper. [20] provided a revision of the security concerns within an administrative IMS 

domain from the perspective of both the network providers and the network users. The typical DoS 

problem from the perspective of IMS emergency communications is analyzed by [27]. In addition, [21] 

analyzes the IMS DoS problem in 3rd Generation (3G) Universal Mobile Telecommunication System 

(UMTS). [13] differentiates between the 3GPP intra and inter domain security architectures and 

categorizes the possible time-dependent and time-independent attacks to the IMS signaling plane. 

Besides this categorization, [32] also discriminates internal and external attacks and the effects of 

attacks in terms of confidentiality, integrity, authentication and service availability. Based on these 

categories, [32] provides a thorough evaluation of the robustness of the IMS architecture proposed by 

the 3GPP as well as considering a series of state-of-the-art research proposals. Hence, these works 

demonstrate that the standardized solution based on IMS AKA and TLS provides the adequate 

protection against external attacks, although several vulnerabilities are identified especially during the 

initial user registration process. 
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1.2 IMS media plane security 

Regarding the media plane security, it is regulated by [5] which was introduced in the Release 9 by the 

3GPP, much more recently than its signaling counterpart. Nonetheless, it is the key document that 

states how multimedia IP flows should be securely protected in various possible network scenarios. In 

general, the IMS media flows are protected by the Secure Real-time Transport Protocol (SRTP) (which 

is a media authenticated encryption method) and a security key exchange protocol. From the 

categorization introduced in [6] the following media plane security situations shall be considered (as 

illustrated in Fig. 1): 

 End-to-end (e2e) security makes use of the security characteristics (type of cryptographic 

mechanisms, including the method to share the ciphering keys) negotiated by the endpoints of 

the communication to protect the media plane packets. 

 End-to-access-edge (e2ae) security enforces additional security parameters in the transit of 

media packets from the endpoint to an IMS access-edge element; this way, the media plane 

can be protected through non-reliable access networks while the rest of the media path which 

is within the core IMS media network may be kept unencrypted. [21] analyzes the 

architectural problems of UMTS and possible signaling attacks on the UMTS core. 

Concerning more recent 4G networks, as stated in [16], the need of an e2ae solution over LTE 

access is not critical since LTE provides strong access security both in the radio and core 

segments. 

 End-to-middle (e2m) security is conceived to support the transit from IMS networks to legacy 

networks, where specific security mechanisms shall be supported; in this case, the protection 

is carried out between an IP endpoint to an IMS Media Gateway which also supports the 

legacy network. 

 End-to-middle-to-end (e2m2e) security is aimed at allowing trustworthy network nodes to 

access the plaintext media of a secured communication, which serves two main purposes: 

interoperability and lawful interception. When endpoints utilize incompatible security 

mechanisms, e2m2e can provide the interoperability for these endpoints without 

compromising the media plane security. Also, this approach can support lawful interception if 

required, as the encrypted data can go through a middle point (e.g. a monitor of a law 

enforcement agency) even though endpoints are qualified for an e2e security communication.  
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Fig. 1 Media-plane security alternatives 

 

While the first three situations have been endowed with specific technical solutions to support the 

required functionalities [1, 5], the e2m2e approach is not yet standardized. Therefore, technical 

solutions will be required where IMS/LTE encrypted media would build daily operations not only for 

regular users but also in areas of online commerce [24], enterprise communications, public safety and 

emergency operations between different professional organizations [15]. 

To date, the media plane security has received far less attention from the scientific community in 

comparison with the amount effort given in the signaling plane. [22] evaluates a set of 245 research 

publications related to VoIP security, from which less than 10 references were devoted specifically to 

media plane security solutions. Nonetheless, these media plane security related studies were merely 

focused on the performance of different key exchange protocols. 

From the perspective of the e2m2e proposal, the involvement of IMS resource functions requires that 

the IMS control entities include a number of network-operated intermediate entities in the media path. 

[19] analyzes the limited capabilities for legal interception in pure SIP networks considering the end-

to-end key negotiation. [17] suggests that IMS control nodes may act as a man-in-the-middle element if 

the keying information is exchanged at the SIP signaling level. This way, a trusted node may have the 

access to the clear-text media for cross-ciphering, lawful recording or transcoding purposes. 

1.3 Scope of the paper 

As demonstrated in the last section, none of the research works clearly identified how security network 

functions can be integrated into the overall IMS framework despite some consideration was given to 

capture the session keying information and derive it to a trusted node. Therefore, this paper proposes a 

novel solution that makes the use of a trusted network resource node which has the media cross-
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ciphering ability to secure communications even though endpoints are not compatible with each other. 

This proposal is originally considered of utmost relevance in certain environments such as emergency 

communications between field professionals who belong to different administrative organizations. 

Additionally, the proposed architectural solution resembles the standardized IMS architecture for 

media transcoding functions. 

In summary, this paper aims at defining a technical solution that covers all aspects related to the 

inclusion of an e2m2e element in the standardized IMS architecture, including the definition of the 

network architecture, the signaling plane for session signaling and key management, and the media-

plane security characteristics. The proposed solution allows the use of media transcoding or recording 

functions in the media path and also enables the possibility to reassure secured communications with 

media cross-ciphering capabilities. Furthermore, the solution copes with the 3GPP standardized IMS 

architecture and procedures and thus it can be implemented over current IMS deployments. 

The rest of the paper is structured as follows. Section 2 presents the overall network architecture and 

identifies the proposed functional entities. Section 3 provides the details of a novel IMS ciphering 

resource function. Detailed information about protocols, messages and data formats for the 

implementation of the system is described in section 4 while a performance evaluation of the proposal 

is presented in section 5. Finally, Section 6 presents the conclusions to the paper and highlight future 

works. 

2 Network architecture for the media-plane e2m2e 

solution 

The proposed e2m2e network solution is illustrated in Fig. 2. Firstly, a new Secure Multimedia 

Resource Function (SMRF) entity is defined as the main controller for the novel media plane security 

functions in the IMS signaling plane. The SMRF is introduced in the IMS infrastructure as an 

Application Sever (AS) and interfaces with the Serving-Call Session Control Function (S-CSCF) 

through the standard IMS Control Interface (ISC). The inclusion of this new SMRF AS in the signaling 

plane does not comprise any modification in the standardized IMS elements, and only the suitable 

configuration of the specific Trigger Point is required. When required by configuration, the core CSCF 

nodes insert the SMRF in the signaling path of the IMS communication which enables it to control the 
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SIP dialog and the negotiation of the session parameters on behalf of two resource function nodes: the 

Multimedia Resource Function (MRF) and a Security Resource Function (SecRF). The IMS standard 

MRF is responsible for the operations involving the processing of the media content, such as 

transcoding for reassuring compatibility between endpoints, recording for lawful interception or mixing 

media flows for group communications. Meanwhile, the SecRF is introduced as a new IMS functional 

entity which is specialized in implementing any required encryption/decryption operations at the media 

plane level. These two nodes are kept out of the SIP signaling path so they do not have direct access to 

users’ information. 

 

Fig. 2 Proposed network architecture for IMS e2m2e security 

 

From the perspective of the end-to-end communication, the SMRF acts as a 3rd Party Call Controller 

(3PCC) [1, 3]. Thus, the SMRF is able to control and modify the SIP parameters negotiated by the 

endpoints as an authorized IMS control element with routing back-to-back user agent (B2BUA) 

functionalities. Since it is included in the SIP dialog, a unique SMRF AS is able to handle the media 

security capabilities of the different endpoint involved in the communication. As illustrated by Fig. 2, 

the SMRF also interfaces with the media plane resource function entities in order to capture/configure 

their media processing capabilities. Following the standardized MRF approach, this procedure is based 

on a new SIP dialog initiated by the SMRF to the required resource function [3]. Considering the media 
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plane elements, the SMRF acts as an initiating user agent and establishes independent SIP dialogs with 

each required resource function following the concepts of the standard Mr’ interface. 

It must be noted that the definition of the new SMRF AS element assures the compliance with the 

current IMS architecture. Yet, the proposed design is flexible enough in the sense that the SMRF 

functions may be integrated into existing IMS control elements. Currently, the S-CSCF is able to 

manage the inclusion of the MRF into the media plane. Followed by the same principle, the S-CSCF 

could be able to perform the proposed SMRF procedures in order to interface with both the SecRF and 

the MRF in future. Similarly, any 3PCC-like AS such as Multimedia Telephony (MMTel) AS or 

Service Centralization and Continuity (SCC) AS could also be implemented with these SMRF 

functions and the  SMRF AS will not be required anymore. 

According to the IMS standard specifications (Section 4.7 in [1]) the MRF is divided into two 

elements: a signaling-level controller and a media-level processor. Hence, the SecRF functional entity 

can also be split into two sub-functions: a SecRF Controller (SecRFC) and a SecRF Processor 

(SecRFP). The SecRFC is in charge of processing the SIP messages received by the SMRF while the 

SecRFP implements the specific operations related to the media packets. For simplicity, both functions 

are integrated into the SecRF node in Fig. 2. Also illustrated by Fig. 2 the SecRF element is able to 

manage three different SRTP flows, acting as an intermediate endpoint to the actual end users and a 

peer endpoint to the MRF. In order to enable this operation, the SMRF sends information about the end 

users’ security characteristics negotiated at the IMS signaling plane to the SecRF. From this 

information, the SecRF is able to perform the key management procedures required by each endpoint. 

In comparison, the MRF entity is only able to access the plaintext media for various purposes (e.g. 

transcoding and/or legal interception) when the SMRF configures a media connection between the 

SecRF and the MRF. This connection may be a double media communication if the MRF needs to send 

back the media packets to the SecRF after processing them. 

2.1 Session setup process: offering media capabilities 

The session establishment procedure between two individual IMS endpoints (denoted by UE1 and 

UE2) follows the standard Session Description Protocol (SDP) offer-answer model [29]. Basically, the 

originating UE1 generates an SDP Offer with the supported/desired media parameter and includes this 

information in a SIP INVITE message to the destination UE2. When UE2 is compatible with UE1, it 
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selects a desired set of media parameters from the SDP offer and sends back an SDP Answer in a SIP 

200 OK message; when UE2 is not compatible with UE1, it will reply with a SIP 606 Not Acceptable 

message and the SIP dialog will end. 

In the context of the IMS call management, there are two main mechanisms to include additional 

session characteristics in the SDP negotiation [1, 3]: 

 In the reactive approach, the IMS control entity examines if the answer of UE2 indicates the 

incompatibility in the supported media formats. In that case, the IMS control node requests the 

resource function to allocate resources for the session and generates a new SDP Offer to UE2 

with the additional capabilities. 

 In the proactive approach, the IMS control entity may have a priori knowledge that additional 

media capabilities shall be added to a SDP negotiation. Therefore, the SDP Offer which 

arrives at UE2 includes the media capabilities of both UE1 and the resource functions. 

This latter approach entails that the resource function shall pre-allocate resources for both endpoints 

during the session establishment, regardless they are eventually used or not. More importantly, it 

speeds up the session establishment process since only one unique SDP Offer-Answer between SMRF 

and UE2 is required. Therefore, only the proactive approach will be considered in this paper.  

Fig. 3 illustrates the main steps in the proposed proactive session establishment procedure. In the 

proposed solution, the SMRF is able to include new media characteristics at two levels: additional 

media codecs and additional media security mechanisms that are supported by the MRF and the SecRF 

respectively. It is assumed that the SMRF is configured to detect if additional media characteristics 

shall be added to a SIP dialog, but without a priori knowledge of the specific media formats shared 

between UE1 and UE2. These assumptions are considered as a standard configuration where a call 

manager applies this process to dialogs between different administrative domains, but without knowing 

the specific media codecs and media security mechanisms methods used in each domain. In the 

proposed context, the SMRF is required to gather additional media codecs and media security 

capabilities that are supported by the MRF (represented by “C2, …”) and the SecRF (represented by 

“K2, …”) respectively. Therefore, the new SDP Offer which is sent to UE2 includes extra media 

options for it to choose from.  
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UE2UE1 SecRFSMRF MRF

SDP Offer
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Fig. 3 Session initialization by SMRF 

 

2.2 Session setup process: agreeing media capabilities 

Once the SDP Offer is received by UE2, it shall choose a unique set of media characteristics for the 

session. UE2 may select any combination of codec and ciphering mechanism from those offered by 

UE1 and the resource functions. Depending upon the received SDP Answer from UE2, the SMRF will 

perform accordingly in the following situations: 
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 Case 1 - UE2 supports C1 and K1 offered by UE1 (Fig. 4). In this case, the resource functions 

are not eventually needed and the SRTP communication is established directly between UE1 

and UE2. 

 Case 2 - UE2 only supports C1 from UE1 and K2 from SecRF (Fig. 5). In this case, the SecRF 

is instructed by the SMRF to provide ciphering support and operates as a media-plane 

endpoint for each actual IMS user. 

 Case 3 - UE2 only supports C2 from MRF and K2 from SecRF (Fig. 6). In addition to the 

ciphering process at the SecRF, the SMRF configures the transcoding functions at the MRF. 

As a result, the SecRF acts as a media-plane endpoint for both IMS users and the MRF. 

 Case 4 - UE2 only supports C2 from MRF and K1 from UE1 (Fig. 7). The MRF is required 

for the transcoding purpose in the media plane. Also, the SecRF has to be included as well in 

order to obtain the plain-text media for the MRF despite both endpoints utilize the same media 

ciphering mechanism. From a media plane perspective, the map of connections between nodes 

is the same than in the previous situation. 
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Fig. 4 Session establishment: direct mode 
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Fig. 5 Session establishment: incompatible media ciphering 
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Fig. 6 Session establishment: incompatible media ciphering and codec 
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Fig. 7 Session establishment: incompatible media codec 

 

The final configuration of the media plane is seamless for the IMS endpoints. UE2 and UE1 receive the 

media configuration in the SDP Offer and Answer respectively. Each media line in the SDP message 

includes the media characteristics and the IP address and ports of the other party, regardless of whether 

it is the actual counterpart endpoint or an operator-managed node. Therefore, the inclusion of trusted 

intermediate nodes in the media path is transparent for end users. 

The previous cases illustrate the situation where the SMRF is used to reassure the media-plane 

compatibility between different heterogeneous endpoints. Depending of the media-level 

incompatibility, the SMRF AS will force the inclusion of the SecRF and/or the MRF in the media path. 
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Additionally, the proposed system can be configured to always force the use of the media-plane 

elements regardless of the compatibility of the endpoints. This operating mode is useful for enabling 

lawful interception / recording of the communication. The system configuration of this scenario is 

illustrated in Fig. 8. 

 Case 5 - UE2 supports C1 and K1 offered by UE1 but legal interception is enabled. As can be 

observed, the SMRF AS needs to configure the SecRF and the MRF to be inserted in the 

media plane even when UE2 supports C1 and K1 offered by UE1. In this way, the SecRF will 

be implemented with the same crypto suites for the two endpoints and the MRF will be 

configured in a pass-through mode from the endpoints’ perspective. 

UE2UE1 SecRFSMRF MRF

SDP Answer 2 (C1, K1)

SDP Answer

(C1, K1)

SecRF and MRF 

needed

Configure 

(K1, K1)

Configure (C1, C1)

UE2 selects one 

of UE1 codecs 

and ciphers

SRTP (C1, K1)

SRTP (C1, K1)

RTP (C1)

RTP (C1)

 

Fig. 8 Session establishment: compatible media ciphering and codec with legal interception enabled 
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3 Security Resource Function 

The SecRF is responsible for providing media security related functions when ciphering assistance is 

required. The SecRF is further divided into a Security Resource Function Processor and a Security 

Resource Function Controller, both of them will be described thoroughly in the following sections. 

3.1 Security Resource Function Processor 

SecRFP is a media plane node that transparently provides ciphering support (i.e. decrypt and encrypt 

SRTP streams) for incompatible endpoints, allowing them to establish the communication at the media 

level but without compromising the security. The SecRFP is designed to work in different modes to 

cope with the different cases as described in Section 2.2:  

 Cross-ciphering operating mode: endpoints employ different security mechanisms regardless 

their codec compatibility (cases 2 and 3). In this mode, the SecRF will be able to decipher the 

media from UE1 and cipher it again in a suitable format for UE2. 

 Mono-ciphering operating mode: endpoints utilize the same security mechanisms but the MRF 

is needed for transcoding or recording (cases 4 and 5). In this mode, the SecRF will be 

required for extracting the plain text media from one endpoint, interfacing with the MRF for 

obtaining a new media configuration, and ciphering it again for the other endpoint with the 

same cryptographic suite. 

In order to provide various ciphering supports, the SecRFP should be equipped with a wide range of 

crypto suites and key exchange solutions that are utilized by the SRTP as described in the following 

subsections. 

3.1.1 Crypto suites of SecRFP 

A crypto suite is a combination of encryption and message authentication code (MAC) algorithms that 

provide confidentiality, integrity and authentication for data. The default encryption method for SRTP 

is the Advanced Encryption Standard (AES), which can operate in two modes: Segmented Integer 

Counter Mode (AES_CM) and f8-mode [11]. Meanwhile, the default message authentication and 

integrity method for the SRTP is HMAC-SHA1 [11]. By utilizing the combination of encryption 

methods, message authentication and integrity solutions, in addition to various key lengths, a number 
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of crypto suites can be obtained (as illustrated in Table 1) [8, 25]; all of which shall be supported by the 

SecRFP. Furthermore, it is envisaged that the SecRFP should also provide support for future releases of 

crypto suites for the SRTP, enabling future compatibility and longevity of the system. 

 

Table 1 Crypto suites support at the SecRFP 

Crypto suites References 

AES_CM_128_HMAC_SHA1_80 IETF RFC 4568 (July 2006) [8] 

AES_CM_128_HMAC_SHA1_32 

AES_F8_128_HMAC_SHA1_80 

AES_192_CM_HMAC_SHA1_80 IETF RFC 6188 (March 2011) [25] 

AES_192_CM_HMAC_SHA1_32 

AES_256_CM_HMAC_SHA1_80 

AES_256_CM_HMAC_SHA1_32 

 

3.1.2 Key exchange solutions of SecRFP 

A number of key exchange protocols have been proposed to manage the key exchange between 

endpoints to enable SRTP communication [6]. The decision as to whether the assistance of the SecRFP 

should be required is decided by the SMRF. Any potential key exchange protocols of the SecRFP must 

be indicated and initialized in the IMS signaling plane, otherwise the call which requires supported 

from the SecRFP cannot be established. Therefore, key management solutions that utilize the media 

plane for advertising their usage will not be supported by the SecRFP. Based upon these premises, 

several key exchange protocols with which the SecRFP shall support are illustrated in Table 2. In 

addition, the SecRFP should be compatible with any future key exchange solutions that also utilize the 

IMS signaling plane for initialization of the key management. 

 

Table 2 Key exchange protocols support at the SecRFP 

Key exchange solutions  References 

SDES IETF RFC 4568 (July 2006) [8] 
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MIKEY - Pre-shared key IETF RFC 3830 (August 2004)[9], IETF RFC 

6043 (March 2011) [10] 

MIKEY - Public-key encryption (RSA) IETF RFC 3830 (August 2004)[9], IETF RFC 

6267 (June 2011)[26] 

IMS AKA keys for media protection 3GPP TR 33.828 [6] 

Otway-Rees based key management protocol 3GPP TR 33.828 [6] 

ZRTP IETF RFC 6189 (April 2011) [12] 

 

SDP Security Descriptions for Media Streams (SDES) is a simple key management protocol that relies 

upon the security of the signaling plane as the key material is exchanged in the SDP negotiation 

process [8]. Each side of the SDP exchange includes the key by which the media sent to the other side 

will be protected. For this, [8] defines a new SDP “crypto” attribute that shall be understood by all the 

endpoints of the communication. 

Multimedia Internet Keying (MIKEY) is another key management protocol defined for real-time 

multimedia applications [9]. The use of MIKEY in SIP signaling is defined in [10] which defines the 

SDP attribute “key-mgmt” with the protocol identifier “mikey”. In this case, certain ciphering 

information is inserted in the SDP messages instead of the actual encryption key, so the user is 

redirected to an external system for retrieving the keying data. 

MIKEY pre-shared key (MIKEY-TICKET) requires a key management server (KMS) for distributing 

the key material [26]. The caller requests keys and a ticket that contains a reference to the keys from 

the KMS and sends the ticket to the callee during the call setup phase. The callee then sends the ticket 

to the KMS to retrieve corresponding keys for securing the media transmission. The key transmission 

for MIKEY pre-shared key method is independent to the signaling plane security as the communication 

between individual endpoints and the KMS is protected by a pre-shared key or by a digital signature.  

MIKEY-public key encryption (MIKEY-IBAKE) also requires the presence of a key management 

server for managing key materials [12]. Endpoints obtain their private keys from the KMS before a call 

setup. During the call setup process, endpoints will be informed that MIKEY-public key encryption is 

utilized and they will generate a security key based upon their public keys and a random number. With 

the purpose of a guaranteed secure delivery of private and public keys, endpoints connect the KMS via 

a Bootstrapping Server Function [6]. 
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ZRTP is a media plane key management protocol utilizing a Diffie-Hellman key exchange to establish 

security keys for protecting media transmission [33]. Endpoints initiate the discovery phase of whether 

their peers also support ZRTP as soon as they obtain each other’s IP address. By using basic 

implementations, the ZRTP cannot be utilized by the SecRFP as it does not rely upon the signaling 

plane for key exchange. However, [33] describes that usage of ZRTP can be advertised during a call 

setup phase in the signaling plane. Therefore, if this option is enabled in the signaling plane, the 

SecRFP should also support ZRTP. 

In addition, IMS AKA keys for media protection and Otway-Rees based key management solutions 

also utilize signaling plane to advertise their existence [6]. As a result, the SecRFP should also support 

them despite they are less popular comparing with other aforementioned key exchange solutions. 

By utilizing the combination of crypto suites and key management solutions, the SecRFP should 

provide a wide range of ciphering support for media security and/or media codec incompatible 

endpoints. In order to allow this to happen, the SecRFP relies upon the SecRFC to advertise its 

capabilities to the endpoints and also obtain media configurations of both endpoints in the signaling 

plane. Details of the configuration will be described in the following section. 

3.2 Security Resource Function Controller 

SecRFC is a signaling plane node that interprets information coming from the SMRF to control the 

SecRFP and also supports SIP signaling and related security aspects in order to support additional 

ciphering capabilities when requested. During a call setup session, the SecRFC advertises a list of 

ciphering capabilities of the SecRFP to the SMRF; in this way, attributes of the incoming and outgoing 

legs can be automatically reconfigured if the SMRF detects the need of ciphering assistance, avoiding 

early call termination in the signaling plane due to incompatible media security mechanisms and/or 

media codecs of calling parties. 

Fig. 9 illustrates the SIP message flow between all the IMS entities when two UEs utilize different 

crypto-suites and also different key exchange solutions. For clarity purposes, the conceptual flow 

diagram is shown and the core IMS nodes (P/S/I-CSCF) between UEs and SMRF are not illustrated. 

The SecRFC requests a set of ciphering keys and a ticket from the deployed KMS any time prior to the 

call setup (steps 1 and 2). During a call setup, UE1 sends the SDP Offer which contains the call session 

setup parameters (only security mechanism is illustrated for the demonstration purpose) towards to 
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UE2. The SMRF, which acts as a 3PCC, intercepts the SDP of UE1 and includes the capabilities of the 

SecRF (steps 4 and 5). As a result, the SDP Offer that is received by UE2 contains the capabilities of 

both UE1 and the SecRF. 

UE2UE1 SecRFSMRF KMS

3. SDP Offer

SDES (K1)
4. SDP Offer

SDES (K1)

5. SDP Answer

SDES (K4)

MIKEY-TICKET (ticket)

1. Key Request

9. SDP Answer

MIKEY-TICKET

6. SDP Offer

SDES (K1)

MIKEY-TICKET (ticket)

2. Key Response 

(K2, K3, ticket)

7. Key Request

(ticket)

8. Key Response 

(K2, K3)

10. SDP Offer

SDES (K1)

MIKEY-TICKET

11. SDP Answer

SDES (K4)

MIKEY-TICKET

12. SDP Answer

SDES (K4)

Secured by SDES (K1, K4) Secured by MIKEY-TICKET (K2, K3)

UE1 utilises crypto suite 1 (e.g. AES_CM_128_HMAC_SHA1_80) and SDES

UE2 utilise crypto suite 2 (e.g. AES_F8_128_HMAC_SHA1_80) and KMS
 

Fig. 9 Key exchange procedures and integration into the IMS signaling plane  

 

After receiving the modified SDP Offer, UE2 selects the KMS key exchange solution and retrieves a 

set of keys from the KMS by presenting the received ticket (steps 7 and 8). Then, UE2 sends an SDP 

Answer back towards UE1. The SMRF intercepts the SDP Answer and detects if the assistance of the 
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SecRF is required. In this example, the ciphering support of the SecRF is essential; therefore, the 

SMRF sends the details of both endpoints to the SecRF and configures both legs (steps 10 and 11). 

As a result, a secured communication is established between two UEs despite their security 

incompatibilities: the link between UE1 and the SecRF is protected by SDES and crypto suite1, while 

the connection between the SecRF and UE2 is secured by KMS and crypto suite2. 

4 Detailed procedures for session establishment 

Fig. 10 and Fig. 11 show the detailed interchange of SIP messages between all necessary IMS entities 

involved in the session establishment procedure with SMRF-controlled media capabilities. Particularly, 

Fig. 11 illustrates the high-level conceptual flow diagram of the case when both resource functions (i.e. 

SecRF and MRF) are required in the media path. For clarity purposes, the core IMS nodes and SIP 

confirmation messages such as 100 Trying or ACK are not illustrated. 
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Fig. 10 SIP messages for session initialization 
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Fig. 11 SIP messages for session establishment: incompatible media ciphering and codec 

 

Each new SIP dialog required for the whole system operation is initiated with a new SIP INVITE 

message. In the figures (i.e. Fig. 10 and Fig. 11), each dialog is identified with a number within square 

brackets after the method name. As illustrated in Fig. 10, the end-to-end SIP dialog between UE1 and 

UE2 is split into two dialogs by the SMRF (dialogs 1 and 5). Thus, the SMRF operates in the 3PCC 

mode and acts as an IMS endpoint for both UEs from the signaling standpoint. The original SDP Offer 

(step 1) includes a media line which defines the media type and the local port for the reception of SRTP 

packets, followed by the attributes describing the supported media codec (C1) and the cryptographic 

information (K1). The SIP interaction between the SMRF and the IMS resource functions includes two 
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media lines in the SDP, one for each media leg to be connected [3]. Thus, the SIP dialogs 3, 4 and 5 are 

used to propagate the network addresses and media characteristics for the all the pre-configured media 

connections. During the session initialization process the SMRF uses these dialogs to retrieve the 

media information from the resource functions. After the initialization process by the SMRF, the 

extended SDP Offer (step 8) comprises all the permutations between the supported codecs (C1, C2, …) 

and the supported cryptographic options (K1, K2, …) from UE1, SecRF and MRF. Upon receiving the 

response from UE2 (step 9), the SMRF obtains all the necessary information to configure any required 

media connections between UE1, SecRF, MRF and UE2 (steps 10 to 15); this is achieved by utilizing 

the same principle of dialogs 3, 4 and 5 to propagate the updated SDP parameters. After the 

configuration of the SMRF, a modified SDP answer will be sent to the UE1 to indicate the completion 

of the call setup process (step16); and endpoints will be able to start the communication at the media 

plane.  

As illustrated by Fig. 10 and Fig. 11, in addition to the standard end-to-end SIP communication, a total 

of three new SIP dialogs are introduced and managed by the SMRF to ensure the media 

communication can be established between endpoints regardless their compatibilities. Fig. 12 depicts 

the need for these dialogs from a media plane perspective. Indeed, a number of media flows can be 

accurately constructed by utilizing the allocated IP addresses, network ports and media characteristics 

information from each involved IMS node. As illustrated by Fig. 12, each media flow is unique and 

essential and also they reflect the outcomes of SIP dialogs 2, 3 and 4 respectively at each resource 

function node. 

 

Fig. 12 Complete map of media flows and connections 

 

In addition to the high-level SIP dialogs shown by Fig. 10 and Fig. 11, a low-level detailed SIP dialogs 

of how the SMRF generates the extended SDP Offer to UE2 by using the information provided by 
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UE1, SecRF and MRF is illustrated in Fig. 13; also, a number of codecs and cryptographic mechanisms 

are employed to simulate a real time SIP message exchanges scenario between the aforementioned IMS 

nodes. Details of these SIP dialogs are demonstrated as below:  

 The SMRF receives the SDP Offer sent by UE1, which suggests that UE1 is willing to 

establish an SRTP voice communication with UE2 by employing a preferred set of media 

parameters for the codec (i.e. the Adaptive Multi-Rate (AMR)), crypto suite (i.e. 

AES_CM_128_HMAC_SHA1_80) and encryption key exchange method (i.e. SDES). The 

associated media description ID is identified as (A) in Fig. 13.  

 After the interactions in dialogs 2 and 3 (not shown for clarity) the SecRF sends the SDP 

Answer (step 7) with the complete set of media options in the second media line (identified as 

(B) in Fig. 13). This media description contains all the additional codecs supported by the 

MRF and all the cryptographic mechanisms supported by the SecRF. In this provided 

example, the modified SDP Offer includes two additional Pulse Code Modulation (PCM) 

codecs, two extra crypto suites (i.e. AES_F8_128_HMAC_SHA1_80,  

AES_CM_192_HMAC_SHA1_80) and one added key exchange solutions (i.e. MIKEY-

ticket) as well the media characteristics from the SDP Offer of UE1. The modified SDP offer 

is then sent to UE2. 

 Finally, the SMRF generates the modified SDP Offer and sends it to UE2. The SDP 

information retrieved from UE1 (in step 1) represents the case when no resource functions are 

needed. From the resource functions (step 7) the SMRF can offer the situation when the two 

resource functions are required. Besides the SMRF generates a third option (identified as (C) 

in Fig. 13), which represents the case when just the security processing is necessary in the 

media path. 
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Fig. 13 Generation of extended SDP Offer by SMRF 

 

This way, the SMRF will allocate the usage of the media resource functions based upon the response of 

UE2. 

The previous descriptions refer to the case where the direct mode communication is enabled. If lawful 

interception is enabled in the system, the SMRF will always force the inclusion of the SecRF and the 

MRF in the media path even when no specific cross-ciphering or transcoding functions are a priori 

required. In that case, the first media line in Fig. 13 (identified as (A) in the figure) will not be 

included, and the corresponding media attributes will be also offered in the next media line (identified 

as (B) in the figure). 

5 Performance evaluation 

5.1 Analysis of the signaling overhead 

In order to evaluate the impact of the proposed SMRF and SecRF upon the performance of the existing 

IMS signaling planes, this section discusses the number of SIP messages required by the proposed 

procedure in comparison to other alternatives. In total, three scenarios are designed to simulate the 

most extreme situations (i.e. two endpoints are fully compatible/incompatible with each other). Also 

both the proactive and reactive signaling approaches are considered in the case of endpoints are 

incompatible with each other. These three scenarios are listed as below: 
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1) UE1 and UE2 are compatible with each other and SMRF does not introduce additional 

messages in the e2e SIP signaling. This case represents the simple scenario where no 

additional media plane handling would be implemented. 

2) UE1 and UE2 are incompatible at the media codec and ciphering mechanism, and the SMRF 

implements the proposed proactive scheme. 

3) UE1 and UE2 are incompatible at the media codec and ciphering mechanism, and the SMRF 

implements a reactive scheme. 

Within the scope of the proposed evaluation, the performance impact upon the existing IMS 

architecture is assessed by the number of additional SIP messages generated at the signaling plane. 

Detailed analysis of each aforementioned scenario is described as followed. 

For scenario 1, upon receiving the SDP offer from UE1, the SMRF just forwards the SIP dialog 

towards the destination endpoint. The SDP offer/answer is made up of a set of 6 SIP methods and 

response codes: INVITE (SDP) – Ringing – PRACK - 200 OK (PRACK) – 200 OK (SDP) - ACK 

messages. According to Fig. 2, this set of messages traverses the following nodes: UE1 – P-CSCF – S-

CSCF- SMRF – S-CSCF – P-CSCF –UE2, and thus 6 SIP messages are required for each SIP method 

or response message. As each INVITE message also triggers a 100 Trying message at each node, the 

total number of SIP messages required for this scenario is 42. 

For scenario 2, the SMRF is configured to add the capabilities of the resource functions in a proactive 

approach, in order to provide interoperability at the IMS media plane. The dialog between UE1 and 

UE2 remains the same in terms of number of SIP messages. In addition, the SMRF initiates 3 new SIP 

dialogs with the resource functions. These dialogs are made up of the following set of methods and 

response messages: INVITE (SDP) –200 OK (SDP) - ACK messages. These dialogs are invoked by the 

SMRF twice, after the reception of the e2e INVITE (SDP) message of UE1 and 200 OK (SDP) 

message of UE2. Hence, a total number of 18 additional SIP messages are required for the inclusion of 

the resource functions, resulting on 60 SIP messages for the whole session.  

Scenario 3 represents the situation where a reactive approach is implemented for solving media plane 

incompatibilities. In that case, upon the reception of UE1’s INVITE the SMRF just forwards it to UE2. 

Since UE2 is not compatible with UE1, it replies with a 488 Not Acceptable message, which is 

followed by an ACK. Instead of forwarding that message back to UE1, the SMRF interacts with the 

resource functions in order to generate a new INVITE for UE2 with additional media capabilities and 



29 

the procedure follows the same principle as in the proactive case. As a result of the extra 488 Not 

acceptable, ACK, INVITE and 100 Trying SIP messages between SMRF and UE2, 12 additional SIP 

messages would be required in this scenario with a total of 72 SIP messages for the whole session. 

Table 3 summarizes the number of SIP messages required for each scenario, detailing the number of 

interactions through the access networks and the core network. In summary, 42 SIP messages are 

required for a normal e2e call setup in the analyzed network scenario. With the proposed proactive 

approach, 18 additional SIP messages (42.86% of overhead) are required for every call setup process. 

All these extra messages occur between IMS core elements. For the reactive mode, a total of 72 SIP 

messages (71.43% of overhead) are required with extra messages both at the core and the access 

networks. 

 

Table 3 Number of SIP messages required for a call setup procedure 

Scenario Access Networks Core Network Total 

1. Direct mode with 

compatible endpoints. 

14 SIP messages 28 SIP messages 42 SIP messages 

2. Proactive mode. 14 SIP messages 46 SIP messages 60 SIP messages 

3. Reactive mode. 18 SIP messages 54 SIP messages 72 SIP messages 

 

In order to analyze the real impact of the signaling overhead in an IMS system, it must be noted that 

there are two alternative operating modes for the SMRF. On one hand, the SMRF could implement the 

proactive approach for every call setup regardless the compatibility of the endpoints. In this case, the 

number of required signaling messages is always the same for each call setup procedure. On the other 

hand, the SMRF could progress the initial SIP INVITE and implement the reactive approach just when 

required by the called endpoint. Consequently, the average number of signaling messages per call setup 

will depend on the ratio of sessions with compatible and incompatible endpoints. As a result, the 

optimal configuration of the system would depend on the specific use case scenario and specifically on 

the ratio of communications that eventually need the assistance of the resource functions.  

In addition to the raw average number of messages per call setup, the average call setup times may also 

be of interest. In this sense, it must be noted that SIP messages within the core network usually exhibit 

better performance values in terms of message transmission speed, especially when endpoints are 
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connected through wireless Internet accesses. Therefore, considering the number of extra signaling 

messages both at the access and core segments, it is expected that the proposed proactive-based system 

always minimizes the maximum call setup delays for mobile endpoints with incompatible media plane 

characteristics. 

5.2 Experimental results on the signaling plane 

A prototype implementation of the SMRF element has been developed to evaluate the proposals 

presented in this paper. The SMRF was implemented based on the SIP Express Media Server (SEMS) 

project; also, modifications were carried out to extend B2BUA capabilities of the SEMS to incorporate 

the handling of the different resource functions. This implementation enables the evaluation of the 

impact by the proposed proactive approach for media plane compatibility reassurance, and specifically 

to analyze the latency due to the specific SMRF operations. 

For the testbed scenario, the SMRF is deployed as an AS in an IMS infrastructure based on the FOKUS 

Open Source IMS Core project, where all the core IMS nodes are deployed in individual hardware 

machines. During a first set of tests, dummy endpoints and resource functions have been developed 

with the Open Source SIPp test tool. Thus, the roles of UE1, UE2, SecRF and MRF are emulated in the 

IMS infrastructure. Fig. 14 shows the main steps of the whole call setup process and the delays 

measured for each step. 
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Fig. 14 Experimental latency of different call setup steps 

 

As can be observed, the total time elapsed due to SMRF processing and to additional messages 

between SMRF and the resource functions is below 100 ms. The final impact of this elapsed time on 

the experienced call setup performance would depend on the context of use and on the total setup times 

due to other transmission/processing delay contributions. The processing times related to the endpoints, 

SecRF and MRF SIP engines are not considered in this initial experimental study. Yet, it shall be 
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expected that their processing times are lower than the SMRF latencies since their processing logic is 

less complex than their counterpart of the SMRF. 

Also, a set of tests have been performed with actual endpoint devices to include the effect of the UE’s 

processing times. Specifically, two Boghe IMS clients have been configured in the IMS infrastructure. 

In a first test call, the two IMS clients are configured to support the same codecs and SRTP options, 

while the SMRF is configured to disable the invocation of the resource functions. The measured call 

setup time in this direct call setup is around 450 ms. Next, one of the clients is configured with 

different media plane options and the SMRF is configured to enable the use of resource functions. In 

this case, the total call setup time measured is in the range of 530 ms. Thus, it can be inferred that the 

overhead of the proposed SMRF operations is in the range of 80 ms, which in this case represents the 

17% of time overhead. Once again, the total call setup times and the ratio of overhead introduced by 

the proposed operating mode depend on the context of use, such as the type of access network used by 

the endpoints. 

6 Conclusions 

The protection of the media flows is critical for every IMS-based services such as personal 

communications, professional and emergency communications, content distribution on mobile e-

commerce, etc. This paper proposes a complete solution that copes with the functional requirements for 

including a trusted network-operated resource function in a secured media path. As possible future 

media protection research areas, advanced digital rights management techniques shall be considered to 

protect unauthorized media distribution even from those users allowed to access the media flows [14]. 

As well, advanced key agreement mechanisms for multiparty communications shall be taken into 

account [30]. 

For media recording purposes, such as lawful interception, the media packets can be just captured, 

decrypted and derived to a network function. If the system is aimed at providing the standardized 

media transcoding functions, the clear-text media shall be processed and then once again encrypted and 

sent to the destination endpoint. This situation is supported by the e2m2e solution proposed in this 

paper, identified as mono-ciphering operating mode. As a step beyond state-of-the art solutions, the 

proposed solution also allows the system to implement cross-ciphering operations in the IMS resource 

function. This way, the IMS architecture is endowed with a functional entity that is able to reassure 
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secured communications even if the endpoints do not share common security mechanisms. This feature 

is traditionally considered of utmost importance in network infrastructures devoted to critical 

communications, in order to support emergency operations in multi-organization cooperative 

environments. 

The overall architecture is designed as an adaptable and extensible system, which allows seamless 

integration into standardized IMS infrastructures. The proposed SMRF entity is introduced into the 

IMS signaling plane as an Application Server, and interfaces with the core S-CSCF through the 

standard ISC reference point. This way, those functionalities have been extracted in this proposal to an 

external control node in order not to require mandatory modifications in the IMS standards. However, 

from a general perspective these functionalities could be directly included at the IMS control elements 

such as the S-CSCF without affecting their normal operation. 

Additionally, the SMRF is designed to manage the operation of the different media-plane resource 

functions independently. As can be observed, the specialized entities for processing the media content 

and the media encryption are kept separated. This way, the SMRF is able to include them both in the 

path individually or in a cooperative manner, depending on the necessary functionalities. 

From the perspective of the system performance, the selected proactive approach reduces the latency in 

the session establishment compared to the alternative reactive approach. Furthermore, the proactive 

addition of capabilities in the SDP Offer reassures the establishment of the communication between a 

priori incompatible devices. 

In future, prototypes of fully functional SMRF and SecRF will be developed and their impacts upon the 

IMS signaling and media planes will be thoroughly analyzed. 
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