University of Plymouth

PEARL https://pearl.plymouth.ac.uk
04 University of Plymouth Research Theses 01 Research Theses Main Collection
1992

A Distributed Security Architecture for
Large Scale Systems

Shepherd, Simon John
http://hdl.handle.net/10026.1/2143

http://dx.doi.org/10.24382/4007
University of Plymouth

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with
publisher policies. Please cite only the published version using the details provided on the item record or
document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.

A Distributed Security
Architecture for
Large Scale Systems

Simon John Shepherd
B.Eng(Hons)

e

-~y r \ *
L)
P T
i !‘». r i LY

A thesis submitted in partial
fulfillment of the requirements of the
Council for National Academic Awards
for the degree of
Doctor of Philosophy

Sponsoring Establishment:
Network Research Group
Faculty of Technology
University of Plymouth, UK.

Collaborating Establishment:
IBM (United Kingdom) Laboratories
Hursley Park, Winchester, UK.

June 1992

— -

UNIVERSITY OF PLYMOUTH
" LIBRARY SERVICES |

tem b o 135830

Contl |

No. (X026

) ot

L. ZRARY STORE

A Distributed Security Architecture
for Large Scale Systems

Simen John Shepherd, B. Eng(Hons)

Abstract

This thesis describes the research leading from the conception, through development, to the practical
implementation of a comprehensive security architecture for use within, and as a value-added enhancement
to, the ISO Open Systems Interconnection (OSI) model.

The Comprehensive Security System (CS8) is arranged basically as an Application Layer service but can
allow any of the ISO recommended security facilities to be provided at any layer of the model. It is
suitable as an 'add-on’ service to existing arrangements or can be fully integrated into new applications.
For large scale, distributed processing operations, a network of security management cenires (SMCs) is
suggested, that can help to ensure that system misuse is minimised, and that flexible operation is provided
in an efficient manner.

The background to the OSI standards are covered in detail, followed by an introduction to security in open
systems. A survey of existing techniques in formal analysis and verification is then presented. The
architecture of the CSS is described in terms of a conceptual model using agents and prorocols, followed
by an extension of the CSS concept to a large scale network controlled by SMCs.

A new approach to formal security analysis is described which is based on two main methodologies.
Firstly, every function within the system is built from layers of provably secure sequences of finite state
machines, using a recursive function to monitor and constrain the system to the desired state at all times.
Secondly, the correctness of the protocols generated by the sequences to exchange security information
and control data between agents in a distributed environment, is analysed in terms of a modified temporal
Hoare logic. This is based on ideas concerning the validity of beliefs about the global state of a system
as a result of actions performed by entities within the system, including the notion of rimeliness.

The two fundamental problems in number theory upon which the assumptions about the security of the
finite state machine model rest are described, together with a comprehensive survey of the very latest
progress in this area. Having assumed that the two problems will remain computationally intractable in
the foreseeable future, the method is then applied to the formal analysis of some of the components of the
Comprehensive Security System.

A practical implementation of the CSS has been achieved as a demonstration system for a network of IBM
Personal Computers connected via an Ethernet LAN, which fully meets the aims and objectives set out
in Chapter 1. This implementation is described, and finally some comments are made on the possible
future of research into security aspects of distributed systems.

Title

CONTENTS

Abstract

Contents

List of Figures

Acknowledgements

Declaration

Quotations

INTRODUCTION

1.1

Network Security

1.2. Aims and Objectives of the Research
1.3. Layout of Material in the Thesis
BACKGROUND

2.1. The Definition of and Need for Security
2.2. Internal and External Security

2.3. Secrecy and Integrity

2.4. The System Boundary and Security Perimeter
2.5. Users and Trust

2.6. Trusted Systems

2.7. Subjects, Objects and Access Control
2.8. Distributed Secure Systems

2.9. Mutually Suspicious Systems

2.10. Security Kernel on a Network

2.11. Trusted Systems Evaluation Criteria

00 W N

10
11
12

13
19
21

25
26
26
27
29
30
30
31
32
33
33

3. SECURITY IN OPEN SYSTEMS

3.1. The Concept of Open Systems 35
3.2. The Need for, and Attitudes Towards Standards 38
3.3. The OSI Reference Model 40
3.3.1. The Seven Layer Model 41
3.3.2. Layer Cooperation 47
3.3.3. Principles of the ISO Reference Model 49
3.3.4. OSI Protocols and Primitives 51
3.3.5. Connection Oriented Operation 54
3.3.6. Connectionless Operation 55
3.3.7. Structure of an Application Entity 56
3.4. FTAM - A Typical OSI Application 58
3.5. The OSI Security Architecture 66
3.6. Placement of Security Provisions within OSI 67
3.7. Requirement for Extensions to the OSI Security Architecture 69
3.8. Current Approaches to Security in Open Systems 69
4. FORMAL ANALYSIS AND VERIFICATION
4.1. Requirement to Evaluate Security 71
4.2. Security Models 72
4.2.1. Role of a Security Model 72
4.2.2. Practical Applications of a Model 73
4.2.3. Types of Security Model 74 -
4.3. State-Machine Models 76
4.3.1. Development of a State-Machine Security Model 76
4.3.2. An Example 76
4.3.3. Non-Secure Transitions 81
4.3.4. Controls on Subjects 82
4.3.5. Controls on information 83
4.3.6. Information Flow Models 84
4.4. Formal Specifications 85

- - 4- - - . -

4.5.

4.6.

4.7.
4.8.

Methods of Decomposition

4.5.1. Data Structure Refinement

4.5.2. Algorithmic Refinement

4.5.3. Procedural Abstraction

Methods using Formal Logic

4.6.1. Introduction to Formal Logic

4.6.2. Mathematical Proofs of Correctness

4.6.3. The Method of Hantler and King

4.6.4. A Formal Proof of Euclid’s Algorithm
Limitations of Conventional Debugging Techniques

Limitations on Current Analysis Methods

A NEW APPROACH

5.1.

5.2,

5.3.
5.4.
3.5.

A Comprehensive Security System

5.1.1. Security Policy

5.1.2. Security Domains and their Administration
5.1.3. Conceptual Model of CSS Processor
5.1.4. Security Services Supported by CSS
Agents of the CSS

5.2.1. User Agent

5.2.2. Security Services Agent

5.2.3. Service Mechanism Agent

5.2.4. Security Management Information Base
5.2.5. Security Administrator Agent

5.2.6. Extemnal Environment Agent

5.2.7. Monitoring Agent

5.2.8. Recovery Agent

5.2.9. Associations Agent

5.2.10. Inter-Domain Communication Agent
Centralised Control

Security Management Centres

The Protocols between Agents

5

85
86
87
87
88
88
95
96
101
106
108

112
112
113
115
118
120
120
121
122
123
125
126
127
127
128
129
130
131
133

5.6.

A Basic Implementation

5.6.1. The CSS Hardware and Software
5.6.2. The API for the PC System

5.6.3. Management of the SMIB Data

5.6.4. Secure Communication Across a LAN
5.6.5. Other Security Measures

5.6.6. Limitations on the PC Sys‘tem

A NEW ANALYSIS METHODOLOGY

6.1.
6.2.

6.3.

6.4.

6.5.
6.6.

6.7.

The Need for a Problem Reduction Technique
A Problem Decomposition Methodology
6.2.1. Binary Tree Functional Decomposition
6.2.2. n-ary Tree Functional Decomposition
6.2.3. Control Structures and Dynamic Graph Representation
6.2.4. Recursion and Loops

The CSS State-Machine Sequence Reduction Logic
6.3.1. The Atom Layer

6.3.2. The Component Layer

6.3.3. The Mechanism Layer

6.3.4. The Service Layer

The Fundamental Security Assumptions

6.4.1. The Factoring Problem

6.4.2. The Discrete Logarithm Problem
Hierarchical Sequence Structure

Notation

6.6.1. An Example

Examples of Sequences for Data Manipulation
6.7.1. Creating an RSA Key Pair

6.7.2. Creating a QRC Key Pair

6.7.3. RSA Block Encryption

6.7.4. File Integrity Verification

135
136
137
142
143
145
145

148
151
151
155
157
161
164
166
167
167
168
169
171
173
174
176
177
181
182
185
186
186

6.8. Examples of Sequences for Protocol Generation 186
6.8.1. An Authentication Protocol 188
6.8.2. A Key Distribution Protocol 190
6.9. A Formal Proof of Protocol Sequence Security 196
6.9.1. A Formal Definition of Protocol Security 196
6.9.2. Requirements of Proofs about Protocols 197
6.9.3. The Basic Notation 200
6.9.4. Formal Proofs of Authentication between Agents 202
6.9.5. Idealisation of the CSS Protocols 204
6.9.6. Formal Proof of the CSS Key Distribution Protocol 217
7. CONCLUSIONS
7.1. A Review of Achievements of the Research 224
7.2. Limitations of the Research 227
7.3. Suggestions for Future work 228
7.4. The Future of Secure Distributed Systems 230
Annexe 1: Circuit diagram of CSS hardware and source code for ROM firmware 231
Annexe 2: A General Solution to Primality Testing and
the Integer Factoring Problem 236
Annexe 3: References to Source Code listing of CSS
(actual code supplied on floppy disk) 243
Annexe 4: Introduction to Predicate Calculus 244
GLOSSARY OF TERMS AND ABBREVIATIONS 248
REFERENCES & BIBLIOGRAPHY 250
Addendum: List of publications by the author relevant to the research 259 et seq

7

Figure 3.1.
Figure 3.2.
Figure 3.3.
Figure 3.4.
Figure 3.5.
Figure 3.6.
Figure 3.7.
Figure 3.8.
Figure 3.9.
Figure 3.10.

Figure 4.1.
Figure 4.2.
Figure 4.3.
Figure 4.4.
Figure 4.5.

Figure 5.1.
Figure 5.2,
Figure 5.3,

Figure 6.1.
Figure 6.2,
Figure 6.3.
Figure 6.4.
Figure 6.5.
Figure 6.6.
Figure 6.7.

LIST OF FIGURES

The Seven Layers of the ISORM

Peer Entity Association

Peer Cooperation by means of Subordinate Layer Entities
Confirmed Service Primitive Usage

Use of Application Service Entities

FTAM Association Regime

Within the FTAM Association Regime

File Open Regime

Within the File Open Regime

Recommended Placement of Security Mechanisms in the

Seven Layer Model

Symbolic Execution Tree for the ABSOLUTE Procedure
Symbolic Execution Tree for Euclid’s Algorithm

Cut Tree for Euclid’s Algorithm at cut,

Cut Tree for Euclid’s Algorithm at cut,

Limitations of Conventional Debugging Techniques

Conceptual Model of CSS
The SMC Concept

Agent Communication within a Local CSS Processor

The Approach to Design and Analysis of the CSS

A Simple Binary Tree with Two Leaves

A Simple Binary Tree with Three Leaves

Binary Combinations which are Not Trees

A Tree Containing a Subtree

A General Tree with Arbitrary Numbers of Branches

Conventions for Arguments and Returns of Functions

42
48
52
53
57
62

& 28

68

99
102
104
105
108

118
133
144

150
152
153
154
154
155
156

Figure 6.8.

Figure 6.9.
Figure 6.10a.
Figure 6.10b.
Figure 6.11.
Figure 6.12.
Figure 6.13.

Figure 6.14.
Figure 6.15.
Figure 6.16.

The Join, Include and Or Control Structures and Dynamic
Graph Representations

The Co-Join, Co-Include, Co-Or and Concur Control Structures
Tree Representation for the Factorial Function

Stopping the Factorial Recursion

The Complete Factorial Function with Control Structure
Verification of Sequence Execution Correctness

A State Machine Representation in the SMIB

with Sequence Vector and Boolean Status Register

An Example of a Hierarchical Sequenced State Machine

The Atoms used in Rabin’s Algorithm for Primality Testing

The Atoms used in Euclid’s Algorithm

159
160
163
163
164
175

176
177
183
185

ACKNOWLEDGEMENTS

Firstly, 1 would like to thank my supervisors; Peter Sanders, Director of Studies, for his
unfailing guidance, tolerance and concern; and Dr Colin Stockel for his unerring judgement in

all things academic.

I also thank the IBM (United Kingdom) Laboratories, in particular Peter Smith, for their

financial support during much of this research. It would not have been possible without them.

I would also like to extend my appreciation to Prof Dr Sedd Muftfc of the University of
Sarajevo in what was Yugoslavia, to Dr Ahmed Patel of University College Dublin, Ireland,
to Unto Pulkkinen of the Technical Research Centre of Finland in Helsinki, and to Peter Van
Eetvelt for their helpful advice. [also thank Prof Peter Watson of the University of Bradford

for giving me time to complete this thesis after my taking up a lectureship at the University.
And by no means least, I am deeply grateful to my wife for her unfailing support and

encouragement, and her determination for this research to be brought to a successful

conclusion.

10

DECLARATION

The author hereby certifies that the material contained herein is the sole work of the author,
who is also responsible for the computer programs, results, the interpretation thereof, and the

conclusions drawn; and that this material has not been submitted for any previous academic

award.

Stmon J Shepherd
June 1992

11

First, my fear; then, my curtsy; last, my
speech. My fear is, your displeasure; my
curtsy, my duty; and my speech, to beg your
pardons. If you look for a good speech now,
you undo me; for what I have to say is of mine
own making; and what indeed 1 should say
will, I doubt, prove mine own marring. But to

the purpose, and so to the venture.

William Shakespeare
King Henry IV, Part Il

Only for you, children of doctrine and
learning, have we written this work. Examine
this book, ponder the meaning we have
dispersed in varicus places and gathered again;
what we have concealed in one place we have
disclosed in another, that it may be understood

by your wisdom.

Heinrich Comelius Agrippa
von Nettesheim

De occulta philosophia, 3, 63.

1. INTRODUCTION

1.1. Network Security

The joining together of computer networks is widespread. The financial community
make use of international Wide Area Networks, large corporations network their plants
together and higher education uses networks for collaboration in research. The military
uses networks to coordinate operations and for communications at all levels of security.
Offices use Local Area Networks to decrease the use of paper in the office and to
facilitate sharing of expensive peripherals [COOP,1988). As a result, the use of

networks continues to grow and the traffic across networks is increasing all the time.

As the use of networks increases, the amount of sensitive data carried increases.
Network users, particularly the military, financial and commercial users, need to be able
to protect their networks from infiltration and abuse. Attackers who tap network lines
and read, modify or destroy network traffic must be stopped [STOL,1988]. Due to the
long communications distances involved in most networks, it is almost impossible to
protect the physical medium being used to carry the sensitive data. It is usually possible
for the attacker to gain access to the medium, and since this cannot easily be protected,
the data must be protected instead. The advent of optical fibre technology for network
communications will go some way to alleviating the problem of tapping, because it is
very difficult to place a tap on a fibre optic cable. This technology does nothing,

however, to overcome the problem of denial of service attacks (see section 2.3.) due to

13 - - : _—

physical damage to, or destruction of, the cable.

The subject of network security is a large one and there are many approaches to security

provision, each of which need to be considered in order to provide a secure network.

Open Distributed Processing (ODP) is the conceptual framework within which systems
of diverse origin, application and location can interact freely if required (see Chapter 3).
Because there may be many different components, operations, resources and entities
involved in such an arrangement, a network constructed within this framework presents
a very convenient target for various attacks and illegal operations, which means that
protection of the system resources and assets is becoming an increasingly important

factor in network design.

Systems currently exist which have made some attempt to implement security measures.
In many cases, the most effective are those which were conceived from the outset to
offer security as a prime function and are typical of those used by governments, military

and financial institutions.

The majority of other communications systems which exist, however, were not originally
conceived with the security function in mind and make no provision for it other than
allowing the execution of specific applications which have security measures built into
their facilities on an individual basis. A typical example is the JANET academic
network which does not provide encryption facilities, but may be used to send encrypted
messages if the appropriate mechanisms are provided by individual system users. A
secure E-mail facility using the RSA algorithm has been implemented in the Network
Research Group at the University of Plymouth and is used for secure' correspondence

with collaborators at home and abroad. The disadvantage of this approach is that it is

14

very difficult to assess the overall strength of such a system, where security is provided
on an individual 'ad hoc’ basis, due to the absence of a formal architecture capable of

rigorous analysis.

Information security technology encompasses all measures that are used to protect
information from unauthorised disclosure, modification or destruction, In an age where
information is widely regarded as a valuable commodity, information security has

become particularly vital.

The technology of information security has evolved through three basic stages: data

protection, system protection and system verification.

Encryprion has been used since antiquity to protect information from unauthorised
disclosure. It was the advent of high-speed digital computers, however, that made the
wide-scale use of sophisticated encryption systems possible for the first time. The
principles and mechanisms of encryption are well understood and many ingenious new
algorithms are reported every year. In particular, the advent of public key ciphers
[DIFF,1976J[RIVE,1978] has allowed the possibility of encryption over large-scale
networks without the logistical problems of key distribution associated with classical
(symmetric) cipher systems. Given that the fundamental assumptions upon which the
security of these ciphers are based are true, the strength of modern ciphers can be taken

as being very high indeed.

Security technology, however, must do much more than just protect data. The systems
that handle the data must themselves be protected to safeguard their operating principles
as well as the data they contain. Before the advent of communications, such protection

could be ensured by physical means, such as placement of the equipment in locked

_15 . - _— -

rooms. As long as the equipment could not be operated remotely, this solved the
problem. The advent of communications networks between data processing systems,
however, has compounded the problem enormously. If physical protection of the data

channels is impossible then ways logically to protect the channel must be sought instead.

The main problem, however, in the implementation of a successful security system, lies
in the difficulty of verifying that the system will behave exactly as it should. Otherwise,
it is not possible to give assurances about the absolute level of security offered by the
system. It may have undetected design flaws that allow insecure behaviour under certain
conditions not foreseen by the designers. It may_be that the system could be altered
secretly and maliciously by an outsider who wishes to manipulate the system for his own
ends. In very simple systems, visual inspection and exhaustive trial is sufficient to
verify correctness, but in large, modern systems such an approach is out of the question
for the reasons given in Chapter 4. The power of the modern computer system is a
double-edged sword: it makes possible very sophisticated encryption, but brings
enormous problems in systems verification. It is in this area that szandards have a very

important role to play if these problems are to be overcome, see Chapter 3.

Customers for secure systems have historically been the government, financial and
military communities. The government and military requirements fall into three areas:
secrecy, integrity, and reliability. Although formal definitions of these terms are given
in Chapter 2, these requirements can be summarised respectively as: prevention of
disclosure of information to the outside world as well as separating data on a need-to-
know basis within the system, protection of data from corruption while in storage or
transit and the knowledge that the system and data will always be available when

required.

16

The needs of the financial community are especially demanding. Here, concern for
secrecy is equalled and even surpassed by the need for strong data integrity. For
example, any part of a financial transaction system must be able to convince not only

itseif of authenticity, but be able to establish legitimate claims before a judicial authority.

As other commercial organisations see the benefit that they can gain from
interconnection of their resources, they too perceive the need for security. Few
companies will entrust commercially sensitive information to a communication system

which will allow free access to all and sundry.

So important is this problem of security, that the Commission of European Economic
Communities (EEC) commissioned a special study into the need for security. It was the
largest study of its kind ever undertaken, and was conducted by Coopers and Lybrand
[COOP,1988]. The report came to the worrying conclusion that "...computer and
network security is inadequate..." and that if standards and systems are not put in place
to correct the deficiencies, the problem could "...act as a brake on economic
development in the European Community...". The study encompassed seven European
cbuntries: the UK, France, Germany, Italy, the Netherlands, Belgium and Sweden.
Among the 17 vendors of computer equipment who took part were organisations such

as the Digital Equipment Company and British Telecom.

The report discovered that users of networked systems were critically dependent on their
systems in ‘virtually all aspects of their operational, administrative and financial
processes’, more so than many believed [RAYM,1988]. In addition, the report found
~ that "network systems are extensively exposed to disruptive events’ and that 'the nature

and extent of this exposure is not always understood’.

17

The conclusion recommends that users adopt 'as a matter of priority, a systematic,
methodical, comprehensive and well-founded approach to network system security’.
Another important finding of the study from the point of view of this research, is that
it is strongly believed that there is °...considerable scope for standardisation in the field

of security...’. This could be achieved by rationalising conflicting national legislation
and regulations and by developing multi-vendor standards for commonly required

security mechanisms. This research addresses the first of these recommendations.

" In any discussion of computer security, the central element is the statement of threat.
The threat is the list of occurrences, both accidental and deliberate, against which the
system is to be protected. The study of threat assessment is an art in itsetf and attempts
have been made to address the process from a systems point of view in a rigorous
manner [PIER,1988]. Once the threat has been established, a security policy (see
Chapter 5) is drawn up to address the aspects of the threat and specify the
countermeasures to be adopted to minimise the threat. In general, the approach taken
is that designers of secure computer systems have little interest in identifying the
resources available to specific classes of perpetrators. Instead, they assume that the
perpetrator will apply resources in proportion to the value of the protected resource to

be subverted.

The concept of a Comprehensive Security System (CSS), which can be retrospectively
added to an existing data processing system as a value-added function provider and the
integrity of which can be demonstrated by formal models and methods of logical
analysis, is very attractive to owners and managers of large, existing communication
networks. New applications can be written to utilise the security functions on offer, and

existing applications can be modified or updated to use the system.

18 —

o

The CSS to be described in Chapter 5 involves the provision of security services for use
at, and for the transfer of data between, remote end user entities. Within the ISQ
model, there are potentially many different services and applications which will benefit
from a value-added (an additional feature or service retrospectively added to a system
to enhance its usefulness) security system, but in general, each requiring a different
combination or sequence of security functions. The CSS is simply another application
layer entity. Applications communicate with the CSS via an Application Program
Interface (API). Unless applications are written to take advantage of the interface, they
cannot avail themselves of security services. The output of the CSS is of a form that is
comprehensible to the receiving CSS at the other end of the network, but

incomprehensible to any other entity.

1.2. Aim and Objectives of the Research

It is being recognised [COOP,1988] that the use and advantages of information
technology will be severely limited within Europe unless sufficient attention is given to
all aspects of data security and systems dependability in both the storage and
communication spheres [ESPR,1988] [POLI,1988]. Over the last decade, a number of
conventional and public key algorithms together with their associated protocols
[DIFF,1984] [RIVE, 1978] [MERK,1978] have been developed for use in non-military
applications, mainly the financial sector, but have operated within relatively small-scale,
point-to-point, star arrangements [SUMM,1987] [RUSH,1986] [RUTL,1986]
[MUFT,1989]. With the proliferation of large-scale, multi-user networks designed for
an open system environment on a global sc;a]e, it is becoming essential for suitable data
confidentiality, integrity and user identification techniques to be incorporated into a cost

effective, simple operating system for the average user [COOP,1988].

19

The aim of the research program, therefore, was to investigate the possibility of bringing

about the realisation of such a system, and comprises the following stages:

1. an initial updating on the latest techniques in the relevant areas of
security, many of which are described in [COOP,1988] [[DENN, 1983]
[DTI,1989] [ESPR,1988] [GASS,1988] [MUFT,1989] [MUFT,1990]
[MUFT,1992];

2. a detailed examination of the relevant standards in existence
[CCIT,1987a] [CCIT,1987b] [DOD,1985] [DTI,1989] [ECM,1987a]
[ECM,1987b} [ISO,7498) [ISO,7498-2] [I1SO,8571] [ISO,IJTCI1]
[ISO,SC21] [ISO,TC97];

3. a discussion of open system architectures that will be required for the
development of the security architecture within the framework of the
Open Systems Interconnection (OSIj model [1SO,7498] [(ISO,7498-2]
[ISO,8571] (ISO,JTC1] [1SO,SC21} [ISO,TC97];

4. an investigation into the potential problems associated with large system
operation is reviewed [BLAT,1987] [COOP,1988] [DOD,1985]
[ECM, 1987b] [ESPR,1988] [GASS,1988] [MUFT,1990] [MUFT,1992)]
[PATE, 1988] [POLI,1988] [RAMA,1990] [RAYM, 1988] [RUSH, 1986]
[RUTL,1986] [SAN,1988b} [SIDE,1988] [SPAF,1988] [STOL,1988]
[SUMM,1987] [VOYD,1983]. From this investigation, an overall

security policy is developed;

5. a review of complete communication systems from the point of data

20

generation to its final destination is given. Appropriate security
techniques are developed to allow the security policy to meet the needs

of the OSI environment;

6. the development of a software demonstration of a secure communications

system to run on an Ethernet LAN of IBM Personal Computers;

7. the extension of the above ideas to develop a formal model for the
analysis of security operations and mechanisms, to allow the strengths and
potential weaknesses to be analysed. The structure and attributes of
system entities will be clearly specified and their interactions and

constraints specified mathematically;

8. an analysis of the demonstration system using the formal techniques

developed earlier;
9. a review of the effectiveness, strengths and weaknesses of the analysis,

and recommendations for further development of security systems using

this work.

1.3. Layout of Material in the Thesis

This thesis describes the research leading to the conceptual development, practical
implementation and formal verification of a Comprehensive Security System. The

subject matter is arranged as follows.

21

The present chapter provides a general introduction to the topic of computer security,
discusses with extensive references the motivation, aims and objectives of the research

and describes the layout of the material in the thesis.

Chapter 2 covers the background to the concept of security, the definition of and need
for security, the concepts of internal and external security, secrecy and integrity and
trusted system evaluation criteria. The concepts of users and trust are introduced and
defined, and the components of secure systems are discussed. The boundaries of the

system in question and various system entities are defined.

Having established the background against which the research is set, Chapter 3 discusses
the special requirements of security in open systems. The concept of an open system is
introduced, and the need for international standards for open systems is discussed, with
a status report of current progress and government attitudes to these efforts and current
approaches to security in open systems. By far the most important standard to emerge
in the field of open systems is the Open Systems Interconnection (OSI) Reference Model
drawn up by the International Standards Organisation (ISQ). This architecture is the
basis for the new research, and the details of the seven-layer model are discussed in
detail although it is important to realise that the basic principles of the security
methodology may be applied to any open system. By way of example, the important
File Transfer, Access and Management (FTAM) service is described to illustrate the
principles of the model. ISO themselves have recognised the need for security within
open systems, and have drawn up draft recommendations and statements of
requirements. Due to the inaccessible nature of the standards documents, the OSI
Security Architecture is discussed in depth. In order to fulfil the requirements of the
recommendations in the standards, it was found necessary to extend the Security

Architecture. The requirements for this are outlined together with a discussion of the

22

placement of security provisions within the framework of the Reference Model.

Chapter 4 introduces the concepts underlying existing techniques for the formal analysis
and verification of computer systems, including the important state-machine model which
is used later in a rigorous manner for the design of the CSS. Methods for controlling
the activities of, and data flow between, various system entities are discussed, and
existing approaches to methods of decomposition are described. The powerful ideas
underlying proofs of correctness via the mechanism of formal logic are introduced. The
methods of Hantler and King [HANT, 1976] are discussed by way of an example of early
attempts at formal logic proofs. The resulting extreme difficuity of conventional
debugging techniques when applied to large software systems is examined, and the
limitations of existing approaches to formal analysis are then exposed with the need for

a new verification methodology being highlighted.

These methods are applied in a new approach to the distributed security problem, the
Comprehensive Security System (CSS) which is described in detail in Chapter 5. The
basic concept of the system is presented and various definitions pertinent to the design
are introduced. The design methodology from the conceptual overview, through the
generic models, to the agents and protocols which comprise the system is described.
The concept of the Security Management Centre (SMC), an important feature of the
design, is introduced. The basic implementation for an Ethernet Local Area Network
(LAN) of IBM Personal Computers running MS-DOS is described, together with the

details of the Application Program Interface (API) to the CSS.

Chapter 6 describes the main body of the research - a new analysis methodology based
on a 'bottom-up’ design technique for large systems like the CSS described in Chapter

5, but without many of the shortcomings of the analysis and verification methods

23

described in Chapter 4. The fundamental security assumptions upon which the method
is founded are described and the layered approach to mechanism generation is detailed.
This technique requires that every system function be built from layers of verified and
validated finite-state machines, stored in a library of trusted functions. These functions
are activated in a monitored sequence and a recursive algorithm for the determination
and verification of the state of the CSS sequences at any time constrains the number of
variables to a point where analysis is feasible. Several examples of security mechanisms
generated in this way are given. As well as providing the functions used to manipulate
the data from a security point of view (eg encryption), the functions are also used to
generate the protocols by means of which the agents communicate securely. The new
methodology therefore includes a modified Hoare logic [HOAR,1969], using the work
of Burrows er al [BURR,1988], for the verification of protocols from a security
standpoint. This is a predicate logic concerning certain formal aspects of beliefs about
the global system state as a result of actions performed on system data by subject
entities. The new analysis techniques are then applied to some examples of mechanisms

and protocols from the CSS, demonstrating the approach to formal verification.

A review of the findings and limitations of the results and conclusions drawn as a result
of it are given in Chapter 7, with some suggestions for further work in this field and

some comments on the possible future of secure distributed systems.

Several annexes cover additional material including circuit diagrams, ROM firmware
listings and a mathematical treatment of a general approach to primality testing and
integer factorization., A glossary of terms and abbreviations is provided followed by
a comprehensive bibliography and reference list. An addendum cites publications by the
author relevant to this research and finally the source code of the DOS version of the

prototype CSS is included on a floppy disk.

24

2. BACKGROUND

2.1. The Definition of and Need for Security

Generally, security refers to a complex of measures which may be broadly classified
into:

@) physical;

(b) procedural;

© logical;

aspects which are aimed at the
(a) prevention;
(b) detection and indication;

(©) correction;

of certain kinds of system misuse either accidental or deliberate {ECMA,1987b]. Some

example considerations covered by these three aspects of security are:

Procedural Security selecting trustworthy personnel, changing
passwords regularly;

Logical Security access controls, cryptography;

Physical Security vaults and doorlocks, guards, screening against

emanation of interpretable emissions.

25

2.2. Internal and External Security

Security not only addresses attacks and threats external to the system, but internal attacks
from known user entities. If guarantees of authentication can be provided, it may be
possible to devise a system in which all user entities are subject to strict access control,
thus minimising the internal threat. Of course, it is virtually impossible to stop a user
passing information to an attacker directly, so user trust and strong enforcement

procedures are also required.

Only authorised users can obtain/provide information which will help to eliminate, as
far as possible, misuse of the system, such as eavesdropping on confidential data, abuse
of resources, fraudulent activity, forgery of messages, etc, The recommended range of

services which a security system could provide is comprehensively addressed in

[1S0O,7498-2].

2.3. Secrecy and Integrity

Nearly all aspects of computer security come under two broad categories, secrecy and

integrity.

Secrecy refers to those aspects of security which prevent information disclosure

to parties not authorised to receive it.

Integrity refers to those measures which are taken to protect information from

unauthorised modification or destruction.

26

Throughout the literature, the main emphasis is placed on secrecy, while integrity is
addressed as a secondary consideration. There are two reasons for this seemingly one-
sided point of view, one historical and one technical. The historical reasons arise from
the fact that the vast majority of research into computer security has been funded by the
United States government, whose primary concern has been the maintenance of secrecy
of classified information. This tradition has persisted even in commercial applications,
where classified information is not the concern and where integrity, not secrecy, is the
primary goal. The technical reason for the bias is simply due to the fact that the
information disclosure problem is more interesting to computer security researchers, and

the literature reflects this bias [GASS, 1988].

However, the tools required to protect information against modification are basically the

same as (or a subset of) those required to protect it against disclosure.

The final aspect of computer security which cannot be placed in either of the two
categories above is denial of service. This again has not traditionally been a topic of
computer security research, partially for the reasons given above but also because while
great strides have been made in secrecy and integrity, little progress has been made in
solving the denial of service problem. This is because the problem is fundamentally
much harder; preventing denial of service requires ensuring the complete functional
correctness of a system - something considered by many to be unlikely to be done in the

foreseeable future, if indeed it is possible at all.

2.4. The System Boundary and Security Perimeter

The system is loosely defined as the collection of components comprising the computing

27 - . i

and communications resources over which the designers, administrators and users have
some control. Everything within the system is protected by the system, and everything
outside the system is unprotected. The importance is not the generic definition of the
term system, but the definition as applicable to each case in particular. Ahy scheme to
implement security features must clearly define the system boundary for the system in
question, and establish a clear understanding of the threats to which the system may be

exposed and against which it must defend itself.

Identification of the system boundary relies on a precise specification of the interface
between the system and the outside world. The components within the system may be
divided into two classes; those responsible for maintaining the security of the system,
and all others. The separation of the components in this way defines an imaginary
boundary called the security perimeter. 1n a dedicated secure system, such as a trusted
military communications network, typically the operating system and the computer
hardware will lie within the security perimeter, whereas user programs, data, terminals,
modems, printers and other components which the security system protects will lie

outside the security perimeter.

The characteristics and behaviour of all the components within the security perimeter
must be carefully analysed under all foreseeable conditions, because a malfunction or
deliberate functional modification of any one can lead to a security violation. Indeed,
for a completely trusted system, unforeseen conditions must be accounted for as well.
This may possibly be realised by ensuring that the system has a failsafe architecture
whereby under fault or error conditions the system reverts to a known reference state.
By contrast, the components outside the security perimeter do not require consideration,
because they become subject to security constraints only at the point where .they

penetrate the security perimeter. In an ideal system, a malfunction within the security

28-

perimeter will have the effect of expanding the security perimeter to the system
boundary, causing all components of the system previously outside the perimeter to

become subject to the security policy within the perimeter.

In a similar manner to the definition of the system boundary, it is important to define
precisely the interface across the security perimeter. This interface should be enforced
by the security system. For example, the list of operating system calls which require

vetting for security reasons are interfaces to the security perimeter.

2.5. Users and Trust

The user may be defined for security purposes as the person or application whose data
and activities the system protects and whose access to information and services the
system controls. Any entity who does not access the system directly, but gains indirect

access through another entity is still regarded as a user.

One of the assumptions that many systems make about trust is that if a trusted user
wishes to breach the trust he holds, there is little or nothing the system can do about it
[GASS,1988]. Although assumptions of this sort simplify system design considerably,
they also introduce considerable weakness as well, The Bell-La Padula [BELL,1973]
model introduces the concept of 'no read up, no write down’, as encapsulated in many

military systems currently in use. Here, the user, trusted or otherwise, is prevented

from disclosing information by declassification even if he wishes to do so.

2.6. Trusted Systems

Although to a certain extent human users can be trusted, the concept of trusting a
computer is much more difficult to define. It is extremely difficult to write software
which performs exactly as desired under all conceivable conditions, especially in large
projects. System activity must therefore be supervised by a kernel of software routines
which have been formally analysed in terms of security criteria. Such routines are called
trusted software, and are typical of the routines to be found in the kernel of the security

processor of a secure system.

The majority of the rest of the software on the system does not therefore require to be
trusted, and this considerably simplifies the design (and hence reduces the cost) of the
application software packages. In addition, items of software which may be considered
to be malign in intent, such as trojan horses or computer viruses, may be thwarted in
their attempts to penetrate the system security by close supervision of their operation and

execution by the trusted software in the kernel [SPAF, 1988].

2.7. Subjects, Objects and Access Control

All activities within a system can be considered to be sequences of operations carried on
by subjects on objects. A subject is defined as any active entity capable of initiating a
data manipulation within the system. At the highest conceptual level, human users are
subjects, but within a system, a subject is usually considered to be a process, job, task
or operation on behalf of the eventual end user. An object, therefore, is any entity
manipulated by a subject in the pursuance of a task or process. Clearly, an entity can

be a subject under certain conditions and an object under other conditions. For example,

30

a computer program residing on a disk storage medium will be an object if it is moved
or deleted, but will become a subject when executed and manipulating data under its own

control,

It 1s very important that every entity within a system has a unique identifier. In the
above example, distinguishing between the program as it resides on disk, and the process
it becomes when executed, is important because the same program may be run
simultaneously by different processes on behalf of different users, where each process
possesses a unique ID. It is easy to fall into the trap of loosely identifying the program

as a subject rather than as the process within which the program executes.

2.8. Distributed Secure Systems

A secure network is a set of communications mechanisms that provides to its subjects
a specific type of service at a given protocol layer, normally the Application layer in the
context of OSI. The subjects (users) are the communicating entities that use the secure
network, implementing their own protocols to communicate among each other. The
nature of these subject to subject protocols is of no concern to the trusted network. The
network consists of all the elements that make up the protocols; the internal layers of the
secure network are transparent to the subjects. This concept of ’hiding’ functions and

protocols is consistent with that of a layered protocol model.

The policy enforced by the secure network has the sole aim of determining and
controlling which pairs of subjects can communicate, and which subjects can access
and/or manipulate which objects. - Taken together, a network of several systems - each

of which contains a portion of a secure network - is a distributed secure system. The

31

trusted portions of the individual systems interact via secure paths, and the untrusted
portions are managed within each system in accordance with the security policy. This

is akin the idea of domains which are discussed in Chapter 5.

When physical protection does not extend from end to end (between entities in remote
systems), it is necessary to replace the physical protection with logical protection through
such mechanisms as encryption. From outside the security perimeter the logical view
of the network is the same as any other unprotected system, but the architectural view
differs from the point of view that the software and hardware in the lower protocol
layers need not be trusted while still maintaining security. For example, encryption in
protocol layer 3 serves to provide a protected path between remote systems at layer 3,
compensating for the lack of physical protection at layers 1 and 2. Protocols using
encryption are also capable of providing a mechanism for aurhentication, which aims to

ensure that neither of the two communicating entities are masquerading.

2.9. Mutually Suspicious Systems

Together, the systems comprising the secure distributed system constitute security
domains which operate under a common security policy. Each domain is equally
responsible for the overall security of the system. Despite the fact that systems may
assure themselves of their own security within their own domain, it is often a
requirement that domains communicate with each other, and possibly exchange
confidential information. Each domain will therefore regard the other as lying outside
its own domain and hence the scope of its own policy, and needs assurance of the
trustworthiness and security "goodness’ of the other system before divulging information.

Such a pair constitutes a mutually suspicious system.

32

2.10. Security Kernel on a Network

Fundamentally, the distributed systems so far discussed constitute a distributed operating
system. If the secure part of that operating system in each domain is a security kernel,
then it is necessary for the security kernels to cooperate in some way if security is to be
maintained across the entire system. One way to accomplish this is to allow the kernels
in the individual systems to communicate directly with each other, exchanging the
necessary control information to coordinate the exchange of traffic and activities. This
technique requires a trusted set of kernel to kernel protocols, and is explored fully in the
Security Management Centre (SMC) concept which is central to the methodology
described in this thesis. The SMC concept combines this with the technique of keeping
the kernels or SMCs as autonomous as possible, thus limiting the amount of information

required to be exchanged.

2.11. Trusted System_Evaluation Criteria

Trusted system evaluation criteria are based mainly on the US Department of Defense
Orange Book, after the colour of its cover [DOD,1985]). The document employs the
concept of a rrusted computing base, a combination of hardware and an operating system
that supports untrusted applications and users. This concept is also central to the
Comprehensive Security System described later in this thesis. The Orange Book defines
seven levels of trust ranging from systems that have minimal protection features to those
that provide the highest level of security. The book also attempts to define objective
guidelines along which evaluation criteria can be based for both commercial and military

applications.

33

The European Community have recently produced equivalent standards under the
Harmonised Criteria of France, Germany, the Netherlands and the United Kingdom

entitled Information Technology Security Evaluation Criteria (ITSEC) [ITSE, 1990].

34

3. SECURITY IN OPEN SYSTEMS

3.1. The Concept of Open Systems

As computers have become smaller, cheaper and more numerous, there has been much
interest in connecting them together to form networks and distributed systems. There
is still some debate among researchers as to the exact difference in definition between
a raw network and a fully distributed system [ENSL,1978], but for most purposes, the
difference may be summarised as follows. A network comprises a number of system
elements connected to a central processing unit (CPU) which are able to exchange data
via a communications channel, whereas a distributed system takes the concept soméwhat
further in that it is the processing power itself which is distributed throughout the

system, accessed via an operating system which is itself of a distributed nature.

Initially, connections between computers were made in a somewhat ad hoc way,
typically with a host computer regarding everything else connected to it as terminals.
However, the concept underlying a modern system is that due to the computing power
itself being distributed throughout the network, each component is able to talk on equal
terms with its peers. This distribution of processing power has the additional effect of
enhancing reliability considerably, because failure of a single component will have little

effect on the system as a whole.

These advantages are the two main driving forces behind the networking of computer

35

systems. By way of example of the first, many organisations have a substantial number
of computers in operation, often located far apart. A company with several factories and
an administrative site may have a computer at each location to keep track of inventories,
stock control, monitor productivity, do the payroll, and so on. Initially, these computers
worked in isolation from one another, but management may have decided to reap the
benefits of connecting them together so that information about the entire company may
be extracted and correlated for management purposes. In addition, expensive peripherals
such as laser printers need not be provided for each user, but be made available to all
users of the network. In general, the goal of this approach is to make all programs, data,
peripherals and other resources available to any user of the network without regard to
physical location of either the resource or the user. Taken to its logical conclusion, this
could have a very significant social impact on the whole concept of ’going to work’.
It is possible that in the future many people may work entirely from home, eliminating
the need for travel to and from a place of work. In addition, their choice of
geographical location in which to live will have very little bearing on their ability to do
a particular job. It is interesting to note that the first regional council in the United
Kingdom to embrace the new ISDN public network is the Highlands and Islands Council
serving some of the most remote communities in the country. In addition, the
opportunities of computer-aided open learning are created. It may be possible to use the
enhanced communication capabilities of future systems for interactive learning programs,
and research effort towards this end is being carried out at the University of Plymouth

using satellite technology as the communications medium.

The second goal is to provide high reliability by having alternative resources available.
With unconnected computers, if the machine 'goes down’ due to hardware failure for
example, the local users are denied service, even though there may be substantial

computing resources available elsewhere which are being under utilised at that time.

36

With a network, the temporary loss of a single processor is much less serious, because
its users can be accommodated elsewhere until normal service is restored. For military,
banking, industrial process control and other critical applications, complete loss of
computing power for even a few minutes for whatever cause can be catastrophic to the

business in hand.

The fundamental ability to network computers came with the change in the relative cost
of computing versus communications. Until around 1970, computers were expensive
compared with communication facilities. The reverse is now true, In some applications,
data is generated at widely scattered points. Prior to the advent of cheap computing, it
was not possible to analyse the data at each point because computers were so expensive.
Raw data was sent back to a central processor for analysis. Now that the cost of a small
computer is comparatively negligible, the local data can be processed, and results
exchanged with other computers. The result is a computer network with the processing

power distributed throughout the system.

Networks of computers are generally classified by size into Local Area networks (LANs)
and Wide Area Networks (WANs). While there is no fixed boundary between the two,
in general a LAN is understood to be a network serving one site such as a factory or a
University campus. A WAN is a network connecting remote sites, either country-wide

or even world-wide in extent.

Some researchers state that in addition to the advantages already discussed, users of
networks can expect that as a result of coupling large numbers of smaller processors into
large systems, simpler software designs will result [TANE, 1981]. The argument for this
is that in a network, it is possible to dedicate some (or all) of the processors to

specialised functions, for example, database management. Instead of having one large

37

machine multiprogrammed on a time-shared basis, each machine only performs one task
at a time. By eliminating the multiprogramming, much of the software complexity

associated with large mainframes is eliminated.

In summary, the concept of open systems or Open Distributed Processing (ODP) is the
conceptual framework within which systems of diverse origin, application and location

can interact freely if required with the attendant advantages described.

3.2. The Need for, and Attitudes Towards, Standards

The situation with many aspects of commercial engineering has traditionally been to get
your own product to market first, and if anyone else wishes to produce other products
compatible with yours, then they must conform to your standards or face exclusion from
the marketplace. While this makes sound commercial sense from the manufacturers
point of view, and indeed was the attitude and major reason for the total computer
industry dominance of IBM, the situation was intolerable for users. Once a user had
invested in a product from a particular company, if he ever wished to expand or enhance
his system, he was compelled to make all future purchases from the same supplier. This
is called locking in to a product range. The disadvantages are obvious. Manufacturers
can go out of business, competitors can offer superior products at cheaper cost, but the
user is unable to avail himself of them. In addition, users who have bought their
equipment from different suppliers stand very little chance of being able to connect their

systems together and so gain the advantages of networks described above.

An impressive example of the services made possible by the adoption of universally

accepted standards is the international telephone system. Subscribers in different

38

countries can make direct calls to one another as a matter of course. This is made
possible by the existence of standards, agreed between the telecommunications

administrations throughout the world.

Pressure from customers persuaded the various standard bodies to develop sets of
common standards to which computing equipment must conform if it is to be able to
claim compatibility with other similarly equipped machines. This will allow a potential
customer to satisfy himself that the equipment he is considering buying will allow him
to expand and enhance his system with other vendors products which also conform to
the standards. Clearly, it would be in the manufacturers interests to design their
equipment around these standards, or they would find few customers for their products.
By far the most prevalent of these standards to emerge is the Open Systems
Interconnection (OSI) framework developed under the auspices of the International
Standards Organisation (ISO) based in Geneva. It is thus towards this standard that the
vast majority of research effort is being directed, and the research described in this

thesis is no exception.

As part of Government recognition of the central importance of information technology
to a healthy and prosperous economy, a high level committee was established in 1981
to reflect the views of both suppliers of computer equipment and the wide potential user
base [SIDE,1988]. This FOCUS committee is chaired by the Minister of the Department
for Trade and Industry (DTI). This action acknowledged the vital need for
internationally recognised and respected information technology (IT) standards, and
FOCUS have the remit to advise on Government policy towards IT standards generally
and to indicate what action can be effectively undertaken to encourage and assist
standardisation in priority areas. FOCUS quickly established that the °...immediate and

urgent priority was standardisation on OSL...", and the committee have since been

39 - : - -

consistently unremitting that there should be no let-up to the efforts applied in this area.
While the Government play no part in the actual making of standards they have provided

a powerful incentive to their implementation, by specifying them for their own use.

In addition to Government efforts, other powerful bodies have added their weight to the
universal adoption of OSI standards. In particular, the European Computer
Manufacturers Association (ECMA) have drawn up a series a proposals for Distributed
Office Applications based upon the OSI framework [ECMA,1987a). Their
recommendations examine the needs of office applications of a supportive nature versus
those of a productive nature, 2.md how cooperation between these two elements can be
harmonised to create a more productive and efficient office environment. ECMA have
also addressed the security aspects of open systems, and their recommendations are

discussed in [ECMA,1987b].

3.3. The OSI Reference Model

It is against this background of almost universal adoption of the OSI standards that the
research described in this thesis is set. The fundamental reference architecture which
is applicable to this research is the International Standards Organisation (ISO) Basic
Reference Model [iSO,7498]. The model establishes a framework for coordinating the
development of existing and future standards for the interconnection of systems. The
objective of OSI is to permit the interconnection of heterogeneous computer systems so
that useful communication between application processes may be achieved, raising the

possibility that the users of any two computer systems may, for example:

1. exchange files;

2. exchange electronic messages (e-mail);
3. log onto each other’s systems;

4. submit jobs to each other’s systems.

Thus, isolated systems and ’closed’ groups of systems will be opened to one another as
OSI products become widely available. As a basis for the development of these
standards, ISO have developed a Reference Model (ISORM), to partition the problem
into discrete layers, and provide a conceptual framework for the understanding of the

complex processes involved in computer communications.

3.3.1. The Seven Layer Model

The ISORM has seven layers, see Figure 3.1.:

1. application layer;
2. presentation layer;
3. session layer;

4. transport layer;

5. network layer;

6. data link layer;

7. physical layer.

The ISORM specifies the functionality of each layer, the interfaces between adjacent
layers and the method of achieving layer-specific functionality between cooperating
computer systems over real physical media. The communication functions of each layer

are examined in turn.

41 -

USER

X

APPLICATION

PRESENTATION

SESSION

TRANSPORT USER ORIENTED LAYERS

NETWORK COMMUNICATIONS ORIENTED LAYERS

DATA LINK

PHYSICAL

Communication Chonnel

Figure 3.1. The Seven Layers of the OSIRM

APPLICATION LAYER

The goal of OSI is realized at the application layer, since it is this layer that provides
the communication-based service to end users. The subordinate layers of the model exist
only to support, and make possible, the activities that take place at the application layer.

In this layer, all high-level’ system-independent applications activities are performed.

42

These activities are controlled by entities via the local operating system which acts to
interface the system-independent nature of the ISORM to the specific nature of the
individual computer system. This entity is referred to as an application agent. An
application agent may operate purely in a local, interactive mode, such as a text editor,
it may provide a local user with an interface to an OSI application, or it may coexist
with other application agents to provide support services to the system. It is towards this
last mode of operation that the Comprehensive Security System to be described in

Chapter 5 is directed.

As the uppermost layer of the ISORM, the apblicalion layer is unique. It differs from
the lower six layers in that it alone makes OSI services available to the users of the
computer system on which it resides. The layer embodies a wide range of system-
independent application functions, some of which are widely applicable, well defined and

standardised by OSI. These include such applications as:

1. file transfer and directory operations;
2. message handling services;
3. job transfer and remote job management.

The first of these, FTAM (File Transfer, Access and Management) is discussed in detail
as an example of an OSI service in the following section. In all standardised
applications, the way in which the functionality is achieved is covered by-the standards.
Any product, independent of specific implementation details, which conforms to the
standards is assured (in theory) of the ability to interwork with all other conforming

products.

Thus, the application layer is concerned with providing services, covering a wide range

43

of applications, to the end user. All application layer activity involves the transfer of
information over OSI between distinct cooperating computer systems. Clearly, the
representation of information within the individual systems will differ in the details of
data structure, syntax and so forth, but the commonality of enceding of the information
to be transferred must be established between the cooperating systems. This is the

function of the next layer.

PRESENTATION LAYER

The function of the presentation layer is to provide a common representation of
application information whilst in transit between two cooperating computer systems. By
way of example, consider the differences in the representation of characters across
different systems. It may be that the two computer systems both use the standard ASCII
(American Standard Code for Information Interchange) code for character representation.
In this case, little need be done by the presentation layer other than to establish that this
common coding does indeed apply. If, on the other hand, one machine uses ASCII
while the other uses EBCDIC character encoding, then the presentation layer must
ensure that appropriate transformations are performed on the information. To do this,
it establishes by negotiation between the two computer systems, a common
representational form for character information for use whilst such information is in

transit between them.

In summary, while the application layer offers system-independent activity over OSI, the
presentation layer exists to ensure that any information exchanged between the systems
as a result of application layer activity, is in a commonly understood form. The
presentation layer takes no part in the activity associated with the actual establishment

and control of data communication between systems; this is provided by the next layer.

44

SESSION LAYER

The session layer fits between the application-oriented upper two layers, and the four
lower layers which comprise the ’real-time’ data communications environment. Its
fundamental role is to provide services for the management and control of data flow
between the two computer systems. For example, the session layer allows for the
insertion of synchronisation points in the data flow of application information so the
communicating processes can determine, should the flow be interrupted for some reason,
the correct point at which to restart transmission, thus avoiding a wasteful rerun of the
whole association. Session layer activity allows activities to be started, halted, restarted
or abandoned under the (indirect) instruction of the application layer. An activity may
be halted, for instance, to allow a more urgent activity to take place, and then restarted

at a later time.

TRANSPORT AND LOWER LAYERS

The transport and lower three layers are not of major concern. The lowest three layers
(Network layer, DataLink Layer and Physical Layer) are fully defined by the CCITT
X.25 specification, an excellent tutorial summary of which can be found in
[SNAR,1983]. Reliable data transmission between end systems, that is end-ro-end

communications, are assumed by the session layer.

The fundamental job of the lower layers is to deal with the problems of data transmission
over a real, physical medium. In reality, this may be a landline, a public switched
network, a satellite link, optical fibre and so on. Communications media differ in
fundamental ways, and so must the data transmission techniques used over them. The

result of the activities of the lower layers is that, although the quality of service may

45

differ between one sub-network and another, the data is reliably transmitted and received
by the communicating systems. The main job of the transport layer is to perform error
handling on data transmitted across sub-networks not designed for reliable data
exchange. For example, modems are used to communicate between personal computers
using the public telephone system, which was designed only for voice traffic. Much of
the modem’s effort goes into error detection and correction for computer data which is
quite alien to the telephone system. Hence, the transport layer provides the session with

reliable data transport irrespective of the nature of the underlying sub-network.

Sub-networks using packet-switching fall into two categories, connection oriented and
connectionless. Connection oriented sub-networks operate by establishing connections
(discussed later) and exchanging data in discrete packets. One of more intermediate
computers called switches may be used to direct the data packet correctly from origin
to destination. Connection oriented networks generally operate at lower speeds up to
around 64,000 bits per second, but can operate over almost unlimited distances. This
is éxempliﬁed by the virtual circuit approach. They are seen as the backbone of the
WANS described earlier, and are operated throughout the world by the public telegraphic

systems providers as well as private concerns such as AT&T ISTEL.

By contrast, connectionless sub-networks are often capable of higher speed operation,
the datagram approach being typical. Very high speed connectionless operation up to
10 million bits per second is sometimes possible if the nature of the physical medium
which can be used for the transmission is suitable and the systems are in close

proximity. This capability is associated with LAN technology, such as Etheret.

The ISORM defines methods whereby high-level application activity can be performed

between remote systems by either of the two connection modes described above.

46

Indeed, between some systems there may be a combination of both. A local user may
access a gateway via the local, high-speed connectionless LAN, which gives him access
to a long-haul packet-switched X.25 backbone. At the other end, a gateway onto another

LAN may make the final connection to the actual receiver.

In summary, the lower four layers provide the ISORM with a means of reliable
transmission of data. The physical layer is concerned with such aspects as voltage
levels, pin assignments for connectors and so forth. The data link layer provides an
error correcting, flow control and synchronisation framework around data for reliable
traﬁsmission by the physical layer. The network layer makes use of underlying data link
services to provide data transmission services across sub-networks. Tt is particularly
concerned with rouzing, that is, establishing a route between the two computer systems,
and relaying, the use of intermediate computer systems to provide a data flow from one
sub-network to another which may be necessary as a result of the chosen route. In this
way, communications facilities can be established between systems which are not even
connected to the same network. The transport layer is said to operate end-to-end
between the two computer systems, that is, without explicit involvement in any
intermediate computer system that may be relaying between the sub-networks.
Throughout the rest of the thesis, the term nenvork is used to mean the network as seen
by the transport layer, that is, a transparent, reliable communication medium across

which data will flow without error or mishap.

3.3.2. Léyer Cooperation

When two computer systems, or end-systems, are involved in an OSI communication,

they conform to the standards associated with each layer of the ISORM. An

47

implementation of a layer conforming to the standards must be capable of understanding
and acting upon messages exchanged with an implementation of the same layer standard
on another cooperating system. When such an implementation is invoked it is known
as a layer entity. The layer is conceptualised as being split across the two end systems
and represented on each by a layer entity. These two entities, called peer entities, will
perform a layer function by exchange of messages in a coordinated manner as defined

by the standard associated with that layer, see Figure 3.2.

End system A End system B

Services requested
by higher layer

entity
// layer n+l
== Peer entitles
\\‘,’1 // \\ //\\)
—1] Exchange_of_ messege __|_ T~
layer n
N_=4 -
: \\ “.,___\.\
Use of lower layer layer n-1

services

Real Phystcal Medium

Figure 3.2. Peer Entity Association

By way of example, an application layer entity may request the reading of a file on a
remote end-system. This function is achieved by an exchange of messages between peer
application entities, resulting in a flow of information between application entities and

hence between the file and the user. The representation of the information in common

form over the communication path is the responsibility of the presentation layer, so in
order to acr;ieve the information transfer, the application layer must make use of the
services of the presentation layer. The process begins with the user requesting a service
of the application entity. The entity will perform the function of an exchange of
messages with the peer application entity on the remote end-system in question. The
initiating application entity will bring about this exchange by requesting a service from
a presentation entity. The presentation entity will in turn initiate the required functions
by the exchange of messages with a peer presentation entity. If this process is continued
for the presentation layer’s use of a session entity and so on, it will be seen that a
"cascade’ is developing. This is the whole principle of communication in the OSI
environment, for iE: sonly via the physical medium that acrual communication occurs.
The communication at the higher layers between peer entities is purely a logical

association.

3.3.3. Principles of the ISO Reference Model

As described above, all seven layers of the ISORM must be involved in any OSI
application activity. Entities of each layer must be present at each cooperating end
system to play their role in the mechanism of cooperation. The terminology used when
referring to the architectural principles of the ISORM is now discussed. A layer n user
on end system A requests of a layer n entity an n-specific service. Note that only if the
layer happened to be the application layer would the user be a ’real’ user! In other
instances, the *user’ would be a layer n+/ entity. The realisation of this service over
OSI requires the cooperation of two peer n entities, one on each of the cooperating end-
to-end systems, and involves the exchange of a control message between the peer n

entities. This message indicates the nature of the required cooperation and carries with

49 Coee .

it any parameters associated with the particular service, encoded in a precisely defined
format. Direct message exchange therefore is only notional, since the only physical
route between end systems is provided via the physical medium, and access to this
medium is only via the physical layer. The n entity can only achieve peer entity
association by calling on the next lower n-1 layer, to act on its behalf. In general, an

n entity operates by utilising services on an n-7 entity.

The process is now repeated for the n-7 entity. Having been invoked by the n entity,
the n-1 entity satisfies the service request by cooperating with its peer on the remote end
system. To do this it constructs an n-7 control message. The n control message is
passed to the n-7 entity as part of the service request and is packaged into the n-1 control
message. If-n-1 is not the layer at which physical data exchange between the end
systems can occur, the procedure is repeated with a service request by the n-7 entity
acting as a user of an n-2 entity. This continues uatil the physical layer is reached, at

which data exchange consists of a series of encapsulated control messages.

On reaching the receiver, the process is reversed. The control message associated with
each layer is examined and the activity implicit in that message is performed. It may
be that the control message may just instruct the entity to pass on the residual part of the
message, which contains encapsulated control messages for higher layers, without any
other action. This case is known as normal data transfer. Other types of control
message instruct an entity to perform some layer specific activity. A point of
importance is that each entity issues a report to its user (the layer above) which
corresponds to the original request issued by the peer user. This report, called an
indication, implies that the requested layer service has been performed by the
cooperating peer entities. Together with the indication the layer passes the residual part

of the control message for action by the higher layer.

50

3.3.4. OSI Protocols and Primitives

To summarise, a layer comprises a set of functions which, when activated by usef
requests, provides the realisation of the services. Every function has its own associated
control message which conveys instructions between cooperating peer entities in order
that the required function can be performed by the peer entity without ambiguity. Every
layer is defined by a precise set of functions and associated control messages. These
functions, the format and parameters of the control messages, and the actions to be taken
on receipt of a control message or service request, are defined as the layer prorocol
specification. A layer user communicates a request for a service to a layer entity, or
receives an indication of a service invoked by a remote peer user, in a service primitive.
Every service element has a set of service primitives which are defined in the service
definition. The user, known as a service user (S user), requests a service by means of
a service primitive, As well as this request, the S user may include the control message
or protocol data unit (PDU) that it wishes to convey to its peer. This results in an n
entity, which as an n-1 S user, issuing an n-J service primitive to request a service of
an n-1 entity. The n-1 S user may include any n PDU that it wishes to convey to its
peer. This 'user data’, passed between the n entity and the n-/ entity as part of a service
primitive call, is known as a service data unir (SDU). In this case, the n PDU is an n-1

SDU. This situation is summarised in Figure 3.3.

Again, at the receiving end, the opposite is performed. The n-2 entity strips off the
protocol control information and acts according to the instructions implicit in it. It then
issues an n-2 service primitive to indicate to the n-2 S user (an n-1 entity) that activity
has been performed as a result of an n-2 S user request on the sending system. The n-2
SDU which contains the residue of the n-2 PDU (ie the n-I PDU), accompanies this

indication. The n-1 entity acts in precisely the same manner resulting in an n entity

51

n service T~ n service
primitive / peer n entities \ primitive
e I nPDU_______ T ___
T
n-! service n=1 service
primitive / peer n-1 entities primitive
o __nmPDy] I
2T
n-2 service n-2 service
primitive peer n-2 entities primitive
e ___n@PO] I
T~
~N

Figure 3.3. Peer cooperation via subordinate layer entities

receiving the n PDU (in an n-1 SDU) which the initiating n entity sought to convey.
This continues upwards until the n entity issues an n service primitive to the n S user,
indicating that the remotely initiated activity has occurred. Thus, the objective of the
original n § user request, issued on the initiating system, has been fulfilled. The service
primitives that are used to request services or indicate the occurrence of services are

called a request service primitive and an indication service primitive respectively.

For the above sequence of events to occur without problem, it is vitally important that
the interfaces to each layer entity be precisely defined. The entry point to each is
defined via a service access point (SAP). An n entity offers services to an n+17 entity

through an n SAP.

Thus, the consequence of issuing a request service primitive on an end system is the
activation of a service element, resulting in the exchange of a PDU with a peer layer

entity. This brings about a cooperative activity and results in a indication service

52

primitive on the remote end system. However, the initiating user has no explicit
confirmation that the service has been performed. A service of this nature is therefore
called an unconfirmed service. There are many instances where confirmation is desirable
or even necessary to convey some information resulting from the activity. A service of
this type is called a confirmed service, and associated with the process of confirmation
are two further service primitives. These are the response and confirm service

primitives. The use of these primitives is indicated in Figure 3.4.

0) ~

n service primitive n service primitive
request indicationn

®

n service n service

prinitive primitive
confirm response
> @) n SAP

n SAP

Figure 3.4. Confirmed Service Primitive Usage

A service element can therefore have a maximum of four service primitives associated
with it. If it provides a confirmed service there will be four, if unconfirmed, two.
Certain service elements have a single associated service primitive, called an indication.
This may occur in a situation where a communications failure occurs in a lower layer,
that is, in the n S provider. The n S provider detects the failure and issues an n

indication service primitive to both n S users.

53

3.3.5. Connection Oriented Operation

In connection oriented operation, the first task of the session S (SS) user, triggered by
some application request, is to establish a data communications path between itself and
the peer SS on the remote end user. This is known as session connection. 1t is a
retationship between peer SS users, which once established and until released, constitutes
a channel through which SSDUs can flow. The session connection can be released as
a result of an SS user request, or as a result of a (possibly catastrophic) event in a lower
layer. In connection oriented operation there is no way for SSDUs to be exchanged
between SS users other than over an established session connection. By way of analogy,
many readers will be familiar with the idea of logging onto a remote mainframe from
aterminal. At the 'PAD’ prompt the command CALL <HOSTNAME> is issued, and
a name and password have to be entered before the session is established. This will
continue until the user logs off and the session is terminated. We now examine the steps

involved in a session connection establishment.

Using the terminology introduced in the previous sections, a session is established as
follows. On receipt of a session CONNECT-REQUEST from the SS user, the session
service element concemed with establishing the connection constructs a CONNECT
SPDU. It must then utilise a transport layer service to bring about the transfer of the
SPDU to its peer on the remote end system. At this point, the transport entity on the
initiating end system is 'idle’, that is, there is no transport connection established
between peer transport service (TS) users. As discussed, in a connection oriented
environment, n SDUs cannot flow between S users until connection has been established,
and so we encounter a problem in that the session entity cannot use the transport service
to transfer the CONNECT SPDU (as a TSDU) until a transport connection is

established. The session entity must retain the CONNECT SPDU in the meantime, and

54

issue a transport connect request service primitive to the transport entity. The session
entity then leaves the ’idle’ state and goes to the 'connecting’ state. In this state, it

cannot accept any SSDUs for transfer.

This process is repeated in the transport layer, with the transport entity holding on to its
CONNECT TPDU and entering the ’connecting’ state until such time as a network
connection is established between it and its peer. When the network entity receives a
NPDU and issues a network CONNECT-INDICATION service primitive to the transport
entity, the receiving transport entity must decide whether to accept or reject the proposed
connection between itself and the initiating transport entity. Security constraints or
resource problems may dictate rejectiqn. If, however, it is accepted, the receiving
network entity builds a CONNECTION-ACCEPT NPDU which it transmits to the
initiating peer, which informs the transport entity of this fact in a network CONFIRM
service primitive. The initiating transport entity can now ’release’ the held CONNECT-
TPDU which it conveys to its peer. A similar sequence ensues in the higher layers, the
session entity receiving a transport CONNECT-CONFIRM. Again, this is followed by
the session release of the 'held” SPDU which finally causes the session to be established
and the initiating SS user informed by a session CONNECT-CONFIRM. At this point,
the SS user knows that a data communication channel has been established between it
and its peer, and SSDU exchange and associated session services are now available. The

activity to be undertaken by the application entity can therefore begin.

3.3.6. Connectionless Operation

A connectionless mode of operation is one in which an SPDU transfer service can be

requested of an entity at any time. There is no requirement for a connection between

55

SS users to be established before session services can be utilised. Thus, connectionless
entities are never strictly ’idle’ since they are always 'ready’. Since no connection exists
between SS users, the route (defined by the network address together with the SAP
addresses) must be included explicitly with every SSDU transfer request. Clearly, a
connection oriented n entity cannot cooperate with a connectionless n entity. By
contrast, however, a connection oriented service can be offered over a connectionless

network service.

3.3.7. Structure of an Application Entity

We now consider the structure of an OSI application entity in more detail. Within the
OSI environment, an application process is represented by one or more application
entities. That is, each application entity represents a different aspect of the
communication behaviour of the application process. Each application entity has to
request an application service element (ASE) to perform tasks for it. A service element
is a primitive defined at the interface between two adjacent layers. An ASE is a set of
functionalities that supports a typical application. This concept is represented in Figure
3.5. Each ASE stands for one implementation of an OSI service on the system. For

example, ASEI could be X.400 electronic mail, and ASE2 could be FTAM.

At any given instant, the application process works with either ASE1 or ASE2. The
single controlling function routes the application process to the appropriate ‘ASE. In the
case of several OSI communications (a multiple session), the multiple associatipn control
function manages coordination of the application entities. Each application entity
contains one user (element) and a set of application service elements. The specific

combination of these different elements determines the type of application entity.

56

USER USER

Application Entity Application Entity

MULTIPLE
® ASSOCIATION <ll——>

FUNCTIONALITY

Single ASE! ASE] Single
Assoc ASEe ASE2 Assoc
Control ASE3 ASE3 Contro
Func, " “ Func.
ACSE ACSE
Presentatlon Address Presentation Address

PRESENTATION LAYER

Figure 3.5. Use of Application Service Entities

The user element represents, or acts on behalf of, the application processes and allows
the ASEs to communicate with other application entities. In general, the user element
represents the ultimate source and destination of all information transfer. An ASE is a
coherent set of integrated functions that allows application entities to interoperate for
a specific purpose. ASEs may be used independently or in combination to meet specific
information processing goals. The X.400 and FTAM ASEs are already defined, and
FTAM is discussed in more detail in the next section. One particular type of ASE, the

association control service element (ACSE) facilitates other ASEs working together.

As of the very latest release of standards [1SO,7498] only the term ASE is in use; the
terms CASE and SASE are no longer in frequent currency. A CASE, or common ASE,

represented the common functions needed for different jobs, and a SASE, or specific

-57

ASE was used to differentiate FTAM from MHS and other kinds of defined application
protocols. (It must be pointed out that, to date, no satisfactory objective criteria have

been established for distinguishing a CASE from a SASE).

Entities in an OSI environment must be addressable, and moreover, an application entity
may be able to support one or more associations. To accomplish this, each application
entity is attached to a presentation address, which points to one or more presentation
service access points (PSAPs). At any time, the application is bound to the presentation

address of the PSAP to which the application entity is attached.

3.4. FTAM - A Typical OSI Application

Having established the basic framework of the OSIRM, the important FTAM (File
Transfer, Access and Management) service is discussed as an example of a typical OSI

application.

The 1SO FTAM standard is defined in [1ISO,8571]. The standard introduces the concept
of the virtual filestore which is central to remote file manipulation. FTAM offers three
modes of file manipulation: transfer, access and management. File transfer is the
movement, over OSI, of a complete file between two filestores on different end systems.
File access is the reading, writing or deleting of parts of files residing on a remote end
system. File management involves aspects of file handling such as amendment of
attributes on files in a remote filestore. Peer application FTAM entities provide the
services to make these services possible. Clearly, there is a master and slave
relationship between the cooperating FTAM entities. The master, or initiating FTAM

process is invoked by a local user request, and supplied with information about the

58

remote files to be operated upon. The slave, or responding FTAM process is awakened
on the remote end system to become the cooperating peer; its activity is governed

entirely by the requirements of the initiating FTAM process.

If it is required to work with files on the local filestore, it can be safely assumed that
the local FTAM entity has knowledge of the structure of the store. Since OSI is
designed as a system-independent concept, the FTAM entity is unlikely to have any
knowledge of the structure of a remote filestore. Its only contact with such a store will
be a protocol dara unit (PDU) exchange conveyed over OSI between itself and its peer
ent’ity. Therefore, any reference to the remote filestore cannot be in implementation
specific terms, but only in terms of some generalised filestore which is applicable by
mapping to any specific filestore. This generalised- filestore is known as a virtual
Jfilestore and models all possible filestores. FTAM SASEs relate to the virtual filestore

and nor to any specific instances of a real filestore.

|
\
| The virtual filestore is a representation of a real filestore within the OSI environment.

Within the virtual store, a file is represented by the following elements:

1. a unique filename, allowing identification without ambiguity;
2. attributes, expressing such properties as accounting information and
history, such as time and date of creation;

3. attributes defining the logical structure of the information stored within

the file.

The elements described above remain with the file thrbughout its life unless specifically
modified. In addition, however, there are a number of activity attributes which are

transitory, and reflect the current status of the file within the context of FTAM. These

59

are:
current access request;
current initiator identity;
current access passwords;
current calling application entity title;
current account;
current responding entity title;
current access context;
current concurrency control;
current location;

current processing mode.,

FTAM offers a file service which is provided by a large number of SASEs. An
association between peer FTAM processes is achieved by the use of an ACSE and is
generally referred to as an FTAM association. The service elements associated with
FTAM can be grouped into the following areas:

kernel;

read;

write;

file access;

limited management;

enhanced management;

grouping;

recovery;

restart,

For example, kernel and write service elements together constitute a regime that permits

60.

the user on the initiating end system to transfer a complete file to the responding
filestore. Because of the unusually large number of elements in FTAM, the possibility
of disagreement between cooperating peer processes is increased and so to simplify
negotiation, the standard defines a set of service classes. Each class defines a set of
service elements designed to address a typical application requirement. In each class,
the presence of certain elements is mandatory, while other are optional. The following

service classes are defined:

1. TRANSFER allows movement of files or parts of files between end
systems;

2, MANAGEMENT allows reading and modification of attributes;

3. TRANSFER & MANAGEMENT combines the first two classes;

4. ACCESS permits the location of a specific part of a file, which can then
be read, written or erased;

5. TRANSFER & ACCESS combines classes (1) and (4);

6. UNCONSTRAINED leaves the selection of service elements open to the

negotiating peer entities.

An FTAM association regime is established between peer FTAM processes by use of
the F-INITIALISE service element, and terminated by the use of either F-TERMINATE
or F-ABORT. The sequences of service elements possible for various FTAM activities
are given in diagrammatic form throughout the discussion. In these diagrams, time
flows from left to right, and the use of a service element is indicated by a vertical line.

For example, an FTAM association regime is represented by Figure 3.6.

61

FTAM ASSOCIATION REGIME

/TN
N/

F-INITIALISE F-TERMINATE
F-ABORT
time

Figure 3.6. FTAM Association Regime

In this example, F-INITIALISE offers a confirmed service bringing about, by
negotiation, an association regime. F-TERMINATE brings about an orderly closing of
the association regime, but is only available to the originator of the association. It has
only a single parameter used by the responding end system to convey any housekeeping
details, such as costs, to the initiator. Either party to the association, however, can
bring about the ’panic’ closing of the association (which is far less orderly) by using F-

ABORT.

Consider Figure 3.7. overleaf. Filestore management is a generic term for activity
applied by the initiator to the filestore at the responder. To be able to make a particular

file the object of subsequent activity, it must first be selected (if it already exists) or

created (if it does not already exist). The selected file is assumed to be the object of all

subsequent activity until the regime is closed. This, then, constitutes the first of the

inner regimes.

FTAM ASSOCIATION REGIME

£ \
A 7
, FILE SELECTION REGIME
\ s
F-SELECT F-DESELECT
F-CREATE F-DELETE
FILE MANAGEMENT
F-INITIALISE F-TERMINATE
F-ABORT

time

Figure 3.7. Within the FTAM Association Regime

Within this regime, it may be desired to open a file for various purposes. The file.open

regime is depicted in Figure 3.8.

63

FILE ASSOCIATION REGIME

W N
N 7
v FILE SELECTION REGIME N\
N P
/ FILE OPEN REGIME ~
N\ IV
F-0PEN F-CLOSE
F-READ-ATTRIB
F-WRITE-ATTRIB
F-SELECT F-DESELECT
F-CREATE F-DELETE
file management
F-INITIALISE P ASnRTIATE

time

Figure 3.8. File Open Regime

It can be seen from the diagram that activities such as reading and writing file attributes
can be performed within the file selection regime while no further inner regime is in
force. This is in keeping with familiar operating systems such as DOS, where the
getting and setting of file attributes must be performed on a file which has been assigned
but not opened. Before the contents of any file can be manipulated, however, the file
must be opened. In FTAM, it is opened by use of F-OPEN, and closed when finished
with by use of F-CLOSE, both of which are confirmed services. (This is essential, as
otherwise the initiating process could waste resources writing to a file it assumed has

been opened correctly, but in fact has failed to open for some reason).

Once the selection regime has been established, and file activity requiring the transfer

of data units to or from the file is required, it is essential that the structure of the file

64_ - o

be understood by both initiator and responder. Such understanding is in terms of the
virtual filestore described earlier. Consider the case where the initiator has used F-
CREATE to create a new file in the respondént’s filestore. At this stage, the responder
will not know the intended structure of the file. Similarly, when the initiator wishes to
read data units from the responders file, he will not at the outset have any knowledge
of the structure of that file other than the information being kept with the file in the
respondents filestore. One of the main purposes, therefore, of F-OPEN is to convey the
structural information between peer FTAM processes in the appropriate direction,
initiator to responder or vice versa. This is done by use of the F-OPEN contents type

parameter.

Finally, as far as FTAM is concerned, the data unit (DU) is the smallest unit of data that
can be transmitted across OSI. This may not correspond to the record size of elements
in the file, which may be unstructured (as in the case of text files), a sequential flat file
(as in the case of an untyped file), or an ordered flat file (as with files of records). It
is the responsibility of the responding FTAM entity to map the DU onto the record size
of the file in his filestore. The activity within the file open regime can now be
considered, and is shown in Figure 3.9. The SASE’s concerned with activity in this
regime can be divided into two groups, those associated with management services to
the initiator, and those concerned with the transfer of data between end system filestores.
Examples of the managemen't services are F-LOCATE and F-ERASE. Note in passing
that this is in sharp contrast to operating systems such as DOS, where erase must never
be used on an open file. Examples of the transfer services include F-READ and F-
WRITE. The regime is terminated by use of F-TRANSFER-END, This does not close
the file, but simply delimits the transfer of data to that point; any number of sequential

!
read/writes are possible.

65

FILE OPEN REGIME

N
N/

s DATA TRANSFER REGIME >
N

F-DATA
F-DATA-END
F-READ F-TRANSFER
F-WRITE END
F-LOCATE
F-ERASE
F-DPEN F-CLOSE

Figure 3.9. Within the File Open Regime

Due to its unique and complex nature, the convention adopted for the naming of FTAM
PDUs (FPDUs) is slightly different from the other services. Here, the FPDU associated
with an activity is named after the associated service layer primitives. For example, the
FPDUs associated with the F-OPEN service element are F-OPEN REQUEST FPDU and
F-OPEN RESPONSE FPDU.

3.5. The OSI Security Architecture

At various times, security controls must be established in order to protect the
information exchanged between the application processes. Such controls should make
the cost of obtaining or modifying the data greater than the potential value of doing so,

or make the time required to obtain the data so great that the value of the data is lost.

66

That part of the Basic Reference Model which is concerned with the provision of
security services is called the OSI Security Architecture {ISO,7498-2]. This architecture
defines the general security-related architectural elements which can be applied
appropriately in the circumstances for which protection of communication between open
systems is required. It establishes, within the framework of the Reference Model,
guidelines and constraints to improve existing standards or to develop new standards in
the context of OSI in order to allow secure communications and thus provide a consistent

approach to security in OSI.

Basic security services and mechanisms and their appropriate placement in the OSI
seven-layer model have been identified. In addition, the architectural relationships of
the security services and mechanisms to the Basic Reference Model have been identified.
The standard admits that additional security measures may be needed in end systems in
order to meet specific requirements. The fundamental architecture of the Comprehensive
Security System to be described builds on the ISO references, and extends them to point

where a useful, practical system may be implemented.

3.6. Placement of Security Provisions within OSI

The ISORM Security Architecture [ISO,7498-2] makes recommendations concerning the
possible placement of security mechanisms within the framework of the Reference Model
[ISO,7498], and identifies the architectural relationships of the security mechanisms to
the Basic Reference Model. The standard also points out, however, that additional
security measures may be needed for various application contexts, but defines these as
being outside the scope of the standards. This exzended security architecture is discussed

more fully in the next section.

The layers at which the various security facilities proposed by the standard could be
implemented are summarised in Figure 3.10. which is reproduced from the ISO

standard.

Figure 3.10. Recommended Placement of Security Mechanisms

within the Seven Layer Model

Layer
Service 1 2 3 4 S 6 7
Peer Entity Authentication o o Y Y o o Y
Data Origin Authentication o a Y Y o o Y
Access Control o a Y Y o o Y
Connection Confidentiality Y Y Y Y o o Y
Connectionless Confidentiality o Y Y Y o o Y
Traffic Flow Confidentiality Y o Y o o o Y
Connection Integrity o o a Y o o Y
Connectionless Integrity o o Y Y o o Y
Non Repudiation of Origin o D o o -] o Y
Non Repudiation of Delivery o o o o a o Y

As is clear from the figure, although many of the security facilities can be provided at
a number of different layers, nearly every facility can be offered at the application layer.
The only major exception is traffic analysis. This observation is central to the concept

of the research 1o be described in later chapters.

The Security Architecture also defines some of the security management concepts used
in this research. 1In particular, the Security Management Information Base (SMIB) is
defined as the conceptual repository for all security-relevant information needed by open

systems. It in no way constrains the implementation of the storage, nor does it imply

" 68

that it resides in one physical location. This allows the concept of a distributed SMIB

to be introduced.

3.7. Requirement for Extensions to the OS] Security Architecture

Although the security architecture described in the standards permits the placement of
all the proposed security facilities at the application layer, it says nothing about how this
may be achieved. In practice, it is necessary to extend significantly the concepts
outlined in-the standard to permit the successful development of a security system that
will admit all the possibilities mentioned. This has been designated the Extended 1SO

Security Architecture and has been described by the author and others in [MUFT, 1992].

3.8. Current Approaches to Security in Open Systems

Currently, if a particular application requires security services, these are generally
constructed by hardware/software means into the application itself from conception. In
a system where there are several normal (insecure) applications, and one or two secure

services, this approach is quite satisfactory.

By contrast, in a system where there are many possible applications, as with ODP, a
large number of which may require security facilities, it is clearly wasteful for each
application to provide a complete set of security services for its own private use, when

a majority subset of the services could be common to most, if not all, applications.

A general system was considered early in the research in an attempt to overcome this

69 -

problem of duplicated services, by seeking to intercept all input and output (both data
and control) to and from applications, and to impose security functions upon the
application by redirection of the data via a security system kernel. In principle, all
software application packages should be written to standardised specifications. For
example, Application Layer entities within the ISO OSI seven-layer model should
conform to the ISO reference model [ISO,7498]. On investigation, however, this is far
from the case in practice. Had all existing software adhered strictly to specifications,
it may have been possible (albeit very tedious) to implement such an I/O redirection
system, which could cope with the widely differing interface, data and control
requirements of all the various applications. Since the majority of software applications
are written as an amorphous entity, with no obvious interface standards, the concept was
discarded as impractical. Even within the context of a local area network of Personal
Computers, running MS DOS for example, the amount of operating system interrupt

handling to account for all DOS file I/0 alone, proves to be an extremely difficult task.

The concept of providing a security system which is independent of, but available to,
specific applications on request, is therefore only possible if the applications themselves
are modified to include a standardised application program interface (API). The
requests for security services, control and data information and any other data must flow
in a rigidly defined manner across the interface which shall enable analysis of the data
flow protocols for formal demonstration of the strengths and weaknesses of the system

to be made.

70

4. FORMAL ANALYSIS AND VERIFICATION

4.1. Requirement to Evaluate Security

The requirement to evaluate formally the security of a system arises for two main
reasons. Firstly, if;its possible to obtain a measure of the 'figure of merit’ or 'goodness’
of the system, it may be possible to estimate its overall effectiveness for the task it is
required to perform, and help identify weaknesses. Once identified, shortcomings in the
system, either in policy or implementation, can perhap§ be overcome. Secondly, it is
desirable that different systems can be compared and contrasted, and has the valuable
commercial effect of allowing a potential customer of a system to evaluate rival products
against each other. Once having made a final decision, it then gives the user a measure

of confidence in the system he has bought.

In contrast to the refinement of cryptographic algorithms, very little orderly development
has taken place in the study of computer system security models. Up to 1983, the
comprehensive survey by DeMilo er al [AMS,1983] expressed the view that it was
certain that the central issues had not yet been clearly articulated. Since then, a
considerable effort has been made in a number of areas, but the majority of research is
aimed at specific problem areas such as authentication, access control and so forth.
Very little appears in the current literature concerning the provision of a comprehensive

set of security services as an integrated whole.

71

4.2. Security Models

4.2.1. Role of a Security Model

Success in achieving a high level of security in a system is fundamentally dependent on
the degree of care in the design and implementation. Before anything, it is essential to
understand clearly the requirement of what is to be achieved, and the purpose of the
security model is to express those requirements precisely. The model, therefore, should
ideally have the following properties [GASS,1988], although it is difficult to

simultaneously achieve all of them:

p—
-

be precise and unambiguous;

2. be abstract;
3. be generic;
4. be a true and accurate representation of security policy.

The reasons for requirements (1) and (4) are self evident. The reason for requirement
(2) is that it is necessary only to model the security properties of a system, and not the
functions. It is important to avoid the tendency to confuse the model with the formal
specification by including too many functional properties of the system that are irrelevant
to security policy. The reason for requirement (3) is because the model must deal only
with security properties, and does not unduly constrain the functions of the system or

its implementation.

For high security systems, such as those required by the military and financial sectors,
the system is often based on a security kernel, and the requirement for precision is

satisfied by writing the model in a formal mathematical notation. Although the concept

72

of modelling does not always require the use of mathematical techniques, these are
generally the most powerful tools available, especially if the analysis is to be applied to

a number of quite disparate systems with a view to comparison of models.

Security systems in current use have been developed in one of two ways. For low
grade, ad hoc security arrangements, the general route has been informal [GASS, 1988].
This methodology generally involves writing code to produce an implementation of the
perceived requirement first, followed by testing to see if it meets the requirements as
specified. Finally, the security requirements are shown to exist through demonstration.
The methodology used (and indeed insisted upon) for high security systems is the formal
route. This involves the production of an abstract model, which is then formally proved
to map to a formal specification. The formal specification is then in turn proved to map
onto the actual implementation. By maintaining an unbroken chain of validation
techniques at every stage, the implementation is shown to fulfil the required security
policy of the original model. This significantly raises the assurance level of the system.
Nonetheless, the gap between a formal specification and the actual implementation (or
implementations across a number of hardware and software platforms) is immense, and
this gap is sometimes filled by less formal justification methods. This is a point of

weakness, and must be carefully addressed to minimise the possibility of error.

4.2.2. Practical Applications of a Model

One of the criticisms levelled at formal modelling is the highly abstract nature of the
process. It is possible to carry the modelling details and mathematical formalism to the
point where the model does not help in the design of the system. Generally, when the

functional specification is written, not enough is known to specify every aspect of the

73

system’s behaviour at that point. Indeed, an overly detailed functional specification at

the early stage can unnecessarily constrain the design.

There are certain aspects, however, which cannot be left to chance or the judgement of
the implementors. Subtle security flaws such as coverr channels can be overlooked. The
function of the security model is to assist in the writing of the functional specification.
With care, it is possible to constrain the system to the point where the necessary

precautions have been specified, without constraining the functions.

In summary, the functional specification serves as a guide to the functions of the system,

whereas the model serves as a guide to the security-relevant behaviour of the functions.

4.2.3. Types of Security Model

It is difficult to classify security models, because each is very different from every other.
Only comparatively few have achieved wide publicity, and even fewer have actually been

used as the basis for real implementations [LAND,1981] and [MILL,1984].

A state-machine model describes a system as an abstract mathematical state machine.
In such a model, srate variables represent the state of the machine at any given instant,
and transition functions describe how the variables may be changed. This basic idea is
quite old, and has firm theoretical basis in the work of Turing and others [TURI, 1936].
Hitherto, it has not been applied to large systems because modelling all the possible state
variables of a large system is infeasible. The new reduction technique described in
Chapter 6, however, has made possible the analysis of large systems by this

methodology for the first time, and is the basis for the formal verification technique

74

applied to the CSS.

The access matrix model [HARR,1976] is a state machine model that represents the
security state of the system at any instant by a matrix array containing one row per
system subject, and one column per system object. The entry at each intersection

specifies the allowed access rights of any subject to any object.

A variant on the access matrix model is the information flow model [DENN,1983],
which rather than checking the rights of subjects to access objects, seeks to control the
flow of information from one object into another object, constrained according to the two

objects’ security attributes.

Another type of model is the non-interference model where subjects in one domain are
prevented from affecting one another in a way which violates security policy
[GOGU,1982). This model is currently undergoing development by Honeywell in the
Secure ADA Target research project [BOEB, 1985].

Clark and Wilson [CLAR,1987] have addressed the integrity needs of commercial data
processing and highlighted the differences between these requirements and the more

traditional military concern with secrecy.

Varadharajan has focussed on the problem of authentication using state-machine

techniques [VARA,1988].

4.3. State-Machine Models

The type of model which is of interest to the development of the Comprehensive Security
System (described in Chapter 5) is the state-machine model, and we consider this in

more detail.

4.3.1. Development of a State-Machine Security Model

The development of a state machine model comprises a number of stages:

(1) definition of the security-relevant state variables;

.(2) definition of the conditions for a secure state. Mathematically, this
definition is an invarian: that expresses relationships between values of
state variables that MUST be maintained during state transitions;

3) definition of the state transition functions;

“) proof that the functions maintain a secure state, eg. if the system is in a
secure state before an operation, it will remain secure after the operation;

(5) definition of the iniiial state;

(6) proof that the initial state is secure in terms of stage (2).

4.3.2. An Example

A requirement from security policy might be an implementation of the Bell-La Padula

military model [BELL,1973] of no read up & no write down restrictions.

POLICY (a): "A person may read a document only if the
person’s clearance is greater than or equal to the

classification of the document”.

POLICY (b): "A person may only write a document if the
classification of the document is greater than or equal to

the clearance of the person”.

Before the state machine development steps can be followed, it is necessary to develop
computer abstractions of the elements of the security policy, and then restate the policy

in terms of those abstractions.

Real-World Abstraction
person subject
document object
clearance capability
classification token

Restating the policy in terms of properiies

Property (a): "A subject may only access an object in read
mode iff the capability of the subject is greater than or

equal to the token of the object".

Property (b): "A subject may only access an object in
write mode iff the token of the object is greater than or

equal to the capability of the subject".

77

Step 1 : Define the state variables

S = set of current subjects s

o

set of current objects o

acl(s) = capability of subject s
tok(o) = token of o
A(s,0) = set of modes
CASE A(s,0) OF
{r} if subject s can read object o
{w} if subject s can write object o
(r,w} if both read -and write
0 if neither read nor write
cont(o) = contents of object o
subj = active subject

The symbol @ designates the empty set. The subjects and objects are modelled as
members of the sets S and O. The 2-dimensional access array A represents the access
matrix for the system. The state of the system at any given instant is expressed as a set

of values of all the state variables {§,0,acl,rok,cont,subj}.

Step 2: Define the secure state

The definition of the secure state is a mathematical translation of the properties (a) and
(b) into an invariant.
INVARIANT: The system is secure iff
foralls€ S,0€ O
if r € Afs,0), then acl(s) > = rok(o)

if w € A(s,0), then tok(o) > = acl(s)

78

The notation s € S means "s is contained in set S", and the notation s & S means "s

is not contained in set S".

Step 3: Define the transition functions

A transition function is defined as any procedure call to a system service routine
requested by a subject, with the desired aim of specifically changing a state variable.
Within the context of the PC LAN implementation, these would be calls to the DOS
operating system IO which are vetted by the CSS. The PC LAN DOS CSS implements

the following functions:

create_object (o0,c);
set_access (5,0,modes);
change_object (o,c);
write_object (0,d);
copy_object (from,t0);

append_data (0,d).

Define the prime symbol (‘) in front of a state variable to refer to a state variable in the

new state. Unprnimed variables refer to the old state.

create_object (o,c)

ifo & O

then ‘O = O U {o} and
‘Iok(o) = ¢ and

foralls € S, ‘Afs,0) = 0 O

79..

set_access (5,0,modes)

ifs€ Sando € O

and if

{ [T € modes and acl(s) > = 10k(0)] or r &€ modes }
and

{ [w € modes and tok(o) > = acl(s)] or w & modes }

then ‘A(s,0) = modes O
Gasser [GASS, 1988] states that functions must be regarded as atomic, i.e. that they are
indivisible and uninterruptible. Specified state changes happen at once, without the
passage of any time 'during’ the transition. This is very important when modelling
multiprocessor systems with multiple queued requests to the CSS.
Step 4: Prove the transition functions
For each function, we require to prove

Invariant and Function imply ‘Invariant

This is generally accomplished by the application of rules of formal logic, see section

4.6. and Chapter 6.

Step 5: Define the initial state

Mathematically, the initial state is expressed as a set of initial values of all the state

variables of the system.

{S0,0,,acl,,tok,,cont,, subj, }

80

With the framework of a formalism, the initial state is expressed in a set of axioms, see

section 4.6.
Step 6: Prove the initial state

In order to ensure that the initial state is secure, we must specify constraints on the

values. Constraints on transitions are also required for several reasons:

1. non-secure transitions: the old and new values of variables must maintain
a secure relationship;

2. control on subjects: subjects should not be allowed to invoke certain
operations under certain conditions;

3. controls on information: a model that restricts modification of information

must control transitions capable of modifying that information.

4.3.3. Non-Secure Transitions

By way of example, we can rewrite the create_object function slightly so that it allows

the token of an existing- object to be changed.

create_object (0,c)
‘tokfo) = c; and
if o ¢Othen ‘O=0U {o}; and
foralls € S, ‘Afs,0) =0 O

As before, access to the changed or created object is removed for all subjects, so the

81

function satisfies the invariant. But the function now allows a severe security violation -

the possible downgrading of the token of an object.

The reason is that the original security policy as defined in the properties said nothing

about the possibility that tokens of objects might change. We therefore need to augment

the properties with constraints,

Let us specify property (c) as

Property (c): "The token of an object cannot decrease".

Because downgrading involves a state transition, converting property (c) into a

mathematical statement requires a constraint rather than an invariant.

Constraint I: For all o € O, ‘tok(o) > = tok(o}

This constraint states that the token of an object is only allowed to increase or stay in

the same state.

4.3.4. Controls on Subjects

Other constraints on transitions restrict the operations that subjects are allowed to

invoke. For example, within the context of the CSS, a constraint is required that

prevents subjects from changing the tokens of objects to which they have no access.

Indeed, we may wish to restrict this operations only to the system management subjects.

Property (d): " A subject may modify another subject’s access to an object

only if the first subject can read the object”

Constraint 2: Forallo € O,
ifr ¢ A(subj,0)

then for all s € S, A(5,0)=A(s,0)

set_access as specified does not satisfy this constraint as yet, so the proof of security

would fail.

4.3.5. Controls on Information

The major limitation of the theory presented so far is that the rules and constraints only
change access rights to information. They do not control changes to the information
itself. This would be satisfactory if the purpose of the model were merely to formalise
a secunty policy, rather than the functions of the system itself. But suppose that we

wish to model an operation on the data contents of an object, such as

write_object (0,d)
ifo € Oand w € A(subj,0)

then ‘contfo) = d [

write_object does not change any variables mentioned in the invariant or in any of the
constraints specified, so it is secure according to the model. The model is insufficient
because it only expresses the potential access of subjects to objects (as represented by

the access matrix), and does not consider the information either read or written. We can

- - B - _83 . - - - e -

add the constraint

Constraint 3: forallo € O
if w & A(subj,0)

then ‘cont(o) = coni(o)

4.3.6. Information Flow models

One deficiency in the classical proof techniques used for state machine models cannot
be solved by adding invariants and constraints. This deficiency involves the flow of
information, rather than the control of security attributes of subjects and objects.

Consider the following operation

copy_object (from,to)
if from € Oand 10 € O and w € A(subj,t0)

then ‘cont(to) = cont(from) [

This function copies the contents of one object into another, if the subject has write
access to the destination object. The function is NOT secure because, in failing to check
the read access in the from object, the 10 object may be written with information to
which the subject has no.access, and the subject may later read the written object. It has
been asserted {GASS, 1988] that it is impossible to contrive an invariant or constraint to

overcome this.

4.4, Formal Specifications

In the previous section, a brief overview of some mathematical techniques for the
definition of a security model of a system were discussed. It is important, however, to
distinguish between the process of writing a formal model and the process of writing a
formal specification. Formal specifications are required only for systems that must

maintain the highest degree of security. The CSS presented in this thesis is such a

system.

The purpose of a formal specification is to describe the functional behaviour of the
system in a manner which is precise, unambiguous, and amenable to computer
processing. The purpose of the computer processing is to carry out various forms of

analysis on the specification with the minimum chance of human (or machine) error.

The primary goal of the analysis is to prove properties about the specification. Within
the context of formal logic, the analysis is carried out by the proving of theorems about
security within a logically self-consistent axiomatic framework by means of a
propositional calculus. Proving that the specification conforms to the functions,
invariants and constraints of the model is the first step in the formal verification of the

system, the final step being the proof that the implementation adheres to the formal

specification.

4.5. Methods of Decomposition

The major problem with the choice of a level of formalism is one of extremes. It is

possible to write a highly abstract specification which closely resembles the model, but

85

in such instances the task of convincingly demonstrating correspondence between the
final code and the specification is enormous. Conversely, it is possible (at least in
theory) to produce a specification so detailed that the formalism closely matches the

visible operations of the system function for function and parameter for parameter.

Clearly, neither approach is satisfactory in practice; it is necessary, therefore, to devise
methods of decomposition whereby the formal verification proceeds by stages from the
most abstract to the most detailed, each stage being a logical consequence of the

previous one.

4.5.1. Data Structure Refinement

The data structure refinement method employs a refinement of detail at different levels
of abstraction. [Each layer of the specification is a state machine that completely
describes the system. The topmost layer is highly abstract and combines multiple data
types, variables and functions into a number of simpler functions. The second layer
adds more detail, dividing generic functions about subjects and objects at the top layer
into specific functions about specific types of objects and so forth. Once the second
layer is written, it is shown to satisfy the mapped invariants and constraints (and hence
the same security properties) as the top layer, and subsequently, the top layer is no

longer needed.

Similarly, more detail may be added at each successive lower layer, the mapping
correspondence demonstrated, and the higher layer discarded, until the bottom layer is
reached. This lowermost layer (closest to the implementation) will correspond very

closely to the variables and functions of the code, making a very precise and detailed

86

description of the interface to the system, and a specification from which a number of
designers could write systemsacross a number of platforms which would be functionally

equivalent.

4.5.2. Algorithmic Refinement

In contrast to the previous technique, whose lowest layer specification presents the
external view of the system, the algorithmic refinement technique allows the specification
of some of the internal structure of the system. The approach views the system as a
series of layered abstract state machines, each machine making available a set of
functions for use by the machine above. The implementation of each function in a
machine consists of an abstract program that calls functions in the machine below. The
lowest level machine provides the most primitive functions; those that cannot be further

decomposed.

The agent concept used in the Comprehensive Security System is similar in approach.
The security functions are provided by a number of security services, sequenced under
the control of the Security Services Agent, which in turn calls the hardware and software

secunity mechanisms under the control of the mechanism agents.

4.5.3. Procedural Abstraction

The technique of procedural abstraction directly models the way a system is
implemented, that is, as a set of nested procedure calls. (Although this assumes a pure

software implementation, it is also applicable to hardware, where the functionality is

87

controlled by firmware in Read Only Memory, for example). As in the algorithmic
refinement technique, each function in the model is equivalent to a function in the
implementation, but with the important difference that the technique does not require the
system to be built in layers. Procedural abstraction describes r-low a function
manipulates its arguments, nof how the function affects the global state of the system.
Because the model produced by this technique is so close to the code of the
implementation itself, it can be regarded more as a program-proving system than a
specification system. Indeed, it is the basis of a PASCAL-like pseudocode, as well as
the foundation of formal language tools such as Z, developed jointly by Oxford
University and the IBM (United Kingdom) Laboratories in an early attempt to deal with

formal analysis of large software systems [McMO, 1989].

4.6. Methods Using Formal Logic

4.6.1. Introduction to Formal Logic

The concept of a formal logic consists of a formal language and a deductive appararus.
This provides a way of generating and manipulating abstract strings of symbols. If the
system is to be useful, however, the strings in the formal language must be ascribed
some meaning, or semantics. This is achieved by providing an interpretation for the

formal system.

A formal language comprises two parts, its alphabet which specifies what symbols are
to be found in the language, and its syntax which specifies how these symbols may be
put together. An alphabet is specified by writing down the symbols in curly brackets,

{...}, separated by commas, with conventional shorthand notations where there are many

88

ordered symbols such as {a,b,...,z}. This piece of notation is part of a meralanguage,
used for describing the formal language. By way of example, two alphabets are given

which correspond to two common formal languages:

1. A language for expressing the real numbers:

{0) 1 ’2,3’4’5!6’7!8’9"}

2. A language for expressing musical notes:

{A,B,C,D,E,F,G,#,b,h}

It is possible for two languages to have the same alphabet. For example, the alphabet
belonging to the formal language used for the section numbering scheme in this thesis
is exactly the same as that used for the real numbers in example (1) above. The factor
that differentiates the languages is that the syntax of each allows different strings to be

formed in the two languages. For example:

1. Acceptable section numbers: 3.2. 1.2.3. 3.6.1.
2. Unacceptable section numbers: 7 3. JS.

3. Acceptable real numbers: 23.7 12 6.75
4, Unacceptable real numbers: 3.6.1

An acceptable string in a formal language is called a well formed formula or wff
(pronounced ’'woof’) of that language. The formal language itself is nothing more than
just the collection of all its well formed formulae. Exactly what specifies a wif is
defined by the syntax (sometimes known as grammar in some books) of the language.
To give the syntax, a metalanguage is required for expressing the rules. This can be a

natural language such as English, or another formal language. For example,

. 89 . o -

The language &£ has as its alphabet { = , ¢ }, and its syntax
is given by the rule "A wff in & is any finite string of
zero or more * symbols, followed by between one and
four © symbols, or a string of one or more * symbols

with no ¢ symbols following".

The following are examples of wffs in &£:

* % ¥ k % *k * %x O OO

x x x * OO OO

* % ok ok %k ok X K k k %k % *k % w x

oK ok ok ok %k ok ok

The following are not wffs in &

* ok ok OO O %

CO O =

Note that we do not seek at this stage to ask what the wffs mean, since no meaning has
yet been assigned to the wffs. The important question is whether the given string is a
wif of the formal language. If we are using English as the metalanguage, even this may
not be easy to answer, because natural language descriptions of things are often very
hard to reason about accurately. It is precisely for this reason that computer software
specifications written in natural languages are so difficult to verify rigorously. One of
the main applications of formal languages is in the exact specification and hence accurate

verification of computer systems, see Chapter 6.

90

The next stage is to give the formal language some semantics, by specifying the meaning
of each wif admitted by the syntax. This is achieved by giving the language an
interpretation which assigns a value from some domain of interest to each wff, We say
that this value is the meaning of the wff under the particular interpretation. To extend

the previous example, let,

* denote 5

< denote 1

and let the placing of one symbol next to another indicate that their values under the

interpretation are to be added together. So

OO0 denotes1] + 1 +1 =3

* x *x OO denotesS +5+5+14+1=17

So the interpretation &, of language £ assigns to each wff of & a value from the domain
1,2,3,... As a shorthand for the statement 'in the interpretation &, ¢ ¢ ¢ denotes 3’

we will write the notation &, (¢ ¢ ¢) = 3.

This is, of course, only one interpretation of the language. Had we assigned a different

interpretation and put

gz(*) = 10

& (0)=2

with the same addition rule as above, then this interpretation $, assigns to each wff in

& a value from the domain 2,4,6,8,....

91

It is the ability to use pieces of formal notation to denote different things under different

interpretations that makes the mathematics so powerful.

Having achieved the stage where a formal language may be defined in terms of
meaningless strings of symbols from an alphabet, meaning then being assigned to the
strings, we can describe things in the formal notation. The final stage is to add to this
descriptive ability a facility to manipulate the strings in a formal manner by analysis of
their syntactic shape. The consequences of this are extremely powerful because it allows
inference of facts about the system that were not known at the outset. One of the most
powerful features of this idea is that it is not necessary to know the meaning of the
strings being manipulated, it is merely sufficient to follow the rules. The mechanism
by which inference is performed is called the deducrive apparatus, and the complete

framework is called a formal system.

The most important requirement of a deductive apparatus is that it makes no reference
to any particular interpretation. If it did, the usefulness of the apparatus would be
destroyed because the apparatus would be application-specific and the generality would
be lost. To give an example, in the formal system called arithmetic, it is possible to add
two numbers without concern about what they stand for. They could represent apples
or cars or even just the abstract notion of 'number’; the interpretation in no way affects

the deductive apparatus.

The two components of a deductive apparatus are:

AXIOMS - wffs which can be written down without reference to other wffs in

the language;

92

INFERENCE RULES - rules which allow the production of wffs in the language

as an immediate consequence of other wffs.

It is very important to note that the axioms are written down at the start as statements
about the system which are believed to be true. If they are true, then the wffs which are
inferred from them will also be true, but since the axioms themselves do not originate

from other 'meta-truths’ they cannot be guaranteed to be true. Consider the following

formal system:

ALPHABET {x,0,0}

GRAMMAR sentence = string of stars," O ", string of stars, " ©", string of

stars;,
u)here string of stars = “ =" string of stars, " * ";
AXIOM x O * O % %
RULE "“If a®boc is a given wff, where a,b and ¢ are string of stars,

then adb * oc * is an immediate consequence of it".

So to show that * O * % * * 0 * * * * * is an immediate consequence of the wff

* O x x x O % » x x we can identify a,b and c.

¥ O % * ¥ O % ¥ * *

a b c

so that applying the rule we get

O % k£ x k D % % ¥ % ¥

a b C

93

To give this formal system a possible interpretation, let

F(+) =1
F(**) =2
F(* = ») =13,
etc.

$(©) = + (addition);

Y(0) = = (equals);

The sentences in the language now take the semantics @ + b = ¢, which can either be
true of false. The axiom now takes the interpretation 1 + 1 = 2, which is true. Asa

consequence, the inference rule can be thought of as expressing that

IFa+b=cTHENa+ b +1)=(+ 1)

which is a sensible result. Note that this result is only *correct’ because of the meaning
ascribed to the symbology. Had the subtraction operation (-) been assigned to ¢ instead

of addition (+) then the result would not fit into our intuition regarding arithmetic.

Having laid the groundwork for a formal system, it is now possible to address the
concepts of theorems and proofs. A proof in a formal system & is a finite sequence of
wffs in the associated formal language, each of which is either an axiom of & or an
immediate consequence of one or more preceding wffs, as determined by the inference
rules of the system. A wff which can be proved within & is called a theorem of &. By
definition, all axioms of # are also theorems of &. Using the alphabet, syntax and

interpretation of the previous example, let

94

THEOREM * O % » % % 0 * * % x %
PROOF * QO *x 0% = {axiom)
* O *x % 0% x x (inference rule applied to
axiom)
Q% x ¥ O% ¥ % x (inference rule applied to
previous wff)
¥ QO * x kX Ok Kk * ok % (inference rule applied to
previous wff)
Q.E.D.

Note that in proving the required result, other theorems have been discovered on the
way, namely * O % % 0 * x x and * O * * * 0 * * » »_ Ascribing the meaning
of the previous example, it has been formally proven that, given the truth that | + 1 =

2,then 1 + 4 =35,

4.6.2. Mathematical Proofs of Correctness

Mathematical proofs of correctness build on the ideas of formal logic to produce a
formal system known as predicate calculus. This formalism allows reasoning about
statements which are much more complicated than the simple theorems discussed in the
last section. The predicate calculus achieves this by adding more expressive power to
the formal language and additional rules to the deductive apparatus. For the benefit if

the reader unfamiliar with these ideas, a summary can be found in Annex 4.

9s - .

4.6.3. The Method of Hantler and King

One interesting early approach to the verification of software by a formal method was
described by Hantler and King [HANT,1976]. Their method is a formal system using
abstraction at quite a high level to yield a methodology based on ’correctness assertions’
about software statements. Of course, their methodology is only an attempt to prove the
correctness of execution of the program. It cannot verify that what the program is
executing is secure - the aim of the verification methodology described in Chapter 6.
Their method is, however, important in laying the foundations for the verification of the

CSS.

They begin by defining a very simple Pascal-like programming language, within the
framework of which the software to be verified is written. This corresponds very
closely to the formal system discussed in detail in the last section. The programming
language has an alphabet of permissible statements such as {DECLARE, PROCEDURE,
INTEGER, END, ... } and so forth. Having defined the language, the meaning of
"correciness’ of procedures is discussed. In particular, the constraints on inputs to a
procedure and expected relations between inputs and outputs are expressed as assertions

over the program variables. An input assertion is of the form

ASSUME (< Boolean >);

and usually appears immediately after the PROCEDURE statement. For example, the
input assertion ASSUME (p, > 0); asserts that the value of variable p, is assumed to be

positive on entry. By contrast, an output assertion is of the form

PROVE (< Boolean>);

96

and usually appears immediately before the final RETURN statement of the procedure.

For example, the output assertion

PROVE (X = Y) & (Y = X");

indicates that the values of the variables have been interchanged. This relationship
between inputs and outputs would only be satisfied by a correct interchange procedure.
A procedure is said to be correct, therefore, if the truth of its input assertion ensures the
truth of its output assertion. A simple example is the ABSOLUTE function, which is

required to return the absolute (i.e. no sign) value of its argument:

1 PROCEDURE ABSOLUTE (X);

2 ASSUME (true);

3 DECLARE X, Y : INTEGER,;

4 IFX <0

5 THEN Y « -X;

6 ELSE Y « X

7 PROVE ((Y =X'|lY =-X)&Y =2 0& X = X");
8 RETURN (Y);

9 END; 0O

In this case, no assumptions need to be made about the argument, so the input assertion
1s set to true. The output assertion must specify that, when the return statement is
executed, the value of procedure variable Y is the absolute value of the initial value of
parameter X. This example is so simple that the correctness can be verified by
inspection. The paper then considers the situation if the procedure is too complex for

direct inspection.

97

Central to the development of the methodology is the notion that a proof of correctness
for a program is a proof over all program inputs. Clearly, it is impractical actually to
test the procedure exhaustively by using all possible inputs as arguments, so the proof
must be made with a statement about 'all inputs’. This approach involves the
mathematical technique discussed in the last section of inventing symbols to represent
arbitrary program inputs, and then attempt a formal proof involving those symbols. If
no special properties of the symbols (other than those expected to hold for program
inputs) are necessary for the proof, then the proof is valid for each specific input. This
abstraction to the general case is a very powerful feature of the formalism, as

demonstrated in the examples of the last section concerning ducks.

The paper proceeds to demonstrate the effect of executing the ABSOLUTE procedure
with an input value of «. The ASSUME statement is always deemed to be true, and so
places no constraint on the actual value of @. Proceeding to the IF statement, it is now

necessary to examine the range of possibilities.

If @ < O then the IF test would produce true and would proceed to the THEN clause.
Here, Y becomes the negative of X (i.e. -a). Arriving at the PROVE statement, it is
necessary to show that the present value satisfies ((Y = X'|Y = -X)& Y = 0& X

= X’). Since Y = -w and X = X' = q, this becomes
(a=al|l-a=-0)&-a20&a=a
which simplifies to - = 0 or more simply & < 0. Therefore, establishing the truth of

the PROVE statement reduces to showing that « < 0. But by assumption, & < 0 so

the proof is trivial, and for the case o < 0 the program functionality is correct.

98

If @ = O then the /F test would produce false and would proceed to the ELSE clause.
Here, Y becomes the negative of X or «. Arriving at the PROVE statement, it is
necessary 1o show that (Y = X'|Y = -X)& Y =2 0& X = X")isfrue when Y = o,

X = X' = a. That is, to show that

a=a|la=-a)&a20&a=a
or simply = 0 is true. Again, the proof is trivial since by assumption « = 0 and
again the program functionality is correct. By the nature of the IF statement, these two

cases are exhaustive and therefore the program is correct.

This analysis may be expressed symbolically in a symbolic execution tree, see Figure

4.1.

pcortrue, xio, y-

pcitrue

pc: ol pcr 0>=0

verified o verified

a=alo=-a) & (ad>=0> & a=a

return a return o

Figure 4.1. Symbolic Execution Tree for ABSOLUTE Procedure

The numbering of the nodes corresponds to the line numbers in the program, and the
abbreviation pc stands for path condition. This is the collective set of values taken by
the parameters as execution progresses symbolically down the tree. It is possible for a
symbolic execution tree to be either finite or infinite. Clearly, in the case of an infinite
tree, the symbolic execution never stops, and so the final conditions cannot be tested.

It is therefore important to construct the program so that the symbolic execution tree will

be finite.

100

4.6.4. A Formal Proof of Euclid’s Algorithm

The method is now applied to a formal verification of Euclid’s algorithm, an important
building block in the cryptographic mechanisms to be described later in the thesis.
Euclid’s algorithm, which is used to determine the greatest common divisor of two

numbers, may be written in the formalism as follows

—

PROCEDURE GCD (M,N);
ASSUME (M>0 & N>0);
DECLARE M,N,A B INTEGER;
A< M;
B «< N;
DO WHILE (A # B);
IFA > B

THEN A « A - B;

O 00 N O B W N

ELSEB <« B - A;

[
o

END:;

[e—
p—

PROVE (A = (M,N));

—
8}

RETURN (A);

—
L

END;

We now assign the input assertion. Note that it is possible to assign the value false to
the ASSUME statement. In this case, the symbolic execution tree is finite (indeed, it
is empty), but guaranteed to be correct! As this case is of no interest, let the ASSUME
statement be true. The symbolic execution tree is now non-empty, but infinite in extent,

see Figure 4.2.

- 101 - - -

pCr true, My, Nrv

pct w0 & w0

verifted
=y

(12

pcr w0 & V20 & wiv

return u

pc wdl & w0
pcr W0 & w30 & Ky & KIv-u

& wv & u-wdv

pcr w0 & v20
& (v & usv-u

po uX) & w0
& uwv & u-vsv

@ verified

{u=lu,v))

verified
u-v=Gyv))

Figure 4.2. Symbolic Execution Tree for Euclid’s Algorithm

The reason for the infinite extent of the symbolic execution tree is due to the DO
WHILE statement. Unless additional constraints are placed on the input values, for

example, one made a fixed multiple k of the other, there is no way to determine how

102 - -

many times the DO WHILE statement will loop. The imposition of the condition
mentioned would constrain the systém to & loops, but would destroy the generality of the
analysis. The solution to the problem is similar to that employed in the analysis of
closed loop transfer functions in control theory. The loop

is broken at some point, and if the point chosen is not an ASSUME statement, an
ASSERT statement is introduced to make additional assumptions about the system on
exit from the loop. The resulting symbolic execution tree is called a cut tree. Applying
this to the previous example, we can insert two cuts at line 2, where an ASSUME
statement already exists, and at line 7, where no ASSUME statement exists and so an

ASSERT statement is required:

1 PROCEDURE GCD (M,N);

2 cur, ASSUME M>0 & N>0);

3 DECLARE M,N,A,B INTEGER;
4 A< M;

5 B « N;

6 DO WHILE (A # B);

7 cut; ASSERT ((A,B) = (M,N) & A # B);
8 IFA>B

9 THEN A < A - B;
10 ELSE B« B - A;
11 END;

12 PROVE (A = (M,N));

13 RETURN (A);

14 END;

The cut trees for these cut points are shown in Figure 4.3. and Figure 4.4. respectively.

103 - - B

cut 2

pc: true, My, N:v, A, Bib

e

pc: u>0 & v>0

pc: w0 & v>0 & udv pct U0 & v>0 & u=v

verified ° @ ver‘if-;ied
\

cut Cuv) = W) & udv) w={y,v))

return u

Figure 4.3. Cut Tree for Euclid’s Algorithm at cut,

- 104- .

cut 7

pC true, Muw Niv, A, Bb

po (b)) = (uv), & O

po (ab) = (uv) L Wb pcr fab? = (Wy) & Cad)

pcr Cab> = {uv) &
(o>} & (a-b=b) {ofb) & (a=b—u)

verilied

G-k = Cuwdd {a-b : (uwd)

tehusn a-b

pcr {ab) = (uv) &
(aXb) & <a-b <> bd

pc €ab) = C(uv) &
(ol & (o <> b-a)

verfed verified

cut7 Ua-hb) = (uvd L (a-b O b) Cu'i:7 Wob-a) = (uvd) ¢ (o O b-a)

Figure 4.4. Cut Tree for Euclid’s Algorithm at cut,

Note how the cut prevents the tree becoming infinite in extent - as soon as a cut point

is reached, the tree terminates and the path conditions can be evaluated at that point.

. : 105 - L

4.7. Limitations of Conventional Debugging Techniques

Debugging is the conventional method of looking for faults or 'bugs’ in software by
stepping through the code using a software tool known as a debugger. Generally, a
debugger allows the execution of the code one line or instruction at a time, and the user
can examine the values of variables and parameters after each step to see where the
errors are occurring. It is generally a very painstaking and time-intensive task, even if
the code is linear, that is, has no loops or recursions. Pure linear code is very rare
indeed in real applications, and the existence of loops and recursion can make
conventional debugging almost impossible, as at each branch point a decision has to be
taken as to which path to follow. When that selected path has been traced, the
alternatives also have to be explored. Consider the following short module of recursive

pseudo-code:

PROCEDURE A; FORWARD;

1 PROCEDURE C ();
2 CALL PROCEDURE _A;
3 END;

4 PROCEDURE D ();
5 CALL PROCEDURE_A;
6 END;

7 PROCEDURE E ();
8 CALL PROCEDURE_A:
9 END;

106 : -

10 PROCEDURE B (M);

11 CASE N OF

12 1 : CALL PROCEDURE C;
13 2 : CALL PROCEDURE _D;
14 1 : CALL PROCEDURE E;
15 END;

16 PROCEDURE A (N);

17 FOR1:=1TO 12 DO

18 CASE N OF

19 1 : CALL PROCEDURE _C;
20 2: CALL PROCEDURE_B;
21 1 : CALL PROCEDURE E;
22 END;

23 END;

The paths through the module are illustrated schematically in Figure 4.5.

This is a very simple piece of code, and with only 12 iterations through the module, the
number of unique paths through the code is over 3 trillion. Clearly, following each path
to look for possible sources of error is out of the question. As demonstrated in section
4.6.3., the requirement to debug can be largely eliminated if more powerful

mathematical techniques are applied instead.

107

I
X

2 iterations

Figure 4.5. Limitations of Conventional Debugging

4.8. Limitations on Current Analysis Methods

The software analysis and verification methods described in this chapter deal with the
semantic correctness of software and, as applied to security system software, are very
important in the verification of the code. They do nothing, however, to ensure the
Sunctional correctness of the system. Clearly, the difficulties in verifying the former
alone are fraught, and to ensure the latter as well by similar means would be very
difficult indeed. The major limitation of the current analysis methodologies described
is one of scale. The methods are well suited to small-scate analyses of code fragments
where the variables, which together comprise the global siate of the system, may be

specifically enumerated. By way of example, consider a very simple system with one

108 - -

Boolean variable F. The variable F may by definition assume only one of two possible
states, frue or false. Because F is the only system variable, clearly the global state of
the system is also constrained to one of two states. If the system is now extended to two
boolean varnables, F and G, where each may assume two states, the number of

possibilities for the global state is now four:

F = false AND G = false
F = true AND G = false
F = false AND G = true

F = true AND G = true

If a byte variable is now added, taking any value from a range of 256 possibilities
(0..255) then the number of global states expands to 1024. As more variables are
added, especially those with very large possible ranges (or even those with virtually
infinite possibilities such as reals) then the number of possible global states rapidly
increases past the point where it is no longer feasible to enumerate them explicitly. For
a system such as the CSS, there are several hundred variables. Although each variable
is carefully declared with the smallest range compatible with functionality (that is, if a
variable only requires say 200 different states, it is declared as a byre (0..255) as
opposed to a word (0..65535), the number of possible global states is enormous. The
important point about these states, however, is that the vast majority should never arise
in the normal functioning of the system, although there is generally nothing actually to
prevent them from doing so. This is the source of the software bug - the system has
taken on a state which the programmer did not intend should arise (or was not even
aware could arise!). The aim of well written software, especially in the commercial
arena, is to include sufficient error detection and fault recovery routines to detect

possible situations where the system attempts to take on a state outside the small subset

- -- 109 - - e = e

of permissible states, and return the system to one of the permitted states. Failure to do
this will often result in the system 'hanging up’, a common criticism of early or poorly
written software. For example, a routine to read in a numeric argument from the user
(via the keyboard, say) should include error checking to ensure that the input string
contains no non-numeric characters. If this check were not present, meaningless data
could be presented to a function which expects only numeric arguments, causing the
system to enter an unknown state. Of course, the check will not detect the entry of

syntactically valid but contextually incorrect numerical data.

In the vast majority of systems, the number of permissible states is a very small subset
of the number of possible states. The vast majority of the unwanted states will probably
result in random and harmless system crashes, although in some time-critical applications
loss of processing time may be considered to be harmful. While this is also true for a
security system, it may also be possible for the system to end up in a state where
security is compromised. Although the probability of this happening purely by chance
ie small, the possibility of an attack being devised specifically to bring this situation

about cannot be dismissed.

By way of example, consider the limitations of the analysis described in section 4.6.3.
If this is applied to a statement which takes the values true or false, the symbolic
execution tree branches into two at that point. If it were applied to a system containing
a CASE sitatement on a word variable, however, the symbolic execution tree would
expand into a possible 65536 new branches. Clearly, the analysis flounders due to the
number of possibilities, many of which may be redundant. If it is possible to produce
a system whose entire design philosophy is based upon careful constraint of the global
state to a carefully selected and rigorously analysed subset of the large number of

possible states, then a formal analysis based on the permitted subset may be possible.

110

The Comprehensive Security System to be described (in Chapter 5) is an attempt to
implement a security system based on the above design philosophy. Furthermore, due
to the rigorous design methodology, formal analysis is fuﬂher simplified by a reduction
technique which can further limit the number of possible global states which need td be

considered in the formal analysis (see Chapter 6).

_111 -

5. A NEW APPROACH

5.1. A Comprehensive Security System

5.1.1. Security Policy

Within an Open Distributed Processing environment, involving the transfer of
information between remote end-user systems, the provision of a generic security
function can be-conceived in terms of a security policy, rigorously enforced upon those
entities who are subject to that policy. The security policy represents the overall set of
measures adopted to fulfil the desired security function and covers every aspect of the

business of implementing an effective security system. It will involve:
1. provision of physical, hardware and software security mechanisms, such
as locked and guarded buildings, protected terminals, encryption and so

on;

2. definition of protocols for all data transfers within the system, either

embedded within existing OSI protocols, or interfaced to them;‘

3. enforcement of the fundamental principles of access control, user

identification/authentication;

112 . S

4. provision for effective system resource protection and optimisation of use.
This includes such measures as Integrity of Resources, Confidentiality of
Use of Resources, Assurance of Service, Accountability of Usage of

Resources, Audit Trail etc;

5. provision for monitoring, logging and analysis of the security system at
all times, for both optimisation of system resources, and detection of

possible subversive activity.

The security policy is formulated and dictated by an aurhority, which is ultimately

responsible for the overall performance and effectiveness of the system.

5.1.2. Security Domains and their Administration

Before describing the CSS model, we define some of the terms used. These terms have
precise meaning within the context of the CSS and cannot be used loosely or
interchangeably. Our definitions have been dictated by the security considerations of the
architecture. While every effort has been made to ensure that they coincide with similar
definitions used in the OSIRM, this has not always been possible. Where ambiguity has
arisen, this is due mainly to conflicting requirements or the vagueness and lack of rigour

with which the definitions in the OSIRM are made and applied.

The authority delegates the implementation of security policy to a system administrator.
(Some attributes of an administrator correspond with those of a system manager). In a
large network, there may be a number of administrators responsible for rigid observation

of the security policy. The purview of a security administrator is known as a security

113

domain. A security domain is defined as a bounded group of security objects and
security subjects to which applies a single security policy implemented by a security

administrator.

The security domain is a managerial/control concept that defines the scope of a particular
security policy. Where the number of security subjects and objects is large, they may
be formed into subgroups for ease of management [DTI,1989]. Such a sub-group is
referred to as a sub-domain. Normally, the policy of the overall domain will apply to

all sub-domains. Thus, a domain covers all or part of a given distributed system.

One authority will dictate policy for one domain, and another authority will dictate
policy for another domain. A successful association should only be possible if the
security policies, services and mechanisms of both end systems are compatible.
Although there is no logical difference between local activities and remote activities, a
local activity may be assured of compatibility within a security policy local to the
domain, whereas a remote activity may require inter-domain 'translation’ protocols to
ensure effectiveness of an overall security policy, especially when operating as a
mutually suspicious system, see section 2.9. This may lead to incompatibility between
domains. In this event, the incompatibility is arbitrated and resolved by reference to a
higher authority. These higher authorities may take the form of regional and then
national committees, that must meet given codes of practice, contractual specifications,
or the ISO standards. Any authority dictating policy, not conforming to these standards
will by default exclude itself from connectivity within the complete open security

framework,

Within each domain, the security administrator is responsible for the implementation of

the domain security policy and for assuring its continued effectiveness. This

114

responsibility includes the installation of trusted hardware and software, hardware and
software functionality, monitoring day to day operations, and recovéry in case of breach

of security or fault conditions.

A logical model can be constructed with a defined hierarchy where each entity within
the model will have specific tasks to perform under the purview of its superior. Within
this model, any user entity or application entity that is allowed by the security policy to
access the security services can obtain/provide information securely to other authorised
users within the ODP environment. A user entity may request the access of an object
or service in normal (insecure) mode either accidentally or intentionally, but if this
object or entity is itself subject to the security policy, then that policy will force the
security services to be invoked for this activity, or access will not be possible at all.
This approach maximises the system’s ability to account for both human error and

attempts at criminal misuse of the system,

5.1.3. Conceptual Model of the CSS Processor

The CSS is conceptualised as a collection of communicating and cooperating agents. An
agent is defined to be a logical component of the security system, designed to implement
a particular function or group of functions. These functions are combined in order to
provide security services. The agents are independent of each other so that any
combination of agents may be used. The same set of agents may provide various
services by being combined together in different orders. In order for agents to cooperate
they must communicate. Cooperating agents send messages to each other in the form
of protocols. The component agents of the CSS are carefully chosen along lines similar

to the criteria for the choice of layers in the OSI model. The criteria for the choice and

115

number of agents are:

1. not to create so many agents as to make the systems engineering task of
describing and integrating the agents more difficult than necessary;
2. to create a boundary where the description of services can be small and

the number of boundary interactions minimised;

3. to create separate agents to handle functions that are manifestly different;
4. to collect similar functions in the same agent;

5. to create agents of easily localised functions;

6. to create boundaries between agents where at some time the interface may

be standardised;
7. to create an agent where there is a need for a different level of abstraction
in the handling of the data;

8. to allow changes of functions or protocols without affecting other agents.

Essentially, the CSS coexists with the application entities it is to protect. Within the
context of the Open Systems Interconnection model, the CSS will reside within the
Application Layer as another application entity. The CSS has access to both the calling
application and the application user to request information when required and these in

turn have access to the CSS to invoke functions when required.

The CSS offers the application or user entity a number of security ser\;ices, which the
entity must access through a standard Application Program Interface (API) to the CSS.
The API is provided by the CSS and generally depends on the system environment upon
which the CSS is hosted. Application entities must provide the correct format of data
to meet the requirements of this interface in order to take advantage of the CSS as a

value added service. The interface consists of a set of service and associated parameters

116

used by the application and CSS.

While it is considerably easier from a conceptual point of view to imagine the CSS
purely in local terms, it is important to remember that the CSS as a whole is a
distributed entity. While this is no way affects the logical operation of the agents, they
cannot be considered as being ’in one place’. It is possible that part of an agent may
reside on one processor and another (or even duplicated) part may reside on another.
In a fully distributed implementation, components of agents will be duplicated many
times. This is similar to the OSI application FTAM described in Chapter 3 where part
of the application resides onthe initiating end system and another part on the responding
end system. Neither can work without the other, but the physical displacement of the

components in no way affects the logical functionality.

In practice, the local components of the CSS may comprise a trusted, tamper-proof
hardware module, and associated software [WEIN,1987]. Such an implementation
would give a very significant improvement in physical security over the equivalent
software-only system, especially with regard to the security of locally held SMIB data,
upon which the integrity of the system critically depends. The protection of local agents
within the module also eliminates the requirement for encrypted protocols between them
due to the inaccessibility of the internal data bus. It is straightforward to construct a
module using battery-backed RAM for the SMIB, which is powered down on detection
of intrusion, destroying the data in the SMIB. This would prevent the compromise of
the users’ secret keys and other data which would allow an assailant to defeat the
system. Of course, the CSS as a whole is a distributed application entity, and so those

agents which are remote from each other must use secure protocols for communication.

The conceptual model of the CSS is shown schematically in Figure 5.1.

117

Assoclotion Agent User Agent

APT
] Inter Donain Agent Security Adrin Agent
p LN \ |/r///2
< 7 —I
Open
Systan Security Sarvice SMIB Agent Sacurity
- Agant Hanagement
as1 Agont aragen
Infarmation
Base
Security
Hechonisn
— Agent
Honitortng Agent
Security Mechoansns w/\
_H Recovery Agent
network
facluty

Figure 5.1. Conceptual Model of the CSS

5.1.4. Security Services Supported by the CSS

Although the CSS is implemented as an application entity, it offers a full OSI-wide
flexibility due to the interface architecture. It is very important both from the conceptual
and practical points of view, to appreciate the ’vertical’ structure of the proposed
interface. An advantage of this system is the potential flexibility due to the possibility
of the CSS functions being called by other than operations in the Application Layer.
The CSS API, which could take the form of a software ‘interrupt, for example, is
accessible from any of the OSI layers, not just the Application Layer. It is quite
permissible for the Transport Layer, for example, to request data encryption services

from the CSS. This conforms with the recommendations of OSI, which states that while

118 .

the majority of security functions can be carried out at the Application Layer, there are

a few which may need to be implemented in different layers.

The CSS supports, among others, the following security functions:

1. invocation;

identification;

authentication;

R

key generation;

(7]

key distribution;
encryption;
decryption;

signature;

Y e N o

verification;

but the full range of OSI recommendations in [ISO,7498-2] should be possible.

In summary, many different security needs can be met by the concept of a common set
of security agents provided externally to the application processes. The functional
modularisation of the system in this manner makes possible the general definition of a
flexible security architecture. These agents will be involved with the interactions
between users and applications, and the interaction of applications. These agents, their
interaction and management are central to the concept of the Comprehensive Security
System to be described. In the practical realisation of the CSS concept, a security model

comprising ten such agents is suggested.

119

5.2. The Agents of the CSS

5.2.1. User Agent (UA)

Since the CSS can select which interface will be utilised, either the Application interface
or the CSS user interface itself (dependent on the state and requirements of both the user
and the CSS), the User Agent (UA) of the CSS comprises ’half” the interface to the CSS
as seen by the user entity. This will occur when the application has requested a
security service from the CSS, and the CSS requires some information directly from the

user, such as a password, etc. The main functions of the User Agent are:

1. to interface between the user entity and the Security Service Agent (SSA)
of the CSS;
2. to maintain a library of user entity request statements, via which the UA

will determine request/response validity, and suitable responses to the
user entity according to a strict set of rules, thus limiting the number of

possible user actions;

3. to interpret all data from the user entity and ensure its validity before
presenting it to the Security Services Agent (SSA), and to determine the
location and nature of errors, and inform the SAA accordingly. Also, to
process all data from the SSA into a form suitable for interpretation by

the user entity before presentation to the user entity;

4. to accept a request from the SSA when the service requested requires

further information from the user, and to act upon this to interrogate the

120

user in a suitable manner for this information.

The UA is conceived as a separate entity from the SSA because the UA must be capable
of interfacing with many user entities, thus freeing the SSA from the complexities of

multiple interfaces.

5.2.2. Security Services Agent (SSA)

The CSS Security Service Agent (SSA) is the central control agent of the CSS. It is

responsible for:

1. accepting and checking the validity of all CSS service requests from the
External Environment Agent (EEA). This is an important function which
is necessary to prevent invalid calls from trying to confuse or subvert the
CSS into performing functions which are not permitted by the security
policy. This validation is accomplished by the SSA checking all requests
for security services against the user entity capabilities and privileges
stored in the SMIB and the logical state of the sequence of operations
carried out to that time (see Chapter 6). Any request not expressly

permitted for that user entity by the SMIB will be refused;

2. selecting the appropriate service mechanisms pertinent to the function to
be performed under the supervision of the SMIB via the SMIB Agent
(SMIBA), passing the relevant sub-function control data to the service
mechanism agents, and sequencing the service mechanism agents correctly

to perform the requested security service;

121 -

3. ensuring the correct routing of the information data to and from, and in
the correct sequence among, the security mechanisms. It is possible to
implement two completely different security services with the same set of
security mechanisms by merely using them in a different o;dér. For
example, two security mechanisms implementing a compression (hash)
function such as DES in block chaining mode, and an RSA
encryption/decryption scheme could be used for (1) a hybrid file
encryption system for a' confidentiality service, (2) file and message
signatures for non-repudiation and integrity checks and (3) checking

signatures for authenticity and integrity ;

4. checking with the SMIB the capability of the user entity, and determining

whether the user entity has the privilege to execute the requested service;

5. switching between Application UA and CSS UA.

Securcty
5.2.3. Serwviece Mechanism Agent (SMA)

The Service Mechanism Agent will:

1. accept control commands from the SSA, and select and control the
security mechanisms to perform the service requested, including sub-
function selection of multi-function mechanisms. For example, a DES
card could perform normal block encryption, block chaining mode

encryption and so on;

122

2. return to the service agent status information including details of function
performed, status of operation (success, failure) and other data resulting

from the process.

5.2.4. SMIB Agent & SMIB (SMIBA)

The Security Management Information Base (SMIB) is the heart’ of the CSS and is the
most important unit from the security point of view, and must be protected to the
highest level of security. The SMIB will comprise the repository in which the CSS
maintains all data pertinent to the security function, including such data as identifications
of authorised users, authentication data, user entity capabilities and privileges, and so
forth. The SMIB Agent (SMIBA) will be responsible for interfacing the SMIB to the
other CSS agents, including accepting and processing all requests from the service agent
for information from the SMIB, including such data as user entity identity checks, user
entity authorisation, user entity capabilities and privileges, object entity validity, object

entity authorisation, object entity security status.

The SMIB holds the following information:

Systemn User Entity Data

This comprises of information concerning the users’ rights to access the system and their

capabilities and privileges within it and includes:

1. a user system-wide name (unique identifier);

123 -

5
password, for use during

enkbe

a hashed version of the user
authentication. The user entity therefore enters his password, which will
be hashed via a one-way function before comparison. This renders
compromise of the SMIB username/password file useless, as it is
computationally infeasible to invert the hash function and hence to

reconstruct the password;

further data known only to the user that may be used for further
authentication in the case of highly privileged operations or possible
uncertainty of identity (this may be used in a future semi-intelligent
system which takes account of users habits. If a user habitually uses the
system only in the mornings, then suddenly uses the system one night, the

CSS may require further proofof identity than just the normal password);

a capability token summarising the users’ rights and privileges to perform
certain operations. This token is passed to the SSA when it needs to

validate a user request.

Security Function Sequencing Data

As the CSS can perform a number of functions with a limited number of security

mechanisms, in order to ensure that security services are correctly performed in

accordance with security policy, the SSA will control the Security Mechanism Agents

strictly in accordance with sequencing data held in the SMIB. This will prevent

irregular requests (which may have been specifically constructed ambiguously as an

attack on the system) from being accepted by the SSA. Deiails of the sequencing

operation are given in Chapter 6.

124 : -

Temporary Data Store

For a full-duplex connection, or with a multi-user arrangement associated with the
encryption functions, chained or feedback vectors will be required for the two different
transmission directions, and possibly for a number of simultaneous connection
conditions. This information must be stored until the relevant data arrives. Also, it is
possible that the CSS will be interrupted from processing I1/0 to service a request from
another local user entity. Should the CSS be about to encrypt a sensitive piece of data
which is still in plaintext, it will store this data within the SMIB to ensure that it is safe
until the CSS has time to process it. Similarly, incoming data may also be stored here

until it is processed.

System Objects Data

The SMIB is likely to hold data on the general security status of objects within the
system (files, databases etc) in the form of rokens. When a user subject entity wishes
to access a system object entity, the user entity is authenticated against his SMIB data
as described. The capability of the user entity is also matched against the classification

of the object entity to ensure that the user entity privilege is equal or higher.

5.2.5. Security Administrator Agent (SAA)

The Secunity Administrator Agent (SAA) is responsible for allowing only the
administrator to provide modifications to the existing system. There must be very strict
protocols and authentication for this type of operation within the system. The SAA is

also responsible for the strict imposition of system security policy upon the individual

125- - : -

operation of and interaction between, the other agents of the CSS. The main function
of the SAA involves controlling the SMIBA to place information into the SMIB, or
modify existing information as new users are added to the system, existing users
removed, security policy updated, user capabilities and privileges modified, and

adding/modifying mechanisms and services.

5.2.6. External Environment Agent (EEA)
The External Environment Agent is responsible for:

1. accepting security service requests across the API and interpreting,
validating and routing the requests to the Security Service Agent.
Application software packages without the necessary API will not be able
to call the CSS in the first place. Those packages with the API which
make CSS request calls in error will be returned an appropriate error
code by the EEA. (See example under SSA for the likely types of

information and control data to be distributed);

2. ensuring that all output from the CSS, including control and information
data, is routed back across the API into the same layer which originated
the request and the control/information data, to prevent ’short-circuiting’

of layers.

It should be noted that this agent could be specific to, say, an OS] implementation of the
CSS and this is reflected in Figure 5.1. where the EEA is referred to as the Open

Systems Agent. In general, however, the agent will provide the interface to whatever

126

underlying network architecture is in use.

5.2.7. Monitoring Agent (MA)

The primary task of the Monitoring Agent (MA) is ensuring that the sequencing of the
state-machines that generate the security mechanisms and protocols, under the control
of the SSA and SMA, is correctly carried out. The MA is also responsible for accepting
and processing all data gathered by the SSA and recording it, including such data as
security service requested, date and time, calling user id, calling process, status (success
failure) etc. It is envisaged that the MA will itself internally request one of the CSS
encryption services, to encrypt the log ready for storage. The only entity with access
to the log will be designated levels of system administration, who will possess the
decrypting keys allowing managerial access to the log for the preparation of audit reports
for security management and resource optimisation purposes. Such access rights will

be stored in the SMIB.

The MA could be an Al-based module that will detect problems and even likely
problems before they occur, and take the necessary action for preventative or remedial

measures.

5.2.8. Recovery Agent (RA)

The Recovery Agent (RA) is responsible for all system fault protection and CSS error
recovery. Faults and errors may be caused either by hardware failure of units both

within the CSS and external to it, and also by certain combinations of situations with

127

which the CSS cannot cope, due to ambiguity of requests for example. The RA will
perform the important task of detecting these errors, and placing the CSS into such a
state as to maintain the security integrity of the system, so that the CSS is not left in a

state where it is vulnerable to attack.

Faults outside the CSS could in certain circumstances also produce system errors. For
example, an incorrectly constructed or incomplete data structure could be ambiguous,
and the CSS may 'hang’. Internal error recovery routines will automatically re-request
the data, but in the absence of response, the CSS will place itself into a stable, secure
state. The CSS has in effect, recovered ’internally’ from the error, but cannot, of
course, influence events outside the CSS. (’Inside’ and ‘outside’ the CSS refer to
software modules within the CSS kernel and those outside the kemel respectively.)
Obviously, in a distributed security system, the boundaries cannot be clearly defined.

The external error must be recovered by the run-time library of the application package.

In the case of a fault developing with either the SMIB or the SMIBA, the CSS protocols
must be designed such that the CSS Recovery Agent (RA) always returns fatal errors
to the EEA for ALL requests. Thus, failure of the SMIB terminates all security activity
on the local terminal. This differs from faults which may develop with other CSS
components, which will not return severe errors, but merely limit the operational

effectiveness of the system to those functions not requiring the damaged facility.

5.2.9. Association Agent (AA)

The Association Agent (AA) is responsible for the security control of the association

between remote end user entities throughout the duration of the connection. It is

128

responsible for sending the appropriate data when the connection is set up, such as keys,
vectors, time stamps and so on, for exercising supervisory control during the connection,
and for clearing down the association from the security facility aspects. In addition,
detection of denial of service attacks would be possible with this agent by the sending
and receipt of random supervisory packets, subject to the current quality of service

conditions.

5.2.10. Inter-Domain Communication Agent (IDCA)

The connectivity of entities within a domain is assured, as all communicating entities are
subject to a common security policy. Inter-domain communication, however, presents
a special problem. The communicating entities in the two domains require the use of
"translation’ protocols to ensure a seamless continuity of security around the association.
The Inter-Domain Communication Agent (IDCA) is responsible for recognising inter-
domain associations, and invoking additional protocols as necessary. Inter-domain

translation may or may not be possible.

For example, the remote entity may be using a form of encryption unknown to the local
entities CSS processor. In this case, translation is impossible. The IDCA will note that
decryption by the local security mechanisms is not possible, and will flag the appropriate
error. The RA will return the appropriate flags to the calling application, which will
then either terminate the association, or re-request the remote entity to communicate in

another secure mode.

If the remote entity, however, is using security functions which are capable of

interpretation by the local system after translation, then communication is possible

129

providing the data is translated appropriately. The IDCA is responsible for requesting
the appropriate mechanisms via the SSA to attempt the translation. Dealing with these
kinds of incompatibilities is difficult, but is representative of the sort of problems that

will be encountered when connecting diverse real networks.

5.3. Centralised Control

The most common reaction to the requirement for an organisation to implement security
is 1o centralise control of all the information flow within the organisation in an attempt
to gain complete control over the distribution of data and resources within the
organisation. This is typified by military establishments where all confidential
information is held in a central registry, and users requiring access to such data must go
through the registry to obtain it. This is a powerful approach for small systems where
the number of users and the quantity of data is such that one control centre can

effectively manage the information database.

A centralised approach is useless, however, for large systems because the quantity of
data to be stored and managed is too great. Access time to the database becomes
prohibitive and effective management is impossible. Once control over the access to the
data is lost or becomes ineffective, the whole purpose of the control is destroyed and the
security is easily violated. The world telephone system can be used as a convenient
analogy. It would clearly be impractical for the entire telephone network to use one
exchange. Not only would access times render the system useless, but the effective
control of the exchange would be impossible. Instead, the telephone network uses a
distributed approach to management, whereby a large number of controlling exchanges

are used, and a limited number of users are hosted on each exchange. This clustering

130

technique is a powerful approach to reducing the size of the problem, and is the basic

idea underlying the concept of the Security Management Centre.

5.4. Security Management Centres

As mentioned when discussing the conceptual model, the security processor for a large
distributed system will not physically reside in one location, but will be itself distributed
throughout the system. Indeed, such an arrangement may be advantageous. One
approach is to adopt the concept of a Securitcy Management Centre (SMC), which acts
as a central security 'exchange’ analogous to packet-switching centres in data networks
and which will be responsible for the management and control of secure activities on the
network. This will include duties such as third-party provision and verification of public
keys, notarisation, registration and certification services and association policing to
ensure the integrity of a secure communication between two users throughout the
duration of that association. In section 2.3. the reasons for the denial of service problem
having been largely ignored in the past were suggested. The introduction of the SMC
as a frusted third party goes a long way towards solving this problem, because the
association may be supervised dynamically to allow for changing quality of service
throughout the duration of the association. In a large system with users hosted on a
local SMC, the SMC authenticates the local CSS processor and the local CSS processor
authenticates the user. The control of the system in this way by the SMCs develops a
trusted path across the system from SMC to end user, thus ensuring that system misuse
is minimised or eliminated with the advantage that peripheral hardware and software
need not itself be trusted, see section 2.6. Should the SMC supervisory functions detect
that the association has been disrupted beyond that attributable to poor service quality,

then it may be reasonable to infer that a possible denial of service attack may be in

131 -

progress. Under these conditions, the SMC will clear down the association in a
controlled manner, conducting what amounts to a damage limitation exercise. At worst,

therefore, the availability of the system will be compromised and nor its integrity.

All operations within the network that involve security will be controlled by the local
SMC(s) and direct association with them be made via the local CSS hardware and the
OSI channel. Each SMC fully controls a number of user terminals hosted upon it,
determining authentication, general user access rights and privileges which the SMC
holds in its Security Management Information Base (SMIB). Secure communication

across the network would involve:

1. protocols linking each end user terminal to the host SMC;

2. protocols linking SMC to SMC.

The system would provide full flexibility of services irrespective of the location of the

user within the network.

Since the agents comprising the CSS need not physically reside in one location but may
be distributed throughout the system, fully distributed implementations require additional
encryption services to protect data between remote agents or parts of agents. In purely
local systems where the entire CSS resides in a tamper-proof module, such additional

protocols are not necessary. Figure 5.2. shows an example of the SMC concept.

o Users hosted

on tocal SMC

o Worldwide SMC bosed
security network on

long-haul X.25 poacket
o switched system

/

Logical user /
association

via OS] and I
X.25 bockbone
but supervmed/
by SMC's

/
/

~-~~SHC connunifotion
via OS] and X.25
backbone for
exchange of
security data
\

Secure SMC +to
SMC protocols

Secure user to

o SHC protocols

Figure 5.2. The SMC Concept

5.5. The Protocols between Agents

The agents of the CSS described earlier communicate amongst each other by means of
protocols. By their nature, these protocols must be as secure as the functions of the
agents they facilitate communication between. One of the main problems associated with

security models is the existence of the coverr channel. A covert channel is a conceptual

133

or logical path for information that can only be observed in the sense that it may be
possible to duplicate their operation, but they cannot be explicitly monitored. The most
promising way to overcome these difficulties lies withﬂ;uese of cryptographic protocols.
As described in section 5.4. the protocols are used to build up a trusted path between

end users. The protocols of the CSS may be considered to form a three layer hierarchy:

1. Global protocols between SMCs;
2. Local protocols between the local SMC and the hosted users;

3. Internal protocols between agents of the CSS.

This distinction is purely logical and in practice all protocols are, of course, inter-agent
protocols. The hierarchical approach, however, makes the description of the protocols
easier in the same way that a high-level discussion of security services can be carried
out without reference to the underlying mechanisms that facilitate their operation. The
research described in this thesis covers (b) and (¢) above. There are a number of

protocols, but many are common to all agent interactions.

The fundamental protocol of the CSS is aurhentication. All transactions between agents
require authentication before data exchange can commence because each agent must be
assured that it.is in fact communicating with a genuine user or peer and is not being
deceived by an impostor. Many protocols for authentication have been described in the
literature [SEBE,1988] and have been tried with varying degrees of success. The
authentication protocol chosen for authentication between agents in the CSS and its

formal analysis are discussed fully in Chapter 6.

Other protocols used by the CSS include those for key distribution, which allows end

users confidently to share a secret session key and hence set up a secure association

134

between themselves (supervised by the SMC). This protocol is also described along

with a formal validation in Chapter 6.

Conceptually, the CSS protocols are generated in exactly the same way as the security
mechanisms. Indeed, the provision of the underlying cryptographic functions is the main
application of the security mechanisms. A confidence in the security of the
cryptographic algorithms used, however, is no guarantee of the strength of the protocol.
It is alarmingly easy to devise protocols based on very secure ciphers whose logic is
faulty and which are all but useless in practice. While it may be possible to detect
glaring errors by inspection, the more subtle loopholes will nearly always remain
undetected unless a rigorous analytical tool can be applied to verify all the logical
security aspects of the protocol. This is the purpose of the formal system described in

Chapter 6.

5.6. Basic Implementation

Using the ideas developed in connection with the concepts, agents and protocols of a
Comprehensive Security System, a practical system has been implemented using a Novell
Ethernet LAN comprising three IBM Personal Computers configured as an SMC and two

user nodes. This minimum configuration is sufficient to model and test:

1. the cryptographic algorithms;

2. the user to SMC protocols;
3. the inter-agent protocols;
4. the communications interface.

135) T

It does not provide for a demonstration of SMC to SMC protocols. It is envisaged that
future research would include the connection of the LAN to a remote end system,
possibly via a national WAN, so that these protocols could be tested as well. The basic

communication paths within a local CSS processor are shown in Figure 5.3.

5.6.1. The CSS Hardware and Software

The CSS hardware for the demonstration system is quite simple but very effective. The
purpose of the secure hardware is to force the terminal to boot into the CSS software
system and prevent any attempts to disable this occurrence. The design of the PC
firmware allows for the existence of extension ROM adapters which can initialise certain
system operations during the power on self test (POST) sequence. This sequence is
automatic and cannot be aborted and takes place before any disk drives are addressed or
even recognised by the system. The normal use of the ROM adapters is to allow for the
replacement of default system hardware such as video drivers by upgraded units to allow

for system enhancement. The CSS hardware uses this facility for a novel purpose.

The unit comprises of an installable ROM adapter memory mapped into the 8086 address
space at segment $D800 which is unused by the vast majority of PCs. The circuit
diagram of the hardware and source code of the ROM firmware is given in Annex 1.
Due to the format of the ROM firmware header, during the POST sequence the ROM
is located and execution is passed to it. The ROM then carries out several actions,

namely it:

1 issues a title banner proclaiming that the computer is under the control of

the CSS;

136

2. disconnects all the floppy disk drives in software by redirecting the
appropriate interrupt vectors and installing a hardware based interrupt

handler which simply flags disk read errors and returns;
3. forces boot from fixed disk.

When the system boots from the fixed disk, the CONFIG.SYS is executed; again, this
process cannot be aborted. The first command in the CONFIG.SYS file is to a device
driver that requires a password to be entered before boot will continue. When the
password is successfully entered, the interrupt vectors hooked by the ROM hardware are
rechained, restoring the functionality of the floppy drives. In this way, the CSS
hardware/software has authenticated the user and so a trusted path exists between the

CSS and the user.

When user authentication is complete, the CSS kemel is executed, again via a device
driver, and system startup continues to the familiar C:\> prompt. The installation of
the local CSS software module cannot therefore be circumvented without physically

opening the computer and removing the card.

5.6.2. The API for the PC System

As stated in the discussion of the conceptual model, the specific design of the
Application Program Interface (API) is largely dependent on the host system. In the PC
implementation, the host operating system is MS DOS and the API was designed
accordingly. The API is complex and the complete software interface is included on the

floppy diskette accompanying the thesis.

- 137

The CSS was written as an application layer memory-resident software module in Pascal
and 8086 assembler with interrupt vectors controlling requests to operating system
functions. In addition, the CSS monitors its own interrupt, which is used for passing
security oriented requests to the CSS kemnel. This distinction is necessary because the

API of the CSS is designed so that the CSS can be invoked in one of three ways:

1. the user can press a hot-key combination to activate the CSS directly. In
this mode, the user can request a number of services directly, such as
authentication at the start of a secure session on the terminal, or direct
encryption of a file he wishes to transfer to floppy disk and send through

the post;

2. the foreground application can request security services of the CSS via
a software interrupt reserved for the purpose. This would be used, for
example, in part of a secure e-mail package which required the services

of encryption mechanisms under the control of the CSS;

3. the CSS monitors all system requests for operating system services which
may affect the security of the system. These include such services as file

1/0, port control and execution privilege.

It is important to note that the first two modes are voluniary, that is, the security
services are available purely on a request by request basis, with no requirement to
actually make use of the services offered. The third mode is compulsory and cannot be

circumvented by the system.

For example, in the demonstration system, all files have additional attributes specifying

138

their security level as logical system objects. All file I/O requests are monitored by the
CSS. Should an application, such as a text editor, attempt to open a file, the CSS
intercepts the DOS request and determines whether the user has sufficient privilege for
the operation, It can determine this in one of two ways. Firstly, if the application is
purely local, access authorisation data to the object may be held in the local SMIB. If
s0, the CSS can check the capabilities of the subject user and grant access without
reference to external authority. If the data is not held locally, however, the local CSS
processor establishes contact with the SMC via the LAN, where the main SMIB is held.
The CSS consults the SMIB which holds the rights and privileges of all the system
subjects. If the capability of the subject is equal or superior to the classification of an
object then the operation is permitted. If not, the operation is denied. The above
description assumes that the user has voluntarily accessed the CSS at the start of the
terminal session, and identified and authenticated himself to the system. If he has not
done this, then on the first occurrence of identification/authentication being required, the
CSS will suspend execution of the foreground application, and open a window requiring
the user to identify/authenticate himself. Connection is then made with the SMC and
SMIB as before, and authentication proceeds. If the user is accepted, the CSS closes the
window and resumes execution of the foreground task. It is possible that the relevant
data is not held in the SMIB of the local SMC. This may occur as a result of the user
normally being hosted on another SMC and being a guesr on the local system. In this
case, the local SMC would request the necessary data from the remote SMC via an SMC
to SMC protocol, although such protocols are not implemented on the demonstration

system.

The PC CSS API is implemented as a series of interrupt handlers to monitor software
interrupt activity. In this way, calls to the operating system can be monitored as well

as providing a convenient, address independent way of calling functions directly from

139

the CSS itself. These are;

1. INT $EO which is an unallocated interrupt, and is used to pass voluntary
requests from application processes to the CSS kemel for security
services. The parameters associated with the request are built into a
formalised data structure, and the service request code is placed in the
AH register in accordance with 8086 software interrupt calling
conventions. Software interrupt $E0 is then called, and the CSS,

monitoring the interrupt, intercepts the request and acts accordingly;

2. INT 309 which is the keyboard hardware interrupt is monitored for the
hot-key combination. If the user has pressed the hot-key to invoke the

CSS voluntarily, a window is opened to receive user data;

3. INT 321 which is the MS DOS function despatcher. The CSS monitors
the AH register on entry for operating system service requests of interest,
and acts accordingly upon them. Requests which are not of interest are
simply passed on:t,he operating system. The monitoring of this interrupt
is the compulsory component of the CSS activity and in effect categorises

this aspect of CSS activity as a security kernel standing between

applications and the operating system.
By way of example, the code for one of the INT $21 handlers is shown overleaf with

detailed comments. The source code for the CSS is large and the rest of the code may

be found on the floppy disk bound within the master copy of this thesis.

140

(* Set up memory requiremenis for interrupt handlers *)
{$V-}
{$M 20000,0,0}
{$F+}
(* Watch for any operating system requests for the FILE OPEN funciion. This function
is always the precursor for any file read/write operations under MS DOS *)
PROCEDURE Int210pen (VAR IntRegs : IntRegisters);
begin
WITH Intregs DO
begin

(* get the filename to be opened from the DS:DX reg pair *)

OFile : = ';

i:=0;

REPEAT

OFile : = OFile + char (Mem [DS:DX+i));
Inc (i);

UNTIL Mem [DS:DX+i] = $0;
end; { with Intregs do }
end;
(* This is the main Int 321 Handler which traps ALL DOS operating system 10 requests.
The handler checks the operation foresecurity-oriented implications, and calls CSS
services as appropriate *)
PROCEDURE Monitor (BP: word); INTERRUPT;
VAR ’ |
IntRegs : IntRegisters absolute BP;
begin

InterruptsOff;

141

(* This part of the handler looks for DOS function $3D which is file open. If the handler
is awake and the user has not already authenticated himself to the CSS then
authentication services are required and called *)
IF (IntRegs.AH = $3D) AND (Awake) AND (NOT AlreadyAuthenticated) THEN
begin
OurintStackPtr : = @OurIntStack [SizeOf (OurintStack)];
SwapStackAndCall (@Int210pen, OurlntStackPtr,IntRegs);
end;
(* rechain to the old INT $21 vector afier use *)
InterruptsOn;
ChainInt (IntRegs, ISR_Array [MonitorHandle].OrigAddr);
end;

{$F-}

5.6.3. Management of the SMIB data

In the demonstration system, the SMIB data is held at the SMC which is the network file
server. We have chosen to require the system manager to be physically present at this
machine when amending or updating data in the SMIB. It is common practice to keep
the network file server in a physically secure and conducive environment, such as a
locked, air-conditioned compartment. While it would be quite simple to allow a higher
level of system privilege at one of the user workstations to allow the system manager to
log on with system privileges and amend the SMIB data remotely, this was not done as
the additional security afforded by the physical access constraints to the SMC is

consistent with the high security status of the system.

142

5.6.4. Secure Communication across the LAN

The PC implementation encrypts data over the LAN using the Quadratic Residue Cipher
(QRC). A detailed exposition on the operation of this cipher can be found in
[SHEP,1990a) and a copy of this paper is bound into the thesis for convenience.
Realistic security is used with large integer arithmetic being carried out by carefully
optimised assembler routines. Even allowing for the fast software however, the cipher
is slow, taking around '% second per character for 200 digit keys. Factoring such
numbers is way beyond the capability of current technology (on the order of 15 million
years) and can be considered quite safe for all practical purposes, see section 6.4. A
hardware module is being developed which will implement the fundamental arithmetic
operations in hardware, and will serve as a general-purpose 'cryptographic engine’. It
is expected that use of this hardware and will considerably speed up the ciphering

operations [SHEP, 1990a].

‘The CSS communication software is written in a modular form to allow easy amendment
for different network systems. The Ethernet card in a PC can be considered as
providing the OSI stack up to layer 3 but with some of the transport functions of layer
4 as well. The CSS itself is an application entity and its only interface with OSI is with
the presentation layer. Clearly, in a completely homogeneous system such as a PC
LAN, there will be no syntactical differences in data representatton across platforms and
so normal data transfer takes place across the presentation layer (see section 3.3.3.).
Thus, in order to preserve the integrity of the OSI model, the CSS contains null
presentation and session layer modules and in fact passes data via these to the transport
layer interface of the Ethernet card. The internal data communications of the local CSS

processor are shown in Figure 5.3.

143

OSI stack

etc

API

security
External Security data
Environment Services
Agent control Agent
EEA> (SSA)
sequence
internal data
data
bus
SMIBA
sequence
sequencing dota
control
data
Monitor SMIB
Agent
CHMA)
monitoring of
sequencing
Mech Mech Mech etc
1 b4 3
internol data bus

Fipure 5.3. Agent Communication within a Local CSS Processor

144

5.6.5. Other Security Measures

The system also implements the following features:

1. timeout after a pre-determined period will clear down the connection with
the SMC, and place the CSS kernel in a dormant mode. This avoids the
possibility of a user logging onto a terminal, making a successful
association with the SMC, and then inadvertently leaving the terminal
unattended, allowing an unauthorised person to carry out operation for

which he is not privileged;

2. an audit file of system activity is maintained at the SMC for system

integrity auditing purposes;

3. the association is continually supervised by the SMC. A brief research
program into the identification of users from their individual typing
characteristics was carried out. Although an analysis of a short fragment
is inconclusive, it is possible to make a continuous assessment of the style
of typing, and hence possibly identify a change of user part way through
a session. The preliminary results of this research are detailed in

[SHEP, 1990b].

5.6.6. Limitations on the PC Demonstration System

The system as currently implemented suffers from the following shortcomings:

145

the agents functions in the CSS software were written for procedural
convenience and are not completely functionally divided into separate
modules as recommended in the conceptual model. This makes changing
the function of a particular agent more difficult than it would be in a
totally modularised implementation, but allow a substantial reuse of code
and hence a less memory-hungry system. Memory requirements of
resident software are very important with the limited memory available
.in a PC and the size of modern foreground applications. In a realistic
system, presumably written and maintained by a large number of
programmers, it is very important to modularise the software as described

to allow independent function development and maintenance;

the encryption/decryption times would need to be significantly improved,
as sending a large file with the present system would be prohibitively

slow;

in a completely secure system, it would be necessary to monitor and
control other interrupts as well. For example, the system timeout is
dependent on the data read from the real-time system clock. To
circumvent the timeout function, a user could keep resetting the clock
every few minutes, to deceive the CSS into believing that no time had
passed. It would be necessary to monitor and control interrupt SiA,
which controls the setting and reading of the real-time clock. The CSS
would then make resetting the clock a privileged operation. (The notion
of timeliness and the systems beliefs about time are critical for the

analysis described in Chapter 6);

146

4.

the demonstration system comprises only of a single SMC and two users.
The system cannot therefore demonstrate and validate inter-SMC

protocols.

147

6. A NEW ANALYSIS METHODOLOGY

6.1. The Need for a Problem Reduction Technique

As discussed in section 4.8. the major difficulty with any analysis of a large system with
many parameters and variables is the scale of the problem. To define precisely the
System state at any time in terms of every possible variable presents problems of
combinatoric complexity which are impossible to overcome. In any case, analysis of this
sort 1s not very useful for the CSS application. By way of a loose analogy, it is possible
(in theory) to define the thermodynamic state of a closed system by recording the
position and momentum of every particle, but it is far easier and more useful just to

record the temperature!

The security analysis methodology described in this thesis, therefore, is based
fundamentally on the ability to reduce a very complex sequence of operations to a much

simpler set of parameters which are capable of measurement and analysis.

The basic design principle which will admit the sort of analysis described is based on
the decomposition of the entire CSS software into a few very small units. All the
security aspects of the CSS will be capable of being built up from these units, albeit
large numbers of them. Each unit is based on very simple mathematical functions which
are combined to yield other functions with secure properties, trapdoor functions. Each

of these functions is rigorously analysed in terms of security, based upon the complexity

148

underlying certain problems in number theory currently believed to be intractable, When
each is validated, it is placed in a conceptual 'library’ where it can be called when
required. Any functions built out of the validated units will themselves be secure, and

thus a layered approach to the construction of the security functionality can be taken.

The security functionality comprises two parts. The validated units are combined to

produce:
1. Data Manipulation Mechanisms (DMM) such as encryption algorithms
to allow security transformations to take place on the data;
2. Protocol Generation Mechanisms (PGM) such as authentication

protocols to allow the agents of the CSS to communicate with each other

in a secure manner.
The analysis methodology to be described therefore also comprises of two parts:

1. a recursive logic is used to monitor and supervise the sequencing of the

validated DMM and PGM units which generate the security functionality;

2. a modified Hoare logic is used to validate the security of the protocols

generated as a result of the operations described in (1).

Each aspect of the CSS security functionality is firstly decomposed into functional

blocks. This is carried out for each security function the CSS will be called upon to
be

perform. Many of the blocks will +t& common to most, if not all, of the functions and

hence a very efficient and compact system results. When the blocks are determined,

149

they are placed in a secure function ’library’. This may be a true software library in the
case of a pure software implementation or may comprise of physical hardware
mechanisms in the case of a hardware implementation. To add a new function to the
CSS, it is merely necessary to decompose the function and add the new blocks to the
library, although in practice all the necessary blocks may already be present. To
implement a function, the blocks are sequenced in the correct order. In this way, both
mechanisms and protocols can be generated. The sequencing is very important to the
security of the CSS and so the sequencing data is held in the SMIB. The approach to

the design and analysis is illustrated schematically in Figure 6.1.

functional
blocks

Secure
Function

Library
valida ted

Selection of
f unc tions
SEQUENCING SYSTEM

DATA MANIPULATION PROTOCOL GENERATION

in) 17

Validated by RECURSIVE LOGIC Validated by MODIFIED HOARE LOGIC

CSS functionality

i

.

Figure 6.1. Approach to the Design and Analysis of the CSS

150)

6.2. A Problem Decomposition Methodolopy

The problem decomposition methodology used for the CSS relies on breaking down the
security functionality into layers of state machines. Each layer comprises of nodes
which are the roots of trees in the layers beneath. The correct enforcement and
monitoring of the sequencing of these machines is critically important to the analysis
methodology. Unless the rules of n-ary tree structures are rigidly observed, the analysis
breaks down. From these simple trees, all the mathematical functions and software
control structures required by the CSS can be derived, and hence the analysis can be
applied not only to the semantic correctness but also to the functional correctness of the

system. These structures, as they apply to the analysis methodology, are now

introduced.

6.2.1. Binary Tree Functional Decomposition

Consider a general abstract function that can be functionally separated into two parts,

Jf(x) = g(x).h(x). This may be represented by the binary tree shown in Figure 6.2.

It may be that one of the component functions, say &(x) can itself be logically broken
down into two functions, say ifx),j(x). The tree would then take the form shown in
Figure 63 The vertex of the tree is conventionally called the roor and the end nodes
are called the leaves. Note that a tree can only branch out, and can never branch ’'back
together’. Figure 6.4. shows some arrangements which are not trees. In a tree, every
subordinate node is drawn below its superior, that is, there are no horizontal lines in the
diagrams. A branch is described as enrering a node if it comes from above. It is

described as leaving if it goes to a subordinate node. If a branch leaves node A and

151

enters node B, node B is referred to as the offspring of A. Node A is the parent of B.
A node of one tree may be regarded as the root of andther tree - a tree within a tree,

The tree of which an intermediate node is the root is called a subsree, see Figure 6.5.

ROOT

N BRANCHES ~

\ LEAVES /

Figure 6.2. A Simple Binary Tree with Two Leaves

182

ROOT

LEAVES

Figure 6.3. A Simple Binary Tree with Three Leaves

153

Figure 6.4. Binary Combinations which are not Trees

SUB-TREE

Figure 6.5. A Tree Containing a Sub-Tree

154

e ——]

6.2.2. n-ary Tree Functional Decomposition

There is no reason why, in general, a tree should be restricted to only two branches per
node. It is possible to have trees where each node has n branches, or even the most

general tree where each node can have an arbitrary number of branches, see Figure 6.6.

Null nocdle

O

Figure 6.6. A General Tree with Arbitrary Numbers of Branches

Note that it is possible for the tree not to actually 'branch out’ at a node, but simply
have one branch entering and one branch leaving. In this research, such a node is
designated a null node. 1t is upon the structure and properties of this general tree that

the CSS design is based.

Each node in the general tree can represent a function of arbitrary complexity. A
function has one or more arguments as its input and one or more returns as its output.
In keeping with standard mathematical notation, the input argument or arguments are
written on the right hand side of the function; the output result or results are written on

the left of the function, for example:

SQUARE ROOT OF x

y

return function argument

155

This idea, as applied to trees, is illustrated in Figure 6.7.

FUNCTION FUNCTION
RETORN %— ——ev ARGUMENTX(S)
QuTPUT INPUT

Figure 6.7. Conventions for Arguments and Returns of Functions

The importance of the notation is its generality. The function may be a programmed
algorithm, a statement in a non-procedural language, a program or subroutine

specification, or a broad general set of requirements such as
CURRY = PREPARE-MEAL <= (Ingredients, Utensils)

Using general trees, the complex sequences of data transformations that comprise the
functionality of the CSS are broken down into simpler functions. This process is
repeated until the functions cannot be simplified further. At this stage we sﬁy they aré
atomic, and the very basic units are called aroms, see section 6.3.1. Once the

functionality has been totally decomposed into atoms, the design can be implemented

156 T . T T

from the bottom-up. Recalling that the atoms are combined only in ways that can be
shown to satisfy security constraints, a layered set of secure functions can be constructed

that will carry out the required functionality in a rigorous manner.

6.2.3. Control Structures and Dynamic Graph Representation

The decomposition of a function into sub-functions (or offspring) is achieved in a
rigorous manner by means of control structures [MART,1982]. Three structures are
defined, called join, include and or. Each of these serves a different purpose, depending
on how the function lends itself to decomposition, and are illustrated in Figure 6.8.
together with the dynamic graph representation of the structure. The graph is a
projection of the tree representation, and may be annotated with timing information and
so forth. While the tree diagram shows how the function is decomposed, the graph

shows the order and chronology of the decomposition.

JOIN
Let f{x) be a function that requires two operations that must be performed sequentially

on the argument, and that the order is important. This is commonly found in such cases
as:

y = (x + 3)?
It 1s the brackets which denote the order of the two operations. The addition must be

performed first, then the squaring performed on the resulting sum. If the squaring is

done first, the result is always x + 9.

157

INCLUDE

In this case, let f{x,y) be a process with two arguments and two returns, but which are
independent of each other. This may involve adding a quantity to one and squaring the
other. Dynamically, this kind of function cannot be performed sequentially, because
both operations would be performed on both arguments. Conceptually, the operations
happen independently and in parallel, and in practice could be implemented on separate

processors in a parallel architecture machine.

OR
This final control structure takes account of functions where the operation to be

performed is conditional upon the value of one of the arguments.

The three simple control structures considered so far can be combined into four
somewhat more complex control structures, whicﬁ offer greater flexibility in the
decomposition process. The additional structures, again following the notation of
[MART,1982], are calied CO-JOIN, CO-INCLUDE, CO-OR and CONCUR. The
architecture of these four structures is shown both in tree form and in dynamic graph

form in Figure 6.9.

158 ' T

CONTROL STRUCTURE DYNAMIC GRAPH

JOIN
y = FO (x2
Y z
¢« (wX (e
_/\ U\
y = pe(z) z = Fl(x)
INCLUDE
<y .y.) = £.¢x % Yy X
1Y 012 ¢ (D !
N/
Y
E— o
- \C/
= £ (x D = f (x)
1T Yoo 22
ORrR
= f (x,B)
y 0 bt
IP(x,B) = true| B
FALSE TRUE
POCBE)=false
y = Fa(x,B) y = f{(x,B)

Figure 6.8. The Join, Include and Or Control Structures

159

CONTREOL STRUCTURE

DYNAMIC GRAPH
CO-JOIN
y = f0<o.b,c)
/\ (1 () obe
e
y = Fe(q.b.c,z> z = F](q.b,c)
CO-INCLUBE
&y .y) = F (o)
1 2 0
/\ -
= F (ab) = f {a.b)
SR e Yot ™™
Co-0r
= f
y o(r.S,B)
~
FLATE TRUE PBY = true r.s.B
FALSE
P¢{B) = false
(2
= = £ (s
y Fe(r) Y 1
CONCUR
Ty = (o)
Y 0
rze ¥ () (1)e—2
\Z/ NGV
z
y = Fe(z) z = Fl Ca)
Figure 6.9.

160

The Co-Join, Co-Include, Co-Or and Concur Control Structures

6.2.4. Recursion and Loops

Consider the evaluation of a factorial, written n!.

n=nmn-ln-2).... 1, wheren > 0.

We can use the following recursion for the calculation:

Factonal (n) = n. Factorial (n-1)

The function y = n. Factorial (n-1) can be expressed in the tree diagram notation as
shown in Figure 6.10a. To create the recursion, however, we require a stopping
condition, that is, when n = 0. (If n = O then 0! = 1 by definition). An OR
expression may be used as the control structure to stop the recursion, see Figure 6.10b.
Combining the simple function with the control structure yields the complete
decomposition of the factorial function as shown in Figure 6.11. In this way, software
constructs which are recursive can be expressed in the notation, and the element of
control required for rigorous analysis of their execution can be expressed through

combinations of the seven control structures described in the previous section.

In addition to recursion, programs commonly contain two types of loop. These are the
DO WHILE and REPEAT UNTIL constructs. A DO WHILE loop tests whether a
particular condition is true at the srqrr of the loop, whereas a REPEAT UNTIL loop
tests whether a certain condition is true at the end of the loop. In many applications, a
particular requirement can be programmed using either construct, but the important
difference between the two is that the REPEAT UNTIL loop will always be executed

at least once, because the condition for looping is not tested until exit from the loop.

161

Some applications require the possibility of executing the loop zero times, and in these

cases the DO WHILE construct is the only possibility open.

162

= £ G
Y 1
COJOIN
y = n X nE n8= Fe(n)
JOIN
n_= nl n = n-—1
2 1 1

Figure 6.10a. Tree Representation for the Factorial Function

OR
(n=0> = false (n=0) = truye

yzFl(n) y =1

Figure 6.10b. Stopping the Factorial Recursion

163

(n=07

FACTORIAL

= false

(=0 = true

(when n = 0, recursion

stops)

DEFINE

y = n % (n—1)
y fi n ~
CO-JOIN
y =n »ng n2 = <n=1t
y| MULTIPLY n,n2 n2 F2 n
Join
n2 FACTORIAL nl nl

Figure 6.11.

The Complete Factorial Function with Control Structure

SUBTRACT

6.3. The CSS State-Machine Sequence Reduction Logic

The reduction methodology described in the previous section can now be applied to the
analysis of the CSS, using a hierarchical set of sequence definitions at a number of

layers. The topmost layer within the CSS is the security service to be performed, while

164

nl

the lowest layer is comprised of the aroms, which are a small number of fundamental
mathematical operations which can be performed on data, supplemented with a hardware
real-time clock and any other non-mathematical hardware functions such as DES as
required. Between these extremes, a number of other layers are defined. The complete

hierarchical structure is defined as follows,

LAYER 1 SERVICES
LAYER 2 MECHANISMS
LAYER 3 COMPONENTS
LAYER 4 ATOMS

(Conceptually, a layer O could be included to represent the overall security management
function. This is embodied in the security policy from which the need for security
services are determined.) The central idea behind the reduction technique is that of a
borrom-up approach. By starting at the lowest layer, the atom layer, with a small
number of provably secure data operations, the proof of security can be abstracted at

higher and higher levels until the security service itself is shown to be secure.
Outside the physical boundaries of the CSS itself, the analysis can be extended from the

security services to the security policy, and that policy provably analysed. The layers

within the CSS are described in turn, starting with the lowest layer.

165

6.3.1. The Atom Layer

Ultimately, every operation performed by the CSS can be constructed entirely from a

small number of basic aroms. These are;

1. a real-time clock;
2. an implementation of five basic mathematical operations:
(a) Addition (+);
(b) Subtraction (-);
©) Multiplication (*);
(d) Integer Division to leave the remainder (MOD);
(e) Integer Division to leave the quotient (DIV);
3. a number of non-mathematical functions such as the Data Encryption

Standard (DES), the Fast Encryption Algorithm (FEAL) and so forth if

required, implemented in either software or hardware.

The five basic mathematical operations are combined to form the modular exponentiation

(MOD-EXP) function

f(a,m,x) = a* (mod m)

This function may be efficiently implemented in software using the repeated squares

method [KOBL,1987,p.22], or may be even more efficiently implemented in hardware

by other methods [MORI, 1989].

166

6.3.2. The Component Layer

The modular exponentiation operator (MOD_EXP), together with the five basic
mathematical operators, hardware real-time clock and other hardware/software atoms,

are used by the Security Mechanism Agent (SMA) to construct a number of components:

1. time stamp generation, using real-time clock;

2. prime number generation by Rabin’s algorithm [KNUT,1981], using
MOD-EXP and basic function primitives;

3. random number generation by x2 mod n generator [BLLUM, 1986], using
MOD-EXP;

4, Euclid’s algorithm [RIES,1987], using basic function primitives;

5. Euclid’s extended algorithm [KNUT,1981], using basic function

primitives.

While this list does not exhaustively cover all the algorithms which may be constructed
from the primitives, it contains all the necessary and sufficient algorithms required to

implement the services performed by the prototype CSS.

6.3.3. The Mechanism Layer

These five components are combined by the Security Mechanism Agent to produce the

security mechanisms required by the CSS, which are:

1. RSA [RIVE,1977] Key Generation, using prime number generation and

Euclid’s algorithm;

167

2. block encryption with RSA, using MOD-EXP;

3. block decryption with RSA, using MOD-EXP;

4. QRC [SHEP,1990a] Key Generation, using Prime Number Generation

and Euclid’s extended algorithm,;

3. stream encryption with QRC, using MOD-EXP;

6. stream decryption with QRC, using MOD-EXP and Euclid’s extended
' algorithm;

7. digital signature with RSA, using MOD-EXP;

8. hash (digest) [ISO,X.509] with X.509, using MOD-EXP;

9. encryption with symmetrical algorithms such as DES, FEAL, using the

hardware/software atoms directly.

Again, this list is not exhaustive, but covers all the mechanisms used by the CSS.

6.3.4. The Service Layer

The SSA uses the mechanisms to provide the services required of the CSS. These

include those services recommended in 7498-2 and include,

1. confidentiality;

2. authentication;
3. non-repudiation;
4.. integrity;

5. access control;
6. denial of service.

168

Note that (6) is an exception. It is only possible to derect denial of service attacks; it

is not possible to stop them.

6.4. The Fundamental Security Assumptions

The reference point for the logical analysis of the formal security proofs is the set of
initial beliefs about the system to be analysed. Implicit in these beliefs are certain
assumptions which are made concerning the strength of the encryption and other data
transformation functions used by the security services. Because these (and every other
mechanism within the CSS) are constructed from sequences of atoms, certain
assumptions concerning the security of the atoms from which the entire security
framework is ultimately constructed are also crucial to the security analysis methodology
of the CSS. The analysis relies on a combination of physical security (which is, in tumn,
a function of the implementation), the accepted validity of algorithms such as DES which
have been exhaustively tested, and most importantly, two central problems in number
theory which are currently believed to be intractable. These are the factoring problem
and the discrete logarithm problem, and both apply to the important MOD_EXP atom,
which is the most important building block of most of the mechanisms. These two
problems and other _closely related ideas are discussed under the general subject of rrap-
door funcrions [YAQ,1982]. A trapdoor function is one where the computation of the
function is trivial, but computation of the inverse function is intractable without
knowledge of a secret parameter, the so-called trapdoor. In the case of MOD-EXP, it
18 trivial to calculate y = fla,m,x) = a* (mod m) but intractable for large arguments to
calculate the inverse. It is important to gain an idea of the theoretical time complexity
estimates for the running times of algorithms which may be constructed to pose an attack

on the security of the CSS.

169

It must be emphasised that, in common with all security systems using public key
ciphers and other devices relying on these number theoretic problems, the absolute
security of the encryption can never be guaranteed, because while no-one has yet
published a polynomial-time factoring algorithm, no-one has succeeded in proving that
no such algorithm exists. If such an algorithm were ever discovered, one of the
fundamental beliefs about the system would be shown to be false, and therefore any
conclusion drawn about the system security may also be false. It is important to note
that this in no way undermines the analysis methodology, the main aim of which is the
extension and abstraction of notions concerning beliefs about the iririal system state to

draw valid conclusions about the final system state, see section 6.9.

Individually, the dependence of the atoms, components and mechanisms on these

principles is:

1. a real-time clock circuit encapsulated within a tamper-proof hardware
module;
2. the RSA cipher relying upon the intractability of both the factoring

problem and the discrete logarithm problem;

3. the QRC cipher relying only upon the intractability of the factoring

problem [BLUM, 1989];

4, the X.509 digest relying upon the difficulty of both the factoring problem

and the discrete logarithm problem.

170

6.4.1. The Factoring Problem

The factoring problem defines the vast apparent difference between the amount of effort
involved in multiplying some (prime) numbers together, compared with the effort
involved in factoring the resulting product back into its prime factors. There are many
factoring algorithms known which range from very simple but highly inefftcient methods
such as trial division through to highly sophisticated, special-purpose algorithms which

rely on deep concepts in higher algebraic number theory.

The fastest general-purpose factoring algorithm so far devised is the multiple polynomial
quadratic sieve (mpqs), which holds the record for the largest general factorisations so
far carried out using a Cray XMP at the Sandia National Laboratories [DAVI,1985].

The expected heuristic running time of this algorithm is [POLL,1989]

O {exp [cV(in N Inin N)]}

where a bound on the value of c is not known. Given the fact that a 75 digit number
can be factorised in about 10 hours with this algorithm (on the Cray), it is reasonable
to conjecture that the factoring time for a 100 digit number would be around 2 months,

and that for a 200 digit number to be around 15 million years!

Certain special purpose algorithms have been devised which can factor numbers of
special form very much more rapidly than the general purpose algorithms. These
include Lenstra’s Elliptic Curve method (ecm) [LENS,1986] which exploits the very rich
group structure of elliptic curves, and Pollard’s Number Field Sieve (nfs) [POLL,1989]
which uses complex ideas of algebraic integers over suitably extended fields whose

degree depends on the structure of the integer to be factored. The expected heuristic

171

running time for the elliptic curve algorithm is exactly the same as that for the mpgs.
Indeed, theoretical consideration of the distribution of primes and corollaries of the
prime number theorem had led to the widely held belief that it was not possible to

improve on running times of this order [POLL.,1989].

The significance of the number field sieve, which is suitable at present only for numbers
of the form r * + s for r and s sufficiently small, is that Pollard has shown it to have

an expected heuristic running time of

O {exp [c + e(in N)"(Inin N)*?]}

where the value of c-is around 1.526. This is considerably faster than hitherto thought
possible, and effectively disproves the previously believed lower bound. Work is
currently underway to try to extend the nfs to general integers [ADLE,1991]. If this
proves possible, and the running time remains of the same ordér, then a significant
advance will have been made in this area. The running time is, however, still
exponential, and could be defeated simply by increasing the key size. The amount of
extra work involved in using the larger keys grows only polynomially, but the factoring
effort grows exponentially. It is thus always possible to 'outrun’ an exponential

algorithm by increasing the size of the problem instance.
It is clear that with the current knowledge of number theory, the factoring problem may

be regarded as intractable for sufficiently large N, and hence that the belief in the

security of mechanisms based on this problem is sound.

172

6.4.2. The Discrete Logarithm problem.

A logarithm is generally defined as the power to which it is necessary to raise a base in
order to obtain a specified quantity. Within the field of real numbers, it is not
appreciably more difficult to evaluate x = log, y than to evaluate y = @*. The discrete
logarithm extends this idea to finite (discrete) fields, and the discrete logarithm problem
defines the vast apparent difference between the amount of effort involved in raising a
number to a power in a finite field as compared with the effort involved in determining

the power given the discrete logarithm. That is, it is easy to calculate

y = a* (mod q)

given a,x and ¢ (for prime ¢ and a a primitive element of the field), but very difficult,

given y,a and ¢ to evaluate x.

If ¢ = p” is an odd prime power which is k bits long, experience suggests that the order
of magnitude of time required to solve an instance of the discrete logarithm problem in
F'q is comparable to that required to factor a k-bit integer [KOBL,1987]. That is, from
an empirical point of view, the discrete logarithm problem seems to be about as hard as

the factoring problem (although no-one has been able to prove a theorem to this effect).

It appears, therefore, that the discrete logarithm problem, for sufficiently large integers,
may be considered a secure device, and again, any beliefs concerning the security of

mechanisms based on this problem are sound.

173

6.5. Hierarchical Sequence Structure

Essentially, every security service can be broken down into a long sequence of simple
operations on data variables. As described, these sequences are divided into different
layers. The sequences defined within each layer may be regarded as finite state
machines, which may call finite state machines in the layer below (as procedures or
Junctions, with or without arguments), and be called by finite state machines in the layer
above (again, as procedures or functions, with or without arguments). As long és the
sequences defining the security services are carried out properly (that is, in the correct
sequence and within speciﬁed time constraints) then the CSS can be shown to securely

implement the desired security service.

The sequencing data for each of the services capable of being carried out by the CSS is
stored within the Security Management Information Base (SMIB) of the CSS. Upon
receipt of a service request across the API, the External Environment Agent (EEA) will
route the control data header to the SSA and the process data to the CSS internal data
bus, see Figure 5.3. The SSA will consult the SMIB via the SMIBA to determine the
sequence of operations which need to be called in order to achieve the desired service,
if allowed. At the start of the service, the status registers of the state machines will be
cleared. As each operation is called in turn and completed successfully, the completion
status bit is set in the status register. The MA supervises the sequencing by comparing
the SMIB sequencing data with the status registers to determine the progress of the

service, and to verify its correctness at each stage, see Figure 6.12.

Some examples of the flow sequences used to generate various security mechanisms and

protocols are given in sections 6.7. and 6.8. respectively.

174

) . Security Monagement Information Base
Security service

request fron (SMIB>
application
Sequence doto
from EEA For 5SA %o
mechanisms '\ SMIBA
_\/ Sequencing data for security
mechanism ond protocol generation

/_ Al a2 a3 |Aada | AaS |as | A7 | a8 | A9

Bi [B2 | B3 |B4|BS|B6 | B7| B8 | B9

CtjC2|c3|CafCcS|ce|C7|c8|cCo

Sequence data for MA
to verify correct
execution of sequence

< > < >

Security Service Agent (SSA) {

Sequence errors
possed back 10 SSA

for re-try attenot Monitor Agent (MA)

T~ Comparison of wvectors
/

[1i[iTaToToToTo To [~Fdedd]

Bogiean statud register oF sequence

I IR R S Ea
|
t
J

I R
R
I
f
4
!
[
I R
|
!

|
[l
I
i r
i
I

i
|
|
i

S1 Se $3 S4 S5 Sé S7 S8 s9 S10 s s12 $13 Si14

Figure 6.12. Verification of Sequence Execution Correctness

175

6.6. Notation

The analysis of this system is facilitated by means of a special notation, see Figure 6.13,

""""""

-
-
-

-

-
-

Ay array [LN]

_______________________ of Integer
Al(S) Bl | B2| B3| B4 Bn 1¢= s <= N

-
-

-
-

-

...............
-
-
-

Al' array [1L.N)

‘ ¥ I B3l B4l -c-ccmcmmmmee e of boaalean
Al(s) Bi | B2| B3| B Bn D oo

P el T T, -
- ———— -
el

-——
PR

Figure 6.13. A State Machine Representation within the SMIB

Let state-machine A, be represented by the sequence of state-machines B,..By, let A,(s)

176 : -

represent the sequence vector in the SMIB containing the sequencing data of A,, and let
A,'(s) represent the boolean status vector containing the status data, B’,..B’y, of the
success/failure of component state machines B,..By in A,. Then the security state of

state-machine A, after m steps can be determined from the recursive function S(A,,m),

FUNCTION S (A,, m : integer) : boolean;
begin
WHILE m > 0 DO
IF ((A,’[m]) AND (S (A,,m-1)) THEN
S := rue
ELSE
S = false;
end; O

6.6.1. An Example

ox ax oK oK oK oK Fail X X ¥

Figure 6.14. An Example of a Hierarchical Sequenced State Machine

177

Referring to Figure 6.14., suppose that

3A, : A,[1] = B,
3A, : A[2] = B,
A, : A,[3] = B,

and
iB, : B|[1] = C,
3B, : B|[2] = C,
and
3B, : B,[11 = C,
3B, : B,[2] = C,
IB, : B,[3] = C,
and
3B, : By[1] = C,
3B, : By[2] = C,
and

3B, : B,[1] = C;
iB, : B,[2] = C,
3B, : B,[3] = Cyo

and that the sequence has progressed to the stage where

B,'[1] = true
B,'[2] = true
B,'[1] = true

178 -

| _

B,'[2] = true
B,'[3] = true
B,'[1] = true

B,'[2] = false

B,/[1] = x
B/[2] = x
B/[3] = x X = don’t care state

The security status of the system can be determined at any time by applying the status

function,
S (A,4) = S (B,,2) AND S (B,,3) AND S (B,,2) AND S (B,,3);

At the point of failure,

S (lez) = true’

S (B,,3) = true,

S (B,,1) = true, BUT

S (B,;,2) = false
and, of course, S (B,,x) = false, but this is a 'don’t care’ state (indicated by x’).
Therefore, by applying the recursive function S it is quickly determined that

S (Ahl) = Ll'ue,

S (A,,2) = true, BUT

S (A,,3) = false

179 -

I

The position of the failure is therefore located at S (A,,3) which is the first false result.

And since

A,[3] = B, AND
By[2] = G,

then C, is the failed atom.

Between each operation and the next, the CSS stores the result of the operation in the
SMIB secure temporary data store. There is fault protection and error recovery built
into the hardware/software to indicate failures. In practice, these will generally take the
form of exception errors generated by the hardware, such as divide-by-zero interrupts
or bounds violation interrupts. Error recovery allows the system to re-try operations,
which might have failed due to a temporary problem such as power-supply transient.
If on re-try the operation is successful then the sequence will continue. If, after a
specified number of retrys, the error persists then the complete security service is

aborted and the appropriate error flag return made to the calling application.

The notion of rimeliness is very important in determining the correctness of the execution
of the CSS function sequences. (Timeliness within the context of the formal analysis of
protocols is discussed in section 6.9.2.). The protected real-time clock atom is used to
time the execution rate of the sequences. In the event of inactivity or failure of a

sequence which cannot be reinitiated by the recovery agent, the monitor agent will
inform the security services agent of the failure. The external environment agent will
then inform the calling process of CSS failure and initiate a shutdown of security
services. These include a clearing of the CSS sequencing temporary data stores and the

SMIB temporary data stores to ensure that confidential data such as keys and partially

180

encrypted messages held in these stores cannot be externally accessed.

6.7. Examples of Sequences for Data Manipulation

Having established the general principle of the sequenced state machine, some examples

of actual machines within the prototype CSS are now given.

Assume that we wish to use the CSS to implement a non-repudiation of origin service,
an 1important security service recommended in ISO 7498-2, The mechanisms required
to accomplish the security service of non-repudiation of origin might be designed as

follows:

1. the sending party will need initially to generate an RSA key pair, placing
the public key in the directory at the SMC, and keeping the secret key to
himself in the local protected store in the SMIB;

2. the sender will need to hash the document he wishes to effect non-
repudiation upon, using a public, system-wide hash function approved for
the purpose. He will then sign the digest (the reduced data block
resulting from a hash operation, similar to a CRC or checksum) with his
secret key, including a time stamp to prevent replay attacks;

3. the sender will then send the document plus the signed digest (possibly
via different routes) to the recipient;

4. the recipient will need to create a local copy of the document digest using
the hash function;

5. the recipient then 'unsigns’ the received (signed) digest by using the

senders public key (which he has received from the directory and certified

181

by the SMC);
6. the recipient compares his local copy of the digest with the received

digest he has just ’unsigned’.

If the digests match, then the document must have been sent by the purported sender,
because nobody else would be able to create a digest using the senders secret key (unless
the secret key had been compromised). The sender cannot therefore deny having sent
the document. If the digests fail to matc'h, the recipient can reject the document because

either:

1. it was not sent by the legitimate sender, and hence the received, signed
digest is incorrect;
2. it has been tampered with in transit, in which case the local digest will be

incorrect.

6.7.1. Creating an RSA Key Pair

The mechanism of RSA key generation involves the following components:

1. the generation of three prime numbers, say p, ¢ and e, by means of
Rabin’s algorithm;

2. determining the system modulus m = pg;

3. evaluation of the Totient function ¢(pg) calculated from (p-1)(g-1);

4. determining the decryption quantity d by performing Euclid’s algorithm
such that de = 1 (mod ¢(pq));

5. output the key pair P, = {e,m} and S, = {d,m}.

‘182

These components in tumn are broken down into sequences of atoms. The component
designated 'Rabin’s algorithm’ is given as an example of the use of atoms in the

construction of a component in Figure 6.15.

Figure 6.15. The Atoms used in Rabin’s

Algorithm for Primality Testing

FUNCTION Test_Prime (num : s255) : boolean;

begin
num_l :=n- 1 {SUBTRACT}
q := num_l;
:=0;
WHILE q MOD 2 = 0 DO {DO WHILE LOOP}
begin
k:=k + 1 {ADDITION}
q:= q DIV 2; {DIV}
end;

Exponent_To_Binary (q);

FOR trial_count := 1 TO trials do
{ ¢ passes of the algorithm = 1/4' probability of failure }
begin
Finished : = false;

str (Primes [trial_count - 1],x);

j:=0;
y := Mod_Exp (x,n); { MOD_EXP}
REPEAT {REPEAT UNTIL LOOP}

183

IF((G =0)AND (y = 1)) OR (y = num_1) THEN

begin

Test_Prime : = true; {GENERATE CONTROL BOOLEAN}

Finished : = true; {GENERATE CONTROL BOOLEAN}

end

ELSE

IF (j <> 0) AND (y = 1) THEN {OR}

begin
Test_Prime : = false;
Exit;
end
ELSE
begin
ji=i+ L
y := sqr (y) MOD n;
end;
UNTIL (j = k) OR (Finished);
IF (j = k) AND (NOT Finished) THEN
begin
Test_Prime : = false;
Exit;
end;
end;

end; [

{GENERATE RETURN BOOLEAN}
{END}

{ADDITION}

{MULTIPLY and MOD}

{GENERATE RETURN BOOLEAN}
{END}

The system modulus and its Totient function are calculated using the multiply atom. The

decryption quantity is evaluated using the Euclid algorithm component, described in

184

Figure 6.16. Similarly, the file is hashed using the repeated square MOD n algorithm

which in turn uses the MOD_EXP atom, and so forth.

Figure 6.16. The Atoms used in Euclid’s Algorithm

FUNCTION GCD (nl,n2 : integer) : integer;,

begin
r .= nl;
Z 1= n2;
WHILE z < > 0 DO {DO WHILE LOOP}
begin
m :=r MOD z; {MOD}
ri=z;
Z:= m;
end;
GCD :=r; {RETURN}
end;

6.7.2. Creating a QRC Key Pair

The public/secret key pair for the QRC is much simpler to create than the key pair
required for RSA. Rabin’s algorithm is used to generate a pair of prime numbers, both
of which are Blum integers (that is, they are congruent to 3 mod 4). This prime number

pair comprise the secret key, and their product, calculated using the multiply atom,

comprises the public key.

. 185 - - - - -

6.7.3. RSA Block Encryption

RSA encryption just uses the MOD_EXP atom. The data is blocked according to the
size of the modulus in use, and then each data block is raised to the power of the

appropriate encrypting or decrypting exponent and reduced modulo the system modulus.

6.7.4. File Integrity Verification

File integrity verification uses the X.509 or similar hash function to create a digest of
the file. This basically comprises a running block checksum of the data within the file,
The file and its digest can then be sent as a pair to the recipient via independent routes.
On receipt, the user also hashes the file to the digest and compares his result with the
digest received with the file. If the two are identical, then he can assume that no
modification of the file has taken place. If the digests differ, then he knows that the data
within the file has been modified (either accidentally or deliberately) and he can reject
the file. The method relies on the principle that it is computationally infeasible to

construct two different files which would hash to the same digest.

In a similar way, the rest of the functions can be constructed from the mechanisms,

components and atoms of the CSS.

6.8. Examples of Sequences for Protocol Generation

As well as generating mechanisms for data manipulation, the layered sequence

methodology is also used to generate protocols for secure communication between

186

agents. A protocol is defined as an algorithm for implementing a class of transactions.
Protocols for even moderately sophisticated transactions involve a complex layering of

processes and capabilities.

The principle technique for implementing such a capability is the cryptographic
concealment of the message. Until quite recently, research efforts on secure protocols
have concentrated on the security of the underlying cryptographic transformations. The
need has arisen for new protocols, however, whose security properties are not readily
apparent. In these protocols, it is not only the security of the cryptosystem that plays
a role but also the logic of the implementation. Even given the a priori assumption that
the cryptosystem offers perfect concealment, flaws in the protocol logic, when

undetected, are as damaging to overall security as a compromised cryptosystem.

The protocol approach to communication offers a number of practical advantages.
Firstly, protocols may be logically separated from the software and hardware which
generate them. Secondly, protocols are generally high-level constructions which can be
examined in detail. Thirdly, and of considerable importance in the CSS, protocols can
be implemented using hardware or secure hardware-isolated software so that all
communication channels are explicir and observable. This effectively rules out the

possibility of coverr channels discussed in section 4.2.2.

Two examples are given, an authentication protocol and a key distribution protocol, The

formal proofs of these two protocols are given later in the chapter.

187

6.8.1. An Authentication Protocol

The authentication protocol used is due to Needham & Schroeder [NEED, 1978].
The protocol definition comprises a sequence of five exchanges:

1. A-SMC: A,B,N,

2. SMC - A: {N,, B, K,;, {K.,, Alivs}ias

3. A->B: {Knb: A}Kbs

4. B—A: {No}as
5. A-B {NL) b

Only A makes contact with the SMC including a timestamp N,, which then provides A
with a conversation key K, together with a cerrificate {K,,, A}.,} encrypted with B’s
key. This conveys the conversation key and A’s identity to B. B decrypts this
certificate and carries out a handshake with A to be assured that A is current, since the
certificate might be a replay! A then returns to B a function of the timestamp (which
could take the form of a hash function, for example). In the following protocol,
examples are given as to how the agents interact to accomplish the various steps.
Complete descriptions of these interactions are lengthy, repetitive and tedious and so are
not given explicitly at every step. Clearly, the sequence of interactions for decryption
is almost identical to that for encryption apart from the use of a slightly different

mechanism under the control of the SMA. Only those interactions of significance or

188

which introduce a new agent are given to avoid repetition. Broken down, the protocol

proceeds as follows:

1. A sends a cleartext message to the SMC containing a timestamp N:
() a request for a timestamp is passed across the API to the EEA;
(b) the EEA routes the control portion of the request to the SSA;
(c) the SSA instructs the SMA to generate a timestamp;
(d) the SMA controls the real-time clock to generate the time-stamp;
(e) the time-stamp is passed back to the calling process via the EEA;
()] the OSI communication channel is used to communicate with the SMC.

Note that there is no need for a cryptographic protocol involving the public key

of the SMC since this message is en clair.

2. The reply from the SMC contains a conversation key K,,. The CSS generates

a random conversation key using the random number generator component via

a sequence of agent interactions similar to those described in (1) above. The

reply is encrypted with the secret key K,,. The encryption is performed by the

following steps:

@

(b)

(©
(d)
O]
(M

a request for the message to be encrypted is passed across the API to the
EEA;

the EEA routes the control portion of the request to the SSA and the data
portion (the message contents) to the CSS internal data bus;

the SSA instructs the SMA to initiate an encryption;

the SSA requests K,, from the SMIB via the SMIBA;

the SMA controls the hardware to ‘generate the encryption algorithm;
the MA ensures that the sequencing for the encryption algorithm is

carried out correctly;

189

(g) the encrypted data is passed back to the calling process via the EEA;

H the OSI communication channel is used to communicate with the A.

3. A then decrypts the reply using the decryption mechanism, and A knows the

message is not a replay due to the timestamp.

4. A sends the part of the message intended for B to B.

3. B decrypts the message to also obtain the same conversation key as A, using the

decryption mechanism.

6. A and B can now compare conversation keys to ensure that they are the same.

7. A and B now believe that

(a) the other party exists currently;

(b) the other party has sent their message recently;

(©) both parties are in possession of the same key.

6.8.2. A Key Distribution Protocol

The key management algorithm used by the CSS to establish secure exchange of data

between two peer entities is due to [RAMA,1990].

In the OSIRM architecture, REQUEST, INDICATION, RESPONSE and CONFIRM are

the four basic service primitives used in the connection establishment, data transfer and

190 - . T T

connection release phases respectively, see section 3.3. Each primitive carries with it
parameters to convey various pieces of information to its peer entity at the other end
system. During the connection establishment phase, the two peer entities negotiate a set
of parameters to be used during the data transfer stage. In the CSS key exchange
algorithm, the security parameters are also negotiated between the end systems during
this phase. In particular, the receipt of the public key E; of system B and the generation
and distributioﬁ of the session key (SK) are carried out during the connection
establishment phase. The session key is then used to secure user data during the data
transfer stage, and at the end of data transfer, the connection is disconnected and the

session key destroyed.

As previously discussed, in a large system the SMC is responsible for the holding and
distribution of valid public keys. The public key is only used for the exchange of a
symmetric session key (such as DES) which is then used for the actual data secunty
throughout the session due to greater efficiency than public key encryption. This is
known as a hybrid encryption mechanism. To protect against the possibility that an
impostor supplies the SMC with his own public key substituted for the genuine key of
A, a certificate mechanism is used. In this mechanism, after registering the public key
E, of user A in the public key directory of the SMIB, the SMC sends the following

certificate to user A in ciphertext form:
SMC—-A: C,=D¢(AE,, T)

where C, is the certificate, E, is a copy of the public key of A as received by the SMC,
Dy is the secret key of the SMC, and T is a timestamp to ensure the freshness of the
certificate against replay attack (see section 6.9.). User A decrypts the certificate using

the public key of the SMC, and verifies that the copy of his public key as stored by the

191

SMC in the public key directory of the SMIB is in fact genuine. Examples of the
mechanisms for the generation of the keys and the encryption/decryption are given in

section 6.7.

The complete protocol as used by the CSS for the generation of public keys by users,
the storage of the keys at the SMC, the distribution of public keys by the SMC and the
exchange of symmetric session keys by users is now described. A formal proof of the

security of this protocol can be found in section 6.9.6.

CERTIFICATION PHASE

1. User A generates his own public key by the mechanism described in section

6.7.1. He then transmits his public key in plain text to the SMC for registration

and storage in the public key directory of the SMIB:

A - SMC: (A, E,)

2. The SMC registers user A’s public key in the SMIB via the SMIBA and sends

a certificate to A in enciphered form as described:

SMC —» A: C, = Dg (A, E,, Ty

3. User. A deciphers the certificate and verifies that the SMC has registered the

correct public key:

EK {DK (A’ EA! TOA)} = (A: EA) TOA)

o - 192 - T T

4, Similarly, user B carries out steps 1 to 3 above:

B - SMC: (B, Ep)
SMC - B: Cy = Dy (B, Eg, Tgp)
Ex {Dx (B, Ep, Ton)} = (B, Ey, Top)

CONNECTION PHASE

5. During the connection establishment phase, the service user at the n+1 layer at
system A issues a CONNECT_REQUEST primitive to its service provider at the
n layer, indicating that it wishes to establish a secure communication with remote

system B.
6. The n layer at A requests the certificates C, and C,; from the SMC:
A - SMC: (A,B)
and the SMC replies to A with:
SMC = A: {Dy (A, E,, E,(SK), T,},
{D (B, Es, Ei(SK), T,}

= (CA ' CB)

where T, is now the timestamp indicating the current time at the SMC and SK

is a randomly generated session key.

7. End system A decrypts the certificates with the public key of the SMC to obtain

193

10.

11.

the contents. He verifies his own public key as being correct, notes the public
key of B, and further decrypts the session key with his own secret key to obtain
SK in plaintext. Now in order to provide both secrecy and authenticity, user A
enciphers the session key as well as the current timestamp T, using his own
private key, encrypts the result with the public key of B, and sends the result to

B:
A - B: Xas = {(SK, T)) D,} E;

The n layer inserts the message (C,, Cp, X,p) into the variable part of the
CONNECT-REQUEST (CR)-PDU using the parameter code, parameter length
indication and parameter value fields as defined in the OSIRM, and transmits the

resultant CR-PDU to the n layer of end system B.
The n layer at B decrypts X,5 using the information available in C, and C, and

obtains the session key SK. System B then issues a CONNECT-INDICATION

primitive to its n+1 layer.

After processing the indication primitive, the service user in the n+1 layer at

system B now issues a CONNECT-RESPONSE primitive to its n layer.
The n layer at B inserts the security parameter (C,, Cg, X,p) into its variable
part of the CONNECT-RESPONSE PDU and then transmits it to the n layer of

system A:

B- A: (CA: CB! XBA)

194°

12.

where X, is E,{Dg(SK, T3)} and T; is the current time at B. It should be noted
that Xy, is sent to A so that A can verify whether or not B has received the valid
session key SK without modification. This also serves as an acknowledgement

sent to A acknowledging the receipt of SK by B.

The n layer at A decrypts the received message from B and verifies whether or
not B has received the valid session key SK. It then issues a CONNECT-

CONFIRM primitive to its service user in the n+1 layer.

DATA TRANSFER PHASE

13.

Since both systems A and B now share the session key SK they can encrypt the
user data portion of a PDU. The service user at the n+1 layer issues a
DATA(DT)-REQUEST primitive to its service providefat the n layer. Now the
n layer at A encrypts the user data and transmits the resultant DATA(DT)-PDU
to the n layer at B. On receipt, the n layer at B decrypts the user data portion
of DT-PDU and issues a DATA(DT)-INDICATION primitive to its n+1 layer. -

In a similar fashion, B transmits its DT-PDU user data in encrypted form to A.

CONNECTION RELEASE PHASE

14.

After data transfer, the n+1 layer at A (or B) issues a DISCONNECT-
REQUEST (DR) primitive to its n layer. This DR primitive is transmitted to the
n layer of the other system. The n layer then issues a DISCONNECT-
INDICATION primitive to its n+1 layer. At the end of the session, SK is

destroyed.

195)

6.9. A Formal Proof of Protocol Sequence Security

In a distributed security environment, it is necessary to have procedures whereby various
remote components of the system can communicate in a rigorous and secure manner.
In the context of the CSS described, the agents of the CSS may be in physically remote
locations, and yet need to convey information to each other concerning the security
activities present on the network. These rigorous procedures are the communication
protocols. Having established a methodology to prove the functional correctness of
sequences built up from layers of finite state machines in a vertical sense, it remains to
prove the security validity of the sequences themselves when used to generate the

protocols which communicate between the agents in a distributed system.

Following Burrows, Abadi and Needham [BURR,1988], we use a formal logic to

analyse the validity of the protocols between the communicating agents of the CSS.

6.9.1. A Formal Definition of Protocol Security

The definition of protocol security as used in this formal analysis depends on the
principles of belief and acrion. If a subject is trusted in a security sense, then this is a
statement of belief on behalf of the system that any actions carried out by that subject
within the system will fall within the security policy of that system. If a subject is not
trusted, however, then the system must ensure that the subject behaves according to the
security policy, and this may be achieved by making untrusted subjects submit to the
jurisdiction of trusted subjects. In the CSS, the trust is placed in the Security
Management Cenires, one of whose security functions is the supervision and enforcement

of system security policy.

196

6.9.2. Requirements of Proofs about Protocols

Between agents of that part of the CSS which is completely contained within a local
protected hardware unit, the need for many of the protocols is removed, because the data
cannot be accessed or interfered with by an external influence. The design of the
protected hardware suggested for use with the CSS does not allow access to any internal
data bus, and in the event of physical violation, all internal data that would facilitate

compromise of the system by the attacker is destroyed [WEIN, 1987].

In a distributed computing system, however, the protocols between the distributed agents
of the CSS must be highly resistant to compromise. A guarantee of absolute security
is not possible, mainly due to the difficulty in adequately describing in formal terms
what is meant by ’absolute security’. What can be said, is that given that certain
subjects within the system are trusred, it is possible to develop protocols to ensure the
extension of relative trust from these subjects to cover all the other subjects as required.
The extension of trust in this way is called the development of a trusted path and extends
the security perimeter to include as many subjects and objects as desired, see Chapter

2 and section 5.4.

The analysis of the protocols which provide the inter-agent communication in the CSS
uses a formal logic specifically designed to define communication protocols in terms of
security functionality. It is sufficiently rigorous to distinguish between the
implementation of the protocol and the initial assumptions from which the protocol was
developed, and to highlight properties of the protocol which may not be evident when

initially conceived. These properties include such concemns as,

l. does the protocol achieve the goal?

197

if not, is it possible to modify or extend the protocol to achieve the goal?
what assumptions does the protocol require?

does the protocol assume more knowledge than is actually available when

claiming to meet the goal?

does the protocol produce more knowledge than necessary to fulfil the

goal?

does the protocol do anything unnecessary which could be omitted without
weakening the goal, for example, does the protocol encrypt data which

need not be encrypted?

does the protocol fail to do anything that is necessary to secure the goal,
for example, does the protocol fail to encrypt critical data which needs

encryption?

Concerns such as these are important because, as stated earlier, well intentioned but
flawed policy can lead to anomalies which can result in security ’leaks’. These
weaknesses can be very subtle indeed, and almost imposstble to detect without a formal
analysis. In particular, covert channels may have inadvertently resulted due to minor
oversights in the design of the system. These channels may be exploited by a
sophisticated attacker to leak information from the system, although the information
bandwidth of such channels is usually very small. Refinement of the protocols using the

logic can result in the elimination of many of these shortcomings.

198) N

The initial requirement of all the inter-agent protocols is the ability for the agents to
convince each other about the identity of the peer entity in the association. In the
simplest sense, this authentication is the guarantee that if the two entities are really who
they claim to be then they will end up in possession of a shared secret which will allow
then to communicate with secrecy and integrity. Achievement of these two goals will
preclude the possibility of an attacker from either gaining information about the content

of the communication or being able to influence its content.

A very important aspect which much of the literature does not address is the notion of
timeliness of the protocol. If an identical protocol is used for every instance of a
communication, then an attacker can simulate an genuine instance simply by replaying
a previous communication, even if he has no idea whatever of its content. This is the
classic replay attack scenario, which is very easy to mount in a computer
communications environment. It is therefore very important to include the notion that
a protocol must be rimely in order to prevent attacks of this sort. In practical terms, this
means the use of time stamps in all protocols that are vulnerable to replay attack, and
the protected hardware real-time clock is included in the CSS for this purpose.
Incorporating timeliness into the formalism, however, has proved difficult in previous
attempts at logic of this sort. This analysis builds on the work of Burrows ez al in the
use of nonces which are expressions invented for the express purpose of being ’fresh’.
As well as time stamps, other nonces can include the use of random numbers. If entity
A invents a random number which has not previously been used in a communication and
intimates this value to entity B, and entity A subsequently receives from B a message
which fully includes the random number or a one-way function of it, then A can be
assured that the message originated after the communication of the number to B, so long

as the integrity of the message can be guaranteed.

199

Protocols are traditionally described by listing the messages sent between the
communicating parties, showing in symbolic form the contents of the messages, the
source, destination and any encrypting keys used. This conventional approach is not
well suited to a formal analysis because the logic requires that an exact meaning be
attached to certain elements of the messages, and this cannot always be inferred from
the content. Each message is therefore translated into a logical formula before analysis,
which is essentially an idealised form of the original message. Assertions are then made
about each protocol in the same notation to describe the beliefs held by the various

entities involved in the protocol.

6.9.3. The Basic Notation

Following Burrows er al [BURR, 1988], the basic formalism is built on a many-sorted

modal logic. We recognise three type of entity,

1. subjects;
2. encryption keys;
3. messages.

In general, the symbols A, B, and S denote specific subjects, K,,, K,,, and K,, denote
specific keys and N,, N,, and N, denote specific statements. The symbols P and Q

range over subjects; X and Y range over statements; K ranges over encryption keys.

The only propositional connective is conjunction, denoted by a comma. Throughout,

conjunctions are treated as sets.

200)

In addition, the following are defined using a notation similar to that of Burrows er al:

P EX:

P ey Q:

{X}x:

#(X):

P believes X or is entitled to believe X. The subject P may then act as

though X is true.

P once said X. The subject P sent a message at some unspecified time
which included the statement X. It is not known whether the message is
old (possibly a replay) or part of the current communication, but P

believed X when he sent it.

P has jurisdiction over X. The subject P is an authority on X and should
be trusted in all matters concerning X. For example, the SMC is trusted

to supply authentic public keys.

P and Q may use the valid key K to communicate.

-

The statement X encrypted with the key K. We can extend this to {X}«

signed P.
P sees X. The subject P has received a message containing X and can
read X (possibly after decryption). Clearly, P can repeat X in other

messages.

the statement X is fresh, that is, X has not been used in a message before

the current protocol.

201

6.9.4. Formal Proofs of Authentication between Agents

As stated, the fundamental protocol which is always implemented between remote agents
is an authentication protocol. (Confidentiality and integrity do not require formal
protocols; they may be achieved by encryption alone.) In authentication, the
fundamental concem is the distinction between past and present. The present epoch is
deemed to start at the set-up time of the current protocol and all interactions later than
this time are called recent. All communications before this time are deemed to be in the
past, and the authentication protocol must be very careful to reject any of these past
messages and not be subverted into believing them to be recent, and hence fall victim

to a replay attack. In particular,

1. a belief about a past communication is not carried forward into the

present one,

2. all beliefs held in the present are stable for the duration of the current

protocol,

Now the logical postulates can be described:

The message meaning rule concerns beliefs about encrypted messages:

P Q& P, Pa{X}; impliesthat P FQ ~ X

The rule says that if P believes that a key K is shared only with Q, and he sees the

message X encrypted under K, then P is entitled to believe that Q once said X.

202 N) o

The nonce verification rule states that if a message is recent then the sender still believes

in it:
P E#X), P FQ ~ X impliesthat P FQ EX

This says that if P believes that X is recent and that Q once said X then P believes that

Q said X recently, and hence Q believes X.

The jurisdiction rule states that if P believes that Q has jurisdiction over X then P trusts

Q on the truth of X.

P EQ=X, P EQ EX impliesthat P EX
In addition, we can heuristically observe that P believes a set of statements if and only
if P believes each individual statement separately. Hence, we have the following three
additional rules:

P X, P EY impliesthat P F (X,Y)

P E (X,Y) implies that P E X

P EQ E(X)Y) impliesthat P EQ EX

And similarly with the operator ~:

P EQ ~ (X,Y) implies that P £Q ~ X

203

If a subject sees a message, then he also knows the content statements, providing that

if the message 1s encrypted, he knows the keys,
P a (X,Y) implies that P « X

P EQeP, P a{X}y impliesthat P « X

By virtue of the message digest which ensures that no part of a message can be altered
to
without discovery, if one statement of a message is known 4he be fresh, then the whole

message must be fresh,

P E #(X) implies that P k= #(X,Y)

6.9.5. Idealisation of the CSS Protocols
Conventionally, each step of a protocol is written in the form
P - Q : message

which denotes that the subject P sends a message and that subject Q receives it. (Within
the context of the CSS, confirmation of receipt may be assumed due to supervision by
the CSS of possible disruption due to denial of service attacks against the security traffic
on the network, discussed- in detail elsewhere.) In order to express the meaning of the
message, it i necessary to transform it into an idealised form which expresses the

semantics of the message. For example A may wish to communicate a symmetric

204

session key to B for future use, using a public key encryption transfer under the

assumption that only B knows the secret key K,,,
A - B : {K,, is to be used for communication between us}
In terms of ideal formulation, this would be written
A—-B: {A e B},
When the message arrives at B, we can infer that B sees the message
B < {A ey, B},
and hence B becomes aware of the content of the message and can act upon it.

The analysis of protocols is carried out in four steps:

l. the idealised protoco! is derived from the original idea;
2. assumptions are made about the initial state;
3. logical expressions are attached to protocol statements in the form of

assertions about the state of the. protocol after each statement;

4. the logical postulates are repeatedly applied to the assertions in order to

discover the beliefs held by the parties to the protocol on completion.

205 -

The whole procedure may be repeated as many times-as required, as new assumptions

are found to be necessary to ensure that the correct beliefs end up being held by the

parties involved.,

Burrows er al have suggested the following three rules for the derivation of legal

annotations to protocols,

1.

for single protocol steps, the annotation

[YI(P - Q : X)[Y, Q < X]

is legal. All beliefs held before a message is sent hold afterwards, the

only difference is that the recipient sees the message;
for sequences of protocol steps, if
[X]S,....[Y] and [Y]S,'....[Z]
are legal, then so is
[X]Sl,....[Y]S.'....[Z]
Thus, annotations can be concatenated;
the logical postulates used are

(a) if X is an assertion (but not an assumption) in a legal annotation

. 206 - - T T

@, X' is provable from X, and @’ is the result of substituting X’
for X in @, then @’ is a legal annotation. Thus, new assertions

can be derived from existing ones;

(b) if X is the assumption of a legal annotation ®, X’ is provable
from X, and @’ is the result of substituting (X,X’) for X in @,
then @’ is a legal annotation. Thus, the consequences of the
original assumptions can be written explicitly next to the original

assumptions.

Burrows er al are careful to point out that the power of this method stems from the
ability to follow the evolution from the original assumptions to the consequences of those
assumption in a rigorous manner, in other words, we can formally demonstrate the

validity of final beliefs about the state of a system from the initial beliefs.

As stated, the fundamental component of all the inter-agent protocols is authentication.
Formally, authentication is complete between agent A and agent B if there is a K such

that

A FEAecB
B EAegB
A EB FAeyB

BEA EAeB

While the first two of the above are essential, the last two results are no stronger than

207

merely desirable.

In their paper, Burrows ef al go on to give two examples of the application of their
logic, and their results are worth repeating here. Initially, they consider the Otway &

Rees authentication protocol [OTWA,1987]. Adopting the following symbology:

AB principal subjects

K, K., symmetric keys A & server, B & server
N,,N,,M nonces

K, secret session key A © B

S authentication server (in our context, the SMC)

Otway & Rees defined their protocol as comprising four messages:

1. A-B: M, A, B, {N,, M, A, B},

2. B-S: M, A, B, {N,, M, A, B}, {N,, M, A, B},
3. S-B: M, {N,, Kuhaw {(Now Kiios

4. B-A: M, {N,, K, }x.,

The protocol requires that A passes to B some encrypted information only useful to the
server (SMC), together with enough information for B to make up a similar message.

B forwards both to the server, who decrypts the messages and checks that M, A, B

- 208 -

match in the encrypted parts. If so, the SMC generates the session key K,, and embeds
it into two messages, one for A and one for B, accompanied by the appropriate nonces.
Both are sent to B who forwards A’s part on to A. Then A, B decrypt their respective

messages, and if satisfied, proceed to use the key K.

Transforming to the logic and using the abbreviation N, in place of M,A,B, we rewrite

the protocol as follows

. A-B: {Ny, N}ka

2. B-S: {N,, Nediass {Nby Nodicos

3. S-B: {N,, (A ©, B), (B ~ N)}ews {Ns, (A &4, B),
(A ~ Nohes

4. B-A: {N,, (A &, B), (B ~ N}k, -

The assumptions made by the protocol are

A FAeS
B EBey, S
S EFA ey S
S EBé&y, S
S EAe, B

A F(E=AesB)

209

B E(S=Ae&B)
A ES=B~ X)
BES=A~YX

A E#WN)

B | #(N,)
A | #N)

The logical analysis now proceeds as follows:

1. A — B: B sees the message from A but cannot read it
B < {N,, N}k,
2. B generates a message of the same form, and passes both to S.
3. S decrypts each part by the message meaning postulate, and can deduce thz;t A

and B have encrypted the nonce N, in their packets.

SPAk(Na:N:)’ SI=B~(Nb)Nc)

NOTE that S cannot tell if this is a replay or not since nothing in the message

tells him if the message is fresh!

4. S emits a message containing two encrypted statements to B.

210 ' ' o

5. One part of the message is intended for A, and B passes this on. At this point,
A and B have received a message from the SMC with a new session key plus a

nonce. A and B successively apply the

(a) message meaning
() nonce verification

(c) jurisdiction

postulates to emerge with the final beliefs,

A k(A ey, B)
A F(B EN)
B k(A &y, B)
B E@M EN)

NOTE that the logic has exposed this as being a far from complete or reliable
authentication protocol. It could be completed by handshaking between A and B, but
the weakness is that the session key K, is never used by either party during the
protocol, and so neither party can be assured that the other is in possession of the same
key. In fact, A is in a slightly stronger position than B, in that A has been told that B
emitted a message containing a nonce that A believes to be fresh. This allows A to infer
that B sent the message recently, that is, B currently exists in the system. B, however,
has only been told by the SMC that A has used a nonce, but has no idea if this is a .

replay attack or not!

It is interesting to note that, in addition to the weaknesses exposed, the analysis reveals

211

that the protocol also contains some redundancy:

1. two nonces are put up by A, but one would suffice. The verification

using N, is just as easily done by N, and hence the nonce N, is redundant;

2. N, in the second message need not be encrypted.

The above analysis leads to a quite different approach to the authentication problem.

The following analysis concerns the Needham & Schroeder protocol [NEED, 1978].

The concrete protocol definitions comprise a sequence of five messages:

1. A-S: A, B, N,

2. S-A: {N,, B, Ky, {Kup, Alicos}ias
3. A - B: {Ka, Alirs

4. B-A: {Ny}ka

5. A - B: N} s

Only A makes contact with the SMC, who provides A with a session key K,, together
with a certificate encrypted with B’s key conveying the session key and A’s identity to

B. B decrypts this certificate and carries out a nonce handshake with A to be assured

S 212 T o

that A is current, since the certificate might be a replay! A then returns to B a function

of the nonce (which could take the form of a hash function, for example).

Transforming to the logic and using the same notation and substitutions as previously,

1 A —>,§: N,

2. S—A: {N,, (A &y B), #(A oy, B), {A e, Bl tia
3. A - B: - {A e, Bl

4. B-A: {Np, (A ¢, B)}xa, signed B

5. A - B: {Np, (A &g B)}xas, signed A

The additional statements about the key K, in (2), (4) and (5) are there to assure A that
the key can be used as a nonce, and to assure A and B that the other believes that the
key is good. (These statements can be included because neither message would have

been sent in the first place had these beliefs not been held).

The assumptions are

A FAe, S
B EBe, S
S FA e S
S EBéey, S

213

S FAe,B

A ES=A¢,B)
B F(S=A¢sB)
A | (S=H#A o B)
A E#N,)

B | #(Ny)

S k #(A ©y, B)

The logical analysis now proceeds as. follows:

1. A sends a cleartext message containing a nonce. This is seen by the SMC who

repeats the nonce in reply.
2. The reply from the SMC also contains the session key K,,.
3. A then sees the entire message
A < {N,, (A ¢y B), #(A o4 B), {A et Blivsdkes
which A decrypts using the message meaning postulate.
4. Since A knows N, to be fresh, he can apply the nonce verification postulate,
giving

A ES EAewB, A ES E#AewB)

214

The jurisdiction postulate allows A to infer

A FEAe, B, A EF#A ew B)

Also, A has seen part of the message encrypted under B’s key

A 4 {A e, B},

This allows A to safely send the message to B.

B can use the message meaning postulate and decrypt

BES~Ae,B

Unlike A, however, B cannot proceed without resort to the dubious assumption

that

B E #(A o, B)
The assumption is dubious because B knows of nothing in the message which is
fresh, and so cannot tell when it was generated. B has to assume that the
message from the SMC is fresh.

Using the extra assumption in (7), B can obtain the key

B EAe,B

215

10.

11.

via the nonce verification and jurisdiction postulates.

The last two messages cause A and B to believe that

@) the other party exists currently,
(b) the other party has sent their message recently,

(c) both parties are in possession of the same key.

B first encrypts his nonce and sends it to A, who can infer that B believes in the
key

A EB EAe,B

because he has been guaranteed of the freshness of the key by the SMC,

A then replies similarly, and B can infer that A believes in the key

BEAEAe,B

NOTE that the freshness of the nonce N, is sufficient for B to infer this. It is

not necessary to re-use the dubious assumption made in (7).

The final beliefs with which both parties emerge are

A E (A e B)
B k(A o, B)
A EB E(A & B)

B EA E(A S B)

216

In fact, we obtain the even stronger

B A EB k(A B)

This is a strong result, but is obtained at the expense of the extra assumption in

7).

6.9.6. Formal Proof of the CSS Key Distribution Protocol

A formal proof using the logic is now given for the key distribution protocol described

in section 6.8.2, The symbology adopted is now:

AB principal subjects

S security management centre

E, Ey the public keys of A and B respectively

C..Cg certificates of the public keys of A and B respectively
D,.Dg the secret keys of A and B respectively

E;,Dy the public and secret keys of the SMC respectively
SK the session key

Tyx nonces

The unadorned proh)col takes the form:

1. A-S: (A, E)

217

2. S->A: CA = DK (A; EA: TOA)

3. B-S: (B, Ey)

4. S -+ B: Cp = D (B, Ey, Typ)
5. A-S: (A,B)
6. S—=A: {DK (A, Em EA(SK)! Tl}r
{DK (B: E’Bs EB(SK)! Tl}
= (CAa CB)
7. A-B: X.s = {(SK, T,) D,} E,
8. B - A: (Ca, Cg, Xga)

Transforming the logic as before, the protocol becomes:

1. A-S: {A, A &g S}
2. S-A: C. = {A, #(A e S}k
3.» B-S: {B, B &,; S}
4. S - B: Cp = {B, #(B <5 S)}p«

218

5. A—-S: (AaB)

6. S - A; {{A, #(A ©g, S), #(A e« B)},

{B, #(B e S), #(A &g B)}ok

7. A - B: {#(A @5 B)pales

8. B - A: {#(A g B)pa}ea

The assumptions at the start of the protocol are:

w > W > w o o»n W

w

F A ©papagkpk S
B ©gp DBEK.DK O
FA “ga,DaA.EX,DK S

i= B <$E.[!.DB.EK.DK S

FAegB

(S = A oy B)
E(S=A oy B)
E (S = #(A oy B)
E (S = #(A oy B))

F #(Toa)
= #(Ton)

F #(A o B)

219

The analysis of the protocol proceeds as follows:

CERTIFICATION PHASE

1. A transmits his own identity and public key in plain text to the SMC

A-S: {A, A &, S}

2. This is seen by the SMC which sends a certificate to A in reply:

S-A: C. = {A, #(A e, S)}ox

3. User A sees the message

A 2 {A, #(A e S}

which A deciphers using the message meaning postulate. He also applies the

nonce verification postulate which allows A to infer that the SMIC has registered

the correct public key, and the registration is fresh.

4. Similarly, user B carries out steps 1 to 3 above:
B-S: {B, B & S}
S - B: Cs = {B, #(B ©pS)}ix

B < {B, #(B e S)}nk

220

CONNECTION PHASE

5. A requests the certificates C, and Cg from the SMC:

A-S: (A,B)

6. The SMC replies to A with:

S - A: {{A, #(A o5, §), #(A oy B)},

{B, #(B €5 S), #(A o5 B)}}ok

7. A sees the entire message:

A < {{A, #(A o5, 8), #(A ey B)},

{B, #(B &g S), #(A &5 B)}}ok

and applies the message meaning postulate to decipher the contents, the nonce
verification postulate to infer that the certificates came recently from the SMC,

and the jurisdiction postulate to infer the freshness of the session key. Hence

A ES ~ #(C,, Cy)
A [#(A e B)

8. Now in order to provide both secrecy and authenticity, A enciphers the session

key as well as the current nonce T, using his own private key, and encrypts the

result with the public key of B, and sends the result to B:

221

10.

11.

A-B: {#(A g B)pa}es

B then sees the message

B < {#(A &5 B)pales

which he decrypts using the message meaning postulate. He now sees the

contents

B < {#(A oy B)p,}

and applies a further decryption. Application of the message meaning postulate
and nonce verification postulate allow B to infer that the message originated from

A and that it is recent.

B A

A echoes the contents back to B’

B - A: {#(A ©sx B)pp}ea

A then sees the message

A < {#(A o Bloplen

which he decrypts using the message meaning postulate. He now sees the

contents

A < {#(A e B)ps}

222

and applies a further decryption. Application of the message meaning postulate
and nonce verification postulate allow A to infer that the message originated from

B and that it is recent.
DATA TRANSFER PHASE

12. The final beliefs with which A and B emerge are

A E(AeyB)
B | (A @ B)
A EB (A oy B)
B EA k(A eB)
A ES ~ #A o4 B)

Once the public keys are registered, the protocol will normally be initiated by
one party, say A, at the connection phase. Note that in a similar manner to the
two authentication protocols previously analysed, B is again not in as strong a
position as A in that B cannot be as certain of either the freshness of the session
key, or that the SMC generated it. B is totally reliant on A for his information,
and at no stage makes contact with the SMC himself. This weakness is not

exposed in the analysis in [RAMA,1990].

13. Since A and B now share the session' key SK they can encrypt the user data

portions of their PDUs.

The analysis of the other protocols used by the CSS is carried out in an identical

manner.

223

7. CONCLUSIONS

7.1. A Review of Achievements of the Research
This thesis presents new conceptual and practical work in the following areas:

1. The aims and objectives set out in Chapter 1 have been achieved, and a
demonstration distributed security system implemented using the
principles developed during this research., A Comprehensive Security
System (CSS) has been developed which conforms to many of the
recommendations of the ISO Basic Reference Model - Security

Architecture [ISO,7498-2], including:

(a) implementation of the five basic security services of
confidentiality, integrity, access control, authentication and

detection of denial of service;

(b) conceptualisation of the CSS as an Application Layer entity.
While the protoiype implemehts the majority of the security
facilities at the Applircation Layer in accordance with
recommendations, implementation at any of the seven layers is
possible due to the vertical nature of the CSS Application Program

Interface (API);

- - - 24 - - e e e e

(c) the capability of the system to be fitted retrospectively to existing
systems as a value-added service, providing that applications are
written/rewritten to take advantage of the facilities offered by the

CSS;

(d) the logical division of the system into agents, which allows the
system to be implemented in a distributed architecture

environment.

The system is capable of providing security services in a flexible and
efficient manner due to the provision of all the required security services
by a common set of security mechanisms. These are realised as a
hierarchical structure of finite state machines, sequenced according to data
stored in the Security Management Information Base (SMIB) of the CSS.
At the lowest level, data is manipulated by hardware/software performing
only five basic mathematical operators (+,-,*,mod,div). In this way, a
wide range of services can be provided, with little or no constraint on

future expansion of services or modification of encryption algorithms.
A new secunty analysis methodology has been devised based upon:

(a) a monitored sequencing of the layers- of finite state machines
which generate the security mechanisms and inter-agent
communication protocols required to fully implement the security
functionality in a rigorous manner. The approach uses a recursive
algonithm for the determination and verification of the state of the

CSS sequences at any given moment together with the notion of

225

time-constraint to determine whether the system is subject to

failure or possible attack by submission of invalid data;

(b) a modified Hoare logic for the verification of the protocols
between agents of the CSS. The method develops the concepts of
analysis through application of logical postulates to statements
concerning beliefs about the global state of the system as a result
of actions performed by subjects on objects within the system. In
particular, the notion of timeliness is incorporated into the logic
to cope with the possibility of replay attacks which are relatively

easy to mount tn an electronic communications environment.

The analysis methodology is particularly relevant to the very latest
European initiatives under the COSINE Eureka project, which involves
the development and proving of security mechanisms within the OSI

distributed processing environment.

The concept of 'Security Management Centres’ is introduced, which
function as supervisory nodes for all security related traffic on the
network. Their functions include supply and certification of public keys,
supervision of peer entity associations, and session supervision to detect
dem‘él of service attacks against the system. In the event of such an
attack being detected, the supervisory action may be to terminate the

session or to determine the possibility of alternate connections.

A practical implementation of many of the new ideas has been produced,

running on an Ethernet LAN of IBM Personal Computers.

226

7.2. Limitations of the Research

Although this research has gone some way to bringing about the realisation of the
Extended OSI Security Architecture discussed in [MUFT,1992], several limitations

remain:

1. The problem of denial of service has not been overcome. The CSS is
capable of detecting possible instances of such an attack and taking such
action as necessary to clear down secure associations in a controlled
manner but it cannot prevent such an attack from taking place. It is

difficult to see how this could ever be achieved in practice.

2. The formal logic used for the analysis of the protocols between agents of
the CSS relies, like all formal methods, on the fundamental truth of the
axioms. In the case of the CSS, the axioms are the initial beliefs about
the state of the system. If these are incorrect then the conclusions drawn
as a result of the logic will be in error. The initial verification of the
functional correctness of a system before modification by protocol activity
1s difficult. The existing software verification methods described in
Chapter 4 are concerned mainly with modification of data by procedures.
Verification of the initial state is assumed in most arguments without

justification.

227

7.3. Suggestions for Future Work

Although a practiqal implementation of the CSS has been produced, many of the ideas
presented in this thesis are more of a proposal than a description of proven technology.
While the basic tools of encryption are well understood, the application of these
principles to large systems is very much in its infancy. Considerable effort will be
required in defining an appropriate security model for a distributed system comprising
multiple security domains and in defining the different servers that will be required to
support such a distributed architecture. It is hoped that the work described here will

show what can be achieved, but it represents only one possible approach to the problem.

The demonstration system comprises of one SMC and tu.;o hosted users. The work on
the prototype CSS could be extended to a full software implementation for trials on a
large scale network such as JANET. In addition, a complete hardware implementation
of the local CSS processor including cryptographic hardware would be useful in
demonstrating the strength of a full implementation. After the completion of the
research described in this thesis, the use of the Cryprech PC Crypto Processor, a
general-purpose number theory engine, is being investigated as a means of speeding up
the cryptographic algorithms to a more realistic data throughput. The manufacturers
claim a processin-g speed in excess of 12,600 bits per second for RSA encryption using
a 512 bit modulus. Since the functions (addition, multiplication and modulo division)
are individually accessible, however, it should be possible to program the card to
implement the QRC cipher discussed in section 5.6. with possibly even higher data rates
than for RSA. It is interesting to note that the American National Institute of Standards
(NIST) have recently decided against adopting RSA, and this could give a boost to the

importance of other public key ciphers such as QRC described in this research.

228

One of the major problems in rigorously predicting, enforcing and analysing the
behaviour of software is that systems are increasing in complexity faster than new
techniques are developed to cope with them. The fields of safety-critical and fault-
tolerant computing, however, may have something to offer in this area. If the functional
correctness of a security system cannot be guaranteed after an attack or mishap, it should
at least be possible to ensure that the system 'fails safe’ in that it always reverts to a
known state which would be designed to contain the damage as far as possible. In
practice, this would mean a state in which minimum (and preferably zero) information

was disclosed to the attacker. This was one of the aims of the CSS.

The problem of covert channels has been briefly touched upon in section 4.2.2. and
elsewhere. While integrity protocols can be devised. to minimise this threat, the very
mechanisms that can help to prevent this problem can be exploited to exacerbate it. In
particular, the recent cryptographic concept of a subliminal channel [SEBE, 1988] could
be a difficult threat to deal with. This concept involves the notion of communication on
"two levels’ via an encoding mechanism. There is the 'overt’ contents of the message
for all to see, but buried within the ’noise’ is another subliminal communication channel

which exploits the unused information bandwidth of the overt channel.

It is possible that artificial intelligence (AI) techniques could be employed, especially in
the SMCs for intelligent supervision of the connections. This could allow potential

problems to be predicted before they became serious and remedial action taken.

Another recent development is that of zero knowledge. This is a mechanism by which
it is possible to exchange secrets with neither party being able to discover the secret of
the other party until the exchange is complete. This eliminates the problem which can

arise in the normal protocols where one party must transmit first. At this stage, it is

229

possible for the other party to refuse to cooperate further, thus discovering the secret of
the sender but not revealing anything in return. Some of the protocols used by the CSS
require this two-way cooperation such as symmetric key exchange. The extension of the
CSS protocols to use zero knowledge might provide an elegant solution to these

problems.

7.4. The Future of Distributed Systems

The future of distributed systems is assured. The adoption of global information
technology strategies is likely within the next twenty years and as the amount of
potentially sensitive information carried increases (such as credit references, medical
records and so forth) the need for security will be paramount. As security awareness
grows among commercial users to the extent already prevalent among the financial and
military communities the onus will be on network providers to make available a security
system which is of demonstrable validiry. Failure to do this is likely to result in severe

under-utilisation of the benefits and resources of the information technology revolution.

230

ANNEX 1: Circuit diagram of CSS Hardware and source code for ROM firmware

The circuit diagram of the PC version of the CSS local hardware is given overleaf followed

by the assembler source code for the ROM firmware.

231

[4%4

a0
A
A2

aaq
AS
AL

A7
an
AG

PPPRPP
-
AWN20D

PEPI>P
YN
[J-EN]~RT

sk

1C1

141 1w e e
1A2 1va
123 1va S0 j A X (X =3-] o
1A 4 14 = e A ~ AD [w]s] - \,
241 2vy (g 22 /] A 2] A D1 |oE—Rl
242 2v2 S As A 1c7a A 7] 42 D2 5 z
aaa 2va |2 22 A A Z{ a3 03 |r—d
244 2va NAa1a 2 A - g o4 y 5 N
A 21 as os r -
s ¥, a8 o8 == FARY
2@ ?4mGCOs a == :; o7 ~
FaHCdd4 X 4 49
1c78 ce AID avo
cp] £ A1) H3J A4
141 11 B A f\}_‘ld £l [2 AZE 2] a2
142 1y2 A2 a i
143 1ya 2 A0/ 7amHco4 s F g5
144 1va a0 o’ -3V 224 ca2
24A1 avwi sl 5 Zd W
2a2 ava 2 o D = EE'
3:3 g;i E Cy 1cre 74aMCaN G284
e NA1Z 8
26
74HC 44 7AanHCO4
NALR
1S3 /'\A‘!B
AL 1cgaA
1A 1 1Y1
142 vz (—H-ALLA 'c7o
143 1v3 FEEY ‘A a
1A 4 1% - e
241 a2y i |
EN Tancoe
aaa 2va2 S ae 04
243 2v3 2
2A4 2y a
1G 7A4mC32
2c
TARCZ a4
1ca
91 a1 g_ 1C7E
02 A2 f—s—h] o P
a3 a2 s
8a Aq oY
CERY Be Jamcoa ALL TTL
88 AB : et oe
87 A7 il <5V p—
=] :] AB
a 10 R1 MEMOR Y
oA 1 2ro L___—~"__ criPs
I LE]
—— | = C2
10uF 10nF D1
LED
»
k"]
avh ::l-

Figure Al.1.

Circuit diagram of the PC version of the local CSS hardware

CSS SECURITY HARDWARE MODULE ASSEMBLER SOURCE
Simon J Shepherd

CR equ Odh
LF equ Oah

cseg segment byte public ‘code’ ; Start the code segment
org 0 ; Zero origin
assume cs:cseg,ds:cseg,es:cseg
start equ $
db 055h ; standard IBM ROM header
db OAAh
db 03h ; three 512 byte blocks
css_bios_init proc far
Jjmp code_start
table: db '0123456789ABCDEF’
msg_1:
db CR
db 'NETWORK RESEARCH GROUP',CR,LF
db 'Comprehensive Security System’,CR,LF
db CR,LF
db *Version 2.0 for IBM PC/XT/AT/PS2 + BIOS COMPATIBLES’,CR,LF
db CR,LF
db 'Department of Electrical Engineering’,CR,LF
db *University of Bradford’,CR,LF
db *Bradford UK.",CR,LF
db '+44 (274) 384052°,CR,LF
db CR,LF
db "This machine is fully controlled by the NRG Comprehensive’,CR,LF
db 'Security System. The system will only be permitted to’,CR,LF
db *boot from security device drivers in C:\CONFIG.SYS',CR,LF
db *++% BOOT FROM FLOPPY 1S PROHIBITED ***' CR,LF
db CR,LF
db "Press a key to continue ...",CR,LF
code_start:
mov ax,ss ; Get segment and offset of
mov €s,ax ' ; caller from stack and
mov si,sp ; display
lea bx,cs:table

233

mov ah,0Oeh

mov al,'[’

int 10h

. mov dx,es:[si+2]
call write_word
mov al,’:’
int 10h

mov dx,es:[si]
call write_word
mov al,’l’

int 10h

mov ax,cs
mov es,ax

mov bp, offset msg_1
mov ax,1301h
mov bx,004fh

mov cx,offset code_start - offset msg_1

mov dx,0101h

int 10h
mov ah,0
int 16h
sub ax,ax

mov €s,ax

mov ax,word ptr es:[4*40h]
mov bx,es:[4*40h+2]

mov word ptr es:[04f0h],ax
mov es:[04F2h],bx

mov ax,055AAh

mov word ptr es:[04f4h),ax

mov ax,offset int_40

cli

mov word ptr es:[4*40h],ax
mov es:[4*40h +2],cs

sti

ret

css_bios_init endp

; ES:BP points to message

; Write chr/attr TTY

; Page 0 White on Red
; Length of message

; GotoXY (1,1)

; press a key...

; address zero segment

; {(vectors & ICA)

; get old int $40 vec offset

; & segment

; save offset at 0000:0410

; save segment at 0000:04f2
; signature

; store sig

; load our int $40 handler address

; far return back to BIOS POST

234

handler_40 proc far

int_40:
mov ah,80h
stc
iret

handler_40 endp
write proc near

write_word:
mov al,dh

call write_hi_nybble
mov al,dh

call write_lo_nybble
mov aldl

call write_hi_nybble
mov al,dl

call write_lo_nybble
ret

write_hi_nybble:
mov cl4
shr al,cl
jmp write_hex

write_lo_nybble:
and al,0fh

write_hex:
xlat
int 10h
ret

write endp

1IF (% - start) MOD 512

org (% - start) + 512 - (($ - start) MOD 512)
ENDIF

db 600 DUP (00h)

cseg ends
end

235

; fake a timeout error
; back to BIOS bootstrap

ANNEX 2

A General Solution to Primality Testing and the Integer Factoring Problem

Reference: Bressoud, D.M. Factorization and Primality Testing, Springer

Verlag, NY, 1989, ISBN 0 387 97040 1.
Groups
Definition: A group, G is a set together with a binary operation, say 3, such that
The operation is closed. If x and y are in G then xdy is also in G.

The operation is associative. If x, y and z are in G, then (xdy)dz = x3(ydz).

G contains an identity, say e. For each x in G, xde = edx = x.

bl

Each element of G has an inverse. 1f x is in G, then there is a y in G such that

xdy = ydx = e.

The integers with addition form a group. Zero is the identity and -x is the inverse of x. This

group is called Z.

If nis any positive integer, the integers less than and relatively prime to n together with

multiplication modulo n form a group. This group is called U(Z/nZ).

The order of a group G, denoted by |G|, is the number of elements in G.

Given a group G with binary operation 9, identity e, and an element x in G, the powers of x

in G are defined as follows:

x#-1 = the inverse of x,
x#0 = e,

x#1 = X,

X#2 = xox,

236

x#3 = xdxdx, and so on.

and in general

x#i = xd(x#(i-1)) = (x#-1)a(x#(i+1)).

The order of an element x in G is the smallest positive integer { such that

= x#i

If the group G has finite order, then every x in G has a finite order, and if x is an element of

G then the order of x divides the order of G.

G is a group modulo n if its elements are vectors of residues modulo n and its binary operation
d is defined in terms of arithmetic modulo n. If d is any divisor of n, then the restricted group

modulo d, denoted G |d, is the group derived from G by reducing each coordinate modulo 4.

A General Approach to Primality Tests

Let n be a candidate for primality and assume we have a group G whose elements are a subset
of the residues modulo n or some subset of vectors of residues modulo n. Further assume that
the possible orders of elements of G depend on the factorization of n in such a way that an
element of order /n can exist if and only if n is prime. If we know the factorization of m, we

can prove that an element x in G has order m if we can verify that
x#m = e and x#(mlp) = e
for every prime p dividing m. Formalising this in a theorem,
Theorem: Let n be a suspected prime, and assume that there exists a group modulo n, say G.
Let G|d be the restricted group modulo d and let e be the identity in G. If we can find an

element x in G and an integer m satisfying the following conditions, then n is definitely prime:

1. The integer m is larger than the order of G|g would be for any prime ¢

237 T o

dividing n and less than the square root of n,

2. x#m = e,
3. For each prime p dividing m, some coordinate of x#(m/p) - e is relatively prime
to n.

A General Approach to Factorization

The following is a general solution to the factoring problem, and represents the underlying

theory of most of the factoring algorithms in existence, including:

Fermat’s Method ged (x -y, n)
Euler’s Method gcd (ad - be, n)
Shank’s SQUFOF ged (A, + R, n)
Morrison & Brillhart’s Method ged (x + y, n)
Pollard’s Rho ged (x5 - x;, n)
Pollard’s p-1 ged (VX -1, n)
William’s p+1 ged (WX - 1, n)
Legendre’s Method ged (x) ¥, h)
Lucas Sequences ged (Vy, - 2, n)
Kraitchik’s Method ged (x -y, n)
Pomerance’s Quadratic Sieve ged (x -y, n)
Lenstra’s Elliptic Curve Algorithm ged (x -y, n)
Pollard’s Number Field Sieve ged (x -y, n)

Let n be an integer known to be composite, and p be an unknown prime divisor of n. Let G
be a group modulo n and G|p the restricted group modulo p. If the order of G|p is
considerably less than the order of G, then we can hope to find an element x in G and an
integer k such that x#(k!) is nor the identity in G, but the corresponding computation in G |p
does yield the identity of G|p. This means that there is at least one coordinate of x#(k!) - e
which is nor divisible by n, but all of the coordinates are divisible by p. Taking the greatest

common divisor of n and the coordinate which is not divisible by n will yield a non-trivial

238

divisor of n.

Of course, if n is prime, the above approach will run for ever and produce only inconclusive
results. Even if n is composite, there is no way of knowing a priori that the order of G |p will
divide k! for some prime p dividing n. We observe in addition that this approach also requires

an efficient means of calculating at least one coordinate of x#(k!).

Summing up this idea in a theorem,

Theorem: Let n be a composite integer and let G be a group modulo n. Let p be a prime
dividing n and let G |p be the restricted group modulo p. If the order of G |p divides k!, then
p divides each coordinate of x#(k!) - e. If n does not divide the #® coordinate of x#(k!) - e, then
the greatest common divisor of n and the £* coordinate of x#(k!) - e is a non-trivial divisor of

n.

Factorization Times

The following table illustrates the expected time to factor various sizes of integers of no special

form using a CRAY II supercomputer.

DIGITS BITS TIME

15 50 3 seconds

50 166 1 minute

75 250 10 hours

100 332 2 months

176 585 1 million years

200 664 15 million years

255 847 15 billion years (15 * 10%)

300 996 15 trillion years (15 * 10'%)

500 1660 15 * 10% centuries (150 billion trillion
years)

The current estimate for the present age of the universe is about 15 billion years, which

corresponds roughly to the time required to factor a 255 digit number. This is the order of the

239

key size used by the encryption mechanisms in the CSS.

Some keys generated by the CSS QRC Key Generator

60 digit key

180 digit key

P, =

21047754979673754543478202726855879255167357908757
1155514269

79115453021138497575239
2660384814335841665315891966390795771

100015096790533407023442071151089096742 15089803237
2749847253201995255414434149652861257283484425441
44306346841216415011486282093426358611
2257353718395337873767965218168636108235636739161
604315473531

6456328955025732600901768839360622715953044907509
9554891846887848519107414209061804992401536802877
19407102709770001680177215003984139911
3326786616002944900223455061639174693460046723353
447648788507

56231048169461842154453183945054559436655899401113
92774549637493001334874736683792770298866508348023
25794856280342249679351025648365697483629682773535
862847508119351607599645568209
68795365326949132093237486000865997241233651371299
893723575958300103
81736680810145383549986337251603531293116722637991

~240)

200 digit keys

P, =

250 digit key

P, =

86000534575123232552160576135322389400577983 143044
622607579303

27529629391493083271949844202075242699600701 123227
19856290275025195586459675229537846318441585847638
6095724793620070540609892655461860490275911 1387772
49440403691706709326706330050993014191539473777629
309322501 13805811778757012199202741885275698136910
840494974 1456090111864903

88999763322119083293455152349074573302883387702693
95854819275900267497996880495580175697245767643118
9418179437137016813715643

11062 149228898998505918983166254647000543307822872
58147511513818118711542735206718616564274389444009
19541197394923874561847893631086436409005332464949
72630062285236189195544751841124291941686415754801
19982264781855869999789558687431224364527302406360
78342664 13527717027085203

55359837083850271638465552841068131727326890997939
69993717549540671364527686272299297623488771851934
9347502953926899453655467

25493167138607526311988918211048849847392554872720
82139428191050897557320921554113363060166734 786595
796054655983219086445785753761619448233 17657734488
6343012317949455401945570124783840699952927173 1964
98080509599473991501838989720165350503 180262678193
29902544272176037747513316548240492723898386928364
22065757375502108156874723067644718147202318879502

241

255 digit key

P,

7994302084134592928984147
85254174048087993361147598964095896407882541231053
28667205682655993970216169507650744747499153857167
1644912032850232367450219

35997033893992544157448887437980433108136660483899
21925535766962411515054366501927688156444884914517
59218541270255525536998667250764838256113849450165
49879053791636566188206462426819476668453319466279
59034003389556370567743285062333658734869031224186
4149 .
50567646988756850813135730231478752930207488922499
93898014962563919355113058138816509663294861008964
362746920973790579375683483
71185898568695674001871629425665213707472058103218
57041699833148667243791836799750752869008855519630
449977370689677731216813903

o - 242

ANNEX 3: SOURCE CODE LISTINGS

The complete source code listings of the Comprehensive Security System are supplied on

floppy disk, bound within the master copy of this thesis.

243

ANNEX 4: INTRODUCTION TO PREDICATE CALCULUS

Simple ideas, the truth of which can be captured in true or false, are called propositions, and

are denoted by letters. For example, the proposition P,

P : "Esmerelda is a duck"

is either true or false. The formalism allows the capture of truth about propositions by
providing some components of the formal language which map onto properties of the object.
These are called predicates. The property of 'being a duck’ can be captured, for example, by
the predicate duck (x), where x is a free variable, and can be filled by the names of suitable
objects to create propositions. We can write, for example, duck(Fred) which will be true if
Fred is a duck but false if Fred is a dog. The act of assigning an instance to a predicate to
form a propositions is called instantiation. The predicate itself is not said to be truth valued,
in other words, it cannot be ascribed the values true or false. It is only when the predicate is
instantiated with an object that the resulting proposition can be truth valued. It is important
to realise that the instantiation of general objects can lead to difficult philosophical problems.
For instance, duck(hope) is difficult, because while the instantiation is valid, the *duckness of
hope’ is a difficult concept to grasp! The predicate duck(x) is called a unary predicate, since
there is only one place for an object to be instantiated. It is quite possible, however, to have
n-ary place predicates, such as farher(x,y) where someone can clearly be the father of more

than one other person,

Applying the formalism, the rules of inference discussed previously can be applied to predicates

to obtain inferences which are new. For example, starting with the propositions

'Esmerelda is a duck’

'Ducks like water’

we can infer the result that 'Esmerelda likes water’. It is very important not to draw false

inferences, however. If the two propositions were

244

‘Sam is cold’

*Sam is wet’

the formalism does nor infer that Sam is cold because he is wet. The concept of consequence

is the result of far higher levels of abstraction of which the human mind is capable.

We now extent the above formalism to include the notion of quantification, and now predicates
can give rise to propositions in two ways. First, free variables can be instantiated with the
names of objects as described above. Second, quantification can be used to effect the
instantiation process itself. Quantification introduces two additional symbols to the formalism,
¥ and 3. These symbols are used to capture the ideas of universal and existential qualification
respectively. Universal quantification allows propositions of the form "every object has this
property” or "for all objects of this form". By contrast, the existential quantifier captures the
notion of 'someness’, "there exists exactly one or more". When a quantifier is applied to a
predicate with a free variable(s), the variable is said to be bound by the quantifier because it

can no longer be freely instantiated.

To give examples of these quantifications, the asserzion
vxeduck(x)

captures the (false) assertion that "every object is a duck”. By contrast, the assértion
Axeduck(x)

captures the (probably true) assertion that "there exists at least one duck”.

Finally, we are in a position to use the formalism to discover inferences about real situations.
Let us explore the ways of capturing the notion "ducks like the pond", where pond is an
identifiable object in the domain of interest. We choose duck(x) to denote the assertion that
some object is a duck, pond to represent the pond, and likes(x,y) to denote x likes y. We now
carefully abstract the semantics of what we are trying to say. The original notion could be
rephrased "whatever value we choose for x, if x is a duck than x likes the pond". The

IF..THEN idea has already been encountered, and is reflected by the symbol = in the

o 245 _

formalism. (Note that in Chapter 6 where a modified form of this logic is used, the = symbol

is given a completely different meaning). This sort of reasoning leads to a sentence of the form

vxe(duck(x)=likes(x,pond))

Clearly, if we do not instantiate this with x = duck then the sentence will (probably) not be
true. We need to try another approach. Let us try the phrase "there exists a duck that likes
the pond”. The major difference between this and the previous idea is that the notion that is
now being expressed is that there is in our domain of interest ar least one duck. Note very
carefully that we are not thinking along the lines of “if there is a duck then...", but along the

lines of "there is a duck and...". Within the formalism we use the symbol A to represent the

logical ’and’ concept. With the benefit of this insight we construct the sentence
Axe(duck(x) A likes(x,pond))

This states that within our domain of interest there exists (at least one) duck, and that it likes
the pond. But if we want to learn from this observation and obtain the possible (new) piece
of knowledge that "ducks like water”, it is necessary to progress the argument. We now need
to say that not only do ducks like the pond, but that they also like any object that has the
property of being made of water. (Note that when the pond was introduced, its existence was
assumed, but now we cannot be sure if there exist any objects which are wet). Let the
predicate warer(y) denote that y has the property of being wet, and we wish to express the idea
that "if x is a duck and y is a wet object, then x likes y", and that this be true for whatever

objects we choose for x and y. We can write

vxevye((duck(x) A water(y))=likes(x,y))

This sentence will be true even if there are no ducks and no water.

Finally, we can use the formalism to eliminate ambiguities which arise as a consequence of
natural language. The natural language sentence "there is a duck who likes every wet object”
can be interpreted two ways. Firstly, it could mean that is one specific, water-loving duck who
likes every wet object. Secondly, it could mean that for every wet object, there is a duck

somewhere that likes it. Ambiguities such as these cannot arise in the formalism, because the

- 246 N

two formal sentences expressing the two possibilities would be quite different.
The ideas discussed above can be extended much further to create large bodies of knowledge

such as abstract set theory, theories of functions and specialised algebras. These can then be

applied to software constructs to yield a representation of the software in a rigorous way.

247"

GLOSSARY OF TERMS AND ABBREVIATIONS

ACSE
Al

API
ASE
CCITT
CRC
CSS
DES
DMM
DTI
DU
EBCDIC
ECM
ECMA
EEA
EEC
FADU
FEAL
FPDU
FTAM
IDCA
10

ISO
ISORM
JANET
LAN
MA
MHS
MOTIS
MPQS

Association control service element

Artificial intelligence

Application program interface

Application service element

International Telegraph & Telephone Consultative Committee
Cyclic redundancy check

Comprehensive Security System

National Bureau of Standards Data Encryption Standard
Data manipulation mechanism

Department of Trade and Industry

Data unit

Extended binary coded decimal interchange code
Elliptic curve method (integer factoring algorithm)
European Computer Manufacturers Association
External environment agent

European Economic Community

File access data unit

Fast encryption algorithm

FTAM protocol data unit

File Transfer, Access and Management
Inter-domain communication agent

Input/output

International Standards Organisation

ISO Reference Model (refers to the OSI model)
British Universities Joint Academic Network
Local area network

Monitoring agent

Message Handling System

Message Oriented Text Interchange System

Multiple polynomial quadratic sieve (integer factoring algorithm)

T 248 ST T

NFS * Number field sieve (integer factoring algorithm)

NIST (American) National Institute of Standards
NPDU Network protocol data unit

0))) o Open distributed processing

OSI Open Systems Interconnection
OSIRM OSI Reference Model

PC Personal Computer (IBM compatible)
PDU Protocol data unit

PGM Protocol generation mechanism

PSAP Presentation service access point

QOS Quality of service

RSA Rivest, Shamir & Adleman (Cryptosystem)
SAA Security administrator agent

SAP Service access point

SASE Specific application service element
SDU Service data unit

SMA Security mechanism agent

SMC Security Management Centre

SMIB Security management information base
SMIBA SMIB agent

SS Session (layer) service

SPDU Session protocol data unit

SSA Security services agent

SSDU Session service data unit

TS Transport service

TPDU Transport protocol data unit

TSDU Transport service data unit

UA User Agent

WAN Wide area network

249

REFERENCES AND BIBLIOGRAPHY

[ADLE, 1991]

[AMS,1983]

[BELL,1973)

[BLAT,1987]

[BLUM, 1986]

[BLUM, 1989]

[BOEB, 1985]

[BRAS,1987]

Adleman, L. M. Factoring Numbers using Singular Integers, Proceedings of
23rd Annual ACM Symposium on the Theory of Computing (STOC), 1991, pp
64-71.

DeMilo, R.A. et al. Applied Cryptology, Cryptographic Protocols and
Computer Security Models, Proceedings of Symposia in Applied Mathematics,
American Mathematical Society, Providence, RI, ISBN 0 8218 0041 8.

Bell, D.E. and La Padula, L.J. Secure Computer Systems : Mathematical
Foundation and Model, M74-244. Bedford, MA, 1973, Mitre Corp, Report
NTIS AD-771543,

Blatchford, C.W. Security in Distributed Information Systems: Needs,
Problems and Solutions, 1CL Technical Journal, 1987.

Blum, L., Blum, M. & Shub, M. A Simple Unpredictable Pseudo-random
Number Generator, SIAM Journal on Computing, Vol 15, 2, 1986, 364-383.

Blum, M. & Goldwasser, S. Proc. CRYPTO 89, Santa Barbara, CA, not yet
published.

Boebert, W.E., Kain, R.Y., Young, W.D. and Hansohn, S.A. Secure ADA
Target: Issues, System Design and Verification, Proceedings of the 1985

Symposium on Security and Privacy, Silver Spring MD, 1EEE Computer
Society, 176-183.

Brassard, G. Cryptology in Academia: A Ten Year Rerrospective, 1EEE
Compcon Conference, San Francisco, Feb 1987, 222-226.

N 250 T } - '_"'

[BRAS,1988]

[BURR, 1988]

{CARO,1988)

[CCIT,1987a]

[CCIT, 1987b]

[CLAR,1987]

[COOP,1988)

[DAVI],1985]

[DENN, 1983]

1976
[DIFF 45843

Brassard, G. Modern Cryprology, Lecture Notes in Computer Science,
Springer-Verlag, Berlin, 1988, 35-39.

Burrows, M., Abadi, M. and Needham, R. Authentication: A practical Study
in Belief and Action, Proc. 2nd Conf. on Theoretical Aspects of Reasoning
About Knowledge, Asilomar, Feb 1988.

Caron, T.R. and Silverman, R.D. Parallel Implementation of the Quadratic
Sieve, Journal of Supercomputing, 1, 1988, 273-290.

The Directory - Authentication Framework, CCITT Draft Recommendation
X.509, Version 6, Geneva, June 1987.

Message Handling, System Service and Overview, CCITT Draft
Recommendation X.400, Version 4, November 1987.

Clarke, D.C. and Wilson, R.W. A Comparison of Commercial and Military
Computer Security Policies, Proceedings of the 1987 Symposium on Security
and Privacy, Washington DC, 184-195.

The Security of Nerwork Systems, Coopers & Lybrand report for the
Commission of the European Communities, 5 volumes, ISBN 0 950 51271 0.

Davies, J.A., Holdridge, D.B. and Simmons, G.]J. Starus Report on Factoring
(at the Sandia Narional Laboratories), Advances in Cryptology, Lecture Notes

in Computer Science #209, Springer, Berlin, 1985.

Denning, D.E. Cryptography and Dara Securiry, Addison-Wesley, Reading
MA, 1983.

Diffie, W. and Hellman, M.E. New Directions in Cryptography, 1EEE
Transactions on Information Theory, Vol IT-22, 1976, 644-654.

251

[DIXO,1984]

[DOD, 1985]

[DTI, 1989)

[ECM, 1987a]

[ECM, 1987b]

[ENSL,1978]

{ESPR, 1988]

[GASS, 1988]

[GOGU, 1982]

[HALS, 1988]

[HANT, 1976]

Dixon, J.D. Factorization and Primality Tests, American Mathematical
Monthly, 91, 1984, 333-352.

US Department of Defense - DoD Trusted System Evaluation Criteria (The
Orange Book), DOD 5200.28-STD, Washington DC., 1985, US Government
Printing Office number 008-000-00461-7.

Evaluation and Certification Manual, V23, Version 3.0, (5 volumes) The

Department of Trade and Industry.

Framework for Distributed Office Application, European Computer

Manufacturers Association, Document TR/42, July 1987.

Security in Open Systems, European Computer Manufacturers Association,
Document TR/46, December 1987.

Enslow, P.H. What is a Distributed Data Processing System?, Computer, 11,
Jan 1978, 13-21.

Protection of Electronic Information in an open Network Environment, Thom-
EMI Consortium, ESPRIT proposal, Feb 1988.

Gasser, M. Bui[_ding a Secure Computer System, Van Nostrand Reinhold, New
York, NY, 1988, ISBN 0 442 23022 2.

Goguen, J.A. and Meseguer, J. Security Policy and Security Models,
Proceedings of the 1982 Symposium on Security and Privacy, Silver Spring
MD, IEEE Computer Society, 11-20.

Halsall, F. Data Communications, Computer Networks and OSI, Addison
Wesley, 1988, ISBN 0 201 18244 0.

Hantler, S.L. and King, J.C. An Introduction to Proving the Correctness of
Programs, ACM Computing Surveys, September 1976, 331-353.

252

[HARR, 1976]

[HOAR, 1969]

[HYLA,1988]

[1S0,7498]

{ISO,7498-2]

[[SO,8571]

[1SO,JTCI]

[ISO,SC21]

[1SO,TC97)

[ITSE,1990]

Harrison, M.A., Ruzzo, W.L. and Ullman, J.D. Protection in Operating
Systems, Communications of the ACM, 1976, Vol 19, 8, 461-471.

Hoare, C.A. An Axiomatic Basis of Computer Programming , Communications
of the ACM, 1969, 12, 576-583.

Hyland, P. and O’Connell, J. Model Checking in Temporal Logic, Hewlett
Packard Internal Report, Feb 1988.

International Standard ISO 7498, Open Systems Interconnection, Basic
Reference Model.

1SO 7498-2: Open Systems Interconnection : Basic Reference Model - Security
Architecture, 1SO, Feb 1989.

ISO 871: Information Processing Systems - OSI- File Transfer, Access and

Management, 1S0O.

ISO/IEC JTC1: ISO Technical Report on Security in Open Systems, 1SO, June
1988.

ISO/IEC JTC1/SC21: Working Draft : Access Control Framework, 1SO, Dec
1988.

ISO TC97/SC20/WG3 Link, Nerwork, Transport and Presenitation Layer
Encryption, 1SO, 1985-87.

ITSEC Information Technology Security Evaluation Criteria, Harmonised
Criteria of France, Germany, the Netherlands and the United Kingdom, 2 May
1990, draft copy.

[JOHN,1988] Johnson, D. and Thayer, J. Starting Security Requirements with Tolerable

Sets, ACM Transactions on Computer Systems, Vol 6, 3, Aug 1988, 284-295.

253

[KNUT,1981]

[KOBL,1987)

{LAND,1981]

[LENS,1986]

[MART,1982)

[MATY, 1984]

[McMO, 1989]

[MERK, 1978]

[MILL,1982]

[MILL,1984]

Knuth, D. The Art of Computer Programming, Vol 2 : Semi-Numerical
Algorithms, Addison-Wesley, Reading, MA, 1981, 378-380.

Koblitz, N. A4 Course in Number Theory and Cryptography, Springer Verlag,
New York, NY, 1987, ISBN 0 387 96576 9.

Landwehr. C.E. Formal Models for Computer Security, Computing Surveys,
13, No 3, 247-278. Reprinted in Advances in Computer System Security, 2,
R. Turmn (ed), 76-107, Dedham MA, 1981, Artech House Publications.

Lenstra, H. Factoring Integers with Elliptic Curves, Mathematisch Instituut,
University of Amsterdam, Report 86-16, July 1986.

Martin, J. Program Design which is Provably Correct, Savant Research

Studies report, Savant, December 1982.

Matyas, S.M. Digital Signature with the Data Encryption Standard, Securicom
84, 2nd Worldwide Congress on Computer and Communication Security and
Protection, Cannes, France, 29 Feb - 2 Mar 19384, 149-159.

McMorran, M.A. and Nicholls, J.E. Z User Manual, Draft Version 0.65,
Internal Document, IBM (United Kingdom) Laboratories, Sheridan House,

Winchester, UK, private communication.

Merkle, R.C. Secure Communications over Insecure Channels,
Communications of the ACM, 21, 1978, 294-299.

Miller, G.L. Riemann's Hypothesis and Tests for Primality, Proceedings of the
7th- ACM Symposium on the Theory of Computing, 1982.

Millen, J.K. and Cemiglia, C.M. Computer Security Models, MTR-9531,
Bedford MA, 1984, Mitre Corp, Report NTIS AD-A166920.

254

[MORI, 1989]

[MUFT,1988]

[MUFT, 1989]

[MUFT,1990]

[MUFT,1992]

(NEED, 1978)

Morita, H. A Fast Modular-multiplication Algorithm based on a Higher Radix,
Proc. CRYPTO 1989, University of California, Santa Barbara, USA, 387-399.

Muftic, S. An Integrated Nerwork Security Mechanism, Proc. EUTECO 88,
CEC Conf. Vienna, April 1988.

Muftic, S. (editor) Security Mechanisms for Computer Networks, Vol 1, Ellis
Horwood, Chichester, England, 1989, ISBN 0-7458-0613-9.

Muftic, S. Specification of Security Requirements for Open Distributed

Environment, private communication.

Muftic, S. (editor) Security Mechanisms for Computer Networks, Vol 2, Ellis
Horwood, Chichester, England, 1992.

Needham, R.M. and Schroeder, M.D. Using Encryption for Authentication in
Large Nerworks of Computers, CACM, Vol 21, 12, Dec 1978, 993-999.

[OTWA,1987] Otway, D. and Rees, O. Efficient and Timely Mutual Authentication,

[PATE, 1988]

[PIER, 1988]

[POLI,1988]

[POLL,1989]

[POME, 1984]

Operating Systems Review, Vol 21, 1, Jan 1987, 8-10.

Patel, A. and Law Min, F. Study of Security Measures within the OS]

Framework, University College Dublin, private communication.

Pierson, L.G. and Witzke, E.L. A Security Methodology for Computer
Nenworks, AT&T Technical Journal, May/June 1988.

Polis, R.1. European Needs and Attitudes towards Information Security,
Cryptologia, Vol XII, 4, Feb 1988, 234-239.

Pollard, J.M. The Number Field Sieve, private communication.

Pomerance, C. The Quadratic Sieve Factoring Algorithm, Proc. EUROCRYPT
84: Advances in Cryptology, 169-182.

- 255 -

[RABI, 1980]

[RAMA,1990]

[RAYM,1988]

[RIES, 1987)

[RIVE, 1978]

[RUSH, 1986]

[RUTL, 1986]

[SAN,1988a]

[SAN,1988b]

[SEBE, 1988]

[SHEP, 1990a]

Rabin, M.O. Probabilistic Algorithm for Primaliry Testing, Journal of Number
Theory, 12, 128-138.

Ramaswamy, R. A Key Management Algorithm for Secure Communication in
the OSI Architecture, Computers and Security, 9, Elsevier Science Publishers,
1990, 77-84,

Raymond, M. Nerwork Security Problem for the EEC, Communications, June
1988, 11-13.

Riesel, H. Prime Numbers and Computer Methods for Factorisation, Progress

In Mathematics, 57, Birkhauser, Boston, 2nd ed.

Rivest, R.L., Shamir, A. & Adleman, L. A Method for Obtaining Digital
Signatures and Public Key Cryptosystems, Communications of the ACM, 21,
1978, 120-126.

Rushby, J. Imtroduction to Dependable Computing for Communications,
Communications of the ACM, 29, 1986.

Rutledge, L. and Hoffman, L. A Survey of Issues in Computer Network
Security, Computers & Security, S, Dec 1986.

Sanders, P.W. Security Management Centre Concept, CEC COST 11 ter

Discussion Paper, London, Jan 1988, private communication.

Sanders, P.W. Extended Security Architecture, CEC COST 11 ter Discussion

Paper, London, Oct 1988, private communication.

Seberry, J. and Pieprzyk, J. Cryprography, Prentice Hall, England, 1988.

Shepherd, S.J., Sanders, P.W. and Stockel, C.T. The Quadratic Residue
Cipher and some Notes on Implementation, accepted by Cryptologia in March

1992, to appear.

256

[SHEP,1990b} Shepherd, S.). A Preliminary Investigation into Continuous Authentication by

[SHEP, 1990c]

[SIDE, 1988]

[SILV,1987]

[SMIT, 1989]

[SNAR, 1983]

[SPAF, 1988]

[STOL,1988]

Analysis of Keyboard Typing Characteristics, to appear in Electronics Letters.

Shepherd, S.J., Sanders, P.W. and Patel, A. A Comprehensive Security System
- the Concepts, Agents and Protocols, Computers & Security, 9, 1990,
631-643.

Sidey, G. UK Government Policy on OSI, Computer Standards and Interfaces,
Vol 7, Part 1-2, 1988, ISSN 0920-5489, 89-93.

Silverman, R.D. The Multiple Polynomial Quadratic Sieve, Mathematics of
Computation, Vol 48, 177, Jan 1987, 329-339.

Smith, P. Security Standards and Literature Guide, OSITOP Working Group

5 Internal Document, private communication.

Snare, J.L. An Introduction to the CCITT Recommendation X.25, Telecomm.
Journal of Australia, 33, 1983, 113-124.

Spafford, E.H. The Internet Worm Program : An Analysis, CDS-TR-823,
November 1988, Purdue University, Indiana, USA.

Stoll, C. Stalking the Wily Hacker, Communications of the ACM, Vol 31, §,
May 1988.

[SUMM,1987] Summers, R.C. An Overview of Computer Securitry, 1BM Systems Journal,

[TANE, 1981]

[TURI,1936]

23, 1987, 309-325.

Tanenbaum, A.S. Computer Networks, Prentice Hall Inc, Englewood Cliffs,
NJ, 1981, ISBN 0-13-164699-0.

Turing, A. On the Computable Numbers, with an Application to the
Entschiedungsproblem, Proceedings of the London Mathematical Society, Ser
242, 1936, 230-265.

257

[VARA,1988] Varadharajan, V. Analysing Some Formal Properties of a Security Protocol
using State Machine Techniques, Hewlett Packard Internal Paper, Jul 1988.

(VARA,1989] Varadharajan, V. Verification of a Network Security Protocol, Computers &
Security, Vol 8, 8, Dec 1989.

[VOYD,1983) Voydock, V. and Kent, S. Security Mechanisms in High-Level Nerwork
Protocols, Computing Surveys, 15, June 1983.

[WEIN,1987] Weingart, S.H. Physical Security for the ABYSS System, Proceedings of the
1987 1EEE Symposium on Security and Privacy, April 27-29, Oakland, CA.

[WEST,1978]) West, C.H. General Technique for Communications Protocol Validation, 1BM
Research Journal, 22, July 1978, 393-404.

[YAO,1982}) Yao, A. Theory and Application of Trapdoor Functions, 1EEE 23rd

Symposium on the Foundation of Computer Science, 80-91.

258

ADDENDUM: LIST OF PUBLICATIONS

During the course of this the research, the author has been primary contributor to the following

publications

(1] A Comprehensive Security Service - Functional Specification, 1BM Internal
Document, IBM (United Kingdom Laboratories), Hursley Park, Winchester,
UK, May 1989.

2] A Distribured Security Architecture for Large Scale Systems, presented to the
International Federation of Information Processing, International Workshop on

Distributed Systems Operations and Management, Berlin, October 22-23, 1990.

[31* A Comprehensive Security System - the Concepts, Agents and Protocols, with
Sanders, P.W. and Patel, A. Refereed article, Computers and Security, Vol
9, 7, pp 631-643, Elsevier Science Publishers, November 1990.

[4] Security Mechanisms for Computer Networks, Volume 2: Chapter 3: Extended
OSI Security Architecture, Muftic, S. (Ed), Ellis Horwood, Chichester,
England, 1992, to appear.

[5]* The Quadratic Residue Cipher and some Notes on Implementation, accepted by

Cryptologia in March 1992, to appear.

* Copies bound within this Addendum to the thesis.

259

Computers & Security, 9 (1990) 631-643

A Comprehensive
Security System—
the Concepts,

Agents and

Protocols

S. J. Shepherd’, P. W. Sanders® and

A. Patel?

'Network Research Group, Depariment of Compnmication Enginecring, Polptechnic Soutls

West, P-’rmomh, UK.

*Department of Compuier Seience, University College Dublin, Dublin, Ireland

This paper presents an overview of a comprehensive securiry
architecrure for use within, and as a valuc-added enhancemenc
1o, the ISO Open System Interconnection model. The system is
arranged basically as an application layer service but can allow
all of the 1SO-recommended securiry facilities 1o be provided
at any layer of the model. It is suitable as an “add-on” service to
existing arrangements or can be fully integrated into new
applications. For large-scale. dismnbuted processing operarions.
a neework of “security management centres™ is suggested. thac
can help to ensure chat system misuse is minimized, and that
flexible operations are previded in an efficient manner.

Keywords: Security. Protocols, Computer neoworks, Security
nanagement, Policy. Agents.

Introduction
Opcn distributed processing (ODP) is the con-

ceprual framework within which systems of
diverse application and locadon can interacr freely
if required. Because there may be many different
components, operations, resources and enttics
involved in such an arrangement, a ncrwork con-
structed within this framework presents a very
convenient target for various artacks and illcgal

operations, which mcans that protecdon of the
system resources and asscts is becoming an increas-
ingly important factor in nerwork design.

The comprehensive sccurity system (CSS) o be
described involves the provision of securiry services
for use at, and for the transfer of dara berween,
remote end user entties. Wichin dhe SO modcl,
there are potendally many differenc services and
applicadions which will benefit from a value-added
sccurity system, buc in general, cach requiring a
different combination or sequence of sccurity
funcrions.

Systems currendy exist which have made some
attempt to implement security measures. In many
cases, the most cffective are those which were con-
ceived from the outset to offer sccurity as a prime
function, and arc rypical of thosc used by govern-
ments, military and financial institutions.

The majority of other communications systems
which exist, however, were not originally con-

0167-4048/90/$3.50 © 1990, Elsevier Science Publishers Ltd. 631

9|01y Podidjay

1

Refereed Article

S. J. Shepherd et al./Comprehensive Security System

ceived with the sccurity function in mind. and
make no provision for ir other than allowing the
cxccuton of specific applications which have
sccurity mcasurcs buile into cheir facilitics on an
individual basis. A rypical example is the JANET
academic nerwork, which does nor provide encryp-
tion facilicies, bur may be used to send encrypred
messages if the appropriate mechanisms are pro-
vided by individual system users. A sccure c-mail
faciliry using the RSA algorithm has been imple-
mented in the Polytechnic and is used for secure
correspondence with collaborators ar home and
abroad. The disadvantage of this approach is that it
is very difficule to assess the overall strengeh of
such a system, where sccurity is provided on an
individual "ad hoc™ basis, owing to the absence of a
formal architecture capable of rigorous analysis.

The concepr of a CSS, which can be retrospectively
added o an cxisdng dara processing system as a
valuc-added funcdon provider, and the integrity of
which can be demonstrated by formal models and
mcthods of logical analysis, is very aceracrive ro
owners and managers of large, existing communi-
cation nerworks. New applicadons can be wricten
to utilize the securiry funcdons on offer, and cxist-
ing applications can be modificd or updaced to use
the system, bur may involve substantial low level
programiming,

2. The Security Function

Generally, securiry refers to a complex of measures,
which may be broadly classified into [1]

® procedural; (eg. sclecting truseworthy personnel,
. o
changing passwords regularly, ctc.)

® logical; (e.¢. access controls and cryprography)

® physical; (eg. vaults and doorlocks, screening
against cmanation orintcrprcrablc cinissions, ctc.)

which are aimed ar the

® prevention;

632

® dcrecrion and indicarion;
® correction;

of certain kinds of system misuse, accidental and
deliberare.

Security not only addresses attacks and threats
external to che system, but internal attacks from
known uscr cntitics. If guarantees of authentication
can be provided, it is possible to devise a system in
which all user cntities arce subject to strict access
conrrol, thus minimizing the internal threat. Of
course, it is virtually impossible to stop a user
passing information to an attacker directly, so user
trust and strong enforcement procedurces are also
required.

Only authorized uscrs can obain/provide informa-
tion which will help to eliminate, as far as possible,
misuse of the system, such as cavesdropping on
confidendal dara, abuse of resources, fraudulenc
acdviry. forgery of messages ectc. The recom-
mended range of services which a security system
could provide is comprehensively addressed in ref.

2].

3. Common Security Measures

Currently, if a pardcular applicadon requires
sccurity serviees, these are generally constructed by
hardwarc/software mcans into the application itsclf
from conceprion. In a system where there arc
scveral normal (insecurce) applicadons, and onc or
two sccure scrvices, this approach is quire sads-

factory.

By conrrast. in a system where there are many pos-
sible applicadons, as with ODP, a large number of
which may require security facilides, it is clearly
wasteful for cach applicadon to provide a complete
set of sccurity scrvices for its own private use, when
a majority subsct of the services could be common
to most, if nor all, applicadons.

A system was considered which attempred o over-
come this problem of duplicated services, by seck-

Computers and Security, Vol. 9, No. 7

ing to intercept all input and outpurt (both data and
control) to and from applications, and to impose
sccurity functions upon the application by redircc-
tion of the data via a sccurity system kernel.

In principle, all softwarc applicadon packages
should be written to standardized specifications.
For cxample, application layer enddes within the
ISO OSI seven-layer modcl should conform to the
[SO reference model [2]. On investigation, how-
ever, this is far from the casc in practce. Had all
existing sofrware adhered serictly to specifications,
it may have been possible (albeit very tedius) to
implement such an I/O redirection system, which
could cope with the widely differing interface, dara
and conrrol requirements of all the various applica-
tions. Since the majority of softwarc applications
arc written as an amorphous endry, with no
obvious interface standards, the concepr was dis-
carded as impractical. Even within the context of a
local area nerwork of personal compurters, running
MS DOS for example, the amount of operating
system interrupt handling to account for all DOS
file 1/0 alone, proves to be an extremely difficule
task.

The concepe of providing a security system which
is independent of, bur available to, specific applica-
tions on request, is therefore only possible if the
applications themselves are modified to include a
standardized application program interface (API).
The requests for security services, control and data
informadon and any other data must flow in a
rigidly defined manner across the interface which
shall cnable analysis of the data flow protocols for
formal demonstration of the strength of the system
to be made.

4. Conceptual model of a comprehensive
security system

4.1 Security Policy

Within an ODP cnvironment, involving the trans-
fer of information between remote end-user
systems, the provision of a generic security function

can be conceived in terms of a security policy,
rigorously enforced upon those cndides who arc
subject to that policy. The security policy repre-
sents the overall set of measures adopted to fulfil
the desired security function and covers cvery
aspect of the business of implementdng an effectve
securry system. [t will involve:

(1) Provision of physical, hardwarc and software
sccurity mechanisms, such as locked and guarded
buildings, protccted terminals, encryption and so
on;

(2) Definitdon of protocols for all data transfers
within the system, cither embedded within existing
OSlI protocols, or interfaced to themy;

(3) An enforcement of the fundamental principles
of access control, user identification/authentica-
tion;

(3) Provision for effectve system resource protec-
tion and opdmization of usc. This includes such
measures as integrity of resources, conﬁdcnn'ality
of use of resources, assurance of service, accounta-
bility of usage of resources, audir trail etc;;

(3) Provision for monitoring, logging and analysis
of the security system at all imes, for both optimi-
zation of system resources, and detection of pos-
sible subversive acriviry.

The sccurity policy is formulared and dictared by
an authority, which is uldmately responsible for
the overall performance and effecriveness of the
system.

4.2 Security Domains and their Administration

The authority delegates the implementaton of
sccuriry policy to a systemn administrator. In a largc
nerwork, there may be a number of adminiserators
responsible for rigid observation of the sccurity
policy. The purview of a security administracor is
known as a sccurity domain. A security domain is
defined as a bounded group of securiry objects and

633

S

| ey peaiajy

Refereed Article

S. J. Shepherd et al./Comprehensive Security System

security subjects to which applics a single sccuriry
policy implemented by a sccurity administraror.

The sccurity domain is a managerial/control con-
cept thac defines the scope of a particular securiry
policy [3]. Where the number of security subjects
and objects is large, they may be formed into sub-
groups for casc of management. Such a subgroup is
referred to as a subdomain. Normally, the policy of
the overall domain will apply to all subdomains.
Thus a domain covers all or part of a given dis-
rributed system.

Onc authority will dictate policy for one domain.
and another authority will dictate policy for
another domain. A successful association should
only be possiblc if the security policics, services and
mechanisims of both end systems are compatible.
Although there is no logical difference beeween
local acavides and remotce activitics, a local acuvity
may be assured of comparibility within a security
policy local to the domain, whereas a remote
activity may require interdomain “translation” pro-
tocols to ensure cffecavencss of an overall sccurity
policy. This may lead to incompatibility beeween
domains. In this cvene, the incompatibihity is arbi-
rated and resolved by reference to a higher
authority. Thesc higher authorities may take the
form of regional and then nadonal committecs,
thar must mect given codes of practice, contracrual
specificadions. or the ISO standards. Any authority
dicrating policy, not conforming to these standards
will by default exclude itself from connecrivity
within the complete open security framework.

Within cach domain. the security adminiscracor is
responsible for the implementation of the domain
policy and for assuring its continued cffectiveness.
This responsibility includes the installadon of
trusted hardware and software functionality, moni-
toring day-ro-day operations. and recovery in casc
of breach of sccurity or fault condidons.

A logical model can be constructed with a defined
hicrarchy where cach enity within the model will

634

Fe=========== 1
PR i
|Palicy
:’é&m""?':
l—u:nvrn T ,I— ACTIVITY.
APLITATION Icq !ml..l‘lﬂ.l AVLICAITO S SERVICES
L]_]
AFT

Sorvice Apnt ICrms
L 1 I -1
Mxtonion] | Mxtonisy | Mxbonion] | Mochondo RIS
Ayt 1 Apnt 2 Aynk 3 At X

]

t .J.L."i LR IR B I M R Yo S AT

o]] o

||mm1llrltllﬁﬁLLFfrFﬁFFFFF?FF{

Fig. I. Securiry object hierarchy within securiry domain (infor-
macion data).

have specific tasks to perform under the purview of
its superior, sce Fig. 1.

Within chis modcl, any user entity or application
endry that is allowed by the sccurity policy to
access the sccurity scrvices can obtain/provide
informadon sccurcly to other authorized users
within che ODP cnvironment. A user entity may
request the aceess of an object or service in normal
(insccure) mode (cither accidenually or inten-
tionally), but if this object or cnrity is iself subject
to the sccuriry policy. then thac policy will foree
the sceuriry services to be invoked for this activiry,
or access will not be possible at all. This approach
to sccurity policy will account for both human
crror. and atwemprs ar criminal misuse of the
systen.

Computers and Security, Vol. 9, No. 7

5. Conceptual Model of CSS Processor

Essénrially, the CSS coexists wich the application
cnriries it is to protect. Within the conrexe of the
OSI model, the CSS will reside wichin the applica-
ton layer as another cndiry (sce Fig. 2). The CS$
has access to both the calling application and
the applica[ion uscr to request information when
required, and these in turn have access o the CSS
to invoke functons when required.

The CSS offers the application or user entity a
number of sccurity services, which the entity must
access through a standard applicarion program
interface (API) to the CSS. The APH is provided by
the CSS and generally depends on the system
environment upon which the CSS is hosted. Appli-
cation entities must provide the correct formar dara
to meet the requirements of this incerface in order
to take advantage of the CSS as a valuc-added
service. The interface consists of a scr of service and
associated parameters used by the applicadon and

CSS.

In practice, the CSS may comprisc a rrusted,
ramper-proof hardware module, and associated
software. The sccurity processor for a large dis-
tributed system, nced not physically reside in one
location, but may be itself distributed throughourt
the system. Indeed, such an arrangement may be
advanralgcous. Onc approach is to adopr the con-
cept of a sccurity management centre (SMC),
which acts as a central sccuriry “exchange”, and
which will be responsible for the management and
control of sccure activites on the nerwork. This

will include duries such as third-party provision
and verification of public keys; notarizartion, regis-
tration and ccrrificarion scrvices, and association
policing to ensurc the integrity of a sccure com-
munication berween two users throughout the
duradon of char association.

Sccuriry in very largc systems may be implcmcntcd
and conrrolled with the aid of distriburted sccuriey
processors based in security management cenrres
(SMC), mmlogous o packcr—switching contres in
dara nerworks [4]. Each SMC would fully conrrol a
number of user terminals hosted upon it, deter-
mining authentcarion, gcncra] USCr access righrs
and privileges which the SMC would hold in its
sccurity management information base (SMIB),
Secure communication across the nerwork would
involve protocols linking cach cnd user terminal ro
the host SMC, and protocols linking SMC to SMC
(sce Fig. 3). The system would provide full flexi-
bility of scrvices irrespective of the location of the
uscr within the necwork.

5.1 Security Services Supported by the CSS

Although the CSS is implemented as an application
cndty, it offers a full OSI-wide flexibilicy owing to
the interface architecture. It is very important both
from the conceprual and practical points of vicw,
to appreciate the “vertical™ structure of the pro-

Fig. 2. Relation of the CSS ro users and applications.

Fig. 3. The use ufsccun'ry Managemene cenerces.

635

8|21l PasIaay

f

foodi]

Refereed Article

(,Lu“' o

S. J. Shepherd et al./Comprehensive Security System

posed interface. An advantage of this system is the
potential flexibility duc the possibiliry of the CSS
functions being called by other than operations in
the application layer. The CSS AP, which could
take the form of a software interrupt, for example.
is accessible from any of the OSI layers, noc just che
applicadon layer. It is quite permissible for che
cransport layer, for cxample, to request dar
encryption services from the CSS. This conforms
with the recommendacions of OSI, which states
thar while the majority of security functions can be
carried our at the applicarion layer. there are a few
which may need to be implemented in different
layers.

The CSS supports, among others. the following
sccurity functions:

1) Invocation
2) Identdificarion
3) Authenuication

) Key generation

) Key distriburion
6) Encrypoon

} Decryprion

=

8) Signaturc
9) Verificadion

S

but the full range of OSI rccommendations in
sccurity |2] should be possible.

Many different sccurity needs can be mer by the
concept of a common sct of sccurity agents pro-
vided externally to the application processes. An
agent is defined to be a logical component of the
securiry system. designed o implementa particular
function or group of functions. The functional
modularizadion of the system in this manner makes
possible the general definition of a flexible securiry
architecrurc. These agents will be involved with the
interactions berween users and applicarions, and
the interaction of applications. These agents, their
interaction and management are central o the
concept of che CSS w be described. A sccuriry
model comprising ten such agents is suggested.

636

The generic structure of the CSS. showing the ver-
tical nature of the APL, and hicrarchy of the inter-
nal agents, is shown in Fig. 4.

6. The Agents of the CSS (see Fig. 5)

6.1 User Agent (UA)}

The user agene (UA) of the CSS comprises “half”
the interface to the CSS as scen by the user entity.
The CSS can select which UA will be udlized,
cither the application UA or the CS§ UA itsclf,
dependent on the state and requirements of both
the user and the CSS. This will occur when the
application has requested a sccurity service from
the CSS, and the CSS requires some information
dircctly from the user, such as a password., ctc.

The main functions of the user agent (CSS) can be
considered:

(————n

Layer Hu

k
i

I_%gu ;

Fig. +. Generic model of the CSS.

Computers and Security, Vol. 9, No. 7

ocurity Services,
Apgont

Secunty
Ie_r.hmim Agenty

| Secunty Adarm.
SMID Agemt £ Apaat
]

Monitoring
Agonl

OST lateracton 17 |
QEV'\I A;nm _‘{.‘\'
Recovary Associations
Agent Ax:nl
!nlmdnuuﬂ ‘_l

| Conms Agent '

Fig. 5. Interactions beoween the 10 agents of the €SS,

(1) To interface berween the user enery and the
security service agent (SSA) of the CSS;

(2) To mainuin a library of user cndry requese
statcments, via which the UA will derermine
request/response validity. and suitable responscs to
the user endry according to a strice set of rulces, thus
limiting the number of possible uscr acrions;

{3) To interpret all data from the user entiry and
ensure its validity before presendng it to the SSA.
and to detcermine the location and nawre of errors.
and inform the SSA accordingly. Also, to process all
data from the SSA into a form suitable for inter-
pretadon by the user entiry before presentation to
the uscr endry;

(4) To accepr a request from the SSA when the
service requested required furcher information
from the user, and to act upon this to interrogate
thc user in a suitable manner for this informaton:

The UA is conceived as a scparate entity from the
SSA because the UA must be capable of interfacing
with many user entitics, thus frecing the SSA from
the complexities of muldple interfaces.

6.2 Security Services Agent (SSA)
The CSS sccuriry service agent (SSA) is the central
concrol agent of the CSS. te is responsible for:

(1) Accepung and checking the validicy of all CSS
service requests from che OSI agent (OSIA) This is
an important funcrdon which is necessary to pre-

vent invalid calls from erying to confuse or subverr
the SSA into performing funcdons which are not
permiteed by the securiey policy. This validadion is
accomplished by the SSA checking all requeses for
security scrvices against the user endry capabilitics

and privileges stored in the SMIB and the sequence
of operations carricd our to thar dme. Any request
not expressely permiteed for char user entiry by the
SMIB will be refused.

(2) Sclecting the appropriate service mechanisms
pertinent o the function to be performed under
the supervision of dhe SMIB via the SMIB Agent
(SMIBA), passing the relevane subfunction control
dara ro the service mechanism agents, and sequenc-
ing the service mechanism agents correctly to per-
torm the requested securiry service.

(3) Ensuring the correct routing of the information
data to and from, and in the correer sequence
among,. the sccuriry mechanisms. Ic is possible to
implement oo complgrcly different securicy
scrvices with the same set of security mechanisins,
burt mcrcl) used in a different order. For example,
two sccurity mechanisms implementing a com-
pression (hash) funcdon such as DES in block
chaining mode. and an RSA cnerypron/decryprion
scheme could be used for (1) a hybrid file eneryp-
tion syseem for a confidentiality service. (2) file and
message signatures for non- -repudiation and integ-
rity checks and (3) checking signatures for authen-
ticity and integriry.

(+) Checking with the SMIB the capability of the
user endty, and determining whether the uscr
entity has the privilege to execute the requested
service.

(3) Switching benween applicadon UA and CSS
UA.

637

9|91y poasiajay

g

i

Q

Refereed Article

4

|

S. J. Shepherd et al./Comprehensive Security System

6.3 Service Mechanism Agents (SMA]
The service mechanisim agents must:

(1) Accepr control commands from the SSA, and
sclect and control the security mechanisms to per-
form the service requested, including subfuncrion
of muldfuncdon mechanisms. For example, a DES
card could perform normal block encryprion.
block chaining mode encryption and so on.

{2) Rerurn to the service agent status informaction
including dctails of function performed, status of
operation (success, failure) ete.

6.4 SMIB Agent and SMIB {SMIBA)

The SMIB is the *heart” of the CSS and is the most
important unit from the security point of view, and
must be protected to che highest level of securiry.

The SMIB will comprise:

The repository in which the CSS maineains all data
pertinent to the securiry functdon, including such
data as identifications of authorized uscrs, authen-
tication data, uscr entiry capabilities and privileges.
ctc.

The SMIB Agent will be responsible for interfacing
the SMIB to the other CSS agents, including:

Accepting and processing all requests from the
scrvice agent for informadon from the SMIB,
including such data as user entry identity checks,
uscr cnuty authorization, uscr cntity capabilirics
and privileges, objecr entry validiry. object entiry
authorization, object entiry sccuriry status ctc.

The internal data contents of the SMIB are sum-
marized in Table 1.

System User Entity Data
The SMIB shall hold information on the uscrs’
rights to access the system, and their capabilities

and privileges within it. The data will include

(1) User system-wide name (unique identifier).

638

TABLE [
SMIB internal logical dara scrucrure

Ilerl‘lllﬂt'iUll O SYsSiem L1SCTS

Name 1 # Password | Extra data Capabilirics
Name 2 # Password 2 Extra daa Capabilitices
Name 3 # Password 3 Extra data Capabilitics
Namne N # Password N Extra daa Capabilides

Sequencing daea for seeurity functions
Function # 1 Sequencing data
Funcron #2 Sequencing, dawa
Funcrion #3 Sequencing, data
Function # 4 Scquencing data

Secure storg ————

Temporary store for Obj #1 Token
sensifive data not Obj #2 Token
yet processed by C58 Obj #3 Token

(2) An encrypred version of the user entties pass-
word, for usc during authenrication. The usecr
enticy therefore enters his password, which will be
encrypted via a onc-way funcrion before compari-
son. This renders compromise of the SMIB user-
name/password file less useful to an artacker, as it
is computationally infeasible to reconstrucr the
password from the encrypred version. The file
itself, however, must be protected to prevent guess-
ing attacks on the passwords, the planting of
known cncrypied passwords within the file, and
possible sofrware attacks such as “worm” programs

[5].

(3) Further data known only to the uscr that may
be used for further authendcation in the case of
highly privileged operations or possible uncertainry
of identity (chis may be used in furure when the
system is scmi-intelligent and takes account of
users” habits. If a user habitually uscs the system
only in the mornings, then suddenly uses the sys-
tem onc night, the CSS may require further proof
of identry than just the normal password).
Measures such as these will be in conjuncrion with
the more familiar “unateended session” defences
such as timcour after absence of actvity.

Computers and Security, Vol. 9, No. 7

(4) A capability token summarizing the users’
rights and privileges to perform cereain operadions.
This token is passed to the SSA when it needs o
validate a uscr request.

Security Function Sequencing Data

As the CSS can perform a number of funcrions
with a limited number of sccurity mechanisims,
then in order to cnsure that security scrvices are
correctly performed in accordance with security
policy, the SSA will concrol the SMA strictly in
accordance with scquencing data held in the SMIB.
This will prevene irrcgular requests (which may
have been specifically construcred ambiguously as
an attack on the system) from being accepted by
the SSA.

Temporary Data Store

For a full-duplex connecrion, or with a mult-user
arrangement associated with the enc puion func-
tons, chained or feedback veceors win be required
for the two different transmission dirccrions, and
possibly for a number of simultancous connecrion
conditions. This information must be stored until
the relevanc daca arrives. Also, it is possible char the
CSS will be interrupred from processing 170 to
service a request from another local user entiry.
Should the CSS be abourt to cncrypt a sensitve
picce of data which is sdll in plaineex, it will store
this picce of dara within the SMIB to ensure thar it
is safc unnl the CSS has dme to proccss it. Simi-
larly, incoming data may also be stored here undil
they are processed.

System Objects Data

The SMIB is likely to hold dara on the gencral
security stacus of objects within the system (flcs,
databases ctc.) in the form of tokens. When a user
subject entity wishes to access a system object
entity, the user entity is authendcaced against his
SMIB data as described. The capability of the user
cndry is also macched against the classification of
the object endty to cnsure chat the uscr cngity
privilege is cqual or higher.

6.5 Security Administrator Agent {SAA)
The sccurity administrator agenr (SAA) is respon-

sible for allowing only the administraror o provide
medifications to the existing system. There must be
very strict protocols and authentication for chis
type of operadon within the system. The SAA is
also responsible for the strict imposirion of system
sccurity policy upon the individual operation of
and interacion between, the other agents of the
CSS. The main function of the SAA involves con-
trolling the SMIBA o place information into the
SMIB, or modify cxisting informarion as ncw uscrs
arc added o the syseem, existing users removed,
sccurity policy updated. user capabilitics and pri-
vileges meodified, and adding/modifying mechan-

isms and services.

6.6 AGENT for Interactions with other OSI
Management Functions (OSIA)
The OSI Agent is responsible for:

Accepting security scrvice requests across the APl
and interpreting, validading and roudng the
requests 1o the SAA. Application sofrwarce packages
withourt the necessary API will not be able to call
the CSS in che firse place. Those packages with the
API which make CSS request calls in crror will be
reeurned an appropriate error code by the OSIA.
(Sce example under SSA for the likely types of
informarion and control data to be distribured.)

Ensuring that all output from the CSS, including
control and information data, is routed back across
the APl into che same layer which originated che
request and che control/informacdon dara, to pre-
vent “shore-circuiting” of layers.

It should be noted that chis agent is specific o an
OSI system implementation of the CSS. In general,
the agent will provide the interface o wharever
underlying nerwork archirecture is in use, and may
be designated the external environment agent

(EEA).

7. Logging Agent (LA)

The logging agent (LA) is responsible for:
Accepting and processing all data gachered by the

scrvice agent and passing it to the SMIB for

639

9|01y pov.isjoy

Uk

1

Refereed Article

vt

|
i
3
3

S. J. Shepherd et al./Comprehensive Security System

logging. including such dara as sccurity service
requested, date and dme, calling uscr id, calling
pracess, status (success, failure) cte. Ie is envisaged
that the LA will irsclf internally requese one of the
CSS encryption services, o encrypt the log ready
for storage. The only endry with access o the log
will be designated levels of system administracon,
who will possess the decrypeing keys for che log.
Allowing managerial access to the log for the pre-
paration of audit reports for security management
and resource optimizarion purposcs. The system
administration will possess aceess rights to the log

dara, and such access righes will be stored in the
SMIR.

The LA could be an Al-based modulce thar will
dctect problems and even likely problems before
they occur. and take the necessary acton for pre-
ventatve or remedial measurcs.

8. Recovery Agent (RA)

The recovery agent (RA) is responsible for all
system fault protection and CSS error recovery.
Faults and crrors may be caused cither by hardware
failure of units both within the CSS and external o
it, and also by certain combinations of situations
with which the CSS cannot cope, due to ambiguicy
of requests for example. The RA will perform che
important task of detecting these crrors, and plac-
ing the CSS into such a staw as to maintain the
securiry integrity of the system, so that the CSS is
not left in a state where it is vulnerable o areack.

Faules outside the CSS could in certain circum-
stances also produce system crrors. For example, an
incorrectly constructed or incomplere dara struc-
ture could be ambiguous, and the CSS may “hang”.
Internal error recovery routines will automatically
re-request the dara, buc in the absence of response,
the CSS will place itself into a swable, secure state.
The CSS has in effect, recovered “internally™ from
the error, but cannot, of course, influcnce events
outside the CSS. “Inside™ and “ouside™ the CSS
refer to sofrware modules wichin the CSS kernel
and those outside the kemel respecrively.
Obviously, in a distributed sccurity system, the

640

boundaries cannot be clearly defined. The cxternal
crror must be recovered by the run-time library of
the applicadon package.

In the case of a fault developing with cither the
SMIB or the SMIBA, the CSS protocols must be
designed such that the CSS recovery agent (RA)
always returns fatal errors o the OSIA for ALL
requests. Thus failure of the SMIB rerminates all
sccurity activity on the local terminal. Thas differs
from fauls which may develop with other CSS
components, which will not return scvere crrers,
but merely limit the operacional cffcedveness of
the system to those funcrions not requiring the

damaged facilicy.

9. Associations Agent (AA)

The association agene (AA) is responsible for the
sccurity control 0? the association beoween remote
end user enddes chroughout the duration of the
connection. It is responsible for sending the appro-
priate data when the conncection is sct up, such as
keys. vectors, time stamps and so on, for cxercising
supcrvisory control during the connecrion, and for
clearing down the associadon from the sccurity
facility aspects. In addidon. derection of denial of
service attacks would be possible with this agene by
the sending and receipt of random supcrvisory
packets, subject to the current quality of scrvice
conditions.

10. Inter-domain Communication Agent
{IDCA)

The connectivity of enddes within a domain is
assured. as all communicating entities arc subject to
a common sccuriry policy. Inter-domain com-
munication, however, presents a special problem.
The communicating entddes in the two domains
require the use of “rranslation” protocols to ensure
a scamless continuity of securiry around the asso-
ciation. The inter-domain communicadon agent
(IDCA) is respousible for recognizing inter-domain
associations, and invoking additional prorocols as
nceessary. Inter-domain transladon may or may
not be possible:

Computers and Security, Vol. 9, No. 7

For cxample, the remote entity may be using a
form of encryption unknown to the local entitics
CSS processor. In this case, translation is impos-
sible. The [IDCA will note that deeryprion by the
local sccuriry imechanisms is not possible, and will
flag the appropriate error. The RA will return the
appropriate flags to the calling applicadon. which
will then cither terminate the association, or re-
request the remote entdty to communicate in
another sccure mode.

If the remore entity, however, is using say an M-bit
algorithm, whereas the local processor is capable of
decrypting only N-bit code, then communication

|
|
| Asarsiationd Agait |
o Azoxciation R
| conurol
|
|
Scaurity Addnictoaten Logying Mgyt
[Ayt © Mmitors S e
o Bfxoes seority for adit troil ondl
| policy an G5 fnlt reqorting
]
AVLICRTIN | e all agats ll!l!ll
'] Inter—camin Ay s Ayt
© [etotg inter © Aoutes diroct umer
] drmin asyxriation ot and dxta
ad trarslates 1/0 to VT mpin.
{ M b
. | ;
roprst O3 Sexvioe Ayt |

.
’ © Detemmine validity P DRI RLTLHEL L
[LS © Divide arerol an

L
ot

L]

[
REHAHARHEH AR A

t—l_ inforntion dita
Kulicatin | statas —- . |kmv|:ryh)m:
{umnlly in] LD o rplooonts fact
Kulicatien ! . ototion &d
Liyer hut] IO roaTAeTy
oy ke in
oy Layer)]
[Service Ayt
o Act on congal data
| undx supervision
aof 3B
b
|
|
1.
i
|
|
I

Fig. 6. Agent communication wichin che CS8.

is possible, providing the data is reblocked accord-
ing to the appropriate run length before encoding/
decoding. The IDCA is responsible for rcquesting
the appropriate mechanisms via the SSA o atcempt
the translacion. The formal analysis of chis kind of
system is difficult, but is representadve of the sort
of real problems thar will be encountered when
connecring diverse real networks.

An Example

An cxample of a very simple “flow™ berween the
application and the agents and mechanisms of che
CSS will help to clarify the conceprs.

Consider Fig. 6. A rypical scquence of component
intcracrions may be as follows:

The applicadon (eg. a sccure FTAM or MHS
module, see Fig. 7) calls a security function from the
CSS (e, user authenticacion, encryption crc.) via the
APLand OSIA [#1]. The application will have ser up
the control dara for the CSS request, along with the
informacion data upon which the CSS will act. The
request for the service will be passed over the API
(by means of a system interrupr. for cxample). to
the OSIA. The OSIA will note the location of the

102

10b \
Socurity Sorvices 1

L Agen!
10 |9| 6|5

SHI1B Agant

-

ks Tx Monitoring
¢ l y - Agent
16

Interdonem
Conns Agent

Fig. 7. lnteractions berween the CSS agents in the secure
FTAM cxample.

641

810110y paalajay

Retereed Article

S. J. Shepherd et al./Comprehensive Security System

origin of the request (i.e. the layer where it origin-
ated), and attempr to validace the request. Valida-
tion is performed ac this stage only from the point
of view of checking that the request is recognized
by the CSS (via a look-up rable) NOT to check that
the request is permiteed. (This is performed later by
the SSA and SMIBA). It the daca structure is not cor-
rectly built, the RA will detect the error [# 2], and
initiatc a request for a rebuild of the data, and pass
this back to the OSIA [#3] for communication
with the calling application. If the data arc accept-
able, the OSIA retricves the information data and
places it onto the internal CSS da bus. The con-
trol information pare of the request is routed to the
SSA. | # 4| The SSA examines the control data, and
intcrrogates the SMIB via che SMIBA | # 5] | #6] as
to whether the request is (a) valid, (b) legal.

If the request is INVALID for cither reason. the
SSA will return the appropriate crror code to the
OSIA | # 7], which will inform the calling applica-
tion process accordingly. The LA will note the ille-
gal request | # 8]. If the request is VALID, chen the
SSA will interrogate the SMIB via the SMIBA | # 9]
[# 10] as to the correct sequence of operation to be
performed o exceute the requested funcrion in
line with sccurity policy. If the SMIBA has
informed the SSA that. for example, an addidonal
password is required from the uscr. then the SSA
will request this from the UA [# 10a, # 10b]. The
SSA will sclect and sequence the appropriate SMA’s
[#11] to fulfil the funcdon. passing cach control
data as nccessary, which in rurn will selecr and
scquence the appropriate sccurity mechanisms
{#12] which will act upon the informarion dara on
the bus which is to be processed. (The IDCA will
have also noted thar chis is a local operation. and no
inter-domain activity is nceded [#12a}). Upon
completion, (signalled by cach mechanism agentin
turn to the SSA [# 13]), the SSA will indicate task
status to the OSIA [# 14], and also inform the LA
of the funcrion performed | # 15]. for whom. and
the task sratus. The OSIA will then reerieve dhe
processed informadon data from the CSS bus, and
return the processed darta across the APl o the cor-

642

rect calling locanion, along with the funcrion sratus
[#16].

Within the framework of the ten-agent model. an
implementadon for the IBM PC has been written
using Pascal and 8086 assembler. A file encrypron
and transfer (FET) has been coded, and rested
berween machines via serial port communications.
It is planned to extend this to an Ethernet LAN in
the near future, with several users making secure
transfers simultancously.

11. Conclusion

There is a neced w0 extend OSI to meet the recom-
mended sccurity scrvices and others being pro-
posed. The described system will implement the
sccurity function cfficiently but requires some
modifications to exisnng applications. The AP can
be defined for the general case, but interface details
are highly implemenrtadon specific.

The concepr of an existing network with securiry
faciliies managed by a number of sccuriry
management centres scems appropriate for large
neoworks and mobile users. The idea of 2 number
of agents to fulfil the sccurity functions has been
proposed for flexibilicy and case of imple-
mentation.

Acknowledgments

The auchors wish to chank the IBM (U.K.) Labora-
torics for their sponsorship, and colleagucs on the
CEC Cost 11-ter, Security in Compurer Necrworks
Committee for their collaboration.

References

[1] ISO/ZIEC JTCIL, ISO Technical Report on Security in Open
Systems, 1SO. June 1988.

[2] I1SO 7498-2. Open Spsiems Intercounection: Basic Reference
Model—Security Architecrure, 1SO, February 1989.

[3) ISO/IEC JTC1/SC21. Working Draft: Access Control Frame-
work, 15O, December 1988.

[4] S. Mufiic, (ed.). Security Mechanisms for Contpuiter Nenwvorks,
Ellis Horwood, Chichester, 1989, ISBN 0-7458-0613-9.

{5] E. H. Spafford. The Internct worm progran:: an analysis,
CDS-TR-823. Purdue University, IA. November 1988.

The Quadratic Residue Cipher and some
Notes on Implementation

S J Shepherd’, P W Sanders™ & C T Stockel™

* Electrical Engineering Department
University of Bradford
Bradford, UK

Network Research Group
Facuity of Technology
University of Plymouth

Plymouth, UK

ABSTRACT. Although of similar age, the Quadratic Residue Cipher (QRC) has been neglected
compared with the publicity received by other public key cryptosystems, notably the RSA cipher.
This paper attempts to redress the balance somewhat, explaining in expository form the principle
of the QRC, the advantages it offers over RSA and some experiences gained as a result of using
the cipher.

INTRODUCTION

Since Diffie and Hellman published their famous paper [1] in 1976 which introduced the
concept of a ’public key’ cipher, cryptography has undergone a revolution. The possible
elimination of the need to distribute pairs of secret keys between communicants, with the
associated logistical and security problems, has led to wide interest in the use of public key
systems. The benefits are especially apparent in large systems, where the quadratic explosion
in the number of symmetric key pairs needed for a classical (symmetric) cipher system can
be a security management nightmare.

One of the first practical public key implementations was invented by Rivest, Shamir and
Adleman [2] and named after them (RSA). Their system has become by far the best known
and most publicised .of the public key systems. It is by no means the only one, however, a
large number of others having been described in the literature, such as those by Rabin [3]
and Merkle and Hellman [4]. These systems vary from elegant but useless mathematical
curiosities, to- those which are now in current use. One of the most potentially useful
systems however, is the Quadratic Residue Cipher (QRC), which has received surprisingly
little attention since it was first described by Blum, Blum & Shub [5]. This may be due in
part to the limitation that it is a secrecy only system, whereas RSA can be used for both
secrecy and authentication (digital signatures). In the context of a pure secrecy system
though, it offers a number of significant advantages over RSA in both implementation and
ease of use [6). Of greater potential significance, is the recent proof [7] that the difficulty
of breaking the QRC is equivalent to the difficulty of factoring. This is not the case for
RSA, and some reports [6] even go as far as to suggest that RSA may have hidden
-weaknesses as yet undetermined.- -

PRINCIPLE OF QRC

The QRC relies upon the principle that it is easy to determine the square of an integer
modulo n, but finding the square root of a (large) integer modulo # is intractable. Also, not
all such integers have square roots. Those numbers having roots are known as quadratic
residues and those which do not are known as quadratic non-residues. More formally, if n
is a positive integer, then @ is a quadratic residue of » if (a,n) = 1 and if the congruence x2
= @ (mod n) has a solution. If the congruence x2 = a (mod n) has no solution then g is a
quadratic non-residue of n.

- For example, to determine the quadratic residues of 11, we compute the squares of the non-
zero elements in the field modulo 11, i.e. the integers 1 to 10. This gives

12 = 102 = 1 (mod 11)
22 = 92 = 4 (mod 11)
32 = 82 =9 (mod 11)
42 = 7 = 5 (mod 11)
52 = 62 = 3 (mod 1))

Although we have squared all ten non-zero elements in the field (1..10), only 5 squares result
(1,3,4,5,9). The quadratic residues of 11 are therefore 1,3,4,5,9 and the quadratic non-
residues of 11 are those numbers which are left (2,6,7,8,10). The fact that there are the
same number of residues as non-residues is not a coincidence. It can be shown that if p is
an odd prime, then there are exactly as many quadratic residues as non-residues of p among
the integers 1, 2,..., p-1. Proofs of this can be found in most books on number theory. The
important point to note, however, is that in the field (designated Z, for prime p) where p =
3 (mod 4) such as p = 11 in this case, only the quadratic residues have square roots one of
which is itself a quadratic residue. This root is known as the principal roor of the residue.
In the above example, 4 has square roots 9 and 2 but only 9 is a residue with two square
roots of its own. Of these roots, 3 and 8, only 3 is a residue and so forth. (In the case
where p = | (mod 4) this is not always true. In Z,,, the residue 16 has square roots 4 and
13 both of which are residues with square roots.)

Encryption
To construct the QRC, we proceed as follows:

The recipient R chooses two large prime numbers p and ¢ using one of the many tests
available [e.g. 8], subject to them both being congruent to 3 mod 4. This is in no way
restrictive as it can be shown that half of all the primes of a given length will satisfy this
condition [9]. These two primes become R’s secret key. R then multiplies p and ¢ to
produce his public key n,

Public Key n = pq
Such an integer which is the product of two primes both congruent to 3 mod 4 is known as

a Blum integer. The public key (which the reader will observe is simpler to produce than
the RSA key pair) is made available and anyone wishing to send R a message proceeds as

follows:

The sender S chooses any quadratic residue in Z°,. (For composite n, the set of elements
i where i < n is designated Z,, and the subset of these which are quadratic residues is
designated Z°). Although it is possible to test whether a given number is a quadratic residue
(by quadtratic reciprociry), the easiest way to obtain a quadratic residue is simply to pick any
number relatively prime to n and square it, modulo n. This residue becomes the ’seed’ x,
for the key generator which will be used to encipher the message.

S adopts some pre-arranged scheme to assign binary values to the residues, such as writing
a 1 when the parity is even, and a 0 when the parity is odd. To proceed, S writes down the
appropriate key bit according to his first residue x;, and then squares this residue. S then
writes down the next corresponding bit, and squares the resulting residue again, and so on.
In this manner, a pseudo-random binary bit pattern is produced which can be used as a one-
time pad’ to encrypt the message, providing of course, that the seed is not reused with the
same modulus. The significance of a one time pad is that such a cipher is the only one
providing complete theorerical security.

The bit pattern produced by this type of 'square mod n’ generator has been shown [5] to
exhibit very 'random’ properties, and is cryptographically strong. (Tests of randomness
usually require such sequences to pass certain statistical tests [8], such as the long-term
frequency of O’s and 1’s should be similar, and that the O’s and 1’s should be 'well mixed’,
However, statistical tests are not sufficient in all cases. An important property of
cryptographically strong random sequences is that they should be unpredictable. A pseudo-
random sequence generator is generally defined [10] to be cryptographically strong if the
sequences 1t generates are not predictable in the sense that given an arbitrarily long sample
of the sequence, it is not possible to obtain any more knowledge about the missing bit either
to the right or to the left than could be gained by tossing a fair coin.)

More detailed analyses [11,12] show that one can use more than the parity bit after each
squaring operation. There is no apparent weakening of the resulting sequence if the first log,
I least significant bits are used, where [is the bit length of the residue. For example, if the
residues were 8 bit words, then the log, 8 = 3 least significant bits could be added to the key
stream from each residue reducing the number of squaring operations required by a factor
of three. Since the key sequence will be used as a 'one-time pad’, for security it is important
that the sequence have as long a period as possible, certainly longer than the message to be
encrypted. The period of the quadratic residue generator, however, is not easily determined.
It is wsually equal to A(A(n)), where N\ is the Carmichael function [13). This important
parameter is discussed later and the conditions when it holds are defined.

Having obtained the key sequence, the sender then simply exclusively OR’s (XOR) the
plaintext (in ASCII form, say) with the key "one-time’ pad and appends the final residue xy.
Decryption

The legitimate recipient R can easily recover the plaintext, because knowing the two (secret)

factors of the modulus n, he can compute the residue x,., by taking the square root of the
residue xy, then the square root of x.; and so on right back to the residue x,. Knowing the

residues, R has the key sequence and can therefore recover the plaintext simply by XORing
the key with the bit stream portion of the ciphertext. Taking square roots, however, is
computationally intensive and of the same complexity as the modular exponentiation required
by RSA. Using this simplistic approach gives little benefit over RSA in decryption.

Fortunately, knowledge of the factors of n allows random access both forwards and
backwards through the sequence. Knowing the final residue x, and using the following
lemma, it is possible to take the 2™ -th root directly and so obtain the initial seed residue x,
immediately. R then has no more work to do than S in recreating the key sequence.

Lemma. Let p be an odd prime and (a,p) = 1. Then a is a quadratic residue if and only
if a?"? = 1 (mod p).

Proposition. If the prime p = 3 (mod 4) and @ is a quadratic residue, the roots are
+a%*Y". The principal root will use the plus sign.

Proof. (@®*") = a®*"? = ¢¥Y% = a (mod p).

Corollary. By induction, if p = 3 (mod 4) and a is a 2V -th power, then the 2V -th root of
ais

(D+ 1) N

a 4

The reason for the original constraint that the factors of n must be congruent to 3 mod 4 is
now clear. Only if p = ¢ = 3 (mod 4) will the power be an integer when it can be
immediately evaluated.

An eavesdropper E, however, cannot decipher the message because E does not know the
factors of n and calculating them is intractable. Without the factors, E cannot take square
roots in Z°,, and hence cannot recreate the key sequence.

An example

For the sake of clarity in our example we will use very small numbers and a very short
message. In practice, the numbers involved will be larger, on the order of 100-200 digits
to discourage factoring, and the messages will normally be correspondingly longer.

Let R choose two primes p and ¢, remembering that they must both be congruent to 3
modulo 4, say,

11
23

D
q

R multiplies these to give his public key n

n=11%*23 =253

which is made available.

S wishes to send R a message 16 bits long, say the letters "QR’. The 8-bit ASCII
representation of this is

Plaintext = 0101000101010010
S picks a random number (relatively prime to 253), say 20, and squares this modulo 253.

This yields the first quadratic residue x, = 147. This residue is successively squared until
sufficient residues have been created to encrypt the plaintext:

Xo = 147
X, = 104
X, = 190
X; = 174
Xy = 169
xs = 225
Xg = 25
X, = 119
Xg = 246
Xg = 49
X1 0= 124
Xp= 196
X;2= 213
Xx3= 82
X,s= 146
X;s= 64

S then writes down the least significant bit(s) of each residue. The key sequence is therefore
Key = 1000111101001000

The key pad is then XOR’ed with the plaintext to produce the ciphertext:

Key = 1000111101001000
Plaintext = 0101000101010010
Ciphertext = 1101111000011010

Finally, the last residue (64 decimal = 1000000 binary) is appended to the ciphertext to
produce the finished message. Alternatively, the residue may be sent via other channels.

Ciphered message = 1101111000011010 [delimiter] 1000000
The message can now be sent over public (insecure) channels to the recipient R, who
proceeds to decipher the message as follows.

First, R notes that the length of the message is N+1 = 16 bits. R therefore knows that the

original seed residue x, must have been squared N = 15 times to produce the final residue
Xxy. Now R could take successive square roots 15 times to produce each intermediate residue
but, as we have stated, this is computationally excessive and access to any random point in
the sequence is possible given the factors of n. R can therefore take the 2! -th root directly
and obtain the seed residue x, immediately.

For completeness, we demonstrate both the simple approach using repeated square roots, and
then demonstrate the more efficient 'direct root” method. Finally, we will describe a cleverer
algorithm which computes the 2V -th root directly, while considerably simplifying the
computations.

Algorithms for decryption

Taking the square root of the final residue x,s, that is, V/64 (mod 253), we compute using
the prime factors of n

6401+ 04 (mod 11) = 3
64@+0% (mod 23) = 8

The required root x,, is therefore congruent to 3 (mod 11) and also congruent to 8 (mod 23).
We now use the Chinese Remainder Theorem (found in most texts on elementary number
theory) to compute the value of the root which satisfies both these congruences (mod 253).
The answer is 146, which is the required root x,, (compare with the table on page 5). We
could now repeat this process a further 14 times to recreate the key sequence but as
mentioned earlier, it is easier to compute the (*%2)'® -th power of the residue directly.

We have from the previous corollary

11+1,15

64 9 (mod 11) = 4
(23+1,18

64 9 {mod 23) =9

Applying the Chinese Remainder Theorem to these results, we find that the residue x, is 147
which is the required result, compare again with the table on page 5.

The clear disadvantage of this method is the problem of computing to the enormous powers
involved. Even the use of efficient algorithms such as the repeated squares method [8] still
results in inefficient computation.

A great improvement lies in the observation that

a@® (mod m) = a°® @™ (mod m)

This considerably reduces the amount of effort required provided that ¢(m) can be found.
In our case though, m is prime whence ¢(m) follows immediately as it is simply equal to
m-1. Using this principle, we can construct a very efficient algorithm [6] as follows.

When setting up the cryptosystem the recipient R, knowing the secret factors p and ¢, uses
Euclid’s Extended Algorithm to precalculate two quantities @ and b, such that

ap + bg = 1 (mod n)

On receipt of a message, knowing its length N+1 and the final residue x5, R proceeds to
compute

o = [(p+1)/4]" (mod [p-1))
6 = [(g+1)/4]" (mod [g-1])
u = (xy mod p)° (mod p)
v = (xx mod g)° (mod ¢)
Xo = (bqu + apv) (mod n)
Using this algorithm in our example, R would have found
lla + 23h = 1 (mod 253)
whencea = 2l and b = 1,
R knows the residue xy corresponds to the 15-th squaring operation, so he computes
o = [(11+1)/4)" (mod 10) = 3" (mod 10) = 7
8 = [(23+41)/4]" (mod 22) = 6" (mod 22) = 10
u = (64 mod 11)" (mod 11) = 97 (mod 11) = 4
v = (64 mod 23)" (mod 23) = 18" (mod 23) = 9
Xg = ((1 *23 *4) + (21 * 11 * 9)) (mod 253) = 147
which is the required result!

The algorithm has simplified and speeded up the calculation of, for example

645 (mod 23)

by replacing the computation with much more manageable quantities such as 18! (mod 23).
The efficiency is compounded as the numbers get larger and is indispensable with the

realistically secure numbers used in practical systems.

Calculation of the Key Periods of the x* mod N Generator

The critical parameter of the QRC key generator is the period of the key sequence. In this
expository paper we quote the important results without proof. For a complete treatment of
the background, derivations and proofs of these results the reader is referred to the seminal
paper of Blum et al [5].

For the convenience of the reader, we summarise a few basic number theoretic ideas that are
needed in the derivation of the period.

Universal exponents
A universal exponent is a non-zero quantity U such that ¢V = 1 (mod m) for all a with (a,m)
= 1. For example, the Euler Phi function ¢(m) is a universal exponent. The least positive
universal exponent is called the Carmichael function of m, written A(m).
A definition [13] of the Carmichael function is as follows

ApY) = ¢o(p") if p=2and a<?2, or p=3

AR = Le(2Y) ifa=3

A(m) = lcm [A(p®)] otherwise
where p;” is the prime power factorization of m. Knuth proves [8] that A(rm) is both the least
common multiple and the supremum of the orders of the elements in Z°,. As a corollary,
we have Carmichael’s extension of Euler’s theorem

@™ = 1 (mod m) whenever (a,m) = 1
As stated on page 3, the period of the QRC generator is usually equal to A(A(n)) where n is
the public key modulus. We quote the sufficient conditions for this later, but applying the
expression to our earlier example we have A\(253) = lcm [¢(11),6(23)] = Icm [10,22] =
110. N110) = lem [¢(2),4(5),¢(11)] = Icm [2,4,10] = 20. Therefore A(A(253)) = 20 and
if the sequence in the example is carried forward the residues indeed repeat with period 20.

Primitive Roots and Orders

If (@,n) = 1 then the least positive x such that ¢* = 1 (mod n) is called the order of a mod
n and we write ord, a = x.

For example, to find the order of 2 mod 7, compute the powers of 2 mod 7

2[
22

2 (mod 7)
4 (mod 7)

m

2} = 1 (mod 7)
24 = 2.(mod 7)
etc

The smallest power congruent to 1 is 2*. Thus ord, 2 = 3.

Lengths of Sequences Produced by the x> mod N Generator

Let 7 = w(x,) denote the period of the key sequence with seed x,. In [5] it is shown that
if n = pq where p,q are distinct odd primes both congruent to 3 (mod 4) then «|A(\(n)).

‘It is then shown that the sufficient conditions under which the converse is true, that is, when

A(A(n))| v and hence when = = A(A(n)), are when the following are met:
1. Choice of modulus n (Theorem 7 of [5])

Choose n such that ord,,, (2) = NMA(n)). It is possible to contrive an 7 to fulfill this
requirement by setting p = 2p, + 1 and p, = 2p, + 1, and similarly for q, and q,
(Theorem 8 of [5]). In our earlier example 11 =2 *5 + land5 =2 *2 + 1.
Similarly 23 = 2.11 + land 11 = 2.5 + 1,

Aside from being one of the conditions that ensures the period equals A(A(n)), this
construction of n also allows us to calculate the period! Given a sufficiently large n
without its factorization, evaluation of ¢(n) and hence A(n) is as intractable as
factoring n. Knowing p, and gq,, however, the period follows immediately. A(n) =

lem [2py,2q,]1 = 2p,q, and so MA(R)) = lcm [2p,,24,) = 2p,q,.

2. Choice of seed x, (Theorem 7 of [5])

Choose x, such that ord, x, = A(n)/2. We can always find a residue to satisfy this
condition. Specifically, the number of quadratic residues in Z°, that are of order
A(n)/2 mod N is around O (n/ (In In n)?) [5].

When the above two conditions do not apply, there seems to be no simple method of
evaluating the sequence length =. In these cases, the sequence length is always a divisor of
A(A(m)) and hence very much shorter than when the above conditions hold. Analysis of the
lengths of these sequences is, however, of no practical importance from our point of view
since these sequences are to be avoided for cryptographic purposes anyway.

COMPARISON OF RSA AND QRC
Recall that the RSA cryptosystem operates as follows:

An intended recipient R chooses two large primes p,q and calculates their product n = pq.
A preferred constraint on p,q is that they are strong [14] in the sense that their product 7 is

more difficult to factor than if p,g were just chosen at random. Basically, this means_

ensuring that p’ and p” (where p’ = p - 1 and p” = p’ - 1) both have at least one large
JSactor, and similarly for ¢’ and ¢"”. Knowing p,q, R can evaluate ¢(n) = (p-1)(¢-1). R then
chooses a quantity e relatively prime to n and calculates a quantity d such that de = 1 (mod
é(n)). R than makes the public key {e,n} available, and keeps the secret key d private.

A sender S wishes to transmit a message to R. S encodes his message by a pre-arranged
scheme such as A=1, B=2 etc, and breaks his message up into blocks b, smaller than the
modulus n. S computes the ciphertext ¢; from each plaintext block b; using

¢; = b (mod n)
On receipt, R recovers the plaintext using

b, = ¢ (mod n)

We now compare and contrast some aspects of the RSA and QRC systems. Again, we state
results here - for detailed arguments and proofs the reader is referred to [6] and the many
excellent references contained therein.

Implementation complexity

The QRC key pair is simply {n} for the public part and {p,q} for the secret part, whereas
the RSA key pair as shown above is somewhat more difficult to calculate. This slight
disparity is offset by the fact that, in general, the key pair only need be produced once or at
intervals. The actual encryption efficiencies in terms of number of arithmetic operations,
however, are quite different.

Consider an RSA cryptosystem using a 64 bit modulus and so each message block will be
no longer than 64 bits. Suppose that the encrypting exponent e is a 16 bit quantity chosen
to be a prime, such as 2' + 1 which is 10000000000000001 binary. This form of exponent
maximises the efficiency of the encryption because where a zero occurs, the repeated squares
modulo exponentiation algorithm only need perform one modulo multiplication but where a
one occurs two such operations are required. For an optimum 16 bit exponent therefore,
encryption of the block will require 18 modulo multiplications.

In a QRC cryptosystem, the encryption of the 64 bit message block will require the
generation of 64 bits of key. If the modulus is again 64 bits long, log, 64 = 6 bits may be
appended to the keystream from each residue. Each residue is generated by a singte modulo
multiplication. Therefore, only 11 modulo multiplications are required to generate sufficient
key length to encrypt the block.

Limitations on plaintext
In RSA the message must be broken up into blocks smaller than the modulus in use. The

QRC does not require this to happen, but the overall length of the message must be smaller
than the period of the key. In RSA, therefore, messages of unlimited size may be encrypted

simply by breaking them into suitable blocks. In the QRC, the message is limited to the
period of the key.

Encryption principle

RSA is a dererministic cipher in the sense that if an eavesdropper has a candidate for the
plaintext (by guessing, say) he can easily verify his guess simply by encrypting it with the
public key. The QRC is a probabilistic cipher in that an eavesdropper with a candidate for
the message cannot verify his guess by encipherment because he does not know the starting
residue used for the key sequence.

Data Expansion

In RSA, a message block the size of the modulus is encrypted to a block also the size of the
modulus. The data therefore undergoes no expansion on encryption. With the QRC,
however, the need to append the final residue means that there is a small amount of data
expansion on encipherment.

Proof of Security

Even if factoring is genuinely hard, breaking RSA is not known to be equally hard. In other
words, it has never been proven that breaking RSA is directly equivalent to the difficulty of
factoring. It is possible [6] that d can be computed efficiently from the public key {e,n}
without the need to factor n. It is also possible that there is another efficient algorithm to
recover the message m from e, n and m® (mod n). Breaking the QRC, on the other hand,
has been shown [7] to be directly equivalent to the difficulty of factoring.

Leakage of information

With RSA, even if it turns out that it is impossible to compute all of m from the information
available to the eavesdropper, it might still be easy to obtain efficiently some parrial
information such as half the bits in m. This may still be possible even if random padding
is used. This phenomenon is known as partial leakage of information. The QRC leaks no
partial information in this way. The lack of a formal proof of security and the unresolved
partial leakage problem are a serious limitation of the RSA system, and may well have
contributed to the recent decision by NIST (US National Institute for Standards and
Technology) not to adopt RSA.

Resistance to attack

RSA is believed to be resistant to a chosen ciphertext attack, whereas the QRC is not
resistant to such an attack. A chosen ciphertext attack is one where the cryptanalyst can
choose ciphertexts at will, and be supplied with the corresponding plaintexts provided they
exist. From this information, he is to infer the decrypting key.

Digital signature

By far the most important advantage RSA has to offer is the possibility of a digital signature.
This allows a sender to ’sign’ a message using his secret key before encrypting it with the
recipients public key. On decryption, the recipient can verify the senders identity by
decrypting the signature with the senders public key. The QRC is a secrecy only system,
and suffers from the severe drawback of not admitting the possibility of digital signature.

These aspects of the two cryptosystems are summarised in Table 1.

Table 1 - Comparison of aspects of the RSA and QRC Ciphers

Aspect

Possibility of

Digital Signature

Existence of a
formal proof of
security

Resistance to
attack

Leakage of
information

Algorithm and
implementation
complexity

Limitations on
Plaintext

Encryption
Principle

Data Expansion

RSA

ADVANTAGE
Digital signature possible.

DISADVANTAGE

Has not been proven to rely on
the hardness of factoring,

and may have other weaknesses
as well.

ADVANTAGE
Believed to be resistant to a
chosen ciphertext attack.

DISADVANTAGE

Leakage of partial

information even when random
padding is used.

SIMILAR

Requires exponentiation and
modulo reduction for both
encryption and decryption.

ADVANTAGE

Unlimited plaintext size if broken
into blocks smaller than the
modulus.

DISADVANTAGE
Deterministic - only one cipher
text corresponds to a given
plaintext for a particular key.
i.e., an eavesdropper who has a
candidate for the plaintext can
easily venify a guess simply

by encrypting it.

ADVANTAGE
No expansion of data when
encrypted.

QRC

DISADVANTAGE
Digital signature not -
possible.

ADVANTAGE

Has been proven to rely
only upon the hardness of
factoring.

DISADVANTAGE
Not resistant to a chosen
ciphertext attack.

ADVANTAGE
No leakage of partial
information.

SIMILAR

Requires similar operations
for encryption and
decryption but less of them.

DISADVANTAGE
Plaintext limited by period
of key generator.

ADVANTAGE
Probabilistic - many possible
ciphertexts can correspond
to a given plaintext. i.e.,
an eavesdropper who has
a candidate for the plaintext
cannot verify a guess
simply by encrypting it.

DISADVANTAGE
Small data expansion when
encrypted.

IMPLEMENTATION

A QRC crypto package has been developed in the Network Research Group. The software
runs on a standard IBM PC, and offers the following features,

1. Menu driven for ease of use;

2. Key generation up to 255 decimal digits (840 bits). Given the expected
heuristic running time of the best known general purpose factoring algorithm
(the multiple polynomial quadratic sieve) the expected time to factor integers
of this size is roughly equal to the estimated current age of the universe, some
15 billion (15 * 10°) years;

3. Static encryption and decryption of data files for storage on disk.

Software language

The main shell of the program is written in Pascal for structural integrity, but all the multi-
precision arithmetic routines are written in hand-crafted 80*86 assembly language. The
package is therefore quite fast in operation.

Modular structure

The software is written in modular form for flexibility and ease of maintenance. Each
module is a stand-alone unit, so that modification of one module does not affect any other.
This also allows for improvement in algorithms as they become available and for parts of the
system to be written independently by different authors. At present, the system comprises
of the following units: :

a) Prime generator

b) Key generator

c) Encryption module

d) Decryption module

e) General purpose number theory library

The functions of the first four modules are described in the following discussion. The
general purpose library contains all the multi-precision routines called by other modules such
as modulo exponentiation, Euclid’s algorithm and so on.

Generation of keys

One of the most important modules in the package is the key generator. For security it is
very advantageous if the key period is easily determined and, where possible, we have been
careful to follow the criteria of [5] discussed above. When the key generator module is
requested to produce a key of length [, the steps are as follows:

1. The key generator module requests two primes of lengths .45/ and 0.55/
from the prime generator module. The reason for these dissimilar sizes as
opposed to simply generating two primes of length //2 is to avoid any
possibility of the primes being too close together and hence opening up the
(remote) possibility of a Fermat attack [135].

2. For each request, the prime generator picks a random odd integer of the
required length, and tests it for primality using:

a) trial division up to 101;
b) five iterations of Rabin’s algorithm [8, Algorithm P] to certify probable
primality to better than 99.90%.

If the number fails the tests then it is incremented such that it is neither even
nor a multiple of 5 (that is, in decimal notation the number can only end in
1,3,7 or 9). If the probable prime p" passes the tests, the prime generator
then evaluates p' = 2p” + 1 and tests this for primality using the above
method. If this also passes, the generator finally evaluates p = 2p’ + 1 and
checks that it is both a probable prime and that it is congruent to 3 mod 4.
If this is the case then p is returned along with p” and g¢”. If not, then
another p” is chosen and the steps repeated. It is important to note that, apart
from returning primes that are suitable for the construction of an analytic
QRC generator, this method also has the additional advantage that the primes
are strong in the sense discussed in connection with RSA [14]). This makes
the work of a cryptanalyst in factoring the modulus very much harder than if
the primes are chosen at random.

3. The key generator multiples p,q to produce the modulus n.
4, The key generator evaluates 2p”q¢" to produce the key period .
5. The key generator uses the Extended Euclid Algorithm to compute a,b such

that ap + bg = 1 (mod n).

6. The key generator stores p,q,a,b,n and « in a disk system file for use in
decryption. Note that p,q are not stored in encrypted form. Access to the
system PC would ultimately allow an attacker to gain access to p,q but if
required considerable physical protection could be given to the system unit.

Generation of seeds

The second condition for the period of the key to be easily determined is that the seed x, is
chosen such that ord, x, = ANn)/2. The seed, however, is chosen by the sender of the
messages, 1ot by the recipient! Without knowledge of A(n) the sender cannot easily check
that the above condition holds and he cannot obtain A(n) without factoring n. A severe
problem thus arises in that if this criterion is not satisfied, the key period may not be A(A(n))
as desired. We have not overcome this limitation. Our attempts at a possible compromise
are discussed in the following section.

Encryption

An input message may be either ASCII or binary. When a message is input to the system
(either manually or from disk) the encryption module requests the modulus n. Again, this
may either be input manually (which is tedious) or fetched from a file of correspondents.
In the absence of any information about n other than the assumption that it is a Blum integer,
the encryption module requests a prime number of no special form from the prime generator.
This is guaranteed to be relatively prime to n and is used as the starting seed x,. Knowing
the bit length of the input message, the encryption module then generates the key sequence.
The user is given the option of adding any number of least significant bits from the residues
up to the maximum of log, / as discussed on page 3. The module then outputs the XOR of
the message with the key stream to a cipher disk file and appends the final residue in
hexadecimal form along with an indication of the number of keystream bits added per
residue, separated from the bitstream by delimiter sequences.

Currently, our system is used only for encrypting relatively short messages and the module
keeps successive residues in memory. Periodically, the module uses Floyd’s cycle finding
algorithm [15] to check that the key sequence has not started to repeat. Floyd’s algorithm
avoids the need to check every new residue pairwise against every preceding one by the
observation that if the sequence {x;} (mod n) is periodic then ultimately this fact will be
revealed by the test: Is xy; = x; (mod n)? If the key starts to repeat, the module issues a
warning to the user to this effect. The user is given the option of carrying on and accepting
the resulting weakening of security or aborting the process and starting with a new seed.

Clearly, the limitation is on the number of residues (each up to 800 bits long) that can be
stored. We have ciphered messages up to about 4 Kbytes (32 Kbits) in length which
corresponds roughly to a full page of A4 text. Using 800 bit residues and adding 9 bits to
the keystream per residue requires the storage of around 3640 residues. This is only 364
Kbytes of memory which any PC can handle comfortably. However, someone would not be
able to use our system to send us the Encyclopedia Britannica in ciphered form!

Decryption

On receipt of an encrypted message, the decryption module scans the file for the delimiter
sequences. On finding these, the length of the message, the number of keystream bits per
residue and the final residue are read and the module retrieves p,q,a¢ and b from the disk
system file. Using these parameters the module evaluates the seed residue x; using the
algorithm on page 7. The module then uses a similar sequence of operation to the encryption
module to recreate the key sequence and output the XOR of the key with the cipher bitstream
to disk.

Speed

Currently, the system speed is probably the optimum that can be expected from a pure
software implementation. We have not generally used the maximum key sizes possible but
worked mainly in the 170 digit range. This corresponds roughly to a factoring time of about
1 million years and is deemed secure enough for most purposes! Using moduli of this size,

the generation of a new key takes between 2 and 4 hours depending on whether the algorithm
’gets lucky’ or not.

For encryption and decryption, the computation of each residue involves the squaring of a
170 digit number modulo a 170 digit number. Each square mod n operation takes around
80mS and so about 12 residues are generated per second. Since 170 digits is approximately
565 bits the possibility exists of appending 9 bits per residue to the keystream. Thus, 108
bits per second of message may be processed. For the 4Kbyte (A4 page) message sizes
discussed earlier, the processing time is around 5 minutes.

Speeding the system in hardware

A hardware accelerator for the QRC system is under development. The unit is arranged as
a general purpose number theory processor with 1024 bit registers and capable of executing
the instructions ADD, SUB, MUL, MOD and DIV - the architecture of the ultimate RISC
processor! While using standard 50 nS 32-bit flash multipliers, it will use a new algorithm
to evaluate the MOD function using lookup tables in very fast static RAM. The architecture
will be heavily pipelined to optimise throughput.

Preliminary analysis of the prototype design indicates that the time required to squarea 1024
bit quantity and reduce the result modulo a 1024 bit quantity will be at most 2ZmS. With 500
residues produced per second and 10 bits appended to the keystream per residue, 5000 bits
of message per second may be processed. The processing of a 4K message will then take
less than 7 seconds. This represents a speed increase of over 40 times compared with the
software implementation in addition to using double the length of modulus. This will allow
the cipher to be realistically used for high security online applications as well as making
static encryption and decryption very much faster than the existing software.

It is envisaged that the system will be used in the Comprehensive Security System (CSS) [16]
developed in the Network Research Group using the security management centre concept.

A progress report on this implementation will be published in due course.

REFERENCES

(1]

(2]

(3]

(4]

(5]

[6]

(7
(8]

(9]
[10]

(11]

[12]

[13]

[14]

[15]

[16]

Diffie, W. & Hellman, M.E. New Directions in Cryptography, IEEE Trans. Inform.
Theory 22 (1976) pp 644-654.

Rivest, R.L., Shamir, A, & Adleman, L. A Method for Obtaining Digital Signatures
and Public Key Cryptosystems, Comm. ACM, 21, 1978, pp 120-126.

Rabin, M.O. Digitalised Signatures & Public Key Funciions as Intractable as
Factorization, Technical Report MIT/LCS/TR212, MIT Lab. Comp. Sci.
Cambridge, MA, Jan 1979.

Merkle, R.C. & Hellman, M.E. Hiding Information and Signatures in Trapdoor
Knapsacks, 1EEE Trans. Inform. Theory, 24, 5, Sept 1978, pp 525-530.

Blum, L., Blum, M. & Shub, M. A Simple Unpredictable Pseudo-random Number
Generator, SIAM Journal on Computing, 15, 2, 1986, pp 364-383.

Brassard, G. Modern Cryptology, Lecture Notes in Computer Science, Springer-
Verlag, Berlin, 1988, pp 35-39.

Blum, M. & Goldwasser, S. Proc CRYPTO 89 Santa Barbara, CA.

Knuth, D. The Art of Computer Programming Vol 2 : Semi-Numerical Algorithms,
Addison-Wesley, Reading, MA, 1981 pp 378-380.

Shanks, D. Solved and Unsolved Problems in Number Theory, Chelsea, NY, 1976.

Shamir, A. On the Generation of Cryptographically Strong Pseudo-random
Sequences, ACM Trans. Computer Systems 1 (1983) pp 38-44.

Yao, D. Theory and Application of Trapdoor Functions, Proc. 23rd IEEE Sym.
Foundations of Computer Science, 1982, pp80-91.

Vazirani, UV. & Vazirani, V.V. Efficient and Secure Pseudo-random Number
Generators, Proc. 25th IEEE Sym. Foundations of Computer Science 1984, pp
458-463.

LeVeque, W. Fundamentals of Number Theory, Addison-Wesley, Reading, MA,
1977.

Gordon, J.A. Strong Primes are Easy to Find, Proc. EUROCRYPT 84, Springer-
Verlag, 1985, pp 216-223.

Riesel, H. Prime Numbers and Computer Methods for Factorization, Birkhauser,
Boston, 1985, ISBN 0 8176 3291 3.

Shepherd, S.J., Sanders, P. & Patel, A. A Comprehensive Security System - the
Concepts, Agents and Protocols, Computers & Security, 9, 1990, pp 631-643.

BIOGRAPHIES

Simon J Shepherd is a lecturer in the Electrical Engineering Department at the University
of Bradford. He holds a First Class Honours Degree in Electrical Engineering and is
currently completing a Ph.D. in cryptography. His research interests include problems in
number theory, integer factoring algorithms and supercomputer architectures to attack
problems in computational number theory.

Peter W Sanders is Director of the Network Research Group at the University of Plymouth.
Under his direction, the group is currently undertaking several research contracts involving
new methodologies in network optimisation, large scale distributed security and secure
communications.

Dr Colin T Stockel is a Principal Lecturer in the Computing Department at the University
of Plymouth and is closely involved with the work of the Network Research Group. His
research interests include computer algorithms and their application to problems in
technology.

