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Abstract
The measurement of isotopic abundances and ratio variations of plutonium can provide important information about the 
sources and behaviours of radiogenic isotopes in the environment. The detection of ultra-trace isotopes of plutonium is 
increasing interest in the scientific literature for the determination of soil erosion rates due to their long retention times in 
the environment. The characteristics of plutonium within the environment make it an ideal tracer for the determination of 
soil redistribution rates and its robustness presents the opportunity to replace more commonly used radioisotopes such as 
137Cesium and 210Lead. However, ultra-trace analysis of plutonium (fg  g−1) presents analytical challenges which must be 
overcome in a variety of soil types. Inductively Coupled Plasma Mass Spectrometry has proven valuable for detection of 
plutonium in a range of environmental samples. However, severe polyatomic interferences from uranium isotopes significantly 
limits its application. Due to the improvements in detection sensitivity and reaction cell technology, inductively coupled 
plasma tandem mass spectrometry, which is also commonly referred to as triple quadrupole inductively coupled plasma 
tandem mass spectrometry (ICP-MS/MS), has emerged as an exceptional tool for ultra-trace elemental analysis of plutonium 
isotopes in environmental samples overcoming the limitations of standard quadrupole ICP-MS such as limited sensitivity 
and cost of analysis. In this review, common methods reported in the literature for the separation and subsequent detection 
of plutonium isotopes are compared to recent advances in analysis using ICP-MS/MS technology.
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1 Introduction

Plutonium (Pu) is an anthropogenic element, ubiquitous in 
the environment as a result of fallout from nuclear weapons 
testing in the 1950s and 60s, nuclear power plant accidents 
and marine discharges of reprocessing waste [1, 2]. How-
ever, distribution of Pu from the latter is more localised, 
owing to 239+240Pu being contained within the non-volatile 
fraction of nuclear fuel debris [3, 4]. A total of 520 atmos-
pheric nuclear weapons tests were conducted worldwide 
between 1945–1980 [5]. Due to their high radiotoxicity and 
long retention times, 239Pu and 240Pu isotopes are consid-
ered important transuranic nuclides in the environment with 
half-lives of 24,110 and 6561 years, respectively [6, 7]. The 
geographical distribution of Pu in the environment largely 
varies due to the spatial distribution of weapons testing as 
well as post-test global weather patterns. The highest deposi-
tion is in the northern hemisphere temperate latitudes [8], as 
only 10% of the overall tests were conducted in the south-
ern hemisphere [9]. This presents a challenge for the analy-
sis of environmental samples in the tropics due to a much 
lower fallout compared to the mid-latitudes of the northern 
hemisphere. This can be seen when comparing Europe with 
Africa, with Europe’s minimum activity per unit area being 
two times larger than Africa’s maximum caused by the high 

volume of tests in the northern hemisphere in compari-
son to a much smaller number in the southern hemisphere 
(Table 1). For the African continent, 14 nuclear weapons 
tests were conducted within the Tanezrouft region of Alge-
ria, of which only four tests were atmospheric [10, 11].

The analysis of long-lived Pu isotopes are applied as trac-
ers in geochemistry, geochronology, nuclear forensics and 
as part of environmental monitoring to inform decontamina-
tion and remediation strategies [2]. The accurate determi-
nation of Pu isotopes could be useful for the identification 
of contamination sources. For example, global atmospheric 
fallout has a 240Pu/239Pu ratio of 0.18 while much lower 
ratios (0.02–0.07) are observed via fallout from historical 
nuclear weapon testing and much higher ratios (0.30–0.41) 
are observed from releases originating from nuclear power 
plant accidents and incidents [12-15]. Commonly a sum of 
both the 239Pu and 240Pu isotopes is reported due to the his-
toric use of alpha spectroscopy for their detection. Due to 
the isotopes similar energies of emission, alpha spectrometry 
cannot distinguish between the two isotopes [16].

1.1  Environmental Analysis

Plutonium isotopes are considered hazardous pollutants in 
the environment due to their radiological toxicities and long 
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radioactive half-lives, leading to millennial persistence in 
the environment [4, 5]. Attention has focused on the impact 
of these radionuclides on the environment and interest in 
the biogeochemical behaviour of Pu has been increasing, 
in particular as an environmental tracer to investigate the 
origin and delivery pathways [17-19]. The concentrations 
of Pu isotopes (239+240Pu) in environmental samples are 
normally very low, (0.04 − 400) ×  10−16 g  m−3 in the atmos-
phere, (10 − 9000) ×  10−16 g  g−1 in soil and sediment, and 
(0.5 − 22) ×  10−16 g  L−1 in seawater samples [7]. Since the 
development of atomic energy from 1940’s, nuclear facilities 
have been established all over the world. With the lifetime of 
a typical nuclear power plant being between 40 and 60 years, 
a major concern is the decommissioning of facilities to 
ensure environmental protection and safety [5]. In order to 
effectively decommission an area, baseline levels of radio-
nuclides from atmospheric fallout must first be determined 
within the area close to the site. The analysis of isotopes 
238Pu, 239Pu and 240Pu in a variety of samples matrices is 
essential to plan decommissioning processes for matrices 
including concrete, graphite, metals, resin, and filters [19, 
20]. Appropriate information for radiological and chemi-
cal characterisation is an important factor for legacy waste 
decommissioning [5].

1.2  Soil Redistribution Tracer

Fallout radionuclides (FRN) provide an alternative approach 
to quantify soil erosion, compared to relatively expensive 
long-term monitoring techniques such as run-off plot testing. 
Methods using FRN, in contrast to traditional methods, can 
be performed within a single sampling campaign and can 
be applied to the calculation of both erosion and deposition 
rates. Previously FRN tracing has utilised 137Cs and 210Pb, 
however, Pu isotopes offers a new alternative method which 
can overcome some of the challenges faced when using 
both 137Cs and 210Pb [4, 21]. Recent advancements, in the 
quantification of soil redistribution rates, have employed Pu 
isotopes to determine rates of soil erosion using 239+240Pu 
inventory as a measure of soil redistribution [17, 22]. Due 
to 239Pu and 240Pu’s much longer half-lives, about 99% of 
original activity still remains in soils, providing stable and 

long term use for application compared to 137Cs which has 
a half-life of only 30 years [23, 24]. Approximately 75% 
of 137Cs has already decayed away since the peak of bomb 
testing and in the northern hemisphere the high spatial vari-
ability of fallout from nuclear power plant accidents, such 
as Chernobyl, make use of 137Cs as redistribution tracer 
challenging. More than six times as many atoms of 239+240Pu 
were originally dispersed in comparison to 137Cs, but the 
specific activity of 137Cs exceeds that of the Pu isotopes; 
this makes the Pu isotope more amenable to detection by 
atom counting methods such as ICP-MS whereas for 137Cs 
decay counting by radiometric (gamma) spectrometry is 
more appropriate [3, 18, 25-28].

The use of 239+240Pu to determine soil erosion has been 
reported infrequently in the past [29, 30]. However, in 2001 
the use of 239+240Pu as an alternative to 137Cs was investi-
gated at a study site in Scheyern farm, southern Germany 
[22]. Subsequently, there has been an increasing interest in 
utilising 239+240Pu as a tracer for soil erosion shown by the 
increasing number of publications using Pu isotopes for 
determining rates of soil erosion [24, 31, 32] (Table 2). Due 
to the increased environmental lifetime and low spatial vari-
ability of Pu isotopes compared to 137Cs, there is an increas-
ing potential for Pu isotopes to replace 137Cs in the tropics as 
a soil erosion tracer [4]. Therefore, this review aims to criti-
cally assess the current trends in analytical methodologies 
employed for the detection of Pu isotopes with the following 
objectives, (i) identification of common methods reported 
for the determination of Pu isotopes in environmental sam-
ples, and (ii) comparison of these methods to identify the 
usefulness in terms of the determination of soil redistribu-
tion rates.

2  Methods for Plutonium Determination

2.1  Radiochemical Separation of Plutonium

The accurate determination of trace Pu isotopes requires 
a high level of enrichment prior to analysis due to their 
low abundance in environmental samples, which is reli-
ant on atmospheric fallout. Using specialised separation 
techniques, the Pu isotopes can be both removed from the 
matrix and interfering substances, and pre-concentrated to 
ensure maximum sensitivity is achieved [42]. For analysis by 
α-spectrometry the samples require complete separation of 
Pu from the matrix to both avoid spectroscopic interferences 
(241Am on 238Pu) and obtain a thin alpha source for measure-
ment which must not exceed a few micrometres. This is due 
to the short range of alpha radiation particles resulting in a 
degradation of the resolution of Pu peaks in the spectrum 
as distance increases. This review focuses on the separation 
techniques employed for mass spectrometry techniques and 

Table 1  Geographical 
distribution of 239+240Pu 
inventories [8]

Continent 239+240Pu range 
(MBq  km−2)

Africa 3.33–19.2
South America 4.44–22.6
Australia 6.66–24.8
Asia 55.5–70.3
Europe 40.7–115
North America 12.2–148
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a more detailed explanation of separation for radiometric 
techniques can be found in Qiao et al. [16].

The matrix elements (salt), peak tailing, and hydrides of 
238U and other polyatomic ions are the major interferences in 
the measurement of Pu isotopes using ICP-MS [7]. The mass 
concentrations of Pu are normally very low in environmental 
samples, and so to maximise the number of atoms counted, 
large starting masses/volumes of sample are used to pre-con-
centrate the Pu in the final measured sample aliquot sample. 
When analysing solid samples, Pu first needs to be released 
from the solid sample matrix into solution prior to chemical 
separation. The first preparation step for Pu separation is to 
remove the organic matter in the sample as otherwise the Pu 
may bind to these and disrupt the chromatography. Organic 
matter in the solid samples is commonly decomposed by dry 
ashing in muffle furnaces at 400–700 °C for 2–24 h [43], 
although it should be noted that many published studies do 
not give details of the ashing temperature.

Prior to extraction, samples are spiked with a low abun-
dance isotope such as 242Pu which can be used as a tracer 
to calculate recovery following chemical separation and to 
validate the success of the separation by correction for Pu 
loss during the analytical process [19, 44, 45]. Concentrated 
nitric acid is often employed for the extraction of Pu from 
soil but methods using 8 M nitric acid and aqua regia have 
also been used [23, 42, 46, 47]. An alternative commonly 

used, is a lithium metaborate fusion for samples containing 
refractory species of Pu, such as samples which have been 
collected from highly contaminated sites of nuclear weapons 
tests and nuclear accidents. These refractory species are not 
fully dissolved by acid leaching which could lead to under-
estimation of analytical results [48, 49]. However, despite 
fusion methods being most effective for the digestion of soil 
samples containing Pu, drawbacks of the method include 
that additional interfering elements and matrices can also be 
decomposed leading to unreliable recovery and practicality 
of fusing large volumes of sample [6].

Co-precipitation, solvent extraction, ion exchange chro-
matography, and extraction chromatography are often 
applied for separation and purification of Pu in environ-
mental samples, especially for removal of U [7]. Among 
the methods in recent years, ion exchange and extraction 
chromatography are becoming the most popular technique. 
These methods are based on anionic complexes of Pu with 
 NO3

− and  Cl− bonding with the organic functional group 
within the chromatographic resin [7]. These methods are 
reliant on Pu existing in the correct oxidation state prior to 
separation. Since both ion exchange chromatography and 
extraction chromatography rely on Pu to be in the oxidation 
state Pu(IV),  NaNO2 is frequently employed as a valence 
adjuster to convert Pu to the tetravalent state with the nitrite 
ion playing an important role in Pu aqueous processing. It 

Table 2  Application of Pu 
analysis for the determination of 
soil redistribution rates

Analysis method References Location Country

Alpha spectrometry Schimmack et al. [22] Scheyern farm Germany
Schimmack et al. [33] Scheyern farm Germany

AMS Hoo et al. [31] Camberra Australia
Lal et al. [24] Northern territory Australia
Lal et al. [32] Daly River Australia

ICP-MS with a high 
efficiency ultrasonic 
nebuliser

Xu et al. [34] Liaodong Bay China
Alewell et al. [17] The Urseren Valley Switzerland
Xu et al. [23] Liaodong Bay China
Zhang et al. [35] Liaodong Bay China
Zollinger et al. [36] Upper Engadine Switzerland
Meusburger et al. [37] Haean catchment South Korea
Meusburger et al. [18] The Urseren Valley Switzerland
Raab et al. [26] Sila Massif upland Italy
Calitri et al. [27] Uckermark region Germany
Musso et al. [38] Klausenpass Switzerland
Wilken et al. [39] Various Uganda, 

Rwanda, DR 
Congo

Wilken et al. [40] Weichselian glacial belt Germany
Khodadadi et al. [3] Zarivar Lake Iran

ICP-MS/MS Zhang et al. [28] Loess Plateau, Qingyang China
ICP-MS/MS with a high 

efficiency ultrasonic 
nebuliser

Portes et al. [25] Wyoming America
Calitri et al. [41] Uckermark region Germany
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is capable of oxidising Pu(III) to Pu(IV) and of reducing 
Pu(VI) to Pu(IV). Often another reducing agent, such as 
ferrous ion is also added to increase the rate of the reac-
tion because the Pu(VI) to Pu(IV) reduction by nitrite is 
slow [16]. An additional step widely reported to increase the 
rate of reaction, was the conversion of Pu species to Pu(III) 
using a reducing agent such as  K2S2O5 prior to the addition 
of  NaNO2 [50, 51]. Co-precipitation with reagents such as 
Ca, Bi or Fe can be used to reduce the effects of matrix ele-
ments on Pu in the sample prior to chromatographic sepa-
ration [48]. This is often useful for analysis of low mass 
samples (~ 1 g) to preconcentrate Pu, but is not practical for 
larger mass soils (e.g., > 50 g) owing to the use of additional 
chemicals and time-consuming steps.

Nygren et al. [52] investigated the separation of Pu from 
soil and sediment using different chromatographic methods 
and found that the TEVA resin (Eichrom Technologies) 
showed the highest yield of Pu. The potential of this method 
was further realised when incorporated into a full analyti-
cal protocol using ICP-MS by Ketterer et al. [53].With > 80 
citations in google scholar, this paper has become pivotal 
in the literature, with TEVA resins widely adopted as the 
standard separation method for Pu isotope measurements for 
the majority of analytical techniques. This can be attributed 
to relatively low uranium content within the TEVA resin 
and relatively large differences in the nitric acid depend-
ency factors of k′ (k′ = distribution coefficient between resin 
and solution) [54]. The TEVA-resin is based on an aliphatic 
(R = C8 and C10) quaternary ammonium salt as extractant 
[52]. To maximise decontamination factors of U isotopes 
multi-step separations can be used with a combination of 
resins. Examples of this include, Varga et al. [55] where 
a UTEVA column was used in tandem with a TRU resin, 
Metzger et al. [56] used a TEVA column in tandem with 
UTEVA and Puzas et al. [57] using an AG1-x8 followed by 
a UTEVA column in tandem with TRU. Through the use of 
these separation techniques, decontamination factors of U 
isotopes with respect to Pu of up to  107 have been achieved 
[7].

2.2  Radiometric Method for Measurement 
of Plutonium

The determination of Pu isotopes in samples can be achieved 
in two fundamentally different ways either using: (i) decay 
counting (radiometric techniques) or (ii) atom counting 
methods (mass spectroscopy techniques). Alpha spectrome-
try is the most used radiometric technique for the determina-
tion of isotopes 238Pu, 239+240Pu, 242Pu and 244Pu. However, 
α-spectrometry is unable to distinguish between isotopes 
with similar energy of emission due to the limited energy 
resolution of alpha detectors (Table 3) [16]. As a result 
239+240Pu isotopes are reported as a sum of activities and 

the method is also unable to distinguish between 238Pu and 
interfering isotope 241Am [58]. In addition, α-spectroscopy 
detection of long-lived 242Pu and 244Pu isotopes in environ-
mental samples is challenging due to their ultra-trace level 
concentrations in the environment and their low specific 
activity [59].

A typical detection limit of α-spectrometry is in the order 
 10–4 Bq (0.05 pg) 239Pu [16, 48, 58, 61]. The low cost of 
instrumentation, high selectivity for alpha particles and high 
sensitivity resulting from a low background signal make this 
method attractive for the measurement of Pu isotopes in 
environmental samples [59]. Although α-spectrometry has 
these advantages it is a detection technique which requires 
very long counting times (1–30 days) and due to the short 
range of alpha radiation particles and increased thickness 
may result in a degradation of the resolution of Pu peaks in 
the spectrum [61]. This means that α-spectrometry detec-
tion is not a suitable method for emergency situations where 
results are required within a short timeframe or large-scale 
environmental surveys.

The 241Pu isotope has a principal decay mode via a beta 
emission meaning that traditionally it has been determined 
directly by liquid scintillation counting (LSC). It can also be 
measured indirectly by α-spectrometry to determine the in-
grown daughter 241Am activity [20]. Both methods require 
a pre-concentration and separation step to allow for analysis 
and long counting times are required to achieve sufficient 
counts for an acceptable precision. One of the main chal-
lenges of the LSC method is the accurate determination of 
the counting efficiency which can vary between 30–43%, 
depending on the spectral quench parameter of the external 
standard and accounting for these low efficiencies is a chal-
lenge [62]. Although initial fallout of 241Pu was high, this 
isotope is not applicable for use as a soil erosion tracer due 
to its short half-life and limited environmental lifetime [20].

Table 3  Nuclear properties of Pu isotopes [16, 60]. Note all decays 
also produce gamma emission but their intensities are too low to be 
used analytically for environmental samples

Nuclide Half-life (yr) Decay mode Specific 
activity (Bq 
 g−1)

Energy of 
emission 
(MeV)

238Pu 87.7 α 6.34 ×  1011 5.59
239Pu 24,100 α 2.30 ×  109 5.16
240Pu 6561 α 8.40 ×  109 5.17
241Pu 14.3 β 3.82 ×  1012 20.8* (KeV)
242Pu 3.73 ×  105 α 1.46 ×  108 4.85
244Pu 8.08 ×  107 α 6.71 ×  105 4.59
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2.3  Mass Spectrometry Techniques

2.3.1  Accelerator Mass Spectrometry

The mass spectrometry technique traditionally used for 
239+240Pu measurements in environmental samples is Accel-
erator Mass Spectrometry (AMS). The instrumental effort 
is much higher for AMS than for α-spectrometry, but the 
much increased sensitivity and ability to distinguish between 
the isotopes 239Pu and 240Pu has in the past made AMS an 
attractive option for Pu analysis and may be viewed as the 
“gold standard” technique [58]. The main limitation when 
using the AMS method to analyse Pu isotopes is the poor 
availability of specialist facilities where beam time must be 
applied for to access the facilities and the relatively high cost 
of using these facilities [34]. However, despite these limita-
tions AMS can achieve very high levels of sensitivity and 
the method stands out with setting detection limits as low 
as 0.001 mBq for 239Pu regardless of the matrix components 
of the sample, which is between 10–100 times better than 
detection limits achieved using alpha spectrometry [4, 58, 
63–66]. This is possible due to the elimination of molecular 
isobars in the stripping process, which occurs in the terminal 
of an electrostatic tandem accelerator [65]. Another benefit 
of this stripping process is that the levels of U purification 
prior to analysis are lower than other MS techniques, allow-
ing for the simplification of the radiochemical procedures 
prior to analysis [66].

2.3.2  Thermal Ionisation Mass Spectrometry 
and Resonance Ionisation Mass Spectrometry

In addition to AMS there are also some alternative mass 
spectroscopy techniques that are highly sensitive for the 
detection of Pu isotopes including Thermal Ionisation Mass 
Spectrometry (TIMS) and Resonance Ionisation Mass Spec-
trometry (RIMS). The TIMS method has a higher sensitivity 
for 239Pu and 240Pu than ICP-MS and interferences due to 
UH and  UH2 are less significant. This means that TIMS has 
become the method of choice for measuring isotope ratios 
with precision as low as 0.002% [67]. However, TIMS is 

limited by the relatively high cost of analytical facilities and 
the extensive sample preparation prior to analysis to pro-
duce a thin filament source, taking days to weeks of dissolu-
tion and separation steps [68]. The method used in RIMS, 
employs tuned laser beams for the selective excitation of 
the Pu atoms. It is both highly sensitive and selective for the 
measurement of 239Pu with detection of 239Pu activities as 
low as 100 atoms per sample, equivalent to of 0.1 nBq. This 
method however, is only available at specialist laboratories 
worldwide [4].

2.3.3  Inductively Coupled Plasma Mass Spectrometry

An alternative to mass spectrometry methods described 
above is Inductively Coupled Plasma Mass Spectrometry 
(ICP-MS). This method has grown in popularity over the 
past 10 years which is shown by the increasing number of 
publications using the method and it has become a widely 
used technique for the detection of Pu isotopes due to its 
high sensitivity, short analytical times, and relatively simple 
operation. However, the method can be hindered by the for-
mation of interferences due to polyatomic species, formed 
from matrix elements and plasma gases. These polyatomic 
interferences require removal as they have the same integer 
mass-to-charge ratios as the analyte of interest, leading to 
false detection or overestimation of results [14, 69]. For Pu 
isotopes, the major interfering ions are a consequence of the 
presence of 238U which is ubiquitous in the environment. 
Uranium hydrides 238UH+ and 238UH2

+ cannot be resolved 
from 239Pu+ and 240Pu+ making analysis of these isotopes a 
challenge [65]. With the concentration of 238U in environ-
mental samples being up to 6–9 orders of magnitude higher 
than that of Pu, another issue for the analysis of 239Pu as a 
result, in quadrupole ICP-MS is the peak tailing from 238U 
[70]. Therefore, low-resolution ICP-MS cannot always reli-
ably determine 239Pu, relying heavily on the chemical puri-
fication steps prior to analysis, which are used to remove U 
isotopes from the matrix [71]. However, these procedures 
also bring additional U into the final sample solutions 
through atmospheric contamination of the glassware, and 
reagents [72]. There are also other minor polyatomic inter-
ferences which need to be taken into consideration such as 
plasma gas induced Hg and Pb interferences (Table 4).

Table 4  Polyatomic interferences for Pu isotopes using ICP-MS [6, 46, 73]

Isotope Polyatomic interference

238Pu 198Pt40Ar+, 201Hg37Cl+, 198Hg40Ar+, 202Hg36Ar+, 205Tl16O2
1H+, 203Tl35Cl+, 208Pb14N16O+, 207Pb14N16O1H+, 206Pb16O2

+

239Pu 206Pb33S+, 207Pb16O2
+, 208Pb31P+, 205Tl34S+, 203Tl36Ar+, 202Hg37Cl+, 199Hg40Ar+, 203Tl36Ar+,204Pb35Cl+,177Hf14N16O3

+, 
176Hf14N16O3

1H+,191Ir16O3
+, 193Ir14N16O2

+, 198Pt40Ar1H+, 208Pb14N16O1H+, 209Bi14N16O+

240Pu 204Pb36Ar+, 206Pb34S+, 207Pb33S+, 208Pb32S+, 205Tl35Cl+, 203Tl37Cl+, 205Hg35Cl+ 200Hg40Ar+,208Pb16O2
+,178Hf14N16O3

+, 
177Hf14N16O3

1H+, 191Ir16O3
1H+, 193Ir14N16O2

1H+, 194Pt14N16O2
+, 207Pb16O2

1H+, 209Bi14N16O1H+
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2.3.4  Dynamic Reaction Cell/Collision Reaction 
Cell‑Inductively Coupled Plasma Mass Spectrometry

Some studies have focused on the use of dynamic reaction 
cell (DRC) or collision reaction cell (CRC) ICP-MS to 
eliminate the  UH+ interference. The different reactivities 
of Pu and U with specific gases provide a promising way 
for the spectro-chemical resolution of 238Pu+ from isobaric 
238U+ and polyatomic interference i.e.  UH+ in ICP-MS 
[70]. Through the introduction of He gas it was reported 
that the sensitivity of Pu isotopes could be enhanced by 
about three times, however, the signal of UH species is 
also enhanced, making it an unsuitable gas to use within 
the reaction cell [7]. Vais et al. [74] found that the 238UH+ 
signal interfering with 239Pu could be reduced by 10 orders 
of magnitude by using  NH3 gas while the Pu signal was 
only reduced slightly [74]. Tanner et al. [75] and Gour-
giotis et al. [76] investigated the use of  CO2 gas for the 

reduction of interference, finding that the reaction effi-
ciency of  UH+ was significantly higher than that of  Pu+; 
ultimately reducing the interference. The different reactiv-
ity observed for U and Pu towards  CO2 gas is linked to the 
need to promote the ground-state ions to a reactive con-
figuration with the  Pu+ ion requiring a greater energy to 
promote the electron during reaction (1.08 eV) compared 
to  U+ (0.04 eV) [75, 76].

2.3.5  Inductively Coupled Plasma Tandem Mass 
Spectrometry

An emerging technique for the analysis of Pu isotopes is 
ICP-MS/MS which is also commonly referred to as triple 
quadrupole ICP-MS (ICP-QQQ-MS). The method has 
gained popularity over recent years due to the method’s 
achievable low (Table 5) detection limits and ability to 
remove interferences using collision cell technology. This 
advancement in interference removal efficiency has led to 
more applications in nuclear materials analysis and other 
complementary radiometric techniques [70]. The additional 
quadrupole mass filter located in the front of the collision-
reaction cell allows the pre-selection of species, which pre-
vents the formation of secondary polyatomic interference 
and improves the efficiency of the cell chemistry in the col-
lision cell (Fig. 1) [73, 77]. Using a second quadrupole peak 
tailing will be reduced which in turn has the advantage of 
improving the mass resolution reducing effects of peak tail-
ing. Ammonia  (NH3), carbon dioxide  (CO2) and oxygen gas 
 (O2) are among the different reaction gases proposed for the 
removal of  UH+ and  UH2

+ interferences by ICP-MS/MS [6, 
7, 78, 79].

The reaction of  U+ and  UH+ interferences within the 
reaction cell of the ICP-MS/MS with  NH3, work effectively 
to mass shift interferences away from the Pu isotopes. This 
is possible as a result of Pu isotopes not reacting with the 
gas and therefore remaining at the original m/z ratio while 
 U+ and  UH+ are shifted to a higher ratio [7].

Table 5  Method detection limits of 239Pu and 240Pu reported in the 
literature using different gas modes with ICP-MS/MS

References Sample 
introduction 
system

Instrument Gas mode Detection 
limit (fg 
 g−1)
239Pu 240Pu

Xing et al. 
[42]

None Agilent 8800 NH3 0.55 0.09

Xing et al. 
[6]

None Agilent 8800 NH3 0.55 0.09

Bu et al. [47] APEX-Ω Agilent 8900 NH3 0.30 0.20
Xu et al. [79] APEX-Ω Agilent 8900 NH3 0.16 0.05
Hou et al. [7] None Agilent 8800 CO2 0.11 0.07
Zhang et al. 

[73]
None Agilent 8900 O2 0.06 0.06

239Pu+ 238U+

238U1H+

Reaction
gas O2

239Pu16O2
+

238U16O2
+

1H
Q1

m/z = 239
Q2

m/z = 271

Fig. 1  Reaction mechanism of  O2 gas using ICP-MS/MS and m/z of 239 and 271
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Xu et al. [79] reported that both the  U+ and  UH+ interfer-
ences were effectively eliminated using 0.4 mL  min−1  NH3 
as a reaction gas and 6.4 mL  min−1 He, reducing the overall 
interference to < 2.4 ×  10–7. In addition, Pu sensitivity was 
increased by the collisional focusing effect of He gas to a 
sensitivity of 13,900 Mcps (mg  L−1)−1. Despite the ability 
of  NH3 to react with the U interference, the use of  NH3 gas 
poses several safety concerns, including its potential cor-
rosive nature, requiring mitigation for its use in a laboratory 
that could be prohibitively costly [80]. In addition, the ratio 
of  UH+/U+, although significantly reduced, is not sufficient 
to meet the needs of measurement of ultra-low-level Pu in 
samples containing comparatively higher U concentrations 
[77].

Another commonly used gas is  CO2 which has been suc-
cessfully used to eliminate  UH+ interference by convert-
ing hydrides within the sample to oxides, while keeping the 
intensity of the Pu signal. Both the tailing effect of 238U on 
abundance sensitivity and the polyatomic interference  UH+ 
are eliminated, reducing the overall interference of uranium 
to three orders of magnitude better than conventional ICP-
MS [7].

Hou et  al. [49] reported that the optimal conditions 
to eliminate U interferences was 1.2 mL  min−1  CO2 and 
8 mL   min−1 He, which reduced overall interference on 
239Pu to < 1 ×  10–8. However, it was reported that although 
this high flow rate is optimal for the removal of interfer-
ing ions, increasing flow rates above 1.2 mL  min−1 of  CO2 
results in declining intensity of  PuO+ signal. This was 
attributed to the increased production of  PuO2

+ within the 
collision cell [7]. Similar results were reported by Childs 
et al. [77] where significant U interferences were observed 
when comparing a U spiked Pu standard with an un-spiked 
standard; therefore it was deemed that Pu quantification was 
not possible using high flow rates of  CO2 [77]. As the m/z 
ratio for  PuO2

+  > 271 is beyond the mass range for older 
ICP-MS/MS instruments, the loss of Pu signal measured 

U+ + NH
3
→ U(NH

m
)
n

+

UH+ + NH3 → UH (NHm)n
+

(m∕n = 1 − 2).

U+ + CO
2
→ UO

n

+

UH+ + CO2 → UOn
+

(n = 1 − 2)

at the  Pu+ mass rather than shifted to an oxide form can 
have a negative impact on the measurement sensitivity. User 
requirements, particularly the nuclear industry, for analys-
ing heavy elements in mass shift modes has meant that new 
instruments such as the Agilent 8900 have an extended m/z 
detection range up to 275, allowing for the detection of the 
mass shifted Pu isotope [73]. This highlights a need for 
manufacturers to extend the m/z range in future instruments 
to improve reaction cell chemistry and therefore allow for 
greater research into elements with complex interferences, 
further reducing detection limits and increasing sensitivity.

In addition to  NH3 and  CO2,  O2 has also been used as 
a reaction gas with the  Pu+ ion readily converted to both 
 PuO+ and  PuO2

+ [73]. Of these two ions the favoured one 
for analysis is  PuO2

+ as it is subject to lesser interference 
than  PuO+ which experiences dominant interference from 
uranium oxides, 238U16O+, 238U16O1H+ and 238U16O1H2

+ for 
the measurement of 239Pu16O+ and 240Pu16O+ ions, causing 
a less efficient elimination of the uranium interference [7].

Zhang et al. [28] found that both 238U+ and 238U1H+ pref-
erably reacted with  O2 to form 238U16O2

+ and therefore the 
interference was significantly reduced. The optimal condi-
tions in order to observe maximal sensitivity of 242Pu+ (880 
Mcps (mg  L−1)−1) at m/z 274  (PuO2

+) was obtained using 
0.09 mL  min−1  O2 as a reaction gas and 12 mL  min−1 He 
[73]. The  Pu+ signal decreases exponentially by more than 
600 times when using  O2/He gas mode as opposed to He 
only mode and this can be attributed to the formation of 
 PuO2

+ when subjected to relatively high  O2 levels in the 
reaction cell. The use of this reaction gas is however limited 
to detectors with m/z reaching > 271. The reaction mecha-
nism for the removal of uranium interferences can be seen in 
Fig. 1. It should be noted that there may still be some tailing 
of the 238U16O2

+ on to 239Pu16O2
+.

Table 5 summarises the detection limits achieved for ICP-
MS/MS analysis using reaction gasses. With older ICP-MS/
MS instruments being limited to detect m/z ratios no greater 
than > 271 one of the most commonly used reaction gases 
reported in ICP-MS/MS has been  NH3. However, with 
the need for safe gas handling due to the corrosive nature 
of NH3 and the availability of quadrupole systems capa-
ble of > 271 amu, alternative methods are beginning to be 
favoured. With recent advancements in ICP-MS/MS tech-
nology allowing for m/z ratios > 271 to be detected, oxygen 

U+ + O
2
→ UO

n

+

UH+ + O2 → UOn
+

(n = 1 − 2)
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gas presents an exciting development in the detection of Pu 
isotopes in the presence of U in samples with detection lim-
its exceeding that of  NH3 and  CO2.

2.3.6  Sector Field Inductively Coupled Plasma Mass 
Spectrometry

Limitations in the mass resolution of quadrupole ICP-
MS has led to the development of high-resolution mass 
spectrometers. Sector field ICP-MS (SF-ICP-MS) which 
is based on the magnetic field approach and uses dou-
ble focusing, to improve the mass resolution of ion peaks 
[81, 82]. This is achieved using an electrostatic analyser 
(ESA) before or after the magnetic field before passing 
the sample through an exit slit to filter the isotopes. Con-
sequently, compared to a quadrupole system either an 
improvement in selectivity in high resolution mode or an 
improvement in the sensitivity as well as a reduction of the 
noise level can be achieved in low resolution mode (simi-
lar to quadrupole); this results in low achievable detection 
limits in the pg  kg−1 range [83–85]. Another advantage 
of SF-ICP-MS over traditional ICP-MS is the ability to 
measure the signals on flat-topped peaks at lower resolu-
tions. This offers an improvement in the measurement of 
isotope ratio precision over quadrupole based ICP-MS; 
however, it is important to note that precision is reduced 
with increasing resolution due to the deterioration of peak 
shape and is still poorer than that of MC-ICP-MS, where 
true simultaneous ratio measurements are made. Similarly 
to traditional quadrupole ICP-MS, SF-ICP-MS requires a 
high level of decontamination prior to analysis to remove 
interferences from  UH+ as even high resolution mode is 
insufficient to fully remove this interference [86, 87]. This 
alongside the relatively higher cost of instrumentation and 
subsequently less common availability, make SF-ICP-MS 
a less attractive method for the determination of Pu in soil 
erosion studies. However, SF-ICP-MS is an more appro-
priate option in cases where a higher degree of specificity 
is required (e.g. forensic identification of Pu source using 
isotope ratios) compared to the requirement for soil ero-
sion studies [83, 88].

2.3.7  Multi Collector Inductively Coupled Plasma Mass 
Spectrometry

Multi-collector ICP-MS (MC-ICP-MS) is based on the 
simultaneous detection of isotopes, eliminating classical 
sources of uncertainty from the sequential scanning used 
in ICP-MS [89]. Typically, MC-ICP-MS instruments will 

have up to nine faraday cages making up the detection 
assembly and newer instruments make use of ion counting 
systems to improve the abundance selectivity. Therefore, 
MC-ICP-MS can be used for measuring isotope composi-
tions with both high precision and accuracy, and has the 
advantage of a high ionisation efficiency in comparison to 
the TIMS, allowing for a larger theoretical mass range of 
isotopes to be measured [81]. Similarly, to SF-ICP-MS, 
this analysis method has a requirement for the removal of 
 UH+ via extensive separation prior to analysis and one of 
the challenges which must be overcome using MC-ICP-
MS is the limited ‘practical’ mass range—needing repeat 
analyses to cover broad mass range, hence longer analysis 
time compared to ICP-MS/MS, limiting sample through-
put. A consequence of this is the need to select an internal 
standard which falls into the mass range which is usually 
limited between 10% and 30% [90, 91]. Similarly to the 
SF-ICP-MS instrumentation, MC-ICP-MS is relatively 
more expensive than ICP-MS/MS, therefore with less 
availability and slower sample throughput is not suitable 
to soil erosion studies which need quick analysis of large 
quantity of samples.

2.3.8  Time of Flight Inductively Coupled Plasma Mass 
Spectrometry

An alternative analysis method is time of flight ICP-MS 
(ICP-TOF–MS). This technique pushes a packet of sample 
ions from the ICP into a ion flight tube, accelerates them and 
then separates the ions of different mass to charge ratio by 
their drift time [92]. Counting of the ions proceeds in a tem-
poral succession on a microsecond time scale and because 
the packet of ions was sampled at the same time from the 
ICP this method of detection is essentially simultaneous 
[93]. This gives it an advantage of requiring a low sample 
volume and quick analysis time. However, prior to analysis 
a high degree of separation is required, and selectivity is 
similar to that of traditional quadrupole ICP-MS. Although 
this method does not offer advantages over ICP-MS/MS in 
terms of analysis for the purpose of soil erosion measure-
ment, it does have a high potential to be used alongside laser 
ablation for high resolution analysis of impurities in nuclear 
fuels, nanomaterials and biological matrices [94–97].

3  Discussion

This review summarised the advancements of Pu isotope 
analysis over the past 20 years, by identifying common 
methods reported for the determination of Pu isotopes in 
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environmental samples and comparing these methods for 
their respective advantages for the measurement of soil 
redistribution rates. A future challenge which must be 
addressed is the need for ultra-trace analysis of Pu isotopes 
in soils, so that Pu can be used as an effective tool for the 
quantification of soil erosion in areas where global fallout 
is minimal (tropics). Wilken et al. [39] demonstrated the 
applicability of using 239+240Pu in tropical Africa for the 
determination of soil erosion for study sites along the East 
African Rift Valley system. Despite lower global fallout in 
the tropics, a relatively high 239+240Pu baseline inventory was 
found at the reference sites. Cultivated sites showed signs 
of substantial soil erosion and sedimentation that exceeded 
40 cm over 55 years. However, half of the slope sites at the 
cropland site in DR Congo fell below the detection limit of 
ICP-MS analysis, which makes the drawing of conclusions 
from data generated by traditional techniques very difficult 
if not impossible. This challenge could be addressed using 
ICP-MS/MS, through which the removal of  UH+ interfer-
ences greater selectivity can be achieved (Table 4). The 
observation of extensive soil erosion, yet inability to deter-
mine measurable quantities of Pu emphasised the value of 
Pu isotopes measured by ICP-MS/MS to study the impact 
of erosion in tropical Africa where the baseline Pu signal is 
likely to relatively much lower than in other global regions. 
With the advancements of Pu analysis using reaction cell 
technology, analysis challenges such as limited sensitivity 
and cost of analysis associated with traditional methods of 
analysis can be overcome. The improved detection limits 
using ICP-MS/MS can be seen in Table 6 and the use of Pu 
isotopes to determine soil redistribution rates in challenging 
environments (low signal), increasing its viability for use in 
geochemical surveys associated with soil erosion studies.

Both radiometric and mass spectrometry techniques 
require extensive and time-consuming sample preparation 
steps prior to analysis which consist of the digestion of soil 
samples and radiochemical separation from the matrix ele-
ments. Radiometric measurements using both alpha-par-
ticle spectrometry and LSC are simple and cost-effective 
techniques for the determination of 238Pu, 239 + 240Pu and 
241Pu. However, these methods do not have the ability to 
detect isotopes 239Pu and 240Pu individually. In addition, 
they require relatively long counting times compared to 
mass spectrometry methods for accurate quantification of 
Pu at environmental levels summarised in Table 6. Not all 
of the papers in Table 6 provided sufficient details to pro-
vide an in-depth comparison between methods, with many 
papers missing crucial details about operating conditions. 
An ideal format for the comparison of methods and to guide 
future studies would follow the presentation of experimental 
details by Kazi et al. [98] and Wang et al. [99]. In contrast, 
mass spectroscopy techniques can provide shorter analysis 
times and are highly sensitive with detection limits as low 

as  10–3 mBq  g−1. Furthermore, these methods have the capa-
bility to provide individual isotopic concentrations of 239Pu 
and 240Pu. However, the availability and cost of some mass 
spectroscopy techniques is a limiting factor. In some cases 
depending on the intended purpose of the analysis a combi-
nation of both radiometric and mass spectroscopy techniques 
may be used [16]. Although AMS can be considered the 
gold standard for ICP-MS analysis, the cost of instrumenta-
tion set up (approximately $4 million for the set-up of each 
facility) and therefore availability of analytical facilities is a 
major limiting factor, making this method for the determina-
tion of Pu in environmental samples unattractive. Alterna-
tive mass spectrometric techniques such as SF-ICP-MS and 
MC-ICP-MS, have the advantage of increased resolution for 
the determination of isotopic ratios compared to traditional 
quadrupole ICP-MS, however, they require a comparable 
level of decontamination prior to analysis to remove inter-
ferences from  UH+. This challenge can be overcome using 
reaction cell technology via developments in recent years of 
ICP-MS/MS to selectively mass shift interferences during 
analysis, taking advantage of the high throughput capabili-
ties of this instrumentation over other instruments, enabling 
its broader application to survey scale studies on soil redis-
tribution rates. Although not reported in the literature at this 
point in time, exciting developments in the field of analytical 
chemistry using reaction cell technology paired with high 
resolution SF-ICP-MS and MC-ICP-MS show promise for 
the future detection of isotopic ratios. However, for the pur-
pose of soil erosion studies the additional costs associated 
with the setup of these analysis methods and the surplus 
ability to determine accurate ratios to the requirement of soil 
erosion measurement, makes it unlikely these methods will 
be used for this purpose in the future.

4  Conclusion

The development of ICP-MS/MS has opened many novel 
fields of research involving the analysis of Pu isotopes in 
soils where ultra-trace detection is required, including as 
a soil erosion tracer. The developments of reaction cell 
technology clearly demonstrates that ICP-MS/MS can be 
a routine tool to support Pu analysis in areas of research 
such as nuclear decommissioning and soil erosion trac-
ing. The advantages that ICP-MS/MS analysis can offer 
relative to other instrumentation is the increased rate of 
analysis and subsequent lower costs per sample, meaning 
that the method has better availability and can be deployed 
for survey scale research. However, to improve the detec-
tion limits of Pu isotopes, developments in mass spectros-
copy measurements using oxygen as the reaction gas are 
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Table 6  Comparison of analytical techniques for the determination of Pu activity concentrations

Detection 
method

References Sample 
introduction 
technique

Instrument Detection limit 
(mBq)

Detection 
limit (Bq 
 kg−1)

Mass of sam-
ple (g)

Pu recovery 
(%)

Analysis time 
(s)

α-spectrometry [58] Ortec 0.40 2.5–6 4.0 ×  104

[98] Ortec Spec-
trum Master 
920-8

0.20 1 – 10 95.5 ± 4.6 7.2 ×  103 – 
3.6 ×  105

[100] Alpha Analyst 0.01 50 87.6
[101] Canberra 2.95 ×  103 3.65 ×  103

[48] Ortec 0.31 20 84 1.73 ×  105

LSC [102] Wallac 1220 
Quantulus

0.73 20 75 – 80 1.44 ×  104

[103] Tri-Carb 
3180TR/SL

6 ×  10–3 5 ×  103 80–95 3600

[104] PERALS 
Model 
8100AB

6.5 ×  103 2 84 ± 7.2 250

AMS [64] Australian 
National 
University

4.5 ×  10–7

[105] Compact 
AMS system 
TANDY at 
ETH Zurich

8.74 ×  10–7 3600

[106] Centro 
Nacional de 
Aceleradores

0.05 60–90 30

AMS [98] Isotrace Labo-
ratory

0.11 1 – 10 95.5 ± 4.6

[65] CNA 0.013 70 – 88
TIMS [107] 5 ×  10–4 1–20 75–90

[108] Triton, 
Thermo 
Fisher Scien-
tific

1.38 ×  10–8 1 ×  10–12

ICP-MS [74] ELAN DRC 
II Perkin-
Elmer

0.16

[75] ELAN DRC 
II Perkin-
Elmer

1.38

[109] APEX-Ω ELAN5000 9.2 70 – 100 660
[110] APEX-Ω ELAN-DRCII, 

PerkinElmer
6.67 10 87–102

[51] X SeriesII 
Thermo 
Fisher Scien-
tific

2.76 1–20 90

ICP-MS/MS [48] Agilent 8800 0.08 5
[42] Agilent 8800 1.3 1–20 80 – 90
[5] Agilent 8800 0.25 70–85 300
[6] Agilent 8800 1.3 10

ICP-MS/MS [70] APEX-Ω Agilent 8900 0.69 80 120
[73] Agilent 8900 0.14
[79] APEX-Ω Agilent 8900 0.37 1–2

SF-ICP-MS [61] Aridus ELEMENT 0.30
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necessary in order to detect high end m/z ratios (> 271) to 
further enhance the selectivity for Pu through removal of 
polyatomic interferences. Additionally, there is a need to 
refine the separation process prior to analysis to allow for 
the effective pre-concentration of ultra-trace Pu. This has 
the potential to increase Pu’s applicability to be used as a 
soil redistribution tracer in challenging environments, such 
as tropical Africa, where Pu concentrations will be present 
in soils at ultra-trace levels. This data has the potential to 
inform land management practices via the better under-
standing of the rate of soil losses in the tropics.
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