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Machine learning driven
prediction of cerebrospinal fluid
rhinorrhoea following endonasal
skull base surgery: A multicentre
prospective observational study

CRANIAL Consortium
Background: Cerebrospinal fluid rhinorrhoea (CSFR) is a common complication

following endonasal skull base surgery, a technique that is fundamental to the

treatment of pituitary adenomas and many other skull base tumours. The CRANIAL

study explored CSFR incidence and related risk factors, particularly skull base repair

techniques, via a multicentre prospective observational study. We sought to use

machine learning to leverage this complex multicentre dataset for CSFR prediction

and risk factor analysis.

Methods: A dataset of 865 cases - 725 transsphenoidal approach (TSA) and 140

expanded endonasal approach (EEA) - with cerebrospinal fluid rhinorrhoea as the

primary outcome, was used. Relevant variables were extracted from the data, and

prediction variables were divided into two categories, preoperative risk factors; and

repair techniques, with 6 and 11 variables respectively. Three types of machine

learning models were developed in order to predict CSFR: logistic regression (LR);

decision tree (DT); and neural network (NN). Models were validated using 5-fold

cross-validation, compared via their area under the curve (AUC) evaluation metric,

and key prediction variables were identified using their Shapley additive

explanations (SHAP) score.

Results: CSFR rates were 3.9% (28/725) for the transsphenoidal approach and 7.1%

(10/140) for the expanded endonasal approach. NNs outperformed LR and DT for

CSFR prediction, with a mean AUC of 0.80 (0.70-0.90) for TSA and 0.78 (0.60-

0.96) for EEA, when all risk factor and intraoperative repair data were integrated

into the model. The presence of intraoperative CSF leak was the most prominent

risk factor for CSFR. Elevated BMI and revision surgery were also associated with

CSFR for the transsphenoidal approach. CSF diversion and gasket sealing appear to

be strong predictors of the absence of CSFR for both approaches.

Conclusion: Neural networks are effective at predicting CSFR and uncovering key

CSFR predictors in patients following endonasal skull base surgery, outperforming

traditional statistical methods. These models will be improved further with larger

and more granular datasets, improved NN architecture, and external validation. In
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the future, such predictive models could be used to assist surgical decision-

making and support more individualised patient counselling.
KEYWORDS

cerebrospinal fluid leak, cerebrospinal fluid rhinorrhoea, CSF, endoscopic endonasal,
skull base surgery, machine learning - ML, neural network, outcome prediction
1 Introduction

Endonasal operative approaches, including the transsphenoidal

approach (TSA) and the expanded endonasal approach (EEA), have

become workhorses in skull base neurosurgery (1, 2). They are

predominately used in the treatment of pituitary adenomas and

other sella-region neoplastic pathologies, with growing indications

as these techniques evolve (3, 4). Despite the benefits the approaches

offer in terms of access, the most common surgical complication

remains cerebrospinal fluid rhinorrhoea (CSFR) – generally up to 5%

in TSA and 20% in EEA, although these rates vary significantly across

the literature (3, 5–18). CSFR has potentially serious sequelae,

including meningitis; severe headache, pneumocephalus; increased

length of hospital stays; re-admission; and need for further surgery (9,

12, 13).

Numerous risk factors have been identified for CSFR, including

the presence of intraoperative cerebrospinal fluid (CSF) leak; revision

surgery; and high body mass index (BMI) (19). A particularly

important factor is the choice of skull base repair technique used

intraoperatively (7, 10, 13, 16, 20). A recent expert consensus

conducted via The Pituitary Society highlighted the practice

variations across TSA, particularly during the skull base closure

phase (21). A systematic review of the literature has found absolute

heterogeneity across studies and centres in terms of skull base repair

techniques, likely due to a lack of high-level comparative

evidence (10).

CRANIAL (CSF rhinorrhoea after endonasal intervention to the

skull base) was a prospective, multicentre observational study seeking

to determine the: (1) scope of the methods of skull base repair; and (2)

corresponding rates of CSFR (22–25). It represents the largest dataset

of its kind, seeking to audit practice across the UK and Ireland. It

revealed a CSFR incidence rate of 3.9% for TSA and 7.1% for EEA,

lower than the literature standard, with minimal influence of

particular repair regimes on CSFR incidence via traditional

statistical analysis (25). In neurosurgery, machine learning models
aracteristic; BMI, body
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(MLs), or more specifically neural network models (NNs), have been

shown to outperform these traditional statistical methods by

leveraging their ability to utilise complex non-linear relationships

between the various prediction variables (26–28). For example, NNs

were able to identify the risk factors associated with a high risk of

intraoperative CSF leak where traditional statistical analysis

failed (29).

In this study, we use NNs on the granular multicentre CRANIAL

dataset for analysis of CSFR, its risk factors, and the comparative

effectiveness of skull base repair techniques in both TSA and EEA.
2 Methods

The transparent reporting of a multivariable prediction model for

individual prognosis or diagnosis (TRIPOD) guided this

methodology and report (30).
2.1 Data

2.1.1 Collection
A detailed description of the generation of the CRANIAL dataset

is described in (25). In brief, it is a multicentre dataset (30 centres in

the UK and Ireland), collected via a prospective observational study in

3 phases encompassing November 2019 – July 2020 (22–25). All TSA

(defined as transsphenoidal access to the sella alone) and EEA

[defined as acquiring surgical access to an area beyond the sella (17,

19)] were included. The dataset is composed of baseline characteristic

data (e.g., age; sex; tumour diameter), operative data (e.g.,

intraoperative CSF leak presence; skull base repair method) and

postoperative outcomes (e.g., CSFR) (22–25). A taxonomy for skull

base repair was adapted from a systematic review of the literature (10,

24). Postoperative CSFR was confirmed biochemically and/or

required intervention (CSF diversion and/or operative repair)

(22–25).

2.1.2 Processing
The dataset contained 866 participants (726 TSA, 140 EEA).

Variables relevant to CSFR (as guided by consensus-derived protocol

and literature review) were extracted from the dataset (24, 25). The

primary outcome was CSFR. Prediction variables (predictors) were

divided into two prediction categories: ‘preoperative risk factors for

CSFR’ (risk factors) and ‘repair techniques used’ (repair techniques),

with 6 and 11 predictors respectively, as shown in Table 1. Tumour

type has been excluded as a risk factor predictor in this study, as many
frontiersin.org
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of the tumour types are too few in number for internal validation.

Ultimately, this results in three prediction categories: 1) risk factors;

2) repair technique; 3) risk factors and repair technique.

The participants were divided into three approach categories:

TSA; EEA; TSA or EEA. This, therefore, leads to nine total

subcategories for each method: a separate model for the three

approach categories multiplied by the three prediction categories.

One additional model was created using surgical approach as a

predictor, and hence the final number of subcategories for each

method is 10.

Binary values (1 for used, 0 for not used) were set for all 11 repair

technique predictors, and if missing, assumed not to be used and

hence set to 0. Binary values were also set for the risk factor predictors:

sex (male set to 1, female set to 0); BMI (>30 set to 1, ≤ 30 set to 0);

tumour size (tumour diameter ≥ 1cm set to 1, tumour diameter < 1cm

set to 0); intraoperative CSF leak (grade 1, 2, 3, or present but

unknown grade set to 1, not present set to 0). Intraoperative CSF

leak grade was not set as a categoric variable as conversion to a

nominal variable would split each grade into its own prediction

variable, leading to poorer correlations; and conversion to an

ordinal variable would require the loss of the present but unknown

grade category, representing an 18% loss of positive cases. Age was left

as a continuous predictor but normalised to a Gaussian distribution

with mean 0 and standard deviation 1. If any risk factor predictor was

missing, the participant was excluded. Binary values were also
Frontiers in Oncology 03
assigned to the surgical approach (TSA set to 0, EEA set to 1) and

CSFR (1 for present, 0 for not present), and if either was missing, the

participant was excluded.
2.2 Model development

2.2.1 Machine learning
Three ML methods have been used in this study: logistic

regression models (LRs); decision tree models (DTs); and neural

network models. These have been chosen as they represent the

increasing complexity of ML methods as measured by the number

of adjustable parameters present in each model. The code is written in

Python 3.8 (31, 32).

2.2.2 Validation
For validation, 5-fold cross-validation was used, with an 80:20

training to validation split for each fold. This was achieved by first

separating the participants by the two surgical approaches, and then

further separating the participants by the two CSFR outcomes,

leading to four subgroups of participants (TSA with CSFR; TSA

without CSFR; EEA with CSFR; EEA without CSFR). For each of

these subgroups, the participants were randomly split into 5-folds,

and assigned an appropriate fold number (1 to 5). Next, the

participants from each output subgroup were combined by fold
TABLE 1 Distribution details of variables (predictors, approach, outcome) split by approach categories.

Category Parameter Distribution

Approach Surgical Approach TSA 725 (83.4%) EEA 140 (16.2%) TSA or EEA (866)

Risk Factors

Median Age (IQR) 53 (41-64) years 51 (34-62) years 53 (40-63) years

Male Sex 355 (49.0%) 61 (43.5%) 416 (48.0%)

BMI > 30 210 (29.0%) 28 (20.0%) 238 (27.5%)

Tumour Diameter ≥ 1cm 606 (83.6%) 131 (93.6%) 737 (85.2%)

Revision Surgery 98 (13.5%) 21 (15.0%) 119 (13.8%)

Presence of Intraoperative CSF Leak 214 (29.5%) 79 (56.4%) 293 (33.9%)

Repair Techniques

CSF Diversion 29 (4.0%) 38 (27.1%) 67 (7.8%)

Dural Closure 0 (0.0%) 0 (0.0%) 0 (0.0%)

Dural Replacement 196 (27.0%) 66 (47.1%) 262 (30.3%)

Vascularised Flap 116 (16.0%) 90 (64.3%) 206 (23.8%)

Tissue Graft 221 (30.5%) 65 (46.4%) 286 (33.1%)

Synthetic Graft 203 (28.0%) 47 (33.6%) 251 (28.9%)

Tissue Glue 473 (65.2%) 114 (81.4%) 587 (67.7%)

Haemostatic Agent 439 (60.6%) 93 (66.4%) 532 (61.5%)

Rigid Buttress 31 (4.3%) 17 (12.1%) 48 (5.5%)

Gasket Seal 15 (2.1%) 11 (7.9%) 26 (3.0%)

Nasal Packing 518 (71.4%) 116 (82.9%) 635 (73.3%)

Outcome CSFR 28 (3.9%) 10 (7.1%) 38 (4.4%)
All variables are binary, excluding age which is continuous. For the binary variables the number of entries where the variable is present (represented as a 1) is given, with the round brackets giving the
percentage (%) proportion. For the singular continuous parameter (age), median; and inter-quartile range (IQR) are given instead.
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number, producing two groups separated by surgical approach.

Finally, these two approach groups were combined by fold number.

This means there are three groups separated by approach (TSA; EEA;

TSA or EEA), where the ratio between the two CSFR binary outputs

remains approximately the same for each fold as found in the data.

Moreover, the ratio between TSA and EEA in the ‘TSA or EEA’

approach group remains the same as found in the data. This group

methodology is displayed in Figure 1 and variable (predictors, surgical

approach, outcome) distributions for each of the 5-folds can be found

in Supplementary Material Table 3.

For each fold, after a model was trained on the other folds’

participants (training dataset), it was then evaluated on the fold

participants (validation dataset), and the evaluation metrics

recorded. After repeating this for all folds, the evaluation metrics

for both the mean-average and standard deviations were calculated

across the 5-folds. Hyperparameter tuning of all MLs were performed

through multiple runs on the validation dataset via grid search, and

for NNs this was done at the epoch level.

Given the number of participants with CSFR represents just 4.4%

of the data, for the training dataset, these participants were

oversampled randomly such that they represent 50% of the data.

This prevents overfitting to the entries without CSFR, where the

models would simply always predict CSFR not occurring, leading to

an effectively useless model. For evaluation metric calculations of both

the training and validation datasets, no such oversampling was done.
Frontiers in Oncology 04
2.3 Evaluation
2.3.1 AUC

The primary evaluationmetric to compareMLs is the ‘area under the

receiver operating characteristic’ (AUC) curve, which ensures a balance

of both the sensitivity (true positive rate) and specificity (true negative

rate), and these two are also given as secondary evaluation metrics.

2.3.2 SHAP

To compare a specific predictor’s contribution to a NN predicting

CSFR, ‘Shapley additive explanations’ (SHAP) scores were calculated.

The SHAP method does this by calculating all possible combinations

of the predictors, inputting each predictor combination into the

model, and evaluating the combination’s contribution to the model

on the validation dataset. By doing this, each predictor’s contribution

to the model is calculated in isolation of the other predictors while

also accounting for the non-linear relationships (33).

The magnitude (independent of score sign) of a SHAP score

determines how large of a contribution that predictor has to the NN’s

outcome prediction. The sign of a predictor’s score determines whether the

NN has an increased (if positive) or decreased (if negative) probability of

predicting a CSFR. A red dot means this probability is due to the predictor

being present, a blue dot means it is due to the predictor not being present.

If the red and blue dots have a clear boundary about a score of 0.0 and are

not overlapping, this is interpreted as the predictor’s value being highly

correlated with the NN’s outcome prediction. Similarly, the greater the
FIGURE 1

Participants breakdown displayed as a flowchart. The top section (identification) displays the included and excluded participants. The middle section (5-fold
splitting) displays how the 5-folds were created, including the breakdown by surgical approach and outcome. The predictor distributions of the overall
participants can be seen in Table 1, and the predicter distributions for each of the 5-folds can be seen in Supplementary Material Table 3 The bottom section
(evaluation example) displays an example of a model training on one fold’s training dataset, and then evaluated on the same fold’s validation dataset.
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overlap, the weaker the correlation. (Note purple dots are seen for age as it

is a continuous variable: here red represents the oldest participant; blue the

youngest participant; and purple for the ages in between.)
3 Results

3.1 Data

Out of the initial 866 participants, one case was removed due to

missing age, resulting in 855 cases (725 TSA, 140 EEA). Full

distribution details of all included variables (predictors, surgical

approach, outcome) are given in Table 1, and the distribution

across each of the 5-folds is given in Supplementary Material Table 3.
3.2 Machine learning

The trained models, and a guide on how to use them, can be

found in an open-access code repository (32).

3.2.1 Logistic regression
The LRs were created using scikit-learn 0.23.2 (34), and liblinear

was chosen as the optimisation algorithm. The inverse of

regularisation strength (C-value) was chosen as a hyperparameter

to be tuned, and found to have an optimal value of 0.1, with the

remaining parameters set as default values as stated in (35).

3.2.2 Decision tree
The DTs were created using scikit-learn 0.23.2 (34), and

‘classification and regression trees’ (CART) was chosen as the tree

algorithm. The maximum tree depth was chosen as a hyperparameter

to be tuned, and found to have an optimal value of 4, with the

remaining parameters set as default values as stated in (36).
Frontiers in Oncology 05
3.2.3 Neural network
The NNs were created using PyTorch 1.8.1 (37) and run on an

Nvidia 2070 Super GPU using CUDA 11.2. A feedforward network

was created with a linear input layer of 8 neurons, 3 linear hidden

layers with 12 neurons each, and a final linear output layer with one

neuron, followed by a sigmoid activation function with a 0.5 threshold

for CSFR classification. For the non-output layers, the ‘rectified linear

activation unit’ (ReLu) was used as the activation function, with a 0.35

dropout. Binary cross-entropy was used as the loss function and

‘stochastic gradient descent’ (SGD) was used as the optimiser, with

learning rate; momentum; batch size; and number of epochs

hyperparameters to be tuned. A learning rate of 0.001; momentum

of 0.9; batch size of 100; and number of epochs equalling 100 were

found to be optimal.
3.3 Evaluation

3.3.1 AUC
From Figure 2 and Table 2, it can be seen that the NNs were able

to predict the existence of CSFR across all prediction categories and

approach categories with an AUC > 0.50 (an AUC of 0.50 is

equivalent to a model that randomly predicts CSFR). Both LRs and

DTs performances are outperformed by NNs, and for a few instances

have an AUC < 0.5.

Comparing approach categories, it can be seen all three categories

have similar NNs performances, but EEA performs worse than TSA

for LRs. After mean-averaging across approach categories, and then

comparing NNs performance across prediction categories, it can be

seen risk factors slightly outperform repair techniques, which are in

turn outperformed when all predictors (excluding surgical approach)

are used. The inclusion of surgical approach as a predictor does not

improve NN performance.
FIGURE 2

AUC of MLs displayed as a vertical bar chart. The AUC scale ranges from 0.35 to 0.75, with a thicker line at 0.50. Error bars representing the standard
deviation across the 5-folds are not given. The AUC for LRs in the risk factors EEA case is not displayed as the AUC (0.22) is too low. The full values,
including the standard deviation error bars, can be seen in Table 2.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1046519
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


CRANIAL Consortium 10.3389/fonc.2023.1046519
As seen in Table 2, a high AUC in the training dataset does not

necessarily correspond to a high AUC in the validation dataset. In

particular,

for DTs, the issue is exacerbated. For example, for the TSA repair

techniques, a 0.86 training AUC translates to a 0.37 validation

AUC for DT, compared to a 0.79 training AUC to 0.67 validation

AUC translation for LR, or 0.90 training AUC to 0.71 validation AUC

translation for NN.
Frontiers in Oncology 06
3.3.2 SHAP
Figure 3 displays the SHAP scores for each predictor for two NNs

(TSA risk factors and repair techniques; EEA risk factors and repair

techniques). Supplementary Figures 1, 2 display the SHAP scores for

the remaining eight NNs and Supplementary Table 2 shows the SHAP

correlation coefficients for all ten NNs - consistent with the trends

shown in Figure 3. Comparing approach categories, the SHAP scores

are larger in magnitude for TSA than EEA. Comparing prediction
TABLE 2 Performance of MLs.

Predictor Category Surgical
Category

ML Method Training Validation

AUC Sensitivity Specificity AUC Sensitivity Specificity

Risk Factors

TSA LR 0.74±0.02 0.75±0.02 0.64±0.02 0.68±0.10 0.64±0.11 0.63±0.04

DT 0.79±0.02 0.63±0.04 0.79±0.01 0.69±0.18 0.56±0.21 0.79±0.02

NN 0.83±0.02 0.78±0.12 0.71±0.19 0.75±0.08 0.69±0.17 0.70±0.18

EEA LR 0.62±0.02 0.75±0.08 0.38±0.05 0.22±0.09 0.30±0.24 0.40±0.15

DT 0.87±0.05 0.93±0.10 0.68±0.12 0.47±0.18 0.30±0.40 0.62±0.06

NN 0.59±0.10 0.80±0.40 0.30±0.37 0.68±0.08 0.80±0.40 0.28±0.37

TSA or EEA LR 0.69±0.02 0.69±0.05 0.61±0.02 0.64±0.11 0.65±0.19 0.61±0.04

DT 0.83±0.01 0.65±0.04 0.83±0.04 0.59±0.12 0.36±0.17 0.81±0.03

NN 0.79±0.03 0.63±0.17 0.78±0.12 0.68±0.08 0.45±0.19 0.76±0.12

Repair Techniques

TSA LR 0.68±0.04 0.62±0.07 0.61±0.09 0.56±0.14 0.43±0.26 0.59±0.09

DT 0.91±0.05 0.93±0.15 0.78±0.15 0.49±0.22 0.10±0.20 0.74±0.13

NN 0.74±0.08 0.73±0.20 0.61±0.23 0.66±0.08 0.60±0.21 0.61±0.23

EEA LR 0.81±0.05 0.80±0.10 0.64±0.07 0.54±0.16 0.40±0.37 0.56±0.12

DT 0.79±0.04 0.75±0.03 0.69±0.05 0.57±0.06 0.53±0.13 0.67±0.05

NN 0.76±0.11 0.75±0.39 0.59±0.29 0.72±0.14 0.70±0.40 0.50±0.37

TSA or EEA LR 0.69±0.01 0.70±0.04 0.59±0.04 0.58±0.06 0.50±0.16 0.59±0.04

DT 0.77±0.04 0.73±0.15 0.68±0.08 0.46±0.07 0.35±0.25 0.68±0.12

NN 0.77±0.05 0.72±0.20 0.70±0.17 0.62±0.05 0.49±0.22 0.69±0.17

Risk Factors and Repair Techniques

TSA LR 0.79±0.01 0.73±0.04 0.68±0.01 0.67±0.09 0.49±0.25 0.67±0.06

DT 0.86±0.04 0.88±0.08 0.72±0.05 0.37±0.16 0.20±0.24 0.67±0.11

NN 0.90±0.05 0.89±0.16 0.80±0.13 0.71±0.09 0.49±0.29 0.80±0.10

EEA LR 0.81±0.03 0.85±0.09 0.59±0.05 0.42±0.20 0.40±0.37 0.47±0.07

DT 0.75±0.02 0.76±0.07 0.61±0.06 0.50±0.07 0.41±0.10 0.59±0.05

NN 0.79±0.10 0.58±0.38 0.80±0.18 0.72±0.09 0.50±0.45 0.78±0.18

TSA or EEA LR 0.75±0.01 0.70±0.04 0.66±0.01 0.65±0.10 0.57±0.21 0.64±0.04

DT 0.84±0.01 0.78±0.15 0.73±0.15 0.59±0.13 0.47±0.17 0.70±0.16

NN 0.88±0.05 0.91±0.14 0.67±0.17 0.73±0.03 0.63±0.31 0.64±0.17

All (Including Approach)

TSA or EEA LR 0.76±0.01 0.73±0.03 0.67±0.01 0.65±0.09 0.59±0.24 0.65±0.03

DT 0.91±0.03 1.00±0.00 0.74±0.07 0.43±0.19 0.20±0.40 0.67±0.07

NN 0.91±0.02 0.96±0.06 0.69±0.06 0.71±0.06 0.57±0.13 0.68±0.06
f

Values are given to two decimal places in the form ‘mean ± standard deviation’ calculated over the 5-fold cross-validation. Bolded values highlight the best performing metric in the (subset, approach)
category for that column’s performance metric.
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categories, the SHAP scores for risk factors have a clearer boundary

between not present and present than repair techniques.

Focusing on TSA risk factors, the presence of intraoperative CSF

leak appears to be the strongest predictor of CSFR within the NN

(Figure 3 and Supplementary Table 4). This is followed by younger

age, elevated BMI, revision surgery, and male sex seem to also increase

the probability of CSFR, albeit with a weaker correlation. EEA risk

factors have a much smaller magnitude and weaker correlation, with

intraoperative CSF leak having the strongest relative relationship with

CSFR incidence (Figure 3 and Supplementary Table 4).

The impact of repair techniques on CSFR is less clear. In TSA, the

use of CSF diversion, vascularised flaps, rigid buttresses +/- gasket

sealing, and tissue glues appear to be protective against CSFR

(Figure 3 and Supplementary Table 4). However, synthetic grafts,

and to a lesser extent, dural replacement and tissue grafts appear to be

associated with CSFR occurrence. For EEA, CSF diversion, gasket

sealing, and to a lesser extent tissue grafts and haemostatic agents

appear to reduce CSFR incidence. Synthetic grafts, vascularised flaps

and dural replacement appear to be associated with CSFR occurrence.
4 Discussion

4.1 Principal findings

In this study, three ML methods were applied to a complex,

multicentre, prospective skull base neurosurgery database

encompassing CSFR and relevant predictor data (risk factors and

intraoperative repair techniques).

Firstly, NNs outperformed LR and DT for CSFR prediction, with

a mean AUC of 0.80 (0.70-0.90) for TSA and 0.78 (0.60-0.96) in EEA,

when all risk factor and intraoperative repair data were integrated into

the model. This is likely explained by NNs’ known ability to learn

complex non-linear relationships, even in the context of a large
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number of variables (27, 28). In this dataset, this likely reflects the

use of multiple repair techniques synergistically and in layers, tailored

to risk factors encountered on a case-by-case basis (10). NNs achieved

this despite the class imbalance caused by a CSFR rate lower than the

literature standard, with oversampling 5-fold validation (25, 28).

Furthermore, there was an iterative improvement in NN

performance with larger datasets, with TSA models (725 cases)

generally outperforming EEA models (140 cases), and the use of

risk factor data with intraoperative repair technique data improved

CSFR prediction when compared with using a single data category.

Using SHAP scores, the relationship between predictor variables

(risk factors and intraoperative repair techniques) was explored for

their relative predictive value within NN models. The presence of

intraoperative CSF leak was the most prominent risk factor for CSFR

in TSA and EEA, which is in line with existing studies (7, 10, 20, 38,

39). The presence of elevated BMI and revision surgery were also

associated with CSFR for the larger TSA dataset, again reflected in the

literature (16). Modern repair regimes are tailored to risk factors, and

this analysis consolidates pertinent factors to guide surgeons in repair

technique decision-making (10).

When compared with traditional statistical models (e.g.,

multivariate logistic regression models), which suggested tissue

glues alone may have a benefit in TSA, NN SHAP analysis has

highlighted new potential relationships within the dataset, as well as

reproducing the potential impact of tissue glues on CSFR rates (25).

Specifically, CSF diversion and gasket sealing appear to be strong

predictors of the absence of CSFR in both TSA and EEA – in line with

RCT evidence (lumbar drainage) and numerous institutional series

(gasket sealing) (10, 20, 40–42). Synthetic grafts and dural

replacements (which often have overlapping materials) were

associated with the development of CSFR in both TSA and EEA.

Whilst autologous tissue repair had contradictory results depending

on approach nasoseptal flaps (associated with CSFR in EEA, but

protective against CSFR in TSA) and tissue grafts (associated with
FIGURE 3

SHAP scores for predictors displayed as a bee diagram for the predictor category ‘risk factors and repair techniques’, where the NNs are split by
approach. Scores are shown for each predictor across all 5-folds. As shown in the ‘predictor value’ legend – a high value is indicated in red, and a low
value is indicated by blue; for binary variables this means red indicates a value of 1 (i.e. present) and blue indicates a value of 0 (i.e. not present).
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CSFR in TSA, but protective against CSFR in EEA). The reasons for

this are difficult to further ascertain within the NN structure, but

theoretically may be due to differences in the groups of patients

undergoing these repairs (for example, patients deemed at higher risk

of CSFR at a baseline in EEA undergo nasoseptal flap) (25).
4.2 Comparison to literature

To our knowledge, only one other study has applied ML to a

similar research question. However, this study examined

intraoperative CSF leak (rather than postoperative CSFR), had a

more imaging-centric dataset, was single centre (rather than 30

centres), and resultantly smaller volume (154 vs 855 cases) (29).

Using a NN, Staartjes et al. were able to identify risk factors (higher

Hardy grade, revision surgery, older age) whereas conventional

statistical methods were unable to do so, echoing our experience in

this study (29). There are however numerous studies utilising

traditional statistical techniques in institutional case series in this

field. Patel et al. use logistic regression models in a large volume single

centre series, finding elevated BMI and hydrocephalus as significant

risk factors for CSFR (43). Hannan et al. used similar methods and

found that surgical experience, intraoperative CSF leak, Cushing’s

disease and the absence of nasoseptal flap use as CSFR risk factors

(38). Similarly, Xue et al. highlighted intraoperative CSF leak as a key

CSFR predictor and recommend nasoseptal flaps and lumbar

drainage to decrease its incidence (39). Finally, Cai used a Least

Absolute Shrinkage and Selection Operator (LASSO) model with

multivariate logistic regression in a single centre moderate volume

data set in the context of intraoperative CSF leak prediction,

suggesting tumour size and preoperative albumin as key

determinants (44).
4.3 Strengths and limitations

One of the strengths of this study is the large number of centres

the data has come from, leading to data diversity, and hence

improving the generalisability of the models. Overfitting was

mitigated against in NNs using drop-out between layers, whilst

evidence of this remained in LR and DT models (mismatch

between training and validation datasets). More data (with more

CSFR cases), from more countries, and an external validation dataset

would be useful to improve model performance and generalisability

further. Moreover, although our study is prospective with an

internally validated dataset, observational studies inherently contain

various types of bias, and so the correlations made may not be

reflective of the overall population.

Another strength of the study is the large number and variety of

predictors used, which improves model performance. On the other

hand, the choice of predictors is also a limit, as other predictors, (such

as type of tumour); or more granular versions of the predictors (such

as intraoperative CSF leak grade rather than binary presence), have

not been used. Furthermore, the range of ML models trialled, and the

use of SHAP analysis, showing how and why NNs outperform LRs

and DTs is a relative study strength. Nevertheless, the choice of NNs is

limited to one simple architecture, and it is unknown whether more
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sophisticated architectures will improve performance in the future.

Finally, this study shares the common issue of interpretability that

many ML studies have, particularly the SHAP analysis, which may

affect model usability and uptake by clinicians.
5 Conclusion

Three ML methods were applied to a complex, multicentre,

prospective skull base neurosurgery database to predict CSFR

following endonasal skull base surgery, and prediction variables that

are most important for its development. NNs outperformed traditional

statistical models and other ML models in CSFR prediction. NNs also

uncovered relationships between risk factors and repair techniques on

CSFR, which were otherwise not detected using traditional statistical

approaches. These models will be improved further with larger and

more granular datasets, improved NN architecture, and external

validation. In the future, the next generation of these predictive

models could be used to assist surgical decision-making and to

support more individualised patient counselling.
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