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Design and Implementation of Deep Learning
2D Convolutions on modern CPUs

Vasilios Kelefouras, Georgios Keramidas,

Abstract—In this paper, a new method is provided for accelerating the execution of convolution layers in Deep Neural Networks. This
research work provides the theoretical background to efficiently design and implement the convolution layers on x86/x64 CPUs, based
on the target layer parameters, quantization level and hardware architecture. The proposed work is general and can be applied to other
processor families too, e.g., Arm. The proposed work achieves high speedup values over the state of the art, which is Intel oneDNN
library, by applying compiler optimizations, such as vectorization, register blocking and loop tiling, in a more efficient way. This is
achieved by developing an analytical modelling approach for finding the optimization parameters. A thorough experimental evaluation
has been applied on two Intel CPU platforms, for DenseNet-121, ResNet-50 and SqueezeNet (including 112 different convolution
layers), and for both FP32 and int8 input/output tensors (quantization). The experimental results show that the convolution layers of the
aforementioned models are executed from x1.1 up to x7.2 times faster.

Index Terms—Deep Neural Networks, convolution, oneDNN, optimization, analytical model, vectorization, register blocking, loop tiling

F

1 INTRODUCTION

CONVOLUTION layers are the main performance bot-
tleneck in many classes of Deep Neural Networks

(DNNs) and especially in Convolutional Neural Networks
(CNNs) which are widely used in AI applications such as
computer vision.

Although GPUs are recognized as a better option than
CPUs for training DNNs, modern many-core CPUs of-
fer competitive time-to-train for distributed deep learning
training applications [1]. Furthermore, CPUs might be
preferred over GPUs for training DNNs in some cases as
first, CPUs can be more efficient when training small sized
models or datasets [2], second, the large memory capacity
of CPUs makes training with large datasets and/or models
easier [3], third, CPUs can reduce the total cost of ownership
for the DNN market, as CPUs are already widely deployed
in datacenters and edge devices [3]. Regarding the inference
tasks, CPUs are normally preferred over GPUs [4].

Speeding up the convolution layer of DNNs is a chal-
lenging and non-trivial task. This is because first, the opti-
mization process depends on all the following : the convolu-
tion layer’s parameters, the target hardware (HW) architec-
ture and the quantization level (if applied), second, different
manually vectorized and manually optimized routines are
needed, for each case above, third, the exploration space
is massive and thus it cannot be searched; the number of
different optimized routines that need to be tested in order
to find the optimum (just for a specific processor and for a
specific layer’s parameters), is astronomical.

To address the above problem, CPU/GPU vendors
provide optimized libraries, such as Intel oneDNN [5].
oneDNN is a highly optimized vendor library developed
and optimized by Intel engineers over many years; oneDNN
is an open-source project and supports non-Intel HW plat-
forms too, such as RISC-V. As of 2022, oneDNN is used as
the default backend for CPU optimization in TensorFlow.
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oneDNN uses just-in-time compilation (JIT) to generate
optimal code at runtime, tailored to the input parameters.

In this paper, the design and implementation of convolu-
tion layers on x86/x64 processors is delivered, for different
layer parameters, quantization levels, vectorization tech-
nologies, cache sizes, number of vector registers, and CPU
cores. The proposed work achieves high speedup values
over oneDNN, by applying compiler optimizations, such as
register blocking and loop tiling, in a more efficient way.

A thorough experimental evaluation is applied, on two
diverse Intel CPUs (a 20-core NUMA CPU with AVX-512
and a 4-core CPU with AVX-256), three popular CNNs
(DenseNet-121, ResNet-50, SqueezeNet), and both FP32 and
int8 input/output tensors. We show that the proposed work
provides speedups from x1.1 up to x7.2 over oneDNN.

The main contributions of this paper are: a) a research
work providing the theoretical background to efficiently
design and implement 2D convolution layers based on
the target layer parameters, quantization level and HW
architecture, b) an analytical model facilitating the optimiza-
tion process, c) an experimental procedure showcasing that
the proposed work achieves high performance gains over
oneDNN on two CPUs.

The remainder of this paper is organized as follows.
In Section 2, the related work is reviewed. The proposed
method is presented in Section 3, while the experimental
results are discussed in Section 4. Finally, Section 5 is dedi-
cated to conclusions and future work.
2 RELATED WORK
To accelerate DNN convolution layers, many strategies have
been proposed, which are briefly explained hereafter.

The first group of works includes high level
compression-based techniques such as quantization, low-
rank quantization, parameter pruning, knowledge distilla-
tion [6], as well as exploiting sparsity in tensors [3] [7].

The second group of works implement the convolution
operation by using a) either the Fast Fourier Transform
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(FFT) [8] or the Winograd algorithm [9] [10], to reduce
the number of executed FP computations, b) the highly
optimized Matrix-Matrix Multiplication (MMM) routines of
Intel MKL or BLAS optimized libraries [11]. MMM-based
algorithms rely on ’im2col’ or ’im2row’ memory transfor-
mations [11] to convert the direct convolution algorithm
into an MMM problem. However, this approach introduces
a high overhead in memory storage and bandwidth, which
is proportional to the kernel size. In [12] [13], authors show
that an efficient direct convolution implementation attains
higher performance than the MMM based methods which
use the expert-implemented MMM libraries.

The Winograd-based methods are mainly used for 3x3
kernel sizes [10], while the FFT-based methods are mainly
used for larger [8]. However, the reduced number of op-
erations does not always align with performance as several
challenges make it hard to fully utilize the HW resources
on modern CPUs [10]. Furthermore, both algorithms suf-
fer from a lack of precision. [9] extends and optimizes
the Winograd-class of convolutional algorithms to the N-
dimensional case of CNN on x86/x64 CPUs. In [10], another
Winograd implementation is presented for manycore CPUs.
In [14], a distributed implementation for the IBM Cell
Broadband Engine processor is proposed.

Another optimization approach includes using Polyhe-
dral compilers, such as Diesel [15], that automatically gen-
erate multi-level tiled code for affine loop nests, specialized
machine learning (ML) compilers such as TVM [16] and
autotuning systems such as TVM auto-scheduler [17]. TVM
auto-scheduler uses a combination of auto-tuning and a
dynamically trained ML model to guide the design-space
exploration process. TVM auto-scheduler has demonstrated
higher performance than Polyhedral compilers and other
autotuning systems but it takes several hours to converge
(for each layer), while also involves a complex training
environment [4]. In [4], a structured configuration space is
defined that enables faster convergence. In [18], the search
space of loop interchange and loop tiling is reduced by using
an analytical modelling approach. In [19], a ML approach
is followed to generate efficient loop ordering.

Optimized vendor libraries such as oneDNN or cuDNN
are also developed. oneDNN [5] supports different quanti-
zation levels and three algorithms (direct, MMM-based and
Winograd-based). According to [5], Winograd algorithm is
applicable only for limited input shapes and AVX-512, while
MMM-based method is not that efficient.

Another group of works (that this paper is more related
to) apply low-level compiler optimizations on the above
compression based techniques and different algorithms. The
main optimizations used are vectorization, parallelization,
register blocking, loop tiling, loop interchange, software
prefetching, improving the memory layout to enable vec-
torization and merging DNN layers.

In [1], Intel engineers present their JIT implementa-
tion which uses the direct algorithm on x64 CPUs; in this
work, all the aforementioned compiler optimizations are
applied. In [20], [1] is extended to compute the 1D dilated
convolution. In [21], an efficient CPU implementation for
convolution-pooling in CNNs is presented, by using con-
volution interchange and vectorization. In [22], authors
propose a method to accelerate CNNs by using Arm NEON

intrinsics and 16-bit computations. In [23], a 3D CNN
model is optimized on an Arm based supercomputer. In
[24], new direct implementations are proposed for depth-
wise convolutions on ARMv8 architectures. In our previous
work [13], we have optimized the convolution operation in
the context of image filtering/smoothing image processing
applications.

In comparison with the aforementioned works which
focus on heuristics and empirical methods, our approach
aims to find an efficient solution by using an analytical
modelling approach. This way, the search space is massively
reduced and a higher quality solution is easier to be found.

3 PROPOSED METHOD

The optimization process of the convolution layer is com-
plex as first, a large number of optimizations needs to be
applied and second, even for a specific layer and for a
specific CPU, the exploration space is massive and it cannot
be searched; the number of different optimized routines that
need to be tested is astronomical. To address this problem
we have developed an analytical model to generate the
optimization parameters. The exploration space is reduced
massively, first, by well studying this optimization problem,
second, by expressing the number of executed Load/Store
(L/S) instructions, and the number of dL1/L2/L3 memory
accesses, as mathematical equations, where the HW archi-
tecture and convolution layer parameters, serve as inputs
to these equations. Thus, optimizations such as register
blocking and loop tiling, are applied in a more efficient way,
and high speedup gains are achieved.

Given that different manually vectorized and optimized
routines are required for different quantization levels, layer
parameters, and HW architecture (e.g., AVX-512, AVX-256),
a significant number of optimized routines has been de-
veloped. Furthermore, a software routine is developed that
generates the output optimization parameters and calls the
appropriate optimized routine (Algorithm 4). Note that the
development effort of this paper was high.

3.1 Vectorization

Algorithm 1 shows the un-optimized code of the for-
ward propagation of the 2D convolution layer with ReLU.
Merging the convolution and ReLU layers is a popular
optimization that reduces the number of memory accesses
(supported by oneDNN too). The Nomenclature used here
is as follows. The upper-case letters denote dimensions, e.g.,
B is the number of the batches, while the lower-case letters
denote indexes, e.g., 0 ≤ b ≤ B − 1. A graphical illustration
of Algorithm 1 is also shown on the top of Fig. 1. In Fig. 1
we assume B=1, in order to avoid drawing 4D tensors.

Vectorization is strongly affected by the memory layout
of in array. The three most popular memory layouts of in
array are the bdyx, byxd and dyxb, and they are used by
default in Caffe, Tensorflow and Neon, respectively [5]. We
use byxd here to denote that d is the inner-most dimension,
meaning that two elements adjacent in memory would share
the same indices of b, y, and x, and their index of d would be
different by 1 (for non-boarder elements). On the contrary, b
is the outermost dimension. In Algorithm 1 and Fig. 1, byxd
is assumed.
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Algorithm 1 Naive 2D Forward Propagation with ReLU
1: for b=0,B,1 do . batch
2: for m=0,M,1 do . feature maps (channels)
3: for y=0,Y,1 do . output’s height
4: for x=0,X,1 do . output’s width
5: float acc=0.0;
6: for k.y=0,K.Y,1 do . kernel’s height
7: for k.x=0,K.X,1 do . kernel’s width
8: for d=0,D,1 do . input depth
9: acc+ = in[b][y∗stride.y+k.y][x∗stride.x+

k.x][d] ∗ filter[m][k.y][k.x][d];
10: end for
11: end for
12: end for
13: acc+ = bias_array[m];
14: out[b][y][x][m] = ReLU(acc);
15: end for
16: end for
17: end for
18: end for

…

in[b, y, x, d]
y.in

x.in
d

d

k.x

k.y

m

m

x

y
out[b, y, x, m]

filt[m, k.y, k.x, d]
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Vector variables

out3 out3 out2 out2 out1 out1 out0 out0

Fig. 1: Visual Illustration of Algorithm 2

Changing the layout of the in array introduces a high
overhead, while changing the layout of filter introduces a
minor overhead as its size is normally much smaller. How-
ever, in the training process, the output of a convolution
layer is the input of the next, and therefore we can avoid
changing the layout of the input tensor by storing the output
tensor’s elements in the exact order they need to be read
in the next layer. However, changing the layout in the first
layer cannot be avoided and the overhead can be significant.

Vectorization can be applied to one or two loops, and
thus many vectorization options arise. In this work, a theo-
retical analysis has been made in order to find which loops
to vectorize. The criteria used to select the loops to vectorize
include the parallelism exposed, the memory layout of
the arrays, the number of executed instructions, and the
memory footprint of the microkernel. A microkernel is a
well-optimized piece of code who is called many times [4].

Let us first explore the vectorization opportunities of
Algorithm 1 when only one loop is vectorized. It is efficient
to vectorize a loop that is included in the subscript of out
array, as in this case, first, the output elements are not
stored one by one in memory but in vectors, and second, the
elements in the accumulator vector are directly stored into
memory and they are not horizontally added; this leads to
fewer store and arithmetical instructions. Vectorizing a loop
that is not included in the in subscript is advantageous as

in this case vectorization is easier to be applied to different
memory layouts of the input tensor. This is because only a
single element (and not many) is loaded from in array at a
time in this case. Although there are three loops that are not
included in the in subscript (m, k.y and k.x), only m is an
efficient option since the other two do not provide adequate
parallelism. Vectorizing b loop is efficient only when the
memory layout of the input tensor has b as its innermost
dimension (b-wise layout) and B is large. Vectorizing x or
y loop is efficient only when the memory layout is x-wise
or y-wise, respectively; still, vectorizing just x or y is prob-
lematic for layers with small spatial dimensions; note that
CPUs with AVX-256/512 can process 8/16 FP or 32/64 int8
elements, respectively, in a single instruction. If the layout
of in is not the appropriate, it is not efficient to vectorize b,
x or y loops, as the overhead of changing the layout of in
is significant. The alternative of vectorizing another loop in
the first layer, store the output in a different way (e.g., b-
wise), and then vectorize b in the remaining layers, hinders
implementation issues and therefore the execution time of
the first layer will be significantly degraded. Note that in
the three CNNs studied in this paper, the first layer is the
performance bottleneck, and thus a significant slowdown in
the first layer will impact the overall execution time.

In the case of quantization, no option above is efficient
and two loops need to be vectorized. Vectorizing a loop
that is included in the out subscript is not feasible when
the tensors contain int16/int8 values. This is because the
intermediate results (IRs) need to be 32-bit and the existing
x86-64 int8/int16 vector multiplication instructions, such as
maddubs, will mix the results of different output elements in
this case [13]. To sum up, when quantization is not applied,
m is an efficient option for different memory layouts, while
b/x are efficient only for large B/X values, and when the
appropriate layout is used. However, in Subsection 3.3, we
show that by vectorizing m loop, multiple and not one
kernels are loaded and processed together (Fig.1), and the
microkernel’s data footprint might not fit into the cache in
some cases, degrading performance; to address this problem
two loops need to be vectorized in this case too (this is
discussed in Subsection 3.3).

Let us now explore the vectorization opportunities when
two loops are vectorized. Vectorizing two loops that reside
in the in subscript, is not efficient as in elements from no
consecutive memory locations need to be loaded (in the
general case), and thus the number of load and arithmeti-
cal instructions becomes high. Although, we can store the
output tensor’s elements in the exact order we need to
read them in the next layer, this is problematic, as first,
we need to store the elements of two dimensions (and not
one) in consecutive memory locations, and this constraints
the optimization process in all layers, second, the first layer
cannot be well optimized. Vectorizing two loops that reside
in the out subscript does not solve the aforementioned prob-
lem with quantization. Therefore, it is efficient to vectorize
one loop from the in subscript and another from the out
subscript, which gives only one solution, i.e., m and d loops.
This implies that the memory layout of in should have d as
its innermost dimension. k.y and k.x are not selected as the
vectorization process becomes very complicated in this case.

Based on the above analysis, when the memory layout
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of in has d as its innermost dimension, we vectorize either
m loop or both m and d loops, based on the target DNN
parameters, HW architecture and quantization level. This
memory layout, which is also known as pixel-wise (the RGB
values of each pixel are clustered and stored consecutively),
is the most popular way of storing images, and therefore
this format is assumed for the rest of this paper. In the case
where x is the innermost dimension of in memory layout,
then vectorizing either m or x loop should be considered
based on the above parameters; vectorizing x loop is not
feasible when quantization is applied and therefore, the
vectorization approach used in our previous work [13]
should be followed to address this problem. In the case
where b is the innermost dimension, then vectorizing either
m or b loop should be considered.

Regarding 3D convolutions, extra constraints are intro-
duced and the above analysis needs to be updated.

Let m0/d0 be the number of iterations vectorized in m/d
loops, respectively; the m0 × d0 value is given by Eq. 1,
where vector.length is the length of the target vectorization
technology in bytes, and d.length is the length of the ten-
sors’ data type used in bytes, e.g., for AVX-256 and FP32
m0× d0 = 32/4. m0/d0 are always powers of 2.

m0× d0 = vector.length/d.length (1)

It is important to note that the memory layout of the filter
array must change. A separate loop kernel is introduced
where the old filter’s elements are stored in a new array,
in the exact order they will be accessed in the convolution
layer. This routine is vectorized too and in this case, its
impact on overall performance is normally insignificant.

When d0 = 1, only m loop is vectorized. d0 > 1 when a)
quantization is used (lines 5-7 in Algorithm 4), e.g., d0 ≥ 4
in int8 case, b) the microkernel’s data cannot fit in L2 or dL1,
c) m0×Rm > M , where Rm is the register blocking factor
of m loop. The latter two cases are discussed next.

oneDNN uses a similar approach, as they vectorize m
loop in the FP32 case, and m+d loops when quantization is
used. The difference between oneDNN and the proposed
work is that we vectorize m + d loops not only when
quantization is used, but in cases (b)-(c) too above.

The application of vectorization is shown in Algorithm
2. Note that when d0 = 1, the lines 16-17 are omitted. On
the contrary, when d0 > 1, the IRs in acc variable need to
be added (line 16), e.g., in Fig. 1, the two out0 values need
to be added. This is implemented by using shift and add
instructions since the hadd instructions are slower.

The results of the horizontal additions are placed into
consecutive vector positions to be efficiently processed and
stored into memory. It is important to note that this step
is computationally expensive and its optimization is not
trivial. As it is going to be explained into the next subsection,
register blocking optimization is also applied and therefore
the put.consecutive() routine in line 17 is applied to many
vector variables not just one. Thus, to optimize this step,
multiple vector variables are processed together and not
one (we re-order the values of multiple vectors together).
Neither the optimized code nor the optimization approach
is shown here, as first, the problem we are addressing is
different for different d0 values, second, the page size is
limited. To reduce the number of vector instructions, when

d0 = 2, we change the filt layout in a way where its odd
and even m values are stored separately and thus they are
loaded into separate vectors. When d0 = 4, we change the
filt layout in a way where the m values that are multiples of
4 are stored separately (e.g., first store 0,4,8,12 then 1,5,9,13,
etc) and thus they are loaded into separate registers.

Algorithm 2 Algorithm 1 with vectorization. The filt array
is a new array with different memory layout
1: m256 inp,mask, acc, bias . vector variables
2: for b=0,B,1 do
3: for m=0,M,m0 do . vectorized loop
4: for y=0,Y,1 do
5: for x=0,X,1 do
6: acc = setzero(); . initialize with zeros
7: for k.y=0,K.Y,1 do
8: for k.x=0,K.X,1 do
9: for d=0,D,d0 do . vectorized loop

10: inp = broadcast(in[b][y∗stride.y+k.y][x∗
stride.x+ k.x][d : d+ d0]); . load and broadcast d0 elements

11: mask = load(filt[m : m+m0][k.y][k.x][d :
d+ d0]); . load m0× d0 elements (consecutive memory locations)

12: acc = fmadd(inp,mask, acc); .
acc+ = inp×mask

13: end for
14: end for
15: end for
16: acc = hadd(acc); . apply d0-1 horizontal additions
17: acc = put.consecutive(acc); . put the results of the

horizontal additions into consecutive positions
18: bias = load(bias_array[m : m+m0]); . load bias
19: acc = add(acc, bias); . add bias
20: acc = ReLU(acc);
21: store(out[b][y][x][m : m+m0], acc); . store acc into

memory (m0 elements)
22: end for
23: end for
24: end for
25: end for

3.2 Register Blocking and Data Reuse
Register blocking can significantly reduce the number of
executed L/S instructions and therefore, a higher arith-
metic intensity (AI) value can be achieved; consequently,
the program achieves a better place in the roofline model,
and this is why register blocking is by far the most critical
optimization of all. Algorithm 3 shows Algorithm 2 with
register blocking to m and x loops (loop tiling is also applied
in m loop, but let’s ignore this for now); lines 6-38 define the
microkernel.

At this point, two important questions arise; in which
loops to apply register blocking and what factors to use. The
exploration space is big and it is very time consuming to test
all different solutions. To address this problem, an analytical
model is developed where we theoretically calculate the
number of executed L/S instructions, based on the target
DNN and HW parameters and vectorization/blocking fac-
tors. Thus, the best solution is found theoretically.

(Method1) Register Blocking analysis for b, y, x,m, d
loops only : Let’s assume that register blocking is ap-
plied to b, y, x,m, d loops in Algorithm 2 with factors
Rb,Ry,Rx,Rm,Rd, respectively. Applying register block-
ing to k.x and k.y loops requires a more complicated
analysis and it is explained next (Method2). The number of
executed L/S instructions for each array are shown in Eq. 2.
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Algorithm 3 Algorithm 2 with register blocking and loop
tiling, m0 = 8, d0 = 1, Rm = 2, Rx = 2 and d.length = 4.
1: m256 inp,mask0,mask1, acc0, acc1, acc2, acc3, bias;
2: for b=0,B,1 do
3: for m=0,M,Tm do . loop tiling
4: for y=0,Y,1 do
5: for x=0,X,Rx do . reg.blocking
6: for m2=m,m2<m+Tm,m0 x Rm do . reg.blocking and

vectorization
7: acc0 = setzero();
8: acc1 = acc0; acc2 = acc0; acc3 = acc0;
9: for k.y=0,K.Y,1 do

10: for k.x=0,K.X,1 do
11: for d=0,D,d0 do . vectorization
12: mask0 = load(filt[m2 : m2 +

m0][k.y][k.x][d : d+ d0]);
13: mask1 = load(filt[m2+m0 : m2+2×

m0][k.y][k.x][d : d+ d0]);
14:
15: inp = broadcast(in[b][y ∗ stride.y +

k.y][x ∗ stride.x+ k.x][d : d+ d0]);
16: acc0 = fmadd(inp,mask0, acc0);
17: acc1 = fmadd(inp,mask1, acc1);
18: inp = broadcast(in[b][y ∗ stride.y +

k.y][(x+ 1) ∗ stride.x+ k.x][d : d+ d0]);
19: acc2 = fmadd(inp,mask0, acc2);
20: acc3 = fmadd(inp,mask1, acc3);
21: end for
22: end for
23: end for
24: bias0 = load(bias_array[m2 : m2 +m0]);
25: bias1 = load(bias_array[m2 + m0 : m2 + 2 ×

m0]);
26: acc0 = add(acc0, bias0);
27: acc1 = add(acc1, bias1);
28: acc2 = add(acc2, bias0);
29: acc3 = add(acc3, bias1);
30: acc0 = ReLU(acc0);
31: acc1 = ReLU(acc1);
32: acc2 = ReLU(acc2);
33: acc3 = ReLU(acc3);
34: store(out[b][y][x][m2 : m2 +m0], acc0);
35: store(out[b][y][x][m2+m0 : m2+2×m0], acc1);
36: store(out[b][y][x+ 1][m2 : m2 +m0], acc2);
37: store(out[b][y][x + 1][m2 + m0 : m2 + 2 ×

m0], acc3);
38: end for
39: end for
40: end for
41: end for
42: end for

In.Loads = OPS
Rb×Rm×Ry×Rx×Rd ×Rb×Ry ×Rx×Rd (2a)

Filt.Loads = OPS
Rb×Rm×Ry×Rx×Rd ×Rm×Rd (2b)

Out.Stores =
( OPS
D/d0×K.Y ×K.X )

Rb×Ry×Rx×Rm ×Rb×Ry ×Rx×Rm′ (2c)

OPS = B ×M/m0× Y ×X ×K.Y ×K.X ×D/d0 (2d)
Rm′ = dRm/d0e+ Z , where Z=0 when (2e)

((Rm×m0)%(m0× d0)) is a power of 2 or zero, and Z=1 otherwise.

Eq. 2a is explained hereafter. Prior register blocking (see
Algorithm 2), there are OPS load/broadcast instructions
for in array; OPS gives the number loop iterations in
Algorithm 2. After register blocking, the iterators are incre-
mented with a larger step, e.g., Rx instead of 1 (line 5 in
Algorithm 3), and thus there are OPS/(Rb × Rm × Ry ×
Rx×Rd) load/broadcast instructions for in array (first term
in Eq. 2a). However, register blocking generates multiple
load instructions in the innermost loop body (Algorithm 3),

and not one; in particular there are Rb × Ry × Rx × Rd
load instructions in the general case (2nd term in Eq. 2a),
because these iterators are in the subscript of in array; in
Algorithm 3, Rb = 1,Ry = 1,Rd = 1,Rx = 2 and thus 2
load instructions occur. Eq. 2b is extracted the same way.

Regarding the out array, Eq. 2c is extracted in a similar
way when d0=1, but when d0 > 1, Eq. 2c becomes more
complex and this is why Rm′ is introduced. As it was
described in Subsection 3.1, m0×d0 elements are vectorized,
but m0 × Rm elements need to be stored into consecutive
memory locations, and as a consequence fewer than m0×d0
elements are stored when Rm < d0 (Rm < d0 only when
d0 > 1 as Rm ≥ 1), e.g., when Rm=1, m0=8 and d0=1, 8
elements (256-bit) are stored into memory, while when d0=2
and m0=4, 4 elements are stored into memory (128-bit). Now
consider the case where Rx = 2, Rm = 2, m0 = 4, d0 = 2
(FP32 and AVX-256). As in the previous example, 128-bit
and not 256-bit store instructions are required; however,
albeit there are four (Rm × Rx = 4) 128-bit store instruc-
tions, they can be realized by using two 256-bit instructions
instead, and thus Rm′ = 1 in Eq. 2c, not Rm′ = 2.

Based on Eq. 2, the overall number of L/S instructions is
given by Eq. 3. The number of load instructions for the bias
array is insignificant and thus to ease presentation it is not
included in Eq. 3. Eq. 3 gives the number of L/S instructions
based on the DNN input parameters and vectorization /
register blocking factors. The vectorization factors (m0, d0)
are found in lines 5-7 (Algorithm 4), while the register
blocking factors are found by Eq. 4c (explained after).

L/S.overall = OPS/Rm+OPS/(Rb×Ry ×Rx)+

(OPS/(D/d0×K.Y ×K.X))× (d(Rm/d0e+ Z)/Rm)
(3)

0.85×Regs ≤ Rb×Rm×Ry ×Rx+Rb×Ry ×Rx+Rm+ ext ≤ Regs (4a)
0.85×Regs ≤ Rm×Rx+Rx+Rm+ ext ≤ Regs (4b)

0.85×Regs ≤ Rm×Rx+min(Rm,Rx) + 1 + ext ≤ Regs (4c)

Based on Eq. 3, the number of L/S instructions does not
depend on the Rd value and thus register blocking is not
applied to d loop (Rd = 1). Furthermore, the number of
L/S instructions in Eq. 3 does not depend on the individual
register blocking factors, but on the following two quanti-
ties: (Rb×Ry×Rx) and Rm. Therefore, (Rb×Ry×Rx) is
studied as a whole and as a consequence, there is no need to
apply register blocking to all the b, y, x loops, e.g., applying
register blocking just to x loop with Rx = 8 is equivalent to
(Rb = Ry = Rx = 2), in the general case. This statement is
false only in special cases, i.e., when Rx > X or when Rx
cannot perfectly divide X . In such cases, register blocking is
also applied to y loop.

Based on the above analysis, we apply register blocking
to x and m loops only. y loop is blocked only in the special
cases above. To make our analysis easier to follow, for the
rest of this Section we assume that Rm < M , Rx < X and
that Rm/Rx perfectly divide M/X , respectively.

The register blocking factors are given by Eq. 4c. To ease
presentation Eq. 4a and Eq. 4b are also provided which are
used to generate Eq. 4c. The first term in Eq. 4a refers to
the vector variables needed for the accumulators (acc0 −
acc3 in Algorithm 3), the second term in Eq. 4a refers to
the vector variables needed for loading the in array and
the third term for the filt array; these values are generated
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based on the arrays’ subscripts (note that Rd = 1). Based
on the above analysis Rb = Ry = 1 and thus Eq. 4a gives
Eq. 4b. The number of vector variables used in the innermost
loop body should not exceed the number of available HW
registers (Regs value in Eq. 4), which equals to 16/32 for
AVX-256/512, respectively. Otherwise, register spills occur
(additional L/S instructions) and performance is degraded.
The constant value 0.85 is found experimentally.

The ext in Eq. 4 refers to any other additional vector
variables required in the innermost loop body, and in most
cases ext = 0, e.g., in Algorithm 3, ext = 0. Additional
vector variables are required only when quantization is
applied (but not always), e.g., for AVX-256 and int8, there
is no special fmadd instruction (like the one in line 12
Algorithm 2) that takes as input 8-bit values and generates
32-bit IRs and thus the instruction in line 12 is substituted
by three instructions in this case; thus, more variables are
required for storing the IRs. Note that in the case where
AVX-512 and int8 still ext.vars = 0.

Eq. 4b can be optimized in a way that fewer vector vari-
ables are used (Eq. 4c). According to Eq. 4b, Rx/Rm vector
variables are allocated for in/filt arrays, respectively. As
it can be observed in Algorithm 3, Rx variables of in
are multiplied by Rm variables of filt. However, there is
no need loading all these values prior to their processing.
Instead, the number of variables required can be further
reduced by overwriting either the values of in or filt, e.g.,
in Algorithm 3, we load the first value of in, multiply it by
all the filter values and then load the next value of in on
the same variable (Algorithm 3). This saves variables and
thus Eq. 4c gives larger register blocking factors than Eq. 4b,
and as a consequence fewer L/S instructions are achieved.
However, if we use two variables for storing in in Algorithm
3, four fmadd instructions are executed one after another
and not two, and in this case the fmadd instructions are
executed faster (better throughput is achieved). Although
there is a trade-off between Eq. 4b and Eq. 4c, we have
experimentally observed that Eq. 4c is more efficient and
therefore only Eq. 4c is used in this work.

An example follows. Consider AVX-512, Regs = 32,
m0 = 16, d0 = 1, and FP32 data (thus ext = 0). Eq. 4c
is satisfied by several solutions, some of which are shown
below (note that c = D ×K.Y ×K.X):

(Rm,Rx) = (1,30), Eq. 3 gives 1.033×OPS +OPS/c (5a)
(Rm,Rx) = (2,14), Eq. 3 gives 0.571×OPS +OPS/c (5b)
(Rm,Rx) = (3,9), Eq. 3 gives 0.444×OPS +OPS/c (5c)
(Rm,Rx) = (4,6), Eq. 3 gives 0.417×OPS +OPS/c (5d)
(Rm,Rx) = (5,5), Eq. 3 gives 0.400×OPS +OPS/c (5e)
(Rm,Rx) = (6,4), Eq. 3 gives 0.417×OPS +OPS/c (5f)
(Rm,Rx) = (8,3), Eq. 3 gives 0.458×OPS +OPS/c (5g)

Although Eq. 5d and Eq. 5f give the same number of
instructions, Eq. 5d is always more efficient as its memory
footprint is smaller (it has a smaller Rm value).

The solution achieving the minimum number of L/S
instructions might not be the fastest in the following special
cases : a) Rm × m0 > M (addressed in Subsection 3.3),
b) Rx > X , c) Rm × m0 < M < 2 × Rm × m0 or
Rx < X < 2×Rx, d) the microkernel’s data cannot fit in L2
or dL1 (addressed in Subsection 3.3). To deal with the cases

(a) and (d), the method in Subsection 3.3 is used. To address
cases (b) and (c), we might need to select a solution where
the Rm/Rx perfectly divide M/X , respectively, or use more
than one microkernels with different blocking factors.

To sum up, the approach used to select the register
blocking factors is shown in lines 8-11 in Algorithm 4. We
select the solution that achieves the minimum number of
L/S instructions and the solution that gives up to 8% more
instructions but with a lower Rm value (if any), e.g., in the
example above the (5,5) and (4,6) are selected only. This is
because solutions with smaller Rm value give microkernels
that use less memory; the higher the m0×Rm value is, the
more the kernels being processed together (Fig. 1) and as a
consequence, the higher their memory size will be. The data
footprint of in and filt are (D×Rx×K.Y × d.length) and
(D ×K.X ×K.Y ×Rm×m0× d.length), respectively.

(Method2) Extend Method1 for k.x and k.y loops too:
When the size of the kernel is not 1 × 1, the number of
load instructions in in array can be significantly reduced
by exploiting the data reuse on the kernel, e.g., when a
3 × 3 kernel is shifted by one position to the right (assume
stride.x = 1), six out of nine in elements are reused. This
type of data reuse can be exploited and further reduce the
number of load instructions in in array.

To this end, register blocking should be applied to both
x and k.x loops, and Rk.x value should be fixed, i.e.,
Rk.x = K.X . Based on the arrays’ subscripts, (K.X +
(Rx − 1) × Stride.X) vector variables are loaded from in
and multiplied by K.X × Rm variables of filt in this case.
Thus, Eq. 2a becomes Eq. 6. In this method, each element
of in array is loaded once and processed multiple times,
and therefore, we allocate only one variable for in. Thus,
Eq. 4c becomes Eq. 7. In Eq. 7, only one variable is used
for in and K.X × Rm variables for filt. In this case, the
data access pattern of in array changes and far fewer load
instructions are executed in in array (Eq. 6). The number of
L/S instructions in the other arrays remain unchanged.

In.Loads =
OPS×(K.X+(Rx−1)×Stride.X)

(K.X×Rx×Rm)
(6)

0.85×Regs ≤ Rm×Rx+ 1 +K.X ×Rm+ ext ≤ Regs (7)

Following up the previous example (see Eq. 5), the
number of overall L/S instructions is highly reduced now,
as we get 0.28 OPS and 0.22 OPS, for 3 × 3 and 7 × 7,
respectively (assuming stride.x = 1).

Applying register blocking to both (Rx+k.x) and (Ry+
k.y) is not efficient because first, too many vector variables
are required for filt array (K.X × K.Y × Rm) and this is
not feasible for kernels larger than 3 × 3 , second, the AI
value is reduced.

Although Method2 achieves far fewer load instructions,
Method1 gives better performance in most cases. Method2
achieves better data reuse at a register level (and thus
achieves fewer load instructions), while Method1 achieves
better data reuse at a cache level. In Method1, D× (Rx− 1)
elements in in array are reused in the cache every time the
k.x loop increases its value (each element is loaded from the
cache multiple times). On the other hand, in Method2, each
in element is loaded just once but there is no data reuse in
the cache. Method2 always gives a smaller Rm value and
as a consequence microkernels with smaller data footprint,
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compared to Method1, and thus Method2 is preferred over
Method1 when the data of Method1 cannot fit into the cache
(this is discussed below).

3.3 Reducing the microkernel’s memory footprint
As it was explained in the previous Subsection, first, the
register blocking solution achieving the minimum number
of L/S instructions might not be the fastest when the micro-
kernel’s data footprint cannot fit into the cache, and second,
the selected register blocking factors are not valid when
Rm×m0 > M . This Subsection addresses these two cases.

Let us further explain the first point with an example.
The solution in Eq. 5d gives 0.417 × OPS while the Eq. 5b
gives 0.57×OPS, L/S instructions. In the case where a 3×3
kernel is used and D = 256, Eq. 5d uses data of 608KB
while Eq. 5b of 338KB. Thus, if we need to reduce the data
footprint (to fit into the cache), we need either a) to select
a solution with Rm < 4, and as a consequence a higher
number of L/S instructions will be executed, degrading
performance, or b) use Method2; however, even in this case,
data might not fit into the cache.

There is a more elegant way of reducing the micro-
kernel’s data footprint without sacrificing the number of
L/S instructions. To this end, we keep the register blocking
factors unchanged and we decrease the m0 value according
to the memory size we need to save. Note that m0 is given
by Eq.1 and thus when m0 is reduced, d0 is increased
accordingly (m0 and d0 are powers of 2). The data foot-
prints of in and filt are (D × Rx × K.Y × d.length) and
(D×K.X ×K.Y ×Rm×m0× d.length), respectively, and
thus, the overall size is given by D×K.Y × d.length(Rx+
K.Y ×Rm×m0). The data footprint of filt is several times
larger in most cases, as Rx < k.Y ×Rm×m0. By reducing
the m0 value by a factor of 2,4 or 8, the overall memory
size is reduced almost equally. This way, the number of
L/S instructions remains unchanged as the (Rm,Rx) values
remain unchanged. Note that the OPS value in Eq. 2d
depends on the m0× d0 value, which remains unchanged.

On the negative side, the higher the d0 value, the higher
the overhead in arithmetical instructions in lines 16-17 (Al-
gorithm 2), as more horizontal additions are required and
the results need to be stored into consecutive positions (line
17). The impact of these instructions on performance is not
high, as first, they are located outside of the three innermost
loops (d, k.x, k.y), second, the D×K.X×K.Y value is large
when the data footprint does not fit in dL1. The second
drawback, which impacts performance more, is that more
store instructions might be required when d0 > 1 (this was
explained in Subsection 3.1, see Eq. 2e).

To conclude, the microkernel’s footprint should always
fit in either L2 or dL1, at all times. Whether it should fit in L2
or dL1 depends on the target HW and DNN parameters and
quantization level, and the selection is being made in lines
12-51 in Algorithm 4. When quantization is used, there are
cases where multiple and not one instructions are required
to implement line 12 in Algorithm 2. In this case, the
instruction in line 12 is substituted by three instructions and
therefore the AI of the program is increased (becomes more
compute bound). In this case, the optimization approach
should change too. Based on our experimental analysis,
when line 12 in Algorithm 2 cannot be realized by a single

instruction, the tiles should fit in dL1. Otherwise, loop tiling
for dL1 is not efficient as long as the data fit in L2.

Last, in the case where Rm×m0 > M , it is not feasible to
use the current Rm value, and thus the above technique is
applied to achieve an efficient solution for small M values.
3.4 Parallelization, loop tiling and loop permutation
Parallelization is realized by using the OpenMP framework.
The number of the threads used equals to the number of
physical CPU cores (let c). The loops being parallelized
here are either b or y, based on the target DNN and HW
parameters. The loop being parallelized is always set as the
outermost. For the reminder of this paper we assume that b
loop provides sufficient parallelism; otherwise, both b and y
loops (or even a third loop) need to be parallelized.

Loop tiling and loop permutation are also applied to
further reduce the number of data accesses in memory
hierarchy. The exploration space is massive and therefore
a theoretical approach need to be followed in this case too.

Regarding loop permutation, (k.y, k.x, d) are set as the
innermost loops; this way, the out array is not loaded but
just stored into memory once, reducing the number of both
arithmetical and L/S instructions. b loop is parallelized
and thus is set as the outermost. The remaining loops are
(m, y, x) which can be permuted. However, the number of
different permutations can be reduced by using reasoning
and thus only two candidate loop permutations are propa-
gated, i.e., (m, y, x) and (y, x,m).

Applying loop tiling to d-loop is not efficient, as first,
the out array is loaded and stored multiple times in this
case, second, the tiles of in contain non-consecutive memory
locations (with the current layout) and thus they cannot
entirely fit into the cache [25]. k.y/k.x loops are too small
for applying tiling. b-loop is not appropriate for loop tiling
(with the existing in layout), as each b iteration brings a
large amount of data and thus data cannot fit into the cache.
On the other hand, m, x and y loops are the best candi-
dates for loop tiling. However, the tiles contain duplicates
(common array elements), when either x or y is tiled and
K.X > 1 or K.Y > 1, respectively.

In this work, when b-loop is parallelized, loop tiling is
applied to m loop only (Algorithm 3), while when y-loop
is parallelized both m and y loops are tiled. Parallelizing or
tiling y-loop can further reduce the number of L3 or DDR
accesses in some cases. When y-loop is parallelized, each
thread processes an in tile of size ((Y.in/c) × X.in × D).
Each core processes its own tile which must fit into its L2
private cache. In the general case, each thread processes
an in tile of size (Y.in/Ty × X.in × D), where (Ty =
c×dbatch/(c×L2.size))e (batch is defined in Algorithm 5).
Note that when K.Y > 1, the tiles of in contain duplicates
and their number increases according to the K.Y value.
This might be problematic for large kernels, especially for
NUMA architectures. The effect of this problem has not been
studied yet for kernels larger than 5× 5.

So far, there are several candidate solutions (different
loop permutations as well as loops to tile and parallelize).
To select the most efficient solution, we have generated the
mathematical equations that approximate the number of
data accesses in each memory, based on the target DNN and
HW parameters; based on these equations, we have devel-
oped Algorithm 5. To justify and better explain Algorithm
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Algorithm 4 Calculate the optimization parameters
1: procedure CALCULATE THE OPTIMIZATION PARAMETERS
2: Input: B,M,Y,X,K.X,K.Y,D,dL1.size,L2.size,Regs, vector.length,

d.length
3: Output: m0, d0, Rm, Ry, Rx, Tm, Ty, par.loop
4:
5: . //find the initial vectorization parameters
6: Calculate d0 based on the quantization level, e.g., d0=1/d0=4,

for FP32/int8, respectively
7: Calculate m0 from Eq. 1

8: . //find the initial Register Blocking parameters
9: Calculate (Rm,Ry,Rx) achieving the min number of L/S instruc-

tions (Method1 only)
10: List1 ← the (Rm,Ry,Rx) solution giving up to 8% more L/S

instructions but with smaller Rm value (if any)
11: List2 ← the (Rm,Ry,Rx) solution achieving the

min number of L/S instructions (Method 2 only)

12: . //find the tile sizes (Tm,Ty), the loop to be parallelized
(par.loop), and update d0,m0,Rm,Ry,Rx if needed

13: if (multiple and not one instructions are required to implement
line 12 in Algorithm 2) then . in this case (e.g.,
AVX-256 and int8), line 12 is substituted by three instructions and thus
the AI is increased (our optimization approach reflects this)

14: if (the microkernel’s data footprint cannot fit in dL1) then
15: (m0, d0, Rm, Rx, Ry,

Tm)=Reduce Footprint & Find Tile(m0, d0, Rm, Rx, Ry,dL1.size,
List1, List2)

16: else
17: (Tm,Ty,par.loop)=Find Tile(B,M,Y,...,d.length)
18: end if
19: else . one instr. is required to implement line 12 in Algorithm 2
20: if (the microkernel’s data footprint cannot fit in L2) then
21: (m0, d0, Rm, Rx, Ry,

Tm)=Reduce Footprint & Find Tile(m0, d0, Rm, Rx, Ry,L2.size,
List1, List2)

22: else
23: if (the microkernel’s data footprint cannot fit in dL1) then
24: if (List1 not empty) then
25: Use (Rm,Ry,Rx) solution from List1
26: end if
27: if (filt fits in L2) then
28: Tm=M;Ty=-; par.loop=b;
29: else
30: (Tm,Ty,par.loop)=Find Tile(B,M,Y,...,d.length)
31: end if
32: else
33: (Tm,Ty,par.loop)=Find Tile(B,M,Y,...,d.length)
34: end if
35: end if
36: end if
37: Return (m0, d0, Rm, Ry, Rx, Tm, Ty, par.loop)
38: end procedure
39:
40: procedure Reduce Footprint & Find Tile
41: Input: m0, d0, Rm, Rx, Ry, Li.size, List1, List2
42: Output: m0, d0, Rm, Rx, Ry, Tm
43:
44: if (data footprint of List1 fit in Li) then
45: Use (Rm,Ry,Rx) solution from List1
46: else
47: either a) reduce the data footprint to fit in Li, by calculating

the new d0,m0 values, or b) use the List2 solution (if its footprint
fits in Li) . in Section 4, the first option is used, but both options are
efficient

48: end if
49: Tm = Rm×m0 . the tile gets its min value so as to fit in Li
50: Return (m0, d0, Rm, Ry, Rx, Tm)
51: end procedure

Algorithm 5 Calculate the (Tm,Ty,par.loop) so as to reduce
the number of accesses in memory hierarchy (see Table 1)
1: procedure Find Tile
2: Input: B,M,Y,X,K.X,K.Y,D,m0,d0,Rm,Ry,Rx,dL1.size,L2.size, Regs,

vector.length, d.length Output: Tm, Ty, par.loop
3: . in.size = B ×D ×X.in× Y.in× d.length
4: . filt.size = D ×K.X ×K.Y ×M × d.length
5: . in.footprint = D ×Rx×K.Y × d.length
6: . filt.footprint = D ×K.X ×K.Y ×Rm×m0× d.length
7: . batch = D ×X.in× Y.in× d.length
8: . mem.access.A = in.size×M/Tm+ filt.size×B
9: . mem.access.B = in.size+ filt.size×B ×X/Rx× Y

10: . Here we assume that b-loop can well distribute the workload
11:
12: Tm← calculate Tm so as in.footprint and (D×K.x×K.y×

Tm× d.length) fit in dL1 (Rm×m0 ≤ Tm ≤M )
13:
14: if (filt and in.footprint fit in dL1) then
15: return (M,-,b) . arrays are accessed from L2 once
16: else if (batch fits in L2) then
17: if (filt fits in L2) then
18: if (mem.access.A ≥ mem.access.B) then
19: return (M,-,b)
20: else
21: return (Tm,-,b)
22: end if
23: else . Filt cannot fit in L2
24: return (Tm,-,b) . minimize L3 accesses
25: end if
26: else if (batch fits in L3) then
27: if (filt fits in L2) then
28: if (mem.access.A ≥ mem.access.B) then
29: return (M,-,b)
30: else
31: if (y-loop can well distribute the workload) then
32: return (Tm,Ty,y)
33: else
34: return (M,-,b)
35: end if
36: end if
37: else if (filt fits in L3) then
38: if (y-loop can well distribute the workload) then
39: return (Tm,Ty,y)
40: else
41: if (mem.access.A ≥ mem.access.B) then
42: return (M,-,b)
43: else
44: return (Tm,-,b)
45: end if
46: end if
47: else . filt fits in DDR
48: if (y-loop can well distribute the workload) then
49: return (Tm,Ty,y)
50: else
51: return (Tm,-,b)
52: end if
53: end if
54: else . batch fits in DDR
55: if (filt fits in L2) then
56: as in lines 27-34 above
57: else if (filt fits in L3) then
58: as in lines 30-34 above
59: else . filt fits in DDR
60: as in lines 37-45 above
61: end if
62: end if
63: end procedure
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TABLE 1: Number of times the arrays are accessed from L2
and L3 cache, expr = (B ×X/Rx× Y ).

Lines 16-25 in Algorithm 5 Lines 26-46 in Algorithm 5
in filter in filter

No tiling No tiling
L2 M

m0×Rm×c
B/c M

m0×Rm×c
B/c

L3 1 1 or B M
m0×Rm

1 or B
(Tm,Ty,y) (Tm,Ty,y)

L2 M/(Tm× c) B/c M/(Tm× c) B/c
L3 1 1 or B 1 1 or B

(Tm,-,b) (Tm,-,b)
L2 M/(Tm× c) B/c M/(Tm× c) B/c
L3 1 1 or B M/Tm 1 or B

(M,-,b) (M,-,b)
L2 1 expr/c 1 expr/c
L3 1 1 or expr 1 1 or expr

5, Table 1 is provided. Table 1 shows how many times
the in and filt arrays are loaded from L2 and L3 cache,
when the if-conditions in lines 16-25 and 26-46 are executed,
respectively. Because of the limited page size, we do not
provide a table for all the cases in Algorithm 5. Note that
two values are provided for filt array, one when it fits in
L2 and another when it fits in L3. The out array is stored
just once and thus not shown here. Algorithm 5 selects the
solution achieving the minimum number of DDR accesses.
If the solutions provide the same number of DDR accesses,
then the one achieving the minimum number of L3 accesses
is selected, etc. In our future work we are planning to im-
prove this step, by selecting the solution that minimizes the
following value maxi{Li.accesses/Li.bandwidth}, where
i = [1, 4] (in our case four memories exist).
3.5 Backward propagation and Weight gradient update
The backward propagation and the weight gradients update
algorithms are slightly different to the forward propagation
algorithm studied in this paper. However, there are two
scenarios (which cover the majority of CNNs) where we
can transform the weight tensors, and then we can reuse the
existing forward propagation routines, i.e., when either a)
the stride value equals to one, or b) the kernel size is 1× 1.
In our future work we will extend this work to the backward
propagation phase when the (a) and (b) conditions above are
not met, as well as to the weights gradient update phase.

4 EXPERIMENTAL RESULTS
4.1 Experimental Setup
The experimental results are performed on two diverse
Intel platforms, namely HW1 and HW2. HW1 consists of
a two socket 10-core NUMA Intel Xeon Silver 4210 CPU
(20 physical cores in total) at 2.20GHz with AVX-512, 32KB
dL1 and 1MB L2 per core, 27.5MB L3 (in total), 128GB
DDR4 3200MHz, running Ubuntu 20.04.4 LTS, oneDNN
v2.6.0 and icc version 2021.6.0. HW2 consists of a quad-core
Intel i5-7500 CPU at 3.40GHz with AVX-256, 32KB dL1 and
256KB L2 per core, 6MB L3, 16GB DDR4 2666MHz, running
Ubuntu 20.04, oneDNN v2.3.0 and icc version 2021.5.0. The
theoretical peak performance on HW1/HW2 is 1408/435
GFLOPs, respectively.

The proposed work is evaluated over Intel oneDNN
library by using Intel’s best practices and the fused imple-
mentation provided in [26] (executes the convolution and
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Fig. 2: Performance evaluation for DenseNet-121

ReLU layers, on blocked data format). The routine’s name is
conv relu fused() and uses the convolution direct algo-
rithm and forward inference option. The memory layout of
the input tensor is byxd. The cost of changing the layout of
the tensors (if needed) is included in the above routine.

Our evaluation also contains quantization where all the
input/output tensors contain 8-bit values. The IRs contain
int-32 values. When quantization is used the 32-bit IRs need
to be converted to 8-bit and therefore the 8-bit results are
not located into consecutive vector positions. The process
of re-arranging the output values into consecutive vector
locations is not trivial and is optimized (Subsection 3.1).
Vectorization is more challenging in the int-8 case and the
code is different than the FP32 case. Furthermore, different
routines are required for the AVX-256 and AVX-512 case.

The performance metrics used here are FLOPs for the
FP32 case and IOPs (integer tensor operations per second)
for the int8 case. Both FLOPS and IOPs are given by :
FLOPs/IOPs = B × Y × X ×M × (2 ×K.Y ×K.X ×
D + 1)/run.time.

The evaluation is made on three popular CNNs, i.e.,
DenseNet-121, ResNet-50, SqueezeNet. Just the convolution
and ReLU layers are evaluated (112 different convolution
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Fig. 3: Performance evaluation for ResNet-50

layers). The x-axes in Fig. 2- 4 show the layers’ param-
eters (B, Y,X,D, Stride.Y, Stride.X,K.Y,K.X,M ); layers
are shown in order and identical layers are shown only once.

oneDNN uses a JIT feature to generate optimized kernels
at runtime, tailored to the inputs provided. One of the
advantages of this method is that the input parameters are
known when the code is generated and this allows for a
better optimization process. The drawback is that generating
JIT kernels requires some time; the kernel generation cost is
amortized when either a) the workload of the layer is large
enough, or b) a layer with the exact same input parameters
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Fig. 4: Performance evaluation for SqueezeNet

runs many times (on different tensors).
A thorough experimental evaluation is applied, in two

different ways: a) by taking into account the kernel gener-
ation cost (general case), b) by not considering the kernel
generation cost (special case where a layer with the exact
same input parameters runs many times). The latter is
realized by putting the conv relu fused() routine in a loop
and running it many times (dashed lines in Fig. 2- 4); note
that the kernel generation cost can also be amortized by
saving the generated schedule (by using oneDNN persistent
caches) and then re-using it. The routine is run as many
times needed so as the execution time is close to 1 sec.
This procedure is repeated for 20 times and the minimum
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execution value is taken. This is done twice and thus the
program run 40 times in overall. Regarding the first way
of evaluation, the binary is run 20 times and the minimum
value of conv relu fused() routine is taken; this procedure
is repeated three times and thus each binary runs 60 times.
In this case, the kernel generation cost is included to the
extracted FLOPs value. To minimize the ‘noise’ from the
other running processes, we report the minimum and not
the average execution time, as this is more suitable for pro-
cesses that run for short periods of time (msecs); this way,
we make sure we only time the target process and nothing
else. Using the average execution time includes more ‘noise’
(especially for the 1st way of evaluation), and therefore
every time we run the experiments, we get slightly different
FLOPs values. On the contrary, we get approximately the
same FLOPs when we use the minimum execution time.

Last, our routine that generates the optimization param-
eters (Algorithm 4) as well as the routine that changes
the layout of the filter/bias arrays, are included in the
evaluation; the overhead of the first is inconsiderable while
the overhead of the second ranges from 0.1% to 3%.

4.2 Performance Evaluation
The performance evaluation is shown in Fig. 2-Fig. 4 and in
Table 2. Putting the target routine in a loop and running it
multiple times (2nd way of evaluation) gives either better or
approximately the same performance in all cases, for both
methods, as first, the data are hot into the cache, and second,
the OpenMP overhead is lower. The gap between the 1st and
2nd way of evaluation is higher for oneDNN as the cost of
generating the kernel is zero in the 2nd way of evaluation.
The only case where the two different ways of evaluating
performance give approximately the same performance is
the HW2-FP32 case; in HW2-FP32 case, the workload per
thread is way higher compared to the other three cases,
and therefore both the OpenMP overhead and the cost of
generating the kernel, are low. Note that the workload is
distributed into 20/4 threads on HW1/HW2, respectively,
and the int-8 case achieves fewer instructions than the FP32
case; additionally, there are more executed instructions per
thread on the HW2 case compared to the HW1, as on HW2,
256-bit of data are processed and not 512-bit. Nevertheless,
in the last ’small’ layers of DenseNet, the workload per
thread is not good enough and thus running the routine
many times gives higher performance.

Quantization gives up to x4 times higher performance
on HW1 as the int-8 case achieves about x4 fewer tensor
operations. The cost of converting the 32-bit IRs into 8-bit
and storing the 8-bit results into consecutive vector loca-
tions is not high, because, first, this process is not applied
inside the three innermost loops, second, this process is well
optimized. However, the quantization gain is lower on HW2
compared to HW1, as no dpbusds instruction is supported
on HW2 and therefore three AVX intrinsics are needed to
realize the fmadd instruction. This gives a higher number
of arithmetical instructions in the innermost loop body.

There is a high FLOPs/IOPs deviation (Fig. 2-Fig. 4) for
different layers for four main reasons. Regarding the 1st
way of evaluation, ’big’ layers (layers with a large number
of tensor operations) give higher FLOPs/IOPs than ’small’
layers for both methods, until we reach a critical point

where the OpenMP overhead becomes low; the OpenMP
overhead is lower for ’big’ layers as the workload per thread
is higher. Regarding oneDNN, the performance variation
is even higher since the kernel generation cost is higher
for small layers. Regarding the 2nd way of evaluation,
performance is slightly affected by the layer size, as a) the
OpenMP overhead is low, and b) the data are hot into the
cache; the only case it is significantly affected is the HW1-
int8 case where the OpenMP overhead is the highest among
all four cases. Regarding the second reason, the layers with
higher (D×K.Y ×K.X) values achieve higher FLOPs/IOPs,
as the three innermost loops run for longer and the overhead
of lines 16-21 (Algorithm 2) is lower. Third, the layers with
stride 2 normally give lower performance than layers with
stride 1 because data are loaded less efficiently. Last, layers
with 3 × 3 kernels normally achieve higher FLOP values
than 1× 1 kernels, as the 3× 3 case has a higher AI. For this
reason, register blocking is more critical in the 1× 1 case.

The proposed work achieves high speedup values in the
1st way of evaluation, and significant speedup values in the
special case where a layer with the same input parameters
runs many times (Table 2). Table 2 is calculated by accumu-
lating the execution time values of all layers. The speedup
values at the HW1-int8 case (1st way of evaluation) are the
highest because the workload per thread is the lowest. We
are not aware of the reason oneDNN does not generate
efficient code in the HW2-FP32 case.

TABLE 2: Overall speedup over oneDNN library for all the
convolution layers. The first three rows show the speedup
of the dashed lines in Fig. 2- 4, while the last three show the
speedup of the continuous lines.

HW1-FP32 HW1-int8 HW2-FP32 HW2-int8
DenseNet-121 * 1.12 1.24 2.24 1.09

ResNet-50 * 1.1 1.15 1.92 1.1
SqueezeNet * 1.12 1.61 2.33 1.23
DenseNet-121 2.93 7.2 2.39 1.1

ResNet-50 1.72 3.18 1.98 1.17
SqueezeNet 2.92 6.47 2.38 1.41

Register blocking is by far the most performance critical
optimization; on HW1, the register blocking factors used in
most cases are (Rm,Rx) = (4, 6). On HW2, the most used
factors are (2, 6)/(2, 5) for the FP32/int-8 case, respectively.
The Rx value might be different when Rx > X or Rx <
X < 2×Rx (y-loop might also blocked in this case). y-loop
is parallelized in some cases on HW2 only.

Although B=40 in Fig. 2- 4, we have evaluated the two
methods for B = [20, 40, 80, 120, 1500, 4000]. Regarding the
1st way of evaluation, the performance gain over oneDNN
is higher for B < 40 and lower for B > 40, compared to
B=40, for the reason explained above. Even in the extreme
case where B=1500 or higher, the speedup values achieved
are high (significantly higher than the speedup values
shown in the first three rows of Table 2). Regarding the 2nd
way of evaluation, the performance gains are similar.

5 CONCLUSIONS AND FUTURE WORK

This research work provides the theoretical background
to efficiently design and implement convolution layers on
CPUs, based on the target layer parameters, quantization
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level and HW architecture. We show that the optimization
process is complex and includes a massive exploration
space; therefore, peak performance cannot be achieved with-
out building an analytical model.

Regarding oneDNN, although JIT provides the advan-
tage of portability and generating optimized kernels tailored
to the inputs provided, generating JIT kernels requires some
time; thus, oneDNN performs well only when either the
layer’s workload is large enough, or when the exact same
layer runs many times. This is why our method gives high
speedup values for ’small’ layers and small batch sizes.
The proposed method achieves significant speedup values
even when the kernel generation cost is amortized, because
the optimization parameters are provided by an analytical
model. We believe that the proposed method can be inte-
grated to the oneDNN project to improve its performance.
Furthermore, our analytical approach can be used to better
guide auto-tuning systems (e.g., TVM auto-scheduler) and
allow for higher quality solutions in lesser time.

In our future work, we are planning to improve the way
we select a solution in Subsection 3.4 and apply software
prefetching. Furthermore, we are planning to extend this
work to the backward propagation phase when the condi-
tions in Subsection 3.5 are not met, as well as to the weights
gradient update phase.
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