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IN SOUTH WEST ENGLAND ESTUARIES: A STUDY OF IMPACT AND 

CHANGE 

SHEILA JOAN STUBBLES 

Abstract 

There was a major discharge into Restronguet Creek, south-west Cornwall in 

January 1992 of metalled acidic mine water drainage from the recently closed 

Wheal Jane tin mine. Shortly after this discharge a post-impact study using the 

responses of Recent benthic foraminifera as indicators of metal pollution was 

carried out on this Creek which had not been investigated previously. Because of 

a lack of pre-discharge foraminiferal data from Restronguet Creek, other 

estuaries, which previously drained metal mining regions, have been sampled in 

order to determine the background levels in foraminiferal populations. These 

estuaries, Fowey (Cornwall), Avon and Erme (south-west Devon) have not been 

investigated previously. The research programme included reconnaissance 

sampling of the estuaries Looe, Yealm, Kingsbridge, Axe and Carrick Roads 

(south-west England), primarilly to determine the geographical distribution of the 

agglutinated species. In all, 651 samples were taken for micropalaeontological 

and laser analysis from which an estimated 260,000 tests have been picked and 

some 70 species identified. A further 395 samples were taken for metal, carbon, 

nitrogen, sediment grain size and mineralogical analysis. 

The results of this research show changes over time with the colonisation 

of barren stations, increased abundance of living individuals, reduced proportions 

of deformed tests, less severe acid dissolution of the test walls and a seasonal 

species distribution which is similar to that of the Fowey Estuary. Low diversity is 

unchanged and the agglutinating foraminifera, which form distinct assembage 

zones in the control estuaries, remain absent from Restronguet Creek. The data 

provided by the short cores from Restronguet Creek suggest that the 1992 

discharge does not account for the absence of these species. 

During the period of investigation the sediment-bound metals in terms of 

the concentrations have, in general, increased but the river water quality entering 

the Creek has improved in terms of metals and acidity. This suggests that the 

foraminifera are more directly influenced by metals in solution and that tangible 

benefits have been gained from the water quality improvement programme 

inaugurated by the Environment Agency. 
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Chapter One 

Introduction 

1.1 Introduction - aims and objectives 

In January 1992 there was a major discharge (Figure 1.1) of metal-rich 

acidic water from Wheal Jane tin mine into the Carnon River (full details. Section 

1.5.2), via. Clemows Stream tailings lagoon (Figure 1.2). The aim of this research 

is to document the effects of this discharge on the ecology of benthic foraminifera 

in the marginal marine environment of Restronguet Creek (Figure 1.3, Enclosure 

1 a), where the Carnon River discharges into the Fal Estuary. 

Benthic foraminifera are used as environmental indicators because they 

often occur in very high abundances (Alve, 1995a), have short life cycles and may 

show a rapid and specific response to stress. They are potentially reliable in situ 

indicators of environmental stress because of their low motility. The main 

objectives of this research are, therefore, to use the changes in benthic 

foraminiferal ecology (standing crop densities, low diversity, loss of species, 

changes in faunal dominance, levels of test deformity and, specifically, the etching 

of tests by acidic waters) to determine the post-impact effects of acid mine 

drainage (AMD). In addition, geochemical analysis of surface sediment samples 

has determined concentrations of potentially available metals. A relatively new 

technique. Laser Ablation Inductively Coupled Plasma, has also been used to 

determine metal concentrations within the tests of the foraminifera. This technique 

has much lower detection limits compared with SEM microprobe analysis and 

does not rely upon bulk analysis but is applied to individual tests and chambers. 

Hence, the unknown variables that exist between individual tests may be ignored 

(Boyle, 1995). Sediment grain size and mineralogical distribution, carbon analysis 
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and the carbon-nitrogen (C/N) ratio have also been determined. These variables 

contribute additional information on the distribution of the agglutinating 

foraminifera and the adsorption potential of mineral grains which may affect the 

concentration of sediment-bound metals. Water quality data have been provided 

by the Environment Agency (previously the National Rivers Authority) and these 

data are used to support conclusions with respect to the dynamic spatial and 

temporal changes exhibited by the foraminifera in response to improvements in 

river water quality entering Restronguet Creek. 

The region drained by the Carnon and Kennell Rivers (Figure 1.3) has 

undergone centuries of metalliferous mining (Section 1.5.1) with Restronguet 

Creek suffering severe levels of pollution and physical disturbance relative to the 

other sample locations. Historical research has shown that the depth of sediment 

contamination in Restronguet Creek must be great and represents some 3,000 

years of mining (Section 1.5.1). South West England is rich in metalliferous rock 

formations and, therefore, background levels of metals in run-off and drainage 

water will be high relative to other areas of the UK. Hence, for the present study 

only estuaries in Devon and Cornwall are considered to be appropriate as 

sources of baseline control data and, therefore, comparative baseline studies 

have been carried out on other relatively unpolluted South West England 

estuaries; in particular the Erme, Fowey and Avon Estuaries (Figures 1.4, 

Enclosure 1, b-d). These estuaries receive discharge water from metalliferous 

mining regions as both naturally weathered products and from mines abandoned 

at the end of the last century or early part of this century. The data from these 

estuaries has been used to assess natural and anthropogenic influences because 

of the absence of pre-impact data for Restronguet Creek. The metals stored in the 

sediment and the continued drainage from the old workings are also, to some 
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extent, still affecting the contamination levels of these areas. 

•mMMmK 

Figure 1.1: Ariel photograph of the ochre coloured plume of acid mine drainage 
from Wheal Jane tin mine exiting Restronguet Creek. Photograph courtesy of 
Channon Photography (1992). 

Figure 1.2: Viewof the Clemows tailings lagoon at Wheal Jane tin mine. 
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Figure 1.3: Map of Restronguet Creek. The inset map shows the position of the 
monitoring station (Environment Agency). After Stubbles et ai, 1996a. 
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Figure 1.4: Map of SW England. Boxes enclose the estuaries sampled during this 
study. The numbered boxes represent: 1 = Restronguet Creek, 2= Carrick Roads, 3= 
Fowey Estuary, 4= Looe Estuary, 5= Yealm Estuary, 6= Enme Estuary, 7= Avon Estuary, 
8= Kingsbridge Estuary and 9= Axe Estuary. 
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1.2 Sampling strategy 

As only a few estuaries on the south coast of Devon and Cornwall have 

been sampled for foraminifera (Section 1.3.1) several estuaries have been 

investigated for the purpose of providing control data. From this reconnaissance 

survey, appropriate estuaries were selected (Figure 1.4 and Table 1.1). For the 

selecton of each estuary the following criteria was used: 

• Typical estuarine abiotic variables. 

• Typical estuarine species distribution and diversity profiles. 

• Have lower concentrations of metals but the drainage catchement should 

Include areas of metalliferous geology. 

As a consequence, the Erme, Fowey and Avon estuaries were selected as 

the control sites which also contribute baseline data on areas not known to have 

been systematically sample previously. 

Table 1.1: Order of sampling. The abbreviations are: R - reconnaissance 
sampling, U - samples taken but not analysed, * systematic sampling, grey boxes 
- no samples taken, RC - Restronguet Creek, E - Erme, F - Fowey, Av - Avon, CR 
- Carrick Roads, K - Kingsbridge, L - Looe, Y - Yealm and Ax - Axe. 
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In addition, the environs of Carrick Roads which include the creeks of 

Percuil, Mylor and Pill, and, the estuarine channel locations in the Truro, Fal and 

Tressilian rivers (Figure 1.5), were occasionally sampled (Table 1.1, as CR) to 

identify the geographical distribution of the agglutinating foraminifera in locations 

adjacent to Restronguet Creek Where these species are absent (Chapter Five, 

Section 5.7). 

Figure 1.5: Carhck Roads and the additional reconnaissance sample points. 1 = 
Mylor Creek, 2 = Pill Creek, 3 = Truro River, 4 = St Clements, 5 = Tresillian River, 
6 = Ruan Lanihorne, 7 = Percuil Creek, 8 = St Just. The number of samples taken 
is denoted by the number of dots 

Restronguet Creek was sampled between October 1992 (Table 1.1) to the 

present but sample analysis ceased with completion of the October 1996 data set. 
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This continuous sampling scheme was designed to determine seasonal and 

longer term changes in foraminiferal species distribution and test condition. 

Significant changes in foraminiferal species distribution, diversity and test 

condition may be long term responses within a background of long term mining 

influence (Section 1.5.1) and hence, the sampling period was extended to 

determine present impact events from historical influence. The need not to 

deplete and disturb the assemblages in Restronguet Creek more than is 

absolutely necessary has also to be considered. Material was, therefore, removed 

every three months rather than monthly (Chapter Five). 

1.3 Previous research 

1.3.1 Recent estuarine foraminifera of South West England 

Foraminiferal research of estuaries in the South West of England has 

essentially concentrated on species distribution and population dynamics. The 

earliest work is that of Brady (1870) which describes the distribution of 

foraminifera and ostracod species from several estuaries and, specifically, the 

Exe Estuary in which the ecological requirements of brackish water species are 

described. The early work of Heron-Allen and Earland (1916) describes certain 

species and their distribution as total assemblages from material dredged from the 

nearshore regions off the south coast of Cornwall. The later paper of Heron-Allen 

and Earland (1930) describes species taken from Plymouth Sound and adjacent 

areas. The material from this collection is held at The Natural History Museum 

(London) and has been consulted during this research. Many of these early 

papers are straight forward descriptions of species and their distribution in 

Plymouth Sound, the Salcombe Estuary (Kingsbridge Estuary) and the shallow 
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shelf sea areas of south-west England (Worth, 1900a,b; 1902; 1904). However, 

many were carried out without the aid of specific stains such as rose Bengal and, 

as a result, their value as determinants of foraminiferal ecology is limited. Myers 

(1943) determined life by natural colour and pseudopodial activity from laboratory 

cultures of foraminifera and for general collection purposes used a stain (Myers, 

1942a). His study of the test morphology of Elphidium cn'spum (Plymouth Sound, 

Devon) was undertaken in order to determine sexual phases, rates of 

reproduction and nutrient supply with reference to potential environmental effects. 

Murray (1965c) carried out the earliest work in the area using rose Bengal stain 

on samples taken from various South West England estuaries and nearshore 

locations. The relationship between live and dead foraminiferal assemblages, 

species distributions and populations with respect to seasonal variation (as 

relative abundances) are given in Murray (1965c) as a study of Plymouth Sound, 

Devon. Data are also included from the Tamar Estuary and adjacent to the mouth 

of the Plym Estuary, with particular reference to sedimentation rates. Murray 

speculates as to the origin of the small species found in the dead assemblage 

which may be reworked fauna and may be indicative of sediment accumulation 

rates. Murray's "Atlas" on Recent foraminifera (1971) gives brief descriptions of 

the appearance of certain species in South West England and elsewhere in the 

British Isles. Murray's later work on the Exe Estuary (1980) describes the methods 

used to collect and analyse estuarine foraminifera. Species descriptions and 

comments on ecology are also included. Murray's follow-on work on the Exe 

Estuary (1983) is a study of population dynamics over a period of 30 months as 

living and dead assemblages. By the use of certain mathematical approaches the 

changes in production (reproduction, death, immigration and emigration) are 

modelled to determine patterns in annual standing crop variation. This work 

28 



emphasises the need to sample over several years in order to gain insights into 

interannual variation and also that the sampling position may bias environmental 

inferences at a very localised level. Ellison (1984) describes the foraminifera and 

meiofauna (ostracods and copepods) in samples taken near St John's Lake on 

the Tamar Estuary. In this paper he describes a typical low diversity estuarine 

species assemblage and found that the size of the population varied between the 

high-water and the low-water regimes and that the latter regime had the highest 

abundances. More recently, a short study by Castignetti (1996) describes the 

species distribution of the Plym Estuary which has a typical, low diversity 

foraminiferal assemblage. Prior to this current research no work had been carried 

out on foraminifera as indicators of metal pollution in South West England 

estuaries. My investigations related to this work Stubbles (1993), Stubbles et al. 

(1996a, b), have recently described the effects of heavy metal pollution on 

foraminiferal assemblages in Restronguet Creek and species distribution in the 

Erme estuary (Stubbles, 1995). It is evident from field data (Stubbles et al., 1996a, 

b) that foraminifera respond to water quality, particularly that which has high 

concentrations of metals such as acid mine drainage. 

1.3.2 Pollution and benthic foraminiferal abundance and diversity 

The use of benthic foraminifera as indicators of pollution is a relatively new 

approach and much of the earlier work has concentrated on changes in the fauna 

when exposed to sewage effluent (Resig, 1960; Watkins, 1961; Bandy etal., 

1964a, b; 1965a, b; Seiglie, 1971b). Bandy and co-workers demonstrate an 

increase in all calcareous species abundance nearest to the outfalls (Laguna 

Beach and Hyperion outfalls) but Watkins (1961) found an increase in 

agglutinated species relative to calcareous species (which also developed test 
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deformities) in relative proximity to the Orange County (California, U.S.A.) sewage 

outfall. The discrepancy between the two sets of results may have been due to the 

application of different statistical approaches or the chemical composition of the 

discharged effluents and types of treatment used (Orange County Report no. 21). 

Watkins (1961) used the Foraminiferal Number (live plus dead) to explain the 

anomaly but did not include any data on the composition of the effluent. Bandy et 

al. (1964b), however, reported the pH of the primary chlorinated discharge from 

Laguna beach outfall to be in the range of pH 7.0-7.3, which suggests that 

dissolution of calcareous fauna is unlikely (Parker and Athearn, 1959; De Rijk, 

1995; Stubbles etal., 1996b). Bandy etal. (1964b) use only stained individuals 

and found this method to be more 'diagnostic' than the live/dead ratio. The 

authors also found there to be a higher abundance of stained individuals in the 

area of the outfall relative to the adjacent shelf, but that the diversity at the outfall 

was reduced. At the Los Angeles County outfall, however, Bandy etal. (1964a) 

identified a dead zone within an area influenced by the outfall. In another area 

affected by the effluent but with a living assemblage. Bandy et al. (1964a) 

identified dissimilar live and dead assemblages. The live assemblage was 

dominated by hyaline taxa, the dead by arenaceous forms. This suggests that 

post-mortem dissolution of calcareous tests had taken place. 

Under certain circumstances enrichment in agglutinated foraminifera can 

occur if the calcareous species are removed during postmortem dissolution 

(Murray, 1991; DeRijk, 1995; Stubbles etal., 1996b). Bates and Spencer (1979) 

conclude that the species distribution was modified in response to discharges 

from the Chesapeake-Elizabeth sewage outfall in Los Angeles and that all 

species abundances varied with distance from the outfall. The authors found that 

both diversity and the number of stained individuals increased away from the 
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outfall, with a dead or barren zone adjacent to the source. Bates and Spencer 

(1979) also conclude that the type of effluent probably had a more significant 

effect upon foraminiferal condition and distribution than the flow rates of the 

discharge. Nyholm et al. (1977) were able to identify distinct zones away from a 

sewage outfall supporting foraminiferal assemblages and also which species 

represented a normal assemblage. They also found that the zone nearest to the 

outfall did not support foraminifera, but was colonised by nematodes, podopleans 

and the polychaete Nereis diversicolor. Bartlett (1972) also identified alteration in 

calcareous species distribution and that test deformity occurred in response to 

various sources of pollution; in particular sewage disposal and thermal effluent. 

Collins et al. (1995) conclude that the combination of high organic loading and 

high river water flow explain the displacement of foraminiferal assemblages and 

higher abundances of Ammonia beccarii, in particular, were present when the 

organic content was least. Other work on high organic loadings and reduced 

oxygen concentrations conludes that foraminiferal species distribution, abundance 

and diversity adversely responded to such impacts (Schafer, 1970; Seiglie, 1971; 

Schafer etal., 1995). Predation and competition between organisms are 

considered by Sundelin and Elmgren (1991) to be contributory factors which may 

affect the susceptability of the foraminifera to pollution. The mesocosm 

experiments carried out by Alve and Bernhard (1995) established that vertical 

migration of foraminifera depends upon the oxygen concentrations in the 

substrate and at the sediment-water interface. The potential loss of habitat due to 

the effects of pollution, other forms of human disturbance, and global warming 

have been reviewed by Culver and Buzas (1996) who consider that human 

disturbance and associated pollution will contribute more to the loss of habitat of 

both rare and abundant foraminifera than the effects of global warming. Alve 
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(1995a) reviewed the impact of various forms of pollution on benthic foraminifera 

and highlighted the problems associated with this work, particularly the dearth of 

data. 

Alve (1991), Alve and Nagy (1986), Ellison etal. (1986) and Sharifi etal. 

(1991), have all shown, through field observations, a link exists between heavy 

metal pollution and foraminiferal response. The research of Sharifi (1991) 

establishes a link between sediment bound metals (Southampton Water), metal 

concentrations within the foraminiferal tests and the frequency of test deformity. 

His culturing experiments also show how premature death and an increase in the 

proportion of test deformity occurs with an increase in metal availability and 

accumulation. The cores taken as part of his PhD research (Sharifi, 1991) clearly 

demonstrate the existence of a pre-contamination period with lower 

concentrations of heavy metals and fewer deformed tests. The research of Ellison 

et al. (1986) concentrates on species tolerance deduced from core data taken 

from the Patapsco River and Baltimore Harbour. They conclude that calcareous 

species are less tolerant of heavy metal pollution and found that the agglutinated 

species Ammobaculites crassus increased in abundance down the core where the 

zinc concentrations were highest. The converse situation occurs with respect to 

Vanadium and Chromium which appear to contribute to the decline of/\. crassus. 

Similarly, Alve (1991), established a clear connection between metal 

concentrations in the sediment and species diversity. The cores taken during 

Alve's study did not, however, extend into an uncontaminated zone to give pre-

impact data. Furthermore, Alve (1991) does not provide any insight into the 

effects of low pH which may have modified the species assemblages preserved. 

Stouff et al. (1999) conclude from their laboratory approach that natural influences 

(e.g., hypersalinity and acid dissolution) account for high levels of test deformity 
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with similar types of deformation occurring irrespective of the cause. 

The experimental effects of low pH conditions on foraminifera have been 

dealt with by Bradshaw (1961) who found that, for limited periods of time. 

Ammonia beccarii can tolerate acidic water and recalcify, even after complete 

dissolution of the test had taken place. The effects of low pH conditions on the 

distribution of calcareous species in the field has been examined by Phlegler and 

Bradshaw (1966), Schafer (1970) and DeRijk (1995). Phlegler and Bradshaw 

(1966) note that diurnal variations in pH can restrict colonisation by foraminifera 

and Schafer (1970) concludes that colonisation by calcareous foraminifera is not 

established below pH 6.7. Similarly, DeRijk (1995) suggests that the absence of 

calcareous foraminifera is due to the low pH of the saltmarsh habitats she was 

studying, the acidic conditions being a natural phenonomon brought about by 

decomposition of organic matter and bacterial activity. The anthropogenically 

induced corrosion of foraminiferal tests as a result of exposure to acidified 

industrial effluent has been reported by Rao and Rao (1979), Setty and Nigam 

(1983), Rao etal. (1985) and Banerji (1990). Setty and Nigam (1984) find that 

nearest to an industrial outfall which released acidified effluent, there is a barren 

zone beyond which is an area with a relatively large abundance of agglutinated 

foraminifera, although those species with test material held together by 

calcareous cement may show signs of dissolution (Alve and Murray, 1995b). The 

authors also note a thinning of the calcareous tests, with enhanced rates of test 

dissolution. Stubbles et al. (1996a, b) describe the physical effects of acid mine 

drainage on foraminiferal tests, which produced wall thinning and layering. The 

potential for statistical bias with respect to the relative proportion of stained tests, 

was also noted to be a possibility following postmortem test dissolution. 

More recently a new form of pollution and its effect on foraminifera has 

33 



been identified by Hallock et al. (1995). The authors suggest that the disease 

affecting foraminifera living off the Florida Keys, noted to be very clear, non-turbid 

water (M.B.Hart, pers. comm., 1998) is the result of irradiance (exposure to high 

levels of ultra-violet light). The review by Alve (1995a) has summarised the many 

other forms of contamination; for example the discharge of paper and wood pulp 

and hydrocarbons (Verec-Peyre, 1984) and the adverse effect these have upon 

foraminiferal assemblages and test condition. Coull and Chandler (1992) report 

that foraminifera are not adversely affected by crude fuel oils, but that their 

abundance increases. Oil dispersants, on the other hand, have an adverse affect 

on the foraminiferal assemblages. 

1.3.3 Geochemical analysis and other organisms - South West England 

Restronguet Creek has been investigated with respect to the concentration 

of heavy metals stored in the sediment and their bioavailability. The baseline 

control estuaries have been investigated to provide background metal 

concentrations. The concentration of certain sediment bound metals in the Fal 

Estuary and, in particular, in Restronguet Creek, has been shown by previous 

research to be abnormally high (Hoskings and Obial, 1966; Yim, 1972). Hydraulic 

Tin Ltd. were working the tailings waste at Wheal Jane for cassiterite and 

sulphide ores in 1958 and analysis of the mill float showed relatively high 

concentrations of certain metals, in particular Cu, Fe and S (Hosking and Obial, 

1966) which suggests that mine water waste stored in the lagoon was a 

reasonably efficient way of removing metals. There appeared to be no change in 

the metal concentrations in Restronguet Creek in the interval (1966-1972) 

between the two periods of research which coincided with a period of inactivity at 

the Wheal Jane mine. Yim (1972) did, however, note the presence of fresh metal 
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ore in sediments which originated from the preparatory work undertaken in 1971 

just prior to the re-opening of the mine in 1972. These early studies concentrated 

on total analysis of sediments rather than on what may be easily available to an 

organism (bioavailable). The most comprehensive study of bioavailable and 

bioaccumulated metals is the review by Bryan and Langstone (1992) of 

sedimentary metal concentrations and metals accumulated in macro- and meio-

fauna and aquatic flora in several estuaries of the UK, including Restronguet 

Creek and the Fowey, Erme and Avon Estuaries. The highest concentrations of 

As, Cu, Ni, and Zn occurred in Restronguet Creek and probably accounted for the 

absence of several species of bivalve and the overall low diversity (Bryan and 

Langston, 1992; Sommerfield etal., 1994a, b). The highest levels of Cd and Pb 

were found in sediments taken from the Gannel on the north Cornwall coast. The 

Avon provides some of the lowest concentrations of metals in the region and has 

frequently been used as a control site. Restronguet Creek formed part of a study 

carried out by Thornton et al. (1975) which investigated the effects of heavy 

metals on oysters. As Restronguet Creek is a holding rather than a rearing area 

for oysters the animals were not analysed for metal accumulation but the 

sediments were found to have high concentrations of heavy metals compared to 

the other areas. The other areas studied did show that the metal concentration 

within the sediments and water was positively correlated with the concentration of 

metals in the oysters. 

Work on the effect of different metals on polychaetes (e.g.. Nereis 

diversicolor) has been reported by a number of authors. Bryan and Hummerstone 

(1971) detected a positive correlation coefficient association between copper 

concentration in the sediments and the concentration in N.diversicolor \n 

Restronguet Creek and the Avon Estuary. Furthermore, high sedimentary Cu 
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concentrations caused high uptake by the organism, particularly by those 

polychaetes introduced into Restronguet Creek from areas with low metal 

concentrations. This conclusion was supported by the LC50 experiments carried 

out by the authors which show that Restronguet Creek is inhabited by populations 

of N.diversicolor resistant to Cu pollution. The cross colonisation work carried out 

by Bryan and Hummerstone (1971) agrees with the work of McNeilly and 

Bradshaw (1968) who also found that organisms (terrestrial plants) transferred 

from non-contaminated sites to contaminated sites were intolerant of heavy 

metals which suggests adaptation exists within the same species. The adaptation 

of N.diversicolor to elevated Zn concentrations, as well as Cu contamination, has 

also been investigated by Bryan (1974). The highest Cu concentrations in both 

the sediment and the polychaete occurred in samples taken from Restronguet 

Creek with the same species containing 1.76 ppm more Cu than those taken from 

the Avon Estuary. However, there was little difference in the concentration of Zn 

within the organism either from Restronguet Creek or from the Avon control site. 

Bryan and Hummerstone (1973b) conclude from this earlier work that the 

organism is able to regulate Zn. In the Looe Estuary the metals Pb and Ag show 

concentrations in the sediment which are proportional to that within the organism, 

but adaptation is only found for Ag (Bryan and Hummerstone, 1977). Adaptation 

to As is not found, and Cd was not found to be toxic to N.diversicolor (Bryan and 

Hummerstone, 1973b). 

The work of Somerfield et al. (1994a, b) studied the effects of certain 

metals, in particular Cu, on nematode and copepod communities in the Fal 

estuary system. Somerfield et al. (1994a) conclude that certain species of 

nematode have developed tolerance mechanisms to metal contamination but that 

the sediment dwelling (endobenthic) copepod species had not, as they were 

36 



absent in Restronguet Creek but present in the other creeks forming the Fal 

estuary system. The authors highlighted the chemical variability of the sediment 

and interstitial water which can be caused by the interaction of a number of 

parameters, for example, organic carbon content, temperature, competition 

between metals and preferential binding between metals and Fe oxides. 

Somerfield etal. (1994b) and Williams etal. (1998) detected no increase in 

sediment metal concentrations after the discharge in 1991 compared with results 

obtained previously. The low pH of the mine discharge (pH 4.65-5.75) was 

considered by the authors to account for this, whereby metals would be kept in 

solution above the higher saline tidal water and transported out into the Carrick 

Roads where precipitation would take place. The authors conclude that the 

County Adit (Section 1.5.1) remained a major source of contaminated water, in 

addition to that emanating from Wheal Jane. Nonmetric multivariant analysis has 

been carried out on biotic and geochemical data obtained for Restronguet Creek 

and the Fal Estuary by Clarke (1999) which demonstrates the spatial 

distinctivness of these locations relative to other regions in south - west England. 

Fucoid algae were also investigated by Bryan and Hummerstone (1973a) 

using material collected from Restronguet Creek and the Tamar, Camel and Dart 

Estuaries. The specimens taken from Restronguet Creek show a horizontal 

gradient trend in Cu, Mn, Fe, Pb and Zn, with the highest concentrations nearest 

to the source. Concentrations of Cu and Zn are highest in material taken from 

Restronguet Creek, relative to the other estuaries under investigation, but the 

Tamar material shows the highest concentrations of Mn, Fe and Pb. Analysis of 

the sediment, however, shows that the highest concentrations for all the metals 

analysed are found in Restronguet Creek, suggesting that uptake of Mn, Fe and 

Pb could be regulated by these algae. There was also a gradient of metal 
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concentration within the fucus itself, with the highest values derived from the older 

parts of the thallus. 

1.4 Overview of the geology and mineralisation of Devon and Cornwall 

The mineralisation of the South West of England is the product of the 

Variscan Orogeny with the Devonian (the oldest being Emsian in age, c.390 Ma) 

and Carboniferous strata being intruded by the Cornubian Batholith (Figure 1.6). 

The granite bodies are exposed as either large plutons (Dartmoor, Bodmin Moor, 

St Austell, Carnmenelis and Lands End) or as small cupolas in between the larger 

bodies. All form an ENE-WSW trend and extend for approximately 300 km from 

the Haig Fras in the far west to the eastern margins of Dartmoor (Alderton, 1993). 

The Devonian sedimentary rocks are a mixture of carbonates, mudstones, 

siltstones and sandstones metamorphosed to greenschist facies to form pellites 

and psammites. These Devonian units comprise the oldest rocks in the area and 

were formed in a marginal marine environment approximately 390 million years 

ago. They are interspersed with Carboniferous limestones, siltstones and 

mudstones which have also been subjected to low grade metamorphism. The 

intrusion of the granites formed a thermal metamorphic aureole within the country 

rocks (killas) and a gradient of low grade metamorphism extends away from the 

focus of thermal contact. The Start Point and Lizard complexes (Figure 1.6) 

provide examples of higher grades of metamorphism. The Lizard complex is 

considered to be formed of Precambrian muds, sandstones and basaltic lavas, 

ultimately metamorphosed to hornblende-schists (Edmunds et al, 1975). 

After faulting and alteration of the schists, a series of intrusions developed 

consisting of acid sills, basic dykes and peridotite which is now altered to 

serpentinite (Edmunds et al., 1975). The Plymouth Limestone of Middle Devonian 
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age can be found in the immediate vicinity of Plymouth, with good exposures to be 

found on the Hoe as well as elsewhere. To the east are found Permian and 

Mesozoic sediments that are largely free of metalliferous veins but which provide 

the only water aquifer in Devon and Cornwall. These Mesozoic sediments once 

covered the entire area, including the granite batholith but which were eroded in 

stages to leave the small areas of Cretaceous and Jurassic (and possibly 

Triassic) strata in the east of Devon. 

o 

Granits 

Metamorphic rocks 

Volcanics 

Oevonian (undilferBntiated) 

Oevonian-CaitMniierous 

Lower Oevonian 

Mddle Oevonian 

Upper Oevonian 

Cartxuiiiennjs 

Permo-Triassic 

Juiassic-Crelaoeous 

Tertiary 

M^or faults (postulated) 

Soa/bit 

rl'l'j'l'M"! 

. 1 I 1 I I «"i • I I I I I I i l l ' 

, 5 ^ 

Figure 1.6: Regional geology of SW England. After Alderton, 1993. 

In more recent times the geology and geomorphology of South West 

England has undergone modifications which have contributed to its present day 

appearance. The primary influence was the repeated incursion of the ice sheets 

which only reached the northern coast (as it is today) but which had 
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repercussions for the area immediately to the south. Interspersed periods of 

periglacial activity produced episodic erosion which removed significant amounts 

of material from Dartmoor, etc., and which infilled the lowland and river valleys. 

Much of this eroded material formed the alluvial tin deposits which were streamed 

for by early inhabitants. The coastline extended beyond the present day 

boundaries and following the last retreat of the ice sheet a marine transgression 

(between 10,000 and 15,000 years ago) submerged these former coastlines and 

flooded the river valleys (Clarke, 1970). This latter process produced the rias 

which typify the region. Continued erosion has ensured the exposure of the 

granites and surrounding older strata (which contain the metalliferous veins) to 

accessible levels for metal mining, china clay extraction and further physical and 

chemical weathering (Keller, 1955; Fookes etal., 1971). Alteration of the granites 

has produced areas rich in kaolinite with veins of quartz, fluorspar and tourmaline, 

which are particularly associated with the St Austell granite and the Fowey River 

catchment. 

The mining region of South West England has been described as "one of 

the greatest mining districts in the World" (Alderton, 1993). This metalliferous 

region is polymetallic but is better known for copper and tin extraction (Section 

1.5) with an estimated total tonnage of 2.5 x 10^ of tin and 2 x 10^ of copper 

extracted. Most of the mineralisation of South West England is related to the 

granites as either pre-, syn- or post-intrusion. Native copper and some sulphide 

mineral formation is mid-Devonian to early Carboniferous in age and pre-dates 

the granite intrusion (270 - 300 Ma). The main cassiterite (tin oxide) mineralisation 

occurs in quartz veins, with some sulphide formation, and is the result of early to 

mainstage mineralisation. The early mineralisation (270 - 285 Ma) resulted in 

porphyry stocks and greisens, but the mainstage episode formed mineral veins 
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(lodes) In the granite aureole rocks as swarms, fissure veins, stockworks, pipes 

and floors (Collins, 1882). The lead-bearing mineral galena and sphalerite (zinc 

oxide), with other sulphide mineral formation, post dates the intrusion and is 

Permo-Triassic In age, possibly Triassic (Alderton, 1993). 

The mineral deposits occur in distinct zones around the granite. Tin and 

tungsten are more abundant in the inner zone, with copper, zinc and iron formed 

further away. Lead Is not found within the granite bodies but only in the adjacent 

country rocks. This mineral becomes progressively more dominant in east 

Cornwall/west Devon (Edmunds et al., 1975) which is why the mines further east 

extracted only silver-lead (Section 1.5.1). Magnetite mineralisation probably 

formed from volcanic rocks rather than by hydrothermal processes. The evident 

mineral zonation corresponds to a temperature gradient, brought about by a 

temporal and spatial decrease in the hydrothermal fluid intrusions. The 

temperature for tin mineralisation Is 300-400°C, whereas for lead, zinc and iron it 

is 150°C. The hydrothermal fluids probably originated from the surrounding 

sediments and by convective currents (thought to have existed at the time) the 

metals were leached from the sediments and the granite to be concentrated within 

the mineral zones. The contraction cooling joints and fractures in the granite 

would have enabled the fluids to enter the granite body and scavenge additional 

metals. 

Wheal Jane and the other mines within the Carnon catchment were 

polymetalic but the primary products were tin with some copper, zinc, lead, 

arsenic and silver. Further east, within the Fowey catchment the mineralisation 

was less diverse but the mines also extracted tin and copper with some iron and 

lead. Further east still, the Tavistock mining area produced mainly copper, lead 

and arsenic. Finally, the Avon and Erme mining areas were noted for silver-lead 
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mining; tin extraction was mostly by surface raking and alluvial streaming. It is 

apparent that metal abundance and variety decreased from west to east. 

1.5 Metal mining activity 

1.5.1 Past metal mining - Devon and Cornwall 

Edmonds (1868) reviewed the Phoenician tin trade in Cornwall. These sea 

traders, originating from the Middle East, were thought to be trading for tin in the 

Cornwall area by 375 B.C., however. Hatcher (1973) considered this to be 

unlikely. The technique of smelting may have originated in the Middle East as 

many ancient furnaces have been discovered in Cornwall and were called "Jew's-

houses" (Henwood, 1843). The presence of smelters with associated trade routes 

suggests that ore was eventually imported and smelted from other mining areas, 

thus increasing the potential for contamination. 

The Stannary Charter of 1201 is the first record of tin mining in Cornwall 

(Worth, 1874) and indicates the existence of a settled and well established mining 

industry. Taylor (1800), however, states that few mines between the Norman 

invasion and the end of King John's reign were profitable and those that were, 

had been mostly managed by Jews who were aquainted with the technology 

required and had the investment potential necessary for improved productivity 

and the refinement of low grade ore rock. Extraction rates declined because of the 

banishment of the Jews by Edward I in 1290. The mines were, therefore, left 

unworked as metal refining was a technology unknown to the miners and there 

was no market for unpurified tin, known as 'black tin' (Taylor, 1800). Various 

primary historical sources refer to copper extraction in the reigns of Henry VIM and 

Edward VI as not being extensive which resulted in productivity not satisfying 

home demand and consequently export was prohibited (Collins, 1895; Maclean, 
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1874). In addition, most copper extraction before 1700 was carried-out while 

mining for tin and then only at shallow levels (Collins, 1895). An improvement in 

metal extraction techniques had occurred by the reign of Elizabeth I (Maclean, 

1874) and the geographical areas affected by mining had been extended from 

alluvial workings to deep lode working. There was also a change in productivity at 

about this time, with a decrease in the east of Cornwall but an increase in the 

west (Maclean, 1874). The quantity of tin coined (a method of assay [Barton, 

1967]) at Truro in 1305 was 153,843 and in 1607 the figure rose to 426,492 

(values in pounds weight). For Liskeard, in the east of the county, however, the 

figure declined from 79,160 in 1577 to 35,010 in 1607 (Maclean, 1874). 

Based upon his interpretation of Carew's work written at the end of the 16th 

century, Collins (1895) determined that underground tin mining to a depth of more 

than 50 fathoms (91 metres) was developed in the 15th century. Deep mining is 

known to have occurred at a few mines in the early 18th century; e.g., Poldice in 

Gwennap in 1733. The invention and use of pumping machinery facilitated the 

mining of lodes at greater depths and increased the number of workings. Wheal 

Virgin lode, for example, was discovered in 1757 and pumping allowed the 

systematic extraction of copper (Collins, 1895). By the beginning of the 19th 

century there were 45 mines worked solely for copper, 18 for copper and tin, one 

for silver and copper and one for copper and cobalt (Collins, 1895). 

Mining was at its zenith at about 1855, and by 1869, 84 mines were 

recorded in Cornwall. The decline began about 1870 with a gradual reduction in 

the number of working mines and ore productivity so that, by 1885, only 35 mines 

were active (Collins, 1895). According to estimates made by Collins (1895) the 

Gwennap mines alone had sunk, and driven through, 265 miles of ground. 

The decline was due primarily to the expense of working the more 
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inaccessible lodes (Hill and MacAllister, 1906) and the high cost of pumping as 

Cornish mines are the wettest in the world (pers. comm. Carnon Holdings, 1992). 

The import of more easily won ores from Brazil and other countries caused the 

price to fall and home produced ore could not compete. During periods of high 

prices mines were re-opened but soon closed when the price fell (Barton, 1967). 

Small operators, called tributers, continued to work mines which did not require 

extensive operational technology. 

/) Camon Valley 

Figure 1.7 shows the areas of deep mining activity in the Carnon Valley 

catchment, but the first occurrence of working these subsurface mines is 

impossible to determine. Ting Tang, for example, is regarded by Stephens (1940) 

to be the oldest in the South Gwennap area, but the first record of its performance 

is 1816 (Collins, 1912). Many more are in isolated locations in the South 

Gwennap area and these are considered by Stephens (1940) to be very ancient. 

As with other mining districts in south - west Cornwall the metals extracted 

were wide ranging in type, including native silver (Collins, 1892; 1904) but only 

the most easily obtained were mined in the early part of the 17th century (Collins, 

1873). When mining began in the Carnon Valley is unclear but initially, as 

elsewhere in the county, surface mining and streaming were the early methods 

used (Barton, 1967). Many of the above mentioned "Jew's-houses" were situated 

adjacent to stream work locations and in the parish of Kea (including the Carnon 

Valley) a Jew's house has been found (Henwood, 1843). Worth (1874) and 

Collins (1881) mention the presence of numerous artefacts used to work tin, in 

particular a deerhorn fashioned into a pick was found in Restronguet Creek in 
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1801 and dated between 4000 and 6000 B.P. 

The partially collapsed County Adit (Figure 1.8) forms a drainage channel 

into the river just north of Bissoe and remains in use. This engineering venture 

was begun in 1748 and completed in 1790 allowing the efficient removal of mine 

waste water (Henwood, 1843; Stephens, 1940). The adit connected the mines in 

the St Day, Gwennap and Wendron areas (Henwood, 1843) with some branches 

extending to 48.3 km in length (Hosking et ai, 1966). Until 1854 water enriched in 

Cu was discharged into the Carnon River via. the County Adit but following the 

introduction of precipitation pits along the Carnon River water entering 

Restronguet Creek was greatly improved (Hamilton-Jenkin, 1963). 

In Restronguet Creek, detrital tin mining took place from 1822 to 1845 

(Dines, 1956). Two relatively large stream mines were active in the 18th and 19th 

centuries; the Carnon Stream Mine and the Carnon Yard Mine (Figure 1.7). Prior 

to this, in 1800, some deposits were worked but flooding caused the extractions to 

be halted (Henwood, 1843). In 1871 the Restronguet Creek Tin Stream Works 

commenced exploitation of the remaining reserves (Taylor, 1873). Initially the 

venture was profitable, but the mine became uneconomic by 1873 and in 1879 the 

equipment was auctioned (Simpson, 1990). 

Although in the later years the mines were worked only intermittently when 

tin prices were high, tributers again operated whenever other work was not 

available and the area was seldom left unworked for very long periods (Dines, 

1956). The boom periods, however, were times of major disturbance (Barton, 

1967). Wheal Jane (see Section 1.5.2) was the last mine to be active, closing in 

1991. 

Past associated commercial activities have included boat yards at Devoran 

and, while in existence, the depth of water was retained by various methods to 
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remove the build up of silt. A sluice gate mechanism was in operation, for 

example, at the road bridge near Devoran which acted as a dam and after each 

incoming tide brought in sediment it was flushed away into Carrick Roads by the 

dammed channel water (Simpson, 1990). This was carried out during the most 

extensive and productive mining period in the area and thus, the uppermost part 

of the sediment column in Restronguet Creek is not a continuous, undisturbed 

time record. 

In addition to pollution directly attributable to mining, the associated 

smelting works at Penpoll and Bissoe also produced contaminants and 

atmospherically transported material was distributed over a wide area. Arsenic 

recovery at the Bissoe Arsenic Works was well established by 1800 (Dewey, 

1920), with the import of material for arsenic purification in addition to locally 

produced material. Bissoe also became an established national centre for arsenic 

recovery (Hamilton-Jenkin, 1963). After the closure of the smelters near Truro ail 

refining operations were transferred to Penpoll, thus increasing atmospheric 

output and hence pollution in this century. While in operation the only bulk 

transport route to and from the smelters, particularly before the railway was in 

use, was by barge via. Restronguet Creek. 

Various other foundries, smelting works, chemical works and a gunpowder 

factory were in operation in the 18th and 19th centuries within very short 

distances of the Creek. The area did not, therefore, benefit from extensive periods 

of non-commercial activity and as a consequence the levels of pollution have 

always been high. 
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Figure 1.7: Map of the mines and river system within the Carnon Valley. The 
numbered sites represent the more productive mines: 

I Camon Yard Stream Works, 2 Restronguet Stream Tin works, 3 Upper Old Works, 4 Bissoe, 5 
Great Wheal Badden, 6 Wheal Jane. 7 Wheal Sperris, 8 Falmouth, 9 Wheal Hope, 10 Nangiles, 
I I Twelveheads, 12 Wheal Friendship and Wheal Clifford, 13 Mount Wellington, 14 Wheal 
Lovelace, 15 Wheal Fortune, 16 Wheal Maid, 17 Poldice, 18 Chacewater, 19 Halbeagle, 20 
Scorria Mine, 21 St. Day, 22 Wheal Gorland, 23 Roslabby, 24 Wheal Jewel, 25 Wheal Virgin, 26 
Wheal Damsel, 27 United, 28 Wheal Squire, 29 Ale and Cakes, 30 Ting Tang, 31 Pensruthal 
mine, 32 Gwennap, 33 Silver Hill, 34 Tresavean, 35 Wheal Magdalen. 

i 
^ 

Figure 1.8: Mine drainage catchment and adits. Featuring Wheal Jane, Mount 
Wellington and the adits. County (C), Nangiles (N), Wellington (W) and Jane (J). 
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//) The River Erme valley 

There are several sites within the catchement of the Erme which were 

actively mined for silver-lead but overall the area was not very productive. As with 

other sites containing winable metal the area was streamed for tin and other 

metals (Hamilton-Jenkin, 1974). 

Km 
Erme Head 

Bledge Brook 

Dry Lake 
Red Lake 

Hook Lake 

^A 
Figure 1.9: Drainage catchment and the location of old mines in the Erme River 
Valley. The * marks the sites of Filham and Caton mines. 

Figure 1.9 shows only the position of the confirmed sites at Filham 

{Ivybridge Consols) and Caton which worked from the early 19th century to the 
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final quarter of that century (Dewey, 1921; Dines, 1956; Hamilton-Jenkin, 1974). 

In addition, there are a number of unconfirmed sites which appear to be ruins of 

blowing houses and other related artefacts in the upper reaches of the Erme 

where surface working for tin took place (Butler, 1992). Copper extraction is 

unrecorded for the Erme valley (and also for the Avon) and this reflects the 

progresive change in the type of ore available, between the west of Cornwall and 

Devon (Dewey, 1923). 

///)The River Fowey valley 

The position of mines affecting the catchment of the Lerryn River and the 

Fowey River and it's tributaries Cardigan Water, St Neot and Warleggan, are 

shown in Figure 1.10. The area was not, however, as productive as areas further 

west (Maclean, 1874; Hamilton-Jenkin, 1967). The Pb mines were generally 

placed to the south of the granite margins within the country rock, while Sn 

extraction (as cassiterite) took place within the granite itself. Wheal Howell was 

one of the largest mines, but there is no reference to it before 1832. Trevaddoe 

was also a large mine and reported gains began in the 18th century, with Cu 

extraction taking place from 1823 to 1911. During the latter part of the 19th 

century and into this century, Treveddoe was mostly an opencast mine for black 

tin. In 1943 the mill was rebuilt and used to recover metals from the tailings, and 

at the time of Dines (1956) going to press the mine was still being worked but with 

no recorded returns (Burt et al., 1987). East Wheal Rashleigh was worked from 

1821-1874 for Cu, Mn, Ag and Fe but was probably in production well before that 

time. The few mines that were working into this century (Burt et al., 1987) were, 

Pelynwood (Sn), St Neot, Hobbs Hill, Tregeagle (Sn), Hurstock (Pb), Bodithiel 

(Pb), Kilham (Sn), Gazeland (W) and Restormel Royal (Fe). 
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Figure 1.10: Map of the Fowey River mining district. The numbered sites of the 
better known mines are: 

1 Pelynwood, 2 East Wheal Rashleigh, 3 Beacon Hill, 4 Fortescue North, 5 Duke of Cornwall, 6 
Restormel Iron, 7 Respryn, 8 Sicily, 9 Jane East, 10 Glyn, 11 Cam Vivian, 12 Trevaddoe, 13 
Whisper, 14 Gazeland, 15 Bodithiel, 16 St Neot orTrevenna, 17 Mary Great Consols, 18 Ambrose 
Lake, 19 Gooneva, 20 Tregeagle, 21 Hardhead, 22 Hobbs Hill, 23 Goodsver, 24 North Wood, 26 
Bowden, 27 Carpuan, 28 Kilham, 29 Tamworth, 30 Coryton, 31 Penhale and Larkholes, 32 
Caradon West South, 33 Norris, 34 Phoenix Wes, 35 Jane, 36 Cannaframe, 37 Worthy, 38 
Treselan and Scaddick, 39 Tresellyn, 40 Hammet Consols, 41 Tin Valley, 42 Robins, 43 Craddock 
Moor, 44 Caradon Consols, 45 Pollard. 
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Within the Fowey River catchment there was one smelter at Lostwithiel but 

by 1805 was not in use (Barton, 1967) as nearly all metal production had 

transferred to the smelters at Truro and Penpoll (on Restronguet Creek) where 

the bulk of the metal ore was mined. Of the three control sites, mining and ore 

production in the River Fowey catchment was the largest. 

iv) The River Avon valley 

There were few mines affecting the Avon catchment and those that did 

exist are not well documented. The most noteworthy is Huntingdon (Figure 1.11), 

which was worked for silver-lead (as galena) before it was abandoned in 1868. 

)Avon Head 

Avon River 

Avon Resenmir 

Small Brook 

Horse Brook 

Charforft Brxtok 

Torr Brook 

Bigbuiy Bay 

O 2 
'Avon Estuary '—'—' 

Figure 1.11: Drainage catchment and location of the old mines in the Avon River. 
The * marks the site of Huntington. 
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The actual whereabouts and working period of the Wheal Dorothy tin mine, 

near Heng Lake, is unknown but the fact that it has been documented does 

indicate that it was a large and economically successful venture. In addition, there 

were several stream works, many of which have since been submerged by the 

Avon reservoir. However the waste piles resulting from the Wella Brook stream 

works at Ryder's Hill are still evident (Butler, 1993). Compared with the mining 

district of the Erme, ore production in the River Avon catchment was very small. 

1.5.2 The Wheal Jane incident and recent mining history 

The Wheal Jane incident (Figure 1.1) involved a major discharge of acidic 

metal-rich mine water which entered Clemows Stream via Nangiles adit (Figures 

1.7 and 1.8) in January 1992, following an unusual sequence of events which 

followed closure of the modern Wheal Jane tin mine in February 1991. Water 

recharge levels had always been high and pumping had been a major expense for 

the owners. However, following closure, the pumps were removed and sold 

allowing water levels to rise. The previously exposed, oxidised and decayed 

sulphide minerals were mobilised by the rising water, to free metal ions and 

H2S04in solution (Cambridge, 1995). This is a typical outcome with respect to 

mines that were once worked for sulphide minerals (Milam and Farris, 1998). 

Some discolouration of water flowing from the mine was noted in October 1991 

and the Environment Agency (then the NRA) installed their own pumps and began 

to monitor the situation. The mine owners, Carnon Holdings, devised an S shaped 

lagoon which proved to be under-designed and could not accommodate the 

volume of mine drainage and settled-out sludge. The older, but larger, tailings 

lagoon (Figure 1.2) used by the metal processing plant was used, instead, to 
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store drainage water from the mine. Unfortunately, rainfall was particularly high in 

January, 1992 and the shafts filled-up more rapidly than predicted. In addition, 

pumping from behind Jane Adit had to cease due to the high winds. The water 

backed-up and a localised water pressure conduit to a previously unlocated adit, 

Nangiles, burst and several million litres of contaminated water were released into 

the river (Cambridge 1995). It is likely that the new workings (>1972) exposed 

fresh sulphide minerals and this may account for the high metal concentrations 

during this discharge relative to previous periods of inactivity. 

The pH and concentration of metals in the water before, during and after 

the incident, are given in Chapter Four. The remedial, but temporary, action taken 

by the E.A. (Environment Agency) included liming, addition of a flocculating agent 

and primary settlement in the tailings lagoon. This increased pH removed some of 

the metals to form a sludge enriched with metals. A pilot scheme using a passive 

treatment method was inaugurated in 1994 (Cambridge, 1995). This scheme 

constitutes an open field laboratory and does not make a significant contribution 

towards improving bulk mine water quality (<1 %). The water released from this 

treatment is pumped back up to the mine area for further lime treatment and 

settlement in the tailings lagoon. It is illegal to discharge water into the river 

catchment unless it has undergone treatment by the traditional methods of the 

addition of lime, flocculating agent and followed by primary settlement 

(Cambridge, 1995). Hence, the water from the passive treatment plant is returned 

for primary treatment in the event that the metal levels may be above the 

designated environmental quality standard (EQS). 

During periods of heavy rainfall, high rates of recharge cause untreated 

mine water being discharged directly into the river at Nangiles Adit. This usually 

ocurrs in the winter following re-immersion of the working faces, exposed during 
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the summer when recharge levels are usually low relative to the winter. These 

seasonal fluctuations in the shaft water levels continue to produce redox 

conditions and episodic decay of sulphide minerals. In addition to these 

fluctuating water levels, direct seepage through the river bed can also occur. 

When Wheal Jane mine re-opened in 1971 the workings of the 1930's were 

extended under the river to connect with the workings of Mount Wellington (Figure 

1.7) This process entailed connection with the more older shallow workings, which 

were partially collapsed and during periods of high recharge it is considered that 

this has a direct effect on groundwater quality as the water in the shafts rises to 

connect with the water table; i.e., the base of the river bed. 

Although the Wheal Jane tin mine has been declared abandoned it can be 

reopened and worked at any time in the future. Furthermore, metal processing 

continues at Wheal Jane Mill and each day water from this processing plant is 

discharged into the tailings lagoon. This water is, however, largely free of metals 

and the density of the water is less than that from the mine shafts. The effect of 

this is considered to be beneficial by enhancing metal settlement in the lagoon 

(Cambridge, pers.comm., 1995). This daily discharge is, however, causing the 

lagoon to fill prematurely and it will not reach it's projected life of 15 years but may 

fill earlier than predicted. How quickly this occurs is entirely dependant upon the 

supply of ore from the recently closed South Crofty tin mine (March 1998). The 

future of this mine is not yet settled and may be back in production in the very 

near future or the site developed for some other purpose. 

1.5.3 Summary 

Anthropogenicaly generated heavy metal contamination has been 

effectively polluting many south west rivers for several centuries so there is a 
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considerable legacy from the past in addition to the most recent discharge from 

Wheal Jane. The old mines and associated spoil heaps affecting the Camon 

catchment in particular (Figure 112) still remain potential sources of 

contamination. With the inactivity of South Crofty tin mine (tempory) metal mining 

has ceased in South West England, but the old abandoned workings continue to 

affect local rivers and groundwater. 

Figure 1.12: View of derelict land and spoil heaps at Mt. Wellington Mine. 

The extent of contamination depends on the original size of the operation 

and the length of time since they were last worked. The order of the size of 

operation and period of non working is Avon<Erme<Fowey<Camon Valley. With 

time, worked faces vinll have leached away sufficiently to achieve chemical 

equilibrium. 

Other sources of contamination are sewage and industrial effluents. Both 

have increased substantially this century with the growth in human population 

(Culver and Buzas. 1995) and both affect all the sample locations monitored here. 
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However, it was not possible within this research project to study these problems 

further. 

1.6 Field descriptions 

1.6.1 Generalities 

Although the control (baseline) estuaries have been affected by 

metalliferous mining, this activity ceased in the last or early part of this century. 

Adjustment to heavy metal pollution has taken place as all three estuaries are 

classified as RE1 by the Environment Agency (Freshwater division), although they 

do not routinely carry out water analysis for concentrations of heavy metals. In 

addition, the Avon and Erme were control estuaries in the heavy metal pollution 

studies carried out by Bryan and Langston (1992). In the same study, metal 

concentration analysis of sediments from the Fowey Estuary are shown to be one 

order of magnitude lower than for Restronguet Creek (Bryan and Langston, 1992). 

Restronguet Creek as its name implies, is a creek and not an estuary. 

However, although it does not have a direct opening to the sea, it does open out 

into Carrick Roads which is a wide marine inlet. Therefore, Restronguet Creek 

partially fits the definition of an estuary as being a partially enclosed body of water 

with a river input and an opening to the sea (Barnes, 1974). Restronguet Creek is 

tidally influenced but the tidal energy and range is marginally less great relative to 

the other estuaries Erme, Fowey, Avon and Carrick Roads which are macrotidal 

rias (Davidson etal., 1991; Reid etal., 1993). The sampling locations have two 

low and two high tides daily, with one spring and one neap tide each lunar month. 

The control baseline estuaries run approximately either NNE-SSW (Avon 

and Erme) or near N-S (Fowey) but Restronguet Creek lies approximately NW-

SE. The estuaries all drain into the Western Approaches of the English Channel. 
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With the exception of Fowey, silting of the estuaries has continued 

unchecked and sample station water depths are shallow. This is a particular 

problem with respect to Restronguet Creek which has been allowed to increase in 

sediment accumulation for approximately 100 years. Whitely (1881) found that the 

rate of accumulation was 6 - 10m at Devoran in the early - mid 19th century 

(approximately 30cm every five years) when mining activity was still extensive and 

that schooner navigation had been greatly reduced. This has resulted in the 

section of freshwater channel at the head of the Creek becomming deeply incised 

into the sediment column, forming steep mud banks on either side. In more recent 

times this extraordinary accumulation has partly been added to, via. the tailings 

lagoon, by material discharged from the mill at the modern Wheal Jane tin mine 

which remains in operation (although the tempory closure of South Croft tin mine 

has meant a decrease in the amount of ore supplied to the mill). The water depths 

at the sample stations in the upper reaches of Restronguet Creek, the Erme and 

Avon are <1 .Om, increasing approximately to 2.0m at the lower stations (at high 

tide). The Fowey Estuary differs in that the lower port area is dredged daily to 

maintain sufficient depth for ship navigation serving the china clay port at Fowey 

(dredging began in 1906 and has only ceased temporally between 1939 and 

1945). The water depth in the upper reaches is 1.2m and at Golant (old quay) the 

depth increases to 2.9m. Sediment is allowed to accumulate away from the main 

channel on the east side (e.g., at Mixtow Pill). 

#) Restronguet Creek 

Restronguet Creek is tidal to Devoran road bridge (Figure 1.3) with a 

freshwater range of flow rates for the Carnon of 0.58-1.3m^ s"\ The River Kennel! 

rate is gentler and the range of flow recorded at Ponsanooth is 0.06 - 0.26m^ s"̂  
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(Hydrographic Office, Environment Agency), The present convergence of these 

two rivers has been caused to occur lower dovm than was the case in the 16th 

century (B- Simpson, pers. comm,, 1993). 

Figure 1.13: North-west view of the spit of land between the rivers Kennalt and 
Camon. 
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Figure 1.14: Map of the sample stations in Restronguet Creek. 
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The Creek has been extensively influenced by man, with the channel 

undergoing re-orientation a number of times (Simpson, 1991). The spit of land 

between the Kennell and Carnon rivers (Figures 1.13 and 1.14) was originally 

engineered to delay the convergence of the two rivers. The material used to build 

this barrier is slag waste derived from the old mines and smelters in the Creek 

(Section 1.5.1,/). 

The mud flats bordering the Carnon River side of the spit now provide a 

suitable habitat for halophytic plants which occur in distinct zones. Prior to the 

discharge these plants were abundant and did not begin to reappear until summer 

1993. Generally, however, the areas of saltmarsh are small (Figure 1.14). The 

more elevated better drained areas (above mean high tide, MHT) are colonised by 

Armeha mahtima (thrift), but the areas which remain permanently moist are 

colonised by Salicornia europea which is a salt tolerant, pioneering species whose 

roots are at shallow depths, thus avoiding the sulphur rich deeper sediments. 

During periods of extensive drying, desiccation cracks appear in the mud and it is 

along these cracks that the Salicornia europea grows, above station CI9. This 

phenomenon was common during the early stages of sampling but is less so now 

and may reflect a coarsening of the sediment which previously was too cohesive 

to allow the rhizomes to penetrate to the surface, unaided. Discrete areas at 

Devoran are colonised by S. europea and in the tidal mudflats of what remains of 

the original Narabo channel behind the quay at Devoran. Devoran forms the 

largest residential area adjacent to Restronguet Creek, but the industrial influence 

here is now negligible. 

Tallack's Creek, is colonised by fuccoid algae and S. europea. This is an 

industrial archaeological site (Section 1.5.1, i) with some rock waste from the old 

mine streaming works submerged beneath the mud. Point Quay and Penpoll 
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Creek are predominately tidal mudflats with a small tributary stream entering the 

Creek from Penpoll. Moored boats are a permament feature at the head of 

Penpoll Creek. At Carnon Yard the old disused boat yard has recently been 

acquired by a new owner and has been extensively extended as a boat store and 

repair shop, but does not affect sample station CY16. This area constitutes the 

only major commercial influence in Restronguet Creek. The rocky foreshore 

leading down to station CY16 is colonised by Fucus vesiculosus and seasonally 

by Enteromopha compressa. The smaller boat yard (station BY28) on the south 

side of the Creek is mostly for storage. Along the shoreline at stations BY28 and 

TW27 the tidal mudflats are colonised by fucoid algae. 

Sample station PI30 was free of algae cover for the first three years of 

sampling, but since the drought of summer 1995, E. compressa has regularly 

colonised this area of mudflat. Station CY1^ is similarly affected. The south side 

of the Creek is mostly tree lined with little housing, while the north side is 

bordered by numerous residential buildings. Both sides of the Creek are 

dominated by arable and stock farming activities. 

//) Erme Estuary 

The Erme sample area is relatively unspoilt and sparsely populated 

(Stubbles, 1995). The catchment area is 43.5 km^ and the river channel is 

relatively straight and broad and has an average flow of 1.624 m V \ It is tidal for 

6.3 km. Holbeton is the nearest village. Few boats are moored in this estuary 

because of the shallow draught. 

The highest sample station (F1) is in the main channel and contains little 

substrate. At Holbeton Point (Figure 1.15) there are three sample stations (HP2, 

HP3 and HP4) close to the river channel. 

60 



Holbeton Point 

Efford ( K ^ 

Sand bars 

^^p Saltmarsh 

Figure 1.15: Map of the Erme Estuary sample stations. 

At Holbeton Point there are discrete areas of saltmarsh hummock with a 

variety of saltmarsh flora including Phragmites australis and Oenanttie cyocata 

which colonise the area furthest from the channel and sample stations. The 

saltmarsh hummocks are colonised by Halimione portulecoides, Puccinella 

maritima, Juncus gerardii, Filipendula ulmaria and Aster tripolium. Station HP4 is 
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one metre away from an outfall releasing treated sewage coming from the 

treatment works at Hoibeton via. an open stream. 

Stations E5, E6, E7, E8, E9 and E10 are situated in a small area of 

saltmarsh of raised hummocks. The saltmarsh is colonised by Sefa vulgaris 

martlma, Juncus gerardli, Spartina townsendii. Elymus pychnocephalus, Glaux 

maritima, Phragmites, Armeria mahtima and Carex extensa. 

Figure 1.16: View of Orcheton Wood from Efford saltmarsh on the Ernie Estuary. 

Across the river, stations 0W11 and 0W12 {Figures 1.15 and 1.16) are in 

a similar saltmarsh setting and have identical flora to stations E5-10. The other 

sample stations, 0W14, 0W15, CM16, CM17, S18, SI 9 and S20 lie within a 

small creek, Clyng Mill, which is predominantly tidal mudflat. The north shore of 

this creek has a rocky foreshore with some fucoid algae. At the head of the creek 

there is a small stream, running through disused trout ponds. Sample station 818 
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is reached via. a grass area colonised by Halimione portulecoides, Puccinella 

maritima, Juncus gerardii, Filipendula ulmaria and Aster tripoium. Station S20 is 

the lowest sample site and it is noticeable that the sediment is coarser below here 

with abundant shell debris. 

Hi) Fowey 

St Winnow is the upper most sampling point of the Fowey Estuary (Figures 

1.17 and 1.18). The range of flow rates for the Fowey river are 3.3 -4.1m^s"\ 

Daily dredging occurs in the area between Fowey and Bodennick. The estuary is 

dominated by tidal mudflats colonised in discrete areas by fucoid algae. Areas of 

saltmarsh are absent in the sample area. The eastern shore is tree lined but the 

western shore is mostly clear in order to accommodate the mineral railway that is 

used to transport china clay to the port at Fowey (Figure 1.19). Both sides of the 

upper and mid-estuary are dominated by arable and stock farming with isolated 

hamlets. 

At St Winnow (stations StWI and 2; Figure 1.17) there is a small boat 

repair yard and over-wintering boat storage. The sample stations at the head of 

Lerryn Creek, LP03 and RC4 are in a sparsly built-up residential area. At Cliff 

House (CH 5 and 6) there are only a few houses. A small hamlet surrounds the 

bridge area at Middle Penpoll (sample station PM7) and has a consent to 

discharge station. The two mudflat sampling stations at Mixtow Pill are 

immediately opposite the china clay port (Figure 1.19) and may be affected by 

china clay spillage. A pontoon has been constructed to accommodate the 

numerous leisure and small commercial boats moored at the Pill. Sample station 

PPH11 at the head of Pont Pill is a conservation area owned by the National Trust 

and has limited vehicular access. 
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Figure 1.17: Map of the Fowey Estuary sample stations. 
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Figure 1.18: View of the mineral railway from St Winnow on the Fowey Estuary. 

Figure 1,19: View of the china clay port from Mixtow Pill on the Fowey Estuary. 

65 



The only stations accessible on the west side are those at Golant. Sample 

stations G12 and G14 are in the main channel and below station G14 the 

substrate changes from medium to coarse beach sand. Sample station G13 is 

within the basin occupied by small fishing craft. Golant is densely inhabited and 

there are numerous residential houses and boat repair shops. 

iv) Avon Estuary 

The upper part of the Avon Estuary lies in an agricultural area with a small 

village, Aveton Gifford (Figure 1.20). However, at the mouth of the estuary, there 

are the popular recreational areas of Bigbury-on-Sea and Bantham. The estuary 

bends to an S shape near to the mouth and is generally less straight relative to 

the Erme and Fowey. The Avon is tidal for 7 km to Aveton Gifford Bridge and 

above this, the average channel flow recorded at Loddiswell is 3.122 m V \ The 

Avon has captured some of the freshwater flow originally draining into 

Kingsbridge Estuary. The catchment area is 102.3 km^. 

The upper estuary comprises a mixture of mudflat and areas of saltmarsh. 

Sample stations A1, A2, A5 and A9 are in tidal mudflats, adjacent to the river 

channel. The banks at sample stations A1 and A9 are colonised by Halimione 

portulecoides, Puccinella maritima and Spartina townsendii (the vegetated mound 

close to A9 is used each year by nesting swans). Stations A3 and A4 are in a 

small creek with saltmarsh hummocks which are colonised by Beta vulgaris 

martina, Halimione portulecoides, Juncus gerardii, Spartina townsendii, Elymus 

pychnocephalus, Glaux maritima, Phragmites, Armeria maritima and Carex 

extensa. Sample stations A6 and A7 are within the saltmarsh bordering the main 

channel and station A8 (Figure 1.20) is in a sediment bank separating a small 

bifurcation from the main channel. During the summer this mound is covered with 
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Entermorpha compressa and the substrate is less muddy compared to the upper 

estuary stations. 

».M.».MJJJ 

Sand bars 

I - ^ Saltmarsh 

Figure 1.20: Map of the Avon Estuary sample stations. All stations are prefixed 

with the letter A. The full estuary is shown by Figure 1.11. 

Sample station A10 is at the upper end of the saltmarsh on the east side 

and close to a storm drain. Sample station A11 lies within the saltmarsh which is 

colonised by the same species as are present on the west side. At sample station 
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A12 the substrate becomes distinctly coarser compared to the other sample 

stations and has abundant shell debris and is covered in the summer by 

Entermorpha compressa. 

Figure 1.21: South-west view of the Avon Estuary. 
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Chapter Two 

Methods and Materials 

2.1 Field techniques 

2.1.1 Abiotic variables 

At the high tide preceding or following the low water sampling, salinity, 

temperature and pH were recorded using the following equipment: Atago 

refractometer (salinity); Digi-thermo meter (temperature); pH meter calibrated with 

buffer solutions of pH 4.0 and 6.0, in addition short range litmus papers were used 

to broadly check instrument accuracy. 

Pore water was not obtained at every sampling attempt and the extractions 

did not always supply reliable salinity and pH data despite various methods being 

used. Of the methods used, drained or squeezed water from sediment samples 

taken for geochemical analysis (top few millimetres) was found to be the most 

successful but may have included residual tidal water. However, on particularly 

dry days, when evaporation was high, no water samples were collected by any of 

the methods used. 

2.1.2 Sediment collection for foraminiferal analysis 

For foraminiferal standing crop analysis, a sediment sample of known area 

(78.5cm^) was removed using a plastic ring, 10cm in diameter. The definition of 

standing crop (Murray, 1991) used here is the number of stained foraminifera from 

an identical area of surface sediment removed at any one time. This enables 

comparison between samples in space and time. The ring was inserted into the 

sediment to a depth of 1cm and a flat sheet of plastic was slid beneath to lift the 
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ring and sample away from the sediment surface. All the sample was removed to 

plastic jars and preserved in buffered foramalin, diluted to 10%. All equipment and 

footwear were washed free of mud at the site sampled to prevent cross 

contamination. With respect to Restronguet Creek replicate samples were taken 

during the initial two years of sampling. 

On separate occasions, fresh sediment was taken from Restronguet Creek 

and temporarily stored in clean plastic jars not previously cleaned with detergent 

or acid washed. The jars were stored in a cool box containing ice blocks and were 

returned to the laboratory immediately. No more than 13 sites were sampled at 

any one time. 

2.1.3 Sediment collection for geochemical analysis 

For the geochemical and sedimentological analysis, sediment was 

removed from the surface to a depth of 0.5cm (oxidised layer only) and 

transferred to paper craft bags. As soon as possible they were oven dried at 60°C. 

2.1.4 Short cores 

Reconnaissance cores were taken at selected sites, using the Russian 

Peat Borer to a depth of 0.5m wherever possible. It was not always possible to get 

the borer down to the 0.5m level because of the shallow height of the bedrock. 

Cores were taken at stations TC6, TC9, TW27 (Restronguet Creek), E6 and E8 

(Erme) and near StWI (Fowey). A core was not taken from the Avon Estuary 

because of time constraints. Immediately after removal the cores were cut into 

1cm thick slices and removed to glass vials (2cm diameter) containing buffered 

formalin and marked with the station number and depth. The thin layer of 

sediment adhering to the borer was left behind, thus reducing cross-contamination 
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between levels. Core retrieval was very good and only the very top 0.5cm slice of 

each core from Restronguet Creek was lost. The Russian Peat Borer was used 

only for reconnaissance as there is potential for cross contamination (J. West, 

pers. comm., 1993). Longer cores were not taken as the results from the short 

cores indicated that extensive dissolution of calcareous taxa had taken place in 

Restronguet Creek (Stubbles et al., 1996b) and hence would not have given any 

insights into the impact from past mining activity using foraminiferal species 

distribution and test condition. 

2.2. Laboratory techniques 

2.2.1 Foraminiferal analysis 

The surface and core mud samples were wet sieved on a wide and deep 

63|jm sieve to remove the fines. When the water ran clear each residue was 

transferred to a bowl containing rose Bengal (1 gram per litre) and stored for 45 

minutes (Murray, 1973), after which it was thoroughly rinsed and returned to the 

bowl to oven dry overnight at 60°C. Each sample was then hand sieved using 

1mm, 500|jm, 250|jm, 125tjm and 63[jm meshes. No stained foraminifera were 

observed below the 1cm core level, so the species present can be classified as 

shallow infaunal and show no variation in vertical distribution (Buzas etal., 1993). 

2.2.2 Calculation for standing crop 

There exists a natural bias in the distribution of stained tests between 

fraction size categories and it has been found that a greater abundance of stained 

individuals exists in the >125|jm fraction relative to the >250 and >63|jm fractions. 

In order to gain a sufficient sample size from each of the low abundance fractions, 

thus enabling valid statistical interpretations, more material is required from the 
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>250|jm fraction, for example, relative to the >125pm. This split fraction method 

used here is similar to that of Martin and Liddell (1989). It was also found that 

greater accuracy was gained by splitting sediment with a narrower grain size 

range. 

Each fraction was weighed (as a double check on splitting efficiency), split 

into aliquots using a small, two compartment, hand splitter (home made). The 

number of aliquots picked depended on the density of stained individuals but the 

aim was to pick between 100-250 stained individuals from the total sample. The 

low density and barren samples were picked throughout and all the foraminifera 

were removed (live plus dead). The high density samples were split down the 

furthest (1/16th) but a tally count of the unpicked aliquots showed close similarity 

and hence precision between them. The foraminifera were mounted on to a 

gridded slide. The total number of stained individuals (standing crop) in the 

sample was estimated by the product of each fraction picked and the sum of the 

fractions. 

The equation used for this calculation is: 

i : [ X(F,)„ X(F,)„ X(FH),. ...] = SC (78.5cm') 

Where X is the split proportion, /is the /th fraction from which FN stained 

foraminifera were picked. 

The Wild M7 binocular microscope was used for the routine picking and for 

identification. Relative abundances of the live and dead of each indigenous and 

transported-in species was determined from the first 150 individuals 

(approximately) of each fraction from the sample (Murray, 1991). The core 

material was picked of all foraminifera at 5cm intervals. When an anomoly was 

detected the centimetre levels above and below were also picked as necessary to 
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improve the resolution. 

2.2.3 Scanning Electron Microscopy techniques 

Individual foraminifera were mounted on 10mm aluminium stubs using 

conductive adhesive mounting discs. The mounted sample material was coated 

with 8nm (nano metres) of gold. They were examined using the Jeol 5200 SEM 

operating at 15Kv and with a working distance of 20mm. 

2.2.4 Laser Ablation iCP- sample preparation 

A proportion of the fresh sediment was placed in a beaker with rose Bengal 

solution (Stubbles and Chenery, in prep.). Following immersion for 15 minutes, 

the sediment was piped into 1.8ml cryo-tubes using a catering piping bag with a 

plain nozzle (0.25cm diameter). The filled cryo-tubes were fitted into veins and 

placed in a Dewer containing liquid nitrogen. Later the cryo-tubes were 

transferred to a freeze-dryer for approximately 24 hours. 

The freeze-dried sediment from each sample station was picked of all 

stained foraminifera and the individuals were mounted on to a gridded slide but 

not gummed. Using a no. 0000 brush dampened either with water or calgon 

solution (3.3g Sodium Hexametaphosphate and 0.7g Sodium Carbonate per 1 litre 

deionised water and diluted to a concentration of 1 in 10) the specimens were 

cleaned of all adhering material. It was found that the calgon solution was a more 

effective cleaner and did not affect the laser ablation process (Stubbles and 

Chenery, in prep). 

The individual resin stubs were made as follows. Buehler metset mounting 

resin was mixed with the hardener (5 drops per 20mls) and poured into the 

moulds previously cleaned with acetone and containing an identification disc. 
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Gentle tapping removed any air bubbles and the stubs were left for a few days to 

harden. The stubs were then pushed out of the moulds and left to harden further. 

Finally, these 'blanks' were ground down to the desired depth and stored. For 

mounting the cleaned foraminifera, a skim coat of freshly made resin (made as 

above) was applied to each stub surface, to which the foraminifera were 

immediately mounted and left to harden (Stubbles and Chenery, in prep.). 

2.2.5 Laser Ablation ICP analytical technique 

This analysis was carried out at the British Geological Society (Nottingham) 

by Simon Chenery and assisted by the author. For the analysis a Spectron 

Nd:YAG ultraviolet (266mm) laser system connected to a high quality Leitz optical 

microscope was used. The beam was focused onto the last or penultimate 

chamber which contained the stained protoplasm. The laser-microscope system 

utilises a custom-designed laser ablation chamber, with an optical quartz window 

which is flushed by an argon carrier gas stream. The argon gas stream 

transferred the ablated material to an inductively coupled plasma mass 

spectrometer (ICP-MS) via a polythene tube that connects the ablation cell to the 

ICP torch, using a modified dual-flow sample introduction system as described by 

Chenery and Cook (1993). The elements were determined via a VG Plasmaquad 

2 Plus ICP-MS which ionises the samples and uses a quadrupole mass 

spectrometer to scan or peak jump to ions which have a mass to charge ratio in 

the range of 6-250. The ablation runs were randomised and the stubs were 

periodically switched around in order to reduce the effects of systematic error. In 

conjunction with the line diagrams of the stubs a written record of each analysis 

(laser ablation) was kept and was later used to match results with the amount of 

material ablated. 
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Data analysis was carried out using a Dell 486MX computer through 

dedicated ICP-MS software. This corrected the raw intensity data to isotopic 

abundance and instrument sensitivity for isotopes of different mass. These data 

were imported into an Excel spreadsheet and the relative concentrations were 

corrected after subtraction of the blanks and changes in analytical run. Values 

which fell below reliable detection limits were marked. The values derived were 

then converted to absolute concentrations as described by Querol and Chenery 

(1995) and then expressed as a ratio to Ca and multiplied by 100. The final values 

are described as arbitrary units of concentration. 

The amount of material ablated is directly proportional to elemental 

concentration. It is necessary, therefore, to measure the size of the crater and 

relate this to the data. It was found during laser ablation that some of the 

foraminiferal tests (in part or whole tests) did not survive the process intact, 

resulting in more material being ablated. In conjunction with a written record made 

during laser analysis, scanning electron image analysis was carried out to 

measure each crater and hence, exclude those results derived from crater 

diameters greater than c.40pm (Stubbles and Chenery, in prep.). 

2.2.6 Sediment grain size analysis 

The Malvern Mastersizer laser detector (Department of Geographical 

Sciences) was used to determine the sediment grain size distribution. Only one 

sample batch for each location was analysed as it had been determined earlier 

that little variation was shown between seasonal and annual samples. However, 

two samples from station H23 were analysed (1992 and 1993), because field 

observations had shown that there was a change in the sediment grain size. The 

analysis of each sample was carried out twice to give a full range of particle size 
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distribution using the focal lengths 1000mm and 45mm. Before each analysis a 

background reading scan was carried out. Preliminary processing involved the 

gentle dissagregation of a small block of dried sediment to form smaller 

aggregates which were then added to the mixer unit containing water. The 

obscuration level was checked and if below 10% dispersion was added until this 

value was achieved. When the optimum obscuration level of 10-20% was 

reached, the sample was measured. Dispersion was repeated for some samples 

to a maximum of three dispersals. The final obscuration and residual value was 

noted. All samples had a residual value of <1.5 (ratio of the results and 

background levels). Obscuration is a measure of the amount of laser light passing 

through the mixture of water and sediment and is an indication of how well the 

material is dispersed prior to detection. The residual value is an indication of how 

much at variance the data are to the background readings. A computer calculated 

the results and produced a graph with percentage and cumulative values for each 

sample. Material below 0.1 |jm was not detected. 

2.2.7 Sediment mineralogical analysis - thin section and binocular 

microscopy 

The thin sections were made to a thickness of cSOpm using sediment from 

each location. Using a polarising binocular microscope the slides were analysed 

in plane and crossed polarised transmitted light. Using typical optical techniques 

the properties of each mineral was determined and a representative area was 

quantified to establish the percentage proportions of each mineral. For mineral 

identification, with respect to the thin sections, Gribble and Hall (1985) was 

refered to and for natural light analysis Gribble (1988) was used. For the minerals 

featured by the SEM images Scott et al. (1998) was used to identify the heavy 
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minerals. 

In addition, a representative sample from each fraction from each sediment 

sample was analysed under a low power binocular microscope (Wild M7). The 

relative percentage proportions were estimated. 

2.2.8 Sediment geochemicai analysis 

This work was carried out by technical and research staff in the Department 

of Environmental Sciences (University of Plymouth) following the method of Bryan 

and Langstone (pers. comm. W. Langston, 1996) which uses cold extractable 1M 

HCI. This method is not regarded as a determinant of "bioavailable" 

concentratiions but obtains data to give "extractable metal concentrations" (Luoma 

and Bryan, 1981; Bryan and Langston, 1992). The concentration of the acid was 

of sufficient strength (1M) to ensure extraction efficiency, overcoming the 

neutralising effects produced by the carbonate material stored in the sediments 

(Luoma and Bryan, 1981). The proportions of carbonate material increase down 

estuary (Chapter Four, Section 4.5.3) and may reduce extraction efficiency and 

hence, induce low metal concentrations. 

Whole sediment from each sample plus duplicates and reference material 

were gently disaggregated prior to weighing and 0.5g of sediment (to 4 decimal 

places) was measured and to which lOmIs of 1M HCI was added. The samples 

were shaken on a table for two hours and centrifuged for five minutes. The 

supernatant was decanted into volumetric flasks and made up to 50mls. Using 

flame (air-acetylene) AAS (atomic absorption spectroscopy) the solutions were 

analysed for Cu, Zn, As, Fe, Pb, Ni, Ca and Cd. For the analytes Sn, Al and Cr 

nitrous oxide-acetylene flame was used. For the determination of Fe, Ca and 

some Zn substantial dilutions had to be made. The analytes Cd and Cr were often 
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below detection limits and marked as ND on the data spreadsheets. 

The data obtained for the reference material indicated that elemental 

extraction was between 30 and 45% by this method (Appendix 1.1a). As there 

were only a few duplicate samples analysed reliable error data was not obtained. 

However, the difference between the duplicates and the sample was between 3% 

- 1 1 % (Appendix 1.1a). 

2.2.9 Determination of organic carbon and nitrogen 

The ground sediment samples were pre-treated with concentrated HCI to 

remove the carbonate material. Each acidified sample was left to effervesce and 

dry out on a hot plate set at 50°C. When completely dry the sediment was re-

ground and stored in sealed glass vials. 

The carbon and nirtogen analysis was carried out at Plymouth Marine 

Laboratory with the guidance of Bob Head. Using a Cahn 25 dual nano-balance 

approximately 20mg of sediment was weighed into tin pressed capsules (5mm by 

8mm), folded and crimped to seal in the sample. Each empty capsule had been 

weight normalised and zero-ed before use. The weights were recorded and 

entered into the computer program for analysis. In addition, 6 standards 

containing Acetanilide were prepared in the same way, with the weights varying 

from 0.1 to I.Omg. 

For analysis each sample was placed into the dispensing carousel and 

loaded onto the Carlo Erba NA 1500 Series 2 analyser which was pre-set at 

1030°C. The method used follows that of Verado etal. (1990). Each sample takes 

approximately 2.5 minutes to analyse and compute the results which are 

expressed as percentages. All missing values were subsituted with the mean of 

the sample. The C/N ratio was calculated to determine available nutritional carbon 
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which may be meaningful to the foraminifera and lower values (<25) indicate 

greater carbon decomposition (De Rijk, 1995). 

2.2.10 Statistical analysis 

The software packages Excel, SPSS (Statistical Package for Social 

Scientists) and the PRIMER programme of ordination by non-metric Multi 

Dimensional Scaling (MDS) were used to carry out various statistical analyses. 

The similarity files necessary to carry out MDS analysis were created using the 

PRIMER programme Bray-Curtis Similarity Cluster Analysis. Each MDS plot was 

arrived at through the enaction of a minimum of 10 random re-starts as 

recommended by the authors Clarke and Warwick (1994). The stress values 

featured on each MDS plot refer to the adequacy of each solution and in all cases 

the stress values are within a range (<0.1) specified by Clarke and Warwick 

(1994) as having "no prospect of misinterpretation". When variation between 

samples is low the MDS plots fail to show spatial relationships and tight sample 

clusters are formed. 

Correlation coefficients have been applied as a primary indicator of 

association. Care has been taken to avoid induce correlations wherever possible 

when using closed data (i.e. ppm and percentages). Percentage proportions have 

been used only when compositional information was required (e.g., species and 

the proportion of deformed tests). For abundance information the raw data (e.g., 

standing crops) have been used. Correlation coefficient values >0.55 are 

accepted as significant (confidence limit - 95%). Higher values >0.7 are defined 

as strong (C.L-99%). 
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Chapter Three 

Taxonomic Notes 

3.1 Introduction 

As this research is not taxonomic in nature but is an applied use of 

Recent benthic foraminifera, this chapter is not comprehensive. The chapter is 

divided into two sections, indigenous (living) and transported (dead) species 

because each group has been subjected to different statistical treatment. The 

indigenous species have to be fully validated due to their importance as in situ 

indicators and hence a full taxonomic treatment is given for each of the six 

species in Section 3.2, showing the original species name, the most recent 

reference to the name used (with the author/s and date), diagnosis, description, 

occurrence and, wherever necessary, remarks. For the transported-in species 

(Section 3.3) only the original, and most recent, reference are given together with 

a diagnosis. The same treatment is also applied to the classification of the testate 

amoebae as they are also introduced into the estuaries. 

The classification follows that of Loeblich and Tappan (1964; 1988), 

Haynes (1973) and Murray (1971) with the addition of more recent references as 

shown in the text. The classification of the testate amoebae follows that of 

Loeblich and Tappan (1964) to genus and from Ogdon (1980) and Medioli and 

Scott, (1983) to species level. This is followed by Table 3.1 which shows the 

general distribution of these non-indigenous species (both the foraminifera and 

testate amoebae). 
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3.2 Indigenous foraminifera 

Phylum PROTOZOA Goldfus. 1818 

Subphylum SARCODINA Schmarda, 1871 

Class FORAMINIFERA Lee, 1990 

Subclass GRANULORETICULOSIA De Saedeleer, 1934 

Order FORAMINIFERIDA Eichwald, 1830 

Suborder TEXTULARIINA Delage & Herouard, 1896 

Family RZEHAKINIDAE Cushman. 1933 

Genus MILIAMMINA Heron-Allen & Earland, 1930 

Miliammina fusca (Brady) 

Plate 1, Figures 1-5 

Quinqueloculina fusca Brady, 1870: p.286, pi.11, fig. 2a-c. = Miliammina fusca (Brady), 1870; 
Bender, 1989a: p.296, pl.1, fig.6, pl.2, figs 1-7, pl.6, fig.3, 4,8, pl.13, fig.1, pi.16, fig.9. 

Diagnosis: An elongate species of Miliammina with a terminal aperture containing 

a small tooth. 

Description: Test free, agglutinated, elongate, slightly compressed and coiled in 

a quinqueloculine plan. The sutures are moderately depressed. The aperture is 

terminal with a small finely agglutinated tooth inside the outer lip. 

Remarks: The contents of the test wall varies, the characteristics of the wall can 

be seen in Plate 1, Figs 4 and 5). 

Occurrence: This species is absent in Restronguet Creek but commonly occurs 

in the upper estuarine/saltmarsh regions of the Fowey, Avon and Erme. In the 

upper saltmarsh/tidal flat areas of these locations, M. fusca is the dominant 

species and, occasionally, is the only stained species present. 
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Plate 1 

Figure 1. Miliammina fusca, full view, Erme Estuary, station E5, winter 1993. 

Figure 2. Miliammina fusca, aperture, Fowey Estuary, station StW2, spring 1994. 

The test wall is coarsely agglutinated but the small tooth is finely 

agglutinated. 

Figure 3. Enlargement of apertural tooth in Figure 2. 

Figure 4. Miliammina fusca, full view, Fowey Estuary, station StW2, spring 1994. 

Note the coarse agglutination, predominance of mineral grains and 

deformed test. 

Figure 5. Enlargement of test wall in Figure 4. 
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Family TROCHAMMINIDAE Schwager, 1877 

Subfamily TROCHAMMININAE Schwager, 1877 

Genus JADAMMINA Bartenstein & Brand, 1938 

Jadammina macrescens (Brady) 

Plate 2, Figures 1-6 

Trochammina inflata (Montagu) var. macrescens Brady, 1870: p.290, pi. 11, fig. 5a-c. = 
Jadammina macrescens (Brady) Bronnimann & Whittaker 1984, p. 305, figs 1-15. 

Diagnosis: A subglobular species of Jadammina with numerous areal pore 

openings forming the aperture. 

Description: Test free, low trochospiral, finely agglutinated and coiling sinistral 

about the proloculus (dorsal side) but involute on the umbilicus side (ventral). The 

aperture consists of one interio-marginal slit in a peripheral position with regard to 

the basal suture, with additional areal pore like openings. 

Remarics: The test is composed of fine silt - sized grains, with an organic inner 

and outer organic lining (Bender, 1995). The multi-apertured openings (Plate 2, 

Figs 3-5) and the collapse of the test chambers on drying (Plate 2, Fig.6) are 

typical characteristics of this species. The multi-apertured openings distinguish 

this species from J.balticammina Bronnimann, Lutze and Whittaker, 1989. 

Occurrence: Jadammina macrescens is present in low numbers in the Fowey, 

Avon and Erme mid - low estuarine mudflat areas, but is absent from Restronguet 

Creek. 
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Plate 2 

Figure 1. Jadammina macrescens, spiral side, Avon Estuary, station A4, summer 

1995. The chambers of this specimen have not collapsed (see Figure 6). 

Figure 2. Jadammina macrecsens, umbilical side, Avon Estuary, station A4, 

summer 1995. 

Figure 3. Jadammina macrescens, view of apertural face, Avon Estuary, station 

A3, autumn 1995. This view shows the multiple areal apertures common 

to this species. 

Figure 4. Enlargement of apertural openings in Figure 3, showing less smooth 

and coarser agglutination around the areal apertures. 

Figure 5. Jadammina macrescens, apertural face, Avon Estuary, station A3, 

autumn 1995. Shows coarse agglutination around the apertures. 

Figure 6. Jadammina macrescens, station E6, Erme Estuary, summer 1991. 

Displaying collapsed chambers which are common to this species. 
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Plate 3 

Figure 1. Trochammina inflata, spiral side, Avon Estuary, station A4, summer 

1995. 

Figure 2. Trochammina inflata, umbilical side, Avon Estuary, station A4, summer 

1995. Showing the basal margin slit which forms the aperture. 

Figure 3. Trochammina inflata, oblique view of the apertural face, Avon Estuary, 

station A4, summer 1995. Displaying coarser agglutination within the 

area of the aperture relative to the remainder of the test. 

Figure 4. Enlargement of aperture in Figure 3, showing an irregular slit partially 

sealed over by sedimentary grains. 

Figure 5. Trochammina inflata, oblique view of the aperture, Fowey Estuary, 

station G12, summer 1994. Showing an arched basal margin slit 

(aperture). 

Figures 6 and 7. Enlargement of aperture in Figure 5 showing the finely 

agglutinated lip. 
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Genus TROCHAMMINA Parker & Jones, 1860 

Trochammina inflata (Montagu) 

Plate 3, Figures 1-7 

Nautilus inflatus Montagu, 1808: p.81, pi.18, fig.3; Brown, 1844: pl.1, fig. 4.= Trochammina inflata 
(Montagu): Bronniman and Whitalcer, 1984: p.312-313; de Rijk, 1995, p.35, pl.2, figs 1-3. 

Diagnosis: A globose species of Trochammina with depressed sutures. Aperture 

is an interio-marglnal slit. 

Description: Test free, finely agglutinated and red-brown in colour. Low 

trochospiral with rounded periphery, deep, open umbilicus and coiled on the 

dorsal side but involute on the ventral side. Aperture is a slit bordered by a lip and 

is placed at the basal margin of the final chamber but is only visible on the ventral 

side. 

Occurrence: The habitat of this species is in the mid - low marsh/tidal mudflat. It 

is present in the Fowey, Avon and Erme samples but is absent from Restronguet 

Creek. 

Suborder ROTALIINA Delage & Herouard, 1896 

Family ROTALIIDAE Ehrenberg, 1839 

Subfamily ROTALIINAE Ehrenberg, 1839 

Genus AMMONIA Brunnich, 1772 

Ammonia beccarii (Linne) 

Plate 4, Figures 1 -3 

Nautilus beccarii Lmr\e^758: p.710. = Ammonia beccarii (Unne), Murray, 1971: p.151,pl.62,figs1-7 

Diagnosis: A species oi Ammonia with a rounded periphery and deep umbilicus. 

Description: Test free, biconvex, subcircular in outline and calcareous hyaline. 

Test is dextral coiled on the dorsal side and involute on the ventral side with a 
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depressed umbilicus containing pillars. Rounded periphery with flush sutures 

swept anti-clockwise on the dorsal side and depressed on the ventral side. 

Aperture visible on the ventral side; basal and umbilical internal foramen. 

Remarks: This is a general description o^ A.beccarii s.l. and does not distinguish 

/\.feeccan/from A.beccariif. batavus and A.becx;ariil tepida, the distribution of 

which are restricted to warmer and marine waters. 

Occurrence: This species prefers the higher salinities and temperatures 

encountered towards the seaward end of estuaries and hence is found in larger 

numbers in the mid - low estuary areas of the Fowey, Avon and Erme Estuaries. 

Lower abundances are found in the upper creek areas of Restronguet Creek, but 

as with the other localites, it thrives in the more saline waters present in the lower 

Creek. 

Genus ELPHIDIUM De Montfort, 1808 

Elphidium williamsoni Haynes 

Plate 4, Figures 4-6 

Polystomella umbilicatula Williamsoni, 1858: p.42, pl.3, figs 81, 82. = Elphidium williamsoni 
Haynes n. sp., 1973: p.207, pl.24, fig.7, pl.25, figs 6,9, pl.27, figs 1-3. 

Diagnosis: A rotund species of Elphidium with a rounded periphery and flat 

umbilicus. 

Description: Test free, calcareous hyaline, rounded periphery. Numerous 

elongate retral processes overlap the sutures, the latter arching slightly in a 

clockwise direction (as seen from either side), depressed and straight. The 

umbilical boss is slightly proud on both sides, each side identical. The chambers 

are arranged into an involute planispiral form. Apertural face comprising an 

irregular array of pore openings along the basal suture of the last chamber. 

Occurrence: This species colonises all areas of Restronguet Creek, but is 
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restricted to the mid - low areas of the Avon and Erme Estuaries. In the Fowey 

Estuary E. williamsoni is present at all sample stations. 

Genus HAYNESINA 

Haynesina germanica (Ehrenberg) 

Plate 4, Figure 7 

Nonionina germanica Ehrenberg, 1840: p.23, pl.2, fig.1 a-g. = Haynesina germanica (Ehrenberg) 
Banner & Culver, 1978: p.184, fig.6; Loeblich and Tappan, 1988: p.616, pl.689, figs 1-4. 

Diagnosis: An involute species of Haynesina with shallow depressed sutures 

containing numerous pores extending from the umbilicus and decreasing towards 

the periphery. 

Description: Test free, calcareous, hyaline, planispiral and involute on both sides 

with a rounded periphery. Umbilicus slightly depressed with numerous pores 

extending from the umbilicus towards the periphery, becoming less in number, the 

pores form an arched depression, which constitute the sutures. Apertural face has 

a line of basal, interio-marginal pores slightly obscured by tubercules. 

Occurrence: Commonly occurring throughout Restronguet Creek, the Fowey, 

Avon and Erme Estuaries. 

90 



Plate 4 

Figure 1. Ammonia beccarii, spiral side, Restronguet Creek, station TW27, 

autumn 1996. 

Figure 2. Ammonia beccarii, umbilical side, Restronguet Creek, station TW27, 

autumn 1996. 

Figure 3. Ammonia beccarii, apertural view, Restronguet Creek, station TW27, 

autumn 1996. Showing the interiomarginal slit. 

Figure 4. Elphidium williamsoni, Erme Estuary, station E8, autumn 1993. Showing 

the umbilical boss. 

Figure 5. Elphidium williamsoni, reverse side, Erme Estuary, station E8, autumn 

1993. 

Figure 6. Elphidium williamsoni, apertural face, Erme Estuary, station E8, autumn 

1993. Showing tubercles and the irregular openings just above the basal 

suture. 

Figure 7. Haynesina germanica, general view, Erme Estuary, station E8, autumn 

1993. Showing numerous tubercles which extend from the umbilicus out 

along the sutures. 
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3.3 Transported Taxa 

Order FORAMINIFERIDA Eichwald, 1830 

Family HORMOSINIDAE Haeckel, 1894 

Genus Reophax De Montfort, 1808 

Reophax moniliformis Siddell 

Original reference: Siddall, 1886: p.54, pl.1, fjg.2. 
Recent reference: Murray, 1971: p.19, pl.2, figs 1-4. 

Diagnosis: A cylindrical, tubular species of Reophax with 8-12 chambers which 

taper slightly towards the base. The aperture is terminal and round. 

Remarks: Specimens stained with rose Bengal are only occasionally found and 

hence this species is not considered to be indigenous. The wall is coarsely 

agglutinated. Average length 1 mm. 

Family LITULOLIDAE de Blainville, 1827 

Haplophragmoides Cushman, 1910 

Haplophragmoides wilberti Anderson 

Original reference: Anderson, 1953: p.21, pl.4, fig. 7 a, b. 
Recent reference: Todd and Lowe, 1961: p.19, pl.2, figs 1-4. 

Diagnosis: A smooth, ovate, species of Haplophragmoides, with 8 chambers in 

the final whorl and a small umbilicus. The aperture is an interio-marginal slit. 

Remarks: This species resembles T.inflata but has a flatter involute test and the 

colour is grey. The wall is finely agglutinated. Average diameter 1mm. 

Family TROCHAMMINIDAE Schwager, 1877 

Genus Trochammina Parker and Jones, 1859 

Trochammina ochracea (Williamson) 

Original reference: Rotalina ochracea Williamson, 1858: p.55, pl.4, fig.112, pi.5, fig.113. 
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Recent reference: Murray, 1971: p.37, pl.11, figs 1-5. 

Diagnosis: A compressed species of Trochammina, concave on the umbilical 

side and with finely depressed sutures on the spiral side. Wide umbilicus and a 

slightly arched peripheral aperture. 

Remarks: This species is found in the finer fractions and collected specimens 

rarely exceed 100pm. 

Trochammina rotaliformis Heron-Allen and Earland 

Original reference: Trochammina rotaliformis Heron-Allen and Earland, 1911: p.309. 
Recent reference: Murray, 1971: p.39, pi.12, figs 1-5. 

Diagnosis: An oval, depressed, species of Trochammina with a deep, narrow 

umbilicus and inter-umbilical aperture. 

Remarks: This species has a deeper test relative to T.ochracea with a rounded 

periphery and with fine agglutination. 

Family ATAXOPHRAGIMIIDAE Schwager, 1877 

Genus Eggerelloides Haynes, 1973 

Eggerelloides scabrum (Williamson) 

Original reference: Bulimina scabra, Williamson, 1858: p.65, pl.5, figs 136, 137. 
Recent reference: Haynes, 1973: p.44, pl.2, figs 7, 8; figs 10, 11, text-fig.8 (1-4). 

Diagnosis: A species of Eggerelloides which is trochospiral in initial stages but in 

adult stages of growth is triserial. Chambers increase in size with growth. The 

aperture is an interio-marginal slit. 

Remarks; This species can show an irregular form with the last chambers 

disproportionately larger than the first formed. Finely agglutinated. Average length 

0.8-1mm. 
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Family CORNUSPIRIDAE Schultze, 1854 

Genus Comuspira foliacea Cushman, 1928 

Cornuspira foliacea (Philippi) 

Original reference: Orbis foliacea Philippi, 1844: p.142, 147. 
Recent reference: Loeblich and Tappan, 1964: C438. 

Diagnosis: A species of Comuspira with a depressed and evolute test. The last 

whorl opens out to form a large open aperture which is equal to half the overall 

diameter. 

Family MILIOLIDAE Ehrenberg, 1839 

Genus Spiroloculina d'Orbigny, 1826 

Spiroloculina excavata d'Orbigny 

Original reference: d'Orbigny, 1846: p.271, pi.16, figs 19-21. 
Recent reference: Murray, 1971: p.55, pi.19, figs 1-3. 

Diagnosis: A compressed elongate species of Spiroloculina with a terminal 

aperture containing a simple tooth. Test wall ornament comprises deep, smooth, 

longitudal grooving. 

Genus Cyc/ogyra Wood, 1942 

Cyclogyra involvens (Reuss) 

Original reference: Operculina involvens Reuss, 1850: p.370, pl.46, fig. 20 a, b. 
Recent reference: Murray, 1971: p.53, pi.18, figs 1-3. 

Diagnosis: A compressed, planispiral and coiled species of Cyclogyra with a 

simple terminal aperture. 

Genus Massilina Schlumberger, 1893 

Massilina secans (d'Orbigny) 

Original reference: Quinqueloculina secans d'Orbigny, 1826: ser.l, vol.7, p.303. 
Recent reference: Loebiich and Tappan, 1988: p.335, pi.344, figs 1-7. 
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Diagnosis: A semi - round to elongate species of Massilina free of striations and 
an aperture containing a large bifid tooth. 

Genus Pateoris Loeblich and Tappan, 1953 

Pateoris hauerinoides (Rhumbler) 

Original reference: Quinqueloculina subrotunda (Montagu) forma hauerinoides Rhumbler, 1936: 
pp.206, 217, 226, text-fig. 167. 

Recent reference: Loeblich and Tappan, 1988: 340, pi.350, figs 1-18. 

Diagnosis: A species of Pateoris with an ovate to round compressed test with an 

arched aperture within the last chamber. 

Genus Prygo Defrance, 1824 

Prygo depressa (d'Orbigny) 

Original reference: Biloculina depressa d'Orbigny, 1826: pi.8, fig.5. 
Recent reference: Murray, 1971: p.71, pl.27, figs 1-4. 

Diagnosis: A semi-rotund species of Prygo with an acute, irregular periphery. The 

aperture is a simple elongate slit. 

Genus Quinqueloculina d'Orbigny, 1826 

QuinquelocuUna bicornis (Walker and Jacob) var. angulata (Williamson) 

Original reference: Serpu/a ft/com/s Walker and Jacob, 1798: p.633, pi.14, fig.2. 
Recent reference: Haynes, 1973: p.67, pl.7, fig.18, text-fig.16 (1-3). 

Diagnosis: An ovate, globose species of Quinqueloculina, incised with longitudal 

grooves. The aperture is rectangular with a smooth tooth. 

QuinquelocuUna dimidiata Terquem 

Original reference: Terquem, 1876: p.81, pl.40, fig.5 a-c. 
Recent reference: Murray, 1971: p.61, pl.22, figs 5-8. 

Diagnosis: A smooth species of Quinqueloculina with oblique sutures. The 

aperture is terminal and without a tooth. 
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Quinqueloculina lata Trequem 

Original reference: Terquem, 1876: p.82, pl.11, fig.8 a-c. 
Recent reference: Haynes, 1973: p.72, pl.7, figs 10-13. 

Diagnosis: An oblong species of Quinqueloculina that is triangular in cross 

section. The sutures are slightly depressed. The aperture is terminal with a short, 

smooth tooth. 

Quinqueloculina oblonga (Montagu) 

Original reference: Vermiculum oblongum Montagu, 1803: p.522, pi.14, fig.9. 
Recent reference: Murray, 1971: p.63, pl.23, figs 4-8. 

Diagnosis: A rectangular species of Quinqueloculina oval in cross section. 

Terminal aperture containing a smooth tooth. 

Quinqueloculina semimulum (Linne) 

Original reference: Serpula seminulum Linne, 1758: p.786. 

Recent reference: Haynes, 1973: p.74, pi.17, figs 14,19, pl.32, figs 1-3, text-fig.18 (1-4). 

Diagnosis: An ovate species of Quinqueloculina with slightly compressed 

chambers. The terminal aperture has a simple tooth. 

Family NODOSARIIDAE Ehrenberg, 1838 

Genus Amphicoryna Schlumberger, 1881 

Amphicoryna cf. A. scalaris (Batsch) 

Original reference: Nautilus {orttioceras) scalarls Batsch, 1791: p.4, pl.2, fig.4 a,b. 
Recent reference: Mun-ay, 1971, p.77, pi.29, figs 1-4. 

Diagnosis: A smoothed necked species of Amphicoryna with a terminal aperture 

enclosed with teeth. 

Genus Astacolus De Montfort, 1808 

Astacolus crepidulus (Fichtel and Moll) 

Original reference: Nautilus crepiduia Fichtel and Moll, 1798: p.107, pi.19, figsg-i. 
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Recent reference: Murray, 1971: p.77, pl.29, figs 5-6. 

Diagnosis: A compressed species of Astacolus with oblique sutures and a 

terminal aperture surrounded by grooves. 

Genus Lagena Walker and Jacob, 1798 

Lagena clavata (d'Orbigny) 

Original reference: Oolina clavata d'Orbigny, 1846: p.24, pl.1, figs 2,3. 
Recent reference: Haynes, 1973: p.81, pl.32, fig.1, pi.13, fig.1. 

Diagnosis: A smooth species of Lagena, clavate outline with smooth, moderately 

long neck and a short basal spine. 

Lagena interrupta Williamson 

Original reference: Lagena striata (Montagu) var. interupta Williamson, 1848: p.14, pl.1, fig.7. 
Recent reference: Murray, 1971: p.83, pl.32, figs 1-5. 

Diagnosis: A subglobose, ribbed species of Lagena with a long, hexagonal 

patterned, slender neck. The base is ornamented with small tubercles forming two 

concentric rings. 

Lagena laevis (Montagu) 

Original reference: Vermiculum laeve Montagu, 1803: p.524, pl.1, fig.9. 
Recent reference: Haynes, 1973: p.84, pi.12, fig.2. 

Diagnosis: A smooth, egg-shaped species of Lagena devoid of any 
ornamentation. 

Lagena perclucida (Montagu) 

Original reference: Vermiculum perclucida Montagu, 1803: p.525, pi.14, fig.3. 
Recent reference: Haynes, 1973: p.86, pi.12, fig.5, pi.13, fig.5. 

Diagnosis: A globular species of Lagena strongly ribbed at the base and with a 

long neck ornamented by widely spaced oblique ribs. 

Lagena semistriata Williamson 

Original reference: Lagena striata (Montagu) var. B semistriata Williamson, 1848: p.14, pl.1, figs 
9,10. 
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Recent reference: Haynes, 1973: p.87, pi.12, fig.6, pi.13, fig.4. 

Diagnosis: An oval species of Lagena with numerous fine ribs at the base. The 

neck is ornamented with near straight, discontinuous ribs. 

Lagena substriata Williamson 

Original reference: Williamson, 1848: p.15, pl.2, fig.12. 

Recent reference: Haynes, 1973: p.89, pi.12, fig.11, pl.13, figs6, 11. 

Diagnosis: An elongate species of Lagena with numerous fine ribs which extend 

up to the aperture from above the basal circlet of tubercles. The neck is short and 

contains fewer ribs. 

Lagena sulcata (Walker and Jacob) 

Original reference: Serpula {Lagena) sulcata Walker and Jacob, 1798: p.634, pl.14, fig.5. 
Recent reference: Loeblich and Tappan, 1988: p.415, pl.455, figs 12, 13, 15-17. 

Diagnosis: A globular species of Lagena ornamented with strong ribs and has a 

relatively short, smooth neck except for the presence of small tubercles. 

Lagena tenuis (Bornemann) 

Original reference: Ovulina tenuis Bomemann, 1855: p.317, pi.12, fig.3 a,b. 
Recent reference: Murray, 1971: p.89, pi.35, figs 1-2. 

Diagnosis: An oval species of Lagena with fine oblique ribs extending from the 

base of the neck to the aperture. The main body is smooth but the base is 

ornamented by short ribs. 

Procerolagena gracilis (Williamson) 

Original reference: Lagena grac/Z/s Williamson, 1848: p. 13. 
Recent reference: Loeblich and Tappan, 1988: p.416, pl.455, fig.2. 

Diagnosis: An elongate species of Lagena with dual, parallel margins tapering to 

an aplicate base. The test has faint to strong striae or costae. 

Genus Lenticulina Lamarck, 1804 
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Lenticulina peregrina (Schwager) 

Original reference: Cristellan'a peregrina Schwager, 1866: p.245, pi.7, fig.89. 
Recent reference: Murray, 1971: p.89, pi.35, figs 3-5. 

Diagnosis: An oval species of Lenticulina with a terminal aperture containing 

short radiating slits. 

Family POLYMORPHINIDAE d' Orbigny, 1839 

Genus Globulina d' Orbigny, 1839 

Globulina gibba d'Orbigny 

Original reference: Polymorphina {Globulina) gibba d'Orbigny, 1826: p.266. 
Recent reference: Loeblich and Tappan, 1988: p.419, pl.457, figs 6, 7. 

Diagnosis: An oval species of Globulina with flush, oblique sutures and a terminal 

radiate aperture. 

Globulina d'Orbigny var. myristiformis (Williamson) 

Original reference: Polymorphina myhstifomiisW\\\'\amsor\, 1858: p.73-4, pi.16, figs 156,157. 
Recent reference: Murray, 1971: p.91, pi.36, figs 4-8. 

Diagnosis: A globular species of Globulina with coarse ribs from the base to the 

aperture. The aperture is terminal containing circular openings. 

Genus Guttulina d' Orbigny, 1839 

Guttulina lactea (Walker and Jacob) 

Original reference: Serpula lactea Walker and Jacob, 1798: p.634, pi.14, fig.4. 
Recent reference: Boltovskoy, 1976: p.34, pi.17, figs 12-14. 

Diagnosis: An ovate species of Guttulina with spirally arranged chambers in 5 

planes. The sutures are distinct and slightly depressed. 

Family GLANDULINIDAE Reuss, 1860 

Genus Glandulina d' Orbigny, 1839 

Glandulina ovula d'Orbigny 
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Original reference: d'Ortigny, 1846: p.30. 
Recent reference: Jones, 1994: p.71, p!.61, fig.6. 

Diagnosis: An elongate species of Glandulina tapered at each end and circular in 

cross section. 

Genus Fissurina d' Orbigny, 1850 

Fissurina lagenoides (Williamson) 

Original reference: Entosolenia marginata var. /ageno/des Williamson, 1848: p.11, pl.1. 
figs 25, 26. 

Recent reference: Rouvillois, 1976: p.13, pl.2, figs 7, 8. 

Diagnosis: An oval, compressed species of Fissurina with a parallel peripheral 

margin containing coarse, irregular ribs and terminating at the base a short neck. 

Fissurina lucida (Williamson) 

Original reference: Entosolenia marginata (Montagu) var. lucida Williamson, 1848: p.17, pl.2, 
fig.17. 

Recent reference: Haynes, 1973: p.95, pi.14, figsl, 2, text-fig.20, (3, 4). 

Diagnosis: A compressed oval species of Fissurina. The aperture is a terminal 

slit. 

Fissurina marginata (Montagu) 

Original reference: Serpula {Lagena) marginata Montagu, 1803: Walker and Boys, 1784: p.3, 
tab.1,fig.7. 

Recent reference: Bommalm, 1997: p.41, fig. 17 d-e. 

Diagnosis: A semi-ovate species of Fissurina with a slightly compressed, smooth 

test with a narrow keel which bifurcates around the oval terminal aperture. 

Fissurina orbignyana Seguenza 

Original reference: Seguenza, 1862: p.66, pl.2, figs 19, 20. 
Recent reference: Mun-ay, 1971: p.99, pl.40, figs 1-5. 

Diagnosis: An ovate species of Fissurina with a deep, three fold keel. The central 

keel bifurcates around the aperture. 
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Genus Oolina d'Orbigny, 1839 

Oolina hexagona (Williamson) 

Original reference: Entosolenia squamosa (Montagu) var. hexagona Williamson, 1858: p.13, pl.1, 
fig.32. 

Recent reference: Haynes, 1973: p.107, pi.14, figs 12, 13, pi.15, figs 3, 6. 

Diagnosis: A globular species of Oolina with a distinct hexagonal pattern of 

raised ribs ending at the base as a small boss. 

Oolina lineata (Williamson) 

Original reference: Entosolenia lineata Williamson, 1858: p.18, pl.2, fig.18. 
Recent reference: Haynes, 1973: p. 109, pi. 14, figs 8-10. 

Diagnosis: An ovate species of Oolina with fine longitudal striae and a blunt 

terminal aperture. 

Oolina melo d'Orbigny 

Original reference: d'Orbigny, 1839: p.20, pi.5, fig.9. 
Recent reference: Murray, 1971: p.93, pi.37, figs 4-6. 

Diagnosis: A globular species of Oolina with an irregular pattern of raised ribs. 

Oolina squamosa (Montagu) 

Original reference: Venviculum squamosum Montagu, 1903: p.526, pi.14, fig.2. 
Recent reference: Haynes, 1973: p.110, pi.14, fig.14, pi.15, figs 4, 5. 

Diagnosis: A semi-globula species of Oolina with raised ribs producing a regular 

pattern. 

Oolina williamsoni (Alcock) 

Original reference: Entosolenia williamsoni A\cock, 1865: p.193. 

Recent reference: Haynes, 1973: p.111, pi.14, figs 15-17; pi.15, figs 1,2,7. 

Diagnosis: An ovate species of Oolina with longitudinal grooves separated by 

strong ribs which pass into a mesh pattern of ribs which terminate at the base of a 

short, smooth neck. 
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Family BULIMINIDAE Jones, 1875 

Genus Buliminella Cushman, 1911 

Buliminella elegantissima d'Orbigny 

Original reference: d'Orbigny, 1839: p.51. 

Recent reference: Loeblich and Tappan, 1988: p.522, pi.572, figs 7-11. 

Diagnosis: A species of Bulimina with gently depressed, diagonal sutures. The 

aperture has a raised lip. 

Genus Bulimina d'Orbigny 1826 

Bulimina gibba Farnasini 

Original reference: Famasini, 1902: p.378, pl.O, figs 32,34. 
Recent reference: Haynes, 1973: p.121, pl.21, pl.10, fig.14, text-fig.24 (10-17). 

Diagnosis: An inflated triserial species of Bulimina with chambers increasing in 

size with addition and occasionally with tubercles following the lower edges. 

Bulimina marginata d'Orbigny 

Original reference: d'Orbigny, 1826: 76. 
Recent reference: Bommalm, 1997: p.9, fig.18L. 

Diagnosis: An elongate-ovate, triserial species of Bulimina. The ends of the 

chambers extend outwards and the lower edge is bordered by small blunt 

tubercles. 

Genus Stainforthia Hofker, 1956 

Stainforthia fusiformis (Williamson) 

Original Reference: Bulimina pupoides Williamson, 1858: p. 63, fig. 129, p. 130. 
Recent reference: Haynes, 1973: 124, pi.5, figs 7, 8. 

Diagnosis: An elongate, fusiform species of Stainforthia. 

Family BOLIVINITIDAE Cushman, 1927 

Genus Bo//Wna d'Orbigny, 1839 
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Bolivina pseudoplicata Heron-Allen and Earland 

Original reference: Heron-Allen and Earland, 1930: p.81, pl.3, figs 36-40. 
Recent reference: Haynes, 1973: p.132, text-fig.25 (20, 21), pi.10, fig.3, pl.11, fig.7. 

Diagnosis: A compressed lanceolate species of Bolivina with an irregular pattern 

of raised processes. 

Genus Brizalina Costa, 1856 

Brizalina cf. B. pseudopunctata (Hoglund) 

Original reference: Brizaiina cf. B. pseudopunctata (Hoglund), 1947: p.273-4, pi.124, fig. 5 a,b, 
pl.32, figs 23, 24, text-figs 280,281, 287. 

Recent reference: Mun^ay, 1971: p.109, pl.44, figs 3-6. 

Diagnosis: A lanceolate species of Brizalina with oblique depressed sutures 

ornamented by large pores. 

Brizalina spathulata (Williamson) 

Original reference: Textularia vanaM/s Williamson var. spafAiu/afa Williamson, 1858: p.76, pi.16, 
figs 164, 165. 

Recent reference: Mun-ay, 1971: p.111, pl.45, figs 1-4. 

Diagnosis: A compressed species of Brizalina with an acute periphery and 

slightly depressed sutures, but without longitudinal costae. 

Brizalina variabilis (Williamson) 

Original reference: Textularia vanaM/s Williamson, 1858: p.76, pl.6, figs 162,163. 
Recent reference: Murray, 1971: p.113, pl.46, figs 1-3. 

Diagnosis: A species of Brizalina with deep, oblique sutures and a coarse 

perforate wall of which each pore forms a deep cone. 

Family PLEUROSTOMELLIDAE Reuss, 1860 

Genus Parafissurina Silvestri, 1904 

Parafissurina malcomsoni (Wright) 

Original reference: Lagena Laevigata (Reuss) var. malcolmsoni, Wright, 1911: p.4, pl.11, 
figs 1,2. 

Recent reference: Murray, 1971: p. 101, pl.41, figs 1-4. 
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Diagnosis: An elongate species of Parafissurina with a flared keel. The aperture 

comprises a slit. 

Family CASSIDULINiDAE d'Orbigny, 1839 

Genus Cassidulina d'Orbigny, 1826 

Cassidulina obtusa Williamson 

Original reference: Williamson, 1858: p.69, pl.6, figs 143-144. 
Recent reference: Murray, 1971: p. 189, pi.79, figs 1-6. 

Diagnosis: A subglobular species of Cassidulina with depressed sutures. 

Aperture is a slit containing a lip on the lower edge. 

Family CERATOBULIMINIDAE Cushman, 1927 

Genus Lamarckina Berthelin, 1881 

Lamarckina lialiotidea (Heron-Allen and Earland) 

Original reference: Pulvinulina hallotidea Heron-Allen and Earland, 1911: p.338, pi.11, figs 6-11. 
Recent reference: Murray, 1971: p.205, pi.86, figs 1-6. 

Diagnosis: A species of Lamarckina with chambers arranged into a convex spiral 

and an acute periphery. 

Family SPIRILLINIDAE Reus, 1862 

Genus Spirillina Ehrenberg, 1843 

Spirillina vivipara Ehrenberg 

Original reference: Ehrenberg, 1843: p.402. 
Recent reference: Loeblich and Tappan, 1988: p.304, pi.318, figs 4-7. 

Diagnosis: A compressed, coarsely perforate species of Spirillina. 

Family PATELLINIDAE Rhumbler, 1906 

Genus Pate//na Williamson, 1858 
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Patellina corrugata Williamson 

Original reference:Williamson, 1858: p.46, pl.3, figs 86-89. 

Recent reference: Loeblich and Tappan, 1988: p.306, pl.320, figs 4-14. 

Diagnosis: A piano - convex species of Patelina with a surface ornamented with 

pits and shallow ridges. The aperture has a flared flap. 

Family ASTERIGERINIDAE d'Orbigny, 1839 

Genus Asterigerinata Bermudez, 1949 

Asterigerinata mamilla (Williamson) 

Original reference: /?ofa//na A77am///a Williamson, 1858: p.54, pl.4, figs 109-111. 
Recent reference: Haynes, 1973: p.164, pi.18, figs 1-4, pi.19, figs 7, 9; text-fig.32 (1-5). 

Diagnosis: A high trochospiral, piano - convex species oi Asterigerinata with a 

line of pores defining the coiling chambers on the dorsal side. The aperture is a 

narrow arch with a lip. 

Family CANCRiSIDAE 

Genus Cancris De Montfort, 1808 

Cancris auricula (Fichtel and Moll) 

Original reference: Nautilus auricula Fichtel and Moll, 1798: p.108, pl.20, figs a-f. 
Recent reference: Murray, 1971: p.137, pi.57, figs 1-7. 

Diagnosis: An elongate, compressed species of Cancris with shallow sutures and 

a sharp periphery. 

Family CIBICIDIDAE Cushman, 1927 

Genus Cibicides De Montfort, 1808 

Cibicides lobatulus (Walker and Jacob) 

Original reference: Nautilus lobatulus Walker and Jacob, 1798: p.642, pi.14, fig.36. 
Recent reference: Bommalm, 1997: p.76, fig.26 d-f. 

106 



Diagnosis: An irregular, biconvex species of Ciblcides with lobed-shaped 

chambers. 

Planorbulina mediterranensis d'Orbigny 

Original reference: d'Orbigny, 1826: p.280, vol.7, pi.14, figs 4-6. 
Recent reference: Murray, 1971: p.179, pi.75, figs 1-6. 

Diagnosis: A species of Planorbulina with depressed sutures and cyclically 

anranged chambers. 

Family DISCORBIDAE Ehrenberg, 1838 

Genus Buccella Andersen, 1952 

Buccella frigida (Cushman) 

Original reference: Pulvinulina fhgida Cushman, 1921: p.12. 
Recent reference: Ishman and Foley, 1996: p.218, pl.2, fig.1. 

Diagnosis: A biconvex species of Buccella with flush sutures and tubercular 

ornamentation on the umbilical side. 

Genus Gavelinopsis Hofker, 1951 

Gave//nops/spraeger/(Heron-Allen and Earland) 

Original reference: D;sco/t);na praegeri Heron-Allen and Eariand, 1913: p.122. 
Recent reference: Loeblich and Tappan, 1988: p.560, pl.608, figs 6-12. 

Diagnosis: An evolute species of Gavelinopsis with flush sutures and carinate 

periphery. The aperture is a low interio-marginal-extraumbilical slit. 

Genus/?osa///ia d'Orbigny, 1826 

Rosalina anomala Terquem 

Original reference: Terquem, 1875: p.438, pi.5, fig.1. 

Recent reference: Haynes, 1973: p.150, pl.17, figs 1-3, pi.19, fig.2, pl.30, figs 1, 2; text-fig.28. 

Diagnosis: A species of Rosalina with coarse pores on the spiral side but which 

are absent on the umbilical side. 
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Rosalina williamsoni (Chapman and Parr) 

Original reference: Rotalina nitida Williamson, 1858: p.54, pl.4, figs 106-108. 
Recent reference: Haynes, 1973: p.162, pl.17, figs 13-15; text-fig.31 (1-4). 

Diagnosis: A keeled and finely perforate species of Rosalina with an umbilical 

boss. 

Family GLABRATELLIDAE Loeblich and Tappan, 

Genus Glabratella Dorren, 1948 

Glabratella milletti (Wright) 

Original reference: Discorbina milletti \Nf\q\\\, 1911: p.13, pl.2, figs 14-17. 
Recent {reference: Murray, 1971: p.139, pi.58, figs 1-4. 

Diagnosis: A species of Glabratella with flush chambers and a carinate periphery. 

Family NONIONIDAE Schultze, 1854 

Genus Nonion De Montfort, 1808 

Nonion depressulus (Walker and Jacob) 

Original reference: Nonion depressulus (Walker and Jacob), 1798: p.641, pi.14, fig.33. 
Recent reference: Haynes, 1973: p.209, pl.22, figs 8-11, pl.29, fig.9, text-fig.44 (1-3.) 

Diagnosis: A near involute, compressed species of Nonion with narrow arched 

sutures heavily ornamented with tubercles towards the umbilicus. 

Genus Nonionella Cushman, 1926 

Nonionella turgida (Williamson) 

Original reference: Rotalina turgida Williamson, 1858: p.50, pl.4, figs 95-97. 
Recent reference: Haynes, 1973: p.213, pl.22, fig.12, text-fig.45 (4). 

Diagnosis: A sub - globose species of Nonionella with deeply depressed sutures. 

The final chamber forms a flap over the umbilical region. 
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Family ELPHIDIIDAE Galloway, 1931 

Genus Elphidium De Montfort, 1808 

Elphidium crispum (Linne) 

Original reference: Nautilus crispum Linne, 1758: p.709. 
Recent reference: Murray, 1971: p.155, pl.64, figs 1-6. 

Diagnosis: A keeled species of Elphidium with long, evenly spaced, retral 

processes spanning the sutures between the narrow chambers and a large 

umbilical boss. Spines originating from the periphery are occasionally seen. 

Elphidium gerthi Van Voorthuysen 

Original reference: Van Voorthuysen, 1957: p.32, pl.23, fig 12 a,b. 
Recent reference: Murray, 1971: p. 161, pl.67, figs 1-7. 

Diagnosis: A compressed, slightly evolute species of Elphidium with deeply 

depressed sutures which are crossed by short retral processes. 

Elphidium macellum (Fitchel and Moll) 

Original reference: Nautiiaus macellum Fitchel and Moll, 1798: p.66, var. B pi. 10, figs h-k. 
Recent reference: Jones, 1994: p. 109, pi. 110. 

Diagnosis: A highly compressed species of Elphidium with a slight keel and a flat 

umbilicus. 

Elphidium margaritaceum (Cushman) 

Original reference: Elphidium advenum (Cushman) var. margaritaceum Cushman, 1930: p.25, 
pi.10, fig.3. 

Recent reference: Haynes, 1973: p.203, pl.24, figs 12, 13, pl.29, fig.8. 

Diagnosis: A densely perforate, compressed species of Elphidium with an acute 

periphery. 

Family GLOBIGERINIDAE Carpenter, Parker and Jones, 1862 

Genus Globigerina d'Orbigny, 1826 
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Globigerina bulloides d'Orbigny 

Original reference: d'Orbigny, 1826: p.277. 
Recent reference: Loeblich and Tappan, 1988: p.489, pi.535, figs 1-7. 

Diagnosis: A globose species of Globigerina with deep, distinct sutures. 

Genus Orbulina d'Orbigny, 1839 

Orbulina universa d'Orbigny 

Original reference: d'Orbigny, 1839: p.3, pl.1, fig.1. 
Recent reference: Haynes, 1973: p.184, pl.20, fig.6. 

Diagnosis: A species of Orbulina with a final single chamber that encloses the 

trochospiral juvenille. 

Superclass RHIZOPODEA Dujardin, 1835 

Class LOBOSIA Carpenter, 1861 

Order ARCELLINIDA Kent, 1880 

Superfamily Arcellacea Ehrenberg, 1843 

Family Centropyxidae Jung, 1942 

Genus Centropyxis Jung, 1942 

Centropyxis aculeata Ehrenberg 

Original reference: Arcella aculeata Ehrenberg, 1832b: p.91. 
Recent reference: Ogdon, 1980: p.46, pi.12, figs a-d. 

Diagnosis: An ovoid species of Centropyxis with lateral spines and sub-terminal 

aperture. 

Centropyxis discoides Penard 

Original reference: Arcella discoides Penard, 1890: vol.31, p.150, pi.5, figs 38-41. 
Recent reference: Ogdon, 1980: p.54, pi.16, figs a-e. 

Diagnosis: A compressed, discoid species of Centropyxis with a terminal 

aperture. 
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Centropyxis ecornis Ehrenberg 

Original reference: Arcella ecomis Ehrenberg, 1841: Deflandre, 1929: vol.67, p.359, 
text-figs 123-138. 

Recent reference: Ogdon, 1980: p.56, pi.17, figs a-e 

Diagnosis: A sub-round, tapering species of Centropyxis with a sub-terminal 

aperture. 

Family Difflugiidae Wallich 1864 

Genus Difflugia Leclerc, 1815 

Difflugia acuminata Ehrenberg 

Original reference: Ehrenberg, 1838: p.31, fig.3. 
Recent reference:Ogdon, 1980: p.118, pl.48, figs a-c. 

Diagnosis: An elongate, tubular species of Difflugia with a short spine at the 

base. The aperture is open and circular. 

Difflugia avellana Penard, 1890 

Original reference: Penard, 1890: vol.31, p.261. 
Recent reference: Ogdon, 1980: p.120, pl.49, figs a-d. 

Diagnosis: A slightly compressed, elongate species of Difflugia with an oval 

aperture. 

Difflugia corona Wallich 

Original reference: Difflugia proteiformis sub-sp. giobularis var. corona Wallich, 1864: vol. II, 
p.241, pi. XIII: Archer, 1866: p.186. 

Recent reference: Ogdon, 1980: p.128, pi.53, figs a-d. 

Diagnosis: A spherical to ovoid species of Diffllugia, occasionally with spines on 

the aboral region. The aperture is circular and has a denticular collar. 

Difflugia globulosa Dujardin 

Original reference: Dujardin, 1837: p.30, figs 29, 30, pl.XV, figs 7, 8, pi.XVI. 
Recent reference: Ogdon, 1980: p.134, pi.56, figs a-c. 

Diagnosis: A simple, globular species of Difflugia. 
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Difflugia labiosa Wailes 

Original reference: Difflugia amphora Wailes, 1919:1902: p.39, pi.15, fig.11. 
Recent reference: Ogdon, 1980: p.138, pi.58, figs a-c. 

Diagnosis: An oval species of Difflugia. The aperture has a shallow collar with an 

undulating rim. 

Difflugia lithophila Penard 

Original reference: Penard, 1902: p.714. 
Recent reference: Ogdon, 1980: p.142, pl.60, figs a-c. 

Diagnosis: A simple, ovoid species of Difflugia with a moderately raised collar. 

Difflugia urceolata Carter 

Original reference: Carter, 1864: p.27, pl.1, fig.7. 

Recent reference: Medoili and Scott, 1983: p.31, pi.3, figs 1-3, pl.4, figs 1-4. 

Diagnosis: A circular to ovoid species of Difflugia with short aboral 

protuberances. The aperture is surrounded by an apical rim which is curled 

outwards. 

Difflugia viscidula Penard 

Original reference: Penard, 1902: p.259, text-fig. 
Recent reference: Ogdon, 1980: p.160, pl.69, figs a-d. 

Diagnosis: A simple, ovoid species of Difflugia. 

Pontigulasia compressa Carter 

Original reference: Difflugia compressa Carter, 1864: p.22, pl.1, figs 5, 6. 
Recent reference: Ogdon, 1980: p.162, pi.70, figs a-d. 

Diagnosis: An elongate species of Difflugia with a tapered neck. 

Pseudodifflugia gracilis Schlumberger 

Original reference: Schlumberger 1845: p.245, 3. 
Recent reference: Ogdon, 1980: p.174, pl.76, figs a-c. 

Diagnosis: A squat, circular species of Pseudodifflugia. 
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Species 
Amphicoryna cf. A. scalaris (Batsch, 1791) 
Astacolus crepidulus (Fichtel and Moll, 1798) 
Asterigerinata mamilla (Williamson, 1858) 
Bolivina pseudoplicata Heron-Allen and Earland 1930 
Brizalina cf. B. pseudopunctata (Hoglund, 1947) 
Brizalina spathulata (Williamson, 1858) 
Brizalina variabilis (Williamson, 1858) 
Buccella frigida (Cushman, 1921) 
Buliminella elegantissima d'Orbigny 1839 
Bulimina gibba Famasini 1902 
Bulimina marginata d'Orbigny 1826 
Cancris auricula (Fichtel and Moll, 1798) 
Cassidulina obtusa Williamson 1858 
Cibicides lobatulus (Walker and Jacob, 1798) 
Comuspira foliacea (Philippi, 1844) 
Cyclogyra involvens {Reuss, 1850) 
Eggerelloides scabra (Williamson, 1858) 
Elphidium crispum (Llnne, 1758) 
Elphidium gerthi Van Voorthuysen 1957 
Elphidium macellum (Fitchel and Moll, 1798) 
Elphidium margaritaceum (Cushman, 1930) 
Fissurina lagenoides (Williamson, 1848) 
Fissurina lucida (Williamson, 1848) 
Fissurina marginata (Montagu, 1803) 
Fissurina orbignyana Seguenza 1862 
Glabratella milletti {\Nnghi 1911) 
Gave//nops/s praegen (Heron-Allen and Earland, 1913) 
Glandulina ovula d'Orbigny 1846 
Globigerina bulloides d'Orbigny 1826 
Globulina gibba d'Orbigny 1826 
Globulina d'Obignyvar. myristifonvis (Williamson, 1858) 
Globocassidulina aff. G. subglobosa (Brady, 1881) 
Guttulina lactea (Walker and Jacob, 1798) 
Haplophragmoides wilberti Anderson 1953 
Lagena clavata (d'Orbigny, 1846) 
Lagena infenvpta Williamson 1848 
Lagena/aews (Montagu, 1803) 
Lagena periucida (Montagu, 1803) 
Lagena semistriata Williamson 1848 
Lagena substriata Williamson 1848 
Lagena sulcata (Walker and Jacob, 1798) 
Lagena tenuis (Bomemann, 1855) 
Lamarckina haliotidea (Heron-Allen and Earland, 1911) 
Lenticulina peregrina (Schwager, 1866) 
Massilina secans (d'Orbigny, 1826) 
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X 
O 
O 
O 
0 
0 
0 
X 
0 
0 
X 
X 

c 
X 
0 
0 

c 
0 

c 
0 
0 
0 
0 
0 
c 
c 
X 
X 
X 
X 
X 
X 
X 
R 
R 
R 
X 
0 
0 
0 
R 
X 
X 
0 

F 
X 
X 

o 
0 
0 
R 
R 
X 
X 
R 
R 
X 
X 
0 
X 
R 
C 
O 
R 
O 
R 
X 
R 
R 
0 
R 
R 
X 
X 
R 
X 
X 
R 
C 
R 
R 
R 
X 
R 
R 
R 
R 
X 
R 
X 

A 
R 
R 
C 
C 
C 
C 
C 
0 
O 
O 
O 
R 
0 
A 
R 
0 
R 
C 
R 
C 
O 
R 
C 
C 
C 
C 
C 
R 
R 
0 
R 
R 
C 
C 
0 
C 
C 
0 
C 
C 
C 
0 
R 
0 
0 

E 
R 
R 
C 
C 
C 
C 
C 
O 
R 
O 
O 
R 
R 
A 
R 
0 
R 
C 
R 
C 
O 
R 
C 
C 
C 
C 
C 
R 
R 
O 
R 
R 
C 
C 
0 
C 
C 
0 
C 
C 
C 
0 
R 
R 
0 

Cont. 

113 

file://{/Nnghi


Species 
Nonion depressulus (Walker and Jacob, 1798) 
Nonionella turgida (Williamson, 1858) 
Oolina hexagona (Williamson, 1858) 
Oolina lineata (Williamson, 1858) 
Oolina melo d'Orbigny 1839 
Oolina squamosa (Montagu, 1803) 
Oolina williamsoni {A\cock, 1865) 
Orbulina universa d'Orbigny 1839 
Parafissurina ma/comson/(Wright, 1911) 
Patellina convgata Williamson 1858 
Pateoris hauerinoides (Rhumbler, 1936) 
Planorbulina meditenanensis d'Orbigny 1826 
Procerolagena gracilis (Williamson, 1848) 
Prygo depressa (d'Orbigny, 1826) 
Quinqueloculina bicomis (Walker and Jacob) var. angulata 
(Williamson, 1858) 
Quinqueloculina dimidiata Jerquem 1876 
Quinqueloculina lata Trequem 1876 
Quinqueloculina oblonga (Montagu, 1803) 
Quinqueloculina semimulum (Linne, 1758) 
Reophax moniliformis Siddall 1886 
Rosalina anomala Terquem 1875 
Rosalina williamsoni {Chapman and Parr, 1958) 
Spiiillina vivipara Ehrenberg 1843 
Spiroloculina excavata d'Orbigny 1846 
Stainforthia fusiformis (Williamson, 1858J 
Trochammina ochracea (Williamson, 1858) 
Trochammina rotalifonvis Heron-Allen and Earland 1911 
Centropyxis aculeata Ehrenberg 1832 
Centmpyxis discoides Penard, 1890 
Centropyxis ecomis Ehrenberg 1841 
Difflugia acuminata Ehrenberg, 1838 
Difflugia avellana Penard, 1890 
Difflugia corona Wallich, 1864 
Difflugia globulosa Dujardin, 1837 
Difflugia labiosa Wailes, 1919 
Difflugia lithophila Penard, 1902 
Difflugia urceolata Carter, 1864 
Difflugia viscidula Penard, 1902 
Pontigulasia compressa Carter, 1864 
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Table 3.1. Transported-in species. The categories used indicate relative 
abundance with reference to that estuary alone and do not represent relative 
abundaces between locations. Abbreviations are as follows: RC - Restronguet 
Creek, F - Fowey, A - Avon, E - Erme, A - abundant (>50%), C - commonly found 
in most samples (<20%), O - occasional appearance in some samples (<5%), R -
rare appearance (<1 %) and X - none found. 
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Chapter Four 

Environmental Background Data 

4.1 Introduction 

The environmental background data includes information on local climatic 

conditions, the abiotic variables (salinity and temperature), metal concentrations in the 

sediments, sediment grain size analysis and mineralogy, organic carbon, nitrogen 

and the carbon-nitrogen (C/N) ratio. The water quality data (metal concentration and 

pH) were provided by the Environment Agency's systematic monitoring programme, 

but these data are only available for Restronguet Creek. Information (1991 -1996) is 

given here only for the Devoran road bridge monitoring station (Figure 1.3) because it 

is outside the area affected by tidal water intrusion; tidal effects can account for 

significant variation in chemical speciation and partitioning behaviour (Chester, 1990; 

Boyden et al., 1979). Only broad use is made of data obtained from the 'fixed' 

monitoring station at the mouth of the Creek (off Pandora Inn) as it has not always 

been sited in the same position and occasionally has been absent. 

4.2 Local climate 

4.2.1 Introduction 

The climatic data given here covers the period from the closure of Wheal 

Jane tin mine onwards (1991 -1996). The seasonal windspeed and direction, rainfall 

and atmospheric temperature were obtained from a number of sources; personal field 

measurements, the meteorlogical records for Plymouth City (data stored using 

Metenq. 4.1 software) and from a local recording station in Falmouth (courtesy of 

K. W.Bryan). 
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4.2.2 Windspeed and direction 

Windspeed varied from 1 to 35 knots. The highest winds were recorded in 

the winter months (December, January and February); summer windspeeds did not 

exceed 17 knots and generally being below 9 knots. Usually, strongest winds were 

from the south and south west (180-260°) and were occasionally very destructive 

(January, 1990 and 1998). 

4.2.3 Rainfall 

Monthly rainfall varied between 0 - 214mm each day for the year. The 

winter months (December - March) had a daily range between 0 - 214mm and 

summer between 0 - 184mm (June - August). Whilst daily rainfall for the spring and 

autumn varied between 6 -135mm. The data show that the monthly rainfall recorded 

in the winter and summer can be more equitable than expected and this is a regional 

trend due to the warmer climate which prevails in the south west of England. 

However, there are more days recording zero rainfall in the summer months relative 

to the winter. 

High (214mm) and prolonged periods of rainfall (weekly and monthly) are 

exceptional and in January 1995, for example, both red and amber flood warnings 

were issued by the Environment Agency. The sample stations CI 9, K20 and H23 

(Figure 1.14) remained flooded at low tide during this time. Prolonged periods of zero 

rainfall are similarly exceptional and have led to drought conditions. In the summer of 

1995, for example, no rainfall was recorded in June, July and August, v\4iich resulted 

in the river channel and reservoir storage being reduced to levels not previously 

recorded. 
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4.2.4 Atmospheric temperature 

Air temperature differs markedly between summer and winter. The summer 

ranged between 7.7 and 32 °C (the higher value recorded in July 1995). The winter 

ranged between -15 and 14.4°C (-15°C was recorded in January 1996 and probably 

reflects the additional influence of wind chill). Spring and autumn values are more 

equitable and range between 5 and 16.7°C. 

4.3 Salinity and temperature 

4.3.1 introduction 

Salinity and water temperature are known to affect both foraminiferal 

ecology and species distribution and the fate of dissolved metals in solution which are 

more toxic at lower salinities (Bryan and Langston, 1992; Depledge, 1990; M\usky et 

al., 1986). Salinity (%o - parts per thousand) is regarded as one of the factors which 

limits colonisation by certain foraminiferal species (Phlegler, 1960, 1970; Hansen, 

1965; Lee etal., 1969; Matera and Lee, 1972; Murray, 1973, 1991; Hart and 

Thompson, 1974; Lee, 1974; Scott and Leckie, 1990; Scott etal., 1991; Alve, 1995a; 

DeRijk, 1995,1996). Salinity stress (high or low salinity) affects the behaviour of 

organisms, especially those whose tolerance ranges are limited and can adversely 

influence reproduction and induce morphological variation (Lidz, 1965; Muller, 1975; 

Poag, 1978; M\usky, 1989; Amolgi-Labin, etal., 1992; Chang and Kaesler, 1974). 

However, estuarine foraminiferal species are generally brackish water organisms with 

a salinity tolerance range of 5-18%o. 

Salinity gradients may be used to separate an estuary into physical abiotic 

zones (Buzas, 1969; Setty, 1984; M^usky, 1989; Patterson, 1990) and a scheme 

similar to that proposed by M^Lusky (1989) is used here. The salinity range of <5%o 

defines the head of the estuary, >5-<18%o defines the upper estuary, >18-<25%o the 
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mid estuary and the lower estuary or reaches has a range of >25-<30%o. The marine 

saline waters of >30%o are encountered at the mouth of an estuary (M^Lusky, 1989). 

Temperature is an important parameter in foraminiferal ecology and is 

considered to control productivity and rates of survival (Parker and Atheam, 1959; 

Phlaegler, 1960; Arnal, 1955; Bradshaw, 1961; Lidz, 1965; Greiner, 1969; Muller, 

1975; Schnitker, 1974; Ellison, 1984; Angell, 1990). Temperature has also been 

demonstrated to influence test morphology and to determine the dominant 

morphotype; e.g.. Ammonia beccarii instead of/\. tepida (Lidz, 1965; Chang and 

Kaesler, 1974; Alve, 1995). 

With respect to metals, the temperatures encountered in UK estuaries are 

not considered to have a significant effect upon the behaviour of metals in solution 

(Bryan and Langston, 1992). The daily exposure of the mudflats to variable degrees 

of solar radiation, however, may affect metal availability, particularly if the level of 

ultra-violet radiation is increasing (Hallockef a/., 1995; Hatch and Burton, 1998; 

Kosianefa/., 1998). 

4.3.2 Seasonal salinity data 

In all the estuaries studied salinity readings were taken from the shore at 

mid to low depths in shallow water and detected no stratification. However, boat 

surveys carried out in deeper water (1.5 - 12m depth) did detect weak stratification 

(Stubbles, 1995) and, therefore, both the control estuaries and Restronguet Creek are 

regarded as partially stratified/mixed. 

Figure 4.1 represents seasonal data for Restronguet Creek and was 

obtained over a five year period and averaged to reduce the data to four seasonal 

sets. Figures 4.2 - 4.4 show the data obtained for each season over one year for each 

control estuary. The data sets, therefore, give both spatial and temporal information. 
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Restronguet Creek has a salinity range of 0-35%o (from above the maximum tidal limit) 

which takes the upper range above the tolerance limits for most brackish water 

organisms, c.25%o. 
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Figure 4.1: Salinity gradient, Restronguet Creek. 
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Figure 4.2: Salinity gradient, Erme Estuary. 

The salinity profiles show an increase down each estuary and Restronguet 

Creek which in all cases are higher in the summer and lower in the winter. This is 

particularly pronounced with respect to sample station A2 (Avon, 1995 -1996). The 
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winter and summer survey periods coincided with unusual weather conditions which 

affect the amount of channel flow (Section 4.2) and the channel narrows, at this point 

which may affect mixing processes between the tidal and fresh water. 
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Figure 4.3: Salinity gradient, Fowey Estuary. 
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Figure 4.4: Salinity gradient, Avon Estuary. 

The profile in the Fowey Estuary is highly variable and reflects the salinity 

levels at the subsidiary creek stations LP03, RC4 and PPH11 were routinely lower 
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than the stations in the main channel. This may reflect the effects of silting up and 

distance from the main channel which is dredged at Fowey. 

4.3.3 Salinity zonation 

The stations in each estuary can be classified on the basis of the scheme 

outlined above (Section 4.3.1) and Tables 4.1 and 4.2 show this arrangement. Only 

one or two stations from each location are within the head of estuary zone (D1, F1, 

LP03, RC4 and A1) and none fall into this category in the summer when there is a 

general shift to higher salinities. Of the other three zones the lower estuary is the 

largest group, having the highest number of sample stations. The foraminiferal 

(Chapter Five) data show that the typical estuarine species (tolerance 5-18%o) are 

present at locations which extend above and below this range and these species 

should, therefore, be more accurately described as euryhaline, having an additional 

upper range of 18-25%o (Murray, 1991). 

Area of Estuary 

Head of estuary 
<5%o 

Upper estuary 
>5-18%o 

Mid estuary 
>18-25%o 

Lower estuary 
>25-35%o 

Restronguet 
Creek 

D1 

TC8,P10 

TW27 

CY16,BY28, 
PI30 

Erme 

F1 

HP4,E8 

CM16 

E10,S18, 
820 

Fowey 

LP03,RC4 

StW2,PPH11 

CHS 

MP9,G13,G14 

Avon 

A1 

A2 

A5 

A6.A7,A8 

Table 4.1: Zonation in winter salinity zones. 

The control estuary and Creek sample stations upstream of the mouth (c. 

0.25 -1 km) consistently recorded salinity values up to 35%o. For this research, 
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therefore, the zonation of the lower reaches has been revised, the two lower zones 

used by M^Lusky (1989) being united into a single zone having a range of >25-35%o. 

Area of Estuary 

Head of estuary 
<5%o 

Upper estuary 
>5-18%o 

Mid estuary 
>18-25%o 

Lower estuary 
>25-35%o 

Restronguet 
Creek 

D1 

TC8,P10 

CY16, TW27, 
BY28,PI30 

Erme 

F1 

HP4 

E8,CM16, 
EIO.SIB, 

S20 

Fowey 

LP03,RC4, 

StW2,PPH11, 
CHS 

MP9,G13,G14 

Avon 

A1 

A2,A5,A6,A7, 
AS 

Table 4.2: Zonation in summer salinity. 

4.3.4 Pore water salinity 

While there were substantial differences between some readings due to 

problems in sampling technique (Chapter Two, Section 2.1.1) the obtained data do 

give a general indication of the variation in pore water salinity with distance down 

each estuary and Restonguet Creek. As with the surface samples, the pore water 

chemistry is influenced by evaporation and freshwater run-off, particularly as the 

samples taken were from the very top centimetre of oxidised sediment. 

Pore water salinity in Restronguet Creek varies between 10 and 44%o in the 

summer and 5 and 36%o in the winter, with the lower values recorded at stations D1, 

CI9 and K20, and the highest at stations P10, CY16, BY28 and PI30. The occasional 

high values (44%o) may be due to the evaporation of residual tidal water. Field 

observations support this as it was evident that the glassy sheen on the sediment 

surface at low tide was a tidal water film which remained throughout the low tidal 

cycle, even in the summer. 
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The control estuaries Erme and Avon had similar pore water salinity 

gradients. In the winter the upper estuary stations F1 (Erme Estuary) and A1 (Avon 

Estuary) have values below 3%o but in the summer this rises to 9 and 13%o 

respectively. The lower estuary stations E10 and S20 (Erme Estuary), A8 and A12 

(Avon Estuary), had the highest salinities at 35%o in the winter and 40%o in the 

summer. 

Fowey Estuary generally had slightly higher salinities for all seasons, and 

the upper estuary stations StWI and 2 had salinities of 8%o in the winter and 22%o in 

the summer. The upper aeek stations LP03 and RC4 had slightly lower salinities of 

1%o in the winter and 5%o and 12%o respectively in the summer. The lower estuary 

stations MP9, MP10, G12, G13 and G14 had a stable profile showing least variation 

and varied between 36%o in the winter and 39%o in the summer. Each of the control 

estuaries appeared to drain well at low tide and, unlike Restronguet Creek, there was 

no long lasting residual water film. 

4.3.5 Summary 

In summary, the data show that salinity is highly variable. This is caused by 

the changing nature of freshwater flow, the amount of residual flood tidal water and 

evaporation brought about by solar radiation (Haynes and Dobson, 1969). At the local 

level, freshwater springs and run-off will further dilute the incoming tidal waters (Alve, 

1995a; DeRijk, 1996). Clearly, such wide salinity ranges have implications as to which 

foraminiferal species will tolerate such variable environmental conditions and will 

affect diversity (Phlegler, 1965; Greiner, 1969; Boltovskoy and Lena, 1971; 

Boltovskoy and Wright, 1976; DeRijk, 1995; Stubbles, 1995; Stubbles, etal., 

1996a,b). 
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4.3.6 Seasonal temperature data 

The shallow water surveys did not detect vertical temperature variation 

below the top 10cm but thermal stratification was found during the boat surveys. The 

upper 10cm column of water is affected by solar radiation and the temperatures are 

some Ŝ C warmer than the deeper water. Spatial temperature gradients and temporal 

variation are evident for Restronguet Creek and each estuary (Figures 4.5 - 4.8). The 

lowest mean temperatures (1-13°C) were recorded at the head of each control 

estuary and Restronguet Creek and the highest (6 -18°C) in the lower reaches. The 

lowest seasonal temperatures were recorded in the winter (min. 1°C ), with the 

highest in the summer (max. 22°C). 
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Figure 4.5: Temperature gradient, Restronguet Creek. 
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Figure 4.6: Temperature gradient, Erme Estuary. 
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Figure 4.8: Temperature gradient, Avon Estuary. 

The summer 1995 data provided the highest temperatures when channel 

water flow and depth of water were unusually low for about 4 months. The lowest 

temperatures were recorded in January 1996 when daytime air temperatures were 

below freezing for a month. It was also found that the difference in temperature 

between the channel water (cooler) and the incoming tidal waters (warmer) was more 

pronounced in the winter relative to the summer. 
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4.3.7 Summary 

The high variation in temperature can be accounted for by a number of 

reasons, individually or in combination, as follows: 

• Non-equilibrium mixing between the cooler fresh channel water and incoming 

seawater; 

• Variable river channel water depth, affecting mixing between sea and channel 

water; 

• Variable river channel flow. Low flow, for example, will disturb the summer 

thermocline least, enabling it to rise higher up the estuary; 

• Additional freshwater flow from other sources, for example, rainwater run-off, 

rivulets and springs, and 

• Solar heating of the exposed mudflats, followed by heat transfer processes. 

4.4 Sediment grain size and mineralogy 

4.4.1 Introduction 

The sediment grain size distribution and the types of minerals available may 

also affect foraminiferal species distribution, particularly the effect these parameters 

may have in restricting the distribution of the agglutinated species. The most obvious 

limitation would be the maximum size of the organism and the availability of a suitable 

size range of particles needed during development. Colonisation by foraminifera (both 

calcareous and agglutinated species) is also affected by high proportions of coarse 

clastic material as this infers high water velocities which makes stable colonisation 

less likely to occur (Murray, 1991). Matera and Lee (1972) noted that both calcareous 

and agglutinated species cluster around specific median grain sizes, indicating 

preferential colonisation. Elphidium williamsoni (as Elphidium incertum) clustered 

around material with a median grain size of 0.1mm but Trochammina inflata clustered 
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around a median grain size of 0.46mm. Preference for muddy sediments has also 

been established because they contain higher proportions of organic matter (a food 

source for foraminifera) relative to sand (Lidz, 1965; Buzas etal, 1989; Warwick etal., 

1995). 

The proportion of silt, and particularly clay (<63 fjm), can also affect the 

concentration of sediment-bound metals by the process of adsorption-desorption and 

has been shown to account for the variation between sample locations (Chester and 

Stoner, 1975; De Groot and Allersma, 1975; Luoma and Bryan, 1981; Salomans and 

Forstner, 1984; Langston, 1986; Horowitz ef a/., 1990; Davidson ef a/., 1994; Attrill 

and Thomas, 1995). This very complex physico-chemical relationship is an important 

consideration when comparing metal concentrations between samples (as storage 

capacity) and potential metal availability (strength of ionic attraction and exchange 

capacity) to an organism (Chester and Stour, 1975). The fine fraction, <63 pm, is also 

more likely to be transported in the water column and the adsorbed metals are, 

therefore, in a higher state of bioavailablity (Salomons and Forstner, 1984). However, 

in areas of higher salinity (towards the mouth of an estuary), fine material forms 

flocculated colloids which tend to settle out of the water column and this reduces 

metal availability (Gardner, 1974; Sholkovitz, 1976). 

The percentage proportions of each size fraction have been grouped, as 

follows: <16pm, <63pm and >63pm, (as a percentage proportion). Each category 

reflects a particular influence, for example, the average size required as agglutinating 

material (Chapter Five, Section 5.7), determined by SEM analysis of Miliammina 

fusca, Jadammina macrescens and Trochammina inflata (<16pm) and the preferential 

concentration of metals (<63|jm). 
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4.4.2 Sediment grain size distribution 

Q Restronguet Creek 

The highest proportions of fine (<63pm) material occur in sediment samples 

taken from Restronguet Creek (Figure 4.9, a and b) with a mean distribution of 86.6% 

in a range of 59 - 91 %. The upper Creek samples D1 and CI 9 have a high proportion 

of fines >90% relative to the other stations in the Creek and the baseline/control 

estuaries. The majority of the samples, however, have a range of between 83 - 89% 

fine material. The Creek stations BY28 and H23 have a lower percentage proportion 

of fines, 58.6% and 52% (1993) respectively. 
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Figure 4.9: Sediment grain size distribution, Restronguet Creek, a) north side and b) 
south side. 
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Two samples from station H23 taken in 1992 and 1993 were analysed 

because the site was contaminated by predominantly iron coated quartz mine waste 

originating from the vicinity of the abandoned Restronguet Stream Tin Mine (Chapter 

One, Figure 1.6). Following inclusion of this coarser material the relative proportion of 

fines has been reduced to 52% while before inclusion it was 83%. The graphical 

mean particle size ranges from 16 - 24pm v\/hich is very fine and the narrowness of 

the range suggests that there is little variation between the samples. 

Material in the grain size range <16pm is present in all samples, but the 

percentage proportions vary. Restronguet Creek (Figure 4.9, a and b) has the highest 

proportion below 16pm with a mean of 28% in a range of 20 - 48%. 

//} The Erme Estuary 

The grain size analysis for the Erme Estuary (Figure 4.10, a and b) 

demonstrates a greater proportion of fine and medium sand size material (>63pm) 

relative to samples from the Fowey Estuary and Restronguet Creek. The mean 

percentage proportion of material <63pm is 55.6% in a range of 30 - 70%. Sample 

station S20, for example, has the lowest proportion of fines (<63pm), 29% but station 

CM17 has the highest with 72.7%. The sample group, HP2, 0W12 and 0W14 have a 

range of 50 - 55%. Stations HP3, HP4, E7, E10, 0W11 and 0W15 range between 40 

- 49% while sample stations F1, E5, E6, E8, E9, CM16, SI 8 and SI 9 have lower 

values ranging from 31% - 39% fine material (Figure 4.10, a and b). Overall, the west 

side of the estuary has least variation relative to the east side (Figure 4.10a). 

The graphical mean particle size is 28 - 125pm, indicating wide variation 

between the samples. Hence, the Erme samples have least silt and clay (<16pm), 

with a mean of 15% in a range of 9 - 31 %. 
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Figure 4.10: Sediment grain size distribution, Enme Estuary, a) west side and 
b) the east side. 

iiO The Fowey Estuary 

Of the control estuaries, samples taken from the Fowey Estuary and it's 

subsidary creeks Lerryn and Pont (Figure 4.11, a and b) show the highest proportion 

of total fines but none exceed 80%. The mean percentage proportion below 63|jm is 

almost 69%, in a range of 56 - 80%. 

Sample stations StW1, 2, RC4, CHS, G12, G13 and G14 are between 70 

and 80%. Samples from stations LP03, MP9 and MP10 have between 60 and 69% 

(material <63pm). Those sample stations with <60% fine material are CH6 and 

PPH11. 
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Figure 4.11: Sediment grain size distribution, Fowey Estuary, a) west side and 
b) the east side. 

The graphical mean particle size range for Fowey is from 32 to 50pm v^ich 

indicates low variation between the samples. The proportion of material <16pm is 

intermediate between Restronguet Creek and the Avon and Erme estuaries with a 

mean of 24.5% in a narrow range of 20 - 30%. 

iv) The Avon Estuary 

The grain size distribution in sediments from the Avon Estuary is similar to 

that of the Ernie with a 60% mean proportion of <63pm material in a range of 42 -

77%. The highest proportions of fines (<63pm) are found in the sample group A3, A4 
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and A11 (70 - 77%) which are areas of mudfalt within the saltmarsh (Figure AM, a 

and b). 
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Figure 4.12: Sediment grain size distribution, Avon Estuary, a) west side and b) east 
side. 

Samples A2 and A8 have similar values of c.65%. Samples A1, A5, A6, A7 

and A10 (A10 is close to a storm drain) have a range of 57 - 60%. The sample group 

A9 and A12, which were taken from channel bars, have the lowest proportion of 

material with grain size <63pm, with values of 47.5% and 42% respectively (Figure 

4.12, b). The graphic particle size range is 28 - 50pm which is similar to that for the 

Fowey samples, indicating low variation between the samples. The Avon has slightly 

higher proportions of material <16pm relative to the Erme Estuary with a mean of 

21.6% in a range of 17 - 29%. 
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4.4.3 Summary 

In general, the samples with the highest proportion of fine and medium sand 

size material (>63pm) are either in close proximity to the river channel (stations: A9, 

F1, E5, E6, E8, E9, CH6 and PPH11) or the mouth of the estuary (stations: A12, S20 

and BY28) and coarser material from these adjacent environments becomes 

incorporated into the predominantly muddy intertidal sediments. Restronguet Creek, 

however, shows a clear gradient trend with the highest proportion of fines occurring in 

sediments taken from the upper sample stations and least occurring in sediments 

taken from the lower Creek sample stations. The trend shown by the Fowey Estuary is 

the reverse of this, with the lower reaches being dominated by fine material, possibly 

the result of spillage from the china clay port and/or the physical affects brought about 

by the greater depth of water reducing winnowing effects (within wave base fine 

material is moved up stream by the incoming tide). Using the mean grain size 

distribution values, the rank order of the proportion of fine material <63pm with 

respect to the sample locations is: 

Restronguet Creek>Fowey>Avon>Erme and this ordering is the same as for the 

<16pm category. 

It is evident that each of the sample locations are classified as estuarine 

mudflats with the majority of the Restronguet Creek samples forming the upper 

mudflat sub-group (Pejrup, 1988). The other sample locations are classified as lower 

mudflat/mixed mudflat (Pejrup, 1988). Despite the variation shown the majority of the 

samples are dominated by silt sized material. 

4.4.4 Mineralogy 

Mineralogical analysis of the sediment samples taken from Restronguet 

Creek (and St Clements in the Carrick Roads) and the baseline/control estuaries 
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show that, in general, the same minerals appear; e.g., quartz, biotite and muscovite 

mica, detrital clay and lithic clasts of slate (Plates 5 and 6). Of the samples taken the 

material from St Clements has the largest amount of shell debris and detrital clay 

(Plate 5, Figures 6 - 8). The occurrence of heavy mineral grains (e.g., apatite, topaz 

and tourmaline) is rare with respect to the Erme and Avon samples (Plate 6, Figures 1 

- 3), but more common in the Fowey samples as are mica flakes (Plate 6, Figures 4 

and 5). The granite intrusions of St Austell and Bodmin are the source of these heavy 

minerals (Bristow and Scott, 1998; Scott etal., 1998). China clay extraction of the 

kaolinised parts liberates these usually stable minerals (e.g., topaz) v\/hich, once 

removed, are stored in waste piles and mica lagoons. China clay waste has been 

historically discharged into the estuaries and more recently accidentally. The mica 

discharge contains primary and secondary biotite mica, muscovite mica and clay 

minerals, in addition to rarer heavy minerals (Pirrie and Camm, 1999). All samples 

from each of the estuaries and Restronguet Creek show an enrichment (>40%) in 

non-mineral debris in the coarser fractions greater than 500[jm (Figure 4.13). The 

Avon and Erme samples contain the highest proportions of this non-mineral debris, 

approximately 60%. This detrital material (both organic and inorganic) is a mixture of 

shell fragments, diatom frustules, polychaetes, ostracods, unspecified Crustacea, and 

aquatic and terrestrial plant material (Figure 4.13). Estimations of the sediment 

samples <500pm and thin section analysis show that the proportions of each mineral 

varies. Lithic clasts of slate and vein quartz are common in the Fowey, Avon and 

Erme samples (up to 70% in some examples) but are more rare in the samples taken 

from Restronguet Creek (Plate 5). Quartz makes up 20 - 30% of the Restronguet 

Creek samples (with the exception of H23) but is predominant in the Erme and Avon 

samples (>50%). There are examples of quartz grains showing textural variation and 

Figure 4.14 shows an example of strained quartz found in the Avon samples. The 
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Fowey samples (Figure 4.15) are dominated by muscovite mica (>60%) with lesser 

proportions of biotite mica (approximately 15%). 

^^M. 

£'̂ ^?i>%' t-.-i?J^ 

Rgure 4.13: Thin section composite txilour of sediments from Restronguet Creek, 
a) diatom frustule and b) bivalve with calcite crystals (C), background comprises Fe 
aggregated sediment grains (F), musccovite mica (M) and quartz (Q). Scale bar = 
54pm. 

Muscovite and biotite mica (Figure 4.15) also appear in the Restronguet 

Creek (approximately 5%), Emie and Avon samples (8% and 3% in each case). The 

Fowey samples are similar to the Erme and Avon estuaries but include large 

quantities of muscovite mica and detrital clay, with some kaolinite books throughout 

the size tractions (Plate 6, Figure 4). The relatively fresh kaolinite books probably 

originated from the china clay extraction area. 

135 



Figure 4.14: Thin section of strained quartz in sediments from the Avon Estuary. In 
cross polarised light. Scale bar = 110 ĵm. 

Heterogeneous aggregates (floccules) consisting of biogenic matter, quartz 

and defrital clay particles are common in the <63̂ Jm fraction from all sample stations 

but are particularly common in the Restronguet Creek samples (Plate 5, Figures 2 -

5). These iron/clay aggregates comprise a mixture of organic, biogenic (diatoms), 

defrital clay, pyrite and quartz particles. Scanning electron microscope analysis shows 

that the individual particles making up the aggregates vary considerably in size and 

range from 2 to 10O îm (Plate 5, Figures 2 and 5). Sample station H23, is the 

exception to this and has a high proportion (approximately 35%) of Fe-coated quartz 
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mine waste. In plane polarised light (PPL) the high concentration of Fe is evident by 

ttie strong orange - brovm colour of the sediments, particularly with respect to 

Restronguet Creek (Figure 4.16). The Fowey samples show less iron relative to 

Restronguet Creek and the Erme and Avon with negligible amounts. Shell fragments 

increased in abundance dovm each estuary. 

Figure 4.15: Thin section of sediment from the Fowey Estuary. Comprising biotite and 
muscovite mica flakes (B and M) and wood/leaf material (W). Scale bar = IIOMm 

Figure 4.16: Iron coated quartz (arrowed) in sediments from Restronguet Creek. Thin 
section, scale bar = 110pm. 
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Plate 5 

Sediment grain size and mineralogy: Restronguet Creek 

Figure 1. Lower magnification view of sediment from Restronguet Creek, station D1. 

The individual grains are aggregated together to form heterogeneous 

floccules (HF). 

Figure 2. Enlargement of Figure 1 showing in more detail the composition of the 

aggregated grains, which include pennate diatom frustules (D). 

Figure 3. Enlargment of diatom frustule in Figure 2, individual grains of quartz can be 

seen amidst detrital clay and mica flakes. Cassiterite (C) and detrital 

clay/mica flakes (M). 

Figure 4. Quartz grain (Q) to which smaller flakes of mica and detrital clay (DC) 

adhere. 

Figure 5. Enlargement of Figure 2, showing a heterogeneous floccule comprising 

detrital clay (DC), mica flakes (M) and organic debris (0). 

Sediment grain size and mineralogy: St Clements 

Figure 6. Sediment comprising shell debris, coccolith plate (Cp), kaolinite (K), 

mica/detrital clay (M) and heterogeneous floccules (HF). 

Figure 7. High magnification view of a kaolinite book (K). 

Figure 8. Sediment comprising mica (M), detrital clay (DC) and a diatom (D). 
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Plate 6 

Sediment grain size and mineralogy: Controi estuaries 

Figure 1. Sediment sample from the Enme Estuary, station HP4, autumn 1993 

shoNÂ ng aggregated grains of heterogeneous floccules (HF) of detrital clay 

and mica flakes (M), and quartz (Q). 

Figure 2. Sediment sample from the Avon Estuary, station A1, summer 1995, 

showing individual lithic clasts (L), quartz, organic debris (0), shell 

fragments (SF) and aggregated grains of heterogeneous floccules (HF) of 

detrital clay and mica flakes. 

Figure 3. Enlargement of Figure 2. 

Figure 4. Sediment sample from the Fowey Estuary, station StWI, summer 1994, 

comprising individual grains of quartz, lithic clasts, shell fragments and 

mica flakes. In addition, there are large floccules of detrital clay and mica 

flakes (M). 

Figure 5. Enlargement of Figure 4 showing the heterogeneous floccules of detrital 

clay and mica flakes (M). Pennate diatoms (D) and a Reophax moniliformis, 

R, are also present. 
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4.5 Water quality 

i) Metals 

There were large variations in the metal concentrations in water recorded at 

the Devoran monitoring station. The raw data (Devoran monitoring station) for each 

metal have been calculated to find the monthly mean (Figure 4.17). While the Wheal 

Jane mine was inoperative, but before the minor discharges began in the autumn of 

1991, the water was of relatively good quality with low concentrations of all the metals 

analysed (Table 4.3). At the time of the discharge all metal concentrations in the 

Camon River at the point of discharge, increased to levels above that previously 

recorded (Environment Agency). Each of the metals follows a trend with coincidental 

peaks and troughs (Figure 4.17). 

Element 

Al 
Cu 
Pb 
Fe 
Zn 
Cd 

Previously 
Recorded 

no data 
<0.5 ppm 
0.01 ppm 
<5ppm 
<9ppm 
<10ppb 

At time of 
Discharge 
11.5 ppm 

2 ppm 
0.1 ppm 
160 ppm 
130 ppm 
190ppb 

Table 4.3: Monthly means of metals in solution. Recorded at Devoran monitoring 
station before the main discharge and at discharge. 

Throughout the period of water analysis that is included here (1991 -1996) 

the levels of metals have been en^atic with sharp peaks reflecting the variable nature 

of the problem caused by fluctuating rainfall and recharge, particularly in the winter 

months. Cadmium is the exception and has produced a relatively stable profile with 

fewer large peaks. 
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month/year 

month/year 

Figure 4.17: Monthly mean metal concentrations recorded at Devoran monitoring 
station between 1991 and 1996. a) Cd and As concentrations in ppb, and b) Fe, Al, 
Zn and Cu concentrations in ppm. 
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Metal concentrations did not return to the pre-discharge levels for three 

years and this was due, in some part, to the small episodic discharges which have 

occurred since the main discharge and, particularly during the winter. The winter 

levels of most metals rise relative to the summer as during the winter one or more of 

the following may occur: 

• Discharge of untreated mine drainage from Mt. Wellington, County, Wheal Jane 

and Nangiles Adits (Figure 1.8). 

• Direct seepage through the river bed (Section 1.5.1). 

• Stronger river currents scour ochre from bank vegetation and channel gravel. 

• High water flows emanating from the other abandoned mines (Figure 1.7). 

It was thought that dilution and dispersal effects, which would be greater in 

the winter, would reduce the concentration of metals relative to the summer, but the 

converse has occurred, the probable cause being the changing water levels in the 

mine workings (Chapter One). During periods of high rainfall, some of the mine water 

is diverted from Jane adit to the upper Nangiles adit to reduce pressure on the 

primary treatment system (C.Fileman, Environment Agency, pers.comm., 1995). 

Between 1992 -1994 untreated water was discharged each day from Nangiles Adit 

varying from 55 to 600 xlO® litres on each occasion (Camon Update, Environment 

Agency, 1992-1994). 

The values obtained at the 'fixed' station showed tidal incursion had 

effectively been diluting the metal enriched channel water. The dilution factors varied 

for each metal, but in general the concentrations changed from ppm to ppb with the 

exception of Cd and As but which were reduced by one or two orders of magnitude 

(Table 4.4). 
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Metal 
As 
Cd 
Ni 
Fe 
Pb 
Cu 
Zn 

Devoran Station 
115-365ppb 

8 -26ppb 
0.1 -0.2ppm 

4.7 - 35.5ppm 
0.01 - 0.03ppm 
0.55- 1.5ppm 

6 -26ppm 

Fixed Station 
5.5 - 5.7ppb 

0.65-1.39ppb 
0.1 -20.9ppb 
3 -449ppb 

0.22 - 0.88ppb 
13-33ppb 

446-1540ppb 

Table 4.4: Metal concentrations recorded at the monitoring stations at Devoran and 
the "fixed station". Data for the month of January, 1993. All values change from parts 
per million (ppm) to parts per billion (ppb) with the exception of Cd and As. 

ii) Acidity 

The pH levels recorded also indicated poor water quality. In the period 

January 1991 to October 1991, before the small discharges began, the mean pH of 

the water entering the Creek was in a range of 5.8 to 6.5 (Figure 4.18). At the time of 

the main discharge, in January 1992, pH values (river water) ranged between 3.2 and 

3.75. Levels continued to fluctuate between pH 3.5 and 5.5 (river water) from 

February 1992 to June 1994. From the summer of 1994 pH has remained above 5.4. 

As the data for 1995 (April onwards) and 1996 show, pH (mean) has consistently 

remained above 6.0. The rates of rainfall, recharge and general groundwater quality 

emanating from the Wheal Jane and other abandoned mines, account for the 

variability shown between seasons and years, and is not a direct function of the 

amount of liming which has been detemnined to match flow rates from Wheal Jane 

mine only (Catherine Fileman, Environment Agency, pers.comm., 1993). Within the 

area above TC8 and H23 pH values remained below 6.4 from 1992 to 1994 and the 

highest values for this period were recorded at PI30 at pH 6.8 - 7.0. The level of 

acidity has now stabilised and although a gradient is still present, with the lowest 
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values ocurring at D1 and the highest at station PI30, the pH of the water is 

approaching that of the control estuaries which are commonly between pH 7 and 8.5. 

I 1 I I I I I I I I I I I I I I I I I I I I i I I I I I I I I I I i I i I 

C C D T t u ^ ^ C G Q - n S P - Q O i 3 S C C D T 5 9 . Q c S> (3 H 
Q 

1991 
1^^^8&I^^M88l^^^3&1^^^8gl%^i8g 
1992 1993 1994 1995 1996 

month/year 

Figure 4.18: Monthly mean pH data recorded at Devoran monitoring station between 
1991 and 1996. 

The pH of the pore water also shows an increase with time and at stations 

D1 and CI 9 values increased from 3.2 in June 1992 to 6.9 in July 1996. The lower 

Creek stations CY16, TW27, BY28 and PI30 had pH values which varied between 6.8 

and 7.4 for the same period. The other Creek stations; TC6, TC8, TC9, P10, PCI 3 

and H23 varied between 6.4 and 7.1. The pH of the pore water in the control 

estuaries has generally been above 8.0 with the exception of the Fowey Estuary 

which is slightly acidic throughout and varies between 6.7 and 7.5. 

The rise and continued stability of river and pore water pH is an important 

development as under neutral pH sediment bound metals cannot be leached 

(Stubbles ef a/., 1996a). 
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4.6 Organic carbon, nitrogen and the C/N ratio in the sediments 

O Restronguet Creel< 

The carbon values obtained for Restronguet Creek range between 1.37% 

and 3.89%, with between 0.21% and 0.49% nitrogen. The C/N ratio ranged between 

6.4 and 10.3. The range for each parameter was moderately narrow and indicated no 

significant variation on the north side of the Creek between each station, season or 

year. The south side of the Creek did show greater variation. 

For simplicity, the carbon, nitrogen and C/N ratio have been averaged for 

each season. Seasonal mean values of carbon and nitrogen in Restronguet Creek 

varied, therefore, between 1.57% and 3.68%, and 0.27% and 0.42% respectively but 

in general the values were greater than 2.5% for carbon and 0.34% nitrogen (Table 

4.5). 

Location 
R. Creek 

Erme 
Fowey 
Avon 

% Carbon 
2.69 
3.7 

3.46 
2.44 

% Nitrogen 
0.34 
0.42 
0.36 
0.31 

C/N ratio 
7.8 
86 
9.51 
8.03 

Table 4.5: Mean organic carbon, nitrogen and the C/N ratio 

The mean C/N ratio varied between 7.03 and 9.10 (Figure 4.19, a and b) 

but in general values were below 8. Station H23 and to a lesser extent, BY28 showed 

an incremental deaease between each of the seasons with autumn the highest and 

spring the lowest. The data for Restronguet Creek show, therefore, that the available 

nutritional content of the sediments is high. 
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D1 TC6 TC8 TC9 P10 

stations (north side) 

PC13 CY16 

C19 K20 H23 TW27 

stations (soutfi side) 

BY28 PI30 

D autumn 

D summer 

• winter 

@spring 

B 

Figures 4.19: Seasonal variation in the C/N ratio, Restronguet Creek, a) north and, 
b) south side. 

iQ The Erme Estuary 

The variation in carbon and nitrogen in the Erme sediment samples is high, 

with carbon varying between 1.77% and 6.43%, and between 0.22% and 0.79% of 

nitrogen. The C/N ratio varied between 6.40 and 10.77 with the distribution being 

random between stations and seasons (Figure 4.20, a and b). Overall, stations E6, 

E7, CM16 and CM17 had the highest ratios and for the same period the C/N ratio was 

comparable to the mean range for Restronguet Creek. 
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HP2 HP3 HP4 E5 E6 E7 

stations (west side) 

E8 E9 E10 

Q autumn 

Dsummer 

• winter 

@spring 

B autumn 

Dsummer 

•winter 

^spring 

OW11 OW12 OW14 OW15 CM16 CM17 S18 

stations (east side) 

SI 9 S20 

B 

Figures 4.20: Seasonal variation in the C/N, Erme Estuary, a) west side and b) east 
side. 

iiQ The Fowey Estuary 

The Fowey Estuary samples showed high variance between stations, 

particularly in the winter and varied between 1.8% and 7.7% carbon, and 0.18% and 

0.71% nitrogen. The C/N ratio varied between 7.1 and 12.9 (Figure 4.21, a and b) and 

compared to the same period had values that were dissimilar to Restronguet Creek 

with the maximum values being greater in the Fowey Estuary. Stations StWI, RC4 

and CHS showed the least variation between seasons and stations LP03, PM7, MP9 

and G14 showed the most. Overall, the majority of values were below 10, and on the 

west side of the estuary the spring ratio was the lowest, as for Restronguet Creek 

(Section 4.6, i). 
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B autumn 

D summer 

• winter 

0spring 

STW1 STW2 LP03 RC4 CHS CH6 PM7 MP9 MP10 PPH11 

stations (east side) f^ 

1 
i 

G12 G13 

stations (west side) 

G14 

B autumn 
D summer 
• winter 
^ spring 

B 

Figures 4.21: Seasonal variation in the C/N ratio, Fowey Estuary, a) east side and b) 
west side. 

iv) Avon Estuary 

The Avon samples varied between 1.36% and 4.01 % carbon, and, 0.17% 

and 0.7% nitrogen which are the lowest values for the control estuaries. The majority 

of C/N ratios were comparable to Restronguet Creek for the same period and varied 

between 6.03 and 11.96 (Table 4.5). Station A2 showed an incremental decrease 

between the seasons with the autumn being higher than spring (Figure 4.22, a and b) 

and partial incremental seasonal distribution was shown by stations A10, A11 and 

A12 (Figure 4.22, a and b). 
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A1 A2 A3 A4 A6 

stations (west side) 

A7 A8 

S autumn 
D summer 
• winter 
^ spring 

I 
A9 A5 A10 A11 

stations (east side) 

A12 

S autumn 

D summer 

• winter 

U spring 

B 

Figure 4.22: Seasonal variation in the C/N ratio, Avon Estuary, a) west side and b) 
east side. 

In summary, each location had C/N ratios which fall below the value 

proposed by (De Rijk, 1995) of 25 and the lower value of 17 by Ristola ef a/., (1999) 

which are considered to be adequite for most organisms. The C/N ratio is an 

important indicator of available nutrition for the foraminifera and particularly for the 

agglutinating species with a prefen-ed detrital feeding habit. A low C/N value of below 

25 indicates greater organic carbon decomposition and hence adequite diet for the 

foraminifera.This suggests that nutrition is not a factor which would explain the 
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absence of the agglutinated species in Restronguet Creek (Chapter Five, Section 

5.7.2). 

4.7 Sediment geochemical analysis 

4.7.1 Introduction - Sediment and caistal background levels 

The background levels of trace elements in soil and rock vary with region 

(Rose et al., 1979) but the elements Ca, Al and Fe always produce the highest 

concentration range in soils as global means (Rose et al., 1979). The type of soil is an 

important factor as sediments with high concentrations of Fe-oxide also contain 

higher concentrations of most elements relative to Mn-oxide sediments. Both these 

elements have high adsorption capacity for most other elements (Rose et al, 1979). 

The exception to this is Cu which is highest in both types of soil, and also for soils with 

high goethite (amorphous Al-oxide) and humic contents because of the greater 

adsorption affinity shown by the Cu^* cation. In general terms, the order of 

concentration in medium soils are as shown in Table 4.6. 

As with soils, elemental concentrations in crustal rocks vary with rock type. 

Limestones, for example, usually have low abundances of heavy metals and shales 

generally have the highest. The range of crustal concentrations of selected metals in 

sedimentary rocks is shown by Table 4.6. 

Crustal 

Soils -
medium 

Al 
11800 

37000 

Fe 
3800-
47000 
21000 

Zn 
21-100 

36 

Pb 
5-25 

17 

Ni 
2-68 

17 

Cu 
5^2 

15 

As 
1.1-
12 
7.5 

Cd 
0-0.3 

0.1-
0.5 

Table 4.6: Mean range of each element (ppm) in crustal rocks and medium soils. (UK 
mean range from Rose et al., 1979). 
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The order of concentration in crustal rocks is therefore: AI>Fe>Zn> Ni>Cu> 

Pb>As>Cd. This is similar to that found in soils apart from Cu which shows relative 

depletion in soils, and Cd and Al which show enrichment in soils relative to 

sedimentary rocks. Aluminium and Fe show very high concentrations in both soils and 

crustal rocks and this may be due to the enrichment of Al and Fe within the 

lithosphere and their moderate mobility (Rose etal., 1979). Average sedimentary 

crustal concentrations of the true heavy metals show nickel to be the highest at 30 

ppm compared with 19 ppm for Cu and 13 ppm for Pb. 

4.7.2 Sediment geochemical temporal variation - Restronguet Creek 

The autumn data sets show that there has been an erratic rather than a 

progressive decrease in metal concentration each year since 1992 (Appendix 1.1 b,c). 

The data from autumn 1994 onwards show the concentration of the metals Al, Fe and 

Zn are, in general, greater than for the preceding years, 1992 and 1993. The metals 

As and to a lesser extent Cu, Pb and Ni show a more varied temporal distribution and 

occasionally are higher in 1992 and 1993 relative to the other years at certain 

stations; e.g., station P10,1993. Comparison of the metal concentrations from 

samples taken in 1992 and 1996 shows that the metals Fe, Pb, Ni and As have higher 

maximum values in 1996 relative to 1992. This inaease in metal concentrations could 

be the result of a number of processes: 

• The introduction of contaminated particles by the periodic discharges from Wheal 

Jane mine. 

• The continued rise in water pH may result in more metals settling out of solution. 
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• An inaease in polychaete populations, and hence bioturbation, causing mixing of 

historically more contaminated sediment with more recent, less contaminated 

material (Bubb and Lester, 1994; Del Vails etal., 1997). 

• The return of the wading birds whose feeding activities may cause sediment 

mixing. 

• Boat hauling which vertically and horizontally re-distributes sediment at a localised 

level. 

• Re-colonisation of the macrophytes which modify acidity, metal availability and 

toxicity (Crowder, 1991). 

4.7.3 Spatial variation 

/) Restronguet Creek 

For spatial analysis the sediment geochemical data (Appendix 1.1c) have 

been averaged and Figures 4.23, a - c (north side) and 4.24, a - c (south side) show 

the distribution of each element. With the exception of Zn the range for all other 

metals is closely similar for both sides of the Creek. It is evident from these diagrams 

that neither side of the Creek shows a recognisable trend in metal concentration down 

the Creek. Figure 4.24a, however, does show that the element Cu is higher at stations 

CI 9 and K20 relative to PI30 on the south side. The sharp decrease in each metal at 

station H23 (Figure 4.24, a - c) relative to the other sample stations is significant and 

may reflect the different sediment grain size distribution and mineral composition 

there, having less silt sized material and a higher quartz composition (Sections 4.4.2,/ 

and 4.4.5). 

On the north side metals Pb and As show a more erratic distribution (Figure 

4.24a) which may reflect reworking of past air borne impacts (historical) of these 
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metals, particularly Pb, from the smelter that once occupied a site at Penpoll Creek. 

Spillage of As in transport may account for the erratic distribution of As. Restronguet 

Creek was the only route available for the transportation of purified As from Bissoe 

(Chapter One, Section 1.5.1, i) and it has been recorded that numerous vessels were 

grounded and damaged in the Creek during the working period of Bissoe (Simpson, 

per. comm., 1993). 
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Figures 4.23: Line graphs of the distribution of sediment-̂ DOund metals in 
Restronguet Creek (north side), a) As, Ni and Pb, b) Cu, Al and Zn, and, c) Fe. 

The north side of the Creek shows no concentration gradient and station D1 

is occasionally only slightly above that for each element relative to CY16. All the 

metals, but particularly Pb, are markedly higher at station P10 and to a lesser extent 
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at PC13 and CY16 (Figure 4.23, a - c) and this suggests that there is an additional 

source of metals here which reflects proximity to the previously mentioned old lead 

smelter which was demolished in the 1930's (Chapter One, Section 1.5.1). 
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Figure 4.24: Line graphs of the distribution of sediment-bound metals in Restronguet 
Creek (south side), a) As, Ni and Pb, b) Cu, Al and Zn, and, c) Fe. 

//•) The Erme Estuary 

The control estuaries also do not show a gradient in metal concentration 

and, as with Restronguet Creek, the spatial profile is erratic. With respect to the Erme 

(Appendix 1.2, Figures 4.25, a - d and 4.26, a - c), Zn, and to a lesser extent, Al and 

Fe, show the most variation between sample stations by an order of magnitude on the 

west side (Figure 4.25, a - c). On the east side Fe shows the widest range. The aeek 
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station CM16 generally had the highest metal concentrations of Al, Fe, Cu, Ni, Pb and 

Zn. The creek stations CM17 and S18 also have high concentrations of Cu relative to 

the other stations. On the west side, station E6 has the highest concentrations of the 

metals Al, Fe, Cu and Pb (Figure 4.26, a - c). The lowest concentrations of the metals 

Al, Cu, Ni, Zn and Pb are found at the saltmarsh station 0W12 (Figure 4.26, a - c). 
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Figure 4.25: Line graphs of the distribution of sediment-bound metals in the Erme 
Estuary (west side), a) As, Ni and Cu, b) Pb and Zn, c) Al, and, d) Fe. 

157 



E 
Q. a. 
_c 
c o 
2 
0) o c o o 

• « 

E 

OW11 OW12 OW14 OW15 CM16 CM17 
stations (east side) 

S18 S19 

•Al •Fe •Cu •Pb •Ni -As —I—Zn 

S20 

Figure 4.26: Line graphs of the distribution of sediment-bound metals in the Erme 
Estuary (east side), a) As, Ni and Cu, b) Pb and Zn, c) Al and Fe. 

Hi) The Fowey Estuary 

The Fowey Estuary (Appendix 1.3, Figures 4.27, a and b, and, 4.28, a and 

b) shows an order of magnitude variation with respect to the metals Al, Pb and Zn, 

particularly on the east side. The west side of the estuary showed no increase down 

the estuary with respect to Al, Fe, Cu, Zn and Pb, and station G13 has the highest 

concentration of these metals (Figure 4.27, a and b). The concentration of nickel 

remains relatively stable. On the east side of the estuary, station PM7 has the highest 

concentrations of the metals Al, Fe, Cu, Ni, Zn and Pb (Figure 4.27, a and b). Sample 

station G12 consistently provides the lowest concentrations of the metals Al, Fe, Cu 
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and Zn (Figure 4.28, a and b). 
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Figure 4.27: Line graphs of the distribution of sediment-bound metals in the Fowey 
Estuary (west side), a) Ni, Pb, Cu, Zn and Al, and, b) Fe. 
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Figure 4.28: Line graphs of the distribution of sediment-bound metals in the Fowey 
Estuary (west side), a) Ni, Pb, Cu and Zn, and, b) Al and Fe. 
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iv) The Avon Estuary 

The Avon (Appendix 1.4, Figures 4.29, a and b; 4.30, a and b) showed the 

greatest variation between sample stations with respect to Fe and to a lesser extent 

Cu and Zn, particularly on the west side. The Avon sample station A7 had the highest 

concentrations of Al, Cu and Zn (Figure 4.29, a and b). Stations A4 and A1 (with the 

exception of Fe and Pb) had the lowest concentrations of each metal. 

Figure 4.29: Line graphs of the distribution of sediment-bound metals in the Avon 
Estuary (west side), a) Ni, Pb, Cu and Zn, and, b) Al and Fe. 
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Figure 4.30: Line graphs of the distribution of sediment-bound metals in the Avon 
Estuary (east side), a) Ni, Cu Pb and Zn, and, b) Al and Fe. 
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4.7.4 Elemental variation between the sample locations 

The similarity and conversely the dissimilarity between Restronguet Creek 

and each of the control estuaries is graphically shown by the three multi-dimensional 

scaling (MDS) plots (Figures 4.31 - 4.33). Each plot shows a distinct spatial 

separation between the Creek and the respective control estuary data. Spatial 

separation is greatest between Restronguet Creek and the Avon Estuary (Figure 

4.33) and the least between the Fowey and Restronguet Creek (Figure 4.32). In each 

plot the Restronguet Creek points are closely grouped but are not for the control 

estuary points which are more widely dispersed, indicating greater variation between 

the samples (Figures 4.31 - 4.33). It is evident, therefore, that the sediment metal 

concentration distribution observed for Restronguet Creek is distinct to each of the 

control estuaries. 
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Figure 4.31: Multi-dimensional plot of geochemical data, Restronguet Creek and the 
Erme Estuary. 
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The concentrations of metals in each estuary follow a trend which is 

indicative of the metal mined and the mineralisaton present. Restronguet Creek, for 

example, has a metal concentration order of Fe>Zn>AI>Cu>As>Pb>Ni>Cd, with Cu 

and As higher than Pb. The Erme and Avon samples differ in that Pb is, overall, 

higher relative to Cu (Fe>AI>Zn>Pb>Cu>Ni) with As not detected (Cd was detected in 

the Erme samples but not in the Avon samples). The Fowey concentration order is 

Fe>AI>Zn>Cu>Pb>Ni (As and Cd not detected) which differs from Restronguet Creek 

where Zn has a higher concentration than Al. This may reflect greater Zn extraction 

from the mines draining into Restronguet Creek, whereas, the drainage of the Fowey 

River passing through areas dominated by china clay extraction, may account for the 

relatively elevated levels of Al derived from the mineral lattices of the feldspars and 

micas. The latter assumption is supported by the high mica content of the Fowey 

sediments (Section 4.4.5). The detection of As in Restronguet Creek relative to the 

other estuaries may reflect the long term effects of the processing plant at Bissoe 

through which locally and nationally derived As was purified (Chapter One, Section 

1.5.1). The Erme and Avon samples are similar and place Al second in concentration 

but Pb is higher than Cu (as a sample mean). This may reflect the change to silver-

lead mining from Sn (not detected) and Cu (Chapter One, Section 1.5.1, // and iv). The 

high Cu level at the Avon station A7 may reflect a localised source, e.g. Cu based 

boat anti-fouling paints or agricultural dressings. 

The sediment geochemical results show, therefore, that of the locations 

sampled the highest metal concentrations were recorded for samples from 

Restronguet Creek (Appendix 1.1b). Thus the metal concentration order (using 

averaged data from Restronguet Creek) by location is: 

Al, Fe and Ni - Restronguet Creek>Erme> Avon>Fowey. 

Zn - Restronguet Creek>Fowey> Erme> Avon. 
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Cu - Restronguet Creek> Fowey > Avon>Erme. 

Pb - Restronguet Creek> Erme>Fowey > Avon. 

The relative position of the Fowey data with respect to Cu and Zn may 

reflect high inputs of these metals derived from a recent orgin (e.g., boat anti-fouling 

paints). The metals Al, Fe and Ni may have historical sources which are gradually 

being reduced by the daily dredging of the lower estuary and the generation of 

increased depth. The Avon reservoir (Figure 1.20) may have a filtration influence 

which reduces the concentration of metals, in particular Pb, which orginates from the 

old mines situated above the reservoir or are now submerged within it. The Erme 

Estuary appears to retain previously accumulated sediment-bound metals. 

Comparisons between the water quality data obtained at the Devoran 

monitoring station and the concentrations of metals in the sediments show good 

agreement. However, Ni was either not detected in the water or was in very low 

concentrations. Comparison between the concentrations of metals in the sediment 

samples and the background levels (Table 4.6) shows that the Restronguet Creek 

and Fowey data sets exceed the crustal and soil concentrations for the metals Zn, Pb, 

As and Cd, all of which have been mined in these areas. The concentrations of Al, Fe 

and Ni are not exceeded. With respect to the Erme and Avon data sets only the Pb 

and Zn background levels were exceeded and again Pb was economically important 

to these areas. The Restronguet Creek sediments alone exceed both the crustal and 

medium soil cocentrations of Cu which are 20 - 90 times greater with respect to 

average crustal abundances and 30-54 times greater than for medium soils 

reflecting the extent to which this area was influenced by mining. 

The averaged data given here for Restronguet Creek is at variance with that 

of the literature. This is probably due to the different extraction methods applied by 

164 



each author. The averaged values determined by this research (Table 4.7) are the 

lowest with respect to Fe, Cu, Pb, Zn and Ni. The value for Cd is closely similar to that 

of Bryan and Langston (1992) and Luoma and Bryan (1981) who used 1M HCI 

extraction only with respect to that metal. 

Author/s 
Current work 
Williams ef a/., 
1998 
Stubbles ef a/., 
1996a 
Somerfield et al., 
1994a 
Bryan and 
Langston, 1992 
Thome, 1983 

Luoma and Bryan, 
1981 

Method 
1MHCI,AAS 
cone. HNO3, 
<63Mm, ICP-AES 
10%HNO3,AAS 

cone. HNO3IM 
HCI, AAS, 
cone. HNO3 
<100Mm, AAS 
2MHCI 
cone. HNO3, AAS 
cone. HNO3, AAS 
* HCI, AAS 

Fe 
7565 

61093 

6312 

62780 

49071 

35314 
43344 

-

Cu 
602 
2303 

1271 

2412 

2398 

647 
1169 
3052 

Pb 
82 
179 

109 

199 

341 

208 
213 
323 

As 
211 

-

117 

-

1740 

-

-

Zn 
1295 
3312 

2975 

4874 

2821 

874 
1052 
3542 

Cd 
1.5 
-

1.9 

2.7 

1.53 

-

0.83* 

Ni 
7 
-

18 

29.9 

58 

-

-

Table 4.7: Restronguet Creek, sediment geochemical data comparison between the 
literature and the current research. 

4.7.5 Association between sediment metal concentrations and other variables 

/) Restronguet Creek 

It is evident from the sediment geochemistry that the Restronguet Creek 

samples had high concentrations of Fe relative to the other locations although the 

amount of Fe introduced into the Creek has been shown to vary considerbly (Figure 

4.17). Johnson (1986) described the effects of Fe-oxyhydroxide scavenging as a 

factor which alters the concentration of other metals under the additional influence of 

varying pH (Sahu and Bhosale, 1991; Bhosale and Sahu, 1991). 

The statistical relationship (Table 4.7) between Fe and other metals in the 

Restronguet Creek samples shows strong positive correlation (>0.70), for example, 

with the metals Al, As, Zn, Ni and Cu but Fe is only moderately correlated with Pb 

(0.55). 
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variable 
Al 
Fe 
Zn 
Cu 
Pb 
As 
Ni 
%a 

"C 
fines 

Fe 
0.81 

Zn 
0.95 
0.82 

Cu 
0.94 
0.79 
0.99 

Pb 
0.62 
0.55 
0.64 
0.58 

As 
0.75 
0.72 
0.61 
0.53 
0.62 

Ni 
0.88 
0.76 
0.92 
0.90 
0.78 
0.61 

% 0 

-0.1 
0.36 
0.03 
-0.03 
0.29 
0.46 
-0.16 

°C 
-0.47 
-0.21 
-0.4 
-0.3 
0.15 
-0.15 
0.01 
0.2 

fines 
0.28 

-0.007 
0.26 
0.26 
0.11 
0.07 
0.11 
-0.41 
-0.23 

0C% 
-0.48 
0.04 
-0.52 
-0.64 
-0.01 
0.74 
0.17 
0.67 

0.073 
-0.23 

Table 4.8: Statistical relationship between sediment metal concentrations in 
Restronguet Creek and salinity, temperature, proportion of fine material and organic 
carbon content. Strong correlations are shown in bold (<0.7) and significant 
correlations are in italics (>0.55 - <0.69). 

The correlation coefficient matrix (Table 4.8) for Restronguet Creek also 

shows Al to be strongly correlated with all other metals except Pb which is significant. 

Organic carbon (0.74) is strongly correlated to As, but is only significantly correlated 

to Cu, Zn and salinity. Otherwise there is no significant relationship between the other 

metals and variables. There is a strong negative relationship (-0.71) between the 

grain size range >16|jm - <63pm and the C/N ratio (not shown by Table 4.8), and 

between the >63|jm size fraction and the C/N ratio there is a less than significant 

positive relationship (0.5). This suggests that nutritional capacity is greatest in 

sediments comprising higher proportions of material in the range of >16jjm - <63pm. 

/i) The Erme Estuary 

The Erme samples (Table 4.9) do not show an association between Fe and 

any other metal, but Al is strongly correlated with Cu and Pb. Copper is strongly 

correlated to Pb but Ni only shows a significant relationship to Al, Fe, Cu and Pb; 
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variable 
Al 
Fe 
Zn 
Cu 
Pb 
Ni 
% 0 

"C 
fines 

Fe 
0.57 

Zn 
0.58 
0.3 

Cu 
0.88 
0.59 
0.54 

Pb 
0.96 
0.57 
0.61 
0.85 

NI 
0.57 
0.56 
0.08 
0.69 
0.57 

% 0 

-0.98 
0.11 
-0.36 
0.17 
-0.15 
0.35 

"C 
0.04 
-0.52 
-0.25 
-0.19 
-0.04 
0.07 
0.5 

fines 
0.13 
0.33 
0.1 
0.2 

0.17 
-0.16 
0.15 
-0.05 

OC% 
-0.16 

-0.0002 
0.1 

-0.12 
-0.18 
-0.24 
-0.15 
-0.23 
0.26 

Table 4.9: Statistical relationship between sediment metal concentrations, salinity, 
temperature, proportion of fine material and ogranic carbon content in the Erme 
Estuary. Strong correlations are shown in bold (>0.7) and significant correlations are 
in italics (>0.55 - <0.69). 

Salinity has a strong, negative correlation to Al (-0.98) but all other variables 

are insignificant. This relationship between Al and salinity probably reflects the lower 

Al concentrations in the lower estuary where salinity is highest (stations S20 and 

E10). The relationship between salinity and temperature is almost positively 

significant. There is no statistical relationship shown between grain size and the C/N 

ratio for any of the control estuaries. 

iii) The Fowey Estuary 

There is a similar positive correlation shown by the Fowey samples (Table 

4.10) relative to Restronguet Creek, with Zn, Cu, Al, Ni and Pb strongly correlated to 

Fe. Nickel is strongly correlated to Al, Cu and Pb, and Cu is strongly correlated to Zn 

and Pb. Nickel is the only metal to have a strong correlation to the proportion of fines. 

Salinity and temperature are strongly correlated to each other. 
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variable 
Al 
Fe 
Zn 
Cu 
Pb 
Ni 
% 0 

°C 
fines 

Fe 
0.93 

Zn 
0.65 
0.82 

Cu 
0.69 
0.76 
0.98 

Pb 
0.62 
0.78 
0.68 
0.75 

Ni 
0.77 
0.75 
0.66 
0.75 
0.78 

% 0 

-0.03 
-0.2 
-0.1 

-0.03 
0.29 
0.12 

"C 
0.02 
-0.14 
-0.23 
-0.14 
0.29 

0.0006 
0.9 

fines 
0.38 
0.55 
0.2 
0.27 
0.47 
0.75 
-0.25 
-0.11 

0C% 
0.5 
0.38 
0.2 
0.15 
0.35 
0.12 
0.1 
0.35 
0.57 

Table 4.10: Statistical relationship between sediment metal concentrations and 
salinity, temperature, proportion of fine material and ogranic carbon content in the 
Fowey Estuary. Strong correlations are shown in bold (>0.7) and significant 
correlations are in italics (>0.55 - <0.69). 

iv) The Avon Estuary 

The Avon samples (Table 4.11) show strong positive correlation between 

Fe and Al, and Cu and Zn, which are approaching unity (0.995). All other metals are 

weakly con^elated with Fe. Organic carbon and fines are each significantly correlated 

to Al. There is only a significant correlation shown between salinity and Al. This is 

probably due to the erratic distribution of this element. 

variable 
Al 
Fe 
Zn 
Cu 
Pb 
Ni 
% 0 

°C 
fines 

Fe 
0.84 

Zn 
0.31 
0.4 

Cu 
0.25 
0.37 
0.995 

Pb 
0.52 
0.61 
0.41 
0.41 

Ni 
0.67 
0.64 
0.12 
0.05 
0.25 

% 0 

0.63 
0.4 
0.42 
0.42 
0.24 
0.12 

"C 
0.49 
0.35 
0.22 
0.18 
0.13 
0.27 
0.42 

fines 
-0.48 
-0.59 
-0.36 
-0.32 
-0.19 
-0.32 
-0.28 
-0.5 

0C% 
0.66 
0.38 
0.15 
0.1 
0.27 
0.33 
-0.2 
0.32 
-0.04 

Table 4.11: Statistical relationship between sediment metal concentrations and 
salinity, temperature, proportion of fine material and ogranic carbon content in the 
Avon Estuary. Strong correlations are shown in bold (>0.7) and significant 
correlations are in italics (>0.55 - <0.69). 
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4.7.6 Summary 

The strong positive correlation of certain metals with Fe indicates that the 

scavenging activity of Fe as a hydrated oxide may have taken place and a common 

fate is suggested (Sahu and Bhosale, 1991; Bhosale and Sahu, 1991). Metals which 

are preferrentially scavenged by Fe to form hydrated complexes are considered to be 

highly stable and less available to an organism but this is pH dependent (Johnson, 

1986; Milam and Farris, 1998). This has important implications with respect to the 

acidified environment of Restronguet Creek as the bioavailability of metals is not 

always correlated with sediment metal concentrations under neutral pH conditions 

(Boon etal., 1998; Leppanen etal., 1998). The lack of an association between the 

proportion of fine material (<16|jm) and metal concentration with respect to 

Restronguet Creek may be due to over-saturation in metal loading to available 

binding sites (Luoma and Bryan, 1981), or that the fine material is overwhelmingly 

anthropogenicaly derived from the mill at Wheal Jane. The relationship between fines 

and Fe and Ni in the Fowey samples is significant, indicating that metal absorption to 

sediment surfaces may be a minor influence. In general, the control estuarine data 

are more dissimilar in that Al is strongly correlated with Cu in the Erme and Fowey but 

not in the Avon set, although the latter showed a weak correlation between Al and Zn. 
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Chapter Five 

Foraminiferal Response to Changes in their Environment: 

Results 

5.1 Introduction 

As with most organisms foraminifera are known to respond to changes in 

their environment and their responses (standing crop density, diversity, species 

dominance and distribution and test deformity) may be used to evaluate both natural 

and anthropogenic influences. Buzas (1969) and Ellison and Peck (1983), for 

example, used standing crop density or the absence of living foraminfera as indicators 

of anthropogenic deleterious effects. Similarly, measures of diversity have been used 

as indicators of environmental stability by the use of various indices which have been 

applied to both micro-, meio- and macro-fauna (Bates and Spencer, 1979; 

Washington, 1982; Sommerfield etal., 1994a,b; Austin etal., 1994; Stubbles etal., 

1996a, b). Species distribution and, specifically, the absence of certain key species 

either in particular zones or throughout a location (in anticipation that they should be 

there) has been used as an indication of environmental perturbation (Greiner, 1969; 

Schafer and Cole, 1974; Schafer, 1982; Ellison etal., 1986; Alve and Bemhard, 

1995). In contrast, changes in species dominance may also be an indicator of 

modifying influence (Murray, 1979a; Schafer ef a/., 1995). The proportion of tests 

showing deformity can provide an important numerical division between effects 

caused by naturally occurring variables, for example, changes in temperature (Chang 

and Kaesler, 1979; Stouff ef a/., 1999) and the introduction of pollutants (Sharifi etal., 

1991; Alve, 1995a). Acid etching of tests has been shown to be an indicator of acid 

mine drainage and reducing environments (Alve and Murray, 1995b; DeRijk, 1995; 
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stubbles et al., 1996a) with the weakening of the tests leading to enhanced loss of 

test material (Stubbles etal., 1996b). 

This chapter summarises the results of the foraminiferal analysis in the 

heavily polluted Restronguet Creek and the relatively unpolluted estuaries of the 

Fowey, Erme and Avon using these various responses as indications of deleterious 

effects. 

5.2 Foraminiferal standing crops 

5.2.1 Foraminiferal non-colonisation 

/) Restronguet Creek 

During the initial period of sampling in the autumn of 1992 the upper Creek 

stations D1, CI 9 and K20 were not colonised by foraminifera (Table 5.1). Station H23 

has occasionally been barren between winter 1993 and spring 1994, but since the 

summer of 1994 foraminifera have consistently colonised this station. The period of 

non-colonisation at stations D1 and C19 was between autumn 1992 and winter 1993, 

and was followed by a paucity of stained individuals (Appendix 2.1 and Table 5.1). 

SEASON AND YEA 
station 

D1 
019 
K20 
H23 

BY28 

A92 
-

-

-

+ 
-

W93 
-

-

-

-

+ 

SP93 
+ 
+ 
-

+ 
+ 

893 
+ 
+ 
-

+ 
+ 

R OF SAMPLIN 
A93 
+ 
+ 
-

+ 
+ 

W94 
-

-

-

-

+ 

G 
SP94 

-

-

-

-

+ 

894 
+ 
+ 
-

+ 
+ 

A94 
+ 
+ 
+ 
+ 
+ 

Table 5.1: Periods of colonisation (+) and non-colonisation (-) during 1992 -1994 in 
Restronguet Creek. A = autumn, W = winter, Sp = spring and S = summer. 

At stations D1 and C19 a second period of non-colonisation occurred during 

winter and spring 1994. Station K20 has had a longer period of absence relative to 
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the other sample stations and was barren from the onset of sampling (autumn 1992) 

until autumn 1994 when a small standing crop of 52 stained individuals was recorded. 

Sample station BY28 was barren on only one occasion (Table 5.1). 

//) Erme Estuary 

Station F1 (Chapter One, Figure 1.15) has never been colonised throughout 

the period of sampling and this may reflect both the lack of a suitable substrate 

(Stubbles, 1995) and low salinity (Chapter Four, Section 4.3.3). The other Erme 

sample stations showing occasional absence (Table 5.2) of foraminifera were HP2 

(winter and summer of 1993), HP3 (spring and summer of 1993) and HP4 (summer 

1993). For the other seasons these stations showed an impoverished standing crop 

relative to the other estuary stations (Appendix 2.2). 

SEASON AND YEAR OF SAMPLING 
stations 

HP2 
HP3 
HP4 

W93 
-

+ 
+ 

SP93 
+ 
-

+ 

S93 
-

-

-

A93 
+ 
+ 
+ 

Table 5.2: Periods of colonisation (+) and non-colonisation (-) in the Erme Estuary. 
Station F1 is not included as it was continually barren. A = autumn, W = winter, 
Sp = spring and S = summer. 

5.2.2 Standing crops - spatial distribution 

#) Restronguet Creek 

Due to the complexity of the standing crop data (the raw data are given in 

Appendix 2.1) the seasonal data sets for each station have been combined and 

averaged to produce annual means (AM). This smoothing of the variation has made 

the trends more easily identifiable. 
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Figure 5.1: Annual mean standing crop density, Restronguet Creek, a) 1993 north 
side, b) 1993 south side, c) 1994 north side, d) 1994 south side, e) 1995 north side, 
f) 1995 south side, g) 1996 north side and h) 1996 south side. CSM denotes 
combined sample mean. 
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With respect to Restronguet Creek there are four AM standing crop groups 

(1993 -1996). In addition, the combined sample mean (CSM) is also used to show 

those sample stations which are either below or above the CSM and was calculated 

from the AM given above. Variation with season is given in Section 5.2.3. 

Generally, the upper sample stations in Restronguet Creek (D1, CI 9 and 

K20) were characterised by smaller standing crop densities ranging between a few 

(<10) and less than 2000 relative to the stations in the mid- to lower Creek which 

show a difference of between one and two orders of magnitude (Figure 5.1, a - h). 

Furthermore, the upper Creek stations have consistently had standing crop densities 

which fall below the mean of the combined samples (CSM). On only a few occasions 

is a linear trend shown whereby there is an incremental increase in the standing crop 

density with distance down the Creek (Figure 5.1, b, d and f). The south side of the 

Creek provides only two examples of a gradual, smooth trend (1995 and to a lesser 

extent 1993, Figure 5.1, f and b) with all other examples being unpredictable. 

Comparison of the mid - Creek stations, TC6, TC8, TC9 and P10, with the respective 

lower sample point, station CY16, show only a weak linear trend and the profile is 

erratic with respect to Figure 5.1a. Stations P10 and PCI 3 (Figure 5.1, a, c, e and g) 

generally had lower standing crops relative to the other stations and, with respect to 

PCI 3, this may reflect the high position at the head of Penpoll Creek. Data obtained 

in the last year of analysis show that the mid - Creek stations had densities similar to 

or larger than those standing crops at the lower Creek stations BY28, PI30 and CY16 

(Figure 5.1, g and h). Marked differences in standing crop densities between the north 

and south sides of the Creek are evident. The standing crop densities on the north 

side were usually less than those recorded for the south side with the exception of the 

1995 data when the maximum standing crop on the north side was >3000 greater 
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than that of the south side (Figure 5.1, e and f). This anomaly was particularly evident 

with respect to stations TC6 - CY16 relative to TW27 - PI30 and may be due the very 

dry summer of 1995 which, for that year, saw a reduced discharge from Wheal Jane, 

in addition to reduced water flow through the other disused mines (Chapter One, 

Section 1.5.1, /, Figure 1.7). Prior to 1995 the dilution effects of the River Kennell on 

the south side, which is relatively uncontaminated, may have reduced any impact 

from the Camon River Valley mines and, hence, leading to higher standing crop 

densities during this period at stations TW27 - PI30. In addition, there is the distinct 

difference in commercial and residential activity (both present and historical) between 

the north and south sides of the Creek, with greater activity associated with the north 

side of the Creek. 

//) The Erme Estuary 

For each of the control estuaries, which were sampled for one year each, 

there is one AM group. The Erme Estuary standing crop data did not show a smooth, 

gradual trend and the profile is unpredictable (Figure 5.2, a and b). Stations HP2, 

HP3 and HP4 produced the smallest standing crops (Appendix 2.2) and are 

consistently below the combined sample mean (CSM). Stations E5, E6, E7, SI 8 and 

0W14 (Figure 5.2, a and b) show moderately high standing crop densities ranging 

between 1000 and 2300. The lower estuary station E10, on the west side, was 

unusual with an annual mean (AM) standing crop density which was less than the 

upper stations HP3 and HP4. Sample station E8 within the saltmarsh at Efford was 

the most productive area with the highest annual mean standing aop, and the other 

saltmarsh stations E7 and 0W11 were second and third in standing crop density 

respectively. 
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Figure 5.2: Annual mean standing crop densities, Erme Estuary, 1993. a) west side 
and b) east side. CSM denotes combined sample mean. 

iii) The Fowey Estuary 

All stations on the Fowey Estuary (Appendix 2.3) were colonised (spring 1994 

to winter 1995) but the subsidiary creek stations LP03 and RC4 had the lowest 

standing crop densities (annual means) of 55 and 272 respectively (Figure 5.3a) and 

fall below the combined sample mean. The main channel stations StWI and StW2 

generally had lower standing crops relative to the mid - low estuary stations but were 

similar to stations PM7 and MP9 (Figure 5.3a). Despite averaging to smooth seasonal 

variation, a distinct trend on the east side, whereby the standing crop density 

increased incrementally from the upper to the lower estuarine samples (Figure 5.3a) 

is not a feature and the profile is unpredictable. The sharp decline at creek stations 

LP03, RC4 and, to a lesser extent at, PM7 and PPH11 may reflect the variable 

environmental conditions of lower salinity and temperature relative to the main 
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channel stations. The west side of the estuary shows a smooth trend but this is 

probably an artifact of the limited sampling points (Figure 5.3b). 
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Figure 5.3: Annual mean standing aop densities, Fowey Estuary, a) east side and 
b) west side. CSM denotes combined sample mean. 

iv) The Avon Estuary 

All the Avon sample stations (Figure 5.4, a and b) were colonised by 

foraminifera (summer 1995 to spring 1996) but the upper estuary samples A1 (937), 

A2 (753), A9 (1001) and the mid - estuary station A5 (1132) produced only small 

standing crops relative to stations A3, A4, A6, A7, A8, A10, and A11 further down the 

estuary (Appendix 2.4) and are consistently below the CSM shown on Figure 5.4, a 

and b. The Avon samples show an irregular standing crop distribution, particularly on 

the west side and a linear trend is only shown between stations A5, A10 and A11 on 

the east side (Figure 5.4b). The saltmarsh station A11 (8669) and, to a lesser extent, 

A3 and A7 (Figure 5.4a) had the highest standing crops with the lower estuary 

stations A8 and A12 having the lowest. This is similar to that found for the Erme 
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Estuary. 
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Figure 5.4: Annual mean standing crop densities, Avon Estuary, a) west side and 
b) east side. CSM denotes combined sample mean. 

5.2.3 Standing crops - Seasonal variation 

/) Resfronguet Creel< 

Analysis of the seasonal data (non-averaged) shows that for the period 

autumn 1992 to summer 1993 (inclusive) the highest standing crop densities were 

obtained in the spring and lowest in the autumn and winter (Figures 5.5, a - g, and, 

5.6, a - f). The exception to this is shown by stations TC6 and TC8 (Figure 5.5, b and 

c) in which the summer abundances were greater. Since summer 1994 the summer 

samples had, generally, provided the highest standing crop densities. All stations in 

spring 1994 had very low standing aops relative to 1993 and subsequent years. At 

this time (spring 1994) the upper Creek stations, D1, CI 9, H23 and K20 were barren. 
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stations BY28 and PI30 (Figure 5.6, e and f) clearly show the greatest 

difference between seasonal standing crop densities, whereas stations D1, TC6, 

PC13, CY16 C19 and H23 show strong similarity between the seasons with few 

exceptions before spring 1994 (Figures 5.5 and 5.6). Generally, the summer 

abundances were higher than for winter on the north side of the Creek. The seasonal 

data from the south side are less clear but in only two cases (H23 and K20) was the 

summer standing crop density less than in the autumn (Figure 5.6, c and b). The 

upper Creek stations C19 and K20 have summer abundances greater than the 

autumn with the spring and winter having very similarly low values (Figure 5.6, a and 

b). The summer standing crop densities at station TW27 (Figure 5.6d) were usually 

greater with the exception of winter 1996 which was almost equal to summer 1996. 

//) The Erme Estuary 

The winter, summer and autumn Erme samples (1993) had low standing 

crops relative to the spring which had the highest (Figure 5.7, a and b ). The 

exceptions to this were stations E8, E10, 0W12 and SI 9 at which the summer 

densities were highest. The winter and autumn samples from stations E9, 0W12, 

SI 8, SI 9, and S20 had similar standing crop densities and at E7 the summer, autumn 

and winter were also closely similar to each other. At only four other stations is there a 

similarity between seasons; E10 (summer and spring), CM16 and CM17 (spring and 

winter) and at station E6 (summer - winter). Overall, the lower estuary stations E10 

and S20 had standing crop densities, during each season, which were less than 

those found at the mid - estuary stations (Figure 5.7 a and b). The coarser sediment 

present, particularly at station S20 (Chapter Four, Figure 4.10b) may account for this 

as sandier substrates indicate higher velocities which are preferentially avoided by 
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the foraminifera (Murray, 1991). In addition, muddier sediments are associated with 

higher organic loadings and nutrition (Lidz, 1965; Buzas etal., 1989; Warwick etal., 

1995). 
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Figure 5.7: Seasonal standing crops, Erme Estuary, a) west side and b) east side. 

///) The Fowey Estuaiy 

Analysis of the Fowey data suggests that this estuary is strongly influenced 

by seasonal variation, with the seasons showing little regularity, whereby the same 

trend at each station is shown (Figure 5.8, a and b). The winter produced the lowest 

standing crop densities at stations LP03, CH5, CH6, MP 10 and at G14 but at stations 

StW1 and PM7 the winter standing crop densities were highest (Figure 5.8, a and b). 

The mid - estuary station CH6 and the lower estuary stations MP10 and G14 show 

the clearest seasonal separation and in the same order as follows: 

spring>summer>autumn>winter 
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Similarity between seasons for each sample station is unusual and is 

confined to the upper estuary and creek stations StW2 (winter and spring), LP03 

(winter and spring/autumn), PPH11 (autumn and winter) and the mid- and low estuary 

stations CHS (spring and summer) and MP9 (winter and autumn). 
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Figure 5.8: Seasonal standing crop, Fowey Estuary, a) east side and b) west side. 

iv) The Avon Estuary 

Overall the summer produced the highest standing crop densities (except at 

stations A4 and A7) on the west side of the estuary (Figure 5.9a). Summer densities 

were high on the east side at station A11 and apart from station A9 (lowest densities 

in the summer) lowest densities were recorded in the spring with the highest densities 

in the autumn and winter (Figure 5.9b). Sample variation between the seasons is very 

high and only the upper estuary and creek stations show a similarity between the 

seasons A1 (winter and autumn), A2 and A3 (spring and autumn) and at station A5 

(summer and autumn). This may be due to the extreme weather conditions 
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prevailing during this period of sampling. The summer of 1995 was a drought year 

and winter 1996 was particularly cold, the effects of which may have delayed the 

spring standing crop bloom in 1996 (Chapter Four, Section 4.2.4). 
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Figure 5.9: Seasonal standing crop, Avon Estuary, a) west side and b) east side. 

5.2.4 Standing crops - Annual variation in Restronguet Creek 

Annual changes in colonisation and increased standing crop densities have 

been recorded at each station in Restronguet Creek (Figure 5.5, a - g and Figure 5.6, 

a - f). The most notable changes have occurred at D1, C19 and K20. in between the 

initial barren periods the standing crops recorded at station D1 remained below 100 

(Figure 5.5a) and, following the second barren period, standing crops increased only 

intermittently and remained highly variable with the 1996 winter and spring densities 

only marginally greater than for 1993. Station CI 9 (Figure 5.6a) produced a standing 
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CTop density of 245, 18 and 16 between the barren periods but has produced greater 

densities with a more stable trend compared with D1. Station K20 (Figure 5.6b) has 

shown a more erratic standing crop due mainly to intermittent colonisation but in most 

cases the 1996 abundances are substantially greater than the preceding year. With 

the exception of stations Diand TC9 (summer only) a strong linear relationship 

between an inaease in standing crop density per station with time is not evident. For 

the other stations, the initial standing crops were in the low hundreds. The exception 

to this is station TW27 in the autumn, which had a standing crop density of 1280 in 

1992 and in 1996 increased to 3056. Station PI30, shows an overall increase 

between the autumns of 1992 and 1996. All the other stations have, given variation 

with season, risen above 1000. The greatest increase is shown by the summer 

seasonal sets, the values for 1995 being particularly high at stations PI30 (10048) 

and CY16 (22976). This was coincidental with an exceptionally prolonged hot 

summer. Station PI30 has remained, however, relatively stable at <4000 (with the 

exception of spring 1993 and summer 1995; Figure 5.5m). By disregarding the major 

peak of summer 1995, it is evident that in general the standing crop densities in 1996 

were higher than those recorded for 1992/93 (comparing season with season), but 

densities were less in 1996 relative to the preceding year for most sample stations. 

5.2.5 Relationship between standing crop and other variables 

/) Restronguet Creek 

Correlation coefficient analysis carried out between standing crop and 

corresponding salinity data shows there to be a positive relationship between these 

two variables (Tables at the end of Chapter Five). The summer and spring correlation 

coefficients are, in all cases significant and range between 0.60 and 0.84 in the 

summer and between 0.59 and 0.81 in the spring. The relationship is less strong with 
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respect to the autumn and winter and probably reflects non-colonisation, at certain 

stations, during these seasons in 1992, 1993 and 1994. Overall, therefore, 

foraminiferal abundances appear to increase with increasing salinity, particularly in 

the spring and summer (Table 5.3). The seasonal correlation values have 

occasionally varied year by year, reflecting changes in standing crop density, but not 

salinity which did not alter markedly between years. This was more pronounced in the 

autumn which had two occurrences of below significant levels (1994 and 1996). 

In general, significant relationships between standing crops and temperature 

were not consistent, particularly for spring and autumn (Table 5.3). The strongest 

anomalies were detected during the winter but most particularly for the summer which 

were all significant. 

The correlation coefficients between standing crop densities and percentage 

carbon (Table 5.3) are generally insignificant (<0.39) with the exception of autumn 

and summer 1996 (-0.64 and 0.62 respectively). The same applies to the C/N ratio 

and all show a negative and insignificant (<-0.3) correlation. The random distribution 

of negative and positive con-elation coefficients precludes a predicable trend which 

suggests that these two parameters are unlikely to influence foraminiferal standing 

crops. Any significant and strong relationships appear to be coincidental. 

There are no significant con^elation coefficients shown between the three 

sediment grain size categories and standing aop densities (Table 5.4). Of the three 

categories, the 16|jm category is the only one to show a negative relationship with 

standing crop (-0.3). 

Between the years 1992 and 1994 there are no significant correlations shown 

between the metals and standing crops (Tables 5.5, a - e). In 1995, however, Al, Cu 

and Zn show a negatively significant relationship with standing crop. The metals are 

negatively correlated and show the least variation in 1996. With the exception of 
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1993, Al and Ni are negatively correlated with standing crop. The correlation 

coefficients show little numerical consistency and this would suggest that sediment-

bound metals have a low level of association with the standing crop densities. 

//) The Erme Estuary 

The Erme standing crop densities do not appear to be strongly influenced by 

salinity, temperature, percentage carbon, the C/N ratio and metals. For each of these 

variables the correlation coefficients are insignificant for every season (Table 5.6). 

The autumn salinity, temperature and C/N values are particularly low and are 

approaching neutral. Each of the sediment grain size categories show an insignificant 

relationship with standing crop. The correlation coefficients between metals and 

standing crop also show an insignificant relationship (Table 5.7). With the exception 

of Ni, each metal is positively correlated. It is evident, therefore, that standing crop 

densities vary independantly of these parameters and are controlled by other factors; 

e.g., patchy distribution (Lynts, 1966; Murray, 1991). 

Hi) The Fowey Estuary 

The correlation coefficient analysis shows the relationship between standing 

CTop and salinity (Table 5.8) is significant with respect to the spring (0.57) but less so 

for summer, and weak for the autumn and particularly the winter (0.35 and 0.14 

respectively). Standing crop densities, therefore, appear to be only moderately 

influenced by salinity in the summer and spring. 

The Fowey data demonstrate a strong correlation with respect to temperature 

and the spring and summer standing crops (0.83 and 0.87 respectively). The winter of 

1995 shows a near neutral, negative score of -0.1 (Table 5.8). 
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Coefficient analysis shows that percentage carbon and the C/N ratio are not 

significantly correlated with the standing crop data (Table 5.8). With respect to the 

sediment grain size categories (Table 5.8) there are also no significant correlations, 

the highest being for the 16pm category (-0.47). 

Moderately significant, negative correlations are shown between standing 

CTops and the metals Cu and Zn of -0.5 and -0.55 respectively (Table 5.9). All other 

metals are also negative but are insignificant, with Pb approaching neutral. 

iv) The Avon Estuary 

It is apparent that there is little significant association shown between salinity, 

temperature, percentage carbon and the C/N ratio with the standing crop densities 

(Table 5.10). With the exception of winter salinity (0.53) and the spring C/N ratio (0.5), 

the correlation coefficients are all less than 0.44 and hence, insignificant. 

The correlation coefficient analysis (Table 5.10). shows only the sediment 

grain size category >16 - <63pm to have a strong, positive relationship with standing 

crop densities (0.73). The metals Cu and Zn (0.65 and 0.61) are positively and 

significantly correlated with standing crop (Table 5.11) which is dissimilar to that 

shown by the Fowey data. Nickel shows the only negative relationship, which is 

similar to the Erme Estuary. 

5.3 Diversity 

5.3.1 Introduction 

The two most common measures of diversity which are used in 

micropalaeontological studies are the Fisher Alpha Index (Fisher et al., 1943) and the 

Shannon-Weiner Information Function, H(S) where H is the information theory and S 

is the number of species (Washington, 1982). High or low, (in relative terms) diversity 
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can be a measure of the stress levels in an environment and species living on the 

edge of their tolerance limits with respect to abiotic and biotic variables will form low 

diversity assemblages (Alve and Murray, 1995a). 

5.3.2 Species diversity 

/) Restronguet Creek 

In Restronguet Creek the three calcareous species Haynesina gemianica, 

Elphidium williamsoni and Ammonia beccarii are present but the agglutinating species 

Miliammina fusca, Jadammina macrescens and Trocliammina inflata, are absent. 

These six euryhaline species form typical assemblages and are commonly found in 

estuaries and saltmarshes (Murray, 1991; Stubbles, 1995; Hayward etal., 1996). The 

Fisher Alpha Indices for all sample locations have scores below 0.7. Restronguet 

Creek shows a trend whereby the lower values of H(S) below 0.75 are commonly 

found in the upper Creek areas, for example, stations D1, CI 9 and K20. At these 

stations dominance by a particular species has been more pronounced and possibly 

reflects restricted environmental conditions which may favour one species over others 

(Alve and Murray, 1995a). The very low values of 0.1 which occur in all the estuaries, 

correspond to single species proportions >90% with the remainder of species 

accounting for <10% (Section 5.4.2). Zero scores correspond to monospecific 

assemblages and also occur in all the estuaries. Higher values < 1.09 (e.g., CY16 

autumn 1993) correspond to a more even distribution between two species having 

similar values (in this case 45% each) and which has reduced the influence of a 

single minor species. In general, diversity indices for Restronguet Creek have 

increased since 1992, the values for the summer of 1996 all being above 0.7 (initial 

values 0 to 0.15), and most above 1.0. Diversity remains unchanged but the rise in 

species equitability has been produced by the increased abundance of A. beccarii 
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which was a minor species between 1992 and 1994 (Section 5.4.2). 

//•) The Erme Estuary 

The six species Miliammina fusca, Jadammina macrescens, Tmchammina 

infiata, l-laynesina germanica, Elphidium williamsoni and Ammonia beccarii (Chapter 

Three, Plates 1 -4) were present in samples taken from the control estuaries but the 

Fisher Alpha Index remains less than 1.0. These six species were not found 

colonising all sample areas in the control estuaries as a complete assemblage, but 

formed discrete zones (Section 5.4.2, //). This species zonation can be defined by 

single species predominance, whereby one species is more abundant than any other 

and this accounts for the lower H(S) values. The Erme samples had H(S) values as 

low as 0.15 but the occurrence is infrequent with a greater number of high values 

exceeding 0.98, particularly for the summer and autumn. These lower values 

correspond to samples taken from the high estuary stations HP2, HP3 and HP4 

(0 - 0.45). Overall, the Erme Estuary samples yielded higher H(S) values relative to 

Restronguet Creek for the same period. 

Hi) The Fowey Estuary 

The samples from the Fowey Estuary showed similar diversity indices, 

whereby the lower values of H(S) were recorded for the high estuary station StW2 

(<0.98), the uppermost subsidiary aeek station LP03 (<0.45) and the lower creek 

station PPH11 (0.99). Samples from the two mid - estuary stations, CHS and CH6, 

showed lower values in spring and summer corresponding with the high species 

dominance of H. germanica (Section 5.4.2, ///). However, for the Fowey Estuary 

samples the values of H(S) are only moderately higher than those obtained for 

Restronguet Creek for the same period. 

190 



iv) The Avon Estuary 

The Avon Estuary samples also yielded low values of H(S) from the upper 

estuary stations A1 and A2 (0 - 0.78) and, occasionally, A9 (0 -1.75). The higher 

value obtained was due to a more even distribution between E.wHliamsoni and M. 

fusca (Section 5.4.2, iv). In the majority of cases, in the mid - to low estuary, however, 

the Avon samples had high H(S) values >1.0 and for the same period are greater than 

those from Restronguet Creek. None of the control estuaries, however, produced 

values greater than 1.75 and the upper estuary values were comparable to those from 

similar sample locations in Restronguet Creek. 

5.3.3 Summary 

In summary, the variation in the indices H(S), can be due to a number of 

environmental controls (Alve and Murray, 1995a) generally leading to high diversity 

assemblages with low dominance or low diversity assemblages with high dominance. 

Values of the diversity index H(S), therefore, may be high at stations with few but 

evenly distributed species. Lower values may be obtained from samples from such 

stations if additional species occurring in low abundance are also included; i.e., there 

is a weighting effect. An even distribution between a few species, producing a high 

value for H(S), may occur in estuarine and marginal marine environments (Alve and 

Murray, 1995a). 

In the present context, the most important difference between Restronguet 

Creek and the control estuaries is the absence of the agglutinating species M. fusca, 

J. macrescens and T. inflata from the Restronguet Creek samples, leading to low 

diversity assemblages throughout, but particularly in the upper Creek which has 

similar salinity and temperature ranges to that recorded for the control estuaries 

(Chapter Four, Section 4.3). 
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5.4 Species distribution and dominance 

5.4.1 Introduction 

The term 'species dominance' has been used here when there is a difference 

of 5% or more between the most abundant species and the species next in 

abundance. Co-dominance is said to occur when abundances are closer than 5%. 

Particular species dominance of an assemblage may change with season and when 

these temporal spatial shifts occur the area is termed a 'transitional species zone'. 

5.4.2 Distribution and dominance 

/) Restronguet Creek 

Haynesina germanica, E. williamsoni and, occasionally, A. beccarii formed 

major associations in Restronguet Creek. In the majority of examples, the autumn 

species distributions were characterised by the dominance of E. w////a/77son/ which had 

the highest percentages during each year (Figure 5.10, a - e) varying between 12% 

and 100% (1992 -1996). In autumn 1992,1994 and 1995 (Figure 5.10, a, c and d) all 

stations were dominated by E. williamsoni m\h the exception of stations P10 

(dominated in 1992 by H. germanica), and, TW27 and BY28 (1994) which were 

dominated by A. beccarii. In autumn 1993 a more variable species distribution was 

evident and single species dominance was randomly distributed (Figure 5.10b). 

l-iaynesina germanica, with an overall autumn distribution that varied between 1% and 

77%, was generally second in abundance to E. vw/Z/amson/with the exception of 

stations TC6, TC8, TW27 and PI30 in 1993 which were dominanted by /-/. germanica 

(Figure 5.10b). Otherwise H. germanica co-dominated at certain stations with 

£ williamsoni, (Figure 5.10, a and e) and with A. beccarii (Figure 5.10b). In autumn 

1993, H. germanica and E. williamsoni each show a decline in percentage proportions 

down the north side of the Creek between stations TC6 and CY16 which is in line with 
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an inaease in the proportions of A. beccarii, particularly at station CY16 (Figure 

5.10b). Furthermore, the percentage difference between the three species at CY16 is 

marginal. 
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Figure 5.10: Autumn species distribution, Restronguet Creek, a) 1992, b) 1993,c) 
1994, d) 1995 and e) 1996. Abbreviations: A.b. = A. beccarii, E.w. = E. williamsoni and 
H.g. = H. germanica. 
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On the south side of the Creek the proportions of E. williamsoni are reduced 

in line with an increase of the other two species. Ammonia beccarii was a subordinate 

species with a range of 0% - 70%. The zero scores were the most frequent in the 

early stages of sampling (1992 -1994 inclusive) particularly above stations P10 and 

TW27 (Figure 5.10, a, b and c). In autumn 1995 and thereafter, A. beccarii appears 

more frequently and instances of its assemblage dominance appear after this time 

(TW27andBY28in1995). 

Elphidium williamsoni had an overall range in the winter (1993 -1996) of 

between 0% and 100%. The lowest values were recorded in the years 1993 and 

1994, when E. williamsoni was the dominant species at only one station, TC9 in 1993 

and at stations CY16 and PI30 in 1994 (Figure 5.11, a and b). The other stations in 

1993 and 1994 were dominated by H.germanica. In 1995 and 1996, E. williamsoni 

increased in it's proportions and the highest values were, in the majority of cases, 

recorded during these years. The overall range for H. germanica varied between 2% 

and 82% with the lower values being more common in 1995 and 1996. The 

proportions of H. germanica (3% - 30%) sharply declined in 1996 relative to the years 

1993,1994 and 1995 (Figure 5.11, a, b and c). Furthermore, in 1995 H. germanica 

dominated the assemblages at stations PI 0 and CY16 with all other stations being 

dominated by £ williamsoni. Ammonia beccarii was commonly a subordinate species 

in the winter and had an overall range of between 0% and 100% and was absent at 

many stations in 1993, 1994 and 1995. In winter 1996, however, A. beccarii 

dominated the assemblages at stations P10, PCI 3 and K20 and co-dominated at 

T\/V27, BY28 and CY16 with £ williamsoni. At stations TC6 and TC9 in 1996 (Figure 

5.11d), the proportions between the three species £ williamsoni (39%, 41 % 

respectively), A. beccarii (33%, 33% respectively), H. germanica (28%, 26% 
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respectively) were similar and as a result the Shannon-Weiner Information Function 

values [H(S)] of 1.09 and 1.08 respectively, were much higher than elsewhere. 
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Figure 5.11: Winter species distribution, Restronguet Creek, a) 1993, b) 1994, 
c) 1995 and d) 1996. Abbreviations: A.b. = A. beccarii, E.w. = E. williamsoniand 
H.g. = H. germanica. 

Haynesina germanica had an overall spring range of between 44% and 

100%, the higher values being particulariy frequent in 1993 and 1994. The 

assemblages throughout Restronguet Creek in 1993 and 1994 were, in the majority of 

cases, dominated by H. germanica (Figure 5.12, a and b). In spring 1995 
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(Figure 5.12c), however, the proportions of H. germanica were reduced relative to the 

previous year particularly at stations TC6, TC8, TC9, and at stations BY28 and PI30 

on the south side. Despite this reduction, this species still dominated the 

assemblages at all stations with the exception of TC6 and TC9 which were dominated 

by E. williamsoni. 
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Figure 5.12: Spring species distribution, Restronguet Creek, a) 1993, b) 1994, 
c) 1995 and d) 1996. Abbreviations: A.b. = A. beccarii, E.w. = E. williamsoni and 
H.g. = H. gemianica. 

In 1996 all stations were dominated by H. gemianica (Figure 5.12d). 

Elphidium vw///amson/was a subordinate species in 1993 and 1994 and varied 

196 



between 0% and 24% but increased in it's proportions in 1995 (3% - 56%) and to a 

lesser extent in 1996 (3% - 24%). Ammonia beccarii was also a subordinate species 

in 1993 and 1994 with a range for the two years of between 0% and 13%. Ammonia 

beccanif varied between 0% and 3% in 1995 (Figure 5.12c) and was generally absent 

but in 1996 increased in it's proportions and varied between 1% and 33% (Figure 

5.12d). There were no instances of co-dominance between species during the spring 

of each year. 
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Figure 5.13: Summer species distribution, Restronguet Creek, a) 1993, b) 1994, 
c) 1995 and d) 1996. Abbreviations: A.b. = A. beccarii, E.w. = E. williamsoniand 
H.g. = H. germanica. 
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The summer assemblages were generally characterised by H. germanica 

associations. Haynesina germanica had an overall summer range between 19% and 

100% with the highest values more frequently recorded in 1993 (Figure 5.13a) and to 

a lesser extent in 1994 (Figure 5.13b) relative to 1995 and 1996. In 1993 and 1994 all 

the summer assemblages were dominated by H. germanica, with the exception of 

stations H23 and BY28 (1994) which were co-dominated by E williamsoni and 

H. germanica. In 1995 stations K20 and CI 9 were dominated by E. williamsoni 

(Figure 5.13c) and in 1996 E. williamsoni dominated or co-dominated with 

H. germanica at each assemblage in the mid - low Creek stations (Figure 5.13d). 

Elphidium williamsoni had an overall summer range between 1993 and 1996 of 2% -

75% and for A. beccarii\he range was 0% - 27%. Between 1993 and 1995 A. bea:arii 

was a subordinate species and was often absent. In 1996 it was present at all stations 

with a maximum value of 27%. 

In summary, therefore, spatial species distribution and dominance have been 

variable in Restronguet Creek with H. germanica being a more important species in 

the spring and summer and £ williamsoni in the autumn and winter. Ammonia 

beccarii, though often numerous, was normally less abundant than these species. The 

earlier (pre -1995) assemblage dominance of H. germanica in the winter ceased after 

this year and was replaced by the exclusive dominance of E. williamsoni. Elphidium 

williamsoni has shown increasingly higher percentage proportions in the spring and 

summer in the later stages of the sampling programme (post -1995) and in 1996, for 

example, this species dominated, or co-dominated, the assemblages at 9 out of 13 

stations in the mid - to low Creek area. Overall, A. beccarii has increased it's 

proportions since autumn 1992, particularly during the autumn of 1995 and winter of 

1996. Evidently, the three species present do not have a spatially fixed distribution 

and the two major species, H. germanica and £ williamsoni are also becoming less 
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temporally (seasonally) predictable with the post -1994 data appearing to mark a 

change in species distribution and dominance. 

//) The Erme Estuary 

Elphidium williamsoni, M. fusca and to a lesser extent, H. germahica form 

major assemblage associations in the Erme Estuary but which are controlled by 

season and spatial distribution. The annual ranges of the three major species are: 

H. germanica 0% -72%, E. williamsoni, 0% - 92% and M. fusca 0% -100%. 
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Figure 5.14: Species distribution, Erme Estuary, a) winter, b) spring, 
c) summer and d) autumn. Abbreviations: A.b. = A. beccarii, E.w. = E. williamsoni, 
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The upper estuary stations HP2, HP3 and HP4, are characterised by the 

monospecific presence of M. fusca for all seasons (Figure 5.14, a - d). In the winter, 

assemblage domination by M. fusca spatially expands into the mid - estuary at 

stations E5, E6 and E8, and co-dominates with E. williamsoni at stations E7 and E9. In 

the spring, the distribution of M. fusca is more restricted. On the east side M. fusca 

dominated only those assemblages at the Clyng Mill Creek stations, 0W14 (winter 

only), CM16 (autumn, winter and spring) and CM17 (autumn and winter). Otherwise, 

M. fusca co-dominates with E. williamsoni at certain stations in the mid- and low 

estuary in the spring and summer (Figure 5.14, b and c). The distribution of M. fusca 

declines down estuary on the west side and shows a near linear trend winter and 

autumn 1993 (Figure 5.14a). A less predictable trend is shown by the east side of the 

estuary. In the majority of cases the mid - low estuary stations are characterised by an 

£ M//7//amson/association, particularly in the autumn (Figure 5.14, b and d). Stations 

0W11 and 0W12 are dominated all year by E. williamsoni except for summer when 

the assemblage at 0W12 is dominated by H. germanica. The proportions of 

H. germanica inaease in the summer, and it appears at all stations except those in 

the upper estuary. Haynesina germanica dominated the assemblages at stations 

0W12 and 0W15 in the summer and at station S20 in the autumn. Elphidium 

williamsoni and H. germanica co-dominated the assemblages at stations SI 8 and S20 

in the summer. The other species, A. beccarii (0% - 7%), Jadammina macrescens 

(0% - 2%) and Trochammina inflata (0% - 2%) had low proportions and did not 

appear at all stations. 

In summary, M. fusca and E. williamsoni together formed the major 

assemblage associations and showed spatial changes in their proportions and 

dominance during each season. The upper estuary stations HP2 - 4 and the creek 

station CM16, however, formed spatially distinct areas in faunal dominance and were 
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dominated by M. fusca all year. Seasonally, M. fusca is a more important species in 

the winter and extends its spatial domination further down estuary, forming a 

transitional species zones (Stubbles, 1995). Haynesina germanica was a minor 

species except in the summer and to a lesser extent in the autumn. Overall, however, 

E. wllliamsoni was the most abundant and widespread species. The percentage 

proportions of the minor species, A. beccarii, T. inflata and J. macrescens increased 

down estuary. 

///) The Fowey Estuary 

Haynesina gemianica, E. williamsoni and to a lesser extent, M. fusca form 

major associations in the Fowey Estuary which are seasonally and spatially 

controlled. The annual range for each species is the same, 0% -100%. Overall, 

H. germanica had the highest percentage proportions in the spring and summer and 

dominated the assemblages at all stations (Figure 5.15, a and b) with the exception of 

stations StW2, LP03 and RC4 which were dominated by M. fusca in the spring but 

not in the summer. The subsidary creek stations PM7 and PPH11 are dominated by 

H. germanica all year (except for autumn at station PM7) where salinity is high relative 

to Lerryn Creek (stations LP03 and RC4). For the other seasons, autumn and winter, 

the upper estuary and subsidary creek stations StW1 (winter only), LP03 and RC4 

were dominated by M fusca. These assemblages in the winter were monospecific. 

l\/liliammina fusca is a minor species on both sides of the lower estuary (Figure 5.15, a 

- d). Elphidium williamsoni dominated the assemblages in the main channel in the 

autumn and to a lesser extent in the winter (Figure 5.15, c and d) and was the only 

species present at station G14 in the winter. Species distribution on both sides of the 

estuary is, in general, smooth except in winter which shows an erratic profile between 

the proportions of H. germanica, E. williamsoni and A. beccarii. Ammonia beccarii, 
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J. macrescens and T. inflata were subordinate species, the latter two being largely 

rare. In the autumn, J. macrescens comprised 20% of the stained assemblage at 

station LP03. 
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Figure 5.15: Species distribution, Fowey Estuary, a) spring, b) summer, 
c) autumn and d) winter. Abbreviations: A.b. = A. beccarii, E.w. = E. williamsoni, 
H.g. = H. germanica, M.f. = M. fusca, T.i. = T. inflata and J.m. = J. macrescens 
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In summary, H. germanica was the most abundant and widespread species in 

the main channel of the Fowey Estuary particularly in the spring and summer, but less 

so in the subsidiary Lerryn Creek. In the autumn and winter the proportions of 

E williamsoni increased with more instances of it's assemblage dominance. The 

seasonal dominance by M. fusca at the upper estuary stations StW1 and StW2, and, 

creek stations LP03 and RC4 represents a transitional zone (Figure 5.15, a, c and d) 

in the spring and winter, and with respect to LP03 in the autumn also. It would appear 

that temporally, the M. fusca associations were restricted to the cooler and lower 

salinity water conditions of the upper estuary and Lerryn Creek. In the winter 

A. beccarii had the highest proportions but remained a minor species. There were 

rare occurrences of J. macrescens and T. inflata. 

iv) The Avon Estuary 

The Avon Estuary is characterised by two major species associations; 

£ williamsoni and M. fusca with H. germanica as a common additional species 

(Murray, 1991). The annual range for each species varied as follows: H. germanica, 

0% - 30%, E. williamsoni, 0% - 93% and M. fusca, 0 -100%. The highest proportions 

of M. fusca were present at the upper estuary stations A1 and A2 during all seasons 

and at A9 in the summer, winter and spring (Figure 5.16, a - d). In the spring, M. fusca 

dominated the assemblages at all stations except A3, A8 and A10 (Figure 5.16d). The 

proportions of M. fusca generally decreased down estuary in line with an increase in 

calcareous taxa (Figure 5.16, a and c). Elphidium williamsoni'was overall the 

dominant species in the remainder of the estuary, particularly in the winter and 

autumn on the east side. The species distribution at station A3 in the summer (Figure 

5.16a) had relatively even proportions between M. fusca (28%), E williamsoni {28%), 

A. beccarii (22%) and H. germanica (21 %) and, hence the highest values of the 
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Shannon-Weiner Information Function [H(S)] were recorded here (1.38). Haynesina 

germanica was not present at all stations but it's proportions increased in the summer 

relative to the other seasons and the maximum values were recorded on the west 

side. Throughout the estuary A. beccaiii had low - moderate proportions (0% - 53%) 

which were highest in the autumn and dominated the assemblage at station A3. 

Jadammina macresc^ns (0% - 6%) and T. inflata (0% -1 %) were rare. The 

distribution of E. williamsoni and M. fusca, particularly on the east side, showed a near 

linear trend (Figure 5.15a), with an inverse proportional relationship to each other. 
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Figure 5.16: Species distribution, Avon Estuary, a) summer, b) autumn, 
c) winter and d) spring. Abbreviations: A.b. = A. beccarii, E.w. = E. williamsoni, 
H.g. = H. germanica, M.f. = M. fusca, T.i. = T. inflata and J.m. = J. macrescens. 
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In summary, the assemblages of the upper estuary stations A1 and A2 were 

dominated by M fusca with E. williamsoni second in abundance for all seasons. The 

assemblage at the other upper estuary station, A9, was dominated by M. fusca in the 

summer, winter and spring, but in the autumn was dominated by E. williamsoni w\ih 

M. fusca second in abundance. During the spring, M. fusca dominated the 

assemblages at the majority of stations in the mid - estuary which formed a 

transitional species zone. Elphidium williamsoni had higher proportions in the mid -

low estuary in the winter, autumn and summer. Haynesina germanica had higher 

proportions in the summer but remained a subordinate species. The proportions of 

A. beccarii increased in the autumn but overall, as with J. macrescens and T. inflata, 

was a subordinate species. Evidently, species distribution was not spatially or 

temporally fixed, particularly in the area of the low and mid - estuary. 

5.5 Variation in species distribution between sample locations 

i) Restronguet Creek and the Enne Estuary 

The MDS plots (multi-dimensional scaling) show similarities/dissimilarities 

between the Restronguet Creek data points and those of the Erme Estuary (Figure 

5.17, a - d). Overall, the Erme and Restronguet Creek data points differentiate into 

two groups (each enclosed by a wide dashed line) with stations of the latter location 

arranged to form the tightest grouping, particularly for winter (Figure 5.17a). This 

spatial closeness reflects strong similarity in species assemblage composition 

between the Creek sample stations. The Restronguet Creek data has a wider 

dispersal in the autumn within which four subsidiary groups can be defined (each 

enclosed by a fine dashed line). The box enclosed stations (TC6 etc.) represent tight 

clusters which plot on the same point, having closely similar species proportions. 
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The wider dispersal shown by the Erme data reflects greater dissimilarity in 

species composition between the respective subgroups and the number of species 

present at each station (Figure 5.17d). This is particularly evident with respect to the 

Erme stations HP2, HP3, HP4 which are distinct to the main Erme group, and reflect 

the higher proportions of M. fusca at these stations, in most cases being monospecific 

(Section 5;4.2. //). The Restronguet Creek station C19 is routinely different from the 

other Creek stations in the spring and summer (Figure 5.17, b and c) and with H23 in 

the autumn which reflects the monospecific appearance of H. germanica at these 

stations. The relatively reduced spatial separation shown between the two locations in 

the summer (notably between stations H23 and S19) is due to the lower proportions 

of M fusca and higher proportions of H. germanica (Figure 5.17c) in the Erme 

Estuary. The species distribution patterns in the Erme Estuary resembles that of 

Restronguet Creek during this season. 
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Figure 5.17c: Comparisons in species distribution and dominance between 
Restronguet Creek and the Erme Estuary, summer. 
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Figure 5.17d: Comparisons in species distribution and dominance between 
Restronguet Creek and the Enne Estuary, autumn. 

//} Restronguet Creek and the Fowey Estuary 

Each of the Fowey Estuary and Restronguet Creek seasonal MDS plots show 

distinctive spatial separation between the two locations (Figure 5.18, a - c). Spatial 

distinctiveness is more pronounced for the spring and autumn (Figure 5.18, a and b). 

There is a narrower spatial separation shovm for the winter and hence, greater 

similarity between the two locations (Figure 5.18d). Similarity between the two 

locations is greatest in the summer and the majority of stations, with the exception of 

stations StW1 and RC4, form one tight cluster upon the same point. As these points 

could not be separated the plot is not reproduced. For the summer, therefore, 

Restronguet Creek and the Fowey Estuary are closely similar having assemblages 

dominated by H. germanica, in the majority of examples. Stations StWI and RC4, 

also show a dissimilarity relative to LP03 (relative to the main Fowey group) for 
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winter. This is also the case for spring when stations LP03 and RC4 are distinctly 

separated from the main Fowey group. This is due in each case to assemblage 

dominance by M. fusca at these stations (Figure 5.18, a and c). 
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Figure 5.18a: Comparisons in species distribution and dominance between 
Restronguet Creek and the Fowey Estuary, spring. 

For the winter (Figure 5.18c) compositional variation between the stations is 

greatest, in particular StWI and PPH11 which are spatially separated from the main 

Fowey group. Station PPH11 is distinctly dissimilar, being dominated by 

H. germanica. Station G14 is closely associated with the lower end of the Restronguet 

Creek group because the assemblage comprises similarly higher proportions of 

£ williamsoni. Of the Restronguet Creek stations, PIG is spatially separated because 

the species assemblage is dominated by H. genvanica, instead of £ williamsoni as 

elsewhere. Stations CH5, CH6 and G12 form differentiated subgroups within the main 

Fowey Estuary group (autumn and to a lesser extent winter) which reflects the 
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absence of M. fusca at these stations. 
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Figure 5.18b: Comparisons in species distribution and dominance between 
Restronguet Creek and the Fowey Estuary, autumn. 
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Restronguet Creek and the Fowey Estuary, winter. 
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Similarly, certain stations within the Restronguet Creek group are separated into 

subgroups (Figure 5.18b) which reflects the absence/presence of >A. beccarii. Station 

PM7 is spatially associated with both the Restronguet Creek and Fowey Estuary 

groups and has a species composition that is closely similar to station P10. 

no Restronguet Creek and the Avon Estuary 

The relative spatial arrangement of the Avon Estuary stations shows high 

dispersal, indicating high variation in species composition and the number of species 

present (Figure 5.19, a - d). There is least spatial separation shown between 

Restronguet Creek and the Avon Estuary in the winter (Figure 5.19c) and aside from 

station A7, the autumn shows the greatest spatial separation (Figure 5.19b). Only 

station A7 is in close proximity to the Restronguet Creek group which reflects a near 

all calcareous species composition, dominated by £ williamsoni. Stations A9 and A1 

(summer), A2, A11 and A9 (spring), and, A1 and A2 (winter) lie outside the main Avon 

Estuary group and this is due to assemblage dominance by M. fuses on it's own, or 

with lower proportions of calcareous species. The Restronguet Creek data points are, 

however, routinely tightly grouped which indicates least variation in species 

composition between the Creek stations. The most notable exception to this is winter 

(Figure 5.19c) and stations D1, P10 and K20 are spatially separated from the main 

group which reflects greater compositional variation and a change in species 

dominance. Occasionally the distribution of the data points follows a linear pattern 

(Figure 5.19, a and c). This is particularly pronounced with respect to Restronguet 

Creek for summer and winter (1995 -1996) and indicates changes in species 

composition down aeek. 
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The Avon Estuary stations A3, A7, and A12 (winter) are spatially associated with 

certain Creek stations, in particular BY28 and CY16. This reflects greater similarity in 

species composition with lower proportions of M. fusca and assemblage dominance 

by E. williamsoni at stations A3, A7 and A12. 

5.6 Statistical relationship between species distribution and other variables 

#) Restronguet Creek 

As Table 5.3 shows, the correlation coefficients for species and salinity are all 

positive and generally significant with respect to Ammonia bea^arii in the autumn, with 

the exception of 1993. For winter 1993 and 1994 the correlation between salinity and 

A. beccarii is similarly significant and for spring 1994 the relationship is strong (0.74). 

There is a strong and positive relationship shown between £ williamsoni and salinity 

for winter 1994 and 1995 (0.84), and for summer 1994 the relationship is significant 

(0.59). Haynesina germanica shows a significant positive correlation with salinity for 

winter and spring 1995 and in spring 1994 the relationship is strong (0.7). The 

relationship between H. genvanica and salinity is negatively significant in summer 

1996. Evidently, A. beccarii has a consistent preference for water with higher salinity 

in the lower Creek, whereas, the strength and type (+ or -) of association exhibited by 

H. germanica and, particularly, £ williamsoni varies with season and from year to 

year. 

With the exception of A. beccarii (winter), there are no significant correlations 

between species and temperature for 1993 (Table 5.3). Significant relationships were 

shown by all three species and H. germanica in particular, is strongly related with 

temperature for summer 1996. For winter and summer 1994, £ williamsoni is the only 

species to show a significant and positive relationship with temperature (0.65 and 
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0.55, respectively). 

Organic carbon (%) correlates significantly with H. germanica (0.62 and 0.58) 

and E. williamsoni (-0.64 and -0.55) for autumn 1994 and 1996 (Table 5.3). 

Otherwise, there are no significant correlations shown, the exceptions to this are 

H. gemianica, which shows a negative, significant correlation for autumn 1995 and for 

winter 1996 the relationship is strong (-0.9. In the majority of examples the correlation 

between the C/N ratio and each species is not significant. Ammonia beccarii is only 

significantly correlated (negative) for spring 1996. None of the species show 

significant relationships with grain size (Table 5.4). With the exception of 

H. germanica and £ vw///amson/which show a positive relationship with the grain 

sizes >63pm and >16 - <63pm respectively, all correlations are negative. 

The correlation between the metals Al, Fe, Cu, As, Ni and Zn in 1992, 1993, 

1994 (As is insignificant) and E. williamsoni is negative and significant (Table 5.5, a -

e). Only Pb (1994) shows a positive and significant relationship with A. beccarii. For 

1995 A. beccarii is significantly correlated with Cu, and, in 1996 with Al, Ni and Zn 

(Table 5.4, d and e). Haynesina germanica, however, is positively and significantly 

correlated with the metals Al, Fe, Cu, Ni and Zn. 

//) The Erme Estuary 

With the exception of >A. beccarii, all species (but not including J. macrescens 

and T. inflata, which were largely absent) show a significant and occasionally strong 

correlation with salinity (Table 5.6). Haynesina germanica and E williamsoni show a 

consistent positive, significant correlation profile with salinity. Elphidium williamsoni, in 

particular, shows a strong relationship winter and spring (0.83 and 0.75 respectively). 

Miliammina fusca is negatively correlated for each season, except for summer, when 
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it's assemblage proportions and firequency of dominance were diminished. Significant 

correlation between salinity and M. fusca is only shown for autumn and spring. 

Haynesina germanica and £ wllliamsoni are significantly correlated with 

temperature for winter, spring and summer (Table 5.6) with the latter species being 

strongly correlated for the winter (0.82). Jadammina macrescens is only significantly 

correlated for the winter. 

There are no significant correlations between any species and percentage 

organic carbon. With the exception of M. fusca (0.77) there is no significant 

relationship shown between the C/N ratio and any other species. Each of the three 

calcareous species show a negative relationship with the C/N ratio and percentage 

organic carbon. 

Ammonia beccarii and M. fusca each show a significant relationship (0.62 

and -0.55 respectively) with the grain size categories <16|jm and >16 - <63[jm 

respectively. There are no significant correlation coefficients shown between the 

metals and any species (Table 5.7). 

Hi) The Fowey Estuary 

All species, with the exception of M. fusca, show a change in the level and 

type (+ or -) of significance with each seasonal salinity profile (Table 5.8). Miliammina 

fusca shows a consistent negative and significant relationship with salinity, which is 

particularly strong for the autumn and spring (-0.71 and -0.79 respectively). Elpiiidium 

williamsoni and A. beccarii show positive correlations for all seasons, but which are 

only significant for autumn, winter and summer. Haynesina germanica is strongly and 

positively correlated with salinity for spring. 

Miliammina fusca is significantly correlated (negatively) with temperature for 

all seasons (Table 5.8) and for winter the relationship is strong (-0.74). Ammonia 
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beccarii is similarly significantly correlated but the relationship is positive for each of 

the seasons except spring. Haynesina germanica is only strongly correlated with 

temperature for the spring. Elphidium williamsoni is significantly correlated for winter 

and summer. 

In general, there is a variable relationship shown between percentage 

organic carbon and species (Table 5.8). Haynesina germanica shows only one 

significant correlation with organic cariDon (winter) and E. williamsoni and M. fusca are 

only significantly correlated for the autumn. Ammonia beccarii shows no significant 

relationship with carbon. The relationship between species and the C/N ratio is in 

most cases, insignificant. Elphidium williamsoni shows a negative, significant 

con-elation for the autumn, and A. beccarii is similar with respect to spring. There are 

no significant relationships shown between any species and the three grain size 

categories (Table 5.8). Miliammina fusca is negatively correlated with each of the 

categories. Ammonia beccarii shows the highest correlation (-0.41) and E williamsoni 

shows the weakest. 

iv) The Avon Estuary 

Haynesina germanica is significantly correlated with salinity for winter and 

spring, and strongly correlated for summer (0.7). Elphidium williamsoni and M. fusca 

are significantly correlated with salinity for the winter and strongly con^elated for the 

summer (Table 5.10). Miliammina fusca is dissimilar to E. williamsoni in that it is 

negatively correlated for each season, except autumn. 

Elphidium williamsoni and M. fusca are strongly correlated with temperature 

for summer, the latter species being negatively associated (Table 5.9). This is similar 

to the salinity correlation profile. Haynesina germanica shows a positive and 
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significant relationship with temperature for spring and summer. As with salinity, 

A. becx^hi and J. macrescens are not significantly correlated with temperature. 

In general, a weak relationship is shown between species and percentage 

organic carbon and most values are approaching neutral. Only E. willlamsoni (spring) 

and J. macrescens (winter) show a significant relationship (Table 5.10). Jadammina 

macrescens shows a significant relationship with the C/N ratio, for autumn, summer 

and particularly winter, which is strongly correlated (0.76). Miliammina fusca is 

negatively and strongly correlated only for the winter. Elphidium williamsoni (winter) 

and A. beccarii (spring) show a positive and significant relationship with the C/N ratio. 

There is a significant relationship shown between with the <16|jm grain size category 

and the proportions of A. beccarii (0.6), which is similar to that shown by the Erme 

data. All other correlations are insignificant. 

Haynesina germanica is negatively correlated but not significantly, with all 

metals (Table 5.11), the highest value being for Ni (-0.48). Elphidium williamsoni and 

A. beccahi are significantly correlated with Ni, which is particularly strong with respect 

to the latter species (-0.85). Ammonia beccarii shows a less than significant 

relationship with Al (-0.53). With the exception of Pb, M. fusca is negatively correlated 

with each metal, but in all cases the relationship is insignificant. 

5.7 Distribution of the agglutinated species 

5.7.1 Introduction 

Analysis has been carried out to identify the relationship between the 

distribution of the agglutinating foraminiferal species and the environmental variables 

such as salinity, temperature, sediment geochemistry, grain size range, mineralogy 

and C/N ratios (where available). Ultimately, the results have been used to identify 
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those factors which may account for the observed distribution of the agglutinated 

species. 

5.7.2 Environmental variables and the distiibutlon of the agglutinated species 

As previously mentioned (Section 5.4.2, /), samples from Restronguet Creek 

did not contain agglutinated species, living or dead. However, such species colonise 

the upper estuary and subsidiary creeks of each control estuary with Miliammina 

fusca being the dominant and most abundant of these species {Jadammina 

macrecsens and Trochammina inflata were subordinate species within the mid-

estuary). The short cores taken from Restronguet Creek also had no agglutinated 

species (Stubbles etal., 1996a, b) and, as a 50cm core represents approximately 50 

years of sedimentation (Icm'^), this would suggest that the absence has coincided 

with the working life of the modem Wheal Jane tin mine (Chapter One, Section 1.5.2) 

and a period of abandonment immediately before this (post -1945). This period of 

sedimentation was determined by Dr. G. Hendry who took cores to the same depth, at 

a similar location and estimated the age using ^̂ '̂ Cs (Dr. G. Hendry, Department of 

Earth Sciences, Birmingham University, pers. comm., 1993). However, the short cores 

(sedimentation period unknown) taken from the Erme Estuary, E6 and E8 (core 

lengths of 45cm and 50cm respectively) had agglutinated foraminifera throughout. 

The core taken from the Fowey Estuary does, however, show a marked anomoly in 

that M. fusca is absent below the 34cm depth which represents an approximate date 

of 1885 (Pinkie etal., 1999) but the maximum depth of this absence may not be 

determined from this core as the borer only penetrated to 40cm before reaching a 

banrier. 

The surface samples collected as part of a reconnaissance survey of other 

South West England estuaries showed that there is a widespread absence of the 
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agglutinated species within the environs of Carrick Roads (Figure 1.4) and in the 

Kingsbridge Estuary (Figure 1.3). The other reconnaissance sample locations (Yealm, 

Looe and Axe), however, each contained the six euryhaline species to give a typical 

estuarine faunal distribution similar to that of the Erme, Fowey and Avon estuaries 

(Section 5.4.2, // - iv). 

The Kingsbridge Estuary (a coastal embayment) and the tributaries (Figure 

1.4) of the Carrick Roads (Mylor Creek, Pill Creek, Percuill Creek and St Just in 

Roseland) each had elevated salinity gradients (>30%o) throughout each estuary, 

probably exceeding the tolerance limits of the agglutinating species (<25%o), which 

may account, in part, for their absence. This is supported by the correlation 

coefficients w^ich show M. fusca to be negatively associated with salinity and 

temperature (Section 5.6, // - iv). The sample stations at Truro, St Clements, Ruan 

Lanihome and Tressillian also had an all - calcareous species assemblage (as 

stained and empty tests), but each had lower salinity regimes which were within the 

tolerance limits of these species. The salinity and temperature data (Chapter Four, 

Section 4.3) from the control estuaries (Erme, Fowey and Avon) were similar to those 

of Restronguet Creek, Truro, St Clements, Ruan Lanihome and Tressillian. Water 

temperature gradients in each estuary were similar with the exception of the 

Kingsbridge Estuary which was a few degrees warmer throughout the estuary, during 

all seasons. This may be the result of reduced channel water volume and flow (due to 

catchment loss) which is cooler than the warmer tidal water. Comparing the C/N ratio 

data (as an indication of nutrient supply in an available form. Chapter Four, Section 

4.6) it is evident that the values obtained for Restronguet Creek are similar to the 

control data and St Clements (C/N ratio of 9.03). 

The sample stations in Carrick Roads generally had higher sediment metal 

concentrations relative to the Erme, Fowey and Avon estuaries (Bryan and 
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Langstone, 1992). Geochemically, the stations at Mylor, Pill and Truro were similar to 

Restronguet Creek, having been directly influenced by past metal mining and/or 

smelting. The stations at Tresillian, Ruan Lanihome, Percuill and St Just in Roseland 

do not drain metalliferous mining regions and consequently had marginally lower 

sediment metal concentrations relative to Restronguet Creek (Yim, 1972; Bryan and 

Langston, 1992; Sommerfieldefa/., 1994a,b; Pirrieef a/., 1999). The smelters that 

once operated at Truro emitted airborne contamination which can be more pervasive 

and persistent relative to surface water conduits (Meetham, 1950; Thomas, 1962; Ida 

etal., 1966; Rose etal., 1979; Franzin and McFarlane, 1980). As a consequence of 

this, the smelters at Truro may have contributed towards the contamination levels 

elsewhere, particularly at nearby St Clements which has sediment metal 

concentrations which are similar to Restronguet Creek, with the exception of zinc 

(Appendix 1.1c). Contaminated water originating from Restronguet Creek and the 

Truro River to the south may also have been tidally introduced northwards into the 

Tresillian River (Pirrrie ef a/., 1997). 

Other factors which may limit the distribution of the common agglutinated 

species (e.g., M. fusca) are the mineralogy and grain size range of the sediment 

inhabited by these shallow infaunal protists (Chapter Four, Section 4.4). The material 

used for test construction has been compared with contemporaneous sediment 

samples by using scanning electron and transmitted light microscopy techniques. This 

comparative analysis has concentrated on tests of M. fusca as it is the commonest of 

the agglutinated species in the control estuaries and also because J. macrescens and 

T. inflata, with the exception of the area around the aperture, show much less 

variation in the grain size and type of mineral used for test construction (Chapter 

Three, Plates 2 and 3). The latter two species show a preference for flat minerals 

such as mica and clay, which are methodically rather than randomly arranged. The 
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area around the aperture of both species is much less well ordered. These 

preliminary investigations would suggest, therefore, that these two species show 

selectivity with respect to grain size and mineralogy, which may be limiting factors in 

their distribution. The scanning electron micrographs (Plate 1, Figures 1-5 [Chapter 

Three], Plate 7, Figures 1-4 and Plate 8, Figures 1 - 9) show examples of M. fusca 

constructed with a variety of mineral types and a wide range of grain sizes, which are 

randomly arranged. The specimen of M. fusca featured in Plate 7 (Figures 1 - 4), from 

the Fowey Estuary, is a commonly occurring example of coarse grained test 

agglutination (4 - 70|jm) using the minerals, quartz, biotite and muscovite mica, 

detrital clay, and more rarely, diatom fixistules, tourmaline, apatite and cubic pyrite, all 

of which are present in the sediments and may have been tidally introduced from St 

Austell Bay which historically received china clay waste via. Par (Bristow and Scott, 

1998; Scott etal., 1998; Pinrie and Camm, 1999) and from the kaolinised parts of the 

Bodmin granite. Sediments from the Fowey Estuary have a grain size range and 

distribution which is intermediate between Restronguet Creek, and the Erme and 

Avon estuaries (Chapter Four, Section 4.4.2, /, //, ///, iv). Specimens of M. fusca from 

the Erme and Avon estuaries generally had finer grained agglutination (4 - 10pm), 

irrespective of there being lower proportions of material <16pm (the observed 

average size of material used by M. fusca) in the contemporaneous sediment 

samples relative to the other locations. The minerals biotite and muscovite mica, 

quartz, detrital clay and diatoms used to construct tests from the Erme and Avon 

estuaries reflect the respective sediment mineralogy. Analysis carried out by Prof. M. 

B. Hart (University of Plymouth) on specimens of M. fusca from the Erme Estuary in 

1991 (S. J. Stubbles, unpublished undergraduate dissertation) has shown that some 

tests were constructed almost entirely of pennate diatom frustules. The more recent 

samples taken in 1993 did not show a recurrence of this phenomenon which probably 
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reflected an episodic and unusually high abundance of diatoms. The only part of the 

outer test displaying grain size and mineral selection is in the constojction of the 

apertural tooth which is finely agglutinated with clay and mica flakes. The inner whori 

of M. fusca from each estuary is exclusively constructed of fine grained material less 

than 5pm across. This is the different to the analysis carried out by Bronnimann and 

Whittacker (1988c) which found the inner walls of T. inflata to be more coarsely 

agglutinated relative to the outer layer. The authors also found that agglutinated 

species formed tests, in the 'agglutinated phase', that were either 'differentiated' 

(T. inflata) or 'undifferentiated' (no sorting or grain arrangement). Overall, lithic clasts 

have not been used for test construction, despite their high abundance in sediments 

from the Fowey, Erme and Avon estuaries. 

It was evident by the colour, high mica and clay content of the sediments 

taken from Tresillian and Ruan Lanihome, and to a much lesser extent St Clements, 

that the drainage catchment is extensively influenced by china clay extraction 

(Hosking and Obial, 1966). With the exception of St Clements, which had abundant 

stained foraminifera, the locations at Tresillian and Ruan Lanihome usually yielded 

few stained foraminifera which suggests that physical as well as chemical disturtDance 

may have occurred. Both the species distribution at St Clements and the sediment 

grain size were similar to Restronguet Creek, but the mineralogy of the sediment 

sample was distinctly different, being similar to that of the Fowey Estuary (Plate 6, 

Figures 4 and 5). The sediment sample from St Clements had abundant shell 

fragments (reflecting above neutral pH of the pore and river/tidal water), detrital clay, 

quartz, biotite and muscovite mica, kaolinite books and lithic clasts (Plate 5, Figures 6 

- 8). Occasionally, a few stained specimens of Jadammina macrescens have been 

collected from St Clements but these were infrequent and low in abundance. 
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Plate 7 

Agglutinated foraminiferai tests - Fowey Estuary 

Figure 1. Test wall and aperture view of M. fusca, Fowey Estuary, StW2, spring 

1994. Showing wide variation in sediment grain size and mineral type 

used to construct the test. The elongate mineral is probably tourmaline 

(T). 

Figure 2. Enlargement of the aperture in Figure 1, showing a grain of tourmaline. 

Figure 3. Enlargement of the wall of M fusca (also shown by Plate 1) material 

shown includes mineral grains of topaz? (Tp) and mica flakes (M). 

Figure 4. Enlargement of the wall in Figure 3, mineral examples of quartz (Q), mica 

flakes (M), detrital clay and a pennate diatom frustule (D). 
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Plate 8 

Agglutinated foraminiferal tests - Erme and Avon esturies 

Figure 1. Miliammina fusca, Avon Estuary, station A3, summer 1995. Low 

magnification view showing the agglutinated wall. 

Figure 2. Enlargement of Intact pennate diatom frustule (D) in Figure 1. 

Figure 3. Enlargement of Figure 1, showing a mixture of mineral and organic 

debris used to constmct the test, diatom (D) and quartz (Q). 

Figures 4 and 5. View of test wall (specimen as in Figure 1) showing the variation 

in the size of material and the type of material used (quartz, feldspar {F}, 

detrital clay, mica and shell firagments {SH}). 

Figure 6,7 and 8. Miliammina fusca, Erme Estuary, station E5, autumn 1993. 

Mineral and biogenic grains of quartz (Q), mica (M) and shell fragments (SH) 

used to construct the test. 
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In summary, therefore, salinity regimes may account for the absence of the 

agglutinated species in the creek locations of Mylor, Percuil, Pill and the estuarine 

location of St Just in Roseland. The other locations in Carrick Roads, however, have 

salinity regimes which are comparable to those of the control estuaries, Erme, Fowey 

and Avon. With respect to sediment metal concentrations, the locations at Truro and 

St Clements each had sediment metal concentrations which were similar to 

Restronguet Creek. It is apparent that the mineralogy of the sediment samples is 

reflected by the tests from each location but that the available grain size appears to 

be less significant. The abundance of mica and clay particles and the high proportions 

of fines (<16pm), particularly in Restronguet Creek, would provide ample suitable 

material for test growth by such species as J. macrescens and 7. inflata. Little is 

known, however, of the extent to which agglutinated foraminifera select the material 

used to build their tests. Slama (1954) concludes that Ammobaculites was not 

selective if the available material is limited and Scott et al. (1998) found that M. fusca 

showed no selectivity in grain size, shape or mineralogy. Wightman (1990a), 

however, found that the three species A. subcretaceous, A. coprolithiformis and 

A. obliques were grain-size selective which was controlled by 'architectural' 

constraints and the grain size of the fades inhabited. Wightman (1990a) conceded 

that these preferences were only applicable to fossil assemblages and had not been 

recorded in Recent assemblages. Medioli etal. (1987) found that the taxonomic value 

of test material was of limited use and conclude that the material used to build the test 

depends on what is available and this appears to be the case in samples used in this 

study. 
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5.8 Test deformity 

5.8.1 Infroduction 

Test deformity, although occasionally displayed by Miliammina fusca and 

Trochammina inflata, has not been attributed to metal pollution as the micro-analysis 

techniques available cannot take account of the numerous unknown factors 

associated with tests built of heterogeneous material (Section 5.7). Reliable 

instrument and elemental calibration have been achieved with respect to the 

calcareous species with quantified data being obtained using Laser Ablation ICP 

(Section 5.9) and semi-quantitative data using SEM microprobe (Stubbles et al., 

1996a). Specimens of Jadammina macrescens, without collapsed chambers (natural 

deformation), have also displayed test deformity but only occasionally. However, due 

to frequently occurring natural deformation (Chapter Three, Plate 2, Figure 6), this 

species is not suitable for this type of study. Hence, only the forms of the test and 

percentage proportions of test deformity are desaibed here with respect to the 

calcareous species standing aop. This prevents either elevation or reduction of the 

proportions of test deformity in the control estuaries relative to Restronguet Creek 

where the agglutinated species are absent. Deformity abundance data are given in 

Appendix 2.1 - 2.4 and give values that include deformed calcareous tests and total 

deformed tests; the latter including deformed agglutinated species. 

5.8.2 Types of test deformity 

The types of test deformity described here appear in each of the sampling 

locations but the more extreme forms (e.g. multiple chambered) are more common 

and abundant in Restronguet Creek. Because of the subjective nature of the analysis, 

quantitative data have not been obtained, and only the obvious examples of test 

deformity (omitting those tests with mechanical damage) have been included in this 
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analysis. For objective analysis a computerised analysis of at least 35 specimen 

examples of each type of deformity is required (Dr. N. McCleod, The Natural History 

Museum, London, pers. comm. 1995) which is beyond the scope of this research. 

Occasionally, acute test deformation has obscured the taxonomic features of certain 

species, making identification doubtful. Included with the examples of test deformity 

(Plates 9-13) are juvenile specimens with deformed tests which only occurred in the 

Restronguet Creek samples (those specimens retained on the 63pm sieve and, 

hence with a test size <125pm). These deformed specimens are distinct from the 

naturally occurring irregular forms which are common in the tests of juveniles. 

For the purposes of this research the types of deformity have been grouped 

according to the predominant structural feature with the exception of the combination 

type. There are nine types of deformity described here; combination, additional 

calcareous growth, protruding last chamber, twinning, enlarged final chamber, high 

trochospiral, notched periphery, multiple chambers and reduced chamber size. The 

largest group type is the 'combination'; i.e., where more than one form of deformity is 

exhibited (Plate 9, Figures 1-12, and Plate 10, Figures 1 -6). The second most 

abundant group are those tests displaying additional calcareous growth which is a 

calcareous adhesion, commonly appearing as a sphere (Plate 10, Figures 7 -14). An 

uncoiling of the test during the last stages of growth is termed 'protruding last 

chamber" and is displayed more commonly by the species H. germanica (Plate 11, 

Figures 1-3) and less so by E. williamsoni. This deformity has not been noted in 

Ammonia beccarii. Twinning has rarely been displayed by A. beccarii but is more 

commonly found in specimens of E. williamsoni and H. genvanica. The more extreme 

examples of twinning are shown by Plate 11 (Figures 4 - 7). 
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Plate 9 

Figures 1 -12: Combination 

(all specimens for Plates 10-14 were taken from Restronguet Creek, stations TC6, 
TC8 and TC9 at various time intervals) 

Figure 1. l-laynesina germanica, displaying a combination of additional calcareous 

growths, notched periphery and mis-shapen sutures. 

Figure 2. Haynesina germanica, with mis-shapen sutures and chambers. 

Figure 3. Haynesina germanica displaying more subtle deformed features, one 

enlarged mid-chamber and acutely arched sutures. 

Figure 4. Haynesina germanica displaying several deformed features, in particular, 

an enlarged last and penultimate chamber. 

Figure 5. Juvenile, H. germanica, with an enlarged mid-chamber and reduced 

number of tubercles. 

Figure 6. Haynesina germanica with several bulbous chambers. 

Figure 7. Ammonia beccarii, spiral side, with enlarged final chamber, the other 

chambers are irregular with respect to size and shape. 

Figure 8. Ammonia beccarii, spiral side with irregular chamber shape. 

Figure 9. Ammonia beccarii, spiral side, with irregular chamber size and shape 

particularly in the earlier formed chambers. 

Figure 10. Ammonia, beccarii, spiral side, with irregular chamber size and shape 

particularly in the later formed chambers. 

Figure 11. Ammonia beccarii, spiral side, with disproportionately smaller final 

chamber. The other chambers are of irregular size, which produce an 

elongate test. 

Figure 12. Juvenile, A. beccarii, umbilical side, with a deep depression between 

the final and penultimate chambers. 
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Plate 10 

Figures 1 - 6: Combination 

Figure 1. Elphidium williamsoni, with a combination of disproportionately sized 

chambers, forming a notched periphery and mis-shapen sutures. 

Figure 2. Elphidium williamsoni, with a combination of a notched periphery, 

mis-shapen sutures and chambers. 

Figure 3. Elphidium williamsoni w\\h a protruding mid-chamber and additional 

calcareous adhesions around the apertural face. 

Figure 4. Juvenile E. williamsoni (?) with enlarged last chamber but flattened 

penultimate chamber. The sutures have fewer retral processes. 

Figure 5. Juvenile E. williamsoni \mth inflated earlier formed chambers. The 

sutures and retral processes are deformed with the latter being few in 

number. 

Figure 6. Elphidium williamsoni wWh an acutely arched and re-orientated suture. 

Figures 7 -14: Additional Calcareous Growth 

Figure 7, Elphidium williamsoni W\{h a calcareous protrusion of two chambers. 

Figure 8, Elphidium williamsoni wth irregular chamber extension of the test. 

Figure 9. Haynesina germanica with additional calcareous growth of two chambers. 

Figure 10. Haynesina germanica with additional and irregular chamber size. 

Figure 11. Haynesina germanica, as above. 

Figure 12. Haynesina germanica with additional calcareous growth. 

Figure 13. Haynesina germanica as above. 

Figure 14. Juvenile A. beccan/with additional calcareous growth and mis-shapen 

chambers. 
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Plate 11 

Figures 1-3: Protruding Chamber 

Figure 1. Juvenile Haynesina germanica, with a protruding additional chamber. 

Figure 2. Haynesina germanica, with an enlarged, extended and re-orientated 

final chamber.. 

Figure 3. Haynesina germanica, with an elongated test. 

Figures 4-7: Twinning 

Figure 4. Twinned E. williamsoni. 

Figure 5. Twinned E. williamsoni, with a double aperture. 

Figure 6. Twinned Juvenille E. williamsoni, with a reduced number of retral 

processes. 

Figure 7. Twinned H. germanica. 

Figures 8-12: Enlarged Final Chamber 

Figure 8. Haynesina germanica, with enlarged sets of mid and final chambers. 

Figures 9 - 1 1 . Haynesina germanica with enlarged final chamber. 

Figure 12. Ammonia beccarii W\ih enlarged final chamber. Spiral side. 

235 





Plate 12 

Figure 1. Enlarged final chamber of Elphidium williamsoni with a reduced sized 

penultimate chamber. 

Figures 2 and 3: High Trochospiral 

Figure 2. Juvenile Ammonia beccariivAth over inflated chambers, beginning 

with the proloculus which extends outwards. 

Figure 3. Ammonia beccaiii W\ih enlarged proloculus. 

Figures 4-9: Notched Periphery 

Figure 4. Haynesina germanica with a deep notched periphery. 

Figure 5. Haynesina genvanica with a shallow notched periphery. 

Figure 6. Haynesina gennanica with a re-orientated final chamber and deep 

notched periphery. 

Figure 7. Haynesina germanica with notched periphery or reduced growth of a 

mid-chamber. 

Figure 8. Ammonia beccariimth a notched periphery. Spiral side. 

Figure 9. Elphidium williamsoni wth notched periphery. 

Figures 10 -12: IVIultiple Chamber Growth 

Figure 10. Haynesina germanica with multiple chamber growth displayed in two 

orientations. 

Figure 11. Haynesina germanica displaying multiple chamber growth. 

Figure 12. Haynesina germanica (?) displaying multiple chamber growth. 
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Plate 13 

Figures 1 - 6: Reduced Last Chamber Growth 

Figure 1. Elphidium williamsoniW\\h a disproportionately smaller last chamber. 

Figure 2. Elphidiuim williamsoni w\^ a disproportionately smaller last chamber \vhich 

forms a near discoid test shape. 

Figure 3, Elpliidium williamsoni \m{h a disproportionately smaller last chamber. 

Figure 4. Elphidium williamsoni m\h a disproportionately much smaller last 

chamber and, with an additional calcareous growth. 

Figure 5. Ammonia beccarii \m\h a disproportionately smaller last chamber. Spiral 

side. 

Figure 6. Ammonia beccarii \m\h a disproportionately smaller last chamber. 

Umbilical side. 

Figures 7 - 9: Acute Deformation 

Figure 7. Haynsina germanica (7) with irregular chamber size and shape. 

Figure 8. Ammonia beccarii (?) with irregular chamber and test shape, spiral side. 

Figure 9. Ammonia beccahimth irregular chamber size and shape. Spiral side. 
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Tests that have an enlarged final chamber are commonly displayed by 

H. germanica (Plate 11, Figures 8-11) and A. beccarii (Plate 11, Figure 12) but less 

commonly by E. williamsoni {P\aie 12, Figure 1). Ammonia beccarii sNas the only 

species to display an enlarged proloculus which produces a high trochospiral test 

(Plate 12, Figures 2 and 3). Tests with notched peripheries (Plate 12, Figures 4-9) 

are exhibited by all species but are particularly common in E. williamsonL Tests with 

multiple chamber growth create acute distortion of the chambers and sutures (Plate 

12, Figures 10-12) and appeared more commonly in Restronguet Creek, particularly 

within the dead assemblage. In some cases this deformity can lead to mis-

identification of the species. A disproportionately smaller last chamber (reduced 

chamber size) relative to the preceding chambers is a deformity displayed by all 

species and is moderately common (Plate 13, Figures 1 - 6). In the case of 

H. gemrianica (Plate 13, Figure 5) this type of deformity may be an artifact of the 

notched periphery. Finally, examples of extreme deformity whereby the taxonomic 

characteristics of a specimen are obscured, thus leading to species mis-identification, 

are shown by Plate 13, (Figures 7-9) but these forms are rare. 

5.8.3 Proportions of test deformity 

/) Restronguet Creek 

The data for test deformity have been grouped and compared by season to 

reflect seasonal variation in standing crop density (Section 5.2). Seasonally, the 

winter, spring and autumn (Figure 5.20 - 5.23, a - b) had the highest frequency 

occurrence of high values with a range between 7% - 30% particularly in the early 

stages of sampling (pre -1994). Although the summer data sets were overall the 

lowest, there was only one station at which deformed tests were not present (station 

D1 in 1993). The highest summer values only appear more frequently in 1993 
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(0% - 56%) but the majority of values were below 7% (Figure 5.23, a and b). In the 

majority of cases the summer 1995 and 1996 values were less than previously 

recorded in 1993 and 1994. Station CI 9 was the only station to have consistently 

high summer values of between 6% and 56% during each year (Figure 5.23b). 

Comparing the average values obtained for the years 1992 and 1996 (autumn) the 

former year was 7% while the latter had 2.5% deformed. Overall, samples taken from 

the upper (D1) and mid - Creek stations (TC6, TC8, TC9), and the subsidiary creek 

station, PCI3 on the north side (Figures 5.20a - 5.23a) frequently had the highest 

proportions. On the south side, stations CI 9, K20 and H23, had the highest 

proportion of deformed tests (Figures 5.20b - 5.23b) but the frequency was low 

compared with equivalent stations on the north side. Those stations which were not 

colonised by foraminifera (Section 5.2) had high proportions of test deformity with the 

onset of colonisation, for example, D1, with 11 % in spring and autumn 1993 (Figure 

5.20a - 5.22a), and, station C19 (Figure 5.22b) with 10% in the spring (1993) and 

56% in the summer (1993). Station K20, however, had no deformed foraminifera 

when colonisation began in autumn 1994 but this may be an artifact of the small 

sample size of 52 stained individuals. There are, however, numerous examples of test 

deformity observed in low abundance standing crops, most particularly prior to 

summer 1994 (e.g. TC6 and H23 autumn 1992; D1,TC6, CI 9 and H23 spring 1993, 

Appendix 2.1). Station CI9 in summer 1993 had a particularly small standing crop of 

18 of which 10 were deformed (56%). During the following winter (1995) no samples 

were taken at CI 9, K20 and H23 due to flooding but test deformity at K20 was 16% in 

the summer of 1995 (Figure 5.23b) from a standing crop of 552. Spring 1995 and 

winter 1996 also had zero test deformity at station K20, but this may be due to the 

lower standing crop density (70 and 11 respectively). 
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Figure 5.20: Proportions of test deformity in Restronguet Creek, autumn 1992 - 1996. 
a) north side and b) south side. 
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Figure 5.21: Proportions of test deformity in Restronguet Creek, winter 1993 -1996. 
a) north side and b) south side. 
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Figure 5.22: Proportions of test deformity in Restronguet Creek, spring 1993 -1996. 
a) north side and b) south side. 
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Figure 5.23: Proportions of test deformity in Restronguet Creek, summer 1993 
1996. a) north side and b) south side. 
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The distribution of test deformity observed for each species broadly follows 

the trend shown in species dominance with more deformed tests exhibited by the 

dominant taxa. Prior to summer 1995, the proportions and frequency of A. beccarii 

were low and consequently the portion of the total standing crop that comprised 

deformed A. beccarii, was similarly low. With the increased occurrence of >A. beccarii 

the instances of test deformity exhibited by this species has also inaeased. It is 

apparent that of the three species the proportions of A. beccarii that are deformed is 

high (e.g., 27% of/A. beccarii yA/ere deformed at station H23, summer 1996). 

In summary, therefore, the springs of 1993 and to a lesser extent 1994 and 

1995, had frequent occurrences of high percentage proportions of test deformity on 

the north side but less so on the south side of the Creek. The years 1993 and 1994, 

and a lesser extent 1992 (autumn only) generally gave the highest percentage 

proportions throughout the Creek, but the following period 1995 -1996 had few 

values greater than 4%. There were numerous occurrences of zero on both sides of 

the Creek in winter 1996 and the average proportion of deformed tests was less than 

3%. The winter average for 1993 was 6%. In the summer of 1996, however, there 

were no occurrences of zero and values ranged between 3 and 7% (mean of 4%) on 

the north side, and, 1 and 14% on the south side (mean of 5%). 

ii) Erme Estuary 

Seasonally, the spring had the highest number of stations which had 

deformed foraminifera and winter the least. The summer and autumn each had the 

same number of stations with deformed tests. Stations E5 (4 -12%) and 0W14 (1 -

10%) were the only stations to each have deformed tests during all seasons (Figure 

5.24, a and b). 
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Figure 5.24: Seasonal variation in the proportions of test deformity, Erme Estuary, a) 
west side and b) east side. 

The highest percentage proportion of test deformity in the Erme Estuary was 

12% at station E5 in the summer and at station S20 in the autumn of 1993 (Figure 

5.24a). Stations 0W11 (summer) and CM16 (autumn) each had the second highest 

value. Otherwise, the majority of values were below 3% with frequent occurrences of 

zero. The low and mid - estuary stations on the east side (Figure 5.24b) had more 

frequent occurrences of test deformity relative to the west side but due to the 

seasonal absence of foraminifera at stations HP2 - HP4 interpretation of the results 

are constrained due to a lack of data. The average proportions of deformed tests did 

not exceed 3% and, overall, the occurrence and proportions were randomly 

distributed. 

The deformed species portion of the standing crop total is less influenced by 

species dominance and it appears that the instances of test deformation by 
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H. germanica and £ williamsoni are similar. The exception to this is for the spring 

with more E. williamsoni having instances of test deformity. There is only one instance 

of test deformity shown by A. beccarii but this species is a minor assemblage 

componant. 

Hi) Fowey Estuary 

There were no individual values above 5% in the Fowey Estuary (Figure 

5.25, a and b) and deformed tests were frequently absent at many stations in the 

winter, but less so in the summer, autumn and spring when the calcareous species 

componant was greater. Average proportions did not exceed 2%. Deformed tests 

were recorded at stations CHS and G12 for all seasons. Stations StW1 and G14 had 

between 1 % and 5%, and, 1 % and 4% deformed tests respectively, in spring, summer 

and autumn. 
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Figure 5.25: Seasonal variation in the proportions of test deformity, Fowey Estuary, a) 
east side and b) west side. 

247 



The deformed species portion of the standing crop total appears to be 

influenced by species dominance with more instances of test deformation by 

H. germanica, particularly in the summer and less so in the spring. There were more 

instances of test deformity by E williamsonl in the autumn. As with the other control 

estuaries there were few occurrences of test deformity by A. beccahi in the Fowey 

Estuary. 

iv) Avon Estuary 

Seasonally, the highest number of stations with deformed foraminifera were 

observed in the autumn with the other seasons being equal to each other. The 

highest proportions of test deformity in the Avon Estuary (Figure 5.26, a and b) were 

restricted to the upper estuary stations A1 (14%, spring; 16%, autumn) and A2 (29%, 

summer) and the mid - estuary station A10 (12%, spring). The other upper estuary 

station A9 on the east side, however, did not exceed 5% deformed tests. Stations A2, 

A6, A7, A10 and A11 each had only one seasonal sample containing deformed 

foraminfera but station A4 had deformed tests during the summer, autumn and winter 

(Figure 5.27, a and b). Station A3 only had deformed foraminifera in summer, winter 

and spring with the summer value being the highest at 6%. Deformed tests were not 

observed at any of the stations during every season and none were ever observed at 

station A5. The average proportions of deformed tests observed on the east and west 

sides of the estuary ranged between 1 % and 5%, and, 0% and 3% respectively. 

Overall, the proportions of test deformity were less than 3% with the occurrence of 

zero being common, particularly on the east side in the summer and winter. 

The deformed species portion of the total standing crop also appears to be 

less influenced by species dominance with similar instances of test deformation by 
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H. germanica and E. williamsoni in the summer, spring, winter but less so in the 

autumn. Instances of test deformity by A. beccarii are few and generally appear in the 

summer and autumn. The deformed proportion of this species is only high on one 

occasion (e.g., 100% at station A2 in the summer). 
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Figure 5.26: Seasonal variation in the proportions of test deformity, Avon Estuary, 
a) west side and b) east side. 

5.8.4 Relationship between defomied tests and other variables 

/) Restronguet Creek 

With the exception of 1993 (autumn) and 1994 (autumn, winter and spring) 

the relationship between the proportion of deformed tests and salinity is negative 

(Table 5.3 [Tables at the end of Chapter Five]). This negative relationship between 

deformed tests and salinity is only strong for summer 1994, otherwise all other values 

are significant, as follows, autumn (1992), spring (1993), winter (1994) and summer 

(1996). The overall negative relationship shown suggests that the proportion of 
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deformed tests decreases down Creek as salinity increases. 

Overall, the relationship between temperature and the proportion of deformed 

tests is negative and on only a few occasions is the correlation significant and at no 

time were they strong (Table 5.3). 

With the exception of spring 1995 (-0.72) there are no strong correlation 

coefficients shown between organic carbon (%) and the percentages of deformed 

tests. Data for winter, 1993 and autumn 1995 show a significant relationship between 

these two parameters. No trend is shown with respect to the level of significance and 

type of correlation shown (+ or -) for either season or year. With the exception of 

autumn 1993, there are no significant correlation coefficients shown between the C/N 

ratio and deformed tests. Again, a trend is not apparent. The relationship between the 

proportion of deformed tests and each of the three grain size categories is also 

insignificant (Table 5.4). 

Arsenic is the only metal to show a significant relationship with the proportion 

of deformed tests for the year 1992 (-0.6). With the exception of Pb (1992), all metals 

for the years 1992 and 1995 show a negative but insignificant relationship with the 

percentages of deformed tests (Table 5.5, a and d). For 1994, however, all values are 

positive, with the exception of Ni. Apart from As and Pb, all metals in 1996 showed a 

positive relationship with the proportion of defomried tests (Table 5.5e). 

The reasons for the negative relationship, particularly in 1992 are explored 

further in Chapter Six. As an initial explanation, however, it would appear that the 

absence of a standing crop at stations D1, CI 9 and K20 in 1992 (hence, no deformed 

foraminifera) would produce a statistical rather than an environmental anomaly. This 

is supported by the change from all negative values in 1992 (with the exception of Pb) 

to mostly near neutral positive values in 1994 and 1996 when all stations were 

colonised by foraminifera. For 1995 all values are negatively, but insignificantly 
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correlated with Al, and Ni approaching neutral. Analysis of metal concentration data 

from stations D1, C19 and K20 only and the corresponding deformed test data for 

1998 (in order to correspond with the laser ablation data. Section 5.9) show Al, Cu, 

Pb, Ni and Zn to be significantly and positively correlated with the proportion of 

deformed tests. Copper and Zn show a particularly strong relationship of 0.79 and 

0.72 respectively. This data, with the exception of Zn, is similar to the results of the 

laser analysis (Section 5.9). 

//) Erme Estuary 

There are no significant relationships shown between the percentages of 

deformed tests and the variables of salinity, temperature, organic carbon, the C/N 

ratio and the three grain size categories (Table 5.6). The exception to this is for 

temperature (spring) which shows a significant and negative relationship with the 

proportions of deformed tests (-0.68). There are, also, no significant correlations 

shown between any metal and the proportion of deformed tests (Table 5.7). 

Hi) Fowey Estuary 

The C/N ratio (-0.54) and Fe (0.53) are the only variables to show a near 

significant relationship with the proportion of deformed tests (Tables 5.8 and 5.9). All 

other variables show an insignificant relationship and with respect to metals the 

values are always positive. 

iv) Avon Estuary 

Salinity is only significantly correlated with the proportions of deformed tests 

for spring (-0.6). The percentages of organic carbon show a strong relationship with 

the proportion of deformed tests for summer (0.78). All other variables, however, show 
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an insignificant relationship with the proportion of deformed tests (Tables 5.10 and 

5.11). 

5.9 Elemental concentrations within the calcareous tests 

The Laser Ablation Inductively Coupled Plasma analysis of calcareous tests 

(Plates 14 and 15) detected only low concentrations of the metals Cr, As and Cd and 

the majority of values were beyond detection limits; these data are not given here. 

Metal and test form 
Al deformed 
Al undefomed 

Cu ''̂  deformed 
Cu"undeformed 
Cu * deformed 
Cu'^undeformed 

Fe deformed 
Fe undeformed 

Ni deformed 
Ni undeformed 

Pb deformed 
Pb undefonmed 

Zn "̂  deformed 
Zn *^ undeformed 
Zn'^defomfied 
Zn ^ undeformed 

Mean 
2.97 
1.34 
0.8 
0.5 
0.8 
0.53 

5.8 
3.75 

0.39 
0.16 

0.056 
0.019 

1.16 
1.15 
1.1 
1.23 

Minimum 
1.0 
0.9 

0.47 
0.47 
0.42 
0.48 

3.9 
2.83 

0.12 
0.15 

0.033 
0.016 

0.68 
0.78 
0.63 
0.94 

Maximum 
4.57 
1.97 

1.23 
0.57 
1.3 

0.57 

7.7 
5.0 

0.98 
0.17 

0.1 
0.023 

1.6 
1.57 
1.6 
1.8 

Median 
3.15 
1.23 

0.74 
0.53 
0.72 
0.53 

5.84 
3.58 

0.22 
0.16 

0.045 
0.019 

1.18 
1.12 
1.15 
1.1 

Table 5.12: Elemental concentrations within the tests of deformed and undeformed 
specimens. The values are in units of concentration and the two isotopes of Cu^and 
Zn are included as shown (Stubbles and Chenery, in prep.). 

In the deformed tests, the metals Al, Cu, Fe, Ni and Pb were greater (Table 

5.12) than in the undeformed tests as mean, maximum and median values but the 

minimum values for Al, Cu and Ni were very similar which suggests background levels 

for each element (Stubbles and Chenery, in prep.). In the case of Zn, however, the . 

difference in concentration between the deformed and undeformed specimens was 

insignificant. The order of metal concentration in deformed and undeformed tests is 
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the same, as follows, Fe>AI>Zn>Cu>Ni>Pb. This is similar to the sediment metal 

concentrations (Fe>Zn>AI>Cu>As>Pb>Ni) with the exception of Al and Ni which are 

placed higher (Chapter Four, Section 4.7.4). The values given for each isotope were 

very similar as would be expected for correct quantitation (8. Chenery, pers.comm.). 

Correlation coefficient analysis carried out between the foraminiferal laser 

analysis and the sediment geochemical data (Table 5.13) produced strong positive 

associations (>0.7) for the metals Cu, Ni and Pb, with the latter two approaching unity. 

There were strong negative associations between the undeformed tests and sediment 

concentrations of Al and Cu (as the isotope 65 but not 63). Overall, therefore, the 

results obtained for the deformed tests were positive, but were negative with respect 

to the undeformed tests. 

foraminiferal 
tests and 

metals 
AI/D-AI 
AI/U-AI 
Cu^lD - Cu 
Cu^lU - Cu 
Cu^lD - Cu 
Cu'̂ /U - Cu 
Fe/D - Fe 
Fe/U - Fe 
Ni/D - Ni 
Ni/U - Ni 
Pb/D - Pb 
Pb/U - Pb 
Zn"/D-Zn 
Zn"/U-Zn 
Zn''/D-Zn 
Zn''/U-Zn 

Correlation 
coefficient 

0.4 
-Q.rr 
0.77* 
-0.06 
0.81* 
-0.83* 
0.42 
-0.27 
0.94* 
-0.42 

0.996-1-
-0.3 
0.2 

-0.06 
0.08 
-0.26 

Table 5.13: Statistical relationship between metal concentrations in the foraminiferal 
tests and in the sediment. Strong values are in bold (D = deformed and U = 
undeformed). Values marked * have a 95% confidence limit and + with 99% (C.L.). 
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Plate 14 

Figure 1. Haynesina genvanica (deformed), Restronguet Creek, station D1, 

summer 1995, showing two craters created by laser ablation. 

Figure 2. Enlargement of the above two craters in Figure 1, in the final and 

penultimate chambers. The crater marked a is a more regular shape than 

crater b. 

Figure 3. Crater a showing even ablation. 

Figure 4. Crater b showing uneven ablation. 

Figure 5. Haynesina genvanica (undeformed), Restronguet Creek, station D1, 

summer 1995, with a laser ablation aater in one of the earlier formed 

chambers. 

Figure 6. Enlargement of the crater in Figure 5. 
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Plate 15 

Figure 1. Ammonia beccarii, umbilical side, Restronguet Creek, station C19, 

summer 1995. Laser ablation of two chambers, crater marked 2 is unusually 

smooth. 

Figure 2. Ammonia beccarii, spiral side, Restronguet Creek, station C19, summer 

1995. Irregular shaped aater. 

Figure 3. Ammonia beccarii, spiral side, Restronguet Creek, station C19, summer 

1995. Crater exposing thinned wall. 

Figure 4. Ammonia beccarii, spiral side, Restronguet Creek, station CI 9, summer 

1995. Laser ablation went through the resin fixative first (hence the smooth 

surface to the right of the test). The crater itself approximates to a flat 

bottomed cone and exposes several layers of calcareous growth. 

Figure 5. Laser ablation through resin. Again the exposed test wall shows several 

layers of calcareous growth. 

Figure 6. Ammonia beccarii, umbilical side, deformed, Restronguet Creek, station 

K20, summer 1995. An example of complete chamber loss. The chamber 

(bottom right of the picture) has almost been entirely ablated away. 
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Plate 15 
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5.10. Acid etching of calcareous tests 

in Restronguet Creek, acid etching of living individuals of the three 

calcareous species, Hayneslna genvanica, Elphidium wiHiamsoni and Ammonia 

beccarii produced a white, opaque finish to these normally glassy hyaline tests 

(Figure 5.27, a and b). Acid attack also caused weakening, premature breakage, test 

loss and the rose Bengal stain wfiich is usually visible, was obscured so that the tests 

resembled dead foraminifera (Murray and Wright, 1970; Stubbles, etal., 1996a, b). 

Acid corrosion of the tests also produced test wail layering, thinning and a chalky 

internal structure (Stubbles, et al., 1996b}. In addition to full test opacity, the less 

damaging effect of partial opacity was also evident which produced a slightly dulled 

surface, but through which the rose Bengal stain was visible. 

Figure 5.27: Tests of E. williamsoni, a) hyaline and b) opaque. 

The spatial distribution in the occurrence of full opaque tests was between 

stations D1 and P10 on the north side of Restronguet Creek and C19 and H23 on the 

south side (by the time colonisation had begun at station K20 in autumn 1994 the 
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occurrence of full test opacity was no longer a feature). At stations TW27 - PI30, and, 

PC 13 and CY16 partial opacity was evident but without premature damage. Partial 

opacity occun'ed at these stations between 1992 and 1996, with the exception of 

winter 1993 wheri fully opacity appeared in 100% of the stained assemblage, at all 

stations and this coincided with a rise in river water acidity (pH 4.4) entering the Creek 

(Chapter Four, Figure 4.18). Seasonally, the winter had the highest and most frequent 

occurrence of full opaque tests at stations D1 - P10 in 1993 and 1994. In winter 1995 

only stations D1 and TC6 had tests which showed full opacity. Overall, therefore, the 

proportion of full opaque tests and the Creek area affected has diminished with time 

and by the summer of 1994 there were no opaque tests, when formerly these had 

been 100% of the live assemblage at the upper and mid - Creek stations, on both 

sides of the Creek. 

5.11 Loss of caicareous tests through acid dissolution 

5.11.1 Introduction 

The dead assemblage comprises empty tests belonging to the indigenous 

species and those transported in from adjacent environments. As a consequence of 

this mixing, the dead assemblage can be dissimilar to the live assemblage, 

particularly in estuaries which contain low diversity assemblages (Murray, 1984; 1991; 

Wang and Murray, 1983). An accumulation of agglutinated species in the dead 

assemblage relative to the stained assemblage may be indicative of calcareous test 

dissolution (Alve and Murray, 1995a; Mun-ay, 1970a). The accumulation and removal 

of these tests is dependent upon a number of postmortem influences (e.g., test size 

and shape [Murray, 1986; Snyder etal. 1990], dredging, wave and tidal energy 

[Munray et al., 1982], estuarine orientation and dissolution [Boltovoskoy and Totah, 

1992]) and it is difficult to make comparisons between estuaries. Only general 
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comparisons have, therefore, been made here between each estuary included in this 

study. 

The technique used by Murray (1989; 1991) requires the presence of 

agglutinated species to determine calcareous test loss but as these species are 

absent in Restronguet Creek the increase in the percentage proportions of the non -

indigenous species have been used instead to determine relative rates of calcareous 

test dissolution as an indicator of the changes in the volume of acidified water 

entering the Creek since 1992 (Chapter Four, Section 4.5). 

5.11.2 Distribution of the transported-in calcareous tests 

f) Restronguet Creek 

The only direct indication of test dissolution is from the short cores taken from 

Restronguet Creek. The abundance of foraminifera (indigenous and transported - in) 

decreased down each core and, in core TC6 (core length 50cm) they disappeared 

below 15cm (Stubbles et al., 1996b) but were present throughout cores TC9 (core 

length 40cm) and TW27 (core length 30cm). 

Between autumn 1992 and autumn 1993 surface samples taken from the 

upper and mid - Creek stations, in the majority of examples, had no transported-in 

species with the average proportions being very low. As a consequence, the diversity 

and species proportions of the live and dead assemblages were very similar. The 

other stations had low proportions (<1%) of transported - in species and again the 

dead assemblage closely resembled that of the living. By the autumn of 1995, 

however, the sediments at most stations had transported - in species >2% and every 

seasonal sample mean has shown a proportional increase (Figure 5.28). The average 

proportions of transported - in tests in 1996 was 8% in the autumn, 9% in winter, 9.3% 

in the spring and 3% in the summer. The autumn and spring data, for example, show 
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the smoothest trend with a gradual increase between 1992/93 and 1994 which may 

indicate a lack of disturbance due to storm events which can cause unusual rates of 

accumulation in transported - in species, or conversely, the absence of a major acid 

mine water discharge which is accompanied by a steady increase in the pH of the 

pore water and channel water. The greatest increase was shown by the winter data 

sets in 1995 and 1996 (Figure 5.28) reflecting the sustained rise and stability in pH 

levels (>6.5). The summer samples usually had the smallest proportions of 

transported - in species every year (Stubbles etal., 1996b). The average summer 

values varied little between 1993 and 1995 (2% each year) but in 1996 there was an 

increase of 1% so that of the seasons, the summer produced the smallest increase 

with time. This may be due to relatively lower tidal energy (fewer storm events occur 

in the summer) and the reduced amount of acidified mine water being discharged 

from the abandoned mines during the summer, thus leading to channel water of a 

higher pH. These assumptions are supported by the rainfall and pH data given in 

Chapter Four (Fijgure 4.18). 
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Figure 5.28: Seasonal proportions of transported-in species, Restronguet Creek. 
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Spatially, there was a trend throughout the period of sampling, with the 

highest proportions generally appearing at the lower Creek stations CY16 and PI30, 

and least at the upper Creek stations, for example, D1 and CI 9. This sorting process 

is apparent in all the estuaries and is probably associated with a decrease in tidal 

energy (Wang and Murray, 1983). In Restronguet Creek, however, there is the 

additional influence of acid dissolution which may explain the exceptionally low 

proportions. The greatest abundance of transported - in species, after 1995, 

appeared in the >63pm size fraction and least in the >250|jm size fraction. Prior to 

1995 differential test size distribution was less apparent, which suggests that 

transportation was not a major modifying influence but may have been after 1995. 

Species abundance and the diversity of the dead assemblage has changed 

over time and in addition to the first appearance of Quinqueloculina dimidata and 

Elphidium macellum, more species have been observed (Chapter Three, Table 3.1). 

In the majority of cases the transported - in species were the most robust forms and, 

those of a surface attached habit (e.g., Glabratella milletti and Gavelinopsis praegen). 

The shallow infaunal species with thinner tests belonging, for example, to the genus 

Lagena, were particularly rare. The proportions of transported - in agglutinated 

species (e.g., Trochammina ochracea) remained fairly static between 1992 and 1996. 

The agglutinated indigenous species which commonly colonise the control estuaries 

(Section 5.4, // - iv) were consistently absent in the dead assemblage, which supports 

the assumption that they do not colonise the area (Carrick Roads) adjacent to 

Retronguet Creek. Testate amoebae, originating from terrestrial habitats were 

occasionally found in samples taken throughout the Creek with the onset of sampling 

(Chapter Three, Table 3.1), although their occurrence has always been low. The most 

common species was Centropyxis aculeata and occasionally individuals were 

observed to be stained. 
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//) The Ernie and Avon Estuaries 

The cores taken from the Erme stations E6 and E8 had a greater abundance 

of calcareous tests compared with those taken from Restronguet Creek, but similarly 

the abundance diminished with inaeasing depth. With respect to the proportions of 

transported - in species, the Erme and Avon data had similar proportions (<58% and 

<65% respectively) and the distribution patterns were closely similar. The combined 

sample means were, however, higher in the Avon relative to the Erme for the autumn, 

winter and spring and this may reflect localised accumulation points or periodic storm 

events (but as these estuaries were not sampled concurrently it is impossible to 

identify a factor accountable for this anomaly). Upwards of 70 species were 

introduced but the proportions of each was low (<1 %), with the exception of Cibiddes 

lobatulus (the most common species transported - in) which accounted for 

approximately 40% of the dead assemblage at the stations in the lower estuary 

(Stubbles et al., 1996b). The high production rates and attachment habit of this 

species may account for this high level of incursion in the lower estuary areas. Other 

common calcareous species (between 2% and 6% of all transported - in species) 

were Asterigerinata mamilla and Rosalina anomala. At the genus level the species of 

Quinquloculina, Guttulina and Lagena were also frequently found. There were also 

rare occurrences of planktonic species; e.g., Globigerina bulloides. The commonest 

agglutinated species were Haplophragmoides wilberti, Trochammina ochracea and 

Reophax moniliformis some of which were stained red. As a consequence of the high 

abundance of transported - in species in each estuary, the living and dead 

assemblages were dissimilar, particularly in the lower estuary stations S20 (Erme) 

and A12 (Avon) which are closest to the source of these marine species and had the 

highest proportions (Murray, 1970; Stubbles etal., 1996b). Again, higher abundances 

of these transported - in species occurred in the finer fractions (>63pm - <125pm size 
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fraction) which suggests transportation in suspension (Wang and Murray, 1983). 

Testate amoebae routinely appeared in samples from both these estuaries (Chapter 

Three, Table 3.1) but there were no commonly occurring species. 

///) The Fowey Estuary 

The Fowey Estuary had fewer transported - in species and the proportions 

did not exceed 15% of the dead assemblage. The continental shelf species 

T. ochracea, Eggerelloides scabra, H. wilberti, R. moniliformis, Quinqueloculina 

dimidata and Q. lata commonly appeared but not in every sample and individually did 

not exceed 1 %. The lower, main channel stations had the highest proportions of 

transported - in species and greatest diversity from a maximum of 50 different species 

transported - in. Overall, the upper estuary and subsidiary creek stations had 

proportions below 5% and the lower estuary stations up to 15% in the winter but in the 

majority of cases were below 10%. The daily dredging of the lower estuary (Chapter 

One, Section 1.6, Hi) may account for the low abundance of introduced species 

throughout, or, the slightly acidic pore water conditions removing calcareous tests by 

dissolution (Chapter Four, Section 4.5). The short core taken in the upper estuary 

shows that the proportions of these introduced species has historically changed and 

between the 33cm level and the base of the core (40cm), a period which pre-dates 

dredging (1904), their abundance was greater than after this time. Testate amoebae 

were found in samples taken from the subsidiary creek stations LP03, RC4 and 

PPH11 but not in the main channel samples and relative to the Erme and Avon there 

were fewer species present. 
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Variable 
1992 

S.crop 
H. germanica 
E. willlamsonl 

A. beccarii 
% deformed 

1993 
S.crop 

H. germanica 
E. Williamson! 

A. beccarii 
% deformed 

1994 
S.crop 

H. germanica 
E. willlamsoni 

A. beccarii 
% deformed 

1995 
S.crop 

hi. germanica 
E. wiliiamsoni 

A. beccarii 
% deformed 

1996 
S.crop 

H. germanica 
E. wiliiamsoni 

A. beccarii 
% deformed 

% 0 

A 
0.64 
0.17 
0.21 
0.51 
-0.59 

A 
0.68 
0.18 
-0.04 
0.34 
0.35 

A 
0.13 
0.25 
-0.36 
0.5 
0.33 

A 
0.69 
0.23 
-0.71 
0.63 
-0.14 

A 
0.17 
0.34 
-0.45 
0.57 
-0.39 

V^J SP 1 S 

W 
0.3 

0.42 
0.56 
0.61 
-0.5 

W 
0.66 
0.26 
0.84 
0.69 
0.55 

W 
0.53 
0.68 
0.78 
0.36 
-0.44 

W 
059 
-0.44 
0.29 
0.1 

0.31 

SP 
0.79 
0.37 
0.19 
0.1 
-06 

SP 
0.71 
0.7 
0.4 

0.74 
0.31 

SP 
0.81 
0.52 
-0.35 
0.34 
-0.17 

SP 
059 
-0.2 
-0.2 
0.3 
-0.1 

S 
0.72 
0.37 
0.2 
0.1 

-0.36 

S 
0.84 
0.01 
0.59 
0.6 

-0.77 

S 
0.66 
0.40 
-0.43 
0.2 
-0.4 

S 
0.61 
-0.69 
0.46 
0.66 
-0.63 

•c 
A 

0.24 
0.05 
0.35 
0.3 

0.13 

A 
0.32 
0.1 

0.32 
-0.34 
-0.04 

A 
-0.36 
0.17 
-0.2 
0,19 
0.56 

A 
0 5 

-0.48 
0.07 
0.13 
0.24 

A 
0.02 
0.005 
0.02 
-0.04 
-0.05 

w 

w 
0.26 
0.44 
0.37 
0.67 
-0.3 

W 
0.75 
0.33 
0.65 
0.38 
0.45 

W 
0.57 
057 
0.13 
0.5 

-054 

W 
0.64 
-0.26 
0.11 
0.08 
0.18 

SP 

SP 
0.4 
-0.1 
0.3 
-0.1 
-0.4 

SP 
0.28 
0.2 
-0.1 
0.4 
0.3 

SP 
0.23 
0.45 
-0.45 
0.13 
0.2 

SP 
0.2 

0.19 
-0.12 
-0.1 
-0.1 

S 

s 
0.74 
0.48 
0.2 
0.2 

-0.34 

S 
0.8 
0.18 
055 
0.48 
-0.68 

S 
0.52 
0.47 
-0.55 
0.17 
-0.34 

S 
0.68 
-0.78 
0.51 
0.65 
-062 

C% 
A 

0.26 
0.06 
0.07 
0.2 
0.4 

A 
0.24 
-0.24 
-0.04 
-0.06 
-0.37 

A 
-0.41 
0.62 
-0.64 
0.24 
-0.1 

A 
0.38 
0.03 
-0.5 
0.5 

-055 

A 
-0.64 
0.58 
-055 
0.24 
-0.12 

™ , w _ 

. .T . . 
SP S 

^ i : . : • 1 

. . . f • • ! -1 

\<i 
-0.3 
0.12 
-0.11 
-0.04 
-063 

W 
0.35 
0.25 
0.31 
0.12 
0.17 

W 
-0.21 
0.16 
-0.1 
0,4 
0,02 

W 
-0.12 
0.05 
-0.6 
0.4 

-0.02 

SP 
0.2 
0.03 
-0.01 
-0.05 
-0.36 

SP 
0.32 
0.26 
0,43 
0.03 
0.15 

SP 
0.36 
0.46 
-0.15 
0.32 
-0.72 

SP 
-0.03 
-0.02 
0,33 
-0.15 
0.003 

s 
-0.15 
0.11 
-0.03 
-0.04 
-0.2 

s 
0.4 
-0.1 
0.18 
-0.06 
0.001 

s 
0.15 
-0.34 
-0.27 
0.43 
-0.1 

s 
0.62 
-0.06 
-0.07 
0.32 
-0.23 

C/N 

A 
0.14 
0.3 
0.3 
0.2 

0.34 

A 
-0.3 
-0.3 
-0.1 
-0.2 

-0.01 

A 
-0,43 
-0.1 
0.1 
-0.2 
-06 

A 
0.5 
-0,5 
-0,01 
0,45 
-0,01 

A 
-0,3 
-0,2 
0,3 
-0.3 
0.4 

W 

w 
-0.2 
-0.2 
-0.1 
-0.1 

-0.39 

W 
• -0.1 

0.01 
0.13 
0.04 
-0.14 

w 
-0.5 
0.04 
0.1 
-0.2 
0.32 

W 
0.04 
-0.9 
0.4 
0.4 

-0.34 

S P j S 

SP 
0.1 
-0,1 
-0,3 
-0.2 
-0.1 

SP 
0,01 
0.01 
-0.15 
0,05 
-0.26 

SP 
-0.3 

-0,12 
-0,03 
0,4 

-0,36 

SP 
-0.4 
0.23 
0.45 
-0.5 
0.19 

S 
0.02 
0.1 

0.15 
-0.15 
0.3 

S 
0,03 
0,1 

0.25 
-0.12 
0.23 

S 
0.15 
0.01 
0.1 

-0.15 
-0.11 

S 
0.12 
0.03 
-0.04 
0.01 
0.06 

Table 5.3: Restronguet Creek. Statistical relationship between the variables The shaded areas denote no data collection. Values which are 
enboldened are considered to be strongly correlated (>0.7) and values shown in italics are significant (>0.55 - <0.69). 



Variable 
S.crop 

H. germanica 
E. wllllamsoni 

A. beccarii 
% deformed 

Sediment Grain Size 
<16|jm 
-0.32 
-0.29 
0.32 
0.1 

0.47 

>16|jm -<63Mm 
0.1 
-0.1 
0.1 
-0.1 
0.19 

>63Mm 
0.17 
0.23 
-0.17 
-0.03 
-0.34 

Table 5.4: Restronguet Creek. Statistical relationship between the variables: standing 
crop,percentage proportions of species and deformed tests and the sediment grain size 
categories. Values which are enboldened are considered to be strongly correlated (>0.7) 
and values shown in italics are significant (>0.55 - <0.69). 

Variable 
S.crop 

H. germanica 
E. williamsoni 

A. beccarii 
% deformed 

METALS 1992 
Al 

-0.09 
-0.36 
-0.66 
-0.28 
-0.46 

Fe 
0.25 
-0.47 
-0.55 
-0.04 
-0.41 

Cu 
-0.08 
-0.3 

-0.55 
-0.15 
-0.37 

Pb 
0.36 
0.15 

0.004 
0.41 
0.03 

As 
0.11 
-0.22 
-0.54 
-0.13 
-0.6 

Ni 
-0.22 
0.08 
-0.38 
-0.29 
-0.2 

Zn 
-0.18 
-0.27 
-0.67 
-0.31 
-0.44 

Table 5.5a: Restronguet Creek. Statistical relationship between the variables: standing crop, percentage 
proportions of species and deformed tests and metal concentrations for 1992. Values which are enboldened 
are considered to be strongly correlated (>0.7) and values shown in italics are significant (>0.55 - <0.69). 



Variable 
S.crop 

H. germanica 
E. williamsonl 

A. beccaril 
% deformed 

METALS 1993 
Al 

0.15 
-0.3 
-0.29 
0.23 
0.24 

Fe 
0.48 
-0.06 
-0.07 
0.31 
-0.46 

Cu 
0.06 
0.07 
-0.37 
0.16 
-0.1 

Pb 
0.06 
-0.11 
-0.01 
0.08 
-0.1 

As 
0.46 
0.08 
0.15 
0.22 

-0.001 

Ni 
0.22 
-0.16 
-0.17 
0.19 
-0.28 

Zn 
0.15 
0.11 
-0.31 
0.19 
-0.1 

Table 5.5b: Restronguet Creek. Statistical relationship between the variables: standing crop, percentage 
proportions of species and deformed tests and metal concentrations for 1993. Values which are enboldened 
are considered to be strongly correlated (>0.7) and values shown in italics are significant (>0.55 - <0.69). 

N3 
en 

Variable 
S.crop 

H. germanica 
E. williamsoni 

A. beccarii 
% deformed 

Al 
-0.09 
0.68 
-0.69 
0.38 
0.03 

Fe 
-0.13 
0.66 
-0.69 
0.46 
0.08 

Cu 
0.13 
0.64 
-0.65 
0.38 
0.04 

Metals 1994 
Pb 

-0.06 
0.71 
-0.75 
0.5 

0.16 

As 
-0.27 
0.34 
-0.36 
0.24 
0.19 

Ni 
-0.08 
0.58 
-0.56 
0.21 
-0.1 

Zn 
0.08 
0.65 
-0.64 
0.32 
0.1 

Table 5.5c: Restronguet Creek. Statistical relationship between the variables: standing crop, percentage 
proportions of species and deformed tests and metal concentrations for 1994. Values which are enboldened 
are considered to be strongly correlated (>0.7) and values shown in italics are significant (>0.55 - <0.69). 



Variable 
S.crop 

H. germanica 
E. williamsonl 

A. beccaril 
% deformed 

Metals 1995 
Al 

-0.56 
0.35 
0.31 
-0.47 
-0.16 

Fe 
-0.2 
0.3 

-0.06 
-0.06 
-0.36 

Cu 
-0.64 
0.42 
0.32 
-0.5 

-0.23 

Pb 
-0.39 
0.35 
0.31 
-0.48 
-0.24 

As 
-0.25 
0.14 
-0.06 
0.005 
-0.26 

Nl 
-0.29 
0.4 
0.18 
-0.36 
-0.02 

Zn 
-0.62 
0.42 
0.28 
-0.46 
-0.27 

Table 5.5d: Restronguet Creek. Statistical relationship between the variables: standing crop, percentage 
proportions of species and deformed tests and metal concentrations for 1995. Values which are enboldened 
are considered to be strongly correlated (>0.7) and values shown in italics are significant (>0.55 - <0.69). 

en 
00 

Variable 
S.crop 

H. germanica 
E. williamsoni 

A. beccarii 
% deformed 

Metals 1996 
Al 

-0.44 
-0.24 
0.38 
-0.58 
0.14 

Fe 
-0.45 
-0.13 
0.23 
-0.4 
0.02 

Cu 
-0.33 
-0.33 
0.48 
-0.67 
0.21 

Pb 
-0.48 
0.04 
-0.01 
-0.05 
-0.2 

As 
-0.41 
-0.08 
0.13 
-0.19 
-0.23 

Ni 
-0.41 
-0.23 
0.4 

-0.66 
0.07 

Zn 
-0.41 
-0.27 
0.43 
-0.64 
0.13 

Table 5.5e: Restronguet Creek. Statistical relationship between the variables: standing crop, percentage 
proportions of species and deformed tests and metal concentrations for 1996. Values which are enboldened 
are considered to be strongly correlated (>0.7) and values shown in italics are significant (>0.55 - <0.69). 



Variable 

Season 
S.crop 

H. germanica 
E. williamsoni 

A. beccarii 
M. fusca 

J. macrescens 
T. inflata 

% deformed 

A 
-0.2 
0.5 
0.66 
0.18 
-0.84 
-0.46 
-0.03 
0.49 

y 

w 
0.32 
0.68 
0.83 
-0.14 
-0.24 
0.13 

-
-0.37 

ID 

SP 
0.3 
0.67 
0.75 
-0.02 
-0.56 

-
-

-0.43 

S 
0.46 
0.63 
0.68 
0.33 
0.02 
0,12 
0.01 
-0.37 

"C 

A 
-0.06 
0.004 
0.37 
0.03 
-0.33 
-0.11 
-0.1 
0.15 

W 
0.1 
0.64 
0.82 
-0.04 
-0.27 
0.51 

-
0.1 

SP 
0.42 
0.5 
0.52 
-0.27 
-0.33 

-
-

-0.68 

S 
0.33 
0.68 
05 

0.35 
-0.3 
0.2 

-0.14 
-0.3 

c% 
A 

0.31 
-0.17 
0.14 
0.21 
-0.02 
-0.11 
0.25 
-0.1 

W 
0.2 

-0.41 
-0.18 
-0.28 
0.001 
-0.23 

-
0.2 

SP 
0.3 

-0.45 
0.15 
-0.21 
0.26 

-
-

-0.12 

S 
-0.13 
-0.04 
-0.08 
0.27 
0.37 
0.15 
-0.13 
0.35 

C/N 

A 
0.1 

0.06 
-0.002 
-0.01 
0.005 
-0.33 
0.27 
0.06 

W 
0,16 
-0.4 
-0.18 
-0.1 
0.22 
-0.04 

-
0.2 

SP 
0.15 
-0.4 
-0.24 
-0.1 
0.42 

-
-

0.29 

S 
-0.3 
-0.24 
-0.13 
-0.1 
0.77 
0.2 

0,46 
0.05 

Sediment Grain Size 

<16|jm 
-0.09 
0.32 
-0.22 
0.62 
-0.47 
-0.1 

-0.39 
0.43 

>16-63|jm 
-0.09 
-0.1 
-0.22 
0.18 
-053 
0.04 
-0.1 
0.19 

>63|jm 
0.12 
-0.02 
0.28 
-0.39 
-0.03 
-0.1 
-0,3 
-0,3 

CD 

Table 5.6: The Erme Estuary. Statistical relationship between the variables: standing crop, percentage proportions of species and deformed tests and the 
environmental variables: salinity, temperature, percentage carbon, C/N ratio and sediment grain size. Values which are enboldened are considered to be 
strongly correlated (>0.7) and values shown in italics are significant (>0.55 - <0.69). 

Variable 

S.crop 

H. germanica 

E. williamsoni 

A. beccarii 

M. fusca 

% deformed 

Mel 
Al 

0.16 
-0.2 

-0.18 
-0.21 
0.33 
0.03 

Fe 
0.01 
0.18 
-0.08 
-0.14 
0.02 
-0.05 

Cu 
0.08 

0.003 
-0.05 
-0.2 
0.02 
-0.15 

tals 
Pb 

0.07 
-0.25 
-0.2 

-0.16 
0.37 
-0.12 -

Ni 
-0.04 
0.28 
0.07 
-0.11 
-0.18 
-0.09 

Zn 
0.07 
-0.19 
-0.33 
-0.2 
0.46 
0.28 

Table 5,7: Erme Estuary. Statistical relationship between the variables: standing crop, percentage proportions of 
species and deformed tests and metal concentrations for autumn 1993. Values which are enboldeiied are considered 
to be strongly correlated (20.7) and values shown in italics are significant (>0.55 - <0.69). 



Variable 

Season 
S.crop 

H. germanica 
E. williamsonl 

A. beccarii 
M. fusca 

J. macrescens 
T. inflata 

% deformed 

700 

A 
0.35 
0.62 
0.14 
0.52 
-0.71 

-
-

0.19 

W 
0.14 
-0.02 
0.57 
0.67 
-0.62 

-
-

0.17 

SP 
0.57 
0.77 
0.1 
0.4 

-0.79 
-
-

0.34 

S 
0.52 
-0.25 
0.59 
0.54 
-0.5 

-
-

-0.15 

"C 

A 
0.43 
0.44 
0.47 
0.54 
-0.68 

-
-

-0.18 

W 
-0.1 
0.22 
0.57 
058 
-0.74 

-
-

0.27 

SP 
0.83 
0.7 

-0.29 
0.34 
-062 

-
-

0.23 

S 
0.87 
-0.28 
0.65 
0.56 
-0.58 

-
-

-0.1 

c% 
A 

-0.42 
-0.29 
-0.5 
-0.36 
0.55 

-
-

-0.26 

W 
-0.31 
-0.58 
-0.14 
0.01 
0.47 

-
-

0.08 

SP 
0.15 
0.2 

0.34 
-0.08 
-0.27 

-
-

-0.23 

S 
-0.34 
-0.39 
0.17 
-0.18 
0.36 

-0.15 

C/N 
A 

-0.3 
-0.003 

-0.5 
-0.23 
0.43 

-
-

-0.02 

W 
-0.15 
-0.4 

-0.15 
0.26 
0.31 

-
-

0.29 

SP 
-0.3 
-0.15 
0.39 
-068 
0.1 

-
-

-0.36 

S 
0.04 
0.12 
-0.11 
0.25 
0.1 
-
-

-054 

Sediment Grain Size 

<16|jm 
-0.47 
-0.32 
0.03 
-0.41 
-0.35 

-
-

0.06 

>16-63Mm 
0.33 
-0.09 
-0.12 
0.31 
-0.3 

-
-

0.08 

>63Mm 
-0.14 
0.27 
0.09 
-0.14 
-0.18 

-
-

-0.08 

Table 5.8: The Fowey Estuary. Statistical relationship between the variables: standing crop, percentage proportions of species and deformed tests and 
the environmental variables: salinity, temperature, percentage carbon, C/N ratio and sediment grain size. Values which are enboldened are considered to 
be strongly correlated(>0.7) and values shown in italics are significant (>0.55 - <0.69). 

- v l 

o 
Variable 

S.crop 

H. germanica 

E. williamsoni 

A. beccarii 

M. fusca 

% deformed 

Metals 
Al 

-0.35 
0.13 
0.37 
-0.27 
-0.3 
0.47 

Fe 
-0.32 
0.03 
0.27 
-0.33 
0.18 
0.53 

Cu 
-0,5 
0.22 
0.17 
-0.11 
0.24 
0.23 

Pb 
-0.1 
0.39 
0.31 
0.1 

-0.46 
0.39 

Ni 
-0.3 
0.17 
0.14 
-0.1 

-0.22 
0.32 

Zn 
-0.55 
0.29 
0.1 

-0.17 
-0.2 
0.16 

Table 5.9: Fowey Estuary. Statistical relationship between the variables: standing crop, percentage proportions of 
species and deformed tests and metal concentrations for autumn 1994. Values which are enboldened are considered 
to be strongly correlated (>0.7) and values shown in italics are significant (>0.55 - <0.69). 



Variable 

Season 
S.crop 

H. germanica 
E. willlamsoni 

A. beccarii 
M. fusca 

J. macrescens 
T. Inflata 

% deformed 

%o 

A 
0.24 
-0.26 
0.26 
0.06 
0.37 
0.49 

-
-0.48 

W 
0.53 
0.59 
0.58 
0.17 
-0.65 
0.43 

-
0.16 

SP 
0.1 
0.59 
0.13 . 
-0.1 

-0.29 
0.03 

-
-0.6 

S 
0.33 
0.7 
0.76 
-0.02 
-0.78 
-0.21 

-
0.01 

"C 

A 
0.04 
0.23 
0.35 
0.02 
0.22 
0.28 

-
-0.19 

W 
0.43 
0.38 
0.5 

-0.02 
-0.55 
0.39 

-
0.1 

SP 
0.07 
0.67 
0.26 
-0.17 
-0.4 
0.19 

-
-0.36 

S 
0.44 
0.62 
0.81 
0.17 
-0.84 
-0.26 

-
-0.37 

C% 
A 

-0.11 
-0.13 
0.1 

-0.18 
0.08 
-0.34 

-
-0,22 

W 
-0.22 
-0.04 
0.38 
-0.08 
-0.4 
0.66 

-
0.48 

SP 
0.23 
0.16 
0 5 

0.25 
-0.46 
-0.19 

-
-0.18 

s 
0.12 
0.16 
-0.19 
0.48 
-0.02 
-0.01 

-
0.78 

C/N 
A 

-0.1 
0.18 
-0.26 
0.2 
0.2 
0.5 
-

-0.16 

W 
0.4 
0.1 
06 

0.01 
-0.7 
0.76 

-
0.16 

SP 
0.5 
0.37 
0.13 
0.6 
-0.4 

-
-

-0.04 

s 
0.15 
-0.23 
0.39 
0.18 
-0.23 
-0.5 

0.23 

Sediment Grain Size 

<16|jm 
0.13 
0.17 
-0.4 
0.6 

0.19 
0.06 

-
0,47 

>16-63Mm 
0.73 
0.45 
0.02 

. 0.43 
-0.27 
0.31 

-
0.15 

>63pm 
-0.33 
0.01 
0.38 
-0.34 
0.31 
-0.16 

-
-0.15 

Table 5.10: The Avon Estuary. Statistical relationship between the variables: standing crop, percentage proportions of species and deformed tests and 
the environmental variables: salinity, temperature, percentage carbon, C/N ratio and sediment grain size. Values which are enboldened are considered to 
be strongly correlated (^0.7) and values shown in italics are significant (>0.55 - <0.69). 

N3 

Variable 

S.crop 

H. germanica 

E. wllllamsoni 

A. beccarii 

M. fusca 

% deformed 

Metals 
Al 

0.05 
-0.39 
0.47 
-0.53 
-0.1 

-0.17 

Fe 
0.27 
-0.39 
0.34 
-0.42 
-0.03 
0.07 

Cu 
0.65 
-0.11 
0.27 

0.0007 
-0.31 
-0.2 

Pb 
0.41 
-0.1 

-0.15 
-0.18 
0.3 

0.05 

Ni 
-0.28 
-0.48 
0.5 

-0.85 
-0.13 
0.24 

Zn 
0.61 
-0.14 
0.33 
-0.06 
-0.32 

, -0.21 

Table 5.11: Avon Estuary. Statistical relationship between the variables: standing crop, percentage proportions 
of species and deformed tests and metal concentrations for autumn 1995. Values which are enboldened are 
considered to be strongly correlated (>0.7) and values shown in italics are significant (>0.55 - <0.69). 



Chapter Six 

Post-impact Responses of Benthic Foraminifera to Metal Pollution 

in Restronguet Creek: Synthesis and Discussion 

6.1 Introduction 

This chapter investigates the relationship between the natural (salinity, 

temperature, carbon-nitrogen ratio (C/N), sediment grain size and mineralogy) 

and the anthropogenic data (water quality {acidity and metals} and sediment 

bound metals) with the foraminiferal data (standing crop densities, species 

distribution, absence of key species, metal bio-accumulation and the proportion of 

deformed tests). The time series data from Restronguet Creek (Enclosure 1 a) 

have been used to identify post-impact changes that have occurred after the 

discharge of acid mine drainage from Wheal Jane tin mine in January 1992. The 

control estuary (Enclosure 1, b-d) data are used to delimit anthropogenic over 

natural influences. 

6.2 Foraminiferal responses to anthropogenic and natural influences 

/) Standing crop density 

The majority of stations in Restronguet Creek (Enclosure la) show an 

increase in standing crop density between 1992 and 1996, most particularly with 

the colonisation of the longer term barren stations D1, C19, K20 and H23 (station 

BY28 was only barren in autumn 1992). Apart from sediment metal concentrations 

and river water quality the other factors (e.g., salinity, temperature, percentage 

organic carbon, the C/N ratio and sediment grain size) which may influence 

foraminiferal ecology, have not changed measurably with time and are unlikely. 
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therefore, to account for this increase. There is no observed trend shown by any 

of the estuaries between high productivity (standing crop) and each variable, 

particularly the C/N ratio and percentage carbon (Hart and Thompson, 1974). The 

exceptions to this are the salinity and temperature in Restronguet Creek and the 

Fowey Estuary (Enclosure 1, a and c). Seasonal salinity in Restronguet Creek 

shows an association with seasonal standing crop density which is consistently 

positive, often being significant and occasionally strong (spring and summer). A 

similar trend is shown by the Fowey Estuary (Chapter Five, Table 5.8). It is 

evident, therefore, in Restronguet Creek and to a lesser extent in the Fowey 

Estuary, that standing crops increase with increasing salinity. This appears to be 

coincidental with the late spring and summer blooms (Ellison, 1984) in each case. 

The less than unity values shown suggest that an absolute direct relationship 

does not exist and this is supported by the frequently occurring weak linear trends 

shown in standing crop distribution down the Creek. No such routinely occurring 

significant relationship is shown by the other control estuaries, which have salinity 

profiles comparable to Restronguet Creek and similarly show weak linear trends 

in standing crop distribution down each estuary. Weak linear and seasonal trends 

are particularly pronounced in the Fowey Estuary which has relatively low density 

standing crops at the head of each subsidiary creek which corresonds with lower 

salinity (Chapter Five, Section 5.2.2,///). The great statistical variation and weak 

relationships shown by the control estuaries (Chapter Five, Tables 5.6, 5.8 and 

5.10), particularly by the Avon and Erme estuaries, suggests that foraminiferal 

densities in these estuaries, are not entirely predictable based on the measured 

parameters of salinity, temperature, percentage organic carbon, the C/N ratio and 

sediment grain size because of the patchy distribution behaviour of the 

foraminifera (Lynts, 1966; Lee and Muller, 1973; Buzas and Sen Gupta, 1982; 
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Murray, 1991). This behaviour may also account for the poor linear trends shown 

by the Restronguet Creek data and the spatial distributions shown in the mid- to 

low Creek. Lueck and Snyder (1997) conclude that variation in the nutrient 

content and chemistry of the pore water may attribute to the standing crop 

distributions shown in North Carolina (USA) but, with the exception of pH, these 

were not measured in Restronguet Creek or the control estuaries. It is generally 

apparent for all the estuaries that the lowest standing crop densities appear in the 

winter when they are considered to be dormant (Murray, 1968) and highest in the 

summer. 

In Restronguet Creek, the rare occurrence of a significant negative 

association between standing crops and metals (1995) would appear to be 

coincidental with the increase in metal concentrations in 1995 and 1996 (Chapter 

Five, Table 5.5, d and e). The data show, however, that with the exception of 

station P10, the upper Creek stations D1, CI9 and K20 (Enclosure la) have the 

lowest standing crops, but the highest sediment concentrations of Al, Cu, As and 

Zn. This is in conjunction with the lowest recorded salinity and proximity to the 

discharge point. With the exception of Station K20 (barren during all seasons 

1992 -1994) there is a seasonal trend shown by the upper stations D1, CI 9, and, 

mid-creek station H23 with respect to non-colonisation between autumn 1992 and 

spring 1994 (inclusive). Non-colonisation was more common in the winter and to a 

lesser extent in the spring and autumn (in that order) but none were barren in the 

summer. This coincides with high recharge rates and water flushing (Chapter 

One, Section 1.5.2) within the mines during these seasons, especially in the 

winter and poorer water quality (metals and acidity) between 1992 and 1994 

(Chapter Four, Figures 4.17 and 4.18). The very much higher sediment metal 

concentrations at station P10 (Enclosure la) reflect an historical source 
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originating from an old smelter at that location (Chapter Four, Section 4.7.3,/). The 

elevated metal concentrations at this station show no relatable influence on the 

standing crop densities (Chapter Five, Section 5.2.2,/'). 

The longer period of non-colonisation at station K20 probably reflects the 

severity of the impact caused by the major discharge in January 1992 on an area 

which, historically, suffered little exposure from mining practices within the River 

Kennell catchment (Chapter One, Figure 1.6). There had also been decades of 

relatively good mine water quality (Cambridge, 1995) and low discharge 

emanating from the Carnon Valley and particularly from the Wheal Jane and 

Mount Wellington mines (Chapter One, Section 1.5.2). Furthermore, prior to the 

discharge, the spit of land which physically separates the two rivers may have 

prevented small volumes of acidified mine water entering the Kennell from the 

Carnon Valley, although there is probably a subsurface connection between the 

two rivers (Chapter One, Figure 1.6). The aerial photographs taken at the time of 

the main discharge in January 1992, show the contaminated plume from the 

Carnon River being tidally introduced into the River Kennell, which met little 

resistance as the channel flow is quite gentle (Chapter One, Section 1.6,i). The 

introduction of mine waste material into the Kennell from the lower Creek (PI30) 

supports this assumption (Chapter Four, Section 4.4.2,/). It is possible, therefore, 

that the foraminifera colonising station K20 in the Kennell may be less tolerant of 

metal pollution, whereas, the assemblages on the Carnon side of Restronguet 

Creek, which have been subjected to centuries of acidified metal pollution, show a 

more rapid recovery. This may suggest the presence of within species adaptation 

(McNeilly and Bradshaw, 1968; Bryan, 1974; Bryan and Hummerstone, 1971; 1973b), 

as established for other organisms in Restronguet Creek (Chapter One, Section 

1.3.3). For the foraminifera, however, this requires further investigation (Chapter 
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Seven, Section 7.2), although Sharifi (1991) suggests that there is some 

suggestion of adaptation shown by his research. 

There is no observed connection shown between the distribution of 

standing crop densities and metal concentrations in the control estuaries, 

although, as with Restronguet Creek, the lowest densities appear in the upper 

estuary of each location and the subsidiary creeks of the Fowey Estuary in 

particular (Enclosure 1c). There would appear to be a seasonal association with 

the non-colonisation at stations HP2 - 4 in the Erme Estuary (Enclosure lb), 

which unlike Restronguet Creek were all barren in the summer. There are no 

obvious reasons which may account for this and there are no observed 

relationships shown between standing crops here and the other variables, apart 

from lower salinity and a proximity to the main channel. It is possible, therefore, 

that the foraminifera at stations HP2 and HP3 may undergo greater physical 

disturbance due to varying channel flow and increased variation in the abiotic 

variables. It would appear that at station HP4, however, there may be some 

deleterious effect on the foraminifera originating from sewage discharge via. the 

open stream at Holbeton Point (Chapter One, Section 1.6,0). In addition, easy 

vehicular access to Holbeton Point may facilitate illegal waste disposal, some of 

which may be toxic, e.g., farm slurry. This area of the Erme Estuary may require 

further investigation. 

The Fowey Estuary (Enclosure 1c) is the only control estuary to show a 

negative relationship between all metals and standing crop density but only Cu 

and Zn are significant and may be available to the foraminifera. The Avon Estuary 

(Enclosure 1d), however, shows a positive relationship with respect to these 

metals which suggests that concentrations are at toxic levels in the former estuary 

but not in the latter, which may be at beneficial levels. As trace amounts both 
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these metals are necessary to the health of most organisms (Otte et al., 1991; 

Clark, 1992; Caffrey and Keating, 1997) but uptake (and bio-accumulation) is 

metal species specific (Bryan and Langston, 1992) and dependent upon pH levels 

(Gray, 1994). The extensive use of Cu and Zn oxide based boat anti-fouling 

paints in the Fowey Estuary, particularly in the lower estuary near the china clay 

port, may be the source. The highest concentrations of Cu and Zn (and also Al, 

Fe and Pb), on the west side, were present in the sediments from station G13 in 

the lower estuary (Enclosure 1c) in the boat pool (Chapter Four, Section 4.7.3,///). 

This is in addition to that contributed by the abandoned Cu and Zn mines within 

the Bodmin granite (Chapter One, Section 1.5.1,///). This is consistent with the 

results of Stubbles et al. (1996a) using a cold 10% HNO3 method of extraction. 

The small number of boats moored on the Avon Estuary are unlikely to contribute 

excessive amounts of Cu and Zn to the estuarine sediments and certainly none 

would have been derived from past mining which was for silver-lead (Chapter 

One, Section 1.5,/v). The lack of an association shown by the Erme data (Chapter 

Five, Table 5.7) probably reflects the low boat population relative to the other 

estuaries and again only silver-lead was mined within the catchment. The average 

concentration of Cu in the control estuaries was highest in the Fowey Estuary with 

the Avon second (Appendices 1.2, 1.3 and 1.4). In the Erme Estuary, however, 

the Zn concentrations were the second highest. In all the estuaries there is a 

significant and sometimes strong relationship between Cu and Zn which may 

indicate a common source (Chapter Four, Tables 4.8 - 4.11). In Restronguet 

Creek and to a lesser extent in the Fowey Estuary the sources would be the 

abandoned mines and the weathering of metalliferous veins, in addition to more 

recent sources (e.g., boat anti-fouling paints). The use of anti-fouling paints in 

Restronguet Creek would not be high, particularly above stations P10 and TW27 
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(Enclosure 1a) because high rates of sediment accumulation have narrowed the 

draught and few boats can navigate the shallow channel to reach the moorings 

above these stations (Chapter One, Section 1.6,/). At the boat yards in the lower 

Creek anti-fouling paints are used and would contribute Cu and Zn to the 

sediments. In addition, other metals associated with boat repair and storage may 

also contribute metals to the sediments (through the decay of chains and 

galvanised fittings, e.g., rusting iron). This may contribute towards the poor linear 

trend shown by the sediment metal distribution, particularly on the north side of 

the Creek which shows either a small reduction in metal concentration or none at 

all between stations D1 and CY16 (Chapter Four, Section 4.7.3,/). In the Erme 

Estuary the significant but never strong relationship shown between Cu and Zn 

probably reflects the negligable inputs from boat anti-fouling paints, animal feeds 

and agricultural dressings, such as Cu, Zn and Pb based fungacides (Phinney 

and Bruland, 1997). In the Avon Estuary, however, the strong relationship 

between Cu and Zn may reflect regular use of anti-fouling paints, in greater 

amounts but not to toxic levels. 

//) Changes in species diversity, distribution and dominance in Restronguet 

Creek 

The number of species colonising Restronguet Creek has remained 

unchanged but the occurrence of lower values of H(S) which routinely occurred in 

Restronguet Creek between 1992 and 1994, compared with the control estuaries, 

has declined. The more even species distribution in Restronguet Creek after 1994 

accounts for the increase in H(S), notably with the increased proportions of 

Ammonia beccarii and Elphidium williamsoni, in conjunction with a decline in the 

proportions of Haynesina germanica and instances of its assemblage dominance. 
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Of the species present, the distribution of E. williamsoni has been the most 

dynamic, being less predictable both temporally and spatially throughout the 

period of study. After 1995, E. i/i/////amson/exclusively dominates all assemblages 

in Restronguet Creek in the winter and autumn and, in 1996, frequently dominated 

or co-dominated the assemblages in the mid - to low Creek in the summer with 

increased proportions in the spring. Haynesina germanica, however, remains the 

dominant species at the upper Creek stations D1, CI 9 and K20, and the mid -

Creek station TC6, in the summer, and at all stations in the spring (Enclosure la). 

As previously noted, there have been no changes in the naturally occurring 

variables from year to year to account for this, but changes have occurred in the 

anthropogenic variables; water quality (metals and acidity) and sediment-bound 

metals. During the years 1992 and 1994 a significant negative relationship is 

shown between E. williamsoni and metals (with the exception of Ni and Pb in 1992 

and As in 1994) but during 1995 and 1996 the correlations were all insignificant 

and rarely negative. The distribution of assemblage dominance by E. williamsoni 

was erratic in autumn 1993 and the correlations for that year are not significant, 

although they are negative (except As). Between January 1993 and June 1994 

the quality of the river water (metals and acidity) entering the Creek was poor and 

the profile was erratic (Chapter Four, Section 4.5,/ and ii). This may be significant 

with respect to the distribution of E. williamsoni during that period, particularly as a 

time-lag response. The correlation between the metals Al, Fe, Cu, Ni and Zn and 

H. germanica in 1994 are positively significant and for Pb the relationship is 

strong. For the other years there are no significant relationships shown. The 

proportions of A. beccarii have increased over time but its relationship with the 

sediment-bound metals Al, Cu, Ni and Zn is only negatively significant in 1996. 

The frequently occurring weak relationship shown between sediment-bound 
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metals and species distribution may also be due to the poor linear trend shown by 

sediment metal data, which reflects localised inputs, for example, at station P10 in 

Restronguet Creek (Enclosure 1a). Mixing by bioturbation (Del Vails etal., 1997), 

errors in dilution during the extraction and analytical process may also be the 

reasons. 

In summary, it is evident by the calcareous species distribution in the 

control estuaries (Chapter Five, Section 5.4.2, // - iv) and the changes in species 

proportions and distribution that have occurred in Restronguet Creek between 

1992 and 1996, that H. germanica is an r-strategist. As a pioneering species, 

H. germanica has successfully colonised less favourable environments and 

continues to seasonally dominate the assemblages within the upper Creek that 

are in closest proximity to the discharge source. With the improvement in water 

quality E. williamsoni and A. beccarii have increased their porportions and 

occurrence of assemblage dominance and, hence are K-strategists (Ellison and 

Peck, 1983), species competitors, particularly E. williamsoni. This species is 

successfully competing with H. germanica to become the most important, 

widespread species in Restronguet Creek. Overall, it appears that £. williamsoni 

and A. beccarii are more sensitive to metal toxicity than is shown by H. germanica, 

which may be more specialised (Stubbles etal., 1996a). It is apparent, therefore, 

that species competition in Restronguet Creek may be a more important regulator 

after 1994 with improved water quality in terms of metals and acidity. 

///) Comparisons in species distribution and the absence of the agglutinating 

foraminifera in Restronguet Creek 

It is apparent that the control estuaries have distinctively different species 

compositions relative to that of Restronguet Creek (Chapter Five, Figures 5.17 -
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5.19). Much of the dissimilarity shown between the control estuaries and 

Restronguet Creek is due to high proportions of Miliammina fusca in the upper 

part and creeks of each control estuary. Miliammina fusca only penetrates into the 

mid - estuary areas, as a dominant species, during the dormancy periods of the 

calcareous species; e.g., in the Erme Estuary (Stubbles, 1995) during the winter 

(Chapter Five, Section 5.4.2,//). Conversely, spatial similarity only exists between 

Restronguet Creek and each control estuary when the proportions of the 

agglutinating species are reduced relative to the calcareous component; e.g., the 

Fowey Estuary in the summer. The mid - to low estuary area of the Fowey shows 

a similar seasonal trend to that shown by Restronguet Creek, with H. germanica 

being the most important species in the spring and summer and E. williamsoni 

dominant in the winter and autumn. In the Erme and Avon estuaries, there were 

increased proportions of H. germanica in the summer, particularly in the lower 

estuary. It is apparent by the significant association shown between H. germanica 

and salinity, and, more occasionally with temperature (Chapter Five, Tables 5.6 

and 5.10) that this species favours higher salinity and temperature regimes. 

Reduced competition from other species and a response to increased nutrient 

supply, may also be the reasons for its increased proportions in the summer 

(Buzas and Sen Gupta, 1982). 

Miliammina fusca does not appear to be as well established in the Fowey 

Estuary relative to the Erme and Avon, but as with the latter two estuaries, this 

species is largely limited to the upper estuary where salinity is lowest. Relative to 

the other estuaries, higher salinities were recorded in the Fowey Estuary which is 

probably due to dredging in the lower estuary (Chapter One, Section 1.6, Hi). This 

may be influencing the distribution of M. fusca which shows a significant negative 

correlation with salinity, particularly in the Fowey Estuary (Chapter Five, Tables 
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5.6, 5.8 and 5.10). It could also be the case that the contamination from the 

abandoned mines may be more concentrated in the summer due to lower river 

flow. The additional depth generated throughout the estuary by the dredging 

probably does not limit the distribution of M. fusca as this species has been found 

living (stained) to depths of 35m within lower salinity bottom waters (Hermelin, 

1987). The short core taken from the Fowey Estuary shows an all calcareous 

fauna below 34cm with an approximate date of 1885 (Pirrie et al., 1999). It is 

evident from present day and historical data, therefore, that Restronguet Creek 

and the Fowey Estuary have had similar species colonisation histories and the 

more recent colonisation by the agglutinating species, into the latter estuary, has 

taken place after the main pulse of mining contamination had ceased and 

probably before dredging commenced in 1904. 

The continued absence (as living and dead) of the typical 

estuarine/saltmarsh agglutinating foraminifera (Adams and Haynes, 1965) in 

Restronguet Creek and short core data indicates that the most recent discharge 

(January, 1992) and other factors (e.g., mineralogy, Chapter Five, Section 5.7) 

are not accountable for the observed absence. Much earlier, historical impacts 

may have been responsible for their initial removal but only deep core data to pre-

mining levels will establish if this the case. Due to the tolerance thresholds of 

M. fusca, only passive introduction into Restronguet Creek, for example, through 

the guts of fish, on the wings and feet of birds (Almogi - Labin et al., 1992) will 

enable agglutinating foraminiferal colonisation, if the environmental conditions 

favour it. The dominance of the calcareous species in Restronguet Creek, within 

areas offering similar salinity and temperature regimes to those found in the 

control estuaries, particularly in the upper Creek (Chapter Five, Section 5.7.2), is 

something of an anomaly given the deleterious acidic conditions which has 
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corroded the calcareous tests and depleted the dead assemblage (Stubbles et al., 

1996b). The continued assemblage dominance by H. germanica (spring and 

summer) at stations D1, TC6, C19 and K20 in Restronguet Creek appears to be in 

contradiction to the environmental preferences shown by this species (higher 

salinity and temperature regimes). These upper estuary and creek areas are 

commonly dominated by M. fusca all year (Hayward et al., 1996). It would appear, 

therefore, that the calcareous species are unusually tolerant of the low pH 

conditions (pH range of 3.2 - 6.9) in Restronguet Creek (Stubbles et al., 1996b). 

Other research has shown that calcareous species prefer not to colonise acidified 

environments (Parker and Athearn, 1959; Bandy, 1960; Scott ef a/., 1991; DeRijk, 

1995; 1996; DeRijk and Troelstra, 1996) but which are typically colonised by 

M. fusca and other agglutinated species as in the Erme, Fowey, Avon, Looe and 

Axe estuaries (Chapter Five, Section 5.7.2). It may be for the following reasons, 

individually or combined, that the agglutinating species are absent in the acidified 

upper estuarine area of Restronguet Creek: 

• the agglutinating species which use carbonate cement cannot maintain their 

test structure and growth under acidified conditions (Murray, 1973); 

• the feeding strategy of the agglutinating species, which is considered to be 

detrital rather than carnivorous, may be inhibited; 

• the calcareous taxa have become specialised and out compete other species; 

• more directly, metal enriched pore and river water, with enhanced metal 

solubility under acidic conditions may be detrimental to the agglutinating 

foraminifera; and 

• the absence of a mechanism by which metal toxicity may be ameliorated. 
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It is apparent from the work of Bender (1995) that the agglutinating species 

M. fusca, Jadammina macrescens and Trochammina inflata use organic and not 

calcareous cement to bind the grains together, although the grains used by 

M. fusca are more looslely bound relative to the other two species. Jadammina 

macrescens and T. inflata also have the additional benefit of an outer as well as 

an inner organic layer (Bender, 1995) which may provide greater protection 

against acid dissolution. Jadammina macrescens and T. inflata use predominately 

clay and muscovite mica to build their tests (Scott et al., 1998) and generally do 

not include carbonate material (e.g., shell fragments) which would be prone to 

dissolution. More variable mineral types, including carbonate material are used, 

however, by M. fusca for test construction (Chapter Five, Section 5.7.2) and under 

acidified conditions this may be a potential weakness. It may also be significant 

that the specimens taken from the slightly acidifed environment of the Fowey 

Estuary contain little carbonate material, preferring to use minerals instead 

(Chapter Five, Section 5.7.2). The concentration of heavy minerals and daily 

removal of marine derived sediments (containing high amounts of shell debris. 

Chapter Four, Section 4.4.4) may also explain the mineralogy of the tests taken 

from the Fowey Estuary. The greater use made of shell fragments by specimens 

of M. fusca taken from the Erme and Avon estuaries, which are not acidified and 

dredged, supports both suggestions. The absence of agglutinating foraminifera 

(living and dead) at St Clements, which is not acidified, would preclude acid stress 

as the cause of the continued widespread absence. Furthermore, the durability of 

the agglutinated tests has been determined by the postmortem dissolution 

experiments of Alve and Murray (1994; 1995b) and attests to their ability to persist 

within acidified environments. This is supported by the findings of Setty and 

Nigham (1984) who found agglutinated species preferentially colonising areas 

284 



polluted by high organic loadings and acid discharge. 

Although DeRijk and Troelstra (1997) have reported that agglutinating 

foraminifera may make use of diatoms in their diet, their preferred food source is 

detrital organic carbon. It has implications for these species that Cu and other 

metals are known to form organic complexes and preferentially bind to organic 

carbon (Chester, 1990; Bryan and Langston, 1992). If consumed by the 

agglutinating species metal enriched detritus, particularly by Cu, may induce a 

deleterious effect (Sharifi, 1991; Sharifi etal., 1991). 

It Is evident by the distribution of M. fusca in the control estuaries that it is 

seasonally out-competed by the rotalid species. The temporal and spatial 

distribution and dominance shown by E. williamsoni in the Erme and Avon 

estuaries and with H. germanica in the Fowey Estuary, suggests that these 

species may prevent M. fusca colonising new locations. This response to 

competition is more pronounced in the Fowey Estuary, whereby the spatial 

distribution of M. fusca shows greater limitation. This may reflect past mining 

influence, in addition to the previously discussed higher salinity and temperature 

regimes in the main channel, particularly at and below station CHS (Enclosure 

1c), the conditions of which may favour the calcareous species (Buzas, 1969). It 

may be significant that the extent and period of metal mining affecting 

Restronguet Creek and the Fowey Estuary are similar, whereas the Erme and 

Avon estuaries, which physiologically closely resemble each other, were least 

influenced by mining (Chapter One, Section 1.5.1). The out-competed behaviour 

shown by M. fusca in its spatial and temporal distribution in the control estuaries, 

would suggest that this species may be an opportunist, and only expands its 

spatial distribution when the environmental conditions favour it and most usually 

when the calcareous taxa are dormant or absent (Setty, 1984). 
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Bresler and Yanko (1995) suggest that the calcareous species may have 

mechanisms that enable them to remove excess Cu. This function may only be 

available to the calcareous species that secrete a test and those agglutinating 

species that secrete calcareous cement. The three agglutinating species, 

M. fusca, T. inflata and J. macrescens do not posess this facility. This remains, 

however, speculative as the elimination of metals by the foraminifera is poorly 

known and consequently, all such interpretations are constrained. 

iv) Changes in the proportions of deformed tests 

Through time, there has been a substantial decrease in the proportion of 

deformed tests in Restronguet Creek and the frequency of occurrence has also 

declined, with numerous stations recording zero in winter 1996. In autumn 1996 

the majority of values are below 5% which is comparable with the values observed 

for the control estuaries. No juvenilles showing test deformity have been observed 

after 1995. This may be indicative of reduced metal availability (e.g., in solution) 

and thereby, a longer exposure time required for a deleterious effect (e.g., test 

deformity) to be manifested. None of the variables measured can account for this 

decline but that the decrease has coincided with improved water quality (both 

metals and acidity), most particularly from summer 1995, which saw a sharp 

reduction in the amount of water stored in the mine workings due to low recharge. 

The high values of deformed tests observed in the Erme and Avon 

estuaries were random and infrequent and the majority of values were below 5%. 

There were also no significant correlations shown between the proportion of 

deformed tests and sediment metal concentrations in the control estuaries. The 

proportion of deformed tests was least in the Fowey Estuary, which never 

exceeded 5%. The likely reason for this is the dredging of the harbour which has 
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a dual effect by the removal of historically contaminated sediments within the 

estuary and by creating a deeper water channel which would enhance dilution 

and dispersal of freshly derived contaminants originating from the abandoned 

mines. The daily removal of predominantely marine derived sediments (which 

would account for the low proportions of transported - in tests) may also explain 

the presence of high amounts of heavy minerals observed in the sediments which 

originated from the Bodmin Granite (Chapter Four, Section 4.4.4) and have 

become concentrated within the Fowey sediments (Pirrie and Camm, 1999). The 

occasional and marginally low pH pore water values recorded in the Fowey 

Estuary were well above those observed in Restronguet Creek. Apart from a low 

occurrence of test opacity in the Fowey Estuary, the low pH conditions do not 

appear to have had an adverse effect upon the foraminifera by the mobilisation of 

sediment-bound metals, even though the former location has the second highest 

Cu concentrations which is known to be toxic to the foraminifera (Sharifi, 1991; 

Sharifi etal., 1991). It would appear, therefore, that sediment metal solubility may 

be too low to affect the foraminifera and the lower proportions of deformed tests 

supports this. 

The micro-analysis of the deformed and undeformed tests has established 

a quantified difference between deformed and undeformed tests using laser 

ablation with higher metal concentrations being recorded in the former (Chapter 

Five, Section 5.9). Although this new approach to the micro-analysis of 

calcareous tests was a limited study, a strong positive correlation has been 

determined between deformed tests and elevated levels of sediment-bound 

metals (Chapter Five, Section 5.9). The earlier microprobe work carried out by 

Stubbles etal. (1996a) also found higher levels of Al, Fe, Cu and Zn in deformed 

tests relative to undeformed but the detection limits are much higher compared 
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with laser ablation (Ippm with a spatial resolution of 20fjm). Both the laser 

ablation data and the deformed data for the Restronguet Creek, stations D1, TC6, 

CI 9 and K20, correlate significantly with the sediment metal data (1996 only). By 

using the cold extractable 1M HCI method to leach metals from the sediments, 

Bryan and Langston (1992) conclude that the strongest correlations result 

between the sediment-bound metals and those within the organisms (Dr. 

Langston, pers. comm., 1996). This may explain the strong positive relationhip 

shown between the laser data and the sediment metal data. The negative 

relationship shown between the undeformed individuals and metals, which for Al 

and Cu is strong, suggests that these specimens may not bioaccumulate metals. 

As previously observed (Chapter Five, Section 5.8.4), the weak and 

occasionally negative correlation shown between the proportions of deformed 

tests and sediment-bound metals, particularly in Restronguet Creek (between 

1992 and 1996), is probably a statistical rather than an environmental anomaly, 

partly brought about by using percentages (closed data) which would induce the 

negative association (Swan and Sandilands, 1995). In addition, the inclusion of 

data from stations with low standing crops at which deformed tests were generally 

not observed after 1994, would also produce negative correlations and would not 

be ecologically representative (Chapter Five, Section 5.8.3). The omission of the 

pre-1994 zero data from stations D1, CI 9 and K20 (Enclosure 1 a) which had the 

highest sediment metal concentrations (with the exception of station P10) and 

were closest to the discharge point, increases the instances of weak correlation. 

This is supported by the statistical analysis of the 1995 and 1996 data from these 

stations only (Chapter Five, Section 5.8.4,/). These data show there to be a 

significant and positive relationship between the proportion of deformed tests and 

the sediment-bound metals, particularly Cu and Zn. This corresponds with the 
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data obtained for Cu by laser ablation (Chapter Five, Section 5.9). 

The observed decline in the percentages of deformed tests down Creek 

(Enclosure 1a) does not correspond with the distribution of the sediment-bound 

metals, which do not show a strong linear trend. This is particularly evident with 

respect to station P10 which has the highest metal conentrations in the Creek but 

not the highest proportions of deformed tests. It is evident, therefore, that 

observed temporal and spatial changes in the occurrence of deformed tests rather 

than statistical inference are a more reliable indication of these post-impact 

changes throughout Restronguet Creek. 

The occurrence of deformed tests noted by other workers has been 

attributed to a number of causes (e.g., hypersalinity, Almogi-Labin et ai, 1992). 

Arnal (1955) suggests that several influences in combination may cause the high 

occurrence of abnormal tests observed at various sample locations in the USA. 

Sharifi (1991), Sharifi etal. (1991), Alve (1991) and Yanko etal. (1998) have, 

however, attributed metal pollution to be the most likely cause of test deformity. 

More recently, Stouff et al. (1999) have identified causes other than pollution that 

may account for high proportions of deformed tests (e.g., hypersalnity, mechanical 

damage and acid dissolution). With respect to this research the natural variables 

(e.g., salinity and temperature) were observed to be at normal estuarine levels in 

the overlying water which did not vary beyond the wide ranging tolerance limits of 

the indigenous euryhaline species. The elevated levels of salinity within the pore 

water (44%o), particularly within the lower parts of each control estuary and 

Restronguet Creek, does not appear to adversely affect the foraminifera as some 

of the lowest proportions of test deformity are found here. Tests showing signs of 

mechanical damage were not regarded as deformed. It may be the case, however, 

that the acid polluted environment of Restronguet Creek may be a contributory 
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factor in test deformity but the inter-related relationship between metals and 

acidity is difficult to separate (Stubbles, 1995; Stubbles etal, 1996a). 

6.3 Sediment - bound metals and water quality 

The ecological changes that have taken place in Restronguet Creek 

between 1992 and 1996 have done so despite there having been an increase in 

sediment metal concentrations. High levels of metals in the sediments, however, 

do not always equate with what may be available to an organism or 

bio-accumulated (Thomson etal., 1984). Furthermore, concentrations within the 

sediments will usually be greater relative to the overlying water (Leppanen et al., 

1998) and this is the case in Restronguet Creek (Bryan and Langston, 1992). 

The accumulation of metals in the sediments from Restronguet Creek are a 

mixture of point and diffuse sources (Chapter Four, Section 4.7.3,/). The point 

source is associated with the old smelter site within the mid-Creek area (Station 

P10) and shows the highest metal levels relative to other stations (Enclosure la). 

The atmospherically borne contamination from this site may also have contributed 

additional metals to the sediments on both sides of the Creek below station P10 

(Enclosure la). Acid mine drainage originating from the Carnon Valley, leaching 

of sediment-bound metals under low pH conditions (Shine et al., 1998) and overall 

changes in pore water chemistry (Salminen and Haimi, 1999) combine to provide 

the diffuse source, the effects of which are more difficult to trace and predict 

(Alve, 1995). 

How much the pore water metal chemistry differs to that of the overlying 

water is not known, but pH was determined with varying success (Chapter Two, 

Section 2.1.1). The sediment removed for geochemical analysis was always 

oxidised. This suggests that chemical exchange and diffusion between the 
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overlying water column and Interstitial water may have taken place, and hence, 

the chemistry of the two waters may be closely similar (particularly at the 

sediment-water Interface). Furthermore, fluxing between the two types of water 

produces changes In their chemistry and each can Influence the other (Chester, 

1990; Bryan and Langston, 1992; Lueck and Snyder, 1997). The observed tidal 

water film that persisted during each low tide in Restronguet Creek would Indicate 

prolonged contact and mixing may occur between the two water types. 

Furthermore, as no living foramlnlfera were observed below the top centimetre of 

each core taken from Restronguet Creek and the control estuaries it Is evident 

that the indigenous estuarlne species are shallow infaunal (Buzas etal., 1993; 

Goldstein etal., 1995; Ozarko etal., 1997) and, therefore, are likely to be 

Influenced by both the overlying and Interstitial water. It Is evident also that the 

foraminlfera remain within the oxidised zone, not having been found deeper 

(Boltovoskoy, 1966) and show no vertical migratory behaviour away from adverse 

conditions (Bernard, 1986; Alve and Bernard, 1995). The depth to which 

foramlnlfera penetrate the substrate does not appear to be controlled by grain 

size or species preference as found by Boltovoskoy and Lena (1969). The 

sediment grain size distribution and coheslveness of the substrate may have an 

influence on how effectively the tidal water is vertically diffused, evaporated and 

drained, in addition to adsorptive processes (Bubb and Lester, 1994). 

The difference In metal concentrations and pH of the surface water 

recorded at Devoran monitoring station at the head of Restronguet Creek and the 

fixed station at the mouth Indicates the presence of a concentration gradient 

between the two (Chapter Four, Section 4.5). The gradatlonal increase in pH 

down Creek in the overlying water column and pore water was similar, and each 

may be influenced by proximity to the discharge source and dilution by the 
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incomming tide. Of the two waters, however, the pH of the pore water was always 

slightly lower. The presence of an acid gradient is supported by the frequent 

occurrence of full calcareous test opacity, particularly in the winter at the upper 

and mid - Creek stations, D1, TC6, TC8, TC9, P10, C19 and H23 with partial test 

opacity elswhere prior to summer 1994 (Chapter Five, Section 5.10). 

It is known that metals alone cause negative responses by the foraminifera 

(Ellison etal., 1986; Alve, 1991,1995; Sharifi etal., 1991) but to what extent 

acidity alone affects foraminiferal ecology is largely unknown. It has been 

established, however, for other organisms, particularly fish (Beamish and Harvey, 

1972; Bradford etal., 1998), that reproduction is inhibited by increased acidity. 

The early work of Bradshaw (1961) found A. beccarii to be tolerant of low pH 

conditions and recalcified even after complete dissolution of the test had 

occurred. Sluggish feeding and reproduction followed complete dissolution and 

recalcification of the test and this may reflect heavy consumption upon the 

foraminiferal energy budget. Calcareous species avoidance of low pH 

environments has been detected by Phlegler and Bradshaw (1966) and Schafer 

(1970). DeRijk (1995) and Scott etal. (1991) suggested that this is why the 

agglutinated species occupy niches vacated by the calcaeous species. The 

precise causes of this avoidance strategy, however, were not determined. 

The difference in foraminiferal ecology and the stronger statistical 

relationship shown between the proportion of deformed tests and metals shown 

by stations D1, C19, K20 and H23, supports the conclusion that the upper Creek 

has been both directly (primary metal enriched mine water discharge) and 

indirectly (secondary acid leaching) influenced by acid mine discharge into the 

river (Stubbles, et al., 1996a). The mid - to lower Creek stations appear to be 

least affected by primary discharges and may reflect a greater influence from the 
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secondary process of acid leached metals stored in the sediments. The variable 

pH experiments of Stubbles et al. (1996a) show that at pH 3.5 the highest metal 

concentrations were mobilised from the sediments. 

In addition to a proximity to the discharge point, the upper stations may 

also be affected by changes in metal chemistry brought about by salinity. At lower 

salinities metals in solution are in a more toxic form (Bryan, 1985a; McLusky, 

1989; McLusky ef a/., 1986; Broman etal., 1991). The significant (which in some 

cases is strong) statistical association shown between salinity and standing crops 

in Restronguet Creek suggests that the salinity profile is indirectly reflecting metal 

and acid dilution and dispersal with a potential reduction in metal toxicity down the 

Creek with increasing salinity (Chapter Four, Section 4.5,/). As there Is both 

temporal and spatial variation in salinity it is likely that those areas having the 

lowest values due to position and season (winter) will suffer greater metal toxicity. 

At increased salinities approaching normal marine, particulate uptake of metals is 

enhanced, thus removing metals from solution by settling and hence, reducing 

their availability (Mayer, 1982a, b; Chester, 1990; Hardman etal., 1993). 

The remedial action taken (Chapter One, Section 1.5.2) and the resultant 

improvement in water quality emanating from Wheal Jane tin mine may explain 

why colonisation of previously barren stations has occurred despite the increase 

in sediment-bound metals between 1992 and 1996. This increase in metal 

accumulation within the sediments suggests removal of dissolved metals to the 

particulate phase with increasing pH (Krumbein and Garrels, 1952; Trefry and 

Metz, 1984; Wren and Stephenson, 1991; Yahya, 1994; Stubbles etal., 1996a; 

Shine etal., 1998). Somerfield etal. (1994a) detected no increase in sediment 

metal concentrations immediately after the discharge in January 1992 and 

conclude that the pH of the overlying water column was too low to allow 
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precipitation. Somerfield et al. (1994a,b) also conclude that the interaction of a 

large number of variables (e.g., Fe-oxide binding) would influence the chemistry 

of the interstitial water. Iron coated sediment grains were observed in the 

sediments taken from Restronguet Creek and to a lesser extent from the Fowey 

Estuary (Chapter Four, Section 4.4.4). The strong statistical relationship shown 

between sediment-bound Fe and other metals from Restronguet Creek and the 

Fowey Estuary also suggests metal scavenging. This scavenging behaviour which 

enhances metal stability is, however, dependent upon the pH of the pore water 

and overlying water column (Benjamin and Leckie, 1981; Johnson, 1986; Boon et 

al., 1998; Milam and Farris, 1998) and toxicity is metal specific within a range of 

pH values (Shiller and Boyle, 1985; Freda, 1991; Ankly and Schubauer-Berigan, 

1995). For this reason the highest proportions of colloidal iron were present in the 

Fowey River and least in the acidified Carnon River (Mill, 1980). The addition of 

low pH appears to be a major controlling factor in Restronguet Creek with respect 

to metal solubility (Bryan, 1985b). 

In summary, therefore, the acid mine contamination originating from Wheal 

Jane tin mine and the other abandoned mines within the Carnon Valley has 

exposed the foraminifera to the combined pollution sources of acid dissolution, 

metals in solution (in an available form) and contributed additional metals to the 

sediments in Restronguet Creek. The naturally occurring variables (e.g., salinity 

and temperature) may also have some influence on acid and metal toxicity. 
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Chapter Seven 

Conclusions 

7.1 Post-impact changes - conclusions 

It is the overall conclusion of this research that no one response shown by 

the foraminifera should be taken as solely indicative of a deleterious impact. In 

combination with the control data, the sum total of the changes shown by 

foraminiferal assemblages in Restronguet Creek can be viewed as 

anthropogenically driven and most probably not caused by naturally occurring 

variation. The post-impact changes in foraminiferal ecology that occurred in 

Restronguet Creek between 1992 and 1996 and conclusions are, therefore: 

• the colonisation of the long term barren stations; D1, CI 9, K20 and H23 and 

the overall increase in standing crop densities suggests a response to severe 

metal pollution followed by mine water remediation. Standing crop densities 

remain, however, less predictable due to the patchy distribution behaviour of 

the foraminifera and also because of the instability of the local mine water 

quality; 

• it is apparent that the absence of data (barren samples) causes problems in 

statistical inference that may be environmentally unrepresentative. While 

barren samples are significant in their own right, no other biological 

information can be gained from such samples; 

• in the absence of any major changes in the naturally occurring variables the 

spatial and temporal changes in species distribution would appear to be a 

response to reduced metal pollution. The generalist, Elphidium williamsoni has 

gained in importance, while the specialist, Haynesina germanica has declined; 
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• the low abundance and limited distribution shown by Ammonia beccarii prior to 

1995 suggests that this species is least tolerant of metal pollution. Its 

increased abundance and more widespread distribution after 1995 has led to a 

more even species distribution; 

• these changes in species distribution suggests the following order of species 

tolerance: H. germanica>E. williamsoni>A. beccarii; 

• competition may be an important regulator of the calcareous species 

distribution after 1994 but, prior to this, metal pollution was severe enough to 

exert a modifying influence; 

• the diversity of the live (stained) assemblage remains low due to the continued 

absence of the agglutinating species; 

• the absence of the agglutinating species in Restronguet Creek and within the 

environs of the Carrick Roads may not have been caused by the major 

discharge in January 1992. At present species competition may be the 

controlling factor; 

• the geographical distribution of the agglutinating species in south-west 

England would suggest that the frequency of occurrence and abundance of 

these species increases from west to east. This follows a similar trend 

exhibited by the geology and mining of polymineralic ores, particularly Cu; 

• the proportions of test deformity have declined spatially and temporally over 

time. The levels in Restronguet Creek are approaching those observed in the 

control estuaries and a background level of between 3% and 5% would be 

regarded as usual for an area draining metalliferous geology and previous 

metal mining; 

• analysis carried out during this study has established that there is a link 
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between deformed foraminifera and metal accumulation in the tests with high 

concentrations of metals in the sediments; 

• full and partial test opacity, with the former being particularly severe within the 

upper and mid - Creek, are no longer evident. This suggests that there has 

been a decrease in the amount of acidified water entering the Creek; and 

• the proportions of transported-in species have increased with increasing pH, 

which again supports changes in water pH. 

With the exception of the sediment-bound metals, there have been no 

year-by-year changes in the other variables that may account for the changes 

shown by the foraminifera. It would seem, therefore, that these changes have 

coincided with the long term benefits of the remediation programme inaugurated 

by the Environment Agency in January 1992, which has delivered, particularly 

after 1994, improved water quality entering the Carnon River from Wheal Jane tin 

mine in terms of metals and acidity. It has been shown, therefore, that even set 

against a background of long term contamination, an impact can be detected 

through the responses of the foraminifera, while other organisms appear not to 

have so responded. The main discharge involved a combination of factors and 

complex interactions which produced both primary (metals and acidity) and 

secondary (acid metal leaching) impacts on the estuarine environment and 

thereby negative responses by the foraminifera. 

The foraminiferal results from the control estuaries, particularly the Fowey 

Estuary, show that with time, the estuarine environment is capable of recovery. 

This study has shown that, at the present time, a potential risk remains as the 

water levels in the mines (and highly variable recharge) form the main control on 

water quality and discharge. In addition, the discharges emanating from the other 
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mines in the Carnon Valley, particularly via. the County Adit, are also sources of 

acid mine water pollution. It is anticipated that eventually the mine faces will leach 

back sufficiently as not to pose an environmental risk. 

7.2 Future research 

This research has shown that foraminifera appear to respond to water 

quality in terms of metals and acidity, rather than metals bound to sediment 

grains. It would be advantageous, therefore, that in future field and laboratory 

studies techniques be developed that enable micro-analysis of the pore water 

chemistry (metals and pH) at intervals that would be relatable to the size of the 

foraminifera. 

The Laser Ablation Inductively Coupled Plasma results have shown that 

micro-analysis can give useful information on metal accumulation and should 

continue to be developed in the future. Only through such analysis can the causes 

of test deformity be determined. The micro-analysis of individual tests, chambers 

and parts of chambers may define how the foraminifera ameliorate the effects of 

metal pollution, the ways in which metals enter the organism and if within species 

adaptation exists. This approach is not applicable for use on agglutinated tests 

because of their heterogeneous nature. 

Deep coring may locate the levels at which these species appear and 

disappear and with the chemistry of the sediments, the reasons for their absence 

may be determined. Mesocosm and culturing experiments using M. fusca may 

further explain the tolerances of the agglutinating species and how metal pollution 

influences their distribution. This work does not appear to have been undertaken, 

probably because the complexity of their particular natural environment which, 

means it would require sophisticated technology to achieve it in the laboratory. 
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Appendices 

Abreviations for appendices: scrr - total standing crops, %T -

percentageof total, %sp - percentage of species, DSC/T - total 

deformed standing crops, %Cal - percentage of calcareous species that 

are deformed. 

Wherever possible percentage values have been rounded up or down. 



Appendix 1.1a 

Atomic Absorption Spectroscopy 

Sample 
D1/92 
D1/92 R 
CI 9/92 
CI 9/92 R 
D1/93 
D1/93 R 
C19/93 
CI 9/93 R 
D1/94 
D1/94 R 
CI 9/94 
C19/94R 
D1/95 
D1/95 R 
CI 9/95 
CI 9/95 R 
D1/96 
D1/96 R 
CI 9/96 
C19/96 R 
S20/93 
S20/93 R 
G13/94 
G13/94R 
A12/95 
A12/95 R 

Al 
1077 
1180 
1325 
1400 
1058 
966 
1095 
960 
1350 
1500 
1055 
1065 
1125 
1175 
1430 
1515 
1350 
1225 
1505 
1475 
560 
585 
510 
575 
600 
575 

Fe 
6408 
6650 
9000 
9665 
5250 
5080 
6250 
5835 
10482 
11300 
6500 
6665 
6830 
7000 
9625 
10250 
10375 
9000 
11125 
10250 
4000 
4120 
2075 
2360 
3058 
3015 

Cu 
618 
705 
643 
700 
500 
485 
525 
465 
693 
800 
475 
485 
615 
665 
775 
835 
683 
600 
910 
935 
8 
7.5 
40 
45 
14.5 
13.5 

Pb 
53 
60 
63 
65 
45 
45 
55 
50 
75 
85 
50 
50 
80 
80 
100 
110 
100 
90 
110 
115 
32 
30 
27.5 
30 
15 
14.5 

Ni 
8 
8.5 
7 
7.5 
6.5 
6.75 
7.5 
7.5 
10.5 
12 
6.25 
6 

5.75 
6.25 
12 
13 

14.25 
15 

16.75 
17 
5.75 
5 

4.75 
4.25 
7.5 
7 

As 
175 
175 
230 
255 
125 
115 
230 
245 
340 
385 
70 
70 
215 
240 
268 
250 
250 
245 
355 
355 
ND 
ND 
ND 
ND 
ND 
ND 

Zn 
1350 
1505 
1725 
1850 
1225 
1150 
1125 
985 
1450 
1675 
975 
1000 
1275 
1400 
1563 
1575 
1360 
1200 
1825 
1875 
55 
57 
85 
95 
47 
47.5 

Cd 
ND 
ND 
ND 
ND 
1 
1 
ND 
ND 
1.5 
1.5 
ND 
ND 
ND 
ND 
1 
1 
ND 
ND 
ND 
ND 
ND 
ND 
ND 
ND 
ND 
ND 

Ca 
2375 
2500 
1375 
1455 
1325 
1500 
775 
850 
1813 
2050 
1025 
1000 
3075 
3450 
3100 
3100 
3930 
3500 
4875 
5125 
20575 
23050 
3175 
3550 
15925 
15650 

Replicated data. Values in ppm (parts per million). R - denotes replicate. 

Blank 
Detected 

Certified values 
Extracted 

Al 
2 
0 

8.5% 
4% 

Fe 
2 
0 

4.4% 
-

Cu 
0.5 
0 

39.3 
16 

Pb 
0.5 
0 

21.9 
6.5 

Ni 
0.5 
0 

49.3 
19 

Zn 
1 
0 
172 
78 

As 
1 
0 

20.7 
7.5 

Blank data (Aristar, values in ppb) and detection values for each blank. The 
values for the certified reference material (MESS 2) and the concentrations 
extracted are in ppm except for the oxides for Al and Fe which are as 
percentages. Atomic Absorption Spectroscopy was not able to detect metal 
concentrations in the blanks. The detection limits for Cd and Cr using AAS are 
2ppm and 4ppm respectively. 
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Laser Ablation Inductively Coupled Plasma 

Resin 1 
Resin 2 

D.L 
St. 1 
St. 2 
St. 3 

Al 
8.896 
9.896 
0.326 
99.99 
86.58 
72.77 

Fe 
-12.73 
-12.65 
16.972 

100 
85.68 
85.68 

Cu*^ 
-0.117 
-0.101 
0.24 
99.99 
86.49 
75.98 

Cu«^ 
-0.144 
-0.105 
0.275 
99.99 
86.45 
75.35 

Zn"^ 
-0.011 
0.045 
0.274 
100 

85.33 
74.8 

Zn'*'* 
-0.024 
0.023 
0.293 
99.99 
85.61 
75.23 

Pb 
-0.063 
-0.05 
0.09 
100 

82.47 
70.82 

Ni 
-0.027 
-0.286 
0.643 
99.99 
86.22 
75.19 

Ca 
-13.067 
-6.813 
63.312 

100 
88.19 
74.6 

Laser ablation values, as arbitary counts (raw data), for the resin stubs, detection 
limits (D.L.) and standards 1, 2 and 3. 

Blank 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Al 
0 

-0.035 
-0.116 
0.157 
-0.169 
-0.155 
-0.119 
-0.185 
-0.083 
-0.163 
-0.359 
-0.168 
-0.096 
-0.173 
-0.15 
-0.188 

Fe 
0 

-1.185 
-15.90 
-5.61 

-10.08 
-11.45 

-12.413 
-18.312 
-9.682 
-5.713 

-71.819 
-18.646 
-14.096 
-14.353 
-9.629 
-14.333 

C u " 
0 

-0.033 
-0.078 
0.195 
-0.112 
-0.112 
-0.055 
-0.098 
-0.028 
-0.108 
-0.169 
-0.046 
-0.003 
-0.088 
-0.052 
-0.079 

Cu«^ 
0 

-0.033 
-0.094 
0.191 
-0.117 
-0.122 
-0.076 
-0.13 
-0.52 

-0.123 
-0.256 
-0.075 
-0.023 
-0.112 
-0.065 

-0.1 

Z n " 
0 

-0.005 
-0.119 
0.18 

-0.118 
-0.114 
-0.046 
-0.128 
-0.029 
-0.125 
-0.254 
-0.052 
-0.028 
-0.112 
-0.058 
-0.095 

Zn** 
0 

-0.045 
-0.103 
0.158 
-0.143 
-0.133 
-0.08 
-0.151 
-0.04 
-0.167 
-0.302 
-0.071 
-0.002 
-0.121 
-0.066 
-0.107 

Pb 
0 

0.018 
-0.035 
-0.021 
-0.065 
-0.063 
-0.06 
-0.7 

-0.062 
-0.067 
-0.08 
-0.063 
-0.065 
-0.065 
-0.062 
-0.064 

Ni 
0 

0.027 
-0.284 
0.245 
-0.145 
-0.175 
-0.115 
-0.403 
-0.303 
-0.385 
-0.554 
-0.418 
-0.467 
-0.467 
-0.339 
-0.421 

Ca 
0 

-3.853 
-32.25 
-6.15 
-13.65 
-15.56 

-19.229 
-21.848 
-11.122 
-12.868 
-75.59 

-56.725 
-44.212 
-44.212 
-34.04 
-40.105 

Raw blank data for the laser ablation analysis (values as arbitary counts). 

Note: 
The blanks were run regularly throughout the days analysis and were subtracted 
from the samples to correct for minor changes (e.g. analytical drift). Using the 
three standard deviations of the blanks the detection limits were determined but 
these detection limits do not apply to the samples which changed due to the 
amount of material ablated. This has the effect of halving the detection limit if, for 
example, twice as much material is ablated. The detection limit is, therefore, 
applied to the raw data before standardisation. The change in the standard value, 
which are almost 100 in standard 1, is a reflection of changes in instrument 
sensativity through the days analysis. This drift was assumed to be linear and, 
therefore, a proportional correction was made. 
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Ap 
station 
D1A92 
TC6 
TC8 
TC9 
P10 
PC13 
CY16 
CIS 
K20 
H23 
TW27 
BY28 
PI30 
station 
D1A93 
TC6 
TC8 
TC9 
RIO 
PC13 
CY16 
C19 
K20 
H23 
TW27 
BY28 
PI30 
station 
D1A94 
TC6 
TC8 
TC9 
P10 
PC13 
CY16 
C19 
K20 
H23 
TW27 
BY28 
PI30 
station 
D1A95 
TC6 
TC8 
TC9 
P10 
PC13 
CY16 
C19 
K20 
H23 
TW27 
BY28 
PI30 
Station 
01A96 
TC6 
TC8 
TC9 
P10 
PC13 
CY16 
C19 
K20 
H23 
TW27 
BY28 
PI30 

Al 
1077 
1200 
650 
725 
1150 
855 
1000 
1325 
1550 
680 
1045 
990 
1090 
Al 

1058 
1110 
625 
800 
1690 
670 
1200 
1095 
1590 
900 
1190 
1325 
1190 
Al 

1350 
1180 
1250 
1005 
1875 
1335 
1150 
1055 
950 
685 
1400 
1650 
1315 

Al 
1125 
1050 
1175 
1450 
1425 
950 
1380 
1433 
1450 
1400 
1365 
950 
1040 
Al 

1350 
935 
1120 
1160 
1135 
1350 
1105 
1505 
1155 
990 
980 
1150 
910 

Fe 
6408 
5500 
3335 
3650 
7335 
6000 
7335 
9000 
9665 
4000 
6650 
8500 
9665 
Fe 

5250 
5000 
3000 
3835 
15000 
4665 
8335 
6250 
6665 
5000 
8165 
11750 
10650 

Fe 
10482 
7165 
8000 
6165 
16850 
10000 
7335 
6500 
5500 
2665 
13000 

. 16500 
10250 

Fe 
6833 
5835 
7000 
11250 
13200 
6665 
11750 
9625 
10740 
10000 
14260 
7500 
9000 
Fe 

10375 
5150 
7500 
8250 
9250 
12500 
7650 
11125 
7350 
6150 
6850 
8600 
6150 

pendix 1 . lb: Restronguet Creek, sediment geochemical data 
Cu 
618 
767 
215 
365 
700 
465 
535 
643 
1050 
465 
650 
615 
650 
Cu 
500 
835 
435 
485 
1100 
300 
715 
525 
780 
365 
565 
700 
550 
Cu 
693 
665 
550 
635 
1085 
685 
615 
475 
450 
265 
715 
850 
585 
Cu 
615 
565 
600 
735 
650 
400 
735 
775 
750 
700 
615 
450 
450 
Cu 
683 
435 
550 
515 
535 
615 
500 
910 
550 
500 
435 
650 
365 

Pb 
53 
80 
40 
45 
95 
110 
70 
63 
85 
60 
75 
80 
90 
Pb 
45 
70 
30 
60 
190 
55 
80 
55 
80 
70 
60 
70 
70 
Pb 
75 
75 
70 
60 
165 
125 
80 
50 
55 
40 
80 
135 
80 
Pb 
80 
70 
75 
105 
135 
100 
115 
100 
105 
95 
90 
75 
75 
Pb 
100 
55 
70 
65 
160 
160 
85 
110 
75 
60 
65 
95 
65 

Ni 
8 

12.5 
4 

7.5 
10 
7 
4 
7 
9 

4.5 
8 

8.5 
6.5 
Ni 

6.75 
7 

3.5 
6 

17.5 
6 

8.5 
7.5 
10.5 

6 
7.5 
8 
10 
Ni 

10.5 
9 
8 
8 
17 
8 
6 

6.25 
5.5 
6 
7 
11 
6.5 
Ni 

5.75 
8 

7.5 
8.5 
12 
6.5 
11.5 
12 
13 
11 
10 
8 

7.5 
Ni 

14.25 
6.5 
7.5 
9 
8 

12.5 
9 

16.75 
8.5 
8 

6.5 
14 
8 

As 
175 
ND 
175 
175 
250 
175 
215 
230 
320 
105 
285 
320 
250 
As 
125 
ND 
ND 
175 
430 
215 
215 
230 
ND 
ND 
425 
320 
355 
As 
340 
ND 
105 
ND 
250 
250 
175 
70 
70 
ND 
250 
285 
355 
As 
213 
ND 
ND 
70 
320 
ND 
175 
268 
355 
215 
285 
145 
175 
As 
250 
105 
175 
145 
285 
215 
250 
355 
175 
70 
175 
285 
105 

Zn 
1350 
1825 
750 
925 
1550 
1075 
1275 
1725 
1850 
800 
1450 
1600 
1300 
Zn 

1225 
1575 
525 
1000 
2325 
600 
1300 
1125 
1800 
925 
1300 
1550 
1300 
Zn 

1450 
1450 
1400 
1250 
2500 
1625 
1500 
975 
1075 
675 
1500 
1775 
1500 
Zn 

1275 
1125 
1300 
1500 
1625 
825 
1500 
1563 
1550 
1500 
1325 
975 
1025 
Zn 

1363 
900 
1050 
1100 
1000 
1200 
1150 
1825 
1075 
875 
850 
1200 
800 

Cd 
ND 
1 

ND 
ND 
1 

ND 
1.5 
ND 
1 

ND 
1 

1.5 
1 

Cd 
1 

0.5 
ND 
ND 
1.5 
ND 
1 

ND 
1 

ND 
ND 
ND 
1 

Cd 
1.5 
ND 
ND 
ND 
1.5 
1 
1 

ND 
1 

ND 
1 

ND 
1 

Cd 
ND 
ND 
ND 
1 
1 
1 

1.5 
1 
1 

ND 
ND 
ND 
ND 
Cd 
ND 
ND 
ND 
ND 
1 
1 

ND 
ND 
ND 
ND 
ND 
ND 
1 

Ca 
2375 
3000 
2050 
2000 
3550 
2100 
1900 
1375 
850 
1500 
3800 
4500 
9500 
Ca 

1325 
1400 
1050 
1100 
4375 
750 
2750 
775 
1340 
725 
2300 
3700 
5000 
Ca 

1813 
1375 
1400 
1950 
5275 
2625 
3625 
1025 
1375 
730 
3875 
5000 
7000 
Ca 

3075 
1775 
3100 
3875 
4300 
3250 
7250 
3100 
3350 
3550 
5300 
5250 
4375 
Ca 

3938 
1200 
2250 
2325 
5300 
4600 
5000 
4875 
3050 
2625 
4625 
7750 
4575 

Note: ND denotes not detected 
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Appendix 1.1c: Restronguet Creek, mean sediment metal concentrations 
STATION 
D1 
TC6 
TC8 
TC9 
P10 
PC13 
CY16 
C19 
K20 
H23 
TW27 
BY2S 
PI30 
St Clement 

Al 
1192 
1095 
964 
1028 
1455 
1032 
1167 
1283 
1339 
931 
1196 
1213 
1109 
1643 

Fe 
7870 
5730 
5767 
6630 
12327 
7966 
8481 
8500 
7984 
5563 
9785 
10570 
9143 
8974 

Cu 
622 
653 
470 
547 
814 
493 
620 
666 
716 
459 
596 
653 
520 
154 

Pb 
71 
70 
57 
67 
149 
110 
86 
76 
80 
65 
74 
91 
76 
84 

Ni 
9 
9 
6 
8 
13 
8 
8 
10 
9 
7 
8 
10 
8 
6 

As 
221 
105 
152 
141 
307 
214 
206 
231 
230 
130 
284 
271 
248 
ND 

Zn 
1333 
1375 
1005 
1155 
1800 
1065 
1345 
1443 
1470 
955 
1285 
1420 
1185 
55 

Ca 
2505 
1750 
1970 
2250 
4560 
2665 
4105 
2230 
1993 
1826 
3980 
5240 
6090 
2000 

Appendix 1.2: The Erme Estuary, sediment geochemical data 
station 
F1A93 
HP2 
HP3 
HP4 
E5 
E6 
E7 
E8 
E9 
E10 
OW11 
OW12 
OW14 
OW1S 
CM16 
CM17 
S18 
S19 
S20 
MEAN 

Al 
630 
700 
865 
630 
665 
1125 
530 
500 
410 
330 
480 
365 
725 
725 
940 
850 
900 
575 
560 

658.2 

Fe 
2380 
3015 
3650 
2700 
2700 
5350 
3015 
2780 
2335 
1905 
2475 
2065 
4165 
4500 
6800 
6500 
700 
4000 
4000 

3422.9 

Cu 
6.5 
9.5 
12 

10.5 
9.5 
15.5 
11 
9 

8.5 
6.5 
8 
6 

9.5 
10.5 
15 
15 

14.5 
10 
8 

10.3 

Pb 
40 
45 
55 
40 
35 
65 
40 
30 
30 
30 
35 
25 
45 
45 
55 
50 
50 
35 

32.5 
41.2 

Ni 
3 

4.5 
3.5 
5 
5 
8 

6.5 
7.5 
5 
4 
5 

2.5 
7 
11 
15 
7.5 
10 
6 

5.75 
6.4 

Zn 
49 
95 
125 
175 
53 
150 
59 
50 
59 
35 
43 
36 
52 
58 
85 
75 
62 
70 
55 

72.9 

Cd 
1 

ND 
1 

0.5 
ND 
1.5 
1 
1 

ND 
ND 
ND 
1 
1 

ND 
0.5 
0.5 
1 
1 

1.5 
1.0 

Ca 
850 
1300 
1400 
600 
1100 
1750 
14800 
14950 
13050 

L10850 
11900 
10850 
17400 
15650 
8100 
5900 
6350 
17850 
20575 
9222.4 

Appendix 1.3: The Fowey Estuary, sediment geochemical data 
station 
StW1A94 
StW2 
LP03 
RC4 
CHS 
CH6 
PM7 
MP9 
MP10 
PPH11 
G12 
G13 
G14 
IMEAN 

Al 
175 
230 
215 
240 
490 
275 
525 
300 
275 
370 
55 
513 
175 

295.2 

Fe 
745 
950 
1205 
1335 
2380 
1125 
3415 
1270 
985 
1745 
240 

2073 
875 

1411.0 

Cu 
33.5 
13.5 
52.5 
22.5 
80.5 
72.5 
140 
87.5 
76.5 
72.5 
11 
40 
18 

55.4 

Pb 
5 
10 
15 
10 
25 
15 
40 
30 
20 
25 
10 

27.5 
25 

19.8 

Ni 
ND 
1.5 
3 

ND 
3 

ND 
7.5 
4 

4.5 
1.5 
ND 

4.75 
ND 
3.7 

Zn 
120 
25 
115 
45 
180 
175 
310 
210 
170 
210 
20 
85 

31.5 
130.5 

Cd 
ND 
ND 
ND 
ND 
ND 
ND 
1 

ND 
ND 
ND 
ND 
1.5 
ND 
1.3 

Ca 
105 
150 
143 

3000 
5000 
2500 
9250 
2250 
2000 
1550 
122 

3175 
1550 

2368.8 
Appendix 1.4: The Avon Estuary, sediment geochemical data 

station 
A1A95 
A2 
A3 
A4 
AS 
A6 
A7 
AS 
A9 
A10 
A11 
A12 
MEAN 

Al 
415 
600 
350 
300 
700 
455 
525 
440 
450 
435 
590 
600 

488.3 

Fe 
2380 
2475 
1745 
1510 
2855 
2220 
2700 
2220 
1620 
2220 
3095 
3058 

2341.5 

Cu 
10.5 
18 
9 
3 

9.5 
15 
62 
14 

12.5 
12.5 
18 

14.5 
16.5 

Pb 
20 
20 
15 
15 
25 
20 
25 
25 
15 
15 
30 

14.5 
20.0 

Ni 
5 
5 

ND 
2 
5 

2.5 
3.5 
5 
5 
3 
5 

7.5 
4.4 

Zn 
34 
50 
27 
15 

38.5 
40 
150 
42.5 
41 
35 

47.5 
47 

47.3 

Cd 
ND 
ND 
ND 
ND 
ND 
ND 
ND 
ND 
ND 
ND 
ND 
ND 
ND 

Ca 
3050 
3500 
1550 
1200 
6100 
4800 
2600 
6350 
1300 
5650 
2600 
15925 
4552.1 

Note: ND denotes not detected 
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2.1 Restronguet Creek 

Dl/Autumn 92 

H.germanlca 
E.Williamsoni 
Abeccarii 

TOTAL 

TC6 

H.germanlca 

E. Williamsoni 
A.beccaril 

TOTAL 

TC8 

H.germanica 
E.WiUiamsonl 

A.beccaril 

TOTAL 

TC9 

H.germanica 

E.Williamsoni 
A.beccarii 

TOTAL 

P10 

H.germanica 

E.Wiiliamsoni 
A.beccarii 

TOTAL 

PC13 

H.germanlca 

E.Williamsoni 

A.beccaril 

TOTAL 

CY16 

H.germanlca 

E.Williamsoni 
Abeccarii 

TOTAL 

C19 

H.germanlca 

E.WIIIIamsonI 

A.beccarii 

TOTAL 

K20 

H.germanica 

E.Willlamsoni 

A.beccaril 

TOTAL 

H23 

H.germanica 

E.Williamsonl 

A.beccarii 

TOTAL 

TW27 

H.germanica 

E.Willlamsoni 

A.beccarii 

TOTAL 

BY28 

H.germanlca 

E.Williamsoni 

A.beccarii 

TOTAL 

PI30 

H.germanica 

E.Williamsoni 

Abeccarii 

SC/T 1 %T 

SC/T 

81 

76 
0 

157 

SC/T 

224 
288 
0 

512 

SC/T 

144 

278 

5 

427 

SC/T 

430 

288 

16 

734 

SC/T 

332 

560 

40 

932 

SC/T 

360 

588 

24 

972 

SC/T 

%T 

52 

48 

0 

100 

%T 

44 
56 

0 

100 

%T 

34 

65 

1.2 

100.2 

%T 

59 

39 

2 

100 

%T 

36 

60 

4 

100 

%T 

37.3 

60.5 

2 

99.8 

%T 

SC/T %T 

SC/T 

36 

100 
4 

140 

SC/T 

624 

592 

64 

1280 

SC/T 

%T 

26 

71 

3 

100 

%T 

49 
46 

5 

100 

%T 

SC/T 

792 

1968 

96 

TOTAL 1 2856 

%T 

28 

69 

3 

100 

DSC/T %Sp %T 

DSC/T 

8 
3 

0 

11 

DSC/T 

36 

24 
0 

60 

DSC/T 

5 

10 

0 

15 

DSC/T 

34 

20 

0 

54 

DSC/T 

48 

24 

32 

104 

DSC/T 

8 

12 

0 

20 

DSC/T 

%Sp 

10 
3.9 

0 

%Sp 

16 

8 
0 

%Sp 

3 

4 

0 

%Sp 

8 

7 

0 

%Sp 

14 

4 

80 

%Sp 

2 

2 

0 

%Sp 

%T 

5 

2 

0 

7 

%T 

7 

5 

0 

12 

%T 

1 

2 

0 

3 

%T 

5 

3 

0 

8 

%T 

5 

3 

3 

11 

%T 

1 

1 
0 

2 

%T 

DSC/T 1 % Sp %T 

DSC/T 

8 

8 

0 

16 

DSC/T 

31 

4 
0 

35 

DSC/T 

%Sp 

22 

8 

0 

%Sp 

5 

1 

0 

%Sp 

%T 

6 

6 

0 

12 

%T 

2 

0.3 

0 

2 

%T 

DSC/T 

64 

112 

0 

176 

%Sp 

8 

6 

0 

%T 

2 

4 

0 

6 
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2.1 Restronguet Creek 

Dl/Winter 93 

H.gennanica 

E.WUIiamsoni 

Abeccarii 

TOTAL 

TC6 

H.germanlca 
E.Willlamsonl 

A.beccaril 

TOTAL 

TC8 

H.germanica 

E.Williamsoni 

A.beccaril 

TOTAL 

TC9 

H.germanica 
E.Williamsoni 

Abeccarii 

TOTAL 

P10 

H.gennanica 

E.Williamsoni 

A.beccarii 

TOTAL 

PCI 3 

H.germanica 

E.Williamsoni 

A.beccarii 

TOTAL 

CY16 

H.gennanica 

E.Williamsoni 

A.beccaril 

TOTAL 

C19 

H.gennanica 

E.Williamsoni 

A.beccaril 

TOTAL 

K20 

H.gennanica 

E.WIIIIamsonl 
Abeccarii 

TOTAL 

H23 

H.gennanica 

E.Wiliiamsonl 

Abeccarii 

TOTAL 

TW27 

H.gennanica 

EWiiiiamsonl 

A.beccaril 

TOTAL 

BY28 

H.gennanica 

E.WiiliamsonI 

A.beccarii 

TOTAL 

PI30 

H.gennanica 

EWilllamsonl 

Abeccarii 

TOTAL 

SC/T %T 

SC/T 

392 
78 

0 

470 

scrr 
740 

377 
0 

1117 

SC/T 

236 

374 

8 

618 

SC/T 

1281 

188 

64 

1533 

SC/T 

532 

408 

0 

940 

SC/T 

376 

392 

32 

800 

SC/T 

%T 

83 
17 

0 

100 

%T 

66 

34 

0 

100 

%T 

38 

61 

1 

100 

%T 

84 

12 

4 

100 

%T 

57 

43 

0 

100 

%T 

47 

49 

4 

100 

%T 

SC/T %T 

SC/T %T 

SC/T 

228 

104 

40 

372 

SC/T 

224 

120 

112 

456 

SC/T 

408 

380 

4 

792 

%T 

61 

28 

11 

100 

%T 

49 

26 

25 

100 

%T 

51.5 

48 

0.5 

100 

DSC/T %Sp %T 

DSC/T 

36 

12 
0 

48 

DSC/T 

20 

19 

0 

39 

DSC/T 

24 

17 
0 

41 

DSC/T 

48 

0 

16 

64 

DSC/T 

16 

24 

0 

40 

DSC/T 

0 

24 

0 

24 

DSC/T 

%Sp 

9 

15 
0 

%Sp 

3 

5 

0 

%Sp 

10 

5 

0 

%Sp 

4 

0 

25 

%Sp 

3 

6 

0 

%Sp 

0 

6 

0 

%Sp 

%T 

8 

3 

0 

11 

%T 

2 

2 

0 

4 

%T 

4 

3 

0 

7 

%T 

3 

0 

3 

6 

%T 

2 

3 

0 

5 

%T 

0 

3 

0 

3 

%T 

DSC/T %Sp %T 

DSC/T % Sp 1 %T 

DSC/T 

8 

4 

0 

12 

DSC/T 

8 

32 

0 

40 

DSC/T 

16 

2 

0 

18 

%Sp 

4 

4 

0 

%Sp 

4 

27 

0 

%Sp 

4 

1 

0 

%T 

2 

1 

0 

3 

%T 

2 

7 

0 

9 

%T 

2 

0.3 

0 

2 
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2.1 Restronguet Creek 

D1/Spring 93 

H.germanica 

E.Williamsoni 

Abeccarii 

TOTAL 

TC6 

H.germanlca 

E.Williamsoni 

A.beccai1i 

TOTAL 

TC8 

H.germanica 

EWilllamsonI 

A.beccarii 

TOTAL 

TC9 

H.germanica 

E.Williamsoni 

A.beccarii 

TOTAL 

P10 

H.gemianica 

E.Williamsoni 

A.beccarii 

TOTAL 

PC13 

H.gennanica 

E.Williamsoni 

A.beccarii 

TOTAL 

CY16 

H.germanica 

E.Williamsoni 

Abeccaril 

TOTAL 

C19 

H.gennanica 

E.Williamsoni 

Abeccaril 

TOTAL 

K20 

H.germanica 

E.Williamsoni 

A.beccarii 

TOTAL 

H23 

H.germanica 

E.Willlamsoni 

A.beccarii 

TOTAL 

TW27 

H.germanica 

E.Williamsoni 

Abeccaril 

TOTAL 

BY28 

H.germanica 

E.Willlamsoni 

A.beccarii 

TOTAL 

PI30 

H.germanica 

E.Willlamsoni 

Abeccarii 

TOTAL 

SC/T 

80 

10 

0 

90 

sen-
120 

0 

0 

120 

sen-
2030 

60 

30 

2120 

scrr 
1280 

45 

5 

1330 

SC/T 

2973 

137 

40 

31 SO 

SC/T 

874 

58 

28 

960 

SC/T 

2180 

112 

88 

2380 

sc/r 
245 

0 

0 

245 

scrr 

%T 

89 

11 

0 

100 

%T 

100 

0 

0 

100 

%T 

95.5 

3 

1.5 

100 

%T 

96 

3.4 

0.4 

99.8 

%T 

94 

4.5 

1.3 

99.8 

%T 

91 

6 

3 

100 

%T 

91 

5 

4 

100 

%T 

100 

0 

0 

100 

%T 

SC/T 

162 

23 

0 

185 

SC/T 

3360 

120 

64 

3544 

SC/T 

4552 

112 

52 

4716 

SC/T 

7900 

320 

1224 

9444 

%T 

88 

12 

0 

100 

%T 

94.4 

3.6 

2 

100 

%T 

97 

2 

1 

100 

%T 

84 

3 

13 

100 

DSC/T 

10 

0 

0 

10 

Dsc/r 
25 

0 

0 

25 

DSC/r 

240 

20 

0 

260 

DSC/T 

170 

10 

0 

180 

DSC/T 

100 

10 

0 

110 

DSC/T 

42 

6 

0 

48 

DSC/T 

64 

0 

4 

68 

DSC/T 

25 

0 

0 

25 

DSC/T 

%Sp 

13 

0 

0 

%Sp 

21 

0 

0 

21 

%Sp 

12 

33 

0 

%Sp 

13 

22 

0 

%Sp 

3 

7 

0 

%Sp 

5 

10 

0 

%Sp 

3 

0 

5 

%Sp 

10 

0 

0 

%Sp 

%T 

11 

0 

0 

11 

%T 

21 

0 

0 

21 

%T 

11 

1 

0 

12 

%T 

13 

1 

0 

14 

%T 

3 

0 

0 

3 

%T 

4 

1 

0 

5 

%T 

3 

0 

0.2 

3 

%T 

10 

0 

0 

10 

%T 

DSC/T 

4 

3 

0 

7 

DSC/T 

96 

12 

0 

108 

DSC/T 

188 

8 

4 

200 

DSC/T 

120 

16 

56 

192 

%Sp 

2 

13 

0 

%Sp 

3 

10 

0 

%Sp 

4 

7 

8 

%Sp 

2 

5 

5 

%T 

2 

2 

0 

4 

%T 

3 

0 

0 

3 

%T 

4 

0.2 

0.1 

4.3 

%T 

1 

0.2 

0.6 

2 
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2.1 Restronguet Creek 

Dl/Summer 93 

H.germanica 
E.WIIiamsonl 

A.beccaril 

TOTAL 

TC6 

H.germanlca 
E.WilllamsonI 
A.beccartl 

TOTAL 

TC8 

H.gennanica 

E.WilllamsonI 

Abeccaril 

TOTAL 

TC9 

H.germanlca 

E.Willlamsonl 

A.beccaril 

TOTAL 

P10 

H.gennanica 

E.WilllamsonI 

A.beccaril 

TOTAL 

PC13 

H.gennanica 
E.WilliamsonI 

A.beccaril 

TOTAL 

CY16 

H.ge/man/ca 

E. Williamsoni 

A.beccaril 

TOTAL 

C19 

H.gennanica 

E.WilliamsonI 

A-beccaril 

TOTAL 

K20 

H.gennanica 

E.Williamsoni 
A.beccarii 

TOTAL 

H23 

H.gennanica 

E.WilllamsonI 

Abeccarii 

TOTAL 

TW27 

H.gennanica 

E.WilllamsonI 

Abeccarii 

TOTAL 

BY28 

H.germanica 

E.WiillamsonI 

A.beccaril 

TOTAL 

PI30 

H.germanlca 

E.WIIIiamsoni 

Abeccarii 

TOTAL 

SC/T 

28 

10 
8 

46 

SC/T 

1346 

338 
46 

1730 

SC/T 

3388 
56 

44 

3488 

SC/T 

672 

124 
24 

820 

SC/T 

1448 

254 

108 

1810 

SC/T 

328 

8 
8 

344 

SC/T 

1440 

460 

76 

1976 

SC/T 

18 

0 

0 

18 

SC/T 

%T 

61 

22 

17 

100 

%T 

78 

20 

2 

100 

%T 

97 
2 

1 

100 

%T 

82 

15 

3 

100.2 

%T 

80 

14 

6 

100 

%T 

95.4 

2.3 
2.3 

100 

%T 

73 

23 

4 

100 

%T 

100 

0 

0 

100 

%T 

SC/T 

34 

20 

0 

54 

SC/T 

2232 

384 

96 

2712 

SC/T 

1712 

184 

32 

1928 

SC/T 

2774 

376 

308 

3458 

%T 

63 

37 

0 

100 

%T 

82 

14 

4 

100 

%T 

88 

10 

2 

100 

%T 

80 

11 
9 

100 

DSC/T 

0 
0 

0 

0 

DSC/T 

136 
28 

4 

168 

DSC/T 

236 

0 
8 

244 

DSC/T 

56 

4 

0 

60 

DSC/T 

106 

40 

8 

154 

DSC/T 

4 

0 

0 

4 

DSC/T 

32 

20 

20 

72 

DSC/T 

10 

0 

0 

10 

DSC/T 

%Sp 

0 
0 

0 

%Sp 

10 
8 

9 

%Sp 

7 

0 
18 

%Sp 

8 

3 

0 

%Sp 

7 

16 

7 

%Sp 

1 

0 
0 

%Sp 

2 

4 

26 

%Sp 

56 

0 

0 

%Sp 

%T 

0 
0 

0 

0 

%T 

8 

1.6 
0.2 

10 

%T 

7 

0 

0.2 

7 

%T 

7 

0.5 

0 

7.5 

%T 

6 

2.2 

0.4 

8.6 

%T 

1 
0 

0 

1 

%T 

2 

1 

1 

4 

%T 

56 

0 

0 

56 

%T 

DSC/T 

18 

0 

0 

18 

DSC/T 

104 

0 

0 

104 

Dscrr 
152 

4 

0 

156 

DSC/T 

78 

22 

40 

76 

%Sp 

53 

0 

0 

%Sp 

5 

0 

0 

%Sp 

9 

2 

0 

%Sp 

3 

6 

13 

%T 

33 

0 

0 

33 

%T 

4 

0 

0 

4 

%T 

8 

0.2 

0 

8.2 

%T 

2 

0.6 

1.2 

3.8 
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2.1 Restronguet Creek 

D1/Autumn 93 

H.germanica 

E. Williamsonl 
A.beccarii 

TOTAL 

TC6 

H.germanica 

E.Willlamsoni 
A.beccarii 

TOTAL 

TC8 

H.germanica 

E. Williamsoni 
A.beccarii 

TOTAL 

TC9 

H.germanica 

E.Willlamsoni 

A.beccarii 

TOTAL 

P10 

H.germanica 

E.Williamsoni 

A.beccarii 

TOTAL 

PCI 3 

H.germanica 

E.Williamsoni 

A.beccarii 

TOTAL 

CY16 

H.germanica 

E.Williamsoni 

A.beccarii 

TOTAL 

C19 

H.germanica 
E.Willlamsoni 

Abeccarii 

TOTAL 

K20 

H.germanica 

E.Willlamsoni 

A.beccarii 

TOTAL 

H23 

H.germanica 

E.Willlamsoni 
A.beccaril 

TOTAL 

TWZ7 

H.germanica 

E.Williamsoni 

A.beccaril 

TOTAL 

BY28 

H.germanica 

E.WIIIiamsoni 
A.beccaril 

TOTAL 

PI30 

H.germanica 

E.Williamsoni 

Abeccarii 

TOTAL 

SC/T 

32 

9 

32 

73 

SC/T 

138 

42 
0 

180 

SC/T 

202 
100 

0 

302 

SC/T 

128 

128 
0 

256 

SC/T 

137 

159 

44 

340 

SC/T 

33 

41 

0 

74 

SC/T 

90 

106 

132 

328 

SC/T 

0 

6 
0 

6 

SC/T 

%T 

44 
12 

44 

100 

%T 

77 
23 

0 

100 

%T 

67 

33 
0 

100 

%T 

50 

50 
0 

100 

%T 

40 

47 

13 

100 

%T 

44 

56 

0 

100 

%T 

28 

32 

40 

100 

%T 

0 
100 

0 

100 

%T 

SC/T 

0 

8 

0 

8 

SC/T 

164 

120 

0 

284 

SC/T 

284 

344 

120 

748 

SC/T 

1164 

436 

432 

2032 

%T 

0 

100 

0 

100 

%T 

58 

42 

0 

100 

%T 

38 

46 

16 

100 

%T 

57 

22 

21 

100 

DSC/T 

8 

0 

0 

8 

DSC/T 

42 

12 
0 

54 

DSC/T 

12 
8 

0 

20 

DSC/T 

24 

8 

0 

32 

DSC/T 

9 

4 

0 

13 

DSC/T 

4 

7 

0 

11 

DSC/T 

6 

8 
0 

14 

DSC/T 

0 

0 

0 

0 

DSC/T 

%Sp 

25 

0 

0 

%Sp 

30 

29 

0 

%Sp 

6 

8 

0 

%Sp 

19 

6 

0 

%Sp 

7 

3 

0 

%Sp 

12 

17 

0 

%Sp 

7 

8 

0 

%Sp 

0 

0 

0 

%Sp 

%T 

11 

0 

0 

11 

%T 

23 

7 

0 

30 

%T 

4 

3 

0 

7 

%T 

9.4 

3.1 

0 

13 

%T 

3 

1.2 

0 

4 

%T 

5 

9.5 

0 

15 

%T 

2 

2.4 

0 

4 

%T 

0 

0 

0 

0 

%T 

DSC/T 

0 

0 

0 

0 

DSC/T 

52 

12 

0 

64 

Dscn' 
0 

24 

0 

24 

DSC/T 

136 

20 

0 

156 

%Sp 

0 

0 

0 

%Sp 

32 

10 

0 

%Sp 

0 

7 

0 

%Sp 

12 

5 

0 

%T 

0 

0 

0 

0 

%T 

18 

4 

0 

22 

%T 

0 

3 

0 

3 

%T 

7 

1 

0 

8 

307 



2.1 Restronguet Creek 

Dl/Winler 94 

H.germanlca 
E.WilliamsonI 

A.beccaril 

TOTAL 

TC6 

H.germanlca 
E.WilliamsonI 

Abeccarii 

TOTAL 

TC8 

H.gemrmnica 

E.Willlamsoni 
Abeccarii 

TOTAL 

TC9 

H.gemtanica 
E.Wiillamsoni 

Abeccarii 

TOTAL 

P10 

H.germanlca 

E.WIIIiamsoni 

Abeccarii 

TOTAL 

PCI 3 

H.germanica 

E.Williamsoni 

A.beccarii 

TOTAL 

CY16 

H.germanica 
E.Williamsoni 

Abeccarii 

TOTAL 

C19 

H.germanica 

E.Wiillamsoni 

A.beccarii 

TOTAL 

K20 

H.germanica 

E.Wiiiiamsoni 

Abeccarii 

TOTAL 

H23 

H.germanlca 

E.WilliamsonI 

A.beccaril 

TOTAL 

TW27 

H.germanlca 

E.Wiiiiamsoni 

A.beccarii 

TOTAL 

BY28 

H.germanlca 

E.WilliamsonI 

A.beccarii 

TOTAL 

PI30 

H.germanica 

E.WilliamsonI 

A.beccarii 

TOTAL 

SC/T 1 %T 

SC/T 

104 
42 

146 

292 

SC/T 

206 

72 
0 

278 

SC/T 

186 

110 

0 

296 

SC/T 

137 
21 

0 

158 

SC/T 

20 

12 

0 

32 

SC/T 

40 

91 

32 

163 

SC/T 

%T 

36 

14 
SO 

100 

%T 

74 

26 

0 

100 

%T 

63 

37 

0 

100 

%T 

87 

13 

0 

100 

%T 

62.5 

37.5 

0 

100 

%T 

25 

55 
20 

100 

%T 

SC/T 1 %T 

SC/T %T 

SC/T 

940 

636 

60 

1636 

SC/T 

182 

174 

6 

362 

SC/T 

376 

488 

72 

936 

%T 

57.5 

39 

3.5 

100 

%T 

50 

48 

2 

100 

%T 

40 

52 

8 

DSC/T %Sp %T 

DSC/T 

0 

2 
0 

2 

DSC/T 

38 

1 
0 

39 

DSC/T 

5 

4 

0 

9 

DSC/T 

0 

1 

0 

1 

DSC/T 

0 

0 

0 

0 

DSC/T 

0 
12 

0 

12 

DSC/T 

%Sp 

0 
5 

0 

%Sp 

18 
1 

0 

%Sp 

3 

4 

0 

%Sp 

0 

5 

0 

%Sp 

0 

0 

0 

%Sp 

0 

13 
0 

%Sp 

%T 

0 

1 
0 

1 

%T 

14 

0.4 

0 

14.4 

%T 

2 

1 
0 

3 

%T 

0 

1 

0 

1 

%T 

0 

0 

0 

0 

%T 

0 

7 

0 

7 

%T 

DSC/T %Sp %T 

DSC/T %Sp %T 

DSC/T 

28 

69 

0 

97 

DSC/T 

36 

10 

0 

14 

DSC/T 

12 

48 

4 

100 I 64 

%Sp 

3 

11 

0 

%Sp 

20 

6 

0 

%Sp 

3 

10 

6 

%T 

2 

4.2 

0 

6 

%T 

10 

2.8 

0 

13 

%T 

1 

5.1 

0.4 

6.5 

308 



2.1 Restronguet Creek 

D1/Spring 94 

H.germanica 
E.Willlamsoni 

Abeccarii 

TOTAL 

TC6 

H.germanica 

E.Williamsoni 
A.beccaril 

TOTAL 

TC8 

H.germanica 

E.Williamsoni 
A.beccaril 

TOTAL 

TC9 

H.germanica 

E.Williamsoni 
Abeccarii 

TOTAL 

P10 

H.germanica 

E.Williamsoni 

Abeccarii 

TOTAL 

PC13 

H.germanica 

E.Williamsoni 

A.beccarii 

TOTAL 

CY16 

H.germanlca 

E.Williamsoni 
A.beccarii 

TOTAL 

C19 

H.germanica 

E. Wiliiamsoni 

Abeccarii 

TOTAL 

K20 

H.germanica 

E.Williamsoni 

A.beccarii 

TOTAL 

H23 

H.germanica 

E.Wiliiamsoni 

Abeccarii 

TOTAL 

TW27 

H.germanica 

E.Williamsoni 

Abeccarii 

TOTAL 

BY28 

H.germanica 

E.Wiliiamsoni 

Abeccarii 

TOTAL 

PI30 

H.germanica 

E.WIIIIamsonl 

A.beccaril 

TOTAL 

sen- %T 

SC/T 

4 

0 
0 

4 

SC/T 

16 
5 

0 

21 

SC/T 

10 

0 

0 

10 

SC/T 

225 
1 

0 

226 

SC/T 

496 

6 

0 

502 

SC/T 

392 

96 

16 

504 

SC/T 

%T 

100 

0 

0 

100 

%T 

76 

24 
0 

100 

%T 

100 

0 

0 

100 

%T 

99 

1 
0 

100 

%T 

99 

1 

0 

100 

%T 

78 

19 

3 

100 

%T 

SC/T %T 

SC/T %T 

SC/T 

1000 

4 

4 

1008 

SC/T 

280 

42 

6 

328 

SC/T 

1588 

40 

12 

1640 

%T 

99 

0.5 

0.5 

100 

%T 

85 

13 

2 

100 

%T 

97 

2 

1 

DSC/T %Sp %T 

DSC/T 

0 

0 
0 

0 

DSC/T 

2 

2 
0 

4 

DSC/T 

2 

0 
0 

2 

DSC/T 

14 

0 

0 

14 

DSC/T 

66 

0 

0 

66 

DSC/T 

32 

24 

0 

56 

DSC/T 

%Sp 

0 

0 

0 

%Sp 

13 

40 

0 

%Sp 

20 

0 
0 

%Sp 

6 

0 

0 

%Sp 

13 

0 

0 

%Sp 

8 

25 
0 

%Sp 

%T 

0 

0 
0 

0 

%T 

10 
9.5 

0 

19.5 

%T 

20 

0 

0 

20 

%T 

6 

0 

0 

6 

%T 

13 

0 

0 

13 

%T 

6 

4.8 

0 

11 

%T 

DSC/T %Sp %T 

DSC/T % Sp 1 %T 

DSC/T 

132 

4 

0 

136 

DSC/T 

14 

12 

0 

26 

DSC/T 

52 

0 

0 

100 1 52 

%Sp 

13 

100 

0 

%Sp 

5 

29 

0 

%Sp 

3 

0 

0 

%T 

13 

0.4 

0 

13.4 

%T 

4 

3.7 

0 

8 

%T 

3 

0 

0 

3 

309 



2.1 Restronguet Creek 

Dl/Summer 94 

H.germanica 

E.WilliamsonI 

A.beccarii 

TOTAL 

TC6 

H.germanica 

E.Williamsonl 
A.beccarii 

TOTAL 

TC8 

H.germanica 

EWilliamsoni 

Abeccaril 

TOTAL 

TC9 

H.gentianica 

EWilliamsonl 

A.beccarii 

TOTAL 

P10 

H.gennanica 

E.Williamsoni 
Abeccarii 

TOTAL 

PC13 

H.germanica 

E.WilliamsonI 

Abeccarii 

TOTAL 

CY16 

H.germanica 

E.WilllamsonI 

A.beccarii 

TOTAL 

C19 

H.gennanica 

E.WilllamsonI 

A.beccaril 

TOTAL 

K20 

H.germanica 

E.WilllamsonI 

A.beccaril 

TOTAL 

H23 

H.germanica 

E.Willlamsonl 

A.beccaril 

TOTAL 

TW27 

H.germanica 

E.Williamsoni 

A.beccarii 

TOTAL 

BY28 

H.germanica 

E.WilliamsonI 

A.beccarii 

TOTAL 

PI30 

H.germanica 

EWilliamsonl 

A.beccaril 

TOTAL 

SC/T 

261 
38 

4 

303 

SC/T 

728 
168 
4 

902 

SC/T 

1680 

504 
16 

2200 

SC/T 

880 

232 

0 

1112 

SC/T 

624 

124 
16 

764 

SC/T 

700 

267 

16 

983 

SC/T 

1192 

792 

232 

2216 

SC/T 

500 

364 
0 

864 

SC/T 

%T 

86 

13 

1 

100 

%T 

81 

18.6 

0.4 

100 

%T 

76 

23 

1 

100 

%T 

79 

21 

0 

100 

%T 

82 

16 

2 

100 

%T 

71 

27 

2 

100 

%T 

54 

36 

10 

100 

%T 

58 

42 

0 

100 

%T 

No data 

SC/T 

158 

152 

0 

310 

SC/T 

1352 

880 

56 

2288 

SC/T 

1472 

1608 

16 

3096 

SC/T 

1536 

2232 

120 

3888 

%T 

51 

49 

0 

100 

%T 

60 

38 

2 

100 

%T 

48 

51 

1 

100 

%T 

40 

57 

3 

100 

DSC/T 

20 

2 
0 

22 

DSC/T 

58 
0 

0 

58 

DSC/T 

116 

16 

0 

132 

DSC/T 

72 

0 

0 

72 

DSC/T 

60 

8 

0 

68 

DSC/T 

44 

4 

0 

48 

DSC/T 

16 

0 

0 

16 

DSC/T 

82 

12 

0 

94 

DSC/T 

DSC/T 

12 

0 

0 

12 

DSC/T 

56 

8 

0 

64 

DSC/T 

80 

16 

0 

96 

DSC/T 

48 

48 

0 

96 

%Sp 

8 

5 

0 

%Sp 

8 

0 

0 

%Sp 

7 

3 

0 

%Sp 

8 

0 

0 

%Sp 

10 

6 

0 

%Sp 

6 

1 

0 

%Sp 

1 

0 

0 

%Sp 

16 

3 

0 

%Sp 

No data 

%Sp 

8 

0 

0 

%Sp 

4 

1 

0 

%Sp 

5 

1 

0 

%Sp 

3 

2 

0 

%T 

6.6 

0.7 

0 

7.3 

%T 

6 

0 

0 

6 

%T 

5 

1 

0 

6 

%T 

7 

0 

0 

7 

%T 

8 

1 

0 

9 

%T 

5 

0 

0 

5 

%T 

1 

0 

0 

1 

%T 

9.5 

1.4 

0 

10.9 

%T 

%T 

4 

0 

0 

4 

%T 

2.5 

0 

0 

2.5 

%T 

2.6 

0.5 

0 

3 

%T 

1 

1 

0 

2 

310 



2.1 Reslronguet Creek 

D1/Autumn 94 

H.germanica 

E.WiUiamsonl 
Abeccarii 

TOTAL 

TC6 

H.germanica 

E.WIIIiamsoni 
A.beccaiii 

TOTAL 

TC8 

H.germanica 

E.Willlamsonl 
A.beccarii 

TOTAL 

TC9 

H.gemanica 
E.Wmiamsonl 
Abecxaril 

TOTAL 

P10 

H.germanica 

E. Willlamsoni 

A.beccaril 

TOTAL 

PC13 

H.germanica 

E.Williamsoni 

Abeccarii 

TOTAL 

CY16 

H.germanica 

E.Willlamsoni 
Abeccarii 

TOTAL 

C19 

H.germanica 

E.Williamsoni 

A.beccarii 

TOTAL 

K20 

H.germanica 

E.Willlamsonl 

A.beccaril 

TOTAL 

H23 

H.germanica 

E.Wiiiiamsoni 

A.beccarii 

TOTAL 

TW27 

H.germanica 

E.Wiiiiamsoni 

Abeccarii 

TOTAL 

BY28 

H.germanica 

E.Wiiiiamsoni 

Abeccarii 

TOTAL 

PI30 

H.germanica 

E.WIIIiamsoni 

Abeccarii 

TOTAL 

SC/T 

40 

586 
0 

626 

SC/T 

240 

1688 
16 

1944 

SC/T 

96 

688 
4 

788 

SC/T 

224 
1536 

32 

1792 

SC/T 

114 

198 

4 

316 

SC/T 

200 

848 

36 

1084 

SC/T 

184 

1592 
96 

1872 

SC/T 

72 

202 

0 

274 

SC/T 

8 

44 

0 

52 

SC/T 

4 

670 

0 

674 

SC/T 

128 

1432 

0 

1560 

SC/T 

120 

224 

48 

392 

SC/T 

96 

336 

0 

432 

%T 

6 
94 

0 

100 

%T 

12 

87 
1 

100 

%T 

12 

87 
1 

100 

%T 

13 

85 

2 

100 

%T 

36 

63 

1 

100 

%T 

19 

78 

3 

100 

%T 

10 

85 

5 

100 

%T 

26 

74 

0 

100 

%T 

15 

85 

0 

100 

%T 

1 

99 

0 

100 

%T 

8 

92 

0 

100 

%T 

31 

57 

12 

100 

%T 

22 

78 

0 

DSC/T 

0 

18 
0 

18 

DSC/T 

8 
96 

0 

104 

DSC/T 

0 
56 

0 

56 

DSC/T 

0 

120 
0 

120 

DSC/T 

4 

12 

0 

16 

DSC/T 

4 

76 

0 

80 

DSC/T 

0 

88 
0 

88 

DSC/T 

4 

2 

0 

6 

DSC/T 

0 

0 

0 

0 

DSC/T 

2 

40 

0 

42 

DSC/T 

0 

104 

0 

104 

DSC/T 

0 

24 

0 

24 

DSC/T 

0 

24 

%Sp 

0 

3 
0 

%Sp 

3 

6 
0 

%Sp 

0 

8 

0 

%Sp 

0 
8 

0 

%Sp 

4 

6 

0 

%Sp 

2 

9 

0 

%Sp 

0 

6 

0 

%Sp 

6 

1 

0 

%Sp 

0 

0 

0 

%Sp 

50 

6 

0 

%Sp 

0 

7 

0 

%Sp 

0 

11 

0 

%Sp 

0 

7 

0 1 0 

100 1 24 

%T 

0 
3 

0 

3 

%T 

0 

5 

0 

5 

%T 

0 
7 

0 

7 

%T 

0 

7 
0 

7 

%T 

1 

4 

0 

5 

%T 

0 

7 

0 

7 

%T 

0 

5 
0 

5 

%T 

1 

1 

0 

2 

%T 

0 

0 

0 

0 

%T 

0 

6 

0 

6 

%T 

0 

7 

0 

7 

%T 

0 

6 

0 

6 

%T 

0 

6 

0 

6 

311 



2.1 Restronguet Creek 

Dl/Winter 95 

H.germanlca 
E.Williamsoni 
A.beccaril 

TOTAL 

TC6 

H.germanica 
E.Williamsoni 

A.beccaril 

TOTAL 

TC8 

H.germanlca 
E.Willlamsoni 
A.beccaril 

TOTAL 

TC9 

H.germanica 

E.Williamsoni 

A.beccarii 

TOTAL 

P10 

H.gemanica 

E.Willlamsonl 

A.beccaril 

TOTAL 

PC13 

H.gemianica 

E.Willlamsoni 

A.beccarii 

TOTAL 

CY16 

H.gewfianica 

E.Willlamsoni 

Abeccarii 

TOTAL 

C19 

H.gemianica 

E.Witiiamsoni 

A.beccarii 

TOTAL 

K20 

H.germanica 

E.Wiliiamsoni 
A.beccarii 

TOTAL 

H23 

H.germanica 

E.Wiiiiamsoni 

A.beccarii 

TOTAL 

TW27 

H.germanlca 

EWIIIiamsonl 

A.beccaril 

TOTAL 

BY28 

H.germanica 

E.Wiliiamsoni 

A.beccarii 

TOTAL 

PI30 

H.germanica 

E.Wiiiiamsoni 

A.beccarli 

TOTAL 

sen-
32 

252 
0 

284 

SC/T 

112 

872 

16 

1000 

SC/T 

8 

384 
0 

392 

SC/T 

160 

432 

0 

592 

SC/T 

72 

0 

16 

88 

SC/T 

8 

32 

0 

40 

SC/T 

224 

152 

16 

392 

SC/T 

%T 

11 

89 

0 

100 

%T 

11 

87 

2 

100 

%T 

2 

98 

0 

100 

%T 

27 

73 

0 

100 

%T 

82 

0 

18 

100 

%T 

20 

80 

0 

100 

%T 

57 

39 

4 

100 

%T 

No data 

SC/T %T 

No data 

SC/T 

[ 

%T 

No data 

SC/T 

264 

528 

80 

872 

SC/T 

128 

440 

32 

600 

SC/T 

680 

2480 

120 

1 3280 

%T 

30 

61 

9 

100 

%T 

21 

74 

5 

100 

%T 

21 

76 

3 

100 

DSC/T 

0 
36 

0 

36 

DSC/T 

0 
64 

0 

64 

DSC/T 

0 
32 

0 

32 

DSC/T 

0 

40 

0 

40 

DSC/T 

0 

0 

0 

0 

DSC/T 

0 

8 

0 

8 

DSC/T 

0 

16 

0 

16 ^ 

DSC/T 

%Sp 

0 

14 
0 

%Sp 

0 

7 

0 

%Sp 

0 

8 

0 

%Sp 

0 

9 

0 

%Sp 

0 

0 

0 

%Sp 

0 

25 

0 

%Sp 

0 

11 

0 

%Sp 

No data 

%T 

0 

13 

0 

13 

%T 

0 

6 

0 

6 

%T 

0 

8 

0 

8 

%T 

0 

7 

0 

7 

%T 

0 

0 

0 

0 

%T 

0 

20 

0 

20 

%T 

0 

4 

0 

4 

%T 

DSC/T %Sp 

No data 

%T 

DSC/T %Sp 

No data 

%T 

DSC/T 

16 

32 

0 

48 

DSC/T 

8 

16 

0 

24 

DSC/T 

24 

208 

0 

232 

%Sp 

6 

6 

0 

%Sp 

6 

4 

0 

%Sp 

4 

8 

0 

%T 

2 

4 

0 

6 

%T 

1 

3 

0 

4 

%T 

1 

6 

0 

7 

312 



2.1 Restronguet Creek 

Dl/Spring 95 

H.germanica 

E.Williamsonl 

Abeccaril 

TOTAL 

TC6 

H.germanica 

E.Williamsonl 

Abeccaril 

TOTAL 

TC8 

H.gemianica 
E.Williamsoni 

Alieccarii 

TOTAL 

TC9 

H.gemianica 

E. WiliiamsonI 

A.beccaril 

TOTAL 

P10 

H.gemmnlca 

E.Williamsonl 

Abeccaril 

TOTAL 

PC13 

H.gemianica 

E.WIIIIamsonI 

A.beccaril 

TOTAL 

CY16 

H.gemfianica 

E.Wiiliamsoni 

A.beccarii 

TOTAL 

CIS 

H.gemianica 

E.Wiiiiamsoni 

A.beccarii 

TOTAL 

K20 

H.gemianica 

E.Wiiiiamsoni 

Abeccarii 

TOTAL 

H23 

H.gemianica 

E.Wiiiiamsoni 

A.beccarii 

TOTAL 

TW27 

H.gemianica 

E.Wiiiiamsoni 

A.beccaril 

TOTAL 

BY28 

H.gemianica 

E.Williamsoni 

A.beccaril 

TOTAL 

PI30 

H.gemnanica 

E.Williamsoni 

Abeccaril 

TOTAL 

SC/T 

40 

2 
1 

43 

SC/T 

88 
114 

0 

202 

SC/T 

264 
188 

0 

452 

SC/T 

432 

504 
0 

936 

SC/T 

979 

32 

4 

1015 

SC/T 

724 

28 

0 

752 

SC/T 

5728 

520 

80 

6328 

SC/T 

108 

5 

0 

113 

SC/T 

70 
0 

0 

70 

SC/T 

4 

0 

0 

4 

SC/T 

3200 

48 

56 

3304 

SC/T 

2300 

280 

56 

2636 

SC/T 

1984 

320 

72 

2376 

%T 

93 
5 

2 

100 

%T 

44 
56 

0 

100 

%T 

58 

42 

0 

100 

%T 

46 

54 

0 

100 

%T 

96 

3 
0.4 

99.4 

%T 

96 

4 

0 

100 

%T 

91 

8 

1 

100 

%T 

95 
5 

0 

100 

%T 

100 

0 

0 

100 

%T 

100 

0 

0 

100 

%T 

97 

1 

2 

100 

%T 

87 

11 

2 

100 

%T 

84 

13 

3 

100 

DSCn' 

1 

0 

0 

1 

DSC/T 

36 

12 
0 

48 

DSC/T 

24 

20 
0 

44 

DSC/T 

16 

72 
0 

88 

DSC/T 

72 

8 

0 

80 

DSC/T 

8 

2 

0 

10 

DSC/T 

144 

32 

80 

256 

DSC/T 

0 

4 

0 

4 

DSC/T 

0 

0 

0 

0 

DSC/T 

4 

0 

0 

4 

DSC/T 

60 

0 

0 

60 

DSC/T 

56 

4 

0 

60 

DSC/T 

0 

48 

0 

48 

%Sp 

3 

0 
0 

%Sp 

41 

11 

0 

%Sp 

9 

11 

0 

%Sp 

4 

14 

0 

%Sp 

7 

25 

0 

%Sp 

1 

7 

0 

%Sp 

3 

6 

100 

%Sp 

0 

80 

0 

%Sp 

0 

0 

0 

%Sp 

100 

0 

0 

%Sp 

2 

0 

0 

%Sp 

2 

1 

0 

%Sp 

0 

15 

0 

%T 

2 

0 

0 

2 

%T 

18 

6 

0 

24 

%T 

5.3 

4.4 

0 

10 

%T 

2 

8 

0 

10 

%T 

7 

1 

0 

8 

%T 

1 

0 

0 

1 

%T 

2 

1 

1 

4 

%T 

0 

4 

0 

4 

%T 

0 

0 

0 

0 

%T 

100 

0 

0 

100 

%T 

2 

0 

0 

2 

%T 

2 

0 

0 

2 

%T 

0 

2 

0 

2 

313 



2.1 Restronguet Creek 

Dl/Summer 95 

H.germanica 

E.WIIIiamsonI 
A.beccarii 

TOTAL 

TC6 

H.germanica 
E. Williamsoni 

A.beccarii 

TOTAL 

TC8 

H.germanica 
E.WilliamsonI 

A.beccarii 

TOTAL 

TC9 

H.germanica 

E.Williamsoni 

A.beccarii 

TOTAL 

PIG 

H.germanica 

E.WilliamsonI 

A.beccaril 

TOTAL 

PCI 3 

H.germanica 

E.WilliarrjsonI 

A.beccarii 

TOTAL 

CY16 

H.germanica 

E.WilliamsonI 

Abeccarii 

TOTAL 

C19 

H.germanica 

E.Willlamsoni 

A.beccarii 

TOTAL 

K20 

H.germanica 

E.Williamsoni 

A.beccaril 

TOTAL 

H23 

H.germanica 

E.Williamsoni 

A.beccarii 

TOTAL 

TW27 

H.germanica 

E.WIIIiamsonI 

Abeccarii 

TOTAL 

BY28 

H.germanica 

E.WilliamsonI 

A.beccaril 

TOTAL 

PI30 

H.germanica 

E.Willlamsoni 

A.beccaril 

TOTAL 

SC/T 

980 

804 
28 

1812 

scrr 
716 

392 
80 

1188 

scrr 
30S6 
1144 

0 

4200 

SC/T 

2384 

788 

0 

3172 

SC/T 

666 

708 

8 

1382 

SC/T 

3112 

2584 

104 

5800 

SC/T 

13232 

9568 

176 

22976 

SC/T 

160 

476 

4 

640 

SC/T 

168 

374 

4 

546 

sen 
1216 

1112 

0 

2328 

SC/T 

2896 

1104 

16 

4016 

SC/T 

3168 

2400 

336 

5904 

SC/T 

4576 

5136 

336 

10048 

%T 

54 

44 
2 

100 

%T 

60 

33 
7 

100 

%T 

73 
27 
0 

100 

%T 

75 

24.5 

0 

100 

%T 

48 

51.3 
0.6 

100 

%T 

54 

44 
2.1 

100 

%T 

57 

41.5 

1.2 

100 

%T 

25 

74.5 

0.6 

100 

%T 

31 

68 

1 

100 

%T 

52 

48 

0 

100 

%T 

72 

27 

0.4 

100 

%T 

53 

41 

6 

100 

%T 

46 

51 

3.3 

DSC/T 

56 

36 

0 

92 

DSC/r 

16 

8 
16 

40 

DSC/T 

64 
0 

0 

64 

DSC/T 

136 

0 

0 

136 

DSC/T 

24 

24 

0 

48 

DSC/T 

120 

56 

16 

192 

DSC/T 

144 

96 

0 

240 

DSC/T 

34 

4 

0 

38 

DSC/r 

72 

14 

0 

86 

DSC/r 

24 

64 

0 

88 

DSC/T 

104 

16 

0 

120 

DSC/r 

48 

32 

16 

96 

DSC/r 

80 

32 

0 

100 1 112 

%Sp 

6 

4 

0 

%Sp 

2 

2 
20 

%Sp 

2 
0 
0 

%Sp 

6 

0 

0 

%Sp 

4 

3 

0 

%Sp 

4 

2 

15 

%Sp 

1 

1 

0 

%Sp 

21 

1 

0 

%Sp 

43 

4 

0 

%Sp 

2 
6 

0 

%Sp 

4 

1 

0 

%Sp 

2 

1 

5 

%Sp 

2 

1 

0 

%T 

3 
2 

0 

5 

%T 

1 

1 
1 

3 

%T 

2 
0 

0 

2 

%T 

4 

0 

0 

4 

%T 

2 

2 
0 

4 

%T 

2 

1 

0.3 

3 

%T 

1 

0 

0 

1 

%T 

5 

1 

0 

6 

%T 

13 

3 

0 

16 

%T 

1 

3 

0 

4 

%T 

3 

0 

0 

3 

%T 

1 

1 

0.3 

2 

%T 

1 

0 

0 

1 

314 



2.1 Restronguet Creek 

Dl/Autumn 95 

H.germanica 

e.WllliamsonI 
Abeccarii 

TOTAL 

TC6 

H.germanica 

E.Willlamsoni 
Abeccarii 

TOTAL 

TC8 

H.germanica 
E.miiamsoni 
A.tjeccarii 

TOTAL 

TC9 

H.germanica 

E. Wliiiamsoni 
A.beccarii 

TOTAL 

P10 

H.germanica 

E.Williamsonl 

Atieccarii 

TOTAL 

PC13 

H.germanica 
E.Wiiiiamsoni 

Abeccarii 

TOTAL 

CY16 

H.germanica 

E.Wiiiiamsoni 

Abeccarii 

TOTAL 

C19 

H.germanica 

E.Wiiiiamsoni 

Atieccarii 

TOTAL 

K20 

H.germanica 

E.Wiiiiamsoni 

A.beccarii 

TOTAL 

H23 

H.germanica 

E.Wiiiiamsoni 

A.beccarii 

TOTAL 

TW27 

H.germanica 

E.Wiiiiamsoni 

Abeccarii 

TOTAL 

BY28 

H.germanica 

E.Wiiiiamsoni 

Abeccarii 

TOTAL 

PI30 

H.germanica 

EWilliamsoni 

Abeccarii 

TOTAL 

SC/T 

18 
172 

96 

286 

SC/T 

56 

808 
176 

1040 

sen-
80 

616 

176 

872 

SC/T 

32 

832 
0 

864 

SC/T 

48 

360 
48 

456 

SC/T 

24 

1632 

240 

1896 

SC/T 

528 

732 

220 

1480 

SC/T 

24 

528 

0 

552 

SC/T 

12 

146 

0 

158 

SC/T 

344 

1464 

384 

2192 

SC/T 

56 

568 

800 

1424 

SC/T 

168 

1048 

2752 

3968 

SC/T 

144 

1888 

504 

2536 

%T 

7 

59 
34 

100 

%T 

5 
78 

17 

100 

%T 

10 

70 
20 

100 

%T 

4 

96 

0 

100 

%T 

10.5 

79 

10.5 

100 

%T 

1 

87 

12 

100 

%T 

36 

49 

15 

100 

%T 

4 

98 

0 

100 

%T 

8 

92 

0 

100 

%T 

16 

66 

18 

100 

%T 

4 

40 

56 

100 

%T 

4 

26 

70 

100 

%T 

6 

74 

20 

DSC/T 

0 

2 
0 

2 

OSC/T 

8 

88 
0 

96 

DSC/T 

0 
16 

16 

32 

DSC/T 

0 
32 

0 

32 

DSC/T 

0 

0 

16 

16 

DSC/T 

0 

120 

0 

120 

DSC/T 

0 

32 

0 

32 

DSC/T 

0 

46 
0 

48 

DSC/T 

0 

4 

0 

4 

DSC/T 

0 

96 

0 

96 

DSC/T 

0 

72 

48 

120 

DSC/T 

16 

128 

32 

166 

DSC/T 

0 

64 

16 

100 1 80 

%Sp 

0 

1 

0 

%Sp 

14 
11 

0 

%Sp 

0 

3 

9 

%Sp 

0 

4 

0 

%Sp 

0 

0 

33 

%Sp 

0 

7 

0 

%Sp 

0 

4 

0 

%Sp 

0 

9 

0 

%Sp 

0 

3 

0 

%Sp 

0 

7 

0 

%Sp 

0 

13 

6 

%Sp 

10 

12 

1 

%Sp 

0 

3 

3 

%T 

0 

1 
0 

1 

%T 

1 
8 

0 

9 

%T 

0 

2 

2 

4 

%T 

0 

4 

0 

4 

%T 

0 

0 

4 

4 

%T 

0 

6 

0 

6 

%T 

0 

2 

0 

2 

%T 

0 

9 

0 

9 

%T 

0 

3 

0 

3 

%T 

0 

4 

0 

4 

%T 

0 

5 

3 

8 

%T 

0 

3 

1 

4 

%T 

0 

3 

1 

4 

315 



2.1 Restronguet Creek 

Dl/Winter 96 

H.getmanica 
E.Wittiamsonl 
A.beccarii 

TOTAL 

TC6 

H.germanica 

E Williamsonl 
A.beccaril 

TOTAL 

TC8 

H.germanica 
E.Willlamsonl 

Abeccaril 

TOTAL 

TC9 

H.germanica 

E.WUIiamsoni 

Abeccaril 

TOTAL 

P10 

H.germanica 

E.WIIIiamsoni 

A.beccarii 

TOTAL 

PCI 3 

H.germanica 

E.WilliamsonI 

Abeccarii 

TOTAL 

CY16 

H.germanica 

EWIIIIamsonl 

Abeccaril 

TOTAL 

C19 

H.germanica 

E.Willlamsoni 

Abeccarii 

TOTAL 

K20 

H.germanica 

E.WIIIiamsoni 
A.beccaril 

TOTAL 

H23 

H.germanica 

E.Williamsoni 
A.beccaril 

TOTAL 

TW27 

H.germanica 

E.Williamsoni 

Abeccaril 

TOTAL 

BY28 

H.germanica 

EWIIIIamsonl 
A.beccaril 

TOTAL 

PI30 

H.germanica 

E.WIIIiamsoni 
A.beccarii 

TOTAL 

SC/T 

0 
8 

0 

8 

SC/T 

82 

116 
96 

294 

SC/T 

80 
280 

0 

360 

SC/T 

128 

200 

160 

488 

sc/r 
4 

0 

128 

132 

SC/T 

16 

20 

52 

88 

SC/T 

144 

644 

656 

1444 

SC/T 

32 

45 

32 

109 

sc/r 
0 

0 

9 

9 

SC/T 

64 

344 

16 

424 

SC/T 

304 

2848 

3376 

6528 

SC/T 

486 

1384 

1506 

3376 

sen 
16 

112 

0 

128 

%T 

0 

100 

0 

100 

%T 

28 

39 

33 

100 

%T 

22 
78 

0 

100 

%T 

26 

41 

33 

100 

%T 

3 

0 

97 

100 

%T 

18 

22 

60 

100 

%T 

10 

44.5 

45 

99.5 

%T 

29.5 

41 

29.5 

100 

%T 

0 

0 

100 

100 

%T 

15 

81 

4 

100 

%T 

4 

44 

52 

100 

%T 

14 

41 

45 

100 

%T 

12 

88 

0 

100 

DSC/T 

0 
0 

0 

0 

DSC/T 

16 

8 
0 

24 

DSC/T 

0 
8 

0 

8 

DSC/T 

0 

0 

0 

0 

DSC/T 

0 

0 

0 

0 

DSC/T 

0 

0 

0 

0 

Dsc/r 
0 

68 

16 

84 

DSC/T 

0 

5 

0 

5 

DSC/T 

0 

0 

0 

0 

DSC/T 

0 

0 

0 

0 

DSC/T 

32 

208 

144 

384 

DSC/T 

16 

66 

32 

114 

DSC/T 

0 

0 

0 

0 

%Sp 

0 

0 

0 

%Sp 

20 

7 

0 

%Sp 

0 

3 

0 

%Sp 

0 

0 

0 

%Sp 

0 

0 

0 

%Sp 

0 

0 

0 

%Sp 

0 

11 

2 

%Sp 

0 

11 

0 

%Sp 

0 

0 

0 

%Sp 

0 

0 

0 

%Sp 

11 

7 

4 

%Sp 

3 

5 

2 

%Sp 

0 

0 

0 

%T 

0 

0 

0 

0 

%T 

5 

3 

0 

8 

%T 

0 

2 

0 

2 

%T 

0 

0 

0 

0 

%T 

0 

0 

0 

0 

%T 

0 

0 

0 

0 

%T 

0 

5 

1 

6 

%T 

0 

5 

0 

5 

%T 

0 

0 

0 

0 

%T 

0 

0 

0 

0 

%T 

0.5 

3 

2 

5.5 

%T 

0.5 

2 

1 

3.5 

%T 

0 

0 

0 

0 1 
316 



2.1 Restronguet Creek 

Dl/Spring 96 

H.germanica 

E.Williamsoni 
Abeccaril 

TOTAL 

TC6 

H.geimanica 

E.WilliamsonI 
Abeccarii 

TOTAL 

TC8 

H.germanica 
E. Williamsonl 
A.beccarii 

TOTAL 

TC9 

H.gerwanica 

E.Williamsoni 
A.beccarii 

TOTAL 

P10 

H.germanica 

E.Williamsoni 

Abeccarii 

TOTAL 

PC13 

H.germanica 

E.Williamsoni 

Abeccarii 

TOTAL 

CY16 

H.germanica 

E.Williamsoni 

Abeccarii 

TOTAL 

C19 

H.germanica 
E.WIIIIamsoni 

A.beccarii 

TOTAL 

K20 

H.germanica 

E.WIIIIamsoni 

Abeccarii 

TOTAL 

H23 

H.germanica 

EWilliamsonl 

Abeccarii 

TOTAL 

TW27 

H.germanica 

E.Wiiiiamsoni 
A.beccarii 

TOTAL 

BY28 

H.germanica 

E.Wiiiiamsoni 

A.beccarii 

TOTAL 

PI30 

H.germanica 

EWilllamsonl 

Abeccaril 

ITOTAL 

SC/T 

129 

27 
8 

164 

SC/T 

2606 

312 
88 

3006 

SC/T 

1400 

112 
136 

1648 

SC/T 

1876 

148 

184 

2208 

SC/T 

1210 

166 

64 

1440 

SC/T 

342 

108 

4 

454 

SC/T 

1856 

224 

280 

2360 

SC/T 

82 

15 

48 

145 

SC/T 

52 

7 

2 

61 

SC/T 

184 

20 

16 

220 

SC/T 

2032 

208 

336 

2576 

SC/T 

1984 

96 

808 

2888 

SC/T 

304 

96 

112 

512 

%T 

79 
16 

5 

100 

%T 

87 
10 

3 

100 

%T 

85 
7 

8 

100 

%T 

85 

7 

8 

100 

%T 

84 

12 

4 

100 

%T 

75 
24 

1 

100 

%T 

79 

9 

12 

100 

%T 

56 

11 

33 

100 

%T 

85 

12 

3 

100 

%T 

84 

9 

7 

100 

%T 

79 
8 

13 

100 

%T 

69 

3 

28 

100 

%T 

59 

19 

22 

100 

DSC/T 

19 
8 

1 

28 

DSC/T 

170 

18 
4 

192 

DSC/T 

44 

0 
16 

60 

DSC/T 

148 

16 

32 

196 

DSC/T 

17 

1 

0 

18 

DSC/T 

2 

4 

0 

6 

DSC/T 

88 

48 

40 

176 

DSC/T 

1 

2 

0 

3 

DSC/T 

0 

1 

0 

1 

DSC/T 

4 

0 

0 

4 

DSC/T 

48 

32 

0 

80 

DSC/T 

24 

0 

72 

96 

DSC/T 

8 

24 

0 

%Sp 

15 

30 

13 

%Sp 

7 

6 

5 

%Sp 

3 

0 

12 

%Sp 

8 

11 

17 

%Sp 

1 

1 

0 

%Sp 

1 

4 

0 

%Sp 

5 

21 

14 

%Sp 

1 

13 

0 

%Sp 

0 

14 

0 

%Sp 

2 

0 

0 

%Sp 

2 

15 

0 

%Sp 

1 

0 

9 

%Sp 

3 

25 

0 

32 1 

%T 

11.6 

5 

0.6 

17 

%T 

6 

1 

0.1 

7 

%T 

3 

0 

1 

4 

%T 

7 

1 

1 

9 

%T 

1 

0 

0 

1 

%T 

0.4 

1 

0 

1.4 

%T 

4 

2 

2 

8 

%T 

1 

1 

0 

2 

%T 

0 

2 

0 

2 

%T 

2 

0 

0 

2 

%T 

2 

1 

0 

3 

%T 

1 

0 

2 

3 

%T 

2 

5 

0 

7 

317 



2.1 Restronguet Creek 

D1/Summer 96 

H.geimanica 

E.WIIIIamsonI 

A.beccaril 

TOTAL 

TC6 

H.germanica 

E.Williamsoni 

Abeccarii 

TOTAL 

TC8 

H.germanica 

E.Williamsonl 

A.beccaril 

TOTAL 

TC9 

H.germanica 

E.Willlamsonl 

Abeccarii 

TOTAL 

P10 

H.germanica 

E.WIIiiamsoni 

A.beccarii 

TOTAL 

PC13 

H.germanica 
E.Willlamsoni 

Abeccarii 

TOTAL 

CY16 

H.germanica 

E. Wlliiamsoni 

A.beccarii 

TOTAL 

C19 

H.germanica 

E.WIIIIamsonI 

A.beccaril 

TOTAL 

K20 

H.germanica 

E.WIIiiamsoni 

A.beccarii 

TOTAL 

H23 

H.germanica 

E.Willlamsoni 

A.beccarii 

TOTAL 

TW27 

H.germanica 

E.Willlamsoni 

A.beccarii 

TOTAL 

BY28 

H.germanica 

E.WIIIIamsonI 

A.beccaril 

TOTAL 

PI30 

H.germanica 

E.Willlamsoni 

A.beccarii 

TOTAL 

SC/T 

2612 
1192 

336 

4144 

SC/T 

2240 

824 
200 

3264 

SC/T 

1144 
1320 

392 

2856 

SC/T 

2000 

2208 

192 

4400 

SC/T 

2848 

2912 

960 

6720 

SC/T 

1440 

2552 

240 

4232 

SC/T 

2048 

3184 

672 

5904 

SC/T 

1132 

648 

146 

1926 

SC/T 

1400 

312 

64 

1776 

SC/T 

360 

1404 

88 

1852 

SC/T 

1632 

4544 

496 

6672 

SC/T 

1296 

1744 

704 

3744 

SC/T 

1088 

1376 

896 

3360 

%T 

63 

29 

8 

100 

%T 

69 

25 

6 

100 

%T 

40 

46 

14 

100 

%T 

46 

50 

4 

100 

%T 

42 

44 

14 

100 

%T 

34 

61 

5 

100 

%T 

35 

54 

11 

100 

%T 

59 

33 

8 

100 

%T 

79 

17.8 

3.8 

100.6 

%T 

19 

76 

5 

100 

%T 

25 

67 

8 

100 

%T 

34 

47 

19 

100 

%T 

32 

41 

27 

100 

DSC/T 

184 

40 

48 

272 

DSC/T 

240 

0 

8 

248 

DSC/T 

56 

0 
32 

88 

DSC/T 

120 

0 

0 

120 

DSC/T 

160 

64 

64 

288 

DSC/T 

136 

8 

0 

144 

DSC/r 

64 

32 

48 

144 

DSC/T 

196 

38 

32 

266 

DSC/T 

44 

16 

0 

60 

DSC/T 

36 

0 

24 

60 

DSC/T 

80 

48 

0 

128 

DSC/T 

48 

0 

0 

48 

DSC/T 

0 

16 

64 

80 

%Sp 

7 

3 

14 

%Sp 

11 

0 
4 

%Sp 

5 
0 

8 

%Sp 

6 

0 

0 

%Sp 

6 

2 

7 

%Sp 

9 

0 

0 

%Sp 

3 

1 

7 

%Sp 

17 

6 

22 

%Sp 

3 

5 

0 

%Sp 

10 

0 

27 

%Sp 

5 

1 

0 

%Sp 

4 

0 

0 

%Sp 

0 

1 

7 

%T 

5 

1 

1 

7 

%T 

7 
0 

0.2 

7 

%T 

2 
0 

1 

3 

%T 

3 

0 

0 

3 

%T 

2 

1 

1 

4 

%T 

3 

0 

0 

3 

%T 

1 

1 

1 

3 

%T 

10 

2 

2 

14 

%T 

2.5 

1 

0 

3.5 

%T 

2 

0 

1 

3 

%T 

1 

1 

0 

2 

%T 

1 

0 

0 

1 

%T 

0 

0.5 

2 

2.5 

318 



2.1 Restronguet Creek 

D1/Airtumn 96 

H.germanica 
E.Willlamsonl 

A.beccaril 

TOTAL 

TC6 

H.germanica 

E.Williamsonl 

A.beccarli 

TOTAL 

TC8 

H.geimanlca 

E.Williamsoni 
Abeccarll 

TOTAL 

TC9 

H.germanlca 

E.Williamsoni 
Abeccaril 

TOTAL 

P10 

H.germanica 

E.Wiillamsoni 

Abeccarii 

TOTAL 

PC13 

H.gennanica 

E.Willlamsoni 

A.beccaril 

TOTAL 

CY16 

H.germanica 

E.Williamsoni 

A.beccarii 

TOTAL 

C19 

H.gennanica 

E.WIIIiamsonI 
Abeccaril 

TOTAL 

K20 

H.germanica 

E.Wiillamsoni 

Abeccaril 

TOTAL 

H23 

H.germanica 

E.WIIiiamsom 
Abeccarii 

TOTAL 

TW27 

H.germanica 

E.Willlamsoni 

Abeccarti 

TOTAL 

BY28 

H.germanica 

E.Williamsonl 

Abeccaril 

TOTAL 

PI30 

H.germanica 

E.Williamsoni 

A.beccarii 

ITOTAL 

SC/T 

185 
945 

32 

1162 

SC/T 

296 

1492 

100 

1888 

SC/T 

1240 

5672 
328 

7240 

SC/T 

204 

1508 

96 

1808 

SC/T 

162 

394 

80 

636 

SC/T 

206 

802 

56 

1064 

SC/T 

304 

1824 

256 

2384 

SC/T 

28 

132 
0 

160 

SC/T 

64 

390 

68 

522 

SC/T 

136 

3832 
200 

4168 

SC/T 

832 

1744 

480 

3056 

SC/T 

336 

2512 

160 

3008 

SC/T 

1088 

1024 

256 

2368 

%T 

16 

81 

3 

100 

%T 

16 

79 

5 

100 

%T 

17 
78 

5 

100 

%T 

11.3 

83.4 
5.3 

100 

%T 

25 

62 

13 

100 

%T 

19.4 

75.4 

5.3 

100 

%T 

12.8 

76.5 

10.7 

100 

%T 

17.5 

82.5 

0 

100 

%T 

12 

75 

13 

100 

%T 

3 

92 

5 

100 

%T 

27 

57 

16 

100 

%T 

11 

84 

5 

100 

%T 

46 

43 

11 

100 

DSC/T 

3 
25 

0 

28 

DSC/T 

0 

64 

0 

64 

DSC/T 

64 
136 

72 

272 

DSC/T 

0 

12 
0 

12 

DSC/T 

0 

0 

0 

0 

DSC/T 

0 

42 

0 

42 

DSC/T 

0 

0 

0 

0 

DSC/T 

0 

8 

0 

8 

DSC/T 

12 

12 

0 

24 

DSC/T 

0 

152 

0 

152 

DSC/T 

0 

96 

30 

126 

DSC/T 

0 

32 

0 

32 

DSC/T 

0 

64 

0 

64 

%Sp 

2 
3 

0 

%Sp 

0 

4 

0 

%Sp 

5 
2 

22 

%Sp 

0 

1 

0 

%Sp 

0 

0 

0 

%Sp 

0 

5 

0 

%Sp 

0 

0 

0 

%Sp 

0 

6 

0 

%Sp 

19 

3 

0 

%Sp 

0 

4 

0 

%Sp 

0 

6 

6 

%Sp 

0 

1 

0 

%Sp 

0 

6 

0 

%T 

0 
2 

0 

2 

%T 

0 

3 

0 

3 

%T 

1 

2 
1 

4 

%T 

0 

1 

0 

1 

%T 

0 

0 

0 

0 

%T 

0 

4 

0 

4 

%T 

0 

0 

0 

0 

%T 

0 

5 

0 

5 

%T 

2 

2 

0 

4 

%T 

0 

4 

0 

4 

%T 

0 

3 

1 

4 

%T 

0 

1 

0 

1 

%T 

0 

3 

0 

1 3 

319 



2.2 Erme Estuary 

F1/Winter 93 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

HP2 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

HP3 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.irrflata 

J.macrescens 

TOTAL 

HP4 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

E5 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

E6 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

E7 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

SC/T %T 

SC/T %T 

SC/T 

0 

0 

0 

988 

0 

0 

988 

scrr 
0 

2 

0 

253 

0 

0 

255 

SC/T 

0 

392 

0 

2692 

12 

3 

3099 

SC/T 

32 

1088 

0 

1608 

0 

0 

2728 

SC/T 

256 

1080 

0 

1194 

0 

0 

2530 

%T 

0 

0 

0 

100 

0 

0 

%T 

0 

1 

0 

99 

0 

0 

%T 

0 

12.6 

0 

87 

0.4 

0.1 

100 

%T 

1 

40 

0 

59 

0 

0 

100 

%T 

10 

43 

0 

47 

0 

0 

Dscrr % S p %T 

DSC/T % S p %T 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

0 

21 

0 

0 

0 

0 

21 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

0 

0 

0 

0 

0 

0 

100 1 0 

% S p 

0 

0 

0 

0 

0 

0 

% S p 

0 

0 

0 

0 

0 

0 

% S p 

0 

5 

0 

0 

0 

0 

% S p 

0 

0 

0 

0 

0 

0 

%Sp 

0 

0 

0 

0 

0 

0 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

0 

1 

0 

0 

0 

0 

1 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

0 

0 

0 

0 

0 

0 

0 

%Cal 

%Cal 

%Cal 

0 

0 

0 

0 

0 

0 

0 

%Cal 

0 

0 

0 

0 

0 

0 

0 

%Cal 

0 

5 

0 

0 

0 

0 

5 

%Cal 

0 

0 

0 

0 

0 

0 

0 

%Cal 

0 

0 

0 

0 

0 

0 

0 

320 



2.2 Erme Estuary 

E8 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inftata 

J.macrescens 

TOTAL 

E9 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

E10 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescerts 

TOTAL 

own 
H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

OW12 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

OW14 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

OW15 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

SC/T 

256 

720 

128 

880 

0 

32 

2016 

SC/T 

368 

984 

0 

896 

8 

32 

2288 

SC/T 

216 

1040 

0 

560 

0 

24 

1840 

SC/T 

168 

1296 

64 

448 

0 

8 

1984 

SC/T 

0 

1920 

0 

704 

0 

0 

2624 

SC/T 

312 

632 

0 

1072 

0 

0 

2016 

SC/T 

648 

1608 

0 

896 

0 

0 

3152 

%T 

13 

36 

6 

44 

0 

2 

100 

%T 

16 

43 

0 

39 

0.3 

1 

100 

%T 

12 

57 

0 

30 

0 

1 

100 

%T 

8.5 

65 

3 

23 

0 

0.4 

100 

%T 

0 

73 

0 

27 

0 

0 

100 

%T 

15.5 

31.3 

0 

53.2 

0 

0 

100 

%T 

21 

51 

0 

28 

0 

0 

100 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

0 

72 

0 

0 

0 

0 

72 

DSC/T 

18 

16 

0 

0 

0 

0 

34 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

11 

0 

0 

0 

0 

0 

11 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

%Sp 

0 

0 

0 

0 

0 

0 

%Sp 

0 

7 

0 

0 

0 

0 

%Sp 

8 

2 

0 

0 

0 

0 

%Sp 

0 

0 

0 

0 

0 

0 

%Sp 

0 

0 

0 

0 

0 

0 

%Sp 

4 

0 

0 

0 

0 

0 

%Sp 

0 

0 

0 

0 

0 

0 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

0 

3 

0 

0 

0 

0 

3 

%T 

1 

1 

0 

0 

0 

0 

2 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

0.4 

0 

0 

0 

0 

0 

0.4 

%T 

0 

0 

0 

0 

0 

0 

0 

%Cal 

0 

0 

0 

0 

0 

0 

0 

%Cal 

0 

5 

0 

0 

0 

0 

5 

%Cal 

1.5 

1.5 

0 

0 

0 

0 

3 

0 

0 

0 

0 

0 

0 

0 

0 

%Cal 

0 

0 

0 

0 

0 

0 

0 

%Cal 

1 

0 

0 

0 

0 

0 

1 

%Cal 

0 

0 

0 

0 

0 

0 

0 

321 



2.2 Erme Estuary 

CM16 

H.germanica 

E. Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

CM17 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

S18 

H.germanica 

E.Wiliiamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

S19 

H.germanica 

E.Williamsoni 

A.l>eccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

S20 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

SC/T 

261 

486 

0 

1245 

0 

51 

2043 

SC/T 

32 

688 

0 

2820 

0 

0 

3540 

SC/T 

448 

1048 

0 

264 

0 

0 

1760 

SC/T 

512 

1040 

0 

240 

0 

0 

1792 

SC/T 

160 

608 

0 

112 

0 

0 

880 

%T 

13 

24 

0 

61 

0 

2 

100 

%T 

1 

19 

0 

80 

0 

0 

100 

%T 

25 

60 

0 

15 

0 

0 

100 

%T 

29 

58 

0 

13 

0 

0 

100 

%T 

18 

69 

0 

13 

0 

0 

100 

DSC/T 

25 

0 

0 

0 

0 

0 

25 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

%Sp 

10 

0 

0 

0 

0 

0 

%Sp 

0 

0 

0 

0 

0 

0 

% S p 

0 

0 

0 

0 

0 

0 

% S p 

0 

0 

0 

0 

0 

0 

%Sp 

0 

0 

0 

0 

0 

0 

%T 

1 

0 

0 

0 

0 

0 

1 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

0 

0 

0 

0 

0 

0 

0 

%Cal 

3 

0 

0 

0 

0 

0 

3 

%Cal 

0 

0 

0 

0 

0 

0 

0 

%Cal 

0 

0 

0 

0 

0 

0 

0 

%Cal 

0 

0 

0 

0 

0 

0 

0 

%Cal 

0 

0 

0 

0 

0 

0 

0 

322 



2.2 Erme Estuary 

F1/Spring 93 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

HP2 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

HP3 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

HP4 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

E5 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

E6 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

E7 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

SC/T %T 

SC/T 

10 

10 

0 

590 

10 

10 

630 

SC/T 

%T 

2 

2 

0 

94 

2 

2 

100 

%T 

SC/T 

20 

0 

0 

180 

0 

0 

200 

SC/T 

160 

2420 

0 

1710 

0 

0 

4290 

SC/T 

380 

1610 

0 

1500 

0 

0 

3490 

SC/T 

640 

2510 

0 

2490 

0 

0 

5640 

%T 

10 

0 

0 

90 

0 

0 

100 

%T 

4 

56 

0 

40 

0 

0 

100 

%T 

11 

46 

0 

43 

0 

0 

100 

%T 

11 

45 

0 

44 

0 

0 

100 

DSC/T %Sp %T 

DSC/T 

0 

0 

0 

10 

0 

0 

10 

DSC/T 

% S p 

0 

0 

0 

2 

0 

0 

% S p 

%T 

0 

0 

0 

2 

0 

0 

2 

%T 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

20 

60 

0 

0 

0 

0 

80 

DSC/T 

20 

20 

0 

0 

0 

0 

40 

DSC/T 

20 

100 

0 

20 

0 

0 

140 

% S p 

0 

0 

0 

0 

0 

0 

% S p 

13 

2.5 

0 

0 

0 

0 

% S p 

5 

1 

0 

0 

0 

0 

% S p 

3 

4 

0 

1 

0 

0 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

0.5 

1.4 

0 

0 

0 

0 

2 

%T 

1 

1 

0 

0 

0 

0 

2 

%T 

0.4 

2 

0 

0 

0 

0 

2 

%Cal 

%Cal 

0 

0 

0 

0 

0 

0 

0 

%Cal 

%Cal 

0 

0 

0 

0 

0 

0 

0 

%Cal 

1 

2 

0 

0 

0 

0 

3 

%Cal 

1 

1 

0 

0 

0 

0 

2 

%Cal 

1 

3 

0 

0 

0 

0 

4 

323 



2.2 Erme Estuary 

E8 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

E9 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

E10 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

own 
H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

OW12 

H.germanica 

E.Williamsoni 

Abeccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

OW14 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

OW15 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.irtflata 

J.macrescens 

TOTAL 

SC/T 

140 

1470 

20 

1060 

0 

0 

2690 

SC/T 

530 

3110 

40 

870 

20 

0 

4570 

SC/T 

50 

320 

0 

310 

0 

0 

680 

SC/T 

220 

3690 

20 

1220 

0 

0 

5150 

SC/T 

160 

520 

0 

90 

10 

0 

780 

SC/T 

1170 

2760 

0 

830 

0 

0 

4760 

SC/T 

890 

1070 

20 

240 

0 

0 

2220 

%T 

5 

55 

1 

39 

0 

0 

100 

%T 

11.6 

68 

1 

19 

0.4 

0 

100 

%T 

7 

47 

0 

46 

0 

0 

100 

%T 

4 

71.7 

0.4 

23.7 

0 

0 

100 

%T 

20.5 

67 

0 

11.5 

1 

0 

100 

%T 

25 

58 

0 

17 

0 

0 

100 

%T 

40 

48 

1 

11 

0 

0 

100 

DSC/T 

10 

30 

0 

0 

0 

0 

40 

DSC/T 

0 

40 

0 

0 

0 

0 

40 

DSC/T 

0 

10 

0 

0 

0 

0 

10 

DSC/T 

20 

30 

0 

0 

0 

0 

50 

DSC/T 

0 

10 

0 

0 

10 

0 

20 

DSC/T 

20 

30 

0 

0 

0 

0 

50 

DSC/T 

10 

50 

0 

0 

0 

0 

60 

%Sp 

7 

2 

0 

0 

0 

0 

%Sp 

0 

1 

0 

0 

0 

0 

%Sp 

0 

3 

0 

0 

0 

0 

%Sp 

9 

1 

0 

0 

0 

0 

%Sp 

0 

2 

0 

0 

100 

0 

%Sp 

2 

1 

0 

0 

0 

0 

%Sp 

1 

5 

0 

0 

0 

0 

%T 

0.4 

1 

0 

0 

0 

0 

1.4 

%T 

0 

1 

0 

0 

0 

0 

1 

%T 

0 

1.5 

0 

0 

0 

0 

1.5 

%T 

0.4 

0.6 

0 

0 

0 

0 

1 

%T 

0 

1 

0 

0 

1 

0 

2 

%T 

0.4 

1 

0 

0 

0 

0 

1.5 

%T 

1 

2 

0 

0 

0 

0 

3 

%Cal 

1 

2 

0 

0 

0 

0 

3 

%Cal 

0 

1 

0 

0 

0 

0 

1 

%Cal 

0 

3 

0 

0 

0 

0 

3 

%Cal 

0.5 

1 

0 

0 

0 

0 

1.5 

%Cal 

0 

1.5 

0 

0 

0 

0 

1.5 

%Cal 

0.5 

0.8 

0 

0 

0 

0 

1.3 

%Cal 

0.5 

2.5 

0 

0 

0 

0 

3 

324 



2.2 Erme Estuary 

CM16 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

CM17 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

S18 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.irrflata 

J.macrescens 

TOTAL 

S19 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

S20 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

SC/T 

110 

340 

0 

880 

0 

0 

1330 

SC/T 

410 

2280 

0 

250 

0 

0 

2940 

SC/T 

910 

2730 

310 

S90 

0 

0 

4540 

SC/T 

320 

1690 

0 

270 

0 

0 

2280 

SC/T 

750 

890 

0 

540 

0 

0 

2180 

%T 

8 

26 

0 

66 

0 

0 

100 

%T 

14 

78 

0 

9 

0 

0 

100 

%T 

20 

60 

7 

13 

0 

0 

100 

%T 

14 

74 

0 

12 

0 

0 

100 

%T 

34 

41 

0 

25 

0 

0 

100 

DSC/T 

20 

10 

0 

0 

0 

0 

30 

DSC/T 

10 

20 

0 

0 

0 

0 

30 

DSC/T 

10 

30 

0 

0 

0 

0 

40 

DSC/T 

0 

30 

0 

0 

0 

0 

30 

DSC/T 

0 

10 

0 

0 

0 

0 

10 

% S p 

18 

3 

0 

0 

0 

0 

%Sp 

2 

1 

0 

0 

0 

0 

%Sp 

1 

1 

0 

0 

0 

0 

% S p 

0 

2 

0 

0 

0 

0 

%Sp 

0 

1 

0 

0 

0 

0 

%T 

2 

1 

0 

0 

0 

0 

3 

%T 

0.3 

1 

0 

0 

0 

0 

1.5 

%T 

0.2 

1 

0 

0 

0 

0 

1.3 

%T 

0 

1 

0 

0 

0 

0 

2 

%T 

0 

0.5 

0 

0 

0 

0 

0.5 

%Cal 

4.4 

2.2 

0 

0 

0 

0 

7 

%Cal 

0.4 

0.7 

0 

0 

0 

0 

1 

%Cal 

0.3 

0.8 

0 

0 

0 

0 

1 

%Cal 

0 

1.5 

0 

0 

0 

0 

1.5 

%Cal 

0 

0.6 

0 

0 

0 

0 

0.6 

325 



2.2 Erme Estuary 

F1/Summer 93 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

HP2 

H.germanica 

E. Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

HP3 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

HP4 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

E5 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

E6 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

E7 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

SC/T %T 

SC/T %T 

SC/T %T 

SC/T %T 

SC/T 

64 

480 

0 

432 

32 

32 

1040 

SC/T 

80 

528 

0 

880 

0 

0 

1488 

SC/T 

136 

424 

0 

456 

32 

0 

1048 

%T 

6 

46 

0 

42 

3 

3 

100 

%T 

5 

35 

0 

59 

0 

0 

100 

%T 

13 

40 

0 

44 

3 

0 

100 

DSC/T % S p %T 

DSC/T % S p %T 

DSC/T % S p %T 

DSC/T % S p %T 

DSC/T 

0 

67 

0 

0 

0 

0 

67 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

0 

0 

0 

0 

0 

0 

1 0 

% S p 

0 

14 

0 

0 

0 

0 

% S p 

0 

0 

0 

0 

0 

0 

% S p 

0 

0 

0 

0 

0 

0 

%T 

0 

6 

0 

0 

0 

0 

6 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

0 

0 

0 

0 

0 

0 

0 

VoCal 

%Cal 

%Cal 

%Cal 

%Cal 

0 

12 

0 

0 

0 

0 

12 

%Cal 

0 

0 

0 

0 

0 

0 

0 

%Cal 

0 

0 

0 

0 

0 

0 

0 

326 



2.2 Erme Estuary 

E8 

H.germanica 

E.Williamsoni 

A.beccaiii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

E9 

H.germanica 

E.WiHiamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

E10 

H.gennanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

OW11 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

OW12 

H.germanica 

E. Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

OW14 

H.germanica 

E. Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

OW15 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

SC/T 

256 

5184 

64 

832 

64 

0 

6400 

SC/T 

192 

96 

0 

224 

0 

0 

512 

SC/T 

176 

272 

0 

112 

0 

64 

624 

SC/T 

336 

1424 

160 

608 

0 

384 

2912 

SC/T 

944 

504 

128 

512 

0 

0 

2088 

SC/T 

960 

1248 

0 

160 

0 

0 

2368 

SC/T 

664 

320 

0 

64 

0 

0 

1048 

%T 

4 

81 

1 

13 

1 

0 

100 

%T 

38 

19 

0 

44 

0 

0 

100 

%T 

28 

44 

0 

18 

0 

10 

100 

%T 

12 

49 

5 

21 

0 

13 

100 

%T 

45 

24 

6 

25 

0 

0 

100 

%T 

41 

53 

0 

7 

0 

0 

100 

%T 

63 

31 

0 

6 

0 

0 

100 

DSC/T 

0 

70 

0 

0 

0 

0 

70 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

0 

132 

30 

0 

0 

0 

162 

DSC/T 

64 

0 

0 

0 

0 

0 

64 

DSC/T 

32 

0 

0 

0 

0 

0 

32 

DSC/T 

0 

37 

0 

0 

0 

0 

37 

% S p 

0 

1 

0 

0 

0 

0 

% S p 

0 

0 

0 

0 

0 

0 

% S p 

0 

0 

0 

0 

0 

0 

% S p 

0 

9 

19 

0 

0 

0 

% S p 

7 

0 

0 

0 

0 

0 

% S p 

3 

0 

0 

0 

0 

0 

% S p 

0 

12 

0 

0 

0 

0 

%T 

0 

1 

0 

0 

0 

0 

1 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

0 

5 

1 

0 

0 

0 

6 

%T 

3 

0 

0 

0 

0 

0 

3 

%T 

1 

0 

0 

0 

0 

0 

1 

%T 

0 

4 

0 

0 

0 

0 

3 

%Cal 

0 

1 

0 

0 

0 

0 

1 

%Cal 

0 

0 

0 

0 

0 

0 

0 

%Cal 

0 

0 

0 

0 

0 

0 

0 

%Cal 

0 

7 

2 

0 

0 

0 

9 

%Cal 

4 

0 

0 

0 

0 

0 

4 

%Cal 

1.5 

0 

0 

0 

0 

0 

1.5 

%Cal 

0 

3 

0 

0 

0 

0 

3 

327 



2.2 Erme Estuary 

CM16 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

CM17 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

S18 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

S19 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

S20 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

SC/T %T 

No data 

SC/T %T 

No data 

SC/T 

1040 

1072 

96 

64 

0 

0 

2272 

SC/T 

736 

2048 

0 

0 

0 

0 

2784 

SC/T 

496 

544 

0 

224 

16 

0 

1280 

%T 

46 

47 

4 

3 

0 

0 

100 

%T 

26 

74 

0 

0 

0 

0 

100 

%T 

39 

42.5 

0 

17.5 

1 

0 

100 

DSC/T %Sp 

No data 

%T 

DSC/T %Sp 

No data 

%T 

DSC/T 

62 

0 

0 

0 

0 

0 

62 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

%Sp 

6 

0 

0 

0 

0 

0 

%Sp 

0 

0 

0 

0 

0 

0 

%Sp 

0 

0 

0 

0 

0 

0 

%T 

3 

0 

0 

0 

0 

0 

3 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

0 

0 

0 

0 

0 

0 

0 

%Cal 

%Cal 

%Cal 

3 

0 

0 

0 

0 

0 

3 

%Cal 

0 

0 

0 

0 

0 

0 

0 

%Cal 

0 

0 

0 

0 

0 

0 

0 

328 



2.2 Erme Estuary 

F1/Autumn 93 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

HP2 

H.germanica 

E. Williamsoni 

A.beccarii 

l\^.fusca 

T.inflata 

J.macrescerTS 

TOTAL 

HP3 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

HP4 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

E5 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

E6 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

E7 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

SC/T %T 

SC/T 

0 

0 

0 

320 

0 

64 

384 

SC/T 

0 

0 

0 

1984 

0 

128 

2112 

scrr 
0 

0 

0 

864 

0 

32 

896 

SC/T 

264 

1320 

0 

1736 

0 

0 

3320 

SC/T 

192 

976 

0 

704 

8 

8 

1888 

SC/T 

208 

528 

0 

336 

0 

0 

1072 

%T 

0 

0 

0 

83 

0 

17 

100 

%T 

0 

0 

0 

94 

0 

6 

100 

%T 

0 

0 

0 

96 

0 

4 

%T 

8 

40 

0 

52 

0 

0 

100 

%T 

10 

52 

0 

37 

0 

0 

100 

%T 

19 

49 

0 

31 

0 

0 

100 

DSC/T %Sp %T 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

0 

0 

0 

0 

0 

20 

20 

DSC/T 

40 

8 

0 

0 

0 

0 

48 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

% S p 

0 

0 

0 

0 

0 

0 

% S p 

0 

0 

0 

0 

0 

0 

% S p 

0 

0 

0 

0 

0 

63 

% S p 

15 

1 

0 

0 

0 

0 

% S p 

0 

0 

0 

0 

0 

0 

% S p 

0 

0 

0 

0 

0 

0 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

0 

0 

0 

0 

0 

2 

2 

%T 

1 

0 

0 

0 

0 

0 

1 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

0 

0 

0 

0 

0 

0 

0 

%Cal 

%Cal 

0 

0 

0 

0 

0 

0 

0 

%Cal 

0 

0 

0 

0 

0 

0 

0 

%Cal 

0 

0 

0 

0 

0 

0 

0 

%Cal 

2.5 

0.5 

0 

0 

0 

0 

3 

%Cal 

0 

0 

0 

0 

0 

0 

0 

%Cal 

0 

0 

0 

0 

0 

0 

0 

329 



2.2 Erme Estuary 

E8 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

E9 

H.gennanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

E10 

H.gennanica 

E. Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

own 
H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

OW12 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

OW14 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

OW15 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

sen-
416 

752 

0 

288 

0 

32 

1488 

SC/T 

352 

944 

0 

136 

64 

32 

1528 

sen
se 
160 

0 

48 

8 

64 

376 

SC/T 

40 

176 

0 

0 

0 

0 

216 

SC/T 

64 

1408 

64 

64 

0 

0 

1600 

SC/T 

1008 

1264 

0 

608 

0 

0 

2880 

SC/T 

128 

1136 

0 

160 

0 

0 

1424 

%T 

28 

51 

0 

19 

0 

2 

100 

%T 

23 

62 

0 

9 

4 

2 

100 

%T 

25.5 

43 

0 

13 

2 

17 

100 

%T 

19 

81 

0 

0 

0 

0 

100 

%T 

4 

88 

4 

4 

0 

0 

100 

%T 

35 

44 

0 

21 

0 

0 

%T 

9 

80 

0 

11 

0 

0 

100 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

8 

0 

0 

0 

0 

0 

8 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

30 

57 

0 

0 

0 

0 

87 

DSC/T 

16 

0 

0 

0 

0 

0 

16 

%Sp 

0 

0 

0 

0 

0 

0 

%Sp 

0 

0 

0 

0 

0 

0 

%Sp 

0 

0 

0 

0 

0 

0 

%Sp 

20 

0 

0 

0 

0 

0 

%Sp 

0 

0 

0 

0 

0 

0 

%Sp 

3 

5 

0 

0 

0 

0 

%Sp 

12.5 

0 

0 

0 

0 

0 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

4 

0 

0 

0 

0 

0 

1 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

1 

2 

0 

0 

0 

0 

3 

%T 

1 

0 

0 

0 

0 

0 

1 

%Cal 

0 

0 

0 

0 

0 

0 

0 

%Cal 

0 

0 

0 

0 

0 

0 

0 

%Cal 

0 

0 

0 

0 

0 

0 

0 

%Cal 

1 

0 

0 

0 

0 

0 

1 

%Cal 

0 

0 

0 

0 

0 

0 

0 

%Cal 

1.3 

2.5 

0 

0 

0 

0 

4 

%Cal 

1 

0 

0 

0 

0 

0 

1 

330 



2.2 Erme Estuary 

CM16 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

CM17 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

S18 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

S19 

H.germanica 

E. Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

S20 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.irrflata 

J.macrescens 

TOTAL 

SC/T 

160 

152 

0 

192 

0 

16 

520 

SC/T 

168 

88 

0 

224 

0 

0 

480 

SC/T 

64 

808 

0 

8 

0 

0 

880 

SC/T 

152 

824 

0 

192 

0 

0 

1168 

SC/T 

288 

96 

0 

16 

0 

0 

400 

%T 

31 

29 

0 

37 

0 

3 

100 

%T 

35 

18 

0 

47 

0 

0 

100 

%T 

7 

92 

0 

1 

0 

0 

100 

%T 

13 

71 

0 

16 

0 

0 

100 

%T 

72 

24 

0 

4 

0 

0 

100 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

0 

24 

0 

0 

0 

0 

24 

DSC/T 

0 

16 

0 

0 

0 

0 

16 

DSC/T 

16 

32 

0 

0 

0 

0 

48 

% S p 

0 

0 

0 

0 

0 

0 

%Sp 

0 

0 

0 

0 

0 

0 

%Sp 

0 

3 

0 

0 

0 

0 

%Sp 

0 

2 

0 

0 

0 

0 

%Sp 

6 

33 

0 

0 

0 

0 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

0 

3 

0 

0 

0 

0 

3 

%T 

0 

1 

0 

0 

0 

0 

1 

%T 

4 

8 

0 

0 

0 

0 

12 

%Cal 

0 

0 

0 

0 

0 

0 

0 

%Cal 

0 

0 

0 

0 

0 

0 

0 

%Cal 

0 

3 

0 

0 

0 

0 

3 

%Cal 

0 

1.6 

0 

0 

0 

0 

1.6 

%Cal 

4 

8 

0 

0 

0 

0 

12 

331 



2.3 Fowey Estuary 

StWI/Spring 94 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

StW2 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

LP03 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

RC4 

H.germanica 

E.Williamsoni 

A.lieccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

CHS 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

CH6 

H.germanica 

E.Williamsoni 

Abeccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

PM7 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

SC/T 

42 

2 

0 

33 

0 

0 

77 

SC/T 

74 

26 

4 

146 

0 

0 

250 

SC/T 

0 

0 

0 

50 

0 

0 

50 

SC/T 

4 

0 

0 

57 

0 

0 

61 

sen" 
1346 

92 

0 

40 

0 

0 

1478 

SC/T 

1936 

8 

0 

0 

0 

0 

1944 

SC/T 

62 

39 

0 

8 

0 

0 

109 

%T 

54 

3 

0 

43 

0 

0 

100 

%T 

29.3 

10.5 

1.6 

58.4 

0 

0 

100 

%T 

0 

0 

0 

100 

0 

0 

100 

%T 

7 

0 

0 

93 

0 

0 

100 

%T 

91 

6 

0 

3 

0 

0 

100 

%T 

99.6 

0.4 

0 

0 

0 

0 

100 

%T 

57 

36 

0 

7 

0 

0 

100 

DSC/T 

2 

0 

0 

0 

0 

0 

2 

Dscrr 
0 

0 

0 

0 

0 

0 

0 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

24 

2 

0 

0 

0 

0 

26 

DSC/T 

9 

0 

0 

0 

0 

0 

9 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

% S p 

5 

0 

0 

0 

0 

0 

% S p 

0 

0 

0 

0 

0 

0 

% S p 

0 

0 

0 

0 

0 

0 

% S p 

0 

0 

0 

0 

0 

0 

% S p 

2 

2 

0 

0 

0 

0 

% S p 

0.5 

0 

0 

0 

0 

0 

%Sp 

0 

0 

0 

0 

0 

0 

%T 

3 

0 

0 

0 

0 

0 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

2 

0.14 

0 

0 

0 

0 

2 

%T 

0.5 

0 

0 

0 

0 

0 

0.5 

%T 

0 

0 

0 

0 

0 

0 

0 

%Cal 

4 

0 

0 

0 

0 

0 

4 

%Cal 

0 

0 

0 

0 

0 

0 

0 

%Cal 

0 

0 

0 

0 

0 

0 

0 

%Cal 

0 

0 

0 

0 

0 

0 

0 

%Cal 

2 

0.14 

0 

0 

0 

0 

2 

%Cal 

0.5 

0 

0 

0 

0 

0 

0.5 

%Cal 

0 

0 

0 

0 

0 

0 

0 

332 



2.3 Fowey Estuary 

MP9 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

MP10 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

PPH11 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

G12 

H.germanica 

E.WilIiamsoni 

A.l>eccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

G13 

H.germanica 

E.Williamsoni 

Abeccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

G14 

H.germanica 

E.Williamsoni 

A.t>eccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

SC/T 

466 

25 

1 

0 

0 

0 

492 

SC/T 

2004 

376 

28 

16 

0 

0 

2424 

SC/T 

2024 

18 

0 

34 

0 

0 

2076 

SC/T 

428 

S6 

64 

56 

12 

0 

616 

SC/T 

948 

96 

16 

0 

0 

0 

1060 

SC/T 

2756 

80 

12 

0 

0 

0 

2848 

%T 

95 

5 

0.2 

0 

0 

0 

100 

%T 

82.5 

16 

1.2 

0.7 

0 

0 

100 

%T 

97 

1.1 

0 

1.5 

0 

0 

100 

%T 

69 

9.5 

10.5 

9 

1.7 

0 

100 

%T 

89.5 

9 

1.5 

0 

0 

0 

100 

%T 

97 

2.8 

0.4 

0 

0 

0 

100 

DSC/T 

0 

7 

0 

0 

0 

0 

7 

DSC/T 

24 

8 

0 

0 

0 

0 

32 

DSC/T 

20 

0 

0 

0 

0 

0 

20 

DSC/T 

20 

0 

4 

0 

0 

0 

24 

DSC/T 

11 

4 

0 

0 

0 

0 

15 

DSC/T 

12 

16 

0 

0 

0 

0 

28 

% S p 

0 

28 

0 

0 

0 

0 

%Sp 

1 

2 

0 

0 

0 

0 

%Sp 

1 

0 

0 

0 

0 

0 

%Sp 

5 

0 

6 

0 

0 

0 

%Sp 

1 

4 

0 

0 

0 

0 

% S p 

0.4 

20 

0 

0 

0 

0 

%T 

0 

1 

0 

0 

0 

0 

1 

%T 

1 

0.33 

0 

0 

0 

1 0 
1.3 

%T 

1 

0 

0 

0 

0 

0 

1 

%T 

3 

0 

1 

0 

0 

0 

4 

%T 

1 

0.4 

0 

0 

0 

0 

1.4 

%T 

0.4 

0.6 

0 

0 

0 

0 

1 

%Cal 

0 

1 

0 

0 

0 

0 

1 

0 

1 

0.3 

0 

0 

0 

0 

1 

%Cal 

1 

0 

0 

0 

0 

0 

1 

%Cal 

4 

0 

1 

0 

0 

0 

5 

%Cal 

1 

0.4 

0 

0 

0 

0 

1 

%Cal 

0.4 

0.6 

0 

0 

0 

0 

1 

333 



2.3 Fowey Estuary 

StWI/Summer 94 

H.germanica 

E. Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

StW2 

H.gennanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

LP03 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

RC4 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

CHS 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

CH6 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

PM7 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

sen
ses 

8 

0 

88 

0 

0 

459 

SC/T 

394 

8 

0 

15 

2 

4 

42S 

SC/T 

123 

10 

0 

7 

0 

0 

140 

SC/T 

294 

12 

0 

148 

0 

0 

454 

SC/T 

1392 

24 

8 

8 

0 

0 

1432 

SC/T 

1084 

82 

18 

16 

0 

0 

1200 

sc/r 
314 

28 

0 

9 

0 

0 

351 

%T 

79.2 

2 

0 

19 

0 

0 

100 

%T 

93 

2 

0 

3.7 

0.5 

1 

100 

%T 

88 

7 

0 

4.7 

0 

0 

100 

%T 

64 

3 

0 

33 

0 

0 

100 

%T 

97 

2 

0.6 

0.6 

0 

0 

100 

%T 

90 

7 

1.5 

1.3 

0 

0 

100 

%T 

90 

8 

0 

2.3 

0 

0 

100 

DSC/r 

2 

0 

0 

0 

0 

0 

2 

DSC/T 

6 

4 

0 

0 

0 

0 

10 

DSC/T 

1 

0 

0 

0 

0 

0 

1 

DSC/T 

6 

0 

0 

0 

0 

0 

6 

DSC/r 

20 

0 

0 

0 

0 

0 

20 

DSC/r 

16 

0 

0 

0 

0 

0 

16 

DSC/r 

6 

0 

0 

0 

0 

0 

6 

% S p 

0.6 

0 

0 

0 

0 

0 

% S p 

2 

50 

0 

0 

0 

0 

% S p 

1 

0 

0 

0 

0 

0 

% S p 

2 

0 

0 

0 

0 

0 

% S p 

1 

0 

0 

0 

0 

0 

% S p 

1.5 

0 

0 

0 

0 

0 

% S p 

2 

0 

0 

0 

0 

0 

%T 

0.4 

0 

0 

0 

0 

0 

0.4 

%T 

1 

1 

0 

0 

0 

0 

2 

%T 

1 

0 

0 

0 

0 

0 

1 

%T 

1 

0 

0 

0 

0 

0 

1 

%T 

1 

0 

0 

0 

0 

0 

1 

%T 

1.3 

0 

0 

0 

0 

0 

1.3 

%T 

2 

0 

0 

0 

0 

0 

2 

%Cal 

0.5 

0 

0 

0 

0 

0 

0.5 

%Cal 

1.5 

1 

0 

0 

0 

0 

2.5 

%Cal 

0.8 

0 

0 

0 

0 

0 

1 

%Cal 

2 

0 

0 

0 

0 

0 

2 

%Cal 

1 

0 

0 

0 

0 

0 

1 

%Cal 

1 

0 

0 

0 

0 

0 

1 

%Cal 

2 

0 

0 

0 

0 

0 

2 

334 



2.3 Fowey Estuary 

MP9 

H.geimanica 

E. Williamsoni 

A.beccaiil 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

MP10 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

PPH11 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

G12 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

G13 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

G14 

H.germanica 

E.Williamsoni 

A.tjeccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

SC/T 

1560 

112 

12 

0 

0 

0 

1684 

sen-
1392 

264 

56 

32 

0 

0 

1744 

SC/T 

443 

296 

0 

8 

0 

0 

747 

SC/T 

1744 

828 

128 

32 

0 

0 

2732 

SC/T 

98 

32 

0 

0 

0 

0 

130 

SC/T 

476 

236 

8 

8 

0 

0 

728 

%T 

93 

6.5 

0.75 

0 

0 

0 

100 

%T 

80 

14.5 

3.5 

2 

0 

0 

100 

%T 

60 

39 

0 

1 

0 

^ 0 

100 

%T 

64 

30 

5 

1 

0 

0 

100 

%T 

75 

25 

0 

0 

0 

0 

100 

%T 

65 

32.6 

1 

1 

0 

0 

100 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

36 

0 

8 

0 

0 

0 

44 

DSC/T 

6 

0 

0 

0 

0 

0 

6 

DSC/T 

16 

0 

0 

0 

0 

0 

16 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

16 

0 

0 

0 

0 

0 

16 

%Sp 

0 

0 

0 

0 

0 

0 

% S p 

3 

0 

14 

0 

0 

0 

%Sp 

1 

0 

0 

0 

0 

0 

%Sp 

1 

0 

0 

0 

0 

0 

%Sp 

0 

0 

0 

0 

0 

0 

%Sp 

3 

0 

0 

0 

0 

0 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

2 

0 

0.5 

0 

0 

0 

2.5 

%T 

1 

0 

0 

0 

0 

0 

1 

%T 

1 

0 

0 

0 

0 

0 

1 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

2 

0 

0 

0 

0 

0 

2 

%Cal 

0 

0 

0 

0 

0 

0 

0 

%Cal 

2 

0 

0.5 

0 

0 

0 

2.5 

%Cal 

1 

0 

0 

0 

0 

0 

1 

%Cal 

1 

0 

0 

0 

0 

0 

1 

%Cal 

0 

0 

0 

0 

0 

0 

0 

0 

2 

0 

0 

0 

0 

0 

2 

335 



2.3 Fowey Estuary 

StW1/Autumn 94 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

StW2 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

LP03 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

RC4 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

CHS 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

CH6 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

PM7 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

SC/T 

236 

113 

0 

240 

0 

0 

589 

SC/T 

244 

1278 

32 

66 

0 

0 

1620 

SC/T 

0 

0 

0 

22 

0 

3 

25 

SC/T 

66 

104 

0 

164 

0 

0 

334 

SC/T 

120 

378 

0 

0 

0 

0 

498 

SC/T 

96 

296 

12 

0 

0 

0 

404 

SC/T 

196 

332 

0 

0 

0 

0 

528 

%T 

40 

19.2 

0 

41 

0 

0 

100 

%T 

15 

79 

2 

4 

0 

0 

100 

%T 

0 

0 

0 

80 

0 

20 

100 

%T 

19.6 

31 

0 

49.2 

0 

0 

100 

%T 

24 

76 

0 

0 

0 

0 

100 

%T 

24 

73 

3 

0 

0 

0 

100 

%T 

37 

63 

0 

0 

0 

0 

100 

DSC/T 

12 

0 

0 

0 

0 

0 

12 

DSC/T 

0 

32 

0 

0 

0 

0 

32 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

0 

26 

0 

0 

0 

0 

26 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

0 

20 

0 

0 

0 

0 

20 

%Sp 

5 

0 

0 

0 

0 

0 

%Sp 

0 

2.5 

0 

0 

0 

0 

%Sp 

0 

0 

0 

0 

0 

0 

%Sp 

0 

0 

0 

0 

0 

0 

%Sp 

0 

7 

0 

0 

0 

0 

%Sp 

0 

0 

0 

0 

0 

0 

%Sp 

0 

6 

0 

0 

0 

0 

%T 

2 

0 

0 

0 

0 

0 

2 

%T 

0 

2 

0 

0 

0 

0 

2 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

0 

5 

0 

0 

0 

0 

5 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

0 

4 

0 

0 

0 

0 

4 

%Cal 

3 

0 

0 

0 

0 

0 

3 

%Cal 

0 

2 

0 

0 

0 

0 

2 

%Cal 

0 

0 

0 

0 

0 

0 

0 

%Cal 

0 

0 

0 

0 

0 

0 

0 

%Cal 

0 

5 

0 

0 

0 

0 

5 

%Cal 

0 

0 

0 

0 

0 

0 

0 

%Cal 

0 

4 

0 

0 

0 

0 

4 

336 



2.3 Fowey Estuary 

MPS 

H.germanica 

E. Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

MP10 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

PPH11 

H.germanica 

E. Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

G12 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

G13 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

G14 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

SC/T 

120 

116 

4 

0 

0 

0 

240 

SC/T 

280 

306 

50 

2 

0 

0 

638 

SC/T 

28 

24 

0 

8 

0 

0 

60 

SC/T 

380 

496 

38 

0 

0 

2 

916 

SC/T 

836 

1160 

224 

32 

0 

0 

2252 

SC/T 

208 

292 

0 

8 

0 

0 

508 

%T 

50 

48 

2 

0 

0 

0 

100 

%T 

44 

47 

8.5 

0.5 

0 

0 

100 

%T 

47 

40 

0 

13 

0 

0 

100 

%T 

41 

54 

4.7 

0 

0 

0.2 

100 

%T 

37.5 

50.9 

10.4 

1.5 

0 

0 

100 

%T 

41 

57 

0 

2 

0 

0 

100 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

0 

8 

0 

0 

0 

0 

8 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

0 

20 

2 

0 

0 

0 

22 

DSC/T 

48 

8 

4 

0 

0 

0 

60 

DSC/T 

0 

8 

0 

0 

0 

0 

8 

% S p 

0 

0 

0 

0 

0 

0 

%Sp 

0 

3 

0 

0 

0 

0 

%Sp 

0 

0 

0 

0 

0 

0 

%Sp 

0 

4 

5 

0 

0 

0 

%Sp 

6 

0.7 

2 

0 

0 

0 

%Sp 

0 

3 

0 

0 

0 

0 

%T 

0 

0 

0 

0 

0 

0 

%T 

0 

1 

0 

0 

0 

0 

1 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

0 

2.2 

0.2 

0 

0 

0 

2.4 

%T 

2 

0.4 

0.2 

0 

0 

0 

3 

%T 

0 

2 

0 

0 

0 

0 

2 

%Cal 

0 

0 

0 

0 

0 

0 

0 

%Cal 

0 

1 

0 

0 

0 

0 

1 

%Cal 

0 

0 

0 

0 

0 

0 

0 

%Cal 

0 

2.2 

0.2 

0 

0 

0 

2 

%Cal 

2 

0.4 

0.2 

0 

0 

0 

3 

%Cal 

0 

2 

0 

0 

0 

0 

2 

337 



2.3 Fowey Estuary 

StWIAftfinter 95 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

StW2 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

LP03 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

RC4 

H.germanica 

E. Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

CHS 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

CHS 

H.germanica 

E. Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

PM7 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

SC/T 

40 

34 

0 

1110 

0 

0 

1184 

SC/T 

46 

172 

0 

24 

0 

0 

242 

SC/T 

0 

0 

0 

10 

0 

0 

10 

SC/T 

0 

0 

0 

240 

0 

0 

240 

SC/T 

202 

148 

8 

8 

0 

0 

366 

SC/T 

8 

22 

0 

10 

0 

0 

40 

SC/T 

418 

226 

0 

74 

0 

0 

718 

%T 

3 

3 

0 

94 

0 

0 

100 

%T 

19 

71 

0 

10 

0 

0 

100 

%T 

0 

0 

0 

100 

0 

0 

100 

%T 

0 

0 

0 

100 

0 

0 

100 

%T 

55 

41 

2 

2 

0 

0 

100 

%T 

20 

55 

0 

25 

0 

0 

100 

%T 

58 

31.5 

0 

10.4 

0 

0 

100 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

0 

12 

0 

0 

0 

0 

12 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

% S p 

0 

0 

0 

0 

0 

0 

% S p 

0 

0 

0 

0 

0 

0 

% S p 

0 

0 

0 

0 

0 

0 

% S p 

0 

0 

0 

0 

0 

0 

% S p 

0 

8 

0 

0 

0 

0 

% S p 

0 

0 

0 

0 

0 

0 

% S p 

0 

0 

0 

0 

0 

0 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

0 

3 

0 

0 

0 

0 

3 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

0 

0 

0 

0 

0 

0 

0 

%Cal 

0 

0 

0 

0 

0 

0 

0 

%Cal 

0 

0 

0 

0 

0 

0 

0 

%Cal 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

%Cal 

0 

3 

0 

0 

0 

0 

3 

%Cal 

0 

0 

0 

0 

0 

0 

0 

%Cal 

0 

0 

0 

0 

0 

0 

0 
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2.3 Fowey Estuary 

MPS 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

MP10 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

PPH11 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

G12 

H.germanica 

E. Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

G13 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

G14 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

SC/T 

70 

156 

22 

4 

0 

0 

252 

SC/T 

12 

76 

12 

4 

0 

0 

104 

scrr 
40 

0 

0 

16 

0 

0 

56 

sea 
440 

160 

180 

320 

0 

0 

1100 

scrr 
132 

152 

120 

8 

0 

0 

412 

scrr 
0 

26 

0 

0 

0 

0 

26 

%T 

28 

62 

8.4 

2 

0 

0 

100 

%T 

11.5 

73 

11.5 

4 

0 

0 

100 

%T 

71 

0 

0 

29 

0 

0 

100 

%T 

40 

15 

16.4 

29 

0 

0 

100 

%T 

32 

36.5 

29.5 

2 

0 

0 

100 

%T 

0 

100 

0 

0 

0 

0 

100 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

16 

0 

0 

0 

0 

0 

16 

DSC/T 

0 

0 

8 

0 

0 

0 

8 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

% S p 

0 

0 

0 

0 

0 

0 

% S p 

0 

0 

0 

0 

0 

0 

% S p 

0 

0 

0 

0 

0 

0 

% S p 

4 

0 

0 

0 

0 

0 

% S p 

0 

0 

7 

0 

0 

0 

% S p 

0 

0 

0 

0 

0 

0 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

1 

0 

0 

0 

0 

0 

1 

%T 

0 

0 

2 

0 

0 

0 

2 

%T 

0 

0 

0 

0 

0 

0 

0 

%Cai 

0 

0 

0 

0 

0 

0 

0 

%Cal 

0 

0 

0 

0 

0 

0 

0 

%Cal 

0 

0 

0 

0 

0 

0 

0 

%Cal 

0 

0 

0 

0 

0 

0 

0 

%Cal 

0 

0 

2 

0 

0 

0 

2 

%Cal 

0 

0 

0 

0 

0 

0 

0 

339 



2.4 Avon Estuary 

A1/Summer 95 

H.germanica 

E.WIIIiamsoni 
A.beccaril 

M.fusca 

T.inflata 
J.macrescens 

TOTAL 

A2 

H.germanica 

E.WilliamsonI 
A.beccaril 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

A3 

H.germanica 

E.WilliamsonI 
Atieccarii 

M.fusca 

T.inflata 
J.macrescens 

TOTAL 

A4 

H.germanica 

E.Williamsoni 

Abeccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

A5 

H.germanica 

E.Wiiliamsoni 

A.beccarii 

M.fusca 

T.inflata 
J.macrescens 

TOTAL 

A6 

H.germanica 

E.Wiiliamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

A7 

H.germanica 

E.Wiiiiamsoni 

A.beccarii 

M.fusca 

T.inflata 
J.macrescens 

TOTAL 

AS 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

SC/T 

0 
128 

0 
1366 

0 
64 

1556 

sen' 
164 

148 
16 

980 

0 

0 

1308 

scrr 
1704 
2288 

1864 

2264 
0 

64 

8184 

sen-
920 

744 

200 

1160 

0 

192 

3216 

SC/T 

620 

396 

0 

992 
0 

32 

1740 

SC/T 

1176 

7232 
144 

960 

0 

72 

9584 

SC/T 

1464 

1928 

0 

1224 

0 

192 

4808 

SC/T 

1424 

3160 

128 

1216 

0 

0 

5928 

%T 

0 
8 

0 
88 

0 

4 

100 

%T 

12 

11 

1 
75 

0 

0 

100 

%T 

21 

28 

22 

28 

0 

1 

100 

%T 

29 

23 

6 

36 

0 

6 

100 

%T 

18 

23 

0 

57 

0 

2 

100 

%T 

12 

76 

1 

10 

0 

1 

100 

%T 

30 

41 

0 

25 

0 

4 

100 

%T 

24 

53 

2 

21 

0 

0 

100 

DSC/T 

0 
0 

0 

0 
0 

0 

0 

DSC/T 

64 

16 
16 

0 

0 

0 

96 

DSC/T 

168 

160 

32 

32 

0 

0 

392 

DSC/T 

64 

0 

0 

0 

0 

0 

64 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

0 

16 

0 

0 

0 

0 

16 

DSC/T 

128 

0 

0 

0 

0 

0 

128 

DSC/T 

8 

0 

0 

0 

0 

0 

8 

%Sp 

0 

0 
0 

0 

0 
0 

%Sp 

39 

11 
100 

0 

0 

0 

%Sp 

10 

7 

2 

1 
0 

0 

%Sp 

7 
0 

0 

0 

0 

0 

%Sp 

0 

0 

0 

0 

0 

0 

%Sp 

0 

0.22 

0 

0 

0 

0 

%Sp 

9 

0 

0 

0 

0 

0 

%Sp 

0.56 

0 

0 

0 

0 

0 

%T 

0 
0 

0 
0 

0 
0 

0 

%T 

5 

1 

1 
0 

0 

0 

%T 

2 

2 

0.4 

0.4 

0 

0 

5 

%T 

2 

0 

0 

0 

0 

0 

2 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

0 

0.17 

0 

0 

0 

0 

0.17 

%T 

3 

0 

0 

0 

0 

0 

3 

%T 

0.13 

0 

0 

0 

0 

0 

0.13 

%Cal 

0 

0 
0 

0 

0 
0 

0 

%Cal 

19.5 
5 

5 

0 

0 

0 

29.5 

%Cal 

3 

3 
0 

0 

0 

0 

6 

%Cal 

3 

0 

0 

0 

0 

0 

3 

%Cal 

0 

0 

0 

0 

0 

0 

0 

%Cal 

0 

0.18 

0 

0 

0 

0 

0.18 

%Cal 

4 

0 

0 

0 

0 

0 

4 

%Cal 

0.17 

0 

0 

0 

0 

0 

0.17 

340 



2.4 Avon Estuary 

A9 

H.germanica 

E.Willlamsoni 
Abeccarii 
M.fusca 

T.intlata 

J.macrescens 

TOTAL 

A10 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 
T.inflata 

J.macmscens 

TOTAL 

A11 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

A12 

H.germanica 

E.Williamsoni 
A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

SC/T 

0 
4 

0 
68 

0 
0 

72 

SC/T 

264 

680 

0 

832 
0 

0 

1776 

SC/T 

3786 

6136 

1730 

4546 

0 

256 

16454 

SC/T 

328 

1008 

128 
96 

8 

0 

1568 

%T 

0 
6 
0 

95 
0 

0 

100 

%T 

15 
38 

0 

47 

0 

0 

100 

%T 

23 

38 

10 

27 

0 

2 

100 

%T 

21 
64 

8 

6 

1 

0 

100 

DSC/T 

0 

0 
0 
0 

0 

0 

0 

DSC/T 

0 

0 

0 

0 
0 

0 

0 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

%Sp 

0 
0 

0 
0 

0 
0 

%Sp 

0 

0 

0 
0 

0 

0 

%Sp 

0 

0 

0 

0 

0 

0 

%Sp 

0 

0 
0 

0 

0 

0 

%T 

0 
0 
0 

0 

0 
0 

0 

%T 

0 
0 

0 

0 

0 

0 

0 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

0 

0 

0 

0 

0 

0 

0 

%Cal 

0 

0 
0 

0 
0 
0 

0 

0 

0 

0 

0 

0 
0 

0 

0 

%Cal 

0 

0 

0 

0 

0 

0 

0 

%Cal 

0 
0 

0 

0 

0 

0 

0 

341 



2.4 Avon Estuary 

Al/Autumn 95 

H.germanica 
E.Willlamsoni 

A-beccarii 

M.fusca 

T.lnflata 
J.macrescens 

TOTAL 

A2 

H.germanica 

B.Williamsoni 
Abeccarii 

M.fusca 

T.lntlata 

J.macrescens 

TOTAL 

A3 

H.germanica 

E.WIIIIamsoni 
Abeccarii 

M.fusca 

T.intlata 

J.macnescens 

TOTAL 

A4 

H.germanica 

E.Wiiiiamsoni 

A.beccarii 

M.fusca 
T.inflata 

J.macrescens 

TOTAL 

AS 

H.germanica 

E.Wiiiiamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

A6 

H.germanica 

E.Wiiiiamsoni 
Abeccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

A7 

H.germanica 

E.Wiiiiamsoni 

A.beccarii 

M.fusca 

T.intlata 

J.macrescens 

TOTAL 

A8 

H.germanica 

E.Wiiiiamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.nKtcrescens 

TOTAL 

SC/T 

64 

176 

8 

712 
0 
0 

960 

SC/T 

16 

152 
8 

232 

0 

0 

408 

SC/T 

432 
560 

2112 

896 

0 

0 

4000 

sen 
560 

1168 

1024 

640 

0 

0 

3392 

sc/r 
128 

1732 

0 

512 

0 

0 

2372 

sc/r 
128 

128 

320 

384 

0 

96 

1056 

sc/r 
720 

6968 

1776 

0 

0 

128 

9592 

sc/r 
0 

280 

0 

512 

0 

32 

824 

%T 

7 

18 

1 
74 

0 
0 

100 

%T 

4 
37 

2 

57 
0 

0 

100 

%T 

11 

14 
53 

22 

0 

0 

100 

%T 

16 

34 

30 

19 
0 

0 

100 

%T 

5 

73 

0 

22 

0 

0 

100 

%T 

12 

12 

30 

37 

0 

9 

100 

%T 

8 

73 

19 

0 

0 

1 

100 

%T 

0 

34 

0 

62 

0 

4 

100 

DSC/T 

16 
8 

0 
16 

0 
0 

40 

DSC/T 

0 

0 
0 

0 

0 

0 

0 

DSC/r 

0 
0 

0 

0 
0 

0 

0 

DSC/r 

0 

0 

64 

0 

0 

0 

64 

DSC/r 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

32 

0 

0 

0 
0 

0 

32 

DSC/T 

0 

16 

0 

0 

0 

0 

16 

DSC/r 

0 

16 

0 

0 

0 

0 

16 

%Sp 

25 

5 
0 

2 

0 
0 

%Sp 

0 
0 

0 

0 
0 

0 

%Sp 

0 

0 
0 

0 

0 

0 

%Sp 

0 

0 

6 

0 

0 

0 

%Sp 

0 

0 

0 

0 

0 

0 

%Sp 

25 

0 

0 

0 

0 

0 

%Sp 

0 

0.23 

0 

0 

0 

0 

%Sp 

0 

6 

0 

0 

0 

0 

%T 

2 
1 

0 

2 
0 
0 

5 

%T 

0 
0 

0 
0 

0 

0 

0 

%T 

0 
0 

0 

0 

0 

0 

0 

%T 

0 

0 

2 
0 

0 

0 

2 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

3 

0 

0 

0 

0 

0 

3 

%T 

0 

0.17 

0 

0 

0 

0 

0.17 

%T 

0 

2 

0 

0 

0 

0 

%Cal 

6.5 
3 

0 

6.5 
0 
0 

16 

%Cal 

0 
0 

0 
0 

0 

0 

0 

%Cal 

0 
0 

0 
0 

0 

0 

0 

%Cal 

0 

0 

2 

0 

0 

0 

2 

%Cal 

0 

0 

0 

0 

0 

0 

0 

foCal 

6 

0 

0 

0 

0 

0 

6 

%Cal 

0 

0.17 

0 

0 

0 

0 

0.17 

%Cal 

0 

6 

0 

0 

0 

0 

6 

342 



2.4 Avon Estuary 

A9 

H.gennanica 
E.WilliamsonI 

Abeccaril 
M.fusca 

T.inflata 

J.macrescens 

TOTAL 

A10 

H.germanica 
E.Williamsoni 
Abeccarii 

M.fusca 

T.innata 
J.macrescens 

TOTAL 

A11 

H.germanica 

E.Williamsoni 

Abeccarii 

M.fusca 
T.inflata 

J.macrescens 

TOTAL 

A12 

H.germanica 

EWilllamsonl 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

SC/T 

116 
832 

0 

180 
0 

0 

1128 

SC/T 

80 
4200 

64 

512 
8 

64 

4928 

sen-
SOS 

3016 

1088 

2592 

0 

292 

7896 

SC/T 

48 

1052 

0 

32 

4 

0 

1136 

%T 

11 

74 
0 

16 
0 

0 

100 

%T 

2 

85.4 
1 

11 
0 
1 

100 

%T 

12 

38 

14 

33 

0 

4 

100 

%T 

4 

93 

0 

3 

0.4 

0 

100 

DSC/T 

16 
32 
0 

0 
0 

0 

48 

DSC/r 

8 
8 

0 
0 

0 
0 

16 

Dscrr 
0 

32 

128 

128 

0 

0 

288 

DSC/T 

0 

12 

0 

32 

0 

0 

44 

%Sp 

14 

4 
0 

0 
0 

0 

%Sp 

10 
0.2 

0 
0 
0 

0 

%Sp 

0 

1 

12 

5 
0 

0 

%Sp 

0 

1 

0 

100 

0 

0 

%T 

1 

3 

0 
0 

0 
0 

4 

%T 

0.2 

0.2 

0 

0 
0 
0 

0.4 

%T 

0 

0 

2 
2 

0 

0 

4 

%T 

0 

1 

0 

3 

0 

0 

4 

%Cal 

1.7 
3 

0 
0 

0 
0 

5 

%Cal 

0.2 
0.2 

0 
0 

0 
0 

0.4 

%Cal 

0 

0.6 

3 

3 

0 
0 

7 

%Cal 

0 

1 

0 

0 

0 

0 

1 

343 



2.4 Avon Estuat7 

Al/Winter 96 

H.germanica 
E.WilliamsonI 

A.beccaiil 

M.fusca 
T.lnflata 

J.macrescens 

TOTAL 

A2 

H.germanica 

B.Wiinamsonl 

A.t3eccarii 

M.fusca 

T.intlata 
J.macrescens 

TOTAL 

A3 

H.germanica 

E.WilliamsonI 

A.beccarii 

M.fusca 

T.intlata 
J.macrescens 

TOTAL 

A4 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.lnHata 
J.macrescens 

TOTAL 

A5 

H.germanica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.intlata 

J.ntacrescens 

TOTAL 

A6 

H.germanica 

E.WilliamsonI 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

A7 

H.germanica 

E.WilliamsonI 

A.beccarii 

M.fusca 

T.inflata 
J.macrescens 

TOTAL 

A8 

H.germanica 

E.WIIIiamsonl 

Abeccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

SOT 

0 

0 
0 

1008 
0 

0 

1008 

SOT 

0 

96 
0 

624 

0 
0 

720 

SC/T 

160 

1784 

256 

672 

0 

0 

2872 

SC/T 

28 
288 

64 

256 

0 

0 

636 

SC/T 

16 

193 

0 

112 

0 

0 

321 

SC/T 

64 

576 

0 

1664 
0 

0 

2304 

SC/T 

1328 

4976 

256 

1664 

0 

384 

8608 

SC/T 

368 

928 

32 

992 

0 

0 

2320 

%T 

0 
0 

0 
100 

0 
0 

100 

%T 

0 

13 

0 
87 

0 
0 

100 

%T 

5 

62 

9 

24 

0 

0 

100 

%T 

5 

46 

10 
40 

0 

0 

100 

%T 

5 

60 

0 

35 

0 

0 

100 

%T 

3 

25 

0 
72 

0 

0 

100 

%T 

16 

58 

3 

19 

0 

5 

100 

%T 

17 

40 

1 

43 

0 

0 

100 

DSC/T 

0 
0 

0 
0 

0 

0 

0 

DSC/T 

0 
0 

0 
0 

0 

0 

0 

DSC/T 

0 

16 

0 

32 
0 

0 

48 

DSC/T 

0 

32 
0 

0 

0 

0 

32 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

32 

64 

0 

0 

0 

0 

96 

%Sp 

0 

0 
0 

0 
0 

0 

%Sp 

0 

0 
0 

0 

0 
0 

%Sp 

0 

1 

0 

5 

0 

0 

%Sp 

0 

11 

0 

0 
0 

0 

%Sp 

0 

0 

0 

0 

0 

0 

%Sp 

0 

0 

0 

0 

0 

0 

%Sp 

0 

0 

0 

0 

0 

0 

%Sp 

9 

7 

0 

0 

0 

0 

^ %T 
0 
0 

0 
0 

0 

0 

0 

%T 

0 
0 

0 
0 

0 

0 

0 

%T 

0 

0.6 

0 

1 
0 

0 

1.7 

%T 

0 

5 

0 

0 

0 

0 

5 

%T 

0 

0 

0 

0 

L 0 
0 

0 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

1 

3 

0 

0 

0 

0 

4 

%Cal 

0 

0 
0 

0 
0 

0 

0 

%Cal 

0 

0 
0 

0 

0 
0 

0 

0 

0 

0.7 

0 

1.5 

0 

0 

2 

%Cal 

0 

8 

0 
0 

0 

0 

8 

%Cal 

0 

0 

0 

0 

0 

0 

0 

%Cal 

0 

0 

0 
0 

0 

0 

0 

%Cal 

0 

0 

0 

0 

0 

0 

0 

%Cal 

2 

5 

0 

0 

0 

0 

7 

344 



2.4 Avon Estuary 

A9 

H.germanica 
E.WIIIiamsoni 

Abeccaril 

M.fusca 
T.inflata 

J.macrescens 

TOTAL 

A10 

H.germanica 

E.WIIIiamsoni 
Abeccaril 

M.fusca 
T.lntlata 

J.macrescens 

TOTAL 

A l l 

H.germanica 

E.WIIIiamsonl 
A.beccarll 

M.fusca 
T.lnflata 
J.macrescens 

TOTAL 

A12 

H.germanica 

E.WIIIiamsoni 

Abeccaril 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

SC/T 

34 

736 
0 

1474 
0 

16 

2260 

scrr 
72 

3936 
0 

576 
0 

0 

4584 

SC/T 

1122 
4516 

384 
3648 

0 
64 

9734 

SC/T 

72 

3504 

0 

0 

0 

640 

4216 

%T 

1 
33 

0 

65 
0 

1 

100 

%T 

1 
86 

0 
13 

0 

0 

100 

%T 

12 
46 

4 
38 
0 

1 

100 

%T 

2 

83 

0 

0 

0 

15 

100 

DSC/T 

0 
0 

0 
0 

0 

0 

0 

DSC/T 

0 
0 

0 

0 
0 

0 

0 

DSC/T 

0 

0 
0 

0 
0 

0 

0 

DSC/T 

0 

136 

0 

0 

0 

0 

136 

%Sp 

0 

0 
0 

0 
0 

0 

%Sp 

0 
0 

0 
0 

0 

0 

%Sp 

0 

0 

0 
0 

0 
0 

%Sp 

0 

4 

0 

0 

0 

0 

%T 

0 

0 
0 

0 
0 

0 

0 

%T 

0 

0 
0 

0 
0 

0 

0 

%T 

0 
0 

0 
0 

0 

0 

0 

%T 

0 

3 

0 

0 

0 

0 

3 

%Cal 

0 

0 
0 

0 

0 
0 

. 0 

%Cal 

0 
0 

0 
0 

0 

0 

0 

%Cal 

0 
0 

0 
0 

0 
0 

0 

%Cal 

0 

4 

0 

0 

0 

0 

4 
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2.4 Avon Estuary 

A1/Spring 96 

H.germanica 

E.WilliamsonI 

Abeccaril 
M.fusca 

T.lnflata 
J.macrescens 

TOTAL 

A2 

H.germanica 

E.Williamsoni 

A.beccarli 
M.fusca 

T.inflata 

J.macrescens 

TOTAL 

A3 

H.germanica 

E.Williamsoni 

Abeccarii 

M.fusca 

T.inflata 
J.macrescens 

TOTAL 

A4 

H.germanica 

E.WiillamsonI 

Abeccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

A5 

H.germanica 

E.WiillamsonI 

A.beccarii 

M.fusca 

T.inflata 
J.macrescens 

TOTAL 

A6 

H.gemianica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 
J.macrescens 

TOTAL 

A7 

H.germanica 

E.Williamsoni 

Abeccarii 

M.fusca 

T.inflata 
J.macrescens 

TOTAL 

A8 

H.germanica 

E.Wiiiiamsoni 

A.beccarii 

M.fusca 

T.inflata 

J.macrescens 

TOTAL 

sen' 
0 

56 

0 

168 

0 
0 

224 

SC/T 

16 

0 
0 

560 

0 

0 

576 

SC/T 

320 
1644 

576 

1600 
0 

0 

4140 

SC/T 

24 

888 

272 

1176 

0 

0 

2360 

SC/T 

0 

32 

0 

64 

0 

0 

96 

sen" 
112 

408 

0 

1464 

0 

0 

1984 

scrr 
448 

736 

192 

864 

0 

0 

2240 

SC/T 

144 

736 

0 

448 

0 

0 

1328 

%T 

0 

25 

0 
75 

0 
0 

100 

%T 

3 

0 
0 

97 

0 

0 

100 

%T 

9 

39 
14 

38 
0 

0 

100 

%T 

1 

38 

12 
49 

0 

0 

100 

%T 

0 

33 

0 

67 

0 

0 

100 

%T 

6 

21 

0 

73 

0 

0 

100 

%T 

20 

33 

9 

38 

0 

0 

100 

%T 

11 

55 

0 

34 

0 

0 

100 

DSC/T 

0 
8 

0 

0 
0 
0 

8 

DSC/T 

0 
0 

0 
0 

0 

0 

0 

DSC/T 

12 

0 

0 
0 

0 

0 

12 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

Dscn-
0 

0 

0 

0 

0 

0 

0 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

%Sp 

0 

14 

0 

0 
0 

0 

%Sp 

0 

0 
0 

0 

0 

0 

%Sp 

4 

0 

0 
0 

0 

0 

%Sp 

0 

0 

0 

0 

0 

0 

%Sp 

0 

0 

0 

0 

0 
0 

%Sp 

0 

0 

0 

0 

0 

0 

%Sp 

0 

0 

0 

0 

0 

0 

%Sp 

0 

0 

0 

0 

0 

0 

%T 

0 
4 

0 

0 
0 

0 

4 

%T 

0 

0 
0 

0 

0 

0 

0 

%T 

0.3 
0 

0 

0 
0 

0 

0.3 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

0 

0 

0 

0 

0 

0 

0 

%Cal 

0 
14 

0 

0 
0 

0 

14 

%Cal 

0 

0 
0 

0 

0 

0 

0 

%Cal 

0.5 

0 
0 

0 
0 

0 

0.5 

%Cal 

0 

0 

0 

0 

0 
0 

0 

%Cal 

0 

0 

0 

0 

0 

0 

0 

%Cal 

0 

0 

0 

0 

0 

0 

0 

%Cal 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
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2.4 Avon Estuary 

A9 

H.germanica 
E. WllliamsonI 

A.beccarii 
M.fusca 

T.inflata 

J.macrescens 

TOTAL 

A10 

H.germanlca 
E.Williamsoni 

A.beccarii 
M.fusca 

T.inflata 

J.macrescens 

TOTAL 

A11 

H.gemtanica 

E.Williamsonl 

A.beccaril 

M.fusca 

T.lntlata 

J.macrescens 

TOTAL 

A12 

H.gem^nica 

E.Williamsoni 

A.beccarii 

M.fusca 

T.inflata 
J.macrescens 

TOTAL 

SC/T 

0 
0 

0 
544 

0 
0 

544 

sen-
32 
232 
0 

32 
0 

0 

296 

SOT 

206 

300 

0 

3136 

0 
64 

3706 

sen-
32 
196 

0 
432 

0 

0 

660 

%T 

0 

0 
0 

100 

0 

0 

100 

%T 

11 
78 

0 
11 

0 
0 

100 

%T 

6 

8 

0 

85 

0 

2 

100 

%T 

5 

30 

0 

65 

0 

0 

100 

DSC/T 

0 
0 

0 
16 

0 

0 

16 

DSC/T 

0 

32 

0 
0 
0 

0 

32 

DSC/T 

0 

0 

0 

0 

0 

0 

0 

DSC/T 

0 
0 

0 

0 

0 

0 

0 

%Sp 

0 

0 

0 

3 

0 

0 

%Sp 

0 

14 

0 

0 

0 

0 

%Sp 

0 

0 

0 

0 

0 

0 

%Sp 

0 

0 

0 

0 

0 

0 

%T 

0 

0 

0 

3 

0 

0 

3 

%T 

0 

11 

0 

0 

0 

0 

11 

%T 

0 

0 

0 

0 

0 

0 

0 

%T 

0 

0 

0 

0 

0 

0 

0 

%Cal 

0 

0 
0 

0 

0 
0 

0 

%Cal 

0 

12 
0 

0 
0 

0 

12 

%Cal 

0 
0 

0 

0 

0 

0 

0 

%Cal 

0 

0 

0 

0 

0 
0 

0 

347 
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RECENT BENnnc FORAMINIFERIDA AS INDICATORS OF POLLUTION 

IN RESTRONGUET CREEK, CORNWALL 

S. S'nmiius 

S. Sliihhics. ntfiartincnl of Cc-n/ot-ica/Sciences, Uniivi-sily of Plynioiilh, Orahc Circus, 
I'lynioiilti, riA .SAA. 

[NTKODUCnON 

'ollovvin}> a dischar}»e of acidic mine water highly conlaminaieil 
vith heavy metals from Wlieal Jane tin mine (13.1.92), a 
•reliminary investigation has lx;en made to determine the 
esporuse of foraniinifera when expo.scd to polluted water, llie-
riitinl results of the research are given in this paper. 

*IUiVIOUS RESEAKCII 

liere is no known datalxi.se of fonmiinifenil species distribution 
1 Ile.strt)nKuet Creek, nor has any previous investigation of the 
.scTulncss fif Ix'nthic fonuninifenms as pollution indicators 
een c"arried f)ut at this IcK'atton. 'lite potential ii.se of benthic 
miminifc'rluis as indic:itors of pollution in other estuaries has, 
owever, Ix-vn examined by a numl>er of workers. 

Kecent work carried out by Sharifi cl a/. (1991) «)n 
Dulhampton Water foiintl abnormal fonnninifenil test gn)wili 
siulted from exposure to increa.sed levels of Cu and Zn. Alve 
1991) and lillison ti at. (1986) concluded that a l<»w abundance 
[living foraminifeni and an increa.se in diversity away frfim the 
nircc of contamination is indiciitive of metal contamination. 

[ISTORICAL PERSPncnVES 

pstronguet Creek pmvides a unir|ue site for investigation 
x-aii."!c of the additional conipliciilion of the k>ng hi.story of 
•avy metal contamination. 

Within the ciitchmeni areas of the rivers Kennal and 
irnon which feed into Ue.stronguet Creek (Figure 1), 
.'talliferous mining has taken place for .sevenil centuries 
arton, 1%7) and prior to the recent di.scharge from Wheal 
ie, Ijoth rivers, and in particular the Oirnon, have received 
(charged mine waters. Prior to 1854, when the precipitation 
'hnic|ue was initiated to remove copper and other metals, 
treated water was discharged (Hamilton Jenkin, 1963). 

Of the mines Which dniinc-d into the C:imon and Kennal, 
leal Jane w:is for, .sevenil yenis, the last working mine. 'Hie 
•:i had, therefore, experienced a period of quiescence with 
|X'c1 to mine water discharge, with no nut jor discharges nolcxi 
iip.son, 1992, personal communiaitkin). "llie abandoned mines 

however, Hooded and remain .sources of contaminated 
ciiate. Iliere al.so remains the unanswered (|iiesiion of the 
ount of contamination c":iu.scd by the natural procx\s.ses of 
niical and physical wejithering of metalliferous veins. 

1 71ie most recent discharge occurred after the mine cea.sed 
king in Tebmary 1991, as up until this time the mine had 
n kept dry. After closure Wheal Jane was allowed to flood, 
owing prolonged heavy niin and .strong winds the existing 
tmeni mea.sures failed and 320 million litres of unirealed 
er discharged into the Oirnon over a period of 60 hours 
rnon Con.solklated, 1992). Tlie concentrations of heavy 
als in the .sediment detecleil after this di.scharge are 
jhically illu.str:ited by I'igure 2. 

n-R CONDITIONS 

hwater How is often vigorous with respect to liie Kennal 
Oirnon and tidal influence is restricted to below Oevoran 
I bridge jSW 790 39'i|. At low water extensive areas of 
flats arc expo.sed, with small i.solated areas of .sallmarsli. 
lilies VAT)' from 5ppt at Carclew in the winter to a maxinuim 

of 3lppt in the summer. Further down the 
creek at llarcourt, values ri.se to 30ppt in the winter and 33ppt 
in the summer. Oirrick Koads, the e.sluary of the I'al (Figure I), 
has .salinities of a normal marine environment; 3'lppt. 

M m i i O D S 
With increa.sed depth the abundance of living foraininiferins 
decR-a.ses (Murray, 1991). 'Hie cores Boltovoskoy (19(>(>) took 
from De.seado Creek, Chile showed diversity anti the niimlx;r of 
specimens per cc. of .sediment decrea.sed with increa.sed depth. 
IJoltovoskoy (1966) did, however, find living foraminifenins at a 
16 cm depth but suggested that the .substrate type and the depth 
of the oxidi.sed zone would be controlling parameters. Similar 

. work eirried out by other researchers al.so found living 
fonuninifenins exi.sted at these greater deplks (IUIT-JIS, 1969. 
1974; .Sieinack anil lk:rg.siein, 1979). 

'Hiis preliminary investig:ition is limited to foraminiferal 
response to a recent contaminated dLscharge and the ratio of 
living to dead individuals is an important consideration. 
•Sampling, therefore, was restricted to a 1 b n depth as .sampling 
deeper would distort the live/dead ratio and would be 
unrepresentative. 

'Hie .sample sites .selected follow latenil tnm.sects along 
both sides of the creek within the intertidal .sections (.see 
Figure 1). F'ollowing .standard .sampling techniques a 10 cm 
diameter ring was iaserted into the .sediment to a depth of 
1 cm and the enclo.sed .sediment removed by a imKlilled dish 
to plastic jars containing bulTered formalin. Vigorous shaking 
distributed the preservative. 

The samples were prf)ce.ssetl in the laboratory' by wet 
sieving on a 63 micron sieve. 'Hie >63 micron residue was 
transferred to a bowl and immersed in K<i.se Ilengal (Walton, 
1952) for -15 minutes t() stain the protoplasm within the tests ol" 
the foraminiferans alive at the time of .sampling or only 
recently dead. I'urther wet sieving removed excess slain and 
the residue was dried overnight at 60°C. luich dried .sample 
was sieved through a sieve slack and the retained fractions 
weighed. 'Hie 250 micron and 125 micnm fnictit)ns were 
randomly picked and a minimum .301 .specimens mounted 
onto a grid slide. The data have been reduced to percentages 
for relative abundance of living and abnonnal lest growth. 'Ilie 
distinction between normal and abnormal is made by 
reference to the type species (.see Plate 1). Tlio.se specimens 
considered abnormal show additional chamber growth 
whereby one chamber is superimpo.sed upon another, 
enlarged final or penultimate chambers, protruding chambers, 
multiple distorted ch:imbers, twinned tests and uneven 
chamber or suture shape. 

Rnsui,Ts 
'Hie highesi percentage occurrence of living specimens was 
found at Tallack's Creek and this is co-incidental with a high 
percentage r)ccurrence of abnormal test gn)wth. 

.Sample T('3 (l-igure 1) gave the highest values of stained 
te.sts (37%). The number of tests showing abnormal growth 
(.see :ibove) is similarly high (14%), of which over half were 
living (8%). As l-'igure 3 shows, a trend is evident and a 
horizontal gradient is defined, whereby the number of 
deformetl and iindeforined living both decrea.se away (rom 
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the l ine as shown by l'"igiires 5a. and 5b. 'Hie correlation is not, 
lliereftjre, .strong. 

SPI-CinS DOMINANCI-
'Hie species / / . ,t<crimiiiic(.i domin.'iles Ixj ih ihe live and tle:id 
a.s.semblages, accounting for a maximum total o f S'/Xi o f .s:in>ple 
l'20 o f which I.Wi were l iv ing. ' I l ie maximum abundance o f 
l iv ing lUiyiicsiiiti f^cniiaitica was found at location TC3. 
accfKinnng for 95% o f ll ie l iv ing total of .37%. H i e two .species /:'. 
williain.soiii and A. IK-CCIIIH show low abundance and do not 
exceed 300<i and G'/o respect ive!/of the total species distribution. 
Tl ie abundance o f l iving is similarly low (.see Figures 6a and (M. 

POPUIATION DENSriY 
Population density f l iving and dead) is highest on the .south side 
o f the creek. Tregunwith W'CKXI and the lloat Yard have values 
C.3000 individuals per 10 cm-. ' I l ie tests at Tregunwiih W(xx l are 
in pristine condition. I'ew spi-cimens show abr:ision t)r otiier 
Iratures indic-aiive of Ir insporiaiion and/or low p i I conditions, 
l l i e c-ondiiion o f the tests from the IJoat Yard show .some o f these 
fe:itua*s. ' I l ie total popiriation density decrca.scs dowastream to 
less than 800 individuals per JO cm- :tt Pandora Inn. 

On the north side of the creek at Tallack's Creek there is a 
paucity o f .specimens, with 127 per 10 cm^ (.sample TCI) . IX-asity 
incrca.ses away from the di.scharge point wi th an average value of 
560 individuals (ler 10 cm- at .sample locution Point. 

DIVERSITY 

' l l iere are 3 intligenous species forming ihe l iv ing a.s.semblage 
and the Alpha Index is less than I (Fisher cl til., 19'f3)- The 
three species belong to ihe .Suborder Kotaliina. In addit ion lo 
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HliKonoii.s specie's there are a few r.incloinly cli.stribiitecl 
L's, for cxiimplv', Qiiiiu/nc/DCii/iiici iliinUlitiia Terciiieni and 
iiiiiiiia niiicrvscc'iis (Hr.idy). Tlie.se were restrictetl to the 

a-s-senihlai-e and diversity increa.ses sli};htly as a 
'(|uencc to a maxinmni of 5 species. 'Ilie nindoni and 
/cri.slied dLstrilniti«)n of these niinj)r .species leads to the 
ision that lliey are an ailocthonoiis influence from adjacent 
)nments and/or reworkcti from depth. 

[JSSION 
ita derived fmm this preliminary investigation shows a 
al trend which may IK* a.ssigned to a pollution control, 
allack's Creek .shows a positive correlation lx;iween living 
letl/iinclefoniied and the highest percentage abundance of 
s here, ne:ia'.st to the discharge p<jinl. Iliis Is contr:iry to the 
ŝ of Alve (1991) and HllLson ul al. (198()), which concluded 
low abiindancv of living foraminifenins pnisimal to the 
is indicative of a pollution control. An increa.se in live 

liferan abundantv prt)ximal to the .source inay suggest that 
nnninity there is more .specialised and able to cope with 
.•vels of heavy metals. Hie decre-.i.se in the relative 
ncc of living defomied foniniiniferans on both sides of the 
iway fnim the ilLsc'harge point dcx:s fit Ihe .Sharifi cV al. 

model, whereby fewer d-jfoniied specimens were 
terecl when there was no sp:itial relationship with a .source, 
e majority of .s:tmples taken from Tregunwith WOCKI have 
ng abimdance and defonned specimens, but high lot.il 
ion density, llierc is a small incrca.se in the number of 
irjminiferans at Pandor.i Inn and this may indicate an 
' to cope with heavy metal pollution. The dilute and 
I elTects of the relatively unpolluted river Kennal may be 
» the results at Tregunwiih Weiod, but this neeils lo be 
itcd further. 

5 10 15 
live undeformed (%) 

l-'ljiiiiv 5h: SDIKI.I sitU: 

\jn\v diversity is genenilly accepted as normal within an 
e.stuarine environment becau.se of Ihe variable conditions 
(Murriy, 1991). Hie ab.sence of the euryhaline agglutinaleil 
.spet:ies, however, po.ses an anomaly. Living agglutinated taxa 
are present in the l-Jrme estuary .samples taken in 1991. At mo.st 
IfK^tiions the species MiliainniiiiafiiscaiWndy) was found to IK-
the clominant species. Research by Hart and Tluinip.son, 197'f; 
Murniy, 1973, 1991; Uollovoskoy, 1976 and .Steinack cTrt/. 1979, 
for example, lias found agglutinated species to IK* lypioii of an 
estuarine a.s.semblage. 'Ilie rea.sons for the apparent ab.sence of 
the euryhaline agglutinated species is uncertain. If the variables 
.s:ilinity and tempeniture were controlling faclors (Ijdz, I96S), 
then the three indigenous i-ilcareoiis euryhaline species would 
al.so IK" affected as they .share similar tolenincx* thresholtls 
(Greiner, 1969). Ab.sence due to complete di.s.solution within the 
.sjjmetimes acidic water conditions is al.so unlikely as this implies 
.selective cli.s.solution and low pi I would Ix? more elTeclive upon 
calcereous tests than agglutinated forms (Jona.s.son and 
I'atterson, 1992; Murniy, 197.̂ ). 

'llie ilata suggest that the three species pre.sc-nt t-in tolenite 
high concentrations of heavy metals, but other euryhaline 
.species have lower tolenmce threshold.s. 

FllTUlin WOKK 
.Sampling of Uestronguet Creek and the control estuary, the 
Hrme will continue at .sea.sonal inter\'als. Ab.solute and relative 
abundance of delbrmeil and undelbrmed living will be 
determined and correlated with the coixvnirations of heavy 
metals within the .sediment. Tlie tests will Ix: analy/^ed by micro-
pmbe (jeol 6100) lo detect the levels of heavy ineial 
accumulation and this data correlated with .spatial relationships 
to the di.s<-|)arge point. 

Other inlluences ami likely c;iu.ses of pollution which may 
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Sample stations 
liiin' (i:.% tlislrihiilioii ofiiicb s/KVio! tnitl iissi>citiictl abiiiulaiicc oflimiia sfK-ciiiiciis/iiiiiHl on the iiortb .lit/e (a) aiitl saiiib side <h) oflbe cnx-k. 

'(lymsina gemianlca l}pc :pa:ics (.ifX^iiii). 2. II. ficniiaiiiui, abiionnal dMinilK-rf>n>u'lb. lust cbnmlxr is cnlarfifxl inid/inilnieliiifi (2'rn^ in). J. II. 
tuinicti, miilliplc'cbamlicrfinuiifhCIWtiiii). 

Hclliim ivilliamsoiilt)jK'sfK-cies (.'iO(\tin). 5. l-:.wHlieiiii.soni, pnttmiliiift cbiinilK-rs (.ifX^iii). 6. li.williaiiisoiii, twin f32%kin). 

il foniminireRil dLstrihiition (absence of aj4}>lutinnted ta.va) 
St forni will al.so lie investigated. 
[ire.s will lie taken and dated to determine pa.st 
niferal respoase to hc:ivy metal polliitioas with re.spea to 
nal test j»rowth and test accumulation of metals. Hie 
Unitions of liejivy metals within the .sediment will al.so he 
lined. • ••• 
e future propo.sals for the treatment of mine tailing-s 
Iter-.should en.sure that contaminated water is not 
}»ecl into the Cimon again. Future .sampling for benthic 
niferida will provide a u.seful monitoring tcclini(|uc oi 
lopo.sed treatment at Wheal jane and the present 
h will provide comparative data. 
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alJowini; a recent di.scharije of acidic mine water contaminated with iieavy metals, sediment .samples were taken from 
eslronguet Creek for a preliminaiy analysis of benthic foraminiferal respoase to pollution. The tests have been 
ialy.sed for livinj; abundance, abnormal chamber growth and species dominance. Samples siiow the species 
'fiyiicsiiui ^iicniuinicfi O'-hrcnhvtg) is domin.-int within the livinj; and de.id a.s.semblai;es with a m.iximum 35% livinj;. 
lie species lilpbidinin tuillianisnni Ilaynes and Ainnionia IJCCCfilii (,\.im\c') each show a vciy low living .ibiindance. 
iversity is low and only the Suborder Kotaliina is present with living lepresenlaiives. Sample location, Tallack's Creek 
lows the liighest abundance of living and living specimens with abnormal lest siniciure. rregiinwilh Wood shows a 
w abundance of living specimens and tho.se exhibiting abnormal chamber growth. I}oth sides of the creek show a 
lenil gradient with the frec|uency of test deformity decreasing away from the di.scharge point and a direct correlation 
pists between liying deformed and iindelormed. 
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Seasonal variation in agglutinated foraminiferan standing crops in the marsh 
and tidal flats of the River Erme, Devon 

SHEILA J. STUBBLES 
Department of Geological Sciences, The University of Plymouth, Plymouth, Devon, PL4 8AA U.K. 

ABSTRACT 
A typical saltmarsh/tidal mudflat foraminiferal fauna has been identified in the Erme and 
clear zones have been defined. The high marsh is dominated by agglutinated taxa irrespective 
of the season, the transitional zone is only dominated by agglutinated taxa during the winter, 
the low marsh is dominated by calcareous species all year, and the tidal mudflat zone which is 
dominated by agglutinated species at the most elevated stations during the winter only. 

Six euryhaline species have been identified, three agglutinated and three calcareous. 
Agglutinated taxa vary from 0-100% of the total foraminiferal standing crops depending upon 
elevation and season. 

INTRODUCTION 
The River Erme and other estuaries (see Fig. 1) have 
been selected to contribute control data in a pollution 
monitoring program using recent benthic foramini
fera as indicators. The program was initiated in 
response to a large heavy metal discharge from 
Wheal Jane tin mine in January 1992, into the 
Camon Valley (Fig. 1, box 3) river catchment which 
is already highly contaminated with metals from 
centuries of mining activity (Stubbles, 1993). As 
with several other river systems in S.W. England, 
the River Erme (Fig. 2) has been influenced by min
ing activity but to a lesser extent relative to the 
Carnon Valley (Bryan & Hummerstone, 1973a) and 
for a shorter duration. The Erme is, therefore, 
relatively unpolluted by heavy metals. 

The Erme sample area is within a Site of Special 
Scientific Interest (SSSI) and is well cor\served amid 
a region of arable and stock farming. Very little of 
the immediate area has been influenced by modem 
incursions, eg. residential and industrial expansion. 
The lower estuary area comprises sandy beaches, 
used for leisure and by holiday makers but it still 
remaii\s relatively unspoilt. 

The Erme is a ria and is macrotidal, deriving its 
water from Dartmoor to the north and several tribu
taries to the NE and NW, which ultimately flows 
into the English Channel. Freshwater flow varies 
both with season and rainfall, and, as a result salin
ity has widely varying ranges. Surface salinity in 
the high marsh area varies between 5 parts per 
thousand (%o) in the winter to 26%o in the summer. 

The low marsh area may reach values approaching 
normal marine (32 %o) in the summer, falling to 20 %o 
in the winter. A recent variable depth salinity 
survey has shown that the Erme is stratified with a 
saline wedge. During the ebb tide the channel 
narrows to less than 5m in the sample area, exposing 
extensive mudflats which grade from muddy-sand 
below Efford, sandy-mud at Efford and a mud-silt at 
Holbeton Point (Fig. 3). 

METHODS 
Standard intertidal sampling and processing meth
ods have been used (see Stubbles, 1993). The same 
methods of collection and processing have been ap
plied to all the estuaries featured during this cur
rent program with the same unit area, 78 cm2 of 
material being removed for foraminiferal analysis. 
An additional sample is ako collected for geochem-
ical analysis, at seasonal time intervals. The Rose 
Bengal staining method (Walton, 1952) has been 
used with red stained individuals being regarded as 
living or only recently dead at the time of collec
tion. Sample splits have been picked and analyzed 
for absolute and standing crop data. The standing 
crop values have been normalised to 10cm2. 

HELD DESCRIPTIONS 
Two traverses, one each on the west and east sides of 
the Erme, comprising 19 stations have been sampled 
during the winter (January), spring (April), summer 
(July) and autumn (November) of 1993 (Figs. 4-7). 

In: Kaminski, M.A. Gerocti, S., & Gasiriski, M.A. (eds.) 1995. Proceedings of the Fourth International Workshop on Agglu-
inated Foraminifera, Krakow Poland, September 12-19,1993. Grzybowski Foundation Special Publication no. 3, pp. 265-270. 
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Figure 1. Map of the southwest 
of England, showing the sampled 
localities. 

IVY(BIDGE Filltiam 
Ag-Pb mine 

Holbeton Poini 

1-25Km 

Moth€combe WrinKle Wood 

Figure 2. Map of the Erme estuary, showing the location of 
silver-lead mines (1,2) including Filham. Figure 3. Map of the River Erme, with sample stations. 
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Traverse 1. Station Fl (Ford) is within the main 
channel. There is a paucity of substrate and no liv
ing foraminiferans have been found (Fig. 3). Station 
HP2 (Holbeton Point) has been colonised by Spar-
tina anglica, Phragmites communis and Puccinellia 
maritima marsh flora, forming large raised areas 
enclosing salt pans of mud and sandy-mud. Station 
HP3 is a similar enviroimient to station HF2 but is 
nearer to the main channel, approximately Im 
away. Stahon HP4 is also near the main chaimel but 
0.5m downstream of an outfall removing treated 
sewage from the small sewage works at the village 
of Holbeton. Muddy substrate predominates. Sta
tions E5/E6/E7/E8 (Efford) are within open mudflat 
partially colonised by S. anglica and Halimione 
portulacoides marsh raised above the substrate. The 
substrate is of sandy-mud with abundant shell 
debris. Stations E9/E10 have isolated areas of S. 
maritima and H. portulacoides marsh as raised 
hummocks with coarse grass. These stations are 
proximal to the freshwater pond. The substrate is 
sandy-mud and muddy-sand with abundant shell 
debris. A muddy-sand bar separates these stations 
from the main channel. 

Traverse 2. Statioris OW 11/12 (Orcheton Wood) are 
proximal to the S. maritima and P. maritima coarse 
grass bank. The substrate is sandy mud. Stations 
OW14/OW15 are within the small mudlfat creek 
known as Cljmg Mill. The stations are situated close 
to the rocky shore with saltmarsh flora being com
pletely absent. The substrate is sandy mud. Stations 
CM16/CM17 are at the head of the creek below the 
wall and coarse grass bank separating the mudflats 
from the disused trout ponds at Clyng Mill Cottage. 
The substrate is mud. Station SI8 (Saltercrease) is 
on the south side of the creek within the tidal mud-
flat. There is a mud substrate adjoining a coarse 
grass bank of P. maritima and Aster. Station S19 is 
half way between the grass bank and the stream 
channel within the tidal mudflats. The substrate is 
of sandy mud. Station S20 is beside the garden to 
Saltercrease House and adjacent to a coarse grass 
bank of P. maritima and Aster. The substrate is 
sandy mud. 

RESULTS 
Traverse 1. No living foraminiferans have been 
found at station Fl. Stations HP2, HP3 and HP4 are 
generally impoverished and living specimens occur 
only during the winter, spring and autumn (Tables 
la-d; Figs. 4, 5, 6, and 7). The agglutinated foramin-
iferan Millammina fusca (Brady 1870) comprises 
100% of the standing crops at these stations, except 
at HP4 in the spring, when Elphidium ivilliamsoni 
Haynes 1973, dominates the fauna (Fig. 5). The 
agglutinated species present Jadammina macrescens 
(Brady 1870) and Trochammina inflata (Montagu 
1808), are only present in very small numbers during 
the spring and autumn (Tables lb and Id). The 

calcareous species Haynesina germanica (Ehrenberg 
1840) is also rare. Generally, average standing crops 
at these high marsh stations are lower than 
elswhere c. 45/10cm-2 (Figs. 4, 5,6 and 7). 

Millammina fusca is the dominant species at sta
tions E5 and E6 during the winter and at E6 in the 
summer (Tables la and Ic). During the other seasons 
M. fusca is rank ordered second after E. williamsoni. 
As at other stations the other agglutinated species 
are present in small numbers and do not exceed 
4/10cm-2. H. germanica is ranked third. Ammonia 
beccarii (Linne 1858) is present in sample E5 during 
the winter, spring and summer but occurs nowhere 
else in traverse 1. 

At station E7, M. fusca is ranked second to E. 
williamsoni during all seasons, but they have rel
atively similar standing crops in the summer (Fig. 
6). At station E8 E. williamsoni dominates through
out the year, with M. fusca ranked second except in 
the autumn when H. germanica is ranked second. T. 
inflata is absent in all E8 samples, but is present in 
the E7 summer sample. Jadammina macrescens is 
present in the winter and autumn E8 samples, but is 
absent in the sample E7 for all seasons. 

Millammina fusca is ranked second at station E9 
except in the autumn, when it is rarJced sixth (Table 
Id). At station ElO, M. fusca is only ranked second in 
the spring. In the summer and winter, M. fusca is 
ranked third after £. williamsoni and H. german
ica, and is ranked fourth in the autumn (Table Id). 
The standing crops of /. macrescens and T. inflata 
rise at these stations, particually in the winter and 
autumn. 

Traverse 2. At stations OWll and OW12, combined 
standing crops of the calcareous species dominate 
the fauna during all seasons (Figs. 4, 5, 6 and 7). 
Millammina fusca is ranked second in the winter 
and spring only. It is ranked third after H. 
germanica in the summer, and is absent altogether 
during the summer and autumn at station OWll . At 
OW12 it is absent during the autunm. /. macrescens 
and T. inflata are extremely rare in all the seasonal 
samples, not exceeding more than 8% in the winter 
and 4% in the autumn of the combined agglutinated 
species standing crops. Ammonia beccarii is less rare 
at stations within traverse 2. At OWll , it is present 
in the winter, spring and summer and at OW12 is 
present in the autumn only. 

In the winter sample at OW14 M. fusca is the 
dominant species. During the other seasons it is 
ranked third after the indigenous calcareous species 
and is absent in the autunin sample, with A. beccarii 
ranked third. Ammonia beccarii is generally a 
minor species and is absent during the winter but it is 
present in the spring at OW15 and in the autumn at 
OW14. /. macrescens and T. inflata are absent in all 
the OW14 and OW15 seasonal samples . 
Millammina fusca is rank ordered second at OW15 
during the winter but otherwise is ranked third 
after £. williamsoni and H. germanica. 
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M.fiisca 
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FIG.4: Species dominance during the winter. FIG.6: Species dominance during the summer 

Millammina fusca is the dominant species during 
the winter and spring at station CM16 and is also 
dominant at CM17 in the winter. At station CM17, 
M. fusca is ranked third during the spring and 
autumn. No living M. fusca were found in the autumn 
CM16 sample, and only 4/10cm-2 have been col
lected from the CM17 in the autumn sample. /. 
macrescens is the orUy agglutinated foraminifera in 
sample CM16/autumn and accoimts for just 7% of the 
agglutinated species at this station in the winter. 
Trochammina inflata and A. beccarii are absent at 
these two stations. 

Millammina fusca is rarJced third at SIS in the 
winter, spring and autumn. It is second at stations 
S19 and S20 in the winter and fourth at SIS in the 
summer. At stations S19 and S20, Millammina fusca 
is ranked third. Trochammina inflata is present in 
the summer and autumn samples of station S20, 
comprising 14% and 50% respectively of the 
combined standing crops of agglutinated taxa. 

PIG.5: Species dominance during the spring. PIG.7: Species dominance during the autumn 

Ammonia beccarii is present in the spring and 
summer samples from station SIS. 

SUMMARY 
Faunal zonation and seasonal variation in standing 
crops. The absence of foraminifera at station Fl is 
consistent with the results of the preliminary inves
tigation carried-out in July 1991, and no extraordi
nary significance is attached to this. The most rea
sonable conclusion accounting for this absence are the 
extremes in environmental conditions which are of 
lethal levels. Stations HP2, HP3 and HP4 comprise 
a predominately agglutinated taxa, which is very 
patchy. The dominance of the marsh indicator 
species M. fusca (Alve & Murray, 1994) defines a 
high marsh enviroiunent during all seasoiis, wluch 
extends in the winter into stations E5 and E6. The 
distribution of predominately calcareous species at 
stations E5, E6, E7 and E8 defines a transitional 
marsh enviroiunent. The second and third rank order 
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(depending on the season) of M. fusca at E9, ElO, 
o w n and OW12 suggests a low marsh environment. 
The tidal flat envirorunent of Clyng Mill has a pre
dominately calcareous species distribution during 
all seasons except in the winter at CM16 and CM17, 
which are dominated by M. fusca and, therefore, is 
a transient high marsh/ low marsh environment 
(Phlegler, 1970). 

Averaged standing crops of M. fusca and E. ivil-
liamsoni, vary seasonally throughout the sample 
area. The winter sample shows M. fusca (61/10cm-2) 
and E. williamsoni (66/10cm'2) to have near identi
cal standing crops but in the other seasonal samples 
the difference in standing crop values becomes more 
pronoimced: spring 42/10cm'2 to 112/10cm-2; summer 
22/10cm-2 to 87/10cm-2; and autimm 19/10cm-2 to 
71/10cm-2 for M. fusca and E. williamsoni respec
tively. This suggests M. fusca is a winter opporturust 
responding to reduced competition caused by the 
dormancy of the calcareous species which bloom in 
the spring and summer. 

The standing crops of the species M. fusca are 
greatest during winter and spring in the environ
ments of the high/saltmarsh and at stations E5 and 
E6 in the transitional marsh environment. During 
the summer and autumn, M. fusca is a minor compo
nent of the assemblages present in the low marsh 
and tidal flat environments. The agglutinated 
species /. macrescens and T. inflata have higher 
standing crops, ranking higher or equal to the stand
ing crops of M. fusca. 

CONCLUSIONS 
The euryhaline species present in the River Erme 
form characteristic hyposaline/ brackish/ hyper-
saline faunal environments of high marsh, transi
tional marsh, low marsh and tidal mudflat. There 
is a general decrease down estuary of the foramini-
feran M. fusca, but improved standing crop popula
tions of A. beccarii, which has narrower tolerance 
thresholds relative to the other indigenous species. 
M. fusca remains, however, a common species. M. 
fusca, with its characteristic wide tolerance 
thresholds, appears to be an opportvmist more suited 
to the elevated areas of maximum exposure and dry
ing times which exist in the saltmarsh and, also oc
curring during periods of dormancy of the calcareous 
species. 

The high variation in standing crops, in particu
lar the rarer species, may be due to clumping 
(Murray, 1991) and the formation of foraminiferal 
micro-environments. Scott & Leckie (1980), how
ever, suggest that the patchiness shown by marsh 
foraminiferans is systematic of year to year envi
ronmental variables which can only be delimited by 

extensive and continuous sampling over a number of 
years. 

The findings of the Erme estuary investigation 
are consistent with sample data from the Fowey 
Estuary, presently being analyzed (Fig. 1). The 
Fowey sampling program is as yet incomplete but 
initial results show similar faunal zoning with 
patchiness being evident in the winter and spring. 
Continuous sampling will contribute sufficient data 
to delinut natural envirorunental variables and iso
late metal pollution controls on foraminiferal 
species distribution, test condition and standing crop 
numbers. 
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Tables la-d. Standing crops of indiginous species / 10 cm^ (except those marked by an * which denotes total 
live individuals. 

Species 

ff.jeriasica 

E.villiiBSoni 

A.beccarii 

H.fusci 

J.aacrescens 

T.iaflala 
i 

Stns. HP2 HP3 HP4 E5 

0 

0 

0 

0 

0 

0 

0 0 0 

0 »2 34 

0 0 0 

78 15 224 

0 0 *i 

0 0 1 

E6 

4 

90 

0 

124 

0 

0 

E7 

0 

73 

0 

55 

0 

0 

E8 

16 

59 

0 

31 

4 

0 

E9 ElO o w n 0V12 0V14 OVIS CM16 CM17 S18 S19 S20 

31 11 5 0 24 50 17 4 41 0 0 

93 117 101 181 48 124 46 72 102 84 29 

0 0 8 0 0 0 0 0 0 0 0 

33 6 25 25 72 66 78 280 17 14 14 

4 3 1 0 0 0 6 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 

lA 

Species 

ti.geTBanici 

E.villiaBsotti 

A.beccarii 

HJusca 

J.iacrescens 

T.iBfiata 

Stns. BP2 eP3 eP4 

1 

1 

0 

71 

1 

1 

0 

0 

0 

0 

0 

0 

3 

23 

0 

0 

0 

0 

E5 

21 

228 

0 

137 

0 

0 

E6 

8 

124 

0 

69 

0 

0 

E7 

41 

158 

0 

114 

0 

0 

E8 

18 

106 

3 

54 

0 

0 

E9 ElO 0«11 0W12 0W14 0W15 CH16 CH17 S18 S19 S20 

27 

173 

5 

71 

0 

3 

6 

39 

0 

32 

0 

0 

28 

186 

3 

74 

0 

0 

10 

46 

0 

12 

1 

0 

68 

251 

0 

14 

0 

0 

53 

117 

3 

10 

0 

0 

14 

44 

0 

51 

0 

0 

53 96 21 14 

190 227 135 73 

0 

32 

0 

0 

19 0 0 

35 14 8 

0 0 0 

0 0 0 

IB 

Species 

ff.ierBanica 

E.villiaasoni 

A.beccarii 

H.fusca 

J.aacrescens 

T.ioflata 

Stns. BP2 BP3 BP4 

0 

0 

0 

0 

0 

0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

E5 E6 

8 10 

45 51 

0 0 

39 80 

0 0 

4 0 

E7 E8 

17 33 

54 607 

0 8 

58 107 

0 0 

4 0 

E9 ElO 0«11 0W12 0«14 0«15 CH16 CM17 S18 S19 S20 

16 14 

4 35 

21 0 

0 6 

0 0 

0 0 

43 

133 

4 

0 

0 

0 

105 107 

48 135 

0 0 

33 21 

0 0 

0 0 

77 n/d n/d 68 62 31 

25 n/d n/d 105 197 37 

0 n/d n/d 12 0 0 

8 n/d n/d 8 0 12 

0 n/d n/d 0 0 0 

0 n/d D/d 0 0 2 

IC 

Species S t n s . BP2 BP3 BP4 E5 E6 E7 E8 E9 ElO 0«11 0W12 0«14 0W15 CM16 CM17 S18 S19 S20 10 

fl.geruaDica 

E.villiaBSOvi 

A.beccarii 

fi.fnsca 

J.Bacrescens 

r.iflfJata 

12 

21 

26 0 0 0 34 25 27 29 29 

0 0 0 136 125 68 80 121 

0 0 0 0 0 0 8 21 0 0 

0 107 29 108 25 43 21 1 6 0 

8 4 0 0 1 0 4 4 8 0 

0 0 0 0 1 0 0 8 1 0 

84 181 

96 8 

162 121 

12 0 

12 13 

19 11 

0 0 

0 0 2 0 

8 20 37 

104 89 12 

0 0 0 

1 8 2 

0 0 0 

0 0 2 
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Abstract 

Pollution monitoring using the responses of recent benthic foraminifera as primary indicators 
can be used to determine the impact of past, present and future contamination and possible 
remedial action. The use of benthic foraminifera as indicators is an inexpensive and reUable 
method easily applied to marine and estuarine ecosystems. Specific responses to heavy metal 
pollution are low diversity, low standing crops, high frequency of deformed tests and acid 
etched tests. 

Following the major discharge of January, 1992 into the Camon river and Restronguet 
Creek from the Wheal Jane tin mine in south west Cornwall, a pollution monitoring and 
research programme was inaugurated using benthic foraminifera. Investigations of foraminiferal 
responses to heavy metal pollution had not been carried-out prior to the discharge and, 
therefore, no foraminiferal comparative data base exists. Following sustained periods of acidic 
(pH 2.5) and metalliferous water drainage from subsurface mining activity the sediment remains 
acidic and enriched with heavy metals. Coring has shown, that as a consequence of the acidity, 
there exists an inverse relationship between increasing depth and a decrease in the number of 
specimens present, and below 15cm no foraminifera have been found, suggesting complete 
dissolution of the foraminifera. In order to determine background levels of foraminiferal 
responses and constrain interpretations typical of the SW metalliferous region, control estuaries 
have been selected. The comparative estuaries sampled so far, Fowey (south west Cornwall), 
Avon and Erme (south west Devon) drain once active mining districts though were relatively 
small enterprises compared with the Camon Valley and work ceased in the last quarter of the 
last centuiy. Readjustment of the ecology of these estuaries is thus implied. In contrast. Wheal 
Jane ceased active mining jn 1991. 

A three year period of sampling has documented the following unprovements in 
Restronguet Creek; population of previously barren stations, higher standing crops, a reduced 
proportion of deformed tests and less severe acid attack on the test wall. Deformed foraminifera 
in the Restronguet Creek samples now average 7%, in a range from 1% to 9% (the highest 
values and lowest standing crops are found nearest to the Wheal Jane discharge point). The 
threshold level, defined by the control estuary samples, is 3%. Water pH now ranges in 
Restronguet Creek from pH 6.3 at Devoran to 8.0 at the mouth. Water pH in the control 
estuaries is either neutral or alkaline. The boundary line separating acute acid test dissolution 
from less acute has retreated towards the stations m the upper creek nearest to the point of 
discharge. These improvements suggest that tangible benefits have been gained by the liming 
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and primary settlement treatment of contaminated mine water. Low diversity, however, remains 
unchanged and the agglutinated species typical of tidal mudflats and saltmarshes and present in 
the control estuaries, have not populated the contaminated site. 

Geochemical analysis of sediment samples taken from the three estuaries correlates with 
the foraminiferal data and the level of mining influence. The concentrations of available metals 
in Restronguet Creek are one order of magnitude higher than in the Fowey and two orders of 
magnitude higher than in the Erme. With respect to Restronguet Creek, however, it is apparant 
that sediment bound heavy metals are not the primary source influencing foraminiferal response 
to pollution but is the pH and metal concentrations in the discharged mine water which are the 
primary controls. 

The extent to which? these improvements are sustainable depends upon continued mine 
drainage treatment and rain water recharge levels. During prolonged periods of rainfall, 
contaminated water is discharged vmtreated and as a consequence foraminiferal standing crops 
and the abundance of deformed tests tends to vary. 

Introduction 

Forcaninifera as Indicators of Pollution 

The specific use of benthic foraminifera as indicator organisms is a relatively new approach in 
the evaluation of pollution effects upon the environment and much of the early work 
concentrated on changes in the fauna in response to sewage (Resig, I960*; Watkins, 1961 )̂. 
More recently Alve (199^, 1995*), Alve and Nagy (1989^), Ellison and others (1986*) and 
SharifB and others (1991^), have shown that foraminifera are reliable indicators of heavy metal 
pollution. The review by Alve (1995*) has shown that many forms of contamination, for 
example the discharge of paper/wood pulp, hydrocarbons (Verec-Peyre, 1984*), thermal and 
sewage discharges, in addition to heavy metals, can produce distinctive reactions by 
foraminifera. As biomarkers of heavy metal pollution, they provide specific responses; low 
diversity, faunal shifts, lower standing crop (Uving), elevated abundance of deformed tests, 
higher metal concentrations in the protoplasm of individuals with deformed tests relative to 
undeformed and acid etching of the tests. This is a significant feature of foraminifera in a river 
system draining acidic mine waters. In this report we present observations on the changes in the 
benthic foraminifera of a Cornish creek following a major discharge in January, 1992, of water 
containing high concentrations of heavy metals. 

The use of benthic foraminifera as indictors of heavy metal pollution has not previously 
been applied to any of the sample sites. As there is no comparative, pre-discharge data from the 
recently contaminated site, Restronguet Creek, and no pre-discharge reference point has been 
established by coring, other estuaries known to have drained once active mining districts have 
been used to define base limits of pollution effect. The Fowey (SE Cornwall), Erme and Avon 
river estuaries (SE Devon) have, therefore, been selected as controls and the data derived from 
these samples will delimit the anthropogenic influence of the polluted site. Seasonal samples 
have been taken from Restronguet Creek since October 1992 and the other estuaries over a fiill 
year from January 1993. 

Study Area and Mining Background 

The intertidal estuaries areas comprise a mixture of tidal mudflat and saltmarsh. Restronguet 
Creek (Figure 1) is predominately tidal mudflat. With respect to Fowey the sample stations are 
exclusively tidal mudflats (Figure 2). The Avon and Erme estuaries (Figures 3 and 4) are a 
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mixture of mudflats and saltmarsh, with the latter occupying discrete areas in the upper to 
central areas sampled (Stubbles, 1995'). The estuaries are macrotidal rias and within the sample 
areas sampled the salinity gradients vary from 0-33%o in the winter and 8-35%o in the summer 
(Stubbles, 1993'° and 1995^). Temperature gradients are also evident and surface temperatures 
vary from 4°C to 11 °C in the winter and from 12°C to 18°C in the summer. The salinity and 
temperature gradients of the four sample sites and corresponding stations, are in general 
agreement. Sediment grain size varies between the sites and Restronguet Creek is predominately 
clay and silt, whereas the other sample sites contain moderate quantities of fine to medium sand 
and silt. It has been estimated that relataive to the other estuaries, the sediment in Restronguet 
Creek comprises 85% material of size<63 urn and 10% between >63 and <125 jim in size. 

Fig.l Maps of south west England (boxed areas refer to estuaries sampled) and 
Restronguet Creek and sample stations. 
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Fig.2 Map of the Fowey estuary 
saniple.stations. 
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: Fig.3. Map of the Erme estuary sample 
stations 
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Fig.4 Map of the Avon estuary sample stations. 
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The pH of the water emanating from Jane and Nangiles adits (Figure 5) is c.pH 2.5 but on 
entering Restronguet Creek at Devoran road bridge, the pH is higher, varying from 3.8 to 6.3 at 
the Devoran sample station (Dl) since sampHng began. 
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Fig.5 Map showing the Carnon Valley drainage catchment and the position of Wellington 
(W), County (C), Nangiles (N) and Wheal Jane (J) adits. 
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Fig.6. Mining area within the Camon Valley catchment, showing the location of some of 
the better known old and recently worked mines. 
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Restronguet Creek and the other estuaries used in this research all drain previously active metal 
mining regions. Restronguet Creek, however, has been the site of widespread heavy metal 
discharge because of the lengthy periods of extensive mining affecting the Camon Valley 
(Figure 6). The mines principally extracted tin, copper, silver and arsenic, with additional 
cadmium, lead, cobalt, nickel, zinc and uranite. The intensive, deep mining activity of the 18th 
and 19th century mining periods, was proceeded by centuries of shallow and streaming ventures. 
Cambridge (1995") considered the shallow mine workings to have the greater impact on water 
quality. By 1890 a major decline in mining was a significant feature of the area (Barton, 1967^ )̂. 
Wellington and Wheal Jane mines were intermitently worked into this century but with the 
closure of Wheal Jane in 1991, all mining activity ceased in this once highly productive region of 
south west England. 

The extensive discharge of January, 1992 fi-om Wheal Jane has been related by The 
Camon Update (1992 '̂') and Cambridge (1995"). The combined treatment systems now 
inaugerated by the NRA and described by Cambridge, (1995") have been put into effect. This 
treatment includes lime dosing and flocculant additive to increase pH and enable metal 
settlement in the tailings lagoon (Figure 5). In addition a passive treatment works has is also 
used but this accounts for only a small proportion of the contaminated mine water and forms a 
field laboratory (Cambridge, 1995"). These measures are being partially negated by 
contaminated drainage into the Camon river and it's tributaries from ancient and old abandoned 
mines, and, the associated waste materials. There is also the potential for direct seepage into the 
river via the river bed which is close to the shallow workings connecting Wheal Jane and 
Wellington Mine. 

Of the other estuaries sampled, the river systems draining into the Fowey estuary 
drained fewer mines than the Camon Valley catchment and the Erme and Avon river systems, 
even fewer still. The Fowey catchment mining district drained large mine ventures; Lostwithiel 
Consols, Wheal Fortescue, Pelynwood, Wheal Howell and East Wheal Rashleigh (Hamilton 
Jenkin, 1967̂ '*, Burt and others, 1987^'). These mines were extracting a variety of metals and 
minerals, for example, Ba, Cu, Ag, Pb, Mn, Fe, Ni, Co and Sb. The Erme drained three 
reasonably well documented but small mining ventures; Caton, alluvial stream works, Filham 
and Ivybridge Consols. As with the Huntingdon mine on the Avon (Butler, 1993^*), silver-lead 
was extracted, in addition to some tin (Hamilton Jenkin, 1974"). 

Methods 

Contemporaneous samples have been taken for foraminiferal and geochemical analysis. 
Temperature and salinity have also been recorded for spring high tides just prior to the samples 
being taken at low water. Due to the shallow water conditions low water readings were not 
possible. 

Methods for Foraminiferal Analysis 

Prior to the main sample programme a preliminary spot sampling reconnaisance survey was 
carried-out for each estuary. This estabUshed the faunal distribution and absence/presence of 
foraminifera. Subsequent sampling of each location followed transects along each side of each 
estuary. The sample stations are given by Figures 1-4. The samples, of known area (78cm'̂ ), 
were preserved in buffered formalin and on retum to the laboratory have been wet sieved on a 
63 nm to remove the fines. The residue was then transferred to bowls and rose Bengal added for 
45 minutes to stain the protoplasm of living or only recently dead foraminifera at the time of 
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collection (Walton, 1952'^). The samples were again rinsed on a 63\im sieve to remove excess 
stain and the residue returned to bowls and oven dried at 60°C. The dried material was seived 
through a seive stack of mesh sizes 1mm, 500|im, 250^m, 125|im and 63^m and sub-samples 
of each fi^action were picked fi-om a gridded tray. Individual foraminifera were transferred to a 
lightly gummed, gridded sUde for inspection and coimting. Jhe absolute abundance of living 
(standing crops) was then calculated. 

Microprobe analysis 

The summer 1992 seasonal data set was used for the microprobe analysis. As the stations CI9, 
Dl and K20 were barren at this time no specimens fi'om these stations could be included. Six 
stained individuals each of deformed and undeformed for each station were fixed in resin to give 
a total sample of 60 specimens per resin stub. The stubs were ground and polished to form a 
completely flat surface exposing the stained protoplasm. The Jeol 6100 was used to detect the 
elements present in the protoplasm. The test wall was avoided as this area is considered to be 
prone to metal absorption and this may not be related to metal accumulation within the 
organism. 

Methods for Geochemical Analysis 

Preliminary experiments using a single reagent extraction method have been carried-out on the 
sediment samples to determine bioavailable metal concentrations for three of the four locations 
and specifically to Restronguet Creek, the effects of low pH on metal reactivation and 
mobilisation. 

Duplicate samples (Ig dry weight) fi-om each station were immersed in lOmls H2SO4, in 
centrafiage tubes at pH values of 2.5, 3.8 and 5.2 (diluted with deionised water). Each sample 
was placed in an ultrasonic bath for 15 minutes and the final pH value before filtration was 
recorded. The original solution values were reduced shghtly after contact with the sediment and 
the final values were 2.5, 3.6 and 5.1 with a systmetic error of ± 0.1. The sample was then 
filtered into a volumetric flask containing lOmls of 5% HNO3 to prevent metal adsorption to the 
glass. Frequent rinses with deionised water removed all the sample fi'om the tubes and the 
solution made-up to 50mls with deionised water. In view of the fact that H2SO4 is the principle 
agent leading to metal mobilisation from the Restronguet Creek sediments, this acid was used in 
the experiment rather than buffered solutions (eg., phthalate), the method of Trefiy and Metz 
(1984'^. 

The same ratios of sample to solution (10% HNO3) were used in another experiment to 
determine leachable and therefore, available metals. This experienent was carried-out on all the 
samples from each location. Shorter ultrasonic periods of 5 minutes were apphed to the sample 
immersed in a solution of cold 10% HNO3 The sample was filtered with rinses of cold 10% 
HNO3 to a final volume of SOmls. Flame AAS was used to determine concentrations of the 
metals; Zn, Cu, Fe, Cd, As, Al, Ni and Pb. Stoicheiometric standards were used to construct the 
calibration curves for each metal. 
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Results 

Forcnniniferal Analysis-Diversity 

The three calcareous and three agglutinated species; Haynesinca germanica 
(Ehrenberg)=A'b«/o« germanica Ehrenberg, 1840, Elphidium williamsoni Haynes, 1973 and 
Ammonia beccarii (Linne) Brunnich, 1772, and Millammina fusca (BTa.dy)=OuinqueIoculina 
fusca Brady, 1870, Trochammina inflata (Montagu) Parker and Jones, 1859 and Jadammina 
macrescens (Brady) Bronnimann and Whittacker, 1984 are the indigenous species found in the 
control estuaries. The latter three agglutinating species are absent in Restronguet Creek. 

Species dominance is intimately connected to diversity as one species may be less 
tolerant to stress relative to another. It has been established from the Restronguet Creek data 
that H.germanica dominates all live seasonal assemblages in the upper estuary stations; TC6, 
TC8, TC9 and PIO (see Figure 1). The lower estuary stations; PC13, CY16, TW27, BY28 and 
PI30 (Figure 1) are dominated by E.williamsoni in the autumn and winter while H.germanica 
dominates there m the summer and spring. After the summer of 1994 the situation changed and 
seasonal shifts in faunal dominance resemble that shown for Fowey with the spring and summer 
live assemblages being dominated by H.germanica and the autumn and winter dominated by 
E.williamsoni throughout the estuary (Figure 2). Haynesina germanica only dominates the 
summer hve assemblage at a few stations at the Erme (Stubbles, 1995^. Elphidium williamsoni 
dominates or co-dominates with M.fusca in the mid to lower estuary stations all year round 
(Figure 3). The Avon data collected so far shows a similar seasonal distribution. Recently 
aquired data for Restronguet Creek shows the minor calcareous species A.beccarii to be 
increasing and it dominated the live assemblage at BY28 in the autumn of 1995. The order of 
tolerance determined from this data is H.germanica > E.williamsoni > A.beccarii. 

Low standing crop 

Comparisons between like stations from the control estuaries to those in Restronguet Creek 
shows that standing crop values (per 78 cm'^) are depressed (Figure 7). During the period of 
this study, however, population of the previously barren stations, Dl, C19 and K20 in 
Restronguet Creek has occurred and from spring 1994 standing crops have increased at all 
stations throughout Restronguet Creek. The recorded increase in stained individuals at POO is 
from 1072 in 1993, to 2504 in 1995 (Autumn data). Similarly, an upper creek station at 
Tallack's Creek (TC6) has shown an increase in standing crops 1993 to 1995, from 142 to 1188 
individuals. 

The standing crop data from the control estuaries has shown that seasonal standing 
crops vary with fewer stained individuals present in the winter when reproduction is negligable 
and higher values in the spring, summer and autumn. The Restronguet Creek samples taken in 
1995 from PI30, for example vary with 3280 stained individuals in the Winter and 10048 
individuals in the Summer. The comparable stations from the control estuaries show a similar 
relationship between season and standing crop. Station G12 has 1100 stained individuals in the 
Winter (1995) and 2732 (1994) in the Summer. 

The upper stations from both the control and polluted estuaries show similar 
relationships between standing crop distribution and distance up estuary. The higher abundances 
of stained individuals are found in samples from the lower estuary/creek stations. The upper 
estuary stations are generally one order of magnitude less than the corresponding low estuary 
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stations. Figure 7 shows standing crop variation for the upper estuary stations TC6, OWll , 
CHS and AS relative to the lower stations TW27, E8, G12 and A7 
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Fig.7. Graph showing the variation in standing crops between upper estuary stations, 
TC6, OWll, CHS and A5 and the lower estuary stations, TW27, E8, G12 and A7. 

Test Deformation 

Plates 1 and 2 show examples of test deformity. Only the obvious aberrant forms are counted as 
deformed and the more subtle examples are considered to fall within the category of 
morphological variation. The abundance of test deformity from the control samples is <3% but 
the forms are similar to those found at Restronguet Creek. Samples taken from Restronguet 
Creek in July 1992 had abundances of 12% at PI30 and 25% at TC6 and a horizontal gradient is 
defined. The lower creek stations BY28 and POO have consistanly shown low % abundances of 
test deformity since the summer of 1994. The Restronguet Creek samples are currently 
(Autumn, 1995) between 1 and 9 %. 

Metal Concentrations within the Tests 

Preliminary results from the microprobe analysis have shown that the metals Al, Fe and Cu have 
been detected in the protoplasm in the deformed tests but not in the undeformed individuals 
(Figures 8 and 9). Zn was also found to be present in other examples but this metal is not shown 
by Figure 9. These initial results show that a qualitative pollution relationship exists between the 
deformed and undeformed foraminifera. 
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Plate 1. The forms of test deformity of the species H.germanica. S£M micrographs of, (1) 
type specimen, (2) enlarged last chamber and reorientated suture, (3) extension to 
chamber, (4) reduced last chamber relative to penultimate chamber, (5) additional 
chamber growth and enlarged last chamber, (6) additional chamber, (7) multiple 
chamber growth, (8) protruding additional chamber, (9) protruding additional chamber, 
(10) enlarged last chamber, (11) chamber overgrowth of the sutures, (12) test elongation 
and protruding chamber. 
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Plate 2. The Tornis of test deformity of the species A.hcccarii (1-5) and E.wiUiamsoni (6-
13). SEM micrographs of, (1) type specimen, (2) twin-uneven chamber arrangement, (3) 
enlarged chambers, (4) high trochospiral proioculus, (5) enlarged last chamber, (6) type 
specimen, (7) prptruding chambers, (8) additional chamber growth, (9) reorientated 
suture, (10) protruding group of chambers, (11) daisy shaped test, (12) enlarged last 
chamber, (13) twin. 
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Fig.8. Microprobe analysis of undeformed tests. Spectrograph shows Ca is detected. 

Fig.9. Microprobe analysis of derorined tests. Spectrograph shows Cu, Fe, S, P, AI, Si and 
Ca. 

Acid Etching and Dissolution of the tests 

The acidic conditions in Restronguet Creek have a severe affect on the foraminiferans in the 
upper and mid creek areas, with 100% of the stained individuals showing severe dissolution 
features. These features include calcified over apertures (which may be inferred to be a form of 
deformity) and the wall surface altered from glassy hyaline to an opaque white. The species 
H.germanica, E.williamsoni and A.beccarii are altered to produce a chalky white, granular 
internal texture and with occasional layering. Elphiditim wiUiamsoni appears to be more 
physically robust than H.germanica, the tests of which, in comparison, had been considerably 
weakened and are fragile by acid dissolution. The lower stations TW27, BY28 and PI30 were 
not affected by the acidic conditions. Those samples recently taken from stations previously 
affected (Autumn, 1995) show little opacity of the tests and are returning to the hyaline form. 

Geochemical analysis 

With respect to the pH experiments (Table 1) there is a steep decline in the concentration of 
metals mobilised with a rise in pH. The highest concentrations were achieved at pH 2.5 which 
were markedly greater than at pH 3.8 and 5.2. The two higher pH values produced 
concentrations of the same order of magnitude for Zn, Cu and Fe. 

The data, shown by Tables 2, 3 and 4 was obtained from the available metal experiment. 
The three locations show that Restronguet Creek available metal concentrations is, generally, 
two orders of magnitude higher than in the Erme and one order of magnitude higher than in the 
Fowey. The lowest metal concentrations, with the exception of Cd, are found at CY16, BY28 
and PI30 and the highest at C19 and K20 in the majority of examples. The highest metal 
concentrations for Fowey, Erme, and, the lowest for Restronguet Creek are compared as 
follows: Zn - G13/117 ppm, HP4/67 ppm and PI30/1634; Cu - G13/78 ppm, HP4/1 Ippm and 
PI30/220ppm; Pb - G13/62 ppm, HP4/45 ppm and TC6/ 55 ppm; Cd - G14/1.5 ppm, Fl/0.7 
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ppm and Dl/3.0 ppm; As - G13/20 ppm, S18/17 ppm and TC6 50 ppm. The Fowey data shows 
Al to be one order of magnitude lower than in Restronguet Creek and the Erme to be two 
orders of magnitude lower. The values for Fe are less easily compared but the concentrations 
found for the Fowey and Erme samples are lower than those recorded for Restronguet Creek. 
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Table 1. Concentrations of heavy metals (ppm) at pH 2.5, 3.8 and 5.2, for Restronguet 
Creek. The row marked with an * refers to the pH values. 
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Table 2. Concentrations of bioavailable metals (ppm) for Restronguet Creek, autumn (A) 
1992 and autumn 1993. 
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Table 3. Concentrations of bioavailable metals (ppm) for the Ernie estuary samples taken 
in the autumn 1993. 
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Table 4. Concentrations of bioavailable metals (ppm) for the Fowey estuary samples 
taken in the autumn 1994. 

Comparisons between the two data sets A92 and A93 show an increase in metal 
concentrations at some stations sampled in the autumn of 1993. These increases are generally 
limited to stations nearest to the discharge point, for example Dl with an increase of 1215 ppm 
Zn, 243 ppm Cu, 1212 ppm Fe, 27 ppm Pb, 97 ppm As, 2 ppm Ni and 1464 ppm Al. As these 
samples were analysed during the same run systematic error is not considered to account for the 
increases. Furthermore, duplicate samples show the same increase. The pH data also shows an 
increase in metal concentration between the 1992 and 1993 data sets and is, therefore, 
consistant with the available metal results. 

Discussion 

Low diversity is a feature of marginal marine environments (Alve and Murray, 1995 °̂) and the 
six species present in the control estauries form a typical euryhaline suite. The absence of the 
agglutinated species is considered to be the result of heavy metal contamination as no other 
lines of evidence can account for this reduction in diversity. It may be suggested that the 

230 



dissimilarity in grain size distribution between the polluted location and the control estuaries, is 
the controlling factor of this absence but other studies presently being investigated would not 
lend support to this. As there is no data before the discharge of 1992, it is not known if this 
absence of agglutinating foraminifera in Restronguet Creek is due to the most recent discharge 
or has prevailed unintemipted through mining history. The occurrance of E.williamsoni at the 
upper estuary stations, as a dominant species in the winter and autumn (after the summer of 
1994) suggests that this shift is co-incidental with the recorded lower concentrations of heavy 
metals in solution (pers. comm. R. Robinson, NRA and water quality data for 1994, NRA). 
EUison and others (1986*) concluded that the retreat of intolerant species away from the source 
was a reaction to a point source pollutant and it would appear from the Restronguet Creek data 
that E.willicansoni is less tolerant of heavy metal pollution. Unlike the control estuaries which 
are zoned by the presence of the agglutinated species, there has been no down estuary zonation 
in Restronguet Creek since the summer 1994 and it is probable that the earher formed zonation 
was controlled by heavy metal pollution. The recent improvement in the A.beccarii standing 
crop abundance, however, may be the result of the exceptionally long, hot summer of 1995 and 
it would be premature to attribute this change to improved water quahty. 

As the data from the control estuaries shows, standing crops and species dominance 
vary with season and distance up the estuary. Salinity, for example, is particually variable at the 
upper stations and is considered to be the cause of fluctuating and low numbers of living 
foraminifera (Alve, 1995*). Consequently, the standing crop gradient shown by the polluted site 
and control estuaries is a naturally occurring phenonoma but with respect to Restronguet Creek, 
the influence of the point source of contamination is reinforcing the effects of environmental 
stress. It is generally accepted that pollution reduces diversity and populations (Setty and 
Nigam, 1984^̂ ). The Restronguet Creek foraminiferal data shows changes in the standing crops 
with the population of previously barren stations, temporal and spatial faunal shifts and a 
general increase in numbers of hving organisms. 

The abundance of deformed tests decreased at all the stations in Restronguet Creek from 
the beginning of the study. In particular, the low estuary stations, BY28 and PI30, have values 
which correspond to the maximum percentage found in the control estuaries. Test deformation 
occurs naturally within foraminiferal populations (Alve, 1995*) but it has been established by the 
work of Sharifi and others (1991^) that exposure to elevated levels of heavy metals results in 
higher abundance of test deformity. In this investigation, highest abundances occur at stations 
subject to the highest concentrations of heavy metals, ie. those stations close to the discharge 
point at Wheal Jane. The abundances of deformed foraminifera in the control estuaries is 
considered to be high relative to other localities around the world. Almogj-Labin, for example, 
considers 1% to be the background level of test deformity (pers. comm., 1993). This regional 
anomolie may exist because of the metalliferous characteristics of the regions geology and 
weathering thereof, which will produce the elevated background concentrations of heavy metals 
in south west England estuaries not subjected to prolific mining. The background levels in 
metals and test deformity will, therefore, be higher in comparison with esturaries draining non-
metalliferous geological areas of the U.K. 

An acidified habitat can have a dual effect on foraminiferal tests through the dissolution 
of the tests and remobilisation of sediment bound metals. Dissolution of the tests has statistical 
implications by the poor preservation of the empty tests. Loss of empty (dead) tests will 
artificially elevate the living assemblage, producing a bias in the data (Stubbles and others, 
1996^ )̂. During periods of high rainfall in the autumn and winter, Nangiles adit discharges 
untreated mine water (Figure 5). Specimens from the earher taken samples in the autumn and 

231 



winter show the severest effects of dissolution. The area affected by acidic and metal 
contamination occupied a large area within the Creek but since the spring of 1994 the area of 
severe effect has been reduced and the mtensity of acid attack on the tests has lessened (Figure 
10). 

Variations in pH are shown to have an important impact on metal mobilisation but this is 
only significant with respect to Restronguet Creek. The sediment analysis for available metals 
has shown that some differences occur fi^om year to year but they appear not to have 
dramatically affected foraminiferal populations. Relative to the control estuaries, however, there 
is a significant increase in metal concentration and comparisons have shown that the lowest 
values recorded for Restronguet Creek are greater than the highest readings obtained fi-om the 
control estuaries. Bryan and Langston (1992^) reported that Restronguet Creek is a grossly 
polluted site in terms of the U.K rivers and estuaries. Our data are in close aggreement with that 
of Burt and others (1992^^) and Bryan and Langston (1992^), differences in time of sampling, 
sample location, analytical error, variation in preservtion techniques (Kersten and Forstner, 
1987̂ )̂ and the extraction method used (Martin and others, 1987^) being sufiBcient to account 
for the difference. 
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Fig.lO. Sub-environments of contamination levels in Restronguet Creek. Zone 1-severely 
polluted, and zone 2-badly polluted, zonation based on acute acid dissolution and highest 
abundances of test deformity, zone 3 moderately polluted and zone 4 slightly polluted, 
zonation based no acid dissolution and lower abundances of test deformity. These zones 
are now shifted up estuary and zones 1-4 are as follows, badly polluted, moderately 
polluted, slightly polluted and not polluted. 

Conclusions 

The changes in foraminiferal distribution and test condition in Restronguet Creek coincide with 
a decrease in pollution, following 4 years of mine water treatment. Foraminiferal test condition 
and standing crop abundances appear not to have been affected by the higher metal 
concentration in the sediment samples taken in 1993 relative to 1992. It may be that the metals 
were largely unavailable to the organism at a time when pH had increased ft^om 4.4 in 1992 to 
6.2 in 1993 and fliture research will investigate using other extraction methods to determine 
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available metals. It is suggested here, therefore, that foraminifera are influenced by the 
concentrations of heavy meta's in solution and are not greatly affected by sediment bound 
metals. Periodic mine water discharges, how long the metals remain in the dissolved state (as 
determined by pH levels) and the remobihstion of sediment bound metals by acidified river 
water are considered to be the controlling factors influencing forammiferal response to 
pollution. 
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THE ECOLOGICAL AND PALAEOECOLOGICAL IMPUCATIONS OF THE 

PRESENCE AND ABSENCE OF DATA: EVTOENCE FROM 
B E N T H I C FORAflNIFERA 

SJ.STUBBLES, J.C.GREEN, 'M.B.HARTAfm CL.WILUAMS 

Stubbles, S.J., Green, J.C, Hart, M.B. and Williams, C.L. The ecological and palaeontological implications of the presence and 
absence of data: evidence from benthic foraminifera. Proceedings of the Ussber Society, 9, 054-062 

Postmortem modification of foraminiferal assemblages is evident from samples taken during a pollution monitoring programme which 
uses Recent benthic foraminifera in estuaries in south-west England as biomarkers of heavy metal pollution. The foraminiferal 
assemblages present in the control estuaries, Fowey and Erme, have imdergone postmortem modification by the net addition of empt\-
tests of non-indigenous species. In contrast, a polluted site, Restronguet Creek, suffers a net loss of both indigenous and introduced 
empty tests (mainly Recent). 
There are both man made and natural causes accountable for these postmortem influences. In the case of Restronguet Creek, the 
net loss is due to acidic drainage emanating from old mine workings, in particular Wheal Jane tin mine. The Restronguet Creek samples 
have a small non-indigenous species component of c.5%, compared with <1% in samples taken three years ago, indicating that a rise 
in pH has occurred during that period. The loss of empty indigenous and introduced calcareous tests through acid dissolution 
anificially elevates the relative live to dead assemblages and the two assemblages resemble each other with respea to diversity. The 
absence of agglutinated foraminifera in Restronguet Creek reduces diversity further. The Erme estuary naturally accumulates material 
of marine origin brought in by tidal activity and at any time greater than 30% of the samples (live plus dead) may contain non-
indigenous species. The abundance of introduced species can exceed that of the dominant indigenous species. The dead assemblage 
from die Fowey comprises <10% non-indigenous species. The reason for this low abundance of introduced species may be due to 
the dredging of the lower estuary area. The order of test accumulation is, Erme >Fowey >Restronguet Creek. 
The effects of loss and gain of indigenous and introduced foraminifera have implications with respea to palaeoecological and 
palaeoenvironmental reconstructions from the fossil record. The loss and gain of specimens will also affea ecological interpretations 
of Recent data used to assess the effects of pollution. 

SJ.Stubbles, M.B.Hart and C±. Williams, Department of Geological Sciences, 
The University of Plymouth, Drake Circus, Plymouth, Devon, PLl 8AA 

J.C.Green, Plymouth Marine Laboratory, Citadel Hill, Plymouth, Devon, PLl 2PB 

INTRODUCTION 

A programme monitoring heavy metal pollution using Recent 
benthic foraminifera as biomarkers, has been carried out in 
selected estuaries in south-west England since June 1992, follow
ing a major discharge of drainage water from Wheal Jane tin mine 
(Cambridge, 1995). It has been established that foraminifera 
re.spond to heavy metal pollution in a number of ways, eg. lower 
standing crops, high abundance of deformed tests, lower diver-
iir\', changes in species dominance and test dissolution (Stubbles 
?t al., 1995). The work of Stubbles (1993) oudines the results of 
he preliminary samples taken from Restronguet Creek in July 
1992 (Figure 1). Stubbles etoL (1995) described the dual effects 
)f acidic mine drainage on foraminiferal tests by direa structural 
veakening of the test wall by dissolution and indirecdy by the 
ffects of enhanced extracellular and intracellular metal concen-

[raiion and the consequent effects on cell metabolism. Stubbles 
•/ al. (1996) reviewed the results obtained during the preceding 
^ree years. The distribution of agglutinated foraminifera from the 
dal flats and saltmarsh of the Erme (a control estuary) were 
escribed by Stubbles (1995). 

This paper primarily uses data from Restronguet Creek (Figure 
) and the Erme (Figure 2) intertidal mudflats and saltmarsh, to 
ustrate the two contrasting phenomena of addiuon and loss of 
)rjminifera and the implications of postmortem changes, 
aphonomy (postmortem alteration of assemblages) is, under 
;nain circumstances, a major influence on foraminiferal assem-
age.s and may be common. Hitherto, research has generally 
5ncentrated on the influence of gain by transport (Murray, 1976, 
)92b: Wang and Murray, 1983) and the differences between the 
•e. dead and total assemblages (Murray, 1982; Haynes and 
jbson, 1969). Kontrovitz et al. (1978) modelled the transport 
jtential of 12 benthic species and, although distilled water was 

used in their experiments rather than seawater which has a higher 
density, their results show that rates of transport can be species 
dependant. The Sfjecies which are introduced into a particular 
habitat such as the Erme may be derived from a variety of sources, 
including reworked fossil material and distant living assem
blages, but appear as empty tests. However, identifying intro
duced dead spMScimens is diflicult and often relies on the colour 

Figure 1. Sketch map of Restronguet Creek showing sample stations. The 
inset rruipshowsthepoint of discharge which isdenoted by anasterisk'and 
the small arrow indicates the position oftheNRA monitoring station. 
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Figured. Sketch map o/TheErme estuary and sample stations. 

Figure A. Sketch map of The Foivey estuary and sample stations. 

(iron staining) and condition of the test as indicators of age : 
physical abrasion caused by transport (Murray and Wright. 19" 

Restronguet Creek, however, has a converse profile, with 1 
of material because of the acidic waters emanating from ab 
doned metalliferous mines. The acidifed water is derived from 
redox conditions prevalent in the mine workings and 
resultant oxidation of suphide minerals producing sulphuric a 
and metals in solution. This very specific example of taphonoi 
provides a model similar to, but more severe, than that descrit 
by Nagy and Alve (1987) for Sandebukta in Oslo F^rd. The effe 
of acid dissolution have implications with respea to statist! 
analyis of the data and their interpretations. It is the aim of 
present paper to show how pollution monitoring and the effe 
of pollution are highly dependant upon the use of stair 
foraminiferal assemblages and the type of data analysis used. ^ 
also show the importance of separating allochthonous a 
autochthonous components in palaeoecological reconsiructio 
by providing insights into the effects of gain and loss 
individuals and species from the habitats under investigtion. 

The Environments 

The monitoring programme incorporates the systematic. s< 
sonal sampling of the extensive tidal mudflats and saltmarsl 
present, with the exception of the Fowey (Figure 3), where i 
saltmarsh lies outside the sample area and the samples w< 
taken from the tidal mudflats only. The locations sampled : 

mHUjtat 

Figure4. Mean monthly pH (December 1991 to December 199.i) record 
at Devoran Road Bridge monitoring station (Restrongiiet Creekj. Dc 
proDided by the NRA. 

Figure 5. Mean monthly pH (January 1994 to January-1996) recorded 
DevoranRoadBridgemonitoringstationtRestnmguet Creek). Dataproiia 
by the NRA. 



macrotidai rias, where fresh water outflow is low relative to tidal 
inflow. The Fowey estuary is larger in length, width and depth 
than that of the Erme, but is also orientated north-south. 

Restronguet Creek is orientated north-west - south-east, 
opening out into the Carrick Roads, the estuary of the Fal. The 
water and sediment conditions in the Creek are acidic, and at the 
height of the mine wafer discharge the pH was c.3.1 at Devoran 
road bridge monitoring station (National Rivers Authority, 1992). 
Figures 4 and 5 show the recorded mean monthly water pH 
values from December 1991 to January 1996. Currently, the water 
pH is 6.3 at the Devoran monitoring station, but is 8.0 at the mouth 
of the Creek, just below stadon PI30. The sediment is slightly 
acidic, c.pH 6.4-6.7 at the upper estuary stations; Dl, C19,TC6, 
TC8 and TC9. Salinity gradients vary from 0-33%o (parts "per 
thousand) in the winter and 8-35%o in the summer (Stubbles, 
1993; 1995). At the upper estuary stations, the lowest salinity 
readings are usually between 0 and 12%o in the winter and up to 
18%o in the simuner. Temperature gradients are also evident, 
surface temperamres varying from 4°C to 11°C in the winter and 
from 1 2 ^ to 18°C in the summer. As with salinity, temperature 
is extremely variable and dependant upon the amount of 
freshwater flow and the development, penetration and rate of 
decay of the thermocline in the estuaries. This seasonal variation 
is evident for the three estuaries discussed here. 

Pollution is relatively low in the Erme estuary (Langston, 1995, 
pers.comm.). The Fowey is affected by greater human activity, 
but this is not considered to have a significant effect on the 
abundance of foraminiferal lest deformity which, as in the Erme, 
is <3% (Stubbles etal., 1996). The major difference between the 
Fowey and the other estuaries is the daily dredging of the lower 
estuary area which maintains the water depth necessary for the 
china clay port to continue operation. The result of this dredging 
appears to be beneficial with the scouring away of excessive 
sediment accumulations and contaminants. Relative to the Ernie 
and Restronguet Creek, the Fowey esmary experiences reduced 
fjeriods of sediment exposure and drying-out, but the greater 
water depth may be disrupting the species distribution due to 
current flow and turbulence. 

METHODS 

The standing crop abundance (number of living foraminifera 
in a given unit area of 78 cm"0 was estimated using the vital stain 
rose Bengal and those individuals stained were considered living 
or only recendy dead at the time of collection (Murray, 1992a). 
The problems associated with the use of rose Bengal have been 
investigated by Bemhard (1989), who found that this stain 
overestimated the numbers of living foraminifera, because of the 
jDostmortem survival of the cytoplasm. The woric she later carried' 
out (Alve and Bemhard, 1995) has since found that rose Bengal 
is more reliable than ATP when there is a high abundance of 
empty tests, and when the foraminifera are from shallow water 
envirormients, as they found that in these situations, the cyto
plasm is of shon "persistence". The processing methods used and 
the rose Bengal staining method have Ijeen given in detail by 
Stubbles (1993; 1995). The 250 jim, 125 pm and 63 pm fractions 
were each subdivided by volume and were picked to obtain a 
combined total of between l(M)-250 stained individuals wherever 
possible. 

The cores were taken during a preliminary survey with a 
Russian peat borer to a depth of 50 cm. At intervals of 5 cm, a 1cm-
thick slice was removed and analysed using the same techniques 
as for the surface samples. Each segment was picked to give 
absolute abundance. 

The micrographs (Plate 1) were obtained by mounting several 
specimens from each foraminiferal spjedes on to a black adhesive 
circle fixed to an aluminium stub. &ich stub was gold coated to 

thickness of 8 nm (nano metres) and placed in the Jeol 52(K) 
scanning electron microscope, set to a working distance of 20 
Tim, at 15 Kv. 

The species data are reduced to percentages. Species hetero-
;eneity is determined by The Information Funaion, H(S) and 

species richness by the Fisher Index (Fisher et al., 1943). The 
Information Function provides information on equitabilii\' as a 

' function of the eveness of individual species abundance, whereas 
the Fisher Index is an assessment of species richness and uses all 
species present, irrespective of abundance (Murray, 1992b). 

RESULTS 

Standing Crops 

Standing crop values vary considerably throughout the estu
aries, depending upon elevation, salinity, temperature and 
season. "ITie standing oops from samples taken from the upper 
estuary stations of the Etme, Fowey and Restronguet Creek are 
lower than those for the respective lower estuary stations 
(Figures 6 and 7). Figure 6 illustrates the spring data for the upper 
control stations HP4 (Erme) and St.Wl (Fowey) and Dl 
(Resironguet Creek) and Figure 7 shows the data for the lower 
estuary stations, with station CY16 having a smaller standing crop 
than that of the Erme (S19) and Fowey (G14). Comparisons 
between the control upper estuary stations, HP4 and St W2 show 
similar standing crop values, but the values for station Dl 
(Restronguet Creek) are < 100 per 78 cm-^ The standing crops of 
the two control lower stations, S19 and G 14 are similar, but there 
is a marked difference compared with the standing crop data for 
station CYl6. In Restronguet Creek, the upper estuary stations are 
near the mine water discharge point and stations Dl and C19 
were barren until the spring of 1993- It was not until the Summer 
of 1994 that foraminifera regularly colonised these stations. A 
small standing crop appeared at K20 in the autumn of 1994 (52) 
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Figure 6. Bar chart showing the variation in ^}rir^ standing crops (78 cm') 
between the upper stations cflbe two control estuaries and Restronguet Creek. 

Figure 7. Bar chart showing the variation in ^mr:g standing crtps (78 cm') 
between the lower stations oflhettvocorurolestiutries and Restronguet Creek. 
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and this has remained established. The effects of heavy metal 
pollution on standing crops persists down estuary in Restronguet 
Creek, with the low estuary stations, for example, CY16 which 
has lower standing crops in comparison with the comparable low 
estuary stations in the control esturies. 

Seasonal variations in standing crop are also apparent. The 
abundance of. living individuals at station KP4 (Erme), for 
example, varies from c. 0-250, and at the low estuary station, S19 
from c. 920-2780. The Fowey upper estuary station, St.W2, varies 
from C.25O-I62O and the lower estuary station G14, varies from 
c.26-2850. Seasonal data for Restronguet Creek (from 1992 -1995) 
show the lowest standing crops occur at the stations K20 (c.O-
600) and C19 (0-650). The lowest values appear in the winter and 
the highest in the summer. 

The Diversity ofLimng Assemblages and Species 
Dominance 

A full list of species found in the three estuaries is given by 
Table 1. The six euryhaline sjjedes, Haynesina germanica, 
Elphidium tvilliamsoni. Ammonia beccarii, Miliammina fiisca, 
Trochamina inflata andJadammina macrescens, are typical of 
tidal mudflats'and saltmarshes and are present in the control 
estuaries (Plate 1). The Fisher Alpha Index for the living 
component is <1. Heterogeneity, H(S) is I.I6 for the control 
locations, but is reduced to 0.9 for Restronguet Creek due to the 
absence of the three agglutinated species M.fusca, T.inflata and 
J.macrescens (Plate 1). 

Species dominance of the living assemblage is seasonally 
dependent. In the Fowey and Restronguet Creek, the spring and 
summer are dominated by H.germanica, but the winter and 
autumn are dominated by E.williamsoni. The Erme mid to low 
estuary stations are, in contrast, dominated by E.williamsoni 
throughout the year, with few exceptions (Stubbles, 1995), whilst 
the upper estuary stations of the Erme axe dominated all year by 
M.fiisca. This shallow water species is a minor component in the 
Fowey estuary and only dominates the living assemblage at 
stations St.W2, LP03 and RC4 throughout the year. Ammonia 
beccarii is a minor sp>ecies and rarely appears in the upper 
estuary live assemblages of any of the estuaries. The standing 
crops of/4.teccani increase down estuary and recendy (summer 
1995) it was dominant at BY28 (Figure 1). 

Test Wall Alteration of Living Calcareous Species 

The stained calcareous tests present in the upper areas of 
Restronguet Creek are opaque, and such tests have been found 
in samples from stations Dl, TC6,8,9, PIO, PC13, C19, K20, H23 
and to a lesser extent CYI6, from the autumn of 1992. Opacity of 
the test is usually associated with empty tests. Specimens taken 
from sample stations TW27, BY28 and PI30 have not shown any 
acid alteration of the test wall and are typically glassy hyaline. 
Specimens (stained and empty tests) taken from samples in the 
autumn and winter of 1992/93 from affected stations, showed 
near catastrophic weakening of the tests. Haymesina germanica, 
in particular, appeared to be unable to strengthen the test by 
thickening and the tests were preserved only by careful handling 
(living and dead). In comparison, E.williamsoni app>eared to be 
more robust. Since the summer of 1994, the frequency of altered 
tests and the degree of opacity has decreased with improved 
water conditions (Stubbles, et aL, 1995) and the most aJffeaed 
area has receded towards those stations nearest to the mine water 
discharge point (Dl, C19 and K20), with only occasional occur
rences of opaque tests at TC6,8,9, PIO, PC13 and H23. The upper 
estuary stations HP4 (Erme) and St.Wl/2 (Fowey) occasionally 
include examples of opaque calcareous tests (stained), but the 
tests do not appear to be acutely fragile, thus leading to breaking. 

The internal wall appearance of those stained individuals 
affeaed by acid dissolution is granular and chalky. It has been 
found in .some stained examples of E.williamsoni (Piute 1) that 
an extra layer has been applied (Stubbles, etaL, 1995). Compari-
.son of wall thickness shows the affeaed specimens to be 
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approximately half the thickness of the hyaline specimens (Plate 
1). 

The opacity of the tests has meant that the cytoplasm stained 
with rose Bengal is not visible through the wall and specimens 
have been wetted to achieve this, otherwise they may be 
mistaken for empty tests (Murray, 1992b). Wetting the speci
mens, however, causes the red stain to appear more intense 
compared with the glassy hyaline examples which do not require 
wetting. 

Postmortem Modification by Dissolution and Rela-
tit^ Abundance 

Dissolution of the dead assemblage in Restronguet Creek has 
been acute at stations Dl, TC6,8,9, C19, K20 and to a lesser extent 
at stations PIO, PC13 and H23. Stations CYI6, TW27, BY28 and 
FI30 appear not to have been adversely affeaed by the removal 
of empty tests by dissolution. Empty tests were not present in 
significant numbers or with any regularity at stations Dl, C19 and 
H23 until the summer of 1994 and at K20 ftom the autumn of 1994. 
It is not possible to provide quantitative loss data due to the 
absence of agglutinated fotaminifera in Restronguet Creek. Such 
sf)ecies can be used as a reference to calculate the loss of 
(^careous species (Murray, 1992b) and Murray (1992a) found 
that an 'enrichment in agglutinated tests may take place,' in the 
event of calcareous test dissolution. The spatial and temporal 
changes in the proportion of Uving relative to dead individuals 
can, however, provide a qualitative insight into the residence 
times of empty foraminiferal tests. The relative abundance of 
living individuals at station TC6, for example, was 54% in the 
Autumn of 1992; with a standing crop of 157, but lower in the 
spring and summer 1993 when it was 17% and 42 % respectively, 
with standing crops of 1(K) and 1540. Station TW27, which is not 
affected by any significant amoimt of test dissolution, had a 
relative abundance of 5% living individuals and a standing crop 
of 1276 (autumn 1992). This is a lower relative abundance of 
living foraminifera but higher standing crop than that for TC6. 

The relative abimdances of living individuals for Fowey are 
frequendy above 25%. At the low estuary station G14, for 
example, the proportion varies from 6% to 50%, with standing 
crops of 26 and 2850. The Erme ftequendy has lower relative 
abundance of living foraminifera in the order of <15%- The low 
estuary station 819, for example has varying standing crops of 900 
(winter), 1025 (autumn), 2280 (spring) and 2780 (summer), but 
the relative abundance varied only from 6-8%. 

The short cores taken from Restronguet Oeek show that with 
increased depth, fewer foraminiferans are found. At station TC6, 
for example, below 15 cm depth there were no foraminiferans, 
but they were present to a depth of 30 cm at stations TC9 and 
TW27. Haynesina germanica WBs dominant throughout the core 
lengths at stations TC6, TC9 and TW27 with E.williamsoni the 
next sp)ecies in abundance. No agglutinated foraminifera were 
present in the cores.The core taken at station E8 (Erme) provided 
foraminifera throughout the 50 cm length but again a vertical 
gradient was evident. TTie Erme core gave a higher abundance 
than either TC9 or TW27 and M.fusca was frequent throughout. 
It is evident that dissolution is severe at the upper estuary stations 
of Restronguet Creek, affecting both the surface and buried 
assemblages of foraminifera. 

Samples taken from Restronguet Creek showed only a few 
specimens with organic test linings and were generally not 
common. Sp)ecimens with organic test linings were more abun
dant in the samples taken from the control estuaries, particularly 
from those taken from the saltmarsh stations of the Erme. 

Modification of the Dead Assemblages by Passive 
Transport 

The Erme data shows that the addition of large numbers of 
non-indigenous species can reach 50% of the dead assemblage. 
The level to which these individuals are added varies with season 
(tidal • current direction and velocities), the proximity of the 
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Species al nuion S20 

Figures. Bar cban showing the proportion of certain ̂ >ecies (relative to the 
total of live and dead ̂ xcies) present at the Erme station S20for 1993, 
luinter. spring, summer and autumn (including introduced species tvitb a 
> 10% abundance). The abbreviations are as follows, H.g.-H.germanica, 
E.ui.-E.wiUiamsoni, A.b.-A.beccarii, M.f.-M.fusca,J.m-J.macrescens, T.i.-
T.inflata and C.l.-C.lobatulus. 

sample station to the source of the material and main channel. 
The upper estuary stations of the three estuaries have a low 
abundance of introduced foraminifera (<3%), the majority of 
which appear in the 63pm fraction. The introduced species 
Cibicides lobatulus (Figure 8) has the highest abundance, be
tween 18-43% at station S20 (Ernie), but other species not 
indigenous to the estuary are less than 2% of the dead assemblage 
and are of low individual abundance (see Table 1). The Fowey, 
however, has a much reduced allocthonous component, <!{)% of 
the dead assemblage, with no individual species exceeding 1%. 
In contrast, data for Restronguet Creek shows that there is an 
increasing number of introduced species in the estuary ecosys
tem. At the outset of sampling those stations nearest to the mouth 
comprised 1% non-indigenous species, which now has increased 
to c.5% of the dead assemblage. Of this 5%, Elphidium macellum 
shows the highest abundance. Introduced species are now 
regularly found in samples taken at the upper estuary stations, 
with a 1% abundance at Dl, where previously none had been 
found. 

It is evident from the estuaries sampled during this programme 
that a lateral gradient exists, with fewer species being introduced 
into the upper estuary area and with the highest abundances 
present nearest to the mouth. 

DISCUSSION 

TTie low standing crop values found at the upper estuary 
stations relative to the lower estuary stations, are coincidental 
with the variable physical conditions of, for example, salinity and 
temperature. These are regarded as naturally occurring abiotic 
environmental stresses (Parker and Atheam, 1959). With respect 
to Restronguet Creek, however, the foraminifera are also re
sponding to the effects of heavy metal pollution and acidification 
and this is shown by the comparatively lower standing crops for 
the Creek (Figures 6 and 7). 

Others have found that low pH conditions alone, in the 
absence of heavy metal pollution, are sufficient to affect 
foraminiferal distribution and abundance. The low pH conditions 
and other variable physical conditions, eg. salinity, may account 
for the patchy foraminiferal distribution noted at stations HP2, 
HP3 and HP4'of the Erme (Stubbles, 1995). De Rijk (1992) found 

no calcareous species in the high and upper marsh samples t; 
from the Great Marsh at Barnstable, Massachusetts. This 
attributed to the low pH conditions prevailing. Schafer (1 
concluded that the establishment of calcareous sjjecies 
facilitated by a minimum pH of 6.7 being maintained. The 

, for Restronguet Creek show that H.germanica and E.unlliam 
have colonised stations with a minimum water pH of 5.8. Ai 
values less than 5.8 no living foraminifera were present at stat 
Dl and C19 prior to the spring sample of 1993. The experim 
carried out by Bradshaw (1961) suggest that foraminifera 
resistant to low pH conditions for relatively short periods oft 
between 25 and 75 minutes at pH 2.0, but found that A.bect 
was able to recalcify its test following complete dissolui 
although pseudopodial and feeding activity were slugi 
Bradshaw (1961) also concluded that resistance to low pH 
species dependent. It has become apparent from the Restronj 
Creek data that A.beccarii is becoming better established 
dominating the live assemblage at station BY28. This impn 
ment is coincidental with higher pH and lower concentration 
heavy metals following long periods of low pH (Figures 4 an 
and heavy polIution.The effects of acidification on fish popubti 
has been investigated by several workers. Beamish and Hai 
(1972) attributed the loss of fish stocks in the lakes of south-v 
Sudbury to increasing levels of acidity (<pH 4.5) and found 
pH values above 5.5 were not lethal but did afFea fecun< 
During his investigations on the effects of metals, paiticularh 
Cu, Fe, Pb, Zn and Cd, Freda (1991) found that acidity was 
primary control on fish reproduction; below the pH of ac 
ponds (<pH 3-8) fish fecundity was severiy aflFected. The intin 
relationship between pH and heavy metal behaviour which U 
to changes in toxicity, elevated concentrations of heavy meta 
solution, as well as the reactivation of sediment bound m« 
(Stubbles, etaL, 1995) has also been investigated by Freda (19 
Freda found that the solubilities of Cu, Zn and Cd were high ( 
the pH range of 4.0 - 7.0, but for Al the range was pH 4.0 -
Wren and Stephenson, 1991 also found that metal behav 
depended upon the metal and pH range, and that Cd was 
toxic to freshwater invertibrates below pH 5.5. Uptake of Cd 
increased in the range of pH 7.0 - 5.5, a pH range frequently fo 
in freshwater. 

It is evident from the data that the foraminifera in the up 
stations in all estuaries experience high levels of environme 
stress relative to the lower estuary stations and consequently 
foraminiferal assemblages in the upper estuary stations decn 
in both diversity and standing crop values (Stubbles, 1995), ^ 
only the euryhaline species thriving under low salinity co 
tions. De Rijk (1995) concluded that salinity is independen 
elevation, but that certain sjiecies were indicative of low salii 
Low diversity is a significant feature of the intenidal area 
estuaries, with a limited number of indigenous species tolera 
the variable conditions. Low diversity is also indicative 
pollution (Murray, 1992a; 1992b, Alve, 1995 and Stubbles, 1< 
and the absence of the agglutinated foraminifera in Restronj 
Creek is probably due to the high concentrations of heavy me 
particularly in the high estuary area. The higher stations in 
control estuaries are dominated by M.fusca. 

Predation can also influence the abundance of foramini 
(Moodley et aL, 1993). However, in Restronguet Creek, wi 
has a low species diversity and low abundance of macro 
micro benthos (Bryan and Hummerstone, 1971), predation is 
considered to be a major factor in foraminiferal survival ant 
the standing crop abundance. However, predation is likel 
affea the foraminiferal assemblages of the Erme and Fo 
estuaries where predators are more abundant. 

The diversity of the dead assemblages from the coi 
estuaries is higher than that of the living assemblage. The c 
assemblage is the combined total of empty indigenous tests 
those introduced, and each of these components will repre 
several generations. The degree to which this allochthoi 
component dominates the dead assemblage depends upon 
conditions prevalent for each individual estuary, but it is cor 
ered that overall, the dead assemblage will outnumber the ii 
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Bgure9. Bar chart showing the differem information gained by ustr^tiK 
relative % of living and the standing crop methods. The upper estuary 
stations HP/f and Dl and the lower estuary stations S19 and P130 are used 
in the analysis. 

and, for the diversity, the two assemblages of living and dead will 
regulariy be dissimilar (Murray, 1970; 1982; 1992b). 

The living assemblage of the Erme gives an alpha value of <1 
and H(S) 1.16 from the six indigenous species present throughout 
the estuary, values expected for an intertidal marsh enviroiunent 
(Murray, 1992b). The dead assemblage at stations in the lower 
Erme estuary, however, gave high alpha indices of 8 and H(S) 
2.13. With respea to the Erme data there is, therefore, a notable 
difference between the dead and living assemblages and they do 
not resemble each other. Smart and Murray (1995) concluded that 
the diversity of a local population will be "ephemeral and prone 
to migrations in and out of the ecosystem." Consequently samples 
taken at a particular time can only reflect the species profile for 
that time and Figure 8 shows that there is seasonal variation in the 
abundance of introduced spedes.There are potentialy >70 spe
cies introduced (Table 1), which enhances species richness 
diversity but are generally of low individual abundance, with the 
exception of C. lobattdtts (Figure 8). The habiut of this species 
may be a contributory factor accounting for its high relative 
abundance, as it is epifaunal and can easily be detached after 
death and then transf>orted. The high abundance of C.lobatulus 
in the Erme effectively displaces the dominant indigenous 
species E.unlliamsoni in the winter. Furthermore, C. lobatulus is 
of greater abundance throughout the year relative to the minor 
indigenous species, for example, T. inflata and / . macrescens, 
and M.fusca which at die low estuary stations is also a minor 
species (Stubbles, 1995). In the absence of staining, living and 
dead individuals caimot be differentiated and working with only 
total assemblages would indicate that the low estuary data were 
obtained from more saline (marine) situations. Removal of 
species with less tfian 5% abundance of the dead assemblage 
from the analysis simplifys the profile, but such adjustment 
requires care due to the low abundance of the indigenous species 
M.fusca, T. inflata and J. macrescens at the low estuary stations 
(Figure 8). Such examples showing a strong dissimilarity be
tween live and dead assemblages may lead to erroneous interpre
tations with respect to environmental reconstructions, biofacies 
determinations and faunal shifts due to catastrophic events if 
unstained material is used (Patterson, 1990; Williams, 1995)-
Kontrovitz et al. (1978), have shown that the reconstruction of 
palaeoenvironmental information is affected by the abundance of 
introduced species which must be separated from the indigenous 
assemblages. So despite the problems associated with the use of 
stains (Bamhard, 1989 ; Douglas, et oL, 1980), differentiation 
between the living and dead assemblages is essential, as the 
differences between the two may be important (Murray, 1970). 

It is, therefore, the similarity in diversity, between the dead and 
live assemblages (or absence of fossil foraminfera) in the 
Restronguet Creek exan^le, that is indicative of high rates of loss. 
Restronguet Creek shows the least degree of allochthonous 
influence, perhaps due to the loss of introduced species by add 
dissolution. The low pH appears to cause rapid dissolution of the 
foraminifera after deadi, in paiticular removing the non-tliick-
ened tests of the introduced species. The work of Boltovoskoy 
and Totah (1992) has shown that rates of dissolution are species 
dependent and a preservation index for cermin species was 
defined from their time e^x>su^ method in solutions at pH 6.7. 
The work of Krumbein and Garrels (1952) showed that if pH fell 
below 7.8, dissolution of calcareous species took place and the 
experiments of Alve and Murray (1994; 1995) established diat a 
weak add attack (pH 3-0) will l̂iminatp empty calcareous tests 
with ease. The pH values, therefore, need not be significandy 
lower than neutral, as shown by die Restronguet Creek data and 
die work of others, for rapid dissolution of empty tests to take 
place. It is also significaru diat there is a low abundance of organic 
linings in the Restrongua CJeek sui&ce and core samples, which 
suggests that the residence time of empty tests is short and there 
are short periods in the intermediate stages of dissolution. 

There are at least three possibilities ̂ diich may account for the 
absence of foraminifera below 15 cm at station TC6. They are 1. 
Increasing dissolution with increasing depth of burial; 2. Exten
sive periods with no foraminiferal production; 3. A combination 
of 1 and 2. The gradient which exists in all the cores would 
suggest that dissolution does occur with increased depth, but that 
the abrupt cessation of individuals at station TC6 below 15 cm can 
be accounted for by either of the options given above. The 
absence of agglutinated foraminifera in the Restronguet Creek 
cores would suggest that this is not a recent phenomenon, but has 
persisted through the active mining period of the modem Wheal 
Jane tin mine (1971-1991). 

The absence of agglutinated foraminifera and the dissolution 
of empty calcareous spedes in Restronguet Creek has implica
tions in any analysis of the data, as will the acquisition of 
introduced spedes by non-polluted estuaries. The effects of gain 
and loss are shown by Hgure 9, which compares die standing 
crop values for Erme stations HP4, S19, and Restronguet Creek 
stations Dl and P130, with the relative proportion (%) living 
organisms for the same stations. Those stations, for example, Dl 
nearest to the discharge point in Restronguet Creek and the more 
elevated station (HP4) of the Erme (where the accumulation of 
introduced tests is less and some dissolution may take place), 
show there to be an enrichment in living relative to dead 
organisms. For the low estuary stations, S19 and PI30 there is an 
enrichment of empty tests relative to living foraminifera, thus 
showing a reduction in the proportion of living individuals at 
these stations relative to die upper estuary stations. In compari
son, however, die standing crops show there to be a converse 
situation with low standing oops at the high estuary stations and 
higher standing crops at the low estuary stations. 

The relative abundance of living foraminifera at station S19 
(Erme), shows litde seasonal variation of between 6-S%, but the 
standing crops vary according to seasonal blooms. This suggests 
that the gain of empty tests, both indigenous and introduced 
spedes, is affecting the relative abundance of living. Conse-
quendy, relative abundance of living does not reflect the seasonal 
blooms of the indigenous spedes. The Fowey station G14 does, 
however, show that with low gain of introduced spedes (through 
dredging) and littie loss (through dissolution) of indigenous 
empty tests the relative abundance of living does reflect the 
seasonal variation in standing crops. At station TC6 (Restronguet 
Creek) there is a decrease in relative abundance of living 
foraminifera with an increase in standing crops and this does 
suggest that the dead assemblage is increasing in size. 

CONCLUSIONS 

The changes in the standing crops and increase in the relative 
abundance of dead vs. living foraminifera from Restronguet 
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Creek suggest that the surface sample data is influenced by 
variations in the size of the living and dead assemblages, due to 
both increasing production and improved natural preservation 
due to higher pH. With increased productivity and higher pH 
conditions, more empty tests are being accumulated in the dead 
assemblage. 

Thus the use of the live:dead, live:tbtal ratios, or the relative 
abundance of living foraminifera is not considered valid for the 
purposes of this research, which relies on in-situ biomarkers of 
heavy metal pollution and acidic drainage. The relative abun
dance of living organisms does not identify foraminiferal re
sponses to natural stress or heavy metal p>ollution if postmortem 
influences are high, and this is evident from comparisons made 
between the relative abundance of living organisms and the 
standing crop estimates. The latter provides a more reliable 
iiisight into foraminiferal distribution and abundance deariy 
showing the variations that exist within an esmary and reliably 
identifying areas of stress. 

Add alteration of calcareous tests is readily visible and 
specimens showing damage and opacity should be regarded as 
indicative of dissolution potential. It is conduded that care must 
be taken when using ratios or relative abundance analysis of 
living assemblages in ecotoxicological research, as the analysis 
may be affected by postmortem prcx:esses, especially if there is 
evidence of test dissolution or accumulation. 

The two converse situations illustrated here show how 
modern analogues can prove to be useful tools in 
palaeoe'nvironmental and palaeoecological reconstruction of 
fossil assemblages, separating the non-indigenous component 
from the indigenous. Conversely, net loss of solely calcareous 
indigenous individuals will result in the absence of a fossil record. 
The presence or absence of fossil assemblages can be a reflection 
of unusual events, not otherwise documented by the geological 
information. In addition, preservation is species dependent. 
Those spedes present in a fossil assemblage will be there via 
various mechanisms. Modem analogues provide some insight 
into the mechanisms which alter indigenous assemblages but the 
whole problem of mapping and modelling these postmortem 
processes is extremely complicated and should be investigated 
further. 
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Statistical data on heiithic foramii 

Table 1 Faiinal list of Foraminifera 

Indigenous species 

Ammonia beocarii (Linne) 1858 
Elphidium williamsoniHaynes 1973 
Haynesina gemianica (Ehrenburg) 1840 
Jadammina macrescens (Brady) 1870 
Miliammina fusca (Brady) 1870 
Trochammina inHata (Montague) 1608 

Non - indigenous species 

Amphicotyna cf. A. scalaris (Batsch) 1791 
Aslacolus cr^idulus (Fictitel and Moll) 1798 
AstBrigerinaia mamUla (Williamson) 1858 
Bolivina pseudopticata Heron-Allen and Eartand 1930 
Bhzalinacf. B. pse(/dopunctata(Hdglund) 1947 
Brizalina spathulala (Wniianison) 1858. 
BrizaBna varial^lis (WilUamson) 1858 
BuocettatrigaiaiCustxman) 1921 
Bulimina ele^uitissima d'Oitigny 1846 
Su/onina ĝ Tba Famasini 1920 
Bulimina maiginatad'Orbigny 1826 
Cancris aurtcuta (Fichtel and Moll) 1798 
Cassidulina obftisa Wilfiamson 1858 
dbimies lobatulus (Walker and Jacob) 1798 
Comu^na ft)fiacea(Philippi) 1844 
Cydogyra involvens (Reuss) 1850 
Eggerella scabra (Williamson) 1858 
BphitSumcnspum(fJnnii) 1758 
BptiicSum gerituMan Vootthuysen 1957 
BphkSum macellum (FSctiel and Moll) 1798 
BpiJitiiummargarilaceum{Custtman) 1930 
Fissurina lagenoides (Wilfiamson) 1848 
Fissurina ludda (Williamso) 1848 
Fissurina marginala (Momagu) 1803 
Fissurina ortjignyana Seguenza 1862 
Fu/sento/naftiS(fo/7nts (Williamson) 1858 
Glabratella /ni//effi'(Wri^) 1911 
Gai«/imvis(spraegen(Heron-Allwiand Eariand) 1913 
Glindulina ovula d'Oibigny 1846 
Globigerina buUoides d'Orbigny 1826 
Globulina gibba d'Orbigny 1B2S 
Globulina tfOibignyi var. myiistiformis (Williamson) 1858 
GlotxxassiduBna aif. G. siiigtobosa (Brady) 1881 
Guttulina laOea (Walker and Jacob) 1858 
Gu/fu<^ <acfea var. concava (Wniiason) 1858 
Haplophragmoides wifberti Anderson 1953 
Lagena davata (d'Ortaigny) 1846 
L^gena intemipta wnfiason 1848 
Lagena iaevs (Montagu) 1803 
Lagena perduddaiMoriagu) 1803 
Lagena semistriata Williamson 1848 
Lagena substriata Williamson 1848 
Lagena sulcata (Walker and Jacob) 1798 
Lagena fenuts (Bomemann) 1855 
Lamarddna halioSdea Heron-Allen and Eariand 
LenHculinapewgrina (Schwager) 1866 
Lenticulinasp. 
MassiBna secans (d'Orbigny) 1826 
Nonian depiesst^us (Walker and Jacob) 1798 
Nonionella tur^da (Williamson) 1858 
Oolina hexagona (Williamson) 1858 
Oolina lineata (Williamson) 1858 
Oolina melo d'Orbigny 1839 
Oolina squamosa (Montagu) 1803 
Oolina wiWamsoni {Mcock) 1865 
Oitulina univetsa d'Orbigny 1839 
Parafissu/inama/comson/(Wright) 1911 
Patellina comigata Ehrenberg 1843 
Pateoris tauerinoides (Rhumbler) 1936 
Procerolagena gradlis (Williamson) 1848 
Prygo depressa (d'Orbigny) 1826 
Quinqueloculina tiicomis (Walker and Jacob) var. angulata (Williamson) 1 
Quinqueloculina dimidiataTerquem 1876 
Quinqueloculina tataTrequem 1876 
Quinqueloculina oblonga (Montagu) 1803 
Quinqueloculina sem/mu/um(Linn6) 1758 
Reophax monUifomvs Siddall 1886 
Rosaline anomola Terquem 1875 
Rosaline wrffamson; (Chapman and Parr) 1958 
Sprillina vivipara Ehrenberg 1843 
Spiroloculina excavate d'Orbigny 1846 
Trochammina ochracea (Williamson) 1858 
Trochammina rotaliformis HerorvAllen jind Eartand 1911 
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