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Abstract: Here we extend previous work for the estimation of the time of excitation 

(Tx) from the speech signal using a shallow neural network. We make use of a dataset 

that consists of the simultaneously recorded speech and Laryngograph signals from 

drama students speaking a phonetically balanced passage. We first use the 

Laryngograph signal to estimate the location of vocal fold closures as a function of 

time. Then, by considering the problem as a supervised learning task, we train a multi-

layer perceptron to map between raw speech samples, selected using a sliding input 

window, to a single output target sample that represents the presence or absence of an 

excitation point. We present result of operation across several male speakers and also 

demonstrate that it is possible to reconstruct the Laryngograph directly from the speech 

signal.  

1 Introduction 

1.1 Voiced speech 

Voicing represents an important aspect of speech production and arises from the vibration of 

the vocal folds, which periodically modulate airflow from the lungs, leading to an acoustic 

excitation to the vocal tract. Voicing encodes both segmental as well as prosodic information 

in the speech signal. The latter includes intonation corresponds to the pitch the speech utterance 

and relates to the frequency of vibration of the vocal folds. Analysis of vocal fold activity is 

consequently of interest to phoneticians as an academic pursuit, as well as providing a useful 

feature in machine analysis of emotion and emphasis in speech utterances.  

1.2 Previous work 

Voiced speech is often analyzed to provide a frequency contour representation of vocal fold 

activity. However, such an estimate cannot capture the irregularity present in some voicing 

conditions, such as in creaky voice, or in pathological cases. A more complete description of 

voicing can be obtained by extracting temporal markers corresponding to vocal fold closure. 

Previous work in the extraction of vocal fold closure was made use of a multi-layer 

perceptron [1]-[3], and we previously referred to the resulting algorithms as MLP-Tx. One 

configuration was based on a pre-processing of the speech pressure waveform using a wide-

band filter bank analyser. This gave an input to the classifier which consisted of a set of adjacent 

time frames from the output of the filter bank. Another configuration used an input window 

operating directly on the speech sample inputs, much akin to the operation of a FIR filter. In 

both cases, the output classifier was defined as being in one of two classes. Either there was a 

period epoch marker at a given output frame, or there was not. To train this classifier, a good 

ground-truth of vocal fold closure was made from an analysis of vocal fold contact directly 

obtained from a Laryngograph signal [4]. Recently, we note that additional methods have be 

applied to this problem [5], [6].  

 

Here we examine the operation of the MLP-Tx approach using direct operation on the speech 

waveform in more detail. 
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Figure 1. Example training data. Panels from the top show the speech waveform, the simultaneously 

recorded Laryngograph signal (Lx), the time derivative of the Laryngograph signal (LxDiff), the 

corresponding time of excitation markers derived from the Laryngograph signal (Tx) and the 

corresponding frequency contour derived from the Tx markers (Fx). 

2 Methods 

2.1 Dataset 

We make use of a pre-recorded speech (Sp) and Laryngograph (Lx) dataset, which has been 

described in detail in previous publications [7], [8]. 
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Figure 2. Example testing data and MLP-Tx algorithm output. The detector was trained at 0dB SNR 

with a window length of 81 samples. Panels from the top show the speech waveform, the simultaneously 

recorded Laryngograph signal (Lx), the time derivative of the Lx signal (LxDiff) and its corresponding 

frequency contour trace (Fx). Next is the raw estimated time of excitation output from the MLP-Tx 

algorithm (MLP) and its corresponding frequency contour trace (MLPFx). 

The dataset consisted of anonymized normal voice recordings made by students reading the 

phonetically balanced “Arthur the Rat” passage in British English, in an anechoic chamber. 

Such recordings typically provided 2 minutes of data per participant. The speech signal was 

recorded using a Bruel and Kjaer condenser microphone. Both the raw speech and 

Laryngograph signals were digitized in 16-bit resolution at a sampling rate of 32kHz. 

2.2 Ethics statement 

The participants were all undergraduates at the London Academy of Music and Dramatic Art 

(LAMDA) at the beginning of their first year of study. They provided written informed consent 

prior to the commencement of the recording session. The experimental protocol was carried out 

in line with the requirements of the UCL Research Ethics Committee.  
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For the experiments presented here, we made use of recording of 16 male participants, although 

more participants were present in the dataset. In total, 8 participants were used to train the 

algorithms and a further 8 participants were used to evaluate the algorithms (but only 4 were 

used for the ROC analyses). The speech and Laryngograph data were first down-sampled to 

4kHz, to reduce the subsequent processing load. The downside of this is that is also reduces the 

precision with which the excitation point can be located.  

 

Figure 3. ROC for MLP-Tx detector as a function of window length. The detector was trained at 0dB 

SNR. The black diagonal line corresponds to random detector performance. The curves above it 

corresponds to a monatonic increase in performance as window samples increase, ranging from a 

window length of 1 sample for the lowest curve, to 81 for the highest curve. 

2.3 Labelling the dataset with Tx markers 

The speech was automatically labelled for time of excitation (Tx) using a simple algorithm that 

made use of the Laryngograph signal. The fundamental periods were delineated in terms of the 

location of closure of the vocal folds as a function of time, as defined by the location of the 

maximum positive differential of the Laryngograph signal. A simple threshold was then applied 

to the differential of the Laryngograph signal, and the exact excitation point determined by 

searching for the location of its maximum value. The corresponding frequency contour was 

computed by taking the reciprocal of the duration between subsequent Tx locations. Fig.1 

illustrates all these signals on a short except of the training dataset.  

The detection of Tx task from speech input is formulated as a supervised learning 

problem using a multi-layer perceptron. An input vector was built using a window of samples 

over the speech data. In the first experiment, the corresponding output target corresponded to 

the presence or absence of an excitation point (Tx) at sample the centre of the window. In the 

Laryngograph signal reconstruction experiment, the output corresponded to the value of the 

Laryngograph signal at sample the centre of the window. In both cases using an 81-sample input 

window length lead to the generation of almost 4 million training patterns.  
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Figure 4. ROC for MLP-Tx detector as a function of signal SNR. The detector was trained at 0dB SNR 

with a window length of 81 samples. The black diagonal line corresponds to random detector 

performance. The curves above it corresponds to a monatonic increase in SNR, from -20 dB for the 

lowest curve to 100 dB for the highest curve. 

To provide a more realistic dataset that the anechoically recorded data, Gaussian noise was 

added to the speech signals to give the required signal to noise ratio (SNR). The training data 

used a SNR of 0dB, and testing was carried out over the SNR range of -20 dB to 100 dB.  

2.4 Network structure 

A 2-hidden layer multi-layer perceptron was used to learn the mapping between the input speech 

signal and the Tx or Lx output. In both cases, after some experimentation, a network with 12 

units in the 1st hidden layer and 10 in the second was used. It had a maximum input window 

length of 81 samples and a single linear output unit (i.e. the network structure was typically 81-

12-10–1), although the window length was also a parameter that was investigated in the current 

study.  

2.5 Quantitative comparisons  

Because estimation of the time of speech excitation is formulated as the detection of an 

excitation point, we were able to treat the problem as a classical signal detection task. This 

directly lends itself to receiver operating characteristic (ROC) analysis in order to determine the 

fundamental performance of the MLP-Tx detector. One big advantage of this approach is that 

it avoids any specific threshold being used to detect Tx excitation points, and instead trades off 

hits against false alarms. Using this measure, good performance corresponds to achieving a 

large number of hits with few false alarms. In this work we made use the Matlab function roc. 

The main disadvantage of the ROC approach is that it required strict alignment of estimated 

and reference Tx locations, although alignment can be achieved using dynamic programming 

if a less stringent metric is required [9].  

2.6 Implementation 
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All data processing was carried out using Matlab. The multi-layer perceptron was implemented 

in Matlab within the Deep Neural Network Toolbox. Training on the 8-male participant dataset 

was rapid: Running on a Windows 10 PC fitted with an NVIDIA GEFORCE RTX 2080Ti 

graphics card, training a single experimental configuration only typically took about 10 

minutes. 

3 Results 

 

Fig. 2. shows an excerpt from testing data and the corresponding output of the MLP-Tx 

algorithm with an 81-sample input window. It can be seen that the differential of the 

Laryngograph  signal is quite similar to the output of the multi-layer perceptron, although the 

latter was trained with unity targets. This can be interpreted as the  MLP-Tx output giving an 

indication of evidence, rather than a simple binary value. In order to facilitate comparison, this 

figure also shows the corresponding frequency contours obtained from the laryngograph 

directly and also from excitation points estimated using MLP-Tx, which are quite similar. 

Quantitative comparison of the MLP-Tx algorithm was made against the reference 

obtained directly from the Laryngograph signal using receiver operating characteristic analysis. 

Two sets of tests were run. Firstly, to examine the effect of window length and secondly to 

examine the effect of additive noise. In both cases, we ran the ROC analysis on 4 male 

participants not used for training. In general, we note that ROC performance on each individual 

participant separately was better than across all 4 taken together, suggesting different threshold 

values were required to optimally decode the Tx for the different participants. 

3.1 Effect of window length 

We first examined the effect of window length on performance. Fig. 3. shows the ROC for 

MLP-Tx detector as a function of window length. It can be seen that the best performance was 

achieved with the largest window length of 81 samples. This suggests that contextual 

information is required in order for the classification process to operate effectively. It seems 

likely that an even longer window may give even better results. However, in the current 

implementation, memory limitation prevented a larger window size being tested. 

3.2 Effect of SNR 

We then examined the effect of SNR of performance. Fig. 4. shows the ROC for MLP-Tx 

detector as a function of test speech SNR. It can be seen that adding additive Gaussian noise 

degraded performance. However, operation at 20 dB was essentially the same as at essentially 

noise-free 100 dB condition, illustrating the robustness of the algorithm. 

3.3 Laryngograph signal reconstruction 

Finally, we investigate reconstructing the laryngograph signal from the speech signal using 

the non-linear regression capability of the neural network. This is illustrated in Fig 5.  In 

the small sample shown here, it can be seen that the general form of the laryngograph signal 

is recovered. However low frequency fluctuations absent from the reconstruction. This is 

not surprising since they are not relevant to acoustic output. To demonstrate the extent to 

which vocal fold closure dynamics are preserved in the reconstruction, we differentiated 

the reconstructed signal. It be can see that the differential  from the reconstruction differs 

somewhat from that of laryngograph signal, illustrating reconstruction is not perfect. 
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4 Discussion 

4.1 Summary 

In this work we trained a multi-layer perceptron to estimate the time of excitation of a speech 

signal arising from vocal fold closure. The problem was formulated as a supervised learning 

task, with an input pattern coming from the speech signal and the output target corresponding 

to the absence or presence of a speech excitation point at the centre of the window. We extended 

previous results by first examining the effect of window size and found a window of 81 samples 

to give the best results. We were unable to test larger window sizes due to memory limitation, 

although this issue could easily be overcome in future implementations. We also examined the 

effects of additive noise on the performance of the algorithm. As expected, performance 

degraded as the signal-to-noise ratio went down. However, the algorithm proved to be quite 

robust and able to deal with 20 dB signal-to-noise ratio almost as well as a noise-free condition. 

4.2 Conclusions 

A strength of the MLP-Tx algorithm is that the fundamental period estimations are made on a 

cycle-by-cycle basis and therefore irregularities in vocal fold vibration can be detected by the 

algorithm, whereas most frequency domain algorithms tend to smooth the period values. Creaky 

voice can be dealt with effectively using the MLP-Tx algorithm, whereas many other algorithms 

treat this important larynx excitation as being unvoiced due to its intrinsic irregularity. We note 

also that the MLP-Tx algorithm is well suited for real-time implementation because of the 

simple uniform structure of the MLP, and the inherently small (here 10ms) input to output delay.  

4.3 Future work 

The results showing the longer analysis window proved helpful illustrates the need of contextual 

information in the detection of the speech excitation point. In the future we will therefore also 

investigate the use of recurrent networks, such as LSTM and others, since such architectures 

can can intrinsically deal with temporal context in an efficient manner. 

The observation that different threshold values were required to optimally decode the Tx 

locations for different participants points to a deficiency of the current analysis, since ideally 

participants should result in the same output levels from the MLP-Tx algorithm. This suggests 

that deeper and more non-linear networks may give rise to better overall results and will be 

investigated in future implementations of the MLP-Tx algorithm.  

In the future we will also investigate training and testing using both male and female 

participants. 
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Figure 5. Example testing data and Laryngograph reconstruction using the MLP network. The detector 

was trained at 0dB SNR with a window length of 81 samples. Panels from the top show the speech 

waveform, the simultaneously recorded Laryngograph signal (Lx), time derivative of the Laryngograph 

signal (LxDiff), reconstructed Laryngograph signal from the MLP (MLPLx) and the differential of the 

reconstructed Laryngograph signal (MLPLxDiff). 
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