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ABSTRACT: We describe a new system for estimating voice pathology directly from 

the acoustic speech signal to assist in the diagnosis of pathological voice conditions 

by voice specialists. Our main novel contributions are the use of Electroglottography 

(EGG) in neural net training to automatically label speech acoustic signals for voicing 

and the generation of running estimates of pathology with high temporal resolution 

from the acoustic signal alone. These estimates can also be linked to the parts of speech 

signals where voice pathology manifests itself most strongly. By operating directly on 

the acoustic signal waveform without the use of any pre-processing, we avoid the use 

of hand-crafted features. We trained and tested a neural network using speech datasets 

with normal and pathological voicing and found that it can provide effective fine-

grained indications of pathology. Our quantitative results show that this neural net-

work performs well in distinguishing between speakers with normal and pathological 

voice conditions, achieving a recognition rate of 91%, which compares favorably with 

results from other studies. 

1 Introduction 
 

Voice problems, or dysphonia, affect one in thirteen adults in the UK annually, causing a 

significant impact on quality of life and livelihood, as well as a substantial burden on the 

healthcare system. The prevalence of dysphonia is higher in vocally demanding professions and 

among the elderly. The causes of dysphonia can range from benign to malignant, such as cancer. 

Different voice pathologies are typically associated with a range of effects [1]. These effects 

are often only manifested during specific parts of speech signals, such as voicing onsets, offsets, 

and specific pitch changes. For example, a vocal nodule lesion mainly affects the behavior of 

the vibrating edge of the vocal fold, with its effect increasing with pitch. Neurological condi-

tions, such as those arising from a stroke, can interfere with speech timing and vocal fold palsy 

can affect vocal fold contact regularity and phase. Adductor and abductor spasmodic dyspho-

nias also affect onset airflow differently [2,3]. Vocal fold paresis can cause pitch irregularity 

and also disrupt speech prosody, due to patients running out of breath as a result of air leakage. 

2 Current approaches to dysphonia diagnosis 
 

2.1 Clinical examination 

Current approaches to the diagnosis of voice pathology [4,5,6,7] typically involve expert clini-

cal assessment. This requires a consultant to examine a patient endoscopically, listen to their 

speech and carry out psychoacoustic and auditory-perceptual evaluation of the voice [8]. Since 

voice pathology in speech may only manifest itself in certain phonetic contexts, it is necessary 

to examine speech production using spoken tasks in which it is exhibited. Indeed, specifically 

designed passages have long been used by clinicians and researchers and are still being devel-

oped [9].  
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2.3 Using electroglottography 

In some specialist centres, additional measurements of laryngeal function are undertaken that 

involve the use of electroglottography (EGG), such as using the Laryngograph [10]. This is an 

electrical conductance-based measurement technique that yields information on vocal fold con-

tact and vibratory patterns using electrodes placed externally on the neck over the patient’s 

larynx. It is currently employed worldwide to assist the diagnosis of laryngeal pathologies and 

provides a unique insight into vocal fold vibratory function. 

To assist the clinical diagnosis of voice pathology, simple metrics have been proposed that 

are indicative of voice pathology, for example relating to open and closed phase of the EGG 

signal and shimmer [11,12]. Additionally, more sophisticated measures based on speech anal-

ysis have also been proposed [13]. Although these measures are certainly useful, there is now 

a strong trend towards the application of automated [14, 15] and more general machine learning 

approaches to the inference of voice pathology and much work has recently been carried out in 

this area [16,17,18,19,20]. 

3 Machine learning for speech pathology estimation 
 

Encouraging progress has been made in the direct estimation of voice pathology from the 

speech signal using a range of machine learning classification techniques (see Hedge [21] for a 

recent survey), including a study that uses connected speech [22]. Operating on speech alone 

removes the need for specialist equipment to directly record EGG and enhances the possibility 

of automatic remote screening, including the use of cloud-linked smart phones. Recent work 

has also compared the effectiveness of different machine learning techniques on the same da-

tasets to ensure fair comparison can be made [23], as well as a preliminary investigation of the 

use of deep neural networks for fine-grained estimation of voice pathology [24]. 

Here we take the first steps towards building a system to assist clinicians in diagnosing 

voice pathology, using an analysis that operates directly on the acoustic speech signal without 

the use of a feature detection stage. To do this, we use a convolutional neural network (CNN), 

which, in addition to providing an estimate of pathological voicing, is also able to automatically 

learn useful features for input data processing directly from the speech waveform. We believe 

this approach assists in circumventing deficiencies that can arise in systems that use hand-

crafted features. 

4 Methods 

4.1 Data acquisition 

We used clinical data consisting of simultaneously recorded speech and Laryngograph electro-

glottograph (EGG) signals from 57 speakers comprising 27 normal (male = 13, female = 14) 

and 30 pathological (male = 9, female = 21) voices, reading the “Arthur the Rat” passage in 

British English [25]. The pathological data and some normal controls (7) data were recorded in 

a normal clinical environment using Laryngograph Speech Studio using a standard electret con-

denser microphone. The pathological speakers exhibited adductor (n=25) and abductor dyspho-

nia (n=5). To provide a balance between pathological and normal speakers, data from additional 

20 normal speakers were included in the dataset. This data was recorded from students in noise-

free anechoic conditions. All speech and Laryngograph data were down-sampled to 16kHz to 

reduce the subsequent size of pattern vectors. 

 

4.2 Data labelling 

The time derivative of the EGG signal was calculated to estimate the location of excita-

tion points in time. These were then used to delineate regions of voicing using a 400-sample 
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window centred on each excitation point. The automatic determination of voicing is illustrated 

in Fig. 1. Three labels were used to indicate regions of: all voicing (Va); normal voicing (Vn) 

and pathological voicing (Vp), as illustrated in Fig. 2. Target values were set to numeric values 

+1 to indicate the presence of each respective label and -1 to indicate the absence. The diagnoses 

of the voice pathologies were made by a single clinician on the basis of full clinical examina-

tion. We note that, for these pathologies, such judgments are very reliable and rarely differ 

across clinicians. 

 

 

 
 

Figure 1. Example of automatic data labelling for voicing using the Laryngograph signal training data for the 

except from the Arthur the Rat passage “for him if he”. A Speech and B simultaneously recorded Laryngograph 

signal (Lx), C time derivative of the Laryngograph signal (LxDiff). D corresponding time of excitation markers 

derived by thresholding the differential of the Laryngograph signal (Tx). E the Tx markers are used to delineate 
regions of voicing (Vx) by applying a window. 

 

4.4 Network structure and training 

We used a relatively shallow convolutional neural network (CNN) with 3 outputs to directly 

map input speech samples to the 3 different voice labels Va, Vn, and Vp, which were used as 

training targets. Network structure was motivated by previous work using CNNs in initial proof 

of concept analysis [24]. The CNN used an input window size of 4001 adjacent speech wave-

form samples (spanning 250ms), had 3 convolutional layers with an input width of 20, made 

use of ReLu output activations and a max-pooling factor of 2. The output layer was fully con-

nected. The CNN was implemented in MATLAB within the Deep Neural Network Toolbox. 

Although the window could be moved one sample at a time, for training it was shifted 

using a stride of 80 samples (5ms), to avoid generating an excessive amount of training patterns 

and thereby ensuring the dataset fitted within memory on the graphic card used to implement 

network training. During training, the order of the patterns was randomized. 

B 

C 

A 

D 

E 
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Figure 2. Schematic illustrates training a neural network to estimate voice pathology by mapping a 

sliding window of speech signal samples to multiple output labels representing 3 target outputs: all 

voicing, normal voicing and pathological voicing. Two examples of speech are shown, one with normal 

and the other with pathological voicing, along with their respective output targets. 

 

Figure 3. Deep neural network structure implemented using MATLAB deep learning toolbox. 

 

Training was performed on a Windows 10 PC fitted with an NVIDIA GEFORCE RTX 

2080TI graphics card. Cross-fold validation was used to estimate task performance, to which 

end the data files were randomly split into 5 sets. The network was trained on 4 sets of data and 

performance then estimated using the 5th set. This procedure was carried out 5 times, each time 

using a different validation set and the overall mean performance across the 5 sessions was 

calculated. Each run took about 25 minutes to complete. After training, EGG was no longer 

required to estimate pathological voicing, since it was only used here to label the training da-

taset. 

5 Results 

5.1 Operation on normal speech 

During testing, data was processed one participant at a time, and pattern order was maintained 

(not randomized) to ensure CNN output could be related to its corresponding speech and EGG 
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signals. Processing a single data file at a time enabled the window stride to be reduced to 40 

samples (2.5 ms) to increase output resolution. The trained CNN provided a fine-grained indi-

cation of the presence and nature of normal and potentially pathological phonation. Outputs 

from the network on previously unseen speech data from a normal participant are shown in Fig. 

4. It can be seen there is a strong agreement between the corresponding EGG signal (trace B) 

and the estimation of all voicing by the network (trace C) and generally with normal voicing 

(trace D). In this specifically chosen speech section to illustrate the phenomenon, the trained 

CNN pathological output (trace E) also responded to features in normal speech in which there 

is, amongst other things, vibrational irregularity. This illustrates the fact that even during nor-

mal speech production by healthy individuals, there are occasionally excitations that show sim-

ilarity to pathological conditions. 

 

 
Figure 4: Voice quality estimation for a normal voice male speaker for the except from the Arthur the Rat 
passage “till then at last”. A Speech waveform, B EGG signal, C CNN estimation of all voicing D CNN esti-

mation of normal voicing, E CNN estimation of pathological voicing, which sometimes indicates irregular voic-

ing consistent with pathology e.g., from about 44.3 to 44.5s.  

 

 
Figure 5: Voice quality estimation for a pathological voice female speaker for the except from the Arthur the 

Rat passage “say to him”.  (A-E as in Fig. 4). Some regions of voicing also contained regions where phonation 

appears normal exhibiting regular excitation, as indicated in the normal voice CNN output trace e.g., from 35.1 

to 35.4s.  
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5.2 Operation on pathological speech 

Output of the network on previously unseen speech data from a participant who exhibits patho-

logical voicing is shown in Fig. 5. It can be seen that for this unseen speaker there is a significant 

indication of voicing consistent with pathology (trace E). Interestingly, again in this specifically 

chosen speech section to illustrate the phenomenon, there is also an indication of normal voicing 

for regions of the speech signal as well (trace D). This illustrates the fact that speech data from 

patients who suffer from pathological voice conditions may also include output in which pho-

nation appears normal. 

 

5.3 Estimating neural network detector performance  

We used a simple method to quantify voice pathology for each individual speaker in the evalu-

ation data. To do so, for each evaluation participant recording in turn, the CNN all voicing 

detector output Va was first compared with a threshold value of zero (the mid-range of the 

training target detector outputs) to select CNN output samples for which there was evidence of 

voicing. For voiced regions, we then calculated the area under each output detector curve from 

its lower -1 target boundary. This involved adding 1 to each sample value and then calculating 

the mean across all values for a given participant. For each individual participant this yielded 

single-value estimates of any voicing present (area under Va curve), normal voicing present 

(area under Vn curve) and pathological voicing present (area under Vp curve). 

To make an automatic judgement of voicing pathology for a given participant, we only 

made use of the area under Vp curve. To quantify detector performance, the receiver operating 

characteristic (ROC) of the CNN pathological speech detector estimates across the evaluation 

dataset was generated (see Fig. 6). The area under the ROC curve (AUC) was calculated by 

numeric integration yielding an AUC value of 0.95, indicating good detector performance. The 

classification of pathological versus normal voicing in the validation sets was made when the 

pathological detection estimate for a given speaker exceeded a fixed threshold value. It achieved 

an overall best detector recognition rate of 91% for the distinction between normal and patho-

logical voicing for a threshold value of 0.342. This recognition rate compares well with studies 

made in other investigations [26]. 

6 Discussion 

6.1 Summary 

We trained a neural network (CNN) to estimate voicing pathology from speech, inno-

vatively making use of EGG to label the training data for the presence of voicing. We found 

that we were able to generate a running estimate of both normal voicing and voice pathology 

with high temporal resolution. We suggest that a running display of such values may be useful 

clinically to help make a diagnosis. We found that there are features in normal speech which 

arise in specific prosodic and discourse structures, such as vibrational irregularity or breathi-

ness, that appear to be markers for pathology.  The trained CNN indicated the occasional pres-

ence of such features even in speech from speakers with normal voicing. Conversely, we also 

observed that speech from patients with voice pathologies also often generate spoken output 

where phonation appears normal. 

By integrating the estimates of pathological voicing over the recordings of each individ-

ual participant, we were able to generate an overall estimate of pathology for a given speaker. 

This could form the basis of a system that can generate an automatic estimate of voice pathology 

just on the basis of a spoken text. Taken together, these results demonstrate the potential of the 

analysis for detailed clinical assessment and quantification of pathological voicing in connected 

speech. Overall, we believe our analyses provide a means to facilitate discrimination between 

normal and pathological voice conditions, with the final diagnosis left to the clinician. We 
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achieved an overall recognition rate of 91% for the distinction between speakers with normal 

and pathological voicing. 

 

6.2 Future work 

We note that in the current work, voice pathology estimations are only made on the basis of 

voiced regions automatically identified in the acoustic speech signal and without regard to the 

phonetic content of the spoken material.  It would also be helpful to examine the results of 

analysis for specific phonetic contexts that are known by speech professionals to best show the 

manifestations of voice pathologies. The ability to perform contextually sensitive analysis has 

recently been shown to assist the discrimination of voice pathology [27] and future work will 

examine our CNN pathology detector within specific phonetic contexts.  

Although here we only investigated the presence or absence of two conditions of voice 

pathology, in the future it would be possible, using our new approach, to examine the presence 

of and discriminate between different pathological conditions, as well as differentiating be-

tween different levels of severity of pathology.  

As a final point it is clear that machine learning approaches to voice pathology estima-

tion rely on the availability of large amounts of representative data.  Currently the data available 

for continuous speech is limited, and we suggest the generation of a large database of normal 

and pathological speech will be needed to accelerate future progress in this area. Very large 

databases would also enable training of more sophisticated neural network models, including 

much deeper ones than the CNN used here, as well as transformer architectures, which have 

been shown to generate state-of-the-art performance in many application areas [28]. 

 

 

Figure 6. ROC for all patricipant validation datasets calculated over the 5 validation runs. The AUC 

values for the pathology detector was 0.95. 
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