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Abstract 18 

Amphibians are the most threatened species-rich vertebrate group, with species extinctions and 19 

population declines occurring globally, even in protected and seemingly pristine habitats.  These 20 

‘enigmatic declines’ are generated by climate change and infectious diseases. However, the 21 

consequences of these declines are undocumented as no baseline ecological data exists for most 22 

affected areas. Like other neotropical countries, Costa Rica, including Área de Conservación 23 

Guanacaste (ACG) in north-western Costa Rica, experienced rapid amphibian population 24 

declines and apparent extinctions during the past three decades. To delineate amphibian diversity 25 

patterns within ACG, a large-scale comparison of multiple sites and habitats was conducted. 26 

Distance and time constrained visual encounter surveys characterised species richness at five 27 

sites - Murciélago (dry forest), Santa Rosa (dry forest), Maritza (mid-elevation dry-rain forest 28 

intersect), San Gerardo (rainforest) and Cacao (cloud forest). Furthermore, species-richness 29 

patterns for Cacao were compared with historic data from 1987-8, before amphibians declined in 30 
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 2 

the area. Rainforests had the highest species richness, with triple the species of their dry forest 31 

counterparts. A decline of 45% (20 to 11 species) in amphibian species richness was encountered 32 

when comparing historic and contemporary data for Cacao. Conservation efforts sometimes 33 

focus on increasing the resilience of protected areas, by increasing their range of ecosystems. In 34 

this sense ACG is unique containing many tropical ecosystems compressed in a small geographic 35 

space, all protected and recognised as a UNESCO world heritage site. It thus provides an 36 

extraordinary platform to understand changes, past and present, and the resilience of tropical 37 

ecosystems and assemblages, or lack thereof, to climate change.  38 

 39 

KEY WORDS: Amphibian declines; Costa Rica; species richness; forest habitats; Área de 40 

Conservación Guanacaste; anurans. 41 

 42 

1.  INTRODUCTION 43 

 44 

ONGOING BIODIVERSITY LOSS AND ITS ASSOCIATED IMPACTS ARE A major 45 

global issue, with the current rate of extinctions unprecedented in recent time – over 1000 times 46 

the probable natural background rate (Barnosky et al. 2011; Ceballos et al. 2017; Pimm et al. 47 

2006; Pimm et al. 2014). This loss of species is changing and impoverishing ecosystems all over 48 

the world (Hooper et al. 2012, Pimm & Raven 2000, Pimm et al. 1995) and is a major concern 49 

for biologists and ecologists studying a wide range of taxa (Ehrlich 1995, Dirzo et al. 2014, 50 

Janzen & Hallwachs 2020, Worm & Tittensor 2011), not to mention the tropical societies that 51 

are losing their natural wild capital. At the vanguard of this current extinction spasm however are 52 

amphibians, with more species threatened with extinction than any other major vertebrate taxon 53 

(Stuart et al. 2004). 54 

 55 

Amphibian diversity is strongly correlated with environmental conditions such as 56 

precipitation, temperature, and available moisture. Available moisture can be measured as the 57 

relation between potential and actual evapotranspiration and appears to be a major determinant 58 

of amphibian diversity in Costa Rica (Savage 2002), with extreme humid conditions (where 59 

precipitation greatly exceeds potential evapotranspiration) being associated with the highest 60 

diversity of species. Temperature is another essential driver of Costa Rican amphibian diversity 61 
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and is reflected by changes in temperature along an altitudinal gradient – moving from cooler 62 

temperatures at higher elevations to warmer ones at lower elevations. For example, 65% of Costa 63 

Rican amphibians can be found within the premontane belt, potentially reflecting the overlap 64 

between the lower temperature limits of upland species and upper limits of lowland species 65 

(Savage 2002). However, this means that individuals are highly susceptible to changes in these 66 

conditions (Bickford et al. 2010, Ficetola & Maiorano 2016, Ryan et al. 2015, Walls et al. 2013), 67 

making them vulnerable to anthropogenic pressures.   68 

 69 

There are approximately 8480 known amphibian species (Frost, 2022), 41% of which are 70 

threatened with global extinction (IUCN 2018) and 43% have declining populations (Hof et al. 71 

2011, Stuart et al. 2004,). Yet even these numbers are likely to be underestimated as our 72 

knowledge of tropical amphibian diversity and density is so poor (Wake & Vredenburg 2008). It 73 

is widely agreed that amphibians face a constellation of threats, with many working 74 

synergistically to accelerate declines, including global climate change, habitat destruction and 75 

alteration, invasive species, overexploitation, and infectious disease (Collins & Crump 2009). 76 

Amphibian population declines have been noted as early as the 1950s (Houlahan et al. 2000) but 77 

didn’t receive broad attention until the 1980s (although see Alford et al. 2001), after several 78 

localities experienced rapid population crashes, with many of these occurring in seemingly 79 

pristine and protected areas (Stuart et al. 2004; Burrowes et al., 2004). These ‘enigmatic’ 80 

declines were thought to occur due to a myriad of factors (Collins & Storfer 2003), but today two 81 

main causal factors have since been recognised: the pathogenic fungus Batrachochytrium 82 

dendrobatidis and climate change (Blaustein & Dobson 2006, Clare et al. 2016, Lips et al. 2006, 83 

Lips et al. 2008, Pounds & Puschendorf 2004, Pounds et al. 2006, Rohr et al. 2008, Whitfield et 84 

al. 2007).  85 

 86 

Similar to other regions in tropical Central America, declines of Costa Rican amphibians 87 

have occurred rapidly (within 2 - 3 yrs.) at elevations above 500 m (Young et al. 2001) and has 88 

resulted in the extirpation of endemics found at higher elevations (Bolaños, 2002, Pounds et al. 89 

1997). Área de Conservación Guanacaste (ACG), which protects 120,000 ha of dry, rain and, 90 

cloud forest (and 43,000 ha of Pacific Ocean) in northwestern Costa Rica, (Janzen et al. 2016) 91 

lost many amphibian species in the late 1980’s, mostly in upland areas (Puschendorf et al. 2019).  92 
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 93 

Amphibian communities are already feeling the effects of climate change, both globally 94 

(Blaustein et al. 2010, Corn 2005, Li et al. 2013) and within ACG. These impacts observed for 95 

amphibians are mirrored by other taxa, with many lowland ACG species of both vertebrates and 96 

invertebrates now being recorded at much higher elevations (Smith et al. 2014), whilst increased 97 

droughts have led to widespread tree and epiphyte mortality (Powers et al. 2020). Furthermore, 98 

Janzen and Hallwachs (2021) have witnessed a precipitous decline in insect numbers since they 99 

first started working in ACG since 1963 and 1978, respectively. This trend they attribute to 100 

climate change, specifically the expanded and irregular dry season in all three major ecosystems 101 

present in ACG. The evidence is mounting that climate change is not an abstract event that will 102 

impact the world and ACG in the future, but a catastrophe we are experiencing now. To 103 

understand the future impacts of climate change, it is important to know the species that are most 104 

at risk and their needs and characteristics.  105 

 106 

 To draw meaningful comparisons, document any potential shift in diversity and 107 

distribution of species and define and measure conservation targets, temporal baseline data is 108 

fundamental (Mihoub et al. 2017). Despite the well documented recent declines and extinctions 109 

of amphibians across the globe, baseline data for many tropical places is still scant (Collen et al. 110 

2008, Feeley & Silman 2010, Siddig, 2019). This well documented decline of tropical amphibian 111 

diversity is based on a limited number of localities in better studied countries such as Australia, 112 

Costa Rica, Panama, Ecuador and a few others (Pounds & Crump 1994, Richards et al. 1994, 113 

Lips et al. 2006, Merino et al. 2006). Most of these declines have occurred at higher elevations, 114 

but more recent work suggest lowland populations are not exempt, with declines tending to occur 115 

over longer time periods (Whitfield et al. 2007, Ryan et al. 2014). Despite Costa Rica being one 116 

of the better studied localities for amphibian declines, baseline data is still lacking for many 117 

important areas - including ACG.  118 

 119 

Several studies have investigated amphibian species richness within ACG, but these 120 

tended to focus on a single forest type (Bickford 1994, Sasa & Solórzano 1995) and lacked 121 

population level data. Identifying long-term population trends is essential for any conservation 122 

endeavour but has proved difficult for most tropical amphibians due to the lack of historical 123 
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baseline data and overall disinterest in gathering it. The few studies (e.g., Acosta-Chaves et al. 124 

2019, Ryan et al. 2014, Whitfield et al. 2007) that have incorporated long-term population data 125 

have found large-scale declines in amphibian populations. Over a 35-year period in the lowland 126 

rainforest of La Selva, Caribbean Costa Rica, Whitfield et al. (2007) documented a decline of 127 

75% in terrestrial amphibian density since 1970. La Selva is a protected old-growth rainforest. 128 

Here we are building on these initial studies and integrating abundance data in a large-scale 129 

comparison of several sites and habitats within ACG, providing vital baseline data valuable for 130 

understanding and anticipating long-term trends. Furthermore, by incorporating historic species 131 

richness data for one of the ACG cloud forest sites, where species richness declined in the late 132 

1980’s, we hypothesise that some species recovery should be noted, mirroring similar species re-133 

discovery in many other sites in lower Central America, where declines occurred (García-134 

Rodríguez et al. 2012, Voyles et al, 2018).   135 

 136 

 137 

2 METHODS 138 

 139 

2.1 Study sites 140 

 141 

We sampled five sites in ACG which included:  Cacao (10°55’36.264”N; 142 

85°28’5.8794”W; 1050 m above sea level (asl); cloud forest), San Gerardo (10°52’48”N; 143 

85°23’20.3994”W; 573 m asl; rainforest), Maritza (10°57’727.0”N; 85°29’40.3”W; 590 m asl; 144 

mid-elevation dry-rain forest intersect), Murciélago (10°54’3.6354”N; 85°43’45.444”W; 80 m 145 

asl; dry forest) and Santa Rosa (10°50’16.7634”N; 85°37’7.2042”W; 289 m asl; dry forest; 146 

Figure 1). All five sites are 4.5 - 37.5 km distance from each other. Murciélago has the highest 147 

mean annual temperature, whereas Cacao has the lowest (Table 1). Cacao has the highest mean 148 

annual precipitation and precipitation during the driest quarter, while Murciélago has the lowest 149 

annual precipitation (Table 1).  Santa Rosa and Murciélago are comprised of a mosaic of 150 

relatively young dry forest in restoration from pastureland in the last three decades, with a few 151 

remaining tiny patches of older growth forest that escaped logging and burning. San Gerardo is a 152 

classical rainforest of 400 – 700 m elevation. Cacao and Maritza are both older forests, with a 153 
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mix of old-growth and regenerating forests. Average annual rainfall at these study sites can vary 154 

and ranges between 1613.3 ± 17.44 mm and 2820 ± 56.35 mm (Mean ± SD; Fick & Hijmans 155 

2017) with a major part of this variation due to hurricane years. The mean annual temperature 156 

ranges between 20.74 ± 0.67 °C and 26.15 ± 0.18 °C (Mean ± SD; Fick & Hijmans 2017), with 157 

a marked rainy season (May - December).  158 

 159 

 160 

2.2  |Sampling methods  161 

 162 

We collected data between the 09 August and 15 November 2017 (rainy season). At each 163 

site, 10 X 100 m long transects were established – split evenly between terrestrial and riparian 164 

habitats. Animals were captured within 2 m of the transect and extending 2 m in height.  The 165 

distance between transects varied between 100 m and 4 km, depending on terrain and 166 

topography. We used distance and time constrained Visual Encounter Surveys (hereafter referred 167 

to as ‘VES’; Scott 1994, von May et al. 2010) for a duration of 40 minutes. We sampled three 168 

quarters of the transects at night (1800 h – 0000 h) and the remainder during the day (1020 h – 169 

1530 h) to account for both diurnal and nocturnal species. We used VES as most amphibian 170 

species are nocturnal and previous studies have shown that VES’s (Crump & Scott 1994) are 171 

more effective than other methods when sampling at night (Doan 2003, Rödel & Ernst 2004) and 172 

have been shown to be of equal effectiveness to other methods when sampling for amphibians 173 

during the day (Doan 2003). VES are an effective tool for detecting several salamander species 174 

of the Plethodontidae family (Grover 2006), however species in the genera Nototriton and 175 

Oedipina are best sampled using cover object searches which can damage fragile habitats – 176 

notably mosses and bromeliads. No specific efforts were therefore taken to conduct destructive 177 

sampling of a fragile cloud forest ecosystem in search of salamanders.  178 

 179 

On terrestrial transects amphibians located two meters either side of the transect centre 180 

were captured, for a total width of four meters and on substrates up to two meters in height (von 181 

May & Donnelly 2009). Captured individuals were placed in their own plastic bags with 182 

substrate and water for moisture and labelled with a unique identification code and location on 183 

the transect. Further biosecurity precautions (e.g., new gloves for each capture) were deemed 184 
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unnecessary due to the high prevalence of B. dendrobatidis and Ranavirus within the ACG 185 

(Wynne 2018, Puschendorf et al. 2019). Most individuals were released at the end of the survey, 186 

but some were brought back for further identification and released the next day back at the point 187 

of capture. 188 

 189 

We resampled transects at two-to-four-day intervals, with each transect sampled four 190 

times during this study. After the transect was set up a minimum of two days were left before 191 

surveying began, to minimise any impact from disturbance on sampling. We measured and 192 

marked down every 10 m on transects using flagging tape which we collected at the end of the 193 

study. GPS coordinates and elevation were collected at the midpoint of each transect using a 194 

Garmin 60CSX. Annual mean temperature, annual precipitation and precipitation of the driest 195 

quarter were extracted for each field site from WorldClim (version 1.4) at a 1 km2 resolution 196 

(Hijmans et al. 2005).  197 

 198 

Historic data for Cacao was obtained from Arctos Collaborative Collection (MVZ 2018) 199 

management solutions museum database. Data were collected by David Cannatella and David 200 

Good over 23 days between July 1987 and January 1988 – with most sampling occurring in 201 

August 1987 (For species list see Table S1). There was no standardised sampling, observers 202 

walked through the forest collecting everything they came across (D. Cannatella pers. comm).  203 

Historic data for Cacao is hereafter referred to as historic Cacao.  This work was carried out 204 

under CONAGEBIO Permit number R-036-2013-OT- CONAGEBIO. 205 

 206 

2.3 Data analysis 207 

 208 

Unless otherwise stated, all statistical analysis was conducted in the R statistical 209 

environment v4.1.2 (R Core Team 2022).  We used the numbers equivalent approach as 210 

suggested by Jost (2006, 2007) to describe patterns of beta diversity and community similarity 211 

across sites using the package ‘vegetarian’ (Charney & Record 2012). β-diversity was analysed 212 

based on the numbers equivalent of Shannon’s diversity 1Dβ using the diversity order q = 1 which 213 

considers the proportional abundance of each species in a community, without favouring either 214 
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rare or abundant species (Jost 2006). Ten thousand bootstrap replicates of the data were used to 215 

determine standard error of β-diversity for each site. 216 

 217 

We performed sample-based rarefaction analyses to compare patterns of species richness 218 

between sites (Gotelli & Colwell 2001). Transect data were pooled across sites and the ‘vegan’ 219 

package (Oksanen et al. 2017) was used to generate the subsequent comparisons. A sample-220 

based rarefaction curve was further used to compare species richness patterns between historic 221 

and current data for Cacao.  222 

 223 

To estimate inventories completeness, we used the nonparametric estimators of species 224 

richness; ACE and Chao1 based on abundance data (Hughes et al., 2001, Jiménez-Valverde & 225 

Hortal 2003), using EstimateS Program V9.1.0 (Chao, 1984, Chao & Lee 1992, Chao & Yang 226 

1993, Chazdon et al. 1998, Colwell 2013, Colwell & Coddington 1994).  227 

 228 

To compare species abundance patterns between sites, rank abundance curves (RAC) 229 

were plotted (Magurran 2004) using the BiodiversityR package (Kindt & Coe 2005). The slope 230 

of linear regression of an RAC expresses the evenness in abundance among species within an 231 

assemblage and an analysis of covariance (ANCOVA) was used to compare differences in 232 

evenness among sites. An abundant species was arbitrarily defined as those that were represented 233 

by more than 12 individuals (which is approximately 2% of all individuals across the study). We 234 

used the package brms (Bürkner 2017, 2018) to test for differences among sites in the rate of 235 

decay in rank abundance slopes. We specified per-species abundance as an outcome variable, 236 

with a negative binomial error structure. We included the interaction between rank and site as 237 

fixed effects, allowing the slope of decay to vary by site. We assessed model fit using visual 238 

inspection of mcmc chains, and posterior predictive checks. We determined differences between 239 

sites in rates of abundance decay based on whether differences in 95% credible intervals of slope 240 

parameters included zero. We used the Leave One Out Information Criterion (LOO-IC, Vehtari 241 

et al. 2017, 2020) to perform a full model test of the maximal model against the intercept only 242 

model (Forstemeier & Schielzeth 2011). 243 

 244 
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Multidimensional scaling (nMDS) ordination (k = 2, stress = 0.12) using the ‘vegan’ 245 

package (Oksanen et al. 2022) was used to visualise the difference in community structure and 246 

composition among sites. The nMDS plot is based on a Jaccard matrix, using species 247 

presence/absence data. Additionally, the similarity percentage (SIMPER: Clarke & Warwick 248 

2001) was calculated to identify the contribution of individual species to the dissimilarity of 249 

amphibian community structure among sites. Moreover, a SIMPER analysis was also conducted 250 

using the historic data for Cacao to understand the changes in community structure over time and 251 

how this has affected inter-site relatedness. Abundance was analysed after a square root 252 

transformation of the data. This was conducted using the ‘vegan’ package (Oksanen et al. 2017). 253 

 254 

All code and datasets required for reproducing these results, including model fitting and 255 

data visualisation, are provided online 256 

(https://github.com/xavharrison/CostaRica_RankAbundance_2022).  257 

 258 

3. RESULTS 259 

 260 

During the surveys between August – November 2017, 660 individual amphibians from 261 

37 species were recorded, all anurans, (Table S2). This represents 46.25% of known amphibian 262 

species to occur in ACG (Table S3). The overall sampling effort was 267 person-hours 263 

throughout the entire study. In total 50 transects were resampled four times for a total of 200 264 

transects. Several other individuals and species were captured outside of standard sampling 265 

(Table S4), but those have not been included in this analysis. Duellmanohyla rufioculis, 266 

Craugastor fitzingeri, Rhaebo haematiticus and Craugastor crassidigitus were the most common 267 

species, comprising 20.3%, 13.5%, 11.7% and 11.7% of the total captured. We recorded nine 268 

amphibian families (all anuran), with three families represented by only a single species: 269 

Microhylidae (Hypopachus variolosus), Phyllomedusidae (Agalychnis callidryas) and 270 

Eleutherodactylidae (Diasporus diastema). 271 

 272 

All sites had low similarity based upon species abundance (Horn index ± SD: 0.19 273 

± 0.17). The overall β-diversity for all sites combined was 3.16 ± 0.134 (1Dβ  ± SD), highest in 274 
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San Gerardo (1Dβ  = 3.27 ± 0.26) and lowest in Santa Rosa (1Dβ  = 1.23 ± 0.11). β-diversity for 275 

the remaining sites was as follows; Cacao (1Dβ  = 2.02 ± 0.11), Maritza (1Dβ  = 1.98 ± 0.16) and, 276 

Murciélago (1Dβ  = 2.14 ± 0.20). 277 

 278 

The sample size was sufficient to characterise species richness for three of the five sites; 279 

Cacao; San Gerardo and Santa Rosa, as the rarefaction curve approaches an asymptote (Figure 280 

2a). The highest number of species was recorded in San Gerardo (rainforest) and the least in 281 

Santa Rosa. In Cacao, a total of 20 species were recorded in the 1980’s compared to only 11 in 282 

2017, a decline of 45% (Figure 2b). Of the 11-species recorded in 2017, three of them were 283 

absent from the 1987 data – Craugastor fitzingeri, Hyalinobatrachium colymbiphyllum and 284 

Smilisca baudinii. Furthermore, the curve for the historic data failed to reach an asymptote, 285 

suggesting that the inventory was incomplete at that stage and more species remained to be 286 

discovered. This is supported by museum records and data collected and stored at Arctos 287 

Collaborative Collection management solutions (MVZ 2018), which suggest a total of 39 species 288 

are known to occur in Cacao (Table S5).  289 

 290 

Overall estimates of completeness were highest for Santa Rosa (ACE = 85.71% and 291 

Chao1 = 100%) and San Gerardo, which was predicted to be missing 7 species (Table 2). Cacao 292 

had the lowest level of completeness (ACE = 68.75% and Chao1 = 64.71%), as 54.58% of all 293 

individuals encountered were Duellmanohyla rufioculis.   294 

 295 

Our Bayesian regression (Table 3), suggests that Cacao was found to have much higher 296 

species abundances at lower ranks. Whilst all sites decayed at a similar rate (i.e. had similar 297 

slopes), the site:rank interaction in the model revealed San Gerardo to have a much shallower 298 

rate of decline (Figure 3, Figure S1).  Low density species (represented by a single individual) 299 

also mainly occurred in San Gerardo as well as Cacao. The abundance distribution in Murciélago 300 

and Santa Rosa suggests that these sites today have less abundant species as compared with San 301 

Gerardo (Figure 4). Rhinella horribilis was the most dominant species in both Murciélago and 302 

Santa Rosa. In contrast the dominant species in Cacao and Maritza (Duellmanohyla rufioculis 303 

and Lithobates warszewitschii) are not found in lowland sites (Savage 2002).   304 

 305 
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The nMDS shows a clear split between most of the sites. Santa Rosa and Murciélago are 306 

the most similar sites, followed by Cacao and Cacao historic (Figure 4). Excluding Cacao 307 

historic, San Gerardo was identified as the most unique site, but this was closely followed by 308 

Maritza. However, including Cacao historic resulted in Maritza being the most unique. The 309 

SIMPER analysis suggests that the community structure of the five sites is distinct from each 310 

other, despite the short geographic distance between them (Table 4), with an average 311 

dissimilarity of 83.20%. Murciélago and Santa Rosa were the least dissimilar sites, with a 312 

dissimilarity of 60.97%, followed by Cacao and Maritza with a dissimilarity of 71.66%. Cacao 313 

and Santa Rosa had the highest dissimilarity between sites at 96.37%. The SIMPER analysis 314 

using the historic data for Cacao showed an increase in similarity between Cacao and the other 315 

sites over the 30-year period (1987/8 – 2017). As expected, the historic data for Cacao was most 316 

like contemporary Cacao, with a dissimilarity of 61.87%. All sites, except Santa Rosa, 317 

experienced an increase in similarity between the two periods with Maritza experiencing the 318 

biggest drop, with a decrease in dissimilarity from 81.77% to 71.66%. The dissimilarity between 319 

Santa Rosa and Cacao increased between the two sampling periods, increasing from 75.35% to 320 

96.37%.  321 

 322 

4.  DISCUSSION 323 

 324 

Our analysis presented here reinforces that amphibian species richness is strongly 325 

correlated with forest type. This pattern follows the diverging environmental conditions present 326 

in each forest type, which has resulted in very different communities across ACG. Furthermore, 327 

we observed a substantial decrease in amphibian species richness over time, at the relatively 328 

undisturbed cloud forest site Cacao. This is further evidence for the widespread decline of 329 

amphibians observed globally and in Costa Rica over the past several decades, and recovery is 330 

still tenuous, if at all (Lips et al. 2006, Stuart et al. 2004, Whitfield et al. 2016).  331 

 332 

Historic museum records kept at the Museo de Zoología, Universida de Costa Rica have 333 

documented 80 species, consisting of 75 Anurans, one Gymnophiona and four Caudata within 334 

ACG. We detected 37 species of anurans in the three main ACG ecosystems. Many ACG areas 335 
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have yet to be surveyed more than superficially; and will contain unrecorded or new species. For 336 

example, during the pilot study we discovered Agalychnis saltator in Pitilla (Table S4), which 337 

represents a substantial range expansion for this species and a species new to ACG. Furthermore, 338 

new molecular approaches are revealing previously undescribed amphibian cryptic diversity 339 

(Funk et al. 2012, Stuart et al. 2006) including in ACG frogs (e.g., Cryer et al. 2019). Finally, 340 

sampling across seasons and years will be key to elucidating the full diversity of ACG 341 

amphibians, with many species experiencing yearly fluctuations in population size (Marsh 2001) 342 

and higher visibility in specific seasons (Laurencio & Fitzgerald 2010, Savage 2002). 343 

 344 

Rainforests had the highest levels of amphibian species richness, which support previous 345 

findings for Costa Rica (Savage 2002) and elsewhere (Duellman & Trueb 1994). The three forest 346 

types sampled are in part defined by their evolutionary history, vegetation communities, previous 347 

disturbance and stage of restoration, levels of precipitation, temperature and the annual actual 348 

evapotranspiration (AET; Janzen et al. 2016). It has been demonstrated that a mixture of water 349 

and energy variables are important in shaping amphibian species richness patterns in North 350 

America, Europe, Asia and Central America (Currie 2001, Laurencio & Fitzgerald 2010, 351 

Rodriquez et al. 2005). For example, Qian et al. (2017) found a strong positive correlation 352 

between amphibian species richness and environmental variables such as precipitation, net 353 

primary productivity, range in elevation and temperature; in 245 localities across China. These 354 

findings demonstrate that environmental variables may play a role in constraining the species 355 

richness at a site and constitutes the most plausible explanation for the differences between the 356 

forest types. This is supported by the fact that dry forest sites, prior to disturbance, had much 357 

lower levels of species richness and tended to be dominated by large-bodied generalists, such as 358 

Rhinella horribilis, Smilisca baudinii and Lithobates forreri which have wide distributions and 359 

are adapted to the seasonally xeric conditions of the dry forest. These anurans are less prone to 360 

desiccation, as their large body size means that they have proportionally lower surface area to 361 

body volume and thus lower rates of water loss than smaller bodied species (Duellman & Trueb 362 

1994) This likely explains their higher abundances and dominance in the dry forest, which is 363 

characterised by dry season high temperatures and less rain, especially during the dry season. 364 

One such adaption to the xeric conditions of the dry forest is cocoon formation, as observed in 365 

Smilisca baudinii, allowing them to survive long periods without rain (McDiarmid & Foster 366 
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1987). The similarity between Cacao and Maritza is likely due to the proximity of these two sites 367 

(4.5 km) and that they occupy one continuous forest, albeit over an elevational gradient, rather 368 

than environmental conditions – which are grossly different between the two sites. 369 

Duellmanohyla rufioculis was only found at these two sites, whilst Lithobates warszewitschii 370 

was far more abundant in these two sites than any other.  371 

 372 

Weather conditions at different elevations are likely to play a significant role in 373 

constraining diversity to a specific site and may explain the greater diversity found in San 374 

Gerardo compared to Cacao. For many groups of organisms, including amphibians (Campbell 375 

1999), diversity changes along an elevational gradient (e.g., McCain 2005, Navas 2003, 376 

Terborgh 1971), following a bell-shaped curve. Species richness is relatively low at lower and 377 

higher elevations, with the highest species richness recorded at mid-elevations. However, 378 

endemism in the tropics is far more ubiquitous at high elevation sites; meaning they are of great 379 

conservation priority – a consequence of these sites being far more insular (Savage 2002). The 380 

results roughly follow this trend, with the average elevation of our transects in the most species 381 

rich site, San Gerardo (573.32 m), between the elevation of the less diverse higher elevation site 382 

(Cacao: 1050.17 m) and lower elevation sites (Santa Rosa: 289.2 m, Murciélago: 80.5 m).  383 

 384 

Despite differences in the structure of the forest habitats, two species were found to occur in all 385 

four, Rhinella horribilis and Craugastor fitzingeri. This is likely attributed to their generalist 386 

nature and ability to adapt to human altered landscapes (Crawford et al. 2007). Only 11 species 387 

were found at more than one site, but some exhibited far higher abundance in only one forest 388 

type, such as D. rufioculis which was found at very high abundances in Cacao (131 individuals), 389 

low abundances at Maritza (3 individuals) and absent from all other sites – a consequence of the 390 

elevational range constraints and climatic requirements of this species (Savage 2002). Historic 391 

declines may also play a role in the presence and absence of certain species at different sites, as 392 

illustrated by Craugastor ranoides. This once widespread riparian species is likely highly 393 

sensitive to B. dendrobatidis outbreaks (known populations of this species have disappeared 394 

from most of its range in Costa Rica, and B. dendrobatidis was found responsible for the decline 395 

of a highly-related species, Craugastor punctariolus; Ryan et al. 2008) and is likely only to 396 

persist in Murciélago due to the areas status as a climatic refuge, where the environmental 397 
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conditions have helped prevent disease outbreaks (Puschendorf et al. 2009).  However, this dry 398 

forest peninsula is also subject to serpentinization (Sanchez-Murillo et al. 2014). This produces 399 

hyperalkaline fluids, reaching a pH of > 11, which drain into the local streams in which these 400 

frogs live. The potential effects of this pH change on the skin fungus and its resultant disease are 401 

yet to be explored. In Cacao forest, alongside Craugastor ranoides, Atelopus varius, Isthmohyla 402 

tica, Craugastor andi, Duellmanohyla uranochroa have also vanished and all salamanders are 403 

now extremely uncommon. However, more intensive sampling during different years and 404 

different seasons may reveal that these species persist, albeit in much lower numbers.  405 

 406 

The steep decline in amphibian diversity in Cacao, over the 30-year period 1987/8 – 2017 407 

is persistent and clearly recovery has been slow. A 45% reduction in species richness was 408 

observed, with only 11 species recorded in 2017 compared to 20 in the 1980’s, with far greater 409 

sampling effort involved in 2017. The complete lack of salamanders on the transects was 410 

especially notable, due to their historic ubiquity in the area and this finding aligns with the 411 

declines reported by other studies on neotropical salamanders (Acosta-Chaves et al. 2015, Rovito 412 

et al. 2009). In the early 1980’s and 1990’s, D.H. Janzen regularly encountered salamanders 413 

under fallen, rotting tree stems (night and day) and on wet foliage at night, whilst searching for 414 

caterpillars in the vicinity of Estacioón Biológica Cacao (800 – 1400 m) year-round. Since the 415 

2000’s none have been encountered by either D.H. Janzen or the parataxonomists on their daily 416 

search for caterpillars. Although we cannot say with certainty that these salamanders are locally 417 

extinct, if they are still present at Cacao it is likely at levels substantially below their pre-decline 418 

numbers and recovery to these levels appears increasingly doubtful. The historic data supports 419 

previous studies looking at herpetofauna diversity of sites at similar elevations (Scott 1976: 420 

Puntarenas Province, Costa Rica). Cacao is comprised of mostly old growth forest with a few 421 

patches of forest at various stages of regeneration, which makes these declines even more 422 

alarming. But these declines match those experienced by other high elevation old growth forests 423 

in the neotropics (Young et al. 2001). The limited data also demonstrates that there has been little 424 

recovery of amphibian diversity following these declines. However, certain species appear to 425 

have been less affected in the long-term than others, such as C. crassidigitus, D. rufioculis and, 426 

L. warszewitschii, which despite experiencing similar declines, have since recovered and are now 427 

the most visible of the Cacao amphibian community. A recent study by Acosta-Chaves et al. 428 
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(2019) found similar results with C. crassidigitus and L. warszewitschii now dominating the 429 

amphibian community of Reserva de San Ramón, despite their almost absence in the 1990s. 430 

Voyles et al. (2018), examined the temporal changes in detection rates of 12 riparian species at 431 

three sites in Panama. Many of the species experienced rapid decreases during the epizootic 432 

phase of the B. dendrobatidis outbreak. However, following the transition to the enzootic phase, 433 

B. dendrobatidis prevalence decreased, concomitant to the recovery of several of the species; 434 

including L. warszewitschii and C. crassidigitus. This suggests changes in host responses to 435 

diseases.  436 

 437 

A potential cause of these declines is the pathogenic fungus B. dendrobatidis, which has 438 

been reported for several frog species on Cacao (Wynne 2018), although synergistic interactions 439 

among different environmental variables may conceal individual effects (Navas & Otani 2007). 440 

Scheele et al. (2019) suggest that B. dendrobatidis is responsible for the decline of 501 441 

amphibian species and the potential extinction of 90 species, making it seem to be one of the 442 

deadliest diseases for wild biodiversity. However, amphibian population collapses are not 443 

occurring in isolation – they are part of a constellation of changes taking place in tropical old 444 

growth forests (including Cacao), such as the decline of birds, lizards and insects, which are not 445 

susceptible to B. dendrobatidis (Janzen & Hallwachs 2021, Lister & Garcia 2018, Pounds et al. 446 

1999, M. Sasa unpubl. data, Zipkins et al. 2020, Zipkins & DiRenzo 2022), suggesting B. 447 

dendrobatidis may not be the sole culprit of these observed declines. Cacao, as with many of the 448 

other regions where declines have been documented, has gone through an ecological 449 

homogenisation, with a large increase in similarity among sites following the declines (Smith et 450 

al. 2009). This is likely to be an underestimate of dissimilarity as today we know that lowland 451 

amphibian communities have also been suffering declines, just over a longer time period (Ryan 452 

et al. 2008, Whitfield et al. 2007). However, baseline data is only available for Cacao.  453 

 454 

Documenting long-term declines is only possible through the collection of baseline data 455 

(e.g., Ryan et al. 2008, Whitfield et al. 2007). The observation of a substantial decline in 456 

amphibian diversity within an old growth forest in ACG was only possible because of data 457 

collected several decades prior, by an expedition from the University of California, Berkeley. 458 

Other sites examined in this study may have experienced similar declines to that of Cacao, 459 
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however we lack the data to empirically support this. ACG is in a unique position to provide a 460 

platform for understanding changes, past and present, and the resilience, or lack thereof, of 461 

tropical ecosystems and assemblages to climate change.  462 
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