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Abstract. Extensions of the standard model that lead to first-order phase transi-
tions in the early universe can produce a stochastic background of gravitational
waves, which may be accessible to future detectors. Thermodynamic observ-
ables at the transition, such as the latent heat, can be determined by lattice sim-
ulations, and then used to predict the expected signatures in a given theory. In
lattice calculations, the emergence of metastabilities in proximity of the phase
transition may make the precise determination of these observables quite chal-
lenging, and may lead to large uncontrolled numerical errors. In this contribu-
tion, we discuss as a prototype lattice calculation the first order deconfinement
transition that arises in the strong SU(3) Yang-Mills sector. We adopt the novel
logarithmic linear relaxation method, which can provide a determination of the
density of states of the system with exponential error suppression. Thermo-
dynamic observables can be reconstructed with a controlled error, providing a
promising direction for accurate model predictions in the future.

1 Introduction

Proposals for physics beyond the standard model (BSM) based on strongly interacting non-
Abelian gauge sectors can provide an origin for a variety of phenomenologically interesting
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scenarios, such as dark matter and composite Higgs models (see, e.g., Refs. [1–5] for exam-
ples based on the Sp(4) gauge group). Our current understanding of these proposals is not
yet detailed and precise, due to their strong-coupling nature. A signature with great potential
discovery (or exclusion) reach is the generation of stochastic gravitational wave backgrounds
from phase transitions in the early universe. In fact, many strongly interacting models are
expected to undergo a change in behaviour between an early universe deconfined phase of
quark gluon plasma and the late universe confined phase. Models characterised by a first-
order phase transition lead to bubble nucleation which drives the generation of gravitational
waves (see, e.g., Refs. [6–8], and [9] in these proceedings). The signature of the gravitational
waves produced through bubble nucleation can in principle be predicted looking at thermo-
dynamic observables measured at the phase transition. Of particular importance are the latent
heat, which drives the expansion, and the surface tension, acting as a frictional term.

In principle, Lattice Field Theory is a prime tool to compute non perturbatively observ-
ables related to the production of relic stochastic gravitational waves in such strongly-coupled
models. However, the physical metastabilities that arise near criticality limit the power and
reach of commonly used lattice algorithms, and call for the development of new ones. In
this contribution, we discuss a novel application of the linear logarithmic relaxation (LLR)
algorithm [10], by analysing the thermodynamics of the phase transition in lattice simula-
tions. This algorithm avoids the problems that affect standard Monte Carlo methods in a
regions of metastability and hence enable us to calculate thermodynamic observables with
robust error estimates. In the next section we discuss the general thermodynamics prop-
erties of non-Abelian lattice gauge theories at finite temperature, focusing in particular on
the aforementioned algorithmic difficulties associated with metastability. In Sect. 3 the LLR
method is reviewed. Then, in Sect. 4, some preliminary results are discussed for the SU(3)
pure gauge theory (see also Ref. [11] for a review and a recent high-precision calculation).
Finally, Sect. 5 contains our summary. We remark that a similar approach is being undertaken
for SU(4) (see Ref. [12] and the talk by F. Springer at this conference).

2 First order phase transitions and metastable dynamics

The Euclidean space-time is discretised onto an isotropic lattice with Ṽ/a4 = Nt × N3
s sites,

where a is the lattice spacing. Since in this work we interpret the lattice field theory as
a statistical mechanics system in four dimensions, for simplicity we set a = 1. Periodic
boundary conditions are imposed in all directions. The spatial lattice size, Ns, is much larger
than the temporal one, Nt. For fixed Nt, the temperature is set by changing the lattice spacing
a non-perturbatively, via the lattice coupling β.

The Wilson action for SU(Nc) pure gauge theory is

S =
Ṽ∑

j=0

∑
µ;ν>µ

(
1 −

1
Nc
ℜ(Tr[Uµν( j)])

)
, (1)

where Uµν( j) denotes a plaquette, which is the parallel transport of the lattice links Uµ(i) ∈
SU(Nc) around the elementary square of the lattice in the µν plane, starting at lattice site j.

In standard importance sampling approaches, configurations are generated via Monte
Carlo Markov chain methods, with a combination of heat bath and over-relaxation steps,
with a probability distribution Pβ(E) for a value of the action S = E given by

Pβ(E) =
1

Z(β)
e−βE , Z(β) =

∫ (
DUµ(i)

)
e−βS , (2)
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where the integral is taken over all SU(Nc)-valued link variables Uµ(i). Vacuum expectation
values (VEV) of observables, ⟨O⟩, are estimated as (ensemble) averages over the sampled
configurations.

When focusing on the thermodynamics at the phase transition, the observables of interest
are the average plaquette, which we denote as up, the specific heat (or plaquette susceptibil-
ity), the Polyakov loop, and the Polyakov loop susceptibility. The Polyakov loop is defined
in terms of parallel transports of the link variables on paths of fixed spatial coordinates that
wrap around the temporal direction. The Polyakov loop VEV [13] is the order parameter of
the spontaneous breaking of the global centre symmetry associated with the deconfinement
phase transition. It is given by〈

lp

〉
β
=

〈
1

NcN3
s

∑
n⃗s

Tr

Nt−1∏
nt=0

U0(nt, n⃗s)

〉
β

= 0 confined phase
, 0 deconfined phase

, (3)

where we have introduced the notation i = (nt, n⃗s), with nt being the temporal and n⃗s the
spatial coordinates of the lattice site i.

In SU(Nc) Yang-Mills gauge theory with Nc > 2, the deconfinement phase transition is
of first order and therefore exhibits metastable dynamics around the critical point. To accu-
rately measure the thermodynamic quantities of interest for the system with a lattice calcula-
tion based on importance sampling, the configuration space must be sampled by an ergodic
Markov chain. To ensure ergodicity, in the metastable region the Markov chain must allowed
to tunnel between the two phases several times. But standard local Monte Carlo methods
only consider small changes in each link, suppressing drastic changes. Consequently, these
algorithms struggle to overcome the potential barrier separating the two phases. While for
small lattices, and small number of colours Nc (between three and six), this is not a problem,
in the limit of large volumes (or large Nc) the potential barrier grows. More configurations
are therefore required to ensure the system can explore all the configuration space, with the
associated computational time growing exponentially with the volume, to compensate for the
tunneling probability being exponentially suppressed with the volume.

3 Linear logarithmic relaxation method
The linear logarithmic relaxation (LLR) method allows, in principle, to avoid the problems in
simulating the equilibrium distribution of the metastable dynamics near the critical region of
first-order phase transitions. It uses Monte Carlo algorithms with the purpose of recovering
microcanonical information, which is then used to reconstruct physical observables.

In the LLR approach to a general statistical system the energy range of interest is broken
down into intervals, with energy En − δE/2 < E < En + δE/2. The interval size δE should
be chosen small enough for a Taylor expansion of physical quantities in δE to be a good
approximation in each interval. The total action of Yang-Mills theories is used as an analogue
for the energy1, E = 6Ṽ(1 − up). For each interval the density of states,

ρ(E) =
∫

[Dϕ]δ(S [ϕ] − E) , (4)

is approximated numerically. The partition function of the statistical system with Hamiltonian
S (or, equivalently, path integral of the field theory with action S ) is rewritten in terms of ρ(E),
and becomes a simple one-dimensional integral over the allowed energy interval:

Z(β) =
∫

[Dϕ]e−βS [ϕ] =

∫
dEρ(E)e−βE . (5)

1We use the term energy to express the value of the action on a particular configuration or set of configurations.
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Figure 1. An sample of 20 RM
trajectories for SU(3) pure gauge
theory on a 4 × 203 lattice with
periodic boundary conditions in all
directions and an energy interval of
size δE/6Ṽ = 0.000374281 centred at
En/6Ṽ = 0.459324241. The inset
shows the obtained a(m)

n distribution at
the truncation value m = 500.

Similarly, the VEV computed at coupling β of an observable O(E) that strictly depends on
the energy becomes

⟨O(E)⟩β =
1

Z(β)

∫
dEρ(E)O(E)e−βE . (6)

We approximate ρ(E) in a small interval of amplitude δE around En, by Taylor ex-
panding its logarithm, ln(ρ(E)) ≈ an(E − En) + cn, where cn is a constant. By rearrang-
ing this equation and using textbook statistical mechanics considerations, the Taylor co-
efficients an are identified with the inverse microcanonical temperature at energy En, as
an = (d ln ρ/dE)|E=En = (ds/dE)|E=En ≡ 1/tn, where s is the entropy.

The individual Taylor expansions, repeated over a sequence of intervals E0 < ... < En <
En+1 < ... < EN , for En+1 = En + δE , can be combined by imposing continuity, to obtain, for
the density of states in an interval En − δE/2 < E < En + δE/2, the expression

ρ(E) ≈ ρ0 exp

n−1∑
k=0

(akδE) + an(E − En + δE/2)

 . (7)

This expression can be evaluated for any E in the range E0 − δE/2 < E < EN + δE/2. The
overall factor ρ0 can be fixed arbitrarily, as it drops in computations of ensemble averages.

4 Results

We can think of the coefficients an in terms of the temperature that gives rise to an en-
ergy distribution that is symmetric around the centre of the interval En. This implies
⟨⟨∆E⟩⟩an

≡ ⟨⟨E − En⟩⟩an
= 0, where the double brackets denote the sampled mean over con-

figurations restricted to the interval. To solve this equation, we follow Ref. [14] and use the
Robbins-Monro (RM) approach [15]. We choose an initial guess for a(0)

n ≈ an. Then, using
the equation a(m+1)

n = a(m)
n − 12⟨⟨∆E⟩⟩a(m)

n
/δ2E(m + 1), we iteratively improve our guess of the

true value of an. For a suitable initial value, after a transient, a(m)
n will oscillate around the

root an with an increasingly suppressed amplitude, and limm→∞ a(m)
n = an. An example of the

calculation of an for the SU(3) system considered here is shown in Fig. 1. We assess the size
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Figure 2: Thermodynamic observables measured with the LLR method (blue circles), com-
pared to results from standard importance sampling (black triangles), for SU(3) Yang-Mills
gauge theory on a 4× 203 lattice. The LLR calculation uses energy intervals of size δE/6Ṽ =
0.000374281 in the energy range from E0/6Ṽ = 0.439487341 to E54/6Ṽ = 0.459698522.
The blue curves are reconstructed observables from LLR method with a finer resolution in β,
restricted to the region around the phase transition. Left panel: average plaquette ⟨up⟩ against
the coupling β. Right panel: specific heat CV ≡ ⟨u2

p⟩ − ⟨up⟩
2 against the coupling β.

of the truncation error of the iteration by repeating the stochastic calculation 20 times, begin-
ning with the same initial guess, and averaging the results. As m increases, all the repeats
appear to converge towards the same final value. The values of an have been calculated for
intervals En that cover the energy range relevant for the physical problem we are interested
in. To avoid ergodicity problems associated with the restricted sampling, umbrella sampling
was used when applying RM iterations, as described in Ref. [16].

The VEV of observables that strictly depend on the energy at a coupling β are computed
by plugging the numerically determined values of an into Eq. (6), as follows

⟨O(E)⟩β =
1

Z(β)

N∑
n=0

∫ En+
δE
2

En−
δE
2

dE ρ0 exp

n−1∑
k=0

(akδE) + an(E − En + δE/2)

 O(E)e−βE . (8)

An analogous expression for Z(β) is left implicit. This equation displays a sum over contribu-
tions from all intervals, but notice the suppression of contributions for which the associated
inverse micro-canonical temperature is far from the coupling β we are calculating at.

Using Eq. (8) we have calculated the VEV of the average plaquette, ⟨up⟩β, and the specific
heat, CV ≡ ⟨u2

p⟩β − ⟨up⟩
2
β. These are shown in Fig. 2 plotted against the coupling value they

are calculated at. To demonstrate the validity of this method, the plots include the values
measured using standard importance sampling methods.

An important observable for gravitational wave physics is the latent heat, Lh, of the transi-
tion. As shown, e.g., in Ref. [17], the key thermodynamic quantity that enters the calculation
of Lh is the average plaquette jump at criticality, ∆⟨up⟩βc . For the definition of the critical
point, we take the value of β at which both phases are equally probable. The corresponding
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Figure 3. Results of the LLR analysis
of SU(3) Yang-Mills gauge theory on
a 4 × 203 lattice with energy intervals
of size δE/6Ṽ = 0.000374281 in the
energy range from
E0/6Ṽ = 0.439487341 to
E54/6Ṽ = 0.459698522. The top
panel shows the values of the
micro-canonical inverse temperatures
an against the centre of the energy
interval En, with a linear interpolation
between the points. The bottom panel
shows the reconstructed probability
distribution Pβc (E) of the energy E at
the critical coupling βc. The
horizontal dashed line shows the
location of the critical coupling, and
the vertical lines are the average
plaquette values at which an = βc,
which correspond to the locations of
the extrema of the probability
distribution.

energy distribution can be approximated with a double Gaussian in which the two peaks cor-
responding to the two different phases are of equal height [18]. The critical point is found by
taking the value of β at which the specific heat has a maximum, as an initial guess, and then
using a bisection algorithm to refine the estimate until a predefined tolerated different height
between the peaks is met. ∆⟨up⟩βc is then the energy difference between the position of the
confined peak and the position of the deconfined peak at the determined value of βc divided
by 6Ṽ , as shown in Fig. 3.

The presence of metastability can be inferred directly from the non invertibility of an(En),
as shown in Fig. 3.The points at which an = βc correspond to the locations of the extrema
of the distribution. The thermodynamics of the system can be further analysed using the
micro-canonical ensemble. In analogy with a statistical mechanics system, we can define the
temperature t, entropy s, and the free energy of the micro-states as follows:

tk ≡
1
ak
, s ≡ ln(ρ), F ≡ E − ts. (9)

Similarly to the case of a Van der Waals gas below criticality, we expect the free energy to
display a swallow tail structure (see, e.g., Ref. [19]), that indicates a first order transition.

A subtlety emerges because the definition of the entropy depends on the constant ρ0 in the
density of states. ρ0 contributes a term linear in the temperature to the free energy. As we are
only interested in seeing the qualitative behavior of the free energy, we subtract a linear term
Σt, where Σ is computed as the temperature average of the entropy within the energy range
considered. The result is shown in Fig. 4. This clearly shows the telltale signs of a first order
transition. Away from the critical region the free energy is single valued. In the critical region
the free energy has three values at any given t. The highest such value is associated with the
unstable vacuum, the middle one with the false vacuum and the lowest with the true vacuum.
The critical point corresponds to the location at which the lines from the true and false vacua
meet, resulting in a non-analyticity of the minimum of the free energy as a function of t.
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Figure 4. The free-energy for SU(3)
Yang-Mills gauge theory on a 4 × 203

lattice, computed in the LLR method
with energy intervals of size
δE/6Ṽ = 0.000374281, in the energy
range from E0/6Ṽ = 0.439487341 to
E54/6Ṽ = 0.459698522. The
free-energy is given by F = E − ts,
where E = 6Ṽ(1 − up) is the internal
energy, s = ln ρ is the entropy and
t = 1/an is the temperature. Σ is a
constant, computed as the temperature
average of s − ln ρ0 where ρ0

originates in the density of states,
Eq. (7). The inset shows an and En,
for the corresponding points.

5 Conclusions

First-order phase transitions in the early universe can give rise to a stochastic background
of gravitational waves that can be used to constrain new physics. For strongly coupled new
physics models, the relevant observables can in principle be measured using lattice field
theory. With the aim to obtain robust results, we have explored the possibility of applying
the LLR method, whereby the density of states of the system is determined numerically
in the microcanonical ensemble and then used to reconstruct observables performing
one-dimensional numerical integrals. We have tested the method for a SU(3) gauge theory
close to criticality, on a single lattice volume and at a relatively coarse lattice spacing. The
method has been validated using conventional lattice calculations, which are still viable for
the chosen lattice parameters. Our approach has also shown clear advantages in terms of
the quantities it can give us access to, which include the free energy, a precisely determined
probability distribution of the states at criticality and the dependency of the microcanonical
temperature on the energy. Those quantities, which cannot be robustly determined in
importance sampling approaches, show clear singularities that carry direct information about
the phase transition. The material presented here is the first step of a programme that aims to
use the LLR method to compute more accurately and efficiently thermodynamic quantities
in non-Abelian gauge theories.
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