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Abstract

In commonly used Monte Carlo algorithms for lattice gauge theories the
integrated autocorrelation time of the topological charge is known to be
exponentially-growing as the continuum limit is approached. This topologi-

cal freezing, whose severity increases with the size of the gauge group, can
result in potentially large systematics. To provide a direct quantification
of the latter, we focus on SU(6) Yang–Mills theory at a lattice spacing for
which conventional methods associated to the decorrelation of the topolog-
ical charge have an unbearable computational cost. We adopt the recently
proposed parallel tempering on boundary conditions algorithm, which has
been shown to remove systematic effects related to topological freezing, and
compute glueball masses with a typical accuracy of 2 − 5%. We observe no
sizeable systematic effect in the mass of the first lowest-lying glueball states,
with respect to calculations performed at nearly-frozen topological sector.
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1. Introduction

Based on the confining properties of QCD, it is predicted that gauge-
invariant bound states made of gluons alone, called glueballs, should appear
in the spectrum as asymptotic states. So far, glueballs have eluded exper-
imental detection, although candidate events have been recently found [1].
From the theoretical point of view, during last decades several studies have
appeared in the literature where glueball masses are computed in the non-
perturbative setting provided by numerical lattice field theory simulations,
where many intriguing predictions can been derived, both in relation to
QCD [2, 3, 4, 5, 6, 7, 8] or to possible Standard Model extensions [9]. Re-
garding QCD glueballs, the majority of such predictions has been obtained
for quarkless pure-gauge theories in the large number of colors (N) limit
N → ∞. Large-N pure SU(N) gauge theories provide a reasonable approxi-
mation of real-world N = 3 QCD [10], as finite-N corrections are suppressed
as powers of 1/N2, and enable us to avoid some technical complications (e.g.,
all glueballs are exactly non-interacting and have infinite lifetime at N = ∞).

The extraction of glueball masses from lattice simulations at large N is
a non-trivial task and several sources of systematic errors have to be ad-
dressed to obtain reliable results. In the last decades, enormous progress
has been made in the development and the refinement of the relevant tech-
niques [11, 12, 13, 14, 15, 16, 2, 3, 17, 4]. Nevertheless, systematic effects
related to topological freezing [18] have never been addressed in a satisfactory
way, so far.

Standard local updating algorithms suffer from non-ergodicity in the
vicinity of the continuum limit: as a → 0, the Markov chain of configura-
tions explored by the system tends to remain trapped in a fixed topological
sector. This problem becomes exponentially more severe as N is increased.
When N is large, the evolution of the topological charge along the Monte
Carlo trajectory freezes already for coarse lattice spacings [19, 20, 21, 22]. In
particular, there is ample numerical evidence that the autocorrelation time
of the topological charge τ(Q) diverges exponentially as a function of 1/a
and/or N [20, 21, 22], thus making ergodic exploration of different topologi-
cal sectors rapidly unfeasible as the continuum limit and/or the large-N limit
are approached. In practice, when N ≥ 6 and a ∼ 0.1 fm or below, essen-
tially very few to no fluctuations of Q are observed during reasonably-long

2



Monte Carlo histories1.
Since there is theoretical evidence that computing glueball masses on a

fixed topological sector may introduce a bias [24], it is of utmost importance
to check that any systematic error related to the restriction in a fixed topo-
logical sector is under control within the typical precision achieved in actual
simulations. The effect of fixed topology has however never been systemati-
cally probed on large-N glueball mass computations from the lattice.

In this letter we make a first step in this direction by removing any sys-
tematic effect related to the freezing problem through the Parallel Temper-

ing on Boundary Conditions (PTBC). The PTBC algorithm was proposed by
M. Hasenbusch [25] for 2d large-N CPN−1 models and was recently employed
both in the latter case and in large-N SU(N) pure-gauge theories [26, 27] to
improve state of the art of large-N topology from the lattice. In particular,
the PTBC algorithm has been shown to provide a dramatic enhancement
compared to standard algorithms when looking at the evolution of the topo-
logical charge Q, allowing to achieve a gain of several orders of magnitude in
terms of τ(Q).2

We generated 20k well-decorrelated gauge configurations for SU(6) at
a ≃ 0.0938 fm adopting the PTBC algorithm. These configurations were
then used to compute glueball masses for the first few lightest states using
standard methods. Since the PTBC algorithm is designed to restore ergodic-
ity, our simulations frequently explored Q 6= 0 sectors. Hence, for our model,
we were able to provide the first results for glueball masses free of any sys-
tematics related to topological freezing.

This letter is organized as follows: in Sec. 2 we describe our numerical
setup, in Sec. 3 we show our results for glueball masses and compare them
with results obtained with standard algorithms, finally in Sec. 4 we draw our
conclusions.

2. Lattice setup

We consider a collection of Nr hypercubic lattice replicas with L4 sites.
Replicas differ from one another only in the boundary conditions imposed
on the links on a small sub-region of the lattice, D, which we call the de-

1An exploratory study of the topological charge in the theory with dynamical fermions
for 3 ≤ N ≤ 5 has been performed in [23].

2Other recently proposed algorithms to avoid topological freezing include [28].
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fect. Boundary conditions on the defect are chosen in order to interpolate
between open boundary conditions (OBC) [29] and periodic boundary con-
ditions (PBC), while are taken periodic elsewhere for every replica. Each
replica is evolved independently using standard local algorithms. After each
replica has been updated, swaps among different replicas are proposed and
accepted/rejected by means of a standard Metropolis test. Iterations over
the full lattice are alternated with hierarchical updates over small sub-lattices
centered around D to improve the efficiency of the algorithm.

In practice, the lattice action of the rth replica looks like

S
(r)
L = −

β

N

∑

x,µ>ν

K(r)
x,µK

(r)
x+µ̂,νK

(r)
x+ν̂,µK

(r)
x,ν ℜTrΠ(r)

x,µν ,

where β is the bare coupling, Π
(r)
x,µν is the plaquette computed on the gauge

configuration of the rth replica and

K(r)
x,µ =

{

c(r), if µ = 1 and x ∈ D,

1, otherwise,

is used to impose boundary conditions on the links crossing orthogonally the
defect D = {x1 = L(a − 1), 0 ≤ x2 < L

(2)
d , 0 ≤ x3 < L

(3)
d , 0 ≤ t < L

(4)
d }.

In our simulations we used L
(2)
d = L

(3)
d = L

(4)
d ≡ Ld, and the defect is kept

fixed in the position described here; its position is however effectively moved
by translating the periodic copy (which is translation-invariant). Coefficients
c(r) interpolate between c(0) = 1 (PBC) and c(Nr − 1) = 0 (OBC) and are
tuned through short runs to make swap probabilities uniform among different
replicas.

Glueball masses are computed on the periodic r = 0 replica using stan-
dard techniques, which we here succinctly summarize. We define a variational
basis B = {Oi(t)} of time-dependent operators, with quantum numbers com-
patible with the desired glueball state. We only consider zero-momentum
operators Oi(t) =

∑

~x Oi(t, ~x), where Oi(t, ~x) are gauge-invariant local op-
erators expressed as traces of products of links taken over closed space-like
lattice paths. We also include in B operators obtained from blocked and
smeared links. Once B is chosen, to extract the lightest state in the selected
channel, we compute Cij(t) = 〈Oi(t)Oj(0)〉 and, through the Generalized

EigenValue method (GEV), we obtain the eigenvector vi related to the largest
eigenvalue of the generalized eigenvalue problem Cij(t)vj = λ(t, t′)Cij(t

′)vj .
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The correlator of the best overlapping operator between the vacuum and the
desired glueball state is then obtained as Cbest(t) ≡ Cij(t)vivj . The glueball
mass m is finally obtained in lattice units through a best fit of the expression

Cbest(t) ∼ exp(−amt), (1)

where the fit is performed over a range where the effective mass

ameff(t) ≡ − log

(

Cbest(t+ a)

Cbest(t)

)

(2)

shows a plateau. For more details about the glueball mass extraction proce-
dure, the choice of the variational basis for each B channel and the smearing
algorithms adopted in the context of glueball mass computations, we refer,
e.g., to Refs. [11, 12, 13, 15, 2, 3, 17, 4, 9, 7, 8].

3. Results

We simulated SU(6) at β = 25.452 (a ≃ 0.0938 fm) on a 164 lattice with
a cubic Ld = 3 defect. For each of 10 independent runs, we collected 2000
well-decorrelated configurations, stored every 200 parallel tempering steps,
after discarding the first 10000 parallel tempering steps for thermalization.
A single parallel tempering step is performed as follows:

1. Each replica is updated in parallel with a full lattice sweep of a 4:1
combination of over-relaxation and over-heat-bath algorithms (in the
following, this combination will be referred to as “standard updating
step”).

2. Swaps are proposed between replica pairs (r, r + 1), first for r even,
then for r odd or viceversa (order decided stochastically). Swaps of
odd and even (r, r+1) pairs are proposed in parallel and accepted with
probability

p(r, r + 1) = min {1, exp(−SL(r ↔ r + 1) + SL(no swap))}

After the swap proposals, the periodic r = 0 replica is translated of 1
lattice site along a random direction to effectively move the position of
the defect.

3. Each replica is updated in parallel with hierarchical sweeps on small
sub-lattices centered around the defect. After each hierarchical iter-
ation, the swaps and the r = 0 replica translations are performed as
in 2.
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It is clear that a single parallel tempering step requires a factor of ∼ Nr larger
numerical effort compared to a standard updating step. Nonetheless, even
when considering this overhead, the obtained gains in terms of decorrelation
of the topological charge make the parallel tempering algorithm the obvious
method of choice between the two, as it will be manifest in the following.
With this implementation, collecting the sample of configurations employed
for this study required ∼ 2.3M core-hours on Intel Skylake processors.

We chose a uniform ∼ 30% swap probability for all pairs; to reach it we
needed Nr = 30 replicas. In Fig. 1 we show the behavior of c(r) for every r
and the related swap acceptances (left plot above). Choosing approximately
uniform swap probabilities among different replica pairs ensured that a given
configuration explored uniformly all boundary conditions c(r) in a random-
walk fashion, which is a necessary condition for the correct operation of the
PTBC algorithm (left plot below).

Moreover, In Fig. 1 we also show the histogram of the obtained sam-
pling of the topological charge Q (right plot above) and the history of the
topological charge evolution in our typical run compared to the evolution
obtained with standard algorithms (right plot below). This quantity was
computed from the standard clover definition on smoothened configurations,
obtained after 20 cooling steps, and rounded to the nearest integer using the
so-called alpha-rounding method explained in, e.g., Refs. [30, 22, 27]. The
PTBC algorithm is capable of performing an ergodic sampling of the space of
configurations with respect to the topological charge, and allows to observe
numerous fluctuations of Q in a case where, with standard algorithms, only
a handful would be observed, cfr. Fig. 1. The gain in terms of the integrated
autocorrelation time of the topological charge τ(Q) is dramatic: while for the
standard run we estimate τstd(Q) ∼ 5000, with the PTBC algorithm we find
τPTBC(Q) = 92(8) (where τPTBC was obtained keeping into account that a
single PTBC step requires a numerical effort which is larger by approximately
a factor of ∼ Nr compared to a standard updating step).

We then employed the generated sample to compute glueball masses for
the Ground State (GS) of all RPC channels, with the exception of A−−

1 and
A−+

2 , which appear to be heavier than our ultra-violet cut-off ΛUV ∼ 2/a, and
defined the dimensionless ratios mRPC/mA++

1
∼ mJPC/m0++ . Here R stands

for a particular representation of the octahedral group, J stands for the
corresponding representation of SO(3) in the continuum, and PC stands for
the spatial parity and charge conjugation quantum numbers. For the ground
states in the RPC channels, we can establish the following correspondence
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Figure 1: Left plot above: choice of c(r) and related swap probabilities. Dotted line repre-
sents naive uniform choice of c(r). Right plot above: histogram of the topological charge
obtained from our configuration sample, generated with the PTBC algorithm. Left plot
below: random walk of a configuration through different replicas. Time along horizontal
axis is expressed in units of PTBC steps, and the shown time window corresponds to
∼ 10−2% of our total statistics. Right plot below: Monte Carlo evolution of the topolog-
ical charge Q obtained with the PTBC and with the standard algorithms. The time on
the horizontal axis is expressed in units of standard updating steps for both algorithms
(Monte Carlo time of the PTBC run was rescaled with a factor of Nr), and the shown time
window corresponds to ∼ 0.2% of the total statistics collected with the PTBC algorithm.

among representations of the octahedral group and representations of SO(3):
A1 → J = 0, A2 → J = 3, E → J = 2, T1 → J = 1, T2 → J = 2.

The ratios mRPC/mA++
1

were then obtained with a precision of the order

of 2 − 5%. We then compared our results for such quantities with those
reported in Ref. [8], using amA++

1
to fix a common lattice spacing scale. As
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the sample of configurations analyzed in Ref. [8] was obtained from standard
local algorithms, it is affected by severe topological freezing. The comparison
was performed as follows. We first extrapolated the finite-a results of Ref. [8]
towards the continuum limit by fitting

mRPC

mA++
1

(a) =
mJPC

m0++

+ cRPC

(

amA++
1

)2

+ o(a2); (3)

to the data, using cRPC and mJPC/m0++ as fitting parameters. Then, we
computed the value ofmRPC/mA++

1
expected at our value of amA++

1
, according

to the best fit of Eq. (3) above. To allow a comparison, we report in Tab. 1
our results for the mass of the GS in each RPC channel, expressed in lattice
units, as well as our determinations for mRPC/mA++

1
. The determinations

from Ref. [8], using the procedure described above, are also reported in Tab. 1,
in the rightmost column.

A comparison can also be made from Fig. 2, where, for brevity, we just
show the masses of the first 4 lightest states above 0++ (the GS of A++

1 ):
2++ (obtained from the weighted arithmetic mean between the mass of the
GS of the E++ channel and the mass of the GS of the T++

2 channel, which
are expected to become degenerate in the continuum limit), 0−+ (the GS of
the A−+

1 channel), 1+− (the GS of the T+−

1 channel) and 2−+ (the GS of the
E−+ channel). We stress that no difference was observed in heavier channels
compared to the results we are displaying in Fig. 2, cfr. Tab. 1.

As a matter of fact, in none of the explored cases any systematic effect
related to topological freezing was observed. Our results always fall on top
of the ones obtained by interpolating those of Ref. [8], see Figs. 2. This
is a strong indication that, even when focusing on channels with the same
quantum numbers PC = −+ as the topological charge (for example, the 0−+

or the 2−+ channels), no systematic error on glueball mass determinations
related to topological freezing can be appreciated within our ∼ 2− 5% level
of accuracy.

As a final comment, we observe that our error bars are generally larger
than those reported in Ref. [8], especially for heavier states. This is related to
the procedure adopted to extract glueball masses. Indeed, our uncertainties
are dominated by systematic effects related to the exponential fit of Eq. (1).

In principle, the mass m should be obtained by fitting the large-t asymp-
totic behaviour of Cbest(t) with a single exponential as in Eq. (1). In practice,
the contamination by larger-mass states at small t and the effects of statis-
tical noise at large t hinder this procedure and produce sizable systematic
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RPC JPC

amRPC

this work
β = 25.452

mRPC/mA++
1

this work
β = 25.452

mRPC/mA++
1

Ref. [8]
interpolation in amA++

1
= 0.6246

A++
1 0++ 0.6246(78) - -

Shown in Fig. 2
E++ 2++ 0.956(44) 1.530(73) 1.5545(61)
T++

2 2++ 0.991(16) 1.586(33) 1.5720(62)
A−+

1 0−+ 1.034(20) 1.655(37) 1.6370(95)
T+−

1 1+− 1.194(90) 1.91(15) 1.9527(97)
E−+ 2−+ 1.281(26) 2.050(49) 2.037(12)

Not shown in Fig. 2
T−+

2 2−+ 1.40(10) 2.23(17) 2.0483(92)
A+−

2 3+− 1.543(45) 2.471(78) 2.369(19)
A++

2 3++ 1.548(40) 2.478(71) 2.424(25)
T+−

2 2+− 1.571(46) 2.516(80) 2.363(14)
T−−

2 2−− 1.578(58) 2.526(98) 2.567(31)
T++

1 1++ 1.675(59) 2.68(10) 2.517(18)
E−− 2−− 1.696(61) 2.71(10) 2.563(17)
T−−

1 1−− 1.700(60) 2.72(10) 2.481(30)
T−+

1 1−+ 1.709(65) 2.74(11) 2.857(19)
E+− 2+− 1.845(93) 2.95(15) 2.879(27)
A−−

2 3−− 1.849(89) 2.96(15) 2.869(35)
A+−

1 0+− 2.00(12) 3.20(20) 3.112(49)

Table 1: Summary of the obtained results for the mass mRPC of the GS of all accessible
RPC channels in lattice units for N = 6 and β = 25.452 on a 164 lattice, obtained from
gauge configurations generated with the PTBC algorithm. We also compare our results
for the ratios mRPC/m

A
++
1

with those obtained interpolating the best fit of Eq. (3) to

results of Ref. [8] for our value of am
A

++
1

.

errors. The choice of the fitting range [tmin, tmax] is thus crucial and is de-
termined as follows. We look for a plateau in the effective mass in Eq. (2),
which should signal that the single-exponential asymptotic regime has set in.
If a plateau can be identified over an interval [t1, t2], we set tmin = t1. The
value of tmax is then chosen as the largest t ≤ t2 which allows to obtain a
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single-exponential best fit in [tmin, tmax] with a reasonable value of the χ2/dof,
where reasonable means that the corresponding p-value is between 5% and
95%. If instead a plateau cannot be clearly identified, we estimate m from
an envelope of the quasi-plateau of meff . We stress that such procedure tends
to be harder for states whose mass is close to or above the lattice ultra-violet
cut-off. In those cases, the plateau is typically very short, the effects of noise
immediately apparent and the systematics more prominent. The net result
is that the mass of heavier states tends to be determined less precisely.

The results above were obtained after an expensive computation, as the
production of our sample of configurations required a budget of approxi-
mately ∼ 2.3M core-hours on the cluster where simulations were run. Un-
fortunately, our resources did not allow us to improve our statistics further,
so as to reach an accuracy comparable to that of Ref. [8] also for heavier
states. Nonetheless, we observe a substantial agreement between our results
and those in Ref. [8] also for the latter states, confirming the picture that
already emerges for lighter states, where our accuracy is mostly of the same
order of magnitude as the one achieved in Ref. [8], as can be appreciated
from Tab. 1.

4. Conclusions

In this letter we applied the PTBC algorithm proposed by M. Hasen-
busch to perform the first determinations of glueball masses on the lattice
at large-N without any systematic effect related to topological freezing. We
did so in the pure SU(6) gauge theory, at a ≃ 0.0938 fm. The masses of
the first few low-lying glueball states were computed from a sample of 20k
well-decorrelated configurations. We compared our results with those ob-
tained from simulations performed with standard local algorithms, and thus
affected by severe topological freezing. No systematic effect related to the
non-ergodicity of the standard algorithms was observed in the value of glue-
ball masses within our 2− 5% level of accuracy.

This is a first robust indication3 that estimates of glueball masses obtained
in a fixed topological sector at large-N can be trusted at up to the few
percents level. Moreover, this shows that the PTBC algorithm is a perfectly
viable solution to the problem of accurately computing glueball masses at

3A preliminary investigation with OBC for SU(7) was provided in [31].

10



0 0.2 0.4 0.6

(am0++)2

1.5

1.6

1.7

1.8

m
2
+
+

m
0
+
+

Athenodorou & Teper, 2021

Parallel Tempering

0 0.2 0.4 0.6

(am0++)2

1.5

1.6

1.7

1.8

m
0
−
+

m
0
+
+

Athenodorou & Teper, 2021

Parallel Tempering

0 0.2 0.4 0.6

(am0++)2

1.8

1.9

2.0

2.1

2.2

2.3

m
1
+
−

m
0
+
+

Athenodorou & Teper, 2021

Parallel Tempering

0 0.2 0.4 0.6

(am0++)2

1.8

1.9

2.0

2.1

2.2

2.3
m

2
−
+

m
0
+
+

Athenodorou & Teper, 2021

Parallel Tempering

Figure 2: Results for the ratios of m2++ (left-above plot), m0−+ (right-above plot), m1+−

(left-below plot) and m2−+ (right-below plot) to m0++ obtained from configurations gener-
ated with the PTBC algorithm (diamond points), compared to those of Ref. [8], obtained
from configurations generated with standard local algorithms (empty round points). The
correspondence among RPC and JPC channels was done according to Tab. 1. Full round
points, dashed lines and shadowed areas represent, respectively, the continuum extrapola-
tion results, linear best fits and related fit errors of data of Ref. [8].

large-N without the effects of topological freezing. This algorithm could be
easily adopted in more extensive future studies, both to extend our current
results to larger values of N and/or to finer lattice spacings.

Several possible future directions can be explored to further clarify the
relationship between glueball mass computations and topological properties.
An independent way of probing the sensitivity of glueball masses to the choice
of a fixed topological sector is to study their dependence on the dimensionless
parameter θ, that couples the global topological charge Q to the standard
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Yang–Mills action. In particular, the quantitym2 ≡
d2mglueball

dθ2
|θ=0 is expected

to control the magnitude of systematics effects related to the restriction of
the sample of configurations to a fixed topological sector when computing
mglueball [24]. The computation ofm2 has been tackled from θ = 0 simulations
for the 0++ state [20], but only compatible-with-zero determinations have
been reported for N ≥ 4. This problem could be re-examined from the point
of view of the PTBC algorithm in combination with imaginary-θ simulations,
which have been shown to improve the computation of higher-order terms
in the θ-expansion [32, 22, 33, 27]. Another possible improvement could be
achieved by introducing topological operators in the variational basis used
in the GEV method, which could help in detecting any possible coupling of
glueball states to topological modes. Finally, intriguing insights might come
from the application of recent Neural Network techniques [34], for instance by
training a Neural Network to distinguish correlators computed from samples
of configurations with different global topology.
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