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Standard local updating algorithms experience a critical slowing down close to the continuum
limit, which is particularly severe for topological observables. In practice, the Markov chain tends
to remain trapped in a fixed topological sector. This problem further worsens at large 𝑁 , and
is known as topological freezing. To mitigate it, we adopt the parallel tempering on boundary
conditions proposed by M. Hasenbusch. This algorithm allows to obtain a reduction of the auto-
correlation time of the topological charge up to several orders of magnitude. With this strategy
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1. Introduction

Glueballs, bound states of gluons only, are one of the few Standard Model predictions which still
lack a satisfying experimental confirmation, since, despite several attempts, to date only one recent
indirect evidence of their existence has been found at colliders experiments, see for example [1].
From the theoretical side, there has been a tremendous effort of the theoretical community to
provide more and more precise estimations of glueballs masses, especially by means of lattice
simulations [2–9], which are a natural tool to explore this topic, being the existence of glueball
states a purely non-perturbative prediction stemming from the QCD confining properties.

Most lattice predictions have been obtained in pure-gauge Yang–Mills theories. The possibility
of exploring the large-𝑁 limit (𝑁 = number of colors) is particularly attractive, as it provides a
reasonable a reasonable approximation of QCD (being correction to 𝑁 = ∞ suppressed as powers
of 1/𝑁2) and, at the same time, allows to simplify computations (the absence of quarks and the
large-𝑁 limit make all glueballs non-decaying and non-interacting).

Numerical methods to extract glueball masses from lattice gauge configurations have been
refined tremendosuly in the last two decades [2–4, 10–16], in particular concerning the control over
systematic errors, which are by far the dominant source of uncertainties in these kind of calculations.
However, a possible systematic which has not been satisfyingly checked in the literature is the impact
of topological freezing on glueball mass results.

When approaching the continuum limit, Monte Carlo Markov chains tend to remain trapped
in a fixed topological sector if local updating algorithms are employed to explore the space of con-
figurations [17–19]. This is due to the loss of effectiveness of local updating steps in decorrelating
the configurations when the lattice spacing is small, thus prohibitively large statistics are required
to generate a representative sample close to the continuum. The severity of such Critical Slowing
Down increases exponentially with 𝑁 [20–28], so that in practice the Monte Carlo evolution of the
topological charge 𝑄 already freezes on coarse lattices when 𝑁 is large. For this reason, most of
the results for glueball masses at large 𝑁 have been obtained for frozen or nearly-frozen topology.
Since on theoretical grounds we expect that computing a glueball mass in a fixed topological sector
introduces non-trivial corrections [29] with respect to the correct result (obtained averaging over all
topological sectors), it is of the utmost importance to check that topological freezing does not result
in an unwanted bias on the computed glueball masses, at least within the typical level of accuracy
that can be reached with current state-of-the-art techniques.

In this paper, we report on the main results achieved in Ref. [30], where the first computation of
glueball masses at large 𝑁 free of the systematics effects of topological freezing has been obtained
by means of the parallel tempering on boundary conditions algorithm proposed by M. Hasenbusch
for 2𝑑 CP𝑁−1 models [31]. This algorithm was recently implemented for 4𝑑 SU(𝑁) pure-gauge
theories too [32] and it dramatically mitigated the effects of topological freezing. As a matter of
fact, such algorithm allows to reduce the auto-correlation time of 𝑄 (the number of updating steps
necessary to generate two decorrelated configurations with different topological charge) by up to
more than two orders of magnitude at large 𝑁 .

In Sec. 2 we outline our numerical setup; in Sec. 3 we summarize results of [30] for low-lying
glueball masses obtained for SU(6) for a lattice spacing 𝑎 ∼ 0.09 fm with parallel tempering and we
compare them with those obtained by standard algorithms in [9]; in Sec. 4 we draw our conclusions.
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2. Lattice setup

• Parallel tempering on boundary conditions

We simulate 𝑁𝑟 replicas of a 𝐿4 lattice imposing periodic boundary conditions everywhere
but on a small region, the defect, where different boundary conditions are considered as a
function of the replica 𝑟 . Such different boundary conditions are imposed multiplying the
gauge coupling of the links crossing the defect by a constant 0 ≤ 𝑐(𝑟) ≤ 1, where the extremes
are periodic (𝑐(0) = 1) and open boundaries (𝑐(𝑁𝑟 − 1) = 0). The lattice action of a replica
thus reads:

𝑆
(𝑟)
𝐿

= − 𝛽
𝑁

∑︁
𝑥,`>a

𝐾
(𝑟)
𝑥,`𝐾

(𝑟)
𝑥+ ˆ̀ ,a𝐾

(𝑟)
𝑥+â,`𝐾

(𝑟)
𝑥,a <TrΠ (𝑟)

𝑥,`a , (1)

with Π`a (𝑥) the plaquette and 𝐾 (𝑟)
𝑥,` = 𝑐(𝑟) if link (𝑥, `) crosses the defect, and 1 otherwise.

After each replica has been updated with standard methods [33, 34] (we adopt a standard
4:1 combination of over-relaxation [35] and over-heat-bath [36, 37] for this purpose), swaps
among neighbouring replicas (𝑟 ,𝑟 + 1) are proposed via a Metropolis test with acceptance
probability:

𝑝(𝑟, 𝑟 + 1) = min {1, exp(−𝑆𝐿 (𝑟 ↔ 𝑟 + 1) + 𝑆𝐿 (no swap))} . (2)

Constants 𝑐(𝑟) are tuned through preliminary runs to ensure 𝑝(𝑟, 𝑟 + 1) ≈ constant, so that
configurations can do a random walk among different replicas and explore uniformly all
boundary conditions.

Updating sweeps involving all lattice links are alternated during the Monte Carlo with hierar-
cic updates involving only the links living in the neighborhood of the defect, so that the region
where most of topological fluctuations are created/annihilated is updated more frequently.
Finally, the periodic replica is translated by one lattice spacing in a random direction after
every update in order to ensure that topological excitations are created/annihilated all over
the lattice.

• Glueball mass computation

We build a variational basisBRPC = {𝑂𝑖 (𝑡)} of zero-momentum gauge-invariant lattice opera-
tors with the quantum numbers of the desired glueball channel RPC, with R the representation
of the octahedral group (which decomposes in irreducible representations of the continuum
spin 𝐽) and PC the parity/charge conjugation. Recall that every 𝑂𝑖 (𝑡) is computed on the
periodic replica only.

Once the correlation matrix 𝐶𝑖 𝑗 (𝑡) = 〈𝑂𝑖 (𝑡)𝑂 𝑗 (0)〉 is obtained, we solve the Generalized
Eigenvalue Problem 𝐶𝑖 𝑗 (𝑡)𝑣 𝑗 = 𝐶𝑖 𝑗 (𝑡 ′)_(𝑡, 𝑡 ′)𝑣 𝑗 . In particular, if we aim at determining
the ground state of a certain RPC channel, it is sufficient to compute the eigenvector 𝑣𝑖 with
largest eigenvalue.

Finally, we saturate 𝑣𝑖 with 𝐶𝑖 𝑗 to obtain a correlator which maximizes the overlap between
the vacuum and the glueball state: 𝐶best(𝑡) ≡ 𝐶𝑖 𝑗 (𝑡)𝑣𝑖𝑣 𝑗 ∼

𝑡→∞
exp(𝑎𝑚𝑡), with 𝑚 the mass of

the glueball state.
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To properly identify the range in which 𝐶best(𝑡) exhibits a single-exponential decay, from
which we extract the glueball mass in lattice units 𝑎𝑚 by means of a best fit, we look for a
plateau in the effective mass

𝑎𝑚eff (𝑡) ≡ − log
(
𝐶best(𝑡 + 1)
𝐶best(𝑡)

)
. (3)

For more details about the procedure summarized so far, we refer the reader to Refs. [2–4, 7–
12, 14, 16].

3. Results

We simulated the SU(6) gauge theory on a 164 lattice with 𝛽 = 25.452, corresponding to a
lattice spacing 𝑎 ' 0.0938 fm. In Fig. 1 (top left plot) we show our algorithmic setup. We employed
𝑁𝑟 = 30 replicas and tuned 𝑐(𝑟) to achieve a constant ≈ 30% swap acceptance rate for all replicas,
which ensured that each configuration uniformly explored each boundary condition (Fig. 1, top
right plot). To this end, 𝑐(𝑟) has to deviate from a simple linear behavior in 𝑟 .
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Figure 1: All figures taken from Ref. [30]. Top left plot: behavior of 𝑐(𝑟) and 𝑝(𝑟, 𝑟 + 1) as a function of
𝑟. Top right plot: random walk of a configuration among the replicas. Bottom left plot: topological charge
distribution obtained with parallel tempering. Bottom right plot: comparison of the Monte Carlo evolution
of the topological charge 𝑄 for the parallel tempering and the standard runs. The Monte Carlo time on the
horizontal axis is reported for this plot in units of a standard updating step, i.e., the 4:1 over-relaxation/over-
heat-bath combination, for both algorithms.
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The improvement obtained was noticeable: while with the standard algorithm only a handful
of fluctuations of 𝑄 are observed within a reasonable Monte Carlo time, parallel tempering allows
to achieve many more fluctuations of 𝑄 within the same simulation time, ensuring a uniform and
ergodic exploration of many different topological sectors, cfr. Fig. 1 (bottom plots). We recall that
we assigned an integer topological charge to each configuration through the so-called 𝛼-rounding
of the standard clover lattice charge computed after 30 cooling steps. For more details on this
procedure we refer the reader to, e.g., Refs. [22, 32, 38].

To quantify the gain achieved by parallel tempering in terms of computational power, we
computed the auto-correlation time of 𝑄: while 𝜏(𝑄) ∼ 5000 with the standard algorithm, for
parallel tempering we find 𝜏(𝑄) = 92(8), where this number already takes into account that a single
parallel tempering step requires a numerical effort which is larger by a factor of 𝑁𝑟 .

We employed the generated gauge ensemble to compute glueball masses; in particular, we
focused on the ground states of all RPC channels but A−−

1 and A−+
2 , which are found to lie above our

lattice cut-off ΛUV ∼ 2/𝑎. We then established a correspondence between R and the representations
𝐽 of SO(3) as follows: A1 → 𝐽 = 0, A2 → 𝐽 = 3, E → 𝐽 = 2, T1 → 𝐽 = 1, T2 → 𝐽 = 2.
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Figure 2: All figures taken from Ref. [30]. Plots show results obtained with parallel tempering for
the ratios 𝑚𝐽PC/𝑚0++ for the 4 lowest-lying states we found (diamond points). These data are compared
with determinations reported in [9] (empty round points). For comparison we also show the continuum
extrapolation of the latter results, along with their continuum extrapolation (full round points for 𝑎 = 0) and
the error on the linear best fit employed for the extrapolation (shaded areas).
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To fix the scale, we employed the mass of the lightest state we found, i.e., A++
1 → 0++, meaning

that we considered the dimensionless ratios𝑚RPC/𝑚A++
1
→ 𝑚𝐽PC/𝑚0++ . In Figs. 2, our results for the

first few lightest states are compared with those obtained in Ref. [9], where masses were computed
for nearly-frozen topology. It is clear that we do not detect any bias introduced by topological
freezing within our percent level of precision, as our results superimpose on those of Ref. [9], even
for channels with the same quantum numbers of 𝑄 (PC = −+).

As a final remark, we observe that our error bars are in general larger compared to those of [9].
This is due to the fact that our uncertainties on glueball masses are dominated by systematic errors in
the detection of the plateau of the effective mass (3). In particular, at small times the contamination
by larger-mass states is important, while for large times the effective mass is more sensitive to
statistical noise. We were able to unambiguously detect a plateau for lighter states, while for heavier
ones we estimated our error bars from an envelope of the quasi-plateau of 𝑚eff (𝑡) at large times.
Nonetheless, even for heavier states we observe a substantial agreement between our findings and
those of Ref. [9], thus confirming the picture clearly emerging for lighter ones.

4. Conclusions

In this paper we discussed the main results of [30], where the first computation of glueball
masses at large 𝑁 without any systematic effect due to topological freezing has been performed by
means of the parallel tempering on boundary conditions algorithm. We explored a point of SU(6)
and we determined low-lying glueball masses with 2− 5% precision. From the comparison of such
results with those of [9] we conclude that no effect of topological freezing is observed within our
errors, even for those channels with the same quantum numbers of the topological charge. This
comparison provides the first robust indication that determinations of glueball masses obtained
from fixed-topology simulations can be trusted up to the percent level.

A possible future outlook of this work could be to tackle the problem of computing the quantity

𝑚2 ≡ 𝑑2𝑚(\)
𝑑\2

����
\=0

, where \ is the dimensionless parameter coupling 𝑄 to the Yang–Mills action,

being any correction due to fixed topology to a glueball mass 𝑚 proportional to this quantity [29].
A direct computation of 𝑚2 is hard, especially at large 𝑁 and for heavier states, as shown in [18],
because this quantity is affected by large statistical noise. Possible improvements are expected to
be obtained combining imaginary-\ simulations [22, 24, 25, 32, 39] with the parallel tempering
algorithm here discussed, as already shown in [32], where the combination of these two methods
has been employed to improve the computation of higher-order terms in the \-expansion of the
vacuum energy around \ = 0 at large 𝑁 .
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