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Abstract 26 

Background:  27 

Microbes constitute almost the entire ecological community in subsurface groundwater 28 

and play an important role in ecological evolution and global biogeochemical cycles. As 29 

a fundamental benchmark independent of human interference, the concept of an 30 

ecological baseline has been investigated in surface ecosystems such as soils, rivers, and 31 

lakes, but the existence of a groundwater microbial ecological baseline (GMEB) has 32 

remained an open question to date. 33 

Results: Based on high-throughput sequencing information derived from national 34 

monitoring of 733 newly constructed wells, we find that microbial communities in 35 

pristine groundwater exhibit a significant lateral diversity gradient, and gradually 36 

approach the topsoil microbial latitudinal diversity gradient with decreasing burial depth 37 

of phreatic water. Among 74 phyla dominated by Proteobacteria in groundwater, 38 

Patescibacteria act as keystone taxa that harmonize microbes in shallow aquifers and 39 

accelerate decline in bacterial diversity with increasing well-depth. Decreasing habitat 40 

niche breadth with increasing well-depth suggests a general change in the relationship 41 

among key microbes from close cooperation in shallow groundwater to strong 42 

competition in deep groundwater. Unlike surface-water microbes, microbial communities 43 

in pristine groundwater are predominantly shaped by deterministic processes, potentially 44 

associated with nutrient sequestration in a dark, anoxic environment. 45 

Conclusions: By unveiling the biogeographic patterns and mechanisms controlling the 46 
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community assembly of microbes in pristine groundwater throughout China, we  47 

confirm the existence of a GMEB in shallow aquifers and propose a Groundwater 48 

Microbial Community Index (GMCI) to evaluate anthropogenic impact. GMCI highlights 49 

the importance of GMEB in groundwater water security and health diagnosis. 50 

 51 

Key Words: GMEB, bacterial community, keystone taxa, deterministic processes, 52 

groundwater.  53 
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Background 54 

Groundwater, the world’s largest available store of freshwater resource, provides more 55 

than two billion people with drinking water and supplies approximately 40% of global 56 

irrigation [1]. Groundwater is vital to global biogeochemical cycles [2,3]. As the most 57 

ancient and diverse life form on Earth, microbes comprise almost the sole ecological 58 

community found in groundwater [4,5]. Over billions of years, groundwater microbes 59 

have participated in the metabolism of key elements such as carbon, nitrogen, sulfur, 60 

phosphorus, and various metals, and thereby have influenced the biogeochemistry of 61 

subsurface and even surface ecosystems [6,7]. Compared with the surface environment, 62 

aquifer ecosystems provide harsh habitats for biological survival due to their being devoid 63 

of photosynthesis, oxygen and readily available organic carbon [2,8], and so offer ideal 64 

targets for the study of microbial ecology, evolution, and environmental adaptation [9,10]. 65 

In the past decade, the tree of life has significantly expanded owing to the discovery of 66 

vast previously uncharacterized and uncultured microbial populations in aquifers [11-13]. 67 

For example, Brown et al. [11] newly defined >35 candidate phyla radiation 68 

(Patescibacteria), by reconstructing 789 draft genomes from groundwater samples. The 69 

superphylum Patescibacteria has received extensive attention, given its unique features 70 

of ultra-small cell size, small genome size, and lack of CRISPR, which helped facilitate 71 

a better understanding of the life of microbes in extreme environments [12,14]. Different 72 

assemblages of Patescibacteria organisms are key to turning the globally relevant 73 

subsurface biogeochemical cycles of carbon, nitrogen, sulfur, and hydrogen [15,16]. 74 
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The ecological baseline delineates the original state of ecosystem attributes such as 75 

environmental parameters, biological composition, and service functions, and could be 76 

applied to the design of operational monitoring programs that quantify ecosystem change 77 

in response to anthropogenic disturbance and contamination[17,18]. Ecological baselines 78 

of soil, river, and ocean ecosystems established based on macro-organisms (e.g., fishes[19] 79 

and invertebrates[20]) have demonstrated that a return to the nearly original state could 80 

be expected upon the baselines being correctly determined and human interference being 81 

effectively controlled. Nowadays, groundwater is facing dual global threats to its water 82 

quality and quantity globally [21], and so an improved understanding is urgently needed 83 

of groundwater geochemistry and ecology in order to assess anthropogenic impact. 84 

Previous indices developed for groundwater ecological assessment, such as 85 

the groundwater quality index (WQI) [22], have invariably overlooked the significance 86 

of groundwater microbes. Meanwhile, the ubiquity, strong adaptability, and dispersal 87 

abilities of groundwater microbes have led to controversy as to whether or not microbial 88 

elements should be included in establishing the groundwater ecological baseline [23]. 89 

Recent progress in advanced technologies, such as new generation high-throughput 90 

sequencing [24], has provided a means by which to uncover the mysterious world of 91 

microbes and facilitate exploration of the groundwater microbial ecological baseline 92 

(GMEB). 93 

With the rapid development of high-throughput sequencing, numerous studies have 94 

established that microbes exhibit obvious microbial biogeographic patterns in a wide 95 
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variety of natural ecosystems, including terrestrial [25] and marine [26] systems. 96 

However, previous studies concerning groundwater ecosystems have been mostly limited 97 

to small scale, for example, contaminated areas [27], typical basins [28], and special 98 

geological zones [29], and so are unable to provide a holistic view of GMEB at large scale. 99 

Meanwhile, an understanding of the mechanisms that govern 100 

microbial community assembly is crucial for predicting the response of ecosystems to 101 

human activity. Several investigators have indicated that microbial biogeographic 102 

patterns are controlled by deterministic processes, including abiotic and biotic factors 103 

[27,30,31]. Such deterministic processes increase the predictability of microbial 104 

communities, providing theoretical support for the presence of a microbial ecological 105 

baseline. Other researchers have stressed the important roles of ecological drift, dispersal 106 

limit, and even historical contingency in community assembly [32,33]. Noting the 107 

significant habitat differentiation of complex heterogeneous environments in the 108 

subsurface, niche differentiation appears to offer a sensible ecological interpretation of 109 

variations in microbial diversity and composition [34,35].   110 

Considering the severe scarcity of baseline data concerning the groundwater microbial 111 

ecosystem, we implemented a national monitoring campaign covering 733 newly 112 

constructed and 130 reconstructed wells across China (Fig. 1a) and established a unique 113 

microbial dataset, which has enabled us to address the following major questions: (1) 114 

Does GMEB exist at continental scale? (2) What are the lateral and vertical patterns of 115 

baseline microbial communities in different geo-environments? (3) What are the 116 
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dominators and keystone taxa in pristine groundwater? (4) Could the principal processes 117 

of community assembly be beneficial in shaping the GMEB? (5) Is there is a good index 118 

by which to assess the anthropogenic impact on groundwater based on the GMEB? 119 

Materials and methods 120 

Study area and sample collection 121 

As the largest country in Asia, China has abundant groundwater resources distributed 122 

across various climatic belts and geo-environmental zones, and is ideal for exploring 123 

microbial communities in groundwater at continental scale. We obtained groundwater 124 

samples from 733 newly constructed wells and 130 reconstructed wells. In the newly 125 

constructed wells, sampling commenced immediately after exposure of groundwater to 126 

the external environment, thus providing first-hand samples useful as a baseline of 127 

groundwater microbes throughout China. Sampling from reconstructed wells enabled 128 

comparison with groundwater microbial communities in newly constructed wells, 129 

including 504 phreatic and 229 confined wells. The monitoring wells were distributed 130 

across seven geo-environmental zones covering 31 provinces in China (Fig. 1a, Table S1 131 

and S2). The sampling campaign occupied a wide geographical space extending from 132 

18.3°N to 52.0°N and from 76.1°E to 133.5°E. We focused on areas facing groundwater 133 

problems, such as the Beijing-Tianjin-Hebei region located in the Huanghuaihai-Yangtze 134 

River Delta Plain zone where the groundwater has experienced severe overexploitation 135 

and salinization.  136 
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Prior to sampling, groundwater in a given monitoring well was abstracted at a 137 

controlled discharge below 100 mL/min using a submersible sampling pump. Outflow 138 

water quality indicators (pH, electrical conductivity, oxidation-reduction potential, and 139 

turbidity) were measured using a portable tester (AP-800, Aquaread Ltd) at intervals 140 

ranging from 5 to 15 minutes until water quality stabilized over three consecutive 141 

measurements (≤ ±10%). More than 3,000 L of groundwater were drained from each 142 

sampling site and filtered by hollow fiber membranes to enrich microbial cells (Toray, 143 

0.01 μm). The hollow fiber membranes were transported with dry ice to designated 144 

laboratories and stored at -80 ℃.  145 

Groundwater samples were collected in 5L sterile PET bottles for physicochemical 146 

content analysis. Prior to analysis, the samples were transported to the laboratory within 147 

12 h and stored at -4 °C. According to the standard methods prescribed by the Ministry 148 

of Ecology and Environment of China, an array of physicochemical parameters, including 149 

total dissolved solids (TDS), chemical oxygen demand (CODMn), ammonium nitrogen 150 

(NH4
+-N), and nitrate nitrogen (NO3

--N), were determined. Key metal elements 151 

(including sodium (Na), potassium (K), calcium (Ca), and magnesium (Mg)) were 152 

measured by ICP-MS (Thermo Fisher Scientific, USA). Bicarbonate (HCO3
-) and 153 

Carbonate (CO3
2- ) were measured using potentiometric titration, and Fluoride (F-), 154 

chloride (Cl-), and sulfate (SO4
2-) were determined by ion chromatography (Thermo 155 

Fisher Scientific, USA). All physicochemical parameters were normalized using Min-156 

Max standardization. 157 
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DNA extraction and bioinformatics analysis  158 

The substances captured by the hollow fiber membranes were dissolved in ultrapure water 159 

by ultra-sonication, then filtered through 0.22 μm polycarbonate membranes (Millipore, 160 

USA). Genomic DNA was extracted using the MoBio PowerSoil® kit (MoBio 161 

Laboratories, Carlsbad, CA, USA) according to manufacturer protocols. DNA quantity 162 

and quality (Table S3) were determined using a NanoDrop Spectrophotometer 163 

(NanoDrop Technologies Inc., Wilmington, DE, USA). Polymerase chain reaction (PCR) 164 

was used to amplify the V3-V4 hypervariable region of the bacterial 16S rRNA gene (3 165 

min at 95 °C, followed by 29 cycles at 95 °C for 30 s, 55 °C for 30 s, and 72°C for 45 s, 166 

and concluding with a final extension step at 72 °C for 10 min). Primers used for bacterial 167 

16S rRNA gene PCR amplification were 338F (5′ -ACTCCTACGGGAGGCAGCAG-168 

3 ′ ) and 806R (5 ′  -GGACTACHVGGGTWTCTAAT-3 ′  )[36]. Sequencing was 169 

performed by Shanghai Majorbio Bio-pharm Technology Company Ltd (Shanghai, 170 

China). 171 

DNA sequences were quality-filtered on the Majorbio Cloud Platform 172 

(https://cloud.majorbio.com/) using QIIME v1.9.1 [37]. Operational taxonomic units 173 

(OTUs) were clustered with 97% similarity cutoff using UPARSE (version 7.1) [38], and 174 

chimeric sequences were identified and removed using UCHIME. A representative 175 

sequence of each OTU was selected for taxonomic assignment. Bacterial OTUs were 176 

assigned by the RDP classifier [39] against the SILVA 16S rRNA database 177 

(http://www.arb-silva.de/). A confidence threshold of 70% was used to analyze the 178 
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taxonomy for all OTUs. OTUs identified at the level of phylum, family, order, class, genus, 179 

and species were 86.7%, 80.4%, 61.6%, 38.3%, 23.9%, and 8.5%, respectively.  180 

Statistical analysis 181 

Identification of the core microbial taxa (OTUs). The core microbial taxa in 182 

groundwater were identified from the huge, unique datasets established as part of this 183 

study, following two criteria [40]. Firstly, we identified the most abundant OTUs based 184 

on average relative abundance < 0.01%. Secondly, only ubiquitous OTUs occurring in > 185 

50% of the total samples were considered. To identify the environmental preference of 186 

each core microbial taxa between newly constructed and reconstructed wells, the 187 

Wilcoxon rank-sum test was applied using the wilcox.test function in “stats” package in 188 

R version 3.6.1(https://www.r-project.org/). A similar test was conducted for core taxa 189 

between confined and phreatic groundwater in newly constructed wells. Sequences of 190 

core OTUs were compared with those archived in the National Center for Biotechnology 191 

Information (NCBI) nucleotide database, using the Basic Local Alignment Search Tool 192 

(BLAST) to obtain a more accurate phylogenetic tree. The closest sequences and selected 193 

reference sequences were aligned using ClustalW software. After alignment, gaps were 194 

trimmed with the trimAl tool (threshold = 0.2). The phylogenetic tree was constructed by 195 

the MEGA 7.0 tool using a neighbor-joining algorithm with a bootstrap test of 1000 196 

replicates and maximum composite likelihood model [41], and visualized using an online 197 

Interactive Tree Of Life server (https://itol.embl.de/).  198 

Alpha and beta diversity. The OTU table for subsequent comparative analysis was 199 
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rarefied to the same sequencing depth (23976 sequences per sample). Alpha diversity was 200 

quantified using MOTHUR [42]. Taxonomic and phylogenetic diversities were measured 201 

using the Shannon diversity index and Faith’s phylogenetic diversity. Linear and 202 

polynomial regression fits were constructed using the nlme R package. Non-metric 203 

multidimensional scaling (NMDS) was used to visualize the dissimilarity of beta diversity 204 

based on the Bray-Curtis distance. One-way analysis of variance (ANOVA) and Analysis 205 

of similarity (ANOSIM) were calculated to test the significance of differences in 206 

community diversity and structures among specific groups using the ‘aov’ and ‘anosim’ 207 

functions in vegan R package, respectively. Distance-decay relationships (DDRs) were 208 

calculated as the slopes of linear least-squares regressions for relationships between the 209 

natural logarithm of geographic distance and the natural logarithm of Bray-Curtis 210 

community similarity.  211 

Identification of biomarker. Linear discriminant analysis effect size (LEfSe) was 212 

used with Wilcoxon and Kruskal-Wallis tests to discover high-dimensional biomarkers 213 

and explain taxa differences over varying well-depth ranges and geo-environmental zones. 214 

The LEfSe biomarker detection was performed in QIIME using the logarithmic LDA 215 

threshold > 3.5 and the statistical parameters of P < 0.05. 216 

Network analysis. Co-occurrence network analysis at genus level was performed to 217 

investigate the complex interactions among microbial communities for different well-218 

depth ranges (0-20 m, 20-40 m, 40-60 m, 60-80 m, and > 80 m). Firstly, rare genera with 219 

relative abundance of < 0.01% were removed. Secondly, all possible Spearman’s 220 
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correlation coefficients between two genera were calculated. Then, species pairs with 221 

strong (Spearman’s |r| > 0.6) and significant (FDR-adjusted P < 0.001) correlations were 222 

selected to filter the data for reduced network complexity. Co-occurrence network 223 

visualization and modular analysis were conducted using the interactive platform Gephi 224 

(http://gephi.github.io/). The topology of networks (including average degree, average 225 

path length, clustering coefficient, graph density, and modularity) and node-level 226 

topological features (including degree, betweenness, and closeness centrality) were 227 

characterized using the igraph R package. Higher average degree, clustering coefficient, 228 

graph density, and lower average path lengths suggest a more connected co-occurrence 229 

network [43]. High mean degree, high closeness centrality, and low betweenness 230 

centrality were jointly used as thresholds for identifying keystone taxa [44]. 231 

Niche breadth. The niche breadth (B) index was estimated according to the formula 232 

[45]:  233 

B𝑗 = 1/∑ P𝑖𝑗
2

𝑁

𝑖=1
 234 

where Bj indicates the niche breadth of species j; Pij is the proportion of species j present 235 

in habitat i. Species with a higher B-value are considered to be habitat generalists whereas 236 

species with a lower B-value are habitat specialists. Habitat niche breadths and mean 237 

niche breadths (OTUs) at community level were calculated as the summation and average 238 

of B-values of all taxa occurring in a single community[46]. 239 

Ecological models. Fitness of zero-sum multinomial (ZSM), pre-emption, broken stick, 240 

log-normal, Zipf, and Zipf–Mandlebrot models were employed to confirm whether niche 241 
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or neutral processes determined the community assembly within a sample. Akaike 242 

Information Criterion (AIC) values for the pre-emption, broken stick, log-normal, Zipf, 243 

and Zipf–Mandlebrot models were calculated using the ‘radfit’ function in the Vegan R 244 

package. The AIC value of ZSM model was determined using Tetame [47]. All models 245 

were compared based on their AIC values, with a lower AIC value indicating a better fit 246 

of the model to the sample [48]. The normalized stochasticity ratio (NST) was used to 247 

estimate ecological stochasticity of community assembly, with 50% taken as the boundary 248 

point between more deterministic (< 50%) and more stochastic (> 50%) assemblies 249 

[49,50]. NST values for microbial communities in different groundwater samples were 250 

calculated according to taxonomic and phylogenetic metrics using the NST R package. 251 

Influence of environmental variables. Variation partitioning analysis (VPA) was 252 

conducted to address the relative roles of geographical and environmental factors and 253 

their combined effect on community variations, based on the Bray-Curtis distance [51]. 254 

The Mantel test (999 permutations) was performed to examine the correlation between 255 

environmental variables and community structures. Environmental variables with 256 

variance inflation factors >10 were removed to ensure the absence of multicollinearity 257 

among environmental variables. Constrained correspondence analysis (CCA) of beta 258 

diversity with environmental variables was undertaken to investigate community 259 

distribution. VPA, Mantel test, and CCA were carried out using the vegan R package. 260 

Pearson and Spearman correlation analyses were performed using SPSS software (IBM 261 

Corporation, USA), and the corresponding heatmap plotted using the ggplots R package. 262 
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Detailed information on the grouping variables and statistical hypothesis for the analytical 263 

methods used in the study is provided in Table S4. Bonferroni correction p.adjust methods 264 

in the stats R package were used to provide strong control of the family-wise error rate. 265 

Groundwater Microbial Community Index (GMCI). GMCI described the 266 

characteristic of microbial community by means of an integrated variable, analogous to 267 

and modified from the Invertebrate Community Index (ICI) [52] and Rapid Assessment 268 

Approach [20]. The procedure was as follows: (1) Construction of baseline data. Selection 269 

of the baseline sites as reference data must follow two principles, i.e., no-disturbance (or 270 

minimal level of anthropogenic interference) and relatively similar type of habitat to the 271 

monitoring site. (2) Selection of a subset of microbial indicators. Microbial diversity, 272 

dominators, key species, and biomarkers of pristine groundwater were selected as initial 273 

indicators. Any species with an occurrence rate less than 20% or average relative 274 

abundance less than 0.5% was excluded. (3) Observation and expectation ratio (O/E ratio) 275 

of microbial indicators was determined for the test sites. The 60% baseline and test 276 

samples were randomly selected to estimate the expectation value and set the alarm O/E 277 

ratio of each indicator, while each of the remaining samples was judged as to whether it 278 

had experienced strong anthropogenic interference by comparing its O/E ratio with the 279 

alarm O/E ratio. Indicators with low identified accuracy rate (accurate identified number 280 

/ actual number of reconstructed wells) and high error rate (error identified number / 281 

actual number of newly constructed wells) would be eliminated. (4) Integration and 282 

calculation of GMCI. Multiple reliable indicators with weights and scores were integrated 283 
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into a single index namely GMCI. An alarm threshold value of GMCI = 1.0 was used to 284 

evaluate the status of each observed microbial community in groundwater, and the 285 

identified accuracy and error rate of anthropogenic interference then calculated.  286 

Results 287 

Profiles of microbial communities in groundwater 288 

A total of 97,569 OTUs (operational taxonomic units sharing ≥ 97% sequence similarity), 289 

belonging to 74 phyla and 1703 genera, were obtained by high-throughput sequencing of 290 

groundwater samples acquired throughout China. Proteobacteria was the most abundant 291 

phylum (20.5% of the total OTUs and 52.1% of the total 16S rRNA sequences), followed 292 

by Bacteroidota, Campilobacterota, Patescibacteria, Actinobacteriota, Firmicutes, 293 

Desulfobacterota, Chloroflexi, Acidobacteriota, Nitrospirota, Methylomirabilota, and 294 

Verrucomicrobiota (Additional file 2: Fig. S1).  295 

Similar to microbial communities in other systems [40,53], the species rank abundance 296 

distribution of groundwater microbes at national scale presented a typical peak-and-tail 297 

distribution (Additional file 2: Fig. S2), in which 1186 most abundant OTUs accounted 298 

for 74.9% of the total abundance, whereas 93.0% OTUs comprised regionally rare OTUs 299 

with a mean relative abundance of < 0.001% [54]. Based on previous studies [40], we 300 

defined the core microbial taxa as OTUs of occurrence frequency > 50% and mean 301 

relative abundance > 0.01%. About 0.42% of OTUs (411) constituted the microbial core 302 

community in groundwater, accounting for 53.8% of the total abundance (Fig. 1b). Less 303 
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than 20% of the core OTUs matched an available reference genome at > 97% similarity 304 

level and 23.4% were uncultivated lineages. Most of the core OTUs belonged to 305 

Proteobacteria (Gammaproteobacteria and Alphaproteobacteria), Actinobacteriota, 306 

Bacteroidota, and Firmicutes. It is likely that these core taxa share certain phenotypic 307 

traits and/or life-history strategies to adapt to harsh subterranean habitats. For example, 308 

the genus Pseudomonas contained the most abundant and the largest number of core 309 

phylotypes in groundwater, which proved to have low nutritional requirements and a high 310 

diversity of energy metabolisms [55]. 311 

Lateral and vertical pattern of baseline microbes  312 

Biogeographic patterns can provide important perspectives by which to understand 313 

ecological and evolutionary processes in a natural ecosystem [23]. Here we used 314 

Shannon’s diversity index and Faith’s phylogenetic diversity (PD) to derive 315 

biogeographic patterns of microbial alpha diversity in groundwater from 733 newly 316 

constructed wells across China. The taxonomic and phylogenetic diversities of 317 

groundwater microbes exhibited similar biogeographic patterns (Pearson’s coefficient: r 318 

= 0.85, P < 0.001), peaking at mid-latitudes (around 40° N, Fig. 2a and 2b) with a clear 319 

increasing trend from west to east of China (Additional file 2: Fig. S3). Microbial 320 

diversity across the seven geo-environmental zones exhibited significant discrepancy 321 

(one-way ANOVA test: P < 0.001) in phreatic water, highest in the Huanghuaihai-Yangtze 322 

River Delta Plain zone (II) and lowest in the South China Bedrock Foothill zone (III) 323 

(Additional file 2: Fig. S4). According to previous studies on the age-depth relationship 324 

javascript:;
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in groundwater [56], phreatic water could be further classified into several levels in terms 325 

of the range of well depth (e.g., 0-40 m, 40-80 m, and > 80 m). As the well-depth range 326 

decreased from > 80 m to 0-40 m, the latitudinal diversity gradient (LDG) in shallower 327 

groundwater (R2 = 0.16, P < 0.001) approached the topsoil LDG pattern (Additional file 328 

1: Table S5 and Additional file 2: Fig. 2c), and the vertical change gradient was especially 329 

obvious in eastern China (zone Ⅰ, Ⅱ, and Ⅲ, Fig. 2d). 330 

The distance-decay relationship (DDR) is regarded as a fundamental pattern in ecology 331 

[53,57]. The community similarity of groundwater microbes decreased significantly as 332 

geographical distance increased (Mantel r = 0.17, P < 0.001). Microbial communities 333 

between varying geo-environments displayed steeper DDR slopes (Additional file 2: Fig. 334 

S5, slope = -0.21) than those within individual geo-environmental zones (slope = -0.10), 335 

suggesting an apparent influence of regional hydrogeological factors on microbial 336 

communities in groundwater. This finding was further confirmed by ANOSIM test at the 337 

OTUs level (RANOSIM = 0.27, P < 0.001). 338 

Given that the vertical layering of strata is known to be unique and complex [2], we 339 

explored the relationship between microbial communities and placing depth of wells. In 340 

comparison to more productive systems (e.g., topsoil) [25,58], microbial diversity in 341 

groundwater was much lower, and exhibited a declining trend with increasing burial depth 342 

under varying geo-geo-environments (Additional file 2: Fig. S6a and S7). This vertical 343 

trend was especially evident in phreatic water (Pearson’s coefficient: r = 0.41, P < 0.001), 344 

compared with the irregular variation of microbial diversity in confined water (P > 0.05). 345 
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Non-Metric Multidimensional Scaling (NMDS) analysis showed an obvious variation in 346 

microbial composition at OTUs level with well depth in phreatic water (Additional file 2: 347 

Fig. S6b), as confirmed by strong correlation between the second NMDS and well depth 348 

(r = -0.46, P < 0.001). Microbial communities in shallower phreatic water exhibited 349 

steeper DDR slope (0-40 m: slope= -0.18, Mantel r = 0.24, P < 0.001) and significantly 350 

higher β diversity (P < 0.001) than in deeper phreatic water (>80 m: slope= -0.02, Mantel 351 

r = 0.08, P > 0.05) (Additional file 2: Fig. S8).  352 

Biomarkers for depth-based microbial baselines in varying geo-environments 353 

To better understand the spatial heterogeneity of groundwater baseline microbial 354 

communities, we investigated the groundwater biomarkers in varying well-depth ranges 355 

(Fig. 3a) and geo-environmental zones (Fig. 3b and Fig. S9). Vertically, Patescibacteria, 356 

Nitrospirota, Chloroflexi, and Methylomirabilota preferred to occur in shallow 357 

groundwater (0-40 m), Firmicutes was more likely to appear in groundwater in the 358 

medium well-depth range (40-80 m), while Proteobacteria favored deeper groundwater 359 

(>80 m) and was the only phylum whose relative abundance increased significantly iwith 360 

well depth (Additional file 2: Fig. S10, r = 0.47, P < 0.001). In lateral space, we provided 361 

representative biomarkers for each geo-environment. For example, genus Ralstonia was 362 

found to be a suitable groundwater biomarker to distinguish between microbial 363 

communities in different geo-environmental regions, noting their much higher abundance 364 

in Qinghai-Tibet Plateau Alpine Frozen Soil zone (Fig. 3c). 365 

As a superphylum of prevalent concern in recent years [14,16], Patescibacteria was 366 
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observed in more than 99.1% of groundwater samples, comprising 19.9% of the total 367 

OTUs (only second to Proteobacteria) and 5.7% of the total sequences (Additional file 2: 368 

Fig. S1). Relative abundance of Patescibacteria peaked in the Northeast Plain-Mountain 369 

zone (biomarker, 10.7±1.3%) and troughed in the Northwest Arid Desert zone (1.1±370 

0.3%), mainly owing to habitat preferences of class Parcubacteria and ABY1 (Additional 371 

file 2: Fig. S11b). Patescibacteria presented the most significant declining trend in 372 

relative abundance with increasing well depth in phreatic water (Additional file 2: Fig. 373 

S10, slope = - 0.36, r = -0.55, P < 0.001), and exhibited a positive correlation with 374 

groundwater microbial diversity (Additional file 2: Fig. S12, r = 0.56, P < 0.001). In 375 

general, the vertical variation in dominant taxa appeared to weaken at lower taxonomy 376 

levels (e.g., class, order, family, and genus) (Additional file 1: Table S6), confirming 377 

previous claims that distributed randomness was greater among similar functional taxa 378 

and niche differentiation was stronger for a local community[59]. However, certain 379 

classes of Patescibacteria, notably Parcubacteria, Microgenomatia, Gracilibacteria, and 380 

Berkelbacteria, exhibited significant declines in relative abundance with increasing well 381 

depth (Additional file 2: Fig S11c). 382 

Coexistent patterns of baseline microbes 383 

Microbial coexistent patterns in groundwater were further investigated through the 384 

establishment of co-occurrence networks based on microbial correlation relationships 385 

(Spearman’s |r| > 0.6 and FDR-adjusted P < 0.001) for several well-depth ranges (Fig. 386 

4a). Microbes in deeper groundwater exhibited stronger interconnectivity than in 387 
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shallower groundwater, characterized by higher average degree, clustering coefficient, 388 

and graph density, but lower average path length of subnetwork [43] (Additional file 1: 389 

Table S7). Positive and negative interactions in a co-occurrence network have previously 390 

been found to reflect potential mutualistic and antagonistic relationships among microbes 391 

[60]. Significant negative correlation was found only in deeper groundwater (6.02% 392 

negative edges for well depths > 80 m) possibly due to stronger competition among 393 

interspecies in deeper groundwater, whereas mutualism or commensalism were more 394 

likely to occur in shallower groundwater. 395 

Node-level topological metrics such as degree, closeness centrality, and betweenness 396 

centrality can be used to identify keystone taxa [44]. In Fig. 5, most nodes in networks 397 

belonged to Proteobacteria whose relative abundance tended to increase with increasing 398 

burial depth. However, the degree and closeness centrality of Proteobacteria members 399 

were significantly lower than that of Patescibacteria (P < 0.01), implying a greater 400 

importance of Patescibacteria in maintaining structure and function of microbial 401 

communities in phreatic water. The keystone taxa largely belonged to the class ABY1 and 402 

Gracilibacteria in shallow groundwater, with both having close connections with the taxa 403 

of Proteobacteria, Chloroflexi, Dependentiae, and Verrucomicrobiota. Whilst those in 404 

deep groundwater (> 80 m) seemed more diverse, with the majority of taxa being capable 405 

of adapting to extreme environmental conditions or subsistence on persistent organic 406 

pollutants; such as Sphingomonas which is capable of degrading polycyclic aromatic 407 

hydrocarbons [61]. 408 
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Groundwater microbial ecological baselines supported by deterministic processes 409 

To provide supporting evidence for GMEB, we assessed community assembly processes 410 

using several ecological models. Under the Akaike Information Criterion (AIC), we 411 

preliminarily confirmed the existence of GMEB by revealing the bacterial community 412 

assembly that was dominantly shaped by deterministic processes (Fig. 4a), with an 413 

exception of only 3.0% samples fitted to the ZSM model (neutral processes) [62]. This 414 

finding was further evidenced by the lower normalized stochasticity ratios [50] (NST < 415 

50%) of community assembly based on taxonomic (average 29.62%) and phylogenetic 416 

metrics (average 32.54%) (Additional file 1: Table S8). Moreover, community-level 417 

habitat and OTU-level mean niche breadths were used to examine the variation in 418 

groundwater microbial diversity with burial depth. In phreatic water, habitat niche 419 

breadths were higher than those in confined water (P < 0.001), and exhibited an obvious 420 

declining trend with increasing burial depth (Pearson’s coefficient: r = -0.35, P < 0.001; 421 

polynomial fit: R2 = 0.12, P < 0.001) (Fig. 5b), further confirmed the increased 422 

competition among microbes for survival resource and space in deeper groundwater. 423 

Conversely, the mean niche breadths in phreatic water were significantly lower than in 424 

confined water (P < 0.001), and demonstrated a strongly positive correlation with well 425 

depth (Pearson’s coefficient: r = 0.28, P < 0.001; polynomial fit: R2 = 0.13, P < 0.001) 426 

(Fig. 5c), suggesting the significance of niche differentiation in shaping groundwater 427 

microbial ecological baseline pattern. 428 

We performed variance partition analysis (VPA) based on Bray-Curtis similarity to 429 
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evaluate the relative importance of environmental selection in groundwater microbial 430 

community assembly. Overall, the environmental variables provided a much more 431 

detailed picture of the spatial variation of the microbial community, particularly in 432 

shallow phreatic water (0-40 m, 15.27%, Additional file 2: Fig. S8b). Among the 58 433 

parameters considered, the Mantel test suggested a relatively higher correlation between 434 

microbial structures and chemical oxygen demand (COD), Manganese (Mn), and 435 

bicarbonate (HCO3
-) in groundwater (Additional file 2: Fig. S13). Canonical 436 

correspondence analysis (CCA) further indicated that geochemical signatures represented 437 

by Na+, K+, Cl-, and HCO3
-, which were closely related to the hydrogeological conditions 438 

in varying geo-environmental zones, had significant impact on the distribution of 439 

groundwater microbes (Additional file 2: Fig. S14). 440 

Discussion 441 

Ecological baselines are essential for reconciling arguments about maintenance of 442 

biological diversity, original state of biotic communities, and ecosystem functions [63]. 443 

The existence of ecological baseline on subsurface groundwater is still an important and 444 

open question due to the extreme susceptibility to pollution. The concept of a groundwater 445 

microbial ecological baseline (GMEB) is an extension of the ecological baseline of earth 446 

surface ecosystems [17,18], and is proposed specifically for subsurface groundwater 447 

ecosystems where microbes are almost the only organisms present [64]. We define the 448 

GMEB as a reference for comparing microbial communities in groundwater affected by 449 

human intervention with those in the absence of human intervention. The GMEB has four 450 
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unique characteristics: (1) the GMEB should be in pristine groundwater and thus derived 451 

from “newly constructed wells” to avoid (as far as possible) interference from human 452 

activities; (2) the GMEB should be capable of representing the entire bacterial community 453 

including uncultured bacterial species, through the use of advanced high-throughput 454 

sequencing technology; (3) the GMEB should be determined using sufficient samples 455 

taken from representative sites covering a typical variety of hydrological and geological 456 

environments at continental scale; and (4) the GMEB should be largely driven by 457 

deterministic processes in terms of specific niche. In the present work, we implemented 458 

a large-scale monitoring campaign to obtain first-hand data from “newly constructed 459 

wells” to establish the GMEB and parallel data from “reconstructed wells” to evaluate 460 

anthropogenic impacts on microbial community structures at the test sites. The stability 461 

of microbial communities in groundwater has been proved spatiotemporally with the 462 

proviso that habitats remained unchanged [65,66]. The higher community similarity 463 

within the same geo-environment and its significant distance decay in pristine 464 

groundwater throughout China supports the fundamental assumption that similar 465 

biological components should be expected at congeneric environments in the absence of 466 

human intervention [20]. 467 

Recent progress in high-throughput sequencing has provided us with a relatively 468 

unbiased compositional snapshot of microbial communities [24], and helped us uncover 469 

the mysterious world of subsurface microbes. Based on the present unique bacterial 470 

dataset derived from pristine groundwater, we depicted the baseline patterns by 471 
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comparing the microbial latitude diversity gradient in pristine groundwater at different 472 

burial depths and in the topsoil. Laterally, baseline microbes exhibited a unimodal LDG 473 

pattern with highest diversity at latitudes close to 40°N, suggesting mid-latitude of high 474 

humidity and warm temperature would provide optimum survival habitats for microbes. 475 

Vertically, the LDG approached those in the topsoil with decreasing burial depth [25,58], 476 

indicating the divergent microbial pool at the surface would directly influence microbial 477 

diversity in shallow groundwater. In short, the geo-environment, as a complex 478 

macroscopic factor controlling hydrological connectivity and chemical characteristics of 479 

groundwater, has played an important role in shaping the biogeographic patterns of 480 

baseline microbes across China. Groundwater microbial diversity is highest in the 481 

Huanghuaihai-Yangtze River Delta Plain zone due to relatively frequent surface-482 

groundwater interactions promoted by local hydrogeological characteristics including 483 

multi-fault structures, widespread loose and non-rock clay accumulation, and slow 484 

horizontal runoff [67]. 485 

Microbial ecological baseline patterns in pristine groundwater might be primarily 486 

mediated by certain dominant and key taxa [68]. Proteobacteria, the most typical habitat 487 

generalists [45], were confirmed as absolute dominators of groundwater microbial 488 

community. Driven by the mass propagation of their few taxa, Proteobacteria tended to 489 

have greater relative abundance in extreme environments, which would in turn inhibit 490 

local microbial diversity (Fig. S11, r = -0.54, P < 0.001). On the other hand, the majority 491 

of Patescibacteria members exhibited niche specialization and demonstrated significant 492 
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declines in relative abundance and diversity with increasing well depth. Patescibacteria 493 

were characterized by small genome size, presence of potential attachment and adhesion 494 

proteins, and absence of numerous biosynthetic capacities, suggesting that they could not 495 

live alone and instead would be parasites or form mutualistic arrangements with other 496 

microorganisms [15,16]. Network analysis further revealed the mediating role of 497 

Patescibacteria as keystone taxa in shallow phreatic water (Fig. 5b). Through anaerobic 498 

fermentative metabolism, certain members of Patescibacteria were capable of producing 499 

organic carbon, including hydrogen, acetate, formate, and ethanol, for other microbes 500 

[12,14]. Moreover, Patescibacteria may promote and maintain the interconnectedness 501 

and connectivity of the microbial community via quorum sensing signals and potential 502 

co-metabolism[69]. Some phylotypes of Patescibacteria were unable to colonize 503 

successfully in absence of available symbiotic partners because of the scarcity of 504 

available niches, further accelerating decline in microbial diversity in deep phreatic-water 505 

layers beyond the scope of the present study aimed at establishing a groundwater 506 

microbial baseline. 507 

The existence of a GMEB relies on niche differentiation with respect to microbes in 508 

pristine groundwater, implying the importance of deterministic processes in community 509 

assembly [34]. In surface water, microbial communities tend to be driven by stochastic 510 

processes due to strong flow-induced turbulence [70]. In pristine groundwater however, 511 

microbial communities are predominantly shaped by deterministic processes controlled 512 

by relatively isolated, stable, highly heterogeneous habitats, leading to the possible 513 
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occurrence of a GMEB. The persistent selection march according to subterranean 514 

environmental constraints would preserve microorganisms capable of efficient energy 515 

utilization and/or special strategies of nutrient sequestration which cope better in 516 

conditions of low energy flux [6,71]. Our study has indicated that a relatively high 517 

proportion of autotrophic microbes can exist in groundwater, being strongly influenced 518 

by specific electron acceptors or donors (e.g., HCO3
-, Fe, Mn, and nitrate) (Additional 519 

file 2: Fig. S15). These findings partially explain how microbial communities adapt to 520 

subterranean dark, anoxic, nutrient ‐ limited environments. From the perspective of 521 

assessing anthropogenic impact on groundwater ecosystems, shallow phreatic water 522 

should be of much greater significance for the establishment of GMEB given its ready 523 

susceptibility to human interference. Interestingly, environmental selection has been 524 

found to provide a relatively poorer explanation of microbial community variation in deep 525 

phreatic or confined water, but this does not affect the claim about existence of a microbial 526 

baseline in shallow phreatic water (Additional file 2: Fig. S16). Beyond the scope of 527 

shallow phreatic water, a higher mean niche breadth of taxa has been observed due to 528 

increased proportions of habitat generalists with high biological adaptability through a 529 

long-term series of ecological successions [45], ultimately leading to relatively low 530 

diversity and high community homogeneity in deep groundwater. 531 

Subterranean microbes are particularly sensitive to anthropogenic intervention in their 532 

evolutionary adaptations [72]. The GMEB suggests that similar microbial structures 533 

should be expected at congeneric environments in the absence of human intervention. 534 
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Therefore, the anthropogenic impact on microbial community structures in the test sites 535 

could be evaluated by comparing with the baseline at reference sites with similar habitats 536 

[17,18]. At a national scale, our monitoring results have indicated that anthropogenic 537 

perturbation did cause an increase in microbial diversity and alteration of community 538 

structure even at phylum level (Additional file 2: Fig. S17). To facilitate evaluation of 539 

anthropogenic impact in practical groundwater monitoring, we proposed Groundwater 540 

Microbial Community Index (GMCI), which integrated microbial diversity, key species, 541 

and biomarkers (see Methods). For GMCI≥1.0, the anthropogenic impact would be 542 

significant at specific test sites matched against the same reference group (Additional file 543 

1: Table S9, S10, and S11), with larger GMCI index indicating a stronger effect of human 544 

activity. To fully understand the effects of human activities on microbial ecological 545 

baselines in groundwater, we devised two categories of microbial baseline: one is the 546 

baseline at reference sites in regions experiencing intensive human intervention, such as 547 

the Beijing region, and the other is in regions with less human interference, such as the 548 

Xinjiang region. Without loss of generality, the difference in monitored community 549 

dissimilarity between newly constructed and reconstructed wells (Fig. 6a and Additional 550 

file 2: Fig. S18) in these two representative regions corresponded to the GMCI-based 551 

assessment results (Fig. 6b). It should be noted that the GMCI-based assessment had some 552 

obvious drawbacks. For example, the sequencing depth and sampling methods 553 

significantly influenced the resolution and accuracy of high-throughput sequencing, 554 

which required us to formulate standard monitoring methods for microbial communities. 555 
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Noting the present inadequacy of GMCI data, priority should be given to the classification 556 

of reference groups and construction of a reference database for typical microbial habitats.  557 

Conclusions 558 

We confirmed the existence of the GMEB at continental scale by unveiling the 559 

biogeographic pattern of microbes in pristine phreatic water based on a unique dataset 560 

derived from recent monitoring of 733 newly constructed wells in seven geo-561 

environmental zones across China. The GMEB exhibits a latitudinal diversity gradient 562 

pattern which approximates that in topsoil with decreasing well depth, and the alpha 563 

diversity peaks in the belt around 40°N due to frequent groundwater-surface interactions 564 

facilitated by special geo-environments. We found that Proteobacteria was the dominator 565 

(contributing over half the total abundance) in groundwater, while Patescibacteria acted 566 

as hubs harmonizing symbiotic microbes in shallower phreatic aquifers and promoting 567 

the vertical decay of microbial communities downwards. We revealed the endogenous 568 

mechanism for microbial co-occurrence in shallower phreatic water, and the ideal 569 

exogenous conditions for baseline microbes predominantly driven by deterministic 570 

processes under varying geo-environments. Furthermore, we proposed GMCI-based 571 

assessment to facilitate evaluation of anthropogenic impact in practical groundwater 572 

monitoring, highlighting the fundamental importance of GMEB for health diagnosis and 573 

water security of underexplored groundwater ecosystems. In the long run, much more 574 

information is needed to enrich the reference database and continuously improve the 575 

system of reference groups constituted by microbes and their matched habitats.  576 
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Multimetric approaches need to be developed that account for the combined effect of 577 

multiple attributes and provide an overall evaluation of the status of the microbial 578 

community under severe anthropogenic interference. In this regard, the concept of a 579 

“habitat ~ microbial reference ~ subterranean truth” system is recommended to reflect the 580 

relationship between geo-environment and microbial structure in groundwater 581 

ecosystems at regional, national, and global scales. 582 
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 774 

 775 

 776 

Fig. 1 The atlas of dominant microbes in continental groundwater. a 863 sampling sites distributed 777 

throughout China. Groundwater samples collected from 733 newly constructed and 130 778 

reconstructed wells are marked by circles and triangles. For newly constructed wells, red and white 779 

circles represent phreatic and confined groundwater samples. The background is a composite of 780 

seven geo-environmental zones. b Phylogenetic tree of core taxa in groundwater. The colors in the 781 

innermost ring indicate taxonomic information on core taxa at class level. On ring b1, black 782 

indicates a representative strain matched at the ≥ 97% similarity level, and gray indicates taxa 783 

identified as having uncultured lineage. The colors on rings b2 and b3 denote environmental 784 

preference. The histogram (b4) in the outermost ring displays average relative abundance. 785 
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 788 

 789 

Fig. 2 Biogeographic patterns of groundwater baseline microbes in China. a Spatial distribution of 790 

groundwater microbial diversity across seven geo-environmental zones. b Microbial latitudinal 791 

diversity gradient (LDG) in groundwater. Red solid and black dashed lines show polynomial and 792 

linear fts based on ordinary least square regression, with the shaded area representing 95% 793 

confdence intervals. Values of the adjusted R2 of the polynomial fts and Pearson’s r of the linear fts 794 

are provided. c Comparison of LDG pattern in three well-depth ranges of phreatic water with that on 795 

the topsoil. d Vertical trend of LDG pattern in eastern (zone I, II, and III), middle (zone IV and V), 796 

and western (zone VI and VII) China. Quadratic coefficients of polynomial fts of LDG are used to 797 

represent their variation rate in varying well-depth ranges. 798 
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 802 

 803 

Fig. 3 Biomarkers of varying groundwater samples. LEfSe cladogram showing biomarkers of a three 804 

well-depth ranges and b varying geo-environmental zones. Abundant taxa with average relative 805 

abundance of ≥ 0.5% are assigned to kingdom (innermost), phylum, class, order, family, and genus 806 

(outermost). Each biomarker is colored by its environmental preferences. c Spatial distribution of 807 

representative biomarkers for depth-based microbial baselines in varying geo-environments. 808 
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 812 

 813 

Fig. 4 Coexistence patterns of baseline microbes. a Co-occurrence networks of microbial community 814 

at genus level (average relative abundance > 0.01%) for phreatic water samples. Each node 815 

represents one genus, and each edge represents a strong and signifcant correlation between two 816 

genera (Spearman’s |r| > 0.6 with FDR-adjusted P < 0.001). The size of each node is proportional to 817 

the degree, and the phyla of nodes are labelled in distinct colors. Black and red edges indicate 818 

positive and negative relationships. b Comparisons of relative abundance and node-level topological 819 

features (degree, betweenness centrality, and closeness centrality) between Proteobacteria and 820 

Patescibacteria. *0.01 < P < 0.05, **0.001 < P < 0.01, and ***P < 0.001 821 
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 824 

 825 

Fig. 5 Deterministic community assembly of groundwater baseline microbes. a Proportions of 826 

samples ftted to pre-emption, broken stick, log-normal, Zipf, Zipf-Mandlebrot, and ZSM models at 827 

varying well-depth ranges (total, 0–40, 40–80, and > 80 m) in phreatic and confined water. ZSM was 828 

a neutral-based model, whereas the other models were niche-based. b, c Variations in habitat niche 829 

breadth and mean niche breadth (OTUs) of each sample with well-depth. Boxplots illustrate habitat 830 

niche breadth and mean niche breadth in phreatic (blue) and confined (red) water for varying well-831 

depth ranges (0–40, 40–80, and > 80 m). Blue and red lines display the polynomial regression of 832 

niche breadth against well depth in phreatic and confined water. 833 
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 836 

 837 

Fig. 6 Evaluation of anthropogenic interferences on groundwater bacterial communities. a Non-838 

metric multidimensional scaling (NMDS) analysis based on Bray–Curtis similarity showing 839 

compositional discrepancy on microbial community between newly constructed and reconstructed 840 

wells. Beijing and Xinjiang regions are selected as the representative regions suffering strong and 841 

weak human intervention, respectively. b Comparisons of GMCI assessment results of microbial 842 

communities in newly constructed and reconstructed wells. Left figure shows GMCI assessment 843 

results of two representative regions based on national baseline data, while right one is based on 844 

regional baseline data. The identified accurate rate (green) and error rate (yellow) are provided in the 845 

panel legend. 846 


