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This paper investigates flow past a backward-facing step (BFS) in a duct at Reynolds number
Re = 5080 based on step height, mean inflow velocity, and fluid kinematic viscosity. The flow
configuration matches a combustion experiment conducted by Pitz and Daily in 1983. High-
resolution velocity fields are obtained in OpenFOAM by direct numerical simulation (DNS),
and the flow field analyzed by Lagrangian approaches. Trajectories of fluid particles in areas
of interest are obtained by high-order numerical integration, and used to compute finite-time
Lyapunov exponents (FTLEs) and polar rotation angles (PRAs). Lagrangian coherent structures
(LCSs) are extracted using geodesic theory, including hyperbolic LCSs and elliptic LCSs. We
use complementary qualitative and quantitative LCS analyses to uncover the underlying flow
structures. Notably, we find that a flow pathway in which fluid particles rarely diverge from
adjacent particles is opened and closed by FTLE ridges determined by the periodic shedding of
vortices from the BFS. Two dominant vortices with significant Lagrangian coherence, generated
respectively by the separated boundary layer and shear layer, are self-sustaining and of comparable
strength. Hyperbolic repelling LCSs act as transport barriers between the pathway and cores of
the coherent vortices, thus playing a major part in the fluid entrainment process. Interactions
between these different geometric regions partitioned by LCSs lead to intrinsic complexity in the
BFS flow.

Key words: Authors should not enter keywords on the manuscript, as these must be chosen by
the author during the online submission process and will then be added during the typesetting
process (see Keyword PDF for the full list). Other classifications will be added at the same time.

1. Introduction
Coherent structures in complex flows have been the focus of much research interest, with
considerable effort devoted specifically to the study of coherent structures in turbulence (Sirovich
1987; Waleffe 2001; Neamtu-Halic et al. 2020). Although coherent structures play an important
role in the transport and mixing of fluid particles, their physical description is not well understood.
Various definitions of coherent structures have been proposed from different perspectives. Haller
& Yuan (2000) cite example definitions of coherent structures as collections of fluid particles
with distinct statistical features Elhmaïdi et al. (1993), energetically dominant recurrent patterns
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Holmes et al. (1996), and concentrated vorticity zones that maintain their identity over long
periods of time Provenzale (1999). From an analytical point of view, methods for extracting
coherent structures may be divided into Eulerian and Lagrangian approaches.

Eulerian approaches capture coherent structures by examining the instantaneous distribution
of different scalar fields (such as vorticity, kinetic energy, strain, etc.) in the flow field. Such
approaches are widely applied to vortex identification. Commonly used analysis methods include
the Okubo-Weiss criterion (Okubo 1970; Weiss 1991), 𝑄-criterion (Hunt et al. 1988), Δ-criterion
(Chong et al. 1990), and 𝜆2-criterion (Jeong & Hussein 1995). Although these methods effectively
frame coherent features of the instantaneous velocity field, a threshold value has to be set
artificially in order to properly capture the vortex structure(s). In an unsteady flow, coherently
evolving velocity features tend to differ substantially from coherently moving fluid parcels, and so
Eulerian approaches experience difficulty in determining the true coherent structures in the flow.
Most Eulerian vortex identification approaches lack objectivity (i.e. frame-independence), which
means that they cannot remain invariant with respect to time-dependent rotation and translation
of the reference frame. However, there exist a few notable exceptions, such as instantaneous
vorticity deviation (IVD) (Haller et al. 2016), the instantaneous version of the finite-time Lyapunov
exponent (FTLE) field (Nolan et al. 2020), and objective Eulerian coherent structures (OECS)
(Serra & Haller 2016).

Unlike Eulerian approaches, the Lagrangian approach investigates advection and diffusion
processes by regarding the flow field as a dynamical system composed entirely of fluid particles.
More precisely, the Lagrangian approach determines the most influential coherent structures in
a flow by tracing the separation of fluid particles over a finite time interval of interest. With
the development of chaos theory, it has been discovered that the trajectory of an individual
fluid particle in a complex flow is often highly sensitive to small changes in the particle’s
initial condition. However, as pointed out by Haller (2015), "behind complex and sensitive tracer
patterns ... there exists a robust skeleton of material surfaces, Lagrangian coherent structures
(LCSs), shaping those patterns". Haller described LCSs as "the most repelling, attracting, and
shearing material surfaces that form the skeleton of Lagrangian particle dynamics". In recent
decades, LCSs have proved to be of great use in analyzing Lagrangian coherence in finite-time
dynamical systems.

Methods by which to analyze Lagrangian coherence are usually divided into two broad
categories: diagnostic and analytical (Hadjighasem et al. 2017). Diagnostic methods provide
a scalar field whose features are expected to reveal coherent structures based on certain geometric
or physical parameters. Most of these methods do not strictly define the coherent structures, nor do
they establish the precise mathematical relationship between the geometric characteristics of the
scalar fields and the coherent structures. Therefore, even for some simple flows, these approaches
may result in false positives and negatives. For instance, without additional mathematical criteria,
FTLE struggles to differentiate between repelling and shearing effects (Branicki & Wiggins 2010).
On the other hand, diagnostic methods are still widely used, being easy to calculate and providing
a rapid visualization of the unknown flow field that is useful for preliminary understanding.
Analytical methods define coherent structures as precise solutions of mathematically formulated
coherence principles. A recent advance, geodesic LCS theory, seeks an LCS as a stationary curve
of the Lagrangian strain or shear functional computed along material lines (Haller & Beron-
Vera 2012, 2013; Farazmand et al. 2014). The foregoing variational method reveals LCSs to be
null-geodesics of appropriate strain tensor fields computed from the deformation field. Geodesic
LCS theory extracts transport barriers as material lines whose functions are similar to those in
classical dynamical systems (e.g., stable and unstable manifolds, shear jets, and KAM curves),
and partitions the flow geometrically into regions with distinct properties.

The methods used to extract LCSs in the present paper depend solely on frame-invariant
tensor fields, and hence remain the same in translating and rotating frames. Moreover, they
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possess the ability to define structure boundaries without relying on a preselected threshold. A
further advantage is their insensitivity to short-term anomalies in the velocity field. Nevertheless,
Lagrangian quantities can be computationally expensive to determine, because a large number of
trajectories are involved in the integration of fluid particles.

As an objective tool, LCS methods have been applied to various flows in order to extract coherent
structures. For example, Cardwell & Mohseni (2007) used LCS analysis to study boundary layer
reattachment and the shedding of wake vortices for numerical simulations of a two-dimensional
airfoil under low Reynolds number conditions. They found that the LCS approach can capture
more details than Eulerian methods, with the formation, shedding, and rupture of vortices more
obvious. Peng & Dabiri (2009) applied the LCS method to a planktonic predator-prey system,
and identified the region where moon jellyfish (Aurelia aurita) captures its prey. This enabled
analysis of the influence of parameters such as prey size, escape ability, and predator perception
on the interaction between prey and predator. Hadjighasem & Haller (2016) processed video
images captured by NASA’s Cassini space mission, and extracted elliptic LCSs and parabolic
LCSs concerning Jupiter’s Great Red Spot and atmospheric jet stream using geodesic theory.
Suara et al. (2020) used LCS to study the source and destination of marine debris in Moreton Bay
on the southeast coast of Queensland, Australia, and found that islands play an important role in
preventing material transport and mixing in the bay.

Flow past a backward-facing step (BFS) is a typical benchmark separation flow problem with
rich flow physics that incorporates shear layer separation and reattachment together with primary
and secondary recirculation regions in the lee of the step. Engineering applications of BFS flow
include diffusers, combustors, ducts, and channels with sudden expansions encountered in internal
flow systems, and surface furrows and ridges on airfoils and vehicles in external flows. Owing
to the geometrical simplicity of the BFS, many theoretical and experimental studies have been
undertaken (Brown & Roshko 1974; Armaly et al. 1983; Le et al. 1997; Nadge & Govardhan
2014). Perhaps surprisingly, there is considerable disparity in the literature on BFS flows even
with regard to the time-averaged reattachment length. The hidden mechanisms behind BFS flow
remain to be fully investigated, one of which is the formation and development of coherent
structures. To date it has been established that coherent structures play an important role in
the dynamics of the separated shear layer, contributing significantly to flapping movements and
high-order harmonic oscillations (Ma & Schröder 2017). An improved knowledge of the hidden
nonlinear dynamics of coherent structures might contribute to the creation of an effective solution
to the flow-separation control problem. Although Eulerian approaches for identifying coherent
structures have long been utilized (Neto et al. 1993; Hu et al. 2016), Lagrangian approaches have
received less attention with their application limited to FTLE (Sampath et al. 2016; Yang et al.
2021).

In this paper, we apply two types of diagnostic method (the finite-time Lyapunov exponent
(FTLE) and polar rotation angle (PRA)) and an analytical method (geodesic LCS theory) to
detect LCSs in a BFS flow whose configuration is consistent with that studied in the combustion
experiment conducted by Pitz & Daily (1983). Complementary qualitative and quantitative
analyses are used to uncover the underlying structures within flow past a backward-facing step by
employing both categories of LCS-detection methods. Here, we idealise the flow past a backward-
facing step as a two-dimensional problem in the plane. We therefore neglect gravitational
acceleration, which is reasonable for gas flow through a duct where the speed of sound in
the fluid is much larger than the flow speed.
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2. Methods
2.1. Diagnostic methods: FTLE and PRA

Consider a two-dimensional unsteady flow velocity field,

¤𝒙 = 𝒖(𝑡, 𝒙), 𝒙 ∈ 𝑈 ⊂ R2, 𝑡 ∈ [𝑡0, 𝑡1] , (2.1)

where 𝒙 is the distance vector in cartesian coordinates, 𝒖 is the vector of velocity components,
𝑡 is time, 𝑈 is the flow domain, 𝑡0 is start time, and 𝑡1 is end time. Solutions of this ordinary
differential equation (ODE) define the flow map,

F 𝑡
𝑡0 (𝒙0) := 𝒙 (𝑡; 𝑡0, 𝒙0) , (2.2)

which states that a fluid particle whose initial position is 𝒙0 at time 𝑡0 is mapped onto 𝒙(𝑡; 𝑡0, 𝒙0)
at time 𝑡 by the flow map F . Consider a material line 𝛾 of initial condition 𝛾(𝑡0) whose position
𝛾(𝑡) at time 𝑡 satisfies

𝛾(𝑡) = F 𝑡
𝑡0 (𝛾(𝑡0)). (2.3)

To assess the influence of specific material lines on trajectories, we utilize a classical measure
of flow deformation, the right Cauchy-Green strain tensor

C 𝑡
𝑡0 (𝒙0) =

[
∇F 𝑡

𝑡0 (𝒙0)
]T ∇F 𝑡

𝑡0 (𝒙0), (2.4)

where ∇F 𝑡
𝑡0

denotes the gradient of the flow map, and the symbol T indicates matrix transposition.
The symmetric, positive definite tensor C 𝑡

𝑡0
possesses two positive eigenvalues 0 < 𝜆1 ⩽ 𝜆2 and

an orthonormal eigenbasis {𝝃1, 𝝃2} satisfying

C𝝃𝑖 = 𝜆𝑖𝝃𝑖 ,
��𝝃𝑖 �� = 1, 𝑖 = 1, 2,

𝝃2 = M𝝃1, M =

(
0 −1
1 0

)
. (2.5)

The finite-time Lyapunov exponent (FTLE), proposed by Pierrehumbert & Yang (1993) as an
indicator of mixing regions, is a measure of the rate of separation of neighbouring particle
trajectories initialized near a given point over a finite time interval [𝑡0, 𝑡], and is defined as

Λ𝑡
𝑡0 (𝒙0) =

1
𝑡 − 𝑡0

ln
√
𝜆2 (𝒙0). (2.6)

The initial positions of repelling LCSs are then defined as ridges of the FTLE field Λ𝑡
𝑡0
(𝒙0)

(Haller 2002, 2011).
The orthonormal eigenbasis {𝝃1, 𝝃2} is mapped onto {∇F 𝑡

𝑡0
𝝃1,∇F 𝑡

𝑡0
𝝃2} by the flow gradient

∇F 𝑡
𝑡0

. The rotation angle 𝜃𝑡𝑡0 of the orthonormal eigenbasis over a time interval [𝑡0, 𝑡] is defined
as the polar rotation angle (PRA) by Farazmand & Haller (2016). In two-dimensional flows, the
PRA satisfies the following clockwise-positive relations:

cos 𝜃𝑡𝑡0 =
〈
𝝃𝑖 ,∇F 𝑡

𝑡0
𝝃𝑖
〉

√
𝜆𝑖

, 𝑖 = 1 or 2, (2.7a)

sin 𝜃𝑡𝑡0 = (−1) 𝑗
〈
𝝃𝑖 ,∇F 𝑡

𝑡0
𝝃 𝑗

〉√
𝜆 𝑗

, (𝑖, 𝑗) = (1, 2) or (2, 1). (2.7b)

Using (2.7), the four-quadrant polar rotation angle 𝜃𝑡𝑡0 ∈ [0, 2𝜋) can be reconstructed as

𝜃𝑡𝑡0 = [1 − sign(sin 𝜃𝑡𝑡0 )]𝜋 + sign(sin 𝜃𝑡𝑡0 ) cos−1 (cos 𝜃𝑡𝑡0 ), (2.8)

in which

sign(𝛼) =
{

1 if 𝛼 ⩾ 0
−1 if 𝛼 < 0. (2.9)
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Farazmand & Haller (2016) define the polar Lagrangian coherent structure (polar LCS) over time
interval [𝑡0, 𝑡] to be a closed, connected, codimension 1 material surface whose time 𝑡0 position
is a level set of 𝜃𝑡𝑡0 (𝒙0). Vortex centres are defined as PRA extrema.

The PRA and FTLE possess a well-defined duality: the former is a scalar field characterizing
the rotational factor R𝑡

𝑡0
, whereas the latter characterizes the stretching factor U 𝑡

𝑡0
in the polar

decomposition ∇F 𝑡
𝑡0
= R𝑡

𝑡0
U 𝑡
𝑡0

of the deformation gradient.

2.2. Analytical method: geodesic LCS
In contrast to the visual assessment of features in intuitive diagnostic fields, geodesic LCS theory
renders transport barriers as smooth, parametrized curves that are exact solutions of well-defined
stationarity principles.

Farazmand et al. (2014) argue that hyperbolic LCSs are stationary curves of the averaged shear
functional,

𝑄(𝛾) = 1
𝜎

∫ 𝜎

0

〈
𝒓 ′(𝑠),D𝑡

𝑡0
(𝒓 (𝑠))𝒓 ′(𝑠)

〉√〈
𝒓 ′(𝑠),C 𝑡

𝑡0
(𝒓 (𝑠))𝒓 ′(𝑠)

〉
〈𝒓 ′(𝑠), 𝒓 ′(𝑠)〉

d𝑠, (2.10)

obtained by averaging the Lagrangian shear arising over [𝑡0, 𝑡] along material lines 𝛾 parametrized
as 𝒓 (𝑠) with 𝑠 ∈ [0, 𝜎], where

D𝑡
𝑡0 =

1
2
[C 𝑡

𝑡0M − MC 𝑡
𝑡0 ], (2.11)

which is the symmetric part of the tensor C 𝑡
𝑡0

M . Solutions of this variational problem turn out to
be curves of the 𝝃1 or 𝝃2 eigenvector field:

𝒓 ′(𝑠) = 𝝃 𝑗 (𝒓 (𝑠)), 𝑗 = 1 or 2. (2.12)

Trajectories of (2.12) with 𝑗 = 1 are referred to as shrink lines as they strictly reduce in arc-length
under the action of the flow map F 𝑡

𝑡0
. Similarly, trajectories of (2.12) with 𝑗 = 2 are referred to as

stretch lines as they strictly stretch under F 𝑡
𝑡0

. Furthermore, repelling LCSs are defined as special
shrink lines that start from local maxima of 𝜆2 (𝒙0); attracting LCSs, by contrast, are special
stretch lines that start from local minima of 𝜆1 (𝒙0). They are referred to as hyperbolic LCSs
collectively, which have a role similar to that of stable and unstable manifolds of strong saddle
points in classical dynamical systems.

Haller & Beron-Vera (2013) argue that elliptic LCSs are closed stationary curves of the averaged
strain functional

𝑄(𝛾) = 1
𝜎

∫ 𝜎

0

√〈
𝒓 ′(𝑠),C 𝑡

𝑡0
(𝒓 (𝑠))𝒓 ′(𝑠)

〉√
〈𝒓 ′(𝑠), 𝒓 ′(𝑠)〉

d𝑠 (2.13)

obtained by averaging the tangential strain arising over [𝑡0, 𝑡] along closed material lines 𝛾
parametrized as 𝒓 (𝑠) with 𝑠 ∈ [0, 𝜎]. Solutions to this variational problem turn out to be closed
orbits of one of two families of ODEs

𝒓 ′(𝑠) = 𝜼𝜆± (𝒓(𝒔)), 𝜆 > 0, (2.14)

where

𝜼𝜆± =

√
𝜆2 − 𝜆2

𝜆2 − 𝜆1
𝝃1 ±

√
𝜆2 − 𝜆1

𝜆2 − 𝜆1
𝝃2. (2.15)

As limit cycles of equation (2.14), elliptic LCSs exhibit no filamentation when advected under
the flow map F 𝑡

𝑡0
, and fluid particles in elliptic LCSs will not leak out. Any subset of such a limit

cycle is stretched exactly by a factor of 𝜆 over the time interval [𝑡0, 𝑡]. The outermost member of
such limit cycle family serves as a Lagrangian vortex boundary.
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Figure 1: Backward-facing step flow configuration (dimensions in mm).

Initial Velocity Initial Pressure Inlet Velocity Outlet Velocity Inlet Pressure Outlet Pressure
0 m/s 0 Pa 10 m/s Zero gradient Zero gradient 0 Pa

Table 1: Initial and boundary conditions for DNS simulation.

3. Flow description and numerical schemes
The geometric parameters of the backward-facing step flow we consider are consistent with the
longitudinal section dimensions of the duct used in the combustion experiment by Pitz & Daily
(1983). Figure 1 shows the two-dimensional computational domain which comprises a short
inlet, a backward-facing step whose height ℎ is half that of the duct, and a converging nozzle
as the outlet. Table 1 summarizes the initial and boundary conditions. The Reynolds number
is defined as Re = 𝑈𝑥ℎ/𝜈, where 𝑈𝑥 is the inlet velocity, ℎ is the step height, and 𝜈 is the
kinematic viscosity of the fluid. Herein, 𝑈𝑥 = 10 m/s, ℎ = 0.0254 m, and 𝜈 = 5×10−5 m2/s,
and so our investigation is limited to a single Reynolds number, Re = 5080. Gas viscosity rises
with temperature. For instance, the kinematic viscosity of air is 1.51×10−5 m2/s and 4.84×10−5

m2/s at standard atmospheric pressure when the temperature is 20◦C and 300◦C, respectively.
Moreover, different kinds of gases are mixed in certain proportions before combustion, affecting
gas viscosity. Hence, the prescribed viscosity 𝜈 = 5×10−5 m2/s is reasonable. Without loss of
generality, the fluid density is prescribed as 𝜌 = 1 kg/m3 and the flow assumed incompressible.

High-accuracy, time-resolved velocity fields are required to obtain the exact trajectories of
fluid particles in the domain. To accomplish this, we use direct numerical simulation (DNS)
with adaptive time steps. The standard projection solution procedure for the incompressible
formulation is adopted to solve the two-dimensional continuity and Navier-Stokes momentum
equations,

∇ · 𝒖 = 0, (3.1a)
𝜕𝒖

𝜕𝑡
+ (𝒖 · ∇)𝒖 = −∇ 𝑝

𝜌
+ 𝜈∇2𝒖, (3.1b)

where 𝜌 is fluid density, 𝒖 = (𝑢𝑥 , 𝑢𝑦) the velocity vector, 𝑝 the pressure, and 𝜈 the kinematic
viscosity. Following Xie et al. (2019), a third-order, non-oscillatory finite volume method FVMS3
(Finite Volume method based on Merged Stencil with 3rd-order reconstruction) combined with
multi-dimensional limiting process (MLP) and smoothness adaptive fitting (SAF) schemes is
implemented to obtain smooth and non-smooth solutions with high fidelity.

To verify grid independence, we consider simulations on three meshes each of which has greater
grid density near the step and lateral walls and reduced grid density at the downstream end of the
duct. The three meshes, Mesh1, Mesh2, and Mesh3, comprise 12225, 48900, and 110025 cells,
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Figure 2: Time-averaged velocity magnitude profiles along the line 𝑥 = 2ℎ (line CD drawn
in figure 1) computed on three different meshes.

respectively. For comparison purposes, we compute the mean flow field over the same simulation
time. Figure 2 shows transverse profiles of the magnitude of time-averaged velocity along the
line 𝐶𝐷 depicted in figure 1 obtained for the different meshes. In general, the basic trends of the
three curves agree well. Despite the fact that the velocity magnitude profiles of Mesh1 and Mesh2
differ significantly, the discrepancy is much reduced between the results obtained using Mesh2
and Mesh3, demonstrating a reasonable level of grid independence. The Lagrangian investigation
in section 4 is therefore based on predictions obtained using Mesh2 instead of the computationally
more expensive Mesh3.

In previous work, the velocity field was usually stored at every time instant in order to carry out
trajectory integration. However, the time step had to be sufficiently small to guarantee accuracy
of the integrated trajectories over relatively long time periods, causing the data sets to occupy
excessive computer storage (Green et al. 2007). To avoid this, we perform Eulerian velocity
field calculation and Lagrangian trajectory integration simultaneously in OpenFOAM. A third-
order Runge-Kutta method is used to integrate the trajectories of passive tracers. This coupling
of Eulerian and Lagrangian approaches which absorbs more computation time than the pure
calculation of Eulerian fields obviates the need to store massive data sets thus making it convenient
to increase the number of steps involved in integrating out the particle trajectories. Using this
technique, the overall number of integration steps for each FTLE field provided in this study
surpasses 6000, which is 6-12 times more than the computations presented by Green et al.
(2007), who employed 500-1000 instantaneous data sets for each figure.

At Re = 5080, the flow field is roughly periodic. Figure 3(a) shows the time history of the
streamwise velocity component 𝑢𝑥 , the transverse velocity component 𝑢𝑦 and the pressure 𝑝
at the point 𝑃 near the step marked in figure 1. The fundamental frequencies corresponding to
maximum amplitudes in the Fourier transform spectra are all equal to 30 Hz, as can be discerned
from figure 3(b). Consequently, the flow exhibits primary periodicity at 𝑇 = 0.033 s for which we
then implement further Lagrangian analysis.
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Figure 3: (a) Time histories of streamwise and transverse velocity components and
pressure at point 𝑃 located at (0.02914, -0.00987) m. (b) Amplitude spectra of 𝑢𝑥 (𝑡),

𝑢𝑦 (𝑡) and 𝑝(𝑡).

4. Results and discussion
Having defined the flow period using the Fourier transform, we now analyze the LCSs over a
selected flow cycle. It should be noted that fluid particles near the downstream outlet exit the
domain, and so LCSs cannot be displayed throughout the whole flow domain. We therefore focus
on the region close to the backward-facing step that has most influence on the separated flow
beyond the step.

4.1. Determination of integration interval for LCS detection
FTLE is related to the time interval over which the integration is undertaken. If the integration
interval is too small, the coherent structures cannot be extracted. If the integration interval is



9

Figure 4: FTLE fields obtained for the following different integration intervals: (a) 0.005 s,
(b) 0.010 s, (c) 0.015 s, (d) 0.020 s, (e) 0.025 s, and (f) 0.030 s.

too long, the visualized flow field may be too confused for the main structure to be seen clearly.
Furthermore, an overly long integration interval will result in fluid particles exiting the domain,
preventing acquisition of trajectories that would otherwise extend outside the computational
domain. We therefore first determine the optimal integration interval for calculating the FTLE
fields.

We arrange a uniform 100×100 grid of particles that initially occupy the square area 𝐴𝐵𝐶𝐷
depicted in figure 1. The side length of the square is 0.0508 m, which is twice the height of the step.
Figure 4 shows the FTLE fields calculated by integrating the trajectories of these fluid particles
starting at an initial time of 𝑡0 = 0.100 s using different integration intervals. The FTLE values
obviously vary because of the different integration intervals, and so, for meaningful comparison,
the FTLE values are normalized such that their range lies within [0,1]. As the integration interval
increases, growing numbers of high value regions appear in the FTLE field and more structures
in the flow become highlighted. From figure 4(a-c), it may be seen that the FTLE ridges gradually
become more prominent at the periphery of vortical regions, where the FTLE value is extremely
high. In figure 4(d), all hidden FTLE ridges are highlighted, including bifurcation of the FTLE
ridges which is not manifest in figure 4(c). For an integration interval greater than 0.020 s as
shown in figure 4(e-f), the primary structure in the flow field no longer changes. However, the
FTLE value inside the vortical regions starts to approach that of the ridges due to chaotic motion
in the vortical regions, interfering with accurate identification of the FTLE ridges. An integration
interval of 0.020 s emerges as the minimal time scale required for robust detection of the transport
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barriers. Given that a larger flow area will be studied later, it should again be emphasised that
the integration interval should not be too long, otherwise fluid would exit the domain, making
calculation impossible.

In the following simulations, we therefore set the integration interval to be 0.020 s. A flow period
with start time of 𝑡0 = 0.121 s is chosen for further investigation without sacrificing generality.
To gain a more comprehensive picture of the flow dynamics downstream of the backward-facing
step, the visualization region is expanded to fill the rectangle 𝐴𝐵𝐸𝐹 illustrated in figure 1, which
has a streamwise dimension four times the height of the step. Results are presented at eight equal
intervals over the flow period for a 401×200 particles. The foregoing ensures that fluid particles
in the new area will not exit the domain.

4.2. FTLE fields and flow pathway

Figure 5 presents the FTLE field throughout the flow period. In order to depict the formation
and evolution of vortices and FTLE ridges simultaneously to reveal their interactions, we refer to
both FTLE fields and PRA fields when analysing the flow structures. Structures V1, V2, V3 and
V4 are proved to be coherent vortices by the PRA fields (see Section 4.3). In general, the FTLE
value in the vortex core is extremely small, whereas the FTLE value at the vortex periphery is
very large, bounded by FTLE ridges, indicating that flow separation at the vortex periphery is
significant. In figure 5(a), vortex V1, located in the recirculation region generated by the separated
shear layer emanating from the sharp edge of the exterior corner of the backward-facing step, is
fully developed, and will gradually be squeezed out of shape and then forced to move from its
position immediately behind the step by the influence of the secondary interior (cavity) corner
vortex SV1. Another vortex V2 on the upper lateral wall is generated by boundary layer separation
due to the adverse pressure gradient created by flow divergence through the sudden expansion.
Simultaneously, a new vortex V3 begins to form immediately behind the corner of the step. There
also exists a flow pathway between vortices V1 and V2. The high FTLE value on the middle line
of the flow pathway indicates that fluid particles beginning on opposing sites of the line (which
is proved to be a repelling LCS in Section 4.3) will experience separation and be entrained by
vortices V1 and V2. The entrainment will accelerate occlusion of the flow pathway. In figure
5(b), the newly formed vortex V3 grows stronger, restraining the growth of corner vortex SV1 and
pushing vortex V1 and vortex V2 toward each other, thus narrowing the pathway and preventing
transference of mass and energy down towards the lower boundary wall. In figure 5(c), vortices
V1 and SV1 have already detached from the step and the flow pathway has been occluded by
FTLE ridges. A new pathway is beginning to evolve between two FTLE ridges, R1 and R2. Vortex
V3 is now entirely divided from the older vortices V1 and V2 by FTLE ridges. In figure 5(d), the
new pathway has enlarged with its ambient flow conveying the old vortex pair comprising V1 and
V2 downstream. A new secondary vortex SV2 has started to form at the interior (cavity) corner
of step. In figure 5(e), another new vortex V4 has developed on the upper wall. FTLE value of the
flow pathway between vortices V3 and V4 is relatively small, which implies that fluid particles
in the pathway hardly ever separate from their immediate neighbours. The fluid in the pathway
then deforms almost as single entity throughout the development process of vortices V3 and V4.
The flow development from figure 5(f) to figure 5(h) involves continuous growth of the newly
generated vortices and flow pathway, immediately before the next cycle begins.

Throughout the cycle, we observe a flow pathway in the backward-facing step flow at Re = 5080,
which is opened and closed by FTLE ridges during the vortex shedding process. FTLE ridges act
like transport barriers between the flow pathway and vortex cores, contributing significantly to
fluid entrainment. As a result, the interaction between vortices and pathway plays a critical role
in transferring fluid mass and energy in flow past a backward-facing step.
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Figure 5: FTLE fields obtained over the period [𝑡0, 𝑡0 + 𝑇]. Each plot is obtained by
integrating trajectories of a uniform grid of 401×200 particles using an integration

interval of 0.020 s.

4.3. PRA fields and geodesic LCSs
Figure 6 presents the PRA fields obtained at 8 equal intervals throughout the flow cycle.
Unlike FTLE, which characterizes the stretching factor of the deformation gradient matrix,
PRA characterizes the rotational factor of the deformation gradient matrix. As a result, PRA
readily locates Lagrangian coherent vortices, giving a fast computational approach before utilizing
geodesic theory to detect elliptic LCSs. From Figure 6 it can be seen that the main structures
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Figure 6: PRA fields obtained over the period [𝑡0, 𝑡0 + 𝑇]. Each plot is obtained by
integrating trajectories of a uniform grid of 401×200 particles using an integration

interval of 0.020 s.

and evolution of the PRA fields are similar to those of the corresponding FTLE fields. However,
the coherent vortices are more obvious in the PRA fields and the boundaries of vortex regions
can be readily identified, something FTLE cannot do. The interior of a Lagrangian coherence
vortex contains a series of concentric red and blue rings, indicating that the PRA value of fluid
in a coherence vortex region changes continuously along its radial diameter. In areas of strong
mixing, the colour of the PRA field is chaotic, suggesting that there is no specific law for the polar



13

Figure 7: Repelling LCSs (red), attracting LCSs (blue), and elliptic LCSs (green) near the
backward-facing step based on geodesic theory, with FTLE shown in the background.

rotation angle of the fluid. Figure 6 illustrates the evolution of two Lagrangian coherent vortices,
consistent with V1 and V2 considered in the previous section.

We utilize geodesic LCS theory to obtain the exact Lagrangian vortex boundaries. Figure 7
shows the hyperbolic LCSs and elliptic LCSs at the start of the cycle (𝑡 = 0.121 s) extracted using
MATLAB packages developed by Onu et al. (2015). The background comprises the FTLE field.
The red and blue dots represent local 𝜆2 extreme points and local 𝜆1 extreme points, respectively.
Repelling and attracting LCSs are given by shrink and stretch lines passing through these local
extrema, and so are the most repelling and attracting material lines locally in the flow field. By
considering the material lines, it can be seen that the repelling LCSs and FTLE ridges coincide
closely, and hyperbolic repelling and attracting LCSs are perpendicular to each other. These two
types of LCS partition the flow field into a net of local saddle regions, a concept borrowed from
classical dynamical systems theory, leading to strong fluid mixing at the vortex periphery. A set
of generalized saddle regions exist in the flow pathway observed in figure 5(a), suggesting that
fluid elements close to these saddle points will be stretched and compressed significantly. The
presence of repelling LCS in this region also supports the hypothesis that fluid particles starting
on opposing sites of the repelling LCS will separate from each other.

In figure 7, the green dashed line indicates the Poincaré section used to determine isolated
closed orbits (limit cycles) of the two explicit differential equations (2.14). The free stretching
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parameter 𝜆 in equation (2.15) is varied over the range [0.90, 1.10] with increments of 0.02. Each
green closed curve refers to the outermost elliptic LCS and corresponds to the Lagrangian vortex
boundary, which exhibit no filaments during advection, and no leakage of fluid particles from
within the orbits.

Now we compare the difference in vortex identification between Lagrangian and several
Eulerian approaches. A simplest way is using closed streamlines to locate vortices, as shown
in figure 8(a). It seeks areas with significant vortical patterns. However, regions with many closed
streamlines does not mean the existence of coherent vortices in unsteady flows, such as the
vortical structures on the left corner. These vortical structures cannot be guaranteed to preserve
their shapes during advection. Besides, the outermost closed streamlines are always larger than the
actual coherent vortices (such as the region where V1 exists). Even worse, Lagrangian coherent
vortex V2 is not completely contained in the closed streamlines regions near the upper wall. All
these facts demonstrate that the closed streamlines have weak relation to coherent vortices in
unsteady flows.

Next, we compare the vorticity contours with Lagrangian vortex boundaries in figure 8(b).
Contrast with streamlines, although vorticity contours locate vortex boundaries more precisely,
there are still some differences. For instance, the vorticity contours near the Lagrangian vortex
boundary of V1 exhibit some filaments, which is a fatal drawback to preserve its coherence
under advection. On the other hand, there is no objective criterion for selecting an appropriate
vorticity contour to approximate the boundary. Moreover, advection is also required to confirm
the coherence of the chosen vorticity contour.

At last, we use 𝑄-criterion to detect vortical structures. The definition of 𝑄 is

𝑄 =
1
2

(
‖A‖2

𝐹 − ‖S‖2
𝐹

)
, (4.1)

where

A =
1
2

(
∇𝒖 − (∇𝒖)T

)
, (4.2a)

S =
1
2

(
∇𝒖 + (∇𝒖)T

)
. (4.2b)

Vorticity dominates the region where 𝑄 > 0, while stain dominates the region where 𝑄 < 0.
Therefore, the zero contours are supposed to approximate the vortex boundaries. However, a
comparison in figure 8(c) indicates that zero contours of 𝑄 value will not necessarily delineate
vortical structures, especially for vortex V1. As for V2, the closed contour near it is nevertheless
larger than the actual coherent vortex.

4.4. Evolution of Lagrangian coherent vortices
In figure 9(a), each green closed curve delineates the outermost member of the family of elliptic
LCSs extracted according to geodesic theory (see Section 4.3), and hence represents boundary
of a Lagrangian coherence vortex at the start of the cycle (𝑡 = 0.121 s). In each elliptic LCS, the
black ’×’ indicates the centre of the coherent vortex determined by local extreme points of the
PRA. Red and blue dots indicate passive tracers within the vortex at different distances from the
vortex centre (their 𝑥 ordinates are consistent with the vortex centre). The black curves describe
trajectories of the vortex centres, and the red and blue curves indicate trajectories of the red and
blue passive tracers. In figure 9(a) it can be seen that the trajectories of the red and blue dots
invariably surround the vortex centre trajectory. Taking the vortex V2 as an example, figure 9(b)
and (c) depict the 𝑥- and 𝑦-coordinate time histories of the vortex centre and the two tracers. The
red and blue tracers oscillate about the centre of the vortex, whereas the black tracer at the vortex
centre experiences minimal oscillation. We also advect these two elliptic LCSs over the same time
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Figure 8: (a) Instantaneous streamlines, (b) instantaneous vorticity contours, and (c)
instantaneous zero level curves of 𝑄 value at the start of the cycle (𝑡 = 0.121 s) with two

elliptic LCSs shown in green.
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Figure 9: (a): Trajectories of centres of Lagrangian coherent vortices (black ×) and
adjacent passive tracers (blue and red). (b) and (c): Time-dependent coordinates of vortex

centres and adjacent tracers of vortex V2.

Figure 10: Evolution of elliptic LCSs over a time interval of 0.020 s. Elliptic LCSs are
plotted at intervals of 0.002 s. The dashed line represents vortex V1 and the solid line

represents vortex V2.

interval [0.121 s, 0.141 s], which is shown in figure 10. Apparently, the advected curves remain
good coherence during this time interval. Figure 9 and figure 10 therefore give a satisfactory
representation of the coherence of the vortices in flow past a backward-facing step.

Figure 11 verifies this property of elliptic LCSs. The first panel shows the distribution of fluid
particles at the start of the cycle. The green area depicts fluid particles inside the elliptic LCSs.
Red and blue areas are used to assist in visualizing the movement of fluid particles around the
elliptic LCSs. The six panels display results at intervals of 0.004 s, starting at 0.121 s and ending
at 0.141 s. From figure 11 it can be seen that even when fluid particles in the red and blue areas are
dispersed and filaments appear, fluid particles do not leak out from the vortex, which maintains
its coherence throughout the time considered. By comparison with the coherent vortex in figure
6, it is found that at the same moment, the shape, size and position of both vortex structures are
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Figure 11: Distribution of fluid particles whose initial positions are inside (green) and
outside (red and blue) the elliptic LCSs over a time interval of 0.020 s.

very consistent. Therefore, even for different finite-time dynamic systems, the detected structures
can indeed evolve each other.

Next, we investigate the vorticity fluxes of the Lagrangian coherent vortices V1 and V2. In order
to evaluate the vorticity fluxes of the Lagrangian vortices over time, it is necessary to materially
advect the elliptic LCSs under the flow map and to integrate vorticity inside the elliptic LCSs at
different time instants. The evolution of elliptic LCSs represents the evolution of boundaries of
Lagrangian vortices, as shown in figure 10. Figure 12 shows the resulting flux time histories. At
the initial time, the vorticity fluxes of the two coherent vortices are almost the same, except that
one is positive and the other is negative. The upper coherent vortex V2 has a flux of 3.1217×10−4

m2s−1 whereas that of the lower coherent vortex V1 is -3.1837×10−4 m2s−1. This indicates that
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Figure 12: Time histories of the individual and summed vorticity fluxes of the two
Lagrangian coherent vortices, V1 and V2.

their rotation directions are opposite and their strength is similar. The vorticity fluxes decrease
slightly with time. The decrease may be caused by fluid viscosity, numerical dissipation, etc., and
requires further research. At the end time, the flux of vortex V2 is 2.9282×10−4 m2s−1 and that
of vortex V1 is -2.9931×10−4 m2s−1, which are 93.8% and 94.0% of the initial flux, respectively.
As illustrated in figure 12, the strength of these two coherent vortices remains almost constant
throughout the time considered, with their sum flux invariably remaining close to zero, revealing
that the vortex generated by boundary layer separation at the upper wall and the vortex generated
by the separated shear layer bounding the recirculation region are both self-sustaining and have
very similar strength.

5. Conclusions
Finite-time Lyapunov exponent (FTLE), polar rotation angle (PRA) and geodesic LCS methods
have been used to determine Lagrangian coherent structures in flow past a backward-facing step
at Reynolds number Re = 5080. Although these methods have been widely used in the realm
of unbounded geophysical flows, this paper presents the first application of a combination of
such methods to flow past a backward-facing step, demonstrating the potential role of LCS in the
analysis of coherent structures in bounded flows.

In Lagrangian analysis, choice of a proper integration interval is important. From our
perspective, the general procedure should comprise the following steps. First, devise a proper set
of integration intervals, based on the time scale of the specific flow and the amount of available
velocity data in both space and time. Next, advect seed points in the flow region of interest for
different time intervals over the set of integration intervals (which can be undertaken in a single
numerical integration routine). Finally, compare the visual results and adopt the integration
interval whose visualization extracts the most important LCSs at relatively low computational
cost.

In our results, it is found that the underlying structures within the BFS flow are properly
detected by combination of qualitative and quantitative LCS analysis methods. The FTLE and
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PRA diagnostic methods have a well-defined duality in that they respectively characterize the
stretching and rotation of an infinitesimal fluid sphere. The FTLE value is extremely small at the
core of a vortex, and very large at its periphery. Correspondingly, the PRA value remains regular in
coherent vortical regions but becomes random in chaotic mixing zones. From our simulations, we
find that a flow pathway in which fluid particles hardly diverge from their immediate neighbours
is opened and closed periodically by FTLE ridges associated with the shedding of vortices. The
pair of dominant Lagrangian coherent vortices is visualized more clearly by PRA. A quantitative
study of geodesic LCSs reveals that the two dominant vortices are described by elliptic LCSs
with no filaments present during advection and no leakage of interior fluid particles. Moreover,
the strength of these two coherent vortices is nearly constant with time and the sum of their fluxes
remains close to zero, indicating that the vortices are self-sustaining and of similar strength.
Hyperbolic repelling and attracting LCSs that are orthogonal to each other partition the flow field
into a net of local saddle regions, a concept borrowed from classical dynamical systems theory,
which results in intensified fluid mixing. These most repelling, attracting, and shearing material
lines serve as key elements of complicated tracer patterns in BFS flow.

The fluid mechanics behind the spatiotemporal formation and development of coherent vortices
in BFS flow is still not fully understood. Interactions between the different geometric regions
partitioned by LCSs lead to the intrinsic complexity of BFS flow. It is recommended that
future research examines the effect of modifying the shape of the backward-facing step on
coherent structures and mass and energy transfer through the flow pathway (of importance to
combustion). Attention should also be paid to more effective flow control methods. Although
self-sustaining vortex formation is widely acknowledged as an important component of separated
flow, the development of a universal flow control approach remains a scientific and technological
challenge, with little agreement achieved to date between results from previous experimental and
computational studies. It is therefore useful to investigate the coherent structures and dynamic
characteristics of BFS flow over a broad range of Reynolds numbers, which could lead to discovery
of an effective solution to the flow separation control problem for a duct containing a backward-
facing step.
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