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Abstract: Over the tropical land surface, accurate estimates of future changes in temperature, 23 

precipitation and evapotranspiration are crucial for ecological sustainability, but remain highly 24 

uncertain. Here we develop a series of emergent constraints (ECs) by using historical and future 25 

outputs from the Coupled Model Inter-comparison Project Phase 6 (CMIP6) Earth System Models 26 

under the four basic Shared Socio-economic Pathway scenarios (SSP126, SSP245, SSP370, and 27 

SSP585). Results show that the temperature sensitivity to precipitation during 2015-2100, which 28 

varies substantially in the original CMIP6 outputs, becomes systematically negative across SSPs 29 

after application of the EC, with absolute values between -1.10 ℃ mm
-1 

day and -3.52 ℃ mm
-1 

day, 30 

and with uncertainties reduced by 9.4% to 41.4%. The trend in tropical land-surface 31 

evapotranspiration, which was increasing by 0.292 mm yr
-1

 in the original CMIP6 model outputs, 32 

becomes significantly negative (-0.469 mm yr
-1

) after applying the constraint. Moreover, we find a 33 

significant increase of 58.7% in the leaf area index growth rate. 34 

Introduction 35 

Over the tropical land surface, a negative association between temperature and precipitation is 36 

generally observed due to the cooling effect of land surface evapotranspiration, and is one of the 37 

major processes between the earth and the atmosphere
1-3

. However, future changes in these variables 38 

under climate change remain highly uncertain. Thus, a robust evaluation of future changes in 39 

temperature-precipitation-evapotranspiration and their interaction is necessary to assess the potential 40 

resilience of tropical land areas to future climate change. 41 

    Previous studies have investigated current and future temperature, precipitation, and 42 

evapotranspiration changes from regional to global scales, using Earth System Models from the 43 

CMIP5 ensemble
4-8

. These studies were based on analyses of thermodynamic and dynamic responses 44 
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to changes in variables such as specific humidity and atmospheric circulation. Although the models 45 

accommodate important processes, such as convection, aerosol effects, and land-atmosphere and 46 

dynamic ocean-atmosphere interactions, the results show considerable spread
9
. The emergent 47 

constraint (EC) method has recently been employed to reduce uncertainty in the model outputs, and 48 

has led to significant improvement
10-13

. The constraint is typically built through a physically 49 

explainable empirical linear regression between the inter-model spread in future estimates of 50 

temperature/precipitation/evapotranspiration (i.e. their absolute value or their sensitivity to 51 

controlling factors, defined as the dependent variable y) and historical values of variables (defined as 52 

the independent variable x) produced by the CMIP5 ensemble
10,11

. This relation can then be further 53 

constrained by projecting observed values of x and their observational uncertainty (± one standard 54 

deviation, denoted as SD) onto the y-axis through the empirical linear relationship
10,11

, as the 55 

observed values are likely to be sufficiently reliable to provide an accurate mean state of x. This 56 

approach provides more reliable values of y with expectably narrower uncertainty
10-12

. 57 

CMIP6, the latest generation of CMIP, has finer horizontal-vertical resolutions and more 58 

physically realistic representations of aerosol, cloud-radiation interaction, oceanic horizontal-vertical 59 

mixing and convection, sea ice, and biogeochemical processes (e.g. carbon and nitrogen cycles) than 60 

its predecessor, CMIP5
10,14

. Recent works concerned with reproducing historical changes and 61 

predicting future features in global temperature, precipitation, and evapotranspiration have 62 

demonstrated that CMIP6 models provide projections that are more accurate and reliable than their 63 

CMIP5 counterparts
15-17

. 64 

Despite these improvements in CMIP6, there remains considerable uncertainty in the 65 

projections of the sensitivity of future surface temperature to precipitation over the tropical land 66 
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surface, and the future growth rate of evapotranspiration and vegetation cover. CMIP models (and 67 

constrained projections using the EC method) have projected a decline of the tropical forest, 68 

especially in the Amazon, but the projection accuracy depends largely on the reliability of the 69 

environmental variable projections
12,18-23

. The tropical forest cover is closely related to factors such 70 

as temperature, precipitation and evapotranspiration. As temperatures rise, the rates of plant 71 

transpiration and respiration grow significantly due to amplified vegetation stomatal openings. This 72 

intensification leads to substantial losses of water and CO2 within plant bodies, subsequently causing 73 

notable constraints in water use efficiency, photosynthesis and CO2 fertilization which ultimately 74 

suppress plant growth
12,18-24

. Under decreasing precipitation, lower water availability is also 75 

unfavorable for plant growth
12,18-20,22-24

. 76 

Here we assess the reliability of future projections of tropical land-surface 77 

temperature-precipitation sensitivity, evapotranspiration and leaf area index (LAI). We first explore 78 

the sensitivity of temperature to precipitation over the tropical land area within 23.5
o
 S～23.5

o
 N and 79 

180
o
 W～180

o
 E. Our methodology is based on an emergent relationship established between the 80 

future annual tropical land-surface temperature sensitivity to precipitation (dT/dP) and the historical 81 

seasonal average dT/dP under the four basic SSP scenarios of CMIP6. The projected changes in 82 

tropical land-surface temperature sensitivity are then employed to estimate absolute variations in 83 

future tropical land-surface temperature, evapotranspiration and LAI. 84 

Results 85 

Sensitivity of tropical land-surface temperature to precipitation 86 

It is widely acknowledged that the increasing atmospheric CO2 concentration is the main 87 

driving factor behind the significant warming of the Earth’s surface
25-28

. However, interannual 88 
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oscillations in temperature may also be related to local precipitation changes, which has been 89 

identified in the Amazon rainforest
12

. Observed time series of annual land-surface temperature and 90 

precipitation in the tropical zone from the HadCRUT4 dataset display oscillations roughly in 91 

antiphase during the period of 1949 to 2005 (Fig. 1a). Negative associations are found at the annual 92 

and seasonal scale between land-surface temperature and precipitation anomalies (Fig. 1b). 93 

Supportive results are also derived from three other datasets (Supplementary Figures 1 and 2). 94 

The underlying mechanism of the negative sensitivity of tropical land-surface temperature to 95 

precipitation (i.e. opposite oscillations in Fig.1a and Supplementary Figure 1) is as follows: 96 

increasing precipitation leads to more water availability in the soil and on the ground, enhancing the 97 

cooling effect of evapotranspiration on sensible heating, and subsequently lowering the temperature 98 

of the tropical land surface
1,2,29

. This interpretation is supported by antiphase oscillations between 99 

annual mean evapotranspiration and temperature on the tropical land surface (Fig.1c and 100 

Supplementary Figure 3). Recent research also revealed that water availability (and especially 101 

extreme drought) affects fluctuations of land-surface temperature in the tropical region, through 102 

vegetation stomatal responses to the soil-moisture-deficit induced atmospheric water stress or the 103 

plant metabolism downregulation
30

. Moreover, as the dominant extreme climate event in controlling 104 

matter-energy cycles between land surface and atmosphere over the tropical region, ENSO triggers 105 

subsidence/rising weather systems and subsequently causes concurrent warming (cooling), decreased 106 

(increased) humidity, less (more) cloud cover, less (more) precipitation, lower (higher) evaporation 107 

and less (more) soil moisture
2,31-32

, strengthening the negative feedback between tropical 108 

land-surface temperature and precipitation. Here, if we use a moving average approach to reduce 109 

disturbance from climate oscillations (i.e. ENSO and other compensating effects)
9,31-33

, we find that 110 
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the negative association between temperature and precipitation is further strengthened (Fig.1d, 111 

Supplementary Figure 4 and Supplementary Figure 5). 112 

An effective index for representing tropical land-surface temperature change due to 113 

evapotranspiration arising from precipitation is the temperature sensitivity to precipitation (dT/dP, ℃ 114 

mm
-1 

day). We select a total of 26 models under the four SSP scenarios from the CMIP6 ensemble, 115 

which provide both the required historical (1949-2005) and future (2015-2100) 116 

temperature/precipitation outputs (Supplementary Table 1). A large spread occurs in the CMIP6 117 

scenario estimates of the absolute value of future annual dT/dP, as indicated by its considerable 118 

variability, ranging from -1.52 to 1.06 ℃ mm
-1 

day for SSP126, from -1.52 to 2.19 ℃ mm
-1 

day for 119 

SSP245, from -3.63 to 4.75
 
℃ mm

-1 
day for SSP370, and from -4.31 to 5.00 ℃ mm

-1 
day for SSP585 120 

(Fig. 1e). Since the feedback among temperature, precipitation and evapotranspiration is a key 121 

process between the land surface and the atmosphere, such large uncertainties may lead to 122 

comparable uncertainties in the cycle among water, carbon and energy on the tropical land
12

. 123 

Using evapotranspiration data from the GLEAM dataset during the period of 1980-2014, we 124 

calculated the annual rates of increase in evapotranspiration from the tropical land surface in wet and 125 

dry seasons (Jan. to Mar. and May to Jul., respectively), and found that the rate of increase was 126 

significantly larger in the dry season than in the wet season (0.23% yr
-1

 vs. 0.11% yr
-1，127 

Supplementary Figure 6). This difference is likely to be related to seasonal effect of absolute water 128 

storage in the tropical land: in the wet season, water storage is large and reaches the upper limit of 129 

evapotranspiration, meaning that evapotranspiration cannot increase appreciably as water storage 130 

continues to increase; whereas in the dry season, water storage is scarce, and evapotranspiration is 131 

markedly enhanced as the water storage increases
34

. In summary, larger fluctuations in the 132 
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evapotranspiration-cooling effect occur in the dry season, which profoundly affects the oscillation in 133 

tropical land-surface temperature. Observations show that the dry-season land-surface temperature 134 

exhibits tighter negative correlation (i.e. higher absolute values of R) with precipitation than the 135 

wet-season temperature (Fig. 1b, Supplementary Figure 2), implying that changes in dry-season 136 

dT/dP values dominate the annual negative sensitivity of temperature to precipitation. Model results 137 

reveal that the future annual dT/dP exhibits a high positive correlation with the future dry-season 138 

dT/dP for all four emission scenarios (0.49 ≤ R ≤ 0.81, P < 0.001, Fig. 1f), suggesting that the spread 139 

in future dry-season dT/dP (Supplementary Figure 7) will lead to a comparable spread in future 140 

annual dT/dP. Therefore, we can expect to constrain the future annual dT/dP through establishing an 141 

emergent relationship between the future annual dT/dP and the historical dry-season dT/dP. In fact, a 142 

similar emergent constraint on future dT/dP has been identified in the Amazon rainforest
12

. 143 

EC on future dT/dP based on the CMIP6 ensemble 144 

We observed significant linear regressions (along with their corresponding errors) between the 145 

future annual and the historical dry-season average values of dT/dP for the four SSP scenarios (Fig. 2, 146 

Supplementary Figure 8), based on the spread in the CMIP6 ensemble (Figs. 1e-f). Linear 147 

regressions between future annual and historical wet-season average values of dT/dP have lower 148 

values of R and higher P values (Supplementary Figure 9), and therefore are not used. The observed 149 

dry-season average dT/dP (vertical black line) ± one standard deviation (light blue rectangle) derived 150 

from the HadCRUT4 dataset are then plotted for the four SSP scenarios (Fig. 2, Supplementary 151 

Figure 8). These two steps together establish the ECs on future annual dT/dP for the four SSP 152 

scenarios. Associated probability density functions (PDFs) after applying the ECs are then calculated 153 

based on error intervals of both the observed historical dry-season average values and projected 154 
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future annual values of dT/dP, while PDFs without the ECs are directly obtained from the CMIP6 155 

ensemble (Fig. 2, Supplementary Figure 8). 156 

After application of the ECs, the spreads of the PDFs under the four SSP scenarios become 157 

compressed, revealing large reductions in uncertainty in future annual dT/dP compared with the 158 

values directly derived from the CMIP6 ensemble. The reductions are 9.4%, 16.1%, 29.8%, and 159 

41.4% for the four SSPs, respectively (Fig. 2, Supplementary Figure 8). Importantly, the best 160 

estimates of the constrained future annual dT/dP (each corresponding to the peak in the PDF) exhibit 161 

large decreases from pre-EC to post-EC conditions (Fig. 2, Supplementary Figure 8, Supplementary 162 

Table 2). Pre-EC values of the best estimates of dT/dP are -0.14 ℃ mm
-1 

day, -0.27 ℃ mm
-1 

day, 163 

0.57 ℃ mm
-1 

day, and 1.03 ℃ mm
-1 

day, respectively, under the four SSP scenarios (Fig. 2, 164 

Supplementary Figure 8, Supplementary Table 2), suggesting uncertainty even in the sign of future 165 

annual dT/dP, if different SSP scenarios are used. However, the post-EC values drop to -1.10 ℃ 166 

mm
-1 

day, -1.63 ℃ mm
-1 

day, -2.86 ℃ mm
-1 

day, and -3.52 ℃ mm
-1 

day, respectively, with the 167 

absolute decreases reaching 0.96 ℃ mm
-1 

day, 1.36 ℃ mm
-1 

day, 3.43 ℃ mm
-1 

day, and 4.55 ℃ 168 

mm
-1 

day, correspondingly (Fig. 2, Supplementary Figure 8, Supplementary Table 2), meaning that 169 

future annual dT/dP becomes systematically negative across all SSP scenarios. Decreases from 170 

pre-EC to post-EC conditions are therefore conspicuous. PDFs based on the three other observational 171 

datasets also demonstrate reductions in both the uncertainty and the best estimate (Supplementary 172 

Figure 10). 173 

Out-of-sample testing is an effective way to assess whether these emergent relationships have 174 

emerged solely by chance
10

. Using 25 CMIP5 models, we still find a tight relationship between 175 

future annual dT/dP and historical dry-season dT/dP under the RCP2.6 scenario (R=0.64, P<0.001, 176 
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Supplementary Figure 11). When driving the relationship with the observations, the constraint also 177 

shifts the future annual dT/dP from -0.89 ± 0.79 ℃ mm
-1 

day to a more negative value of -1.43 ± 178 

0.65 ℃ mm
-1 

day. This testing further supports the reliability of our introduced emergent constraint. 179 

Future evapotranspiration from tropical land 180 

Evapotranspiration from tropical land depends strongly on variations in tropical land 181 

temperature and precipitation, as is illustrated by the strong positive correlation between the future 182 

annual growth rate in evapotranspiration and the future annual dT/dP under the high emission 183 

scenario of SSP585 (Fig. 3a). By projecting the post-EC value of future annual dT/dP ± one standard 184 

deviation (vertical black line ± light blue rectangle) onto the y-axis through the linear regression 185 

relation (with forecast error), we find that evapotranspiration is likely to experience a reduction at a 186 

rate of -0.469 ± 0.430 mm yr
-1

 under SSP585 during 2015-2100 (Fig.3a). Conversely, under pre-EC 187 

conditions, an increasing rate of evapotranspiration of 0.292 ± 0.533 mm yr
-1

 is projected, 188 

corresponding to the peak of the pre-EC PDF curve (Fig. 3b). In other words, after application of the 189 

EC, evapotranspiration from tropical land is projected to decrease substantially in the future under 190 

the high emission scenario of SSP585. Moreover, the PDF curve corresponding to the future annual 191 

trend in tropical land evapotranspiration shows a notable narrowing from pre-EC to post-EC 192 

conditions, suggesting a reduction of 19.3% in uncertainty of the projection (Fig. 3b). 193 

Past research suggests a significant decline in soil water content in the tropics accompanied by 194 

an expected rise in aridification
35

. This would result in the soil’s water supply becoming inadequate 195 

to meet the increasing evaporative demand from the atmosphere. This may be the reason for the 196 

decrease in future tropical evapotranspiration. A similar feedback between soil water and 197 

evapotranspiration has been reported which suggested that the observed decline of global 198 
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evapotranspiration during 1998-2008 was primarily driven by moisture shortage in the Southern 199 

Hemisphere
36

. 200 

Future vegetation greening on tropical land 201 

Temperature and precipitation are key climatic factors that affect vegetation dynamics on the 202 

tropical land, as is confirmed by the strong relationship between the future annual growth rate in 203 

tropical land LAI and future annual dT/dP across CMIP6 models under the SSP585 scenario 204 

(R=-0.82, P<0.001, Fig.4a). The relationship indicates that a more negative dT/dP (i.e., a higher 205 

evaporative cooling effect) after application of the EC is associated with greater greening of tropical 206 

vegetation. Hence, the overestimate of future dT/dP by the original CMIP6 models implies that they 207 

equally underestimated the increase in tropical land vegetation. The original CMIP6 models 208 

projected a future annual growth rate in LAI of 0.0085 ± 0.0073 m
2
 m

-2
 yr

-1
 under the SSP585 209 

scenario (Fig. 4b). However, after applying the constraint (Fig. 4a), the future tropical land LAI is 210 

expected to increase by 0.0205 ± 0.0065 m
2
 m

-2
 yr

-1
, demonstrating that the raw CMIP6 models 211 

underestimated the future increasing trend in tropical land LAI by 58.7% under the SSP585 scenario 212 

(Fig. 4b). 213 

When there is enough water in the soil to meet the transpiration demand, the increase in the LAI 214 

growth rate typically strengthens the process of transpiration, and results in higher evapotranspiration. 215 

The counterintuitive downward trend in the tropical land evapotranspiration (Fig. 3) might be related 216 

to the change in soil water content. Under the high emission scenario of SSP585, more than half of 217 

the earth’s land surface is likely to experience a severe limitation in future soil water content
35

, which 218 

would exert an inhibitory effect on the tropical land evapotranspiration, as is supported by the 219 

positive correlation between the soil water content and evapotranspiration in Supplementary Figure 220 
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12. If this kind of mechanism overwhelms the positive effect of LAI growth, decrease in 221 

evapotranspiration can be expected. 222 

Discussion 223 

We define the wet and dry seasons over the tropical land surface as May to July and January to 224 

March, respectively, in this study. We first exclude the subareas different from the whole tropical 225 

land area in which dry-season months are defined as May to July. These subareas are rain-less and 226 

desert regions. EC method is then applied to the remaining area and the constrained result is found to 227 

be quite similar to that of the whole tropical land area, with the discrepancy of merely 14.5-19.3% 228 

(Supplementary Figure 13). We then establish emergent relationships between historical monthly 229 

dT/dP and future annual dT/dP, as in Thackeray et al. (2019)
39

, and find that the relationships are 230 

most significant for the defined dry-season months (i.e. May to Jul.) (Supplementary Figure 14), 231 

which also leads to the largest uncertainty reductions for the constrained future annual dT/dP. 232 

We use historical dry season dT/dP to constrain the future annual dT/dP over the tropical land. 233 

We contend the plausible mechanism underpinning this emergent relationship is related to the 234 

evaporative cooling effect: increased precipitation leads to more water availability on the ground and 235 

in the soil, enhancing the cooling effect of evapotranspiration on sensible heating, and subsequently 236 

lowering the temperature of the tropical land surface, leading to a negative value of dT/dP
1,2,29

. This 237 

is supported by the antiphase oscillation between annual mean evapotranspiration and temperature 238 

over the tropical land (Fig.1c, Supplementary Figure 3). A model with a high evaporative cooling 239 

effect tends to produce a more negative dT/dP in both the historical and future periods, and vice 240 

versa. The inter-model spread in both the historical dry season dT/dP and the future annual dT/dP are 241 

dependent on the same evaporative cooling mechanism, which supports the existence of an emergent 242 
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relationship between them. As noted by Hall et al. (2019)
10

, verification of the mechanism 243 

underpinning the emergent relationship is most straightforward and effective when the same physical 244 

feedback process involves both the predictor and the predictand, and the only difference is the time 245 

scale over which the process occurs. Hence, an emergent constraint that focuses on the projection of 246 

a variable onto itself (i.e. the historical dry season dT/dP onto the future annual dT/dP in our case) is 247 

most straightforward and reliable. 248 

In Figure 2b, there is a striking change in dT/dP (i.e. 1.03 ℃ mm
-1

 day to -3.52 ℃ mm
-1

 day) 249 

after applying the EC method. From Figure 2a, we see that modeled results of both historical dry 250 

season dT/dP and future annual dT/dP show a large spread across the 26 CMIP6 models, rather than 251 

biases from individual models, and the collection of data points forms the emergent relationship. If 252 

we eliminate the handful of models with negative values of future annual dT/dP, the emergent 253 

relationship still exists and changes little. The major driving factor for the significant shift in the 254 

future annual dT/dP from pre-EC to post-EC conditions is the observed historical dry season dT/dP 255 

(black vertical line), which is smaller than all the modeled values and results in the strongly negative 256 

value of future annual dT/dP when substituting the observation into the emergent relationship (i.e. 257 

the red regression line in Fig. 2a). This in turn highlights the high uncertainty of the CMIP model 258 

simulations and the efficiency of the EC method. We can also see from Supplementary Table 2 that 259 

the observed historical dry season dT/dP values of the four datasets and the corresponding post-EC 260 

future annual dT/dP are all negative, and the changes from pre-EC to post-EC results are comparable 261 

with the result shown in Figure 2, further supporting the method and conclusions of our study. 262 

The Amazonian forest loss is projected to cross a tipping point and becomes increasingly severe 263 

as future annual ΔT/ΔP decreases
12

, whereas the tropical LAI growth rate in this study experiences 264 
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an obvious increase as future annual dT/dP declines (Fig. 4). This divergent behavior can be 265 

explained by different climate characteristics in these two regions. In the Amazon, precipitation is 266 

abundant and has experienced a limited decrease (see Fig. 1a in Chai et al., 2021
12

); more negative 267 

dT/dP indicates more temperature warming, which is unfavorable for vegetation growth due to 268 

limitations in water use efficiency, photosynthesis and CO2 fertilization
12,18-24

. This demonstrates that 269 

the Amazonian forest cover is mainly controlled by temperature. Nevertheless, the whole tropical 270 

land surface, assessed in this work, contains a wide variety of subareas, including both arid deserts 271 

and humid rainforests, where precipitation and temperature have respectively witnessed obvious 272 

decreases and increases (see Fig. 1a in this study). Over this broader area, a more negative dT/dP 273 

(namely the more negative linear regression slope in Fig. 1b in this study) means a lesser decrease in 274 

precipitation for a given increase in temperature (it can be seen from Fig. 1a that the increasing rate 275 

in temperature is roughly stable after 1975 whereas the decreasing rate in precipitation slowed from 276 

1975-1992 to 1992-2005), which is favorable for vegetation growth due to higher water 277 

availability
12,18-20,22-24

. Recognition of the key environmental variables driving the two different 278 

spatial-scale vegetation greenings is quite instructive for ecological preservation. 279 

Apart from future annual dT/dP, we find that the historical LAI change also has a significant 280 

emergent relationship with the future LAI trend across CMIP6 models (Supplementary Figure 15a). 281 

After combining this EC with the observation of LAI (0.0069 m
2
 m

-2
 yr

-1
), we estimate that the 282 

constrained future annual growth rate in LAI is most likely to reach 0.0192 m
2
 m

-2
 yr

-1
, which is 283 

quite consistent with the result (0.0205 m
2
 m

-2
 yr

-1
) obtained by using the constrained future annual 284 

dT/dP, with a discrepancy is only of 6.3%. These two equivalent results further improve the 285 

reliability of the finding in this study. In contrast, historical changes of evapotranspiration, 286 
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temperature and precipitation show insignificant relationships with future LAI and 287 

evapotranspiration variations (Supplementary Figure 15(b-f)). 288 

Existing emergent constraint-based findings
13,39-44

 are uniformly based on the assumption of the 289 

same plausible mechanism underpinning the inter-model spreads in both the historical and future 290 

changes for a certain environmental variable. This is the reason why all the previous studies 
38-40,45

 291 

use a linear emergent relationship to reduce the prediction uncertainty in future variables. Similarly, 292 

in this study, our emergent constraint focuses on the projection of a variable onto itself (i.e. the 293 

historical dT/dP onto the future dT/dP), which involves in the same physical mechanism for both the 294 

predictor and the predictand. Thus, a linear emergent relationship is a more reasonable selection. 295 

One limitation of this study is related to the uncertainty of the observational datasets. Different 296 

datasets exhibit a discrepancy in estimating the observed dT/dP, which may affect the post-EC 297 

results. Considering a range of observational datasets might be an effective way to relieve this 298 

influence. Here, we adopt four widely used datasets and find that the pre-EC dT/dP values are the 299 

same under a given SSP scenario, the post-EC dT/dP values are consistently negative, and the 300 

negative post-EC dT/dP values are comparable under a given SSP scenario (Supplementary Table 2), 301 

which confirms the reliability of our findings. Furthermore, another synthetic method, termed the 302 

Hierarchical Emergent Constraint (HEC) framework
46

, also provides a practical pattern for 303 

constraining the future climate projections, given that it incorporates the present-future climate 304 

correlation, the bias between observations and ensemble mean, and the observation uncertainty. After 305 

using this method, we find that the constrained future annual dT/dP remains virtually unchanged (i.e. 306 

-0.98 
o
C mm

-1
 day under SSP126, -1.49 

o
C mm

-1
 day under SSP245, -2.51 

o
C mm

-1
 day under 307 

SSP370 and -3.05 
o
C mm

-1
 day under SSP585) compared with the results seen in Supplementary 308 
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Table 2 (i.e. -1.10 
o
C mm

-1
 day under SSP126, -1.63 

o
C mm

-1
 day under SSP245, -2.86 

o
C mm

-1
 day 309 

under SSP370 and -3.52 
o
C mm

-1
 day under SSP585), with a discrepancy of merely 8.6-13.4%, 310 

which further improves the reliability of our main findings. 311 

Methods 312 

Average values. Values of temperature, precipitation, evapotranspiration and LAI are taken directly from the 313 

relevant datasets (see Data Availability). All values are at the grid scale, bounded in the geographic land area within 314 

23.5
o
 S～23.5

o
 N and 180

o
 W～180

o
 E. Spatial averages are obtained over the tropical land area. Herein, dT/dP is 315 

the rate of change of tropical land-surface average temperature with respect to tropical land-surface average 316 

precipitation. Changes in evapotranspiration and LAI are also derived from corresponding spatial averages. 317 

Linear regression and forecast error. A linear regression is performed between x (independent variable) and y 318 

(dependent variable) using the least squares method
6
. That is, the best fit line corresponds to the minimum 319 

quadratic sum of the normal distances between the data points and the fitted line. Then, the best-estimate value of y 320 

(yp) for a given value of x (xp) is obtained by substituting xp into the regression equation of the fit line
6,12-13

. 321 

The forecast error of yp at xp is estimated as: 322 

2

2

( )1
( ) 1

p

p

x

x x
y s

N N





  


                                (1) 

323 

where N is the number of samples, x̅ is the geometric average across all elements in the independent variable 324 

sample, σx is the variance of x, and s is used to minimize the quadratic sum of the vertical distances during the 325 

linear regression analysis. σx and s are respectively calculated as follows: 326 
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where xi and yi are the i-th elements in samples of the independent and dependent variables, and ypi is the value of 329 
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yp on the best fit line corresponding to yi. 330 

In Figs. 2(a), 3(a), and 4(a), and Supplementary Figure 7(a, c, e) and 10(a), x represents the historical dry season 331 

dT/dP and future annual dT/dP, respectively, and y represents future annual dT/dP, future change in tropical land 332 

evapotranspiration, and future annual growth rate in tropical land LAI, separately. Meanwhile, the observed dry 333 

season average dT/dP (vertical black line) ± one standard deviation (light blue rectangle) in Fig. 2(a) and 334 

Supplementary Figure 7(a, c, e) and 10(a) are also determined using a linear regression process, in which the best 335 

estimate (i.e. the vertical black line) is the slope of the linear regression line between observed historical dry season 336 

T and observed historical dry season P, and a single standard deviation (i.e. the light blue rectangle) is calculated by 337 

equation (1). Subsequently, the constrained future annual dT/dP (vertical black line) ± one standard deviation (light 338 

blue rectangle) in Figs. 3(a) and 4(a) are obtained by projecting the best estimate of historical dry season dT/dP 339 

onto the red regression line and the orange shaded area in Fig. 2(a). 340 

PDFs. Following Cox et al. (2018)
6
 and Chai et al. (2021)

12
, PDFs of pre-EC values of dependent variables are 341 

directly calculated from: 342 
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By comparison, post-EC values (y＇) are constrained by dataset observations, and the corresponding PDFs are 344 

determined from: 345 

                                       ( ') ' 'P y P y P x dx





                                   (5) 346 

where x＇represents the independent variable derived from observed datasets rather than the model results. 347 

Hierarchical Emergent Constraint (HEC) framework 348 
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The hierarchical emergent constraint method requires data for the projected future climate variable (y), 349 

alongside simulated and observed current climate variables (x and xo). Least-squares linear regression is applied to 350 

establish the emergent relationship between x and y:  351 

( )y k x x y                                       (6) 352 

where k is the regression coefficient, which can be calculated by using equation (7); �̅� and �̅� are the model 353 

ensemble mean values of x and y. 354 

y

x

k





                                       (7) 355 

where ρ is the correlation coefficient between x and y, and σx and σy are standard deviations of x and y across the 356 

CMIP6 models. 357 

If the emergent relationship is causal and significant, we can constrain y by combining with the observed 358 

current climate variable xo and its uncertainty. Assuming that the observation is related to the current climate 359 

through an additive-noise model under Gaussian assumptions, we use the signal-noise ratio (SNR) in x0 to correct 360 

the scaling factor k (equation (8)). SNR defines the relative strength of the signal variability to the noise variability 361 

and is estimated by using equation (9), where 𝜎𝑥
2 and 𝜎𝑜

2 are variances across the models and across the different 362 

observation datasets. If the noise dominates the signal, the forecast anomaly will approach 0. Otherwise, if the 363 

signal drives the noise (i.e. SNR ≥ 1), the correction through equation (8) has little effect, and thus the constrained 364 

future climate  𝑦0̅̅ ̅ with its standard deviation can be estimated by equations (10) and (11), respectively. 365 
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After using the HEC framework, the uncertainty of the projected future climate y0 is reduced by 
2

1
1 SNR





. 370 

More detailed information of the HEC framework can be seen in Bowman et al. (2018)
46

. 371 

Data Availability 372 

CMIP6 model simulations of monthly data of temperature/precipitation during 1949–2100, and evapotranspiration 373 

and LAI during 2015–2100 under the emission scenarios of SSP126, SSP245, SSP370 and SSP585 were collected 374 

from https://esgf-node.llnl.gov/projects/cmip6/. Observed monthly temperature and precipitation data during 1949–375 

2005 are derived from the HadCRUT4 (http://www.cru.uea.ac.uk/), GPCC 376 

(https://climatedataguide.ucar.edu/climate-data/gpcc-global-precipitation-climatology-centre), NOAA 377 

(https://www.esrl.noaa.gov/psd/data/gridded/data.noaaglobaltemp.html), GISS 378 

(https://www.esrl.noaa.gov/psd/data/gridded/data.gistemp.html) and Delaware 379 

(https://psl.noaa.gov/data/gridded/data.UDel_AirT_Precip.html) datasets. HadCRUT4 and Delaware provide both 380 

temperature and precipitation data, whereas the GPCC dataset solely provides precipitation data, and NOAA and 381 

GISS datasets only provide temperature data. Hence, we use HadCRUT4, Delaware, and combinations of 382 

GISS+GPCC and NOAA+GPCC to establish the sensitivity of tropical land-surface temperature to precipitation in 383 

this study. Observed monthly data of evapotranspiration during 1980–2014 were gathered from the GLEAM dataset 384 

(https://www.gleam.eu/). 385 

Code Availability 386 

The code used to generate the results for this study is available upon reasonable request from the 387 

corresponding author. 388 
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Figure captions 498 

 499 

Fig. 1 Association between tropical land-surface temperature and precipitation using HadCRUT4 500 

observations and CMIP6 outputs. a, Observed time series of annual tropical land-surface temperature and 501 

precipitation from 1949 to 2005. b, Observed relationship between tropical land-surface temperature and 502 

precipitation anomalies at annual and seasonal timescales (anomalies are computed as the value of a variable in a 503 

certain year minus the mean over the multi-year period of 1949-2005). c, Comparison between the two observed 504 
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yearly time series of tropical land-surface evapotranspiration from GLEAM dataset and temperature from 505 

HadCRUT4 dataset during 1980-2005. d, Linear relationships between observed tropical land-surface temperature 506 

and precipitation before and after using a moving average with the window length of 5 years. Linear relationships 507 

corresponding to other window lengths are illustrated in Supplementary Figure 4, and correlation coefficients and 508 

slope values (i.e., dT/dP) are provided in Supplementary Figure 5. e, Spreads of future annual dT/dP modeled under 509 

the four SSP scenarios. f, Relationship between future annual and historical dry-season values of tropical land 510 

dT/dP modeled under the four SSP scenarios. 511 

 512 

Fig. 2 EC on future annual dT/dP based on CMIP6 models under the SSP585 scenario. a, The constraint 513 

consists of a linear regression (with the associated error) between the future annual simulated dT/dP and historical 514 

dry season simulated dT/dP (red line and orange shaded area); then the constrained data is computed by projecting 515 

the observed historical dry season dT/dP ± one standard deviation (vertical black line and light blue rectangle, 516 

obtained from the HadCRUT4 dataset) onto the regression. b, Blue and grey lines are PDFs for the constrained 517 

(post-EC) and unconstrained (pre-EC) future annual dT/dP, showing the change in projection uncertainty and the 518 

best estimate of future annual dT/dP. 519 

 520 

Fig. 3 EC on future annual growth rate in tropical land evapotranspiration based on CMIP6 models (see 521 

Supplementary Table 1) under the SSP585 scenario. a, The constraint consists of a linear regression (with the 522 

associated forecast error) between the future annual dT/dP and future annual growth rate in evapotranspiration (red 523 

line and orange shaded area); the constrained data is computed by projecting the constrained future annual dT/dP ± 524 

one standard deviation (SD, vertical black line ± light blue rectangle) onto the regression. b, Blue and grey lines are 525 

PDFs for the constrained (post-EC) and unconstrained (pre-EC) future annual growth rates in evapotranspiration. 526 

Note: The use of a constrained future variable (x) to constrain another future variable (y) has also been applied in 527 

previous studies
37-38

. The logic is as follows: A tight interdependence (i.e. emergent relationship) is first found 528 

between x and y based on originally modeled results. The constrained x is then applied in the emergent relationship 529 

to obtain a more precise y given that this kind of x shows a much lower uncertainty. 530 

 531 

Fig. 4 EC on future annual growth rate in tropical land LAI based on CMIP6 models (see Supplementary 532 

Table 1) under the SSP585 scenario. a, The constraint consists of a linear regression (with the associated forecast 533 

error) between the future annual dT/dP and future annual growth rates in tropical land LAI (red line and orange 534 

shaded area); the constrained data is computed by projecting the constrained future annual dT/dP ± one standard 535 

deviation (SD, vertical black line ± light blue rectangle) onto the regression. b, Blue and grey lines are PDFs for the 536 

constrained (post-EC) and unconstrained (pre-EC) future annual growth rates in tropical land LAI. 537 

 538 
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Fig. 1 542 
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Fig. 2 545 
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Fig. 3 548 
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Fig. 4 551 
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